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Preface to Second Edition

Over the past 10 years or so, some ideas related to discrimmant analysis (DA) have
been refined and extended by statisticians and quantitative methodologists to some
extent. In this second edition, we have made attempts to report some of these refine-
ments and extensions so as to help guide researchers and methodologists in the conduct
and reporting of studies involving multivariate analysis of (co)variance, descriptive
discriminant analysis, and predictive discriminant analysis. The goals for this second
edition are the same as those for the fist edition.

We heeded the many comments and suggestions made by reviews of the first
edition. Seven major changes were made for this second edition:

• Deletion of appendix with computer output
• Basic SPSS and SAS computer syntax and output are embedded in the text
• Two applications chapters were deleted; easy access to websites should suffice

for the interested researcher
• Inclusion of detailed discussions of multivariate analyses of variance and

covariance
• Recent references (from a variety of disciplines) given in the text proper and for

further reading
• Addition of a chapter on analyses related to predictive discriminant analysis
• The website (obtained through Wiley) from whiib computer programs and data

sets may be obtained

In Appendix A we include the descriptions of five data sets that are used in
the text proper and in chapter exercises; three of these sets contain “real” data.
Many statisticians/statistical methodologists have contributed to DA-related concepts
and methods over the past eight decades. These researchers have contributed many
“original” ideas related to DA. A list of what we term DA-related “originators” is
given in Appendix B.

More readings related to many topics in the current edition may be found in the
first edition under the heading Additional Readings (Chapters I–IV, VI–X, XIV–XVI,
and XX).

xxv
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Preface to First Edition

Three types of users were kept in mind while preparing the manuscript for this book:
(1) graduate students who want to expand their background in multivariate data analy-
sis methods (for purposes of subsequently producing and consuming applied empirical
research), (2) experienced applied researchers who want to enhance or update their
quantitative background, and (3) (experienced or budding) methodologists who want
to learn about some of the details and, perhaps, some unresolved problems in applied
discriminant analysis. For the first two types, frequent references are made to com-
puter printout information, and many suggestions are given for conducting various
analyses. For the third type, references are made to research on discriminant analysis
methods, some technical but not too theoretical notes are given near the ends of some
chapters, and some issues and problems in discriminant analysis are discussed in the
final two chapters.

Two general goals are suggested for the user of this book (1) to learn how to talk,
read, and write about discriminant analysis; and (2) to further develop a personal
approach to, or philosophy of, empirical research and data analysis. Somewhat more
specific objectives for the user are:

• To become aware of the types of research questions that may be addressed using
discriminant analysis

• To learn the meaning of concepts and terms associated with discriminant analysis
• To be able to read, understand, and interpret various computer package printouts

that pertain to discriminant analysis
• To be able to critically read and evaluate reports of applied discriminant analysis
• To be able to design a study that uses discriminant analysis, carry out the analysis,

and write up the report

Four real data sets are utilized to illustrate various analysis results, in both text
examples and exercises. The illustrative results were obtained via the three statistical
computer packages: BMDP, SAS, and SPSS. A number of printouts are included
in an appendix. Although the latest available releases of these packages were used,
it is recognized that new releases will become available. It is conjectured that the

xxix
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computational results of the packages will, for the most part, remain fairly constant.
New formats and possibly additional results may, however, become obtainable. It is
also conjectured that subsequent to the study of discriminant analysis results in this
book, interpretation problems with new format and additional results will be minimal.

Because references are made to multiple regression and multiple correlation, some
familiarity with associated concepts and parameter estimators would be desirable.
Knowledge of multiple regression and multiple correlation particulars is not, however,
essential to developing an understanding of aspects of discriminant analysis.

Although the expression discriminant analysis is used in different ways by dif-
ferent people, two different aspects of discriminant analysis are emphasized in this
book predictive discriminant analysis (PDA) and descriptive discriminant analysis
(DDA). In the behavioral sciences what is generally referred to by the expression
“discriminant analysis” is DDA, while researchers in most other fields of study, as
well as statisticians, generally think of PDA. In this book, PDA is presented first (in
Part Two). Part Three (i.e., DDA) may, however, be studied first if desired.

There are three data analysis “themes” emphasized explicitly or implicitly in this
book: (1) Look at your data prior to your final analysis; (2) use judgment and common
sense in conducting analyses and in interpretations of results; and (3) do not hesitate
to conduct multiple analyses (within or across computer packages) of your data. Two
additional emphases are suggested with respect to discriminant analysis in particular:
(1) Expend considerable effort in the initial selection and definition of variables to be
studied; and (2) remember that although PDA and DDA are related, they are used for
different purposes. Finally, it should be recognized that issues and problems associated
with the conduct and interpretation of results of discriminant analysis still exist.
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Notation

Symbol Meaning Section in First Use

p Number of response variables 2.3
J Number of groups 2.4
nj Number of units in Group j 2.4

Subscripts
i = 1, 2, . . . , p Variable 2.4
j = 1, 2, . . . , J Group 2.4
u = 1, 2, . . . , nj Analysis unit 2.4
Yiuj Score on variable i for unit u in

Group j

2.4

N Total number of units (=�nj ) 2.4
Y i.j Mean of variable i for Group j 2.4
SSj Sum-of-squares for Group j 2.4
s2
j Variance for Group j 2.4

covj (YiYi′) Covariance for variables i and i′ 2.4
rjii′ Correlation of variables i and i′ for

Group j

2.4

CP Sum of cross products 2.4
y.j (p × 1) vector of means for Group j 2.4
Yuj (N × p) matrix of p response variable

scores for Group j

2.4

Y′
uj Transpose of matrix of response

variable scores
2.4

Sj (p × p) covariance matrix for Group j 2.4
Cj (nj × p) mean-centered matrix for

Group j

2.5

SSCPj (p × p) sum-of-squares and
cross-products matrix for Group j

2.5.1

|Sj | Determinant of covariance matrix for
Group j

2.5.2

xxxi
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S−1
j Inverse of covariance matrix for Group j 2.5.3

λ Eigenvalue 2.5.4
b Column vector of response variable weights 2.5.4
c Euclidean distance 2.6
E (p × p) error SSCP matrix 2.6
Se (p × p) error covariance matrix 2.6
D Mahalanobis distance 2.6
d Cohen standardized distance 2.6
bi Linear combination weight for variable i 2.7
b0 Linear combination constant 2.7
P(H) Probability of event H 2.8
µj Population mean for Group j 3.2.1
µ. Population mean across all groups 3.2.1
αj µj − µ. 3.2.1

s2
e Error variance 3.2.1

dfe Error degrees of freedom 3.2.1
r2

pb Squared point-biserial correlation 3.2.1
µj (p × 1) vector of means for Population j 3.2.2

T 2 Hotelling statistic 3.2.2
�j (p × p) covariance matrix for Population j 3.3
T ∗2 Yao test statistic 3.4
ηpop Population correlation of outcome variable and

grouping variable
3.5.1

dfh Hypothesis degrees of freedom 3.5.1
H (p × p) hypothesis SSCP matrix 3.5.2
� Wilks lambda statistic 3.5.2
r min(p, dfh) 3.5.2
ν = 1, 2, . . ., r; subscript for eigenvalues 3.5.2
λν νth eigenvalue for E−1H 3.5.2
U Bartlett–Pillai statistic 3.5.2
b max(p, dfh) 3.5.2
� Roy statistic 3.5.2
V Hotelling–Lawley trace 3.5.2
η2 Univariate effect size 4.2.1
ω2 Univariate effect size 4.2.1
η2

mult Multivariate effect size 4.2.2

τ 2 Multivariate effect size 4.2.2
ξ2 Multivariate effect size 4.2.2
ζ 2 Multivariate effect size 4.2.2
ω2

mult Multivariate effect size 4.2.2
ψ Population group contrast 4.4.1
ψ Population vector for a group contrast 4.4.2
ξ2

adj Adjusted multivariate effect size 4.4.2
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b (p × 1) vector of weights 5.2.1
LDF Linear discriminant function 5.2.2
b∗
j Standardized weight 5.4

�(i) Wilks � with variable i deleted 6.3.1
F(i) F -to-remove for variable i 6.3.1

A Matrix of orthonormal contrast coefficients 8.6
A Matrix of contrast coefficients 10.4
W Mauchly statistic 10.7
ε, ε∗, ε′

, ε̃ Adjustments for degrees of freedom in repeated
measures

10.7

d̃2 Squared sample Euclidian distance 12.2
�2 Squared population Mahalanobis distance 12.3
f (xu|j) Value of density function at xu, given membership

of unit u in Population j

12.4.1

P(xu|j) Probability of unit u having xu vector, given
membership in Population j – typicality
probability

12.4.2

P(j |xu) Probability that unit u belongs to Population
j – posterior probability

12.4.3

πj Prior probability for Population j 12.4.4
qj Estimated prior probability for Population j 12.5

f̂ (x) Estimated value of density function f at x 13.1
xj (p × 1) vector of means for Group j 13.2
Duj Sample (Mahalanobis) distance of unit u and Group

j centroid (using Sj )
13.2

P̂ (j |xu) Estimated posterior probability that u belongs to
Group j

13.3

D∗
uj Sample distance between unit u form Group j

centroid (using Se)
13.3

QCF Quadratic classification function 13.4.1
Quj QCF score for unit u in Group j 13.4.1
LCF Linear classification function 13.4.2
Luj LCF score for unit u in Group j 13.4.2
cj LCF constant for Group j 13.4.2
C(j |j ′) Cost of assigning a Group j ′ unit to Group j 13.7
njj ′ Number of units in cell (j, j ′) of J × J

classification table
14.5

ρ True correlation coefficient 15.1
ρν True validity coefficient 15.1
P (o) Optimal hit rate 15.2
P (a) Actual hit rate 15.2
P (e) Expected actual hit rate 15.2
D̃2 Estimator for �2 15.3.1
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xxxiv NOTATION

Qj McLachlan’s estimator = 1 − P̂
(a)
j 15.3.1

L-O-O Leave-one-out method of classification 15.3.3
M-P-P Maximum-posterior-probability method of hit rate

estimation
15.3.4

ej Expected frequency in cell (j , j ) of classification
table

16.2.1

e �ej 16.2.1
Ho Observed hit rate 16.2.1
He Expected hit rate 16.2.1
o �njj 16.2.2
I Improvement-over-chance hit rate 16.4
φ Standard normal distribution function 18.5
R(X) Rank of score on X 19.2.1
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P A R T I

Introduction

How discriminant analysis fits in the arena of multivariate statistical methods is
reviewed. An introduction of the two aspects of discriminant analysis (DA), descrip-
tive discriminant analysis (DDA) and predictive discriminant analysis (PDA), are
prefaced with a little history of DA. Aspects of the design of a DA study involving a
DDA or PDA are discussed.

Statistical preliminaries to a discussion of DA are presented. This presentation
includes some of the basic mathematical and statistical concepts involved in a DA:
matrix operations, distance, linear combination, probability, and statistical testing.The
role of researcher judgment in data analyses and interpretations thereof is emphasized.

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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C H A P T E R 1

Discriminant Analysis in Research

1.1 A LITTLE HISTORY

Some of the ideas associated with discriminant analysis go back to around 1920.
The English statistician Karl Pearson (1857–1936) proposed what was called the
coefficient of racial likeness (CRL), a type of intergroup distance index. The CRL
was studied extensively by G. M. Morant (1899–1964) in the 1920s. In the 1920s, too,
study of another distance index started in India, to be formalized by P. C. Mahalanobis
(1893–1972) in the 1930s. The idea of multivariable intergroup distance was translated
to that of a linear composite of variables derived for the purpose of two-group classifi-
cation by R. A. Fisher (1890–1962) in the 1930s. The distance and variable composite
ideas appeared in print prior to Fisher’s seminal discriminant analysis article in 1936
(“The use of multiple measurements in taxonomic problems,” which appeared in
Annals of Eugenics). At the suggestion of Fisher, M. M. Barnard applied two-group
(predictive) discriminant analysis in a 1935 study involving seven Egyptian skull
characters. The extension of two-group classification to multiple groups was given
by C. R. Rao in 1948. Many other extensions and refinements of Fisher’s ideas have
appeared since the 1940s.

A detailed presentation of all historical developments pertaining to discrimi-
nant analysis will not be attempted here. There are at least 14 excellent sources
of references related to discriminant analysis developments (listed chronologi-
cally):

Hodges (1950)

Tatsuoka and Tiedeman (1954)

Tatsuoka (1969)

Anderson et al. (1972)

Cacoullos (1973)

Das Gupta (1973)

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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4 DISCRIMINANT ANALYSIS IN RESEARCH

Subrahmaniam and Subrahmaniam (1973)

Toussaint (1974)

Huberty (1975)

Lachenbruch (1975)

Hand (1981)

Panel on Discriminant Analysis, Classification, and Clustering (1989)

McLachlan (1992)

Giri (2004)

Although the initial study of discriminant analysis involved applications
in the biological and medical sciences, considerable interest was aroused by
statisticians/methodologists in areas of study such as business, education, engi-
neering, and psychology. This interest led to the writing of textbooks that covered
discriminant analysis in various forms and from various perspectives. Some pre-1970
books with an applied flavor are:

Rao (1952)

Kendall (1957)

Cooley and Lohnes (1962)

Rulon et al. (1967)

The potential for the application of discriminant analysis in education and psychol-
ogy (and in other areas of study?) may be attributed to methodologists associated,
in one way or another, with Harvard University during the 1950s and 1960s. This
is evidenced by publications cited above (Cooley and Lohnes, 1962; Rulon et al.,
1967; Tatsuoka, 1969; Tatsuoka and Tiedeman, 1954), a symposium on discrim-
inant analysis at Harvard (Tiedeman et al., 1951), an application (Tiedeman and
Sternberg, 1952), a report for the Educational Research Corporation (Tiedeman et al.,
1953), and two reports for the Office of Education (Gribbons and Lohnes, 1969;
Hockersmith, 1969).

The writings about discriminant analysis for the first three or four decades focused
on the prediction of group membership, labeled predictive discriminant analysis
(PDA) in the current book. In the nonbehavioral sciences, this focus has contin-
ued to this day. Giri (2004, pp. 477–482) lists 88 references related to PDA; the
publication years range from 1921 to 1991. Although Fisher considered linear vari-
able composites (i.e., linear discriminant functions, LDFs) from a mathematical
standpoint in the 1930s, it was not until the 1960s that LDFs were considered seri-
ously for purposes of interpreting effects revealed via a multivariate analysis of
variance (MANOVA) (e.g., Cooley and Lohnes, 1968; Jones and Bock, 1960); this
aspect of discriminant analysis is labeled descriptive discriminant analysis (DDA)
in the current book. In the view of some methodologists, the study of structure
(through LDFs) in the context of MANOVA has considerable potential for sub-
stantive theory exploration and development. As important as such study may be
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considered, its use has been very limited in applied research settings over the past
four decades.

1.2 OVERVIEW

Empirical research in nearly every discipline is rarely confined to the study of a single
response variable, a characteristic or attribute or trait on which the researcher obtains
scores or responses for a collection of analysis units.1 Data sets typically involve mea-
sures on a number of variables, and it may be desirable to consider (i.e., to analyze and
interpret the analysis for) all the variables simultaneously. Data analysis methods used
to conduct such analyses are in the general domain of multivariate statistical methods.

The expression multivariate methods covers quite an expanse of data analysis
methods. If we think of multivariable methods, simple analysis of variance (ANOVA),
which involves two variables (one grouping and one outcome variable), would be
included, as would the three-variable two-factor ANOVA situation. Also, multiple
correlation (as opposed to multiple regression) involving X1, X2, . . . , Xp on the
one hand and Y on the other hand would clearly be a multivariable or multivariate
situation. There are, of course, many other multivariate types of analyses, two of
which are included under the expression discriminant analysis (DA).

To get a rough idea of how DDA and PDA fit into a general scheme of analyses
of multivariate data, consider Figure 1.1. When a research question pertains directly
to the study of a comparison among, say, three groups of analysis units for each of
which we have, say, 10 outcome variable scores, then the analyses of interest would be
MANOVA along with DDA. On the other hand, if the single set of response variables
play the role of predictors, and there is a single grouping variable, then the associated
research question would pertain to how well group membership of analysis units may
be predicted—a PDA.

If a study involves a single set of response (not outcome or predictor) variables,
the analysis to be applied would be, for example, a cluster analysis or a principal
component analysis. For two sets of response variables, analyses of interest may be
multiple regression, multiple correlation, or canonical correlation.

1.3 DESCRIPTIVE DISCRIMINANT ANALYSIS

As mentioned above, when a multivariate study design involves a single set of response
variables that are outcome variables, along with one or more grouping variables,
then a MANOVA would be conducted. This analysis would, depending upon “real”
MANOVA effects, be followed up with a DDA. In DDA, the basic question of inter-
est pertains to grouping variable effects on the multiple outcome variables or, more

1The term, analysis unit, or, simply, unit, is used in the current book to indicate an object or individual or
subject being studied.
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Predictive
Discriminant

Analysis*
(PDA)

Logistic
Regression
Analysis*

(LRA)

Pattern
Recognition

(PR)

One Set of Response Variable

Descriptive
Discriminant
Analysis**

(DDA)

*One grouping variable
**One or more grouping variables

Cluster
Analysis

(CA)

Factor
Analysis

(FA)

Principal
Component

Analysis
(PCA)

Multi-
Dimensional

Scaling
(MDS)

Latent
Structure
Analysis

(LSA)

Two Sets of Response Variables

Multiple
Regression
Analysis

(MRA)

Canonical
Correlation

Analysis
(CCA)

Multiple
Correlation
Analysis

(MCA)

Structural
Equation
Modeling

(SEM)
Single variable in one set

Multivariate
Analysis of
Variance**
(MANOVA)

Predictors Outcomes Neither

One Set of Predictors No Predictor Set

Figure 1.1 Classification of multivariate methods.

specifically, to group separation or group differences with respect to the set of out-
come variables. Techniques of DDA are, therefore, closely aligned to the study of
effects determined by a MANOVA. It is assumed that the reader is familiar with the
use of univariate analysis of variance (ANOVA) to study the effects of one or more
grouping variables on a single outcome variable. Having familiarity with univariate
ANOVA, the reader undoubtedly can think of research situations involving one factor
(or grouping variable) and involving multiple factors with a single outcome variable.
To come up with MANOVA situations, then, one need only think of multiple outcome
variables for one-factor or multiple-factor designs.

It may be noted that an ANOVA null hypothesis may be stated as a correlational
hypothesis, the correlation between the grouping variable and the outcome variable.
In MANOVA, too, we may consider the relationship between the grouping variable,
on the one hand, and the set of outcome variables on the other.
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As in most other multivariate contexts, linear combinations/composites of
response (i.e., outcome) variables in a MANOVA/DDA context are determined. A
two-group MANOVA may be viewed as a (univariate) two-group ANOVA where the
single outcome variable consists of a linear combination of the original multiple out-
come variables. It is these variable combinations that are the center of attention in
DDA. That is, the main reason for conducting a MANOVA/DDA is to interpret,
in some cases, the resulting variable combination(s) that is(are) associated with
group differences. The interpretation pertains to the effects judged generalizable via a
MANOVA. One attempts to associate substantively interpretable constructs with the
variable combinations underlying the effects of interest.

An example of an application of MANOVA and DDA is given by Schuab and
Tokar (1999). A cluster analysis was conducted using 240 undergraduate students
and 17 variables pertaining to counseling expectations. It was decided to go with
five clusters. To interpret cluster differences, scores on 4 linear composites—based
on the original 17 variables—were used as MANOVA outcome variable scores. Two
meaningful constructs (via DDA)—Optimism, and Neuroticism and Closedness—
were defined, and considered in interpreting differences among the 5 clusters of 240
students.

As implied from this example, the primary questions addressed in a DDA are:

• How many constructs (dimensions) characterize group separation?
• What (latent) constructs characterize group separation?

1.4 PREDICTIVE DISCRIMINANT ANALYSIS

The processes of prediction and identification are very common in our society. Some
examples involve the prediction or identification of the following:

• Life expectancy
• Length of time to check out at a grocery store
• Economic growth
• Number of attendees at a social function
• Academic achievement
• Length of time for mail service
• Success in a gifted education program
• Voting support of a candidate
• State revenue income
• Sales revenues

In a more academic setting, one might be interested in predicting family planning
devices, fish site rainfall, physical/mental disorder type, marital outcome, or deficient



“c01” — 2006/3/21 — page 8 — #8

8 DISCRIMINANT ANALYSIS IN RESEARCH

taxpayers. Each of these examples involves one or more predictor or explanatory vari-
ables along with one criterion or outcome variable. In some instances the criterion
variable is quantitative and is measured using at least an ordinal scale of measure-
ment. For such a situation, a multiple regression analysis would be conducted. In
other instances the criterion is categorical (i.e., a grouping variable), measured with a
nominal scale; sometimes the criterion is dichotomous, sometimes polytomous. It is
in the latter type of situation with a categorical criterion (and, usually, with unordered
categories) that a predictive discriminant analysis (PDA) is applicable.

In multiple regression analysis, a prediction rule is developed that involves a linear
combination/composite of the predictors. A linear combination of predictors is also
used in PDA; however, the rule consists of as many linear combinations as there are
categories (or groups). Such a rule enables the researcher to predict membership of an
analysis unit in one of the criterion groups; or, viewing it another way, to determine
the group with which a unit is identified. For example, suppose that it is of interest
to identify a high school student who would potentially drop out of school. With two
groups of students, a set of graduates and a set of dropouts, a prediction rule would
be formulated using such predictors as overall grade average, absenteeism, family
structure, family social status, and gender. Using the five predictor measures for each
student in each group, predictor weights for two linear combinations, one associated
with each group, are determined. The two linear combinations would then be used for
a subsequent student to predict group membership (graduate or dropout); a student
would be assigned to the group with which is associated the larger linear combination
score. (As we shall see in Section 13.3, two probabilities of group membership for
each student may be determined.)

As might be implied from the example above, the primary question addressed in a
PDA is:

• How accurately can group membership be predicted?

Two related PDA questions are:

• Is the resulting “hit rate” better than that obtainable by chance?
• If so, how much better?

An example of an application of a PDA is given by Kumar and Sahai (1993).
The prediction of four family planning devices was of interest, using 12 predictors
based on family socioeconomic and demographic characteristics. (Nine of the pre-
dictors were continuous, two were unordered categorical, and one dichotomous.) The
four separate-group hit rates ranged from .77 to .83—no prior probabilities were
specified.

[There are some studies in which both a DDA and PDA are applied using the same
set of response variables (e.g., Andreev, 2003; Spatz et al., 2003); why this is done is
not really clear because of the distinct purposes for the two analyses.]

In discussing DDA and PDA, and from Figure 1.1, reference is made to multiple
correlation analysis (MCA) and to multiple regression analysis (MRA). The following
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analogy may be made:

DDA : MCA :: PDA : MRA.

That is, DDA and MCA are conducted for relationship purposes, whereas PDA and
MRA are for prediction purposes.

1.5 DESIGN IN DISCRIMINANT ANALYSIS

1.5.1 Grouping Variables

Basic to the designs of many studies involving only a single response variable—
so-called univariate designs—is the grouping variable. On the one hand, the grouping
variable may be one that can be manipulated in that the researcher has control in
assigning levels of the grouping variable to the analysis units. For example, if the
grouping variable is “Method of Instruction,” before the treatments (i.e., the methods)
are implemented, the researcher can (randomly, perhaps) assign a unit to a method.
On the other hand, the grouping variable may be defined by levels that the researcher
cannot assign to the analysis units. Such grouping variables are sometimes labeled
“organismic” or “subject” variables. Examples of nonmanipulable grouping variables
are gender, mental age, ability, personality type, and educational attainment. The same
notions apply to grouping variables in multivariate designs.

Of course, just as in univariate designs, researchers must strive for high degrees
of both internal and external validity in studies with which discriminant analysis is
associated. [Briefly, internal validity pertains to causal relationships or the absence
of confounding variables while external validity pertains to generalizability. Cook
and Campbell (1979, Chapter 2) provide a detailed discussion of validity issues in
the behavioral sciences.] External validity concerns are not very different for the two
types of grouping variables. Such is not the case with regard to internal validity. There
is greater potential for low internal validity with nonmanipulable grouping variables
than with manipulable ones, where random assignment of units to a level of the
grouping variable is possible. In group comparison problems involving nonmanipu-
lable grouping variables, internal validity is of particular concern. If group differences
result, we would like to attribute these differences to the grouping variable and not to
some intervening variable(s). A careful descriptive analysis of the units in the groups
is expected in assessing internal validity.

1.5.2 Response Variables

As a prelude to a discussion about response variables, let us briefly discuss what
it means to say that a “multivariate analysis”—an expression, according to David
(1998), that was originated by M. S. Bartlett (1910–2002) in 1939—was conducted.
There are at least two meanings of what a multivariate analysis consists (Bernstein
1988, pp. 2–8): (1) an inquiry into the structure of relationships among multiple
variables and (2) the study of linear representations or composites of relationships
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among variables. The first meaning pertains to linear combinations or composites
of variables that may be employed in the study of structure in multiple correlation,
canonical correlation, DDA, and (in some senses) factor analysis. Linear composites
are also employed when structure is not of focal interest—in multiple regression and
PDA, for example.

The second meaning applies to both DDA and PDA in that for both analyses
a linear composite of the response variables has a central (but different) purpose.
The first meaning, on the other hand, applies to DDA but not usually to PDA. [See
Huberty (1994a) for more on purposes of multivariate analyses.]

No matter which meaning one considers or which analysis one applies, for any
multivariate analysis the choice of response variable domain and the variables them-
selves is of utmost importance. (The choice involves not only what unit attributes to
study, but also the measurement of those attributes, as discussed in the next paragraph.)
Serious thought ought to be given to variable choice when a discriminant analysis is
to be used. In DDA, the researcher employs a collection, or multiple collections, of
outcome variables, linear composites of which have potential to lead to a definable
and interpretable variable structure underlying the resultant group differences. When
a prediction rule in PDA is sought, the researcher, of course, seeks a rule that he
or she hopes will yield relatively high predictive accuracy. Among other things, the
goodness of a rule is highly dependent on linear composites of relevant predictors,
predictors “related” in some way to the categorical criterion.

In identifying analysis unit attributes of interest, we need to keep in mind not
only which variables to measure, but how to measure them. A determiner of the
extent to which we can identify meaningful structure (i.e., latent variables) is our
ability to measure the variables in our chosen system. That is, are the proxies for (or
indicators of) the chosen variables sufficient for sound variable measurement? Are we
doing an adequate job of measuring the chosen variables? Assuming that the chosen
system of variables has an appropriate structure base, do we need additional proxies
or indicators? Do we need different proxies or indicators? For example, suppose that
one is considering “learning” as a potential latent variable. Supposedly, one would
include, as a minimum, a battery of achievement tests that yield measures of learning.
But how about also considering measures of self-confidence, sense of responsibility,
creativeness, social competence, motivation, teacher capability, and so on? Basic, also,
to the measurement problem is the instrumentation used. Are we using instruments
that yield, in any relevant sense, valid and reliable measures?

In a given research situation (that would involve DDA), it may make sense to
hypothesize an underlying structure before data are collected. Such an hypothesis
would be pertinent to the initial response variable choice and to the proxies and
indicators utilized. Then, via data-based methods, one determines the emergent latent
variable(s). But, as pointed out by O. Kempthorne (1919–2000) over 30 years ago,
seldom does one have a “model” in mind before the collection of data (Kempthorne
1971, p. 759). (We have more to say on this issue in Section 22.5.)

After deciding on one or more variable domains (e.g., classroom climate, inter-
personal behavior, personality), appropriate response variables need to be chosen.
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Inevitably, the number of initially chosen variables will need to be reduced. The num-
ber of variables included in most discriminant analysis studies might be limited to
something on the order of 10 or 12 unless there exist compelling reasons for including
more. To start, the initial variable list should be logically screened, based on substan-
tive theory, prior research, and reliability of measures, as well as on practical grounds.
Next, the list can be statistically screened, although with some caution. If two vari-
ables are very highly correlated for the data on hand, one of them might be dropped.
Certainly, if two variables are essentially the same trait or characteristic, there is no
need to enter scores on both into the analysis. Statistical screening can sometimes
be accomplished via multiple univariate analyses (e.g., univariate ANOVA F tests).
A caution: Variables that do not yield statistical significance should not necessarily
be dropped. But, if a variable contributes nothing but “noise” in a univariate sense
(a univariate F value of less than 1.0, say), it is recommended that consideration be
given to dropping the variable prior to a discriminant analysis. Variable screening is
appropriate in both DDA and PDA.

Variable reduction can also be accomplished by employing some type of dimension
analysis (e.g., component analysis or factor analysis). Such an analysis is appropriate
when all or a substantial portion of the initial variables are from a single domain. This
variable reduction approach would be appropriate when dealing with a number of test
or inventory items. The dimension scores derived would then be used as input for a
discriminant analysis. The use of a principal component analysis (PCA) is suggested
as a prelude to a DDA or a PDA when some (or all) of the response measures are single
item scores. Such a data reduction process would make sense if the item response
options were the same for a collection of items. Of course, for a “large” set of items,
multiple PCAs may be conducted. Detailed discussions of PCA are given by Flury
(1995, pp. 20–27), McLachlan (1992, pp. 197–201), Rencher (2002, Chapter 12),
and Webb (2002, pp. 319–329). There is another research situation where “variable”
reduction is suggested. Suppose responses to a 50-item questionnaire are obtained.
Surely, a researcher would not claim to have measures on 50 “variables.” What might
be considered, then, is to sum responses on 5 (or 4 or 6?) items that have the same
response options. (An example of this approach is apparent in the 9-variable data set
described in Appendix A.)

Another concern regarding response variables pertains to when measures on these
variables are obtained. If a predictive discriminant analysis is the analysis of interest,
it is important that the response measures be obtained before the groups are defined.
Invalid predictions and interpretations of results are likely if group membership causes
systematic differences in the response measures. This may be a problem, for example,
when distinguishing college graduates from college dropouts on the basis of locus of
control measures obtained after the students graduate/drop out.

A comment regarding the roles of the grouping variable(s) and the response vari-
ables is in order. In a group comparison problem, a grouping variable plays the role of
an “independent” variable, whereas response variables play the role of “dependent”
variables. (This common usage is unfortunate and potentially misleading and is not
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followed in the current book.)2 In a prediction problem, the roles of the variables are
reversed, with the response variables now playing the role of predictor variables, and
a grouping variable playing the role of a criterion variable.

There is a research situation where the use of the term “outcome variable” or the
term “predictor variable” may not be appropriate. Suppose analysis unit measures on
a set of p response variables were obtained prior to the determination of unit group
membership. This may apply, for example, to the situation of the study of College
Major. Suppose further that the research interest is on the comparison of groups
(e.g., Major). Such a comparison may be accomplished through the study of the
relationship between Major on the one hand and a linear composite of a set of p

response variables on the other hand. [MANOVA and DDA techniques (see Part II)
could be used to determine the number of dimensions one could associate with the
resulting relationship, and to identify potentially substantively meaningful constructs
underlying the dimensions.]

Finally, we have a few comments about sampling of analysis units and about
response variable measures. The basic concern in sampling is that of representative-
ness of some meaningful population (defined in terms of analysis units). The degree of
representativeness is assessed in great part by researcher judgment; a description and
documentation of the sampled units should help. Random sampling is championed
by some methodologists, but it is difficult to implement and sometimes not entirely
appropriate in practice. Simple random selection does not necessarily ensure repre-
sentativeness. That is, by chance a “random” sample could be atypical of the target
population. Measures of response variables should be obtained in the most reliable
way possible, so that independence of measures across units is assured. Suggestions
about desirable sample sizes are provided in Sections 15.7 and 18.5.

With respect to the research design of a study that would involve a PDA, a final
comment follows. When designing a PDA study, it is assumed that the measures on
the predictor variable are obtained before the grouping variable is determined.

Suggestion It is suggested that the reader of this book return to this chapter for a
reread when designing a study that would involve a DDA (Sections 1.3 and 1.5) or a
PDA (Sections 1.4 and 1.5).

Further Reading

Hand (1997) provides a very thorough discussion of a variety of concepts related
to classification (i.e., PDA) rules (for the reader who has already studied the
PDA basics). See Huberty (2000a) for a review.

Hawkins (1993) and Rayens (1993) provide comprehensive reviews of McLachlan
(1992).

2F. Mosteller (1909–1990) and J.W. Tukey (1915–2000) state: “These [terms] have been extremely effective
in producing confusion when dealing with data” (1977, p. 31). See, also, Dodge (2003, p. 197) and Moore
(2004, p. 80).
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Huberty (1994a) presents a review and conceptual discussion of two primary
purposes (prediction and structure identification) and a secondary purpose
(response variable ordering) of a multivariate analysis.

Huberty and Lowman (1998) illustrate rather complete applications of DDA and
PDA in contexts of higher education research; considerations, issues, and
problems related to the two analyses are discussed.

Huberty and Morris (1989) contend that conducting multiple ANOVAs in a mul-
tivariate group comparison context is of limited utility; rather, a multivariate
analysis should focus on the study of outcome variable constructs.

Huberty (2002) discusses the basics of DDA and PDA (with a very limited use of
formulas).

McLachlan (1992) presents an outstanding review of discriminant analysis in
general, from a fairly technical point of view. Over 1200 references on appli-
cations as well as methods are given. Specific reference will be made to this
monograph—as the author calls it—repeatedly throughout the present volume.

Ragsdale and Stam (1992) give references for a number of published data sets in
business applications.

Rencher (1998, Chapters 5 and 6) and Rencher (2002, Chapters 8 and 9) provide
some detailed discussions of DDA and PDA in the respective chapters; adequate
statistical formulation is given in both books.

Therrien (1989) discusses PDA in a (fairly theoretical) context of pat-
tern recognition; in this context the term classifier is used rather than
classification/allocation rule.

Definition Standard deviation: A married man whistling at a girl.

EXERCISES

1. This is an exercise calling for the design of a group comparison study. The research
purpose pertains to group separation (for which MANOVA would be conducted)
and the identification of some underlying structure (via the use of DDA). Define
a research setting involving three or more groups. So, reasonable group and
corresponding population identification is to be done first. Next, identify 6 to
12 outcome variables and how each would be measured. Finally, fill in a data
matrix; it would be an N (total number of analysis units) × p (number of outcome
variables) matrix. Obtain the data matrix from a colleague, a book, a simulation,
or other source. [Note: You may want to relabel some variables and rescale some
variable measures in an available data set so as to make the data set more relevant
to you. Also, you may want to consider at least one categorical outcome variable
(with more than two unordered categories?).]
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2. This exercise is similar to Exercise 1, but now the research purpose pertains to
group membership prediction (i.e., a PDA would be conducted). For this data set,
the response variables are considered predictors.
(Note: Reader-generated data will be referred to in some exercises in subsequent
chapters.)
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C H A P T E R 2

Preliminaries

2.1 INTRODUCTION

In this chapter we will present basic matrix operations useful when analyzing mul-
tivariate data sets. While we recognize that in actual practice much of the analyses
of multivariate data will be completed with the assistance of computer software pro-
grams, we do not believe that a firm understanding of multivariate results can be
obtained without some basic understanding of matrix notations and operations. To
introduce the matrix operations we will begin with a research context and a small
data set. Using these data we will demonstrate how the data may be manipulated,
analyzed, and summarized. The matrix operations we present in this chapter will be
used throughout the book to examine group separation and classification.

2.2 RESEARCH CONTEXT

We begin with the context for a research study by Baumann, Seifert-Kessell, and Jones
(1992). (Hereafter, this will be referred to as the “Baumann study.”) The researchers
were interested in comparing three strategies for teaching reading comprehension
to fourth-grade students (our “analysis units”). One strategy was to teach students a
number of reading comprehension monitoring strategies. This approach was called
“Think Aloud” (TA). A second strategy was labeled “Directed Reading and Thinking
Activity” (DRTA), which required students to make predictions and evaluate their pre-
dictions as they read stories. The third strategy, labeled “Directed Reading Activity”
(DRA), was an instructed control condition using a common approach to teaching
reading comprehension. Following the intervention period, measures on three out-
come variables were obtained. The first variable was “Error Detection Task” (EDT,
Y1) where students were asked to identify inconsistencies (errors) in a story passage.
The second variable was measured via the “Degrees of Reading Power” (DRP, Y2),

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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TABLE 2.1 Scores on the Error Detection Task (Y1) and
Degrees of Reading Power (Y2) for the Think Aloud (TA)
and Directed Reading Activity (DRA) Groups

TA DRA

Y1 Y2 Y1 Y2

4 43 5 34
4 34 9 36
4 45 5 42
3 39 7 37
8 40 4 44
1 27 9 49
7 46 3 38
7 39 4 38
9 31 2 38
6 39 5 50
4 40 7 31

12 52 8 49
14 53 10 54
12 53 9 52

7 41 12 50
5 41 5 35
9 46 8 36

13 52 12 46
11 55 4 42

5 36 8 47
11 50 6 39
15 54 5 38

a standardized test of reading comprehension. The third variable was based on a com-
prehension monitoring questionnaire that asked students questions on the strategies
they used while reading to increase their comprehension. In this chapter we introduce
several useful procedures to use when analyzing multivariate data sets. To demonstrate
these procedures we will use Y1 and Y2 scores from the TA and DRA groups. These
data are presented in Table 2.1. (An SPSS data file containing these data, labeled
BAUMANN2g2v, is available at the Wiley website.)

2.3 DATA, ANALYSIS UNITS, VARIABLES, AND CONSTRUCTS

Data constitute the raw material for methods of statistical analysis. In this book the
word data is used to represent the numerical values that are in some way manipulated
and analyzed. A datum may be considered as a score value for some analysis unit on
some variable. All data collected for a particular study may be referred to as a data
set. An example of a data set is given in Table 2.1.
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Various terms are used to indicate the objects being studied: element, individual,
subject, case, or unit. In this book, the neutral term analysis unit, or simply, unit,
is used. In Table 2.1 the scores 4 and 43 belong to a single unit and the scores 5
and 34 belong to a different unit. A variable is a characteristic or attribute or trait of
interest about a unit that can take on different score values. In Table 2.1, Y1 (Error
Detection Task) and Y2 (Degrees of Reading Power) are considered as two differ-
ent variables. In the study and use of discriminant analysis, there are fundamentally
two types of variables. One type is a grouping variable (or group indicator variable);
“scores” on such a variable simply indicate group membership. In Table 2.1, for
example, the variables Y1 and Y2 are grouped together under either TA (Think Aloud
strategy) or DRA (Directed Reading Activity strategy). These are two levels of a
grouping variable that might be called “Instructional Method.” The researchers were
interested in comparing the relative effectiveness of the two instructional strategies.
Other examples of grouping variables—called “independent” variables by some—are
type of school (elementary, secondary), geographic area, sports participation, post-
secondary experience, and residence (rural, urban, suburban). A grouping variable is
a special type of categorical variable. “Scores” on a grouping variable are used to
identify groups (of units), differences between or among which may be of interest
to study. The group differences are studied in terms of some characteristic(s) of the
units under consideration. Such a characteristic is called an outcome variable (or a
criterion variable).

Another role a grouping variable may play is that of a criterion. That is, it may be of
interest to predict membership in a group in terms of, again, some characteristic(s) of
the units under consideration. In this context such a characteristic is called a predictor
variable. It should be noted that both outcome variables and predictor variables may
be categorical in nature. A generic expression used in this book for an outcome or
predictor variable is response variable. This is the second type of variable to which
we refer in the previous paragraph. In a multiple regression context with p X variables
and one Y variable there would be p + 1 response variables, p predictor variables,
and one criterion variable. In this book the letter X is used to represent a predictor
variable, and the letter Y is used to represent an outcome variable.

A construct is a latent or unobservable variable that is represented or defined by
a linear combination of observable variables. Because no single observable variable
is likely to capture the true meaning of the construct, we will typically be interested
in multiple outcome variables or indicators of the construct. For example, in the
Baumann study, the outcome of interest, reading comprehension, is unobservable, but
each observable variable, Y1 and Y2, may be considered as an indicator of the construct.
Because we have more than one indicator of the construct (typically, several observ-
able variables will be considered), one of our goals in descriptive discriminant analysis
(DDA) will be to determine the linear combination of two (or more) variables that
maximizes the difference between (or among) the groups being compared; here, the
TA and DRA groups.An examination of how the variables are combined (or weighted)
will provide a definition of the construct(s) under investigation. This issue is discussed
in Chapter 5. Alternatively, we may seek the best linear combination of Y1 and Y2 to
predict group membership—this pertains to predictive discriminant analysis (PDA),
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which is discussed in Part IV of this book. Because we will seek linear combina-
tions of observable variables to represent one or more constructs, it is essential that
researchers carefully choose the variables to be included in a study. The variables that
are included in a study should be chosen on a theoretical or intuitive basis because
they are believed to represent one or more dimensions on which the groups may
differ. Consequently, the variables chosen should be expected to be intercorrelated in
one or more variable clusters. Choosing variables simply because variable scores are
available or easy to obtain will likely lead to uninterpretable or meaningless results.

2.4 SUMMARIZING DATA

The data set in Table 2.1 presents two scores for each individual within each of two
groups. To represent these scores, we use the following notation: Yiuj . The subscript i

indicates the variable, i = 1, 2, . . . , p. The subscript j indicates group membership,
j = 1, 2, . . . , J . And the subscript u indicates a specific unit within Group j , u =
1, 2, . . . , nj , where nj indicates the number of units in Group j . The total sample size
in a study is represented by N(N = ∑J

j=1 nj ). To summarize and describe a data set,
researchers typically report the mean and variance (or standard deviation) for each
variable within each group. A group mean is an aggregation of scores over all of the
units for a variable in a specific group. To represent a group mean on variable i in
Group j we use Y i·j . The dot (.) replaces the u subscript to indicate that the statistic
is aggregated over the nj units. For example, using the data in Table 2.1, the mean
Error Detection Task, i = 1, for the TA Group, j = 1, is computed as:

Y 1.1 =
n1∑

u=1

Y1u1

n1

= 171

22
.= 7.77.

The variance of the Yiuj scores on variable i in Group j is represented by s2
jYi

. The

variance of scores Yiuj is computed as the ratio of the sum-of-squared deviations (SSj )

of each score within a group from the group mean score to the number of scores within
the group minus 1:

s2
jYi

=
nj∑

u=1

(Yiuj − Y i.j )
2

nj − 1
.

The variance of the scores on variable 1 (Error Detection Task) in Group 1 (TA)
found in Table 2.1 is s2

1Y1

.= 323.86/21
.= 15.422. Table 2.2 summarizes the group

mean (Y i.j ), sum-of-squares (SSj ), and variance (s2
j ) for each variable in each group.

From these results we find that the TA group had mean scores a little higher on both
variables than the DRA group, and were also more dispersed.



“c02” — 2006/3/9 — page 19 — #5

2.4 SUMMARIZING DATA 19

TABLE 2.2 Mean, Sum-of-Squares, and Variance for Test
Scores on the Error Detection Task (Y1) and Degrees of Reading
Power (Y2) for the Think Aloud (TA) and Directed Reading
Activity (DRA) Groups (n1 = n2 = 22)

TA DRA

Y1 Y2 Y1 Y2

Mean (Y .j ) 7.77 43.45 6.68 42.05
Sum-of-Squares (SSj ) 323.864 1297.455 160.773 918.955
Variance (s2

j
) 15.422 61.784 7.656 43.760

Up to this point we have presented the data for each variable separately. That is,
we have examined the data from a univariate perspective. With multiple outcome
variables it is often useful to take a multivariate approach to summarize the data;
that is, to consider two or more outcome variables together. One such descriptive
statistic is the correlation between two variables. The Pearson correlation is the most
popular statistic that summarizes the linear relationship between two variables. If each
variable reflects a common construct, we would expect some correlation between the
two variables. In the present context, both Y1 and Y2 are believed to reflect a student’s
ability to comprehend a reading passage. The Pearson correlation is computed as the
ratio of the covariance, Covj (Y1Y2), to the product of the two standard deviations.
That is,

rjY1Y2
= Covj (Y1Y2)

(sjY1
)(sjY2

)
, (2.1)

where

Covj (Y1Y2) =
∑nj

u=1(Y1uj
− Y 1.j

)(Y2uj
− Y 2.j

)

nj − 1
,

sjY1
=

√
s2
jY1

,

and

sjY2
=

√
s2
jY2

.

Using the data inTables 2.1 and 2.2 for theTA group, j = 1, Cov1(Y1Y2)
.= 24.679,

s1Y1

.= √
15.422, and s1Y2

.= √
61.784, the correlation between Y1 and Y2 variables

for students in the TA program is

r1Y1Y2
= Cov1(Y1Y2)

(s1Y1
)(s1Y2

)

.= 518.273/21

(3.927)(7.860)

.= .799.

Similarly, for the DRA group, the correlation between Y1 and Y2 is .498. For both
groups there is a positive relationship between Y1 and Y2, students who scored high
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on Y1 tend to score high on Y2, and students scoring low on Y1 tend to score low on
Y2. But, the relationship appears to be stronger among students in the TA group. In
the formula for computing the Cov1(Y1Y2), the numerator,

n1∑

u=1

(Y1u1 − Y 1.1)(Y2u1 − Y 2.1),

is called the sum-of-cross products (CP). This statistic turns out to be very useful in
the calculation of several statistics used in multivariate analyses.

Using a multivariate approach, group means are reported as a set and referred to
as the group centroid. The TA group centroid is

[
7.77

43.45

]

.

This column of means is called a vector and will be represented by a bold lower-
case letter, for example, y.1. We will use the previously defined subscript notation to
identify the elements of the vector. A dot (.) represents the aggregation of the units
(e.g., group means), and j identifies group membership (e.g., j = 1, 2). This column
vector can be transposed to a row vector, y′

.1
.= [7.77 43.45]. Writing each column

as a row, or each row as a column, transposes a vector.
Two or more vectors presented together is referred to as a matrix. For example,

the first two columns of Table 2.1 can be thought of as a data matrix for the TA group
presenting individual scores on each of the two outcome variables. We represent a
matrix using a bold capital letter, for example, Yuj . (We use the subscripts, u and j ,
to indicate that the elements of the matrix include unit u scores for Group j . The i

notation is dropped because the matrix will represent several variables.) The number
of rows and the number of columns determines the order of a matrix. The matrix of
individual test scores for the TA group (j = 1) is of 22 × 2 or nj × p order, where nj

is the sample size in Group j and p is the number of outcome variables. The transpose
of Yu1, (Y′

u1) is written as:

Y′
u1 =

[
4 4 . . . 15

43 34 . . . 54

]

.

A square matrix is one with the number of rows equal to the number of columns. An
example of a symmetric square matrix is the covariance matrix, Sj , where the elements
on the main diagonal represent the variances of the variables under investigation, and
the off-diagonal elements represent the covariances. For the TA group (j = 1) the
covariance matrix is written as:

S1 =
[
s2

1Y1
Cov1(Y1Y2)

Cov1(Y1Y2) s2
1Y2

]
.=

[
15.422 24.679
24.679 61.784

]

.

The covariance matrix, Sj , is described as a symmetric matrix because the entries are
reflected about the main diagonal. That is, the first row is identical to the first column,
the second row is identical to the second column, and so forth.
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2.5 MATRIX OPERATIONS

The covariance matrix for each group may be computed from the respective data
matrix using matrix operators. To begin, a mean-centered data matrix, Cj , is com-
puted by subtracting from each score the corresponding variable group mean. To
subtract group means from the nj × p data matrix, Yuj , an nj × p matrix of means
for Group j , Y.j , is needed. For the TA group, the (22 × 2) Y.1 matrix may be
written as:

Y.1
.=








7.77 43.45
7.77 43.45

...
...

7.77 43.45








.

The (22 × 2) mean-centered data matrix, C1, for the TA group is

C1 = Yu1 − Y.1
.=








4 43
4 34
...

...

15 54








−








7.77 43.45
7.77 43.45

...
...

7.77 43.45








.=








−3.77 −.45
−3.77 −9.45

...
...

7.23 10.55








.

Matrix addition or subtraction is obtained by adding or subtracting each element of
one matrix to or from the corresponding element of a second matrix. Because addition
and subtraction is done element by element, the two matrices must be of the same
order.

From the mean-centered data matrix, Cj , the sum-of-squares, SSj , and cross-
products, CPj , can be obtained through multiplication. Two matrices (e.g., A and B)
can be multiplied if they are compatible. That is, we can multiply matrix A by matrix
B, AB, if the number of columns of matrix A equals the number of rows in matrix B.
Consider the following two matrices:

A =



3 2 1
1 2 3
2 3 1



 B =



1 5
2 3
2 1





Matrix A is of order 3 × 3 and matrix B is of order 3 × 2. Matrix A and matrix B are
compatible for multiplication; AB but not for BA. To multiply A by B each entry in
a row of matrix A is multiplied by the entry in a corresponding column in matrix B
and summed:



3 2 1
1 2 3
2 3 1



 ×



1 5
2 3
2 1





=



(3 × 1) + (2 × 2) + (1 × 2) (3 × 5) + (2 × 3) + (1 × 1)

(1 × 1) + (2 × 2) + (3 × 2) (1 × 5) + (2 × 3) + (3 × 1)

(2 × 1) + (3 × 2) + (1 × 2) (2 × 5) + (3 × 3) + (1 × 1)



=



9 22

11 14
10 20



.



“c02” — 2006/3/9 — page 22 — #8

22 PRELIMINARIES

2.5.1 SSCP Matrix

The product of the transpose of the mean-centered matrix for Group j , C′
j , and the

mean-centered matrix, Cj , yields the matrix of SSj on the main diagonal and CPj on
the off-diagonal entries. This matrix is called the sum-of-squares and cross-products
(SSCP) matrix . That is, the entries of the C′

j Cj matrix contain SSj for each variable
on the main diagonal, and CPj ’s are the off-diagonal entries. Using our Cj matrix for
the TA group, the SSCP1 matrix can be computed as:

C′
1C1 = (Yu1 − Y.1)

′(Yu1 − Y.1)

.=
[−3.77 −3.77 · · · 7.23

−.45 −9.45 · · · 10.55

]

×








−3.77 −.45
−3.77 −9.45

...
...

7.23 10.55








.

Because each entry of C′
1 and C1 are deviation scores, multiplying the entries of the

first row of C′
1 by the entries of the first column of C1 and summing the products results

in the sum-of-squares, SS1Y1
= ∑n1

u=1(Y1u1 − Y 1.1)
2 for Y1. Similarly, summing the

products resulting from multiplying the entries of the second row of C′
1 with the entries

of the second column of C1 result in SS1Y2
. The sum-of-products of the entries of the

first row of C′
1 and the second column of C1 or the second row of C′

1 and first column
of C1 result in CP1Y1Y2

= ∑n1
u=1(Y1u1 − Y 1.1)(Y2u1 − Y 2.1). The results are

C′
j Cj = SSCPj

=
[∑nj

u=1(Y1uj
− Y 1.j

)2 ∑nj

u=1(Y1uj
− Y 1.j

)(Y2uj
− Y 2.j

)
∑nj

u=1(Y1uj
− Y 1.j

)(Y2uj
− Y 2.j

)
∑nj

u=1(Y2uj
− Y 2.j

)2

]

.

For the TA group, (j = 1),

SSCP1
.=

[
323.864 518.273
518.273 1279.455

]

.

Multiplying SSCPj by the ratio 1/(nj − 1), or the reciprocal of the degrees of
freedom, results in a matrix of variances on the main diagonal and covariances else-
where. That is, [1/(nj − 1)]SSCPj = Sj . The ratio, 1/(nj − 1), is a scalar, or single
number. When any matrix is multiplied by a scalar, each entry in the matrix is mul-
tiplied by the scalar value. In our case we are multiplying each sum-of-squares and
sum-of-cross-products by the reciprocal of the degrees of freedom, or equivalently
dividing each entry in the SSCP1 matrix by n1 − 1. The results are the variances
and covariance of the measures. For our data with n1 = 22, the covariance matrix for
Group 1 is

S1 = 1

n1 − 1
SSCP1 =

[
s2

1Y1
Cov1(Y1Y2)

Cov1(Y1Y2) s2
1Y2

]

;
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that is,

S1
.= 1

22 − 1

[
323.864 515.273
518.273 1297.455

]
.=

[
15.422 24.679
24.679 61.784

]

.

2.5.2 Determinant

Earlier we stated that with multivariate analyses the means of several variables are
presented as a vector of means called a centroid. The purpose of the centroid is
to represent the convergence of several dimensions in a single point. While several
variables may reflect a single dimension, for now we will consider each variable
as a single dimension. The mean of each outcome variable provides the “typical”
observation in a single dimension. In addition to knowing the “typical” observation
in the system of variables, we will be interested in some indicator of the variance of the
observations for the system of p variables. That is, we will be interested in reducing the
square covariance matrix, S, into a single index representing a generalized variance.A
statistic that accomplishes this objective is called a determinant and is represented by
the symbol | · | where · represents the matrix whose determinant is of interest. In the
case of the covariance matrix, the determinant is represented as |S|. The calculation
of the determinant of a matrix can be computationally intensive. But in the case of a
2 × 2 matrix it is a simple calculation. Consider the (2 × 2) matrix

B =
[
a b

c d

]

.

The determinant of B, |B|, equals ad − bc. For example, if

B =
[

7 8
3 3

]

,

then |B| = 7(3) − 8(3) = −3. Now consider our covariance matrix, S1, for the TA
group:

[
15.422 24.679
24.679 61.784

]

.

Then, |S1| .= 15.422(61.784) − 24.679(24.679)
.= 343.780. The determinant repre-

sents a measure of variability in our system of two variables. The determinant of a
covariance matrix |S| is called the generalized variance. The generalized variance is
a very useful statistic to summarize the overall variability in our data set.

Let us examine the calculation of the determinant of the covariance matrix a little
closer to get a better feel for its meaning. Recall the elements of the two-variable
covariance matrix are

[
s2
Y1

Cov(Y1Y2)

Cov(Y1Y2) s2
Y2

]

.
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So, |S| = (s2
Y1

)(s2
Y2

) − [Cov(Y1Y2)]2 and, from Eq. (2.1), [Cov(Y1Y2)]2 =
(s2

Y1
)(s2

Y2
)(r2

Y1Y2
). With substitution and factoring, the determinant of the covariance

matrix can be written as: |S| = s2
Y1

[s2
Y2

(1 − r2
Y1Y2

)]. Because (1 − r2
Y1Y2

) can be inter-
preted as the proportion of variation in the second outcome variable (Y2) that is not
shared with the first outcome variable (Y1), the value in the brackets is the unique
variance associated with Y2. That is, the bracketed term is the amount of variation
contributed to the system that is independent of the first variable. Which measure
is considered first or second is totally arbitrary, but the total variation in the system
of variables is constant. If the variables are completely confounded, having unity as
the correlation (rY1,Y2 = 1), then Y2 would contribute no additional variation to the
system beyond the variation attributed to Y1. If, on the other hand, Y1 and Y2 were
independent of each other (rY1,Y2 = 0), then the determinant in our system of variables
would be the product of the variable variances. Generally, the correlation between the
two variables used in our study is somewhere between these two extremes. Note that
if the two variables are perfectly correlated, the determinant would equal 0.

2.5.3 Inverse

Up to this point we have discussed the addition, subtraction, and multiplication of
matrices. We have not mentioned division. The matrix counterpart of division in scalar
arithmetic is a much more involved process. The matrix process is called inversion. We
will concern ourselves with inversion of square matrices only. The inverse of a matrix
B is denoted by B−1. An inverse in matrix arithmetic is analogous to a reciprocal
in scalar arithmetic. The reciprocal of a real number b is the number b−1 such that
b(b−1) = 1, the multiplicative identity in real numbers. Analogously, the inverse of a
matrix B (of order m × m) is the matrix B−1 (of order m × m) such that BB−1 = I,
where the entries on the main diagonal of I equal 1, all other entries are 0, and is order
m × m. The I matrix is called an identity matrix.

Finding the inverse of a 2 × 2 matrix is fairly straightforward. Consider matrix B
presented earlier:

B =
[
a b

c d

]

.

Then, if |B| = a(d) − b(c) �= 0, the inverse of B equals

B−1 = 1

|B|
[

d −b

−c a

]

.

For example,

B =
[

7 8
3 3

]

,
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B−1 = 1

21 − 24

[
3 −8

−3 7

]

=
[−1 8/3

1 −7/3

]

.

By matrix multiplication it can be verified that

BB−1 = B−1B =
[

1 0
0 1

]

= I.

If |B| = ad − bc = 0, the inverse of B is not possible, and we say that B is singular.
Finding inverses of higher-order matrices involves much calculation and is not illus-
trated here (see Johnson and Wichen, 2002, pp. 96–97; Rencher, 2002, pp. 23–25).
Further knowledge of the inversion process is not necessary for our study. For an
additional example, consider the covariance matrix S1 presented earlier:

S1
.=

[
15.422 24.679
24.679 61.784

]

.

Recalling |S1| .= 343.780, the inverse of S1 is

S−1
1

.=
[

.179 −.072
−.072 .045

]

.

2.5.4 Eigenanalysis

There is another process of assigning scalars to matrices that is central to a number
of multivariate methods. Let us start with a preliminary definition. If B is a square
matrix of order m × m, then |B − λI| = 0 is called the eigenequation (or character-
istic equation) for the matrix B. The lowercase Greek letter lambda, λ, denotes an
eigenvalue. This equation involves a determinant of a matrix difference that yields a
polynomial of the mth degree in λ. For example, with m = 2 if

B =
[

7 8
3 3

]

,

then

|B − λI| =
∣
∣
∣
∣

[
7 8
3 3

]

− λ

[
1 0
0 1

]∣
∣
∣
∣

=
∣
∣
∣
∣

[
7 − λ 8

3 3 − λ

]∣
∣
∣
∣

= (7 − λ)(3 − λ) − 24

= λ2 − 10λ − 3.
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The m roots of the characteristic equation are the eigenvalues (or characteristic
roots) of B. The m eigenvalues (not necessarily distinct, and some may be zero) are
denoted λ1, λ2, . . . , λm and are the scalars referred to in the preceding paragraph. To
obtain the eigenvalues, the following equation can be used for a quadratic equation
of the form aλ2 + bλ + c = 0 . Here

λ = −b ± √
b2 − 4ac

2a
.

Using our eigenequation,

λ = 10 ± √
102 − 4(1)(−3)

2(1)

.= 10 ± 10.583

2
.= −.292 and 10.292.

In our study of discriminant analysis we will be seeking a weight for each vari-
able of a set of variables. In matrix terms we will be seeking a vector of weights.
Specifically, we will be seeking the vector solution of the messy matrix equation

(B − λI) · b = 0,

(m × m) (m × 1) (m × 1)

where b is a (column) vector of m weights and 0 is a vector of m zeros. It turns out
that there is one vector solution bm corresponding to each of the m eigenvalues of
B—some vector solutions may be the trivial zero vector. The vector bm is called the
eigenvector (or characteristic vector) of the matrix B associated with the eigenvalue
λv (v = 1, 2, . . . , m).

The computation of eigenvalues and eigenvectors in nearly all discriminant anal-
yses is quite complicated, indeed. As we will see, eigenequations involve inverses as
well as determinants, all of which are manipulatively complicated. We will, as nearly
everyone does, leave the manipulations for the computers.

2.6 DISTANCE

It is often useful to describe differences between groups in terms of a distance measure
that was suggested by Euclid of Alexandria (c. 325 B.C. to c. 265 B.C.). Recalling the
well-known geometric theorem for the distance between two points as a2 + b2 = c2,
the distance between two centroids can be described. Letting a equal the difference
between two group means on the first variable Y1, (Y 1.1 − Y 1.2 ) and b is the difference
between two group means on the second variable Y2, (Y 2.1 − Y 2.2 ). The Euclidean
distance between the two groups can be computed as:

c =
√

(Y 1.1 − Y 1.2)
2 + (Y 2.1 − Y 2.2)

2.
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In the Baumann study the two group centroids are

y.1
.=

[
7.77

43.45

]

and y.2
.=

[
6.68

42.05

]

.

So, the distance between the two groups can be computed as:

c
.=

√
(6.68 − 7.77)2 + (42.05 − 43.45)2

.= 1.774.

Figure 2.1 can help in presenting the concept.
A potential problem with this measure of distance is that it assumes that the

variables are measured with the same metric scale. With the current data example,
this assumption is not tenable. That is, the score distributions of the two variables
have different variances. To standardize the variables we will divide the squared
mean differences by an error covariance matrix. The error covariance matrix, Se,
is obtained by summing the separate group SSCPj matrices across the J groups,
(E = ∑J

j=1 SSCPj ) and dividing each element by N − J , (Se = 1/(N − J )E). The
result of this division is the squared distance measure, known as the Mahalanobis
squared distance:

D2 = (y.1 − y.2)
′S−1

e (y.1 − y.2),

where y.1, and y.2 are vectors of p means (centroids) for Groups 1 and 2, respectively,
and S−1

e is the inverse of the error covariance matrix. The positive square root of
Mahalanobis D2 is a measure of distance in a standardized scale. The positive square
root of D2 is analogous to the standardized mean difference, d, [suggested by J. Cohen
(1923–1998) in 1988, p. 20], used in the univariate context to estimate an effect-size
measure for the difference between two groups. We will consider the Mahalanobis
D2 statistic further in Chapter 3. It should be noted that this measure of distance is not
limited to just two variables, and other distance measures may also be of interest. For
example, the distance between two data points, or the distance between a mean vector
for a group and the grand mean vector across all groups, may also be of interest.

Figure 2.1 Distance in a plane.
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2.7 LINEAR COMPOSITE

Consider a set of variables X1, X2, X3, and X4. A linear composite of these variables
may be expressed as:

b1X1 + b2X2 + b3X3 + b4X4, (2.2)

where the b values are real numbers. For example, suppose that the variable scores
for a unit are X1 = 19, X2 = 23, X3 = 117, and X4 = 46, and the b values are b1 =
1.5, b2 = −0.9, b3 = 12.7, and b4 = 3.6. Then the unit’s linear combination score is

(1.5)19 + (−0.9)23 + (12.7)117 + (3.6)46
.= 1659.3.

As such, a new “variable” composed of the four original variables is constructed, and
the unit’s score on this new variable is 1659.3.

You may ask: From where do those b values come? This is a reasonable question,
but the answer to be advanced may appear to be a bit obtuse. In a number of mul-
tivariate analyses, linear composites play a central role. The b values or weights for
the original variables are determined so that some criterion is obtained. The crite-
rion varies across predictive discriminant analysis, multivariate analysis of variance,
canonical correlation, multiple regression, and principal component analysis. A few
criteria will be discussed explicitly in subsequent chapters. We need not be concerned
about the calculation of the b values because reliance will be placed on the use of
computer programs.

Two additional comments about linear combinations may be made. First, in addi-
tion to variable weights—the b’s — in some data analyses call for an additive constant.
Such a constant is often denoted as b0. The second comment pertains to a linear
composite of variable means rather than of the variables themselves: for example,

b0 + b1X1 + b2X2 + b3X3 + b4X4. (2.3)

[The numerical values of these b’s would typically be different from those of the b’s
in (2.2).] Note that the composite in (2.3) is that of elements in a centroid. An example
of such a mean composite is discussed in Chapter 5.

2.8 PROBABILITY

A formal discussion of probability will not be presented. Formal presentations may
be found in many statistics and statistical methods textbooks.

There is a handful of interpretations of “probability.” The one favored in this book
is a relative frequency interpretation. Suppose, for example, that one has a fair coin
with a “head” on one side and a “tail” on the other side. A question may be: If I
flip this coin, what is the probability that I will get a head? That is, given that H is
the event of flipping a head, what is the numerical value of P(H)? To answer this
question theoretically, one would need to flip the coin an indefinite number of times
(using identical flipping motions). One may obtain an estimate of the probability,
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P̂ (H), by repeatedly conducting the “experiment” of flipping the coin, say, 1000
times. Again the repeated flipping action is assumed to be identical (and reasonably
done, of course). So an estimate of the probability would be

P̂ (H) = number of H ’s

1000
.

That is, the estimated probability is found by dividing the number of favorable out-
comes (an H in the example above) of experiment repetitions divided by the total
number of experiments conducted.

An estimated probability to which many empirical researchers have been exposed is
a P value. This is a probability value associated with the value of a test statistic, say an
ANOVA F (3, 60) value of 3.30. Theoretically, we are seeking the probability of getting
an F (3, 60) value of 3.30 or greater under the condition that the null hypothesis is true.
This is a conditional probability that may be denoted as P = P [F(3, 60) ≥ 3.30|H0].
Such a probability is obtained by making two assumptions. First, it is assumed that
data conditions requisite for the use of the test statistic are met: namely, independence
of observations, normality of scores in populations, and score variance homogeneity in
the populations. Second, the probability is obtained assuming that theANOVA “study”
is replicated an indefinite number of times in the very same manner as was done in
the study under consideration. A probability distribution is conceptually simulated
that would theoretically be an F distribution with 3 and 60 degrees of freedom. Then
the P value would be the proportion of studies (i.e., the area under the curve for the
simulated F distribution) for which the F (3, 60) value obtained would be greater
than or equal to 3.30, given that H0 is true. (Incidentally, this particular P value is
about .026.)

An estimated conditional probability that will be of interest later pertains to the
probability of a unit belonging to a particular group, given the unit’s vector of predictor
scores, P̂ (j |xu). This value is based on assumptions of theoretical data distributions
and on the idea that if a unit with a score vector xu is selected repeatedly from a
meaningful population an indefinite number of times, P̂ (j |xu) is the proportion of
times that the unit emanated from Group j .

2.9 STATISTICAL TESTING

It is assumed that the reader of this book is familiar with some basic concepts related
to statistical testing: null hypothesis, alternative hypothesis, test statistic, Type I error,
Type II error, referent probability distribution, critical/rejection region, and P value
(see the preceding subsection). Two popular approaches to the testing of a statistical
null hypothesis are significance testing atributed to R.A. Fisher and hypothesis testing
attributed to J. N. Neyman (1895–1981) and E. S. Pearson (1895–1980)—see Huberty
(1987). The former is sometimes called the P-value approach, and the latter may be
termed the fixed-α approach. The P -value approach, which is favored in this book,
does not call for setting an α level or establishing a region of rejection. Therefore,
there is no need for tables of probability distribution (e.g., F , t , χ2) critical values;
such tables are not provided in this book.
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In many empirical studies, multiple null hypotheses are of interest and therefore
multiple statistical tests need to be conducted. (This is of particular concern when
multiple tests are conducted using data on a given collection of units.) Multiple test-
ing should be taken into consideration when assessing statistical significance for an
individual test in terms of Type I error rate. This can be accomplished in a number of
ways. When using the P -value approach to testing, one can adjust the tail probabil-
ity for each test using the method suggested by C. E. Bonferroni (1892–1960)—see
Maxwell and Delaney (2000, pp. 177–180). What is done in this method is simply
to multiply each test tail probability by the number of tests conducted. This product
yields a P value for each test, a judgment about which needs to be made to determine
statistical significance. (With the fixed-α approach, the application of the Bonferroni
method involves divvying the overall α—not necessarily equally—among all of the
tests conducted.) If one is uncomfortable with this straight Bonferroni method, one
can use a modified Bonferroni method (Wright, 1992).

2.10 JUDGMENT IN DATA ANALYSIS

When talking with, and reading writings of, some beginning empirical researchers,
one might get the impression that the use of statistical methods in analyzing data is cut
and dried. The use of quantitative methods implies to some a high level of objectivity.
But the experienced empirical researcher is, or should be, well aware of the potential
high level of subjectivity that enters into quantitative research. Just as an example of
misperception, it may be inferred that some researchers believe statistical test results
are “definitive” in that one hypothesis or the other may be proved to be correct (or
incorrect). True, statistical analysis can quantify uncertainty, but it cannot eliminate
uncertainty (Warren, 1986).

Data analysis and interpretation abound with subjectivity. Subjectivity is necessar-
ily so prevalent because of the many judgments needed in the research process. What
are some of these many judgments to be made? Some judgments have to do with:

• Small versus large P value
• Small versus large effect-size value
• Small versus large structure r

• Initial choice of response variables
• Labeling of latent variables
• Response variable subset selection
• Difference of variable ordering index values
• Extent to which requisite data conditions are satisfied

Undoubtedly, the reader can think of more. Additional instances in the context of
discriminant analysis appear in this book.

On what basis may judgments be made? Schaafsma and van Vark (1979) sug-
gest that an important part of applying data analysis methods is played by “a priori
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professional knowledge.” They describe this as “a mixture of (1) interpretations of
previous data, e.g., data recorded in the literature, (2) common sense, (3) intuition,
(4) ideas with respect to the availability of certain measurements, or their costs,
(5) etc.” (p. 108): That is, judgment is based on experience, previous research, and
common sense. The latter term will not be discussed; it will be assumed that common
sense is self-evident. When selecting a research method, Shulman (1988, p. 13) says
that “the choice requires an act of judgment, grounded in both knowledge of method-
ology and the substantive area of the investigation.” In the context of statistical testing,
M. M. Tatsuoka (1920–1996) suggests to researchers: “Let common sense and your
set of values be the judge!” He goes on to suggest that “it is about time that we outgrew
the notion that science is value-free.” And if “statistics is quantified common sense,”
as R. A. Fisher once said, “then its quantification, in turn, must be guided by common
sense,” (1982, p. 1782). Paulos (1991, p. 58) adds: “Statistics, more than most other
areas of mathematics, is just formalized common sense, quantified straight thinking.”

Finally, it seems reasonable that some advice of Kempthorne (1977) regarding
terms be heeded. In analyzing data and in interpreting results of data analysis, there is
no way of avoiding words such as “natural,” “reasonable,” “plausible,” and the like.
To quote Kempthorne: “Whatever we do, we are forced in the last resort to depend
on an unanalyzable notion of ‘reasonable’ or whatever” (p. 759). So, when using
discriminant analysis, for example, you should feel free to express your judgments
as being “reasonable” and rely on “common sense.”

2.11 SUMMARY

In this chapter we introduced a considerable number of new terms and have demon-
strated the application of several matrix operations. These terms and operations will
be used throughout the text to demonstrate and explain the analysis of multivariate
data. While we hope the reader will become comfortable with this new vocabulary,
and feel reasonably confident in the use of operations with small data sets, it will not
be necessary to have mastered all of these operations to achieve a good understanding
of multivariate data analysis. Throughout the text we will rely heavily on the use of
SPSS and SAS to carry out the complex and tedious matrix operations. Our intention
is to provide sufficient background into the operations used for multivariate analyses,
but we will emphasize the interpretation of the results of the analyses.

Further Reading

Barnett (1990) presents a detailed discussion of matrix manipulations, matrix rank,
eigenanalysis, and quadratic forms. Some mathematics background is needed
for use of this book.

Healy (1986) has a monograph that succinctly covers the basics of matrices applied
to the study of statistical methods.

Huberty (2000b) discusses a number of analysis contexts in which researcher
judgment is relevant.
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Kempthorne (1977) discusses various points of view regarding probability,
statistical inference, and the use of data analysis.

Lad (1996) provides detailed discussions of the use subjectivity and philosophy in
statistical methods.

Rothman (1990) and Saville (1990) question a common practice of adjusting
statistical test probabilities in a multiple test situation.

Wang (1993) reviews many analysis and reporting contexts in which subjectivity
and common sense should be used.

Definition Raw scores: Data before being cooked by statisticians.

EXERCISES

1. If matrix A is of order n × p what must be the order of matrix B for the following
matrix operations to be valid?

(a) A + B
(b) AB
(c) BA

2. Table 2.2 provides the mean, sum-of-squares, and variance for variables Y1 and
Y2. If, for the DRA group, the correlation between Y1 and Y2 equals .498, what
would the SSCP (SSCP2) and covariance (S2) matrices equal?

3. Determine the generalized variance (|S2|) for the DRA group.

4. What does the inverse of the covariance matrix (S−1
2 ) for the DRA group equal?

5. In Section 2.5.1 the SSCP (SSCP1) was provided. Sum the SSCP matrices for
the TA and DRA groups to obtain the total SSCP. Use this result to obtain Se.

6. Determine the generalized variance using Se, (|Se|).

7. Determine the inverse of Se, (S−1
e ).

8. Verify your results for Exercise 7 by calculating the product SeS−1
e . Do the results

equal the identity matrix (I)?

9. Let A =
[

10 15
3 6

]

. Provide the eigenvalues for A by solving the eigenequation,

|A − λI| = 0.

10. Using the results from Exercise 7 and the group centroids reported in Section
2.6, compute the Mahalanobis D2 statistic.
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P A R T II

One-Factor
MANOVA/DDA

The techniques to be discussed in Part II pertain to the analysis and description of
effects of a grouping variable on a collection of outcome (Y ) variables. The design
here involves a single factor (or grouping variable). Response variables are termed
outcome variables in this part. These variables are the characteristics or attributes
or traits of the analysis units under study, in addition to group membership. The
“analysis” of the effects pertains to a statistical test of the comparison of levels of
a factor. Such a test is typically associated with a multivariate analysis of variance
(MANOVA) or with a contrast analysis involving particular levels of the factor. The
“description” of effects pertains to a set of techniques, many of which are collectively
called descriptive discriminant analysis (DDA). Methods of outcome variable deletion
and outcome variable ordering, which may or may not be considered part of DDA,
are also covered. Part II is concluded with suggestions for reporting MANOVA/DDA
results.

The goals of the reader for this part are to be able to (1) critically evaluate an
application of MANOVA/DDA and (2) write up a report of a study in which a
MANOVA/DDA is applied. References may be made to an overview given in the
form of a flowchart in Figure 7.2 while studying Part II.

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.

33



“c03” — 2006/3/9 — page 34 — #2



“c03” — 2006/3/9 — page 35 — #3

C H A P T E R 3

Group Separation

3.1 INTRODUCTION

The intent of this chapter is to acquaint the reader with statistical criteria used in
conducting a one-way multivariate analysis of variance (MANOVA). MANOVA
criteria may be viewed as extensions of univariate criteria. Thus, the concepts and
formulations used in univariate analyses are reviewed first. In particular, two-group
univariate analyses and a one-way analysis of variance (ANOVA) are reviewed; the
former is reviewed specifically because of later emphasis on multivariate group
contrasts. Emphasis is also later placed on calculating and reporting an effect-size
index value when grouping variable effects—omnibus or contrast—are assessed. The
main topic in this chapter pertains to four popular statistical test criteria used in
MANOVA.

3.2 TWO-GROUP ANALYSES

3.2.1 Univariate Analysis

Hypothesis Test In a univariate context, when a comparison of two group means is
carried out, the researcher may have one or more of the following questions in mind:

Question 1 Are the two “treatments” differentially effective? That is, is the effect
of belonging to Population 1 different from the effect of belonging to Population 2?

In terms of an hypothesis test, the null hypothesis may be written as:

H0: α1 = α2(= 0)

where α1 = µ1 − µ. (= 0). That is, the deviation of the mean for Population 1 from
the overall grand mean (across both populations) equals 0.

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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Question 2 How strong is the relationship between the grouping variable and the
outcome variable? Or, knowing the population to which an analysis unit belongs, how
accurately can the outcome variable be predicted?

The null hypothesis for this research question may be written as:

H0: ρ = 0.

That is, the correlation between the outcome variable and the grouping variable
equals 0.

Question 3 Is the mean outcome variable score for Population 1 different from the
mean for Population 2?

For this question the null hypothesis may be written as:

H0: µ1 = µ2.

These hypotheses are statistically and substantively equivalent and may be tested
using one statistic, the Student t for two independent samples,

t = Y .1 − Y .2
√

s2
e (1/n1 + 1/n2)

, (3.1)

where s2
e is the error variance computed as:

s2
e =

∑J
j=1(nj − 1)s2

j

N − J
= (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
, (3.2)

where s2
j is the variance of the scores in Group j (j = 1, 2), nj is the number of

analysis units in Group j , and N is the total sample size, N = ∑J
j=1 nj . Under the

assumption of homogeneity of variance, that is, the variance of Population 1 equal-
ing the variance of Population 2, σ 2

1 = σ 2
2 , s2

e provides an estimate of the common
population variance, σ 2.

In Chapter 2, a study by Baumann was described; means and variances for two
reading programs on two outcome variables were provided in Table 2.2. A question
in this context is: Is the mean Y1 score for the TA population different from the mean
Y1 score for the DRA population? The t statistic would be computed with

s2
e

.= (22 − 1)15.422 + (22 − 1)7.656

44 − 2
.= 11.539,

and

t
.= 7.77 − 6.68√

11.539(1/22 + 1/22)

.= 1.064.
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The t statistic has a central Student t distribution (assuming the Y1 scores are
independent of each other, the two population distributions of Y1 scores are normal,
the two population variances of the Y1 scores are equal, and the null hypothesis is
true) with degrees of freedom, dfe = n1 + n2 − 2 = N − 2. (In this book, dfe denotes
error degrees of freedom. In general, dfe is equal to the total number of units minus
the number of groups or cells.) For the Baumann study, dfe = 44 − 2 = 42. For the
current study, the tail probability of the observed computed t statistic [t (42)

.= 1.064]
under the null hypothesis is P

.= .293. We would conclude that there is insufficient
evidence to reject the null hypothesis. That is, there is insufficient evidence to indicate
that the TA population mean differs from the DRA population mean on Y1. Note, we
are not saying that the population means are identical, only that there is insufficient
evidence to conclude that the population means are different.

The square of the t statistic provides a useful alternative statistic that has a central
F distribution:

t2 =
(
Y .1 − Y .2

)2

s2
e [(n1 + n2)/n1n2] ,

or as

t2 = n1n2

n1 + n2

(
Y .1 − Y .2

)
(s2

e )−1 (
Y .1 − Y .2

)
. (3.3)

Under the assumptions of independent units, normal population distributions, vari-
ance homogeneity, and a true null hypothesis, this statistic has a central F distribution
with 1 and N − 2 degrees of freedom. Equation (3.3) is useful because an analogous
statistic can be used to test a multivariate hypothesis.

It might be noted that the sample variance of the TA group is approximately twice
the sample variance of the DRA group (15.422/7.656

.= 2.014). This may be an
indication that the homogeneity of variance assumption is violated. Although the
Student t test is generally robust to this assumption when sample sizes are equal, an
alternative approach may be taken to test the null hypothesis H0: µ1 = µ2. The test
statistic is computed as:

t ′ = Y .1 − Y .2
√

s2
1/n1 + s2

2/n2

, (3.4)

and the degrees of freedom are computed as:

df ′ = (s2
1/n1 + s2

2/n2)
2

(s2
1/n1)

2

(n1 − 1)
+ (s2

2/n2)
2

(n2 − 1)

. (3.5)

Using the Baumann data, the results are

t ′ .= 7.77 − 6.68√
15.422/22 + 7.656/22

.= 1.064,
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and

df ′ .= (15.422/22 + 7.656/22)2

(15.422/22)2

(22 − 1)
+ (7.656/22)2

(22 − 1)

.= 37.7.

In this example, the computed test statistic, t ′, is identical to t computed from (3.1)
because the sample sizes are equal. The degrees of freedom, however, are less (37.7
vs. 42) to “compensate” for the differences in sample variances. The P value is .293.
The conclusion remains the same because the difference in degrees of freedom is
minimal. The SPSS t test program computes both t tests, when variance homogeneity
is assumed and when it is not assumed to be met.

Effect Size One of two indices of effect size is often reported along with the test of
statistical significance. One index of effect size is a measure of association between the
grouping variable and the outcome variable. When the grouping variable is dichoto-
mous (e.g., TA vs. DRA) the point-biserial correlation coefficient, rpb, which is an
estimate of ρ, provides the desired measure of association. The square of rpb reflects
the proportion of outcome variable variance that may be attributed to the grouping
variable, and is given by:

r2
pb = t2

t2 + dfe
. (3.6)

Using the Baumann data, the squared point-biserial correlation is computed as:

r2
pb

.= (1.064)2

(1.064)2 + 42
.= .026.

These results indicate very little of the variation in the Error Detection Task (EDT)
data may be attributed to the two reading programs.

A second index of effect size is the standardized mean difference, d (Cohen, 1988,
p. 20). The absolute value of the difference of sample means is divided by the error
standard deviation,

√
s2
e .

d = |Y .j − Y .j ′ |
√

s2
e

, (3.7)

where j and j ′ represent two different groups. Using the Baumann data to compare
the TA group with the DRA group, d is computed as:

d
.= |7.77 − 6.68|√

11.539

.= .321.

The t statistic and the standardized mean difference are related as follows:

t = Y .1 − Y .2
√

s2
e (1/n1 + 1/n2)

= Y .1 − Y .2
√

s2
e

1√
1/n1 + 1/n2

.
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With

1

n1
+ 1

n2
= n1 + n2

n1n2
,

t = d

√
n1n2

n1 + n2
, (3.8)

and

d = t

√
n1 + n2

n1n2
. (3.9)

It should be noted that the two effect-size indices, r2
pb and d, are only applicable

when σ 2
1 = σ 2

2 .

3.2.2 Multivariate Analysis

Hypothesis Test The Baumann study had two reading outcome variables, Error
Detection Task (Y1) and Degrees of Reading Power (Y2). While another univariate
analysis of the second outcome could be conducted, the two outcome variables were
shown to be correlated—see Section 2.4—indicating they may reflect a common
construct. A more appropriate analysis would be to compare the two populations on
that common construct through a multivariate analysis.

A generalization of the squared Student t statistic was advanced by H. Hotelling
(1895–1979). The null hypothesis may be expressed as H0: µ1 = µ2. Here µ repre-
sents a vector of p population outcome variable means, that is, a population centroid.
The number of variables must be less than the total sample size minus 1, p < N − 1.
The null hypothesis states that the centroids for the two populations are identical. To
test this hypothesis, the Hotelling statistic is used:

T 2
12 = n1n2

n1 + n2

[
(y.1 − y.2)

′ S−1
e (y.1 − y.2)

]
, (3.10)

where y.j is the p × 1 vector of outcome variable means for Group j , and Se is
the p × p error covariance matrix. [This is a generalization of Eq. (3.3).] Table 2.2
contains the sample group means for the Y1 and Y2 outcomes in the Baumann study.
The two group centroids can be presented as:

y.1
.=

[
7.77

43.45

]

, y.2
.=

[
6.68

42.05

]

.

The SSCP1 for the TA group was computed in Chapter 2 and found to be

SSCP1
.=

[
323.864 518.273
518.273 1297.455

]
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For the DRA group SSCP2 was found in Exercise 2 of Chapter 2 to be

SSCP2
.=

[
160.773 191.318
191.318 918.955

]

.

The sum of the separate SSCPj matrices, SSCP1 + SSCP2, is

E .=
[

484.637 709.591
709.591 2216.41

]

.

And the error covariance matrix, Se is obtained by multiplying E by 1/dfe.

Se
.= 1

44 − 2

[
484.637 709.591
709.591 2216.41

]
.=

[
11.539 16.895
16.895 52.772

]

.

The inverse of the error covariance matrix is

S−1
e

.=
[

.158 −.051
−.051 .035

]

.

Using these results, T 2 is computed as:

T 2 .= (22)(22)

22 + 22

[
7.77 − 6.68 43.45 − 42.05

]
[

.158 −.051
−.051 .035

] [
7.77 − 6.68

43.45 − 42.05

]

.= 1.10.

Critical values of the distribution of T 2 have been tabled; however, a simple
transformation of T 2,

F = dfe − p + 1

p(dfe)
T 2, (3.11)

has a central F distribution with degrees of freedom ν1 = p and ν2 = dfe − p +
1 = N − p − 1. This is true assuming independent units, bivariate normality, equal
population covariance matrices, and null hypothesis, H0: µ1 = µ2, being true. For
the present data

F
.= 42 − 2 + 1

2(42)
(1.10)

.= .537.

The P value for the observed F statistic with 2 and 41 degrees of freedom equals
.589, indicating that if the population centroids are identical, the probability of obtain-
ing the observed F(2, 41) statistic of .537 or something larger is quite high (i.e.,
.589).

You might note that the expression in brackets in Eq. (3.10) is the Mahalanobis D2

statistic that was discussed in the previous chapter as a standardized squared distance
measure between two sample centroids. That is,

D2
12 = (y.1 − y.2)

′ S−1
e (y.1 − y.2) .
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The positive square root of this distance measure is analogous to the standardized
mean difference, d , presented in the univariate context. For the Baumann data, D2

12
.=

.098 and D12
.= .313. Analogous to Eq. (3.8), Eq. (3.10) can be written as:

T 2
12 = D2

12

[
n1n2

n1 + n2

]

.

This expression demonstrates that as the distance between two sample centroids
increases, T 2

12 increases.

3.3 TEST FOR COVARIANCE MATRIX EQUALITY

The statistic in Eq. (3.11) has a central F distribution with ν1 and ν2 degrees of
freedom, provided that the two population covariance matrices are the same; that
is, �1 = �2. In 1949, G. E. P. Box (1919–2002) proposed a statistical procedure to
test the null hypothesis that two or more covariance matrices are identical, H0: �1 =
�2 = · · · = �J . The Box M statistic is given by:

M = dfe ln|Se| −
J∑

j=1

dfj ln|Sj |,

where ln denotes a natural logarithm.A transformation ofM results in a statistic having
a central chi-squared distribution with degrees of freedom, ν = (J − 1)(p + 1)p/2,
under the assumptions that the unit scores are independent and multivariate normal
in each population. The transformation is CM where

C = 1 − 2p2 + 3p − 1

6(p + 1)(J − 1)




J∑

j=1

df−1
j − df−1

e



 ,

if sample sizes are unequal. If sample sizes are equal,

C = 1 − (2p2 + 3p − 1)(J + 1)

6(p + 1)(N − J )
,

where p = number of outcome variables
J = number of groups
N = total sample size,

∑
nj

dfj = degrees of freedom for Group j, nj − 1
dfe = error degrees of freedom,

∑
dfj

Sj = covariance matrix for Group j

Se = error covariance matrix, E/dfe

Statistic M can also be transformed to have a central F distribution, but we do
not provide the details here; Rencher (2002, pp. 255–259) provides this alternative
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transformation. The SPSS MANOVA program reports both the chi-squared and F

transformations. Using the Baumann data and the results from Chapter 2, the separate
and error covariance matrices are

S1
.=

[
15.422 24.679
24.679 61.784

]

, S2
.=

[
7.656 9.110
9.110 43.760

]

,

and

Se
.=

[
11.539 16.895
16.895 52.772

]

.

Using these data with degrees of freedom, ν = (2 − 1)(2 + 1)2/2 = 3,

|S1| .= 343.780, |S2| .= 252.034, |Se| .= 323.495,

ln |S1| .= 5.840, ln |S2| .= 5.530, ln |Se| .= 5.779,

M
.= [(44 − 2)(5.779)] − [(22 − 1)(5.840) + (22 − 1)(5.530)] .= 3.948,

C
.= 1 − (2(2)2 + 3(2) − 1)(2 + 1)

6(2 + 1)(44 − 2)

.= .948,

and

χ2(3)
.= (3.948)(.948)

.= 3.743.

The P value is .288. Based on these results, there is little evidence that the two popula-
tion covariance matrices differ. There are two limitations associated with the Box test.
First, it can be sensitive to multivariate nonnormality. Second, the degrees of freedom
for this test can often be very large, resulting in an extremely sensitive/powerful test
of the null hypothesis. Both of these limitations could lead a researcher to question
the validity of the multivariate test on the vectors of means when the multivariate test
is valid. As a result, researchers often do not rely heavily on the results of the test but
rather rely on the robustness of the multivariate test on the equality of mean vectors
when sample sizes are equal. When sample sizes differ substantially (e.g., one sample
is at least twice the size of another), Hakstain et al. (1979, p. 1262) give the following
advice:

It is when n1 �= n2 that problems arise. If the test of covariance matrix homogeneity is
nonsignificant no problem exists; but if this test is significant, the user is faced with the
multivariate extension of the Behrens–Fisher problem. The following strategy—in the order
of steps listed—seems to be a reasonable approach.

1. Ascertain whether one is in the positive or negative condition. A direct assessment of this
comes from comparison of the determinants (understood as generalized variances) of S1
and S2. If either n1 > n2 and |S1| > |S2| or n1 < n2 and |S1| < |S2|, we have the positive
condition, whereas if the opposite is obtained, we are in the negative condition. It is, of
course, possible for |S1| to be equal to |S2|, although S1 �= S2. In such a case, however, the
above taxonomy does not apply, and the effects of such heterogeneity may not be serious.
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2. Given the positive condition, the T 2 test will be conservative. Thus the user should run
the test and, if it is significant, reject the null hypothesis a fortiori.

3. Given the negative condition, the T 2 test will be liberal. Thus the user should run the test
and, if it is nonsignificant, retain the null hypothesis.

4. If in the positive condition, T 2 is nonsignificant or if in the negative condition, T 2

is significant, two possibilities exist: (a) If the n’s are not extremely different, they can be
equalized by random deletion of subjects from the larger group. If, in fact, the null hypothesis
is false, the loss of power may not be too great, and the previously significant T 2 (negative
condition) may still be significant. The previously nonsignificant T 2 (positive condition)
may not be significant. (b) If the n’s are substantially different so that equalization would
result in a massive loss of power or if the equalization performed when n’s are not extremely
different results in nonsignificant results, the user can employ one of several solutions to
the multivariate Behrens–Fisher problem—reasonably precise approximations that do not
require deletion of subjects.

One of the solutions to the multivariate Behrens–Fisher problem (heterogeneous
covariance matrices with unequal n) to which Hakstain et al. (1979) refer was
suggested by Yao (1965) and is discussed in the next section.

3.4 YAO TEST

If the assumption of equal covariance matrices is not met and the researcher doubts
the validity of the Hotelling T 2 test, a procedure analogous to Eq. (3.4) may be used:

T ∗2 = (y.1 − y.2)
′
(

S1

n1
+ S2

n2

)−1

(y.1 − y.2). (3.12)

A transformation of T ∗2 to a central F has been suggested by Yao (1965):

f − p + 1

pf
T ∗2 .−→F(p, f − p + 1), (3.13)

where

Wj = Sj

nj

, W =
2∑

j=1

Wj,

Vj = (y.1 − y.2)
′W−1WjW

−1(y.1 − y.2),

and

1

f
=

2∑

j=1

1

nj − 1

(
Vj

T ∗2

)2

.
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We modified a program obtained from J. Algina (University of Florida) that yields
a value of T ∗2 and a transformed F for the two-group comparison. The program is
labeled YAO2 and is available at the Wiley website. For the data in Table 2.1 the
transformed F statistic equals .559 and the P value equals .576. These results happen
to be consistent with the previous analysis that assumed the covariance matrices
are equal.

3.5 MULTIPLE-GROUP ANALYSES—SINGLE FACTOR

3.5.1 Univariate Analysis

When there is an interest in comparing more than two populations, multiple t tests may
be considered, but such analyses can result in an unacceptably high Type I error rate. To
avoid this problem, a single hypothesis testing procedure (omnibus test) based on the
analysis of variation among group means and variation of units within groups may be
conducted. (The simultaneous comparison of two or more group means, however, may
not address the specific research questions of interest. If specific research questions
have been identified, focused tests or contrast tests may be of greater interest, and
the omnibus hypothesis test may be unnecessary. We discuss focused tests in the next
chapter.)

If the populations under consideration differ along a single grouping variable (e.g.,
high school class level—freshmen, sophomore, junior, senior), the univariate analysis
is described as a one-way analysis of variance (ANOVA). If the levels of the grouping
variable exhaust all of the possible levels, or if the levels are specifically chosen by the
researcher for investigation, the design is further described as a fixed-effects design.
The null hypotheses that can be tested with this design can be viewed as an extension
of the hypothesis tested using the two-group t test. That is, the null hypothesis may
be expressed by any one of the following:

H0: α1 = α2 = · · · = αJ (= 0),

H0: η2
pop = 0, or H0: µ1 = µ2 = · · · = µJ .

In the second statement, ηpop denotes the population correlation between the
outcome variable and the grouping variable. The research questions behind these
hypothesis statements are similar to those addressed by the two-group t test discussed
in the previous section.

In Chapter 2, data for two outcome variables from two groups in the Baumann
study were presented. We now provide the data for the same outcome variables for
the third treated group. The third group of students was presented a combined Directed
Reading and Thinking Activity (DRTA) instructional program. The complete data set
is presented in Table 3.1. Table 3.2 provides the separate group means and variances
for Y1 and Y2. (An SPSS data file containing these data, labeled BAUMANN3g2v, is
available at the Wiley website.)

Thestatistic for testing thehypothesis involvingmultiplepopulations iscomputedas
the ratio of a weighted variance of group means, the hypothesis mean-square (MSH),



“c03” — 2006/3/9 — page 45 — #13

3.5 MULTIPLE-GROUP ANALYSES—SINGLE FACTOR 45

TABLE 3.1 Scores on the Error Detection Task (Y1)
and Degrees of Reading Power (Y2) for the Think Aloud
(TA), Directed Reading Activity (DRA), and Directed
Reading and Think Aloud (DRTA) Groups

TA DRA DRTA

Y1 Y2 Y1 Y2 Y1 Y2

4 43 5 34 6 27
4 34 9 36 6 36
4 45 5 42 5 51
3 39 7 37 5 51
8 40 4 44 0 50
1 27 9 49 6 55
7 46 3 38 6 52
7 39 4 38 11 48
9 31 2 38 6 53
6 39 5 50 8 45
4 40 7 31 8 47

12 52 8 49 3 51
14 53 10 54 7 30
12 53 9 52 7 50

7 41 12 50 6 55
5 41 5 35 9 48
9 46 8 36 7 52

13 52 12 46 6 46
11 55 4 42 7 36

5 36 8 47 6 45
11 50 6 39 6 49
15 54 5 38 6 49

to the average variance of observations within the groups, the error mean-square
(MSE), and is referred to as the F ratio, F = MSH/MSE.

The MSH is computed as:

MSH =
∑J

j=1 nj (Y .j − Y ..)
2

J − 1
,

TABLE 3.2 Means and Variances for Test Scores on the Error Detection Task (Y1)
and Degrees of Reading Power (Y2) for the Think Aloud (TA), Directed Reading
Activity (DRA), and Directed Reading and Think Aloud (DRTA) Groups

TA DRA DRTA

Y1 Y2 Y1 Y2 Y1 Y2

Mean (Y .j ) 7.77 43.45 6.68 42.05 6.23 46.64
Variance (s2

j
) 15.422 61.784 7.656 43.760 4.374 56.160
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where nj = number of individuals in Groupj (j = 1, 2, . . . , J )

Y .j = mean of the scores in Group j
(∑nj

u=1Yuj /nj

)

Y .. = grand mean of all observations in the study
(∑J

j=1
∑nj

u=1 Yuj /N
)

N = total sample size
(
N = ∑J

j=1 nj

)

Yuj = score for unit u in Group j

If sample sizes are equal, n1 = n2 = · · · = nJ = n, the numerator of MSH may
be written as:

n

J∑

j=1

(Y .j − Y ..)
2

and is referred to as the hypothesis sum-of-squares, SSH. The denominator, J − 1,
is the hypothesis degrees of freedom, dfh. In terms of the first expression for the null
hypothesis, H0: α1 = α2 = · · · = αJ = 0, where αj = µj − µ.. Using sample data
to estimate the population means, α̂j = Y .j − Y .., the SSH can also be written as
n

∑J
j=1 α̂2

j when sample sizes are equal. The error variance is computed as:

MSE =
∑J

j=1
∑nj

u=1(Yuj − Y .j )
2

N − J
= SSE

dfe

.

The error sum-of-squares (SSE) equals

J∑

j=1

nj∑

u=1

(Yuj − Y .j )
2

and the error degrees of freedom, dfe, equals N − J .
Using the data for the Y1 outcome, the F test for the null hypothesis that the three

population means are equal, H0 : µTA = µDRA = µDRTA is computed as:

F
.= 27.758/2

576.502/63
.= 1.517.

Assuming that the student scores are independent of each other, the populations
have normal distributions, and the populations have equal variances, the F statistic has
a central F distribution with dfh = J − 1 and dfe = N − J degrees of freedom. The
P value for the observed F ratio with 2 and 63 degrees of freedom is .210. These results
indicate that there is little evidence to conclude that one type of reading instruction
provides greater reading comprehension as measured by the Error Detection Task than
any of the others. An index of association for the relationship between the grouping
variable and the outcome variable should also be reported, along with the P value.
We delay a discussion on effect size in the ANOVA context until the next chapter.
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3.5.2 Multivariate Analysis

Although separate F tests could be computed for each outcome variable, multiple
hypothesis testing would result in an increased likelihood of at least one Type I
error. In addition, because multiple outcome variables are likely to be correlated, the
structure underlying the system of outcomes would be ignored with separate tests and
statistical power could be decreased. A more appropriate way to examine two or more
outcome variables would be to take a multivariate approach. This is especially true
when the outcome variables are different indicators of a single common construct, or
when the collection of outcome variables is believed to represent different constructs.

The multivariate null hypothesis is analogous to the univariate hypothesis, but the
multivariate hypothesis is a statement regarding the vector of outcome variable means
(i.e., centroids). The multivariate null hypothesis states that the population centroids
do not differ:

H0: µ1 = µ2 = · · · = µJ ,

where µ
′
j = [µ1j , µ2j , . . . , µpj ].

For the Baumman study the three centroids are

y.1
.=

[
7.77

43.45

]

, y.2
.=

[
6.68

42.05

]

, y.3
.=

[
6.23

46.64

]

.

To test the null hypothesis of the equality of population centroids, an error sum-of-
squares and cross-products matrix, E, and a matrix for the hypothesis, H, are needed.
The error SSCP matrix is obtained by summing the separate group SSCPj matrices
(E = ∑J

j=1 SSCPj ). In Chapter 2 we found the SSCP for TA and DRA to be

SSCP1
.=

[
323.864 518.273
518.273 1297.455

]

SSCP2
.=

[
160.773 191.318
191.318 918.955

]

.

For the DRTA group, SSCP3 is

SSCP3
.=

[
91.865 −52.182

−52.182 1227.091

]

.

The error SSCP matrix is

E .=
[

576.502 657.409
657.409 3443.501

]

. (3.14)

If the elements of this matrix were multiplied by the reciprocal of the error degrees
of freedom, the result would be the error covariance matrix, Se.
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For the Baumann data the grand mean centroid is

y..
.=

[
6.894

44.046

]

,

and the separate group centroids minus the grand mean centroid are

(y.1 − y..)
.=

[
.88

−.60

]

,

(y.2 − y..)
.=

[ −.21
−2.00

]

,

(y.3 − y..)
.=

[−.66
2.59

]

.

The SSCP for each group is computed as:

nj (y.j − y..)(y.j − y..)
′
, (3.15)

and for the Baumann data the results are

SSCP1
.= 22

[
.88

−.60

]
[
.88 −.60

] .=
[

17.037 −11.616
−11.616 7.920

]

,

SSCP2
.= 22

[ −.21
−2.00

]
[−.21 −2.00

] .=
[

.970 9.240
9.240 88.000

]

,

SSCP3
.= 22

[−.66
2.59

]
[−.66 2.59

] .=
[

9.583 −37.607
−37.607 147.578

]

.

The hypothesis SSCP matrix, H = ∑J
j=1 SSCPj is

H .=
[

27.590 −39.983
−39.983 243.498

]

.

It might be noted that 27.590 equals (within rounding) the hypothesis sum-of-
squares, and 576.502 in Eq. (3.14) equals the error sum-of-squares for the EDT
outcome reported earlier for the univariate F test. Four criteria have been proposed
for using H and E in testing the hypothesis that the population centroids are identical.

Wilks Criterion The oldest and perhaps the most widely used criterion is that due to
S. S. Wilks (1906–1964). This statistic (Wilks, 1932), which is often called the Wilks
lambda criterion, may be defined as the ratio of two determinants,

� = |E|
|H + E| . (3.16)
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Using our calculations from the Baumann study, the corresponding determinants are
|E| .= 15.53 × 105 and |H + E| .= 18.46 × 105 . The Wilks � value is

�
.= 15.53 × 105

18.46 × 105
.= .841.

In the 1930s it was reported that for certain values of p and dfh, a transformation of
� has a central F distribution under the null hypothesis, assuming independent units,
multivariate normality, and homogeneous covariance matrices. In the two-population
case, dfh = 1, the following transformation for � was suggested:

F = 1 − �

�

dfe − p + 1

p
. (3.17)

This statistic has a central F distribution with ν1 = p and ν2 = dfe − p + 1. For a
three-group design, that is, when dfh = J − 1 = 2, the following transformation of�,

F = 1 − �1/2

�1/2

dfe − p + 1

p
(3.18)

has a central F distribution with ν1 = 2p and ν2 = 2(dfe − p + 1). The Baumann
study involved three populations, so this transformation may be used to obtain an
F value of

F
.= 1 − (.841)1/2

(.841)1/2

63 − 2 + 1

2
.= 2.804

With 4 and 124 degrees of freedom, the P value for this statistic is .029. Based
on this result, we would conclude that there is sufficient evidence to reject the null
hypothesis and conclude that the three population centroids are not identical. Further
analyses, which will be discussed in the next chapter, are needed to further understand
and describe the nature of the differences among the population centroids. [Rao (1952,
pp. 260–262) also gives two other transformations of � that have exact F distributions;
these are for p = 1 and p = 2.] More generally, when r > 2, where r = min(p, dfh),
a transformation of � provides a statistic that has an approximate F distribution with
ν1 = p(dfh) and ν2 = m(s) − p(dfh)/2 + 1. For this expression, p is the number of
outcome variables, and dfh = J − 1;

F = 1 − �1/s

�1/s

m(s) − p(dfh)

2
+ 1

p(dfh)
, (3.19)

where
m = dfe − p − dfh + 1

2
, (3.20)

and

s =
√

p2(df2
h) − 4

p2 + df2
h − 5

. (3.21)

When dfh = 1, (3.19) simplifies to (3.17), and when dfh = 2, (3.19) simplifies to
(3.18).
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It can be shown that the value of � may be determined in a manner other than as in
(3.16). This determination involves finding functions of a matrix called eigenvalues.
The matrix of interest for the Wilks � is actually a product of two matrices E−1H ,
where the p × p matrices, E and H, are as described earlier in this chapter. For the
Baumann data,

E .=
[

576.502 657.409
657.409 3443.501

]

, E−1 .=
[

.0022 −.0004
−.0004 .0004

]

,

H .=
[

27.590 −39.983
−39.983 243.498

]

, E−1H .=
[

.0767 −.1854
−.0270 .1134

]

.

The eigenvalues are obtained by solving the determinantal equation |E−1H − λI| = 0
for λ. For p = 2 and J = 3 in the Baumann study, we have

∣
∣
∣
∣

[
.0767 −.1854

−.0270 .1134

]

−
[
λ 0
0 λ

]∣
∣
∣
∣

.= 0,

(.0767 − λ)(.1134 − λ) − (−.0270)(−.1854)
.= 0,

λ2 − .1901λ + .0037
.= 0.

For equations of this form: aλ2 + bλ + c = 0 with a, b, c being constants and λ an
unknown, a solution for λ is provided using the following from Chapter 2:

λ = −b ± √
b2 − 4ac

2a
.

Using our determinant,

λ
.= .1901 ± √−.19012 − 4(1)(.0037)

2(1)
.

Thus, the eigenvalues for the E−1H matrix are λ
.= .1681 and .0220. Using these

values, � may be computed as:

� =
r∏

v=1

(
1

1 + λv

)

(3.22)

Using the Baumann data � is

�
.=

(
1

1.1681

) (
1

1.0220

)
.= .838,

which is, within rounding, that obtained using (3.16).
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Bartlett–Pillai Criterion An alternative criterion for testing the null hypothesis
H0: µ1 = µ2 = · · · = µJ was proposed by M. S. Bartlett (1910–2002) and
K. C. S. Pillai (1920–1985). This criterion, uses the eigenvalues of the E−1H matrix
in a different statistic. The Bartlett–Pillai test statistic is

U =
r∑

v=1

[
λv

1 + λv

]

, (3.23)

where r = min(p, dfe). Using the eigenvalues, λ1 and λ2, computed in the previous
section we get

U
.= .1681

1.1681
+ .0220

1.0220
.= .1654.

This statistic can be transformed to a statistic having an F distribution with ν1 = br

and ν2 = r(dfe − p + r) degrees of freedom using the following:

F = U

r − U

dfe − p + r

b
, (3.24)

where b = max(p, dfh), and r = min(p, dfh). For the Baumann data,

F
.= .1654

2 − .1654

63 − 2 + 2

2
.= 2.840.

With ν1 = 4 and ν2 = 126 degrees of freedom, P
.= .027. The P value using the

Bartlett–Pillai criterion is about the same as that obtained using the Wilks criterion.

Roy Criterion A third MANOVA criterion, often attributed to S. N. Roy
(1906–1964), that has been advocated by some writers (e.g., Harris, 2001, p. 231;
Morrison, 1990, p. 209; Tatsuoka, 1988, p. 285), is the greatest characteristic root or
eigenvalue (λ1) of E−1H. The test statistic is computed as:

	 = λ1

1 + λ1
. (3.25)

Special tables found in the Harris (2001) and Morrison (1990) books are needed
when using this criterion. However, the General Linear Model (GLM) program in
SPSS uses a transformation of λ1 that provides an upper bound of the F statistic. This
provides a lower bound on the P value. The P value is therefore slightly liberal. If the
null hypothesis is not rejected with this approximate test, it would not be rejected with
a more exact test. If, however, the null hypothesis is rejected using this F test, complete
confidence cannot be given to this conclusion. The transformation used by SPSS is

F = (N − b − 1)λ1

b
. (3.26)

[Rencher (2002, p. 165) suggests that dfe might be used in place of N .]
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For the Baumann data,

F
.= (66 − 2 − 1).1681

2
.= 5.295.

The degrees of freedom are ν1 = b and ν2 = N − b − 1, where b = max(p, dfh).
For the Baumann data, the degrees of freedom are 2 and 63, and the corresponding
P value is .007.

Hotelling–Lawley Criterion A fourth criterion, known as the Hotelling–Lawley
trace criterion, is given simply by:

V =
r∑

v=1

λv, (3.27)

where λv is the vth eigenvalue of E−1H. For the Baumann data,

V
.= .1681 + .0220

.= .1901.

This criterion can be transformed to a statistic having a central F distribution with
ν1 = br and ν2 = r(dfe − p − 1) + 2 degrees of freedom, where b = max(p, dfh),
and r = min(p, dfh):

F = V

(
r(dfe − p − 1) + 2

r2b

)

. (3.28)

For the Baumann data,

F
.= .1901

(
2(63 − 2 − 1) + 2

22(2)

)
.= 2.899.

With ν1 = 4 and ν2 = 122 degrees of freedom, P
.= .025. The P value using the

Hotelling–Lawley trace criterion is slightly smaller than that obtained using the Wilks
and Bartlett–Pillai criteria.

3.6 COMPUTER APPLICATION

In this section we provide the SPSS syntax that yields basic descriptive statistics, the
test covariance matrix equality, and the omnibus multivariate and univariate F tests.
These commands are used repeatedly for other analyses presented in this book.A brief
explanation of the SPSS commands is provided here. Following the SPSS commands,
the output is shown and labeled Analysis. Finally, we provide a brief interpretation
of the analysis in the section labeled Interpretation.
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SPSS SYNTAX FOR DESCRIPTIVE STATISTICS, MULTIVARIATE,
AND UNIVARIATE ANALYSES

manova Y1 Y2 by treatmnt(1,3)
/print=cellinfo(means sscp cov) homogeneity(box) error(sscp cor)
signif(multiv ).

manova is the system command requesting the multivariate analysis of variance.
Y1 Y2 identifies the outcome variables for the analysis.
treatmnt(1,3) identifies the explanatory variable with the lower and upper levels
of the variable in parenthesis.
/print is the system command to print desired intermediary analyses.
cellinfo(means sscp cov) reports the within-cell means, standard deviations, and
sum-of-squares, cross-products, and covariance matrices.
homogeneity(box) reports the results of the Box test for covariance matrix
equality.
error(sscp cor) reports the error sum-of-squares and cross-products matrix, E,
and the error correlation matrix.
signif(multiv) reports the multivariate F test statistics, degrees of freedom, and
P values.

OUTPUT

Analysis: Descriptive Statistics and the Box Test for Covariance Equality

Cell Means and Standard Deviations
Variable . . Y1

FACTOR CODE Mean Std. Dev. N
treatmnt TA 7.773 3.927 22
treatmnt DRA 6.682 2.767 22
treatmnt DRTA 6.227 2.092 22

For entire sample 6.894 3.049 66
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Variable . . Y2

FACTOR CODE Mean Std. Dev. N
treatmnt TA 43.455 7.860 22
treatmnt DRA 42.045 6.615 22
treatmnt DRTA 46.636 7.644 22

For entire sample 44.045 7.531 66
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Cell Number . . 1 (TA)
Sum of Squares and Cross-Products matrix

Y1 Y2
Y1 323.864
Y2 518.273 1297.455
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Variance-Covariance matrix
Y1 Y2

Y1 15.422
Y2 24.680 61.784

Determinant of Covariance matrix of dependent variables = 343.74541
LOG(Determinant) = 5.83990
- - - - - - - - - - - - - - - -
Cell Number . . 2 (DRA)
Sum of Squares and Cross-Products matrix

Y1 Y2
Y1 160.773
Y2 191.318 918.955
Variance-Covariance matrix

Y1 Y2
Y1 7.656
Y2 9.110 43.760

Determinant of Covariance matrix of dependent variables = 252.01855
LOG(Determinant) = 5.52950
- - - - - - - - - - - - - - - -
Cell Number . . 3 (DRTA)
Sum of Squares and Cross-Products matrix

Y1 Y2
Y1 91.864
Y2 −52.182 1227.091
Variance-Covariance matrix

Y1 Y2
Y1 4.374
Y2 −2.485 58.433

Determinant of Covariance matrix of dependent variables = 249.43785
LOG(Determinant) = 5.51921
- - - - - - - - - - - - - - - -

Y1 Y2
Y1 9.151
Y2 10.435 54.659

Determinant of pooled Covariance matrix of dependent vars. = 391.28018
LOG(Determinant) = 5.96942
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate test for Homogeneity of Dispersion matrices
Boxs M = 21.41281
F WITH (6,98919) DF = 3.40494, P = .002 (Approx.)
Chi-Square with 6 DF = 20.43092, P = .002 (Approx.)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

WITHIN CELLS Correlations with Std. Devs. on Diagonal
Y1 Y2

Y1 3.025
Y2 .467 7.393
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Interpretation: Descriptive Statistics and the Box Test for Covariance
Matrix Equality

Group means and standard deviations are reported at the beginning of the output.
These results correspond to those in Table 3.2. The separate group and error covariance
matrices are reported next. The separate group covariance matrices appear to differ
to some degree with the first group, TA, having a generalized variance greater than
either the DRA or DRTA groups. The Box (1949) test using either the F or χ2

transformation of M provides some evidence to support the conclusion that the three
population covariance matrices differ, M

.= 21.413, F(6, 98919)
.= 3.405, χ2(6)

.=
20.431, P

.= .002.
Another assessment (albeit fairly subjective) of covariance matrix equality may be

made by examining the natural logarithms of the determinants of the J + 1 covariance
matrices—J separate group matrices plus the error matrix. For the Baumann data these
four logarithms are 5.84 (TA), 5.53 (DRA), 5.52 (DRTA), and 5.97 (error). We judge
these numbers to be “in the same ballpark.” Still another assessment of across-group
homogeneity is to consider the four sums of outcome variable variances. These are
the traces of the four covariance matrices. For example, the trace for the TA group
is 15.422 + 61.784

.= 77.2. The other three traces are approximately 51.4 (DRA),
62.8 (DRTA), and 63.8 (error). Although the range of 77.2 − 51.4

.= 25.8 may appear
“large” to some, the positive square roots of 8.8 to 7.2 are not judged by us to be “large.”

Considering the two assessments in addition to the chi-squared and F statistics,
plus the design of 22 students in each of the three groups, we will rely on the robustness
of the multivariate tests of equality of population centroids.

The correlation matrix for the outcome variables (at the very end of the above
output), obtained by averaging the separate group correlations, is often useful when
describing relationships among the outcome variables.

Analysis: Multivariate and Univariate Omnibus Hypothesis Tests

EFFECT .. treatmnt
Multivariate Tests of Significance (S = 2, M = −1/2, N = 30 )

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F
Pillais .16185 2.77356 4.00 126.00 .030
Hotellings .18583 2.83393 4.00 122.00 .027
Wilks .84094 2.80488 4.00 124.00 .029
Roys .14225
Note.. F statistic for WILKS’ Lambda is exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
EFFECT .. treatmnt (Cont.)
Univariate F-tests with (2,63) D. F.
Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

Y1 27.75758 576.50000 13.87879 9.15079 1.51668 .227
Y2 243.36364 3443.50000 121.68182 54.65873 2.22621 .116
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Interpretation: Multivariate and Univariate Omnibus Hypothesis Tests

The results of the omnibus hypothesis test of the equality of the three population
mean centroids indicate sufficient evidence that the centroids differ; Wilks �

.=
.841, F (4, 124)

.= 2.805, P
.= .029. A similar statement could be made using either

the Bartlett–Pillai or Hotelling–Lawley multivariate test criterion. Neither of the uni-
variate hypothesis tests, however, provide sufficient evidence to indicate the three
populations differ with respect to the two outcomes, Y1, F(2, 63)

.= 1.517, P
.= .227

and Y2, F(2, 63)
.= 2.226, P

.= .116. The inconsistency between the multivariate and
univariate results reflect the greater statistical power associated with the multivariate
hypothesis test.

3.7 SUMMARY

A summary of transformations of the Wilks, Bartlett–Pillai, Roy, and Hotelling–
Lawley criteria is given in Table 3.3. The results of all four statistics will be identical
if dfh = 1 (two-group comparison), and will only differ slightly for multiple groups
in most situations. Rencher (2002, pp. 176–178) points out that the difference in
statistical power among the four criteria depends on the mean configuration of the
group centroids. If the outcome variables are highly intercorrelated, reflecting a single
construct (we will discuss construct identification in Chapter 5), then the Roy test
would be most powerful; but for other configurations, the Roy test can be the least
sensitive. Rencher suggests the following order of tests with respect to power for a
single construct context: Roy > Hotelling–Lawley > Wilks > Bartlett–Pillai. With

TABLE 3.3 Summary of Four MANOVA Test Statisticsa

Criterion Symbol Statistic ν1 ν2

Wilks (3.22) � = ∏
(

1

1 + λv

)
1 − �1/s

�1/s

m(s) − p(dfh)/2 + 1

p(dfh)
p(dfh) m(s) − p(dfh)/2 + 1

Bartlett–

Pillai (3.23) U = ∑
[

λv

1 + λv

]
U

r − U

dfe − p + r

b
br r(dfe − p + r)

Roy (3.24) 	 = λ1

1 + λ1

(N − b − 1)λ1

b
b N − b − 1

Hotelling–

Lawley (3.27) V = ∑
λv V

r(dfe − p − 1) + 2

r2b
br r(dfe − p − 1) + 2

ap = number of outcome variables; dfh = J − 1; m = dfe − (p − dfh + 1)/2; s =
√

p2(df2
h
)−4

p2+df2
h
−5

;

r = min(p, dfh); b = max(p, dfh).
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multiple constructs, the order of preferred tests is Bartlett–Pillai >Wilks > Hotelling–
Lawley > Roy. As stated above, however, in most situations all four test criteria
provide the same conclusion.

Definition ANOVA: One egg.

EXERCISES

Exercises 1 to 4 are based on the following context and data:

An educational psychologist was interested in evaluating the effectiveness of an
intervention designed to reduce test anxiety. Ten students were randomly assigned
to the intervention condition, and 10 students were randomly assigned to a control
condition. Following the intervention period, all students completed two measures of
anxiety. The first measure, Y1, was a self-report measure, and the second measure, Y2,
was a well-known standardized measure of test anxiety. Below are some descriptive
statistics from the study.

Intervention Group Control Group

Y1 Y2 Y1 Y2

Mean 4.40 13.00 5.50 15.20
Sd 1.174 2.582 1.269 2.616
rY1Y2 .147 −.167

1. Compute the univariate t statistic for each outcome variable. The critical t value is
2.10. Do the data support the researcher’s belief that the intervention is successful
in reducing test anxiety?

2. For each outcome variable, compute the squared point-biserial correlation, r2
pb,

and the standardized mean difference, d, for the Intervention versus Control
groups.

3. Analyze the bivariate data using the Hotelling T 2 and transform it to an F

statistic.

(a) Provide Se, |Se|, and S−1
e

(b) State T 2 and F

(c) D2

4. If the critical F value for statistical significance equals 3.59, what conclu-
sion would be drawn? How would you explain the difference in the results for
Exercises 1 and 3?
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Exercises 5 to 10 are based on the following context and data:

A Mathematics educator was interested in evaluating three approaches to teach-
ing fractions to third-grade students. Method 1 used computer software to enhance
instruction, Method 2 used peer tutoring, and Method 3 used workbooks. Fifteen
students were assigned to each method. At the end of the intervention period two cog-
nitive measures, Y1, Computation Skills and, Y2, Application Skills, were obtained.
In addition, all students completed an attitudinal measure, Y3. Descriptive statistics
are reported below.

Method 1
Y1 Y2 Y3

Mean 12.7 14.3 23.0
Sd 3.0 2.9 3.3

Method 2
Y1 Y2 Y3

Mean 15.5 16.7 18.8
Sd 2.8 3.1 3.7

Method 3
Y1 Y2 Y3

Mean 14.7 13.6 15.9
Sd 2.6 1.8 3.1

5. Compute E and Se assuming the following separate group SSCP matrices:

SSCP1
.=




126.0 87.7 48.0

87.7 117.7 52.0
48.0 52.0 152.2





SSCP2
.=




109.8 104.3 93.4
104.3 134.5 106.0

93.4 106.0 191.7





SSCP3
.=




94.6 28.4 62.5
28.4 45.4 48.2
62.5 48.2 134.5





6. Compute the H matrix for comparing the group centroids.

7. Using only variables Y1 and Y2, compute Wilks � to test the hypothesis that the
centroids do not differ among the three levels of Method.

8. Using the results from Exercise 7, transform � to an F statistic. State the
appropriate degrees of freedom for this F statistic.
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9. When all three outcomes are considered, the eigenvalues for the E−1H product
matrix are λ1

.= 1.694 and λ2
.= 0.312. Use these results to compute:

(a) �

(b) Bartlett–Pillai U

(c) Roy 	

(d) Hotelling–Lawley V

10. Transform each multivariate test criterion computed in Exercise 9 to an F statistic.
State the appropriate degrees of freedom associated with each test statistic.

Computer Applications

Exercises 11 to 15 require the analysis of the 5-group Ethington data set (5GED)
described in Appendix A. Using the SPSS (or SAS) computer software pack-
age, compare the Black, Hispanic, and White student group centroids based on 9
variables (Counselor Interaction, Writing and Speaking Skills, Self-Understanding,
Instruction Received, Library Effort, Student–Faculty Effort, Interstudent Effort,
Art/Music/Theater Effort, Writing Effort, and Science Effort).

11. What are the sample sizes for the three racial groups in the Ethington data set?

12. Compare the covariance maticies for the three groups.

(a) What is the value of the Box M statistic?

(b) What is the χ2 statistic value, degrees of freedom, and P value for testing
the equality of the covariance matrices?

(c) For these covariance matrices, what are the three log determinants?

(d) Do these results indicate that the statistical validity of an hypothesis test
comparing the group centroids using an χ2 statistic is doubtful?

13. Which two outcome variables have the highest correlation?

14. What are the values of �, U , and V ?

15. Do the results of the analysis provide sufficient evidence to conclude that the three
population centroids differ? Support you answer with appropriate statistics.
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C H A P T E R 4

Assessing MANOVA Effects

4.1 INTRODUCTION

In Chapter 3 we discussed procedures that are useful for comparing two or more
sample centroids to test the null hypothesis that the population centroids are identical.
If the null hypothesis is rejected, it is very likely that the researcher would be inter-
ested in further analyses of the data to describe the resultant relationship between the
grouping variable and the collection of outcome variables, and to make comparisons
between or among specific population centroids. It is sometimes suggested that if the
multivariate omnibus hypothesis test is statistically significant, a series of univari-
ate omnibus tests be conducted, one such test for each separate outcome variable.
We discourage this type of analysis because it ignores correlational structure among
the outcomes, it does not adequately control Type I errors, and such analyses can have
low statistical power. In this chapter we briefly review two measures of association—
eta squared, η2, and omega squared, ω2—frequently used in univariate analysis of
variance to describe the relationship between the grouping variable and the single
outcome variable. For the multivariate context, several indices of effect size have
been suggested, and we will present five of the more popular indices to describe the
relationship between the grouping variable and the collection of outcome variables.
We end this chapter with a review of contrast analyses for the univariate context and
present the multivariate analog for focused tests.

The assessment of effects of grouping variables in a univariate or multivariate
analysis of variance situation involves more than the reporting of a test statistic
value for an omnibus test. If omnibus effects are of interest, the test statistic value
should be reported along with a P value and an effect-size value. The very same
information is of interest for assessing multivariate contrast effects, effects that
are sometimes of more interest than omnibus effects. Following a discussion of a
number of effect-size indices, the conduct and assessment of contrast effects are
discussed in detail.

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.

61
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4.2 STRENGTH OF ASSOCIATION

4.2.1 Univariate

In our discussion on the comparison of two population means using the two inde-
pendent samples t test, we stated that the squared point-biserial correlation—see
Eq. (3.6)—provides the proportion of variation in the single outcome variable that is
explained by the grouping variable. The point-biserial correlation is one index that
can be used to quantify the magnitude of the grouping variable effect.

An analogous statistic that can be used when two or more populations are being
compared is eta squared, η2, and is defined as:

η2 = SSH

SSH + SSE
,

or, equivalently, as 1 − (SSE/SST). Using the data for the EDT outcome in Table 3.1,
the strength of the relationship between reading program and EDT scores is
estimated as:

η2 .= 27.758

604.258
.= .046.

Eta squared, however, is positively biased (Carroll and Nordholm, 1975; Keselman
1975), especially when sample sizes are small. An alternative index of effect size was
suggested by Hays (1963), called omega squared, ω2, based on unbiased estimators
of the total variance and the variance associated with the grouping variable. Omega
squared is defined as:

ω2 = SSH − dfh(MSerror)

SST + MSerror
.

Using the Baumann data for the EDT outcome, ω2 is

ω2 .= 27.58 − 2(9.151)

604.258 + 9.151
.= .015.

Both estimates of association are very small, which is consistent with the earlier
finding of no statistically significant difference in the three population means on the
EDT outcome.

4.2.2 Multivariate

Several multivariate indices of effect or association have been suggested. One such
index is based on a generalization of η2 using �. This index is defined as:

η2
Mult = 1 − �. (4.1)

One approach to the computation of � was presented in Eq. (3.16) as the ratio of
the determinant of the error sum-of-squares matrix to the determinant of the total
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sum-of-squares matrix. In the univariate case (p = 1), E and H are scalars equaling
SSE and SSH, respectively. Lambda, therefore, would equal

� = SSE

SSH + SSE
.

So, in the univariate case,

η2 = 1 − SSE

SSH + SSE
= 1 − SSE

SST
,

as given above. In the multivariate case, � is an index of the proportion of the total
generalized variance of the collection of outcome variables that is not associated with
the grouping variable. One minus this proportion is the proportion of the total variance
that is associated with the grouping variable. Using the Baumann data, �

.= .841 and
η2

Mult
.= 1 − .841

.= .159.
An alternative approach for computing � was presented in Eq. (3.22) as:

� =
r∏

v=1

(
1

1 + λv

)

,

or, equivalently, as
r∏

v=1

(

1 − λv

1 + λv

)

.

The ratio
λv

1 + λv

is the squared canonical correlation between the grouping

variable and the vth linear discriminant function, or the vth construct underlying
the p outcome variables. Cramer and Nicewander (1979) suggested as an index of
association, τ 2, tau squared, computed as:

τ 2 = 1 −
[

r∏

v=1

(

1 − λv

1 + λv

)]1/r

, (4.2)

or, equivalently, as

τ 2 = 1 − �1/r , (4.3)

where r = min(p, dfh). The value

[
∏r

v=1

(

1 − λv

1 + λv

)]1/r

is the geometric mean

of the proportion of variation in the constructs underlying the outcome variables
that is not explained by the grouping variable. One minus this value is the pro-
portion of variation in the underlying constructs that is explained by the grouping
variable. The Cramer and Nicewander (1979) effect size measure is associated with the
Wilks statistic in SPSS multivariate output. Using the Baumann data, r = 2 and τ 2 is
estimated as:

τ 2 .= 1 − .8411/2 .= .083.
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An effect size index related to the Bartlett–Pillai test statistic (U ) is ξ2. Xi squared
(ks-eye squared) is written as:

ξ2 = U

r
. (4.4)

The statistic U is computed as the sum of the squared canonical correlations,
∑r

v=1
λv

1 + λv

. So, ξ2 is the mean-squared canonical correlation. That is, ξ2 is the

mean proportion of variation in the underlying constructs that is explained by the
grouping variable. In the SPSS multivariate output, ξ2 is reported as the “Pillais”
effect size. Using the Baumann data, ξ2 is computed as:

ξ2 .= .1654

2
.= .083.

An effect size index associated with the Hotelling–Lawley test statistic, ζ 2, zeta
squared, can be written as:

ζ 2 = V

r + V
, (4.5)

where V = ∑r
v=1 λv and r = min(p, dfh). ζ 2 is associated with the Hotelling statistic

in SPSS multivariate output. Using the Baumann data,

ζ 2 .= .1901

2 + .1901
.= .087.

Tatsuoka (1970) suggests a generalization of the univariate ω2 statistic as an index
of association between the collection of outcome variables and the grouping variable.
The multivariate ω2 is defined as:

ω2
Mult = 1 − N�

(N − dfh − 1) + �
. (4.6)

Using the Baumann data,

ω2
Mult

.= 1 − 66(.841)

(66 − 2 − 1) + .841
.= .131.

Table 4.1 summarizes the multivariate effect size indices and their values using the
Baumann data.

As demonstrated above, the five indices of association may provide considerably
different estimates. The difference among these indices of effect size is a function
of how these indices of association are conceptualized. The multivariate η2 and ω2

define effect size as a function of the total generalized variance that is associated with
the grouping variable regardless of the number of constructs underlying the outcome
variables. The other three indices of effect size define the strength of association by
taking into consideration the number of estimated dimensions or constructs underlying
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TABLE 4.1 Five Multivariate Effect Size Indices

Statistic Expression Estimate

η2
Mult (4.1) 1 −∏

(

1 − λv

1 + λv

)

.159

τ2 (4.2) 1 −
[
∏
(

1 − λv

1 + λv

)]1/r

.083

ξ2 (4.4)

∑r
v=1

λv

1 + λv

r
.083

ζ 2 (4.5)

∑r
v=1 λv

r +∑r
v=1 λv

.087

ω2
Mult (4.6) 1 − N�

(N − dfh − 1) + �
.131

the outcome variables. Because there is no single agreed upon definition of “effect” in a
multivariate context, no one index is viewed as being preferred over the others. If there
are only two populations being compared (r = 1), however, all five statistics provide
the same estimate. In this case, only one linear discriminant function or construct can
be determined regardless of the number of outcome variables examined. When there
are three or more levels of the grouping variable, two or more linear discriminant
functions or constructs can be estimated. The more dimensions estimated, the larger
the difference among the effect-size indices.

SPSS output from the MANOVA program provides the effect-size values using
τ 2, ζ 2, and ξ2. These effect-size indices are associated with the Wilks, Hotelling–
Lawley, and Bartlett–Pillai multivariate test criteria, respectively. Typically, if one
multivariate test criterion is preferred and reported, the corresponding effect-size
index would also be reported. Regardless of which effect-size index is chosen,
the assessment of its magnitude is problematic at this time. What is a “large” or “sub-
stantial” multivariate effect-size? Such definitions have yet to be suggested. Although
researchers have been encouraged (even required by some journal editors) to report
effect size values, multivariate effect-size values are rarely, if ever, currently reported
by applied researchers. Definitions of effect-size indicies that might span many vari-
able domains, types of analysis units, and substantive areas will, undoubtedly, be
difficult to advance. If Wilks � values would be routinely reported—as yet they are
not!—perhaps some research synthesis could lead to some rough magnitude guides.

4.2.3 Bias

Regardless of which effect-size index a researcher chooses, the sample statistic will
overestimate the strength of the association between the collection of outcome vari-
ables and the grouping variable. The degree of overestimation, bias, is a function of
the number of levels of the grouping variable J , the number of outcome variables p,
and the sample size N . The degree of bias increases as J and p increase, and for small
group sizes.
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Serlin (1982) recommends the following adjustment for ξ2, which is analogous to
the adjustment suggested by M. J. B. Ezekiel (1899–1974) in 1930 for the multiple
squared correlation coefficient, R2:

ξ2
adj = 1 − N − 1

N − b − 1
(1 − ξ2), (4.7)

where b = max(p, dfh). Applying this adjustment to our numerical estimate of ξ2

gives the following results:

ξ2
adj

.= 1 − 66 − 1

66 − 2 − 1
(1 − .083)

.= .054.

A simulation study by Kim and Olejnik (2005) provided support for this adjust-
ment, and it can, in general, be used with τ 2 and ζ 2, as well. For τ 2 and ζ 2, the adjust-
ment works best for two-group studies and for dfh ≥ 2 if the sample size is “large.”

4.3 COMPUTER APPLICATION I

In this section, the SPSS command to request τ 2, ξ2, and ζ 2 is given. SPSS does
not report η2

Mult or ω2
Mult, nor does SPSS adjust these effect-size indices for their

overestimation of the relationship between the grouping variable and the collection
of outcome variables.

SPSS SYNTAX FOR COMPUTING EFFECT SIZE

manova Y1 Y2 by treatmnt(1, 3)
/print = signif(efsize).

signif(efsize) requests three unadjusted multivariate effect-size indices, ξ2, ζ 2,
and τ 2.

OUTPUT

Analysis: Effect-Size Estimates

EFFECT . . treatmnt
Multivariate Tests of Significance ( S = 2, M = −1/2, N = 30)
Test Name Value Approx. F Hypoth. DF Error DF Sig. of F
Pillais .16185 2.77356 4.00 126.00 .030
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Hotellings .18583 2.83393 4.00 122.00 .027
Wilks .84094 2.80488 4.00 124.00 .029
Roys .14225
Note . . F statistic for WILKS’ Lambda is exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size
Pillais .081
Hotellings .085
Wilks .083
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Univariate F-tests with (2,63) D. F.
Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F
Y1 27.75758 576.50000 13.87879 9.15079 1.51668 .227
Y2 243.36364 3443.50000 121.68182 54.65873 2.22621 .116
Variable ETA Square
Y1 .04594
Y2 .06601
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Effect-Size Estimates

The three effect-size values reported here differ slightly from the results computed in
Section 4.2.2. The small difference reflects the increased level of accuracy obtained
by using the computer. All three effect-size values are similar, which will gener-
ally be the case. While it may be tempting to compare the multivariate with the
univariate effect-size indices, such a comparison should be avoided. The univari-
ate index represents the proportion of variance in one outcome variable that is
associated with the grouping variable, while the multivariate index represents the
proportion of the variation in the construct(s) that is shared with the grouping vari-
able. The magnitude of the multivariate effect size indices will be influenced to some
degree by the number of constructs—the number of constructs identified in a vari-
able system is discussed in Chapter 5—which underlie the p variable system of
outcomes.

4.4 GROUP CONTRASTS

4.4.1 Univariate

In a univariate context involving more than two levels of a grouping variable,
researchers are seldom satisfied with the conclusion from the omnibus F test that
populations do not have identical means. Rather, analyses involving comparisons or
contrasts of specific groups are generally considered. These are sometimes referred
to as focused tests. It should be noted that a researcher may very well go directly to
an examination of contrasts; that is, the omnibus test is not a necessary preliminary
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test. A contrast, ψ , is defined as a linear combination of means:

ψ =
J∑

j=1

ajµj = a1µ1 + a2µ2 + · · · + aJ µJ , (4.8)

with
∑J

j=1 aj = 0. Examples are ψ = µ1 − µ2 (a1 = 1, a2 = −1, aj = 0 for
j = 3 . . . J ), and ψ = 2µ1 − (µ2 + µ3) (a1 = 2, a2 = −1, a3 = −1, aj = 0 for
j = 4 . . . J ). Sample estimates of contrasts are obtained by substituting sample means
for the population means:

ψ̂ =
J∑

j=1

ajY .j = a1Y .1 + a2Y .2 + · · · + aJ Y .J .

The ratio of a contrast value to its estimated standard error results in a t statistic. The
estimated standard error of a sample contrast is computed as:

s
ψ̂

=
√
√
√
√s2

e

J∑

j=1

a2
j /nj ,

and

t = ψ̂

s
ψ̂

. (4.9)

It should be recognized that (4.9) has the same form as (3.1) when J = 2. Equation
(4.9) is more general, however, allowing more than two groups to be compared, and
the error variance (s2

e ) is based on all J groups in the study. The error variance across
all of the groups in the study provides greater statistical power, assuming variance
equality.

4.4.2 Multivariate

In a J -group MANOVA, one can merely conclude that the J population centroids are
not equal or that there is a relationship between the grouping variable and the outcome
variable composite (i.e., a linear combination of the outcome variables). But, specific
vector differences or specific relationships may be of more interest than the omnibus
test of centroid differences, or an overall relationship between the grouping variable
and the outcome variables. In fact, it may be argued that if contrast-based questions
are of interest, the researcher should proceed directly to contrast analyses and bypass
the omnibus analysis. We do not want to minimize, however, the usefulness of the
omnibus hypothesis test. There are likely to be some research contexts where the
omnibus test would be of both practical and/or theoretical interest. For example, a
researcher may be interested in combining data obtained by several observers or from
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several locations. An omnibus test might be used to provide support for such data
aggregation if there is no evidence to indicate mean differences among observers or
among locations.

In the multivariate context, contrasts are formed using the outcome variable mean
vectors rather than individual variable means. For example, a pairwise contrast com-
paring the TA and the DRTA reading conditions from the Baumann study may be of
interest, and the null hypothesis H0: ψ = 0, where ψ = µ1 − µ3, may be tested. The
sample mean vectors are

y.1
.=
[

7.77
43.45

]

, y.2
.=
[

6.23
46.64

]

,

and

ψ̂
.=
[

1.54
−3.19

]

.

For any contrast, the Hotelling T 2 test statistic can be computed as:

T 2 = ψ̂
′



J∑

j=1

a2
j

nj

Se





−1

ψ̂, (4.10)

where ψ̂ is the sample centroid contrast of interest, Se is the error covariance matrix,
aj is the weight for Group j , and nj is the sample size for Group j . For a pairwise
contrast this can be simplified to

T 2 = njnj ′

nj + nj ′

(
ψ̂

′
S−1

e ψ̂
)

(4.11)

Equation (3.14) provided the error SSCP matrix, E, for the Baumann data. The error
covariance matrix, Se and its inverse, are

Se
.=
[

9.151 10.435
10.435 54.659

]

, S−1
e

.=
[

.1399 −.0267
−.0267 .0234

]

.

The test statistic value, then, is

T 2 .= (22)(22)

22 + 22
[1.54 −3.19]

[
.1399 −.0267

−.0267 .0234

] [
1.54

−3.19

]
.= 9.156.

Using Eq. (3.11) T 2 can be transformed to a statistic that has an F distribution with
degrees of freedom ν1 = p and ν2 = dfe − p + 1:

F
.= 63 − 2 + 1

2(63)
9.156

.= 4.505.
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Assuming assumptions have been met and the null hypothesis is true, the P value for
this statistic, having 2 and 62 degrees of freedom, is .015.

Alternatively, any contrast could be tested for statistical significance using the
eigenvalues obtained from the matrix product E−1H. Because contrast tests are sin-
gle degree-of-freedom tests, all four test criteria (Wilks, Bartlett–Pillai, Roy, and
Hotelling–Lawley) will result in the same F statistic.

The matrix E is the error SSCP matrix and was computed in Section 3.5.2 and
found to be

E .=
[

576.502 657.409
657.409 3443.501

]

.

Its inverse is

E−1 .=
[

.0022 −.0004
−.0004 .0004

]

.

The matrix H is the SSCP matrix for the specified contrast and is computed as:

H
ψ̂

=
(
ψ̂ψ̂

′)
/ J∑

j=1

a2
j

nj

. (4.12)

When sample sizes are equal, (4.12) can be written as:

H
ψ̂

= n
∑J

j=1 a2
j

(
ψ̂ψ̂

′)
. (4.13)

For testing H0: µ1 − µ3 = 0 the Baumann data yields

H
ψ̂

.= 22

(1)2 + (−1)2

[
1.54

−3.19

]

[1.54 − 3.19]

.=
[

26.0876 −54.0386
−54.0386 111.9371

]

.

Using the above results for E−1 and H
ψ̂

, the matrix product is

E−1H
ψ̂

.=
[

.0790 −.1638
−.0321 .0664

]

.
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and the eigenvalues are .145 and 0. There is only one nonzero eigenvalue, as expected,
because dfh = 1. Based on this one eigenvalue, the four multivariate criteria can be
determined as:

Criterion Statistic Calculated Value

Wilks � = 1/(1 + λ)
.= 1/1.145

.= .873
Bartlett–Pillai U = λ1/(1 + λ1)

.= .145/1.145
.= .127

Roy 
 = λ1/(1 + λ1)
.= .145/1.145

.= .127
Hotelling–Lawley V = λ

.= .145
.= .145

Using Eq. (3.17) and the Wilks �, the resulting F statistic is computed as 4.507, with
2 and 62 degrees of freedom. The P value, assuming the null hypothesis is true, that
corresponds with these results, is .015. The small difference between the F statistic
obtained from the transformation of Hotelling’s T 2 (F

.= 4.492) and the F statistic
obtained from the four multivariate test criteria is due to rounding while computing
these statistics.

If a comparison between the mean of TA and DRA with DRTA, ψ2, was also of
interest, the null hypothesis might be written as H02: 1

2 (µTA + µDRA) − µDRTA = 0.
Using the mean vectors for the three groups reported in Chapter 3 the contrast mean
vector is

ψ̂2
.=
[

.995
−3.89

]

.

The eigenvalue for the E−1Hψ2 matrix product for this complex contrast hypothesis
is .1626 and the Wilks � is .860. The corresponding F , degrees of freedom, and P

value for this result are F
.= 5.047 with 2 and 62 degrees of freedom, and P

.= .009.
When multiple hypotheses are tested, it is generally advisable to adjust the obtained

P values. The adjustment procedure we suggest, while very simple, assumes that the
identification of the hypotheses to be tested is made a priori to the data collection,
or at least before the analysis of the data has begun. Deciding which comparisons
to test after examining the sample vector means will invalidate the probability state-
ments made. A sensible adjustment for multiple testing associated with contrasts may
be accomplished by multiplying each of the individual P values by the number of
hypotheses tested, say c. That is, P ′ = c(P ). For the two hypotheses tested above,
the adjusted P values would equal P ′

1
.= 2(.016) = .032 and P ′

2
.= 2(.009) = .018.

These results may be interpreted as providing evidence to conclude that the mean cen-
troids for the ThinkAloud strategy and the Directed Reading and ThinkAloud strategy
are different, and the mean centroid for the Think Aloud and the Directed Reading
Activity strategies differ from the centroid of the Directed Reading and Think Aloud
strategy. To further understand the nature of these differences still additional analyses
are necessary. These additional analyses focus on the determination and characteriza-
tion of the constructs underlying the centroid differences. These additional analyses
are presented in Chapter 5.
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Measures of association for contrasts may also be computed using the procedures
presented in Section 4.2.2. Because contrasts have only one degree of freedom for the
hypothesis, dfh = 1, the measures of association provided by η2

Mult, τ
2, ζ 2, and ξ2

are all the same. For the first contrast, �
.= .873, so η2

mult
.= .127. Tatsuoka’s (1970)

multivariate generalization of ω2, ω2
Mult is .112. Using the Serlin (1982) adjustment

for these data, the adjusted effect size measure is

ξ2
adj

.= 1 − 66 − 1

66 − 2 − 1
(1 − .127)

.= .099.

4.5 COMPUTER APPLICATION II

In this section we present the SPSS syntax to conduct focused tests. We demonstrate
the procedure using the same contrasts that were used in Section 4.4. That is, we
analyze the pairwise contrast comparing the TA group with the DRTA group and
the complex contrast comparing the mean centroid for the TA and the DRA groups
with the DRTA group. The degrees of freedom for the grouping variable determines
the number of contrasts that may be requested on any one contrast command. But
multiple contrast commands may be used for any MANOVA run but multiple /design
statements must also be provided.

SPSS SYNTAX FOR MANOVA CONTRAST ANALYSES

manova Y1 Y2 by treatmnt(1,3)
/print = signif(efsize)
/contrast(treatmnt) = special(1 1 1, .5 .5 −1, 1 0 −1)
/design = treatmnt(1) treatmnt(2).

/contrast is a SPSS system command requesting a contrast.
(treatmnt) identifies the explanatory variable.
special introduces the researcher generated contrast weights.
1 1 1 identifies the grand mean, the number of 1’s is determined by the number
treatmnt levels.
1 0 −1 compares level 1 of treatment with level 3 of treatment.
.5 .5 −1 compares the average of levels 1 and 2 with level 3 of treatment.
/design is an SPSS system command to identify subhypotheses for analysis.
treatmnt(1) labels the first contrast on the explanatory variable.
treatmnt(2) labels the second contrast on the explanatory variable.
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OUTPUT

Analysis: Focused Tests

EFFECT . . TREATMNT(2)
Multivariate Tests of Significance ( S = 1, M = 0, N = 30)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .12694 4.50712 2.00 62.00 .015
Hotellings .14539 4.50712 2.00 62.00 .015
Wilks .87306 4.50712 2.00 62.00 .015
Roys .12694
Note . . F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size

(All) .127
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
EFFECT . . TREATMNT(1)
Multivariate Tests of Significance ( S = 1, M = 0, N = 30)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .14016 5.05339 2.00 62.00 .009
Hotellings .16301 5.05339 2.00 62.00 .009
Wilks .85984 5.05339 2.00 62.00 .009
Roys .14016
Note . . F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size

(All) .140

Interpretation: Focused Tests

The computer results reported here differ slightly from those reported in Section 4.4.2,
reflecting the increased precision available through computer analysis. The conclu-
sions are, however, the same. The second contrast, which compared the centroids
for the TA with the DRTA groups, is reported first. The complex contrast, compar-
ing the mean of the TA and DRA group centroids with the DRTA group centroid,
is reported second. The results provide considerable evidence, adjusted (Bonferroni
method) for the two hypotheses, to conclude that the observed difference between
the TA and DRTA centroids is generalizable to the populations that the samples rep-
resent [�

.= .873, F(2, 62)
.= 4.507, P ′ .= .030, ξ2

adj
.= .099]. And there is evidence

to conclude that the difference between the mean of the TA and DRA centroids
and the DRTA centroid is generalizable to the populations that the groups represent
[�

.= .860, F (2, 62)
.= 5.053, P ′ .= .018, ξ2

adj
.= .113].
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4.6 COVARIANCE MATRIX HETEROGENEITY

As pointed out earlier, the hypothesis tests presented here on contrasts assume
J -population multivariate normality and covariance matrix homogeneity. While mul-
tivariate nonnormality typically does not affect the statistical validity of the analysis,
heterogeneous covariance matrices can result in reported P values that are either too
small (liberal) or too large (conservative). We discussed this issue in Section 3.3 and
refer the reader to the guidelines provided by Hakstain et al. (1979) when covariance
matrix homogeneity is not tenable.

If sample sizes are not equal and covariance matrix homogeneity is not tenable,
the test criterion to be used for the contrast µj − µj ′ is the procedure suggested by
Yao (1965) and discussed in Section 3.2.2. A computer program written by J. Algina
(University of Florida) that may be used for pairwise contrasts in a single-factor
MANOVA context is available at the Wiley website. The program is labeled YAOPC.
In the Technical Notes at the end of this chapter we provide a generalization of the
Yao test for complex contrasts.

Suppose, in a three-group situation, it is concluded that

�1 = �2 �= �3;
that is, the first two sample covariance matrices are reasonably close but different
from the third. In this case it seems reasonable to use a sample covariance matrix
pooled across Groups 1 and 2 in the Hotelling T 2—see Eq. (3.10)—for the contrast
µ1 − µ2. On the other hand, for the contrast, say, µ1 − µ3 one could use the Yao test
(3.12) and (3.13).

Usually, in multiple group situations, if specific group comparison questions are
of interest, more than one such type of question will be posed. Therefore, a multiple
testing situation arises. As suggested at the end of Section 4.4.2, a multiple testing
situation calls for an adjustment of the probability distribution tail areas for the indi-
vidual tests. Simply multiplying each tail area by the number of tests conducted seems
to be a reasonable adjustment in most situations. These products, then, can be assessed
in judging statistical significance.

4.7 SAMPLE SIZE

In the ANOVA context, sample size tables have been proposed by Cohen (1988) and
Kraemer and Thiemann (1987). Input for the use of these tables consists of α and β

(probabilities of Type I and Type II errors, respectively, with which we are willing
to live) and effect size. The idea of the use of these tables is that specifications of
these three numerical indicators—all researcher judgments—will suggest a sample
size that for the given α value and effect size value, the sample size used will yield
adequate (for the specified effect size value) statistical power (1 − β). Such tables
should only be considered as guides to go along with judgments.

Similarly, in the MANOVA context, given some α and β values, and some indi-
cation of effect size, we would like to have a guide to a desirable sample size. Some
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sample size tables have been developed by Lauter (1978); Lauter’s tables are also
given in Kres (1983, pp. 432–451). These sample size tables are based on use of
the Hotelling–Lawley trace criterion (see Table 3.3) for a one-factor design. As one
might expect, the multivariate interpretation of deviations from the null hypothesis
(H0: µ1 = µ2 = · · · = µJ ) gets messy because of the many ways (with p vari-
ables) that H0 may be false. For J = 2 and J = 4, p = 5 and p = 15, α = .05 and
α = .01, and β = .30 and β = .20 the use of the Lauter tables suggests that a rule
of thumb like 4p or 5p for a “moderate” effect size may provide an adequate sample
size per group. Rencher (1998), however, states that the Lauter tables “have limited
usefulness because they are based on an overly simplified alternative hypothesis”
(pp. 140–141).

4.8 SUMMARY

In this chapter we presented procedures that are useful to further understand multiple
population separation. Specifically, effect-size indices associated with each multi-
variate test criterion and methods for focused hypothesis tests are presented and
demonstrated. Although the interpretation of multivariate effect size indices at the
present time is as best questionable, we nevertheless believe that the reporting of such
indices will ultimately be useful for the advancement of our understanding of popu-
lation separation. We also caution that the currently available effect size indices are
biased to some degree, and the degree of bias is determined by four factors: sample
size, the number of outcome variables, the number of populations, and the degree
of population separation. The adjustment procedure suggested by Serlin (1982) is
strongly recommended.

Focused tests or contrast analyses examine specific population separation. There
may very well be research situations where the overall (i.e., omnibus) comparison
of J population mean vectors would be of interest. For example, Smart (1982) was
interested in studying a typology of six college types of academic behavior (using
scores on three factors of faculty teaching goals as outcome measures). However,
many times in population comparison studies specific questions are of more inter-
est (i.e., questions associated with multivariate group contrasts). The omnibus test
examines the linear composite of outcome variables that best separates all groups
simultaneously. Contrast analyses, on the other hand, examine the linear composite
that best separates specific populations, and it may be considerably different than
the composites provided by the omnibus test. Consequently, if specific comparisons
can be identified at the beginning of the study, we recommend ignoring the omnibus
test and go directly to the focused tests that address the primary interest. For such
analyses, a P value along with an effect-size index (e.g., η2) value may be used to
assess the strength of empirical evidence for the hypotheses under consideration. Of
course, P values for individual tests should be adjusted because of multiple testing.

In the next chapter we will present procedures that will help determine the number
and identification of the underlying constructs that separate the populations being
compared.
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Technical Notes

1. Very little, if anything, has been written about the assessment of the magnitude
of the various effect-size indices presented in this chapter. These are very difficult
judgments to make at this point in time, with the paucity of MANOVAs conducted in
a given area of study. There is another index that may be attractive to some researchers.
This index involves the use of a predictive discriminant analysis (PDA). The index
itself is the classification hit rate—either across groups or for a particular group. (Note:
The use of a PDA in a group separation context implies a reversal of the roles of the
variables involved; the MANOVA outcome variables are now serving as predictors.
This may be bothersome to some.) The use of PDA results in assessing effect is
discussed by Huberty and Lowman (1997).

2. A statistical test for a univariate pairwise contrast in the context of unequal
variances was mentioned in Section 3.2 [see Eqs. (3.4) and (3.5)]. The extension of
this test to one for a univariate complex contrast is fairly straightforward (Maxwell
and Delaney, 2000, p. 180). Let us discuss the test of a multivariate complex contrast
(when the �’s are unequal):

H0: ψ =
J∑

j=1

ajµj = 0.

One might be interested in, for example, ψ = µ2 + µ3 − 2µ4; here a1 = 0,
a2 = 1, a3 = 1, and a4 = −2.

Now let

W =
J∑

j=1

a2
j

nj

Sj ,

where Sj is the Group j covariance matrix. Then our test statistic is a direct
generalization of T ∗2 in (3.12):

T ∗2 = ψ̂
′
W−1ψ̂,

where ψ̂ is the p × 1 vector of sample contrast “scores” for each Y . The following
approximate transformation may be utilized:

f − p + 1

pf
T ∗2 −→ F(p, f − p + 1), (4.14)

where p is the number of outcome variables, and

f =
tr

(
J∑

j=1

a2
j

nj

Sj

)2

+
[

tr

(
J∑

j=1

a2
j

nj

Sj

)]2

J∑

j=1

1

nj − 1





tr

(
a2
j

nj

Sj

)2

+
[

tr

(
a2
j

nj

Sj

)]2





,
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where “tr” denotes the trace function. [The expression for f is based on the work
of Nel and van der Merwe (1986, p. 771), as suggested by J. Algina (University of
Florida).]

Further Reading

Cramer and Nicewander (1979) suggest six different indices of multivariate asso-
ciation, all of which are functions of squared canonical correlation coefficients
and two of which (η2, τ 2) are discussed in Section 4.2.

Haase (1991) presents formulas for computing multivariate effect size indices from
reported F and chi-squared values.

Tate (1981) discusses multivariate aptitude–treatment–interaction analyses,
including interaction contrasts.

Definition Biserial correlation: Relationship between Wheaties and Rice Crispies.

EXERCISES

Use the following context to answer Exercises 1 to 10.

A University administrator was interested in comparing attributions for success in
college held by students majoring in Mathematics (Math), English (Eng), Psychology
(Psy), and Business (Bus). A random sample of 12 students from each Major was
selected. Participants completed a battery of four instruments assessing attributions
for success to Effort, Ability, Luck, and their Teachers. The data were analyzed using
a multivariate analysis of variance program. The results of the analysis reported the
following eigenvalues: 4.764, 1.237, and .044.

1. Given the research design, should more eigenvalues be expected? Briefly explain.

2. Given the above results compute:

(a) �

(b) Bartlett–Pillai U

(c) Roy 


(d) Hotelling–Lawley V

3. Convert each of the multivariate test criteria in Exercise 2 to an an F statistic and
report the appropriate degrees of freedom.

4. Compute the following effect size measures:

(a) η2
Mult

(b) τ 2

(c) ξ2

(d) ζ 2

(e) ω2
Mult
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5. Using the Serlin procedure, provide the adjusted effect-size measures for:

(a) τ 2

(b) ζ 2

(c) ξ2

6. The administrator was interested in three specific contrasts and provided the
following SPSS command /contrast = special(1 1 1 1, 1 0 0 −1, 0 1 0 −1, 0 0
1 −1). What comparisons is she requesting?

7. How many eigenvalues are associated with each contrast? Briefly explain.

8. Suppose the following are the group centroids:

Math =







11.5
25.3
22.7
32.3





 , Eng =







22.2
31.5
30.5
19.0





 , Psy =







17.9
28.6
30.3
22.4





 , Bus =







14.3
26.4
34.1
31.3







For the last contrast in Exercise 6 what would H
ψ̂

equal?

9. Suppose the eigenvalue for the last contrast equals 3.248.

(a) Compute Wilks �.

(b) Transform � to an F statistic.

(c) State the degrees of freedom for the transformed F statistic.

10. For the last contrast in Exercise 6 provide

(a) ξ2

(b) ξ2
adj

Computer Applications

Exercises 11 to 15 require a continuation of the analyses begun in the Exercises
at the end of Chapter 3, using the Ethington 5-group data set (5GED) described in
Appendix A. Use the SPSS (or SAS) computer software package to compare the
Black, Hispanic, and White student group centroids based on 9 variables (Counselor
Interaction, Writing and speaking skills, Self-understanding, Instruction received,
Library effort, Student–faculty effort, Interstudent effort, Art/music/theater effort,
Writing effort, and Science effort).

11. What are the numerical values of the following:

(a) η2
Mult

(b) τ 2

(c) ξ2

(d) ζ 2
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12. Using the Serlin procedure, adjust

(a) τ 2

(b) ξ2

(c) ζ 2

13. Contrast the mean centroids for the Black and Hispanic groups.

(a) What are the values for �, U , and V ?

(b) State the values of F , degrees of freedom, and P .

(c) Do the results support the conclusion that the population centroids differ?

14. Contrast the mean centroid for the minority students with the mean centroid for
the White students.

(a) What are the values for �, U , and V ?

(b) State the values of F , degrees of freedom, and P .

(c) Do the results support the conclusion that the population centroids differ?

15. For the two contrasts examined in Exercises 13 and 14:

(a) Provide ξ2 as an index of effect size.

(b) Adjust the ξ2 using the Serlin procedure.
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C H A P T E R 5

Describing MANOVA Effects

5.1 INTRODUCTION

Once it has been determined that the resultant MANOVA omnibus or contrast effects
are generalizable, we generally are interested in further describing or characterizing
the nature of these effects. Reporting test statistic, P , and effect size values is only
a start. For example, in analyzing the Baumann data, we found in Chapter 3 that
the three group centroids differed beyond what we might reasonably expect due to
chance or sampling error [�

.= .841, F (4, 124)
.= 2.804, P

.= .029]. In assessing the
nature of the group differences in Chapter 4, we first characterized the relationship
between the grouping variable (Reading Program) and the outcome variables (Y1, Y2)
to be fairly strong (ξ2

adj
.= .054), and in an examination of two contrasts (TA vs.

DRTA and TA with DRA vs. DRTA) both focused tests had small adjusted P values
(.032 and .019, respectively) indicating that the differences between these groups
are generalizable to their respective populations with effect sizes of ξ2

adj
.= .092 and

ξ2
adj

.= .113, respectively.
These analyses have only convinced us that the observed differences are real,

but it is not clear up to this point in what way the populations differ. It is on the
description of the nature of the differences that we focus in this chapter. To describe
the group differences we closely examine linear composites of the outcome variables.
These linear composites are useful in identifying outcome variable constructs (or
latent variables) that underlie the group differences; that is, constructs that underlie
the grouping variable effect. The number of constructs that evolve and are useful in
defining a variable structure associated with the resultant effect refers to the structure
dimension. Construct definition and structure dimension constitute the focus of a
descriptive discriminant analysis (DDA).

One DDA question, then, is: In how many dimensions can this effect be
represented? Another question: The variability in what underlying construct(s) is
accounted for by the grouping variable (represented by the J levels)? Still another

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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question: Given that the J groups are “significantly” separated, what group separation
configuration is yielded by the group centroids? Yet another question might be: What
configuration of group separation is associated with each underlying construct? If con-
trasts are examined and found to be “significant,” another question might be raised:
Are different constructs associated with different contrasts?

Attempts to answer the above questions may be made through the study of some
linear composites of the outcome variables. These linear composites are called linear
discriminant functions (LDFs). LDFs are the focus of this chapter. We begin by
providing some background on how to derive the LDFs although we depend on SPSS
for the actual calculation. Next, we discuss their interpretation. We conclude this
chapter with a discussion on the determination of the number of LDFs to interpret.
Because the description of effects are different when examining the omnibus findings
than those obtained from contrast analyses, we discuss the LDFs from these two
analyses separately.

5.2 OMNIBUS EFFECTS

5.2.1 An Eigenanalysis

You might recall the multiple correlation situation in which there is a single response
variable on the one “side” and multiple response variables on the other side. A linear
composite of the multiple response variables—label it Z—is determined so that the
simple correlation between the single response variable and Z is maximized. That is,
a set of weights (b values) for the set of multiple response variables is determined so
that the correlation (for the data on hand) is higher than if any other set of b values is
used in determining Z.

The idea of determining a set of weights for some response variables so as to
maximize a correlation is also basic to DDA. The correlation that is being maximized
in DDA, for a one-factor layout with J groups, is that between the grouping variable
(represented by a set of J − 1 indicator variables) on the one hand and a composite, Z,
of the outcome variables on the other hand. Maximizing this (canonical) correlation
is equivalent to maximizing the ratio of the hypothesis mean square to the error
mean square, where the mean squares are found with respect to the composite, or Z,
scores. Of course, maximizing this mean-square ratio is equivalent to maximizing the
sum-of-squares ratio:

SSHZ

SSEZ
. (5.1)

So, the task is to find a set of weights (b values) for the outcome variables to
determine a linear composite;

Z = b1Y1 + b2Y2 + · · · + bpYp (5.2)

so that the ratio in (5.1) is maximized. That is, a set of weights to determine Z is found
so that the separation among the groups is maximized (with respect to the Z scores).
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[Stated yet another way, a univariate analysis of variance using Z scores determined
by the (optimal) set of b values will yield a larger univariate F ratio than if any other
set of weights is employed.] This maximization problem is solved, as are many other
scientific maximization problems, through the use of partial derivatives. It turns out
that to obtain the b values in (5.2), one first finds the largest eigenvalue, λ1, of the
matrix product,

E−1H.

(Conceptually, this product may be viewed as a generalization of SSH/SSE.)
The value of λ1 is obtained by solving the eigenequation,

|E−1H − λ1I| = 0. (5.3)

The p × p matrices, E and H, are the error and hypothesis SSCP matrices,
respectively. The identity matrix, I, is also p × p. Solving for λ1 involves finding
the largest root of a polynomial of degree r = min(p, dfh), where dfh = J − 1. Of
course, finding such a root is best done via a computer package such as SPSS. Earlier
(in Section 3.5.2), we found the largest eigenvalue, λ1, to equal .1681 for the Baumann
data. After finding λ1, a p × 1 eigenvector, b, associated with λ1 is found by solving
the set of p equations,

(E−1H − λ1I)b = 0. (5.4)

The p elements of b are, within a constant of proportionality, the weights of the
linear composite in (5.2). These weights, then, define the first (or leading) LDF. [See
Tatsuoka (1988, pp. 313–314) for a more formal discussion of the relationship between
(5.1) and (5.4).]

Recall that solving Eq. (5.3) involves solving a polynomial equation of degree
r = min(p, dfh)—typically, r = dfh, the rank of the matrix H. This solution,
then, results in r eigenvalues (that are necessarily decreasing in value, i.e., λ1 >

λ2 > · · · > λr ) and, therefore, r eigenvectors. Hence, there is a potential for obtain-
ing r LDFs. These functions are mutually uncorrelated; the successive functions are
determined so as to maximize relative group separation after preceding functions are
“partialed out.”

It should be recognized that the analysis in this section is done under the condition
of covariance matrix homogeneity. It is only under this condition that finding
eigenvalues of E−1H makes sense; E is the error SSCP matrix obtained by sum-
ming the separate group SSCPj across the groups, which is only sensible when the
covariance matrices across groups are “in the same ballpark.”

5.2.2 Linear Discriminant Functions

An aspect, then, of DDA involves a set of r = min(p, dfh) linear composites of
the form (5.2). As indicated earlier, these composites are called linear discriminant
functions. Therefore, each analysis unit may be assigned r LDF “scores.” Consider
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for a moment the score on Z1, the first or leading LDF, for each unit. A ques-
tion arises: What do these scores represent? That is, these are scores on what?
If these are scores on some underlying construct (a latent, unobservable variable),
how is this construct defined or described? What is this latent characteristic of our
analysis units?

The predominant method of identifying latent constructs in multivariate
analyses—this includes factor analysis and canonical correlation—is to examine
correlations between linear composite scores and scores on the individual variables
in the composite. These LDF–variable correlations are often called structure r’s.
The corresponding term sometimes used by factor analysts is “loadings.” (Some
methodologists espouse the examination of standardized LDF weights to identify
underlying constructs. The weight versus structure r issue is discussed briefly in
Section 5.4.)

Conceptually, there are three ways of finding correlations between variables
and LDFs. There are total-group structure correlations, between-group structure
correlations, and within-group (or error) structure correlations. Which type of
correlation is most appropriate in the current context? The total-group correlations
ignore intergroup mean differences (which were judged to be real in the first place);
R. E. Bargmann (1921–2004) provides an example (in 1969) where total-group cor-
relations are misleading. The between-group correlations would involve means and
not individual variable/variate scores and thus would not be useful for construct
identification. Although the use of total-group correlations has been advocated (e.g.,
Cooley and Lohnes, 1985, p. 248), it seems more reasonable to focus on the error
structure r’s. The latter correlations take into consideration group differences of mean
vectors.

So, then, how are these structure r’s used to interpret constructs that underlie the
resultant group differences? Remember, we are attempting to “get a handle” on what
attributes of the analysis units under study are being measured when scores on the
LDFs are obtained. The idea behind the use of structure r’s is that the variables that
share the most variation with a given LDF should define what attribute the LDF
represents. For example, consider the following hypothetical sets of structure r’s:

LDF1 LDF2

Y1 .72 −.23
Y2 −.60 .00
Y3 .19 .49
Y4 .12 −.42
Y5 −.03 .12

These results indicate that the scores on LDF1 are scores on an attribute that is
(basically) comprised of whatever is embodied in Y1 and Y2 (r’s of .72 and −.60,
respectively). The descriptive label assigned to LDF1 is a substantive, rather than a
statistical, concern. The label assigned is dependent on how Y1 and Y2 are defined and
how these two attributes are “put together” in the mind of the researcher—another
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judgment call in the research process. LDF2 would be defined, basically, by Y3 and
Y4 (r’s of .49 and −.42, respectively).

If a factor analyst were attempting to “interpret” the two LDFs above, he or she may
want to rotate them first. The idea of factor rotation—however it is accomplished—is
to facilitate factor interpretation. The rotation idea may also be applied in DDA—
see Bray and Maxwell (1982, p. 345) for references. The lone computer package
that may be used to rotate LDFs is SPSS. If the LDFs are rotated and identified via
structure r’s—or via standardized LDF weights, for that matter—a question arises:
Are we interpreting the same outcome variable composites that were determined so
as to maximize group differences (even if the rotations are “rigid”)? Because of the
negative answer to this question, many methodologists are somewhat skeptical about
the practice of interpreting rotated LDFs as constructs or latent variables associated
with grouping variable effects.

Because three instructional groups were considered in the Baumann study (dfh =
2), two LDFs are determined. The eigenvalues were computed earlier as .1681 and
.0220 and the canonical correlation

√
λ1/(1 + λ1) for the first LDF equals .379, and

the second canonical correlation equals .147. Because the second squared canonical
correlation, .022, indicates a minimal amount of shared variation between the grouping
variable and the second LDF, only the first LDF is likely to be meaningful. Alternative
approaches for determining the number of meaningful dimensions present in the
outcome variables studied is discussed in Section 5.5.

5.3 COMPUTER APPLICATION I

In this section we provide the SPSS syntax to obtain eigenvalues, the raw and the
standardized discriminant function weights, and the structure r’s. As discussed above,
examining the eigenvalues and the squared canonical correlations can be helpful in
determining how many functions are likely to be meaningful. The raw discriminant
function weights are useful to determine group centroids in LDF space. Finally, stan-
dardized discriminant function weights and structure r’s are useful for defining the
identified constructs.

SPSS SYNTAX FOR COMPUTING EIGENVALUES AND
STRUCTURE r’s

manova Y1 Y2 by treatmnt(1, 3)
/print=signif(eigen)
/discrim=raw stan cor alpha(1).

signif(eigen) requests the eigenvalues for the E−1H matrix be reported.
/discrim is the SPSS system command requesting the discriminant functions.
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raw requests the raw discriminant function weights be reported.
stan requests the standardized discrimninant function weights be reported.
cor requests the structure r’s to be reported.
alpha(1) requests that all (both statistically “significant” and “nonsignificant”) functions
be reported. If alpha is not included, only statistically significant, at the .15 level, functions
are reported.

OUTPUT

Analysis: Eigenvalues and Canonical Correlations

EFFECT . . TREATMNT
Multivariate Tests of Significance (S = 2, M = −1/2, N = 30 )
Test Name Value Approx. F Hypoth. DF Error DF Sig. of F

Pillais .16185 2.77356 4.00 126.00 .030
Hotellings .18583 2.83393 4.00 122.00 .027
Wilks .84094 2.80488 4.00 124.00 .029
Roys .14225
Note . . F statistic for WILKS’ Lambda is exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 .166 89.244 89.244 .377
2 .020 10.756 100.000 .140

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1 2
Y1 −.302 .220
Y2 .137 .067
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Standardized discriminant function coefficients

Function No.
Variable 1 2
Y1 −.913 .666
Y2 1.016 .497
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Correlations between DEPENDENT and canonical variables

Canonical Variable
Variable 1 2

Y1 −.439 .898
Y2 .589 .808
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Interpretation: Eigenvalues, Canonical Correlations, and
Structure Correlations

The eigenvalues reported by SPSS are slightly smaller than those we calculated in
Chapter 3, but the difference is very small. The output includes a column labeled “Pct.”
and “Cum. Pct.”; we will discuss these results in Section 5.5.2. The last column
presents the canonical correlations, each of which is an index of the relationship
between the grouping variable and each construct identified by our analysis.A squared
canonical correlation indicates the proportion of variation in the construct that is
explained by the grouping variable. For example, for the first construct the canonical
correlation is .377 and the squared canonical correlation is .142. These results indicate
that 14.2 percent of the variation in the first construct is explained by the grouping
variable.

The raw and standardized discriminant function coefficients (i.e., weights) are
reported next. The raw discriminant function coefficients are useful for computing
mean composite scores for each group, and we will discuss these composite scores to
describe group differences in Section 5.5.3. The standardized discriminant function
weights are sometimes used for identifying the constructs that separate the groups.
We discuss these weights in Section 5.4.

The error structure r’s are reported in the output section labeled: “Correlations
between DEPENDENT and Canonical Variables.” The structure r’s for the two
LDF’s are:

LDF1 LDF2

EDT −.439 .898
DRP .589 .808

The absolute values of the reported correlations between each of the outcome variables
and the first LDF are similar. Because both variables are “moderately” correlated
with the first LDF, it might be concluded that both variables contribute equally to the
definition of the first underlying construct. The two variables, EDT and DRP, are two
different indicators of reading comprehension, so we might label the first composite
as “reading comprehension.” The structure r’s for the second LDF are also similar,
and, therefore, again both variables contribute to definition of the second construct.
The number of constructs that we judge to be meaningful is discussed in Section 5.5.

5.4 STANDARDIZED LDF WEIGHTS

When researchers report results of a multiple correlation analysis, it is fairly common
to find weights reported for the set of multiple response variables. These weights
reported may be either of two types: (1) those applicable to “raw” response variable
scores and (2) those applicable to standardized response variable scores (usually z

scores).
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Similarly, in reporting results of a DDA, researchers sometimes report LDF weights
applicable to raw outcome variable (or Y ) scores [see (5.2)] and sometimes “standard-
ized” LDF weights. In general, the standardized weight for variable i, b∗

i , is calculated
from the raw weight—SPSS seems to reverse the order of calculation—using

b∗
i = bi

√
dii . (5.5)

The radicand in (5.5) is a main diagonal element of a covariance matrix, that is, a
variance. Two matrices have been considered as a source of the dii term, a total-
group or an error covariance matrix. The two alternative approaches are discussed
by Mueller and Cozad (1988, 1993) and Nordlund and Nagel (1991). For rea-
sons given below, issues of computation and use of such LDF weights will not be
discussed here.

Why do empirical researchers concern themselves with the standardized LDF
weights? There is an apparent fairly common belief that “standardized weights” are
useful for an interpretation purpose. [The reason for the quotes is that there are two
approaches to standardization: (1) determining weights for Y variables that have zero
means and unit standard deviations, and (2) determining weights so that the composite
has zero mean and unit variance (actually, a normalization).] This purpose pertains
to using these weights to assess the relative “importance” of response variables. The
tradition of using standardized weights in a multiple correlation context to order
response variables has probably been carried over to a DDA context for the purpose
of using such LDF weights again for variable ordering purposes. As discussed by
Huberty and Wisenbaker (1992b), such an approach to ordering variables in a DDA,
and in a multiple correlation analysis, is questionable (see, also, Joy and Tollefson,
1975, p. 729). [Rencher (2002, pp. 282–284), however, disagrees and advocates the
use of standardized LDF weights to order variables.] It was mentioned above that
some methodologists/statisticians (e.g., Rencher, 2002, p. 289) favor standardized
LDF weights over structure r’s for the purpose of LDF identification. Because the
use of standardized LDF weights is not herein recommended for variable ordering,
for construct definition, or for variable selection, standardized LDF weights are not
discussed further.

5.5 LDF SPACE DIMENSION

Given that r = min (p, dfh) LDFs may be extracted, how many should be considered
in the interpretation of resultant group differences? The conclusion of generalizable
group differences implies that at least one LDF should be considered. In Section 5.2.2
we suggested that the squared canonical correlation associated with each eigenvalue
might be used to identify the meaningfulness of LDFs. In this section we discuss three
additional methods that one may consider in determining the final number of LDFs
to retain for interpretation purposes, that is, in determining the dimensionality of the
LDF space: statistical tests, proportion of variance, and LDF plots.
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5.5.1 Statistical Tests

The testing may be described as follows. Recall from Section 3.5.2 that one MANOVA
test statistic is based on the Wilks � and can be computed as

∏r
v=1[1/(1 + λv)].

This statistic may be used to test H0: µ1 = µ2 = · · · = µJ or, equivalently, H0: all r

population counterparts to eigenvalues λv are equal to zero. The alternative hypothesis
may be stated as Ha : at least one dimension is needed to interpret group differences.

Because � can be expressed as
∏r

v=1 [1/(1 + λv)], H0 can be tested using the
transformation of � to an F statistic:

F = 1 − �1/s

�1/s

m(s) − p(dfh)/2 + 1

p(dfh)
,

where

m = dfe − p − dfh + 1

2
,

and

s =
√

p2(df2
h) − 4

p2 + df2
h − 5

.

This statistic has an approximate F distribution with degrees of freedom ν1 =
p(dfh) and ν2 = m(s) − p (dfh)/2 + 1. Rejection of H0 tells us that at least one
dimension is needed to interpret group differences. Failure to reject this null hypoth-
esis tells us that there is insufficient evidence that the groups are separate. Now, to
determine if more dimensions are statistically involved in the group differences, the
� statistic is (repeatedly) partitioned. To start the partitioning, let

�1 =
r∏

v=2

(
1

1 + λv

)

.

This statistic can be transformed to have an F distribution with ν1 = (p − 1)(dfh − 1)

and ν2 = m(s) − (p − 1)(dfh − 1)/2 + 1 degrees of freedom, and may be used to
test H01: at most one dimension is needed to interpret group differences versus Ha1:
at least two dimensions are needed to interpret group differences. The values of p and
dfh used to obtain the value of s are sequentially decreased by 1. Proceeding, let

�2 =
r∏

v=3

(
1

1 + λv

)

,

which can be transformed to a statistic having an F distribution with ν1 = (p −
2)(dfh − 2) and ν2 = ms − (p − 2)(dfh − 2)/2 + 1 degrees of freedom. This statis-
tic may be used to test H02: at most two dimensions are needed to interpret group
differences versus Ha2: at least three dimensions are needed to interpret group
differences. If necessary, � can be further portioned following the same procedure.
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This sequential test procedure, then, may be employed to statistically determine
the desired dimensionality of the LDF space for purposes of interpreting the resultant
MANOVA effects. Each succeeding statistic is used to test the significance of resid-
ual effects after removing the effects of the preceding dimensions. Collectively, the
procedure should be considered a test of dimensionality.

Applying this procedure using the Baumann data with the computed generated
λ1

.= .166 and λ2
.= .020,

�
.= 1

1 + .166

1

1 + .020
.= .841.

So, F
.= 2.804 with ν1 = 4 and ν2 = 126, P

.= .029. These results indicate that the
populations differ on at least one dimension. Partitioning � to determine whether at
least two dimensions are needed to describe group differences

�1 =
r∏

v=2

(
1

1 + λv

)
.= 1

1 + .020
.= .980.

Transforming �1 with s = 1 and m = 62.5,

F
.= 1 − .980

.980

62.5 − (2 − 1)(2 − 1)/2 + 1

(2 − 1)(2 − 1)

.= 1.286.

With degrees of freedom ν1 = 1 and ν2 = 63, P
.= .261. These results indicate

that one dimension is sufficient to describe group differences.
A summary of the sequential test procedure for a five-group design is given in

Table 5.1. The purpose of the testing sequence above is to determine the number

TABLE 5.1 Summary of Dimensionality Testsa

F df Values

Null Hypothesis Test Statistic ν1 ν2

No separation on

any dimension � = ∏r
v=1

1

1 + λv
pq m(s) − pq/2 + 1

Separation on at

most one dimension �1 = ∏r
v=2

1

1 + λv
(p − 1)(q − 1) m(s) − (p − 1)(q − 1)/2 + 1

Separation on at

most two dimensions �2 = ∏r
v=3

1

1 + λv
(p − 2)(q − 2) m(s) − (p − 2)(q − 2)/2 + 1

Separation on at

most three dimensions �3 = ∏r
v=4

1

1 + λv
(p − 3)(q − 3) m(s) − (p − 3)(q − 3)/2 + 1

aThe values for p and q used to obtain the value of s in ν2 are sequentially decreased by 1 just as in λ1;

for the first test, s =
√

(p2q2 − 4)/(p2 + q2 − 5).
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of LDFs to retain for interpretation in explaining group differences assessed via
MANOVA. The �v statistics in Table 5.1 cannot be used to test the significance of the
individual eigenvalues or of individual LDFs. That is, results of the testing sequence
above cannot be used to conclude that the “vth LDF is significant.” A reason for the
difficulty of testing individual eigenvalues is the possible mismatch between popula-
tion and sample eigenvalues. As Harris (2001, p. 235) states it: “. . . there is no way of
knowing which of the r population roots has generated the vth largest sample value
of λv .”

5.5.2 Proportion of Variance

A second way of considering the dimensionality problem that may appeal to
some researchers is a proportion-of-variance approach. As discussed by Tatsuoka
(1988, p. 213) the vth eigenvalue of E−1H reflects the ratio of between-group to
within-group variability with respect to scores on the vth LDF. That is, λv reflects a
proportion of variation in a p-variable system accounted for by the vth LDF. Thus,
to determine the desired dimensionality, one might consider, in turn,

λ1
∑r

v=1 λv

,

λ1 + λ2
∑r

v=1 λv

,

λ1 + λ2 + λ3
∑r

v=1 λv

,

and so on, until a “substantial” proportion of variance is accumulated.
For the Baumann data, the two eigenvalues were computed as λ1 = .166 and

λ2 = .020. The sum of the eigenvalues is .186. The first LDF, therefore, reflects
.166/.186

.= 89.2 percent of the variance in the two-variable system. The second LDF
reflects only 10.7 percent of the variance in the two variable system. (The percent
of variation in the p-variable system reflected in each λv is reported in SPSS, under
the column labeled “Pct” and the cumulative percent under the column labeled “Cum
Pct,” as part of the output when eigenvalues are requested—see Section 5.3.) It may
be judged that .893 is “large” enough and, therefore, one dimension would suffice. It
is, as often is the case, a judgment call.

5.5.3 LDF Plots

Third, and finally, one could examine a plot of the group centroids in the space of the
LDFs to determine the number of LDFs to retain for interpretation. Let us assume,
for the moment at least, in a J -group one-factor design that there is some interest in
assessing and describing the omnibus effects (i.e., overall group differences). Suppose
further that using either of the foregoing two approaches to dimensionality determi-
nation, it is reasonable to retain two LDFs for description purposes. That being the
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case, it might be instructive to view a plot of the LDF mean vectors for each group.
Let us take a sidestep for a moment. An LDF is a linear composite as indicated in
(5.2) with the weights being elements of an eigenvector. There are r = min(p, dfh)

LDFs; that is, there are r linear composites. To determine the mean on the vth LDF
for Group j , one can merely substitute the p-variable means for Group j into the v

composite. This process will yield r LDF mean vectors for each group; that is, for
each group you have a centroid comprised of r LDF means. The raw discriminant
function weights can be obtained from SPSS by requesting raw on the /discrim line
[see Section 5.3 /discrim = raw alpha(1)]. For the Baumann data these weights are
reported as:

LDF1 LDF2

EDT −302 .220
DRP .137 .067

Group means for the three reading programs were reported in Table 3.2:

TA DRA DRTA

EDT 7.77 6.68 6.23
DRP 43.45 42.05 46.64

So, the group mean composites for the two LDFs are:

TA DRA DRTA

LDF1 3.60 3.74 5.41
LDF2 4.62 4.29 4.49

Typically, a rectangular coordinate system—where the two LDF axes intersect
at right angles—is used in plotting the LDF centroids. This is a convenient system
and one that generally presents a reasonably correct configuration of the groups in
the space of the two LDFs. A plot of the group centroids for the Baumann data is
presented in Figure 5.1.

Figure 5.1 LDF plot of group centroids for Baumann study.
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By projecting the centroid points onto the two respective axes, one gets a general
idea of group separation that may be attributed to each LDF. From Figure 5.1 it
looks like LDF1 may account for separation of TA and DRA on one hand versus
DRTA on the other. From Figure 5.1, too, it might be concluded that LDF2 is not
related to any specific separation of the three reading groups. This interpretation
is consistent with our previous interpretations based on the squared canonical
correlations, the statistical tests, and the proportion of shared variance. Such con-
sistency in results may not always be present. Of course, we must be careful of
too much reliance on visual inspection because of human differences in visual
perception, and because perceptions may depend on the numerical scales used for
the LDF axes.

From Figure 5.1, it is reasonable to conclude that separation of DRTA versus
TA and DRA may be attributed to LDF1. The next obvious question is: What does
LDF1 represent? This is the structure identification question, the question addressed
in Section 5.2.2.

[A graphical representation of the J groups of units in the resultant LDF space
may be obtained using the S-PLUS function CLUSPLOT—see Pison et al. (1999).]

5.6 COMPUTER APPLICATION II

In this section we provide the SPSS syntax for obtaining the tests of dimensionality.
These tests are labeled by SPSS as Dimension Reduction Analysis.

SPSS SYNTAX FOR DIMENSIONALITY TESTS

manova Y1 Y2 by treatmnt(1, 3)
/print signif(dimenr).

/print signif(dimenr) requests the tests of dimensionality be reported.

OUTPUT

Analysis: Dimensionality Tests

EFFECT . . TREATMNT
Multivariate Tests of Significance ( S = 2, M = −1/2, N = 30 )
Test Name Value Approx. F Hypoth. DF Error DF Sig. of F

Pillais .16185 2.77356 4.00 126.00 .030
Hotellings .18583 2.83393 4.00 122.00 .027
Wilks .84094 2.80488 4.00 124.00 .029
Roys .14225
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Note. . F statistic for WILKS’ Lambda is exact.

- - - - - - - - - - - - Dimension Reduction Analysis

Roots Wilks L. F Hypoth. DF Error DF Sig. of F

1 TO 2 .84094 2.80488 4.00 124.00 .029
2 TO 2 .98040 1.25922 1.00 63.00 .266
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Dimensionality Tests

The first test in the dimension reduction analysis is identical to the omnibus MANOVA
F test comparing the group centroids,�

.= .841, F (4, 124)
.= 2.805, P

.= .029. If the
omnibus test indicates that the population centroids differ, then the populations differ
on at least one dimension. The second test, �1

.= .980, F (1, 63)
.= 1.259, P

.= .266,
provides little evidence to indicate that the populations differ on two dimensions. The
results of these analyses indicate that only the first LDF needs to be interpreted to
explain the group differences. (It should be noted that testing the first null hypothesis
in Table 5.1 is equivalent to testing the null hypothesis, H0: µ1 = µ2 = · · · = µJ .
This is evidenced by the Wilks � value of 2.80488 reported twice in the above
output.)

5.7 COMPUTER APPLICATION III

In this section we provide the SPSS syntax to obtain a plot of the mean group centroids
in LDF space. This program, however, is of limited usefulness for obtaining LDF plots
if only a single grouping variable can be identified. Still, the program does report the
group centroids in LDF space along with the plot, and they can be helpful when
interpreting the dimensionality of the variable space.

SPSS SYNTAX TO OBTAIN AN LDF PLOT

discriminant groups=treatmnt(1, 3)
/variables Y1 Y2
/plot=combined.

discriminant groups = treatmnt(1.3) is the SPSS system command to obtain
discriminant functions and a plot of the group centroids.

/variables Y1 Y2 identifies the outcome variables.

/plot=combined requests that all group centroids be presented on a single plot.
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OUTPUT

Analysis: LDF Plot

Function

Treatment 1 2

TA −.346 .154
DRA −.211 −.181
DRTA .557 .027

Unstandardized canonical discriminant functions evaluated at group
means

Interpretation: LDF Plot

In addition to providing the eigenvalues, dimension reduction analysis, and the
structure r’s, the DISCRIMINANT program provides the LDF group centroids. These
centroids are obtained by multiplying the group means by the raw discriminant func-
tion weights and adding the constant, b0 (see Technical Note). The interpretation

Figure 5.2 Plot of group centroids in LDF space.
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would be the same as presented earlier, the DRTA group differs from the TA and
DRA groups with respect to the first function.

The program also generates a plot of the group centroids. The computer-generated
plot (Fig. 5.2) differs from Figure 5.1 only in terms of the scaling of the axes.
Regardless of the scaling, the interpretation remains the same. Only LDF1 provides
clear separation among the groups, with the DRTA group being noticeably distinct
from the TA and DRA groups.

5.8 CONTRAST EFFECTS

In Section 5.2, procedures for describing group differences via the omnibus hypoth-
esis test were discussed and demonstrated. The omnibus test examines all group
differences simultaneously and determines the appropriate LDFs that maximize the
separation of all groups considered. Consequently, the structure r’s used to define the
constructs on which all groups differ are relevant to the situation where all groups
are considered as a set. Contrasts, or focused tests, address different questions and
examine separation between pairs of groups or between different subsets of groups
(i.e., complex contrasts). For example, in Chapter 4 the difference between the TA
and DRTA instructional methods was examined. Maximizing the difference between
just two groups is considerably different than maximizing differences among all three
instructional programs. Because the questions addressed in the omnibus test and the
focused tests are different, the LDFs and structure r’s obtained for a focused test
will differ from those computed for the omnibus test, and from those computed for a
different focused test.

An important difference in an eigenanalysis for an omnibus test and for a con-
trast test is that all contrasts have a single degree of freedom for the hypothesis test
(dfh = 1). Consequently, only a single LDF can be determined for any one con-
trast. Statistical tests for dimensionality, proportion of variance, and LDF plots,
discussed in Sections 5.2 and 5.5, are not relevant. The discriminant function struc-
ture r’s, however, are useful to describe group differences. In the next section we
present the SPSS computer application to obtain the structure r’s to define the
construct that appears to underlie the group differences reflected in the contrast
statement.

5.9 COMPUTER APPLICATION IV

The SPSS syntax presented here combines the commands for effect size, LDF weights,
and focused tests. That is, this program is a combination of Sections 4.5 and 5.3.
No new statements have been added.
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SPSS SYNTAX FOR CONTRAST RAW DISCRIMINANT FUNCTION
WEIGHTS AND STRUCTURE R’s

manova Y1 Y2 by treatmnt(1, 3)
/print signif(efsize)
/discrim=raw cor alpha(1)
/contrast(treatmnt)=special(1 1 1, .5 .5 −1, 1 0 −1)
/design=treatmnt(1) treatmnt(2).

OUTPUT

Analysis: Contrast Raw Discriminant Function Weights and Structure r’s

EFFECT . . TREATMNT(2)
Multivariate Tests of Significance (S = 1, M = 0, N = 30 )
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .12694 4.50712 2.00 62.00 .015
Hotellings .14539 4.50712 2.00 62.00 .015
Wilks .87306 4.50712 2.00 62.00 .015
Roys .12694
Note . . F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size

(All) .127
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1
Y1 −.330
Y2 .127

Correlations between DEPENDENT and canonical variables
Canonical Variable

Variable 1
Y1 −.560
Y2 .472
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
EFFECT . . TREATMNT(1)
Multivariate Tests of Significance (S = 1, M = 0, N = 30 )
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .14016 5.05339 2.00 62.00 .009
Hotellings .16301 5.05339 2.00 62.00 .009
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Wilks .85984 5.05339 2.00 62.00 .009
Roys .14016
Note . . F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size

(All) .140
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1
Y1 −.291
Y2 .140

Correlations between DEPENDENT and canonical variables
Canonical Variable

Variable 1
Y1 −.395
Y2 .628
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Contrast Structure r’s

As discussed in Section 5.2.2, structure r’s are correlations between each outcome
variable and an LDF. Variables having a high correlation with a composite score are
used to define a construct underlying the p-variable system. Because only one LDF
is determined for each contrast, only one construct can be defined for each contrast.

For the pairwise contrast between the TA and DRTA reading approaches, the
correlations between the EDT and DRP variables and the LDF are −.560 and .472,
respectively. Because the absolute values of the two correlations are judged to be
similar in magnitude, the results might be interpreted as indicating that both variables
contribute equally to the underlining construct that separates the two groups.

For the complex comparison of the average of the TA and DRA reading approaches
with the DRTA approach, the correlations are −.395 and .628 for the EDT and DRP,
respectively. Because the absolute values of the correlation are judged to differ notice-
ably, these results indicate that the construct being assessed is primarily determined
by DRP.

Comparing the structure r’s obtained following the omnibus test (−.439 and .589)
with those obtained from the pairwise contrast (−.560 and .472) and the complex
contrast (−.395 and .628) demonstrate that the constructs that define group differences
can be different depending on the research question addressed.

5.10 SUMMARY

In this chapter we introduced the use of linear discriminant functions (LDFs) as
a means of describing the nature of group differences. This use of LDFs is basic
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to descriptive discriminant analysis (DDA). What one is doing is searching for
hypothetical constructs or latent variables, determined by the data on hand, that
underlie the grouping variable effects that were already judged to be generalizable.
A search for data-based constructs is a common focus for some other multivariate
analysis methods (e.g., common factor analysis, canonical correlation analysis, and
multidimensional scaling). The interpretation of resultant LDFs, which provide poten-
tial explanations, if you will, of the grouping variable effects, is a substantive concern
rather than a statistical concern. Also, such an interpretation requires the use of judg-
ment and common sense on the part of the researcher. Explicit and implicit reference
to the considerable interpretation potential associated with LDFs has been made in
this chapter. Both the derivation and interpretation of LDFs—or canonical variates—
are dependent on the tenability of the homogeneity of the group covariance matrices.
Discussion of the study of canonical variates under heteroscedasticity has been vir-
tually ignored by methodologists. Campbell (1984) and Krzanowski (1990) have,
however, generalized the determination of canonical variates to the heteroscedastic
case (but these statisticians do not discuss the “interpretation” of the variates).

There is a tie-in between DDA and a multivariate analysis technique other than
MANOVA that may be helpful. This other technique is cluster analysis. When a cluster
analysis is completed with a decided-upon number of clusters, it may be helpful to
describe the cluster structure in some way. One might use DDA techniques to identify
dimensions or constructs that distinguish the clusters; that is, to describe and interpret
the cluster solution. Examples where this has been attempted are rare, perhaps because
of how cluster analysts (e.g., Blashfield and Aldenderfer, 1988) admonish the use of
MANOVA in validating cluster analysis (CA) results. Attempts at such a DDA-CA
connection are given by Aversa (1985), Hornsby-Smith et al. (1987), and Huberty
et al. (2005).

There may be some multiple-outcome variable group comparison research situa-
tions when outcome variable structure would be of limited interest. An example of
such a situation may present itself when a researcher is interested in a small number
of outcome variables (say, four or fewer). It may be that the outcome variables are
from substantively different domains. A context of such a situation is the evaluation
of some “treatments” in a factory, school, or laboratory. Interest may basically be on
group differences with respect to each outcome variable; this would call for multiple
univariate analyses—ANOVAs or contrast analyses. (Multiple testing should not be
ignored.) In such a situation, relative outcome variable importance may also be of
interest. If so, this is when a multivariate analysis would be imperative.

Technical Note

Computation of LDF weights is accomplished via an eigenanalysis (see Section 5.2.1).
The SPSS computer package includes in its LDFs a “constant.” That is, rather than
the Z in (5.2), the SPSS algorithm yields

Zc = b0 + b1Y1 + b2Y2 + · · · + bpYp
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The b0 value is a constant determined so that the means Zc is zero across all N units:

b0 = −
∑

i

biY i,

where Y i is the mean on variable Yi across all N units.

Further Reading

Campbell (1980) discusses the idea and use of ridge-based estimators for LDF
weights so as to reduce the bias of such estimators.

Hwang (1994) simulates a comparison of a number of methods of determining
the number of LDFs to retain for interpretation purposes; normal and elliptical
distributions were considered along with varied group sizes and eigenvalues.

Overall and Klett (1972, pp. 292–295) propose the representation of “measurement
vectors” in the discriminant space for the purpose of providing information
concerning how the groups differ with respect to the original p outcome vari-
ables. Such a representation purportedly may be useful in assessing the relative
importance of each outcome variable for group separation.

Seo et al. (1995) discuss the effects of nonnormality on dimensionality tests in a
DDA context.

von Eye (2002, pp. 342–346) briefly mentions (descriptive) discriminant analysis
in the context of configural frequency analysis (CFA).

Definition Discriminant function: Opposite of datcriminant function.

EXERCISES

1. The context provided for Exercises 1 to 10 in Chapter 4 reported three eigenvalues
of 4.764, 1.237, and .044. Given these results, what are the values of the three
squared canonical correlations (see Section 5.2.2) between the grouping variable
and each of the three constructs identified for the data set.

2. Using the eigenvalues in Exercise 1, what proportion of variation in the four
variable system is shared with each construct identified? Based on these results,
how many “meaningful” constructs appear to be present in this variable system?

3. Partition Wilks � to statistically determine the number of dimensions that sepa-
rate the four groups. Assume that any computed F statistic less than 1.00 is not
statistically significant.

4. What is a linear discriminant function (LDF)?
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5. What role do linear discriminant functions play in “interpreting” results of a
MANOVA?

6. Assume the following are the structure r’s for the discriminant function analysis.
Use these results to label the constructs that separate the four groups.

Function Number

Variable 1 2 3

Effort −.501 .167 −.492
Ability −.239 .043 −.405
Luck −.140 .818 −.482
Teachers .719 .029 −.568

7. Assume the following are the raw discriminant function weights. Use these results
along with the group raw mean centroids provided in Exercise 8 in Chapter 4 to
compute the group mean centroids in LDF space.

Function Number

Variable 1 2 3

Effort −.187 .096 .146
Ability −.044 .035 .163
Luck .027 .249 −.038
Teachers .227 .139 .159

8. Compare the group centroids in the LDF space and describe the group differences
with respect to the meaningful constructs identified in Exercises 2 and 3.

9. The eigenvalue for the contrast between Mathematics and Business majors equals
1.257. What proportion of variation in the variable system is explained by this
contrast?

10. Given the eigenvalue in Exercise 9, compute:

(a) Wilks �

(b) τ 2

11. For the contrast between Mathematics and Business majors, the structure r’s are
−.242, −.077, −.836, and .095 for Effort, Ability, Luck, and Teachers, respec-
tively. How would you label the construct that separates the Mathematics and
Business majors?
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Computer Applications

Exercises 12 to 18 require a continuation of the analyses begun in the Exercises at the
end of Chapters 3 and 4, using the 5-group Ethington data set (5GED) described in
AppendixA. Use the SPSS (or SAS) computer software package to conduct the analy-
ses necessary to complete these Exercises focusing on 9 outcome variables (Counselor
Interaction, Writing and Speaking Skills, Self-Understanding, Instruction Received,
Library Effort, Student–Faculty Effort, Interstudent Effort,Art/Music/Theater Effort,
Writing Effort, and Science Effort) for Black, Hispanic, and White students.

12. What proportion of variation in the variable system is explained by each of the
constructs identified?

13. Based on the results of the Dimension Reduction Analysis, how many LDFs are
to be considered in the three-group separation?

14. What proportion of variation in each construct identified is explained by the Race
variable?

15. Using the structure r’s, identify the variables you believe define the constructs
identified.

16. What are the LDF group centroids?

17. For the contrast comparing Black and Hispanic students what variable(s) appear
to define group separation based on the structure r’s.

18. Using structure r’s, what variables appear to define the construct separating the
mean centroids of Black and White students from the mean centroid for Hispanic
students?
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Deleting and Ordering Variables

6.1 INTRODUCTION

Applied researchers appear to have considerable interest in determining a subset of the
original set of outcome variables and in assessing relative variable “importance”; this
interest is perhaps due to accessibility of discriminant analysis computer programs in
the two popular packages. That deleting and ordering variables “appear” to be of inter-
est may be evidenced by analysis interpretation statements in journal articles in which
descriptive discriminant analysis (DDA) techniques are used. Very often researchers
seem to want to eliminate or discard “worthless” variables; and they often want to
identify the “most important” variable(s) and the “least important” variables(s).

An analysis approach very often used for the variable deletion and variable ordering
problems is a stepwise discriminant analysis. The same general analysis strategy
is often used in a multiple regression/correlation situation to delete and/or order
variables. It has been argued elsewhere (e.g., Huberty, 1989) that stepwise methods
should not generally be used for variable deletion and variable ordering purposes.
Therefore, a stepwise discriminant analysis will not be advocated in this book. (Partial
stepwise output will, however, be used, as discussed in Section 6.3.)

Methods for deleting subsets of outcome variables—assuming that it is desirable
to delete some variables—and for determining relative variable importance are
suggested in this chapter. Suggestions are made with respect to contrast effects as
well as omnibus effects.

6.2 VARIABLE DELETION

6.2.1 Purposes of Deletion

There is a theoretical reason for retaining only “worthwhile” variables or deleting
“worthless” variables in a DDA context. This reason pertains to parameter estimation

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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(e.g., LDF weights, structure r’s). For a fixed total sample size, fewer outcome
variables will lead to more precise estimates. Suppose that a system of outcome
variables is initially chosen but upon data collection it is concluded that a limited
total sample size is feasible. It may then be desirable to delete some variables; in
doing so it must be recognized that the variable system initially chosen is no longer
intact. There may also be what is termed a practical reason for deleting some variables
in a MANOVA/DDA context. This reason pertains to parsimony; that is, economy
or simplicity of description. Fewer outcome variables may make explanations and
interpretations substantively more simple.

If one were to scan the many journal articles in which results of a “discriminant
analysis” are reported, very often some attempt at variable deletion will be reported.
Again, it is surmised that the predominant reason for finding such results is the
availability of a stepwise discriminant analysis in the popular computer packages.
But should variable deletion be “automatic” in a MANOVA/DDA context? No! In
PDA (see Section 17.2), fewer variables can yield greater classification accuracy,
whereas in DDA, fewer variables cannot yield greater separation—as assessed by,
say, the Wilks � criterion. For a given design, separation generally decreases (i.e.,
the Wilks � increases) as the number of variables decreases.1 True, parsimony in
explanation may be a reasonable goal. (Note the use of “may” here and in the preceding
paragraph.) It was noted in Section 1.5 that emphasis should be placed on thorough-
ness and thoughtfulness in the initial choice of response variables for a multivariate
study. Careful consideration should be given to choosing individual variables and
variable domains that are particularly relevant to the study to be conducted. If it is
also the case that measures on the chosen variables are substantively appropriate, why
might there be subsequent interest in data-based variable deletion? It is recognized
that regardless of the care taken in the initial variable choice, some relatively worthless
variables may be chosen for inclusion. Thus, it may be desirable to determine whether
the data suggest that some variables may be deleted without substantial decrease in
group separation.

6.2.2 McCabe Analysis

If it is desirable to determine whether some variables may be deleted on the basis of the
data on hand, how might the deletion be accomplished? The analysis approach favored
is an all-possible variable subset approach. Such an analysis may be accomplished via
an algorithm developed by G. P. McCabe (Purdue University). The McCabe (1975)
FORTRAN program is available at the Wiley website labeled MCCABEPC. This
program searches all possible subsets of a given size and outputs the 10 (at most)
best—in the sense of smallest U ratios, � values—subsets of that size. (The Wilks �

statistic is labeled the U ratio by McCabe.) For example, for a 15-variable problem,
McCabe’s program outputs the 10 variables that yield the 10 lowest U ratios, each for
a univariate analysis; the 2-variable subsets that yield the 10 lowest U ratios, each for

1This is similar to multiple regression/correlation whether the R2 value cannot increase as the number of
response variables decreases. (An adjusted R2 value can, however, increase with a decrease in the number
of variables.)
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a bivariate analysis; the 3-variable subsets that yield the 10 lowest U ratios, each
for a trivariate analysis; and so on to the U ratios for the 10 best 14-variable subsets,
and the U ratio for the complete set of 15 variables.

6.2.3 Computer Application I

To run the McCabe program a file must be prepared using Microsoft NOTEPAD. An
example of such a file is presented here using the 3-group Ethington data set, 3GED
(as described in Appendix A). When executing the McCabe program the file name
will be requested. For example, the program below was saved as MCC.dat.

MCCABE SYNTAX FOR FINDING THE BEST SUBSET OF
OUTCOME VARIABLES

MCCABE.OUT
9 3
66 122 76
(2X,F2.0,1X,8F3.0)
Enter the data file here. Be sure the data are sorted by group level.

MCCABE.OUT defines the output file
9 3 Columns 1–5 define the number of variables; Columns 6–10 state the number
of groups.
66 122 76 Columns 1–5 define Group 1 size; Columns 6–10 define Group 2
size; Columns 11–15 define Group 3 size.
(2X,F2.0,1X,8F3.0) FORTRAN format statement for the data set.

OUTPUT

Analysis: Partial McCabe Output for the 3-Group Ethington Data (Table 6.1)

Interpretation: McCabe Best Subset of Outcomes for the 3-Group Ethington Data

From this output, the best subset of size 5 is comprised of Y1, Y2, Y3, Y5, and Y9; add
Y7 to this subset for the best subset of size 6; and then add Y8 to get the best subset of
size 7.2

Note that not much separation is lost when using the, say, third best subset of size
6 (� = .862) rather than the best subset (� = .851). It turns out that the tenth best
subset of size 5 yields “close” to the same separation (� = .881) as that yielded by the
best subset of size 5. Separation information about multiple subsets of a given size may

2It should be noted that McCabe results obtained with the Ethington data set are not to be expected with
all data sets, in that the best subset of size q will not always be contained in the best subset of size q + 1.
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TABLE 6.1 Partial McCabe Output for the 3-Group
Ethington Data

U Ratio for Five Variables

.865 1 2 3 5 9

.866 1 3 5 7 9

.870 1 2 3 7 9

.874 2 3 5 7 9

U Ratio for Six Variables

.851 1 2 3 5 7 9

.859 1 3 5 7 8 9

.862 1 2 3 5 6 9

.863 1 2 3 4 5 9

U Ratio for Seven Variables

.848 1 2 3 5 7 8 9

.849 1 2 3 4 5 7 9

.850 1 2 3 5 6 7 9

.858 1 3 5 6 7 8 9

be of potential interest to substantive researchers. This information gives a researcher
some choices—an opportunity to make judgments. Perhaps a third- or fourth-best
subset of a given size is more attractive than the statistically best subset for reasons
related to some variable characteristics, variable measures, previous research, or to the
composition of a particular subset, goodness of which is assessed in whatever manner.

In the variable deletion process, one needs to decide on the number of variables to
retain for the final analysis. Of course, the judgment may be made on nonstatistical
grounds; or one may let the data themselves determine the choice of subset size.
Consider Figure 6.1. The Wilks � value for the best subset of size 5 is .865, for size
6 is .851, for size 7 is .848, and for size 8 is .847. From the plot it may appear (to
some eyes, at least) that a subset of size 6 will not be improved upon very much by
increasing the number of variables. Of course, there is no reason why a researcher
could not look at subsets across subset sizes. It may just be sensible to do so!

It is important that if variables are deleted by some process, statistical or otherwise,
the final analysis and all interpretations should be based only on the final subset
retained. This includes omnibus analyses, contrast analyses, structure identification,
and variable ordering, the topic to which we now turn.

6.3 VARIABLE ORDERING

6.3.1 Meaning of Importance

What does it mean to say that one variable is more “important” than another in the
context of MANOVA/DDA? Important with respect to what? Applied researchers



“c06” — 2006/3/21 — page 107 — #5

6.3 VARIABLE ORDERING 107

Figure 6.1 Plot of Wilks � values versus best subset size for the 3-group Ethington data.

usually view relative variable importance in either of two ways. The first way, perhaps
the more popular way, is to consider the contribution of a variable to linear discriminant
function (LDF) scores. The index considered in this case is (the absolute value of)
of standardized LDF weight (of, usually, the leading LDF). The consideration, for
a given variable, of weights of multiple LDFs by applied researchers has not been
observed. The second way in which relative variable importance has been viewed is
to consider the contribution of a variable to construct definition (usually associated
with the leading LDF). The index considered here is the variable–LDF correlation,
that is, the structure r . Again, consideration of multiple index values (for the multiple
LDFs) for each variable has been virtually ignored by methodologists and applied
researchers.

Conceptual and practical problems with both of these views of relative variable
importance are discussed in some detail by Huberty and Wisenbaker (1992b) and
Thomas (1997). The preferred point of view is to assess relative contribution of
the variables to group separation. To make this assessment, the following ques-
tion is to be addressed (just as in PDA; see Section 17.4): How well can we do
without a variable? The “do” in this context pertains to group separation (i.e., to
grouping variable effects). One analysis approach in answering this question is to
conduct p MANOVAs, each involving p − 1 outcome variables. That is, delete each
variable in turn and conduct a MANOVA using the remaining p − 1 outcome vari-
ables. The most “important” variable, then, is the one for which the MANOVA on
the remaining variables yields the largest Wilks � value. For the ith variable, Yi ,
deleted, let �(i) denote the associated Wilks � value. (Recall that a large Wilks �

value implies little separation.) The most important variable is the one for which
the remaining p − 1 variables yield the least separation, that is, the largest Wilks �

value.
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So, the variables may be ordered according to the �(i) values, i = 1, 2, . . . , p.
These values may be obtained using the SPSS DISCRIMINANT program (with the
METHOD = WILKS command).3

An index equivalent—in the sense of variable ordering—to �(i) is the partial
lambda, �(Yi |Y(i)). This is the � value for Yi when the remaining Y variables are
“partialed out.” This index may be used in the same spirit as the index �(i); namely,
�(Yi |Y(i)) reflects the separation yielded by Yi in addition to that yielded by the
remaining p − 1 variables. The partial � values are not given as output by either of
the two package stepwise programs. One transformation of �(Yi |Y(i)) is, however,
reported by both package programs. The transformation is

F(i) = 1 − �(Yi |Y(i))

�(Yi |Y(i))

dfe − p

J − 1
.

This statistic may also be expressed as:

F(i) = 1 − �/�(i)

�/�(i)

dfe − p

J − 1
,

where � is the Wilks � value based on all p variables. The value of this statis-
tic is labeled F TO REMOVE by SPSS DISCRIMINANT and simply F by SAS
STEPDISC. This F statistic may be used to test the null hypothesis of the equality
of the J means on Yi when the remaining p − 1 variables are partialed out of Yi . A
high F(i) value indicates a large loss in group separation if Yi were deleted. A second
transformation of �(Yi |Y(i)) is given by SAS STEPDISC and labeled “Partial R**2”:

R2
i = 1 − �(Yi | Y(i)).

This index may be thought of as a squared partial correlation; it is an η2-like index. It
reflects the relationship between the grouping variable and Yi when the other p − 1
variables are partialed out of Yi .

6.3.2 Computer Application II

The computer package commands to use with the 3-group Ethington data set (3GED)
are given below. The DISCRIMINANT program in SPSS was discussed earlier (see
Section 5.7) and only new commands are defined below. The analysis done with these
commands is a “forward stepwise analysis.” The output information (F -to-Remove
and �(i)) useful for outcome variable ordering is found under the heading Variables
in the Analysis after Step 9 (i.e., the last step).

3The analysis must be done so that all p variables are entered; this may be accomplished by using FIN =
.00001 and FOUT = .00001, or by using the DIRECT command.
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SPSS SYNTAX FOR STEPWISE DESCRIPTIVE DISCRIMINANT
ANALYSIS

discriminant groups = grade (1,3)
/variables = counsum gainsum learnsum qelib qefac qestacq qeamt qewrite qesci
/method = wilks
/fin = .00001
/fout = .00001
/history = nostep
/statistics = all.

/method = wilks selects variables based on the smallest Wilks � value.
/fin = .00001 F value to enter into the model, default is F = 1.0.
/fout = .00001 F value to remove, default is F = 1.0.
/history = nostep supresses the step by step output.
/statistics = all requests a variety of statistics from means, standard deviations,
and covariance matrices.

The following are the SAS STEPDISC commands that also may be used to order
the outcome variables. The analysis completed with these commands is a “backward
stepwise analysis”—thus the inclusion of the bw command. The output information
(“F ” and “Partial R**2”) useful for variable ordering may be found in the last analysis
step under the heading Statistics for Removal.

SAS SYNTAX FOR STEPWISE DESCRIPTIVE DISCRIMINANT
ANALYSIS

proc stepdisc sle = .99999 sls = .99999 bw maxstep = 1;
class grade;
var counsum gainsum learnsum qelib qefac qestacq qeamt qewrite qesci;
run;

proc stepdisc SAS command requesting the stepwise discriminant analysis
procedure.
sle = .99999 significance level to enter all variables.
sls = .99999 significance level to retain variables.
bw requests the backward elimination of variables.
maxstep = 1 prints the last step.
class grade identifies the grouping variable.
consum–qesci identifies the potential predictor variables.
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TABLE 6.2 Results Used to Order Outcome Variables for the 3-Group
Ethington Data

Deleted F(i) �(i) R2
i

Rank

Instruction Received 4.91 .879 .037 1.5
Science Effort 4.76 .878 .036 1.5
Counselor Interaction 3.29 .868 .025 3.5
Student–Faculty Effort 3.29 .868 .025 3.5
Art/Music/Theater Effort 1.88 .859 .015 5.5
Self-Understanding 1.61 .857 .013 5.5
Writing Effort 0.28 .848 .002 8
Interstudent Effort 0.09 .847 .001 8
Library Effort 0.07 .847 .001 8

OUTPUT

Results of either analysis that may be used to order the nine outcome variables with
respect to omnibus group separation are given in Table 6.2. A rank ordering of the
nine variables is discussed in the next subsection.

6.3.3 Variable Ranking

As is obvious, the naive rankings are identical for the two indices. The reason “naive” is
used is that no matter which index is considered, it would be stretching matters a bit to
conclude that Student–Faculty Effort and Art/Music/Theater Effort (with �(i) values
of .868 and .859, respectively), for example, should be judged as being differentially
important. The bottom line suggested herein is: Use common sense and judgment!

6.4 CONTRAST ANALYSIS

The discussion in this chapter so far has centered around variable deletion and variable
ordering for omnibus effects. The same ideas, however, may be applied to deleting
and ordering variables with respect to contrast effects. When contrast effects are of
interest along with, or without, omnibus effects (e.g., interaction effects in a two-factor
design), a variable deletion strategy may proceed as follows. Suppose that there are
four statistical tests of interest; say, one omnibus test and three contrast tests. “Good”
variable subsets associated with each of the four tests may be determined. Using
some judgment, then, a “good” subset for all tests may be determined. One approach
might be to consider the union of the four subsets as the subset to be used in the final
analysis.

But how can one conduct a variable deletion analysis for contrast effects or for,
say, omnibus B effects in an A × B design? The McCabe program discussed earlier
in this chapter uses raw data as input; therefore, it cannot be used here. The reason it
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cannot be used is because the McCabe program bases the error SSCP matrix, E, on
the data entered. Suppose, for example, that one has a 2 × 4 design with interest in
the main B effects. Collapsing across the two levels of A, a McCabe analysis would
yield an E matrix based on four “cells” rather than on the original eight cells.

A computer program by C. E. McHenry (Tennessee Tech University), however,
can well serve our needs. Like the McCabe program, the McHenry (1978) program
yields an all-subsets analysis. Unlike the McCabe program, the McHenry program
uses matrix input—an E matrix and an H matrix. (See Section 3.3 for a discus-
sion regarding elements of these matrices.) The appropriate (p × p) E matrix can
be determined from an “overall analysis” with the data from the original A × B

design. The E matrix is available via SAS GLM (with the PRINTE option), SAS
DISCM or CANDISC (with the PSSCP option), and SPSS MANOVA [with PRINT
= ERROR (SSCP)]. To get an E matrix for a 2 × 4 design, an eight-group one-way
MANOVA can be conducted with either of the two packages. The p × p hypothesis
SSCP matrix, H, is also available via the SAS GLM program (with the PRINTH
option), the SAS DISCRIM and CANDISC program (with the BBSCP option), and
the SPSS MANOVA program [with PRINT = SIGNIF (HYPOTH)]. An H matrix
for either type of test, omnibus or contrast, may be obtained. Thus, one has the nec-
essary input information for a McHenry analysis. (An example of outcome variable
ordering using the McHenry program in a two-factor design context will be given in
Section 8.8.)

McHenry output consists of simply the best—in the sense of the smallest Wilks
� value—subset of a given size rather than the 10 best subsets of a given size as one
gets with a McCabe analysis. The McHenry program is available at the Wiley website
labeled MCHENPC.

6.5 COMPUTER APPLICATION III

For an example of an application of the McHenry program, the 3-group Ething-
ton data set (3GED) is used. A multivariate contrast of Group 1 versus Group 2—
H0: µ1 − µ2 = 0—is considered. Following are the steps used to retrieve the E and H
matrices from SAS GLM output, store them, and use them as input for the McHenry
program:

1. Store the output in an external file.

2. Edit the stored output file so that it contains the E and H matrices.

3. Modify the original program to run it with the matrix data file being separated
from the main program.

To run the McHenry program, a file must be prepared using Microsoft NOTEPAD.
An example of such a file is presented here using the 3-group Ethington data set
(3GED). When executing the McHenry program, the file name will be requested. For
example, the program below is saved as MCH.dat.
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MCHENRY SYNTAX FOR CONTRAST ANALYSIS

MCH.OUT
9261 2 1 9

ETHINGTON (3F13.0) Enter the error matrix followed by the hypothesis matrix without
blank lines separating the matrices.

mch.out defines the output file.
9261 2 1 9 Columns 1–2 define the number of variables; columns 3–5 state
the error degrees of freedom; columns 6–8 state the hypothesis degrees of free-
dom; columns 9–10 define the minimum subset size; columns 11–12 define the
maximum subset size.
Prior ordering can be specified on the blank line.
Ethington is the output title.
(3F13.0) is a FORTRAN format statement for the E and H matrices. Here the
matrices are read in three column sets.

OUTPUT

Analysis: Partial McHenry Output for H0: µ1 − µ2 = 0 Using
the 3-Group Ethington Data

CONTRAST OUT

Modified from the mainframe program described in: McHenry, C.E.
(1978). Computation of a best subset in multivariate analysis.
Applied Statistics, 27, 291-296.

- - - - - VARIABLE SELECTION - - - - -

NO. OF VARIABLES = 9 D.F. FOR ERROR = 261 D.F. FOR HYPOTHESIS = 1
MINIMUM SUBSET SIZE = 1 MAXIMUM SUBSET SIZE = 9 VARIABLE FORMAT:
(3F12.0)

COMMENT: ETHINGTON MU1 VS MU2

***SUBSET OF SIZE 1*** x(7) WILKS’ LAMBDA - .97122

MAXIMUM ADJUSTED F-RATIO = 6.986 WITH 1 AND 261 D.F. PROBABILITY
A GREATER F-RATIO = .009

***SUBSET OF SIZE 2***

x(5) x(7) WILKS’ LAMBDA = .97344 MAXIMUM ADJUSTED F-RATIO 3.391
WITH 1 AND 260 D.F.
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PROBABILTY OF A GREATER F-RATIO = .067

***SUBSET OF SIZE 3***

x(9) x(5) x(7) WILKS’ LAMBDA - .95507 MAXIMUM ADJUSTED F-RATIO =
2676 WITH 1 AND 259 D.F.

PROBABILITY OF A GREATER F-RATIO = .103

***SUBSET OF SIZE 4***

x(2) x(9) x(5) x(7)

CONTRAST OUT

WILKS’ LAMBDA = .94766

MAXIMUM ADJUSTED F-RATIO = 1.613 WITH 1 AND 258 D.F.
PROBABILITY OF A GREATER F-RATIO = .205

Interpretation: McHenry Best Subset of Outcomes for H0: µ1 − µ2 = 0
Using the 3-Group Ethington Data

From the output, we see that the best subset of size 2 consists of X5 and X7, and the
best subset of size 4 consists of X2, X5, X7, and X9. (Note: McHenry uses X as an
outcome variable, while we use Y .)

It turns out that for H0: µ1 = µ2 = µ3 for the 3-group Ethington data, the best
subset of size 2 consists of X3 and X9, and the best subset of size 4 consists of X1,
X3, X7, and X9. It is not too surprising that these two best subsets for the omnibus
test are not the same as for the two-group contrast.

All analyses discussed to this point in this chapter are based on the condition
of equal population covariance matrices. If this condition is not tenable, the
appropriateness of the discussed analyses may be questioned. Recall from Section 3.4
that a pairwise contrast may be tested without assuming covariance matrix equality by
using theYao statistic [see Eq. (3.12)]. Deleting and ordering variables with respect to
a contrast when covariance equality is not tenable may be approached by “taking the
bull by the horns.” That is, for variable deletion, an all-subset (“weekend”) analysis
may be conducted. Just as in predictive discriminant analysis (see Section 17.2), the
number of analyses may be reduced considerably if the researcher judges ahead of
time that, say, q of the p variables should definitely be retained for the final analysis.
If so, the weekend analysis would consist of 2p−q − 1 analyses rather than 2p − 1
analysis.

Variable ordering when covariance equality is not tenable may be accomplished
simply but in a time-consuming manner. This amounts to conducting p(p − 1)-
variable Yao-type analyses for each contrast of interest.

6.6 COMMENTS

Even though both variable deletion and variable ordering appear to be very
common concerns of applied researchers in the context of MANOVA and descriptive
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discriminant analysis, for reasons presented earlier in this chapter, variable deletion
should be of less concern. If variable deletion is of concern, the deletion approach
suggested is an all-subsets analysis. The ordering of variables in MANOVA/DDA, on
the other hand, deals with the question: How well can we do without a variable? It was
suggested that a relevant interpretation of variable contribution in a MANOVA/DDA
context pertains to group separation (i.e., to grouping variable effects).

When determining which variables are to be deleted and when determining how
variables are to be ordered, the substantive effects of interest should be considered!
If omnibus effects are not of particular interest, whereas some contrast effects are of
particular interest, the latter effects should be those of concern in the variable deletion
and ordering processes.

A handful of deletion and ordering methods in the MANOVA/DDA context
have been used by applied researchers and suggested by methodologists. The vari-
able deletion approach suggested in this book is the all-possible-subset method.
With group separation as a basis, an F -to-remove, partial �, or partial R2 index
is suggested for variable ordering. No matter what analysis approaches are employed
to delete variables and to order variables, there are two potential analysis interpretation
problems. These problems—model specificity and sample specificity—pertain to
generalizability and are discussed in Section 17.6. This discussion is given in the
context of PDA; therefore, to apply it to DDA, one should substitute “outcome
variable(s)” for “predictor(s).”

Another comment about variable deletion follows. In a study that calls for a
DDA, the original selection of the set of outcome variables is based on substantive
considerations. The originally determined collection of outcome variables should
“hang together” in a substantive sense. Recall that the basic purpose of conducting
a DDA is to describe grouping variable effects (determined by MANOVA). Such
descriptions are determined by linear composites (i.e., LDFs) of the outcome variables
that are interpreted as variable constructs. If an outcome variable has a “low” structure
r , then it may be decided that this variable is “unimportant.” But this result does not
indicate that the variable should be deleted and a reanalysis be conducted with p − 1
outcome variables. That such a variable (in the company of the other variables) does
not contribute to construct definition may be informative. (It may be that this out-
come variable contributes to the definition of another construct.) So, assuming some
serious thought has been given to the initial set of outcome variables to consider in a
MANOVA/DDA, variable deletion may not be an issue at all.

Finally, it should be noted that the McCabe analysis is only applicable in a one-
factor design context. The McHenry analysis is, however, applicable in a one-factor
context (including contrast analyses) and in a multiple-factor design—see Section 8.8.

Further Reading

Ehrenberg (1990) rebukes the wisdom of attempting to order variables.

Huberty andWisenbaker (1992b) review the issue of assessing variable importance,
express three views of importance, and present an application of bootstrapping
to the problem of ranking variables.
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Meulepas (1990) suggests, in a two-group context, a modified estimate of the
decrease in group separation when a variable is deleted for the purpose of
statistically testing the decrease.

Rencher and Scott (1990) advocate the use of standardized LDF weights for
assessing the contribution of each variable in the presence of the other variables.

Tardif and Hardy (1995) assess relative outcome variable contribution in a DDA
context.

Thomas (1992) proposes a new index for variable ordering, a discriminant ratio
coefficient (DRC), which is a product of a standardized discriminant function
coefficient (SDFC) and a structure coefficient (SC), each for a given variable.

Thomas (1997) suggests a single criterion for ordering MANDOVA/DDA outcome
variables.

Quotation “There are three kinds of lies: lies, damned lies, and statistics”—
B. Disraeli (1804–1881)

EXERCISES

1. Briefly describe a McCabe analysis.

2. Briefly, what information can one obtain from conducting a McCabe analysis?

3. (a) How are the McCabe and McHenry analyses alike?

(b) How are they different?

4. (a) Why may variable deletion be of questionable value in a DDA context?

(b) In what other multivariate analysis context is variable deletion of questionable
value?

5. When carrying out an analysis using SAS STEPDISC or DISCRIMINANT, why
should one not simply rely on the program/procedure defaults?

Computer Applications

6. Conduct a McCabe analysis on the 5-group Ethington data set (5GED):

(a) What is the best subset of size 2? Of size 6?

(b) Is the best subset of size 2 (or 6) contained in the best subset of size 3 (or 7)?
(See footnote 2.)

(c) What subset of variables would you retain?

(d) What are the two variables that contribute most to total-group separation?

(e) What two variables contribute least?

(f) Consider (d) and (e) in terms of contribution to the definition of the first LDF.
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7. Consider your personal data set.

(a) Which effects, omnibus or contrast, are of interest to you?

(b) Is potential variable deletion of interest to you? If so, are there some variables
you can specify in advance to retain in your final subset? If so, which one(s)?

(c) If variable deletion is of interest, conduct a variable deletion analysis (with
respect to effects of interest).

(d) Order your variables—total set or subset—with respect to effects of interest.
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Reporting DDA Results

7.1 INTRODUCTION

Just what is included in a descriptive discriminant analysis (DDA) is not agreed
upon by all methodologists. For example, does DDA include MANOVA? How about
variable deletion? Variable ordering? Some writers refer to a discriminant function
analysis. To those, would a DDA be restricted to analyses directly involving compos-
ites of variables called linear discriminant functions (LDFs)? As far as this chapter
goes, all such results will be considered. An excellent discussion pertaining to the
general reporting of quantitative results is given by Bailar and Mosteller (1992). The
reporting of discriminat analysis results, in particular, is reviewed by Huberty and
Hussein (2003).

7.2 EXAMPLE OF REPORTING DDA RESULTS

Introduction (This initial section of a group comparison study write-up would be
a discussion of the research context. This would include a rationale of the study and
a review of related research. This being done, an explicit research purpose statement
should be given. This statement should relate directly to the analysis procedure, given
later, used.)

The current research purpose is that of examining differences among three grade
levels (A, B, C or C−) earned by community college students—see Data Set
A2(3GED) in Appendix A.

Study Design For our data set (3GED), the three grouping-variable levels are defined
as A students (n1 = 76), B students (n2 = 122), and students who earned C or C−
(n3 = 66). Of the large number of “variables” obtained on the basis of responses
to items on the CCSEQ, nine outcome variables were identified. Outcome variable
identification was based on a minimum of the sum of six item scores. Reliability

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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and validity information for the last six variables is provided by Ethington and
Polizzi (1996). The nine outcome variables were selected on the basis of profes-
sional judgment of their relevance to the study of grade-group differences. [A good
example of outcome variable choice and how each variable is measured is given by
Ellis and Armstrong (1989).]

No missing data were found in the 264 × 9 data matrix; also no aberrant outcome
variable scores were present.

[To this point in the reporting, we have considered research context, purpose
statement, and (grouping and outcome) variables considered.]

Descriptives The data were analyzed using both SPSSVersion 12.0 and SASVersion
8. Descriptive information for our nine outcome variables is given in Table 7.1. The
results of univariate hypothesis tests (df1 = 2, df2 = 261) indicate that the three
populations differed on only two of the nine variables (Y3 and Y9). Also, the error
correlations among the nine outcome variables are in the “small-to-moderate” range.

Requisite Data Conditions Justification of reporting the error correlations is based
on the tenability of group-covariance-matrix homogeneity. The Box test for covari-
ance homogeneity provided little support to indicate that the population covariance
matrices differ [F(90, 125132)

.= 1.19, P
.= .105 and χ2(90)

.= 107.25, P
.= .104].

Further support for this conclusion is provided by the (natural) logarithms of the
determinants of the four covariance matrices: Group 1, 24.6; Group 2, 23.1; Group 3,
22.5; and Error, 23.1. These four log determinants are clearly “in the same ballpark”
[see Huberty (2002, pp. 587–588)]. Based on theoretical considerations and the nature
of the variables studied, we assumed that the joint distribution of the nine vaiables
within each population is approximately multivariate normal.

Group Comparison Because there is support for the equality of the three covariance
matrices, we proceed with a multivariate analysis of variance (MANOVA). For our
data, we have �

.= .846, F(18, 506)
.= 2.45, P

.= .001, τ 2 = 1 − �1/2 .= .080, and
τ 2

adj
.= .066. We thus conclude that the observed differences among the three Grade

groups are generalizable to the populations they represent with respect to the nine
outcome variables.

The nine F -to-remove values (obtained via SPSS DISCRIMINANT) reported in
Table 7.2 indicate that Instruction Received (Y3) and Science Effort (Y9) are the
two variables contributing most to overall group differences, followed by Counselor
Interaction (Y1) and Student–Faculty Effort (Y5). Writing Effort (Y8), Interstudent
Effort (Y6), and Library Effort (Y4) contributed the least to group differences.

Dimensionality To further study the resulting group differences, we considered
the linear discriminant functions (LDFs). With our three groups, two LDFs may
be obtained. To determine if the group differences are to be described in one or
two dimensions, statistical test results and an LDF plot were examined. The sta-
tistical test results (obtained via SPSS DISCRIMINANT) are given in Table 7.3.
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TABLE 7.2 Variable Ordering for the 3-Group
Ethington Data

Variable F to Remove

Instruction Received (Y3) 4.91
Science Effort (Y9) 4.76
Counselor Interaction (Y1) 3.29
Student–Faculty Effort (Y5) 3.29
Arts/Music Theater Effort (Y7) 1.88
Self–Understanding (Y2) 1.61
Writing Effort (Y8) 0.28
Interstudent Effort (Y6) 0.09
Library Effort (Y4) 0.07

TABLE 7.3 Test of Dimensionality for the 3-Group
Ethhington Data

Number of Dimensions � χ2 df P

1 .85 42.88 18 .001
2 .96 11.84 8 .158

From these results, we conclude that it may be reasonable to consider two dimen-
sions in describing Grade-group differences. The group centroids are reported in
Table 7.4. [Typically, one would not consider the second dimension (with P

.= .158);
it is considered here merely for illustrative purposes.]

A plot of the group centroids (nine-element means) is given in Figure 7.1. From
this plot, it appears that, with respect to LDF1, there is a general “separation” among
the three Grade groups. With respect to LDF2, it appears that Group 2 (B students)
is “separated” from, collectively, Group 1 and Group 3 (A and C or C− students,
respectively).

Group Difference Structure An interpretation of the resulting Grade group differ-
ences is based on correlations between each of the nine outcome variable scores and
the two respective LDF scores—these are the structure r’s. The two sets of structure

TABLE 7.4 LDFs at Group Centroids

LDF

Group 1 2

A .464 −.190
B −.014 .233
C or C− −.509 −.212
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Figure 7.1 LDF plot of group centroids.

r’s for our data are given in Table 7.5. From these results, the first construct is defined
primarily by Science Effort and Instruction Received. A possible definition for the
first construct is, simply, “Science Effort and Instruction Received.” And the second
construct may be labeled “Self-Understanding and Art/Music/Theater Effort.”

Therefore, the separation among all three Grade groups may be attributed to
“Science Effort and Instruction Received.” And, the separation of B students
from A and C or C− students may be attributed to “Self-Understanding and
Art/Music/Theater Effort.”

(The obtained information would then be discussed in the context of the stated
research purpose, with some substantive conclusions. The results of the study would
also be discussed and compared with results of previous related studies—that were
referenced in the study Introduction.)

Group Contrast Of particular interest in this study is a comparison of A Students
(Group 1) with the C or C− Students (Group 3). The results of a contrast analysis
indicated sufficient evidence to conclude that the two populations represented by these
groups differed [�

.= .886, F (9, 253)
.= 3.60, P

.= .000, τ 2
adj

.= .083].

TABLE 7.5 Structure r’s for the 3-Group Ethington
Dataa

Variable LDF1 LDF2

Counselor Interaction −.30 .36
Self-Understanding .15 .55
Instruction Received −.50 .11
Library Effort −.02 .36
Student–Faculty Effort .19 −.25
Interstudent Effort .29 .19
Art, Music, Theater Effort .23 .46
Writing Effort −.04 .34
Science Effort .59 .08

aConstruct identifiers in bold.
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TABLE 7.6 Structure r’s for Group 1 versus Group 3a

Variable r

Counselor Interaction −.29
Self-Understanding .16
Instruction Received −.50
Library Effort −.01
Student–Faculty Effort .19
Interstudent Effort .29
Art, Music, Theater Effort .24
Writing Effort −.03
Science Effort .59

aConstruct identifiers in bold.

With these two groups, there is only one LDF to consider. The group-difference
structure is given in Table 7.6. From these structure r’s, we conclude that the construct
underlying the difference between theA group and the C or C− group is the same as for
the first construct underlying the three group differences. (The relative contributions
of the nine outcome variables would be given here, just as discussed for the omnibus
effects.)

Conclusions/Discussion The purpose of this study was to examine and assess
differences among community college students achieving at three academic levels,
A students, B students, and C or C− students. We found, as might be expected, that
Grade differences existed. Two of the nine outcome variables, Instruction Received
and Science Effort, contributed most to the resulting Grade differences. On the other
hand, Library Effort, Interstudent Effort, and Writing Effort contributed least to Grade
differences.

We also found that the resulting three Grade differences may be attributed to
a construct defined by Instruction Received and Science Effort. This same con-
struct was found to describe the differences of A students from the C or C−
students.

[The results of this study would be related to results of previous related research,
which was discussed in the Introduction. Also, when describing results or some spe-
cific analysis results, such as the Box test, MANOVA, test of LDF dimensionality,
and structure r’s, it is strongly suggested that references be given. Book references
for such analyses should include the page number(s).]

7.3 COMPUTER PACKAGE INFORMATION

Most computational results reported in applications of DDA have been obtained via
the use of some statistical computer package(s). The “big two” (SAS and SPSS) are
very popular. Each of these two has programs that deal with DDA. Specific output
information for the two packages is indicated in Table 7.7. It is recognized that some
additional packages exist that relate to DDA procedures.
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TABLE 7.7 DDA Printout Information

SAS SPSS

DISCRIM CANDISC GLM DISCRIMINANT MANOVA

Preliminary
Uni. F ’s Yes Yes Yes Yes Yes
Wilks Yes Yes Yes Yes Yes
= �s test Yesa,b No No Yesc Yesa,c

Effect size No No No No Yes
Error correlation Yes Yes No Yes Yes

matrix
DDA

LDFs
Raw No Yes Yes Yes Yes
Standardized No Yesd Yesd Yes Yes
Rotated No No No Yes Yes

No. LDFs test Yes Yes No Yes Yes
Structure correlations No Yes Yes Yes Yes
Partial F ’s No No No Yes No
Intergroup distances

D2 Yes Yes No No No
F No Yes No Yes No
P No Yes No Yes No

Discriminant space plots No Yes No Yes No
LDF scores No No No Yes No
Contrasts No No Yes No Yes

aChi-squared test.
bNot usual statistic.
cF test.
dBased on total group variances.

7.4 REPORTING TERMS

Following is a list of terms that might be utilized in writing up a report of a multivariate
study in which group separation is of interest. Of course, particular research situations
may call for more specific terms.

• Grouping variable
• Outcome variable
• Multivariate analysis of variance
• Covariance matrix homogeneity
• Wilks � F(ν1, ν2), P value
• Effect size
• Multivariate contrast (?)
• Linear discriminant function
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• Dimensionality
• LDF plot
• Outcome variable deletion (?)
• Outcome variable ordering
• F -to-remove/partial �

• Structure/construct
• Judgment

There is also a list of “expressions” we suggest that a writer of a manuscript
involving a DDA not use. These terms follow.

• Chi-square (vs. chi-squared)
• Data was (vs. data were)
• Discriminant function analysis (vs. DDA)
• Discriminate (vs. separate)
• Discrimination (vs. separation)
• Independent, dependent variable (vs. grouping, outcome)
• Methodology (vs. methods)
• P < .05 (vs., e.g., P

.= .023)

[The statistically inclined reader might refer to David (1995, 1998) for first users of
many statistical terms.]

7.5 MANOVA/DDA APPLICATIONS

A number of applications of MANOVA/DDA in the user field of study may be found
using a Web search with the key term “discriminant analysis.” Two cautions need be
taken with such a search: (1) a located study may involve both a DDA and a PDA; and
(2) the reporting of DDA/PDA results may not be very clear (and confusing?). Thus,
a researcher wanting to write up an application of a MANOVA and a DDA may not
want to use a published study as a “model.” It is recognized that some researchers look
at published articles as a guide to reporting: “They got their manuscript published, so
I’ll do a similar report.” As implied by Huberty and Hussein (2003), this is a principle
that should not necessarily be followed. Some applications of DDA in horticultural
research are given by Cruz-Castillo et al. (1994).

7.6 CONCERNS

With the current availability and popularity of statistical computer packages it is fairly
straightforward to conduct a discriminant analysis (and many other analyses, for that
matter). But as pointed out in a number of places in the current book, computer output
can sometimes be misleading and, in a few isolated instances, incorrect. In applying
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discriminant analysis in a given research situation, then, one must take care in using
and reporting numerical information from computer printouts. There are four concerns
with the write-ups of discriminant analysis applications in professional journals that
will now be mentioned.

The first concern is the apparent mixup of DDA and PDA. As emphasized earlier,
the former pertains to group differences and the characterizations of such, while the
latter pertains to group membership prediction. In some journal articles DDA results
as well as PDA results are reported for no apparent good reason—usually in the
article introduction it is clear that the research pertains to either group differences or
prediction of group membership. In one journal article, it was written, for example,
in a three-group study that the two resulting LDFs were used to classify units into
the three groups. [The LDF scores may, however, be used as input into classification
functions, values of which are used for group assignment (as SPSS DISCRIMINANT
does)—this is quite different from basing group assignment decisions directly on LDF
scores.] Some distinctions between PDA and DDA are spelled out in Table 7.8.

A second concern pertains to the covariance matrix homogeneity condition that is
required to employ the usual MANOVA test criteria.Admittedly, the assessment of this

TABLE 7.8 DDA versus PDA; Context: J Groups of Units, p Response Variables

DDA PDA

1. Research concern Description of Prediction of
group separation group membership

2. Variable roles
Predictor(s) Grouping variables Response variable

Criterion(ia) Response variables Grouping variable

3. Response variable
composite LDF LCF/QCF

4. Number of
composites min(p, J − 1) J

5. Equality of
covariance matrices Yes Yes
MANOVA Yes No

6. Analysis aspects
Variable construct(s) Yes (!) No
Response variable
deletion Maybe Yes (!)
Response variable
ordering Yes Yes

7. Criterion for Group Classification
deletion/ordering separation accuracy

8. Interest in
generalizability? Yes Yes
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condition is difficult, but if the matrices are clearly(?) heterogeneous, the calculated
outcome variable linear composites (LDFs) may have very limited interpretability. It
is suggested that it should be made clear that the author is cognizant of the condition.

A third concern is with the interpretation of relative variable importance. An
impression one can get from reading some applications of discriminant analysis is
that an undefined interpretation of relative variable importance is used, an overreliance
on numerical values of indices is taken, and step-by-step results of stepwise analyses
are still being used (for variable ordering as well as for variable deletion).

The latter comment indicates the fourth concern, an overuse of stepwise discrim-
inant analysis computer programs. Reasons for this concern are expressed in some
detail by Huberty (1989).

7.7 OVERVIEW

An overview of multivariate analysis of variance, descriptive discriminant analysis
and related techniques is given in Figure 7.2.

Outcome variables
(theory; past research; measurement;

domanin(s); cost)

Collect and edit data

Variable reduction
univariate analyses (means, s.d.’s’

correlations; reliabilities; component
analyses) 

Group definition

Outliers? 

Normality?  =       s?

Variable deletion?

Wilks or Yao

Omnibus or contrasts

Group proximity
(LDF plots) 

Effect structureVariable ordering

Figure 7.2 MANOVA and descriptive discriminant analysis.
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Further Reading

Maxwell and Cole (1995) make some good suggestions about writing journal
articles.

Definition Content validity: Seeing if the text developer is happy.

EXERCISES

1. Locate a journal article in your area of study that reports an application of DDA.
Consider the following:

(a) The groups/factor(s)

(b) The outcome variables; how were they measured?

(c) Variable deletion

(d) Variable ordering

(e) Effects interpretation; structure r’s, standardized LDF weights

(f) LDF plot

(g) Other evaluative factors pertaining to design, analysis, and interpretation

2. Assess the completeness of reporting of information: descriptive information in
your located study:, statistical test information, and information related to LDFs.
Are variable measures clear? What computer software was used?

3. Propose a study in your discipline that would call for a DDA. Indicate some design
and analysis specifics for your research study.

4. Consider your personal data set. From your printout(s), prepare tables as suggested
in this chapter. How about an LDF plot (if J > 2)?
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P A R T III

Factorial MANOVA,
MANCOVA, and
Repeated Measures

In Part III we generalize the procedures introduced in Part II to more complex research
designs. We begin by presenting the application of MANOVA to a factorial design.
Our presentation is limited to a two-factor design but the procedures easily generalize
to multiple grouping variables. We then introduce multivariate analysis of covariance.
In this chapter we limit our presentation to a single covariate and a single grouping
variable. The application of multiple covariates is briefly presented in a Technical Note
at the end of Chapter 9. We conclude Part III by presenting the repeated measures
design with a single group (Chapter 10) and multiple groups (Chapter 11). Only
a single repeated measures variable is considered here, but we briefly provide an
example of a design with two repeated measures variables in the Technical Notes at
the end of Chapter 10.

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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C H A P T E R 8

Factorial MANOVA

8.1 INTRODUCTION

All of the discussion in Chapters 3 to 5 dealt with a one-factor design. Now the
discussion is extended to a two-factor layout with p outcome variables. The gener-
alization to studies examining multiple grouping variables is straightforward, but the
interpretation of the results can become considerably more complex. With additional
grouping variables there are more hypotheses to test, more contrasts to examine,
more effect sizes to estimate, and more LDFs to consider. Whereas in the previous
discussion it was appropriate to refer to “separation” of groups or to grouping vari-
able “effect,” the latter term is more generally applicable and more appropriate in
connection with multifactor MANOVA.

We begin this chapter by introducing a new research context involving two grouping
variables. Then, following a brief review of the univariate two-way ANOVA, we
apply the multivariate procedures introduced in Chapters 3 to 5 to the two-factor
layout with p outcome variables. We begin with the omnibus test followed by effect
size estimation and construct definition. We conclude with multivariate focused tests
and their interpretations. It should be recalled that omnibus tests are not necessary
if specific contrasts are of primary interest. In this chapter we present some of the
matrix formulations used to test hypotheses and estimate effects, but the emphasis
is given to the computer applications and interpretations because we do not believe
additional conceptual understanding is gained by detailed calculations.

8.2 RESEARCH CONTEXT

Suppose a researcher is interested in the degree of stress experienced by teachers.
Table 8.1 provides hypothetical data for such a study. (An SPSS data file containg these
data, labeled STRESS, is available at the Wiley website.) The Wilson Stress Profile for
Teachers (WSPT) contains nine scales, four of which are designed to assess teacher

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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TABLE 8.1 Test Scores on Four Measures of Stressa for
Three School Levels and Two Levels of Gender

Genderb

j1 j2

School Levelc Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4

k1 7 10 12 15 9 9 10 12
7 9 12 15 9 8 9 10
8 10 13 16 11 12 11 11
6 9 11 15 11 10 7 9
6 9 11 14 10 10 9 9
7 9 12 15 13 12 11 12
7 9 12 14 10 9 10 11
9 10 13 16 9 9 9 10
6 8 11 14 10 9 10 11
6 9 13 17 10 9 9 11

k2 11 12 12 15 14 11 8 9
11 13 12 14 15 13 7 7
11 12 11 15 14 12 10 10
11 12 12 14 14 14 9 11
11 11 13 15 16 14 8 9
12 13 11 13 13 12 9 10
11 12 11 14 17 14 9 10
10 11 12 16 15 13 9 10

9 10 12 15 14 13 9 10
10 11 11 15 14 13 8 10

k3 9 11 15 19 14 13 13 14
11 12 17 19 14 14 13 13

8 11 16 18 14 13 12 14
9 11 14 17 14 13 13 13
9 12 16 19 14 12 14 14

12 13 18 20 15 14 12 12
8 10 16 20 14 13 12 13

10 13 14 17 13 12 13 15
10 11 15 18 12 11 13 14
10 13 15 19 13 12 12 14

aStress: Y1 = Administration; Y2= Colleagues; Y3 = Parents; Y4 = Students.
bGender: j1 = Males; j2 = Females.
cSchool Level: k1 = Elementary School; k2 = Middle School; k3 = High
School.

stress in relationships between a teacher and (1) Administrators, (2) Colleagues, (3)
Parents, and (4) Students. The researcher might distribute these four scales to a sam-
ple of Male and Female teachers at Elementary, Middle, and High School levels to
determine if the degrees of stress in these four sources differ by School Level (L)
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TABLE 8.2 Means and Standard Deviations for Four Measures of Stressa

from Three School Levels and Two Levels of Gender

Genderb

j1 j2
School
Levelc Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 Mean

Y 1 = 8.55
k1 Mean 6.9 9.2 12.0 15.1 10.2 9.5 9.5 10.6 Y 2 = 9.35

Sd .994 .632 .816 .994 1.229 1.080 1.179 1.075 Y 3 = 10.75
Y 4 = 12.85

Y 1 = 12.65
k2 Mean 10.7 11.7 11.7 14.6 14.6 12.9 8.6 9.6 Y 2 = 12.30

Sd .823 .949 .675 .843 1.174 .994 .843 1.075 Y 3 = 10.15
Y 4 = 12.10

Y 1 = 11.70
k3 Mean 9.6 11.7 15.6 18.6 13.8 12.7 12.7 13.6 Y 2 = 12.20

Sd 1.265 1.059 1.265 1.075 .919 .949 .675 .843 Y 3 = 14.15
Y 4 = 16.10

Y 1 = 10.967
Mean 9.07 10.87 13.10 16.10 12.87 11.70 10.27 11.27 Y 2 = 11.283

Y 3 = 11.683
Y 4 = 13.683

aStress: Y1 = Administration; Y2 = Colleagues; Y3 = Parents; Y4 = Students.
bGender: j1 = Males; j2 = Females.
cSchool Level: k1 = Elementary School; k2 = Middle School; k3 = High School.

and by Gender (G). Differences between Male and Female teachers may also differ
depending on the School Level (interaction). The researcher may also be interested
in determining whether Gender and School Level effects are reflected in a single
dimension or whether grouping variable effects are better represented by multiple
dimensions. Group means for each School Level and Gender, as well as all combina-
tions of School Level and Gender, are presented in Table 8.2, along with cell standard
deviations.

With this 3 × 2 nonexperimental two-way design, three questions may by
examined:

1. Do differences in stress between Male and Female teachers change depend on
the Level of the School? Or, do differences among School Levels vary with
teacher Gender with respect to four stress variables?

2. Across all three School Levels, is there a difference between Male and Female
teachers with respect to stress scales?
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3. For all teachers (Male and Female) do the four measures of stress differ among
Elementary, Middle, and High School levels?

The first question addresses the issue of an interaction between Gender and School
Level. The second question addresses a main effect for Gender. And the third question
reflects a School Level main effect.

8.3 UNIVARIATE ANALYSIS

A univariate analysis would answer each of the three questions raised in the previous
section for each measure of stress (Y1 − Y4) separately. The sum-of-squares for Inter-
action, Gender, and School Level would be computed using the formulas in Table 8.3
assuming a balanced design.

Using the data in Tables 8.1 and 8.2, Table 8.4 provides an ANOVA summary table
reporting the sources of variation, degrees of freedom, mean squares, F ratios, P

values, and generalized η2 (Olejnik and Algina, 2003) for variable Y1.
The results do not support an interaction between Gender and School Level,

F(2, 54)
.= .900, P

.= .413, η2
G

.= .005. But there is evidence to conclude that Male
and Female teachers across all School Levels differ with respect to their reported levels
of stress with Administrators (Y1), F (1, 54)

.= 185.604, P
.= .000, η2

G

.= .465, and
teachers (both Male and Female) report different levels of stress with Administra-
tors at different School Levels, F(2, 54)

.= 78.935, P
.= .000, η2

G

.= .395. Females

TABLE 8.3 Univariate Sum-of-Squares

Source of Variation Sum-of-Squaresa

Gender (G) n.j

J∑

j=1
(Y ..j − Y ...)

2

School Level (L) nk.

K∑

k=1
(Y .k. − Y ...)

2

Interaction (G × L) nkj

J∑

j=1

K∑

k=1
(Y .kj − Y ..j − Y .k. + Y ...)

2

Error (E)
J∑

j=1

K∑

k=1

n∑

u=1
(Yukj − Y .kj )2

an.j is the number of units at each level of variable G; nk. is the number of
units at each level of variableL;nkj is the number of units at each combination

of variables G and L; Y ..j is the group mean of units at the j th level of factor

G; Y .k. is the group mean of units at the kth level of factor L; Y .kj is the
group mean of units at the kth of variable L and the j th level of factor G;
Y ...is the mean of all units in the study (Grand Mean); Yukj is observation
for unit u in the kth level of variable L and the j th level of variable G.
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TABLE 8.4 ANOVA Summary for Variable Y1

Source of Sum-of- Degrees of Mean
Variation Squares Freedom Square F P η2

G

Gender (G) 216.60 1 216.600 185.604 .000 .465
School Level (L) 184.23 2 92.117 78.935 .000 .395
Interaction (G × L) 2.10 2 1.050 .900 .413 .005
Error (E) 63.00 54 1.167

Total 465.93

reported higher stress mean with Administration than Males, 12.87 vs. 9.07. The
standardized mean difference between Male and Female teachers is 1.83 (

.= 3.80/√
4.299). [Standardized mean difference is computed using the Gender standard

deviation, ignoring the School Level factor (see Olejnik and Algina, 2000).] Exam-
ining all pairwise contrasts among School Levels may be of interest. Marginal
means for Elementary, Middle, and High Schools are 8.55, 12.65, and 11.70, respec-
tively. The Bonferroni adjusted P ′ value for the difference between Elementary and
Middle School teachers equals .000 and a standardized mean difference of −1.84
(
.= −4.1/

√
4.942). (Standardized mean difference is computed using School Level

standard deviation, ignoring Gender.) For the difference between Elementary and
High School teachers, the Bonferroni adjusted P ′ value equals .000 and the standard-
ized mean difference equals −1.42. Finally, the difference between Middle School and
High School teachers has a Bonferroni adjusted P ′ value of .022 and a standardized
mean difference of .43.

The results of this hypothetical study indicate that with respect to Administrators
(Y1), there is no evidence of an interaction between Gender and School Level, but
Female teachers do report greater stress mean levels than Male teachers, and Middle
School teachers report greater stress than either Elementary or High School teach-
ers. High School teachers report greater stress with Administration than Elementary
teachers—“on the average.”

The results of the three omnibus tests using the stress scales for Colleagues, Y2,
Parents, Y3, and Students, Y4, are summarized in Table 8.5. These results parallel those

TABLE 8.5 Summary of Omnibus Univariate Results for Outcome Variables
Y2, Y3, and Y4

Variable

Y2 Y3 Y4

Factor F P ′ η2
G

F P ′ η2
G

F P ′ η2
G

G × L 1.223 .302 .013 .531 .591 .003 .43 .656 .001

G 11.410 .001 .060 136.895 .000 .339 357.703 .000 .599

L 61.467 .000 .644 105.802 .000 .524 92.297 .000 .309
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TABLE 8.6 Summary of Pairwise Contrasts Among School Levels with Bonferroni
Adjusted P′ Values for Outcome Variables Y2, Y3, and Y4

a

Variable

Y2 Y3 Y4

Contrast F P ′ d F P ′ d F P ′ d

EvsM 95.418 .000 −2.84 4.081 .144 .35 5.742 .060 .28

EvsH 89.058 .000 −2.73 131.052 .000 −1.98 107.815 .000 −1.22

MvsH .110 1.000 .10 181.387 .000 −2.32 163.317 .000 −1.50

aThe standardized mean difference, d, is computed using the School Level standard deviation when Gender
is ignored (see Olejnik and Algina, 2000).

reported above for Administrators, Y1. That is, there appear to be no interactions, and
both main effects appear to be generalizable to the respective populations.

The results for all pairwise contrasts for levels of School Level are summarized
in Table 8.6. The pattern of differences for variables Y2, Y3, and Y4 are somewhat
different than those reported for Y1. For variable Y2, the difference between Middle
School and High School teachers, and for variables Y3 and Y4, the differences between
Elementary and Middle School teachers, do not appear to be generalizable to their
respective populations. The remaining contrasts are generalizable with Elementary
teachers reporting less stress with Colleagues (Y2) than Middle or High School
teachers. High School teachers report greater stress then either Elementary or Middle
School teachers with Parents (Y3) and Students (Y4).

8.4 MULTIVARIATE ANALYSIS

8.4.1 Omnibus Tests

Rather than examining each individual outcome variable, the multivariate approach
addresses the same questions as presented above, with a collection of outcome vari-
ables being simultaneously analyzed. Following an analogous procedure as presented
in Chapter 3, an eigenanalysis of the E−1Hθ product matrix is conducted, where E−1

is the inverse of the error sum-of-squares and cross-products matrix, and Hθ repre-
sents the sum-of-squares and cross-products for the θ hypothesis. The error matrix,
E, for the factorial design, is computed by summing the SSCP matrices across all
cells in the design (see Section 3.2.2). That is,

E =
K∑

k=1

J∑

j=1

(Yukj − Y.kj )
′(Yukj − Y.kj ), (8.1)
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where Yukj = nkj × p matrix of observations from nkj units on p outcome vari-
ables in the kth row and the j th column of the data matrix, (e.g.,
Table 8.1)

Y.kj = nkj × p matrix of p cell means for the kth row and j th column of the
data matrix

(Note the two summation signs indicate that the separate cell SSCP matrices are
summed across the J columns and then across the K rows in the row-by-column
factorial design.)

For the Gender-by-School Level interaction (θ = G × L), assuming that the
sample sizes are equal across all KJ cells, the hypothesis sum-of-squares and
cross products is computed as:

HG×L = nkj

K∑

k=1

J∑

j=1

(y.kj − y..j − y.k. + y...)(y.kj − y..j − y.k. + y...)
′, (8.2)

where nkj = number of analysis units per cell
y.kj = p × 1 vector of p cell means in the kth row and j th column of the data

matrix
y..j = p × 1 vector of p column means in the j th column of the data matrix
y.k. = p × 1 vector of p row means in the kth row
y... = p × 1 vector of p grand means

For the Gender main effect (θ = G) the hypothesis sum-of-squares and cross-products
is computed as:

HG = n.j

J∑

j=1

(y..j − y...)(y..j − y...)
′, (8.3)

where n.j = number of units for each level of factor G

y..j = p × 1 vector of p means for the j th column
y... = p × 1 vector of p grand means

For the School Level main effect (θ = L) the hypothesis sum-of-squares and cross-
products matrix is computed:

HL = nk.

K∑

k=1

(y.k. − y...)(y.k. − y...)
′, (8.4)

where nk. = number of units for each level of factor L

y.k. = p × 1 vector of p means for the kth row
y... = p × 1 vector of p grand means
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These calculations are tedious and better left to the computer. However, the similarity
of Eqs. (8.1) to (8.4) with those for univariate sum-of-squares in Table 8.3 should
be noted. The univariate analysis involves a single outcome variable, while the mul-
tivariate analysis involves a vector of outcome variables. The eigenvalues for each
matrix product, E−1HL×G, E−1HG, and E−1HL, can be computed, and the same four
multivariate test criteria, Wilks, Bartlett–Pillai, Roy, and Hotelling–Lawley, can be
used to test each of the three hypotheses (the interaction between the factors, and the
two main effects). Using the eigenvalues, the effect-size indices can also be computed
for each effect using the equations for the effect-size statistics presented in Table 4.1,
or the bias adjustments in Eq. (4.7). If the effects are judged to be generalizable and
r = min(p, dfθ ) is greater than 2, an examination of the linear discriminant func-
tions would be appropriate to determine the number of meaningful dimensions and
the identification of the constructs that define the differences among the groups. In
Section 8.5 we present the SPSS program and output for the three omnibus tests, the
linear discriminant functions, dimensionality analysis, the structure r’s, and an LDF
plot, followed by an interpretation of the findings. In Section 8.6, a contrast analysis
using SPSS is presented.

8.4.2 Distribution Assumptions

As was discussed in the single grouping variable analysis, a valid interpretation of
the inferential statistics and the linear discriminant functions is dependent on the
analysis units being independent of each other, and within-population distribution of
response variables being multivariate normal and having equal covariance matrices.
If it is reasonable to believe that individual units have little influence on one another
with respect to the response variables, the independence assumption is likely met. A
violation of the multivariate normality assumption typically has little effect on the
P values reported for MANOVA hypothesis tests. A violation of the assumption of
equal covariance matrices, however, can affect P values and the interpretation of the
LDFs. Under covariance heterogeneity, the LDFs are not interpretable. When group
sizes are equal or at least similar, P values are minimally affected. But when group
sizes differ substantially—by at least a factor of 2—P values can be overestimated or
underestimated depending on the relationship between group size and the generalized
variance. If group size and the generalized variance is positively related, P values will
be overestimated. That is, the reported P value will be too large, and the hypothesis
test is said to be conservative. If the group generalized variance and group size is
negatively related, the reported P value will be too small and the hypothesis test
is said to be liberal. If the P value is small in a conservative test, there would be
sufficient evidence to reject the null hypothesis regardless of covariance heterogeneity.
Similarly, if a large P value is reported in a liberal test, there would be insufficient
evidence to reject the null hypothesis. If neither of these patterns occurs, a close
examination of the variables may reveal the source or sources of the covariance
heterogeneity, and variables or groups may be dropped from the analyses to achieve
covariance homogeneity. Alternatively, the Yao test, which was discussed in Section
3.4, might be used to examine specific contrasts rather than omnibus tests.
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The Box (1949) F , or chi-squared test for covariance equality, discussed in Section
3.3 and reported in the SPSS MANOVA program, can be used to help guide the data
analysis process. However, we want to remind the reader that, because the Box test
examines the equality of the KJ group variances and covariances simultaneously,
it is an extremely powerful test and it is sensitive to nonnormality. Consequently,
if the result of the Box test indicates covariance heterogeneity, the determinants of
the group covariance matrices should be examined. If the natural logarithms of the
KJ + 1 determinants are judged to be approximately equal, one can proceed with the
usual MANOVA tests. Interpretation of the hypothesis tests should be guided by
the discussion above with respect to the test being liberal or conservative.

8.5 COMPUTER APPLICATION I

In this section we present the SPSS syntax to conduct a MANOVA for a factorial
design with two grouping variables. Generalization to situations involving more than
two grouping variables is straightforward. The program presented here includes the
same commands as in Sections 3.6, 4.3, and 5.3. Explanations of the commands can
be found in those sections.

SPSS SYNTAX FOR COVARIANCE EQUALITY, OMNIBUS TEST
STATISTICS, DIMENSIONALITY ANALYSIS, AND LINEAR
DISCRIMINANT FUNCTIONS

manova Y1 Y2 Y3 Y4 by L(1,3) G(1,2)
/print=cellinfo(cov) homogeneity(box) error(cor)
signif(multiv eigen dimenr efsize)
/discrim=raw cor.

OUTPUT

Analysis: Homogeneity of Covariance Matrices

Cell Number . . 1
Variance–Covariance matrix

Y1 Y2 Y3 Y4
Y1 .989
Y2 .467 .400
Y3 .556 .333 .667
Y4 .344 .311 .667 .989
Determinant of Covariance matrix of dependent variables = .01277
LOG(Determinant) = 4.36047
- - - - - - - - - - - - - - - - -
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Cell Number .. 2
Variance–Covariance matrix

Y1 Y2 Y3 Y4
Y1 1.511
Y2 1.222 1.167
Y3 .444 .389 1.389
Y4 .311 .222 1.000 1.156
Determinant of Covariance matrix of dependent variables = .14202
LOG(Determinant) = −1.95178
- - - - - - - - - - - - - - - - -
Cell Number .. 3
Variance–Covariance matrix

Y1 Y2 Y3 Y4
Y1 .678
Y2 .678 .900
Y3 −.100 −.211 .456
Y4 −.467 −.578 .200 .711
Determinant of Covariance matrix of dependent variables = .01853
LOG(Determinant) = −3.98816
- - - - - - - - - - - - - - - - -
Cell Number .. 4
Variance–Covariance matrix

Y1 Y2 Y3 Y4
Y1 1.378
Y2 .733 .989
Y3 −.178 −.044 .711
Y4 −.289 .178 .711 1.156
Determinant of Covariance matrix of dependent variables =.16985
LOG(Determinant) = −1.77283
- - - - - - - - - - - - - - - - -
Cell Number .. 5
Variance–Covariance matrix

Y1 Y2 Y3 Y4
Y1 1.600
Y2 .978 1.122
Y3 .711 .200 1.600
Y4 .267 −.022 1.044 1.156
Determinant of Covariance matrix of dependent variables = .43835
LOG(Determinant) = −.82474
- - - - - - - - - - - - - - - - -
Cell Number .. 6
Variance–Covariance matrix

Y1 Y2 Y3 Y4
Y1 .844
Y2 .600 .900
Y3 .044 −.211 .456
Y4 −.422 −.578 .200 .711
Determinant of Covariance matrix of dependent variables = .04179
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LOG(Determinant) = −3.17504
- - - - - - - - - - - - - - - - -
Pooled within-cells Variance–Covariance matrix

Y1 Y2 Y3 Y4
Y1 1.167
Y2 .780 .913
Y3 .246 .076 .880
Y4 −.043 −.078 .637 .980
Determinant of pooled Covariance matrix of dependent vars. = .17460
LOG(Determinant) = −1.74528
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate test for Homogeneity of Dispersion matrices
Boxs M = 50.41202
F WITH (50,5351) DF = .81149, P = .826 (Approx.)
Chi-Square with 50 DF = 41.04534, P = .813 (Approx.)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - WITHIN CELLS Correlations with Std. Devs. on Diagonal

y1 y2 y3 y4
y1 1.080
y2 .755 .955
y3 .243 .085 .938
y4 −.040 −.082 .686 .990
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Homogeneity of Covariance Matrices

The current study involves an equal number of teachers for each School Level-
by-Gender combination (nkj = 10). Consequently, a violation of the covariance
homogeneity assumption is not likely to invalidate the P values reported below for the
omnibus and contrast hypothesis tests. We present the separate covariance matrices
here to provide a comprehensive example of a multivariate analysis for a factorial
design. The results of the Box test provides little evidence to indicate that the pop-
ulation covariance matrices differ, χ2(50)

.= 41.045, P
.= .813. An examination of

the within-cells correlations indicates that variables Y1 and Y2 and variables Y3 and
Y4 are correlated .755 and .686, respectively, but no other pair of variables appear to
have a substantial correlation in this data set.

Analysis: Interaction Test

EFFECT .. L BY G
Multivariate Tests of Significance (S = 2, M = 1/2, N = 24 1/2)
Test Name Value Approx. F Hypoth. DF Error DF Sig. of F
Pillais .08851 .60196 8.00 104.00 .774
Hotellings .09381 .58629 8.00 100.00 .787
Wilks .91293 .59420 8.00 102.00 .781
Roys .06712
Note.. F statistic for WILKS’ Lambda is exact.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size
Pillais .044
Hotellings .045
Wilks .045
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 .072 76.694 76.694 .259
2 .022 23.306 100.000 .146

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Dimension Reduction Analysis
Roots Wilks L. F Hypoth. DF Error DF Sig. of F
1 TO 2 .91293 .59420 8.00 102.00 .781
2 TO 2 .97861 .37895 3.00 52.00 .769
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Interaction Test

The statistics pertaining to an investigation of the interaction effects are intention-
ally specified first. Most methodologists suggest that interaction effects are to be
examined first. If it is concluded, by judging the size of the associated P value
and an effect-size index, that no interaction effects exist, the two sets of marginal
means may be examined in terms of an omnibus test or, if appropriate, in terms
of contrasts. If it is concluded that interaction effects do exist, one would typically
examine simple effects or differences among cell group centroids within each row
(simple column effect) or differences among cell group centroids within each col-
umn (simple row effect). Alternatively, the omnibus simple row or simple column
effects could be ignored and contrasts involving cell centroids could be examined
directly. See the Technical Notes for computer applications for simple effects and cell
contrasts.

In the present context, SPSS reports three multivariate test criteria, Bartlett–Pillai
(labeled Pillais by SPSS), Hotelling–Lawley (labeled Hotellings by SPSS), and Wilks.
Using the two eigenvalues reported in the middle of the output section and the formu-
las presented in Table 3.3, the three statistics could be computed. For example, Wilks
� is computed as

∏r
v=1[1/(1 + λv)] .= [(1/1.072)(1/1.022)] .= .913. The statisti-

cal test results are F(8, 102)
.= .594, P

.= .781, τ 2
adj

.= .000 (τ 2
adj = 1 − [(60 − 1)/

(60 − 4 − 1)](1 − .045)). Note that because τ 2
adj is actually computed to be negative,

we report it as 0. These results do not provide sufficient evidence to indicate an inter-
action between Gender and School Level. We may conclude that any difference (if
there are any) among levels of one grouping variable are consistent across all levels
of the second grouping variable. Because the omnibus test was not statistically signif-
icant, the interaction LDFs are not reported and the Dimension Reduction Analysis
at the end of the output is irrelevant. Furthermore, because none of the dimension
test results are significant at the default .15 level, the MANOVA program will not
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report any canonical discriminant functions or correlation analysis for this effect.
(Note that the Wilks � of .9123 for the interaction effect is identical to the Wilks �

in the first dimension test.) Given these findings, an examination of the Gender main
effect and the School Level main effect would be appropriate, the results of which we
examine next.

Analysis: Gender Test

EFFECT .. G
Multivariate Tests of Significance (S = 1, M = 1 , N = 24 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .92784 163.94181 4.00 51.00 .000
Hotellings 12.85818 163.94181 4.00 51.00 .000
Wilks .07216 163.94181 4.00 51.00 .000
Roys .92784
Note.. F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size
(All) .928
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 12.858 100.000 100.000 .963
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1
Y1 1.042
Y2 −.777
Y3 −.305
Y4 −.543
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Correlations between DEPENDENT and canonical variables

Canonical Variable
Variable 1
Y1 .517
Y2 .128
Y3 −.444
Y4 −.718
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Gender Test

Because the Gender variable has only two levels and r = min(p, dfG) = 1, a single
LDF can be determined, and all three multivariate criteria provide the exact same
F statistic and P value. Using the Wilks criterion, � = .072, F(4, 51)

.= 163.942,
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P
.= .000, τ 2

adj
.= .923; we would conclude that there is sufficient evidence that Male

and Female teachers differ in mean reported stress levels. An examination of the
structure r’s indicates that Y4 (Students) is the primary scale to define the stress
construct that differentiates Male and Female teachers.

Analysis: School Level Test

EFFECT .. L
Multivariate Tests of Significance (S = 2, M = 1/2, N = 24 1/2)
Test Name Value Approx. F Hypoth. DF Error DF Sig. of F
Pillais 1.59608 51.36928 8.00 104.00 .000
Hotellings 8.19735 51.23342 8.00 100.00 .000
Wilks .03961 51.31288 8.00 102.00 .000
Roys .83235
Note.. F statistic for WILKS’ Lambda is exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size
Pillais .798
Hotellings .804
Wilks .801
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 4.965 60.568 60.568 .912
2 3.232 39.432 100.000 .874

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Dimension Reduction Analysis
Roots Wilks L. F Hypoth. DF Error DF Sig. of F
1 TO 2 .03961 51.31288 8.00 102.00 .000
2 TO 2 .23627 56.02782 3.00 52.00 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1 2
Y1 .398 −.914
Y2 −.560 −.115
Y3 −.726 .517
Y4 −.393 −.344
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Correlations between DEPENDENT and canonical variables

Canonical Variable
Variable 1 2
Y1 −.125 −.939
Y2 −.236 −.786
Y3 −.888 .003
Y4 −.829 .041
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Interpretation: School Level Test

Each of the three multivariate criteria indicate the same conclusion: Teachers at
the Elementary, Middle, and High School levels differ with regard to the four
self-reported stress levels: �

.= .0396, F (8, 102)
.= 51.313, P

.= .000, τ 2
adj

.= .787.
An examination of the Eigenvalues and Canonical Correlations and the Dimension
Reduction Analysis indicates that two dimensions may be used to describe School
Level group differences, �

.= .236, F (3, 52)
.= 56.028, P

.= .000. The first dimen-
sion, with λ1

.= 4.965, accounts for 60.6 percent of the variation in the four-variable
system, while the second dimension with λ2

.= 3.232 accounts for 39.4 percent of the
total variation in the four-variable system. The LDF mean vectors for the Elementary,
Middle, and High School levels, obtained by multiplying the LDF weights by the
group means for each outcome variable, are given below. Figure 8.1 provides a plot
of the LDF mean vectors.

Elementary Middle High
School School School

LDF1 −14.7 −14.0 −18.8
LDF2 −7.8 −11.9 −10.3

From Figure 8.1 it appears that the High School teachers differ from both the
Elementary and Middle School teachers on the first dimension, while Elementary
teachers differ from both the Middle School and High School teachers on the second
dimension.

To define the dimensions on which the groups differ, the structure r’s (reported in
the output by Correlations between DEPENDENT and canonical variables Canonical
Variable) may be examined. The first dimension appears to be defined by variables Y3
and Y4, and the second dimension is defined by variables Y1 and Y2. Because variables
Y3 andY4 assess stress associated with working with parents and students, respectively,
we might label this dimension Nonprofessional Source of Stress. Variables Y1 and Y2
assess stress associated with working with administrators and teachers, respectively,

Figure 8.1 LDF plot for the three school levels.
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so we might label the second dimension Professional Source of Stress. To make
statistical comparisons among the three School Levels, focus tests are needed, and
we turn to those analyses next.

8.6 COMPUTER APPLICATION II

The following SPSS syntax for contrasts in a factorial design yields two sets of
contrasts. The first contrast statement for grouping variable L requests two contrasts,
one pairwise and the other complex. The pairwise contrast compares the centroids
of Middle School teachers with the centroid of High School teachers. The complex
contrast compares the centroid of Elementary School teachers with the mean centroid
of Middle School and High School teachers combined. The second contrast statement,
again for L, requests two additional pairwise contrasts comparing the centroids of
Elementary School with Middle School teachers, and comparing the centroids of
Elementary School with High School teachers. Because the number of contrasts that
can be requested on each contrast statement is limited to the degrees of freedom
for the factor, all pairwise contrasts among levels of a grouping variable cannot be
requested on a single contrast statement. In our example we chose to request one
complex contrast and all possible pairwise contrasts among levels of the L grouping
variable. The SPSS commands were defined in Section 4.5.

SPSS SYNTAX FOR COMPUTING MAIN EFFECT
CONTRASTS IN A FACTORIAL DESIGN

manova
Y1 Y2 Y3 Y4 by L(1,3) G(1,2)
/print=signif(multiv eigen dimenr efsize)
/discrim=raw cor
/contrast(L)=special(1 1 1, 0 1 −1, 1 −.5 −.5)
/design G by L G L(1) L(2)
/contrast(L)=special(1 1 1, 1 −1 0, 1 0 −1)
/design G byL G L(1) L(2).

OUTPUT

Analysis: Complex Contrast Elementary School vs. Middle School
and High School

EFFECT .. L(2)
Multivariate Tests of Significance (S = 1, M = 1 , N = 24 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .77670 44.34929 4.00 51.00 .000
Hotellings 3.47838 44.34929 4.00 51.00 .000
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Wilks .22330 44.34929 4.00 51.00 .000
Roys .77670
Note.. F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size
(All) .777

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 3.478 100.000 100.000 .881
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1
Y1 −.637
Y2 −.355
Y3 .135
Y4 −.484
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Correlations between DEPENDENT and canonical variables

Canonical Variable
Variable 1
Y1 −.894
Y2 −.809
Y3 −.398
Y4 −.336
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Complex Contrast—Elementary School vs. Middle School
and High School

The contrast results provide evidence to indicate a generalizable difference in
reported stress of Elementary teachers versus Middle and High School teachers,
� = .223, F (4, 51)

.= 44.349, P ′ .= .000, τ 2
adj

.= .760. An examination of the struc-
ture r’s indicates that the construct is defined primarily by the Administrator (Y1) and
Colleague (Y2) scales.

Analysis: Pairwise Contrast—Middle School vs High School

EFFECT .. L(1)
Multivariate Tests of Significance (S = 1, M = 1 , N = 24 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .82514 60.16688 4.00 51.00 .000
Hotellings 4.71897 60.16688 4.00 51.00 .000
Wilks .17486 60.16688 4.00 51.00 .000
Roys .82514
Note.. F statistics are exact.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size
(All) .825
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 4.719 100.000 100.000 .908
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1
Y1 .663
Y2 −.496
Y3 −.851
Y4 −.266
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Correlations between DEPENDENT and canonical variables

Canonical Variable
Variable 1
Y1 .174
Y2 .021
Y3 −.845
Y4 −.801
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Pairwise Contrast—Middle School vs. High School

The results of the analysis contrasting Middle School and High School teachers indi-
cate these school levels differ in their reported levels of stress, �

.= .175, F (4, 51)
.=

60.167, P ′ .= .000, τ 2
adj

.= .812. Examining the structure r’s indicates that Parents
(Y3) and Students (Y4) with structure r’s equaling −.845 and −.801, respectively,
define the construct that separates these two School Levels. Thus, these results indicate
that stress from nonprofessional interactions separate teachers at the Middle School
and High School levels.

Analysis: Pairwise Contrast—Elementary School vs. High School

EFFECT .. L(2)
Multivariate Tests of Significance (S = 1, M = 1 , N = 24 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .81176 54.98106 4.00 51.00 .000
Hotellings 4.31224 54.98106 4.00 51.00 .000
Wilks .18824 54.98106 4.00 51.00 .000
Roys .81176
Note.. F statistics are exact.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size
(All) .812

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 4.312 100.000 100.000 .901
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1
y1 −.149
y2 −.536
y3 −.340
y4 −.516
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Correlations between DEPENDENT and canonical variables

Canonical Variable
Variable 1
y1 −.604
y2 −.618
y3 −.751
y4 −.680
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Pairwise Contrast—Elementary vs. High School

The contrast analysis comparing Elementary School with High School teachers indi-
cates the observed difference in LDF centroids is generalizable to the populations
they represent, �

.= .188, F (4, 51)
.= 54.981, P ′ .= .000, τ 2

adj
.= .798. The structure

r’s for the LDF has a narrow range between −.604 and −.751, indicating that all four
areas of stress contribute to the definition of the stress construct separating Elementary
School and High School teachers.

Analysis: Pairwise Contrast—Elementary School vs. Middle School

EFFECT .. L(1)
Multivariate Tests of Significance (S = 1, M = 1 , N = 24 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .76552 41.62631 4.00 51.00 .000
Hotellings 3.26481 41.62631 4.00 51.00 .000
Wilks .23448 41.62631 4.00 51.00 .000
Roys .76552
Note.. F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Multivariate Effect Size
TEST NAME Effect Size
(All) .766
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 3.265 100.000 100.000 .875
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1
Y1 .968
Y2 .019
Y3 −.632
Y4 .272
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Correlations between DEPENDENT and canonical variables

Canonical Variable
Variable 1
Y1 .904
Y2 .735
Y3 −.152
Y4 −.180
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Pairwise Contrast—Elementary vs. Middle School

Self-reported levels of stress are different between Elementary and Middle School
level teachers, �

.= .234, F (4, 51)
.= 41.626, P ′ .= .000, τ 2

adj
.= .749. The structure

r’s indicate that the construct separating the two school levels is defined primarily on
the basis of Administrators (Y1) and Colleagues (Y2).

8.7 NONORTHOGONAL DESIGN

With two or more grouping variables, a researcher may have what is termed a
nonorthogonal design, either as part of a research plan or because of complexities
associated with data collection. For a two-factor A-by-B design, let nkj denote the
frequency (i.e., number of analysis units) for cell (k, j ), let nk. denote the frequency
for row k, let n.j denote the frequency for column j , and let N denote the total sam-
ple size. Then, a two-factor design is said to be orthogonal if for any row–column
combination,

nkj = nk.n.j

N
,

and otherwise nonorthogonal.An implication of nonorthogonality is that the test statis-
tics (univariate or multivariate) for the A × B, A, and B effects are not independent.
Thus, statistics other than the usual test statistics are used, depending on the type of
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hypotheses (involving weighted or unweighted means or mean vectors) one chooses
to test. This testing issue has been reviewed extensively for the univariate situation
(see, e.g., Maxwell and Delaney, 2000, pp. 271–297) and will not be covered here.
For a multivariate analysis, the two more relevant test strategies may be implemented
via the SPSS MANOVA and SAS GLM programs.

8.8 OUTCOME VARIABLE ORDERING AND DELETION

Variable ordering may be particularly informative in the context of a two-factor design.
In a two-factor design there are three sets of effects that are of poterntial interest: the
effect associated with the two-factor interaction, plus the effects associated with each
of the two factors. Finding that one or two variable are relatively more important for
one set of effects, whereas one or two other variables are important of a different set of
effects may be substantitively revealing. But how does one go about assessing relative
variable importance in a two-factor setting? The most straightforward approach may
be to conduct p (p − 1) variable analyses.

For example, consider the Ethington data (3GED) in Appendix A that involves
a Race (3 levels)-by-Grade (3 levels) design with nine outcome variables. To
order the variables, then, nine eight-variable analyses would be conducted. (These
normal-based analyses are conducted for illustrative purposes.) Results of the nine
analyses are summarized in Table 8.7. It is found that there is no “real” Race-by-
Grade interaction effect [�

.= .899, F(36, 972.4)
.= 0.743, P

.= .866, τ 2
adj

.= .000].
Therefore, the relative contribution of the nine outcome variables to the interaction
effect is not considered. It is judged that the Race effect [�

.= .799, F(18, 494)
.=

3.261, P
.= .000, τ 2

adj
.= .074] and the Grade effect [�

.= .886, F(18, 494)
.= 1.707,

P
.= .000, τ 2

adj
.= .026] are both “real.” From the two sets of “eye ball” variable ranks,

it might be concluded that Y5 (Student–Faculty Effort) does not contribute much to the
Race effect, but does contribute some to the Grade effect. It might also be concluded

TABLE 8.7 �(i) Values for the Two-Factor (3 × 3) Ethington
Data

Race × Grade Race Grade

Deleted �(i) Rank �(i) Rank �(i) Rank

Y1 .909 4.5 .808 9.5 .905 3.5
Y2 .902 4.5 .816 4.5 .904 3.5
Y3 .911 4.5 .851 1.5 .905 3.5
Y4 .912 4.5 .802 9.0 .887 8
Y5 .903 4.5 .808 7.5 .907 3.5
Y6 .904 4.5 .813 4.5 .888 8
Y7 .907 4.5 .814 4.5 .896 3.5
Y8 .907 4.5 .811 4.5 .890 8
Y9 .922 1 .848 1.5 .896 3.5
(None) .899 .799 .886
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that Y3 (Instruction Received) and Y9 (Science Effort) contribute to both Race and
Grade effects.

It is recognized that the two sets of outcome variable ranks for the real Race and
Grade effects are not very “clear-cut.” However, this approach to variable ordering in
a two-factor design may very well reveal some interesting substantive information.
(If the interaction effect is judged to be real, then variable ordering with respect to
main effects of the two factors would be inappropriate—see Section 8.4.)

A McHenry analysis (as described in Section 6.2.2) may also be of interest in a
two-factor (A × B) design context to delete some outcome variables. One could (if the
equal covariance matrix condition is met) examine the �(i) values or the F(i) values
for the p outcome variables with respect to the AB effects, the A effect, and the B

effect to determine if one or more outcome variables might be deleted. (Group contrast
effects may also be considered.) Of course, one would delete only the variable(s) that
have “low” ranks across all effects of interest.

8.9 SUMMARY

In this chapter we generalized the multivariate procedures discussed in the single
grouping variable case (Chapters 3 to 5) to the case where analysis units are grouped
on the basis of two grouping variables. Additional grouping variables could be added
with little change in the data analysis steps. The additional grouping variables would
just add greater complexity in the calculations and interpretation. Because our example
involved an orthogonal design, the generalization was straightforward. If the design
is nonorthogonal, the calculations are more complex, and additional care must be
given with respect to the interpretation of the results. The use of computer software
(e.g., SPSS) eliminates the computational difficulty but the interpretation cautions
remain.

Technical Notes
1. Simple Effects One data-analytic approach that is often taken in a two-

grouping-variable design, when a statistically significant interaction is identified, is to
reconceptualize the MANOVA model and recalculate the sums-of-squares. Consider
a study having grouping variables G and L. In the new model, the sum-of-squares
associated with the interaction effect (G × L) are combined with the sum-of-squares
for a main effect, G, and a new set of sums-of-squares is computed. The sum-of-
squares for the second main effect, L, is unaffected. The new sum of squares is used
to examine differences between levels of variable G at each level of variable L. Such
analyses are referred to as simple effects. Similar model reconceptualizations can be
realized with higher order factorial designs.

In this note we only present the syntax for conducting a simple effects analysis
using the SPSS MANOVA program and the output using the school stress data that
were analyzed earlier. The interpretation of the results would be similar to our earlier
analysis.
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SPSS SYNTAX FOR SIMPLE EFFECTS

manova
Y1 Y2 Y3 Y4 by L(1,3) G(1,2)
/print=signif(multiv eigen dimenr efsize)
/discrim=raw cor
/design G, L w G(1), L w G(2)
/design L G w L(1) G w L(2) G w L(3).

/design G, L w G(1), L w G(2) this design statement requests an analysis of the
differences among levels of variable L within level 1 of variable G and within level
2 of variable G. The second design statement requests an analysis of differences
between levels of variable G within levels 1, 2, and 3 of variable L.

The design statement used here is an alternative conceptualization of the MANOVA
model, which examines differences between levels of variable G for each level of
variable L. Typically only one model reconceptualization is of interest. It might also
be noted that the simple effects model may be of greater interest than the complete
factorial model. If so, the full factorial model need not be examined. We do not include
the output for the second design statement.

OUTPUT

EFFECT .. L W G(2)

Multivariate Tests of Significance (S = 2, M = 1/2, N = 24 1/2)

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F

Pillais 1.36856 28.17567 8.00 104.00 .000

Hotellings 4.35794 27.23710 8.00 100.00 .000

Wilks .09932 27.70777 8.00 102.00 .000

Roys .70336

Note.. F statistic for WILKS’ Lambda is exact.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Multivariate Effect Size

TEST NAME Effect Size

Pillais .684

Hotellings .685

Wilks .685

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Eigenvalues and Canonical Correlations

Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 2.371 54.408 54.408 .839

2 1.987 45.592 100.000 .816
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Dimension Reduction Analysis

Roots Wilks L. F Hypoth. DF Error DF Sig. of F

1 TO 2 .09932 27.70777 8.00 102.00 .000

2 TO 2 .33480 34.43897 3.00 52.00 .000

Raw discriminant function coefficients

Function No.

Variable 1 2

Y1 .294 −.842

Y2 −.511 −.202

Y3 −.716 .579

Y4 −.396 −.315

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Correlations between DEPENDENT and canonical variables

Canonical Variable

Variable 1 2

Y1 −.199 −.911

Y2 −.273 −.809

Y3 −.904 .091

Y4 −.825 .113

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

EFFECT .. L W G(1)

Multivariate Tests of Significance (S = 2, M = 1/2, N = 24 1/2)

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F

Pillais 1.29164 23.70454 8.00 104.00 .000

Hotellings 3.93322 24.58261 8.00 100.00 .000

Wilks .11939 24.15018 8.00 102.00 .000

Roys .72363

Note.. F statistic for WILKS’ Lambda is exact.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Multivariate Effect Size

TEST NAME Effect Size

Pillais .646

Hotellings .663

Wilks .654

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Eigenvalues and Canonical Correlations

Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 2.618 66.570 66.570 .851

2 1.315 33.430 100.000 .754

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Dimension Reduction Analysis

Roots Wilks L. F Hypoth. DF Error DF Sig. of F

1 TO 2 .11939 24.15018 8.00 102.00 .000

2 TO 2 .43199 22.79105 3.00 52.00 .000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Raw discriminant function coefficients

Function No.

Variable 1 2

Y1 .479 −1.000

Y2 −.608 .009

Y3 −.722 .456

Y4 −.395 −.363

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Correlations between DEPENDENT and canonical variables

Canonical Variable

Variable 1 2

Y1 −.071 −.956

Y2 −.215 −.742

Y3 −.868 −.080

Y4 −.828 −.023

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2. Cell Contrasts In this Note we provide the syntax and output for contrasting
cell centroids. The MANOVA program in SPSS is incapable of testing contrasts
among cell means, but the GLM program can contrast cell means. A disadvantage of
the GLM program, however, is that it does not provide LDFs or structure r’s for the
contrasts.

SPSS SYNTAX FOR CELL CONTRASTS USING THE GENERAL
LINEAR MODEL (GLM) PROGRAM

GLM
Y1 Y2 Y3 Y4 BY G L
/METHOD=SSTYPE(3)
/lmatrix ”test that j1k1=j1k2” L 1 −1 0 G*L 1 −1 0 0 0 0
/lmatrix ”test that j1k1=j1k3” L 1 0 −1 G*L 1 0 −1 0 0 0
/lmatrix ”test that j1k2=j1k3” L 0 1 −1 G*L 0 1 −1 0 0 0
/lmatrix ”test that j1k1=j2k1” G 1 −1 G*L 1 0 0 −1 0 0
/INTERCEPT=INCLUDE
/CRITERIA=ALPHA(.05)
/DESIGN=G L G*L .
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BY G L the GLM program does not require levels of the variables to be specified.
variable G is entered first and variable L is entered second. The order of variable
entry is very important when requesting cell contrasts. The current study has two
levels of variable G and three levels of variable L. With the current variable entry
order the six cells of the design are ordered as follows: j1k1 j1k2 j1k3 j2k1 j2k2
j2k3. The levels of the second variable are changing quicker than the levels of the
variable entered first.
method = SSTYPE(3) is the default SPSS system command to use the unweighted
marginal means or regression approach for computing the sum-of-squares.
/lmatrix is GLM program command to request a test of a contrast.
“test that j1k1 = j1k2” the statement made within quotation marks is a label to
help identify which comparison is being made.
L 1 −1 0 G*L 1 −1 0 0 0 0 are the weights identifying which cells are to be

compared. This contrast compares level 1 with level 2 of variable L both of which
are within level 1 of variable G (j1k1 − j1k2). Because the interest is comparing
levels 1 and 2 of variable L, the first part of the contrast statements identifies the
two levels of variable L that are to be contrasted L 1 −1 0. The second part of the
contrast statement identifies the two cells to be compared; i.e., j1k1 vs. j1k2. The
weights for these cell means are 1 and −1 and weights for the remaining cells are
0, G*L 1 −1 0 0 0 0.
G 1 −1 G*L 1 0 0 −1 0 0 these weights request the contrast between levels 1 and
2 of variable G at level 1 of variable L. The cells that are being compared are j1k1
vs. j2k1.

OUTPUT

Multivariate Tests(c)

Effect Value F Hypothesis df Error df Sig.

Intercept

Pillai’s .998 5144.493(a) 4.000 51.000 .000

Wilks’ .002 5144.493(a) 4.000 51.000 .000

Hotelling 403.490 5144.493(a) 4.000 51.000 .000

Roy’s 403.490 5144.493(a) 4.000 51.000 .000

G Pillai’s .928 163.942(a) 4.000 51.000 .000

Wilks’ .072 163.942(a) 4.000 51.000 .000

Hotelling 12.858 163.942(a) 4.000 51.000 .000

Roy’s 12.858 163.942(a) 4.000 51.000 .000

L Pillai’s 1.596 51.369 8.000 104.000 .000

Wilks’ .040 51.313(a) 8.000 102.000 .000

Hotelling 8.197 51.233 8.000 100.000 .000

Roy’s 4.965 64.545(b) 4.000 52.000 .000
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G*L Pillai’s .089 .602 8.000 104.000 .774

Wilks’ .913 .594(a) 8.000 102.000 .781

Hotelling .094 .586 8.000 100.000 .787

Roy’s .072 .935(b) 4.000 52.000 .451

a Exact statistic b The statistic is an upper bound on F that

yields a lower bound on the significance level. c Design:

Intercept+G+L+G * L

Cell contrast of male Elementary teachers (g1l1) versus male

Middle School teachers (g1l2)

Contrast Results (K Matrix)(a)

Contrast Dependent Variable

y1 y2 y3 y4

L1 Contrast Estimate −3.800 −2.500 .300 .500

Hypothesized Value 0 0 0 0

(Estimate - Hypothesized) −3.800 −2.500 .300 .500

Std. Error .483 .427 .419 .443

Sig. .000 .000 .478 .264

95\% Lower Bound −4.768 −3.357 −.541 −.387

Upper Bound −2.832 −1.643 1.141 1.387

a Based on the user-specified contrast coefficients (L’) matrix:

test that j1k1=j1k2

Multivariate Test Results

Value F Hypothesis df Error df Sig.

Pillai’s .572 17.064(a) 4.000 51.000 .000

Wilks’ .428 17.064(a) 4.000 51.000 .000

Hotelling 1.338 17.064(a) 4.000 51.000 .000

Roy’s 1.338 17.064(a) 4.000 51.000 .000

a Exact statistic

Cell contrast of male Elementary School teachers (j1k1) versus

male High School teachers (j1k3)

Contrast Results (K Matrix)(a)

Contrast Dependent Variable

y1 y2 y3 y4

L1 Contrast Estimate −2.800 −2.500 3.600 −3.500

Hypothesized Value 0 0 0 0

(Estimate - Hypothesized) −2.800 −2.500 3.600 −3.500

Std. Error .483 .427 .419 .443

Sig. .000 .000 .478 .264

95\% Lower Bound −3.668 −3.357 −4.441 −4.387

Upper Bound −1.732 −1.643 −2.759 −2.613
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a Based on the user-specified contrast coefficients (L’) matrix:

test that j1k1=j1k3

Multivariate Test Results

Value F Hypothesis df Error df Sig.

Pillai’s .681 27.165(a) 4.000 51.000 .000

Wilks’ .319 27.165(a) 4.000 51.000 .000

Hotelling 2.131 27.165(a) 4.000 51.000 .000

Roy’s 2.131 27.165(a) 4.000 51.000 .000

a Exact statistic

Cell contrast of male Middle School teachers (j1k2) versus male

High School teachers (j1k3)

Contrast Results (K Matrix)(a)

Contrast Dependent Variable

y1 y2 y3 y4

L1 Contrast Estimate 1.100 .000 −3.900 −4.000

Hypothesized Value 0 0 0 0

(Estimate - Hypothesized) 1.100 .000 −3.900 −4.000

Std. Error .483 .427 .419 .443

Sig. .027 1.000 .000 .000

95\% Lower Bound .132 −.857 −4.741 −4.887

Upper Bound 2.068 .857 −3.059 −3.113

a Based on the user-specified contrast coefficients (L’) matrix:

test that j1k2=j1k3

Multivariate Test Results

Value F Hypothesis df Error df Sig.

Pillai’s .709 30.994(a) 4.000 51.000 .000

Wilks’ .291 30.994(a) 4.000 51.000 .000

Hotelling 2.431 30.994(a) 4.000 51.000 .000

Roy’s 2.431 30.994(a) 4.000 51.000 .000

a Exact statistic

Cell contrast of male Elementary School teachers (j1k1) versus

female Elementary School teachers (j2k1)

Contrast Results (K Matrix)(a)

Contrast Dependent Variable

y1 y2 y3 y4

L1 Contrast Estimate −3.300 −.300 2.500 4.500

Hypothesized Value 0 0 0 0

(Estimate - Hypothesized) −3.300 −.300 2.500 4.500
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Std. Error .483 .427 .419 .443

Sig. .000 .486 .000 .000

95\% Lower Bound −4.268 −1.157 1.659 3.613

Upper Bound −2.332 .557 3.341 5.387

a Based on the user-specified contrast coefficients (L’) matrix:

test that j1k1=j2k1

Multivariate Test Results

Value F Hypothesis df Error df Sig.

Pillai’s .793 48.990(a) 4.000 51.000 .000

Wilks’ .207 48.990(a) 4.000 51.000 .000

Hotelling 3.842 48.990(a) 4.000 51.000 .000

Roy’s 3.842 48.990(a) 4.000 51.000 .000

a Exact statistic

3. The test strategy for a two-factor design suggested here is the one often suggested
in the univariate context (e.g., Maxwell and Delaney, 2000, p. 263). The strategy
of examining interaction effects first, followed by either main effects (if interaction
effects are not generalizable) or simple effects (if interaction effects are generalizable)
is advocated for interpretation reasons, not for statistical reasons. Tukey (1991) has
suggested, in a univariate context, a different strategy. He suggests the investigation
of conditional simple effects. For example, simple G effects at, say, level j1 are
conditioned on the main G effects; that is, the simple effects are adjusted for the
main effects, or the simple effects are investigated in the presence of the main effects.
This may be opposed to the strategy above, which implies investigating simple G

effects at level k1 ignoring the main G effects. Discussions of details of investigating
conditional simple effects in a multivariate context are not known to be available.

Definition Latin square: Roman in conservative garb.

EXERCISES

1. Consider an eight-variable, 3 × 4 MANOVA situation.

(a) How many sets of LDFs may be obtained?

(b) How many LDFs in each set?

2. Using the data in Table 8.2, provide the following vectors that would be used to
compute the main effect and interaction hypothesis SSCP matrices:

(a) y.11

(b) y..1

(c) y.1.

(d) y...
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3. Using the data in Table 8.2 compute HG.

Exercises 4 to 10 refer to a 2 × 3 (A × B) completely randomized factorial
design with n = 15 and four outcome measures.

4. Suppose the eigenvalues for the product matrix E−1HA×B are .080 and .005.
Compute:

(a) Wilks �

(b) F

(c) ν1 and ν2

5. For the A main effect � equals .983. What is the canonical correlation between
the outcome measures and variable A?

6. The eigenvalues, canonical correlations, and dimension reduction analysis is
reported below for the B main effect. How many dimensions would you con-
sider in interpreting the structure underlying the resultant group differences? On
what numerical results do you base your answer?

Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 1.219 97.579 97.579 .741
2 .030 2.421 100.000 .171

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Dimension Reduction Analysis
Roots Wilks L. F Hypoth. DF Error DF Sig. of F
1 TO 2 .43738 10.36923 8.00 162.00 .000
2 TO 2 .97064 .82691 3.00 82.00 .483
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

7. Use the eigenvalues reported in Exercise 6 to compute the Serlin adjusted ξ2

effect size index.

8. The eigenvalue for a pairwise contrast between levels 1 and 3 of variable B equals
.576. What does the squared canonical correlation equal?

9. Given the eigenvalue in Exercise 8, using any of the four multivariate test cri-
teria, what would the F statistic for testing the hypothesis of no difference
among centroids equal? For this hypothesis test, what is the number of degrees
of freedom?

10. If the researcher was interested in comparing levels 1 and 2 of variable B within
level 2 of variable A (cell means contrast), state the SPSS/lmatrix command to
provide this analysis. Assume variable A is entered first.
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Computer Applications

Exercises 11 to 20 require the analysis of the 5-group Ethington data set (5GED)
described in Appendix A. For these exercises the researchers were interested in the
analysis of a factorial design with Race (3 levels) and Grade (5 levels) as the group-
ing variables. Use the SPSS (or SAS) computer software package to compare group
centroids based on the 9 outcome variables (Counselor Interaction,Writing and Speak-
ing Skills, Self-Understanding, Instruction Received, Library Effort, Student–Faculty
Effort, Interstudent Effort, Art/Music/Theater Effort, Writing Effort, and Science
Effort).

11. Analyze the data set to test the assumption of homogeneous covariance
matrices.

(a) What is the numerical value of the Box M statistic?

(b) What are the numerical values of χ2, degrees of freedom, P value?

(c) Is there a “relationship” between the sample size and the log determinants of
the cell covariance matrices?

(d) Based on these results, is the statistical validity of the results questionable?

12. Is there strong evidence of an interaction between Race and Grade with respect
to the group centroids?

(a) Provide �, F , degrees of freedom, and P value.

(b) State the value of the adjusted and unadjusted ξ2.

13. Is there strong evidence of a Race main effect?

(a) Provide statistical support for your answer including �, F , degrees of
freedom, and P value.

(b) Provide an adjusted and unadjusted effect size index value.

14. How many dimensions are needed to describe Race group separation?

(a) What proportion of variation in the 9-variable system is explained by each
of the constructs?

(b) What proportion of variation in each identified construct is explained by the
Race grouping variable?

(c) What conclusion regarding the number of constructs is needed to describe
group separation based on the Dimension Reduction Analysis?

15. Is there evidence of a Grade main effect?

(a) Provide statistical support for your answer including �, F , degrees of
freedom, and P value.

(b) Provide an unadjusted and adjusted effect size index.
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16. How many dimensions are needed to describe Grade group separation?

(a) What proportion of variation in the 9-variable system is explained by each
meaningful construct?

(b) What proportion of variation in each identified construct is explained by the
Grade grouping variable?

(c) What conclusion is reached regarding the number of constructs needed
to describe Grade group separation based on the Dimension Reduction
Analysis?

17. For the Grade variable, what outcome variables seem to define each of the
meaningful constructs based on the structure r’s.

18. Is there evidence to indicate a difference between group mean centroids of levels
1 and 5 of the Grade variable? That is, is the contrast of group centroids between
students who generally earn A grades and students who generally earn C or C−
grades significant?

(a) Provide statistical support for you answer including �,F , degrees of freedom,
and P value.

(b) Provide an unadjusted and adjusted effect-size index value.

19. Compare the mean centroids for the levels of Grade within the sample of Black
students. Do the centroids differ?

(a) Provide statistical support for your answer: �, F , degrees of freedom, and
P value.

(b) Provide an unadjusted and adjusted effect size index value.

(c) What proportion of variation in the 9-variable system is explained by each
of the constructs?

(d) What proportion of variation in each identified construct is explained by the
Race grouping variable?

(e) What conclusion is reached regarding the number of constructs needed to
describe group separation based on the Dimension Reduction Analysis?

(f) What variables define the construct(s) that separate the Grade groups?

20. Contrast the centroids of cell means comparing Black students who generally
earn A grades with Black students who generally earn C or C− grades. Is there
evidence of a difference between the centroids?

(a) Provide statistical support for you answer: �, F , degrees of freedom, and P

value.

(b) Provide an adjusted and unadjusted effect size index value.
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Analysis of Covariance

9.1 INTRODUCTION

Up to this point we have been presenting analysis strategies that are appropriate for
studies based on research designs that may be referred to as post-test-only designs.
That is, the only quantitative data available are collected following the assignment
of the analysis units to a level of the grouping variable. While this design is very
common, it can have two major limitations. One limitation of the post-test-only design
is that, if analysis units are not randomly assigned to levels of the grouping variable,
multiple interpretations of the results may be possible. Without random assignment,
the populations being compared are likely to lack initial equivalency. The lack of initial
equivalence, which is sometimes referred to as selection bias, introduces a number
of confounding variables, any one of which can offer an alternative explanation for
observed differences in the response variables, in addition to the grouping variable.
The second limitation with the post-test-only design is that it is very inefficient. That
is, to have good statistical power, large sample sizes are needed unless the grouping
variable effect is very large.

One popular solution for both limitations is to obtain additional quantitative infor-
mation or pretest data on the units before the assignment to the levels of the grouping
variable. [The pretest data need not be the same variable as the response variable, only
that the pretest data be correlated with the response variable(s).] The research design
for such studies is referred to as the multiple group pretest–posttest design. If the units
are not randomly assigned to the levels of the grouping variable, the pretest data can
be used to take into account or “adjust” for initial differences that may exist among
the units on the pretest variable. This “adjustment,” however, may not be sufficient to
compensate for a lack of initial equivalency.A lack of reliability in the pretest data may
result in an underadjustment. In addition, the populations being compared may differ
on other variables that have not been considered. As a result, while the pretest data
may reduce the uncertainty of the interpretation to some degree, the interpretation of

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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group differences must be interpreted cautiously. [See Porter and Raudenbush (1987)
for further discussion.]

When the units are randomly assigned to the levels of the grouping variable, the
pretest data can improve the efficiency of the posttest-only design by reducing the
error variance. How much the error variance is reduced will depend on the correlation
between the pretest and posttest data. Reducing the error variance will increase the
statistical power of the analysis.

The pretest data are referred to as measures on a covariate, and the statistical
procedure for analyzing such data is called analysis of covariance. In this chapter,
after briefly reviewing the univariate analysis of covariance, ANCOVA, we present
the multivariate approach to analysis of covariance, MANCOVA. Our presentation
follows the organization of Chapter 8. We introduce a new research context and a new
data set. Following the univariate review, the multivariate approach is presented. The
multivariate approach begins with a comment on data conditions, followed by the
omnibus test, dimension reduction, and construct identification. We conclude with
contrast analyses. We limit our presentation to a single grouping variable and a sin-
gle covariate. The generalization of MANCOVA to the factorial design and multiple
covariates is straightforward.We do, however, provide the SPSS syntax for conducting
the multiple covariate analysis in the Technical Note at the end of this chapter.

9.2 RESEARCH CONTEXT

A quasi-experimental study was conducted by Baumann et al. (2003) that compared
three approaches for improving student vocabulary skills. Four fifth-grade classes
agreed to participate in the study. One class, n1 = 24, was taught Morphemic analysis
(prefixes), MO; a second class, n2 = 22, was taught to use Context clues, CO; a third
class, n3 = 21, was taught both Morphemic analysis and Context clues, MC; and a
fourth class, n4 = 21, was a traditionally instructed classroom, and served as a Control
group, C.Although classrooms were randomly assigned to the instructional strategies,
students within the classrooms were not randomly assigned. Before beginning the
instructional interventions, all students completed a 40-item vocabulary test, X, which
assessed student prior knowledge of the words they would learn during the study.
In addition, a standardized vocabulary test, Degrees of Word Meaning, was also
completed by the students. (We consider this last variable in the Technical Note at the
end of this chapter.)

Following the instruction period, several posttests were given. Data from the 88
participating students are presented in Table 9.1. (An SPSS data file containing these
data, labeled BAUMANN2, is available at the Wiley website.)

Our discussion focuses on four outcome variables. The first outcome variable, Y1,
was based on a 20-item test, requiring students to provide the definition of words
(a Production task). The words provided were the words taught in the Morphemic
lessons. The second outcome variable, Y2, was based on a 10-item multiple-choice
test requiring students to recognize word meaning (a Recognition task). Words on
this test were words taught in the Morphemic lessons. The third outcome variable,
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TABLE 9.2 Means and Variances for Morphemic Only (MO), Context Only (CO),
Morphemic and Context (MC), and Control (C) Groups on Five Vocabulary Testsa

MO CO MC C
n1 = 24 n2 = 22 n3 = 21 n4 = 21

Vaiable Mean s2 Mean s2 Mean s2 Mean s2

X 19.42 53.123 21.27 54.589 20.19 69.362 19.05 43.448
Y1 15.92 19.645 8.68 26.132 13.48 25.962 7.90 20.490
Y2 8.29 5.607 6.27 6.398 7.76 5.890 5.71 5.014
Y3 8.29 32.737 14.05 33.474 13.14 26.329 8.71 21.614
Y4 6.00 9.217 8.27 5.827 7.14 6.529 6.33 7.633

aX = Pretest using a subset of lesson and transfer words, Y1 = Morphemic Lesson Words—Production;
Y2 = Morphemic Lesson Words—Recognition; Y3 = Context Lesson Words—Production; Y4 = Context
Lesson Words—Recognition.

Y3, was based on a 20-item test requiring students to provide the definition of words
provided. The words on this test were taken from the Context lessons. The fourth
outcome variable, Y4, was based on a 10-item multiple choice test, similar to Y2,
requiring students to recognize the definition of the selected words. Words on this test
were taken from the Context lessons.

The group means and variances on the pretest (X) and the four posttests are pre-
sented in Table 9.2. Although two pretests were administered, our discussion focuses
only on the first pretest, the targeted vocabulary words, X. The data from the second
pretest (Degrees of Word Meaning) are available in a data file labeled BAUMANN2
found at the Wiley website.

9.3 UNIVARIATE ANCOVA

9.3.1 Testing for Equality of Regression Slopes

The analysis of covariance model is based on the assumption that the regression slope
of the outcome variable on the covariate (or pretest) is the same for all populations
being compared. In general, an estimate of the within-group regression slope for
Group j , bjY1|X , is provided by the ratio of the cross products, (CPj ), for the posttest
(Y1) and covariate (X) variables, and the sum-of-squares (SSj ) for the X variable,
[bjY |X = CPjYX

/SSjX
]. Table 9.3 provides the separate SSCPj matrices for each

group as well as the E matrix, using only one outcome variable, Y1.
Using these data, the four regression slopes are computed as:

Morphemic Only b1Y1|X = 467.833/1221.833 = .383,

Context Only b2Y1|X = 597.909/1146.364 = .522,

Morphemic and Context b3Y1|X = 680.095/1387.238 = .490,

Control b4Y1|X = 536.095/868.952 = .617.



“c09” — 2006/3/21 — page 167 — #5

9.3 UNIVARIATE ANCOVA 167

TABLE 9.3 SSCP and E Matricesa

Morphemic Only Context Only

Y1 X Y1 X

Y1 451.833 Y1 548.773
X 467.833 1221.833 X 597.909 1146.364

Morphemic and Context Control

Y1 X Y1 X

Y1 519.238 Y1 409.810
X 680.095 1387.238 X 536.095 868.952

E

Y1 X

Y1 1929.654
X 2281.932 4624.387

aY1 = Morphemic Lesson Words—Production; X = Pretest using Lesson Words.

To determine whether the observed differences in the sample slope estimates
are generalizable to the population slopes, a statistical test for the equality of
the population slopes can be carried out. Specifically, the null hypothesis can be
written as:

H0: βMOY1|X = βCOY1|X = βMCY1|X = βCY1|X .

To test this hypothesis, an F statistic can be computed as:

F =

J∑

j=1

(CPj(Y1X)
)2

SSj(X)

− (CP(Y1X))
2

SS(X)

J − 1

SSY −
J∑

j=1

(CPj(Y1X)
)2

SSj(X)

(N − J ) − J

. (9.1)

For our data we have

J∑

j=1

(CPj(Y1X)
)2

SSjX

.= (467.8)2

1221.8
+ (597.9)2

1146.9
+ (680.1)2

1387.2
+ (536.1)2

869.0
.= 1155.102,

(CP(Y1X))
2

SSX

.= (2281.932)2

4624.387
.= 1126.033,

SSY1

.= 1929.654.

F
.= (1155.102 − 1126.033)/(4 − 1)

(1929.654 − 1155.102)/(88 − 4) − 4
.= 9.690

9.682
.= 1.001.
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The P value associated with F(3, 80)
.= 1.001 is .396. Based on these results

there is little evidence to conclude that the population slopes are unequal. This basic
assumption for analysis of covariance appears to be met.

9.3.2 Omnibus Test of Adjusted Means

To test the hypothesis of the equality of postintervention means, after considering
the pretest variable data, the sum-of-squares for the posttest variable is adjusted as a
function of the sum-of-squares for the pretest and the square of the cross-products of
X and Y . Specifically, the adjusted total sum-of-squares, SS∗

YTotal
, is

SS∗
Y1Total

= SSY1Total
−

[
(CP(Y1X)Total)

2

SSXTotal

]

,

where the total SSCP matrix is obtained by ignoring group membership and using
the grand mean of each variable to compute deviation scores (grand mean centered).
For the data in Table 9.1 the grand mean for X equals 19.98 and the grand mean for
Y1 equals 11.61. The SSCPTotal for the Y1, X matrix is

SSCPTotal
.=




Y1 X

Y1 2924.864
X 2221.227 4687.955





SS∗
Y1Total

.= 2924.864 − (2221.227)2

4687.955
.= 1872.412.

The adjusted error sum-of-squares is computed as:

SS∗
Y1E

= SSY1E
−

[
(CP(Y1X)E )2

SSXE

]

.

The error SSCP, E, was computed earlier (see Table 9.3) as:

E .=



Y1 X

Y1 1929.654
X 2281.932 4624.387



 ,

and

SS∗
Y1E

.= 1929.654 − (2281.932)2

4624.387
.= 803.621.

The adjusted hypothesis sum-of-squares, SS∗
H , is the difference between the adjusted

total sum-of-squares and the adjusted error sum-of-squares:

SS∗
H = SS∗

Y1Total
− SS∗

Y1E
.
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TABLE 9.4 Analysis of Covariance Summary Table

Source of Sum-of- Degrees of Mean
Variance Squares Freedom Square F P

Group 1068.791 3 356.264 36.80 .000
Error 803.621 83 9.682
Total 1872.412 87

Using the adjusted sum-of-squares computed above, the adjusted hypothesis sum-
of-squares is

SS∗
H

.= 1872.412 − 803.621
.= 1068.791.

Table 9.4 provides an ANCOVA summary including the mean squares, F ratio, and
P value. The results of this analysis indicates that there is sufficient evidence to
conclude that the observed covariate X adjusted differences among the four groups
on Y1 are generalizable to the four populations. To quantify the magnitude of the
effect, η2 may be computed as the ratio of the SS∗

H /SSY1 . For our data, generalized
η2, η2

G, is 1068.791/2924.864
.= .364. Note the denominator for η2 is the unadjusted

total sum-of-squares for the outcome variable (see Olejnik and Algina, 2003). The
observed differences appear to be both statistically significant and of meaningful
magnitude.

Contrasts among the adjusted means can be tested to identify specific differences
between instructional approaches. An adjusted mean is computed as:

Y
∗
.j = Y .j − b(X.j − X..), (9.2)

where Ȳ.j = posttest mean of Group j

b = pooled or common regression slope of the posttest on the
covariate (i.e., pretest)

X.j = covariate mean for Group j

X.. = grand mean on the covariate

The pooled regression slope is the ratio of the error cross-product to the sum-of-
squares for the pretest variable, b = CPY1X(E)

/SSX(E)

.= 2281.932/4624.387
.= .493.

Table 9.5 provides the adjusted means for the four participating groups.

TABLE 9.5 Adjusted Means for the Four Participating Groups

Group Adjusted Mean

Morphemic Only (MO) 15.92 − .493(19.42 − 19.98)
.= 16.20

Context Only (CO) 8.68 − .493(21.27 − 19.98)
.= 8.04

Morphemic and Context (MC) 13.48 − .493(20.19 − 19.98)
.= 13.38

Control (C) 7.91 − .493(19.05 − 19.98)
.= 8.37
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If three contrasts comparing each of the intervention classrooms with the instructed
control group were of interest, the values of the three contrasts would equal

ψ̂1 = Y
∗
.1 − Y

∗
.4

.= 6.20 − 8.37
.= 7.83,

ψ̂2 = Y
∗
2 − Y

∗
.4

.= 8.04 − 8.37
.= −.33,

ψ̂3 = Y
∗
.3 − Y

∗
.4

.= 13.38 − 8.37
.= 5.01.

To test whether these observed differences are generalizable to the populations, an F

test can be computed:

F = ψ̂2
c

MSE∗



J∑

j=1

a2

nj

+ (X.j − X.j ′)2

SSX





(9.3)

For the first contrast (c = 1), ψ̂1, the F ratio equals

F
.= 7.832

9.682[(1)2/24 + (−1)2/21] + (19.42 − 19.05)2/4624.387
.= 70.857

These results indicate that the observed difference between the Morphemic Only
group and the Control group is generalizable to the corresponding populations
[F(1, 83)

.= 70.857, P
.= .000, d

.= 1.633]. For the contrast between CO and C,
F(1, 83)

.= .113, P
.= .738, d

.= −.069, and for the contrast between the MC and
C groups, F(1, 83)

.= 27.135, P
.= .000, d

.= 1.045. Using the Bonferroni adjust-
ment for the multiple tests, the results provide sufficient evidence to conclude that the
difference between MO and C and between MC and C are generalizable to the pop-
ulations, while there is insufficient evidence to conclude that the observed difference
between the CO and C groups is generalizable to these populations.

9.4 MULTIVARIATE ANCOVA (MANCOVA)

9.4.1 Matrix Calculations

We begin our presentation by summarizing the data in Table 9.1 in terms of the total
and error sum-of-squares and cross-products (SSCP) matrices. Both of these matrices
have the same general form, as follows.

SSY1 CPY1Y2 CPY1Y3 CPY1Y4 | CPY1X|
CPY2Y1 SSY2 CPY2Y3 CPY2Y4 | CPY2X|
CPY3Y1 CPY3Y2 SSY3 CPY3Y4 | CPY3X|
CPY4Y1 CPY4Y2 CPY4Y3 SSY4 | CPY4X||
CPXY1 CPXY2 CPXY3 CPXY4 | SSX
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The upper left 4 × 4 quadrant contains the sum-of-squares and cross products for
the outcome variables. The 4 × 1 and 1 × 4 vectors contain identical elements rep-
resenting the cross products of the covariate X and each of the outcome variables.
Finally, the lower right element is the sum-of-squares for the covariate. The Total
SSCP matrix, T, is determined using the deviation scores of each observation from
the grand mean of each variable. This (5 × 5) matrix can be summarized as:

T = TYY | TYX|
TXY | TXX

(9.4)

Similarly, within each of the J groups, an error sum-of-squares and cross-product
matrix, Ej , is computed using deviation scores from each of the respective group
means (group mean centered). These error matrices can be represented as:

Ej = Ej(YY )
| Ej(YX)|

Ej(XY)
| Ej(XX)

, (9.5)

where the subscript j indicates group membership. The (5 × 5) error matrix, E, is
obtained by summing the separate Ej matrices across the J groups:

E =
J∑

j=1

Ej =
[

EYY | EYX|
EXY | EXX

]

. (9.6)

Table 9.6 presents these SSCP matrices for the total, each group error matrix, and the
error matrix.

9.4.2 Testing for Equal Slopes

As presented in the univariate analysis, the analysis of covariance model assumes
that the relationship between the pretest variable and each of the outcome variables
is the same for all levels of the grouping variable. In our case we have four outcome
variables, so a statement to test this assumption may be written as:

H0 :







β1Y1|X
β1Y2 |X
β1Y3|X
β1Y4|X





 =







β2Y1|X
β2Y2 |X
β2Y3|X
β2Y4|X





 =







β3Y1|X
β3Y2 |X
β3Y3|X
β3Y4|X





 =







β4Y1|X
β4Y2 |X
β4Y3|X
β4Y4|X





 .

To test this hypothesis, Wilks � can be computed as

� = |E′|
|E′ + H| , (9.7)
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TABLE 9.6 Sum-of-Squares and Cross-Products for Grand-Mean Centered
(Total), Each of the Group-Mean Centered (MO, CO, MC, and C), and the
Error Matrices

T =











Y1 Y2 Y3 Y4 X

Y1 2924.864
Y2 1040.545 579.818
Y3 1475.614 720.045 3000.989
Y4 722.295 373.318 1233.920 686.443
X 2221.227 1073.091 2863.977 1366.841 4687.955











EMO
.=











Y1 Y2 Y3 Y4 X

Y1 451.833
Y2 149.583 128.958
Y3 431.583 183.958 752.958
Y4 212.000 121.000 346.000 212.000
X 467.833 244.083 799.083 409.000 1221.833











ECO
.=











Y1 Y2 Y3 Y4 X

Y1 548.773
Y2 232.909 134.364
Y3 482.318 258.727 702.955
Y4 205.909 94.364 256.727 122.364
X 597.909 319.364 664.727 232.364 1146.364











EMC
.=











Y1 Y2 Y3 Y4 X

Y1 519.238
Y2 208.381 117.810
Y3 421.571 188.714 526.571
Y4 229.571 106.714 228.571 130.571
X 680.095 300.952 696.429 363.429 1387.238











EC
.=











Y1 Y2 Y3 Y4 X

Y1 409.810
Y2 139.429 100.286
Y3 354.429 125.286 432.286
Y4 202.667 82.000 214.000 152.667
X 536.095 218.286 526.286 298.667 868.952











E .=











Y1 Y2 Y3 Y4 X

Y1 1929.654
Y2 730.302 481.417
Y3 1689.902 756.686 2414.770
Y4 850.147 404.078 1045.299 617.602
X 2281.933 1082.685 2686.525 1303.459 4624.387
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where

H =
J∑

j=1

Ej(YX)
E−1

j(XX)
Ej(XY)

− EYXE−1
XXEXY

E′ = EYY −
J∑

j=1

Ej(YX)
E−1

j(XX)
Ej(XY)

.

The Wilks � can be transformed to an F statistic using Eqs. (3.14) to (3.18) repeated
here for convenience:

F = 1 − �1/s

�1/s

m(s) − p(dfh)

2
+ 1

p (dfh)
,

where

m = dfe − p − dfh + 1

2
and dfh = (J − 1)C,

with C equalling the number of covariates, and

s =
√

p2(df2
h) − 4

p2 + df2
h − 5

.

The statistic has a central F distribution with ν1 = p(dfh) and ν2 = m(s) −
p(dfh)/2 + 1 degrees of freedom. Because the calculation of � is tedious, it is best
left to the computer.

9.5 COMPUTER APPLICATION I

In this section we present the SPSS syntax for the test of equal regression slope
vectors and the calculation of the test statistic. Because we are interested in only
testing the assumption of equal regression slope vectors, basic descriptive statistics
are not requested. The MANOVA command listed here is similar to the one provided
in Section 3.6 for a single-group ANOVA. The covariate is preceded with the SPSS
command “with.” The /design command identifies the sources of variation to be
considered in the linear model.

SPSS SYNTAX FOR REGRESSION SLOPE VECTOR EQUALITY

manova Y1 Y2 Y3 Y4 by group(1, 4) with X
/analysis = Y1 Y2 Y3 Y4
/design = X, group, X by group.
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with X SPSS separates the grouping variables from the covariate(s) with the key
word “with.”
analysis = Y1 Y2 Y3 Y4 specifies the outcome variables to be analyzed using
the model in the design statement.

OUTPUT

Analysis: Homogeneity of Regression Slopes

EFFECT . . X BY GROUP
Multivariate Tests of Significance (S = 3, M = 0, N = 37 1/2)
Test Name Value Approx. F Hypoth. DF Error DF Sig. of F
Pillais .19322 1.35958 12.00 237.00 .186
Hotellings .21527 1.35740 12.00 227.00 .188
Wilks .81564 1.36122 12.00 204.01 .187
Roys .12862

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
EFFECT . . X BY GROUP

Univariate F-tests with (3,80) D. F.
Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F
Y1 29.10680 774.51282 9.70227 9.68141 1.00215 .396
Y2 4.37163 223.56185 1.45721 2.79452 .52145 .669
Y3 15.69371 838.34723 5.23124 10.47934 .49920 .684
Y4 14.47337 235.72726 4.82446 2.94659 1.63730 .187

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Homogeneity of Regression Slopes

The multivariate test for the equality of the regression slope vectors provides little
evidence to indicate that vectors differ, �

.= .816, F (12,204.01)
.= 1.361, P

.= .187.
Although not necessary here, the univariate tests for regression slope homogeneity are
also provided. For each of the outcome variables there is little evidence to indicate
an interaction between the grouping variable and the pretest variable. It might be
noted that the result for the test of equal regression slopes for Y1 on X, F(3, 80)

.=
1.002, P

.= .396 is the same as that reported in Section 9.3.1.

9.6 COMPARING ADJUSTED MEANS—OMNIBUS TEST

In Sections 9.4.2 and 9.5, the assumption of equal regression slope vectors was tested.
The results indicated that there was little evidence to indicate that this basic assump-
tion of the analysis of covariance model was violated. We now proceed to test the
hypothesis that the vectors of adjusted means, or the adjusted centroids, for the four
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populations are equal. This hypothesis may be written as:

H0: µ1Y |X = µ2Y |X = µ3Y |X = µ4Y |X,

where µjY |X represents the vector of means on the Y outcome variables adjusted for
the pretest variable, X, in Group j , j = 1, 2, . . . , J .

Any of the four multivariate criteria can be used to test the hypothesis on the
adjusted centroids. The Wilks � is computed as the ratio of the determinant of the
adjusted error matrix, E∗, to the determinant of the adjusted total matrix T∗ (T∗ =
E∗ + H∗),

� = |E∗|
|T∗| . (9.8)

The adjusted error matrix E∗ is computed as:

E∗ = EYY − EYX(EXX)−1EXY , (9.9)

and the adjusted total matrix T∗ is computed as:

T∗ = TYY − TYX(TXX)−1TXY , (9.10)

The Wilks � can then be transformed to an F statistic using Eq. (3.14) and com-
pared to the central F distribution with degrees of freedom equaling ν1 = p (dfh) and
ν2 = m(s) − (p (dfh)/2) + 1. The sum-of-squares and cross-products for the Total
and Error matrices presented in Table 9.6 could be substituted into Eqs. (9.9) and
(9.10) and the Wilks � computed with Eq. (9.8).

Alternatively, an eigenanalysis of the product matrix E∗−1H∗ may be conducted.
Using the resulting eigenvalues, the four multivariate test criteria, discussed in Section
3.5.2, may be computed (see Table 3.3). The calculations are tedious, so we will rely
on SPSS to provide the appropriate statistics. In the next section we provide the SPSS
syntax and the results for the omnibus test.

9.7 COMPUTER APPLICATION II

In this section we present the SPSS syntax for conducting a single grouping variable
multivariate analysis of covariance. The program is essentially the same program as a
single grouping variable multivariate analysis of variance (see Sections 3.6, 5.3, and
5.6). One difference, however, between analysis of variance and analysis of covariance
is that the “adjusted” means are of interest in analysis of covariance. These adjusted
means are obtained using the SPSS command /pmeans.
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SPSS SYNTAX FOR MANCOVA OMNIBUS TEST AND CONSTRUCT
DEFINITION

manova Y1 Y2 Y3 Y4 BY group(1, 4) with X
/print = signif(mulitv eigen dimenr efsize)
/discrim = raw cor
/pmeans.

Note: typically a researcher would be interested in additional cell information and include
the following on the /print command: cellinfo(all) error(sscp cov cor).

/pmeans requests that the adjusted means be reported.

OUTPUT

Analysis: Test of the Relationship Between the Covariate and the OutcomeVariables

EFFECT . . WITHIN CELLS Regression
Multivariate Tests of Significance (S = 1, M = 1 , N = 39)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .71643 50.52808 4.00 80.00 .000
Hotellings 2.52640 50.52808 4.00 80.00 .000
Wilks .28357 50.52808 4.00 80.00 .000
Roys .71643
Note. . F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size

(All) .716
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor. Sq. Cor

1 2.526 100.000 100.000 .846 .716
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Test of the Relationship Between the Covariate and
the Outcome Variables

Although this test is typically of little interest to a researcher, SPSS provides a test for
the vector of regression slopes that relates the outcome variables to the covariate. This
test examines whether the vector of regression slopes, relating each posttest variable
to the covariate, is equal to zero, H0: β = 0. In an experiment where units are ran-
domly assigned to the levels of the grouping variable, the covariate is chosen by the
researcher because it is believed that it is highly related to the outcome variables and,
therefore, would reduce the error variance to increase statistical power. Alternatively,
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in a nonexperimental study where the populations are believed to differ on the covari-
ate, the covariate is included because that difference is believed to offer an alternative
reason for posttest differences, and it must be taken into consideration or controlled.
In either case, a strong relationship between the covariate and each of the outcome
variables is expected. The result of this analysis should only confirm the researcher’s
belief regarding the anticipated relationship.

In the present analysis, there is evidence to support the belief of a relationship
between the covariate and each of the outcome variables, �

.= .284, F (4, 80)
.=

50.528, P
.= .000. Because there is only one covariate, all of the effect size indices

provide the same estimate of the strength of the relationship between the vector of
outcomes and the pretest variable. Here, η2 .= .716. The adjusted effect size measure
equals .702 (1 − [(88 − 1)/(88 − 4 − 1)][1 − .716]).

Analysis: Group Intervention Effect

EFFECT . . GROUP
Multivariate Tests of Significance (S = 3, M = 0, N = 39)
Test Name Value Approx. F Hypoth. DF Error DF Sig. of F
Pillais .99905 10.23537 12.00 246.00 .000
Hotellings 2.99973 19.66493 12.00 236.00 .000
Wilks .20070 14.74665 12.00 211.95 .000
Roys .72474
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size
Pillais .333
Hotellings .500
Wilks .415
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 2.633 87.772 87.772 .851
2 .354 11.785 99.557 .511
3 .013 .443 100.000 .115

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Dimension Reduction Analysis
Roots Wilks L. F Hypoth. DF Error DF Sig. of F
1 TO 3 .20070 14.74665 12.00 211.95 .000
2 TO 3 .72912 4.62017 6.00 162.00 .000
3 TO 3 .98687 .54541 2.00 82.00 .582
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1 2
Y1 .316 −.048
Y2 .169 −.118
Y3 −.147 −.349
Y4 −.273 .301
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Correlations between DEPENDENT and canonical variables
Canonical Variable

Variable 1 2
Y1 .687 −.488
Y2 .398 −.371
Y3 −.252 −.915
Y4 −.197 −.324

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Adjusted and Estimated Means

Variable . . Y1
CELL Obs. Mean Adj. Mean Est. Mean Raw Resid. Std. Resid.

1 15.917 16.196 15.917 .000 .000
2 8.682 8.045 8.682 .000 .000
3 13.476 13.373 13.476 .000 .000
4 7.905 8.366 7.905 .000 .000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Variable . . Y2
CELL Obs. Mean Adj. Mean Est. Mean Raw Resid. Std. Resid.

1 8.292 8.424 8.292 .000 .000
2 6.273 5.971 6.273 .000 .000
3 7.762 7.713 7.762 .000 .000
4 5.714 5.933 5.714 .000 .000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Variable . . Y3
CELL Obs. Mean Adj. Mean Est. Mean Raw Resid. Std. Resid.

1 8.292 8.620 8.292 .000 .000
2 14.045 13.296 14.045 .000 .000
3 13.143 13.022 13.143 .000 .000
4 8.714 9.257 8.714 .000 .000

Variable . . Y4
CELL Obs. Mean Adj. Mean Est. Mean Raw Resid. Std. Resid.

1 6.000 6.159 6.000 .000 .000
2 8.273 7.909 8.273 .000 .000
3 7.143 7.084 7.143 .000 .000
4 6.333 6.597 6.333 .000 .000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Group Intervention Effect

The group-adjusted mean centroids are

MO CO MC C
Y1 16.2 8.0 13.4 8.4
Y2 8.4 6.0 7.7 5.9
Y3 8.6 13.3 13.0 9.3
Y4 6.2 7.9 7.1 6.6

.

The SPSS MANOVA program reports the statistical results for only three of the four
multivariate criteria. All three of the multivariate criteria provide evidence to indi-
cate that the observed differences among the four group centroids are generalizable
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to the populations they represent, �
.= .201, F (12, 211.95)

.= 14.747, P
.= .000,

τ 2
adj

.= .387, (τ 2
adj

.= 1 − [(88 − 1)/(88 − 4 − 1)][1 − .415]).
An examination of the dimensionality of our system of variables indicates that

the first two dimensions or constructs explain 99.6 percent of the variation in the
adjusted outcome variable system, while the third dimension explains less than .5
percent of the variance. The squared canonical correlation for the first dimension
equals .724 (.8512), which can be interpreted as meaning that 72.4 percent of the
variation in the first construct is associated with the grouping variable. Similarly, the
squared canonical correlation for the second dimension equals .261, indicating that
26.1 percent of the variation in the second construct is associated with the grouping
variable. Less than 1 percent of the variation in the third construct is associated with
the grouping variable. The dimension reduction analysis indicates that in our system
of variables, at most two dimensions are needed to describe the separation of our four
groups, �

.= .729, F (6, 162)
.= 4.62, P

.= .000.
To define the two constructs that maximize the separation among the four groups,

the structure r’s can be examined. The outcome variable with the highest correlation
(.687) with the first construct is Y1 while the outcome variable with the highest
correlation (−.915) with the second construct is Y3. The first construct is defined
by the production task (providing definitions) of the morphemic lesson words, while
the second construct is defined by the production task of the context lesson words.
To further understand the group separation on these two constructs, a plot of the
LDF mean vectors is helpful. The LDF mean vectors are obtained by multiplying the
raw discriminant function weights by the adjusted group means on the four outcome
variables. The resulting LDF mean vectors for our data are

MO CO MC C

Dimension 1 3.3 −.4 1.7 .5
Dimension 2 −2.9 −3.4 −4.0 −2.4

A plot of the LDF mean vectors is presented in Figure 9.1.

Figure 9.1 Two dimensional plot of adjusted group centroids.
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Figure 9.1 shows that on the first dimension (Morphemic lesson words), the MO
and MC groups differ noticeably from the CO and C groups, and the MO group differs
in some degree from the MC group. For the second dimension, group separation is
not quite as clear. However, the MC and CO groups appear different than the MO
and C groups. Further, the MC group appears to differ to some degree from the CO
group. Specific comparisons between groups can be further examined by a contrast
analysis, which we present next.

9.8 CONTRAST ANALYSIS

We remind the reader that when specific comparisons, either pairwise or complex,
are of interest, the omnibus test is not a necessary preliminary test for examining
those contrasts. On the other hand, testing a limited number of contrasts after
examining the data for “interesting” comparisons with or without the use of a
Bonferroni-type adjustment for the number of hypotheses tested, is not appropriate.
Testing a limited number of contrasts specified a priori is often an excellent analy-
sis strategy, but picking comparisons because they look “significant” invalidates the
probability value reported.

Hypothesis tests on specified contrasts can be conducted using a procedure sim-
ilar to that presented for contrasts in the MANOVA context. That is, the adjusted
hypothesis (H

ψ̂
∗) sum-of-squares and cross-products matrix can be computed using

Eq. (4.13), with the estimated contrast, ψ̂ , based on differences among the adjusted
means:

H
ψ̂

∗ = ψ̂
∗
ψ̂

∗′

J∑

j=1

a2
j

nj

. (9.11)

Here ψ̂
∗ = ∑J

j=1 aj y∗
j , and y∗

j is a vector of adjusted means for Group j [y∗
j =

y.j − b(x.j − x..)].
The hypothesis, H0: ψ∗ = 0, can be tested using any of the four multivariate test

criteria, Wilks, Bartlett–Pillai, Hotelling–Lawley, or Roy. The results of the eigen-
analyis of the product matrix E∗−1H∗

ψ̂
provides the eigenvalues needed to compute

the test statistics. Because dfh = 1 for all contrasts, all four tests result in the same
computed F and P values. We rely on SPSS for the computations of the test statistics.

9.9 COMPUTER APPLICATION III

The SPSS syntax for MANCOVA contrasts are the same as those used for MANOVA
contrasts in Section 4.5. The /contrast command is used along with MANCOVA
commands presented in Section 9.7.
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SPSS SYNTAX FOR MANCOVA CONTRAST ANALYSES

manova Y1 Y2 Y3 Y4 by group(1, 4) with X
/print = signif(mulitv eigen dimenr efsize)
/discrim = raw cor
/pmeans
/contrast(group) = special(1 1 1 1, 1 0 0 −1, 0 1 0 −1, 0 0 1 −1)
/design group(1) group(2) group(3).

OUTPUT

Analysis: Pairwise Contrast MC vs. C

EFFECT . . GROUP(3)
Multivariate Tests of Significance (S = 1, M = 1 , N = 39 )
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .33795 10.20932 4.00 80.00 .000
Hotellings .51047 10.20932 4.00 80.00 .000
Wilks .66205 10.20932 4.00 80.00 .000
Roys .33795
Note.. F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size

(All) .338
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 .510 100.000 100.000 .581
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Raw discriminant function coefficients
Function No.

Variable 1
Y1 −.227
Y2 −.196
Y3 −.193
Y4 .407
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Correlations between DEPENDENT and canonical variables

Canonical Variable
Variable 1
Y1 −.800
Y2 −.534
Y3 −.583
Y4 −.140
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Interpretation: Pairwise Contrast MC vs. C

The vector of differences between the mean of the Morphemic and Context (MC)
treatment group and the instructed Control (C) group is

ψ̂3 =







5.0
1.8
3.8
0.5





 .

The results of the hypothesis test, H0: ψ̂3 = 0, indicates that there is sufficient
evidence to conclude that the observed differences in the adjusted means are gener-
alizable to the populations they represent: �

.= .662, F(4, 80)
.= 10.209, P ′ .= .000,

η2
adj

.= .306. To define the single construct that maximizes the separation between
the groups, the structure r’s are examined. The variable with the highest correlation,
−.800, with the construct is Y1. These results indicate that the production of the
morphemic lesson words is the primary variable defining the construct.

Analysis: Pairwise Contrasts CO vs. C and MO vs. C

EFFECT . . GROUP(2)
Multivariate Tests of Significance (S = 1, M = 1 , N = 39 )
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .21672 5.53367 4.00 80.00 .001
Hotellings .27668 5.53367 4.00 80.00 .001
Wilks .78328 5.53367 4.00 80.00 .001
Roys .21672
Note.. F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size

(All) .217
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 .277 100.000 100.000 .466
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1
Y1 .178
Y2 .059
Y3 −.318
Y4 −.101
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Correlations between DEPENDENT and canonical variables
Canonical Variable

Variable 1
Y1 .070
Y2 −.015
Y3 −.856
Y4 −.514
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
EFFECT . . GROUP(1)
Multivariate Tests of Significance (S = 1, M = 1 , N = 39 )
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .57539 27.10214 4.00 80.00 .000
Hotellings 1.35511 27.10214 4.00 80.00 .000
Wilks .42461 27.10214 4.00 80.00 .000
Roys .57539
Note.. F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size

(All) .575
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 1.355 100.000 100.000 .759
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1
Y1 .325
Y2 .180
Y3 −.090
Y4 −.282
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Correlations between DEPENDENT and canonical variables

Canonical Variable
Variable 1
Y1 .794
Y2 .474
Y3 −.063
Y4 −.079
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Pairwise Contrasts MO vs. C and CO vs. C

We will not go into detail in interpreting the two pairwise contrasts. We will
just say that the results indicate that there is sufficient evidence to conclude
that the observed differences between the CO and C groups, and between
the MO and C groups, are generalizable to their respective populations. Fur-
ther, the contrast that separates the CO and C groups is defined primarily by
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the production of the Context lesson words. The construct that separates the
MO and C groups is primarily defined by the production of the Morphemic
lesson words.

9.10 SUMMARY

In this chapter we presented the analysis procedures for conducting the analysis of
covariance via both a univariate and a multivariate approach. A close examination
of the computational procedures reveals that the multivariate approach is in some
ways very similar to the univariate approach. The multivariate approach, however,
considers the relationships among the outcome variables. The analysis of covari-
ance model can have considerable statistical power and, therefore, is more likely to
detect group separation than posttest-only designs using analysis of variance. We
have limited our discussion to a single grouping variable, but the generalization to
a factorial design is straightforward. We also limited our presentation to a single
covariate. We present the syntax and the computer output for analysis of covariance
when two covariates are available in the Technical Note below. Because covariates
are often highly correlated, the advantage of using more than one covariate in the
model is generally limited. A second covariate typically does not substantially reduce
the error variance beyond that gained by the first covariate. Although the results of
statistical tests with a single covariate or multiple covariates typically do not differ
much, the use of multiple covariates may help clarify the nature of group sepa-
ration when the constructs are defined. Finally, while in nonexperimental studies
the single covariate is not likely to control all sources of selection bias, the single
well-chosen covariate often captures the primary sources of confounding. The use
of multiple covariates does not guarantee that all sources of selection bias have been
controlled.

Technical Note

Here we present the syntax and selected output for conducting a multicovariate
analysis of covariance. We leave the interpretation of the results to the reader. It
should be noted that the results reported here are only slightly different from those
reported earlier in the chapter. For this data set, the addition of the second covariate
adds little to the interpretation of the study’s findings.

SPSS SYNTAX FOR TESTING THE EQUALITY OF REGRESSION
PLANES WITH TWO COVARIATES

manova Y1 Y2 Y3 Y4 by group(1,4) with X X2
/analysis = Y1 Y2 Y3 Y4
/design = X+X2, group, X by group + X2 by group.
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OUTPUT

Analysis: Test for the Equality of Regression Planes with
Two Covariates

EFFECT . . X BY GROUP + X2 BY GROUP
Multivariate Tests of Significance (S = 4, M = 1/2, N = 35 1/2)
Test Name Value Approx. F Hypoth. DF Error DF Sig. of F
Pillais .41228 1.45558 24.00 304.00 .080
Hotellings .49589 1.47733 24.00 286.00 .073
Wilks .63693 1.47169 24.00 255.88 .076
Roys .21999

SPSS SYNTAX FOR TESTING THE EQUALITY OF ADJUSTED
CENTROIDS WITH TWO COVARIATES

manova Y1 Y2 Y3 Y4 by group(1, 4) with X X2
/print=signif(eigen dimenr efsize)
/discrim raw cor
/pmeans
/design.

OUTPUT

Analysis: Test for the Equality of Adjusted Centroids with Two Covariates

EFFECT . . WITHIN CELLS Regression
Multivariate Tests of Significance ( S = 2, M = 1/2, N = 38 1/2)
Test Name Value Approx. F Hypoth. DF Error DF Sig. of F
Pillais .81515 13.75949 8.00 160.00 .000
Hotellings 3.06941 29.92672 8.00 156.00 .000
Wilks .23373 21.10203 8.00 158.00 .000
Roys .74998
Note. . F statistic for WILKS’ Lambda is exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Multivariate Effect Size
TEST NAME Effect Size
Pillais .408
Hotellings .605
Wilks .517
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor. Sq. Cor

1 3.000 97.729 97.729 .866 .750
2 .070 2.271 100.000 .255 .065

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Dimension Reduction Analysis
Roots Wilks L. F Hypoth. DF Error DF Sig. of F
1 TO 2 .23373 21.10203 8.00 158.00 .000
2 TO 2 .93483 1.85893 3.00 80.00 .143
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

EFFECT . . GROUP
Multivariate Tests of Significance (S = 3, M = 0, N = 38 1/2)
Test Name Value Approx. F Hypoth. DF Error DF Sig. of F
Pillais 1.04903 10.88834 12.00 243.00 .000
Hotellings 3.18394 20.60719 12.00 233.00 .000
Wilks .18471 15.58251 12.00 209.31 .000
Roys .73370
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size
Pillais .350
Hotellings .515
Wilks .430
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 2.755 86.532 86.532 .857
2 .396 12.444 98.977 .533
3 .033 1.023 100.000 .178

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Dimension Reduction Analysis

Roots Wilks L. F Hypoth. DF Error DF Sig. of F
1 TO 3 .18471 15.58251 12.00 209.31 .000
2 TO 3 .69362 5.35229 6.00 160.00 .000
3 TO 3 .96845 1.31931 2.00 81.00 .273
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1 2
Y1 .307 −.073
Y2 .171 −.111
Y3 −.162 −.329
Y4 −.318 .224
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Correlations between DEPENDENT and canonical variables
Canonical Variable

Variable 1 2
Y1 .647 −.564
Y2 .370 −.409
Y3 −.307 −.936
Y4 −.255 −.377
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Adjusted and Estimated Means
Variable . . Y1
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CELL Obs. Mean Adj. Mean Est. Mean Raw Resid. Std. Resid.
1 15.917 16.134 15.917 .000 .000
2 8.682 8.275 8.682 .000 .000
3 13.476 13.297 13.476 .000 .000
4 7.905 8.273 7.905 .000 .000

Variable . . Y2
CELL Obs. Mean Adj. Mean Est. Mean Raw Resid. Std. Resid.

1 8.292 8.402 8.292 .000 .000
2 6.273 6.054 6.273 .000 .000
3 7.762 7.685 7.762 .000 .000
4 5.714 5.900 5.714 .000 .000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Variable . . Y3
CELL Obs. Mean Adj. Mean Est. Mean Raw Resid. Std. Resid.

1 8.292 8.479 8.292 .000 .000
2 14.045 13.820 14.045 .000 .000
3 13.143 12.848 13.143 .000 .000
4 8.714 9.047 8.714 .000 .000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Variable . . Y4
CELL Obs. Mean Adj. Mean Est. Mean Raw Resid. Std. Resid.

1 6.000 6.073 6.000 .000 .000
2 8.273 8.230 8.273 .000 .000
3 7.143 6.978 7.143 .000 .000
4 6.333 6.468 6.333 .000 .000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

SPSS SYNTAX FOR TESTING PAIRWISE CONTRASTS OF
ADJUSTED CENTROIDS

manova Y1 Y2 Y3 Y4 by group(1, 4) with X X2
/print=signif(eigen dimenr efsize)
/discrim raw cor
/contrast(group) = special(1 1 1 1, 1 0 0 −1, 0 1 0 −1, 0 0 1 −1)
/design group(1) group(2) group(3).

OUTPUT

Analysis: Pairwise Contrasts Between Adjusted Centroids

EFFECT . . GROUP(3)
Multivariate Tests of Significance ( S = 1, M = 1, N = 38 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .34056 10.19956 4.00 79.00 .000
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Hotellings .51643 10.19956 4.00 79.00 .000
Wilks .65944 10.19956 4.00 79.00 .000
Roys .34056
Note.. F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Multivariate Effect Size
TEST NAME Effect Size

(All) .341
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 .516 100.000 100.000 .584
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1
Y1 −.222
Y2 −.189
Y3 −.198
Y4 .380
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Correlations between DEPENDENT and canonical variables
Canonical Variable

Variable 1
Y1 −.808
Y2 −.536
Y3 −.624
Y4 −.158
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
EFFECT . . GROUP(2)
Multivariate Tests of Significance (S = 1, M = 1 , N = 38 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .28541 7.88827 4.00 79.00 .000
Hotellings .39941 7.88827 4.00 79.00 .000
Wilks .71459 7.88827 4.00 79.00 .000
Roys .28541
Note. . F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Multivariate Effect Size
TEST NAME Effect Size

(All) .285
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 .399 100.000 100.000 .534
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1
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Y1 .154
Y2 .075
Y3 −.299
Y4 −.222
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Correlations between DEPENDENT and canonical variables
Canonical Variable

Variable 1
Y1 .000
Y2 −.052
Y3 −.874
Y4 −.607
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

EFFECT . . GROUP(1)
Multivariate Tests of Significance (S = 1, M = 1 , N = 38 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .57710 26.95187 4.00 79.00 .000
Hotellings 1.36465 26.95187 4.00 79.00 .000
Wilks .42290 26.95187 4.00 79.00 .000
Roys .57710
Note.. F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Multivariate Effect Size
TEST NAME Effect Size

(All) .577
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Eigenvalues and Canonical Correlations
Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 1.365 100.000 100.000 .760
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Raw discriminant function coefficients

Function No.
Variable 1
Y1 .323
Y2 .181
Y3 −.094
Y4 −.297
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Correlations between DEPENDENT and canonical variables
Canonical Variable

Variable 1
Y1 .804
Y2 .477
Y3 −.059
Y4 −.078
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fact A statistician baptized one of her babies and kept the other as a control.
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EXERCISES

Exercises 1 to 10 refer to a randomized two-group pretest–posttest design with three
outcome variables. The design is balanced with n = 20.

1. The following are the SSCP matrices for each group. For each group determine
the separate regression slopes relating each of the outcome variables to X.

Group 1 Group 2

Y1 Y2 Y3 X Y1 Y2 Y3 X

Y1 43.6 Y1 46.9
Y2 13.9 11.8 Y2 20.2 12.1
Y3 38.9 14.8 59.3 Y3 48.0 25.5 69.9
X 261.7 140.1 424.1 4424.5 X 409.5 209.7 553.6 7729.5

2. Using the two matrices in Exercise 1, determine the E matrix.

3. Determine the vector of pooled or common regession weights across the two
groups.

4. How many eigenvalues will be used in the hypothesis test on the equality of the
two vectors of regression coefficients?

5. If Wilks � for testing the equality of the between-group vectors of regression
coefficients equals .959, what is the value of the F statistic? How many degrees
of freedom are associated with the computed F statistic?

6. Using your results from Exercise 2 compute the adjusted error matrix, E∗.

7. The canonical correlation between the adjusted outcome variables and the
grouping variable equals .905. What is the numerical value of Wilks �?

8. Transform � to an F statistic and report its degrees of freedom.

9. The structure r’s for variables Y1, Y2, and Y3 are −.432, −.226, and .415,
respectively. How would you define the construct separating the two groups.

10. The raw discriminant function weights are −.284, −.097, and .321 for variables
Y1, Y2, and Y3, respectively. Unadjusted and adjusted group means are reported
below. Use this information to determine the group centroids in LDF space.
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Adjusted and Estimated Means
Variable . . y1

CELL Obs. Mean Adj. Mean Est. Mean Raw Resid. Std. Resid.
1 15.700 15.728 15.700 .000 .000
2 9.050 9.022 9.050 .000 .000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Adjusted and Estimated Means (Cont.)
Variable . . y2

CELL Obs. Mean Adj. Mean Est. Mean Raw Resid. Std. Resid.
1 8.100 8.114 8.100 .000 .000
2 6.350 6.336 6.350 .000 .000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Adjusted and Estimated Means (Cont.)
Variable . . y3

CELL Obs. Mean Adj. Mean Est. Mean Raw Resid. Std. Resid.
1 7.600 7.640 7.600 .000 .000
2 13.950 13.910 13.950 .000 .000

Computer Applications

Exercises 11 to 15 require the analysis of the Ethington 5-group data set (5GED)
described in Appendix A. One of the questions students were asked was the number
of hours per week they were employed. Because students from the three racial groups
differed in the number of hours they worked, it might be useful to reanalyze the data
previously analyzed in Chapter 3 to control for those differences. Exercises 11 to 15
ask specific questions regarding the results of such an analysis.

11. Do the vectors of regression slopes for each of the nine outcome variables on
the Time variable differ among the three populations? Support your answer by
providing:

(a) �

(b) F

(c) Degrees of freedom

(d) P value

12. Does adding the Time variable as a covariate change the results of the comparison
of centroids for the three groups? Compare the results (e.g., �, F , df, P ) obtained
with and without the Time covariate (see Exercises 14 and 15 in Chapter 3).

13. Do the variables that define the constructs that separate the groups differ when
the Time variable is added as a covariate compared with the results that do not
include Time? (See Exercise 16 in Chapter 5.) Compare the structure r’s for the
two models.

14. What are the adjusted LDF mean centroids for the three groups?
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15. Using Time as a covariate, compare the mean centroid of minority students with
the mean centroid of the White students. Specifically report:

(a) �

(b) F

(c) Degrees of freedom

(d) P value

(e) Variables that define the construct that separates the groups
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Repeated-Measures Analysis

10.1 INTRODUCTION

In Chapter 9 we discussed the analysis of data obtained from a research design (mul-
tiple group pretest–posttest) that can be used to address two problems often found
with posttest-only research designs. The first problem identified was that of selec-
tion bias or nonequivalency, when analysis units are not randomly assigned to the
levels of the grouping variable. The second problem identified was that of ineffi-
ciency; large sample sizes are needed to have good statistical power unless the effect
size is “large.” The one feature that both the multiple group pretest–posttest and the
posttest-only design share is that both designs involve making comparisons among
independent groups. Consequently, all of the designs we have discussed so far can
be classified as between-group designs. In this chapter, we discuss an alternative
research design that in many situations can also address the problems of equivalency
and inefficiency. These designs are referred to as repeated-measures or within-subject
designs. In this chapter we focus on the analysis of data collected on a single group
of subjects who represent a single population of interest. (In this chapter “subject” is
used in place of “unit”; the subscript u is used to denote a subject.) In Chapter 11 the
design is extended to include multiple groups representing multiple populations and
is referred to as a mixed-model design because there are both between-group variables
and within-subject variables.

The repeated-measures design arises in three contexts. In the first context, subjects
are measured at several points in time. So, for example, in a study investigating the
effect of exercise on weight loss, participants might be measured weekly on their body
weight while they participate in a daily exercise routine. Or, a group of individuals
receiving an intervention might be measured before the start of the intervention,
immediately following termination of the intervention, and some later time following
the completion of the intervention. A design matrix for a study that observes subjects
weekly might be presented as:

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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W0 W1 W2 W3 W4 W5

S1
S2
...

SN








Y10 Y11 Y12 Y13 Y14 Y15
Y20 Y21 Y22 Y23 Y24 Y25
...

...
...

...
...

...

YN0 YN1 YN2 YN3 YN4 YN5








.

Here, Wt (t = 0, 1, 2, . . . , T ) represents the week (time) when the measurement
(score) was obtained. The 0 subscript would indicate a baseline measurement taken
before an intervention (e.g., exercise program) began; Su indicates the subject (unit)
(u = 1, 2, . . . , N), and Yut indicates the measurement of subject u at time t .

A second repeated-measures design context occurs when each subject is exposed to
each one of the J treatment conditions. For example, a researcher might be interested
in studying the effect of room color on test anxiety. Each subject might be asked to
complete an anxiety instrument before completing a learning task in four different
rooms that vary only in wall colors. For example, one room might be a deep red, a
second room a bright yellow, a third room a light green, and a fourth room painted
beige. The order of the learning task and room color might be randomized. The data
matrix for such an example study might be presented as:

T1 T2 T3 T4

S1
S2
...

SN








Y11 Y12 Y13 Y14
Y21 Y22 Y23 Y24
...

...
...

...

YN1 YN2 YN3 YN4








.

Here Tj represents treatment condition j (j = 1, 2, . . . , J ), Su indicates the subject
(u = 1, 2, . . . , N), and Yuj indicates the measurement of subject u under Treatment j .

A third repeated-measures design context in which repeated measures are used
would occur if a test battery was administered to a sample of subjects, and there
was an interest in comparing the mean performance on the tests. For example, the
Torrence Test for Creativity consists of a series of activities that provide six scales
of creativity (fluency, originality, elaboration, abstract titles, resistance to premature
closure, and creative strength). A comparison of these six scales might address the
question whether levels of creativity are the same for all six aspects of creativity. This
type of analysis is sometimes referred to as profile analysis. For this type of analysis
the number of items, range of possible scores, and test variances must be comparable.
A data matrix for this context might be presented as

M1 M2 M3 M4 M5 M6

S1
S2
...

SN








Y11 Y12 Y13 Y14 Y15 Y16
Y21 Y22 Y23 Y24 Y25 Y26
...

...
...

...
...

...

YN1 YN2 YN3 YN4 YN5 YN6








.
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Here Mk represents measure k (k = 1, 2, . . . , K), Su indicates the subject (u =
1, 2, . . . , N), and Yuk indicates the measurement of subject u for Measurement k.

With the repeated-measures design, the problem of equivalence is solved because
each subject is measured under all of the conditions and, therefore, serves as its own
control. The problem of inefficiency is addressed by reducing the error variance as a
function of the correlations among the repeated measures. That is, the error variance
for a repeated-measures design (σ 2

RMerror
) equals the variance of the completely ran-

domized between-group design (σ 2
BGerror

) times 1 minus the correlation (ρ) between

the observations: σ 2
RMerror

= σ 2
BGerror

(1 − ρ). Because measurements on a subject will
generally be highly correlated, a substantial reduction in error variance is possible.

But the repeated-measures design is not appropriate for all research studies. There
are three potential problems with this design that can provide alternative explana-
tions for the observed differences in addition to the variable of primary interest to the
researcher (e.g., time, treatment, measure). One potential problem is that, when sub-
jects are asked to complete the same task repeatedly under different conditions, their
performance might improve considerably over time, not because of the conditions but
because of memory or practice effects. Scores may also decline, however, because
of fatigue. A second potential problem that might occur is that, after being exposed
to one condition or treatment, the effect of that treatment carries over to the next
treatment or condition. Sometimes such carryover effects occur only when a certain
order of treatments is provided. Such differential-order effects are not possible to con-
trol. A third potential problem with the repeated-measures design is the equivalency
of repeated measurements. For example, a comparison of interventions designed to
improve spelling skills would require different spelling tests. The nonequivalency of
such tests could be a serious problem. Good discussions on the limitations of repeated
measures are provided by Keppel and Wickens (2004, pp. 369–372) and Maxwell and
Delaney (2000, pp. 481–483). In spite of these potential problems, in some disciplines
the within-subject design is extremely popular.

In the next section we introduce a new research context and a new data set. Fol-
lowing a brief application of the univariate analysis with these data, we present the
multivariate approach. We conclude the chapter with a discussion comparing the two
analysis approaches to testing the omnibus hypothesis and contrast hypotheses. Our
discussion focuses on a single within-subject variable. The design does generalize to
more than a single within-subject variable, and we provide the SPSS syntax and the
output for a study having two within-subject variables in three Technical Notes, but we
do not discuss the interpretation. The interpretation should be a clear generalization
from the discussion presented here.

10.2 RESEARCH CONTEXT

As part of her dissertation study, M. S. Poudevigne (2004) collected Self-Esteem
data from a sample of 12 Pregnant women at the beginning of each month during
the second and third trimesters (Months 4, 5, 6, 7, 8, and 9). The participants were
asked to complete the Global Self-Esteem subscale from the Rosenberg Self-Esteem
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TABLE 10.1 Scores from the Rosenberg Self-Esteem Inventory

Time

Subject Month 4 Month 5 Month 6 Month 7 Month 8 Month 9

1 12 11 10 10 10 10
2 34 30 34 12 16 10
3 16 18 15 13 15 15
4 19 16 14 11 12 13
5 23 22 21 20 23 21
6 20 20 20 19 20 20
7 19 13 11 11 11 11
8 13 11 10 10 10 10
9 14 14 14 10 10 10

10 15 12 10 11 11 10
11 16 14 10 11 10 10
12 14 11 13 11 11 11
Mean 17.92 16.00 15.17 12.42 13.25 12.58
Standard

Deviation 6.007 5.721 7.030 3.423 4.372 4.010

Inventory. Scores on this subscale can range between 10 and 40 with high scores
indicating low self-esteem. The researcher was interested in determining whether
these data would provide sufficient evidence to support the belief that feelings of
self-esteem change over the final 6 months of pregnancy. If there was a change, the
researcher was interested in determining how the relationship between Self-Esteem
and Time might be characterized. Table 10.1 provides the sample data along with
means and standard deviations. (An SPSS data file containing these data, labeled
SELFESTEEM, is available at the Wiley website. Data were modified slightly for
pedagogical purposes.)

10.3 UNIVARIATE ANALYSES

10.3.1 Omnibus Test

The data presented in Table 10.1 can be viewed as a two-way factorial design with
Time, when the measurement was collected, being the first variable (column), and the
second variable (row) being the Subject. With this conceptualization, there is only
one measurement per cell (Subject-by-Time) and the within-cell or error variance
cannot be directly estimated. To test the hypothesis that there is no difference in Self-
Esteem over the 6-month period (H0: µ4 = µ5 = µ6 = µ7 = µ8 = µ9), it must be
assumed that there is no interaction between Subject and Time. If there is no interaction
between Subject and Time, the computed mean-square interaction from the factorial
design provides an estimate of the error variance. This estimate can be used as the
denominator for the calculation of the F ratio for the hypothesis of interest. If there
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TABLE 10.2 ANOVA Summary Table for Changes in Self-Esteem Over
the Second and Third Trimesters

Source of Sum-of- Degrees of Mean
Variation Squares Freedom Square F P η2

G

Time (T ) 287.111 T − 1 = 5 57.422 5.723 .000 .136
Error (S × T ) 551.889 (S − 1)(T − 1) = 55 10.034

is an interaction between Subject and Time, the repeated-measures design would be
inappropriate, and we should look for one or more subject characteristics that might
help us explain why some subjects change differently than others. Perhaps, for some
subjects, this is their first child, while for others this is a pregnancy for a second or
third child. If this is the case, then a mixed-model design, which will be discussed in
Chapter 11, would be more appropriate than the repeated-measures design.

The formulas for sums-of-squares in a two-way analysis of variance were presented
in Table 8.3. Applying the formulas for a main effect and the interaction, the sum of
squares for Time and the Subject-by-Time interaction, respectively, can be computed.
Using the data in Table 10.1, results of the ANOVA summary table are presented in
Table 10.2. The results of this analysis support the researcher’s belief that feelings
of Self-Esteem change over the final 6 months of pregnancy, F(5, 55)

.= 5.723, P
.=

.000. To quantify the strength of the relationship, generalized η2 (Olejnik and Algina,
2003) may be computed as η2

G = SSTime/[(SSTime + (N − 1)
∑T

t=1 s2
t )] where s2

t is
the variance of the Self-Esteem scores at Month t . For the data in Table 10.1, the sum
of the variances equals 165.146 and generalized η2 equals .136 (287.111/2103.777).
The test and effect size results indicate that the relationship between time and self-
esteem is not trivial. To further characterize the nature of the relationship, focused
tests for trend might be conducted.

10.3.2 Contrast Analysis

In Chapters 4 and 8, our presentation on contrasts examined both pairwise and com-
plex contrasts. We can apply the same procedures here and compare mean Self-Esteem
scores for each month with the last month of pregnancy (five pairwise contrasts), or
the mean Self-Esteem score during the second trimester [(Y .4 + Y .5 + Y .6)/3] with
the mean Self-Esteem score during the third trimester [(Y .7 + Y .8 + Y .9)/3], a com-
plex contrast. But, because our data were collected monthly for 6 months with an
equal amount of time passing between each measurement, it might be more interest-
ing to construct contrasts that examine a variety of trends in the data. For example, the
researcher might be interested in determining whether the means of Self-Esteem are
changing at a consistent rate (linear), or perhaps whether means of Self-Esteem are
changing at an accelerating rate (quadratic). By choosing the appropriate coefficients
for the contrasts, the relationship between Self-Esteem and Time can be examined.
With data collected at 6 equally spaced time points, it is possible to characterize the
relationship between the Self-Esteem and Time with up to a quintic (fifth degree)
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polynomial. (The degree of the polynomial that can be examined is determined by the
number of degrees of freedom for the repeated-measure variable.) Such a complex
relationship would rarely be of interest to researchers, but linear and quadratic relation-
ships are frequently of interest. In Table 10.3 we provide the appropriate coefficients
for a first- to fifth-degree polynomial. [The coefficients for trend analysis for varying
numbers of repeated measures can be found in many intermediate statistical methods
textbooks, e.g., Keppel and Wickens, (2004, p. 577) and Maxwell and Delaney (2000,
pp. 749–750).] Although we will only use the linear and quadratic coefficients here
to demonstrate the approach, we present all of the coefficients because they will be
useful in our discussion on the multivariate approach to a repeated-measures design.

A t statistic is computed as in Eq. (4.9), the ratio of the contrast to the estimated
standard error of the contrast:

t = ψ̂

s
ψ̂

,

where

ψ̂ =
T∑

t=1

atY .t ,

and

s
ψ̂

=
√
√
√
√MSS×T

(
T∑

t=1

a2
t

N

)

.

Using the data in Tables 10.1 and 10.2,

ψ̂Linear
.= (−5)(17.92) + (−3)(16.00) + (−1)(15.17)

+ (1)(12.42) + (3)(13.25) + (5)(12.58)

.= −37.7,

TABLE 10.3 Coefficients for Linear to Quintic
Polynomial Trend Analysis for Six Measurements

Coefficient

Trend a1 a2 a3 a4 a5 a6

Linear −5 −3 −1 1 3 5
Quadratic 5 −1 −4 −4 −1 5
Cubic −5 7 4 −4 −7 5
Quartic 1 −3 2 2 −3 1
Quintic −1 5 −10 10 −5 1
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and

s
ψ̂(Linear)

.=
√

10.034

[
(−5)2 + (−3)2 + (−1)2 + (1)2 + (3)2 + (5)2

12

]

.= 7.651.

The t-statistic value for testing the null hypothesis: H0: ψLinear = 0 is

t
.= −37.7

7.651
.= −4.928.

The results of this analysis indicate support to conclude that there is a negative
linear component in the relationship between Self-Esteem and Time, t (55)

.= −4.928,
P

.= .000.
Using the coefficients for a quadratic polynomial, ψ̂Quadratic

.= 12.89, s
ψ̂(Quadratic)

.=
8.381, and t (55)

.= 1.539, P
.= .129. These results provide no evidence of a quadratic

component in the relationship between Self-Esteem and Time. None of the tests for
the remaining polynomials provided evidence to support a higher order relation-
ship between Self-Esteem and Time [cubic: t (55)

.= .289, P
.= .774; quartic: t (55)

.=
−.428, P

.= .670; quintic: t (55)
.= −1.453, P

.= .152]. Based on these results, we
would conclude that a negative linear relationship best characterizes the change in
Self-Esteem over Time. A plot of the mean Self-Esteem scores would help clarify this
relationship.

10.4 MULTIVARIATE ANALYSIS

To introduce and explain the multivariate approach to the analysis of repeated mea-
sures, we begin by focusing only on the data obtained during the second trimester
(Months 4, 5, and 6) of our research context. Following this presentation, we use SPSS
to analyze the complete data set, Month 4 through Month 9, in Table 10.1. The mul-
tivariate approach for testing the equality of T = 3 population means obtained from
repeated measurements (i.e., H0:µ4 = µ5 = µ6), is to state this hypothesis as a vector
of T − 1 = 2 contrasts. The number of “variables,” p, considered in our multivariate
analysis is the number of contrasts formed. For example, if H0: µ4 = µ5 = µ6 is true,
then (1) both µ4 − µ6 = 0 and µ5 − µ6 = 0; or alternatively (2) both µ4 − µ5 = 0
and µ5 − µ6 = 0. The omnibus hypothesis can be written as:

(1) H0:
[

µ4 − µ6
µ5 − µ6

]

=
[

0
0

]

, or as (2) H0:
[

µ4 − µ5
µ4 − µ6

]

=
[

0
0

]

.

More generally, the null hypothesis can be written as H0: Aµ = 0, where A is a matrix
of (p × T ) contrast coefficients and µ is a column vector of T means. For (1), A can
be written as:

A =
[

1 0 −1
0 1 −1

]

.
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For the omnibus hypothesis test, any set of T − 1 linearly independent contrasts
may be used, under the condition that for any contrast,

∑T
t=1 at = 0.A set of contrasts

is linearly independent if the coefficients of any one contrast cannot be determined
from any linearly weighted combination of the coefficients of the other contrasts. For
example, consider a situation where there are four repeated measures, T = 4. Then
the coefficient matrix A might be

A =



1 −1 0 0
1 0 −1 0
0 1 −1 0



 .

But this set of coefficients is not linearly independent because coefficients of contrast
2 (1 0 −1 0) minus the coefficients of contrast 1 (1 −1 0 0) equal the
coefficients of contrast 3: (1 0 −1 0) − (1 −1 0 0) = (0 1 −1 0).
A, therefore, would not be a valid set of coefficients. A third contrast that would
be linearly independent of the first two contrasts would be (1 0 0 −1).

Given a set of linearly independent contrast coefficients, the omnibus hypothesis
for the equality of repeated-measure means can be tested using Wilks �:

� = |AEA′|
|A(E + H)A′| = |AEA′|

|ATA′| , (10.1)

where E is the error SSCP matrix, and H is the hypothesis SSCP matrix for the
repeated-measures data.

Consider the data from the second trimester months 4, 5, and 6 in Table 10.1 and
assume the contrasts are formed by subtracting means for adjacent months:

A =
[

1 −1 0
0 1 −1

]

.

The error SSCP matrix, E, is computed as: (Yut − Y.t )
′(Yut − Y.t ), where Yut is

the N × T data matrix (Table 8.1, N = 12, T = 3) and Y.t is a N × T matrix with
each column being a vector of the mean observation for each of the T months. For
the first three columns in Table 10.1,

E .=



396.917 354.000 431.167
354.000 360.000 426.000
431.167 426.000 543.667



 .

Note, if the elements of E are divided by dfe, which equals N − 1, the result would be
the error covariance matrix, Se, with the elements on the diagonal being the variance
of the observations for each month.
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The triple product matrix is

AEA′ .=
[

1 −1 0
0 1 −1

]



396.917 354.000 431.167
354.000 360.000 426.000
431.167 426.000 543.667








1 0

−1 1
0 −1





.=
[

48.917 −11.167
−11.167 51.667

]

.

Therefore,

|AEA′| .= (48.917)(51.667) − (−11.167)2 .= 2402.693.

The hypothesis sum-of-squares matrix, H, is computed as N(y.t − y..)(y.t − y..)
′,

where y.t is a column vector of T means and y.. is a column vector of T grand means.
Using the data in Table 10.1,

y.t − y..
.=




17.92 − 16.36
16.00 − 16.36
15.17 − 16.36



 .=



1.56
−.36

−1.19



 .

The hypothesis SSCP matrix is computed as:

H .= 12




1.56
−.36

−1.19




[
1.56 −.36 −1.19

]
,

.=



29.037 −6.741 −22.296
−6.741 1.565 5.176

−22.296 5.176 17.120



 .

The denominator of (10.1) is computed as ATA′ where T = E + H. For our data

T .=



425.954 347.259 408.871
347.259 358.435 431.176
408.871 431.176 530.787



 ,

and

ATA′ .=
[

1 −1 0
0 1 −1

]



425.954 347.259 408.871
347.259 358.435 431.176
408.871 431.176 530.787








−1 0
−1 1

0 −1



 ,

.=
[

93 8
8 60

]

.
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The determinant of this product matrix is |ATA′| .= 5516. To test the hypothesis
of no change in self-reported depression during the second trimester, Wilks � is
computed as:

� = |AEA′|
|ATA′|

.= 2402.693

5516.000
.= .436.

Because the null hypothesis states that the vector of contrasts equals 0, this is equiv-
alent to a single sample t test with dfh = 1. � can be transformed to an F statistic using

F = 1 − �

�

dfe − p + 1

p
.

When the null hypothesis is true, this statistic has a central F distribution with ν1 = p

and ν2 = dfe − p + 1 degrees of freedom with dfe = N − 1. For our sample data:

F
.= 1 − .436

.436

11 − 2 + 1

2
.= 6.467.

The degrees of freedom are ν1 = 2 and ν2 = dfe − p + 1 = 11 − 2 + 1 = 10. These
results indicate that there is some evidence to reject the null hypothesis of no change in
mean Self-Esteem, �

.= .436, F (2, 10)
.= 6.468, P

.= .016, η2 = .564. That is, the
observed differences in Self-Esteem are generalizable to the population of women
who are represented by this sample.

If all of the data in Table 10.1 are used to test the null hypothesis that there is no
change in Self-Esteem over the second and third trimesters, H0: µ4 = µ5 = µ6 =
µ7 = µ8 = µ9, the multivariate approach would use Eq. (10.1) with the matrix of
contrast coefficients being any set of five linearly independent contrasts. The A matrix,
to test the equality of six population means, would be of order 5 × 6. One acceptable
set of linearly independent coefficients is provided in Table 10.3. We used the first
two contrasts with the univariate analysis to test for a linear and a quadratic trend in
the relationship between Self-Esteem and Time. We can use this matrix along with an
error SSCP matrix and an hypothesis SSCP matrix, based on all of the data collected
over the 6-month period in Table 10.1 (Month 4 to Month 9), to compute Wilks �.
Because the order of both E and H is 6 × 6, which makes the computations tedious,
we rely on SPSS for their calculations in the next section.

10.5 COMPUTER APPLICATION I

In this section we present the SPSS syntax for conducting a repeated-measures anal-
ysis of variance with a single repeated-measures variable. Both the univariate and the
multivariate test statistics are reported.
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SPSS SYNTAX FOR THE OMNIBUS TEST FOR REPEATED
MEASURES

manova month4 month5 month6 month7 month8 month9
/wsfactor = month(6)
/print = signif(efsize)
/design.

/wsfactor is the SPSS command that defines the repeated measures or within-
subjects factor.
month is the researcher defined label for the within-subjects factor.
(6) defines the number of levels for the within-subjects factor. This number must
equal the number of outcome variables listed on the MANOVA line.

OUTPUT

Analysis: Repeated Measures Omnibus Test

EFFECT .. MONTH
Multivariate Tests of Significance (S = 1, M = 1 1/2, N = 2 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .75908 4.41096 5.00 7.00 .039
Hotellings 3.15069 4.41096 5.00 7.00 .039
Wilks .24092 4.41096 5.00 7.00 .039
Roys .75908
Note.. F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size
(All) .759
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Tests involving ’MONTH’ Within-Subject Effect.
AVERAGED Tests of Significance for MONTH using UNIQUE sums of squares
Source of Variation SS DF MS F Sig of F
WITHIN CELLS 551.89 55 10.03
MONTH 287.11 5 57.42 5.72 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Effect Size Measures

Partial
Source of Variation ETA Sqd
MONTH .342
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Interpretation: Omnibus Test

The results of the multivariate approach for the test of no change in Self-Esteem during
the second and third trimesters, H0: Aµ = 0 (which is equivalent to the univariate
hypothesis, H0: µ4 = µ5 = µ6 = µ7 = µ8 = µ9) indicates that there is evidence to
reject the null hypothesis, �

.= .241, F (5, 7)
.= 4.411, P

.= .039. All of the unad-
justed effect-size values are the same, .759, and the Serlin adjusted effect size is
.741[1 − [(72 − 1)/(72 − 5 − 1)](1 − .759)]. [Note that with the repeated measures
design, N is the total number of measurements in the data set, not the number of
subjects (Olejnik and Algina, 2003).]

These multivariate results are consistent with those reported for the univariate
approach presented in Section 10.2, and repeated here as part of the SPSS output,
which also indicates that there is sufficient support for the conclusion that Self-Esteem
changes over the final 6 months of pregnancy, F(5, 55)

.= 5.72, P
.= .000, η2 .=

.342, η2
G

.= .149. There is quite a bit of a difference, however, in the reported P

values and effect size values. To understand the reason for the difference in these
results and the difference between the multivariate and univariate approaches to the
analysis of a repeated-measures design, it is necessary to examine a little closer how
the test statistics are computed for the two approaches to which we will turn to in the
next section.

10.6 UNIVARIATE AND MULTIVARIATE ANALYSES

As we discussed earlier, the multivariate approach requires that contrasts be formed
and any set of linearly independent coefficients will be acceptable with the condi-
tion that the sum of the coefficients for a contrast is 0 (

∑T
t=1 at = 0). The contrasts

presented in Table 8.3 are not only linearly independent but they are also orthogonal
(independent) of each other. Two contrasts, ψA and ψB , are said to be orthogonal if
the sum of the products obtained by multiplying the coefficients of one contrast by
the coefficients of the second contrast equal zero,

∑T
t=1 atbt = 0. For example, the

coefficients for the linear and quadratic polynomials in Table 10.3 are

Linear (a) −5 −3 −1 1 3 5
Quadratic (b) 5 −1 −4 −4 −1 5

The product of the coefficients for the linear and quadratic polynomials are

(at ) (bt )

M4 (−5) (5) = −25
M5 (−3) (−1) = 3
M6 (−1) (−4) = 4
M7 (1) (−4) = −4
M8 (3) (−1) = −3
M9 (5) (5) = 25,
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and the sum of the products equals 0
(∑T

t=1 atbt = −25 + 3 + 4 − 4 − 3 + 25
)

.

Any pair of contrasts in Table 10.3 will give the same result.
In addition to being orthogonal, contrasts are sometimes normalized, which means

that the sum of the squared coefficients equals 1;
∑T

t=1 a2
t = 1. To normalize a set of

coefficients, each coefficient is multiplied by the positive square root of the reciprocal
of the sum of squared coefficients:

w =
√

1
∑T

t=1 a2
t

. (10.2)

For a linear trend, the sum of the squared coefficients is

T∑

t=1

a2
t = (−5)2 + (−3)2 + · · · + (5)2 = 70,

and w = √
1/70

.= .1195. Multiplying each of the coefficients for the linear polyno-
mial by w gives the following results:

−.598 −.359 −.120 .120 .359 .598.

As a check
∑T

t=1 a2
t = (−.598)2 + (−.356)2 + · · · + (.598)2 .= 1.001. The orthog-

onal contrasts that have normalized coefficients are referred to as orthonormal
contrasts. The complete set of orthonormalized coefficients for the polynomial con-
trast presented in Table 10.3 is presented in Table 10.4. We will refer to this matrix
of orthonormal coefficients as A.

The univariate approach to the analysis of repeated-measures designs assumes
that the variances of the orthonormal contrasts are equal and the covariances of the
contrasts are 0. This assumption can be written as:

A�A′ = σ 2I, (10.3)

where A is a set of p × T orthonormal coefficients such as those presented in
Table 10.4, � is the population covariance matrix for the repeated measures, σ 2

TABLE 10.4 Orthonormal Polynomial Coefficients

Coefficient

Trend a1 a2 a3 a4 a5 a6

Linear −.598 .359 −.120 .120 .359 .598
Quadratic .549 −.109 −.436 −.436 −.109 .546
Cubic −.373 .522 .298 −.298 −.522 .373
Quartic .189 −.567 .378 .378 −.567 .189
Quintic −.063 .315 −.630 .630 −.315 .063



“c10” — 2006/3/9 — page 206 — #14

206 REPEATED-MEASURES ANALYSIS

is the common population variance for the orthonormal contrasts, and I is a p × p

identity matrix. A product matrix that meets this condition is said to be spherical.
Equivalently, the assumption of sphericity is met if the variances of difference scores
for all pairs of measures are equal. For the data in Table 10.1 the error SSCP matrix,
E, and error covariance matrix, Se, are

E .=











396.917 354.000 431.167 89.417 170.250 67.583
354.000 360.000 426.000 116.000 200.000 108.000
431.167 426.000 543.667 121.167 222.500 101.833

89.417 116.000 121.167 128.917 157.750 145.083
170.250 200.000 222.500 157.750 215.583 175.250

67.583 108.000 101.833 145.083 175.250 176.917











,

and

Se
.=











36.083 32.182 39.197 8.129 15.477 6.144
32.182 32.727 38.272 10.546 18.182 9.818
39.197 38.727 49.424 11.015 20.227 9.258

8.129 10.545 11.015 11.720 14.341 13.189
15.477 18.182 20.227 14.341 19.598 15.932
6.144 9.818 9.258 13.189 15.932 16.083











.

Using the orthonormal coefficients in Table 10.4, A SeA′ is computed as:

A SeA′ .=









33.560 2.783 −7.924 −0.406 16.577
2.834 2.086 −1.829 0.079 2.842

−7.924 −1.829 3.509 −0.348 −4.964
−0.406 0.079 −0.348 0.841 −0.139
16.577 2.842 −4.964 −0.139 10.242









.

The elements on the diagonal of A SeA′ (contrast variances) are very different,
ranging from 0.841 to 33.560. The sample covariances also vary a great deal ranging
from −7.924 to 16.577. (The variance of the difference scores for months 4 and 5
equals 4.47; while the variance of the difference scores for months 4 and 9 equals
39.879.) Based on these sample data, there is some reason to doubt that the assump-
tion of sphericity is met. That is, the sample value of A SeA′ does not appear to
conform to Eq. (10.3). If the assumption of sphericity is violated, the F value from
the univariate approach computed as the ratio of the mean square for Time to the
mean-square interaction (F = MSTime/MSS×T ) does not have a central F distribu-
tion with (T − 1) and (N − 1)(T − 1) degrees of freedom. The actual distribution of
F is shifted somewhat to the right of this distribution, which means using the central
F distribution with (T − 1) and (N − 1)(T − 1) degrees of freedom will yield a P

value that is too small. That is, the test of the null hypothesis will be liberal.
It should be pointed out that the mean of the diagonal elements in the A SeA′

product matrix equals the MSS×T used in the calculation of the F ratio for the uni-
variate hypothesis test [(33.560 + 2.086 + 3.509 + 0.841 + 10.242)/5

.= 10.048].
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The numerator of the univariate F ratio can also be obtained from the diagonal of the
triple product matrix, A HA′ .

The H matrix is computed by N(y.t − y..)(y.t − y..)
′. Using the means in Table

10.1, the hypothesis matrix H is then computed as:

H .= (12)











3.363
1.443
0.613

−2.137
−1.307
−1.977











[
3.363 1.443 0.613 −2.137 −1.307 −1.977

]
,

and

A HA′ .=









243.711 −77.788 −14.367 21.294 65.016
−77.788 24.829 4.586 −6.797 −20.752
−14.367 4.586 0.847 −1.255 −3.833

21.294 −6.797 −1.255 1.860 5.681
65.016 −20.752 −3.833 5.681 17.345









The sum of the diagonal elements A HA′ equals the univariate sum of squares for the
Time main effect (243.711 + 24.829 + 0.847 + 1.860 + 17.345

.= 288.592). Divide
this sum by the degrees of freedom (T − 1) for the repeated measures factor (Time)
to obtain the univariate mean square for the Time factor 288.592/5

.= 57.718.
The MSTime and MSS×T used for the calculation of the univariate F ratio can,

therefore, be obtained directly from the sum of the elements on the main diagonal (i.e.,
the trace) of the matrices A HA′ and A EA′, respectively, divided by the respective
degrees of freedom. The multivariate test, on the other hand, involves the determinants
of these two matrices, which consider not only the trace but the off-diagonal elements
(CP elements) as well. If the assumption of sphericity is met, the CP elements provide
no additional information, and the univariate approach would provide a more powerful
statistical hypothesis test.

10.7 TESTING FOR SPHERICITY

A statistical test for the sphericity assumption was developed by Mauchly (1940) and
is reported in SPSS. Mauchly’s test statistic is

W = |A SeA′|
[

trace(A SeA′)
p

]p , (10.4)

where p is the number of contrasts or T − 1.
The statistic W can be transformed to a statistic having a χ2 distribution with

degrees of freedom, df = T (T − 1)/2 − 1. The transformation of W is

χ2 = −(N − J )d[ln(W)],
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where d is computed as:

d = 1 −
[

2T 2 − 3T + 3

6(N − J )(T − 1)

]

.

For our data:

J = 1,

|A SeA′| = 32.640,

tr(A SeA′) .= 102396.17,

p = 6 − 1 = 5,

W
.= 32.640

(102396.17/5)5
.= .0003,

d = 1 −
[

6(12 − 1)(6 − 1)

2(6)2 − 3(6) + 3

]
.= .827,

J = 1,

χ2 .= −(12 − 1)(.827) ln (.0003)
.= 73.792 and

df = 6(6 − 1)

2
− 1 = 14.

These results provide strong evidence that the sphericity assumption has been violated,
W

.= .0003, χ2(14)
.= 73.792, P

.= .000. Consequently, the reported P value from
the univariate analysis is very likely to be too small.

There are two limitations associated with the Mauchly test. First, it assumes multi-
variate normality. When this assumption is violated, it can lead to a rejection of the
sphericity assumption even though the assumption has been met. Second, simulation
studies have shown that the Mauchly test is not very sensitive to important viola-
tions of the sphericity assumption and, consequently, cannot be relied on to provide
adequate guidance as to whether the univariate or multivariate approaches should be
adopted. A more powerful test to detect a violation of the sphericity assumption has
been developed (Cornell et al., 1992), but it has not been incorporated into computer
software packages like SPSS or SAS.

An approximate solution, for the potentially liberal univariate hypothesis test for
repeated measures, is to adjust the degrees of freedom for the computed F statistic that
are used to determine the actual P value. The adjustment is achieved by multiplying
the numerator and denominator degrees of freedom by ε, which measures the degree
to which condition (10.3) is violated. Three estimators of ε have been suggested. One
estimator of ε is the reciprocal of the degrees of freedom for the repeated measures
factor [1/(T − 1)] and is often represented by ε∗ (Geisser and Greenhouse, 1958).
For our problem, ε∗ = 1/(6 − 1) = .20. This estimator is referred to as the lower
bound adjustment in SPSS. The problem with this solution is that it overadjusts for
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the assumption violation, and therefore the resulting P value will be too large. In
other words, using the lower bound adjustment provides a conservative hypothesis
test for differences in means for the repeated-measures variable. A second estimator
for ε is

ε′ =
[
trace(A SeA′)

]2

(T − 1)
(∑R

r=1
∑C

c=1 x2
cr

) , (10.5)

where [trace(A SeA′)]2 is the squared sum of the orthonormal contrast variances,
and

∑R
r=1

∑C
c=1 x2

cr is the sum of squared c column by r row elements of the A SeA′
triple product matrix. SPSS refers to this estimator of ε as the Greenhouse–Geisser
adjustment. Using our data and the A SeA′ triple-product matrix reported above, ε

is estimated as:

[trace(A SeA′)]2 .= [33.560 + 2.086 + 3.509 + .841 + 10.242]2
= [50.238]2 .= 2523.857,

R∑

r=1

C∑

c=1

x2
cr

.= 33.5602 + 2.7832 + · · · + 16.5772

+ 2.8342 + · · · + 2.8422 + · · · + 10.2422

.= 2012.53,

and

ε′ .= 2523.857

(6 − 1)(2012.530)
= .251.

A problem with ε′ is that it also underestimates ε and provides a slightly conservative
test for the equality of means for the repeated-measures variable.

A third estimator of ε, proposed by Huynh and Feldt (1976), is

ε̃ = N(T − 1)ε′ − 2

(T − 1)[(N − J ) − (T − 1)ε′] . (10.6)

For our data and ε′ computed above, ε̃ is computed as:

ε̃
.= 12(6 − 1).251 − 2

(6 − 1)[(12 − 1) − (6 − 1).251]
.= 13.06

48.725
.= .268.

A problem with the Huynh and Feldt estimator is that it overestimates ε and can yield
a P value smaller than the true P value (a liberal test). When condition (10.3) holds,
ε = 1, the Huynh–Feldt ε̃ can be greater than 1. In those situations, the Huynh–Feldt
ε̃ would be set equal to 1.

Using these estimates to adjust the numerator and denominator degrees of freedom
by multiplying these estimates of ε by the degrees of freedom for our problem gives
the following numerator and denominator degrees of freedom:
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Lower bound = .2(6 − 1), .2(6 − 1)(12 − 1) = 1, 11,

Greenhouse–Geisser
.= .251(6 − 1), .251(6 − 1)(12 − 1)

.= 1.255, 13.805,

Huynh–Feldt
.= .268(6 − 1), .268(6 − 1)(12 − 1)

.= 1.340, 14.740.

Using our computed F statistic (5.723) obtained previously in Section 10.3, the
corresponding P values are:

Lower bound : F(1, 11)
.= 5.723, P

.= .036,

Greenhouse–Geisser : F(1.255, 13.805)
.= 5.723, P

.= .026,

Huynh–Feldt : F(1.34, 14.740)
.= 5.723, P

.= .023.

With the adjusted degrees of freedom to evaluate the observed univariate F ratio, the
results are now similar to those reported for the multivariate analysis. In this case
all of the analyses lead to the same conclusion: There is evidence to indicate that
Self-Esteem changes over the second and third trimesters of pregnancy. This many
not always be the case. In this example, while the conclusion is the same, the reported
P values are somewhat different.

Some data analysts always prefer the multivariate approach for the analysis of
repeated measures; others prefer the univariate approach using the adjusted degrees
of freedom test. The multivariate approach provides an exact hypothesis test while
the adjusted univariate approach provides an approximate test that is conservative.
The multivariate test, however, can be less powerful than the univariate test with
adjusted degrees of freedom. With small sample sizes, the multivariate hypothesis
test can have substantially fewer degrees of freedom than the adjusted univari-
ate criterion. Maxwell and Delaney (2000, p. 603), who prefer the multivariate
approach, have suggested that the minimum sample size for the multivariate approach
be T + 10. That is, there should be at least 10 more individuals participating in
the study than the number of observations per individual. In the current study,
with 6 observations per individual a minimum sample size would be 16. We only
had a total of 12 individuals participating. In our example, the slightly larger P

value reported for the multivariate approach may reflect its slightly lower statistical
power.

10.8 COMPUTER APPLICATION II

In this section we present the SPSS syntax command to obtain the Mauchly
test for sphericity and the three estimates of ε. While the Mauchly test is
reported along with the estimates of ε, it does not report the P values associated
with the adjusted degrees of freedom tests. The SPSS General Linear Model
program, however, does report the results of the Mauchly test, the estimates of ε,
and the P values for the F statistic associated with the adjusted degrees of
freedom test.
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SPSS SYNTAX FOR OBTAINING THREE ESTIMATES OF ε

manova month4 month5 month6 month7 month8 month9
/wsfactor = month(6)
/print = homogeneity
/design.

/print = homogeneity in the repeated measures context, homogeneity requests
the calculation of Mauchly test for sphericity and the three estimates of ε.

OUTPUT

Analysis: Mauchly Test for Sphericity and Estimates of ε

Tests involving ’MONTH’ Within-Subject Effect.
Mauchly sphericity test, W = .00032

Chi-square approx. = 73.25517 with 14 D. F.
Significance = .000

Greenhouse-Geisser Epsilon = .25099
Huynh-Feldt Epsilon = .26802
Lower-bound Epsilon = .20000

AVERAGED Tests of Significance that follow multivariate tests are
equivalent to univariate or split-plot or mixed-model approach to
repeated measures. Epsilons may be used to adjust d.f. for the
AVERAGED results.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
EFFECT .. MONTH
Multivariate Tests of Significance ( S = 1, M = 1 1/2, N = 2 1/2)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .75908 4.41096 5.00 7.00 .039
Hotellings 3.15069 4.41096 5.00 7.00 .039
Wilks .24092 4.41096 5.00 7.00 .039
Roys .75908
Note.. F statistics are exact.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Tests involving ’MONTH’ Within-Subject Effect.

AVERAGED Tests of Significance for month using UNIQUE sums of squares
Source of Variation SS DF MS F Sig of F



“c10” — 2006/3/9 — page 212 — #20

212 REPEATED-MEASURES ANALYSIS

WITHIN CELLS 551.89 55 10.03
MONTH 287.11 5 57.42 5.72 .000

Interpretation: Mauchly Test for Sphericity

The results of the Mauchly test for sphericity provide evidence to indicate that
the sphericity assumption is not met with these data, W

.= .0003, χ2(14)
.= 73.255,

P
.= .000. These results are consistent, within rounding, of the results we provided in

Section 10.7. Because SPSS does not adjust the degrees of freedom for the F statistic
from the univariate approach, the reported P value is too small. It would be necessary
to multiply the reported degrees of freedom by the selected estimate of ε and estimate
the P value by using tabled values of F distributions.

10.9 CONTRAST ANALYSIS

In Section 10.3 we examined both linear and quadratic trend contrasts for the uni-
variate approach using a t test. That is, we tested the null hypothesis: H0: ψ = 0 by
computing the ratio of the contrast of interest to its estimated standard error, t = ψ̂/s

ψ̂
,

where

ψ̂ =
T∑

t=1

atY .t ,

and

s
ψ̂

=
√
√
√
√MSS×T

(∑T
t=1 a2

t

N

)

.

For the multivariate approach, contrasts can be tested in a manner similar to the
univariate approach presented above. The value of the contrast, ψ̂ , is the same for
both approaches, but the estimated standard errors for the contrasts are different. As
presented above, for the univariate approach the estimated standard error is computed
using MSS×T . In Section 10.5 we demonstrated that MSS×T equals the mean of the
values on the main diagonal of the A SeA′ product matrix. The values on the main
diagonal of the A SeA′ product matrix are the variances for the contrasts specified by
the coefficients provided in the A matrix. That is, MSS×T is the mean othonormal con-
trast variance. For a set of orthonormal pairwise contrasts, then, all pairwise univariate
contrasts would have the same estimated standard error. The multivariate approach
provides a different estimated standard error for each contrast because each contrast
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uses its own variance. For convenience, the A SeA′ product matrix is restated here:

A SeA′ .=









33.560 2.783 −7.924 −0.406 16.577
2.834 2.086 −1.829 0.079 2.842

−7.924 −1.829 3.509 −0.348 −4.964
−0.406 0.079 −0.348 0.841 −0.139
16.577 2.842 −4.964 −0.139 10.242









.

The variance of the linear contrast, MSLinear, is 33.560 and the variance for the
quadratic contrast, MSQuadratic, is 2.086. The multivariate approach computes the
t statistic for the linear trend as:

ψ̂Linear
.= (−.598)(17.92) + (−.359)(16.00) + (−.120)(15.17)

+ (.120)(12.42) + (.359)(13.25) + (.598)(12.58)

.= −4.51

s
ψ̂(Linear)

.=
√

33.56
(−.598)2 + (−.359)2 + (−.120)2 + (.120)2 + (.359)2 + (.598)2

12
.= 1.672

t
.= −4.51

1.672
.= −2.697.

For the quadratic trend, ψ̂Quadratic
.= 1.436, s

ψ̂Quadratic

.= .417, and t
.= 3.444.

These results indicate that there is sufficient evidence to indicate a statistically
significant negative linear component, t (11)

.= −2.697, P
.= .021 and a quadratic

relationship between Self-Esteem and Time, t (11)
.= 3.444, P

.= .006. Note that with
the multivariate approach, the degrees of freedom are 11 (i.e., N − 1).Additional tests
using the coefficients in Table 10.4 provide little support for a higher order polynomial
trend between Time and Self-Esteem. Based on these results we would conclude that
a quadratic trend best characterizes the relationship between Self-Esteem and Time.

It might come as a surprise to some researchers to find that the univariate test
of quadratic trend provided little evidence of a quadratic trend, while the multi-
variate approach indicated a quadratic trend. An explanation for these contradictory
results might be provided by examining the variance estimates of the two contrasts.
The variance of the univariate quadratic contrast uses the mean variance across all
orthonormal contrasts, MSS×T . As was pointed out earlier, the elements on the main
diagonal of the A SeA′ matrix varied considerably leaving the mean variance quite
large (10.034). On the other hand, the multivariate approach uses the estimated vari-
ance of the quadratic trend alone, and it was only 2.096. If the sphericity assumption
(equal contrast variances) had been met, then the use of the mean variance across
the contrasts would provide greater statistical power because the degrees of freedom
would have been greater. In our example, the variances of the contrasts are not equal
so the univariate approach is inappropriate.
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10.10 COMPUTER APPLICATION III

In this section we present the SPSS syntax for polynomial trend analysis. We
present the appropriate coefficients here, but the same results could be obtained by
/contrast(month)=polynomial. We provide the specific coefficients to demonstrate
how a researcher may request any set of orthogonal linearly independent contrasts.
Readers should take notice of the warning that appears at the beginning of the analysis
output.

SPSS SYNTAX FOR POLYNOMIAL TREND CONTRASTS

manova month4 month5 month6 month7 month8 month9
/wsfactor=month(6)
/contrast(month)=special
(1 1 1 1 1 1,
−5 −3 −1 1 3 5,
5 −1 −4 −4 −1 5,
−5 7 4 −4 −7 5,
1 −3 2 2 −3 1,
−1 5 −10 10 −5 1)
/print=transform signif(averf)
/rename=con linear quadratic cubic quartic quintic
/design.

/contrast(month) is an SPSS command code requesting contrasts among levels
of the month variable is computed.
Special (1 1 1 1 1 1,−5−3−1 1 3 5,…) specifies the coefficients for the contrasts of
interest. Because polynomial contrasts are of interest, the same results could have
been obtained without stating the coefficients if = polynomial replaces =special
and the contrast coefficients.
/print = transform requests the printing of the orthonormalizing coefficients.
/rename provides labels for the transformed contrasts.

Analysis: Contrast Tests

>Warning # 12252 in column 18. Text: SPECIAL
>Special contrasts were requested for a WSFACTOR. MANOVA automatically
>orthonormalizes contrast matrices for WSFACTORS. If the special contrasts
>that were requested are nonorthogonal, the contrasts actually fitted are
>not the contrasts requested. See the transformation matrix for the actual
>contrasts fitted. Use TRANSFORM instead of WSFACTORS to produce
>nonorthogonal contrasts for within subjects factors. Multivariate and
>averaged tests remain valid.
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Orthonormalized Transformation Matrix (Transposed)
CON LINEAR QUADRATI CUBIC QUARTIC QUINTIC

MONTH4 .408 −.598 .546 −.373 .189 −.063
MONTH5 .408 −.359 −.109 .522 −.567 .315
MONTH6 .408 −.120 −.436 .298 .378 −.630
MONTH7 .408 .120 −.436 −.298 .378 .630
MONTH8 .408 .359 −.109 −.522 −.567 −.315

MONTH9 .408 .598 .546 .373 .189
.063
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Estimates for LINEAR MONTH
Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper

1 −4.502 1.670 −2.695 .021 −8.178 −.826
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Estimates for QUADRATI
MONTH
Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper

1 1.409 .41795 3.372 .006 .489 2.329
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Estimates for CUBIC

MONTH
Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper

1 .267 .541 .494 .631 −.924 1.458
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Estimates for QUARTIC
MONTH

Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper
1 −.394 .265 −1.488 .165 −.976 .189

Estimates for QUINTIC
MONTH

Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper
1 −1.202 .924 −1.301 .220 −3.235 .831

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Contrast Tests

The computer output begins by reporting the orthonormalizing transformation matrix.
These results correspond to the transformation matrix reported in Table 10.4 except
for the first column. The first column in the output labeled CON is the orthonormal
coefficients for a vector of 1’s that represents the intercept or the constant in a regres-
sion model. It provides no useful information for the repeated-measures design. It
is always a good idea for researchers to print the transformation matrix to be sure
that the intended analysis is actually computed by the program. For example, if a
researcher requests a set of special contrasts comparing each level of the repeated
measures variable with the last level (e.g. 1 1 1 1 1 1, 1 0 0 0 0 −1,
0 1 0 0 0 −1, … , 0 0 0 0 1 −1), the program actually computes
Helmert contrasts. That is, the contrasts actually compare the mean of each level of
the repeated-measures variable with the mean of the remaining levels. So, rather than
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comparing the mean of Month 4 with the mean of Month 9, the first contrast would
compare Month 4 with the mean of Months 5, 6, 7, 8, and 9. Although a warning
is provided, without examining the transformation matrix, a researcher could eas-
ily interpret the results for the contrasts but for the wrong hypotheses. The pairwise
contrasts we requested above are not orthogonal.

The results for the linear through the quintic trend analyses are reported with
the value of the contrast, ψ̂ , reported as the Coeff. Because multiple tests are being
examined, it is generally advisable to “adjust” the reported P values by considering
the number of hypotheses tested (Bonferroni adjustment). If the researcher had no a
priori hypothesis regarding the nature of the relationship between Self-Esteem and
Time, and intended to examine all five trends, each of the obtained P values should be
multiplied by 5. But if the researcher had decided a priori that only linear and quadratic
trends would be interpretable, then the obtained P values would be multiplied by 2. If
we assume the latter a priori hypotheses, the results would be interpreted as evidence
of a quadratic trend in the means for Self-Esteem, t (11)

.= 3.372, P ′ .= .012. A plot
of the observed monthly self-esteem means would further help interpret the findings.

10.11 SUMMARY

In this chapter we examined the analysis of data from a repeated-measures or within-
subject research design. This design occurs when the subjects are measured over
several time points, measured under different treatment conditions, or measured with
a test battery. Such data can be analyzed using either a univariate or a multivari-
ate approach. If a reasonable sample size is available, the multivariate approach
should be preferred because it provides an exact test of the hypothesis of the equality
of the repeated-measures means. The univariate approach requires a certain struc-
ture (sphericity) for the relationship between the repeated measurements. When that
structure is not appropriate, the univariate hypothesis test will be liberal. That is, the
reported P value will be too small. This structure is generally not met when the mea-
surements obtained are time linked. Although adjustments to the degrees of freedom
have been suggested, these adjustments provide only an approximate P value. In
addition to the accuracy of the P value, Maxwell and Delany (2000, p. 601) point out
that the multivariate approach for contrast analysis is consistent with the multivari-
ate approach to testing the omnibus hypothesis. When the sphericity assumption is
violated, contrasts must use separate variance estimates for each contrast tested. The
univariate hypothesis test uses the mean variance across all orthonormal contrasts
and compensates for the assumption violation by adjusting the degrees of freedom.
This inconsistency between the omnibus test and the contrast tests is undesirable.
As a result, the multivariate approach to the analysis of repeated measures should be
a researcher’s first choice for data analysis.

In this chapter we considered a context where there was a single repeated-measures
variable. It is possible to have more than one repeated-measures variable. For example,
in our context we considered the monthly measures of Self-Esteem as a single variable
with six levels. Alternatively, the researcher could have considered the six measures
as representing two variables, trimester and month. That is, the researcher might have
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been interested in comparing the mean Self-Esteem in the second trimester with the
mean Self-Esteem in the third trimester. In addition, the Month variable could be
thought of as representing the beginning, middle, and end of a trimester. Thinking
about the data this way would create a 2 × 3 factorial structure for the repeated
measures. An interaction between Trimester and Month could be tested as well as
the Trimester main effect. In the Technical Notes we provide the SPSS syntax to
conduct a factorial analysis of the repeated measures and we provide the output of
the analysis. We believe the interpretation is self-explanatory. It might be noted that
the same hypotheses could be tested with the procedures presented in this chapter by
the appropriate choice of coefficients for contrast analyses.

Technical Notes

1. SPSS syntax for a repeated-measures design having two within-subject factors.
One factor is Trimester having two levels (months 4, 5, and 6 to represent one trimester
and months 7, 8, and 9 as a second trimester). The second factor is Month having three
levels representing early, mid, and late points in a trimester. The design is described
as a 2 × 3 repeated-measures design.

SPSS SYNTAX FOR A FACTORIAL DESIGN WITH REPEATED
MEASURES

manova month4 month5 month6 month7 month8 month9
/wsfactor=trimester(2) month(3)
/print= signif(efsize)
/design.

/wsfactor=trimester(2) month(3) splits the six repeated measures into two vari-
ables. The order in which the measures are listed on the MANOVA line is very
important. Months 4, 5, and 6 are the first, second, and third months of the second
Trimester; while Months 7, 8, and 9 are the first, second, and third months of the
third Trimester. To indicate this ordering of data, Month is listed last so levels of
this variable are changing quicker than the levels of Trimester. That is, Month 4
is the first month of the second Trimester, Month 5 is the second month of the
second Trimester, while Month 7 is the first month of the third Trimester.

Note: there are 2 levels for the TRIMESTE effect. Average tests

are identical to the univariate tests of significance.

Tests involving ’TRIMESTE’ Within-Subject Effect.

Tests of Significance for T2 using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

WITHIN CELLS 466.94 11 42.45
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TRIMESTE 234.72 1 234.72 5.53 .038

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Effect Size Measures

Partial

Source of Variation ETA Sqd

TRIMESTE .335

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Tests involving ’MONTH’ Within-Subject Effect.

Mauchly sphericity test, W = .66483

Chi-square approx. = 4.08229 with 2 D. F.

Significance = .130

Greenhouse-Geisser Epsilon = .74897

Huynh-Feldt Epsilon = .84062

Lower-bound Epsilon = .50000

AVERAGED Tests of Significance that follow multivariate tests are

equivalent to univariate or split-plot or mixed-model approach to

repeated measures. Epsilons may be used to adjust d.f. for the

AVERAGED results.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

EFFECT .. MONTH

Multivariate Tests of Significance (S = 1, M = 0, N = 4 )

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .53517 5.75671 2.00 10.00 .022

Hotellings 1.15134 5.75671 2.00 10.00 .022

Wilks .46483 5.75671 2.00 10.00 .022

Roys .53517

Note. . F statistics are exact.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Multivariate Effect Size

TEST NAME Effect Size

(All) .535

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Tests involving ’MONTH’ Within-Subject Effect.

AVERAGED Tests of Significance for MO using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

WITHIN CELLS 34.81 22 1.58

MONTH 20.19 2 10.10 6.38 .007

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Effect Size Measures

Partial

Source of Variation ETA Sqd
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MONTH .367

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Tests involving ’TRIMESTE BY MONTH’ Within-Subject Effect.

Mauchly sphericity test, W = .77809

Chi-square approx. = 2.50909 with 2 D. F.

Significance = .285

Greenhouse-Geisser Epsilon = .81839

Huynh-Feldt Epsilon = .94206

Lower-bound Epsilon = .50000

AVERAGED Tests of Significance that follow multivariate tests are

equivalent to univariate or split-plot or mixed-model approach to

repeated measures. Epsilons may be used to adjust d.f. for the

AVERAGED results.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

EFFECT .. TRIMESTE BY MONTH

Multivariate Tests of Significance (S = 1, M = 0, N = 4 )

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .70342 11.85876 2.00 10.00 .002

Hotellings 2.37175 11.85876 2.00 10.00 .002

Wilks .29658 11.85876 2.00 10.00 .002

Roys .70342

Note.. F statistics are exact.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Multivariate Effect Size

TEST NAME Effect Size

(All) .703

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Tests involving ’TRIMESTE BY MONTH’ Within-Subject Effect.

AVERAGED Tests of Significance for MO using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

WITHIN CELLS 50.14 22 2.28

TRIMESTE BY MONTH 32.19 2 16.10 7.06 .004

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Effect Size Measures

Partial

Source of Variation ETA Sqd

TRIMESTE BY MONTH .391

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2. The following SPSS syntax would be used to test the simple effect of differences
among Months during the second Trimester.
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SPSS SYNTAX FOR REPEATED MEASURES SIMPLE EFFECT

manova month4 month5 month6
/wsfactor= month(3)
/contrast(month)=polynomial
/print= transform signif( efsize)
/rename con linear quadratic
/design .

Orthonormalized Transformation Matrix (Transposed)

CON LINEAR QUADRATI

MONTH4 .577 −.707 .408

MONTH5 .577 .000 −.816

MONTH6 .577 .707 .408

- - - Tests involving ’MONTH’ Within-Subject Effect.

Mauchly sphericity test, W = .90153

Chi-square approx. = 1.03667 with 2 D. F.

Significance = .596

Greenhouse-Geisser Epsilon = .91035

Huynh-Feldt Epsilon = 1.00000

Lower-bound Epsilon = .50000

AVERAGED Tests of Significance that follow multivariate tests are

equivalent to univariate or split-plot or mixed-model approach to

repeated measures. Epsilons may be used to adjust d.f. for the

AVERAGED results.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

EFFECT .. MONTH

Multivariate Tests of Significance (S = 1, M = 0, N = 4 )

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .56442 6.47891 2.00 10.00 .016

Hotellings 1.29578 6.47891 2.00 10.00 .016

Wilks .43558 6.47891 2.00 10.00 .016

Roys .56442

Note.. F statistics are exact.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Multivariate Effect Size

TEST NAME Effect Size

(All) .564

Tests involving ’MONTH’ Within-Subject Effect.

AVERAGED Tests of Significance for MO using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

WITHIN CELLS 59.61 22 2.71
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MONTH 47.72 2 23.86 8.81 .002

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Effect Size Measures

Partial

Source of Variation ETA Sqd

MONTH .445

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Estimates for LINEAR

MONTH

Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper

1 −1.945 .544 −3.572 .004 −3.143 −.746

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Estimates for QUADRATI

MONTH

Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper

1 .442 .394 1.123 .285 −.425 1.309

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3. The following SPSS syntax would be used to test the simple effect of differences
among Months during the Third Trimester.

SPSS SYNTAX FOR A THIRD TRIMESTER SIMPLE EFFECT

manova month7 month8 month9
/wsfactor = month(3)
/contrast(month)=polynomial
/print= transform signif( efsize)
/rename con linear quadratic
/design.

Orthonormalized Transformation

Matrix (Transposed)

CON LINEAR QUADRATI

MONTH7 .577 −.707 .408

MONTH8 .577 .000 −.816

MONTH9 .577 .707 .408

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Tests involving ’MONTH’ Within-Subject Effect.

Mauchly sphericity test, W = .76662

Chi-square approx. = 2.65763 with 2 D. F.

Significance = .265
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Greenhouse-Geisser Epsilon = .81078

Huynh-Feldt Epsilon = .93079

Lower-bound Epsilon = .50000

AVERAGED Tests of Significance that follow multivariate tests are

equivalent to univariate or split-plot or mixed-model approach to

repeated measures. Epsilons may be used to adjust d.f. for the

AVERAGED results.

- - - - - - - - - - - - EFFECT .. MONTH

Multivariate Tests of Significance (S = 1, M = 0, N = 4 )

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .26640 1.81572 2.00 10.00 .212

Hotellings .36314 1.81572 2.00 10.00 .212

Wilks .73360 1.81572 2.00 10.00 .212

Roys .26640

Note. . F statistics are exact.

- - - - - - - - - - - -

Multivariate Effect Size

TEST NAME Effect Size

(All) .266

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Tests involving ’MONTH’ Within-Subject Effect.

AVERAGED Tests of Significance for MO using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

WITHIN CELLS 25.33 22 1.15

MONTH 4.67 2 2.33 2.03 .156

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Effect Size Measures

Partial

Source of Variation ETA Sqd

MONTH .156

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Estimates for LINEAR

MONTH

Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper

1 .118 .244 .484 .638 −.418 .654

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Estimates for QUADRATI

MONTH

Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper

1 -.612 .364 −1.682 .121 −1.414 .189

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Definition Gamma function: A sorority dance.

EXERCISES

Exercises 1 to 10 refer to a single-group repeated-measures study of weight loss.
Twenty obese men participated in a 5-month diet–exercise program designed to reduce
weight.

1. If the researcher’s interest was in examining monthly differences from the baseline
(Month 1):

(a) What would be the order of the A transformation matrix?

(b) What would the elements of the transformation matrix A equal?

(c) Are the contrasts identified in b orthogonal? Independent?

2. What does the H matrix equal if the following are the average monthly weights of
the participants?

[
252.2 253.9 254.5 249.8 243.2

]

3. For this data set, Wilks � equals .326. Transform � to an F statistic and determine
the degrees of freedom.

4. Suppose the researcher was interested in testing hypotheses for linear and
quadratic trends in weight loss. The following are the coefficients for fourth-degree
polynomials.







−2 −1 0 1 2
2 −1 −2 −1 2

−1 2 0 −2 1
1 −4 6 −4 1







(a) Verify that the first and second contrasts are orthogonal.

(b) Normalize this set of coefficients.

5. Do you think the researcher should be concerned regarding a violation of the
sphericity assumption if the following is the A SeA′ matrix? Why?

A SeA′ .=







121.2 −22.1 −35.0 3.5
−22.1 45.8 8.2 4.9
−35.0 8.2 38.6 4.1

3.5 4.9 4.1 31.4
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6. The determinant of the A SeA′ is 4.27 × 106. Using the Mauchly test for
sphericity, compute

(a) W

(b) χ2

(c) df

Do these results indicate the sphericity assumption has been violated? Are the
results consistent with your assessment in Exercise 5?

7. Using the A SeA′ matrix reported in Exercise 5, compute

(a) ε∗

(b) ε′

(c) ε̃

8. If the univariate approach to the analysis of the repeated-measures design was
adopted, what would MSS×T equal?

9. Using the monthly weight means from Exercise 2, orthonormalized coefficients
from Exercise 4, and the A SeA′ matrix in Exercise 5, test for linear and quadratic
trends in changes in weight over the 5-month period. Compute the following:

(a) ψ̂linear

(b) s
ψ̂linear

(c) t

(d) df

(e) ψ̂quadratic

(f) s
ψ̂quadratic

(g) t

(h) df

10. If the sphericity assumption had been met and the univariate approach was taken,
how would the calculation of the estimated standard errors for the linear trend
differ from the estimated standard error computed in Exercise 9?

Computer Applications

Exercises 11 to 14 require the analysis of a hypothetical data set A3, labeled FLEX,
and is described in Appendix A. Use these data and a computer software package
(e.g., SPSS or SAS) to answer the questions in these exercises.

11. Is there evidence to indicate that the sphericity assumption is violated in this
data set?

(a) State the numerical value of

i. Mauchly’s W
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ii. χ2

iii. Degrees of freedom

iv. P value

(b) Huynh–Feldt ε̃ value

12. Is there evidence to indicate Behavior changed over the 5-week period? Support
your answer with appropriate statistical data:

(a) Wilks �

(b) F

(c) Degrees of freedom

(d) P value

13. Provide an adjusted and an unadjusted effect size index for the relationship
between Behavior and the Week variable.

14. How would you characterize the change in Behavior over the 5-week period?
Provide the statistical evidence for a:

(a) Fourth-degree polynomial

(b) Cubic trend

(c) Quadratic trend

(d) Linear trend
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C H A P T E R 11

Mixed-Model Analysis

11.1 INTRODUCTION

Our discussion in the previous chapter on the analysis of repeated measures was
limited to data obtained from a single sample. In the present chapter we extend the
analysis of repeated measures to include multiple samples. The multiple samples
represent multiple populations. Because this design includes both the within-subjects
data and at least one grouping variable or between-groups data, the design is referred
to as a mixed-model design and is also sometimes referred to as a split-plot design
reflecting its origination in agricultural research.

The grouping variable in a mixed-model design may be either a manipulated
factor such an intervention (e.g., Reading Program) or it may be a nonmanipu-
lated factor such as a characteristic of the participants (e.g., Gender) in the study.
In Chapter 10 we stated that the repeated measures may be obtained from three dif-
ferent contexts. One, analysis units are observed at several time points, and changes
in behavior over time are of interest (e.g., growth modeling). Our research context
in Chapter 10 involving pregnant women during the second and third trimesters is
an example of such a repeated-measures design. Two, units might be exposed to
different treatments in a random order. In the third context, units may have com-
pleted subscales of a test battery, and comparisons among the subscales are of
interest (i.e., profile analysis). In all three of these contexts the inclusion of mul-
tiple samples would allow a researcher to investigate an interaction effect involving
the grouping variable and the repeated-measures variable. This would be particu-
larly important for the first repeated-measures context where the meaning of changes
over time may not be clear. Observed changes over time may have multiple expla-
nations such as maturation, fatigue, or memory. The addition of a sample from a
second population can help address this issue by serving as a comparison or control
group.

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.

227
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The inclusion of a grouping variable may also be added to the repeated-measures
design because the researcher is interested in differences among the populations across
all levels of the repeated-measures variable. For example, individuals may be ran-
domly assigned to each of two weight reduction programs, and weight loss may be
recorded each month over a 6-month intervention period. The pattern of weight loss
may be similar for the two programs (i.e., no interaction) but one program may result
in a greater average or total weight loss than the other program (i.e., grouping variable
main effect).

The inclusion of a grouping variable allows the researcher to make comparisons
between levels of the grouping variable similar to those that were made in a one-
factor between-groups design. If more than one grouping variable is included in the
study, then comparisons similar to those addressed in the factorial design (Chapter
8) can be addressed. Furthermore, one or more covariates could also be added to the
analysis to address questions similar to those discussed in Chapter 9. In the present
chapter we limit our discussion to a single between-groups variable and a single
repeated-measures variable. We begin with a brief review of the univariate approach
to the mixed-model design and then present in some detail the multivariate analysis.
Because comparisons between levels of the grouping variable are made across levels
of the repeated-measures factor, the between-groups variable is a univariate data
analysis problem. The analysis of the repeated-measures variable and the interaction
between the grouping variable and the repeated-measures variable, however, can be
addressed using multivariate procedures.

The generalization to multiple grouping variables and multiple repeated-measures
variables is, however, straightforward. Covariates that are obtained prior to the begin-
ning of the study or time-varying covariates (obtained concurrently with each level
of the repeated-measures variable) can also be included in a mixed-model design.
We will not discuss these added complexities, but interested readers may find useful
discussions in Keppel and Wickens (2004, pp. 510–529), Kirk (1995, pp. 512–586 ),
and Winer (1971, pp. 796–809).

11.2 RESEARCH CONTEXT

Continuing the research context introduced in Section 10.2, M. S. Poudevigne
(2004) also collected Self-Esteem data from a sample of Nonpregnant women
matched with respect to age, height, weight, and race to the sample of Pregnant
women as described in Chapter 10. The researcher was primarily interested in
comparing changes in Self-Esteem over the 6-month period for Pregnant women
with changes in Self-Esteem for the Nonpregnant women. Table 11.1 presents the
data for both samples of women, and Table 11.2 provides the descriptive statis-
tics (means and standard deviations) within each group and across both groups.
(An SPSS data file containing these scores, labeled SELFESTEEM2 is avail-
able at the Wiley website. The data have been modified slightly for pedagogical
purposes.)
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TABLE 11.1 Self-Esteem Scores for Pregnant and Nonpregnant Women

Group Subject Month 4 Month 5 Month 6 Month 7 Month 8 Month 9 Mean

Pregnant 1 12 11 10 10 10 10 10.50
2 34 30 34 12 16 10 22.67
3 16 18 15 13 15 15 15.33
4 19 16 14 11 12 13 14.17
5 23 22 21 20 23 21 21.67
6 20 20 20 19 20 20 19.83
7 19 13 11 11 11 11 12.67
8 13 11 10 10 10 10 10.67
9 14 14 14 10 10 10 12.00

10 15 12 10 11 11 10 11.50
11 16 14 10 11 10 10 11.83
12 14 11 13 11 11 11 11.83

Nonpregnant 13 17 20 20 20 20 19 19.33
14 20 20 22 20 20 20 20.33
15 13 10 10 11 15 10 11.50
16 14 14 15 12 13 14 13.67
17 10 10 10 11 12 11 10.67
18 21 20 21 22 22 22 21.33
19 16 17 16 20 20 18 17.83
20 12 10 11 10 10 10 10.50
21 18 15 18 15 17 15 16.33
22 16 17 17 13 17 17 16.17
23 11 16 16 15 19 20 16.17
24 13 10 11 10 10 10 10.67

TABLE 11.2 Self-Esteem Means and (Standard Deviations) by Group
and Month

Group Month 4 Month 5 Month 6 Month 7 Month 8 Month 9 Mean

Pregnant 17.92 16.00 15.17 12.42 13.25 12.58 14.557
(6.007) (5.721) (7.030) (3.423) (4.372) (4.010)

Nonpregnant 15.08 14.92 15.58 14.92 16.25 15.50 15.375
(3.502) (4.100) (4.295) (4.461) (4.181) (4.442)

Mean 16.500 15.458 15.375 13.667 14.750 14.042 14.967

11.3 UNIVARIATE ANALYSIS

The data in Tables 11.1 and 11.2 can be used to test three omnibus hypotheses:
(1) changes in Self-Esteem over time is the same among Pregnant and Nonpregnant
women; (2) for all women, there is no change over time in Self-Esteem; and (3) the



“c11” — 2006/3/21 — page 230 — #4

230 MIXED-MODEL ANALYSIS

TABLE 11.3 Formulas for the Univariate Sum-of-Squares for the Mixed-Model
Analysis of Variancea

Source of Variation Sum-of-Squares

Within subjects
Time (T ) nJ

∑T
t=1(Y ..t − Y ...)

2

Group × time (G × T ) n
∑J

j=1
∑T

t=1(Y .j t − Y ..t − Y .j. + Y ...)
2

Time × Subjects|Group (T × S|G)
∑J

j=1
∑T

t=1
∑nj

u=1(Yujt − Y .j t − Yuj. + Y .j.)
2

Between groups
Group (G) nT

∑J
j−1(Y .j. − Y ...)

2

Subjects|Group (S|G) T
∑J

j=1
∑nj

u=1(Y uj. − Y .j.)
2

awhere n = number of individuals in a group (we assume an equal number of individuals in each group)
J = number of group
T = number of time points

Yujt = observation on units, u, at Time t, in Group j

Y ..t = mean observation across all units at time t

Y .j. = mean of observations of all units in Group

Y .j t = mean observation across all units in Group j at time t

Y uj. = mean observation across Time for unit u in Group j

Y ... = mean observation across Time and across all units (grand mean of all observations)

mean reported Self-Esteem is the same for Pregnant and Nonpregnant women. The
first two hypotheses involve the repeated-measures variable (Time), and the third
hypothesis involves only the between-groups variable. The formulas and the com-
putations of the sum-of-squares for the sources of variation needed to test the three
hypotheses are reported in Table 11.3. The ANOVA summary presenting the degrees
of freedom, sum-of-squares, mean squares, F ratios, and P values for this analysis
are presented in Table 11.4. The results of these analyses provide some evidence
to indicate that changes in Self-Esteem over Time may not have been the same

TABLE 11.4 Univariate Analysis of Variance Summary Table
for the Mixed Model

Source of Sum-of- Degrees of Mean
Variation Squares Freedom Square F P η2

G

Within subjects
Time 128.357 5 25.671 4.142 .002 .041
Group × time 174.955 5 34.991 5.646 .000 .098
Time × subjects|group 681.667 110 6.197

Between groups
Group 24.088 1 24.088 .232 .634 .008
Subjects|groups 2284.376 22 103.835
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for Pregnant and Nonpregnant women [F(5, 110)
.= 5.646, P

.= .000, η2
G

.= .098].
[The effect size is estimated using generalizedη2 (Olejnik andAlgina, 2003).] Because
the results indicate that the difference in Self-Esteem between Pregnant and Nonpreg-
nant women is not consistent across the 6-month period, the main effect for Time or
Group would be of little interest.

Because there is considerable evidence that Group and Time interact, we might con-
sider two alternative approaches to further analyzing the data. One popular approach
is to test for simple effects. That is, test for differences between levels of one vari-
able within each level of the second variable. Because the primary interest in this
research context is a comparison between Pregnant and Nonpregnant women, these
simple effects would be a series of t tests between the two populations for each level
of Time. In other research contexts the simple effects would examine differences
between levels of the repeated-measures variable within each level of the grouping
variable. This latter analysis would be equivalent to conducting a series of repeated-
measures analyses (see Chapter 10). We will not pursue either of these analyses here.
Kirk (1995, pp. 535–539) provides an excellent discussion and application of the
simple effects analysis for a univariate mixed-model analysis of variance.

An alternative to simple effects is to conduct interaction contrasts. In the current
research context there is an interest in characterizing the nature of the change in Self-
Esteem. In Chapter 10 the results of a contrast analysis within the Pregnant sample
provided some evidence to indicate that for this population the nature of the change in
Self-Esteem could be characterized as a quadratic trend. Given the interaction effect,
an examination of group differences in trend across the 6-month period might be of
interest. We will address this question of differences in trend following our discussion
of the multivariate approach to the mixed-model design.

11.4 MULTIVARIATE ANALYSIS

A multivariate approach may be taken for testing the hypotheses involving the
repeated-measures variable. Because the effect of the grouping variable is estimated
across all levels of the repeated-measures variable, the test for differences among
levels of the grouping variable is a univariate analysis and will not be discussed fur-
ther here. If the assumption of sphericity is met (see Section 10.7), the univariate
approach would be more powerful than the multivariate approach. With a mixed-
model design we assume that the separate-group covariance matrices are equal (i.e.,
�1 = �2 = · · · = �J , where J is the number of levels of the grouping variable). The
Box M test (see Section 3.3) may be used to test this assumption. Assuming equal
covariance matrices, the assumption of sphericity can be tested with the Mauchly
statistic using the error covariance matrix. It should be recalled, however, that the
Mauchly test, Eq. (10.7), is sensitive to multivariate nonnormality and can be insen-
sitive to some violations of the sphericity assumption that can affect the statistical
validity of the univariate tests involving the repeated-measures variable(s). We do not
demonstrate the calculation of the Mauchly test here, but we will request this test in
the computer application section. At this point we simply state that for the Mauchly
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test, W
.= .007, χ2(14)

.= 98.761, P
.= .000. The results of the Mauchly test indi-

cates that the sphericity assumption may be violated, and the reported P value for the
univariate hypothesis tests for the interaction between Time and Group and the Time
main effect may be underestimated.

Additional evidence of a violation of the sphericity assumption is provided by
the Greenhouse–Geisser ε′ [see Eq. (10.5)] and the Huynh–Feldt ε̃ [see Eq. (10.6)]
statistics. As noted in Chapter 8, these statistics overadjust for a violation of the
sphericity assumption. We do not demonstrate the calculation of these statistics here
but simply state that the Greenhouse–Geisser ε′ is .308 and the Huynh-Feldt ε̃ is .342.
These results further indicate that the sphericity assumption may be violated.

The multivariate approach to the analysis of repeated measures considers the rela-
tionships among the repeated measures when computing the multivariate test criterion
(e.g., Wilks �), so it does not assume sphericity. For our context, two hypotheses
involve the repeated-measures variable: (1) the interaction between the grouping vari-
able (Pregnant vs. Nonpregnant women) and the repeated-measures variable (Time),
and (2) the main effect for Time. We will begin our analysis by examining the
interaction effect and then present the test for the repeated-measures main effect.

11.4.1 Group-by-Time Interaction

It should be recalled from Chapter 10 that the multivariate approach to the analysis
of repeated-measures data is to form a set of linearly independent contrasts. The
omnibus multivariate hypothesis test examines whether the vectors of the contrasts
are equal to 0, H0: Aµ = 0. The multivariate interaction hypothesis test examines
whether the vector of contrasts within each population are equal: H0: Aµ1 = Aµ2 =
· · · = Aµj (j = 1, 2, . . . , J ). This hypothesis can be tested using

� = |AEA′|
|A(E + HT ×G)A′| , (11.1)

where A = desired (p × T ) matrix of contrast coefficients, with p = T − 1, with T

being the number of levels of the repeated-measures variable
E = error SSCP

HT ×G = SSCP interaction hypothesis matrix.

Within each Group j the error SSCP matrix, Ej is computed by deviating unit
scores at Time t , Yujt , from the group mean scores at Time t , Y.j t :

Ej = (Yujt − Y.j t )
′(Yujt − Y.j t ),

where Yujt = nj × T matrix of observations in Group j
Y.j t = nj × T matrix of means in Group j

This is similar to the calculation of E for the repeated-measures design (see Section
10.4), but in the mixed-model design there are J separate error matrices. The separate
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TABLE 11.5 Separate Group and Summed Error SSCP Matrices

E1
.=











396.917 354.000 431.167 89.417 170.250 67.583
354.000 360.000 426.000 116.000 200.000 108.000
431.167 426.000 543.667 121.167 222.500 101.833

89.417 116.000 121.167 128.917 157.750 145.083
170.250 200.000 222.500 157.750 210.250 175.250

67.583 108.000 101.833 145.083 175.250 176.917











E2
.=











134.917 126.083 143.417 136.083 114.750 115.500
126.083 184.917 187.563 183.917 171.250 191.500
143.417 187.583 202.917 183.583 167.250 190.500
136.083 183.912 183.583 218.917 189.250 195.500
114.750 171.250 167.250 189.250 192.250 189.500
115.500 191.500 190.500 194.500 189.500 217.000











E .=











531.833 480.083 574.583 225.500 285.000 183.083
480.083 544.917 613.583 299.917 371.250 299.500
574.583 613.583 746.583 304.750 389.750 292.333
225.500 299.917 304.750 347.833 347.000 339.583
285.000 371.250 389.750 347.000 402.500 364.750
183.083 299.500 292.333 339.583 364.750 393.917











error matrices are then summed across the J groups (E = ∑J
j=1 Ej ). Table 11.5

presents the separate error matrices along with the summed error matrix.
The SSCP matrix for the interaction hypothesis is obtained by:

HT ×G =
J∑

j=1

HjT ×G

=
J∑

j=1

nj (y.j t − y..t )(y.j t − y..t )
′,

where nj is the number of units in Group j , y.j t is a vector of T means for Group j , and
y..t is vector of T means across the J groups. The interaction SSCP matrix is obtained
by summing the separate SSCP matrices across the J groups. The computations for
interaction SSCP for the two groups and the pooled HT ×G matries are

y.1t − y..t
.=











17.92 − 16.500
16.00 − 15.458
15.17 − 15.375
12.42 − 13.667
13.25 − 14.750
12.58 − 14.042











.=











1.420
.542

−.205
−1.247
−1.500
−1.462











,
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H1T ×G

.= 12











1.420
.542

−.205
−1.247
−1.500
−1.462











[
1.420 .542 −.205 −1.247 −1.50 −1.462

]
,

.=











24.197 9.236 −3.493 −21.249 −25.560 −24.912
9.236 3.525 −1.333 −8.110 −9.756 −9.509

−3.493 −1.333 0.504 3.068 3.690 3.597
−21.249 −8.110 3.068 18.660 22.446 21.877
−25.560 −9.756 3.690 22.446 27.000 26.316
−24.912 −9.509 3.597 21.877 26.316 25.649











,

H2T ×G

.=











24.197 9.236 −3.493 −21.249 −25.560 −24.912
9.236 3.525 −1.333 −8.110 −9.756 −9.509

−3.493 −1.333 0.504 3.068 3.690 3.597
−21.249 −8.110 3.068 18.660 22.446 21.877
−25.560 −9.756 3.690 22.446 27.000 26.316
−24.912 −9.509 3.597 21.877 26.316 25.649











,

HT ×G
.=











48.394 18.471 −6.986 −42.498 −51.120 −49.825
18.471 7.050 −2.667 −16.221 −19.512 −19.018
−6.986 −2.667 1.009 6.135 7.380 7.193

−42.498 −16.221 6.135 37.320 44.892 43.755
−51.120 −19.512 7.380 44.892 54.000 52.632
−49.825 −19.018 7.193 43.755 52.632 51.299











.

To test the interaction hypothesis, Wilks � can be computed using Eq. (11.1). For the
data in Table 11.1 the error SSCP matrix, E, is reported in Table 11.5, the hypoth-
esis SSCP matrix, HT ×G, is presented above, and a set of orthonomalized contrast
coefficients is provided in Table 10.4. Using these results, �T ×G is computed as:

�T ×G = |A EA′|
|A(E + HT ×G)A′|

.= 3.48 × 108

8.82 × 108

.= .3945.

(It should be noted that any set of linearly independent contrast coefficients would
provide the same value of �.)
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Because the degrees of freedom for the grouping variable equals 1, dfG = 1, the
Wilks � can then be transformed using

FT ×G = 1 − �T ×G

�T ×G

dfe − p + 1

p

.= 1 − .3945

.3945

22 − 5 + 1

5
.= 5.525

Assuming data assumptions have been met, this statistic has a central F distri-
bution with ν1 = p, ν2 = dfe − p + 1. If dfG = 2, Eq. (3.17) would be used with
degrees of freedom ν1 = 2p, ν2 = 2(dfe − p + 1). More generally, when r ≥ 2
where r = min(p, dfG), Eqs. (3.18) to (3.20) would be used. For our computed F

ratio with degrees of freedom equaling 5 and 18, the P value is .003. The data do
provide evidence to indicate that changes in Self-Esteem over the 6-month period is
not the same for Pregnant and Nonpregnant women. The Huynh–Feldt ε̃ adjusted
degrees-of-freedom univariate test for the Time × Group interaction resulted in
F(1.710, 37.616)

.= 5.627, and P
.= .010. Both the basic multivariate test and the test

using the Huynh–Feldt ε̃ adjusted degrees-of-freedom lead to the same conclusion,
but here the multivariate test provides a smaller P value.

Because there is evidence of an interaction between Group and Time, an exami-
nation of changes in Self-Esteem across all women would not be considered, we will
continue with the repeated-measures variable (Time) to demonstrate the application
of the multivariate approach to the mixed-model design.

11.4.2 Repeated-Measures Variable Main Effect

Assuming that the Time main effect was interpretable and of interest to the researcher,
the null hypothesis of no change in Self-Esteem over time is essentially equivalent to
the hypothesis tested for Time in the repeated-measures analysis presented in Chapter
10. If there is no interaction between Time and Group, and if the separate covariance
matrices are equal, the F ratios would be approximately equal (if the two conditions
are exactly met, the computed F ratios would be identical), and the two tests would
differ only in the error degrees of freedom, ν2.

To test the repeated-measures main effect, Eq. (11.1) can be used again with only
a slight modification. The SSCP for H must be changed to reflect the hypothesis
of interest. For the main effect, we are interested in the extent to which the mean
monthly Self-Esteem scores differ from the Self-Esteem grand mean (Y ...

.= 14.966).
The SSCP for the repeated-measures Time main effect, HTime, is computed identically
to that presented in Chapter 10 for the repeated-measures effect: HTime = N(y..t −
y...)(y..t − y...)

′, where y..t is a column vector of the monthly means averaged over the
J groups and y... is a p × 1 grand mean Self-Esteem vector across all units. Using the
monthly means averaged across the two samples and the grand mean from Table 11.2,
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the SSCP for the Time main effect, HTime, can be computed as:

y..t−y...
.=











16.50 − 14.966
15.46 − 14.966
15.38 − 14.966
13.67 − 14.966
14.75 − 14.966
14.04 − 14.966











.=











1.534
.494
.414

−1.296
−.216
−.926











HTime
.= 24











1.534
.494
.414

−1.296
−.216
−.926











[
1.534 .494 .414 −1.296 −.216 −.926

]

.=











56.476 18.187 15.242 −47.714 −7.952 −34.092
18.187 5.857 4.908 −15.365 −2.561 −10.979
15.242 4.908 4.114 −12.877 −2.146 −9.201

−47.714 −15.366 −12.877 40.311 6.718 28.802
−7.952 −2.561 −2.146 6.718 1.120 4.800

−34.092 −10.979 −9.201 28.802 4.800 20.579











.

Wilks � can be computed using Eq. (11.2) by substituting the SSCP for E presented
in Table 11.5, HTime computed above, and using the orthonormal contrast coefficients
from Table 10.4:

�Time = |A EA′|
|A(E + HTime)A′| (11.2)

.= 3.48 × 108

7.39 × 108
.= .4730.

Wilks � can be transformed to a statistic that has a central F distribution, assuming
that the data assumptions have been met, with ν1 = p and ν2 = dfe − p + 1 degrees
of freedom with dfe = N − J using:

FTime = 1 − �Time

�Time

dfe − p + 1

p

.= 1 − .4730

.4730

22 − 5 + 1

5
.= 4.011.

The results of this analysis provides some evidence to support the belief that Self-
Esteem changes over the 6-month period, FTime(5, 18)

.= 4.011, P
.= .013. In the

next section, we present the SPSS program to carry out the analyses presented in this
section, along with the output.
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11.5 COMPUTER APPLICATION I

In this section we present the SPSS syntax for the multiple group repeated-measures
design. The program is essentially the same as the program for the single-group
repeated-measures design presented in Section 10.5. The difference between the pro-
grams is the addition of by group(1,2) on the manova line to identify the multiple
group structure. Because we now have multiple groups, the equality of the covariance
matrices should be tested with the Box test.

SPSS SYNTAX FOR A MIXED-MODEL DESIGN

manova
month4 month5 month6 month7 month8 month9 by group(1,2)
/wsfactor = month(6)
/print = signif(efsize) homogeneity (box)
/design.

by group(1,2) identifies the between-subjects factor for the mixed-model analysis.
/print = signif(averf ) requests that the univariate hypothesis tests on the repeated
measures variable be reported.

OUTPUT

Analysis: Test of the Equality of Covariance Matrices

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Cell Number .. 1
Determinant of Covariance matrix of dependent variables = 724.84417
LOG(Determinant) = 6.58596
- - - - - - - - - - - - - - - -
Cell Number .. 2
Determinant of Covariance matrix of dependent variables = 207.06094
LOG(Determinant) = 5.33301
- - - - - - - - - -
Determinant of pooled Covariance matrix of dependent vars.=4583.94552
LOG(Determinant) = 8.43032
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate test for Homogeneity of Dispersion matrices
Boxs M = 54.35827
F WITH (21,1780) DF = 1.80998, P = .014 (Approx.)
Chi-Square with 21 DF = 38.65085, P = .011 (Approx.)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Interpretation: Test of the Equality of Covariance Matrices

The Box M test for the equality of covariance matrices is reported for both the
χ2 approximation (see Section 3.3) and an F approximation. The F approxima-
tion requires additional computations beyond those for the χ2 approximation. The
results presented here provide some evidence that the covariance matrices differ. In
the present context, however, it is noted that both samples included 12 participants.
The balanced design minimizes the threat to statistical validity for the hypothesis
tests. In addition, as discussed earlier, the Box test is very sensitive to even small
departures of covariance equality. Also, the Box test is sensitive to departures from
multivariate normality. As a result we will proceed with our analysis assuming that
the violation of covariance equality assumption does not invalidate statistical tests.

Analysis: Test for Sphericity

Tests involving ’MONTH’ Within-Subject Effect.
Mauchly sphericity test, W = .00735
Chi-square approx. = 98.76100 with 14 D. F.
Significance = .000

Greenhouse-Geisser Epsilon = .30818
Huynh-Feldt Epsilon = .34196
Lower-bound Epsilon = .20000

AVERAGED Tests of Significance that follow multivariate tests are
equivalent to univariate or split-plot or mixed-model approach to
repeated measures. Epsilons may be used to adjust d.f. for the
AVERAGED results.

Interpretation: Test for Sphericity

The Mauchly test for sphericity provides some evidence to indicate that the assumption
necessary for testing hypotheses involving the repeated-measures variable is violated,
W

.= .007, χ2(14)
.= 98.761, P

.= .000. Based on these results we would expect that
the P values reported for the hypothesis tests involving the repeated-measures variable
would be too small. In addition, the Greenhouse–Geisser ε′ .= .308 and the Huynh–
Feldt ε̃

.= .342 provide a further indication of the assumption of sphericity that is
violated. If the univariate hypothesis tests for the repeated-measures variable are to
be interpreted, the degrees of freedom for the test statistics should be adjusted by one
of the epsilon values.

Analysis: Test for the Within-Subjects Factors

EFFECT . . GROUP BY MONTH
Multivariate Tests of Significance (S = 1, M = 1 1/2, N = 8 )
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .60532 5.52139 5.00 18.00 .003
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Hotellings 1.53372 5.52139 5.00 18.00 .003
Wilks .39468 5.52139 5.00 18.00 .003
Roys .60532
Note.. F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size
(All) .605

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
EFFECT .. MONTH
Multivariate Tests of Significance (S = 1, M = 1 1/2, N = 8 )
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .52871 4.03854 5.00 18.00 .012
Hotellings 1.12182 4.03854 5.00 18.00 .012
Wilks .47129 4.03854 5.00 18.00 .012
Roys .52871
Note.. F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size
(All) .529

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Tests involving ’MONTH’ Within-Subject Effect.
AVERAGED Tests of Significance for MO using UNIQUE sums of squares
Source of Variation SS DF MS F Sig of F
WITHIN CELLS 682.76 110 6.21
MONTH 128.45 5 25.69 4.14 .002
GROUP BY MONTH 174.62 5 34.92 5.63 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Effect Size Measures

Partial
Source of Variation ETA Sqd
MONTH .158
GROUP BY MONTH .204
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Test for the Within-Subjects Factors

The multivariate test for the interaction between the grouping variable and the
repeated-measures variable provides some evidence to indicate that the monthly
changes in Self-Esteem are not the same for the Pregnant and Nonpregnant
women, Wilks �

.= .395, F (5, 18)
.= 5.521, P

.= .003. The unadjusted multivari-
ate effect-size index equals .605 and the Serlin-adjusted effect size equals .591
(1 − [(144 − 1)/(144 − 5 − 1)] (1 − .605)). The univariate test using the Huynh–
Feldt ε̃ adjusted degrees of freedom also provides support for the conclusion that
changes in Self-Esteem is not the same for Pregnant and Nonpregnant women;
F(1.71, 37.616)

.= 5.627, P
.= .010. If the main effect for Time was interpretable, the

multivariate test provides support for the conclusion that the Self-Esteem of women
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did change over the 6-month period; F(5, 18)
.= 4.039, P

.= .012. The Huynh–Feldt
ε̃ adjusted degrees of freedom test also provides support for the same conclusion,
F(1.71, 37.616)

.= 4.139, P
.= .029.

Analysis: Test for the Between-Group Factor

Tests of Between-Subjects Effects.
Tests of Significance for T1 using UNIQUE sums of squares
Source of Variation SS DF MS F Sig of F
WITHIN CELLS 2284.82 22 103.86
GROUP 24.17 1 24.17 .23 .634
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Effect Size Measures

Partial
Source of Variation ETA Sqd
GROUP .010
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Test for the Between-Group Factor

The between-group effect is a univariate hypothesis test comparing the two popula-
tions across the 6-month observational period. This test is equivalent to conducting
a single-factor analysis of variance test, where the unit of analysis is the individual’s
mean Self-Esteem across the time points. The results indicate that there is insuffi-
cient evidence to conclude that the two populations differ in the mean Self-Esteem
[F(1, 22)

.= .233, P
.= .634]. The Pregnant women’s mean Self-Esteem score was

14.56 while the Nonpregnant women had a mean Self-Esteem score of 15.38. Because
the Group-by-Time interaction indicated that the difference between the two popula-
tions was not the same for all time points, the interpretation of this main effect may
be misleading.

11.6 CONTRAST ANALYSIS

To identify specific differences between levels of the between-group variable (Group)
we would proceed with specific contrasts as outlined in Section 4.4. For our data set,
there was insufficient evidence to indicate group differences (Pregnant vs. Nonpreg-
nant women) on Self-Esteem, so an examination of contrasts is not demonstrated
here. In the computer application section below, however, we do request the pairwise
contrast and interpret the results to demonstrate an application. Although we only
present the pairwise contrast, if more groups were available, complex contrasts could
also be requested.

For the repeated-measures variable, two sets of contrasts can be examined. One set
can be formed to compare levels of the repeated-measures variable across all levels of
the grouping variable.These are contrasts for the main effect for the repeated-measures
variable and would be computed as demonstrated in Section 10.9. A second set of
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contrasts can be examined involving the interaction of the between-group variable and
the repeated-measures variable. For example, in our context, it might be of interest to
compare the nature of change in Self-Esteem among Pregnant women with changes
among Nonpregnant women. We may have hypothesized that a quadratic trend may
describe changes in Self-Esteem among Pregnant women, but no change in behavior
among the Nonpregnant women. Or, perhaps, we may hypothesize some trend other
than quadratic for the Nonpregnant women.

The interaction contrasts can be formed by computing the desired contrasts within
each group as was demonstrated in Section 10.9. For tests of trend within each group,
the product of the p × T orthonormalized contrast coefficients (Table 10.4) and the
T × 1 vector of monthly means would be computed: ψ̂j = Ay.j t . For the Pregnant
women (j = 1) the resulting vector is

ψ̂1
′ .= [−4.506 1.438 .267 −.394 −1.202

]
.

The first value (−4.506) represents the linear trend, the second value (1.438) repre-
sents the quadratic trend, and so forth. For the Nonpregnant women (j = 2), a similar
set of contrasts can be formed:

ψ̂2
′ .= [

.648 .003 −.342 −.362 −.814
]
.

The vector of interaction contrasts is the difference between the two sets of contrasts:

ψ̂1
′ − ψ̂2

′ = ψ̂ ′ .= [−5.154 1.435 .609 −.032 −.388
]
.

The first value in this vector is the difference in the linear trend between the two
groups. The second value is the difference in the quadratic trend, and so forth.

To test the hypotheses that the trends differ, the estimated standard error for each
trend is needed. The error SSCP matrix, E, is given in Table 11.5. Multiplying this
matrix by the reciprocal of the error degrees of freedom, 1/(N − J ), gives the error
covariance matrix Se. In our example the error degrees of freedom is 22 (= 24 − 2).
Multiplying E by the scalar .0455 (1/22) gives the following results:

Se
.=











24.198 21.844 26.144 10.260 12.968 8.330
21.844 24.793 27.918 13.633 16.892 13.627
26.144 27.918 33.970 13.866 17.734 13.301
10.260 13.633 13.866 15.826 15.789 15.451
12.968 16.892 17.734 15.789 18.314 16.596
8.330 13.627 13.301 15.451 16.596 17.923











.
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Pre- and postmultiplying Se by A, A SeA′ gives the variance of each contrast (MSq ,
q = 1, 2, . . . , p) on the main diagonal:

A SeA′ .=









19.362 .859 −3.468 −1.085 8.865
.859 1.548 −1.009 .112 1.091

−3.468 −1.009 3.260 −.226 −2.793
−1.085 .112 −.226 1.087 −.101

8.865 1.091 −2.793 −.101 5.847









.

The estimated standard error for contrast q is computed as:

s
ψ̂q

=
√
√
√
√MSq

J∑

j=1

T∑

t=1

a2
j t

nj

,

where a2
j t is the contrast coefficient for the t th time point for Group j , and nj is the

number of units in Group j . For our context, the estimated standard error for the linear
interaction contrast (q = 1) is computed as:

s
ψ̂Linear×G

.=
√

19.362
[(−.598)2 + · · · + (.598)2] + [(−.598)2 + · · · + (.598)2]

12

.=
√

19.362
2

12
.= 1.796.

The t test is computed as the ratio of the contrast to its estimated standard error:

t
.= −5.154

1.796
.= −2.870.

Similarly, the estimated standard error for the quadratic interaction contrast is

s
ψ̂Quad×G

.=
√

1.548
(.546)2 + (−.109)2 + · · · + (.546)2 + (.546)2 + · · · + (.546)2

12

.=
√

1.548
2

12
.= .508.

The computed t statistic is

t
.= 1.435

.508
.= 2.825.
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Interaction hypotheses comparing other patterns of means could be computed in a sim-
ilar manner. However, patterns in means other than linear or quadratic are frequently
of little interest to researchers.

Under the null hypothesis of no group-by-trend interaction, each computed t

statistic has a Student t distribution with N − J degrees of freedom. For the linear
interaction hypothesis, t (22)

.= −2.870, P
.= .009, and for the quadratic interaction

hypothesis, t (22)
.= 2.825, P

.= .010. If these two contrasts constitute a family of
contrasts of interest to the researcher, then the researcher might conclude, consider-
ing a Bonferroni adjustment (i.e., P ′ .= .018 and P ′ .= .020), that there is sufficient
evidence to indicate that the quadratic trend is not the same for the Pregnant and Non-
pregnant women. A plot of the monthly Self-Esteem means for each group would be
helpful in further interpreting these results.

11.7 COMPUTER APPLICATION II

In this section we have added the /contrast command for both the repeated-
measures variable and the between-subjects variable. Here, rather than specifying the
coefficients first presented in Table 10.3, we just specify polynomial. For the between-
subjects variable only two groups are considered, so the only contrast possible is
pairwise.

SPSS SYNTAX FOR BETWEEN-GROUPS AND WITHIN-SUBJECTS
CONTRASTS

manova
month4 month5 month6 month7 month8 month9 by group(1,2)
/wsfactor=month(6)
/contrast(month)=polynomial
/contrast(group)=special (1 1, 1 −1)
/print=transform
/rename=ave linear quadratic cubic quartic quintic
/design.

/contrast(time)=polynomial requests contrasts be computed on sources of
variation involving the repeated-measures factor, Time.
/contrast(group)=special(1 1, 1 −1) requests a specific contrast between levels
of between-subjects factor Group. Alternatively, = simple could replace special
and the coefficients would not be needed.
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OUTPUT

Analysis: Contrast Tests

Orthonormalized Transformation Matrix (Transposed)
AVE LINEAR QUADRATI CUBIC QUARTIC QUINTIC

MO4 .408 −.598 .546 −.373 .189 −.063
MO5 .408 −.359 −.109 .522 −.567 .315
MO6 .408 −.120 −.436 .298 .378 −.630
MO7 .408 .120 −.436 −.298 .378 .630
MO8 .408 .359 −.109 −.522 −.567 −.315
MO9 .408 .598 .546 .373 .189 .063
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Tests of Between-Subjects Effects.
Tests of Significance for AVE using UNIQUE sums of squares
Source of Variation SS DF MS F Sig of F
WITHIN CELLS 2284.82 22 103.86
GROUP 24.17 1 24.17 .23 .634
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Estimates for AVE
GROUP
Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper

2 −2.0072208 4.16044 −.48245 .63425 −10.63544 6.62100
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Estimates for LINEAR
MONTH

Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper
1 −1.9273061 .89669 −2.14936 .04286 −3.78692 −.06769

Group BY MONTH
Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper

2 −5.1494433 1.79337 −2.87137 .00887 −8.86867 −1.43021
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Estimates for QUADRATIC
MONTH

Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper
1 .6910233 .25479 2.71216 .01273 .16263 1.21942

Group BY MONTH
Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper

2 1.43660111 .50957 2.81922 .00999 .37981 2.49339
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Estimates for CUBIC
MONTH

Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper
1 −.0372678 .36819 −.10122 .92029 −.80084 .72631

Group BY MONTH
Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper

2 .6087074 .73638 .82663 .41732 −.91844 2.13586
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Estimates for QUARTIC
MONTH

Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper
1 −.37796447 .21222 −1.78100 .08873 −.81808 .06215

Group BY MONTH
Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

2 −.03149704 .42444 −.07421 .94152 −.91173 .84874
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Estimates for QUINTIC
MONTH

Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper
1 −1.0079053 .49351 −2.04233 .05329 −2.03138 .01557

Group BY MONTH
Parameter Coeff. Std. Err. t-Value Sig. t Lower −95% CL- Upper

2 −.38846349 .98702 −.39357 .69768 −2.43541 1.65848
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Interpretation: Contrast Tests

The contrast between Pregnant and Nonpregnant women (Group), which follows the
orthonormalizing transformation matrix and the analysis-of-variance table, is pre-
sented first. While in this example the test of statistical significance is redundant with
the ANOVA F test (because there are only two populations being compared), the con-
trast analysis also reports the analysis in terms of a .95 confidence interval. The use
of a confidence interval (CI) is an excellent way of presenting the findings. Although
not stated on the output, the degrees of freedom value for the t test is the same as that
for the denominator of the F test, N − J . The results presented here indicate that,
on the average, across the 6-month reporting period, Nonpregnant women reported
a mean of two points higher on the Self-Esteem scale than the Pregnant women
with a .95CI of (−10.635, 6.621). This observed difference is no greater than what
might be expected due to sampling error, and the observed difference cannot be gen-
eralized to the populations they represent, t (22)

.= −.482, P
.= .634. It should be

recalled that on the Rosenberg Self-Esteem Inventory, lower scores indicate higher
Self-Esteem.

For the within-subject variable the results are reported for both the main effect
(Time) and the interaction effect (Group × Time). The t tests and confidence inter-
vals are reported for the T − 1 trends. Examining the interaction contrasts first
and using the Bonferroni adjustment, assuming no specific interaction trend had
been hypothesized (P ′ = 5P ), the interaction t test provides some evidence to indi-
cate that the quadratic trend is different for Pregnant and Nonpregnant women,
t (22)

.= 2.819, P ′ .= .049. It should be noted that the confidence interval reported
on the output does not adjust for the number of confidence intervals estimated. That
is, each contrast represents a unique family.A Bonferroni-adjusted confidence interval
can be obtained, but it would require the researcher to recompute the intervals using
the appropriate critical t value, which considers the number of confidence intervals
considered.
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If the interaction contrast had not been judged to be generalizable, and only linear
or quadratic trends involving the means averaged over the groups were of interest,
then using the Bonferroni adjustment, P ′ = 2P , the results would provide sufficient
evidence to conclude a quadratic trend is generalizable to all women during this
period, t (22)

.= −2.712, P ′ .= .025.

11.8 SUMMARY

In this chapter we generalized the analysis of a single-sample repeated-measures
analysis (Chapter 10) to multiple samples. Because the multiple samples permit
comparisons between populations, and multiple measurements on each unit permit
comparisons on the repeated measures, we have a mixed model. Hypotheses involv-
ing only between-group variables are tested using univariate procedures. Hypotheses
involving the interaction(s) of the repeated-measures variable(s) with between-group
variable(s) and the main effect(s) for the repeated-measures variable(s) can be tested
using either the univariate or the multivariate procedures. The multivariate procedures
are generally preferred because these tests are typically more powerful, make fewer
assumptions, and reported P values are exact, not approximate, as is the case with
the univariate procedures.

As demonstrated here, the tests of omnibus hypotheses involving a repeated-
measures variable (interactions and main effects) use the same multivariate criterion
(i.e., Wilks �) as those used in the between-group multivariate analyses. With the
repeated-measures analysis, however, the data are transformed to construct contrasts,
and the vector of contrast outcomes become the multiple outcomes analyzed. Because
the multivariate approach considers not only the variance of the multiple outcomes as
well as the covariances, a specified structure in the relationships among the outcomes
is unnecessary.

When specific contrasts, pairwise or complex, involving the repeated-measures
variable are of interest, the multivariate approach estimates the standard error for a
contrast by using the separate variance for each contrast. The univariate approach uses
the interaction Mean Square, MSG×T , to estimate the standard error of a contrast. If
the sphericity assumption is violated, these estimated standard errors are incorrect.
Using separate contrast variances for focused tests is inconsistent with the univariate
omnibus tests. Maxwell and Delaney (2000, p. 601) point out there is no relationship
between such focused tests and the omnibus tests. Consequently, it is possible to
obtain contradictory results, a very undesirable consequence.

In this chapter we considered a single repeated-measures variable and a single
between-group variable. Generalization to multiple repeated-measures variables (see
Technical Notes in Chapter 10) and multiple between-group variables is straight-
forward. Covariates may also be added to adjust for between-group differences. In
the Technical Note below we provide the SPSS syntax for a covariate analysis in a
mixed-model design using the same data set discussed in this chapter but with a new
variable, Age, as a covariate. We do not provide an interpretation of these results, but
they should be clear from the interpretation presented in this chapter.
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Technical Note

In many research situations it is desirable to include covariates to increase statistical
power or to “adjust” for nuisance variables (e.g., confounding variables). With a
mixed-model design the covariates may be either fixed or varied with the repeated
measures variable. A fixed covariate is one in which the covariate is obtained at a
single point in time. A varying covariate is one in which the covariate measure is
observed at each level of the repeated-measures variable. As an example of a fixed
covariate, suppose in the study described in this chapter the Nonpregnant women
were older than the Pregnant women. In such a situation it might be recommended
that the researcher “control” for the age differences between groups. As an example
of a varying covariate, suppose the researcher obtained each woman’s weight along
with her Self-Esteem at the beginning of each month. The researcher might want
to “control” for variation Weight when examining changes in Self-Esteem over the
6-month period. The analysis below uses a fixed covariate. It is useful to compare the
results presented here with those presented earlier in the chapter. (The input data file
labeled SELFESTEEM3 is available at the Wiley website.)

SPSS SYNTAX FOR MANCOVA WITH A FIXED COVARIATE IN A
MIXED-MODEL DESIGN

manova
month4 month5 month6 month7 month8 month9 by group (1,2)
with age4 age5 age6 age7 age8 age9
/wsfactor=month(6)
/print= signif(averf efsize) homogeneity(box)
/design.

with age4 age5 age6 age7 age8 age9 identifies the covariate, Age. With a fixed
covariate in a mixed-model design, the single covariate score is repeated as fre-
quently as there are levels of the repeated-measures variable. Although the values
are the same, the variable name must change.

OUTPUT

Note: The only values that change are those associated with the
between-group variable.

Multivariate test for Homogeneity of Dispersion matrices
Boxs M = 54.35827
F WITH (21,1780) DF = 1.80998, P = .014 (Approx.)
Chi-Square with 21 DF = 38.65085, P = .011 (Approx.)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Tests of Between-Subjects Effects.
Tests of Significance for T1 using UNIQUE sums of squares
Source of Variation SS DF MS F Sig of F
WITHIN CELLS 1048.09 21 49.91
REGRESSION 1236.73 1 1236.73 24.78 .000
GROUP 252.08 1 252.08 5.05 .035
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Effect Size Measures

Partial
Source of Variation ETA Sqd
Regression .541
GROUP .194
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Regression analysis for WITHIN CELLS error term
- - - Individual Univariate .9500 confidence intervals
Dependent variable .. T1
COVARIATE B Beta Std. Err. t-Value Sig. of t
T7 .94684 .77219 .190 4.978 .000
COVARIATE Lower −95% CL- Upper ETA Sq.
T7 .551 1.342 .541
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Tests involving ‘MONTH’ Within-Subject Effect.
Mauchly sphericity test, W = .00735
Chi-square approx. = 98.76100 with 14 D. F.
Significance = .000

Greenhouse-Geisser Epsilon = .30818
Huynh-Feldt Epsilon = .34196
Lower-bound Epsilon = .20000

AVERAGED Tests of Significance that follow multivariate tests are
equivalent to univariate or split-plot or mixed-model approach to
repeated measures. Epsilons may be used to adjust d.f. for the
AVERAGED results.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
EFFECT .. GROUP BY MONTH
Multivariate Tests of Significance (S = 1, M = 1 1/2, N = 8 )
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .60532 5.52139 5.00 18.00 .003
Hotellings 1.53372 5.52139 5.00 18.00 .003
Wilks .39468 5.52139 5.00 18.00 .003
Roys .60532
Note.. F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size

(All) .605
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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EFFECT .. MONTH
Multivariate Tests of Significance (S = 1, M = 1 1/2, N = 8 )
Test Name Value Exact F Hypoth. DF Error DF Sig. of F
Pillais .52871 4.03854 5.00 18.00 .012
Hotellings 1.12182 4.03854 5.00 18.00 .012
Wilks .47129 4.03854 5.00 18.00 .012
Roys .52871
Note.. F statistics are exact.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multivariate Effect Size
TEST NAME Effect Size

(All) .529
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Tests involving ’MONTH’ Within-Subject Effect.
AVERAGED Tests of Significance for MO using UNIQUE sums of squares
Source of Variation SS DF MS F Sig of F
WITHIN CELLS 682.76 110 6.21
MONTH 128.45 5 25.69 4.14 .002
GROUP BY MONTH 174.62 5 34.92 5.63 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Effect Size Measures

Partial
Source of Variation ETA Sqd
MONTH .158
GROUP BY MONTH .204
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fact: Julius Ceasar was a Latin square.

EXERCISES

Exercises 1 to 9 are based on the following context.An exercise physiologist was inter-
ested in determining the optimal amount of time needed for an adequate warm-up rou-
tine before beginning a vigorous exercise program in order to minimize postexercise
muscle soreness. The researcher believed, however, that the amount of time needed
for warm-up would vary depending on an exerciser’s weight. The researcher designed
a study in which participants, who where classified as normal weight, overweight, or
obese, varied the number of minutes in warm-up activities: 5 minutes, 10 minutes,
15 minutes, or 20 minutes before beginning an exercise program. Over four consec-
utive weeks the warm-up period was varied randomly across 15 male participants
from each of the weight groups. The morning following each warm-up and exercise
program the participants were contacted and asked several questions regarding the
muscle soreness and discomfort. Responses were scored on a 20-point scale.

1. The multivariate approach to the mixed-model design assumes that covariance
matrices are equal. How many covariance matrices are there in this context?



“c11” — 2006/3/21 — page 250 — #24

250 MIXED-MODEL ANALYSIS

2. For this context what is the numerical value for d when computing the Mauchly
test for sphericity? (See Section 10.7.)

3. If the value of the Mauchly W statistic is .728, what is the numerical value of the
χ2 statistic and the degrees of freedom? (See Section 10.7.)

4. For these data, the Greenhouse–Geisser ε′ is .840. What is the numerical value
of the Huynh–Feldt ε̃? (See Section 10.7.)

5. To test the interaction between the Grouping variable and the Minutes variable,
Wilks � was computed to equal .818. Transform the � value to an F statistic
value and give the appropriate degrees of freedom.

6. For the Minutes main effect, across levels of the grouping variable, the means
were computed as 14.8, 13.5, 12.7, and 12.6 for warm-up periods 5, 10, 15, and
20 minutes, respectively. What does the hypothesis SSCP for the Minutes main
effect, HMinutes, equal?

7. For the Minutes main effect, � was computed to equal .452. Compute the a ξ2
adj

statistic using the Serlin procedure.

For Exercises 8 and 9 use the following orthonormal transformation matrix for
polynomial trend, A, and the A SeA covariance matrix:

A .=



−.671 −.224 .224 .671

.500 −.500 −.500 .500
−.224 .671 −.671 .224



 and A SeA
.=




2.70 −.32 .92
−.32 1.62 .47

.92 0.47 2.99



 .

8. What is the estimated standard error for the interaction contrast comparing the
linear trends of normal weight males with obese males?

9. Use the A and A SeA matrices provided above, as well as the means provided
in Exercise 6, to

(a) Compute the t statistic to test for a linear trend.

(b) Compute the t statistic to test for a quadratic trend.

(c) How would you interpret these results in light of the researcher’s interest?

Computer Applications

Exercises 10 to 15 require the analysis of a hypothetical data set A4, labeled FLEX2
described in Appendix A. Use these data and a computer software package (e.g.,
SPSS) to answer the questions in these exercises.

10. Is there sufficient evidence to indicate that the covariance matrices of the three
groups differ? In defending your response, provide the following:
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(a) Box M

(b) χ2

(c) Degrees of freedom

(d) P value

11. Is there evidence to indicate that the sphericity assumption is violated in this data
set? In defending your response, provide the following:

(a) State the numerical value

i. Mauchly W

ii. χ2

iii. Degrees of freedom

iv. P value

(b) Huynh–Feldt epsilon

12. Is there evidence of an interaction between the grouping variable and the Time
variable? In defending your response, provide the following:

(a) Wilks �

(b) F

(c) Degrees of freedom

(d) P value

(e) ξ2
adj

13. Contrast the changes in behavior between the Group 1 and Group 3 (interaction
contrast). What degree polynomial best describes the differences between these
groups? Support your responses with appropriate statistics including:

(a) F

(b) Degrees of freedom

(c) P value

14. Assuming differences between groups averaged over the 5-week period was of
interest, is there evidence to indicate that the groups differ? Support your answer
with appropriate information:

(a) F

(b) Degrees of freedom

(c) P value

(d) η2

15. Do each of the treatment groups (Group 1 and Group 2) differ from the control
group (Group 3)? Support your answer with appropriate information:

(a) t

(b) Degrees of freedom

(c) P value
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P A R T IV

Group Membership
Prediction

The variable sets in this part of the book consist of several predictor (X) variables
on the one hand and a single criterion variable on the other hand. The collection
of techniques presented constitutes what we label predictive discriminant analysis
(PDA). The criterion variable is a grouping variable with at least two levels. Measures
on the X variables for analysis units are used to develop a rule to predict unit group
membership; that is, to classify units into groups. Methods for assessing the goodness
of the rule are presented in Chapter 16. The problems of predictor and predictor
ordering are discussed in Chapter 17. Some nonnormal rules are reviewed in Chapter
19. This part concludes with suggestions for reporting results of a PDA (Chapter 20)
and with definitions of some PDA-related analyses (Chapter 21).

The goals of the reader for this part are to be able to (1) critically evaluate an
application of PDA and (2) write up a report of a study in which a PDA is applied.
While studying Part IV, the reader may refer to an overview given in the form of a
flowchart in Figure 20.1.

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
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C H A P T E R 12

Classification Basics

12.1 INTRODUCTION

The notions of explanation and prediction are in close alignment. In many scientific
contexts some (philosophers?) have argued that explanation—the identification of
“patterns” or of “structure”—is a necessary antecedent of prediction; others have
argued that the converse is the case. The position taken here is noncommittal; predic-
tion was originally viewed as a means of enhancing an explanation and is currently
viewed as a solution to a practical problem. In many contexts, explanations and pre-
dictions are made more plausible by conclusions drawn from data. Our interest now
is on predictions based on data; the identification of structure was discussed in Part II.

An approach commonly used in making empirical, or statistical, predictions is
multiple regression. Multiple regression techniques are appropriate in a situation
involving, on the one hand, a set of p predictor (random or fixed) variables, X1,
X2, . . . , Xp, and on the other hand, a single criterion (random) variable, Y . (Note
that here we are dealing with a single group of N analysis units, for each of which we
have p + 1 response measures.) One goal of a multiple regression analysis is to set up
a rule, based on an N × (p + 1) data matrix, to be used in predicting (or estimating)
a criterion variable measure, given measures on the p predictors. It turns out that this
amounts to determining a set of (regression) weights, b1, b2, . . . , bp, corresponding
to a given set of p predictor variable measures to yield a linear composite value that is
essentially a predicted value of the criterion variable. The predicted criterion measure
for analysis unit u may be represented as:

Ŷu = b0 + b1X1u + b2X2u + · · · + bpXpu,

where b0 is the regression constant. The composite may also be expressed as:

Ŷu = b0 +
p∑

i=1

biXiu,

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
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or as

Ŷu = b0 + b′xu,

where b′ is the 1 × p row vector of regression weights, and xu is the p × 1 column
vector of predictor variable measures for unit u.

When the X measures are based on different metrics, it is sometimes desirable
to remove the effect of the varying metrics on the regression weights. This may be
accomplished by using standardized weights:

b∗
i = bi

si

sY
,

where si and sY are the estimated standard deviations of Xi and Y , respectively. These
weights are used to predict a standardized Y measure,

ẐY = b∗′zu,

where zu is a p × 1 vector of standardized X measures. (Note that b∗
0 = 0. Also, the

b∗ values may be obtained by standardizing the X and Y measures and finding the
least-squares solutions.)

Another approach used in making empirical predictions involves an aspect of
discriminant analysis called predictive discriminant analysis (PDA). Techniques of
PDA are appropriate in a multiple-group setting in which we have p X measures
for each unit belonging to one of J groups. It is assumed that the J groups of nj

units represent J meaningful populations. In such a setting the criterion variable is a
dichotomous or polytomous grouping variable. One goal of PDA is to set up a rule,
based on J nj × p data matrices that would predict population membership for a
unit. Unless otherwise noted, it is generally assumed in this book that any unit to be
classified does in fact belong to one of the J criterion populations. (The problem of
initially misclassified units is discussed in Section 23.4.)

A rule in PDA, termed a classification rule, can, as we shall see, take three different
forms. One form is that of a composite of the predictor measures; a second form is
that of an estimated probability of population membership; a third form is that of
a distance between two points. Before discussing the three forms of a classification
rule, some preliminaries are needed.

12.2 NOTION OF DISTANCE

Implicit in many, and explicit in some, of the rules discussed here is the notion of
distance. Consider the distance between two points from a simple geometric view. In
a bivariate (X1, X2) space we might represent the distance d̃AB between points A:
(X1A, X2A) and B: (X1B , X2B) as shown in Figure 12.1.
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Figure 12.1 Distance in a plane.

By the Pythagorean theorem, we get the usual geometric (i.e., Euclidean) index of
distance:

d̃2
AB = (X1A − X1B)2 + (X2A − X2B)2

=
2∑

i=1

(XiA − XiB)2.

For example, for A: (6, 5) and B: (2, 3), we get

d̃2
AB = (6 − 2)2 + (5 − 3)2

= 20

or

d̃AB = √
20

.= 4.5.

Note that d̃2
AB may be expressed as:

[xA − xB ]′[xA − xB ],
where xA and xB are 2 × 1 column vectors of scores, and xA − xB is a 2 × 1 column
vector of differences. [The order of the (1 × 2)(2 × 1) vector product is 1 × 1.]
That is,

d̃2
AB = [X1A − X1B X2A − X2B ][X1A − X1B

X2A − X2B

]

= (X1A − X1B)2 + (X2A − X2B)2.

For the example above,

d̃2
AB = [6 − 2 5 − 3][6 − 2

5 − 3

] = [4 2][4
2

] = 20.
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This index is appropriate if two conditions are assumed: (1) Measures on X1 and X2
are uncorrelated (i.e., ρ12 = .00)1; and (2) measures on X1 and X2 have unit variances
(i.e., σ 2

1 = σ 2
2 = 1.0).2

Extending the Euclidean distance idea to a general p-variate space, we may write

d̃2
AB =

p∑

i=1

(XiA − XiB)2

or

d̃2
AB = [xA − xB ]′[xA − xB ],

where xA and xB are p × 1 vectors. (The latter expression for d̃2 is a row vector of
p differences multiplied by a column vector of the same p differences.) Similar to
the bivariate case, this index is based on the assumption of uncorrelated variables, all
with unit variances. That is, the p × p covariance matrix, �, for the p variables is an
identity matrix:

� =








σ 2
1 ρ12σ1σ2 · · · ρ1pσ1σp

ρ21σ2σ1 σ 2
2 · · · ρ2pσ2σp

...
...

ρp1σpσ1 · · · σ 2
p








=








1 0 · · · 0
0 1 · · · 0
...

...

0 · · · 1








.

(Recall that the covariance of Xi and Xi′ is σii′ = ρii′σiσi′ .) So much for the special
case of uncorrelated variables with variances of 1.0. Because this context is unrealistic,
we do not discuss it further.

The basic requirement in comparing distances involving measures on two (or more)
variables is that the same metric is used in computing the distances. One way this is
assured is, of course, if all standard deviations, or variances, are equal. The variance-
equal-one condition is, indeed, a special case. If this is not the case, the unequal
variances must be “taken into consideration.” This is accomplished by dividing the
measures by the corresponding standard deviation (see Exercise 1 at the end of this
chapter).

Because empirical scientists usually deal with intercorrelated variables (albeit the
intercorrelations are often “modest”), these intercorrelations, too, must be “taken into
consideration” in assessing distances. This is accomplished in a more complicated
manner. Consideration of both unequal variances and nonzero intercorrelations is
accomplished by using

�2
AB = [xA − xB ]′�−1[xA − xB ] (12.1)

1Uncorrelated variables may be depicted geometrically using axes that are perpendicular (i.e., orthogonal)
to each other.
2When using the d̃2 index above, we assume that the measurement metrics (reflected by standard deviations)
on the two axes are not only identical but that both standard deviations are 1.0.
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as an index of the (squared) distance between point A (defined by the column vector
xA) and point B (defined by the column vector xB ). In expression (12.1), � is the
population covariance matrix, and �AB is a generalized distance index that is often
attributed to an Indian statistician, P. C. Mahalanobis (Huberty, 2005).

Given the special case where the variables are uncorrelated with variances of 1.0,
and knowing that the inverse of an identity matrix is an identity matrix, it should be
clear that

d̃2
AB = [xA − xB ]′[xA − xB ]

is a special case of (12.1).

12.3 DISTANCE AND CLASSIFICATION

As discussed in Section 12.2, � is used as an index of the distance between two points
in a p-dimensional space. In that discussion, the two points represented two vectors
of p observations each, that is, “profiles” of two analysis units.3 There are two other
Mahalanobis-type distance indices that are of importance in discriminant analysis.
One is an index of distance between two points where each point represents a vector
of means on the p variables. Having two populations, with centroids µ1 and µ2, the
“distance between the populations,” that is, the distance between the two centroids,
may be represented by:

�12 = [(µ1 − µ2)
′�−1(µ1 − µ2)]1/2. (12.2)

Here, � is the covariance matrix common to the two populations; that is, the
covariance matrices in the two populations are assumed to be equal.4

A second Mahalanobis-type index is appropriate when one point represents a vector
of p observations on an analysis unit and the other point represents a centroid for a
population. Suppose that there are J populations of interest; the distance between
xu, the observation vector for unit u, and µj , the centroid for Population j , may be
represented by:

�uj = [(xu − µj )
′�−1

j (xu − µj )]1/2, (12.3)

where �j is the covariance matrix for Population j . This distance index is of particular
interest in classification analyses because a goal in classification is to classify a unit
into that population to which the unit is nearest. That is, unit u is classified into
Population j if �uj is smaller than �uj ′ for all j ′ �= j and j , j ′ = 1, 2, . . . , J .

3The index of distance between two observation vectors is of particular interest in cluster analysis, where
clusters of analysis units are determined by values of �2—units u1 and u2 are placed in a cluster if the
value of �2

u1,u2
is “small.” In this context, �2 is used as an index of proximity or similarity (or, more

appropriately, dissimilarity).
4This distance index is useful in a descriptive discriminant analysis, where interest is on group separation
or group comparisons (see Section 3.2.2).
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In the univariate case, �uj in (12.3) may be expressed as:

�uj =
[

(Xu − µj )
′ 1

σ 2
j

(Xu − µj )

]1/2

=
[

(Xu − µj )
2

σ 2
j

]1/2

.

It will be shown in Chapter 13 that by using �uj values for classifying, distance is
measured in a probabilistic sense. That is, by stating that unit u is a distance of �uj

from the centroid of Population j , we are claiming that it is more probable that the unit
(when randomly selected from Population j ) is from Population j than if the distance
index value is larger. Further, we shall see that the use of �uj in classification is
appropriate, theoretically, when we are dealing with continuous, normally distributed
predictor variables.

In sum, then, there are three types of distances: (1) unit to unit [see (12.1)], (2) cen-
troid to centroid [see (12.2)], and (3) unit to centroid [see (12.3)]. It is the third type
on which emphasis is given in PDA. In Chapter 13 we return to the notion of distance
and see how it ties in specifically with the classification problem. But first, let us
discuss the classification problem in more general terms.

12.4 CLASSIFICATION RULES IN GENERAL

The basic purpose of a PDA may be described as follows: Suppose that we have
samples from J populations of size nj , j = 1, 2, . . . , J , with p measures on each
of the N(= �nj ) units. Using this N × p data matrix, we want to determine from
which of the J populations an (N + 1)st unit is most likely to have been randomly
sampled. To accomplish this task we use the information in the given N × p data
matrix to set up a rule for making the assignment.5

12.4.1 Maximum Likelihood

A decision, classification, assignment, or identification rule that is commonly used is
based on the maximum-likelihood principle: Assign a unit to the population in which
its observation vector has the greatest likelihood of occurrence. This may be viewed
in terms of likelihood functions, density functions, or probability functions.

Let us sidetrack a bit and discuss the notion of the likelihood of an observation.
To simplify the discussion, consider a single (continuous) variable X and two pop-
ulations. Suppose that (theoretical) models for the two populations of X scores are
represented as in Figure 12.2. In this figure we see graphical representations of two

5This situation is similar to that in multiple regression studies, where one is typically predicting a score on
a continuous variable instead of predicting group membership. Note that in both situations a rule based on
a given data matrix is derived and may be used with “new” units.
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Figure 12.2 Graphical representations of two density functions.

(probability) density functions, f1 and f2. These may be thought of as “smoothed-out”
relative frequency polygons for two distributions of X scores. They are graphs of “den-
sity” functions because the area above the X axis and under each curve is 1.0, and
the mass in any interval on the X axis under the curve is numerically equal to the
probability that X will assume a value in that interval. Given that the unit is randomly
selected from Population 1, the likelihood of an observation X = a is denoted by
f1(a).

Thus, with a univariate two-group classification problem as in the preceding para-
graph, applying the maximum-likelihood principle we arrive at the following rule:
Assign a unit with X = a to Population 1 if f1(a) > f2(a), that is, if the likelihood
of an observation X = a is greater for Population 1 than for Population 2; otherwise,
assign the unit to Population 2.

Let us now return to the general multivariate J -group classification problem. We
will assume that the “form” of the density function is the same for all J populations:
for example, that they are all multivariate normal (discussed in Chapter 13). Let f

denote this common density function. Then the maximum-likelihood rule is: Assign
analysis unit u to Population j if the likelihood of the observation vector, xu, is greater
for Group j than for any other group. This rule may be stated as follows:

Assign unit u to Population j if

f (xu|j) > f (xu|j ′)

for j ′ �= j .

(12.4)

12.4.2 Typicality Probability

The rule may also be stated in terms of something called inverse probabilities, rather
than in terms of likelihoods. Such a probability is denoted as P(x|j) and may be
viewed as the proportion of units in Population j that have score vectors “near” x.
That is, P(x|j) denotes the probability that a randomly selected unit has a profile
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close to x, given that the unit is a member of Population j ; P(x|j) values are termed
typicality probabilities in this book. [A more “down-to-earth” interpretation of P(x|j)

is given in Section 14.4.] It turns out that P(x|j) is, in the limit, proportional to f (x|j).
Therefore, a second statement of the maximum-likelihood rule may be given in terms
of these typicality probabilities:

Assign unit u to Population j if

P(xu|j) > P (xu|j ′)

for j ′ �= j .

(12.5)

The notion of P(xu|j) is discussed in greater detail in the Technical Note in
Chapter 14.

12.4.3 Posterior Probability

Another view of the rule is taken by considering the probability of unit u belonging to
Group j , given that the unit has a particular observation vector, xu. This probability,
denoted P(j |xu), is called the posterior probability of membership in Population j ;
“posterior” in the sense that this is a probability of population membership conditioned
on knowing xu, that is, after the p X values are obtained. [According to David (1995),
“posterior probability” was first used by Wrinch and Jefferys (1921).] With this view
we see the necessity of the assumption stated in Section 12.1, namely, that the unit to be
classified does in fact belong to one of the J criterion populations. It seems reasonable
that a unit be assigned to that population for which P(j |x), the posterior probability
of membership, is greatest. Now, the probability that a unit belongs to Population j

(given an observed score vector) is equal to the ratio of the probability of its score
vector in Population j to the sum of the probabilities associated with its score vector
in all J groups. [This follows from the multiplication rule for probabilities; see the
Technical Note at the end of this chapter wherein the πj ≡ P(j) values are common.]
That is,

P(j |xu) = P(xu|j)
∑J

j ′=1 P(xu|j ′)
. (12.6)

Consequently, a third statement of the maximum-likelihood rule [following (12.4)
and (12.5)] is

Assign unit u to Population j if

P(j |xu) > P (j ′|xu)

for j ′ �= j , where P( j|xu) is defined as in
(12.6).

(12.7)
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No matter which view of the maximum-likelihood rule is taken, J values need to
be estimated for each unit; J values of f (xu|j) for (12.4), or J values of P(xu|j)

for (12.5), or J values of P(j |xu) for (12.7). Furthermore, for a given unit, the
denominator of (12.6) is constant across all of the J P (j |xu) values. Thus, (12.7) is
equivalent to (12.5) because the J P (j |xu) values are proportional to the J P (xu|j)

values.

12.4.4 Prior Probability

By examining the two latter statements of the rule, (12.7) and (12.5), it is clear that
the adequacy of the rule depends on the goodness of the estimates of the typicality
probabilities P(xu|j), j = 1, 2, . . . , J , and that goodness in turn depends on the
size (and representativeness) of the J original (or training) samples on which the
estimates are based. Thus, it may be well to take the relative sizes of the populations
into consideration. Let πj denote the proportion of units in the total universe (i.e., the
aggregate of the J populations) that is in Population j . That is, if a unit is randomly
selected from the universe, the probability that it would be from Population j is πj .
The symbol πj is used to denote the prior probability of membership in Population j ,
“prior” in the sense that this is a probability of population membership before xu is
known. [The first use of the term “prior probability” is also attributed to Wrinch and
Jeffreys (1921).] The πj values have also been termed base rates; also, too, sometimes
P(j) is used instead of πj .

It is reasonable that these prior probabilities be taken into consideration when
arriving at values of P(j |xu) in (12.6). The product, πj · P(xu|j), denotes the joint
probability that a randomly selected unit belongs to Population j and at the same
time has a score vector “close” to xu. These products may be used to arrive at
values of P(j |xu) by employing a rule in probability due to Reverend T. Bayes
(1701–1761). Incorporating prior probabilities, the posterior probability of unit u

belonging to Population j , given a score vector xu, is

P(j |xu) = πj · P(xu|j)
∑J

j ′=1 πj ′ · P(xu|j ′)
. (12.8)

(See the Technical Note at the end of this chapter.) Note that (12.6) is a special case
of (12.8), where the J πj values are identical. The maximum (Bayesian) probability
rule is thus stated as:

Assign unit u to Population j if

P(j |xu) > P (j ′|xu)

for j �= j ′, where P(j |xu) is defined as in (12.8).

(12.9)

Again, J values of P(j |xu) in (12.8) need to be determined for each unit. Because
the denominator in (12.8) is constant for all populations, the rule could more simply be
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based on the J values of πj · P(xu|j). Also, because P(xu|j) values are proportional
to f (xu|j) values, we could focus on the J values of πj · f (xu|j). The latter is what
the Indian statistician C. R. Rao, in 1973, calls discriminant scores. In fact, (12.8)
may be equivalently stated as:

P(j |xu) = πj · f (xu|j)
∑J

j ′=1 πj ′ · f (xu|j ′)
. (12.10)

By using the conditional Bayesian posterior probabilities [as in (12.8)], the total
number of misclassification errors is minimized. By using the maximum-likelihood
rule (12.7), on the other hand, the total proportion of misclassification errors is
minimized.

A third criterion, in addition to number of errors and proportion of errors, may
be considered by further refinement of the Bayes procedure. This refinement yields
a decision-theory-based rule that minimizes the total cost of misclassification errors.
Misclassification costs are difficult to assess in many areas of study. The incorporation
of misclassification costs is discussed in Section 13.7.

12.5 COMMENTS

The discussion of likelihoods, typicality probabilities, posterior probabilities, and
prior probabilities provides some rationale for a single classification rule in general
form, namely, that stated in (12.9). To use this rule, the two sets of probabilities
expressed on the right-hand side of (12.8), namely, πj and P(xu|j), need to be esti-
mated. Estimates of the J prior probabilities, πj , are sometimes based on the sample
sizes: π̂j = qj = nj/N . These estimates are appropriate, of course, only if the sample
sizes are in proportion to the population sizes. This may be the case when a stratified
or quota sampling procedure is employed, and the relative population sizes remain
fairly stable over time. Even though the nj values are identical, however, the qj values
need not be. Furthermore, if the populations are equally numerous, equal priors would
be the choice regardless of the nj values.

To estimate the P(xu|j) values, a model must be specified for the distribution of x
in each of the J populations. An example of a model specification was given earlier
in this section for the univariate case (see Fig. 12.2). The popular multivariate normal
model is discussed in Chapter 13.

It should be noted that there are three types of generalized distance indices to con-
sider: (1) from one observed vector to another observed vector [see (12.1)], (2) from
one centroid to another [see (12.2)], and (3) from an observed vector to a centroid
[see (12.3)]. The first type of distance is basic for cluster analysis. The second type
of distance plays an important role in descriptive discriminant analysis (DDA), while
the third type is involved in predictive discriminant analysis (PDA).

There are two purposes for a PDA. One purpose is to estimate the
prediction/classification accuracy (i.e., hit rates) for the data on hand; that is, to
assess the predictive “power” of a set of predictor variables. The second purpose of
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conducting a PDA is to develop as good a rule as possible using the data on hand to
be used with “new” units. These ideas will be discussed in subsequent chapters.

Technical Note

The relationship between the two conditional probabilities, P(j |xu) and P(xu|j),
in (12.8) may be derived by using the multiplication rule for probabilities. Namely,
for independent events A and B, P(A ∩ B) = P(B) · P(A|B) = P(A) · P(B|A).
Regarding j and xu as the events of interest in the classification problem, we have that

P(j ∩ xu) = P(xu) · P(j |xu) = πj · P(xu|j),

and solving for P(j |xu) yields

P(j |xu) = πj · P(xu|j)

P (xu)
. (12.11)

But, because

J∑

j ′=1

P(j ′|xu) = 1 =
J∑

j ′=1

πj ′ · P(xu|j ′)
P (xu)

,

we have that

P(xu) =
J∑

j ′=1

πj ′ · P(xu|j ′).

Substituting this expression for P(xu) into (12.11), we arrive at (12.8):

P(j |xu) = πj · P(xu|j)
∑J

j ′=1 πj ′ · P(xu|j ′)
.

Further Reading

Anderson (2003, Chapter 6) gives a theoretical discussion of PDA—his first edition
appeared in 1958(!).

David and Edwards (2001, pp. 223,228) mention that the expressions “prior
probability” and “posterior probability” date back to 1921, if not to 1830.

McLachlan (1992, pp. 22–26) reviews a number of indices of distance between
two groups other than the Mahalanobis distance.

Definition Goodness-of-fit: The variance between your uniform and your
distribution.
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EXERCISES

1. In the “standardized” (X1, X2) space, find the distance between the two points
representing (−2, 1) and (2, 7). [Note: Here, expression (12.1) may be used with
� = I, or the expression for d2

AB may be used.]

2. Consider the (X1, X2) space having a metric defined by the covariance matrix

� =
[

5 3
6 4

]

.

Find the distance between the two points representing (−2, 1) and (2, 7).

(

Note that �−1 =
[

2 − 3
2

−3 5
2

]

.

)

[Note: Expression (12.1) may be used.]

3. Consider, again, a bivariate situation, with a set of measures on X1 and X2. Suppose
that there are two populations of (X1, X2) pairs of scores, with µ11 = 10, µ21 =
12, µ12 = 2, and µ22 = 3, and

�1 = �2 =
[

5 3
6 4

]

.

(a) Find the distance from an observed (X1, X2) score vector, (6, 7), to the centroid
of the first population, (10, 12). To the centroid of the second population.
[Note: Here, expression (12.3) is used.]

(b) Find the distance between the two centroids. [Note: Here, expression (12.2) is
used.]

4. Let Y1 denote arithmetic achievement and Y2 denote reading comprehension.
Suppose that σ 2

1 = 25, σ 2
2 = 9, and ρ12 = .60. Then

� =
[

25 9
9 9

]

and �−1 = 1

144

[
9 −9

−9 25

]

.

[Verify that ��−1 = �−1� = I.] Find the three pairwise squared distances
(�2 values) involving Leah: (30, 20), Joe: (30, 30), and John: (20, 25).

5. Let Y1 denote arithmetic achievement and Y2 denote grip strength. If age is held
somewhat constant, it is reasonable to assume that ρY1Y2 is near zero. Suppose
that σ 2

Y1
= 25, σ 2

Y2
= 9. Let X1 = Y1/5 and X2 = Y2/3; then σ 2

X1
= σ 2

X2
= 1.0.

Suppose that Sherrie’s scores on Y1 and Y2 are 20 and 6, respectively, that Kama’s
scores are 30 and 3, and that Sandy’s scores are 25 and 9. Find the three pairwise
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“distances” (d2 values) between Sherrie, Kama, and Sandy in the (Y1, Y2) space
and again in the (X1, X2) space. What is your conclusion regarding the proximity
of Sherrie, Kama, and Sandy?

6. Consider a univariate situation with measures on, say, X. Suppose that all X values
of interest are in the interval (10, 60). Very simply, how would you graphically
represent the points that are a distance of 5 from the “point” 23?

7. Consider now a bivariate situation with pairs of measures on, say, X1 and X2.
RestrictX1 values to (10, 60) andX2 values to (20, 60), withX1 = 35 andX2 = 40.

(a) Assume that the correlation between the X1 values and the X2 values is zero,
and that s2

1 = s2
2 = 1.0. How would you graphically represent the points that

are a distance of 15 from the “point” (35, 40)?

(b) Note that in Exercise 6, the “locus” of points a constant distance from a point is
a pair of points. In Exercise 7(a), the locus of points of interest is a circle. It can
be shown using analytic geometry that the locus of points a constant distance
from a fixed point is an ellipse when the correlation is not zero and when the
standard deviations are not unity. That is, the graphical representation of �2

[in (12.2)] is an ellipse if p = 2 and is an ellipsoid if p > 2.

8. Consider, again, the bivariate situation described in Exercise 3. Let an observed
score vector be x′ = (6, 7).

(a) Assume that P(x|1) = .30. What is the value of P(x|2)?

(b) Assuming equal priors (i.e., π1 = π2 = .5), to which group would the unit
having the observed score vector be assigned? [Note: Here, rule (12.5) is
used.]

(c) Find P(1|x) and P(2|x). [Note: Here, expression (12.6) is used.]

(d) What is the value of P(1|x) + P(2|x)? Will this always be the case?

(e) Assume, now, that π1 = .70. What is the value of π2?

(f) With the priors of part (e), and the typicality probabilities of part (a), what is
the value of P(1|x)? Of P(2|x)? [Note: Here, expression (12.8) is used.]

(g) Based on your answers for part (f ), to which group would the unit having the
observed score vector be assigned? [Note: Here, rule (12.9) is used.]

9. Consider the research situation you described in Exercise 2 of Chapter 1 that
involves prediction of group membership. What do you think are the relative sizes
of the populations? (That is, specify πj values.) Do you think the relative sizes
will change in the near or distant future? If you had resources to collect predictor
measures on 200 units, how many units would you sample from each population?
That is, would you use equal sample sizes, sample sizes proportional to population
sizes, or some other sampling plan?
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Multivariate Normal Rules

13.1 INTRODUCTION

As stated in Section 12.4, the maximum probability rule involving posterior proba-
bilities of group membership—see (12.6) or (12.8)—will minimize the total number
of misclassification errors. This optimal rule can be applied only if the probability
density functions, the ranges of which are denoted by f (x|j), are known; that is, if
all distribution parameters are known. [Recall that the P(x|j) values are proportional
to the f (x|j) values.] Of course, the distribution parameters, �’s and µ’s, are usually
not known; one then must use estimates and be satisfied with a less than optimal rule.
Three approaches may be taken to construct a classification rule that uses estimates
of the density values, f̂ (xu|j). The first approach discussed is to specify a theoretical
probability distribution model, assume that the data on hand fit the model, estimate
the model parameters using the data, and construct a rule using these estimates. The
second approach is to estimate the density values directly from the data with no prior
model specification, and construct a rule using these estimates. The third approach is
sort of a combination of the other two. With this approach, a Bayesian framework is
used to obtain density estimates for a particular model given the available data—see
Section 12.4.4.

The first approach is most commonly used. It, along with the third approach, is
discussed in the present chapter, where the underlying model is that of multivariate
normality. The first approach is also discussed in Section 19.3 in the context of a
multinomial model. The second approach is discussed briefly in Section 19.2.

13.2 NORMAL DENSITY FUNCTIONS

The family of univariate normal probability density functions is defined by:

f (X|j) = 1
√

2π
√

σ 2
jX

exp

[

−1

2

(X − µjX
)2

σ 2
jX

]

, (13.1)

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
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where µjX
and σ 2

jX
are the mean and variance of variable X, respectively, for pop-

ulation j . [The expression exp(·) is an alternative to e(·), where e is the irrational
number 2.71828 . . ., an endless nonrepeating decimal. This number is the base for
natural logarithms.] Note that if µjX

and σ 2
jX

are specified, a particular member of
the family of density functions is completely determined. The graph of a particular
density function is the familiar two-dimensional bell-shaped curve. (See Fig. 12.2 for
two such graphs.) For a particular density function, the right-hand side of (13.1) yields
the ordinate of the normal curve for the abscissa X. For example, with µ1X

= 50 and
σ 2

1X
= 100, for X = 60, we get, using a hand calculator, f (60|1)

.= .024; that is, .024
is the height of the normal (50, 100) curve for a Population 1 score value of X = 60
(and also at X = 40).

The reader will recall from the study of elementary statistics that the normal model
was often referred to in univariate analyses to arrive at tail-area probability estimates
(i.e., P values). In essence, what was done was to insert estimates of µjX

and σ 2
jX

,
based on sample data, to arrive at an estimate of f (X|j):

f̂ (Xu|j) = 1
√

2π
√

s2
jX

exp

[

−1

2

(Xuj − X.j )
2

s2
jX

]

,

where

X.j = 1

nj

nj∑

u=1

Xuj ,

s2
jX

= 1

nj − 1

nj∑

u=1

(Xuj − X.j )
2, (13.2)

and π is the irrational number 3.14159. . . .
The generalization of (13.1) to the multivariate case may be made by analogy

to arrive at the family of p-variate normal probability density functions, which are
defined by:

f (x|j) = 1√
(2π)p

√|�j |
exp

[
− 1

2 (x − µj )
′�−1

j (x − µj )
]
. (13.3)

The p × 1 vector of predictor scores, x, is a generalization of X in the univariate
case. The p × p population covariance matrix, �j , is the generalization of σ 2

j in
the univariate case; the p × 1 mean vector, µj , is the generalization of µj . The
determinant of �j , |�j |, is called the generalized variance of the set of p variables
see Technical Note 1 at the end of this chapter. Analogous to the univariate case,
specification of µj and �j completely determine the multivariate normal density
function for Population j . The graph of a particular function is a (p + 1)-dimensional
“bell-shaped” surface. The right-hand side of (13.3) yields the “height” of the surface
corresponding to the observation vector x in Population j .
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It is obvious from examining (13.3) that calculating f (x|j) values with a hand
calculator is no simple task when p > 2. The difficulty is in calculating the value of
the determinant, |�j |, and the value of the quadratic form,

(x − µj )
′�−1

j (x − µj ). (13.4)

It is of interest to note that the expression (13.4) is a distance index discussed in
Section 12.3 [see (12.3)]. If we consider an observation vector for an analysis unit u,
from Population j , then

�2
uj = (xu − µj )

′�−1
j (xu − µj ),

denotes the square of the distance from the point representing xu to the point
representing the centroid of Population j , µj .

Because in data analysis situations we seldom know parameter values, we need
to determine likelihood estimates, f̂ (x|j). These are obtained in the usual manner of
inserting estimates of µj and of �j into expression (13.3):

f̂ (x|j) = 1√
(2π)p

√|Sj |
exp

[
− 1

2 (x − xj )
′S−1

j (x − xj )
]
, (13.5)

where xj is the p × 1 vector of means for Group j , and Sj is the p × p covariance
matrix for Group j . The main diagonal elements of Sj are the p variances [see (13.2)],
and the off-diagonal elements are the p(p − 1)/2 covariances (see Section 2.4).

A sample Mahalanobis index for the squared distance between an observation
vector for unit u and the centroid for Group j may be written, then, as:

D2
uj = (xu − xj )

′S−1
j (xu − xj ). (13.6)

Expression (13.5) may then be stated for unit u as:

f̂ (xu|j) = (2π)−p/2 · |Sj |−1/2 exp
(
− 1

2D2
uj

)
. (13.7)

13.3 CLASSIFICATION RULES BASED ON NORMALITY

The form of the posterior probabilities used in the maximum probability rule on which
we will base our introduction of normal rules is that given in (12.10) and repeated here:

P(j |xu) = πj · f (xu|j)
∑J

j ′=1 πj ′ · f (xu|j ′)
.

Working with parameter estimators as is typical, we have

P̂ (j |xu) = qj · f̂ (xu|j)
∑J

j ′=1 qj ′ · f̂ (xu|j ′)
, (13.8)
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where qj = π̂j . Substituting from (13.7) for the p-variate case, and noting that

(2π)−p/2 is a factor common to both numerator and denominator, we may write

P̂ (j |xu) =
qj · |Sj |−1/2 exp

(
− 1

2D2
uj

)

∑J
j ′=1 qj ′ · |Sj ′ |−1/2 exp

(
− 1

2D2
uj ′

) . (13.9)

Therefore, the maximum-probability rule for the p-variate normal case may be
expressed as:

Assign unit u to Population j if

P̂ (j |xu) > P̂ (j ′|xu)

for j �= j ′, where P̂ (j |xu) is defined as in (13.9).

(13.10)

In other words, assign unit u to that population whose sample yields the largest
value of P̂ (j |xu).

Consider the special case where we assume that the J population covariance
matrices are equal; that is,

�1 = �2 = · · · = �J = �. (13.11)

In this case an estimator for � is the error (or pooled) sample (p × p) covariance
matrix, Se. The main-diagonal elements of Se are the p error sample variances as
found in univariate analysis of variance. That is, the ith main-diagonal element in Se

is the error sum-of-squares for variable i divided by N − J . The (i, i′) off-diagonal
element is the error sum-of-products for variables i and i′ divided by N − J . The
squared distance of unit u from the centroid of Group j may then be expressed as a
special case of (13.6):

D∗2
uj = (xu − xj )

′S−1
e (xu − xj ). (13.12)

Thus, the estimated likelihood in (13.7) becomes

f̂ (xu|j) = (2π)−p/2 · |Se|−1/2 exp
(
− 1

2D∗2
uj

)
. (13.13)

Because the product (2π)−p/2 · |Se|−1/2 would be common to the numerator and the
denominator of (13.8), we have

P̂ (j |xu) =
qj · exp

(
− 1

2D∗2
uj

)

∑k
j ′=1 qj ′ · exp

(
− 1

2D∗2
uj ′

) . (13.14)
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Thus, the maximum-probability rule for the p-variate normal case, under condition
(13.11), is

Assign unit u to Population j if

P̂ (j |xu) > P̂ (j ′|xu)

for j �= j ′, where P̂ (j |xu) is defined as in (13.14).

(13.15)

The estimated probabilities given by (13.14) are calculated and reported by the
two computer program packages, SAS and SPSS; values of (13.9) for all groups may
be obtained via the SAS package. This type of computer output is discussed later in
this chapter.

In Section 12.4 it was mentioned that density values, f̂ (x|j), are proportional to
the probability values, P̂ (x|j). Thus the posterior probability estimates of (13.8) may
be written as:

P̂ (j |xu) = qj · P̂ (xu|j)
∑J

j ′=1 qj ′ · P̂ (xu|j ′)
, (13.16)

and the rule in (13.15) may be thought of as a rule that incorporates typicality proba-
bility estimates. Furthermore, for a given unit, the value of the denominator in (13.16)
is the same for all groups. Therefore, for classification purposes, the denominator may
be ignored, and rules (13.10) and (13.15) may be stated as follows:

Assign unit u to Population j if

qj P̂ (xu|j) > qj ′ P̂ (xu|j ′)

for j �= j ′.

(13.17)

13.4 CLASSIFICATION FUNCTIONS

13.4.1 Quadratic Functions

As just stated, the forms of the rule stated in (13.10) and (13.15) may equivalently
be stated in terms of only the numerators in (13.9) and (13.14). That is, (13.10) may
equivalently be stated in terms of maximizing

qj · |Sj |−1/2 exp
(
− 1

2D2
uj

)
.

Now, maximizing qj · |Sj |−1/2 exp(− 1
2D2

uj ) is equivalent to maximizing the natural
logarithm of this product:

Quj = ln qj − 1
2 ln |Sj | − 1

2D2
uj . (13.18)
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Thus, the maximum-probability rule for thep-variate normal case may be expressed as:

Assign unit u to Population j if

Quj > Quj ′

for j �= j ′, where Quj is defined as in (13.18).

(13.19)

Some fairly extensive matrix manipulation would lead one to conclude that the expres-
sion Quj is quadratic in xu and hence is called a quadratic classification function
(QCF)—for J = 2, Quj may also be expressed as a difference of two quadratic
forms (see Technical Note 2). So, for each unit u, J QCF values are found, and unit
u is assigned to that population whose sample yields the largest QCF value. This is
termed a quadratic classification rule.

13.4.2 Linear Functions

Consider, again, the special case of equal population covariance matrices, with Se

being the estimator for the common covariance matrix. Maximizing P̂ (j |xu) in
(13.14) is equivalent to maximizing qj · exp(− 1

2D∗2
uj ). This, in turn, is equivalent

to maximizing the natural logarithm of the product:

ln qj − 1
2D∗2

uj = ln qj − 1
2 (xu − xj )

′S−1
e (xu − xj ). (13.20)

Matrix algebra yields a term, − 1
2 x′

uS−1
e xu, that would, for a given unit u, be common

for all j , and hence may be ignored for classification purposes. Thus, maximizing
(13.20) is equivalent to maximizing

Luj =
[
x′
j S−1

e

]
xu − 1

2 x′
j S−1

e xj + ln qj

=
[
x′
j S−1

e

]
xu +

[
− 1

2 x′
j S−1

e xj + ln qj

]
. (13.21)

Thus, the maximum-probability rule for the p-variate normal, equal covariance
matrices case may be expressed as:

Assign unit u to Population j if

Luj > Luj ′

for j �= j ′, where Luj is as defined in (13.21).

(13.22)

The expression Luj is linear in xu and hence is called a linear classification function
(LCF), and the rule in (13.22) is a linear classification rule. From (13.21) it may be
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TABLE 13.1 LCFs for the 3-Group Ethington Data

Variable LCF1 LCF2 LCF3

counsum −.50 −.32 −.24
gainsum .04 .06 −.01
learnsum .44 .49 .57
qelib .06 .07 .06
qefac .35 .24 .32
qestacq .11 .12 .09
qeamt .53 .55 .44
qewrite .35 .37 .35
qesci .22 .16 .12
(constant) −16.12 −15.78 −15.80

concluded that Luj can be written as a linear composite of the X scores with the row
vector of weights

b′
j = x′

j S−1
e , (13.23)

and constant

cj = − 1
2 x′

j S−1
e xj + ln qj . (13.24)

That is,1

Luj = b′
j · xu + cj .

The weights given by (13.23) are typically reported in computer package output,
similarly for the constant values of (13.24). These weights and constants are applicable
to raw data. For example, using the 3-group Ethington data (3GED), the three sets of
LCF weights (and constants) are given in Table 13.1. (How to calculate these weights
will be illustrated in Chapter 14.)

Thus, the maximum-probability rule boils down to:Assign unit u to that population
whose sample yields the largest QCF score [with unequal covariance matrices; see
(13.19)], or the largest LCF score [with equal covariance matrices; see (13.22)].

13.4.3 Distance-Based Classification

In terms of observed vector-to-centroid distance (see Section 13.3), rule (13.22) may
be viewed as: Assign unit u to that population to which it is “closest.” Closeness is
used in terms of distances of observation vectors from sample centroids. Referring

1Another form of (13.21) is

Luj = b1j X1u + b2j X2u + · · · + bpj Xpu + cj .
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to the quadratic classification function in (13.18), we see that maximizing Quj is
equivalent to minimizing

duj = −2Quj

= ln |Sj | + D2
uj − 2 ln qj . (13.25)

Thus, the maximum-probability (or minimum-distance) rule may be expressed as:

Assign unit u to population j if

duj < duj ′

for j �= j ′, where duj is defined as in (13.25).

(13.26)

This rule is equivalent to rule (13.19).
When the equal-covariance-matrices condition is reasonably met, minimizing

(13.25) is minimizing ln |Se| + D∗2
uj − 2 ln qj , which is equivalent (because ln |S|

is a constant for all u and all j ) to minimizing

d∗
uj = D∗2

uj − 2 ln qj , (13.27)

where D∗2
uj is the squared distance based on the error covariance matrix, Se [see

(13.12)]. Thus the maximum-probability (or minimum-distance) rule for the equal
covariance matrices case may be expressed as:

Assign unit u to Population j if

d∗
uj < d∗

uj ′

for j �= j ′, where d∗
uj is defined as in (13.27).

(13.28)

The SAS DISCRIM program terms the expressions in (13.25) and (13.27) the
generalized squared distance function.

Of course, if the equal prior probability condition is also imposed, rule (13.26) is
simplified to minimizing

ln |Sj | + D2
uj , (13.29)

and rule (13.28) is simplified to minimizing

D∗2
uj . (13.30)

These are precisely the statistics that Tatsuoka (1988, pp. 351–358) uses with his
“minimum chi-squared” rules.
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13.5 SUMMARY OF CLASSIFICATION STATISTICS

The discussion in Sections 13.3 and 13.4 and a cursory reading of the many text-
books and articles dealing with classification methods and rules might lead one to
conclude that there are several different rules. This is not so when restricting the dis-
cussion to multivariate normal-based rules. The general statistic is that involving the
estimated posterior probability P̂ (j |x) in (13.9) or, equivalently, that involving the
quadratic classification function (QCF) in (13.18) or, still equivalently, that involving
the generalized distance in (13.25).

Special cases of the general statistic may be obtained when two conditions are
considered. One condition pertains to the J population covariance matrices. If these
matrices are not assumed, or cannot tenably be concluded, to be equal, we have
a quadratic rule, as stated in (13.10) in terms of P̂ (j |x) values, in (13.19) in
terms of QCF values, and in (13.26) in terms of distance values; otherwise, the

TABLE 13.2 Classification Statistics

Quadratic

P̂ (j |xu) =
qj · |Sj |−1/2 · exp

(

−1

2
D2

uj

)

J∑

j ′=1

qj ′ · |Sj ′ |−1/2 · exp

(

−1

2
D2

uj ′
) (13.9)

Quj = ln qj − 1
2 ln |Sj | − 1

2 D2
uj

(13.18)

duj = ln |Sj | + D2
uj

− 2 ln qj (13.25)

Linear

P̂ (j |xu) =
qj · exp

(

−1

2
D∗2

uj

)

J∑

j ′=1

qj ′ · exp

(

−1

2
D∗2

uj ′
) (13.14)

Luj = [x′
j

S−1
e ]xu − 1

2 x′
j

S−1
e xj + ln qj (13.21)

d∗
uj

= D∗2
uj

− 2 ln qj (13.27)

Note: D2
uj

= (xu − xj )′S−1
j

(xu − xj ) (13.6)

D∗2
uj

= (xu − xj )′S−1
e (xu − xj ) (13.12)
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TABLE 13.3 Alternative Forms of Classification Statistics

Covariance Matrices

Prior Probabilities Unequal (Quadratic Rule) Equal (Linear Rule)

Unequal
qj · |Sj |−1/2 · exp

(

−1

2
D2

uj

)

J∑

j ′=1

qj ′ · |Sj ′ |−1/2 · exp

(

−1

2
D2

uj ′
)

qj · exp

(

−1

2
D∗2

ugj

)

J∑

j ′=1

qj ′ · exp

(

−1

2
D∗2

uj ′
)

ln qj − 1
2 ln |Sj | − 1

2 D2
uj

ln qj − 1
2 D∗2

uj

ln |Sj | + D2
uj

− 2 ln q a
j

D∗2
uj

− 2 ln q a
j

Equal
|Sj |−1/2 · exp

(

−1

2
D2

uj

)

J∑

j ′=1

|Sj ′ |−1/2 exp

(

−1

2
D2

uj ′
)

exp

(

−1

2
D∗2

uj

)

J∑

j ′=1

exp

(

−1

2
D∗2

uj ′
)

− 1
2 ln |Sj | − 1

2 D2
uj

− 1
2 D∗2

uj

ln |Sj | + D2 a
uj

D∗2 a
uj

aFor classification purposes, the maximum of the J values for all statistics is considered except for
these four, where the minimum is considered.

linear rule is employed. The second condition pertains to the J prior probabili-
ties. If the priors are taken to be equal, the statistics in (13.29) and (13.30) may
be employed.

For ease of reference, the classification statistics are summarized in Table 13.2.
The three quadratic statistics yield identical classification results, similarly for the
three linear statistics. Another summarization of classification statistics is given in
Table 13.3. The three statistics in each “quadrant” yield identical classification results.
Note that if all the q terms in the upper part of Table 13.3 are constant (i.e., equal
priors), the constant prior may be formally ignored in any form of the classification
rule, as found in the lower part of Table 13.3.

13.6 CHOICE OF RULE FORM

13.6.1 Normal-Based Rule

When dealing with continuous predictor variables there are two data conditions that
may be of some concern. One condition is that of multivariate normality of the
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observation vectors in each group. Does this condition need to be met to use any
of the statistics in Table 13.2 or 13.3? In the sense of optimality, the answer is yes. If
yes, we have to rely on a way of “testing” the condition of joint normality. Empirical
and graphical techniques for checking multivariate normality are discussed by Fan
(1996, p. 169) and Rencher (2002, pp. 92–99).

One thing that may be done is to check the necessity of multivariate normality, that
is, check for the normality of each variable distribution. (It should be recognized that
marginal univariate normality is not sufficient for joint normality.) This may be done
graphically using stem-and-leaf or normal probability plots that may be obtained via,
for example, the SPSS MANOVA program. If one is satisfied with multiple univariate
normality, then one may proceed as though the multivariate normality condition is
met. Or, one can proceed “blindly,” assuming, without any checks, that the condition
is met. If it can be assumed that the sample observations used are typical of those in
the populations, logically there is no problem with “working in the dark,” so to speak.
If a normal rule is built on nonnormal data and then used on similar nonnormal data,
the rule used may not be the most efficient one. However, it may be claimed that “this
is what I will get if I assume normality.”

If one is bothered by working in the dark, there are other classification rules
available. Some light will be shed on these rules in Chapter 19.

13.6.2 Covariance Matrix Equality

The second condition, often referred to as an assumption, is really of no great concern
in classification analyses. This condition pertains to the equality of the J population
covariance matrices. It might be recalled that when group centroids are compared
using multivariate analysis of variance (see Chapter 3), it is assumed that J population
covariance matrices are equal. If sample sizes are unequal and covariance matrices are
unequal, the reported P values may underestimate or overestimate the actual P value.
In the context of predictive discriminant analysis the inequality of the covariance
matrices is of no concern simply because we have statistics available to us that take
this condition “into consideration” (see Tables 13.2 and 13.3). There is the question,
however, of how to decide whether or not the condition is met.

The approach typically recommended is to test the multivariate hypothesis

�1 = �2 = · · · = �J ,

a generalization of the univariate hypothesis

σ 2
1 = σ 2

2 = · · · = σ 2
J ,

using an approximate χ2 (Bartlett) or an F (Box) statistic (see Section 3.3). As
was noted earlier, there are two serious problems with either test, however. First,
as Olson (1974) found in a Monte Carlo study, the basic statistic is quite sensitive
to lack of normality; that is, the hypothesis may be rejected because of nonnormal-
ity rather than because of unequal covariance matrices. Second, either test is quite
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powerful in that rejection is very often concluded, especially if N/p is “large.” So
what does one do? If normality is tenable, and a test of covariance homogeneity is
desired (or if one is compelled to use a statistical test), use the Bartlett or Box test
with α < .01. (This α value should be decreased further with a larger N .) Some-
thing that is often recommended when the covariance homogeneity condition is in
question is to use equal sample sizes and rely on (yet unconvincingly concluded)
robustness. This is fine if, in the design of the study, use of equal sample sizes
makes sense.

The SPSS DISCRIMINANT and MANOVA programs both use the (Box) F

statistic. In addition, MANOVA uses the (Bartlett) chi-squared statistic. [The SAS
DISCRIM procedure also uses a chi-squared statistic; however, the latter statistic
is slightly different from the chi-squared statistic typically given in textbooks (e.g.,
Tatsuoka, 1988, p. 99).]

Similar to the univariate situation, the tests for covariance matrix homogene-
ity are sensitive to the lack of multivariate normality. A simultaneous test for the
two conditions has been proposed by Hawkins (1981). This test is reviewed by
McLachlan (1992, pp. 169–172), who also discusses separate tests for the two
conditions.

There is another data condition that should be considered when assessing covari-
ance matrix heterogeneity. As is known in the univariate context, an outlying
observation may drastically affect a variance estimate. Similarly, multivariate outliers
may affect estimates of �j , j = 1, 2, . . . , J . Hence data sets should be examined for
possible outliers prior to the homogeneity test. Detection of outliers is discussed in
Sections 14.4, 15.6, and 23.3.

Another assessment of the equal covariance matrix condition may be made by
examining the (natural) logarithms of the J + 1 covariance matrices (for each of the
J groups, and for the error matrix). These logarithms are outputted by the SPSS
DISCRIMINANT, and SAS DISCRIM programs. What is done, then, is to make an
eyeball assessment of the equality of the J + 1 logarithms. If they are “in the same
ballpark,” then one can proceed with the linear rule. In addition, one may examine
the J + 1 matrix traces—the sum of the p variances for each of the J + 1 matrices. If
these J + 1 traces are “in the same ballpark,” one can proceed with the linear rule. No
criteria are advanced for either decision—these are judgment calls for the researcher
to make; one may consult with a methodologist or a statistician.

13.6.3 Rule Choice

The choice of linear versus quadratic classification is discussed by McLachlan (1992,
pp. 132–137) and Meshbane and Morris (1995). The general conclusion is that if the
nj : p ratios are small, then a linear rule is preferred even with covariance heterogene-
ity, whereas if the nj : p ratios are large and heterogeneity is clearly present, then a
quadratic rule is preferred. A reason for the preference of a linear rule for small (or
even moderate) samples is the potential for greater across-sample stability of results
(with or without normality)—see Huberty and Curry (1978), Michaelis (1973), and
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Wahl and Kronmal (1977). Very little guidance as to definitions of “small” and “large”
is proffered. Greene and Rayens (1989) and Nakanishi and Sato (1985) reach the same
conclusion from simulation studies. Based on some asymptotic expansions of linear
and quadratic functions, Wakaki (1990) also reached that conclusion. It may be noted
that virtually all linear–quadratic comparisons have been studied in the two-group
context—see, also, Rubin (1990) and Further Reading of Chapter 22.

13.6.4 Priors

Whether or not to use equal priors (i.e., q values) is, to some extent, a judgment call
to be made by the researcher. A prior probability of group membership reflects how
likely it is for a case to emanate from the given group. It may be argued, therefore,
that the priors be based on the relative sizes of the respective populations. It is the
responsibility of the researcher to make this assessment; such an assessment may
be based on the associated substantive theory, on previous research or records, on
experience, or simply on a guesstimate. In any case, it is suggested that the priors
should not correspond to the relative sample sizes, unless, of course, a proportional
sampling plan was utilized. Note that it may be reasonable to use unequal priors when
equal sample sizes are involved.

13.7 COMMENTS

When the multivariate normal model is imposed, the general form of a classification
rule stated in Section 12.4 [i.e., (12.9)] may be expressed in any one of three forms:
(1) in terms of a posterior probability [see (13.10) or (13.15)], (2) in terms of a
variable composite [see (13.19) or (13.22)], or (3) in terms of a multivariate distance
[see (13.26) or (13.28)]. The choice of the two alternatives for each form may depend
on the tenability of the equal covariance matrix condition, with the second alternative
[i.e., (13.19) or (13.22) or (13.28)] being chosen if the condition is tenable. There is
complete equivalence of the three forms (13.15), (13.22), and (13.27) of the linear
rules (i.e., when the covariance homogeneity condition is tenable); similarly, for the
three forms of the quadratic rule [(13.10), (13.19), (13.26)]—equivalence in the sense
of giving identical classification results.

Finally, in considering the covariance matrices and prior probabilities in a clas-
sification rule, one might also consider differential costs of misclassification. For
example, if a unit actually belongs to Population 1, it may be more costly if that unit
is assigned to Population 3 than if assigned to Population 2. Or, it may be more costly
if a Population 1 unit is assigned to Population 2 than vice versa. The incorporation
of misclassification costs into a classification rule may be a bit cumbersome in the
J > 2 case [see Johnson and Wichern (2002, pp. 612–616)]. In the two-group case,
only relative costs need be specified.

A general discussion of how misclassification costs may be incorporated into a
prediction rule is as follows. In terms of typicality probabilities we have rule (13.17).
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Equivalently, we have

Assign unit u to Population j if

J∑

j ′=1
j ′ �=j

qj ′ · P̂ (xu|j ′)

is a minimum.

(13.31)

Rules (13.17) and (13.31) are used when misclassification costs are ignored (i.e.,
when the costs are equal). Now, let C(j |j ′) denote the cost of assigning a unit to
Group j when, in fact, it belongs to Group j ′. Incorporating misclassification costs,
the prediction rule becomes

Assign unit u to Population j if

J∑

j ′=1
j ′ �=j

qj ′ · P̂ (xu|j ′) · C(j |j ′)

is a minimum.

(13.32)

For example, for J = 3, assign unit u to Population 1 if [q2P̂ (xu|2) · C(1|2) +
q3P̂ (xu|3) · C(1|3)] is smaller than [q1P̂ (xu|1) · C(2|1) + q3P̂ (xu|3) · C(2|3)] and
[q1P̂ (xu|1) · C(3|1) + q2P̂ (xu|2) · C(3|2)]. Note that this rule takes into consid-
eration C(1|2), C(1|3), C(2|1), C(2|3), C(3|1), and C(3|2). Neither of the two
computer program packages allows for incorporating misclassification costs directly;
for a two-group problem, however, the specified priors may reflect relative costs (see
Section 18.2).

The rules discussed in this chapter are those most often used by researchers. The
popularity of these rules is undoubtedly due to the fact that the computations for
them have been readily accessible through computer program packages. The normal-
based rules are applicable with continuous predictor variables and, as discussed in
Section 19.3, with some discrete predictors. When there is serious doubt about the
multivariate normality of the predictors, some modifications of classification statistics
are needed (see Section 19.2).

The rules discussed in this chapter are sometimes referred to as estimative rules.
This is because the method common to all of the rules emphasizes first obtaining
estimates of the unknown parameters and then substituting these estimates into the
classification algorithms. The rules are initially developed under the assumption that
all parameters are known. An alternative approach—termed the predictive method—
has been suggested by S. Geisser (1929–2004) and is presented in the first edition of
this book (Huberty, 1994c, pp. 66–67).
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Technical Notes

1. Consider that the scalar, |�|, as a definition of generalized variance, appears to be
universally accepted. If p = 1, then clearly |�| = σ 2. There is another generalization,
however, that makes some sense; this is the trace of �, tr(�), which is the sum of the
main diagonal elements of �. Again, if p = 1, tr(�) = σ 2. That it makes sense to
consider the trace along with the determinant as an index of generalized variance may
be seen by examining the test statistic for H0: � = I, which is a function of |S| and
tr(S), where S = �̂ (Morrison, 1990, p. 769). For elaboration, see Huberty (1983).

2. As indicated in (13.18), there is a quadratic expression for each j = 1, 2, . . . , J .
Each of the J quadratic expressions involves a set of quadratic weights (i.e., weights
for elements of x2

u), a set of variable cross-product weights, a set of linear weights, and
a constant. These J complex quadratic composites are typically of limited interest to
the applied researcher. They may, however, be of interest to the researcher who intends
to use a quadratic rule (built on a design sample) with new units (see Section 16.9).

3. To conduct a linear PDA, the SPSS DISCRIMINANT program uses a “data
reduction” approach. The analysis begins with determining J − 1 linear discriminant
functions (LDFs). (This is like doing a principal component analysis prior to the
analysis of interest.) Scores on these LDFs are then used as input for the linear PDA.
The J linear classification function (LCF) scores are linear composites of the LDF
scores. It turns out that these linear PDA results are the same as those obtained when
using LCF scores based on the original predictor variable scores. The bad news is that
SPSS uses LDF scores for their quadratic PDA—their quadratic results are incorrect.

Further Reading

Bar-Hen (1996) proposes a test to determine whether or not an analysis unit (whose
membership of one of the J a priori populations is unknown) belongs to a new
population.

Flury (1995) discusses (with references) common principal component (CPA)
discrimination and proportional discrimination with �= �’s.

Glover (1990) reviews the linear programming (LP) approach to classification and
presents a demonstration of added flexibility of some LP models.

Grouven et al. (1996) develop a “user-friendly” PC program that performs linear
and quadratic PDA for two or more groups allowing for the incorporation of
misclassification costs.

McLachlan (1992) reviews theoretical aspects of quadratic rules plus a number
of other classification rules (in Chapter 3), compares linear and quadratic
rules (pp. 132–137), and presents an extensive review of studies that assess
the robustness of linear and quadratic classification to violations of normality
(pp. 152–161).

Rencher (2002, Chapter 7) provides a detailed discussion of the test of equal �’s.

Schott (1993) proposes the use of composite scores as input for a quadratic classi-
fication analysis, and further suggests a “dimension reduction” in the sense of
using fewer than r = min(p, J − 1) composite scores as input for the QCFs.
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Smith (1947) is one of the first to apply the normal-based quadratic rule; he also
first proposed the resubstitution error rate estimator.

Fact There are three kinds of people in this world—Those who can count and those
who can’t.

EXERCISES

1. What is the height of a univariate standard normal curve corresponding to a z value
of 1.20? That is, what is the value of f (1.20) where f is the univariate standard
normal density function (with µ = 0 and σ 2 = 1)? [See (13.1).] What is another
z value with an f (z) value the same as f (1.20)?

2. Find the ordinate of a N (2, 16) curve for an abscissa of 2; for an abscissa of 6.
[Refer to (13.1).]

3. How is a posterior probability (estimate) used in a PDA?

4. Consider the question:Assuming that profiles of high school students remain fairly
stable, how well can we “fit” a given student profile with profiles of typical students
who opt for one of, say, four postsecondary experiences? Now the priors to be used
in this situation would depend to some extent on the locale. Construct a (real?)
classification situation (i.e., specify predictors and criterion groups) and defend a
set of priors that would be utilized.

5. Specify priors that seem reasonable to you for your personal data set—Exercise 2
in Chapter 1.
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C H A P T E R 14

Classification Results

14.1 INTRODUCTION

The statistic that is predominantly used in data analysis packages to decide group
assignment is the estimated posterior probability of group membership. (An excep-
tion is when the single-nearest-neighbor rule is used; see Section 19.2.2.) When
multivariate normality of the distribution of predictor vectors is assumed, one can
equivalently use the value of a classification function (linear or quadratic) for assign-
ment purposes. Whether a probability value or function value is used, a value for each
analysis unit is found for each population category. The J function values for a unit
are of little use other than for the purpose of deciding into which population the unit
will be classified. Posterior probability estimates, however, yield information about
each unit in addition to that of indicating predicted population membership. This
added information pertains to characterizations of the individual analysis units and
will be discussed in Section 14.4. Information pertaining to numbers or proportions
in groups of units correctly classified into the population categories is presented in
Section 14.5. Prior to these two discussions, listings of SPSS and SAS commands
used in analyzing a real data set are given.

14.2 RESEARCH CONTEXT

Illustrations of PDA results given in this chapter (and some succeeding chapters) are
based on a real data set that involves a sample of community college students. For
the exemplary PDAs, we are using Grade as the grouping variable, with three levels:
A (n1 = 66), B (n2 = 122), and C or C− (n3 = 76). Thus, we have N = 264. [This
is the 3-group Ethington data set (3GED).] We are using respective priors of .25, .50,
and .25 (guesstimates!).

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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14.3 COMPUTER APPLICATION

In this section we provide the SPSS and SAS syntax for determining classification
functions. The prior probabilities are based on researcher experiences with similar
students.

SPSS SYNTAX FOR A LINEAR PDA USING 3 GRADE GROUPS
AND 9 PREDICTOR VARIABLES

discriminant
/group = grade(1,3)
/variables = counsum to qesci
/priors .25 .50 .25
/statistics all
/plot = cases
/classify = pooled.

discriminant is the SPSS system command for discriminant analysis.
/groups = grades(1,3) identifies the classification variable with the lower and
upper value limits for the classification variable.
/variables = counsum to qesci identifies the nine predictor variables. If variables
are consecutive, the “to” function can eliminate the listing of individual variables.
/priors = .25 .50 .25 if base rates are known, they may be specified with this state-
ment (see Section 12.4.4). Alternatively, = equal or = size may be requested if
equal base rates, or base rates proportional to the current group sizes, are desired.
/statistics = all requests a variety of statistics including: means, standard devia-
tions, Box test, classification function coefficients, and classification results.
/plot = cases requests individual posterior and typicality probabilities as well as
Mahalanobis D2 statistics for the two largest posterior probabilities.
/classify = pooled requests that the linear rule be used.

SAS SYNTAX FOR A LINEAR PDA USING 3 GRADE GROUPS
AND 9 PREDICTOR VARIABLES

proc discrim pool=test crosslist posterr;
class grade;
var counsum - - qesci;
priors ’1’=.25 ’2’=.50 ’3’=.25;
run;
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proc discrim is the SAS system command to request the discriminant analysis
procedure.
pool=test requests the χ2 test for covariance matrix equality. By default, if the
results are not statistically significant at the .10 level, the linear rule is applied. If
the results are significant at the .10 level, the quadratic rule is applied. If a linear
rule is known to be desired, test should be changed to yes. If a quadratic rule is
known to be desired, test should be changed to no.
crosslist requests the individual classification results on a cross-validation sample
obtained using the leave-one-out method (see Section 15.3.3).
posterr requests the posterior probabilities be reported for all J groups.
class grade specifies the classification variable.
consum - - qesci lists the predictor variables. When variables are consecutively
listed, the - - function can be used rather than listing all individual predictors.
priors ’1’= .25 ’2’= .50 ’3’= .25 lists the known group base rates.

The SPSS DISCRIMINANT program uses a classification based on statistics iden-
tical in form to (13.4) and (13.9), but the “score” input is not raw data on the p

predictors. Rather, input for each analysis unit consists of a set of scores on linear
composites (actually, LDFs) of the p predictor scores—see Huberty (1984). It should
be noted that the results from SPSS quadratic classification are not the same as from
SAS, which uses raw data input to (13.9). It turns out that the SPSS “quadratic” results
are not correct.

It should also be noted that SAS DISCRIM does not output the typicality
probability estimates.

14.4 INDIVIDUAL UNIT RESULTS

The SAS package outputs the J normal-based posterior probability estimates [i.e.,
P̂ (j |x) values] for each unit; SPSS DISCRIMINANT yields only the two largest
P̂ (j |x) values. As discussed in Section 15.3, such calculation of P̂ (j |x) values is
related directly to an internal predictive discriminant analysis. These so-called internal
P̂ (j |x) values are those referred to above as part of the output of SAS DISCRIM
(with some options) and SPSS DISCRIMINANT. For an external analysis, on the
other hand, the xj and Sj values used in the squared distances in (13.6) would be
based on only some of the available unit score vectors. This would determine P̂ (j |x)

values different from the internal values. Such external P̂ (j |x) values are obtainable
via SAS DISCRIM with options CROSSVALIDATE and CROSSLIST.

The output of SAS DISCRIM may be abbreviated by listing the posterior proba-
bilities only for the misclassified units. This is accomplished by using LISTERR (for
an internal analysis) or CROSSLISTERR (for an external analysis).

Results obtained on individual units depend not only on whether an internal or
external analysis is conducted, but on whether a linear or quadratic classification rule
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TABLE 14.1 Some Unit Classification Results for the 3-Group
Ethington Data

Posterior Probablities

Student
Actual
Group

Predicted
Group
(j)

Typicality
Probability

P̂ (x|j) P̂ (1|x) P̂ (2|x) P̂ (3|x)

35 1 1 .350 .605 .360 .035
43 1 2 .005 .114 .811 .075
57 1 2 .531 .089 .595 .316
96 2 1 .336 .676 .260 .063

105 2 2 .321 .092 .710 .198
153 3 2 .277 .097 .455 .448

is employed. A small portion of linear external SPSS DISCRIMINANT output is
given in Table 14.1. These are linear leave-one-out (L-O-O discussed in Chapter 15)
classification results. It should be noted that the SPSS output provides only two
estimated posterior probability values; but, with J = 3 groups, the third value is
easily obtained because the sum of the J values is 1.00. That is, we assume that every
student belongs to one (and only one) of the criterion populations; thus, the sum of
the J P̂ (j |x) values is unity.

By examining the J P̂ (j |x) values, we can assess, in a probabilistic sense, the
closeness of each unit to the centroid of each of the J groups. For example, referring
to Table 14.1, we see that the 9-element score vector for Student 35 from Group 1
(grade of A) is closest to the centroid for Group 1; the posterior probability estimate
of P̂ (1|x35)

.= .605 is clearly the largest of the three. This would be considered a “hit.”
That is, a CCSEQ student with a score vector like that of Student 35 (in Group 1)
would be predicted to earn an A grade. Another “hit” would be Student 105. On the
other hand, a student with a score vector like that of Student 57, who was grouped
with the A students, would be predicted to earn a B. This is clear from the
P̂ (2|x57) value of .595. This would be considered an “error,” as would Student 96.
Other entries in Table 14.1 will be subsequently discussed.

It is very rare in PDA applications to see the reporting of all unit results. For an
exception, see Seshia et al. (1983) who report the largest posterior probability for
each of 104 analysis units.

14.4.1 In-Doubt Units

An in-doubt unit (or, a “fence rider”) is one with approximately—usually two—equal
P̂ (j |x) values. That is, if two such values are “close,” then it can be concluded that
the unit’s score vector is about the same distance from centroids of two groups. Such
fence riders and associated score vectors could be studied for peculiarities. The profiles
(i.e., score vectors) of fence riders might reveal some interesting reasons why they
resemble the typical member of one group—reflected by the group centroid—about
as much as the typical member of another group.

An example of an in-doubt unit is given in Table 14.1. It may be obvious that for
Student 153 (a C or C− student), the posterior probability estimates, P̂ (2|x153)

.= .455
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and P̂ (3|x153)
.= .448 are “close.” Thus, the grade prediction for Student 153 is not

clear, a C or C− or a B?
An examination of in-doubt units may very well reveal some interesting

information—for separate groups as well as for the total group. Predictor score pro-
files for collections of in-doubt units may provide descriptions of units for which
group identification is not clear. In a real, practical group prediction situation, such
unit descriptions may be informative—in addition to the focus on hit rates typically
considered in a PDA study by practicing researchers.

If a large number of in-doubt units resulted, this might suggest the possibility of
the actual existence of an additional group, one in-between two of the original groups.

Based on the obtained P̂ (j |x) values, it might be decided that some units should
not be assigned to any of the J criterion populations being studied. The basis for such
a decision may be a minimum, or threshold, P̂ (j |x) value. The use of a threshold
value in the estimation of hit rates is discussed in Section 15.6.

14.4.2 Outliers

An outlier is a unit that may not belong to any group; that is, a unit that is not close
to the typical member of any group. The typicalness of the observed score vector for
unit u, xu, belonging to Group j is reflected by the proportion of units in Group j

that have vectors close to xu; this proportion is denoted as P̂ (xu|j) and is called a
typicality probability. Rather than dealing directly with these as “probabilities,” let us
view typicalness in terms of distance. Now, assuming common population covariance
matrices, the squared distance between points representing xu and the centroid of
Group j , xj , is

D∗2
uj = (xu − xj )

′S−1
e (xu − xj ), (14.1)

a repeat of expression (13.12).
A difficulty with using such a distance index is in assessing the largeness of a D∗2

value. It may be more attractive to use a probability associated with the distance index.
This would be well and good if even the approximate distribution of D∗2

ug was known.1

The distribution of another squared distance is, however, known and is considered by
SPSS. This is the distance from the point representing a unit and a point representing
a group centroid, both in the space defined by the linear discriminant functions; these
LDFs are discussed in detail in Section 5.2. A squared distance between a unit and
a centroid in the LDF space has a chi-squared distribution with df = r = number of
LDFs. In a one-factor layout as we have here, df = J − 1. The probability in which
we are interested for a given unit is the tail area of a χ2(J − 1) distribution. Such
a tail area may be interpreted as the probability that any member of Group j would
yield a squared distance that is equal to, or greater than, the squared distance that unit

1Some writers refer D∗2
uj

to χ2(p), whileAfifi andAzen (1979, p. 523) and Morrison (1990, p. 549) suggest

two different F transformations of D∗2
uj

; McLachlan (1992, pp. 181–182) discusses an F transformation

of D∗2
uj

and an F transformation of D2
uj

that may be used in outlier detection.
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u is from the centroid of the group to which it is assigned. (See the Technical Note at
the end of this chapter.)

These tail areas, which are labeled typicality probabilities for each unit, are given
by the SPSS DISCRIMINANT procedure (but, not by SAS DISCRIM). As can be
seen in Table 14.1, there is one P̂ (xu|j) value for each student. This value may reveal
a potential outlier. For example, check Student 43 results. The three P̂ (j |x43) values
are .114, .811, and .075. Thus, it may be concluded that the 9-element vector of
CCSEQ scores for Student 43 is closest to the CCSEQ centroid for Group 3; thus,
a student with a vector of CCSEQ scores similar to those of Student 43 would be
(correctly?) predicted to belong to Group 2—a “hit.” It may be noted, however, that
P̂ (x43|2)

.= .005. Thus, it may be concluded that a student with a score vector like
that of Student 43 is not very close to the centroid of Group 2. That is, Student 43
may be considered an outlier.

A great number of units similarly identified may indicate that there actually is a
(J + 1)st population, one that is “outside” the original groups. Reaching such a con-
clusion would depend on the configuration of the group centroids in a p-dimensional
space, a discussion of which was given in Section 5.5. How potential outliers might be
dealt with in terms of estimating classification accuracy is discussed in Section 15.6.
Outliers are discussed in more detail in Section 23.3.

14.5 GROUP RESULTS

Results of a classification analysis are often reported in the form of a classification
table, as in Table 14.2. (Such a table is sometimes labeled a confusion matrix.) The
entry njj ′ in the (j, j ′) cell is the number of units in Group j that are assigned to (or
predicted to be in) Group j ′. A hit results when a unit emanating from Group j is
assigned (by means of the classification rule used) to Group j . The hit rate for Group j

is given by njj /nj and the total-group hit rate is �njj /N .
An example of an actual classification table, based on the 3-group Ethington data

set (3GED), is given in Table 14.3. These results are based on the use of statistic
(13.14) with q1 = q3 = .25 and q2 = .50. The separate-group hit rates are indicated in
parentheses on the main diagonal. The total-group hit rate is (18 + 103 + 15)/264

.=
.515. More details on how such a table is determined and interpreted are given in
Chapter 15.

TABLE 14.2 Classification Table for J = 3

Predicted Group

1 2 3 Total

Actual Group 1 n11 n12 n13 n1
2 n21 n22 n23 n2
3 n31 n32 n33 n3

Total n·1 n·2 n·3 N
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TABLE 14.3 Classification Table for the 3-Group
Ethington Data

Predicted Group

1 2 3 nj

Actual Group 1 18 53 5 76
(.237)

2 9 103 10 122
(.844)

3 6 45 15 66
(.227)

Total 33 201 30 N = 264

14.6 COMMENTS

Examination of analysis unit probabilities may be informative for a reason in addition
to identifying in-doubt units and outlying units. Suppose that a unit in the training
sample is misclassified on the basis of a “large” posterior probability associated with
a group other than the group in which the unit was originally located. For example,
consider a Group 2 unit assigned to Group 3 with, say, P̂ (3|x)

.= .938. Such a posterior
probability may suggest a questionable initial group identification for the unit. As an
example of such a result based on the 3-group Ethington data group predictions (see
Table 14.1), with Student 43 from Group 1 (grade of A) we get P̂ (2|x43)

.= .811, a
“miss.” Might Student 43 have been “overevaluated”?

Finally, PDA results may be helpful in the context of a cluster analysis (CA) study.
An initial decision made in CA pertains to determining the number of clusters. A PDA
may help in making this decision. Suppose the number of clusters initially considered
are 4, 5, and 6. Then what may be done is to conduct three PDAs using the set of p

response variables as predictors and J = 4, J = 5, and J = 6. The number of clusters
to retain for further analysis would be that J value that yields the “best” hit rate(s)—a
researcher judgment call. These analyses may, however, be troublesome because of
unknown priors. PDA may be more helpful as a posttypology analysis. Once the final
cluster analysis is completed, a classification rule may be determined to use with new
analysis units having the same p variable measures. (Again, special efforts need to be
made in estimating the set of J priors.) This latter analysis was advocated by Huberty
et al. (2005) and Huberty and Lowman (1997).

Technical Note

Suppose that a classification rule is built on a set of data, and then the task is to
classify a new analysis unit. In such a situation it may be of interest to determine
whether or not the new unit may be designated an outlier. Such a designation may be
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accomplished as follows. Let

r = min(p, dfh) denote the number of linear discriminant functions (LDFs)

(i.e., the dimension of the LDF space)

Se = p × p error covariance matrix (in the p-variable space)

V = p × r matrix of the r sets of LDF weights

Then V′SeV is the r × r error covariance matrix based on the r LDF scores for
each unit.

If C = V′SeV, the squared distance from a point representing a unit’s vector of r

LDF scores to a point representing a vector of LDF means for Group j is

D2
uj = (fu − fj )′C−1(fu − fj ),

where fu is an r × 1 vector of LDF scores for unit u, and fj is the centroid of LDF
means for Group j . A D2

uj value may be referred to the χ2(r) distribution to obtain
the tail area associated with unit u. This tail area is what is referred to as the typicality
probability, P̂ (xu|j). The P̂ (xu|j) value is the estimated probability of having a score
vector near xu or one more extreme.

Definition Minimax: Dress for ambivalent women.

EXERCISES

1. Consider a multivariate three-group classification (i.e., PDA) context. For unit 8
suppose that P̂ (1|x8) = .30, P̂ (2|x8) = .65, P̂ (x8|1) = .50, and P̂ (x8|2) = .25.

(a) Into which group should unit 8 be assigned?

(b) What do the numbers .30 and .65 represent? Explain.

(c) What do the numbers .50 and .25 represent? Explain.

(d) What is the value of P̂ (3|x8)?

(e) What is the value of P̂ (x8|3)?

2. Why is it recommended that PDA results for individual analysis units be examined
in addition to the separate-group and/or total-group hit rates?

3. (a) Explain why an internal classification analysis would yield biased results.

(b) Relate this bias to that in a multiple regression analysis.

Computer Applications

4. Conduct a linear PDA (using SAS DISCRIM and SPSS DISCRIMINANT) on the
3-group Ethington data set (3GED, see Appendix A)—use the commands given in
Section 14.3.
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(a) What is the reported value of P̂ (3|x24)? Of P̂ (x24|3)?

(b) Identify two fence riders, using the criterion of the two P̂ (j |x) values being
within .02 of each other.

(c) Identify two outliers (via SPSS), using the criterion of the P̂ (x|j) values being
less than .05. [Note: the .02 and .05 criteria are not to be universially used.]

(d) Locate the classification table for this analysis. What percent of the Group 2
units were correctly (re)classified? Percent of the Group 3 units? What is the
percent of hits over all three groups? (How is this percent determined?)

5. Conduct a PDA on your personal data set using the statistical package of choice;
delete any categorical predictors. Examine the results for (a) outliers, (b) in-doubt
cases, (c) separate group hit rates, and (d) total group hit rate. Finally, express your
confidence of the hit rate estimates in terms of accuracy and precision.
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Hit Rate Estimation

15.1 INTRODUCTION

The reader who has studied multiple correlation analysis (MCA) might recall that
the sample multiple correlation coefficient, R, is a biased estimator for its population
counterpart, ρ. In fact, R is positively biased; that is, on the average, it overestimates
the true degree of relationship—E(R) > ρ.1 The positive bias is due, in part, to the
fact that the linear composite of the X variables is determined in such a manner that
the sample correlation, R, between the linear composite scores and the Y -variable
scores is maximized. That is, the sample data used to determine the linear composite
are also used to assess the relationship between the composite and the Y variable.

The same estimation problem exists in multiple regression analysis (MRA). Here
the multiple correlation coefficient, R, is used as an index of accuracy of prediction,
that is, as an estimator for the true validity coefficient, ρv . The parameter ρv is obtained
by correlating, in the population, the criterion (Y ) scores with a specific sample linear
composite of the predictors (X variables). Thus, there is a ρv value corresponding to
each sample. (This is opposed to the single ρ value, which is the correlation between
the population Y scores and the linear composite of the X scores determined in the
population; in other words, ρ is the multiple correlation coefficient based on known
parameter information.)The parameterρv might be described as a conditional multiple
correlation coefficient; that is, it is the true correlation conditioned on a particular
sample linear composite. Similar to the multiple correlation problem, in multiple
regression it is true that E(R) > ρv .

So, if for no reason other than bias, it would seem reasonable to use an estimator
other than R when estimating ρ or ρv . Much work has involved the derivation
and study of transformations of R, or of R2, to arrive at less biased estimators for

1E(R) denotes the “expected value of R.” Suppose that all possible samples (of a fixed size) are selected
and that for each sample, an R value is calculated; the mean of the collection of R values is the expected
value of R. E(R) is sometimes termed the long-run average R. If the statistic R is used as an estimator for
a parameter θ and E(R) = θ , it is said that “R is an unbiased estimator for θ .”

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.

295



“c15” — 2006/3/9 — page 296 — #2

296 HIT RATE ESTIMATION

ρ and for ρv . These transformations yield adjusted or “shrunken” R2 values. See
Huberty (2003) and Huberty and Hussein (2001) for discussions of some adjusted R2

statistics.
There is a similar estimation problem in predictive discriminant analysis (PDA)

when it comes to assessing degree of classification accuracy. Making this assessment
amounts to estimating a true hit rate. The estimation process involves seeking answers
to three questions: (1) How accurately can a classification rule based on population
information be expected to perform? (2) How accurately can a rule based on a given
sample be expected to classify analysis units in future samples? (3) How accurately
can a rule based on any sample of a fixed size be expected to classify units in future
samples?

15.2 TRUE HIT RATES

There are essentially three probabilities of correct classification (i.e., three population
hit rates) that may be considered for estimation purposes. The three true hit rates to
be discussed correspond directly to the three questions posed above. Each of these
hit rates is viewed initially as the proportion of correct classifications across all sub-
populations. The first is the optimal hit rate, denoted here by P (o). This is the hit rate
obtained when a classification rule based on known parameters (i.e., the J subpopu-
lation mean vectors and the common covariance matrix) is applied to the population.
The second true hit rate is the actual hit rate (sometimes called the conditional hit
rate), denoted here by P (a). This is the hit rate obtained by applying a rule based on
a particular (i.e., training) sample to future samples (taken from the same population,
of course). That is, P (a) may be thought of as the expected proportion of correct clas-
sifications over future samples yielded by a rule based on statistics from a particular
sample. This hit rate would be of interest after the training sample has been deter-
mined. The third true hit rate considered is the expected actual hit rate (sometimes
called the unconditional hit rate), denoted here by P (e). This is the expected propor-
tion of correct classifications over all possible samples (of size N = � nj , where nj

is the size of Group j ). Note that P (e) = E(P (a)). This hit rate would be of interest
before any sample is determined.

These three hit rates may be related to some parameters in the context of multiple
correlation/regression. The true multiple correlation coefficient, ρ, is analogous to
P (o). The true validity coefficient for a training sample (i.e., the mean result of apply-
ing the training sample prediction equation to repeated, or future, samples), ρv , is
analogous to P (a). Herzberg 1969 terms ρv the “population cross validity,” while
Browne (1975) considers ρ2

v a “measure of predictive precision.” When considering
repeated training samples, ρv is a random variable, and one might consider the corre-
sponding parameter to be E(ρv). This is analogous to P (e) because P (e) = E(P (a)). It
seems reasonable that E(ρv)

.= ρ; similarly, Sorum (1972a) considers the estimation
of P (o) and P (e) as a single problem, “or at least as two closely related problems”
(p. 315). The relationship between indices of interest in PDA and MRA/MCA is
summarized in Table 15.1.
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TABLE 15.1 PDA and MCA/MRA Indices

PDA True MCA/MRA
Condition Hit Rate Coefficient

All parameters known P (o) (optimal) ρ

Sample-based rule
applied to population P (a) (actual) ρv

15.3 HIT-RATE ESTIMATORS

The literature on estimation in predictive discriminant analysis varies somewhat with
respect to definitions, terms, and notation. The variety from Hills (1966) to Glick
(1978) and Dillon (1979) through Toussaint (1974) is staggering. In many empirical
comparisons of classification estimators, no distinction among some parameters is
made, a reminder of some writings in multiple regression/correlation. There is even
some disagreement on the parameter–estimator matchups (see, e.g., Fatti et al., 1982;
Glick, 1978; Sorum, 1972b).

The current attempt is made to present generally acceptable definitions while
keeping terms and notation as straightforward as reasonable. Many writers focus
on classification error rates or misclassification, as opposed to classification hit rates
or correct classification. The latter view has been adopted in this book.

The methods of hit-rate estimation discussed here are all based on the condition
of equal misclassification costs; for example, the consequences of classifying a
Group 1 analysis unit into Group 2 are no more or less serious than when classifying
the unit into Group 3. (See Section 13.17 for a discussion of the incorporation of
misclassification costs.)

15.3.1 Formula Estimators

Estimating P (o) For J = 2 with assumed multivariate normality of the predictors
and known population parameters (i.e., mean vectors and a common covariance
matrix), the two-population optimal hit rates are

P
(o)
1 = 1 − φ

(
� − �2/2

�

)

, P
(o)
2 = 1 − φ

(−� − �2/2

�

)

,

where φ is the standard normal distribution function, that is, φ(z) = Prob(Z ≤
z); � = ln(π2/π1), πj is the prior probability of membership in Population j ; and
�2 is the population Mahalanobis distance index (Afifi and Azen, 1979, p. 293). If
π1 = π2 = 1

2 , then ln(π2/π1) = 0 and

P (o) = P
(o)
1 = P

(o)
2 = 1 − φ(−�/2) = φ(�/2).

Sample values for � and � may be used to obtain “plug-in” hit-rate estimates.
Researcher estimates are used to replace πj ; let qj = π̂j . If D2, the sample counterpart
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of �2, is used to replace �2, the estimator obtained for P (o) is biased optimistically.
This is the so-called D method, generally recognized as a poor method for estimat-
ing P (o). Various adjustments of D2 have been proposed as plug-in values for �2

(see Sorum, 1972b). A nearly unbiased estimator for �2 is

D̃2 = N − p − 3

N − 2
D2 − pN

n1n2
, (15.1)

where p is the number of predictors. Thus, formula estimators for P
(o)
j , j = 1, 2, are

P̂
(o)
1 = 1 − φ

(
K − D̃2/2

D̃

)

, P̂
(o)
2 = 1 − φ

(
−K − D̃2/2

D̃

)

, (15.2)

where K = �̂ = ln(q2/q1). An estimator for the total population optimal hit rate
P (o) is

P̂ (o) = q1P̂
(o)
1 + q2P̂

(o)
2 . (15.3)

If q1 = q2, then

P̂ (o) = P̂
(o)
1 = P̂

(o)
2 = 1 − φ(−D̃/2) = φ(D̃/2).

For more than two populations, no known formula has been proposed for estimating
P (o).

The estimation of P (o) in predictive discriminant analysis is analogous to the
estimation of ρ (or ρ2) in multiple correlation analysis. One way to estimate ρ2 is
to use an adjusted R2 estimator such as that proposed by R. J. Wherry, Sr. (1904–
1981). Similarly, an adjusted D2 estimator, D̃2, is used to estimate P (o). Only from
SAS procedures DISCRIM and CANDISC is it possible explicitly to get values of
D2 (or D) from the packages. Even with DISCRIM, one has to do some additional
calculations if unequal priors are used. With unequal priors the squared distances
yielded by DISCRIM are of the form

D2
jj ′ − 2 ln qj ′ . (15.4)

Estimating P (a) The use of a formula for estimating the actual hit rate, P (a), has
also been restricted to the two-group multivariate normal case. McLachlan (1992,
p. 368) derived a formula that allows for estimates of P

(a)
1 and P

(a)
2 . The McLachlan
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estimator for the j th subpopulation actual hit rate is P̂
(a)
j = 1 − Qj , with

Qj = φ

(

−D

2

)

+ f

(

−D

2

) {
p − 1

Dnj

+ D

32m
[4(4p − 1) − D2]

+ (p − 1)(p − 2)

4Dn2
j

+ p − 1

64mnj

[

−D3 + 8D(2p + 1) + 16

D

]

+ D

12, 288m2

× [3D6 − 4D4(24p + 7) + 16D2(48p2 − 48p − 53) + 192(−8p + 15)]
}

,

(15.5)

where f is the standard normal density function, that is, (z, f (z)) is a point on
the standard normal curve; and m = n1 + n2 − 2. A number of analyses conducted
indicated that for most practical use, the last term in the multiplier of f (−D/2) may
be ignored. This leaves a more workable shrinkage formula:

P̂
(a)
j = 1 − φ

(

−D

2

)

− f

(

−D

2

) {
p − 1

Dnj

+ D

32m
[4(4p − 1) − D2]

+ (p − 1)(p − 2)

4Dn2
j

+ p − 1

64mnj

[

−D3 + 8D(2p + 1) + 16

D

]}

. (15.6)

It may be noted that the amount of shrinkage is inversely related to values of
N(= m + 2) and D, and directly related to the value of p, the number of predictors.

To arrive at an estimate of the actual total population hit rate P (a) for equal costs
of misclassification, one may use P̂ (a) = q1P̂

(a)
1 + q2P̂

(a)
2 . No known formula has

been proposed for estimating P (a) in the multiple-group case.
The estimation of P (a) in PDA is analogous to the estimation of ρv (or ρ2

v ) in
multiple regression analysis. One way to estimate ρ2

v is to use a “shrunken R2”
estimator such as that proposed by F. M. Lord (1912–2000) (see Huberty and Mourad,
1980). Similarly, a “shrunken-D2” estimator may be used to estimate P (a) (Dorans,
1988).

15.3.2 Internal Analysis

Classification results often obtained using computer programs are calculated as
follows. The user specifies either a linear or a quadratic rule and the priors to be
employed (see Table 13.2). Suppose, for the moment, that a rule of the form of
(13.22), involving a linear classification function (LCF), is to be used. The available
sample data are used to determine the J vectors of weights, b′

j = x′
j S

−1
e , and the J

constants, cj = − 1
2 x′

j S
−1
e xj + ln qj . Then these same data are used to determine,

for each analysis unit, the J LCF values and then to (re)classify the N units into the
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J populations. Thus the sampled units are classified using parameter estimates based
on the study samples.2

Such an analysis may be termed an internal classification analysis. Recall from
our discussion in Section 13.4 that optimal classification rules were derived so as to
minimize the total number, or proportion, of classification errors. An internal analysis
can be expected to be negatively biased in the sense that the observed error rate can
be expected to be less than the true error rate. Or, in terms of hit rates, an internal
analysis can be expected to be positively biased. Results of an internal analysis (see,
e.g., Tables 14.2 and 14.3) may thus be misleading—misleading in that the observed
hit rates may be spuriously high. The observed rates have been called apparent or
resubstitution hit rates.

The apparent hit rate has been used by many applied researchers as a general
hit-rate estimate; that is, no reference is typically made to P (o), P (a), or P (e). No
matter which true hit rate is considered, the apparent hit rate yields a positively
biased estimate (Frank et al., 1965; Hand, 1997, pp. 121–122; McLachlan, 1977;
Michaelis, 1973). Similarly, the sample multiple correlation, R, is a positively biased
estimator for ρv . Reasoning behind the positive bias of an apparent hit rate is somewhat
similar to that for R. As mentioned earlier, one form of the classification rule consists
of a set of J linear composites called linear classification functions (LCFs). With
known parameters (mean vectors and common covariance matrix), weights for these
composites are determined so as to maximize proportions of correct classifications;
some optimality is lost when using parameter estimates. The near-optimizing process
makes the greatest possible use of any and all idiosyncrasies of the data on hand. That
is, as Mosteller and Tukey (1977, p. 769) state, “optimization capitalizes on chance.”
Thus, from an inference viewpoint, something other than apparent hit rates need to
be used as valid hit-rate estimates.3

15.3.3 External Analysis

Whereas in an internal analysis the units classified are the units considered in rule
formulation, in an external classification analysis the classification rule is determined
from one set of units and then used to classify another set of units. This approach
exemplifies the traditional cross-validation idea. Two ways of carrying out an external
analysis are considered here—both analyses involve sample splitting and may be
accomplished using computer program packages. The results of an external analysis
are also typically given in the form of a classification table.

Holdout Method One way of carrying out an external analysis is to use a single
splitting of the available sample into two subsamples: (1) a training or design sample
and (2) a test or holdout sample. A classification rule is determined using the training
sample data and then applied to the test sample data. This is called the holdout method.

2Just as with a least-squares regression equation, the LCF “fit” to the data is one that maximizes the
predictive power of the rule for the particular sample being studied.
3Exceptions to this “rule” exist when the N/p ratio is “very large,” when internal hit rates are “close” to
external hit rates.
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A hit-rate estimate is the proportion of the test sample units that are correctly classified
(using the rule developed on the training sample).

A holdout analysis may be accomplished using the SPSS DISCRIMINANT proce-
dure or the SAS DISCRIM procedure. With SAS DISCRIM the user must externally
generate the units to comprise the training and test samples. Test samples are gen-
erated internally with the SPSS program. Holdout classification results from each of
the two programs appear in the form of a classification table.

Four problems with the holdout method are pointed out by Lachenbruch and
Mickey (1968, pp. 2–3). A basic requirement is that of “large” samples. One draw-
back of this method is that in some applications, large samples are not available. A
second drawback is that the classification rule that is validated is not the one that
would actually be used—the rule that is validated would be based on, say, 75 percent
of the total sample, but the rule that should actually be used would be based on the
total sample. A third drawback is that there are problems connected with the size of
the test sample—if it is large, a good assessment of the performance of the classifi-
cation rule will be obtained, but the rule itself is likely to be poor, whereas if the test
sample is small, the rule will be better but its performance will be highly variable.
Finally, this method is quite uneconomical with real data sets. A larger sample than
is necessary to obtain a good classification rule must be selected to obtain hit-rate
estimates, and not all of the data available are used in the estimation. With the holdout
method one needs to decide what portion of the data to include in the test sample.
Statistical theory gives little guidance, and a handy rule of thumb is yet to be estab-
lished. Only in the two-group case has a suggestion been given. Some asymptotic
theory developed by Schaafsma and van Vark (1979, p. 776) suggests that the ratio
of the test-sample size to the training-sample size is a function of p, the number of
predictors: [1 + (p − 1)1/2]−1. This led Schaafsma and van Vark to “the feeling that
it might be reasonable to recommend” a test-to-training sample size ratio of 3/10,
“at least if p > 10.” This, in turn, implies that the training-to-total sample size ratio
should be approximately 3/4. Using a test sample of 25 to 35 percent of the total
sample seems reasonable, at least in the J = 2 case.

Which true hit rate is being estimated by using the holdout method is somewhat
puzzling. In early empirical studies, the holdout method was often included in hit-rate
estimation comparisons. A holdout hit rate, however, is not an appropriate estimator
for any of P (o), P (a), or P (e).A holdout hit rate is a good estimator for P (a) only when
the classification rule is considered to be based on a sample the size of the training
sample, not the total original sample. For examples of reported studies in which this
cross-validation method was employed, see Chapman et al. (1977), LaRocco et al.
(1977), and Ware and Williams (1977).

Leave-One-Out Method A second way of carrying out an external analysis is to
use the leave-one-out (L-O-O) method popularized by P. A. Lachenbruch (initially
proposed in his 1965 dissertation and then published in 1967). The method involves a
two-step process. First, one unit is deleted and LCFs are determined on the remaining
N − 1 units. Second, these LCFs are used to classify the deleted unit into one of the
J criterion groups. This process is carried out N times, and the proportions of deleted
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units correctly classified are used as hit-rate estimates. For such classification it may
be considered that a training sample of size N − 1 and a test sample of size 1 are
being used.

Hit-rate estimates based on the L-O-O method may be obtained using the SPSS
DISCRIMINANT and SAS DISCRIM programs. With the SAS DISCRIM program,
L-O-O (therein termed cross validation) results may be obtained by specifying
CROSSVALIDATE (or, CROSSLIST) as an option; with SPSS DISCRIMINANT,
the command is CROSSVALID.

Just as for a hit-rate estimate obtained using the holdout method, the L-O-O
estimator, strictly speaking, is not appropriate for estimating any of P (o), P (a), or
P (e). It was originally designed to estimate P (a). However, because one unit is deleted,
it is estimating a hit rate conditioned on a rule based on a sample of size N − 1 rather
than N . Unless N is extremely small, however, a L-O-O estimator yields a reasonable
estimate of P (a).

There is some evidence that suggests a possible drawback with the L-O-O
estimation method. The results of two simulation studies (Glick, 1978; Hora and
Wilcox, 1982) indicate that the L-O-O method may yield hit-rate estimates that have
relatively high variability over repeated sampling. This relatively high variability may
be due to the reuse of the original data—the N sets of J LCFs are derived from nearly
identical samples. Glick (1978, p. 221) goes so far as to conclude that the L-O-O
estimator “should be eschewed.” Hora and Wilcox (1982) are a bit more cautious
about avoiding the use of the L-O-O method. Hand (1997, p. 126) concludes that the
“632 jackknife method” is favored over the L-O-O method.

It is of interest to note that the L-O-O notion of estimation has also been used in
multiple regression analysis (see Allen, 1971; Gollob, 1967; Huberty and Mourad,
1980). In regression analysis, the L-O-O estimator—termed the PRESS statistic by
Allen—is used to estimate ρv .

The methods of hit-rate estimation discussed to this point involve the determination
of a distance, a classification function score, or a posterior probability value for each
group for each unit. Each unit is assigned to a particular group if its distance value
for that group is minimum, if the function score for that group is maximum, or if
the probability value for that group is maximum relative to the scores or values for
the other groups. A hit-rate estimate is obtained by counting the number of such
assignments for each group. It is not surprising, then, that such estimators are called
counting estimators. Such an estimator is the type predominately used by applied
researchers. Another type of estimator is the so-called plug-in or formula estimator
(for two-group situations) discussed earlier in this section. A third type of estimator
is called a posterior probability estimator, a discussion of which is turned to next.

15.3.4 Maximum-Posterior-Probability Method

Most researchers who have considered the idea of cross validation in assessing predic-
tive accuracy4 have used either the holdout or L-O-O counting methods of estimating

4The expression predictive accuracy is used in a descriptive, as opposed to an estimative, sense. The same
goes for the use of classification accuracy in this book, particularly in Chapters 15 to 19.
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a true hit rate. There is another method that was proposed in the early 1970s by
K. Fukunaga and D. L. Kessell in the engineering literature and discussed by
Glick (1978) and Hora and Wilcox (1982) (see, also, Dillon and Goldstein, 1984,
pp. 406–409). This method might be termed the maximum-posterior-probability
(M-P-P) method. (The reason for the use of “maximum” is implied by the defini-
tion of an estimator for P

(a)
j and is explicit in the definition of an estimator for P (a).)

The M-P-P estimator for P
(a)
j is simply a “mean” of the estimated posterior proba-

bilities for units from all groups assigned to population j by the classification rule
used. The sum of these estimated posteriors is divided by N · qj .

The M-P-P estimator for P
(a)
j may be expressed as:

P̂
(a)
j = 1

N · qj

J∑

j ′=1






nj ′
∑

u=1

[
post. prob. for all xu in

Group j ′ assigned to Group j

]




. (15.7)

The total group true hit rate, P (a), can be estimated using

P̂ (a) =
J∑

j=1

qj P̂
(a)
j = 1

N

N∑

u=1

max

[
P̂ (1|xu), P̂ (2|xu), . . . ,

P̂ (j |xu), . . . , P̂ (J |xu)

]

. (15.8)

That is, this estimate of P (a) is calculated from the mean of the maximum estimated
posterior probabilities for each unit.

The estimated posterior probabilities, P̂ (j |xu), in (15.8) may be determined via
either an internal analysis or an external analysis. Internal P̂ (j |xu) values are found
by resubstitution and may be obtained from either the SAS DISCRIM procedure or
the SPSS DISCRIMINANT procedure. The internal hit-rate estimator will herein be
denoted M-P-P/I. External P̂ (j |xu) values may be obtained via the SAS DISCRIM
procedure using the CROSSVALIDATE and CROSSLIST options. The external hit-
rate estimator will be denoted M-P-P/L-O-O.

Hora and Wilcox (1982) conclude that if the multivariate normality condition
is tenable, the M-P-P/L-O-O method is preferred to the usual L-O-O method, the
latter being preferred when that condition is untenable. There is some evidence that
M-P-P estimators have reasonably good accuracy (i.e., they have low bias) and decent
precision (i.e., they have low sampling variability). Some Monte Carlo results obtained
by Glick (1978) indicate that the M-P-P/I estimator has relatively low bias and lower
sampling variability than the L-O-O estimator for univariate prediction with two
criterion groups. Hora and Wilcox (1982) conclude that the M-P-P/L-O-O estimator
has greater accuracy than the M-P-P/I estimator.

In nearly all studies comparing hit/error rate estimators, normal-based
classification rules are used. That is, estimators of posterior probabilities of group
membership, P̂ (j |x), are, as mentioned in Chapter 13, based on multivariate normal
distributions. Thus, hit-rate estimators, such as M-P-P estimators, that involve actual
P̂ (j |x) numerical values may be viewed as “correct” only when multivariate normal-
ity is reasonable. The “usual” L-O-O estimators obtained from SAS DISCRIM are
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counting estimators; the actual P̂ (j |x) numerical values are considered only in an
ordinal sense (for a given unit).

The M-P-P/L-O-O estimator is considered by McLachlan (1992, p. 767) to be
a “smoothed” estimator. The M-P-P/I and M-P-P/L-O-O estimators are considered
unstratified (smoothed) estimators by SAS. Also defined by SAS is an “estimator
stratified over the group” from which the units emanate:

P̂
(a)
j (stratified)

= 1

qj

·
J∑

j ′=1






qj ′

nj ′
·

nj ′
∑

u=1

[
post. prob. for all xu in

Group j ′ assigned to Group j

]




. (15.9)

The posterior-probability values would be based on an internal analysis for the
M-P-P/I estimator or on a L-O-O analysis for the M-P-P/L-O-O estimator.

Whether one uses stratified or unstratified M-P-P estimates depends on the
confidence one has in the prior-probability estimates used. If the priors used are
based on considerable knowledge of relative population sizes, the stratified estimates
are to be preferred. It may be noted that if the priors used are proportional to the group
sizes, the stratified and unstratified estimates will be equal. It should also be noted
that the separate group M-P-P error rate estimates (stratified or unstratified) may be
negative; this is sometimes due to discrepancies between priors used and nj/N ratios,
particularly when hit-rate estimates are “high.”

As is well known, estimates of any kind are only as “good” as the samples used. In
a PDA context, an argument may be made for proportional sampling, that is, for using
group sizes proportional to respective (sub)population sizes. With such sampling, the
nj/N ratios will be good estimates of prior probabilities of group membership. It is
conjectured that more precise M-P-P hit-rate estimates are obtained if the priors used
are approximately proportional to the actual group sizes.

It may be noted that, as Hora and Wilcox (1982, p. 58) point out, “an interesting
and unique feature (of the total-group M-P-P estimator) is that it can be calculated by
using units of unknown classification.” Data on as yet unclassified units may be used
to estimate P (a) just as though group membership were known. Applied researchers
should, perhaps, keep this unique feature of the M-P-P estimator in mind. There may
very well be research situations where group membership of some units is not clear,
yet group-membership prediction is a very reasonable objective. As convenient as this
characteristic of the total group M-P-P estimator is, there is a problem with the current
(as of the date of this writing) version of SAS DISCRIM. To obtain a stratified estimate
according to (15.9), knowledge of group membership is necessary. SAS DISCRIM
output will, however, contain a stratified estimate using classification of ungrouped
observations in the test data set.

15.4 COMPUTER APPLICATION

Illustrations of the use of the various hit rate estimators are based on analyses of the
3-group Ethington data (3GED). The SAS and SPSS programs listed in Section 14.3
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TABLE 15.2 Leave-One-Out Results for the 3-Group
Ethington Data

Predicted Group

1 2 3 nj qj

Actual Group 1 16 55 5 76 .25
(.211)

2 12 99 11 122 .50
(.811)

3 6 47 13 66 .25
(.197)

Total 34 201 29 264 = N

yield some results that would be used to estimate hit rates. We will not deal much
with internal hit-rate estimates—because of resulting expected positive bias in the
obtained hit rates. We will focus on the L-O-O external analysis. (SAS syntax and
SPSS syntax for conducting a linear L-O-O PDA are given in Section 14.3.)

Results of the application of the linear L-O-O method on the Ethington data
obtained using SAS DISCRIM or SPSS DISCRIMINANT are given in Table 15.2.
It is clear that, by using the 9 predictors described in Appendix A, only the Group 2
hit rate is “respectable.” That is, based on the available (264 × 9) data set, only the
prediction of B students is judged to be reasonable. As mentioned earlier, group pre-
diction results may be obtained using not only a linear external rule, but linear internal,
quadratic external, and quadratic internal as well.

A summary of hit-rate estimates for the 3-group Ethington data is given in
Table 15.3. The linear L-O-O estimates may be obtained from Table 15.2. The
quadratic L-O-O and M-P-P/L-O-O results are obtained using SAS DISCRIM with

TABLE 15.3 Hit-Rate Estimates for the 3-Group
Ethington Data

Internal L-O-O M-P-P/Ia M-P-P/L-O-Oa

Linear

Group 1 .237 .211 .242 .251
Group 2 .844 .811 .832 .829
Group 3 .227 .197 .228 .219
Total Group .515 .473 .533 .532

Quadratic

Group 1 .447 .290 .427 .499
Group 2 .787 .623 .775 .733
Group 3 .470 .288 .573 .540
Total Group .610 .443 .638 .626

aStratified estimates.
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the commands CROSSVALIDATE and POOL = NO. The internal and quadratic
results are reported merely for comparison purposes. The internal results would
seldom, if ever, be reported. The quadratic results would be reported if the group
covariance matrices are clearly unequal (which is not the case with the current
data set).

The M-P-P/L-O-O estimates may be obtained with simple (but numerous)
calculations involving probability estimates yielded by SAS DISCRIM using (15.7),
(15.8), and (15.9). For an example, see Huberty (1994c, p. 92). Complements of the
(unstratified) hit-rate estimates may be obtained directly via SAS DISCRIM using
POOL = YES and POSTERR options. The stratified M-P-P/I estimates may also
be obtained by simple (but tedious) arithmetic. Or they may be obtained using SAS
DISCRIM with the same options indicated in the preceding sentence.

One might compare the results given in Table 14.3 with those in Table 15.2. The
former results are based on linear internal classification rule. As might be expected,
the three separate-group linear internal hit rates are higher. This does not imply that
the linear internal rule is better. As discussed in Section 15.3.2, internal hit rates are
positively biased hit-rate estimators, more so with “small” group sizes.

15.5 CHOICE OF HIT-RATE ESTIMATOR

To this point in the discussion, some 12 varieties of hit-rate estimators have been pre-
sented, six linear and six quadratic. The six are: (1) apparent (or resubstitution),
(2) L-O-O, (3) M-P-P/I unstratified, (4) M-P-P/I stratified, (5) M-P-P/L-O-O
unstratified, and (6) M-P-P/L-O-O stratified. The linear-versus-quadratic issue was
discussed in Section 13.6. There appears to be no good reason for using the resub-
stitution estimator (unless the min nj/p ratio is very large). Similarly, the M-P-P/I
estimators have limited appeal (to some at least). So it may appear that the choice
is among the usual L-O-O (linear or quadratic) estimator and the two (stratified or
unstratified) M-P-P/L-O-O estimators. That is, choose a linear or quadratic L-O-O
rule with either a stratified or unstratified M-P-P/L-O-O estimator. The choice is a
difficult one, indeed. Some evidence obtained by Hora and Wilcox (1982) suggests
that the linear M-P-P/L-O-O (unstratified) estimator is the one to be favored. The
unstratified-versus-stratified issue depends on one’s confidence in the priors used.
The jury is still out; the case is reviewed briefly in Section 22.2, where a tentative
judgment is made.

15.6 OUTLIERS AND IN-DOUBT UNITS

The identification of outlying units and of in-doubt cases (or fence riders) was
discussed in Section 14.4. But how might such cases be taken into consideration
in the process of estimating hit rates? This question has not been considered to any
great extent in the literature by statisticians (see, however, Habbema et al., 1978) or
by methodologists (see, however, Huberty and Wisenbaker, 1992a) and therefore not
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by substantive researchers. (Check some of the Further Reading in this chapter for
more details on outliers.) Such a consideration of data diagnostics, quite popular in
multiple regression/correlation analysis (see, e.g., Myers, 1990), is recommended
in PDA.

15.6.1 Outliers

As mentioned repeatedly in this chapter and emphasized in subsequent chapters, either
total-group or multiple separate-group classification accuracy may be of interest. To
deal with outliers, then, one might consider doing multiple PDAs, an analysis with
the suspected outliers included, and analyses with the suspected outliers discarded.
Whether or not an outlier candidate is to be included in estimating the hit rate(s) of
interest is a judgment call on the part of the researcher. A question then arises: Are
the potential outliers deleted one at a time, two at a time, or all at once? No foolproof
strategy is known. Here again, good reasoning and sound judgment will well serve
researchers. Of course, what is to be determined is if any or all of the potential outliers
have an influence on the results.

Parenthetically, it might be tempting to set a typicality probability cutoff at, say, .10.
Then a unit having a typicality probability less than .10 would be considered a potential
outlier. It may not be wise, however, to use a specific cutoff for all data sets. Would it
be reasonable if a given cutoff identified 15 percent of the units as potential outliers?
More on outliers is discussed in Section 23.3.

15.6.2 In-Doubt Units

The role of in-doubt analysis units in hit-rate estimation is, perhaps, more crucial.
A classification matrix such as that in Table 15.2 has been called a forced classification
matrix (Habbema et al., 1978). Such a matrix is based on all N units of a study; that
is, each unit is assigned to a group, correctly or not. For most data sets, however,
there are some units whose group membership is questionable. There are two ways in
which group membership may be questionable. One is if the unit is a potential outlier;
this was discussed above. The second is if the posterior probabilities for a unit do not
clearly establish membership in one group. The posterior probabilities for two groups
may be nearly the same, or the largest probability may not be very “large.” These
situations suggest that it may be reasonable to establish an “in-doubt” group of units.A
way of establishing such a group is to require that the largest posterior probability for
any one unit be at least as great as some threshold value. How to set a threshold value
is, again, a judgment call. For situations involving approximately equally numerous
populations, the threshold value should be greater than 1/J , where J is the number
of groups. For unequal priors, a threshold value somewhere near the maximum prior
may be reasonable. It may also depend on the extent of the overlap of the groups; little
overlap would imply a larger threshold value to use. In medical research (see, e.g.,
Anderson and Boyle, 1968), where consequences of misclassification may be quite
serious, threshold values of at least .90 have been used. A consideration of in-doubt
units was made in an interesting application by Heyck and Klecka (1973).
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The SAS DISCRIM program is the only one that allows for the input of a THRESH-
OLD value. The SAS DISCRIM command is included in the PROC DISCRIM line:
for example, THRESHOLD = .45.

The SAS linear L-O-O results using a threshold value of .45 with the 3-group
Ethington data (3GED) are given in Table 15.4. In this example, a student is assigned
to a Grade group, correctly or not, only if the largest posterior probability is greater
than .45. Classification errors reflected in this table are “serious errors” in the sense that
a student is predicted to an incorrect grade group if the posterior probability exceeds
the threshold value. These errors are serious because group assignments are made
only when the classification rule would lead one to have a great deal of confidence in
any assignment; that is, the posterior probability of group membership is greater than
.45 for any group. With our example, 214 out of 264 students were classified, while
the remaining 50 were not classified.

The impact of in-doubt units on predictive accuracy may be assessed in terms
of separate-group hit rates and/or in terms of the total-group hit rate. For illustrative
purposes, let us focus on Group 2 of the Ethington data. From Table 15.4 it can be seen
that with a threshold value of .45, the obtained hit rate for Group 2 is 86/103

.= .835,
the doubt rate is 19/122

.= .156, and the serious error rate is 17/103
.= .165. The 17

errors are serious in the sense that the 17 P̂ (j |x) values for Group 1 and Group 3—the
“wrong groups”—are all at least .45. These three kinds of rates may be considered
in deciding on a reasonable threshold value to use. Results on two threshold values
(.45 and .60) are given in Table 15.5.

Implications of such analyses are, of course, dependent on the data set on hand. For
threshold values of .45 and .60 with the 3-group Ethington data, the serious error rate
does not appear to be too high. For Group 1 and Group 3, however, the serious error
rates are .873 and .821, respectively, using a threshold value of .45. When choosing
a threshold value, one must try to “balance” the three kinds of rates in a way that
“makes sense” for the given problem; again, a judgment call.

TABLE 15.4 SAS Linear L-O-O Results for the 3-Group
Ethington Data with THRESHOLD = .45a

Predicted Group Predicted In-Doubt Grand
1 2 3 Total Students Total

Actual 1 7 45 3 55 21 76
Group (.127)

2 9 86 8 103 19 122
(.835)

3 6 40 10 56 10 66
(.179)

Total 22 171 21 214 50 264

aSeparate group hit rates are given in parentheses; the total group hit rate is
103/214

.= .481.
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TABLE 15.5 Threshold Classification Rates for
Group 2 of the 3-Group Ethington Data

Threshold

None .45 .60

Hit rate .811 .835 .857
(99/122) (86/103) (24/28)

Doubt rate N/A .156 .770
(19/122) (94/122)

Serious error rate N/A .165 .143
(17/103) (4/28)

15.7 SAMPLE SIZE

How large a sample is needed for valid hit-rate estimation? Of course, validity is a
matter of degree; representativeness assumed, the larger the sample size, the greater the
validity of estimation. That is, the larger the sample, the better the hit-rate assessment.
Just as for the ratio of test sample size to design sample size, only limited guidance
has been given in terms of a rule-of-thumb for minimum total sample size. This
guidance, too, has been given only for the special two-group, multivariate-normal,
assumed equal-covariance-matrix case. Based upon results of a number of two-group
data simulations, Foley (1972) found that when n/p was greater than 3, the average
internal (i.e., apparent) hit rate, across replications, was “reasonably close” to the
true hit rate, P (a) (n is the number of units of each of the two groups). Hecker and
Wegener (1978, p. 751) and Jain and Chandrasekaran (1982) indicate, however, that
this criterion is too weak. It is herein proposed that to estimate true hit rates validly
using an internal analysis, the minimum number of units in the smallest group should
be at least five times the number of predictors: min(nj ) ≥ 5p.

Let us check to see if this sample-size criterion is achieved with the 3-group Ething-
ton data (3GED). Here p = 9 and minj (nj ) = 66—when j = 3—and 5p = 45.
Obviously, this data set does meet this criterion because 66 > 45. Therefore, with
this data set we may rely on an internal analysis to estimate true hit rates.

To estimate hit rates validly using the L-O-O method, it is suggested that
minj (nj ) > 3p. While considering the equal n, two-group case, Lachenbruch (1968)
found that an n/p ratio of approximately 3 is necessary to obtain reasonable hit
rate estimates (see Section 18.5). A minimum total sample size of N = 3Jp is thus
necessary to use the L-O-O method.

The minimum n/p ratio of approximately 5 might also be considered in defining
a “large” N to decide whether the holdout method might be used. Here the minimum
total sample size would be N = 5Jp. Using a training sample of at least .60N implies
that the classification rule being validated would be based on a total of 3Jp units.
If these guides are appropriate, one might conclude that a holdout analysis would
seldom, if ever, be used.
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TABLE 15.6 Smallest Group Sizes for a PDA

Rule Type

Linear Linear Quadratic Quadratic
Internal External Internal External

Expected Hit Rate Large 5p 3p 7p 5p
Small 7p 5p 9p 7p

It should be noted that the sample-size recommendations above were formulated
on the basis of research done for the two-group case. They have not been empirically
tested to any great extent and may very well be somewhat conservative. Another
“factor” to consider in designing a study in which a PDA would be conducted is the
expected hit rate. Doing so, the summary in Table 15.6 may be considered in designing
a PDA study. According to Jain et al. (2000, p. 541), these suggestions may be a bit
conservative—they suggest the minj (nj ) be at least 10p.

It is, perhaps, worth repeating a comment made near the end of Section 15.3.
If feasible, it is suggested that the group sizes be proportional to the correspond-
ing population sizes. For example, suppose that three population sizes are in the
ratio 3 : 4 : 1 and resources are available to select a total sample of 240 units. Then
if the group sizes are also in the ratio 3 : 4 : 1, the actual group sizes should be
about 90, 120, and 30, respectively. (Of course, the number of predictors, p, needs
to be considered.) An exception to this suggestion may be when one population is
very small relative to the other involved population(s). For example, if one were
attempting to predict membership into populations with a size ratio of, say, 20 : 1,
then it may be suggested that the group sizes have a ratio of 10 : 1. The reader can
undoubtedly think of some real-life research situations having a 20 : 1 population
size ratio.

15.8 COMMENTS

In all data analysis circles, the method one uses to estimate parameter values depends,
of course, on the definition of the parameter as well as on the definition of the popula-
tion. Just as parameter definition is an important consideration in multiple regression
analysis, it is equally important in predictive discriminant analysis. Of the three types
of true hit rates (optimal, actual, expected actual), the first seems to be of least interest
and the second of most interest. Of course, interest depends on individual problem
situations, but in the (practical?) situation where one is interested in developing a
group membership prediction rule to be used with nondesign units, the actual hit rate
is the one on which we could focus.

If a sample size is large enough [minj (nj ) ≥ 5p], we may justifiably use an inter-
nal analysis to estimate a true actual hit rate. Separate group as well as total group
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hit rates may be of concern. If a sample size is small, the approach to obtaining
estimates of a true actual hit rate suggested here is the L-O-O method of estimation.
This external classification analysis can be accomplished via the SAS DISCRIM
procedure.

Further Reading

Choi (1986) edits and contributes the lead article in a special issue of Comput-
ers and Mathematics with Applications that deals with statistical methods of
discrimination and classification.

Habbema et al. (1978, 1981), Habbema and Hilden (1981), and Hilden et al. (1978a,
1978b) develop a series of five articles in Methods of Information in Medicine
that cover the basic classification problem through utility considerations to
general recommendations, all pertaining to PDA as applied in the context of
medical diagnosis.

Hand (1986) summarizes the state of the art of error-rate estimation up to the mid-
1980s. Varieties of bootstrap estimators and average-conditional estimators are
emphasized.

Hand (1987) proposes a total-group error rate formula estimation for the two-group
situation that is based on a L-O-O classification rule.

Hand (1994; 1997, Chapter 6) discusses, in some detail, the assessment/evaluation
of classification rules.

Hand (1997, Chapter 7) provides a summary of misclassification estimation that
includes the L-O-O, bootstrap, and jackknife methods. He favors the 632
bootstrap method (p. 126).

Jain and Chandrasekaran (1982) give a fairly comprehensive review of the sample-
size problem from a pattern recognition perspective.

James (1985, pp. 70–72) and Hand (1981, pp. 197–199) suggest the idea of
a classification rule with a “reject option” when referring to the use of a
threshold posterior probability value for deciding whether or not a unit is
to be classified. References of study about in-doubt cases are cited in these
two books.

Lachenbruch (1968) discusses the relationship between estimation in PDA and in
multiple correlation/regression analysis.

Lesaffre et al. (1989) introduce an approximate L-O-O approach to estimation for
a logistic classification rule.

McDonald et al. (1976) propose a test to decide if a unit originated from either of
two populations. Yet another referent distribution for a D∗2

ug value is given (see
footnote 2 in Chapter 14).

McLachlan (1992) presents a very thorough review of hit-rate—or error-rate—
estimation (in Chapter 10), and devotes a chapter (Chapter 11) to the very inter-
esting problem of assessing the precision of estimating posterior probabilities
of group membership.
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Rencher (1998, Chapter 6; 2002, Chapter 9) provides detail on hit/error-rate
estimation methods.

Sadek (1992) studied the influence of a single outlier in a two-group PDA context.
The effect of two kinds of outlier, local and global, on change and precision
of classification results depended on group separation, group size, and outlier
location.

Schiavo and Hand (2000) review fairly recent research on estimating error rates
in PDA.

Williams et al. (1990) conclude that on the basis of a simulation study, the following
factors interact in their effect on hit-rate accuracy and precision: (1) number
of predictors, (2) covariance structure (i.e., “system variability”), (3) group
separation, and (4) group sizes.

Definition Goodness of fit: Used only in the finest clothing stores.

EXERCISES

1. The sample R2 in multiple regression analysis is used as an index of predictive
accuracy. What is an analogous index in predictive discriminant analysis?

2. For which of the following would the ratio of minimum group size to number of
predictors in a PDA need to be the largest for “good” hit rate estimation?

(a) Linear internal

(b) Linear L-O-O

(c) Quadratic internal

(d) Quadratic L-O-O

3. Give a meaning of “typicality probability” (aside from how it is used).

4. When might an apparent hit rate be an acceptable estimate of a “true” hit rate?

5. Suppose that a classification rule was developed using 2004 data with particular
group priors. Looking ahead, suppose that it is planned to apply the 2004 rule
using predictor values in year 2008; but it is believed that the relative sizes of the
populations will change from 2004 to 2008.

(a) Which priors would you use for the year 2008 predictor values?

(b) If you think new priors should be used, would you be in a position (in 2004)
to estimate any hit rate(s) for year 2008? Why or why not?

6. Briefly discuss internal versus external PDA.
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Computer Applications

7. Consider the first two groups in the 3-group Ethington data (3GED) (p = 9,
n1 = 76, n2 = 122, and N = 198) with q1 = .333 and q2 = .667. Two-group
analyses are considered for this exercise.

(a) Using SAS DISCRIM with POOL = YES obtain a D2
12 value [see (14.4)],

and a value of D̂2
12 [see (15.1)].

(b) Obtain the internal (or apparent or resubstitution) hit rates for Group 1 and
Group 2, and the total group hit rate from the DISCRIM output.

(c) Obtain the two linear L-O-O hit rates from SAS DISCRIM output; these are
obtained using the CROSSVALIDATE and POOL = YES options.

(d) Again, obtain SAS DISCRIM (with options CROSSVALIDATE, POOL =
YES, CROSSLIST, and POSTERR) output using only the first two groups.
Determine the L-O-O and unstratified M-P-P/L-O-O hit rates for Group 1,
Group 2, and total group.

(e) Compare the results of parts (b) through (d).

8. Conduct a linear L-O-O analysis with the 3-group Ethington data (3GED) using
SPSS DISCRIMINANT.

(a) Locate the listing of estimated posterior probabilities; you should find two
listed values of (13.14). What is the value of P̂ (1|x21)? Of P̂ (2|x21)? Of
P̂ (3|x21)?

(b) What is the reported value of P̂ (x21|2)? [This is a typicality probability; see
(12.5).]

(c) Give the linear classification function (LCF) for Group 2 (round all values
to two decimal places). [The set of LCF weights and constant are expressed
in (13.23) and (13.24).] Compare your weights and constant with those in
Table 13.1.

9. Estimate predictive accuracy for the 5-group Ethington data (5GED). (It is
recognized that this is a “loose” request!)

10. In Exercise 2 in Chapter 14 you identified two fence riders in the 5-group
Ethington data set (5GED).

(a) Identify three more fence riders and three more outliers.

(b) Determine a new (linear) classification table based on the remaining 545 −
10 = 535 units.

(c) Compare the new table with that found in Exercise 2 in Chapter 14. About
which table would you “feel better”?

11. For this exercise consider a linear L-O-O anlaysis using the 5-group Ethington
data (5GED).
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(a) Develop a table like Table 15.4 using a threshold value of .40.

(b) What is the serious error rate for Group 3?

12. Conduct a quadratic L-O-O analysis with the 3-group Ethhington data (3GED)
using SAS DISCRIM.

(a) What is the value for P̂ (2) (=π̂2 = q2)? For π̂3(=q3)?

(b) Locate the listing of estimated posterior probabilities of group membership.
What is the value of P̂ (1|x88)? Of P̂ (3|x88)? Of P̂ (5|x88)?

(c) Into which group is OBS 300 (or unit 300) classified?

13. Refer to the output for Exercise 4. What result would have had to occur for you
to conclude that the J = 3 covariance matrices were not equal? (Assuming what
other data conditions is met?)

14. For the data set you have for Exercise 2 in Chapter 1, estimate the separate group
and total group hit rates in whatever manner that makes sense to you. (Disregard
any categorical predictors.)
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Effectiveness of Classification Rules

16.1 INTRODUCTION

In a prediction study where the criterion variable is normally distributed, the predictors
have a joint-normal distribution, and a multiple regression analysis is carried out, the
researcher typically addresses the following question: Are the results of the prediction
better than what could be obtained by chance? Results “obtained by chance” in a
multiple regression context generally imply results are obtained in a situation of no
correlation between the criterion variable and a linear composite of the predictors.
Chance predictions would be made by assigning the mean Y value to all analysis
units, regardless of each unit’s set of predictor values. In essence what is being done
is deciding whether knowledge of predictor values is helpful in predicting a value of
the criterion variable.

Discussion in the preceding paragraph refers to the statistical significance of the
multiple correlation coefficient. In this sense, chance prediction would accompany
a correlation of zero (see Technical Note 1). Of course, statistical significance does
not necessarily imply any particular degree of prediction effectiveness. Assessing the
degree of prediction effectiveness is a matter of judgment. One aid for judgment is
the magnitude of the square of the sample correlation coefficient, R2, or better yet, the
magnitude of an adjusted R2—see Huberty and Hussein (2003). Another aid might
be the size of interval estimates of the true squared correlation coefficient and of true
predicted criterion values for various predictor combinations. After all is said and
done, nonetheless, degree of effectiveness is a matter of judgment.

The story is somewhat similar in predictive discriminant analysis. Again, what is
meant by “chance” must be understood; and again, a judgment must be made regarding
practical or meaningful significance versus statistical significance. That is, assessing
the degree of prediction effectiveness is still a matter of judgment.

Two different interpretations of chance classification are presented, one involving
statistical significance, the other not. The matter of comparing the effectiveness of

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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alternate classification rules, statistical and otherwise, is also discussed. Finally, the
contribution of prior probabilities to classification effectiveness is examined.

16.2 PROPORTIONAL CHANCE CRITERION

16.2.1 Definition

Consider the following situation. We have two criterion populations of approximately
the same size. A sample of analysis units of a given size is taken from each population.
It is reasonable to expect, then, that by using the flip of a fair coin to decide group
membership, we could correctly classify about 50 percent of the analysis units? Simi-
larly, with three populations and samples of the same size, we could expect to classify
correctly about one-third of the units by chance. In general, with J populations and
samples of common sizes, we could expect to classify correctly about 1/J of the units
by chance.

The foregoing conclusion may be justified in the following manner. Consider a
classification table as in Table 16.1, a repeat of Table 14.2. In this table, each main
diagonal element, njj , in cell (j, j), j = 1, 2, 3, represents the number of hits for
the respective group. Thus njj /nj is the hit rate for Group j (e.g., n22/n2 is the
hit rate for Group 2). If predicted group membership is independent of actual group
membership, the expected frequency in cell (j, j ) is given by:

ej = qjnj ,

where qj is the estimated prior probability of membership for Group j and nj is the
size of Group j . If n1 = n2 = · · · = nJ = n, then N = Jn. Let qj = nj/N = n/N .
The overall chance frequency of hits would then be

e =
J∑

j=1

ej =
J∑

j=1

qjnj =
J∑

j=1

n

N
n = J

n

N
n = n.

Thus the chance hit rate, e/N , would be n/N = 1/J .

TABLE 16.1 Classification Table Notation

Predicted Group

1 2 3

Actual Group 1 n11 n12 n13 n1· = n1
2 n21 n22 n23 n2· = n2
3 n31 n32 n33 n3· = n2

Total n·1 n·2 n·3 n·· = N
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Now, consider a situation where the J populations are of varying sizes. Again, let
qj denote the estimated prior probability of membership in Group j . And the chance
frequency of hits for Group j is

ej = qjnj . (16.1)

The overall (or total group) chance frequency of hits would be given as:

e =
J∑

j=1

qjnj , (16.2)

and the overall (expected) chance hit rate is

He = e

N
= 1

N

J∑

j=1

qjnj . (16.3)

Expression (16.3) is the proportional chance criterion for the total-group hit rate. That
is, an observed total-group hit rate may be compared with e/N to determine if we have
better than chance classification. For separate-group classification, ej /nj = qj would
be the proportional chance criterion.

16.2.2 Statistical Test

So, now we have one definition of chance classification for individual groups and for
the total group. A question then arises: Is the observed classification accuracy1 better
than what may be expected by chance? To address this question, let the total observed
frequency of hits be denoted as:

o =
J∑

j=1

njj ,

which is the sum of the main-diagonal elements of the classification table (see
Table 16.1). Then, from a statistical significance point of view, the null hypothesis
is that the number of units correctly classified does not exceed the number correctly
classified by chance. When the overall number of correctly classified units, o, is less
than or equal to the chance number, e, it is not necessary to test for significance.
Hence, the significance test involves a directional alternative hypothesis.

Now o is a statistic that can take on values from 0 to N . In classification problems,
N is generally large enough so that a normal probability distribution may be used to
approximate the distribution of o. Thus a standard normal statistic may be used to test
the null hypothesis:

z = o − e√
e(N − e)/N

. (16.4)

1See footnote 4 in Chapter 15.
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The lower bound of a one-sided interval estimate of the true overall frequency of hits
may be determined using

o − z1−α

√
e(N − e)/N, (16.5)

where z1−α is the 100(1 − α) centile of the standard normal distribution.
Even though the observed total number of correct classifications, o, may be

significantly greater than the chance number, e, it may be suspected that not all
separate-group predictions are significantly greater than those to be expected by
chance. For Group j , the standardized normal test statistic would be

z = njj − ej
√

ej (nj − ej )/nj

. (16.6)

It was argued in Section 15.3 that the results of an external analysis yield better
(in the sense of accuracy) hit rate estimates than those of an internal analysis. Thus,
to address the better-than-chance question, the results of an external analysis should
be used.

To illustrate testing for better-than-chance classification accuracy, consider the
results given in Table 15.2, which are repeated in Table 16.2. With this data
set, reasonable prior probabilities are .25, .50, and .25 for the three respective
groups. From Table 16.2, we get o = 16 + 99 + 13 = 128; e1 = .25(76) = 19, e2 =
61, e3 = 16.5, and e = 96.5. Because o > e, we proceed.

The value of the overall statistic (16.4) is 4.16, which clearly indicates a better-
than-chance result. The lower bound for a 99 percent confidence interval for the
true frequency of total-group hits is [see (16.5)] 128 − 2.326(7.807)

.= 109.84. For
individual groups we get the following results:

Lower Bound for
Group njj nj ej z P 99% Interval

1 16 76 18 NAa NA NA
2 99 122 61 6.88 .000 86.65
3 13 66 16.5 NAa NA NA

aNot applicable because 16 < 18 and 13 < 16.5.

TABLE 16.2 Linear L-O-O Results for the 3-Group Ethington Data

Predicted Group

1 2 3 nj qj

Actual Group 1 16 55 5 76 .25
(.211)

2 12 99 11 122 .50
(.811)

3 6 47 13 66 .25
(.197)

Total 34 201 29 264 = N
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In this case, the total-group hit rate as well as the hit rate for Group 2 are signifi-
cantly better than what may be expected by chance. This is not true for the hit rates
of Groups 1 and 3. That is, information yielded by the nine predictors enable us to
classify students into grade level 2 (B) statistically better than chance.

If the J separate-group better-than-chance tests are of interest, then the J/P

values should be adjusted. A sensible adjustment for multiple testing in this setting
may be accomplished by multiplying each of the individual P values by J (the
Bonferroni adjustment). Judgment would then be made about the “smallness” of
each product.

16.3 MAXIMUM-CHANCE CRITERION

Consider now a second meaning of chance classification. Suppose we have a two-
group situation that yielded the (external) results given in Table 16.3. Here we have
n1 = 22 and n2 = 78. Assume that q1 = .20 and q2 = .80 are reasonable priors.
Using the proportional chance criterion, we would expect to correctly classify [see
(16.2)]

e = .20(22) + .80(78) = 66.8

of the 100 units. We find that o = 9 + 77 = 86 yields a standard normal statistic value
[see (16.4)] of 4.08 (P

.= .000). With such results one might be tempted to conclude
that acceptable classification accuracy was obtained. Consider, however, a researcher
who states, “I could get a hit rate of .78 simply by assigning all of the 100 units to
Group 2.” Such an interpretation of “chance” leads to the maximum chance criterion
of

max(q1, q2).

For the situation above,

max(.20, .80) = .80,

which implies that 80 units could be correctly classified by “chance.” Using this as
the expected hit rate and the results of Table 16.3, the standard normal statistic value
is only −.50(P

.= .308). As such, one might question whether the rule used (to get
the results in Table 16.3) yielded classification accuracy better than “chance.”

TABLE 16.3 Hypothetical Classification Table

Predicted Group

1 2 Total

Actual 1 9 13 22
Group 2 1 77 78

Total 10 90 100
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16.4 IMPROVEMENT OVER CHANCE

A statistical assessment of whether or not actual classification results obtained are
better than those obtained by “chance” was discussed above. Suppose one concludes
that the total-group results obtained are statistically better than chance, as found
previously with z

.= 4.16. It seems natural now to ask: How much better than chance
can we predict group membership? The answer to this question may be addressed by
using the index

I = Ho − He

1 − He

, (16.7)

where Ho is the observed hit rate, and He is the hit rate expected by chance. For the
(external) results given in Table 16.2 and using the proportional chance criterion
for total group classification, Ho = 128/264

.= .485, He = 96.5/264
.= .366, and

I
.= .188. That is, by using a linear classification rule, about 19 percent fewer classi-

fication errors would be made than if classification were done by chance. The index I

may thus be viewed as a proportional reduction in error or improvement over chance
descriptive statistic.

Of course, the I index may be used with any definition of chance (with He thus
determined) and with any rule whatever to determine Ho. For example, Walters (1986)
used I in conjunction with a rule that was based solely on an arbitrary cutoff score
on a single predictor, with He = .50.

Many data analysis methodologists recommend reporting the value of an “effect
size” index along with a test statistic value and a P value. This is the case in the two-
group t-test situation and in the ANOVA F -test situation. In the current situation of
testing to determine if a hit rate is statistically significantly better than chance [using
(16.4) or (16.6)], it makes sense to consider the value of I in (16.7) as the value of
an effect-size index, an index that reflects “meaningfulness.” As with any effect-size
index, a judgment has to be made regarding the magnitude of I .

16.5 COMPARISON OF RULES

There are times when a researcher may be interested in comparing the effectiveness
of two (or more) classification rules using a given set of analysis units. The rules may
be of a different form or of the same form but with different predictor variables. For
example, it may be of interest to compare the results of a linear rule with those of a
quadratic rule, or to compare the results of using 16 predictors with those using, say,
6 predictors. Another example, discussed in Section 16.6, involves a comparison of
a rule that employs equal prior probabilities of group membership with a rule using
unequal priors.

For the moment, discussion will be restricted to comparing total-group classifica-
tion accuracy for only two rules. Data to be considered in a comparison consist of
a 1 (correct classification) or a 0 (incorrect classification) for each unit in each of J
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TABLE 16.4 Comparison of Rules

Rule 2

Hit Miss Total

Rule 1 Hit a b a + b

Miss c d c + d

Total a + c b + d N

groups. (The “design” here may be viewed as a simple repeated-measures design, the
“within” factor having two levels.) The N × 2 data matrix may be summarized in a
2 × 2 table (Table 16.4). There are a units correctly classified by both rules, b units
correctly classified by Rule 1 and incorrectly classified by Rule 2, and so on.

A comparison question, then, is whether the proportion correctly classified by
Rule 1, (a + b)/N , is significantly different from the proportion correctly classified
by Rule 2, (a + c)/N . From a statistical testing viewpoint, the null hypothesis is that
the true proportion of correct classifications for Rule 1 is the same as the proportion
of Rule 2. One approach to answering the question is to use the test statistic proposed
by Q. McNemar (1900–1986) (see, e.g., Agresti, 2002, p. 411):

(b − c)2

b + c
,

which, if b + c is “large,” is an approximate chi-squared statistic with 1 degree of
freedom. (Alternatively, a standard normal statistic that is the positive square root of
the above expression may be used.)

16.6 COMPUTER APPLICATION I

As an example, consider comparing a linear rule with a quadratic rule using the 3-
group Ethington data (3GED)—internal analyses are used. The 264 × 2 matrix of 1’s
and 0’s may be obtained using, for example, SAS programming as follows:

SAS SYNTAX FOR COMPARING LINEAR AND QUADRATIC
INTERNAL HIT RATES

Proc discrim data=one pool=yes out=two noprint;
class grade;
var counsum - - qesci;

(continued on next page)
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priors ’1’=.25 ’2’=.50 ’3’=.25;

Proc discrim data=one pool=no out=three noprint;
class grade;
var counsum - - qesci;
priors ’1’=.25 ’2’=.50 ’3’=.25;

data settwo;
set two;
lgp=_into_;
keep grade lgp;

data setthree;
set three;
qcp=_into_;
keep grade qcp;

data match;
merge settwo setthree;
if grades eq lgp then lg=1;
if grades le lgp then lg=0;
if grades eq qcp then qg=1;
if grades ne qcp then qg=0;

proc print data=match;
var grade lgp qcp;

proc freq data=match;
tables grade*(lgp qcp);
tables lg*qg / all;

run;

OUTPUT

Analysis: 2 × 2 Frequency Table of Hit Rates (Table 16.5)

Interpretation: 2 × 2 Frequency Table of Hit Rates

A summary of the 264 × 2 matrix of 1’s and 0’s is given in Table 16.5. The value of
the McNemar chi-squared statistic (with df = 1) is 8.33, P

.= .002. Thus it may be
concluded that the quadratic internal hit rate is statistically higher than the linear inter-
nal hit rate. A word of caution is in order. Note that the list of SAS commands above
yields a comparison of internal classification results. Estimates—posterior probabil-
ities and hit rates—based on an internal analysis are not as “good” as those based
on an external analysis (see Section 15.3). Therefore, when comparing classification
rules, external results should be used. That the use of external results may lead to rule
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TABLE 16.5 Summary of Linear and Quadratic L-O-O
Classification Results for the 3-Group Ethington Data

Quadratic Rule

Hit Miss Total

Linear Rule Hit 111 25 136
Miss 50 78 128

Total 161 103 264

comparison conclusions different from those based on internal results was found by
Morris and Meshbane (1995).

Note that if b = c = 0—when the two rules yield identical results—the data would
obviously support the null hypothesis, and a statistical test would not be needed.

The ideas above could be utilized in the comparison of two rules with respect to
classification accuracy for a particular group, say, Group j (as opposed to total-group
classification accuracy). If Group j accuracy is of interest, the SAS programming
would have to be modified. The McNemar statistic would be applied to an nj × 2
data matrix.

If it is of interest to compare classification results of more than two rules on the
same data set, a chi-squared statistic proposed by W. G. Cochran (1909–1980) may
be employed (Cochran’s Q; see Agresti, 2002, p. 459). An overall comparison of
multiple rules may be accomplished by using the SPSS NPAR TESTS procedure to
get a Q value along with the df value. It is recommended (Myers et al., 1982) that
the df value be adjusted to determine a P value. Pairwise comparisons of rules may
be made in lieu of the omnibus comparison; see Fleiss et al. (2003, Chapter 9) for
details.

An alternative approach to comparing more than two rules is to consider the results
of K rules as coming from a simple repeated-measures design (see Myers et al.,
1982; Looney, 1988). Here we have an N × K matrix of 1’s and 0’s. The omnibus
multivariate analysis may be accomplished using SAS GLM or SPSS MANOVA (see
Section 10.7).

16.7 EFFECT OF UNEQUAL PRIORS

As noted in Section 13.5 (see Table 13.2), prior probability of membership in each
group plays a role in the classification rule used. It was also argued (in Section 12.4.4)
that group prior probability estimates should be based on the relative sizes of the
respective populations. [See Tatsuoka 1988, p. 359) for a brief discussion of the
potential problem of “perpetuating the status quo.”] Seldom would the case be that
priors should be based on observed sample sizes—unless a proportional group sam-
pling plan was used. Of course, complete lack of knowledge of relative population
sizes would suggest the use of equal priors—at least two references may be found
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TABLE 16.6 Linear L-O-O Results for the 3-Group Ethington
Data Using Equal Priors

Predicted Group

1 2 3 nj

Actual Group 1 38 24 14 76
(.500)

2 43 38 11 122
(.311)

3 15 15 36 66
(.545)

Total 96 77 91 264

with a recommendation that caution be urged with general use of unequal priors
(Lindeman et al., 1980, pp. 207–212; Meshbane and Morris, 1995).

The use of equal priors (.333, .333, .333) with the 3-group Ethington data (3GED)
yields the linear L-O-O results reported in Table 16.6. The total-group hit rate is
(38 + 38 + 36)/264

.= .424, which is a little lower than that with priors of .25, .50,
and .25 (when .485 was obtained).

What is the possible effect of using unequal priors versus using equal priors?
The comparison of linear L-O-O PDA results using the 3-group Ethington data
is given in Table 16.7. The unequal group priors are, respectively, .25, .50, and
.25, while the equal priors used are .333, .333, and .333. This summary was
obtained counting “by hand” using the two computer outputs. The value of the
McNemar statistic is (45 − 62)2/(45 + 62)

.= 2.70, which yields P
.= .10. Thus,

for this data set, it does not appear that there is much of a difference in total-
group hit rate in the results using equal priors versus unequal priors. Comparing
the hit rates for Group 2 in Tables 16.2 and 16.6 (99/122

.= .811 versus 38/122
.=

.311), however, indicates a “substantial” difference. Using equal priors, hit rates
for the two smaller groups actually increase when going from unequal priors to
equal priors. Thus the general idea: For groups of unequal sizes that tend to
reflect relative population sizes (in an order sense), use of unequal priors will
increase the hit rates for the larger groups and decrease the hit rates for the

TABLE 16.7 Summary of Total-Group Linear L-O-O Results for
the 3-Group Ethington Data

Unequal Priors

Hit Miss Total

Equal Priors Hit 66 45 111
Miss 62 91 153

Total 128 136 264
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smaller groups. It is not that one set of results is “good” and the other “bad.”
The moral of the story may be: Use the best estimates for the priors that are
available.

It should be noted that a statistical assessment of the difference between the hit
rates for Group 2 with and without equal priors may be accomplished by generat-
ing a summary table of classifications (like Table 16.6). Comparative classification
accuracies for Groups 1 and 3 may be assessed similarly.

16.8 PDA VALIDITY/RELIABILITY

As pointed out by Hand (1997, p. 475), many terms in the PDA context are used
differently by different writers. One such term is validity. An alternative is impreci-
sion; another is reliability. The view of validity/reliability we consider herein relates
directly to the question: Are the PDA results (i.e., the hit/error rate(s) of interest) free
from sample bias? One approach to addressing this question is to confirm the obtained
results by using multiple collections of analysis units. This can be very expensive from
an applied researcher standpoint.Another approach is to examine split-sample results.
Even with “limited” group sizes, one can use a resampling approach (e.g., bootstrap;
McLachlan, 1992, p. 767) to assess the variability of PDA results. Although not stat-
ing the use of bootstrapping, Jain and Jain (1994) considered a “series of simulated
training samples” (p. 149) based on a variety of sample splitting percents of the total
group size (ranging from 10 to 80). For example, 30 percent was used for the “training
sample” and 70 percent for the “test sample.” For each training-test split, 40 training
samples were simulated. Their simulated results suggested that a 50/50 split gave “the
desirable results” (p. 150).

16.9 APPLYING A CLASSIFICATION RULE TO NEW UNITS

The focus of the discussion of predictive discriminant analysis (PDA) to this point
has been on estimating hit rates and assessing the classification results. There may,
however, be a more basic and practical purpose behind predicting group membership.
A more complete, practical view of PDA may be expressed by the following steps:

1. For the data on hand (i.e., the training sample), develop a classification rule
(Chapter 13).

2. Obtain the classification results (Chapter 14).

3. Using the results, arrive at separate-group and total-group hit rate estimates
(Chapter 15).

4. Assess the hit-rate estimates (Chapter 16).

5. Assuming that the assessment in step 4 indicates a reasonable rule, apply the
rule to a new set of analysis units whose group membership is unknown and is
to be predicted.
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For example, consider a clinical setting in which units (people or animals) in
the criterion groups are treated according to group membership (see Section 23.6).
Suppose that a training sample is available for which group membership of the
units is known. A rule could be developed and assessed. This rule, then, could be
utilized to classify a new unit so that group-specific treatments could be applied to
the new unit.

It should be noted that what is being presented in this section does not pertain to
cross validation, an approach to hit-rate estimation mentioned in Section 15.3. What is
being discussed is the situation where the rule has already been derived and assessed,
and the rule is then to be applied to a new unit in a “real-life” setting.

A developed classification rule could be applied to new units, one at a time if
needed. Benchmarks for classification pertaining to in-doubt units and outlying units
would have been determined with the training sample data. Such characterizations
may be useful in describing a new unit and in determining a subsequent activity or
treatment or decision applicable to a new unit.

As indicated in the SAS User’s Guide, with SAS DISCRIM, the application rule
may be “stored” and then applied to any new unit(s) by using the TESTDATA
option. Two approaches may be taken with SPSS DISCRIMINANT. One is to use
the SELECT subcommand with each set of new units—each analysis with a new set
of units will rebuild the original classification rule. The other approach is to use the
MATRIX subcommand, which “stores” the original rule, which may then be applied
to the new unit(s).

16.9.1 Computer Application II

The application of a linear classification rule to five “new” community college students
may be accomplished using the following SAS syntax. Table 16.8 provides a list of
five hypothetical students used to demonstrate this application. These data are entered
as a second SAS data file. We label this data set NEW.

TABLE 16.8 Scores on Nine Predictor Variables for Five Hypothetical
New Students

Id coun sum gain sum learn sum qelib qefac qestacq qeamt qewrite qesci

1 3 12 24 11 12 8 8 17 9
2 4 18 17 14 16 12 9 21 18
3 6 17 22 7 13 7 6 23 9
4 1 8 9 7 14 9 6 9 9
5 2 12 10 8 12 7 6 19 20
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The first SAS syntax creates the classification rule and the second SAS syntax
applies the rule to the new data file.

SAS SYNTAX FOR A LINEAR PDA USING THREE GRADE GROUPS
AND NINE PREDICTOR VARIABLES

proc discrim pool=yes crosslist posterr outstat=ethstat;
class grade;
var consum - - qesci;
priors ’1’=.25 ’2’=.50 ’3’=.25;
run;

outstat=ethstat stores the classification function weights in a SAS file named
ethstat. The remaining commands were defined in Section 14.3

SAS SYNTAX FOR CLASSIFYING NEW STUDENTS

proc discrim data=ethstat testdata=new testlist;
class grade;
testid id;
var consum - - qesci;
run;

data=ethstat identifies the data file containing the classification function weights.
testdata=new identifies the data file containing the students to be classified.
testlist requests the listing of the classification results and the
posterior probabilities.
testid id lists the classification results by the “id” variable.

OUTPUT (Table 16.9)

16.9.2 Computer Application III

To illustrate the application of a quadratic classification rule to a new community
college student, a subset of three of the nine predictors in the 3GED data set will be
used. The three predictors used are X1 (counsum), X2 (gainsum), and X3 (learnsum).
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TABLE 16.9 Classification Results for New Students

Posterior ProbabilitiesClassified
Id into Grade P̂ (1|x) P̂ (2|x) P̂ (3|x)

1 3 .118 .388 .494
2 2 .316 .508 .176
3 3 .078 .417 .505
4 1 .460 .304 .236
5 1 .490 .387 .123

The SAS DISCRIM program will be used—SPSS DISCRIMINANT will not yield
the needed information.

SAS SYNTAX TO OBTAIN QUADRATIC CLASSIFICATION
FUNCTION WEIGHTS USING THREE GRADE GROUPS AND
THREE PREDICTORS

proc discrim outstat=wts method=normal pool=no listerr crosslist
posterr;
class grade;
var counsum gainsum learnsum;
priors ’1’=.25 ’2’=.50 ’3’=.25;
run; proc print data=wts; run;

Most of the SAS commands were defined in Section 14.3. Only the additional
commands to obtain the quadratic weights are defined here.

outstat=wts requests an output file be generated labeled wts. The file name (i.e.,
wts) is user generated. A variety of statistics are reported.
method=normal requests that the output file (wts) include the weights for the
quadratic classification function.
pool=no requests that the quadratic rule be used.
proc print data=wts requests that the ouput file be printed.

OUTPUT

The relevant SAS output for the quadratic classification functions for A students
(Grade = 1) are:
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Grade Type NAME counsum gainsum learnsum

1 QUAD counsum −0.1328 0.0293 −0.0023
1 QUAD gainsum 0.0293 −0.0267 0.0115
1 QUAD learnsum −0.0023 0.0115 −0.0245
1 QUAD LINEAR 0.1346 0.3032 0.4458
1 QUAD CONST −11.9811 −11.9811 −11.9811

The quadratic classification function for Group 1 is, therefore, the following:

Z
.= −11.9811 + .1346X1 + .3032X2 + .4458X3

− .1328X2
1 − .0267X2

2 − .0245X2
3

+ .0293X1X2 − .0023X1X3 + .0115X2X3

The same SAS syntax used to develop the linear rule and classify new students (see
Section 16.9.1) can be used to develop a quadratic rule and classify new students with
one exception. To obtain the quadratic rule pool=yes must be changed to pool=no.

Table 16.10 presents the results of classifying the five new students using the
quadratic rule with the nine variables in the 3GED data set. Using these data, only the
classification of the individual with id=1 changes from Grade level 3 to Grade level
2. Note, however, that with the quadratic rule id=1 might be considered an in-doubt
unit. This would not be the case when the linear rule is used.

It should be noted that there are two “forms” of a “classification rule.” One is
for J sets of LCF/QCF weights. With this form, a linear/quadratic classification
function score is determined for each group for each new unit. The LCF weights
may be obtained by using either SPSS DISCRIMINANT or SAS DISCRM. The QCF
weights may be obtained via SAS DISCRIM. The second form of a classification rule
involves posterior probabilities, one for each group for each unit. These probabilities
may be obtained via the SPSS and SAS packages for a linear rule. It may be noted the
SPSS DISCRIMINANT program also outputs a typicality probability for each new
unit (using a linear rule).

TABLE 16.10 Classification Results for New Students Using a
Quadratic Rule

Posterior ProbabilitiesClassified
Id into Grade P̂ (1|x) P̂ (2|x) P̂ (3|x)

1 2 .053 .504 .443
2 2 .169 .554 .277
3 3 .084 .351 .566
4 1 .603 .277 .120
5 1 .477 .392 .132
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In many practical situations it would be desirable to assess the outcome of applying
a classification rule to new units. This would call for some record keeping and/or
observation on someone’s part.

16.10 COMMENTS

Discussion of assessments of classification rule accuracy in this chapter focused on
the use of counting estimators of hit rates. This focus is, of course, not necessary.
Rather, one might focus on the use of a posterior probability estimator (of separate-
group or total-group hit rates); see Section 15.3 for a discussion of such estimators.
The statistical test procedures for posterior probability estimators are the same as
for counting estimators; the same goes for the use of the improvement over chance
index.

It was stated at the end of Section 15.3 that the use of a total-group posterior
probability estimator does not require knowledge of unit group membership. If group
membership of some units is not known, however, a definition of chance group pre-
diction may be problematic. If the qj values are not known, how might “chance”
be defined? Suppose that one has a good handle on prior probabilities of group
membership. Then one might use (q2

1 + q2
2 + q2

3 ) for the overall (proportional) chance
hit rate in a three-group situation—this implicitly assumes the use of a sampling
plan where group sizes are proportional to population sizes. Finally, unknown group
membership for some units would preclude the use of the rule comparison strategy
discussed in Section 16.5.

Technical Notes

1. In multiple regression, the sample squared correlation coefficient, R2, is often
used as an index of accuracy of prediction. Now, when the population multiple
correlation coefficient is zero, it is known that the long-run mean of R2 is given
by E(R2) = p/(N − 1) (Huberty and Hussein, 2001), where p is the number of
predictors and N is the sample size. Thus, some methodologists might consider a
chance R2 to be equal to p/(N − 1) rather than zero (see Huberty, 1994b).

2. A second approach to the better-than-chance question (see Section 16.2) is
to consider it a “matching problem” (Mosteller and Bush, 1954, pp. 307–311).
If a rule indicates that a unit be classified into the same group from which it
emanated, the rule yielded a match. The question addressed here is: Is the total group
proportion of matches higher than what may be attributed to chance? The test statistic
proposed is

z = o − e

σ̂e

, (16.8)
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which, for large N , is approximately a standard normal statistic. Using the notation
of Table 16.1, the denominator in (16.8) is the positive square root of

σ̂ 2
e = 1

N2(N − 1)









J∑

j=1

njn·j





2

− N

J∑

j=1

njn·j (nj + n·j ) + N2
J∑

j=1

njn·j




.

Using the results from Table 16.2, we get σ̂ 2
e

.= 45.125; therefore, the value of (16.8)
is (128 − 95.5)/6.7175

.= 4.84. This z-value is in the same ballpark as the value of
(16.4) found earlier, 4.16.

A third approach to the better-than-chance question is to employ one of the Cohen
(1968,1972) kappa statistics. These statistics were applied to classification problems
by Altman et al., (1976) and by Weidemann and Fenster (1978). [Formulas in the
latter article are in error; see Hubert (1978).] As pointed out by Hoffmann and Overall
(1976), however, kappa statistics are to be used with caution.

3. It should be noted that it is inappropriate to answer the better-than-chance
question by applying the Pearson chi-squared statistic to a classification table. This
is because only the main-diagonal entries are of interest as far as the significance
question is concerned. If the observed hits yield significance, so would the Pearson
statistic. However, a significant Pearson statistic does not imply a better-than-chance
result. That is, a significant Pearson statistic is necessary but not sufficient to conclude
that a rule yields better than chance classification.

Further Reading

Huberty (1984) mentions some indices that may be considered as alternatives to I

in (16.7); a reference dealing with a statistical test for the I index is also given.

Park and Kshirsagar (1996) discuss “chance” classification in a (mathematical)
context different from our context.

Press (1972 p. 773) presents a χ2(1) statistic for testing the hypothesis of chance
classification; this statistic is a special case of the square of (16.4) when a chance
proportion of correct classifications is 1/J .

Rudolph and Karson (1988) use real two-group data to study the effects of using
unequal priors and differential misclassification costs. They report (on p. 80)
that the “use of the true population prior probabilities clearly reduces the error
rates.” They also concluded that classification results can be distorted when the
“true” costs are quite unequal.

Walters (1986) uses the I index [see (16.7)] to assess the goodness of a screening
procedure in a non-PDA context.

A variety of indices similar to the I index in (16.7) have been proposed:
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Costner (1965) and Suich and Turek (1989) discuss indices of proportional reduc-
tion in error (PRE) that are equivalent to the I index. Turek and Suich (1983)
present a test of significance for a special PRE index.

Fleiss et al. (2003, Chapter 18) discuss statistical properties of varieties of the
Cohen kappa index.

Klecka (1980, p. 760) suggests yet another form of a PRE index to be used in a
PDA context that is equivalent to I .

Light (1971) presents a summary of a number of “agreement” indices, includ-
ing those proposed in the 1950s and 1960s by J. Cohen (1923–1998),
L. A. Goodman, W. H. Kruskal, and W. A. Scott (1926–1991).

Lykken and Rose (1963) advance an improvement-over-chance statistic to be used
in the context of actuarial prediction.

Definition Stepwise regression: Thumbsucking by a street-smart kid.

EXERCISES

1. Given the classification table below (assume group sizes reflect priors):

Predicted Group

1 2 3 nj qj ej

Actual Group 1 115 20 15 150 .75 112.5
2 2 20 3 25 .125 3.125
3 1 4 20 25 .125 3.125

Total 118 44 38 200 118.75

(a) Is the total-group hit rate significantly better than chance (using the propor-
tional chance criterion)?

(b) How much better than chance is the total-group hit rate?

(c) Same as (a) except use the maximum chance criterion.

2. Specify two questions in the context of a PDA that may be addressed via statistical
tests.

3. What statistical concept is shared among DDA, PDA, and MCA/MRA?
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Computer Applications

4. Using the 5-group Ethington data set (5GED), conduct a SAS DISCRIM quadratic
L-O-O PDA with respective group priors of .15, .20, .30, .20, and .15.

(a) Find the five ej values [see (16.1)].

(b) Find e [see (16.2)], and o.

(c) Find the value of the N (0, 1) statistic in (16.4) and the lower bound of a 95
percent confidence interval as in (16.5).

(d) What do you conclude from your calculations?

(e) How much better than chance is the observed total group hit rate?

(f) What interpretation of ‘chance’ was used for the assessment above?

5. Consider, again, the 5-group Ethington data set (5GED). Construct a table like
Table 16.7 based on a linear external (L-O-O) rule and on a quadratic external
rule. (For the first analysis, use either SPSS DISCRIMINANT or SAS DISCRIM;
use SAS DISCRIM for the second analysis.)

(a) What is the linear Group 1 hit rate?

(b) What is the quadratic Group 1 hit rate?

(c) Are the two hit rates statistically different?

6. Consider the quadratic unstratified M-P-P/L-O-O results from the SAS output in
Exercise 5.

(a) Using the ej values and e value from Exercise 4, determine if the quadratic
unstratified M-P-P/L-O-O observed separate-group and total-group hit rates
are better than chance.

(b) How much better than chance?

7. In some way (randomly?) delete five students from each group of the 3-group
Ethington data set (3GED). Develop a rule using the “test sample” of 249
(= 264 − 15). Then apply the developed rule to the 15 “new” students. Are there
any in-doubt students? Outliers?

8. Using your personal data (without any categorical predictors):

(a) Are your separate-group and total-group hit rate estimates (see Exercise 14 of
Chapter 15) better than chance?

(b) How much better than chance?
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C H A P T E R 17

Deleting and Ordering Predictors

17.1 INTRODUCTION

In multiple correlation and regression analyses it is well known that the value of
the sample multiple correlation coefficient, R, cannot decrease as the number, p, of
“X variables” increases. That is, the apparent degree of variation in the “Y variable”
attributable to the p X variables is typically enhanced as p is increased. However,
R becomes an increasingly positively biased estimator with an increase in the p/N

ratio, where N is the sample size (Morrison, 1990, p. 400).
In classification analyses (i.e., PDAs), an increase in the number of predictors

affects the results in one way different from, and in another way similar to, that
in multiple regression. First, unlike regression, it may very well happen that as p

is increased, the hit rates (separate-group and/or total-group) will decrease. This is
particularly true if the variables to be added do not contribute substantially to the
intergroup differences. Second, similar to regression, as p increases, the positive bias
of the internal hit rates increases.

Thus, one good reason to seek a subset of the p predictors (i.e., to delete some
“poor” predictors) is to determine a rule that will yield a high degree of classification
precision as well as predictive accuracy. If one purpose of a classification analysis
is to set up a relatively precise rule to be used with subsequent analysis units, the
number of predictors should be small relative to the size of the sample. And if this
purpose pertains to enhancing the predictive accuracy of a set of variables, it may be
desirable to delete some of the variables.

Another good reason for deleting some predictor variables is to reduce the
complexity of the problem. If a purpose of a classification analysis is to supplement
the interpretation of grouping variable effects (see Technical Note 1 in Chapter 4),
parsimony may be a goal to keep in mind.

An analysis problem closely related to variable deletion is that of variable ordering.
In a classification context, predictor variables might be ordered with respect to their
contribution to the classification accuracy of interest—separate-group or total-group.

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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17.2 PREDICTOR DELETION

It should be noted at the outset that the discussion in this section pertains to deleting
predictors in the context of classification (i.e., predictive disciminant analysis), not
in the context of group separation or grouping-variable effects (where descriptive
discriminant analysis is pertinent).Variable deletion in the latter context was discussed
in Section 6.2.

The deletion/selection of response variables in a PDA context is sometimes
referred to as feature extraction (see, e.g., Hand, 1997, p. 387; McLachlan, 1992,
Chapter 12; Webb, 2002, Chapter 9). This expression is quite popular in a pattern
recognition context.

17.2.1 Purposes of Deletion

Why, in a PDA context, is it desirable to consider the deletion of some predictors? One
reason for deleting predictors may be a very practical one. If fewer than the original
p predictors may be used in the classification rule (assuming that no appreciable
decrease in hit rate is incurred), it would be less costly in collecting data on the
predictors for the purpose of classifying new analysis units.

Another reason for deleting variables in a PDA context is based on a combination
of a practical consideration and a theoretical consideration. In PDA, as in other data
analysis contexts, estimation of parameters is quite involved; parameters such as
interpopulation distance and population LCF weights. Data analysis models with
which we associate parameter estimators with low bias and high precision are, of
course, preferred. PDA models with few predictors, relative to N , yield relatively
more accurate (i.e., less biased) and more precise estimators (see, e.g., Hora and
Wilcox, 1982). Theory aside, deletion of some predictors (i.e., using a classification
rule with fewer predictors) may very well yield a higher hit rate than if all of the
original predictors were included in the rule. Simply stated, a better classification
rule may be proposed if some predictors are deleted.

17.2.2 Deletion Methods

Little research dealing with variable deletion in classification problems has been
reported. One article in the behavioral literature dealing in part with the issue is that
by Henschke and Chen (1974). In this article the authors discuss a forward stepwise
algorithm that uses an estimated expected loss as a stopping criterion. It turns out that
this criterion is the complement of the total-group (internal) hit rate. Their algorithm
is built on a linear composite of the predictors rather than on the “raw” predictors.

The SAS and SPSS packages do not contain a deletion program of any type where
classification accuracy (in a descriptive sense) is an explicit criterion. Both packages
do, however, contain stepwise discriminant analysis programs. The criterion for
entering variables into these analyses is based on group separation. Only if a linear
normal rule, when equal priors is appropriate, is the separation criterion “equivalent”
to the classification criterion.
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17.2.3 Package Analyses

While reading reports involving a multiple regression analysis, one often finds results
of a “stepwise analysis.” Sometimes the analysis is not clearly described—there
is a “forward stepwise analysis” and a “backward stepwise analysis,” elaborations
of which are not given herein. The same may be stated with regard to stepwise
discriminant analyses. Because we do not support stepwise analysis in a PDA context,
descriptions and use of such analyses will not be given herein (see Rencher, 2002,
pp. 311–313). A “forward selection” strategy was developed by Smith (1984); it is
described in Huberty (1994c, pp. 119–122).

17.2.4 All Possible Subsets

There are two problems with a stepwise analysis and the forward selection analysis:
(1) the “best subset” of a given size may not emerge, and (2) only one “good” subset
of each size is suggested. There is an alternative analysis approach that deals with
these two problems. An all-possible-subset approach is certainly possible, although
feasibility of such an approach may be questioned in some situations. (For p

predictors, a total of 2p − 1 predictor subsets would need to be assessed.) These
are situations in which there are large numbers of predictors, and no prior knowledge
of worthwhileness of any subset of predictors. In some situations, a researcher will
be familiar with the relative worthwhileness of at least some of the predictors; if so,
the better predictors may be considered de facto members of subsets to be assessed
with respect to classification accuracy. This scheme could drastically reduce the total
number of subsets to assess.

Furthermore, a researcher could very well decide that a minimum predictor subset
size would be desirable. For example, suppose that one has 10 predictors, and it may
be judged—judgment based on previous research, experience, measurement, and so
on—that it is desirable to include three of the predictors. Further, it may be desirable
to have a final subset of at least five. Thus the number of subsets to consider is reduced
from 210 − 1 = 1023 to 27 − 8 = 120. That is, at most 120 analyses would need to
be conducted, obtaining a number of subsets of size 5, 6, . . . , 9.

It turns out that conducting a “large” number of multiple analyses is, at this point in
time, not a concern. A computer program very useful for conducting an all-possible-
subsets analysis has been written by J. D. Morris (Florida Atlantic University); the
Morris program is available at the Wiley website.

17.3 COMPUTER APPLICATION

As an example of the use of the Morris program, consider the 3-gourp Ethington
data set (3GED). The nine variable definitions are given in Appendix A. From these
definitions, it may be reasonable that the least three predictors (X7, X8, X9) should
be in any determined subset. If so, then the Morris program will determine the best
predictor subsets of sizes 4, 5, . . . , 8.
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The subset analyses are based on linear L-O-O PDAs. The program has some
reasonable limitations including the following four: maximum number of predictors,
14; maximum number of groups, 10; maximum number of best subsets to identify,
280; maximum number of best subsets of each size, 30. With a Morris analysis, a
subset of the original predictors may be “forced in” at the start.

The Morris program provides prompts to the user to define the number of variables,
the variables to be FORCED in, number of groups, group identification code, the data
file name, a FORTRAN format statement, and priors if unequal. The data file can be
saved using MICROSOFT NOTEPAD. We saved the 3-group Ethington data in a file
labeled tda1.dat

MORRIS PROMPTS FOR ALL-POSSIBLE-SUBSET ANALYSES

Enter number of discriminating variables (Max set to 14)
9
Enter # (0 to 8) of variables to be “FORCED” to remain in the subsets
3
Enter 3 variable indices (separated by spaces) to be “FORCED”
7 8 9
Enter 3 group indices (separated by spaces)
1 2 3
Total number of best subsets to identify (MAX set to 280)
10
Number of best subsets of each size (MAX set to 31)
10
Enter listwise missing data code
-9
Enter the data file name
tda1.dat
Enter FORTRAN- type Format (GROUP MEMBERSHIP LAST)
(T2,F1.0,8F2.0,T1,F1.0)
Enter1 (0 OTHERWISE) for unequal Priors
1
Enter Priors for Groups separated by spaces
.25 .50 .25
Enter to submit the program

OUTPUT

Analysis: Morris Best-Subset Identification

The total-group linear L-O-O results of the Morris best-subset analysis of the 3-group
Ethington data set are given in Table 17.1 and Figure 17.1.
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TABLE 17.1 Total-Group L-O-O Hit Rates for Variable
Subsets from the 3-Group Ethington Data

Subset Size Best Subset Hit Rate

3 X7, X8, X9 .462
4 X5, X7, X8, X9 .481
5 X3, X5, X7, X8, X9 .489
6 X3, X5, X6, X7, X8, X9 .504
7 X1, X2, X3, X5, X7, X8, X9 .511
8 X1, X2, X3, X4, X5, X7, X8, X9 .492
9 X1, X2, …, X9 .485

Interpretation: Morris Best-Subset Analysis

From these results, it appears that the total-group hit rate increases as one, two, three,
and four variables (from .462 to .511) are supplemented to the subset of X7, X8, and
X9. But, as the fifth (X4) and sixth (X6) variables are added, the hit rate decreases
(from .511 to .485). Going “strictly by the numbers,” it may be concluded that the
subset to be retained is that excluding X4 and X6.

It should be noted that there may very well be two (or more) subsets of a given size
that yield hit rates that are “close.” The subset of choice may be based on predictor
set collections—a researcher judgment call.

If one is into basing predictor deletion on the data on hand, the recommendation
here is to use the all-possible-subsets approach. This approach may be used with or
without forcing some predictors to be common to all subsets to be considered. With
the all-possible-suspects approach, one should also think seriously about considering
multiple subsets of a given size when determining the final subset of predictors. It is

Figure 17.1 Total group L-O-O hit rate versus best-subset size for the 3-group Ethington data.
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recognized that an all-possible-subsets analysis may be criticized as one that “milks
the data,” and that such an analysis “capitalizes on chance.” Be that as it may, this is
the deletion analysis favored by us.

17.4 PREDICTOR ORDERING

The problem of predictor ordering in the current context pertains to relative
contribution, or importance, of the predictor variables to classification accuracy.
Therefore, it makes sense to deal with an index that involves a proportion of correct
classifications; that is, a hit rate. (If misclassification costs were to be involved, an
index of expected loss would be appropriate.) In multiple regression analysis and
in descriptive discriminant analysis, a popular (but highly questionable) approach to
variable ordering is to use a stepwise analysis.

For predictor ordering (as well as predictor deletion) purposes, the (forward)
stepwise analysis programs available through the SAS and SPSS packages are
generally not appropriate for use with a predictive discriminant analysis problem.
The basic reason these programs are generally inappropriate is that the criterion used
for entering variables into the analysis is one pertaining to group separation (typically
Wilks �), not classification accuracy. If, however, a normal linear rule with equal base
rates is to be used [see cell (2,2) in Table 13.3], the � criterion would be equivalent
to a classification criterion.

17.4.1 Meaning of Importance

It has been argued (e.g., Huberty, 1989) that a stepwise discriminant analysis should
not be used for the purpose of determining relative predictor importance. In assessing
the relative importance of a predictor, one might ask: How well (in the sense of
classification accuracy) can we do without the predictor? Viewing relative variable
importance in this manner, one conducts p (the number of predictors) PDAs, each
involving p − 1 predictors. That is, conduct an analysis with X1 deleted, then one
with X2 deleted, and so on. Suppose that the analysis conducted with X1 deleted
yields the lowest hit rate of interest (for the total group or for a particular group); then
X1 would be judged to contribute most to predictive accuracy. That is, the poorest
classification accuracy would result if X1 were deleted; therefore, X1 is considered
“most important.”

17.4.2 Variable Ranking

Visual Ranking As an example, consider the 3-group Ethington data set (3GED).
In Table 17.2 the Group 2 L-O-O hit rates are given for the nine 8-variable analyses
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TABLE 17.2 Linear L-O-O Group 2 Hit Rates, Transformed Hit
Rates, and Predictor Ranks for the 3-Group Ethington Data

Predictor Deleted H(i) Z(i) Rank

X2 .812 6.89 3
X4 .812 6.89 3
X9 .812 6.89 3
X7 .820 7.07 3
X8 .820 7.07 3
X6 .828 7.25 6.5
X5 .836 7.42 6.5
X1 .852 7.78 8.5
X3 .861 7.97 8.5
(None) (.812)

(ordered). There are at least two approaches that one might use to arrive at a reasonable
rank ordering of the predictors based on hit rates as given in Table 17.2.

One approach is simply an “eyeball assessment.” By merely looking at the second
column in Table 17.2, one might suggest the following ordering:

Predictors Rank

X2, X4, X9 2
X7, X8 4.5
X5, X6 6.5
X1, X3 8.5

Such an eyeball variable ranking may be questionable because some Group 2 hit
rates are quite close; for example, .820 for X7 and X8, and .828 for X6. The reader
may very well arrive at yet another variable rank ordering. A problem, then, with
an eyeball assessment is that visual perceptions may vary (considerably?) from
researcher to researcher. That is, this assessment may be too “subjective” for some
researchers. Subjectivity may be greater with a “low” total group (or separate groups)
hit rate.

Ranking Transformed Hit Rates The second approach to arrive at a variable ranking
involves some quantification as a basis for increased “objectivity.” [Huberty and
Wisenbaker (1992b) suggest a variable ranking approach in the context of group
separation. The basic idea of this approach will now be applied in the PDA context.]
It seems reasonable to somehow take into consideration the variability of the set of
hit rates, such as those in Table 17.2. One way to do this for total-group hit rates is as
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follows. Find the expected number of total group hits:

e =
J∑

j=1

ej =
J∑

j=1

qjnj ,

where qj is the estimated prior probability of membership in Group j . Let H(i) denote
the observed total-group hit rate obtained with predictor Xi deleted. Then N · H(i)

would be the observed number of total-group hits. The variance of N · H(i) is given
by e(N − e)/N . Thus, a reasonable transformation of H(i) that reflects this variability
is

Z(i) = N · H(i) − e√
e(N − e)/N

, (17.1)

where N = ∑
nj . The Z(i) values are then ordered from lowest to highest. The “best”

predictor is the one that is associated with the lowest Z(i) value.
A special case of (17.1) may be used for particular-group hits, rather than for

total-group hits. To demonstrate this special application, we will now consider Group
2 of the 3-group Ethington data. For Group 2, the following index is used in place
of (17.1):

Z(i) = n2 · H(i) − e2√
e2(n2 − e2)/n2

,

where H(i) now denotes the hit rate for Group 2 obtained with predictor Xi deleted.
The transformed hit rate for each predictor is in the third column of Table 17.2.

For the 3-group Ethington data and focusing on Group 2, Z(2) = 6.89 is lowest.
What is needed next is a numerical value (based on a standardized scale) to add
to the lowest Z(i) value to determine a cutoff for ranking purposes. This numerical
value would, typically, range from .1 to .6. Which value to use is a judgment call
on the part of the researcher. Trial and error indicated in the current situation that
using .2 is reasonable in terms of sensitivity to hit-rate differences and tied ranks. For
this example, Z(6)( = 7.25) is the smallest value that is greater than Z(2). The next
step is to find Z(6) + .2. Predictors with Z(i) values less than Z(6) + .2(= 7.45) are
assigned the same rank. This procedure is continued until all p predictors are ranked.
For this example, ranks of the nine predictors are given in the rightmost column in
Table 17.2.

A comparison of the hit rates obtained when the respective predictors are deleted
with the all-variable hit rate—.811 for this data set—suggests a simplification of
the ranking process. If deleting a variable does not decrease the hit rate, it seems
reasonable that such a variable would be judged to be unimportant. Such unimportant
variables may be ignored in the ranking process. For example, with this data set (see
Table 17.2) only variables X1, X3, X5, X6, X7, and X8 might be retained.

This ordering procedure may be used for predictor ordering for each of the J -group
hit rates, as well as for the total-group hit rate. Multiple predictor orderings may be
substantive interest.
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17.5 REANALYSIS

By examining formulations of classification statistics presented in Table 13.3, it may
be concluded that correlations (or covariances) among the predictor variables are
“taken into consideration.” This is the case because involved in all rule forms is a
distance index that is a function of a predictor variable covariance matrix. Just what
effect these intercorrelations have on classification accuracy is not well known, except
in some very special situations.1

With more than two predictors and more than two groups, the effects of increasing
the number of correlations is not describable in simple terms. The point to be made here
is that classification results should be interpreted in light of the predictors involved in
the analysis. Therefore, it is desirable to delete some predictors on the basis of methods
discussed earlier in this chapter, a reanalysis using only the selected predictors should
be conducted.

Suppose, from a 12-predictor analysis, it is decided that five predictors should be
deleted. If it would be informative to determine an ordering of the seven predictors
retained, the ordering should be based on a 7-predictor analysis, not on the 12-
predictor analysis. It must be remembered that an interpretative statement about a
single variable or a subset of the total set of variables in a multivariate analysis must
be considered in the company of all of the remaining variables analyzed.

The approach to predictor ordering presented in this chapter represents an
assessment of relative predictor contribution (to classification accuracy) that depends
on the data on hand. That is, a resultant predictor ordering depends on the predictor
set and, of course, on the predictor measurements available. So, one must be careful
in comparing relative importance of predictors across studies for reasons other than
the involvement of a different sample of analysis units.

17.6 COMMENTS

Predictor deletion is a very important consideration to be made in the context
of predictive discriminant analysis (PDA). Group assignment and assessment of
predictive accuracy are essential concerns in PDA, and the accuracy and precision
of group membership prediction both may be enhanced with fewer predictors than
the total number initially included for study. Therefore, it behooves the researcher
to consider deleting some predictors in forming a final prediction rule. [It should
be noted that such is not the concern when it comes to considering the deletion of
variables in the context of descriptive discriminant analysis (DDA); see Section 6.2.]
When some predictors are deleted, it may be of interest to determine if there are
units with changed group assignment relative to that when the deleted predictors are
included in the rule.

1Cochran (1964) has shown that for a particular two-group bivariate normal situation, a negative correlation
enhances classification accuracy, and accuracy is dampened if a positive correlation is too high or too low.
Elashoff et al. (1967) have shown that these conclusions are not generally applicable for dichotomous
predictors.



“c17” — 2006/3/21 — page 344 — #10

344 DELETING AND ORDERING PREDICTORS

Predictor ordering is usually done for substantive rather than empirical reasons. It
simply seems “natural” for a researcher to want to comment about predictors that are
(relatively) “important” and those that are (relatively) “unimportant.”

Predictor deletion and predictor ordering may be considered in terms of
classification accuracy for the total group of units. In some research situations,
however, it may very well be the case that predictive accuracy for a particular group is
of special concern. In this case, predictor deletion and ordering should be considered
in terms of the estimated hit rate for the particular group of interest. For instance,
if a researcher is interested in identifying a particular type of disabled child—say,
dyslexic as opposed to “normal” children—in a two-group PDA situation, the criterion
of correct classification for the smaller group may be considered in deleting a subset
of predictors and in ordering the predictors.

All of the discussion in this chapter has been presented under the assumption
of equal population covariance matrices. That is, analysis procedures suggested for
deleting and ordering predictors were those that call for equal covariance matrices.
Of course, in a PDA context, it is the accuracy of classification—separate-group or
total-group—that is of concern when deleting or ordering predictors. With equality of
covariance matrices being untenable, a quadratic classification rule (see Section 13.3)
may be used to generate the necessary classification results. Furthermore, some
nonnormal rule (see Section 19.2) may even be used to determine predictor subsets or
to assess relative predictor importance. No matter what form of classification rule is
used, the important thing to consider is that some estimate of classification accuracy
be used as a criterion for predictor deletion and for predictor ordering.

The estimators considered in this chapter are counting estimators. The ideas
expressed with respect to predictor deletion and ordering may also be incorporated
using posterior probability estimators. (See Section 15.3 for a discussion of counting
and posterior probability estimators.)

There are two generalizability problems with which one must come face to face
when conducting predictor deletion and predictor ordering analyses (see Huberty,
1989, pp. 62–64). The first problem pertains to model specificity. It was emphasized
in Section 1.5 that consideration of the initial choice of response variables—predictors
in a PDA context—is very important. Thorough study and sound judgment are needed
in choosing predictors at the outset.

As many relevant predictors (relevance being based on substantive theory) as
feasible need to be chosen for inclusion in the initial predictor system, and as many
irrelevant predictors as possible need to be excluded. This is an easier-said-than-
done situation, of course. Limited knowledge and resources sometimes preclude the
researcher from including all relevant predictors and from excluding all irrelevant
predictors. Herein lies the problem. That is, the final predictor subset obtained
and the ordering of the predictors in this subset should be discussed only with all
accompanying predictors (and measurement scales used) in mind. A decided-upon
final subset out of an initial set of p predictors may not be a best subset if one or more
predictors were to be added to, or deleted from, the initial set. Furthermore, a predictor
that is considered very important (by whatever index) in, say, a three-predictor situa-
tion, may be relatively unimportant (by the same index) in a four-predictor situation.
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The second generalizability problem pertains to sample specificity. As well as
considering the predictors (and how they are measured), one should consider the
(design) sample of analysis units in drawing conclusions about predictor deletion
and ordering. Strictly speaking, results of deleting and ordering predictors should
only be considered descriptive for the sample of units on hand. That is, inferences
about best subsets and predictor importance to other units should be made with great
caution. The best predictor subset for one sample of units may not be the best for other
samples. The greater the ratio of sample size to number of predictor variables, the
more reasonable are the implied generalizations. A large such ratio alone, however,
does not ensure valid generalizations. Valid generalizations may be obtained only to
the extent that the pattern of predictor variable intercorrelations for nondesign sample
analysis units follow the pattern present in the design sample. To enhance the validity
of one’s conclusions regarding predictor deletion and ordering, some types of external
analysis should be conducted. One way to accomplish this is to employ a hold-out
or test sample. Preferably, one can use a resampling strategy such as jackknifing or
bootstrapping.

A final word about predictor deletion and predictor ordering is needed. Since the
advent of statistical computing packages, the typical approach to variable deletion and
ordering taken by researchers has been to employ a stepwise discriminant analysis
program. Beyond a pre-PDA and a preliminary exploratory analysis, the advice given
here for using such a computer program is simple: Don’t do it! See Huberty (1989) for
elaboration on this advice, the substance of which was advanced earlier in this chapter.

17.7 SIDE NOTE

There is an eyeball method of deleting a predictor that may be attractive to some
applied researchers. It was discussed in Section 13.4 that a classification rule may be
thought of as a set J linear composites of the p predictor variables. Recall that an
analysis unit is assigned to that group with which is associated the largest composite
score. Suppose the J composite weights for predictor i are numerically very close. If
so, then it might seem that predictor i contributes equally to all J composites. Thus,
if this predictor were deleted, the relative magnitudes of the J composites would be
nearly the same as when that questionable predictor is retained.

For example, consider the three LCFs given in Table 13.1. The three weights
for predictor qelib might be considered to be “equal”; the same for qewrite. Linear
L-O-O analysis on the 3-group Ethington data yielded the following total-group hit
rates:

Predictor Deleted Hit Rate

qelib (X4) .489
qewrite (X8) .485
Both .496
(None) .485
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So, for this data set, this eyeball method of seeking predictors to delete appears to
work well.

Further Reading

Duarte Silva (2001) suggests a rather general algorithm for variable deletion that
can be used in contexts of MANOVA, CCA, DDA, and PDA.

Ganeshanandam and Krzanowski (1989) suggest an approach to predictor deletion
that is the same as the Smith (1984) forward selection method. Monte Carlo
simulations of multivariate binary and normal data in the two-group setting are
conducted.

Habbema and Hermans (1977) present a variable deletion algorithm that is very
general; because density values are estimated directly from the data on hand,
no distribution assumption (e.g., normality) is involved.

Hand (1997, pp. 149–152) presents a readable point of view on predictor deletion.

Krzanowski (1995) applies the leave-one-out method of two- and three-group
classification in the context of predictor deletion with a mixture of continuous
and binary predictors; real data as well as simulated data were used to compare
three deletion methods. A distance measure proposed by the author was the
“winner.”

Langbehn and Woolson (1997) conduct a Monte Carlo comparison of nine different
methods for forward stepwise deletion involving the unweighted sum of binary
(predictor) variables (SBV).

McKay and Campbell (1982) provide one of the first reviews of the variable
deletion problem in predictive discriminant analysis and discuss how deletion
in PDA relates to deletion in descriptive discriminant analysis.

Nath and Jones (1988) suggest an approach to deleting and ordering predictors
using a linear programming approach with jackknife methods for the two-group
situation.

O’Gorman and Woolson (1993) recommend routine application of rank
transformations for (predictor) variable deletion as a preanalysis using PDA
methods for studies with N < 100.

Pynnönen (1988) discusses the predictor deletion problem in a quadratic PDA
context.

Rencher (1998, pp. 250–251) provides four references that discuss the deletion of
predictors in the case of heteroscedastic covariance matrices.

Seaman andYoung (1990) propose a predictor deletion algorithm as an alternative
to an all-possible-subset approach—for two groups only. The criterion of subset
effectiveness used is an estimated probability of misclassification using a L-O-O
approach.

Snapinn and Knoke (1988) propose an “adjusted” bootstrap method of estimating
error rates in the predictor deletion process.
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Snapinn and Knoke (1989) review a number of methods to consider in deleting
predictors and in estimating error rates in PDA; smoothing error-rate estimators
are favored.

Definition Standard deviate: Transvestite in the traditional drag.

EXERCISES

1. Why is the variable deletion problem so important in the context of a PDA?

Computer Applications

2. Using a Morris analysis on the 3-group Ethington data set (3GED), what are the
three best subsets of size 4, all of which include X7, X8, and X9? Use a deletion
criterion of classification accuracy for Group 2 only.

3. Consider the best subset of size 6 from Table 17.1. Order these six predictors by
carrying out six 5-predictor analyses, as discussed in Section 17.3. (Use the linear
L-O-O total-group hit rate.)

4. Consider the 5-group Ethington data set (5GED) (using respective group priors of
.15, .20, .30, .20, .15).

(a) Obtain all possible predictor subsets using the Morris program for linear
L-O-O total-group results.

(b) Consider the best subset of size 5; order the five predictors in terms of total-
group predictive accuracy.

5. Consider your personal data set (without categorical predictors).

(a) Determine a good predictor subset of whatever size you want.

(b) Order the predictors in the subset retained.
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C H A P T E R 18

Two-Group Classification

18.1 INTRODUCTION

A great deal of effort has been devoted to the study of the two-group predictive
discriminant analysis problem over the past six decades. Many practical issues in the
two-group situation have essentially been resolved, but in the statistical literature,
at least, specific aspects of the two-group situation continue to be studied. In the
context of two-group classification, current research areas include robustness of clas-
sification rules, effects of outliers on classification accuracy, effects of nonnormality
and unequal covariance matrices on classification accuracy, classification via density
estimation, nonparametric rules, classification with a mixture of variable types, and
classification accuracy as a criterion in predictor selection. (See the Further Reading
at the end of this chapter.)

Some of the peculiarities of the two-group situation have been mentioned
previously. For example, in Section 15.3 a two-group “shrinkage formula” for hit rate
estimation was presented. The specific peculiarity of the relationship between two-
group classification and multiple regression analysis has been discussed by numerous
writers—see, for example, the book by B. Flury (1951–1999) and Riedwyl (1988,
pp. 94–96) and the book by Rencher (2002, pp. 275–276). The J -group classification
rules will now be reformulated for the two-group case, which will lead into an analogy
with regression analysis. This analogy is followed by a discussion of a relationship
between multiple regression analysis (MRA) and predictive discriminant analysis
(PDA), and a discussion of sample size requirements in a two-group PDA situation.
The chapter concludes with a brief discussion of univariate classification.

18.2 TWO-GROUP RULE

As discussed in Chapter 12 [see (12.9) and (12.10)], a form of the Bayesian probability
rule may be stated as:

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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Assign unit u to Population j if

πj · f (xu|j) > πj ′ · f (xu|j ′)
for j �= j ′.

(18.1)

In the two-group case, the rule becomes

Assign unit u to Population 1 if

π1 · f (xu|1) > π2 · f (xu|2);

otherwise, assign the unit to Population 2.

(18.2)

According to McLachlan (1992, p. 8), B. L. Welch (1911–1989) showed in 1939 that
(18.2) is deducible either from the Bayes Theorem or the Neyman–Pearson Lemma.
An alternative expression of the rule, and one that is typically given in the literature, is

Assign unit u to Population 1 if

f (xu|1)

f (xu|2)
>

π2

π1
;

otherwise, assign the unit to Population 2.

(18.3)

If differential costs of misclassification (see Section 13.7) are to be considered, the
ratio on the right in (18.3) becomes

C(1|2)π2

C(2|1)π1
, (18.4)

where C(1|2) is the cost of classifying an analysis unit into Population 1 when it
actually belongs to Population 2. Of course, only relative costs [i.e., C(1|2)/C(2|1)]
need to be specified. For example, if it is three times as consequential to erroneously
classify a unit into Population 1, then let C(1|2)/C(2|1) = 3.

If misclassification costs and prior probabilities are assumed equal, we have
the rule:

Assign unit u to Population 1 if

f (xu|1)

f (xu|2)
> 1;

otherwise, assign the unit to Population 2.

(18.5)
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To make any of these rules functional, we need to impose some probability model
to obtain estimates of the densities f (xu|j), j = 1, 2. Assuming a multivariate nor-
mal probability model with equal covariance matrices, employing logarithms (as in
Section 13.4), and performing some algebra, it can be shown that the natural logarithm
of the ratio of estimated densities in (18.5) is equal to

[(x1 − x2)
′S−1

e ]xu − 1

2
(x′

1S−1
e x1 − x′

2S−1
e x2). (18.6)

Thus rule (18.5) may, therefore, be stated as:

Assign unit u to Population 1 if

[
(x1 − x2)

′S−1
e

]
xu − 1

2

(
x′

1S−1
e x1 − x′

2S−1
e x2

)
> 0;

otherwise, assign the unit to Population 2.

(18.7)

We now turn to the formal relationship between two-group classification (i.e.,
group membership prediction) and multiple regression analysis.

18.3 REGRESSION ANALOGY

In a two-group situation under the condition of equality of the two population covari-
ance matrices, there are two linear classification functions (LCFs). For Group 1 we
write [see (13.21)]

Lu1 = (x′
1S−1

e )xu − 1

2
x′

1S−1
e x1 + ln q1;

and for Group 2,

Lu2 = (x′
2S−1

e )xu − 1

2
x′

2S−1
e x2 + ln q2,

where xj is the p × 1 vector of predictor means for Group j , Se is the p × p error
covariance matrix, xu is the p × 1 vector of observations for unit u, qj is the base
rate (or, estimated prior probability) for Group j , and j = 1, 2. Now, the difference
between Lu1 and Lu2 is

Lu = [
(x1 − x2)

′S−1
e

]
xu − a, (18.8)

where a = 1
2 (x′

1S−1
e x1 − x′

2S−1
e x2) + ln q2 − ln q1. Noting that −(ln q2 − ln q1) =

− ln(q2/q1), the expression for Lu in (18.8) may be used as a basis for a
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classification rule:

Assign unit u to Population 1 if

[
(x1 − x2)

′S−1
e

]
xu − 1

2

(
x′

1S−1
e x1 − x′

2S−1
e x2

)
> ln

q2

q1
;

otherwise, assign the unit to Population 2.

(18.9)

[For the two-group case, this rule yields results that are identical to those obtained
using rule (13.22).]

If the estimated prior probabilities of group membership are equal (i.e., q1 = q2),
rule (18.9) is simplified to rule (18.7). It may be noted that rule (18.7) is based on a
linear composite1 of the predictor scores (xu); the weights for the p predictors are
the elements in the row vector

b′ = (x1 − x2)
′ S−1

e . (18.10)

Furthermore, the midpoint of the means of this linear composite scores for the two
groups is 1

2 (x′
1S−1

e x1 − x′
2S−1

e x2) (see Morrison, 1990, p. 769). So, the assignment
procedure stated in (18.7) may be described as: Find the linear composite score for a
given analysis unit; if this composite score is closer to the mean composite score for
Group 1, assign the unit to Population 1; otherwise, assign the unit to Population 2.

As can be seen from (18.9), for unequal priors, ln(q2/q1) is a “cutoff score” to
which values of the linear composite on the left in (18.9) may be compared.

There is a quadratic counterpart of (18.9) for which the same cutoff score is used.
The quadratic composite is given by:

1

2
ln

|S2|
|S1| − 1

2
(xu − x1)

′S−1
1 (xu − x1) + 1

2
(xu − x2)

′S−1
2 (xu − x2). (18.11)

It may be shown that the (1 × p) vector of weights, b′ = (x1 − x2)
′S−1

e , is pro-
portional to the (1 × p) vector of weights applicable to the p-variable scores in a
multiple regression analysis (MRA) with a dichotomous criterion. Because a set of
weights proportional to b, say cb, where c is a constant, would not affect assign-
ment decisions, a two-group predictive discriminant analysis could be accomplished
using MRA.

An internal two-group classification analysis may be completed by using a multiple
regression computer program as follows. Assign a criterion score of 0 to each unit in
Group 1, and a criterion score of 1 to each unit in Group 2. Submit the N× (p + 1) data
matrix (N = n1 + n2) to a multiple regression program (e.g., SAS PROC STEPWISE
or SPSS REGRESSION). To obtain a (2 × 2) classification table, then, it is necessary

1In two-group descriptive discriminant analysis, this composite is called the linear discriminant function
(LDF). LDFs were discussed in some detail in Section 5.2.
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TABLE 18.1 Regression Classification Results for
Groups 1 and 2 of the 3-Group Ethington Data

Predicted Group

1 2 Total

Actual 1 42 34 76
Group 2 17 105 122
Total 59 139 198

to count the number of predicted criterion scores closer to 0, and assign these to Group
1; those closer to 1 are assigned to Group 2.

As an example, consider Groups 1 and 2 of the 3-group Ethington data set (3GED).
For each unit in the two groups, let Y be defined as follows for each unit:

Y = 0 if unit is from Group 1

Y = 1 if unit is from Group 2

Thus, from a multiple regression viewpoint, we have a set of nine predictors and a
dichotomous criterion, Y . This data set was analyzed using SPSS REGRESSION.
The results are given in Table 18.1. These results are precisely the same as those
obtained if a linear internal analysis with prior probabilities based on group sizes
was conducted [see Exercise 1(d)].

The italics in the immediately preceding sentence are used to emphasize that doing
a multiple regression analysis is equivalent to a two-group PDA only under four
constraints. These are: (1) a linear classification rule is used; (2) results of an internal
PDA are considered; (3) the PDA is done with group-size-based priors; and (4) there
are equal costs of misclassification. To simply state that a two-group PDA and a
regression analysis (with a dichotomous criterion) “are equivalent” or “yield the same
results” does not tell the whole story.

18.4 MRA–PDA RELATIONSHIP

When the criterion variable is dichotomous, there is an interesting relationship
between the multiple correlation coefficient, R, and the distance between the two
sample centroids, D. This relationship may be expressed as:

D2 = R2

1 − R2

N(N − 2)

n1n2
, (18.12)

where N = n1 + n2, or as:

R2 = n1n2D
2

N(N − 2) + n1n2D2 . (18.13)
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As such, R, which may be viewed as a canonical correlation in this context, may also
be regarded as a relative measure of distance.

It is well known that the true probability of correct classification under conditions
of equal costs and equal prior probabilities (with a linear rule) is the optimal hit rate
(see Section 15.3),

P (o) = φ

(
1

2
�

)

,

where φ denotes the standard normal distribution function, and [see (12.2)]

�2 = (µ1 − µ2)
′�−1(µ1 − µ2).

One approach to estimating P (o) is to use the “plug-in” estimator

P̂ (o) = φ

(
1

2
D

)

. (18.14)

This estimator is a (negatively) biased one, however, because D2 is a (positively)
biased estimator for �2.

To obtain a less biased estimator for P (o) one might use a less biased estimator
for �2. To arrive at a “shrunken D2” a reasonable approach would be to use the
“shrunken R2” in (18.12). In the context of multiple prediction, as opposed to multiple
correlation, an acceptable shrunken R2 is (see Huberty and Hussein, 2001)

R̃2 = 1 − N + p

N − p
(1 − R2). (18.15)

Equation (18.12) suggests that a shrunken D2 might be obtained using

D̃2 = R̃2

1 − R̃2

N(N − 2)

n1n2
;

therefore, from (18.13) and (18.15) we get

D̃2 = D2 N − p

N + p
− 2pN(N − 2)

(N + p)n1n2
.

However, this estimator is not acceptable because for small D2 and p large relative to
N , D̃2 may be negative. Another candidate for D̃2, which is a biased estimator for �2

but less biased than D2, is one proposed by Lachenbruch and Mickey (1968, p. 763):

D̃2 = D2 N − p − 3

N − 2
− pN

n1n2
. (18.16)

[This is the same as (15.1).]
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The MRA–PDA relationship presented in this section is “neat” if the discussion is
restricted to estimating the optimal hit rate, P (o). As noted in Section 15.3, however,
the true hit rate of greater interest in practice is the actual hit rate, P (a). In the two-
group context, G. J. McLachlan derived a formula estimator for P (a), 1 − Q, which
was discussed in Section 15.3 [see (15.6)].

A final comment about the relationship between MRA and PDA may be
summarized as below.

MRA PDA

1 group of units J ≥ 2 groups of units
1 predictor composite J predictor composites

18.5 NECESSARY SAMPLE SIZE

A rule of thumb for minimum sample size in predictive discriminant analysis was
advanced in Section 15.7. To repeat, it was suggested that the smallest group be
comprised of at least 3p units. A basis for this guide is presented in this section. [This
section is built largely on the work of Lachenbruch (1968).]

As mentioned in Section 18.4, the true or optimum2 hit rate with equal priors and
equal costs in a two-group situation is

P (o) = φ

(
1

2
�

)

, (18.17)

where φ denotes the standard normal distribution function and � is the true inter-
centroid distance. For the purpose of developing a sample size table, we consider
estimating the expected hit rate over all samples of size n (= n1 = n2), P̃ 3. The
sample sizes sought are those required for P̃ to be within some specified value, γ , of
the optimal hit rate, P (o). The sample size, n (= n1 = n2), is a function of γ, �, and
p, the number of predictors. The values used in developing the table are γ = .05 and
.01, � = 1, 2, and 3, and p = 4, 8, 12, 16, and 20. Minimum required sample sizes
are given in Table 18.2.

Sample size requirements may be summarized as follows:

1. The greater the expected group separation, the smaller the sample size needed.

2. Smaller tolerance requires larger sample.

3. As the number of predictors increases, the required sample size increases, but
the ratio of n to p decreases.

2A hit rate is optimum in the sense that it would be the hit rate if all parameters were known (see
Section 15.2).

3 P̃ = φ






�

2

√
√
√
√

(N − p − 2)(N − p − 5)

(N − p − 3)(N − 3)
(

1 + 2p

�2n

)




.
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TABLE 18.2 Minimum Sample Size, n(= n1 = n2), in Each Group Required for P

to be Within γ of P (o)a

p � γ P n p � γ P n

4 1 .05 .642 15 16 1 .05 .642 54
2 .794 13 2 .791 41
3 .884 10 3 .885 31
1 .01 .682 89 1 .01 .682 350
2 .831 56 2 .831 202
3 .923 37 3 .923 125

8 1 .05 .642 28 20 1 .05 .642 67
2 .792 22 2 .791 51
3 .885 17 3 .884 38
1 .01 .681 172 1 .01 .681 421
2 .831 104 2 .831 250
3 .923 66 3 .923 154

12 1 .05 .642 41
2 .792 32
3 .885 24
1 .01 .683 300
2 .831 152
3 .923 96

aP (o) .= .691 if � = 1, .841 if � = 2, and .933 if � = 3.

4. Sample sizes for intermediate p values may be approximated using linear
interpolation.

From Table 18.2 it may be observed that for the more reasonable values, γ = .05
and � = 2, the required sample is about 3p. This was the sample size requirement
proposed in Section 15.7.

18.6 UNIVARIATE CLASSIFICATION

In many fields of study, the classification of analysis units into one of two groups
or categories based on a single predictor variable has a fairly long history. Over the
past five or six decades, univariate classification results have been utilized for two
purposes: (1) to assess the magnitude of the effect for the grouping variable—when
the two groups are pre-established and well defined—as it relates to the response
variable, and (2) to establish a “good” cutoff response variable score for setting a
standard so that the sample of units may be split into two groups to identify or label
the units appropriately.

The notion underlying an index of effect size may be related to the measure-
ment of overlap of two groups, an idea proposed over 65 years ago by J. W. Tilton
(1891–1955) in 1937. This idea was explicitly tied to the notion of effect size by Alf
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and Abrahams (1968), Huberty and Holmes (1983), Huberty and Lowman (2000),
Levy (1967), and Oakes (1986, pp. 53–55). The effect-size index used is a propor-
tion of total-group correct classifications. The relationship between the proportion of
correct classification and the squared point-biserial coefficient—an effect size index
often used in a two-group t-test setting—is discussed by Alf and Abrahams (1968)
and Levy (1967). The two-group univariate classification problem with a nonpara-
metric solution is discussed by Soltysik andYarnold (1994a) andYarnold and Soltysik
(1991).

When using a hit rate as an effect-size index for the two-group comparison problem,
the roles of the two variables involved are reversed from the roles in a two-group t

test. In the latter situation, the response variable is the outcome variable, while the
grouping variable is the predictor. It is just the reverse in a two-group classification
situation. For a researcher to use a hit rate as an effect-size indicator, it must “make
sense” for the response variable to play the role of a predictor.

The second purpose of two-group univariate classification pertains to determin-
ing cutoff scores. In some contexts this amounts to the setting of standards. Serious
consideration of prior probabilities of group membership (or base rates) in determin-
ing cutoffs was given about 50 years ago by P. E. Meehl (1920–2003) and Rosen
(1955). The problem of determining optimal—in the sense of maximizing hit rates
of interest—cutoff scores is discussed by Koffler (1980) and Rorer et al. (1966).
Gottesman and Prescott (1989) review the use and abuse of a particular assessment
instrument to classify individuals into one of two categories with consideration of
prior probabilities, separate group hit rates, and misclassification costs. Classifica-
tion rules considered are simply based on univariate cutoff scores. Hayes and Martin
(1986) address the usefulness of a test as a screening device for the placement of
gifted children. Various test cutoff scores are assessed via two-group classification
analyses where a classification result is determined simply by whether a child’s test
score is above or below a specified cutoff value.

Further Reading

The two-group situation in PDA has been studied extensively by statisticians and
methodologists. There are many writings devoted to both the theoretical and applied
aspects of the two-group problem. Below are some readings pertaining mostly to the
latter.

Aeberhard et al. (1993) propose a modification of the original regularized discrimi-
nant analysis two-group classification procedure that performs pretty well, even
for a “small” n/p ratio.

Bedrick et al. (2000) give a method for estimating the Mahalanobis distance
between two multivariate normal populations when a subset of the predictor
variables is measured via ordered categorical responses.

Cawley and Talbot (2003) propose a two-group L-O-O analysis for the kernel
function approach of linear PDA.



“c18” — 2006/3/9 — page 358 — #10

358 TWO-GROUP CLASSIFICATION

Chouvarda et al. (2003) give a very thorough discussion of a two-group PDA. They
discuss predictor deletion and bootstrapping using “artificial” data sets as well
as real data sets.

Cox and Pearce (1997) give an update on logistic classification and propose a
robust adjustment to the approach for the two-group situation.

Dorans (1988) proposes a shrunken generalized distance estimator for D2. Yet
another formula estimator for the two-group total error rate is presented.

Duarte Silva et al. (2002) find that when misclassification costs differ widely in
the two-group context, this may have a “major impact” on classification results.

Everitt and Der (1996, pp. 128–136) give a detailed discussion of a two-group
PDA via SAS.

Flury and Riedwyl (1988) cover the two-group situation extensively, using the
analogy between multiple regression and two-group PDA. In Chapter 8 they
discuss “identification analysis,” a sort of special case of two-group PDA with
n1 = n and n2 = 1. In Chapter 11 they present a novel approach to comparing
the covariance structures of two groups.

Fung (1995a) proposes two measures of influence on individual misclassification
probabilities in the normal-based linear two-group PDA.

Fung (1998) shows that two diagnostic measures he had proposed earlier for a
PDA data set are asymptotically equivalent and illustrated the equivalence with
two real two-group data sets.

Joachimsthaler and Stam (1989, 1990) review mathematical programming
approaches for the classification problem in two-group discriminant analysis.

Koolaard and Lawoko (1993) report results of an extensive simulation study that
compared eight methods of estimating error rates in a two-group linear PDA
context involving “correlated training data”; very briefly, L-O-O is one of the
recommended methods.

Koolaard and Lawako (1996) compare simulated two-group linear normal-based
PDA results with those based on a “Euclidian distance function.” Comparative
results depend on predictor intercorrelations.

Lei and Koehly (2003) simulate two-group data to compare predictive accuracy
of PDA versus logistic regression; no appreciable differences were found for a
number of imposed conditions.

Loh (1995) studies the efficiency of a “new adaptive ridge (linear) classification
rule” in a two-group context and concluded that it “performs reasonably well.”

Meshbane and Morris (1995) review the issue of equal versus unequal priors in
a two-group PDA; a simulation comparison indicated that use of equal priors
yielded good results when sample group sizes are similar.

Rubin (1990) finds, through simulation, that a quadratic rule was superior to 15
linear programming rules in the two-group case.

Rudolph and Karson (1988) discuss the effect of unequal priors and unequal mis-
classification costs. Even though the expression “MDA” is used, the authors
deal only with the two-group case.
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Snapinn and Knoke (1988) review bootstrapped and smoothed classification error
estimators. The focus for comparing four error-rate estimators is on an external
analysis.

Soltysik and Yarnold (1994b) present the multivariate optimal discriminant
analysis (MultiODA) approach with J = 2.

Vlachonikolis (1990) discusses two-group L-O-O PDA with equal priors using a
mixture of binary and continuous predictors; three proposed error-rate estimates
yielded decent results.

Xiao (1994) presents a modification—“regularization”—of the nonlinear mathe-
matical programming approach to two-group PDA; some computational
intensity is reduced.

Yarnold and Soltysik (1991) apply the “optimal linear discriminant analysis” in a
single predictor context; a maximum classification accuracy (MCA) method is
presented to determine the MCA for a maximum of nj = 30.

Yarnold et al. (1994) briefly review six classification methods, and focus on
one of them, optimal discriminant analysis (ODA), in a two-group, three-
variable medical example; the MultiODA method that involved L-O-O
mathematical/linear programming (which does not require normality or equal
covariance matrices, but is very computationally intensive) outperformed the
other five methods with n1 = 23 and n2 = 22.

Professor “Where is infinity?”

Student “Don’t know, but I drove it!”

EXERCISES

Computer Applications

1. Using the SAS and SPSS programs and the first two groups of the 3-group Ething-
ton data set (3GED), consider the nine variables as predictors and conduct two
analyses: (i) a multiple regression analysis using the grouping variable (with two
levels) as the criterion variable; and (ii) an internal PDA with a pooled covariance
matrix, proportional priors, and equal misclassification costs.

(a) Determine the set of nine regression weights.

(b) Find the difference of the nine corresponding LCF weights for the two groups.

(c) Verify that the weights from part (a) are proportional to the differences in part
(b) (i.e., the nine ratios are approximately the same).

(d) Verify that the results in Table 18.1 are the same as the results of your PDA.

(e) Find R2 from your regression analysis and D2 from your PDA. Then verify
(18.12) or (18.13).
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2. Using Table 18.2 as a reference, are the two group sizes (n1 = 76, n2 = 122)

for the 3-group Ethington data adequate for accurate—however you define
“accurate”—classification?

3. Suppose it is somehow determined that it is four times as serious to misclassify a
Group 1 into Group 2 as it is to err the other way. That is, C(1|2)/C(2|1) = 1

4 . To
take these relative misclassification errors into consideration [see (18.4)], let q1 =
2
3 and q2 = 1

3 —ignoring classification costs, q1 = 1
3 and q2 = 2

3 —and conduct
both an internal analysis and an external analysis using the first two groups of the
3-group Ethington data set. (SAS DISCRIM may be used to accomplish this.) Note
that C(1|2)π2/C(2|1)π1 = π2/4π1; this might imply the use of q1 = 4( 1

3 ) = 4
3

and q2 = 2
3 . But the package programs require the sum of the priors to be 1.0;

therefore, q1 = 2
3 and q2 = 1

3 may be used. With C(1|2)/C(2|1) = 1
4 , conduct a

PDA using Groups 1 and 2 of the 3-group Ethington data set. Compare your results
with those obtained in Exercise 1(d).

4. For this exercise consider only two groups of your personal data set—whichever
you want, assuming that you have more than two groups. (Delete categorical
predictors, if any.)

(a) Specify the two priors you would use.

(b) Is it reasonable to consider differential costs of misclassification? If so, do an
analysis with the unequal costs incorporated into your priors. How do your
results compare with those for equal costs?

(c) Check your group sizes with those in Table 18.2.
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Nonnormal Rules

19.1 INTRODUCTION

When approaching the problem of classification with measures on nonnormal
variables, the door is open to a number of possibilities. The discussion in Chapter 13
dealt with classification involving a set of continuous predictor variables whose
theoretical joint distribution was assumed to be multivariate normal. In this chapter
we deal with nonnormal predictor variables. Two types of variables are considered:
continuous nonnormal variables and categorical variables. The latter variables have
also been labeled “qualitative” and are variables that are typically measured using a
nominal scale.

Continuous nonnormal variables may come into play in a number of situations.
One situation is when there is a “ceiling” (or “floor”) effect that results when, for
example, a performance test is administered. The reader can undoubtedly think of
other situations that would yield asymmetric score distributions. Another situation
may result when a distribution of scores for one or more groups on one or more
variables is clearly bimodal. These are, perhaps, examples of hypothetical situations;
examples of classification using readily known and recognized continuous nonnormal
multivariate distributions may be somewhat rare.

Categorical response variables are, however, fairly common. Examples of
categorical variables that have been used in the literature as group membership
predictors are: sense modality preference, academic field, geographical residence,
race, marital status, ethnic group, gender, academic degree, disease presence, and
type of undergraduate training.

The ensuing discussion focuses on two approaches to handling data on nonnormal
variables in a prediction problem. The first is to transform the data so that the
transformed variables have good distributional properties. In particular, the target
form of the distribution is typically that of multivariate normality. If approximate
normality is obtained, the general form of classification rules discussed in Chapter 13

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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is applicable. Transformations appropriate for continuous nonnormal variables and
for categorical variables are presented. The second approach discussed is that of
obtaining estimates of posterior probabilities of group membership directly from the
data rather than assuming any particular distribution form. Here, too, both continuous
nonnormal and categorical variable situations are covered.

The interested reader may refer to Section 22.2 for more discussion of nonnormal
rules.

19.2 CONTINUOUS VARIABLES

The three analyses on which we now focus are used when no knowledge of underlying
predictor variable distribution form is available or assumed.

19.2.1 Rank Transformation Analysis

One data transformation that is generally applicable to nonnormal continuous
distributions is the rank transformation. For a given predictor variable, all the
N = �nj analysis unit observations in the J groups are pooled and then ranked
from 1 for the smallest observation to N for the largest. Midranks are used for
tied observations. This procedure is repeated across all p predictors. Then the usual
computer package programs are applied as if the data samples were taken from normal
distributions.

For a new analysis unit to be classified using the rule determined from the orig-
inal data, the unit’s observation must be assigned a rank. Let X(l) denote the lth
ordered observation on a given variable in the original data set; let XN+1 denote
the observation for the new unit, and let R(XN+1) denote its rank to be assigned as
follows:

1. If XN+1 < X(1), then R(XN+1) = R(X(1)) = 1.

2. If XN+1 > X(N), then R(XN+1) = R(X(N)) = N .

3. If XN+1 = X(l), then R(XN+1) = R(X(l)).

4. If X(l) < XN+1 < X(l+1), l = 1, 2, . . . , N − 1, then

R(XN+1) = R(X(l)) + [R(X(l+1)) − R(X(l))] XN+1 − X(l)

X(l+1) − X(l)

.

Note that R(XN+1) need not be an integer. If cross-validation of classification
results is desired (see Section 15.3), this interpolation process is a bit tedious. The
process is, however, readily accomplished by using a fairly simply written computer
program.

The analysis of the 3-group Ethington data set (3GED) using the rank
transformation can be done with the SAS package using the following commands:
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SAS SYNTAX FOR TRANSFORMING RAW DATA TO RANKS

proc rank data=A2 ties = mean out = two;
var counsum - - qesci;
ranks R1 - R9;

data A2;
set=two;
run;

proc discrim data=two pool=yes crossvalidate crosslist
posterr;

class grade;
var consum - - qesci;
priors ’1’=.25 ’2’=.50 ’3’=.25;
run;

The L-O-O classification results are given in Table 19.1. These results turn out
to be the same as the linear L-O-O results obtained via the standard normal-based
classification rule—see Table 15.2.

19.2.2 Nearest-Neighbor Analyses

It is reasonable to assume that analysis units that are close together (in the sense of
some appropriate metric) will belong to the same group. Thus to classify a unit whose
group membership is unknown, it may be desirable to weight the evidence of already
classified nearby units most heavily. This is, in effect, what nearest-neighbor (NN)
rules do.

Using a single-nearest-neighbor (1-NN) rule, a unit is classified into the group
corresponding to the membership of the single unit that is closest. If the number of

TABLE 19.1 Linear L-O-O Rank-Based PDA Results
for the 3-Group Ethington Data (3GED)

Predicted Group

1 2 3 Total

Actual Group 1 16 55 5 76
(.211)

2 12 99 11 122
(.811)

3 6 47 13 66
(.197)

Total 34 201 29 264
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units in each group is large, it makes some sense to consider, instead of the single
nearest neighbor, the most frequently represented among M nearest neighbors. Of
these M units, let mj represent the number of units that belong to Group j . The
posterior probability of unit u belonging to Group j is estimated by:

P̂ (j |xu) = qj · mj
∑J

j ′=1 qj ′ · mj ′
. (19.1)

(This is similar to normal-based posterior probability expressions in Section 13.3.)
With equal priors, the M-NN rule simply amounts to assigning the unit to the
group for which the proportion of the M nearest neighbors is largest, because in
this case,

P̂ (j |xu) = mj
∑J

j ′=1 mj ′
. (19.2)

An estimate of P(j |xu) for a given unit is the proportion of the M units that
are in the neighborhood of the xu that belong to Group j . The “neighborhood” of
xu is defined by the distance from xu to the Mth nearest unit from each of the N

units—adjusted by the priors as in (19.1).
Thus, the M-NN rule can be viewed as an attempt to estimate the posterior

probabilities of group membership from the available data. It seems reasonable, then,
to use a large value of M to obtain reliable estimates. On the other hand, it is desirable
that the M nearest neighbors be very close to the unit under consideration; this forces
the choice of a small M . Research on NN rules has not indicated how to choose an
optimal M value for a given situation. Cover and Hart (1967) have shown that there
exists no “optimum” M , M �= 1, for an M-NN rule. In a given situation, a researcher
might try, say, M = 1, 3, and 5, and make a choice by comparing the classification
results.

An NN classification is easily obtained through the SAS DISCRIM procedure. This
procedure has a number of options in addition to a choice of M—SAS uses K rather
than M . Only three are mentioned here. One option is that two different metrics may be
used to index the distance between units u andu′: the basic squared Euclidean distance,
(xu′ − xu)

′(xu′ − xu), or the squared Mahalanobis distance, (xiu′ − xu)
′S−1

e (xu′ −
xu), where Se is the (p × p) error covariance matrix. The latter distance index is,
by default, used by SAS with the “pool = yes” command. A second option is that a
minimum acceptable posterior probability of group membership (THRESHOLD=)
may be specified. A third option is a L-O-O analysis (using CROSSVALIDATE). As
pointed out by White (1994), however, there is (or, at least, was) a problem with the
SAS NN program in terms of the L-O-O analysis. The problem is that a SAS NN
L-O-O analysis yields “an optimistic bias” in the L-O-O results. White proposed a
modification of the SAS procedure that removes the bias. (As of mid-2005, the SAS
NN L-O-O output has not changed.)
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A nearest-neighbor analysis may be conducted on the 3-group Ethington data set
using the following SAS syntax.

SAS SYNTAX FOR A L-O-O NN ANALYSIS USING THREE GRADE
GROUPS AND NINE PREDICTOR VARIABLES

proc discrim pool = yes crossvalidate crosslist K = 3;
class grade;
var counsum - - qesci;
priors ’1’=.25 ’2’=.50 ’3’=.25;
run;

K=3 requests that a unit be classified based on the membership of the three units
closest to the target unit.

(Note that SAS uses K rather than M to specify the neighborhood size.)

The results of the linear L-O-O 3-NN analysis are given in Table 19.2. The three
separate group hit rates are .18, .66, and .18, respectively; the total group hit rate
is .41. The hit rates for Group 1 and Group 3 are comparable to those reported in
Table 15.2. For this data set, however, the 3-NN Group 2 hit rate of .66 is lower than
the normal-based hit rate of .81.

To classify a new analysis unit via SAS DISCRIM, the “TESTDATA = dataset
name ” option is used to identify a SAS data set listing the units to be classified—see
Section 16.9.1.

TABLE 19.2 L-O-O Linear 3-NN Results for the
3-Group Ethington Data

Predicted Group

1 2 3 Total

Actual Group 1 14 50 12 76
(.184)

2 20 81 21 122
(.664)

3 11 43 12 66
(.182)

Total 45 174 45 264
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19.2.3 Another Density Estimation Analysis

An expression for estimates of posterior probabilities of group membership was given
in Section 13.3 [see (13.8)] and is repeated here:

P̂ (j |xu) = qj · f̂ (xu|j)
∑J

j ′=1 qj ′ · f̂ (xu|j ′)
. (19.3)

In Chapter 13, density estimates, f̂ (xu|j), were obtained under multivariate normal
models [see (13.7) and (13.13)], thus giving the maximum probability rules stated
in (13.10) and (13.15). Earlier in this chapter, a simple “nonparametric” model
was considered in arriving at posterior probability estimates for the M-NN rule
[see (19.1)].

A more formal approach to density estimation in the context of predictive
discriminant analysis involves the use of something called kernel functions. Details
of this density estimation approach will not be given here (see, e.g., Hand, 1997,
pp. 79–87). It suffices to say that the estimates, f̂ (xu|j) in (19.3), are based directly
and explicitly on the sample nj vectors of observations. A computer program utilizing
kernel estimators has been developed and is distributed by J. D. F. Habbema and asso-
ciates in The Netherlands [see Habbema and Hermans (1977) for an application]. Five
different kernel methods are available via the SAS DISCRIM procedure.

19.2.4 Other Analyses

At least two other ways of handling nonnormal continuous variables have been sug-
gested and studied, to some extent. First, an alternative to the rank transformation,
namely, the inverse normal scores transformation, was used in a J = p = 2 context
by Koffler and Penfield (1982). (Only the case where the two predictor variables were
uncorrelated was considered.)

Second, rather than transform the data or estimate densities from the data directly,
one might assume that the posterior probabilities, P(j |xu), have a logistic form.
Most of the study of logistic classification has been restricted to the two-group case;
Albert and Lesaffre (1986) do, however, discuss the multiple-group case. Albert and
Lesaffre give credit to the pioneering work of J. A. Anderson (1939–1983) in the
study of logistic classification. Logistic classification is discussed (with references)
in Section 21.2.2.

19.3 CATEGORICAL VARIABLES

Just as when dealing with continuous nonnormal predictor variables, two approaches
will be discussed for dealing with categorical predictors: (1) obtaining estimates of
posterior probabilities directly from the data; and (2) transforming the data so that
normal-based rules can be used. One analysis that exemplifies the first approach is
discussed briefly, whereas three analyses involving transformations are described in
some detail.
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The analyses discussed in this section need only be considered with a restricted type
of categorical variable. This type is the unordered categorical variable having more
than two categories. Other types, such as ordered two-category, ordered multicategory,
and unordered two-category, are easily handled by transforming them to a form that is
adaptable for normal-based analyses. A binary or dichotomous variable can be scaled
(or metricized or calibrated) by using a 0–1 assignment. It has been shown (Bryan,
1961, p. 735) that this “scaling” is optimal; Maxwell (1961) suggests the 0–1 scaling
for dichotomous variables in the extraction of canonical variates. Thus for a variable
such as Gender, the value for male could be 0, and that for female 1.

Another special type is an ordered categorical variable. The way this type can be
handled is to use integer scaling. For example, with the variable socioeconomic status,
it is reasonable to assign 1 for low, 2 for middle, and 3 for high. See Krauth (1986)
for another scaling method for ordered categories.

So, then, the only type of categorical predictor that calls for special attention is one
with three or more unordered categories, the type discussed in the remaining part of
this section. Examples of such variables are marital status, college academic major,
occupation, and disease diagnosis.

19.3.1 Direct Probability Estimation Analysis

The proportion of analysis units from a category of a variable being in a particular
criterion group may be used as an estimate of the probability that units in the category
belong to that group. This notion is the basis for estimating posterior probabilities of
group membership directly from the sample data. There is an obvious problem with
such an analysis. Unless the total number of variable-category “cells” is small relative
to the total number of units, such probability estimates will be unreliable because some
or many of the estimates may be based on little information. [This problem has become
known as Bellman’s curse of dimensionality; see Hand (1997, p. 80).] For this reason,
plus the existence of other acceptable analyses (see the next three subsections), this
analysis will not be elaborated upon here. Overall and Klett (1972, Chapter 16) present
a detailed discussion, plus listings of computer programs for this analysis. McLachlan
(1992, Chapter 7) discusses theoretical aspects of multinomial-based classification.

19.3.2 Dummy Variable Analysis

One way of dealing with a categorical variable is to transform it to binary form by
means of defining dummy (or indicator) variables. For example, in place of X =
marital status (1 = single, 2 = married, 3 = divorced or separated, 4 = widowed),
X1 = 1 if single, 0 otherwise; X2 = 1 if married, 0 otherwise; X3 = 1 if divorced or
separated, 0 otherwise, may be used. For this example, the transformation produces
three new variables from the one four-category variable. If there are p categorical
variables, the ith one having ci categories, the dummy variable transformation would
yield �

p
i=1(ci − 1) different binary variables. Here, too, with this analysis one would

be confronted with the curse-of-dimensionality problem.
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19.3.3 Overall–Woodward Analysis

A second transformation is due to Overall and Woodward (1977). With this analysis,
all p categorical variables are analyzed simultaneously. The method of analysis is
developed by analogy to that of deriving linear discriminant functions (LDFs). It
is essentially a principal component analysis of frequency patterns across the cat-
egorical variables. Suppose that there are p categorical variables, ci categories for
variable Xi , yielding a total of C = �

p
i=1ci categories. The C × N incidence matrix

containing the category incidences is used to arrive at a C × J matrix, Z, of propor-
tions of units in each of the J groups that fall in each of the C categories, deviated
about the unweighted mean of each category proportion across all J groups. That is,
the j th column of Z is defined by the C × 1 vector pj − p̄, where pj is the vector
containing the proportion of units in Group j that fall in each category, and p̄ is the
vector containing the unweighted mean of the category proportion vectors across all
J groups. The Z matrix is then transformed to Z̃ = D−1Z, where D is the C × C

diagonal matrix containing the positive square roots of the mean (over the J groups)
error variances for the 0–1 observations in the C categories.

The r principal components of the C × C matrix, Z̃Z̃′, are then found. Let Ã be the
C × r matrix of the r components (i.e., eigenvectors) of Z̃Z̃′. The elements of A =
D−1Ã are the raw-score category weights that define the r components. Thus each
unit has r values for analysis input. These r values are simply sums of the elements
of A corresponding to categories in which the unit belongs. For this transformation,
r new response “variables” are produced to represent the p categorical variables.

19.3.4 Fisher–Lancaster Analysis

The third and final transformation to be considered is one that yields scale values
for each category, separately for each variable. For p categorical variables, there
will result p sets of scale values. The procedure was independently developed, from
different points of view, by Fisher (1940) and H. O. Lancaster (1913–2001) in 1957.
The scale values are found, in a Fisher sense, so that the group discriminatory power of
a given variable is maximized; in a Lancaster sense, the leading canonical correlation
between the grouping variable and the categorical variable is maximized.

For a categorical variable Xi , a ci × J table of frequencies is constructed. Then
a ci × ci matrix, M , is formed; entries of M are functions of entries of the ci × J

incidence matrix:

mii′ =



J∑

j=1

nijni′j
n·j

− ni·ni′·
N



 (ni·ni′·)−1/2,

where nij is the frequency in category i for Group j . The largest eigenvalue of M

and the associated eigenvector, v, is obtained. Scale values for category k of xi are
obtained using

wik = vik√
nk·

. (19.4)
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The wik values are the optimum category values that are used in scoring the given
categorical variable. That is, a unit in the kth category of variable Xi is given a score
of wik . The process is repeated for all p variables, thus yielding q sets of w values.

What is accomplished via this analysis is a single “optimum” scaling of the
categories for each categorical variable. In a canonical analysis, however, there often
exists more than one nonzero eigenvalue of interest. In the present context, there are
s = min(J, ci) nonzero eigenvalues for each categorical variable, one of which is
unity; interest is on the remaining s − 1 eigenvalues. Therefore, potentially, there are
s − 1 sets of category values for each categorical variable. There is some question as
to whether or not the less-than-optimal scales should be used. In the current book,
only the first scale is considered.

The Fisher–Lancaster analysis has been studied extensively by Badarinathi (1983),
Bryan (1961), and Kundert (1973). Henschke et al. (1974) present a detailed descrip-
tion of the technique—the radical sign in the formula for the wik values was
inadvertently deleted by these authors on page 110. This transformation has the same
goal as that of the computer algorithm discussed by Young et al. (1976); namely, to
maximize a canonical correlation.

A listing of a computer program (written by J. M. Wisenbaker, University of
Georgia) labeled FLPC that can be used to accomplish the Fisher–Lancaster analysis
may be found at the Wiley website.

Of the four categorical variable analyses mentioned in this section, the Fisher–
Lancaster approach is preferred; see Huberty et al. (1986) for elaboration of this
preference. This approach is illustrated in Section 19.4.

19.3.5 Other Analyses

Other analyses for handling categorical variables, as well as the use of kernel functions,
nearest-neighbor methods, and logistic functions, are discussed by Hand (1997,
Chapter 5).

19.4 PREDICTOR MIXTURES

In many areas of study it is common to find that a set of predictors includes continuous
as well as various types of categorical variables. Examples of such sets appear in
medicine (Afifi and Azen, 1979, pp. 16, 23), in pharmacy (Solander, 1978), in social
science (Talarico, 1978), in marketing (Dillon et al., 1978) and in education (Bobbitt,
1990), to list a few. It is desirable to have analysis methods to handle mixtures of
variable types.

With the analyses discussed in Sections 19.2 and 19.3, one can entertain the use
of virtually any mixture of variables. An application of the Fisher–Lancaster method
will now be illustrated.

Consider the HSB data set described inAppendixA.With this data set, X1 (Locus of
Control) and X2 (Self-Concept) are continuous, whereas X3 (Occupational Aspira-
tion at age 30) and X4 (Main Activity in the year after high school) are unordered
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TABLE 19.3 Category Weights for X3 and X4 in the
HSB Data

Variable Category Weight

X3 1 −1.625
2 .636
3 .952
4 −.535
5 1.040

X4 1 1.123
2 −1.060
3 .778
4 .805

categorical variables. Variable X3 has five categories while X4 has four categories.
Even though more than one set of Fisher–Lancaster weights [see Eq. (19.4)] is obtain-
able with the HSB data, only the first or “leading” set is considered for each variable.
The two sets of weights are given in Table 19.3. A unit in the, say, second category
of X3 is assigned an X3 “score” of .636, while an analysis unit in the fourth category
of X4 is assigned a score of .805.

Thus, such a scaling of X3 and X4 enables a researcher to analyze data on
X3 and X4 along with data on X1 and X2 with the “standard” PDA (and DDA,
too, for that matter) computer programs. Illustrative results are given by Huberty
et al. (1986).

19.5 COMMENTS

A researcher could, of course, ignore the concerns of lack of normality when dealing
with continuous variables. Of course, too, normality is not a prerequisite to deriving
linear (or, even quadratic) classification functions for the purpose of group assignment.
LCF values are mere linear composite scores. The optimality of the results,
however, might be in question. That is, by using the LCFs for assignment pur-
poses, one cannot be assured that the number or proportion of analysis units
correctly classified is a maximum or even close to a maximum. The robustness of
the LCF rule to nonnormality has been studied almost exclusively in a two-group
setting, with the Baron (1991) three-group trivariate study being an exception. Baron
also summarizes a number of two-group studies of LCF robustness to nonnormality.
Five factors that may affect the degree of robustness are (1) sample size, (2) covariance
structure, (3) group separation, (4) type of nonnormality, and (5) data structure. As
may be obvious, robustness of an LCF rule to nonnormality is not a simple issue; the
general extent to which optimality is sacrificed using nonnormal predictors has not
been well established. Suggested ways of handling nonnormal predictor variables are
summarized in Table 19.4.
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TABLE 19.4 Suggested Ways of Handling
Nonnormal Predictors

Nonnormal Type Way of Handling

Continuous Rank transformation
Bernoulli 0–1 scoring
Ordered categorical Integer scaling
Unordered categorical Fisher–Lancaster scaling

Because of lack of reliability of predictor measures, ordered categories may be
imposed on continuous predictors for the purpose of classification, a suggestion made
by Lykken and Rose (1963, p. 140).

A final recommendation might be considered. Suppose scores on predictor
variables of interest are obtained via some type of questionnaire that consists of a
set of items. It is recommended that item scores should not be considered as variable
scores. Rather, what should be used to obtain variable scores is some type of dimension
reduction. An analysis that may be used is a principal component analysis (PCA).
With such an analysis, one obtains a set of components that are linear composites
of the item scores. The number of components to retain to identify more meaningful
variables is, again, a judgment call. See Khattree and Naik (2000, Chapter 2) for
PCA details.

Further Reading

Readings in four areas of nonnormal classification are provided.

Classification with Discrete Predictors
Coste et al. (1997) propose the optimal discriminant analysis for ordinal responses

(ODAO) method for classifying analysis units using predictor variables that are
scored using an ordinal scale.

Dillon and Westin (1982) report the study of the effect of the number of levels of an
unordered categorical variable on the classification performance when dummy
coding is followed by the use of a linear rule versus four discrete methods in a
two-group setting. Monte Carlo simulated data are used.

Gitlow (1979) compares the dummy variable approach with a multivariate nominal
scaling approach using real data with three groups.

Hand (1983) illustrates the application of a linear classification rule and a kernel
rule with six real data sets.

Krauth (1986) proposes cluster analysis and PDA procedures for ordered
categorical response variable measures which are based on a natural definition
of the neighborhood of configurations.

Yarnold et al. (1998) focus on the use of optimal discriminant analysis (ODA) with
binary data.
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Classification with Variable Mixtures
Choi (1986) includes articles by W. J. Krzanowski and by I. G. Vlachonikolis that

cover PDA with a mixture of continuous and categorical variables and with a
mixture of continuous and binary variables, respectively.

Krzanowski (1980) uses a classification analysis based on a “location model” to
illustrate the handling of a two-group real data set consisting of measures on
seven continuous variables, two binary variables, and two three-level categorical
variables.

Krzanowski (1994) discusses a quadratic PDA approach when some of the pre-
dictors are continuous and some are categorical (binary or with three or more
unordered categories).

Kumar and Sahai (1993) illustrate the prediction of 1 of 4 family planning devices
using 12 predictors, 9 of which are continuous, 2 unordered categorical, and
1 dichotomous; the 4 group hit rates ranged from .77 to .83 (with unspecified
priors).

Comparison of Classification Methods
Baron (1991) reports on the robustness of linear PDA to nonnormality and

compares the (internal) classification accuracy of linear PDA, kernel density
estimation, rank PDA, and logistic PDA using simulated three-group trivariate
data. For normal and nonnormal data, logistic PDA performs quite well. Many
two-group comparison studies are cited.

Boothby and Brewer (1990) compare real-data two-group classification results
yielded by a logit analysis, a discrete analysis, and a linear PDA; a hold-
out sample validation approach is used with varying misclassification cost
functions.

Hand (1992) briefly reviews nine formulations of classification rules applicable
with continuous and categorical variables and refers to Campbell et al. (1991),
who concluded that classifications based on ordinal models confer no advantage
over some other approaches.

Joachimsthaler and Stam (1988) compare the use of the LCF, QCF, logistic model,
and a model based on linear programming on a variety of normal and nonnormal
predictor distributions in a two-group setting. Simulated data are used.

Johnston and Seshia (1992) compare a nonparametric PDA with a normal-based
linear PDA, linear regression, and logistic regression when all predictors and
the grouping variable are categorical variables with ordered categories.

Long (1997) points out some potential problems of using integer scaling with
ordered categorical variables.

McLachlan (1992) devotes a chapter to a discussion of logistic discrimina-
tion, reviews comparisons of LCF and logistic approaches to classification
(Chapter 8), and reviews a number of studies in which performance of various
nonparametric rules are compared (Chapter 9).
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Munakata-Marr et al. (2003) use real data to compare the k-nearest-
neighbor method with what they term “penalized discriminant analysis” and
“GelCompar 11” methods.

Nath et al. (1992) compare linear, quadratic, and mathematical programming
rules for the two-group situation. Normal distributions as well as four non-
normal distributions are simulated. Comparisons are mixed across various data
conditions.

Schmitz et al. (1983) compare the performance of the LCF, QCF, a logistic model,
and a kernel model on a mixture of continuous and discrete predictors in a
two-group setting. Simulated data are used.

Srinivasan and Kim (1987) compare six different classification rules (linear and
quadratic, unordered logit analysis, goal programming, recursive partition-
ing algorithm, and an analytic hierarchy process) using risk (high risk versus
non-high-risk) as the grouping variable and six financial variables plus two
categorical variables as predictors. Real data (n1 = 39, n2 = 176) are used.

Other
Steel and Louw (2001) present formulas for exact calculation of bootstrap estimates

of expected prediction error for k-nearest-neighbor classification, and propose
a “weighted k-NN classifier” based on resampling ideas.

Velilla and Barrio (1994) propose a data transformation for nonnormal distributions
in a linear or quadratic PDA context.

Definition Ordinal scale: Device for taking weights in the Vatican.

EXERCISES

1. Identify at least two continuous variables of interest in your area of study whose
score distributions are clearly nonnormal.

2. Identify five categorical variables of interest in your area of study, three of which
at least have more than two unordered categories.

3. For each of the variables identified in Exercises 1 and 2, specify a means of
transforming the “scores” so that the transformed scores may be used as input for
a normal-based analysis.

4. Specify how your would numerically scale (i.e., “measure”) each of the following
predictors:

(a) Satisfaction with salary (Excellent, Good, Fair, Poor)

(b) Disease stage (initial, advanced)

(c) Product preference (Brand A, Brand B, Brand C)
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5. Suppose you have a categorical predictor variable—three unordered categories—
and want to conduct a PDA with the predictor along with some other continuous
predictors. Briefly discuss how you would proceed.

Computer Applications

6. Using the SAS package, run two or three nonparametric analyses on the 3-group
Ethington data set (3GED) via the DISCRIM procedure. Consider some combina-
tions of options available through DISCRIM: THRESHOLD, CROSSVALIDATE,
POSTERR, POOL, and perhaps others (you decide). For each analysis, obtain clas-
sification tables using any option combination(s). Based on the resulting tables,
make some rough (eyeball) comparisons among the analyses (on the Ethington
data). (“Rough” is used because bona fide comparisons can only be made using
methods discussed in Section 17.5.)

7. Consider your personal data set:

(a) If you included some categorical predictor(s), transform it (them) using a
method described in this chapter.

(b) Conduct a PDA with all of your predictors.
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Reporting PDA Results

20.1 INTRODUCTION

Prior to reporting results of a predictive discriminant analysis (PDA), an indication
of the purpose of using a PDA should be clearly stated. Is the analysis used to verify
some theory? To establish a prediction rule to be used in the future? To validate some
categorization method? To determine some type of “cutoff” score(s)? To support
results of another analysis? To identify specific types of analysis units?

In addition to addressing the purpose question, there are other reporting basics to
which the writer should attend. Suggestions are made in this chapter for describing the
study, design, context, and analysis (group definitions, variables and their measures,
computer software used, classification rule used, and descriptives) as well as for the
classification results themselves. [An excellent discussion pertaining to the reporting
of quantitative results is given by Bailar and Mosteller (1992).]

Using the 3-group Ethington data set (3GED), a brief discussion of reporting PDA
results will be given.

20.2 EXAMPLE OF REPORTING PDA RESULTS

Introduction Just as in reporting DDA results (see Section 7.2), a PDA study
introduction should include a very clear purpose statement, as well as a review
of related literature. The purpose of the current study is to assess the accuracy of
predicting academic grades of 264 community college students using nine student
characteristics as predictors.

Study Design For our data set, the three criterion groups are defined as A students
(n1 = 76), B students (n2 = 122), and students who earned C or C− (n3 = 66).
Of the large number of “variables” obtained on the basis of responses to items on
the CCSEQ, nine predictors were identified. Predictor identification was based on a

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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minimum of the sum of six item scores. Reliability and validity information for the
last six predictors is provided by Ethington and Polizzi (1996). The nine predictors
were selected on the basis of professional judgment of their relevance to predicting
student grades.

No missing data were found in the 264 × 9 data matrix; also, no aberrant predictor
scores were present.

Computer Software Used The latest versions of SPSS DISCRIMINANT and SAS
DISCRIM were used for the data analyses. [In some PDA applications, one may refer
to Fraley and Raftery (2003) for the use of another software package, MCLUST.]

Descriptives The reporting of variable descriptives for a PDA study would be the
same as the reporting for a DDA study—see Section 7.2.

Requisite Classification Rule Information We assumed that the joint distribution
of each of the nine predictor variables is approximately normal in each of the
three populations. Two tests of the equality of the three covariance matrices
provided no evidence to conclude that they are different. The SPSS test results are
F(90, 125132)

.= 1.191, P
.= .105; χ2(90)

.= 107.25, P
.= .104.Also, logarithms of

the three covariance matrix determinants are 24.6, 23.1, and 22.5. This information
indicated that there is support for the use of a linear classification rule.

Deciding on the prior probabilities of grade prediction to be used is based on
researcher judgment. We arrived at the following priors: .25, .50, and .25.

An external classification rule is generally recommended to estimate group hit
rates. Therefore, a linear leave-one-out (L-O-O) rule was used.

A final data examination was made. What was sought was the possibility of deleting
one or more predictors before performing our final PDA. We judged that all nine
predictors should be retained. (If predictor deletion is done, an all-subsets program
should be used.)

Classification Results

Individual Student Prediction Results To list the three posterior probabilities of group
membership for each student would probably go against the wishes of most journal
editors. [For an exception, see Seshia et al. (1983), who reported the largest poste-
rior probability for each of 104 units.] This information should, however, be made
available upon request. In addition to the individual student posterior probabilities,
student typicality probabilities associated with the predicted Grade may also be made
available. The latter probabilities (obtained from SPSS output) may be examined to
determine possible outliers and in-doubt students—see Section 15.6.

Grade Prediction Results The 3 × 3 classification table is given in Table 20.1. The
three separate group hit rates are given in parentheses on the main diagonal. The total-
group hit rate is (16 + 99 + 13)/264

.= .485. It may be noted that the total-group hit
rate is only approximately 19 percent better than what may be expected by chance.
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TABLE 20.1 Linear L-O-O Group Classification Results

Predicted Group

1 2 3 Total

Actual Group 1 16 55 5 76
(.211)

2 12 99 11 122
(.811)

3 6 47 13 66
(.197)

Total 34 201 29 264

The Group 1 and Group 3 hit rates are no better than what may be expected by chance.
The Group 2 hit rate (.811) is, however, about 62 percent better than what may be
expected by chance. That is, predicting a grade of B is about 62 percent better than
chance by using the derived classification rule. [The author(s) of a manuscript that
reports chance results should give a reference.] It may also be informative to report
classification results using some THRESHOLD value—see Section 15.6.

Classification Rule for New Students The (linear) classification rule developed
with the sample of 264 community college students may be used with new students
(assuming measures on the nine predictor variables may be obtained). The (linear) rule
to be used is in the form of three linear composites of the nine predictors. The three sets
of weights (and constants) are given in Table 20.2. Given a set of nine predictor scores
for a new student, a linear composite score for Group 1 is found by multiplying each
predictor score by the respective weight, summing these nine products, and adding
the constant. Three such composite scores are found, and the new student is assigned
to the group for which the largest composite score is determined.

TABLE 20.2 Classification Rule Weights (and Constants)

Variable G1 G2 G3

X1 −.0496 −0.320 −0.241
X2 0.039 0.064 −0.012
X3 0.442 0.486 0.567
X4 0.055 0.069 0.058
X5 0.354 0.242 0.318
X6 0.107 0.115 0.094
X7 0.529 0.554 0.436
X8 0.348 0.371 0.350
X9 0.218 0.164 0.125
Constant −16.121 −15.785 −15.798
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As an example of applying a classification rule derived from a given data set to a new
student will now be illustrated. Suppose the nine predictor scores for a new student
are: X1 = 3, X2 = 12, X3 = 13, X4 = 9, X5 = 11, X6 = 13, X7 = 10, X8 = 14,
and X9 = 14. For this student, the three LCF scores are LCF1

.= 7.60, LCF2
.= 8.15,

and LCF3
.= 19.33. Because the LCF3 score is highest, the new student would be

identified with Group 3. That is, with this student’s predictor score vector, he/she
would be predicted to earn a C or C−. It should be noted that such a procedure to
classify/identify a new student may very well suggest that the predicted grade for
a new student may be doubtful (e.g., A versus B). This may suggest some type of
guidance for the new student.

In a research situation where it is clear that a quadratic classification rule is appro-
priate, calculation of respective group composite scores is much more complicated.
An example of applying a quadratic rule is given in Section 16.9.

Conclusions/Discussion The purpose of this study was to determine how well three
academic grades of community college students may be predicted, using predictor
scores based on college experience questionnaire responses. Of the three grades
considered (A, B, and C or C−), it was found that for only the B group was the
prediction accuracy of some note. The B group hit rate was approximately 81 percent,
which is about 62 percent better than a chance hit rate.

A classification rule for use with new students was developed. Group
assignment/identification for new students may be helpful for student guidance
purposed.

The results of this study should be presented in connection with previous
research—discussed in the Introduction. The comments at the very end of Section 7.2
pertaining to giving references in reporting DDA results apply to reporting PDA
results as well.

20.3 SOME ADDITIONAL SPECIFIC PDA INFORMATION

Typical reporting of PDA results in journal articles focuses on the classification based
on the computer data set. That is, it appears that most interest is on the total group hit
rate and, rarely, on separate group hit rates. In a “practical” study situation, one would
want information in addition to hit rates. For example, it might be of some practical
value to “profile” certain community college students.Arriving at a profile for students
who are “clearly” (using a THRESHOLD of, say, .45) predicted to earn a C or C−,
might suggest some advice that could be given to new students. A profile for such
a student may be developed by examining the 9-element mean vector for the 10
students (see Table 15.4) who were “clearly” predicted to get a C or C−—such a
profile would reflect a typical C or C− student. Similarly, for advisement purposes,
profiles of B students who were predicted to earn a C or C− may be found—for the
Ethington data, 8 such students were “clearly” determined (see Table 15.4). Profiles of
in-doubt students might also be examined.After predictor deletion has been examined
(discussed in Section 17.2), profiles of typical students may be a much easier task.
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A final comment is in order here. The above profiling should only be considered
for analysis units that belong to groups for which classification accuracy is better than
chance—see Chapter 16.

20.4 COMPUTER PACKAGE INFORMATION

Computational results for a PDA may be obtained via SAS or SPSS. A summary of
such information, in addition to the usual descriptives, is given in Table 20.3.

20.5 REPORTING TERMS

Following are some terms that might be used in reporting results of a study in which a
predictive discriminant analysis is conducted. For some parts of the write-up there are
alternative terms, the choice between which would depend on the research situation
and on the research questions of interest.

• Grouping variable
• Predictor variables
• Group covariance homogeneity
• Linear/quadratic classification rule

TABLE 20.3 DA Printout Information

SAS DISCRIM SPSS DISCRIMINANT

Preliminary = �s Yesa Yesb

PDA
Internal

Linear Yes Yes
Quadratic Yes Yes

External
Holdout Yes Yes
L-O-O

Linear Yes Yes
Quadratic Yes Yesc

LCFs Yes Yes

Posterior Probability Yes Yesd

Typicality Probability No Yes

aChi-squared test.
bF test.
cResults are incorrect.
dOnly two are reported.
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• Prior probabilities of group membership
• Misclassification costs
• Predictor deletion
• Predictor ordering
• Categorical variable scaling
• In-doubt units (use specific term)
• Outlying units
• Internal classification
• Leave-one-out classification
• Separate group hit rate (or classification accuracy)
• Total group hit rate
• Proportional/maximum chance criterion
• Better than chance
• Improvement over chance
• Judgment

While reading reports or journal articles in which group membership prediction
(discussed in Part IV) or in which group separation (discussed in Part II) is studied, it is
not uncommon to find general descriptive terms used, such as discriminant analysis or
multiple discriminant analysis or discriminant function analysis. Unless a reference
(with specific page numbers for a book) is given, such terms have little informative
value and may even be misleading—this may be the case even if a reference is given.
The first term tells the reader little. Does it imply a predictive discriminant analysis
(PDA)? A descriptive discriminant analysis (DDA)? Or, a mixture of the two? Some-
times the second term is used to mean multiple response variables and sometimes
to mean three or more groups. Like the first term, multiple discriminant analysis
is a nondescript term. Although more specific, the third term (discriminant function
analysis) can also be misleading.As pointed out by Tatsuoka (1988, p. 369), “The term
‘discriminant function’ has come to be used in two different senses in the literature.”
One is the sense in which it was used in Section 13.4 (as a classification function),
and the other, as it is used in Section 5.2 (as a linear discriminant function). These
two composites, or “functions,” are quite different. It is recommended that none of
the three expressions given above be used in reporting either a PDA or a DDA.

It would be much more informative if the writer would use specific, well-defined
terms. Meanings and even definitions of terms need not be given in a report; rather,
reference may be made to a book (giving specific page numbers). In Section 7.7, there
is a list of nine “expressions” we suggest that a researcher “shy away from.”

For tips on writing in general, and tips on reading quantitative material, the
interested reader might refer to Abelson (1995), Best (2001), Cohn (1989), Crossen
(1994), Huff (1993), Lederer and Downs (1995), Moroney (1951), and Murray
et al. (2001). These eight books contain many helpful—some being humorous—
suggestions. The same may be said regarding at least five books written by a
mathematician, J. A. Paulos (1985, 1988, 1991, 1995, 2000).
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20.6 SOURCES OF PDA APPLICATIONS

As mentioned in Section 7.5, examples of applications of PDA may be obtained by
conducting a Web search using the key word “discriminant analysis.” (A warning
about using a published application as a “model” is given in Section 7.5.)

Five specific sources for applications of PDA follow.

Baron (1991) refers to a number of applications of PDA in medical research.

Devillers and Karcher (1991) refer to numerous applications of PDA in toxicology,
ecology, and related fields; this edited volume includes one study (by Gombar
and Enslein) that is a detailed application of a two-group PDA of a structure–
activity relationship.

Hand (1997, Chapter 10) discusses applications of PDA in four different
contexts: chromosome analysis, credit scoring, speech recognition, and char-
acter recognition.

Jurs (1986) refers to a number of applications of PDA in the area of analytical
chemistry.

McLachlan (1992, pp. 201–211) presents two very detailed discussions of two
PDA application contexts: genetic counseling and diabetic diagnosis.

20.7 CONCERNS

Applications of predictive discriminant analysis have been quite widespread during
the past two decades. The increase in the use of PDA is due, in part, to an increase
in teachings (formal coursework in academe and professional workshops) and in
writings (textbooks and journal articles). Teaching and writing are media through
which translations from statistical theory and formal presentations are often made to
practicing researchers. More such translations will mean more and (hopefully) better
applications. One of the problems with the practice of scientific inquiry pertains to
the delay (in years) that occurs between translation and application. In the interim
we often find misuses (abuses?), misinterpretations, and misapplications of some
techniques/procedures and reporting of questionable results by some practicing
researchers. So we progress in growth!

There are four concerns that pertain to applications of PDA and the reporting
of PDA results. The first concern with many published applications is the focus on
internal rather than external classification results (see Section 15.3).A second concern
is with the assessment of the goodness of the classification results. This concern
pertains to comparing the obtained results to results that could have been obtained “by
chance.” Willis (1984) points out some misleading conclusions that can be reached
by ignoring the maximum-chance criterion (see Section 16.3) when criterion group
sizes differ widely. A third concern is with criteria used to delete and order predictor
variables in a PDA (see Chapter 17). The fourth concern is the “mix” of predictive
and descriptive discriminant analysis, along with the (usually questionable) use of
“stepwise discriminant analysis” that are still fairly prevalent in the applied literature.
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Huberty and Hussein (2003) reviewed 20 journal articles (1998–2000) that reported
applications of discriminant analysis. Generally, the reporting was found to be some-
what lacking. One problem found was the “mixing” of PDA and DDA. One view of
PDA versus DDA is given in Table 7.8.

20.8 OVERVIEW

An overview of predictive discriminant analysis in the form of a flowchart is given in
Figure 20.1.

Group definition 

Predictors 
(theory; past research; measurements; domain(s); cost) 

Collect and edit data 

Misclassification costs; prior probabilities 

Predictor deletion 

Chance hit rates Predictor ordering 

Prediction rule  
for new units 

External analysis 
(holdout; leave-one-out) 

Outliers 
[distance; P (x j)]

Improvement-over-chance

Fence-riders 
[P(j x)]

Figure 20.1 Predictive discriminant analysis.
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Further Reading

Finn et al. (1997) apply both linear and quadratic PDAs to six sites of sockeye
salmon in Alaska using 11 to 17 different site salmon amplitudes as predictors;
with site sizes from 52 to 157, linear and quadratic “cross-validation” results
were mixed.

Harris and Kaine (1994) apply cluster analysis and discriminant analysis (both
DDA and PDA!) to a five-variable data set.

Huberty and Hussein (2003) describe the reporting of discriminant analysis in 20
behavioral science journal articles (1998–2000). Both a DDA and a PDA were
conducted on the same data set in nine of the articles. In general, the reporting
of discriminant analysis results was very disappointing.

Mason (1998) constructs and validates a quadratic PDA method for forecasting
rainfall in South Africa.

Parker and Leinhardt (1995) point out the distinction between the use of
“percent”and the use of “percentage.”

Definition t test: Admission procedure used in English public schools.

EXERCISES

1. From journals in your substantive area that publish empirical studies, select an
article that reports an application of PDA. Comment on the extent to which each
of the following is discussed.

(a) Purpose

(b) Descriptions of group definitions, predictor variables, predictor measures, and
sampling procedure

(c) Computer program used

(d) Classification rule used

(e) Variable deletion/ordering

(f) Individual unit results

(g) Group results (internal or external? relative to chance?)

2. Propose a study in your discipline that would call for a PDA. Indicate some design
and analysis specifics for your research study.

3. Consider a data set specified by you or your instructor. Carry out a PDA on these
data. Giving your data set some “context,” write up a report of your analysis.

4. This exercise pertains to your personal data set (Exercise 2 in Chapter 1). Draft
a brief introduction, sections describing your methods (analysis units, sampling,
variables, variable measures), and sections pertaining to results and interpretation.
All computer output should be retained. You might even include some references
on substantive related material as well as on analyses. Give it a try!
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PDA-Related Analyses

21.1 INTRODUCTION

A few multivariate analyses “related” to normal-based predictive discriminant analysis
(PDA) were briefly mentioned earlier in Part IV. In this chapter, we define and
briefly discuss seven PDA-related analyses. Two fairly nonspecific categories are
used: nonlinear methods and other methods.All of the stated definitions are cited from
Dodge (2003). To conclude this chapter, additional readings are given for PDA-related
methods.

21.2 NONLINEAR METHODS

21.2.1 Classification and Regression Trees (CART)

Definition Classification algorithms based on binary splits of variables, often
followed by pruning to reduce the complexity of the resulting decision tree (Dodge
2003, p. 68).

Notes Breiman and co-workers (1984) provide a detailed discussion of CART
methods. These nonparametric methods are also discussed by McLachlan (1992,
pp. 324–332), Webb (2002, Chapter 7), and Yarnold (1996).

21.2.2 Logistic Regression

Definition A model of the dependence of Bernoulli random variables of explanatory
variables. The logit of the expectation is explained as a linear form of explanatory
variables. . . . The model is especially useful in the case-control studies and leads to
the effect of risk factors by odds ratios (Dodge, 2003, pp. 243–244).

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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Notes A number of studies have appeared that pertain to a comparison of logistic
regression and (usually, two-group) PDA. The conclusion reached by Dattalo (1994),
Fan and Wang (1999), Lei and Koehly (2003), Meshbane and Morris (1996), and Todd
et al. (1995) is that classification accuracy for the two methods was “comparable.”
Lesaffre et al. (1989) conclude that “the literature reporting logistic regression models
is full of over-optimistic results” (p. 3005). McLachlan (1992, pp. 276–282) presents
a detailed discussion of the comparison of logistic regression with linear PDA. His
conclusion is that, with respect to hit/error rates, there is no strong preference for
one over the other. See, also, Efron (1975). Other discussions of logistic regression
may be found in Hand (1997, pp. 42–44), McLachlan (1992, pp. 255–282), and Webb
(2002, pp. 124–128). Rencher (1998, pp. 254–261) provides a discussion of logistic
and probit classification.

21.2.3 Neural Networks

Definition A regression model in which the responses are nonlinear functions of
inputs through layers of connected hidden variables, originally by treating biological
neurons as binary thresholding devices. They are flexible models useful for discrimi-
nation and classification . . . and are implanted by a computerized “black-box” trained
by a training data set (Dodge, 2003, p. 282).

Notes Chatfield (1993) questions the validity of neural networking as a viable
forecasting tool. Marzban and Stumpf (1996) apply a neural network method of
analysis to predict whether or not a tornado is detected; the method depends on less
restrictive data conditions and are, thus, claimed to be more widely applicable than
the usual PDA methods. Peng et al. (2003) compare the neural networks classification
with linear PDA using real data. Yoon et al. (1993) compare results of an artificial
neural network classification method with two-group quadratic PDA results; with the
former, results are more impressive when binary predictors are included. Discussions
of neural networks may also be found in Gordon (1999, pp. 170–172), Hand (1997,
pp. 44–56), and Webb (2002, pp. 133–173).

21.3 OTHER METHODS

21.3.1 Cluster Analysis

Definition A general approach to multivariate problems in which the aim is to
see whether the individuals fall into groups or clusters. There are several methods of
procedure; most depend on setting up a metric to define the “closeness” of individuals
(Dodge, 2003, p. 69).

Notes As mentioned earlier in the current book, the term classification has been used
in a cluster analysis context as well as in a PDA context. Webb (2002, p. 5) considers
cluster analysis as an “unsupervided classification” method. Furthermore, cluster
analysis has, interestingly, been “connected” to pattern recognition, as indicated by
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Fukunaga (1990, Chapter 11) and Webb (2002, Chapter 9). See, also, Diday et al.
(1994, Sections 1.2 and 1.4).

21.3.2 Image Analysis

Definition The extraction of the underlying scene from an image, usually pixellated
and subject to degradation by noise. Also known as image enhancement or image
reconstruction (Dodge, 2003, p. 193).

Note Two readings regarding image analysis, which is used in the contexts of
medicine and astronomy, for example, are Diday et al. (1994, Section 4.2) and
McLachlan (1992, Chapter 13).

21.3.3 Optimal Allocation

Definition In general, the allocation of numbers of sample units to various strata so
as to maximize some desirable quantity such as precision for fixed cost. Secondarily,
allocation of numbers of sample units to individual strata is an optimum allocation
for a given size of sample if it affords the smallest value of the variance of the mean
value of the characteristic under consideration. Optimum allocation in this sense
for unbiased estimators requires that the number of observations from every stratum
should be proportional to the standard deviation in the stratum as well as to the stratum
number (Dodge, 2003, p. 293).

Note The relationship between optical allocation/scaling and PDA is discussed by
Webb (2002, pp. 120–122).

21.3.4 Pattern Recognition

Definition A branch of computer science concerned with identification of objects of
known classes, or grouping of objects. The first stage gives the pattern a digital code;
the second stage is closely analogous to discriminant analysis or cluster analysis. The
techniques, however, are instrumental and do not, as a rule, involve any consideration
of underlying distributions (Dodge, 2003, p. 303).

Notes The “connection” between pattern recognition and PDA is implied by the
title of the book by McLachlan (1992). PDA and pattern recognition are used for
the lone basic purpose: Develop a rule for assigning an analysis unit (or a pattern)
to one of two or more defined groups. In normal-based PDA (as discussed in the
current book), a distribution form—typically multivariate normality—is assumed for
the data on hand. In pattern recognition, a particular distribution form for the patterns
is not assumed.According to Marriott (1990, p. 153) the initial stage involves digitally
coding each pattern; this is followed by an analysis that is akin to a PDA if there are
well-defined groups of patterns, or akin to a cluster analysis. The two books by Webb
(2002) and Fukunaga (1990) have extensive discussions of both pattern recognition
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and PDA. Webb (2002) considers pattern recognition as a “general” approach to
multivariate classification analysis. Also, the PDA book by Hand (1997) mentions
pattern recognition on 11 different pages and provides many references for the reader.

Further Reading

Cheng and Titterington (1994) give a rather detailed discussion of artificial neural
networks (ANNs) in relation to a number of “standard” statistical data analysis
procedures such as a PDA.

Dudoit et al. (2002) compare nearest-neighbor, classical PDA, and classification
trees using real data. They conclude that the first two methods “performed
remarkably well compared” to the third method.

Faraj (1994) is one refernce for an analysis method called “generalized discrimi-
nant analysis.”

Flitman (1997) comparatively evaluates neural networking, logistic regression, and
two-group PDA in the context of predicting college student success/failure.

Friedman (1989) proposes a classification approach called “regularized discrim-
inant analysis” as a compromise between the use of linear and quadratic
classification functions.

Hadorn et al. (1992) compare seven “statistical models” (including logistic regres-
sion and CART) in predicting patient mortality (yes–no) using STATA software
on real data.

Hand (1997, pp. 34–36) provides a brief discussion of regularized discriminnat
analysis (as a “regularization” method).

Hussein (2001) reports an extensive simulation study involving a mixture of contin-
uous and categorical predictors and linear and quadratic classification rules. His
conclusion is that logistic classification is a little more robust than normal-based
PDA to unequal group dispersion.

Jain et al. (2000) provide a very thorough review of pattern recognition, including
neural networks, logistic analysis, decision trees, nearest-neighbor rules, linear
PDA, and cluster analysis, giving a total of 176 references.

Koolaard et al. (1998) find, via simulation, that when the min(n/p) ratio is “small,”
the “regularized approach” to quadratic classification outperforms the normal-
based PDA method.

Koolaard et al. (2002) incorporate the use of the Bhattacharyya distance to simplify
computations in the standard regularized approach; a small loss of classification
accuracy results.

Kumar and Haynes (2003) compare (artificial) neural networks with classical linear
PDA. Using real data, they conclude that their neural networks method performs
better than classical PDA.

Loucopoulos and Pavur (1997) present a new mathematical programming (MP)
approach for the three-group classification problem; some data simulation
indicated greater computational efficiency than that of earlier MP approaches.
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Lu et al. (2003) find that regularized discriminant analysis outperforms linear and
quadratic PDA with “small” group sizes.

Mkhadri et al. (1997) present an overview of “regularized discriminant analysis”
in a small-sample setting, and an alternative approach based on spectral
decomposition of group covariance matrices, dependence trees, and logistic
methods.

Nelson et al. (2003) perform a comparison study involving four factors (five clas-
sification methods, four numbers of analysis units, two numbers of groups, and
three numbers of predictor variables). The five methods are neural networks,
linear and quadratic PDA, and two decision tree methods. The conclusion is
that the linear PDA “worked best for almost all considered conditions” (p. 565),
but the neural network method worked well with a large number of units.

Renaud (2002) explores the properties of yet another alternative to PDA,
“projection pursuit discriminant analysis,” which involves the consideration
of “wavelets.”

Rencher (1998) provides a brief discussion (with references) of at least nine
topics related to PDA (ridge-type adjustment for LCF weights, random effects,
categorical predictors, linear programming, influence of individual observa-
tions, PCA and PDA, data imputation, neural networks, and nonparametric
classification).

Rencher (2002) has a chapter on cluster analysis (Chapter 14); he also discusses
multidimensional scaling (MDS) and correspondence analysis (Chapter 15).

Soltysik and Yarnold (1994a) describe a linear programming algorithm that
dramatically reduces computer resources necessary to conduct optimal
discriminant analysis (ODA).

Villarroya et al. (1995) propose a new classification method, minimum distance
probability (MDP), which is based on a distance for continuous, discrete, or
mixed variables with known or unknown distributions, and can be used as an
alternative to the “standard” PDA.

Webb (2002) intermingles many analysis methods: discriminant analysis
(i.e., PDA), regularized discriminant analysis, pattern recognition, neural
networking, multidimensional scaling, optimal scaling, Bayesian networks,
cluster analysis, factor analysis, principal component analysis, and logistic
discrimination. Many, many references are given for these methods.

Williams et al. (1999) compare five methods (quadratic PDA, linear PDA, logistic
regression, neural networks, and classification trees) for biochemical-based
Down syndrome risk prediction (yes–no with very unequal group sizes); resam-
pling is used to conclude that the quadratic method did not, comparatively, yield
very good results—priors used is not mentioned.

(Additional references for PDA-related analyses are given in the Further Reading
for Chapter 19.)

Definition Typology: Apologizing for your neckwear.
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P A R T V

Issues and Problems

With nearly all collections of data analysis techniques there are issues pertaining to
statistic choice, analysis strategies, and interpretation of results, as well as to some
philosophical points of view. Eight issues involved in discriminant analysis are briefly
reviewed in Chapter 22. All eight issues have at least been mentioned in earlier
chapters.

Also associated with many data analytic methods are some special problems. The
problems are associated with the use of discriminant analysis techniques. These are
basically unresolved problems. Statistical theory has not, to date, suggested clear-cut
resolutions. Only some of the eight problems briefly reviewed in Chapter 23 have
been mentioned in previous chapters.

The resolution of data analysis issues and problems for the applied researcher
is a difficult task, indeed. When confronted with issues and/or problems, both the
empirical researcher and the statistical methodologist may take any of, for example,
five options: ignore them, refer to an “authority,” carry out the analysis with the
admittance of there being an issue or a problem, report multiple sets of results, or
use a single approach and defend it. The reader may think of additional options. In
Chapters 22 and 23, issues and problems are presented with a preferred resolution
stated with respect to some; others are left “open” for judgment on the part of the
reader.

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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C H A P T E R 22

Issues in PDA and DDA

22.1 INTRODUCTION

There are some issues pertaining to discriminant analysis that are sometimes ignored
by practicing researchers, about which methodologists disagree, and for which there
are no theoretical solutions. When confronted by some issues, or even all issues for
that matter, many methodologists would begin their response with: “It depends.”
The dependence for some would relate to statistical background, to positions taken
by “authorities,” or to philosophical beliefs. The reader should not necessarily
expect to find clear-cut resolutions in this chapter. Rather, the intent of this chapter is
to point out, as was done in earlier chapters, that some, at least, of the issues are real.
Four issues are briefly discussed in this chapter: (1) choices in PDA, (2) stepwise
analyses, (3) standardized LDF weights versus structure r’s, and (4) data-based
structure.

22.2 FIVE CHOICES IN PDA

22.2.1 Linear Versus Quadratic Rules

As mentioned in Section 13.6, the general recommendation is to use a linear rule.
Analyses of 31 real data sets by Meshbane and Morris (1995) led them to that rec-
ommendation. If covariance matrix heterogeneity is suspected at the outset of the
analysis, a large number of analysis units in the smallest group should be seriously
considered [i.e., at least minj (nj ) ≥ 5p]—see Huberty and Lowman (1997) and Jain
et al. (2000, p. 11). The linear rule is suggested because of presumed greater sta-
bility than that for the quadratic rule, in general (see, e.g., Flury et al., 1994). In
simulation results, however, Connally (2004) found that the (internal) quadratic rule
outperformed the linear rule.

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.

393



“c22” — 2006/3/20 — page 394 — #4

394 ISSUES IN PDA AND DDA

22.2.2 Nonnormal Classification Rules

What if multivariate normality (in each population) of continuous X variables cannot
be assumed? Practically speaking, this is a very difficult issue to address for at least
three reasons. First, assessing this condition is not a trivial exercise for the practicing
researcher. (For a brief discussion of statistical tests, see Section 13.6.) Second, the
effect of nonnormality on classification results from normal-based rules has not been
thoroughly studied. Third, the choice of a nonnormal rule (see Chapter 19) has been
studied only to a limited extent, and most of the studies have been, understandably,
restricted to the two-group case.

A choice of rule form must also be made when the X variables are categorical.
Again, study of such rules has been restricted largely to the two-group situation. The
most serious analysis issues may be claimed to arise with predictors having more than
two nonordered categories. A preference for the use of a particular scaling method
was advanced in Section 19.3.

22.2.3 Prior Probabilities

There are formal (in a statistical sense) ways of estimating the priors (see McLachlan,
1992, Chapter 2). The approach we take to deciding on group priors to use is, at least
in part, a judgmental one. Suppose a researcher has J well-defined populations in
mind, and a proportional sampling method is used. In this situation, “estimating” the
priors is not too difficult. But, what if proportional sampling is not used? We suggest,
then, that the relative population sizes determine the priors, regardless of the group
sizes used.

Now suppose that the populations suggested by the researcher are not “well-
defined.” What we suggest, then, is to consult with some “experts” in the area of
study regarding the relative population sizes. The estimated priors to be used can
then be determined using the “average” of the suggested size proportions for each
population. [This process was actually used to arrive at priors used by Huberty et al.
(1997).]

Another judgment call may be made that is related to unequal priors. Suppose one
population is pretty well known to be quite “small.” For example, let one population
proportion be .10—this would be one prior to be used. In a PDA situation, it is advised
that the corresponding group size be greater than 10 percent of the total sample
size. This advice is particularly suggested when the smaller(est) group hit-rate is of
greater(est) interest.

22.2.4 Misclassification Costs

Misclassification costs are virtually ignored in the PDA applications that we have
found. The main reason for such an omission is, perhaps, that the costs are not explic-
itly mentioned in the SAS and SPSS manuals. See McLachlan (1992, pp. 7–9) for a
discussion of misclassification costs. For the two-group situation, costs may be con-
sidered jointly with the prior probabilities (see Sections 13.7 and 18.2). Rudolph and
Karson (1988) discuss the effect of unequal misclassification costs.
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22.2.5 Hit-Rate Estimation

In connection with rule form, there is a fifth choice to be made in conducting a PDA:
the choice of a hit-rate estimation method. The estimation of classification hit rates or,
equivalently, error rates has been a topic of interest to statisticians and methodologists
for some time. McLachlan (1992) devotes an entire chapter (Chapter 10: Estimation
of Error Rates) to this issue; a statistical theory perspective is taken to a large extent.
To the applied researcher the issue is two-sided: (1) accuracy versus precision of
estimators and (2) actual computation of an estimate. Of course, a researcher wants a
“good” hit-rate estimate. In other areas of data analysis that involve parameter estima-
tion, the general impression that the nonmethodologist gets is to focus on accuracy of
estimators; that is, on lack of estimation bias. True, estimation bias, or accuracy, is a
legitimate and important concern. But another important concern regarding estimator
quality is variability or precision. After all, isn’t estimation precision a concern when
making generalizations, just as is estimation bias? It would be nearly ideal to use
an estimator that has little bias (i.e., is highly accurate) and that has little variability
(i.e., is highly precise).

Of course, ideals are seldom attained, especially in the case of hit-rate estimation
with more than two groups. Resampling estimation methods—leave-one-out, boot-
strap, and jackknife—have been suggested by many (e.g., McLachlan, 1992,
Chapter 10). See, also, Hand (1997, Chapter 7) who discusses resampling methods
along with many references for review. These methods generally yield good estima-
tors in the sense of accuracy. But, as mentioned in Section 15.3, some simulation
studies have indicated a general lack of precision for these estimators. So what might
be recommended for the practicing researcher? There appear to be two routes one
might take. One is to use large samples—“large” may be defined as minj (nj ) > 5p.
Another route might be to use another estimator, such as the maximum-posterior-
probability estimator discussed in Section 15.3.4. The suggestion given here is to use
a combination of a linear M-P-P estimator and a L-O-O estimator when multivari-
ate normality is a reasonable assumption. This combination was denoted as a linear
M-P-P/L-O-O estimator in Section 15.3.4. If multivariate normality is very doubtful,
the suggestion here is to use the linear L-O-O estimator.

22.3 STEPWISE ANALYSES

It is quite common to find the use of “stepwise analyses” reported in empirically
based journal articles. Two very popular analyses are stepwise regression analysis
and stepwise discriminant analysis, results for both of which are available via the two
statistical computer packages, SAS and SPSS. With these packages one can conduct
a forward selection, backward elimination, forward stepwise, and backward stepwise
analysis. When it is claimed that a stepwise analysis was run, more likely than not
it was a forward stepwise analysis using default values for variable deletion, which
simply results in a forward selection analysis.

The stepwise discriminant analysis programs in the two packages have built-in
criteria for stepping that relate to group separation. That is, in a forward analysis, for
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a given step the next variable added is the one that increases group separation the most
for all the remaining candidates. (It is usually assumed that the addition of a variable
cannot decrease group separation.) So, a stepwise discriminant analysis might be
considered appropriate in a MANOVA/DDA context in which group separation is of
interest. But, only in very restrictive situations would such an analysis be tentatively
considered in a PDA context in which group membership prediction is of interest (see
Section 17.2).

There appear to be two reasons why researchers want to examine the results of the
“steps” from a stepwise analysis. (As indicated in Chapters 6 and 17, some “nonstep”
results of a stepwise analysis can be informative.) The two reasons pertain to variable
deletion and variable ordering. How typical it is to see researchers view the first, say,
five variables entered into the (forward) analysis as constituting the best subset of
five variables. But, if challenged, most applied researchers may be hard put to explain
their sense of “best” and to defend their subset as being the best subset of a given size.
(The writers of the stepwise algorithms themselves would not claim that the first five
variables entered constitute the best, in any sense, subset of size 5.) So, if a researcher
is seeking the best subset of size 5, something other than a stepwise analysis should
be utilized. This is the recommendation if one is researching in a MANOVA/DDA
context (see Section 6.2) or in a PDA context (see Section 17.2).

If a variable is the third one entered into a stepwise discriminant analysis, it is
often judged to be the third “most important” variable. That is, a stepwise discrim-
inant analysis is often used by applied researchers to solve the variable ordering
problem. In many reports it is usually not made clear what the basis of impor-
tance is. That is, important with respect to what? Because the stepwise analysis
programs in the two packages focus on group separation, one might be tempted
to utilize one of the programs to order the outcome variables with respect to
separation (i.e., in a MANOVA/DDA context). In a PDA context where group mem-
bership prediction is of interest, it is dubious even to consider using one of those
programs. In either context there are clearly better ways of ordering outcome vari-
ables (see Section 6.3) or predictor variables (see Section 17.4).A much more detailed
critique of the use of stepwise regression and discriminant analyses is given by
Huberty (1989).

22.4 STANDARDIZED WEIGHTS VERSUS STRUCTURE r’s

The notion of a linear composite or combination of response variables is very basic
to many multivariate analyses (see Section 2.7). For some analyses (e.g., multiple
regression, principal components, predictive discriminant analysis), composites are
formed for the primary purpose of obtaining composite scores for the units being
studied. For other analyses (e.g., multiple correlation, canonical correlation, common
factor analysis, descriptive discriminant analysis), there is interest usually in identi-
fying the constructs represented by the composites. That is, a researcher often desires
to give substantive meaning to the underlying unobservable (i.e., latent) constructs
represented by the composites to “interpret” the composites.
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The reason quotes were used in the preceding sentence is because different views
of what it means to interpret a composite have been expressed. In some instances,
how to interpret “interpret” is not clear. In the case of linear discriminant functions
(LDFs), one may interpret a function by ordering the outcome variables with respect
to importance or contribution, or by naming the function. To some, these are quite dif-
ferent purposes. Rencher (1992, p. 218), however, states that “no attempt will be made
to distinguish between these two modes of interpretation.” In the case of linear classi-
fication functions (LCFs)—as well as linear multiple regression equations—seldom
do methodologists discuss naming the linear composites (see, however, Huberty,
1994a). An ordering of predictors in PDA may be accomplished legitimately without
examining the multiple LCFs (see Section 17.4).

The present issue of concern, then, pertains to the interpretation of LDFs. If, to
the reader, this includes assessing relative outcome variable importance, it may be
claimed that the issue has been, to some extent at least, resolved (see Section 6.3).
This is not to say that all methodologists would agree with the ordering method sug-
gested. In fact, some methodologists prefer to examine standardized LDF weights to
determine an outcome variable ordering. Problems with this approach and a dis-
cussion of problems with variable ordering in general are reviewed by Huberty
(1989), Huberty and Wisenbaker (1992b), Thomas (1997), and Thomas and Zumbo
(1996).

The real issue, then, as far as this chapter is concerned, pertains to the role of
standardized LDF weights versus variable-LDF correlations—the latter are usually
termed structure r’s—in naming the construct associated with an LDF. It is clear
that during the early history of factor analysis, the index most commonly advocated
and used in defining constructs was the structure r . The reasoning behind the use of
this index pertains to shared variation and, of course, correlation. If, say, three out
of a set of response variables correlated highly (positive or negative) with a factor
“composed” of all of the response variables, the factor would essentially be “made up”
of whatever those three variables represented. The actual naming of the factor, then,
would be made by subjectively coalescing the attributes or traits (of the measured
analysis units) represented by the three variables.

This approach to data-based construct identification was very commonly used in
factor analysis well into the 1990s. The structure r index has also been commonly
used in canonical correlation analysis and in what is termed in this book “descriptive
discriminant analysis.” In recent years, however, some quantitative methodologists
have proposed that standardized LDF weights, not variable-LDF correlations, should
be utilized in identifying or labeling the constructs underlying grouping variable
effects; that is, the weights should be examined to see if a substantive interpretation
can be given to the LDF. This position has been taken by Harris (1989), Mulaik
(1994), Rencher (2002, pp. 288–291), and Tatsuoka (1988, p. 521). This issue has not
arisen in many writings in which descriptive discriminant analysis results are reported
because of the minimal expressed interest in “interpreting” LDFs (see, e.g., Huberty
and Hussein, 2003).

There is a subissue with respect to standardized LDF weights that pertains to the
method of standardizing (see Section 5.4). The weights may be standardized in terms
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of error variance or in terms of total variance. This issue is discussed and debated by
Mueller and Cozad (1988, 1993) and by Nordlund and Nagel (1991).

Another comment about the weight-versus-structure r issue pertains to interpre-
tation consistency. If a researcher is convinced that the use of structure r’s makes
sense in, say, a canonical correlation context, he or she would also advocate the use
of structure r’s in the contexts of multiple correlation, common factor analysis, and
descriptive discriminant analysis.

Finally, even if structure r’s are used in LDF interpretation, there remains the
issue of the minimum r magnitude to be used in making the interpretation. Because
the sampling distribution of a structure r is not known, formulas for estimated stan-
dard errors are not available, thus precluding direct testing of an r for statistical
significance. It makes sense, as Dalgleish (1994) points out, that if an r is not statis-
tically significantly different from zero, the associated outcome variable should not
be considered in interpreting the given LDF. Dalgleish concluded that a reasonable
approach to assessing the precision of a structure r is via the bootstrap, a method
of resampling. Although bootstrapping itself may not be too conceptually complex,
two complexities do enter into its application to the structure r precision issue. One
complexity is that of “aligning” bootstrap sample structure with the structure of the
base sample. The alignment issue has been discussed by Clarkson (1979). The second
complexity that arises pertains to bias in estimating the structure r’s. Dalgleish (1994)
briefly reviews some of the related literature on bias correction with the bootstrap.

22.5 DATA-BASED STRUCTURE

What is this notion of structure? When posed with this question, the proverbial person
on the street would, perhaps, think of the construction of a building. So much for
this metaphorical example. In short, a structure underlying a system of variables is
comprised of one or more constructs. So, then, what is a construct? Simply put, but
of somewhat limited definitional help, a construct may be thought of as a concept.
Some help on the meaning of construct is provided by Liebert and Spiegler (1982,
p. 764):

Theoretical constructs identify phenomena considered important to the theory. Energy is a
construct from physics, oxidization is a construct from chemistry, and natural selection is a
construct from biology. Personality theorists have used many constructs; among the more
familiar ones are ego, anxiety, conditioning, and self-awareness. Theoretical constructs
do not actually exist, nor can they be seen or touched. They are merely useful inventions
which help to give order to observed phenomena. Theoretical constructs are often shorthand
summaries of relationships among many different variables, and they therefore serve to
facilitate communication about these relationships.

Without a doubt, the multivariate analysis most commonly used to identify struc-
ture underlying a set (or multiple sets) of variables is exploratory factor analysis.
This analysis is often utilized in the study of measurement instrument validation; in
particular, construct validation. In the behavioral science journal Educational and
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Psychological Measurement, there is a section called Validity Studies. A common
analysis method used in this section across journal issues is exploratory factor anal-
ysis. This analysis is used to search for underlying constructs, constructs determined
by the data. Is this a legitimate pursuit of knowledge?

If that question had been addressed in the 1940s (e.g., MacCorquodale and
Meehl, 1948), 1950s (e.g., Fruchter, 1954), 1960s (e.g., Horst, 1965; Kaplan, 1964,
p. 759), 1970s (e.g., Rummel, 1970), 1980s (e.g., McDonald, 1985), and in the 1990s
(e.g., Comrey and Lee, 1992), the answer would have been a resounding “yes.” But in
the more recent years, the thinking of some methodologists (e.g., Mulaik, 1994) about
basing construct identification on data has gone in another direction. These writers
posit that constructs should be theory based, not data based, that suggested constructs
should evolve from substantive theory, and that data should only be used to verify the
existence of hypothesized constructs. This would be well and good if the substantive
theory of interest is refined and has been studied to the extent of suggesting meaning-
ful and interpretable constructs that may be identifiable in such a way that observable
variables may be chosen that may, in turn, lead to data verification. In the behavioral
sciences, at least, most theories are not so well defined.

One might conclude that we do not have a clear two-sided issue here. Although
some may have a preference for one side or the other, the position taken by Velicer
and Jackson (1990, p. 782) makes sense: “Exploratory analytic approaches (or result-
centered research strategies) should be preferred except for those cases where a
well-defined theory exists.” The exploratory versus confirmatory analyses is not
a clear two-sided issue according to Tukey (1980, p. 782): “Neither exploratory nor
confirmatory is sufficient alone. To try to replace either by the other is madness. We
need them both.”

Using data to discover and/or define structure underlying the variable system
on hand is common, as mentioned above, by users of factor analysis or component
analysis. Even though structure may be discovered in a multivariate group difference
study in which MANOVA may be employed, such discovery does not appear to be of
routine interest to applied researchers (Huberty and Hussein, 2003). The analysis in
the study of group differences has traditionally been simply that of statistical testing
(as in Chapter 3). One reason for this, perhaps, has been a lack of emphasis in textbooks
on seeking structure in a group comparison context. For example, Part Two of the
Chatfield and Collins (1980) text is entitled, Finding New Underlying Variables,
and the two topics covered are principal component analysis and factor analysis.
MANOVA and descriptive discriminant analysis (including “canonical variates”) are
in another part of that text in which structure and constructs are not discussed. More
encouragement is needed.

A view of data-based structure was expressed by Cole et al. (1993). In this article,
the authors discuss two competing strategies for identifying structure that underlies
multivariate group differences. First, they differentiate a latent variable system (where
the observed outcome variables serve as indicators or manifestations of an underlying
construct) and an emergent variable system (where the construct is the resultant
composition of the outcome variables). Second, they propose that MANOVA and
DDA would be the appropriate analysis strategy in the context of an emergent variable
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system, while structural equation modeling (SEM) would be the appropriate analysis
strategy in the context of a latent variable system. Discussion was limited to the
comparison of two groups. It was recognized that for some data sets, results from
MANOVA/DDA and from SEM would yield similar substantive conclusions, but not
so in general.

Further Reading

Connally (2004) reviews the effect of covariance matrix inequality on the compar-
ison of linear versus quadratic classification. The simulation results indicated
that the internal quadratic rule outperformed the internal linear rule in nearly
all conditions studied.

Flury et al. (1994) review the linear versus quadratic PDA comparison; fairly
extensive simulation comparisons were made with constraints on covari-
ance matrices. One conclusion drawn was: “Ordinary quadratic discrimination
should be avoided whenever possible” (p. 118).

Schiavo and Hand (2000) conclude that although the L-O-O hit rate extimator is
almost unbiased, “it suffers from having a large variance” (p. 298).

Schott (1993) develops a “test of dimensionality which is appropriate when the
covariance matrices are heterogeneous” (p. 163). The effect of the dimension-
ality reduction on misclassification probabilities of a quadratic PDA is studied
via a simulation.

Definition Bernoulli: An Italian dish made with meat balls.
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Problems in PDA and DDA

23.1 INTRODUCTION

Many of the writings on problems in discriminant analyis are based on statistical
theory. Five problems related to discriminant analysis in practice were selected for
review in this chapter: (1) missing data, (2) outliers and influential units, (3) initial
group misclassification, (4) misclassification costs, and (5) statistical versus clini-
cal prediction. Much of the discussion in these five sections consists of references
to the writings of statisticians. Specific solutions of some of the problems are not
very straightforward to implement for most practicing researchers. Therefore, some
suboptimal solutions that are relatively easy to implement are discussed.

23.2 MISSING DATA

23.2.1 Data Inspection

For any data analysis situation one can construct, or at least conceptualize, a data
matrix. For a situation involving one grouping variable, G (with J levels), and p

response variables, a data matrix may be presented as in the following schematic. (An
alternative data schematic may be preferred by some. Such a schematic would have
G as a variable across the top—a nominal scale of measurement would be used to
measure G—and on the left would be N rows simply indicated by u1, u2, . . . , uN .)

X1 X2 · · · Xp

u1
G1 u2

...

un1

. . . . . . . . . . . . .
un1+1

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
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X1 X2 · · · Xp

G2 un1+2
...

un1+n2

. . . . . . . . . . . . .
...

. . . . . . . . . . . . .

GJ

...

uN

. . .

If this were a complete data matrix, there would be N ·p observations. For various
reasons, a researcher may, after all data are collected and filed, end up with fewer
than N ·p observations.

It is strongly recommended that a researcher carefully examine a listing of his or her
data set. For what should the researcher look? Basically, two questions should be kept
in mind: (1) Are there any missing data? and (2) are there any aberrant observations?
Aberrant measures may be the result of errant recording or errant data entry. Such
errors may easily be corrected. Other aberrant measures call for special attention (see
Section 23.3).

23.2.2 Data Imputation

Let us now deal with the missing data problem. (It is assumed that second or even
third attempts, if reasonable, have been made to complete the data matrix, and that
not all attempts were successful.) There are at least three “patterns” that may result
with missing data. One pattern results when there are many measures missing for one
or more analysis units. If there are, say, p/2 or more measures missing for a given
unit, it might be reasonable to delete the corresponding row from the data matrix;
that is, delete that unit. A second pattern may result when there are many measures
missing for one or more response variables. If a given variable is measured on fewer
than, say, N/2 units, it might be reasonable to delete the corresponding column from
the data matrix. It may also be reasonable to drop a variable if it is not measured
on an appreciable number of units in a given group. To no surprise, some judgment
calls will have to be made in deciding whether to drop a unit or drop a variable. It
must be recognized that in a predictive discriminant analysis (PDA) context, deleting
a unit with some missing variable measures precludes one from predicting group
membership for future units with comparable profiles.

As one might expect, a third pattern—which is really not a pattern at all—of
missing data may result when response variable measures are missing for a “few”
units and/or a “few” variables. With such a pattern it may not be reasonable to drop
all associated units or variables because such decisions may considerably reduce the
size of the data matrix. Therefore, we have to either deal with the data we have, or
somehow fill in the “holes” in our data matrix; that is, use a data imputation method.
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(It is assumed in this discussion that all response variables are continuous, each with
measures that do not involve category assignments.) Now with the data on hand we
can easily estimate all needed mean vectors. Arriving at the appropriate covariance
and SSCP matrices, and inverting those that need to be inverted, using only the data
on hand is messy; see Hand (1977, pp. 186–188) for a discussion of, and references
for, this problem in the PDA context. An analysis involving all unit measures with or
without missing variable measures is sometimes called an available-case analysis.

For the practicing researcher, a more reasonable analysis may be one that uses
an imputation method for the missing data. Now the question becomes: How do
we impute the missing observations? Without a doubt, the most popular imputation
method used in most data analysis contexts is to replace a missing observation with
an arithmetic mean. Consider this approach in our current situation. Suppose that the
measure on V2 is missing for unit 7 in G3. There are at least two different means that
might be considered as replacements for the missing observation. One is the mean of
available measures on V2 in G3 only. The other mean is that of the available measures
on V2 across all the groups. Which one is more appropriate? From a substantive
viewpoint, it may make more sense to use the former mean because the imputed
measure (i.e., the mean) is based on V2 measures for units from the same group as unit
7, and therefore should more closely approximate the “real” measure on V2 for unit 7.
On the other hand, the all-group mean may be preferred by some methodologists. The
reason for this preference is that the imputed value would tend to support null group
separation or chance classification. The use of the all-group mean would protect the
researcher from the potential criticism of “stacking the deck” in favor of a nonnull
condition. There is some evidence in the two-group situation (Hufnagel, 1988) that
use of a mean based on a single group will yield better hit-rate estimates for some
predictor variable characteristics, some proportions of missing observations, and some
intergroup distances. The relative merits of the two mean types in a MANOVA context
have not been studied to any known extent.

There is another general imputation method that has been studied a fair bit by
statisticians during the past 35 years or so [see, e.g., Chan et al. (1976), Hufnagel
(1988), and Jackson (1968)]. This method involves the use of multiple regression.
To start, all missing response variable values are replaced with the variable means
for a given group. Then each variable on which there are missing values is regressed
on all others using the completed group data to develop regression equations. These
equations—one for each response variable—yield estimates that replace the values
originally missing. (Variations in the method may be used at this point that involve
standardizing the data, and the use of a principal components analysis.) An iteration
process then follows. New equations are built using the previous estimates, which, in
turn, yield new estimates for the missing values. And so on, until successive iterations
fail to substantially change the estimated values obtained. Chang et al. (1976) and
Hufnagel (1988) found this method to work quite well under some limited conditions,
while Jackson (1968) concluded that the simple mean substitution method produced
results quite comparable to those of a regression estimation method. [It is not clear
from the writings of Chan et al. (1976) and Jackson (1968) as well as earlier writings of
Chan (and colleagues) which of the two means—separate-group or total-group—were
being substituted for missing values.] This problem clearly needs further study.
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The SPSS DISCRIMINANT procedure has an option that may be reasonable if
the number of units on which there is at least one missing observation is not too
large. The CLASSIFY subcommand is used with the keyword MEANSUB. With
this, a classification rule is built using a complete-case analysis—an analysis using
only those rows in the data matrix that are complete. Next, total-group means for the
respective response variables are substituted for the missing data values. Then the
rule developed earlier is applied to all cases. The SAS CANDISC, DISCRIM, and
STEPDISC procedures will include in an analysis only those units for which there
are complete data vectors.

23.2.3 Missing G Values

An alternative data schematic was mentioned early in this chapter.With this schematic,
one column would be used for the grouping variable, G. Now, what if some G values
for particular units are missing? This situation might arise when groups of units are
determined from a written report or from survey information. Whereas the missing
data problem discussed earlier in this section pertains to missing values on the X’s
(or Y ’s), now the problem pertains to not knowing group membership for some units.
[The context here may be either that of predictive discriminant analysis (PDA) or of
descriptive discriminant analysis (DDA).] How might this problem be approached?

One possible approach is to construct a classification rule using those units with
known G values. The rule may then be used for predicting group membership of
the unit(s) with missing G values—SAS DISCRIM does this. Group membership
prediction may be quite clear for some units—“high” posterior probabilities—and not
so clear for other units—“low” posterior probabilities. If so, an iterative process may
be employed. Units (with missing G values) for which predicted group membership
is clear may be put in with units with known G values and a new classification rule
may be built. This new rule may then be used for predicting group membership of the
remaining units with missing G values. And so on.

A little more complicated problem may arise. How does one proceed if there are
missing X (or Y ) values as well as missing G values on the same units? On different
units? Whatever the case may be, multiple analyses would be needed, with judgments
made along the way. In other words, do what makes sense!

23.2.4 Ad Hoc Strategy

Suppose one has an incomplete data matrix of N rows and p columns—that is, there
is a total of N units—but on only N∗(<N) units are there complete p-dimensional
observation vectors. One could conduct an analysis (PDA or DDA) using only the N∗
units. Then it may be reasonable to conclude that, say, two of the p response variables
may be deleted with little or no loss in the effect of interest (predictive accuracy or
group separation). One could then return to the original data matrix and determine a
new data matrix of N∗∗ (where N∗ < N∗∗ ≤ N ) rows and p − 2 columns—that is,
there may be N∗∗ − N∗ units that had missing data on the two deleted variables but
complete data on the other p − 2 variables. Then an analysis could be conducted using
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the p − 2 variables and the N∗∗ units to determine if more variables might be deleted
with little or no loss in the effect of interest. If so, a new data matrix with, presumably,
a greater number of rows than N∗∗ may then be analyzed. Again, “weak” variables
may be deleted, and so on. It is recognized that multiple decisions would need to be
made on different data matrices. Needless to say, judgment and reasonableness will
need to be exercised. [This ad hoc analysis strategy is illustrated in a PDA context by
Huberty and Julian (1995).]

23.3 OUTLIERS AND INFLUENTIAL OBSERVATIONS

Data analysis diagnostics have recently become very commonplace in multiple
correlation/regression textbooks and computer programs. Multiple regression diag-
nostics pertain to model fit, data conditions (e.g., collinearity), and identification of
outlying observations and influential observations. Diagnostics in discriminant analy-
sis pertain mostly to the two latter identifications. There is, however, another aspect of
discriminant analysis diagnostics, namely, the identification of in-doubt observations,
or fence riders (see Section 15.6). The focus in the current section is on outliers and
influential observations.

23.3.1 Outlier Identification

The problem of identifying outliers in multivariate data is a challenging one, indeed,
particularly in a multigroup context. The outlier problem in discriminant analysis has
been studied to a very limited extent; see McLachlan (1992, pp. 181–185) for some
references. The SPSS computer package yields information that may be helpful in
identifying potential outliers in a PDA context. An outlier index that was discussed in
Section 14.4.2 and in the Chapter 14 Technical Note is a typicality probability. This is
a tail area of a probability distribution, a “small” value indicating that a unit is a “great”
distance from a centroid. With the SPSS DISCRIMINANT procedure, a chi-squared
distribution is used to determine this probability, denoted as P(D/G), associated with
the group to which the unit is assigned. The P(D/G) values—denoted by P̂ (xu|j) in
Section 14.4—may be obtained under the condition of covariance matrix homogeneity
(when the sample error covariance matrix is used) or under covariance heterogeneity
(when separate sample covariance matrices are used). The latter typicality values are
obtained by using the subcommand CLASSIFY = SEPARATE/. When the group
covariance matrices are clearly not equal, the unit typicality probabilities are difficult
to interpret because different distance metrics are used in the calculations.

For a two-group situation under normal homoscedasticity, McDonald et al. (1976)
present a test to determine if an observation vector belongs to one of the two popula-
tions or to a third population. The test statistic for xu and Group j yields a P value
that is a typicality probability estimate, P̂ (xu|j).

There is a type of outlier that may not be identified via the SPSS typicality index. If
one type identified is considered an “external” outlier, the other type is an “internal”
outlier. An internal outlier is located “in-between” two groups, as opposed to being
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located “outside” the groups. Such an outlier is most difficult to identify unless the
groups are separated to an extreme extent. The location of an outlier, internal or
external, may be determined (in the at most two-dimensional discriminant space) by
examining discriminant space plots yielded by the SPSS DISCRIMINANT and SAS
CANDISC procedures.

23.3.2 Influential Observations

So, what is to be done with units identified as outliers? One thing to check is to see
if there is a “cluster” of outliers that might suggest the definition of an additional
group. Discriminant space plots may be helpful here. Another thing to check is the
influence of the identified outliers. Influence on what? If, in a descriptive discriminant
analysis context, the concern would be with influence on group separation in general,
and construct definition (via LDFs) in particular. If one is in a predictive discriminant
analysis context, the concern would be with influence on classification accuracy—
separate-group or total-group accuracy. One way to assess the influence of outliers
is to conduct repeated analyses. If there is only one outlier, there would be two
analyses to conduct, one with the outlier in the analysis and the other with it deleted.
With multiple outliers, multiple analyses would need to be conducted. Just how the
multiple analyses are to be done is potentially problematic. Do we delete outliers one
at a time, two at a time, and so on? Another judgment call must be made.

The study of influential observations in a predictive discriminant analysis context
has been restricted to the two-group situation. Three studies by Critchley and Vitiello
(1991), Gomez et al. (1990), and Sadek (1992) indicate that the influence problem
in PDA is quite complicated. No studies of the influence problem in descriptive
discriminant analysis are known.

23.4 INITIAL GROUP MISCLASSIFICATION

The assumption was made in Part IV that for the most part, the criterion groups were
well defined; that is, group membership of each unit considered was assumed to be
correct at the start of the analysis. For an example, consider the 3-group Ethington
data set (3GED). Group 1 students were those who were given an A, Group 2 students
were given a B, and Group 3 students were given a C or C−. For some reasons,
however, some students may have been overrated or underrated. That is, there are
research situations in which the initial group membership of units may be in ques-
tion. This is particularly the case when predicting membership of children in special
education groups, patients with particular medical diagnoses (e.g., psychiatric dis-
orders), corporations grouped by Standard Industrial Codes, voters who had voted
for election candidates, excavated archaeological pottery pieces grouped by place of
manufacture, and so on. Initial grouping of subjects may also be questioned when
groupings are based on responses to a questionnaire or survey form.

The influence of initially misclassified analysis units on hit-rate estimation may
be nonconsequential, may be considerable, or may be a problem of unknown conse-
quence. The moral of the story, so to speak, is to verify, as much as is feasible, the
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initial group membership of all units. Often, it is conjectured, initially misclassified
units are those in “in-between” groups, those labeled in Section 14.4 as in-doubt cases
or fence-riders. Reassigning units is problematic; reassignment of some or all units
may be difficult to defend in some research situations. For study of this problem in a
two-group context, the reader may refer to Hand (1981, pp. 194–197) and McLachlan
(1992, pp. 35–37).

Suppose one has a classification problem where the goal is to estimate group
classification hit rates—as opposed to determining a specific classification rule that
might be used with follow-up samples. In this situation, initial misclassification may
not be a concern because there is a way to estimate hit rates when group membership
of some units is not clear. A hit-rate estimator that may be employed is the maximum-
posterior-probability (M-P-P) estimator discussed in Section 15.3.4.

It may be farfetched, but if it is suspected that there are many initially misclas-
sified units, it might be thought that some kind of cluster analysis (Aldenderfer and
Blashfield, 1984; Kaufman and Rousseeuw, 1990) should be conducted. If a clus-
ter analysis were conducted and reasonable clusters were identifiable, what would
the finding of a reasonably good prediction rule indicate? Would the rule have any
utility with the data-defined groups? Is it appropriate to develop a rule using the same
data that were used to define the criterion groups? It may not make much sense, in
practice, to develop a classification rule for criterion groups that are not initially well
defined.

23.5 MISCLASSIFICATION COSTS

As mentioned in Sections 13.7 and 18.2, the consideration of misclassification costs
when J = 2 can be made in a fairly simple manner by modifying the initial priors.
When J > 2, the use of misclassification costs becomes much more complicated.
Grouven et al. (1996) introduce a “menu-driven, user-friendly” computer program
that allows for the incorporation of misclassification costs when J > 2 in a linear or
quadratic PDA context.

23.6 STATISTICAL VERSUS CLINICAL PREDICTION

Clinicians or clinician-like professionals in artificial intelligence, criminal justice,
education, medicine, neuropsychology, psychiatry, and psychology are regularly
faced with the problem of making predictions. Criteria for these predictions may be
diagnostic condition, recovery time, recovery type, disease type, survival time, treat-
ment response, relapse, personality type, graduate school success, mental/behavioral
disorder type, and so on. The list is virtually endless. Predictor information utilized
may involve personality measures, intelligence scores, biopsy slide ratings, psy-
chological test scores, achievement scores, and so on. Many such predictions are
accomplished via professional judgment. It is not known if many clinicians use empir-
ical rules in practice to make their predictions. Such rules would generally be based
on multiple regression analysis (MRA) or on predictive discriminant analysis (PDA).
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In his review of clinical versus actuarial prediction, Marchese (1992) focuses almost
exclusively on MRA. (The criterion variable used in some reviewed studies was,
however, dichotomous.)

In clinical practice, prediction1 is sometimes made with respect to a categorical
criterion variable often with more than two categories. Such prediction would call
for the use of predictive discriminant analysis (PDA). Studies of how PDA results
compare with clinical prediction are few and far between. Some preliminary studies
using PDA have been made by Moras et al. (1992), Seshia et al. (1983), Sexton et al.
(1987), Shrout et al. (1986), Swiercinsky and Warnock (1977), and Wedding (1983).
Willis (1986) reviews some issues in the use of PDA is making clinical predictions.

The details of clinical prediction or of statistical/actuarial prediction will not be
given here. Dawes et al. (1989) discuss some of the general notions and interpretations
of the two methods of prediction. The general impression of reviews of the comparison
of clinical and statistical prediction (Dawes et al., 1989; Marchese, 1992) is that
there is overwhelming evidence of the superiority in predictive accuracy with the
latter approach. This conclusion is based mostly on syntheses of comparisons where
the statistical method involves multiple regression. What is sorely needed are some
comparison studies where the statistical method involves PDA. With a categorical
criterion variable, PDA results would enable the clinician to obtain such information
as the following:

• People who clearly belong to a particular group
• People whose group membership is not clear
• Estimate of predictive accuracy for each group
• Identification of outlying individuals
• Relative importance of predictors

A prediction system might be set up so that when predicted group membership
(via PDA) is not clear-cut, the empirical information may be supplemented with the
professional judgment of the clinician. Such a statistical-clinical prediction process
needs to be studied. (Of course, initial choice of predictors is extremely important;
see Section 1.5.) There obviously is much empirical research needed in this area of
study.

As Marchese (1992, p. 766) mentions, the use of statistical prediction in some
clinical settings has not been well received. It is the case that in some clinical settings,
empirical predictions may be extremely difficult—at least perceptually so—to make
because of the difficulty of identifying reasonable prediction rules. In particular,
it may be the case that nonlinear prediction rules ought to be considered. As has
been demonstrated, however, nonlinear rules used with particular score ranges of
some predictors can lead to chaos (Paulos, 1991, pp. 32–37). Would chaos theory be
applicable to some clinical prediction situations?

1Rather than a prediction problem, this might more appropriately be considered an identification problem.
That is, it is to be determined if a person is to be identified with one group or another. This use of the word
“identification” is different from the use found in Manski (1995).
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23.7 OTHER PROBLEMS

Three additional problems in discriminant analysis, mostly pertaining to PDA, are
reviewed in the comprehensive treatise by McLachlan (1992):

• PDA with repeated measures (pp. 78–86)
• Assessment of assumptions (pp. 169–178)
• Partially classified data (pp. 37–46)

Further Reading

Bar-Hen and Darcdin (1997) propose a test of the hypothesis that a vector of scores
for an analysis unit is in one of the two populations against the hypothesis of
membership in a third (not initially considered) population; simulations were
performed.

Barnett and Lewis (1994) discuss the presence of outliers in a variety of multivariate
contexts including PDA.

Bello (1993) simulates the comparative performance of five determinis-
tic imputation techniques when using linear, quadratic, and kernel two-
group PDA methods; it is recommended that three iterative imputation
techniques (maximum-likelihood estimate, general iterative principal compo-
nent, single-value decomposition) be tried and compared.

Bello (1995) addresses the effects of imputed values on linear, two-group PDA error
rate estimates; eight estimators and five imputation algorithms were considered,
with the EM algorithm judged to perform well.

Dawes et al. (1993) review the general issue of statistical versus clinical prediction;
some 65 references are cited that relate to the issue itself or to applications, some
of which utilize predictive discriminant analysis techniques.

Fung (1992) suggests two indices useful for studying outliers and influential
observations in a two-group PDA context.

Fung (1995b) proposes four measures of influence on the (posterior) probability of
group membership for an analysis unit not considered in developing the linear
normal-based classification rule for the initial two groups; a simulation yielded
satisfactory results.

Fung (1996a) proposes eight measures for diagnosing influential observations in a
two-group quadratic PDA context and applied them to a data set of two species
of biting flies.

Fung (1996b) extends his previous study of two-group linear PDA diagnostic
measures to multiple-group measures with a reduced computational load.

Hand (1992, pp. 50–51) discusses statistical versus traditional approaches to
classification in medicine.

Hand (1997, Chapter 9) reviews seven different “special” problems related to
PDA; included are variable deletion methods, group formation based on
partitioning a continuum, and categorical predictors.
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Hawkins and McLachlan (1997) suggest a “high-breakdown criterion” to detect
outliers in a linear PDA context.

Krusinska et al. (1993) illustrate the influence of outliers in a PDA involving three
main types of pathological changes and 26 predictors; deletion of determined
outliers resulted in better classification results.

Lachenbruch (2001) proposes a regression-like index of leverage to detect out-
liers for the two-group linear PDA situation; a plot of ordered values of the
index against centiles of a chi-squared distribution may suggest the presence of
outliers.

Little and Rubin (2002) discuss new missing-data methods and apply current
software to real data.

Naes and Indahl (1998) describe a method of “handling” high predictor collinearity
in three multiple-group PDA contexts.

Rocke and Woodruff (1996) demonstrate a “hybrid method” with simulated data
to identify outliers. Originated computer software is used.

Schafer (1997) provides an extensive discussion of missing-data situations involv-
ing continuous and categorical variables; in particular, missing data in a PDA
context is covered.

Steel and Louw (2001) propose a new measure of influence of an analysis unit in
the predictor variable selection/deletion process.

Twedt and Gill (1992) compare three data imputation methods and conclude that
the three yield comparable two-group hit-rate estimates.

Verboon and van der Lans (1994) propose a method for robust “canonical discrim-
inant analysis” that is useful to reduce the influence of outliers in the context
of PDA.

Viragoontavan (2000) compares six missing-data methods in a PDA context. His
simulation results indicate that two multiple-imputation methods (using SOLAS
and NORM) were “uniformly the most effective.” The hot-deck method was
third best, followed by the group-mean and regression-based methods. Listwise
deletion was least effective.

Whitcomb and Lahiff (1993) conclude that both sample size and distance between
two population mean vectors are important in assessing the impact of spurious
observations in PDA.

Definition Paradigm: $0.20.
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Data Set Descriptions

The following five data sets are available at the Wiley website.

Data Set A1 (5GED)

This data set is based on a sample of community college students. Over 700 students
responded to 150 (or fewer) items on the Community College Student Experience
Questionnaire (CCSEQ) (Ethington et al. 2001). Items of interest to us were those
that were scored with numerical values for two to four categories. Nine response
variables were defined for our use; see Table A.1. CCSEQ validity and reliability
information for the last six effort scales is reported by Ethington and Polizzi (1996);
validity and reliability index values are judged to be respectable.

An inspection of the 700 × 9 data matrix was made. We ended up with a 545 × 9
complete data matrix. The 545 (squared) Euclidean distances for each student
(represented by a vector of 9 variable scores) to the “typical student” (represented by
variable means) were calculated (via SAS). The 545 distances ranged from 5.60 to
37.92 with no appreciable gaps; therefore, it was judged that no outliers were present.

Two grouping variables are considered. These are Race with three levels (Black,
Hispanic, White) and Grade with five levels (A, A− or B+, B, B− or C+, and
C or C−). To obtain the Grade variable, students were asked to report the grade
they typically earned in their classes. The number of students in each Race–Grade
combination are given in Table A.2.

In the covariance analysis context, a hypothetical covariate termed Time is
included.

Data Set A2 (3GED)

This data set is a subset of the 5GED data set. Here, we are using three Grade levels
A, B, and C or C−, and does not include Race.

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
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TABLE A.1 Variables Selected from the CCSEQ

Variable No. Items Score Range

1. Counselor Interaction (counsum) 7 0–7
2. Self Understanding (gainsum) 7 7–28
3. Instruction Received (learnsum) 9 9–27
4. Library Effort (qelib) 7 7–28
5. Student-Faculty Effort (qefac) 8 8–32
6. Interstudent Effort (qestacq) 6 6–24
7. Art/music/theater Effort (qeamt) 6 6–24
8. Writing Effort (qewrite) 8 8–32
9. Science Effort (qesci) 9 9–36

TABLE A.2 Cell Sizes for the Race-by-Grade Design

Race A A− or B+ B B− or C+ C or C− ηk·
Black 20 36 35 57 34 182
Hispanic 15 36 45 54 19 169
White 41 56 42 42 13 194

η·j 76 128 122 153 66 545

Data Set A3 (FLEX)

A gerontologist working in a senior center was interested in studying the benefits of
a flexibility program she had developed. Twenty seniors agreed to participate in a
5-week program. These individuals had been physically active at the senior center
for the past year. At the end of each week a score on a flexibility scale was obtained.
Scores on this scale could range between 0 and 100. The data file labeled FLEX
contains the flexibility scores of the 20 participants.

Data Set A4 (FLEX2)

Two additional groups of seniors participated in the flexibility study described in
data set A3. Twenty seniors who had been socially active but not physically active
(Group 2) and 20 seniors who had been neither physically or socially active (Group 3)
also volunteered to participate in the study. The data file labeled FLEX2 contains the
flexibility scores of all 60 participating seniors.

Data Set A5 (HSB)

This data set is a subset of a High School and Beyond (HSB) data set based on
a nationwide survey of 1980 high school seniors. The survey was conducted by
the National Center for Education Statistics. The grouping variable we consider
is Participation in Church Activities with three levels: No Participation (n1 = 99),
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Participation (n2 = 60), and Participation as a Leader (n3 = 40)—N = 199. The
HSB data set involves two response measures with underlying continua: Locus of
Control composite scale score (X1), and Self-Concept composite scale score
(X2). Two additional response variables considered are categorical with unordered
categories: Occupational Aspiration at Age 30 with five categories (X3), and Main
Activity in the Year after High School with four categories (X4). In the text we focus
on X3 and X4, information which is summarized in Table A.3.

TABLE A.3 Categorical Response Variables

Variable Category n

X3 1: Education 37
2: Humanities 29
3: Professional 42
4: Medical 59
5: Other 32

X4 1: Working 45
2: College/University 93
3: Technical School, Junior College 41
4: Other 20
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Some DA-Related Originators

We realize that there may very well be additional “originators.” We can only apologize
for omissions; and for any errors. Page indicates where the name is first mentioned
in this text. See McLachlan (1992) for many other originators.

Originator Page

Anderson, J. A. (1939–1983) 307
Anderson, T. W. (1915–) 3
Bargman, R. E. (1921–2004) 84
Barnard, M. M. 3
Bartlett, M. S. (1910–2002) 9
Bayes, T. (1701–1761) 263
Bonferroni, C. E. (1892–1960) 30
Box, G. E. P. (1919–2002) 41
Campbell, N. A. 9
Cochran, W. G. (1909–1980) 323
Cohen, J. (1923–1998) 27
Cooley, W. W. (–2002) 4
Cover, T. M. 364
DasGupta, S. (1925–2001) 3
Dillon, W. R. 297
Efron, B. 386
Elashoff, J. D. 343
Euclid of Alexandria (c.325 B.C.–c.265 B.C.) 26
Ezekiel, M. J. B. (1899–1974) 66
Fisher, R. A. (1890–1962) 3
Flury, B. (1951–1999) 11
Friedman, J. H. 388
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Originator Page

Fukunaga, K. 303
Fung, W. K. 358
Ganeshanandam, S. 346
Geisser, S. (1929–2004) 208
Glick, N. 297
Habbema, J. D. F. 306
Hand, D. J. (1950–) 4
Hecker, R. 309
Hilden, J. 311
Hills, M. 297
Hodges, J. L. (1922–) 3
Hora, S. C. 302
Hotelling, H. (1895–1973) 39
Jain, A. K. 309
Kempthorne, O. (1919–2000) 10
Klecka, W. R. 307
Krzanowski, W. J. 99
Lachenbruch, P. A. 4
Lancaster, H. O. (1913–2001) 368
Lesaffre, E. 311
Lohnes, P. R. (1929–2001) 4
Lord, F. M. (1912–2000) 299
Mahalanobis, P. C. (1893–1972) 3
McCabe, G. P. 104
McHenry, C. E. 111
McKay, R. J. 346
McLachlan, G. J. 4
McNemar, Q. (1900–1986) 321
Meehl. P. E. (1920–2003) 357
Michaelis, J. 280
Morant, G. M. (1899–1964) 3
Morris, J. D. 13
Mosteller, F. (1909–1990) 12
Neyman, J. N. (1894–1981) 29
Pearson, E. S. (1895–1980) 29
Pearson, K. (1857–1936) 3
Pillai, K. C. S. (1920–1985) 51
Rao, C. R. (1920–) 3
Roy, S. N. (1906–1964) 51
Rulon, P. J. 4
Schaafsma, W. 30
Smith, C. A. B. (1917–2002) 284
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Originator Page

Snapinn, S. M. 346
Sorum, M. J. 296
Tatsuoka, M. M. (1920–1996) 3
Tiedeman, D. V. 3
Tilton, J. W. (1891–1995) 356
Toussaint, G. T. 4
Tukey, J. W. (1915–2000) 12
Wahl, P. W. 281
Welch, B. L. (1911–1989) 350
Wherry, R. J. (1904–1981) 298
Wilks, S. S. (1906–1964) 48
Wrinch, D. (1894–1976) 262
Yao, Y. (–1995) 43
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List of Computer Syntax

Software Title Section

SPSS Syntax for Descriptive Statistics, Multivariate and 3.6
Unvariate Analyses

SPSS Syntax for Computing Effect Size 4.3
SPSS Syntax for MANOVA Contrast Analyses 4.5
SPSS Syntax for Computing Eigenvalues and Structures r’s 5.3
SPSS Syntax for Dimensionality Tests 5.6
SPSS Syntax to Obtain an LDF Plot 5.7
SPSS Syntax for Contrast Raw Discriminant Function Weights 5.9

and Structure r’s
McCabe Syntax for Finding the Best Subset of Outcome Variables 6.2
SPSS Syntax for Stepwise Descriptive Discriminant Analysis 6.3
SAS Syntax for Stepwise Descriptive 6.3

Discriminant Analysis
McHenry Syntax for Contrast Analysis 6.5
SPSS Syntax for Covariance Equality, Omnibus Test 8.5

Statistics, Dimensionality Analysis, and
Linear Discriminant Functions

SPSS Syntax for Computing Main Effect Contrasts in 8.6
a Factorial Design

SPSS Syntax for Simple Effects T.N.8
SPSS Syntax for Cell Contrasts using the General T.N.8

Linear Model (GLM) Program
SPSS Syntax for Regression Slope Vector Equality 9.5
SPSS Syntax for Analysis of Covariance Omnibus Test 9.7

and Construct Definition
SPSS Syntax for MANCOVA Contrast Analyses 9.9
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Software Title Section

SPSS Syntax for Testing Equality of Regression T.N.9
Planes with Two Covariates

SPSS Syntax for Testing Equality of Adjusted Centroids with T.N.9
Two Covariates

SPSS Syntax for Testing Pairwise Contrasts of Adjusted T.N.9
Centroids

SPSS Syntax for Omnibus Test for Repeated Measures 10.5
SPSS Syntax for Obtaining Three Estimates of (ε) 10.8
SPSS Syntax for Polynomial Trend Contrasts 10.10
SPSS Syntax for Factorial Design with Repeated T.N.10

Measures
SPSS Syntax for Repeated-Measures Simple Effect T.N.10
SPSS Syntax for a Third Trimester Simple Effect T.N.10
SPSS Syntax for a Mixed-Model Design 11.5
SPSS Syntax for Between-Groups and 11.7

Within-Subjects Contrasts
SPSS Syntax for MANCOVA with a Fixed Covariate T.N.11

in a Mixed-Model Design
SPSS Syntax for a Linear PDA using 3 Grade 14.2

Groups and 9 Predictor Variables
SAS Syntax for a Linear PDA Using 3 Grade 14.3

Groups and 9 Predictor Variables
SAS Syntax for Comparing Linear and Quadratic 16.6

Internal Hit Rates
SAS Syntax for Classifying New Students 16.9
SAS Syntax for a Linear PDA Using 3 Grade 16.9

Groups and 9 Predictor Variables
SAS Syntax to Obtain Quadratic Classification Function 16.9

Weights Using 3 Grade Groups and 3 Predictors
Morris Prompts for All Possible-Subset Analyses 17.3
SAS Syntax for Transforming Raw Data to Ranks 19.2
SAS Syntax for a L-O-O NN Analysis Using 19.2

3 Grade Groups and 9 Predictor Variables
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Contents of Wiley Website

COMPUTER PROGRAMS

The Wiley website contains nonpackage computer programs corresponding to dis-
cussions of six analyses within the text. The six programs are found at the website in
the order in which they are mentioned in the text:

Program Description

YAO2 Yao test for two groups
YAOPC Yao test for contrasts
CLASSVS Morris program
FLPC Fisher–Lancaster program
MCCABEPC McCabe program
MCHENPC McHenry program

It should be noted that CLASSVS, MCCABEPC, and MCHENPC are FOR-
TRAN source code files from which the executable files, CLASSVS.EXE,
MCCABEPC.EXE, and MCHENPC.EXE, respectively, are created. Furthermore,
FLPC, YAO2, and YAOPC are sample SAS programs that illustrate the use of the
SAS macro for conducting the Fisher–Lancaster analysis, Yao two-group test, and
Yao contrasts, respectively.

DATA SETS

Twelve data sets are available at the Wiley website. The following is a list of the data
files and the location in the text where the data are first cited or described.
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Program Location

BAUMANN2G2V.sav Table 2.1
BAUMANN3G2V.sav Table 3.1
STRESS.sav Table 8.1
BAUMANN2.sav Table 9.1
SELFESTEEM.sav Table 10.1
SELFESTEEM2.sav Table 11.1
SELFESTEEM3.sav Chapter 11 Technical Note
5GED.sav Appendix A Data Set A1
3GED.sav Appendix A Data Set A2
FLEX.sav Appendix A Data Set A3
FLEX2.sav Appendix A Data Set A4
HSB.dat Appendix A Data Set A5

The Fisher–Lancaster program yields scale values for categories of a categorical
response variable with more than two unordered categories (see Section 19.3.4). The
scale values may be used in either a predictive discriminant analysis or a descriptive
discriminant analysis. This analysis can be conducted using a SAS macro called
FL.MAC, written by J. M. Wisenbaker. It can be used for PC versions of SAS having
IML capabilities.

To conduct the Fisher–Lancaster scaling, the macro must be used in conjunction
with (1) the SAS DATA step that accesses the data to be analyzed, (2) the SAS
statement DUM = 1 used for merging purposes, and (3) the statements (one for each
categorical variable) that actually invoke the FL macro.

The following is an excerpt from the program:
*************************************************************
* Program Name = FLPC *
* Program Purpose = To perform Fisher–Lancaster analysis *
* on HSB.DAT which uses the FL.MAC macro *
*************************************************************
options mprint ; *******************
DATA ONE; * Call data set and *
INFILE ‘a:HSB.DAT’ MISSOVER; * define variables *

** if running on hard drive − > *******************
change INFILE statement
to reflect current directory **;

INPUT CHURCH X1 X2 X3 X4;
DUM = 1;

%MACRO FL(NUM, DATA=, GROUP=, VAR=,
NGROUPS=, NCATS2=, NCATS=);

. ********************

. * Macro for the Fisher- *

. * Lancaster procedure *
********************
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%mend FL;
.
.
.

%FL(1, DATA=ONE, GROUP=CHURCH, VAR=X3, ***********************
NGROUPS=3, NCATS2=10, NCATS=5) * Invoke macro for *

%FL(2, DATA=ONE, GROUP=CHURCH, VAR=X4, * scaling variables X3 *
NGROUPS=3, NCATS2=8, NCATS=4) * and X4 *

***********************
PROC PRINT;
RUN;

The first four lines access the data and define the variables of interest. The statement
DUM = 1 must be included so that the new scaled variables can be merged with the
original dataset. The next block of code is the actual SAS macro. It can be identified
by the first statement, namely %MACRO FL, and the last statement, namely %MEND
FL. The parameters to be passed within the macro are defined as follows:

1. NUM starts out with a value of 1 and must be incremented by 1 for each
additional categorical variable.

2. DATA designates the SAS dataset containing the data.

3. GROUP identifies the variable identifying group membership.

4. VAR identifies the categorical variable to be scaled.

5. NGROUPS is the value for the number of criterion groups.

6. NCATS2 is the value of twice the number of categories in the variable to be
scaled.

7. NCATS is the value for the number of categories in the variable to be scaled.

The next two statements invoke the macro for scaling variables X3 and X4,
respectively. In other words, it must be called once per categorical variable. The
first invocation of the macro defines NUM = 1, indicating that the variable X3 is to
be scaled first, the data can be found in the dataset ONE, the grouping variable is
CHURCH, the number of levels of the grouping variable is 3 (NGROUPS), the num-
ber of categories in the variable X3 is 5 (NCATS), and twice the number of categories
is 10 (NCATS2). The second invocation of the macro defines NUM = 2 indicating
that the variable X4 is to be scaled second, the data can be found in data set ONE,
the grouping variable is CHURCH, the number of levels of the grouping variable is
3 (NGROUPS), the number of categories in the variable X4 is 4 (NCATS), and twice
the number of categories is 8 (NCATS2).

For each macro, the output consists of a cross-classification table for each categori-
cal variable against the grouping variable, the scaling coefficients for each categorical
valued variable (WP), and the eigenvalues (LAM). Also on each call, the macro gen-
erates Fisher–Lancaster scaled values for the designated categorical variable for the
first two eigenvalues (SCALEAi and SCALEBi, respectively). These are appended
to the original data set. Once these values are calculated and appended to the original
data set, these values can be used for subsequent statistical analyses.
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Answers to Exercises

CHAPTER 2

1. (a) n × p

(b) p × n

(c) p × n

2. SSCP2
.=

[
160.773 191.318
191.318 918.955

]

S2
.=

[
7.656 9.110
9.110 43.760

]

3. |S2| .= (7.656)(43.760) − (9.110)2

.= 252.034

4. S−1
2

.= 1

252.034

[
43.760 −9.110
−9.110 7.656

]

.=
[

.175 −.036
−.036 .031

]

5.
2∑

j=1

SSCPj = E .=
[

484.637 709.591
709.591 2216.41

]

Se
.= 1

44 − 2

[
484.637 709.591
709.591 2216.41

]

.=
[

11.539 16.895
16.895 52.772

]

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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6. |Se| .= (11.539)(52.772) − (16.895)2

.= 323.495

7. S−1
e

.= 1

323.495

[
52.772 −16.895

−16.895 11.539

]

.=
[

.163 −.052
−052 .036

]

8.

SeS−1
e

.=
[

11.539 16.895
16.895 52.772

] [
.163 −.052

−052 .036

]

.=
[
(11.539)(.163)+(16.895)(−.052) (11.539)(−.052)+(16.895)(.036)

(16.895)(.163)+(52.772)(−.052) (16.895)(−.052)+(52.772)(.036)

]

.=
[

1.002 .008
.009 1.021

]

9. |A − λI| = λ2 − 16λ + 15

λ = 16 ± √
162 − 4(15)

2

= (16 ± 14)/2

= 1 and 15

10. D2 .= [
7.77 − 6.68 43.45 − 42.05

]
[

.163 −.052
−.052 .036

] [
7.77 − 6.68

43.45 − 42.05

]

.= .106

CHAPTER 3

1. For variable Y1:

t
.= 4.40 − 5.50

√
(1.1742 + 1.2692/10

.= −2.011

For variable Y2:

t
.= 13.00 − 15.20

√
(2.5822 + 2.6162/10

.= −1.893

There is insufficient evidence to indicate that the observed differences in anxiety
are generalizable to the populations they represent.
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2. For variable Y1:

r2
pb

.= −2.0112

−2.0112 + 18
.= .183

The correlation could be either plus or minus depending the order of subtraction.

d
.= 4.40 − 5.50

√
(1.1742 + 1.2692)

2

.= −.900

For variable Y2:

r2
pb

.= −1.8932

−1.8932 + 18
.= .166

d
.= 13.00 − 15.20

√
(2.5822 + 2.6162)

2

.= −.846

3. (a)

SSCPIG
.=

[
12.402 4.014

4.014 60.001

]

SSCPCG
.=

[
14.490 −4.986
−4.986 61.587

]

and

E .=
[

26.892 −.972
−.972 121.690

]

Se = 1

18
E .=

[
1.494 −.054
−.054 6.761

]

|Se| .= (1.494)(6.761) − (−.054)2 .= 10.098

S−1
e

.= 1

10.098

[
6.761 .054
.054 1.494

]
.=

[
.669 .005
.005 .148

]

(b)
T 2 .= (10)(10)

10 + 10

[
4.40 − 5.50 13.00 − 15.20

]

×
[
.669 .005
.005 .148

] [
4.40 − 5.50

13.00 − 15.20

]
.= 7.750

F
.= 18 − 2 + 1

2(18
(7.75)

.= 3.660

(c) D2 .= [
4.40 − 5.50 13.00 − 15.20

]
[
.669 .005
.005 .148

] [
4.40 − 5.50

13.00 − 15.20

]

.= 1.550
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4. The mutlivariate test is more powerful than the univariate test.

5.
E =

3∑

j=1

SSCPj
.=




330.4 220.4 203.9
220.4 297.6 206.2
203.9 206.2 478.4





Se = 1

42
E .=




7.867 5.248 4.855
5.248 7.086 4.910
4.855 4.910 11.390





6. Using Eq. (3.15) and with y..
.=




14.30
14.87
19.23



 the individual SSCP are computed as:

SSCP1
.=




38.400 13.680 −90.720
13.680 5.875 −32.319

−90.720 −32.319 214.326





SSCP2
.=




21.600 32.940 −7.740
32.940 50.250 −11.804
−7.740 −11.804 2.774





SSCP3
.=




2.400 −7.620 −19.980

−7.620 24.194 63.437
−19.980 63.437 166.334





H =
3∑

j=1

SSCPj
.=




62.400 39.000 −118.440
39.000 79.319 19.314

−118.440 19.314 381.434





7. For variables Y1 and Y2 the relevant matrices are

H .=
[

62.400 39.000
39.000 79.319

]

E .=
[

330.4 220.4
220.4 297.6

]

� = |E|
|E + H|

.= 4.98 × 104

8.05 × 104
.= .619

8. Because three groups are being compared, � is transformed to an F statistic
using Eq. (3.18):

F
.= 1 − .6191/2

.6191/2

42 − 2 + 1

2
.= 5.556

9. (a) �
.= 1

2.694

1

1.312
.= .283
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(b)
U

.= 1.694

2.694
+ .312

1.312
.= .867

(c) �
.= 1.694

2.694
.= .629

(d) V
.= 1.694 + .312
.= 2.006

10. (a)
F

.= 1 − .2831/2

.2831/2

42 − 3 + 1

3
.= 11.730

ν1 = 2(3) = 6 and ν2 = 2(42 − 3 + 1) = 80

(b) F
.= .867

2 − .867

42 − 3 + 2

3
.= 10.458

ν1 = 3(2) = 6 and ν2 = 2(42 − 3 + 2) = 82

(c) F
.= (45 − 3 − 1)1.694

3
.= 23.151

ν1 = 3 and ν2 = 45 − 3 − 1 = 41

(d) F
.= 2.004

2(42 − 3 − 1) + 2

223
.= 13.026

ν1 = 3(2) = 6 and ν2 = 2(42 − 3 − 1) + 2 = 78

11. The sample sizes are: Black n1=182, Hispanic n2=169, and White n3= 194.

12. (a) M
.= 146.740

(b) χ2(90)
.= 1.43.335

(c) ln|S1| .= 23.85, ln|S2| .= 24.48, ln|S3| .= 23.37, and ln|Se| .= 24.14.

(d) No, because the sample sizes are similar and the log determinants of the
covariance matrices do not differ much.

13. The two variables that have the highest correlation are Student–Faculty Effort
(qefac) and Interstudent Effort (qestacq). These two variables are correlated
.485.
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14. �
.= .863

U
.= .142

V
.= .153

15. Yes, there is sufficient evidence to conclude that the observed differences
among the group centroids do generalize to the populations they represent,
� = .863, F (18, 1068) = 4.533, P = .000.

CHAPTER 4

1. No, because the number of eigenvalues is min(p, dfh). For this context p = 4
and dfh = 3, so the minimum is 3.

2. (a) �
.= 1

5.764

1

2.237

1

1.044
.= .074

(b) U
.= 4.764

5.764
+ 1.237

2.237
+ .044

1.044
.= 1.422

(c) �
.= 4.764

5.764
.= .827

(d) V
.= 4.764 + 1.237 + .044
.= 6.045

3. (a)
F

.= 1 − .0741/2.646

.0741/2.646

(43)(2.646) − 4(3)/2 + 1

4(3)

.= 15.175

ν1 = 4(3) = 12

ν2
.= (43)(2.646) − 4(3)

2
+ 1

.= 108.778

(b) F
.= 1.422

3 − 1.422

44 − 4 + 3

4
.= 9.687

ν1 = 4(3) = 12

ν2 = 3(44 − 4 + 3) = 129
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(c)
F

.= (48 − 4 − 1)4.764

4
.= 51.213

ν1 = 4

ν2 = 48 − 4 − 1 = 43

(d)
F

.= 6.045
3(44 − 4 − 1) + 2

324
.= 19.982

ν1 = 4(3) = 12

ν2 = 3(44 − 4 − 1) + 2 = 119

4. (a) η2
Mult

.= 1 − .074
.= .926

(b) τ 2 = 1 − .0741/3 .= .580

(c) ξ2 .= 1.422

3
.= .474

(d) ζ 2 .= 6.045

3 + 6.045
.= .668

(e) ω2
Mult

.= 1 − 48(.074)

(48 − 3 − 1) + .074
.= .919

5. (a)
τ 2

adj
.= 1 − 48 − 1

48 − 4 − 1
(1 − .580)

.= .541

(b)
ζ 2

adj
.= 1 − 48 − 1

48 − 4 − 1
(1 − .668)

.= .637

(c)
ξ2

adj
.= 1 − 48 − 1

48 − 4 − 1
(1 − .474)

.= .425

6. The first contrast, 1 0 0 −1, compares the centroids of Mathematics students
with Business students. The second contrast 0 1 0 −1, compares the centroids
of English students with Business students, and the third contrast compares the
centroids of Psychology students with Business students.

7. One eigenvalue is associated with each contrast because each contrast has
dfh = 1.
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8.

H
ψ̂

.= 12

(1)2 + (−1)2







3.6
2.2

−3.8
−8.9







[
3.6 2.2 −3.8 −8.9

]

.=







77.76 47.52 −82.08 193.74
47.52 29.04 −50.16 −117.48

−82.08 −50.16 86.64 202.92
193.74 −117.48 202.92 475.26







9. (a) �
.= 1

1 + 3.248
.= .235

(b) F
.= 1 − .235

.235

44 − 4 + 1

4
.= 33.3676

(c) ν1 = 4, ν2 = 44 − 4 + 1 = 41

10. (a) ξ2 .= 3.248

1 + 3.248
.= .765

(b) ξ2
adj

.= 1 − 48 − 1

48 − 4 − 1
(1 − .765)

.= .743

11. (a) η2
Mult

.= 1 − .863 = .137

(b) τ 2 .= 1 − .8631/2 .= .071

(c) ξ2 .= .071

(d) ζ 2 .= .071

12. (a) τ 2
adj

.= 1 − 545 − 1

545 − 9 − 1
(1 − .071)

.= .055

(b) ξ2
adj

.= .055

(c) ζ 2
adj

.= .055

13. (a) �
.= .939, U

.= .061, and V
.= .065

(b) F
.= 3.885, ν1 = 9, and ν2 = 534

(c) Yes, there is evidence to indicate that the centroids of Hispanic and black
students differ, P

.= .000.

14. (a) �
.= .919, U

.= .080, and V
.= .087

(b) F
.= 5.160, ν1 = 9, and ν2 = 534

(c) Yes, there is evidence to indicate that the mean centroid of Hispanic and
Black students differs from the centroid of White students, P

.= .000.

15. (a) i. For the contrast comparing Hispanic with Black students ξ2 .= .061.

ii. For the contrast comparing Minority students with White students
ξ2 .= .080.
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(b) i. For the contrast of Hispanic and Black students,

ξ2
adj

.= 1 − 545 − 1

545 − 9 − 1
(1 − .061)

.= .045.

ii. For the contrast of Minority students with White students,

ξ2
adj

.= 1 − 545 − 1

545 − 9 − 1
(1 − .080)

.= .065.

CHAPTER 5

1. The squared first canonical correlation is 4.764/(1 + 4.764)
.= .827. The

squared second canonical correlation is 1.237/(1 + 1.237)
.= .553. The squared

third canonical correlation is .044/(1 + .044)
.= .042.

2. The first construct explains 4.764/(4.764 + 1.237 + .004)
.= 78.8 percent of

the variance in the system. The second construct explains 1.237/(4.764 +
1.237 + .004)

.= 20.5 percent of the variance in the system. And the third con-
struct explains .044/(4.764 + 1.237 + .004)

.= .74 percent of the variance in
the system. Based on these results two constructs may be necessary to describe
group separation.

3. Null hypothesis test for no separation on any dimension

�
.= 1

1 + 4.764

1

1 + 1.237

1

1 + .044
.= .074

F
.= 1 − .0741/2.646

.0741/2.646

(43)(2.646) − 4(3)/2 + 1

4(3)

.= 15.175

ν1 = 4(3) = 12

ν2
.= (43)(2.646) − 4(3) = 108.778

Null hypothesis test for separation on at most one dimension

�1
.= 1

1 + 1.237

1

1 + .044
.= .428

F
.= 1 − .4281/2

.4281/2

(44) − 3 + 1

3
.= 7.406
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ν1 = 3(2) = 6

ν2 = 2(44 − 3 + 1) = 84

Null hypothesis test for separation on at most two dimensions

�2
.= 1

1 + .044
.= .958

F
.= 1 − .958

.958

(44) − 2 + 1

2
.= .946

ν1 = 2

ν2 = 44 − 2 + 1 = 43

Based on these results, we would conclude that at most two dimensions are
necessary to describe group separation.

4. An LDF is a weighted composite of a set of response variables.

5. Linear discriminant functions are used to determine group centroids in LDF
space. These centroids are then used to describe group separation.

6. Teacher and Effort appear to define the first LDF. Luck appears to define the
second LDF.

7. (a) For Mathematics majors:

LDF1
.= −.187(11.5) + −.044(25.3) + .027(22.7) + .227(32.3)

.= 4.681

LDF2
.= .096(11.5) + .035(25.3) + .249(22.7) + .139(32.3)

.= 12.132

(b) For English majors:

LDF1
.= −.187(22.2) + −.044(31.5) + .027(30.5) + .227(19.0)

.= −.401

LDF2
.= .096(22.2) + .035(31.5) + .249(30.5) + .139(19.0)

.= 13.469
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(c) For Psychology majors:

LDF1
.= −.187(17.9) + −.044(28.6) + .027(30.3) + .227(22.4)

.= 1.297

LDF2
.= .096(17.9) + .035(28.6) + .249(30.3) + .139(22.4)

.= 13.378

(d) For Business majors:

LDF1
.= −.187(14.3) + −.044(26.4) + .027(34.1) + .227(31.3)

.= 4.190

LDF2
.= .096(14.3) + .035(26.4) + .249(34.1) + .139(31.3)

.= 15.138

8.

Math Eng Psy Bus

LDF1 4.68 −.40 1.30 4.19
LDF2 12.13 13.47 13.38 15.14

English and Psychology majors appear to differ from Mathematics and Business
majors on the first LDF. English and Psychology majors appear to be similar
on the second LDF but differ from both Business and Mathematics majors.
In addition, Mathematics majors appear to differ from Business majors on the
second LDF.

9. The squared canonical correlation is
1.257

1 + 1.257
.= .557.

10. (a) �
.= 1

1 + 1.257
.= .443

(b) τ 2 .= 1 − .443
.= .557

11. The contrast between Mathematics and Business majors seems to be defined by
the variable luck.

12. The first construct (LDF) explains 62.1 percent of the variance, and the second
construct explains 37.9 percent of the variance in the system.

13. Based on the dimension reduction analysis two constructs are needed to
describe the group separation. The test for at least one dimension resulted in
�

.= .863, F (18, 1068) = 4.533, P
.= .000. The test of at least two dimensions

resulted in �
.= .945, F (8, 535) = 3.883, P

.= .000.

14. The squared canonical correlation between race and the first and second
constructs are .087 and .055, respectively.
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15. The first construct is defined by counsum (.404), learnsum (.535), qelib (.522),
qewrite (.408) and qesci(−.437). The second construct is defined by qefac
(.453), qestacq (.389), and qeamt (−.402). The values in parentheses are the
structure r’s.

16. Using the DISCRIMINANT program in SPSS, the group LDF centroids are

Function

Ethnicity 1 2

Black .370 .178
Hispanic .026 −.358
White −.370 .145

17. For the contrast between Black and Hispanic students the construct that separates
the two groups is defined by learnsum (.466), qefac (−.499), qestacq (−.470),
and qewrite (.439).

18. For the contrast between Black and Hispanic students and White students the
construct is defined by counsum (−.448), learnsum (−.414), qelib (−.490), and
qesci (.472).

CHAPTER 6

1. An analysis for determining sample-based best outcome variable subsets of all
possible sizes.

2. Ten (at most) best outcome variable subsets of each size.

3. (a) They both determine the best subset of a given size.

(b) The McCabe analysis determines the 10 (at most) best outcome variable
subsets of each size, while the McHenry analysis determines only the best
subset of each size. The McCabe analysis is based on raw data input, while
the McHenry analysis is based on matrix input.

4. (a) Initial outcomes variable selection is based on study-related substantive
theory.

(b) Multiple correlation, canonical correlation, principal component analysis,
and factor analysis.

5. All outcome variables may not be included in the analysis.

6. (a) Y3, Y5; Y1, Y2, Y3, Y5, Y6, Y9

(b) Yes. Yes.

(c) Y1, Y2, Y3, Y4, Y5, Y6, Y9 or Y1, Y2, Y3, Y5, Y6, Y8, Y9

(d) Y7, Y8
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(e) Y5, Y9

(f) Y3, Y4; Y7, Y5

CHAPTER 8

1. (a) Three, there would be one set of LDFs for each main effect and one set of
LDFs for the interaction.

(b) There would be two LDFs for the main effect having three levels, three LDFs
for the main effect having four levels, and six LDFs for the interaction.

2. (a) y.11
.=







6.9
9.2

12.0
15.1







(b) y..1
.=







9.07
10.87
13.10
16.10







(c) y.1.
.=







8.55
9.35

10.75
12.85







(d) y...
.=







10.967
11.283
11.683
13.683







3.

HG1

.=







−1.897
−.413
1.417
2.417







[−1.897 −.413 1.417 2.417
]

.=







3.599 .783 −2.688 −4.585
.783 .171 −.585 −.998

−2.688 −.585 2.008 3.425
−4.585 −.998 3.425 5.842







HG2

.=







1.903
.417

−1.413
−2.413







[
1.903 .417 −1.413 −2.413

]
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.=







3.621 .794 −2.689 −4.592
.794 .174 −.589 −1.006

−2.689 −.589 1.997 3.410
−4.592 −1.006 3.410 5.823







HG = 30[HG1 + HG2 ]

.=







216.600 47.310 −161.310 −273.510
47.310 10.350 −35.220 −60.120

−161.310 −35.220 120.150 205.050
−273.510 −60.120 205.050 349.950







4. (a) �
.= 1

1 + .080

1

1 + .005
.= .921

(b) F
.= 1 − .9211/2

.9211/2

84 − 4 + 1

4
.= .851

(c) ν1 = 2(4) = 8, ν2 = 2(84 − 4 + 1) = 162

5. .988
.= 1

1 + λ
, λ

.= .012. The squared canonical correlation equals

.012

1 + .012
.= .012.

6. Based on the results provided, the three levels of variable B appear to be best
described on one dimension. The first construct explains 97.6 percent of the
variation in the system while the second construct explains only 2.54 percent
of the variation. Furthermore the results of the Dimension Reduction Analysis
indicates that at most only one dimension is needed to separate the groups being
compared, �

.= .971, F (3, 82)
.= .827, P

.= .483.

7. For the B main effect,

ξ2 .=
(

1.291

1 + 1.291
+ .030

1 + 1.030

)/
2

.= .289

ξ2
adj

.= 1 − 90 − 1

90 − 4 − 1
(1 − .289)

.= .256

8.
.576

1 + .576
.= .365

9. �
.= 1

1 + .576
.= .635

U
.= .576

1 + .576
.= .365

V
.= .576

�
.= .567

1 + .576
.= .365
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All four test criteria will result in the same F statistic and degrees of freedom.

F
.= 1 − .635

.635

84 − 4 + 1

4
.= 11.640, ν1 = 4, ν2 = 81.

10. /lmatrix “cell a2b1 vs. cell a2b2” B 1 −1 0 A*B 0 0 0 1 −1 0

11. (a) M
.= 917.412

(b) χ2 .= 808.726, ν1 = 630

(c) There is a positive relationship between sample size and the log determi-
nants, r

.= .496.

(d) Because the sample sizes and log determinants are positively related, the
reported P values will overestimate the actual P value. If the evidence
provided in the test is judged to be statistically significant, the conclusions
will be statistically valid.

12. (a) �
.= .842, F (72, 3182.78)

.= 1.270, P
.= .065

(b) ξ2 .= .021 and ξ2
adj

.= 1 − 545 − 1

545 − 9 − 1
(1 − .021)

.= .005

Based on these results, there is little evidence to indicate the interaction is
statistically or meaningfully significant.

13. (a) �
.= .885, F (18, 1044)

.= 3.641, P
.= .000

(b) ξ2 .= .059 and ξ2
adj

.= 1 − 545 − 1

545 − 9 − 1
(1 − .059)

.= .043

Based on these results, there is evidence to indicate that the Race centroids differ
both statistically and meaningfully.

14. (a) The first construct explains 69.3 percent of the variance in the system, while
the second construct explains 30.7 percent of the variance.

(b) The Race variable explains 8 percent of the variation in the first construct
and 3.7 percent of the variation in the second construct.

(c) Based on the Dimension Reduction Analysis two dimensions are needed to
describe group differences on the Race variable, �1

.= .963, F (8, 532)
.=

2.53, P
.= .010.

15. (a) �
.= .888, F (36, 1957.91)

.= 1.746, P
.= .004

(b) ξ2 .= .029 and ξ2
adj

.= 1 − 545 − 1

545 − 9 − 1
(1 − .029)

.= .013

Based on these results, there is evidence to indicate that the Race centroids differ
statistically, but the meaningfulness of the relationship may be questionable.

16. (a) The first construct explains 46.8 percent of the variation in the system. The
second construct explains 26.0 percent of the variance. The third construct
explains 21.9 percent of the variance in the system. And the fourth construct
explains 5.2 percent of the variance.

(b) The Grade variable explains 5.3 percent of the variation in the first con-
struct, 3.1 percent of the variation in the second construct, 2.6 percent of the
variation in the third construct, and .6 percent of the variation in the fourth
construct.
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(c) Only one dimension is needed to describe group differences among levels of
the Grade variable �0

.= .888, F (36, 1957.91)
.= 1.746, P

.= .004; �1
.=

.939, F (24, 1517.46)
.= 1.400, P

.= .096.

17. For the Grade variable the construct that separates the groups is defined based
on the structure r’s by qefac (−.616) primarily and to a lesser extent by qeamt
(−.374), qewrite (−.356), and qesci (−.347).

18. (a) �
.= .966, F (9, 522)

.= 2.036, P
.= .034

(b) ξ2 .= .034 and ξ2
adj

.= 1 − 545 − 1

545 − 9 − 1
(1 − .034)

.= .0178

If it is assumed that four contrasts would be of interest (e.g., comparing each
Grade group with the A student group), then a Bonferroni adjusted P value
for this contrast would be .136 (4 × .034), and the results would provide little
evidence that the group centroids differ statistically or meaningfully.

19. (a) �
.= .907, F (36, 1957.91)

.= 1.442, P
.= .044

(b) ξ2 .= .024 and ξ2
adj

.= 1 − 545 − 1

545 − 9 − 1
(1 − .024)

.= .008

(c) The first construct explains 59.9 percent of the variance in the system. The
second construct explains 24.4 percent of the variance in the system. The
third construct explains 11.2 percent of the variance, and the fourth construct
explains 4.6 percent of the variance in the system.

(d) The Grade variable within the Black student sample explains 5.7, 2.4, 1.1,
and .5 percent of the variation in constructs 1 through 4, respectively.

(e) Only one dimension is needed to the Black student sample �
.=

.907, F (36, 1957.91)
.= 1.442, P

.= .044; �1
.= .961, F (24, 1517.46)

.=
.874, P

.= .639.

(f) Based on the structure r’s, group separation is defined by learnsum (−.361),
qelib (.542), qefac (.452), qestacq (.394), and qeamt (.479).

20. (a) There is no evidence to indicate that for the Black student population the
centroids for students earning A grades differ from those earning grades of
C or C−; �

.= .986, F (9, 522)
.= .803, P

.= .613.

(b) τ 2 .= 1 − .986
.= .014, τ 2

adj
.= 1 − 545 − 1

545 − 9 − 1
(1 − .012)

.= − .003
.= .000.

CHAPTER 9

1. Group 1 Group 2
bY1|X1

.= 261.7/4424.5
.= .059 bY1|X1

.= 409.5/7729.5
.= .053

bY2|X1

.= 140.1/4424.5
.= .032 bY2|X1

.= 209.7/7729.5
.= .027

bY3|X1

.= 424.1/4424.5
.= .096 bY3|X1

.= 553.6/7729.5
.= .072
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2.

E .=







90.5 34.1 86.9 671.2
34.1 23.9 40.3 349.8
86.9 40.3 129.2 977.7

671.2 349.8 977.7 12154.0







3. bY1|X1

.= 671.2/12154.0
.= .055

bY2|X1

.= 349.8/12154.0
.= .029

bY3|X1

.= 977.7/12154.0
.= .080

4. One.

5. Because J = 2, Eq. (3.12) can be used.

F
.= 1 − .959

.959

36 − 3 + 1

3
.= .485,

with ν1 = 3 and ν2 = 34.

6.

E∗ .=



90.5 34.1 86.9
34.1 23.9 40.3
86.9 40.3 129.2



 − .00008




450509.44 234785.76 656232.24
234785.76 122360.04 341999.46
656232.24 341999.46 955897.29





.=



54.459 15.317 34.401
15.317 14.111 12.940
34.401 12.940 52.728





7. �
.= 1 − .9052 .= .181

8. F = 1 − .181

.181

37 − 3 + 1

3
.= 52.790 with ν1 = 3 and ν2 = 35.

9. The construct is definded by variables Y1 and Y3.

10. For Group 1 LDF
.= −.284(15.728) − .097(8.114) + .321(7.640)

.= −2.801.
For Group 2 LDF

.= −.284(9.022) − .097(6.336) + .321(13.910)
.= 1.288.

11. (a) �
.= .976

(b) F
.= .713

(c) ν1 = 18 and ν2 = 1062

(d) P
.= .800

12. The conclusion does not change when Time is added to the model as a covariate.
From Chapter 3, Exercise 15, �

.= .863, F (18, 1068)
.= 4.533, and P

.= .000.
With Time as a covariate, �

.= .867, F (18, 1066)
.= 4.375, and P

.= .000.
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13.
Without Time

Construct 1 Construct 2

Variable Structure r Variable Structure r

counsum .404 qefac .453
learnsum .535 qestacq .389
qelib .522 qeamt −.402
qewrite .408
qesci −.437

With Time

Construct 1 Construct 2

Variable Structure r Variable Structure r

counsum −.371 qefac .427
learnsum −.563 qestacq .419
qelib −.492 qeamt −.350
qewrite −.428
qesci .421

The variables defining the constructs are the same when the covariate is included
in the model and when it is excluded.

14. For Black students:

LDF1
.= −.103(4.7) − .024(18.3) − .088(19.5) − .084(15.6) − .008(16.6)

− .067(12.5) + .076(8.9) − .024(22.9) + .114(15.0)

.= −3.08

LDF2
.= −.211(4.7) − .097(18.3) + .046(19.5) − .025(15.6) + .122(16.6)

+ .114(12.5) − .183(8.9) + .039(22.9) + .057(15.0)

.= 1.31

For Hispanic students:

LDF1
.= −.103(4.6) − .024(18.2) − .088(18.1) − .084(14.8) − .008(15.3)

− .067(11.2) + .076(9.5) − .024(21.4) + .114(15.4)

.= −2.66

LDF2
.= −.211(4.6) − .097(18.2) + .046(18.1) − .025(14.8) + .122(15.3)

+ .114(11.2) − .183(9.5) + .039(21.4) + .057(15.4)

.= .844
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For White students:

LDF1
.= −.103(4.1) − .024(17.2) − .088(17.5) − .084(13.8) − .008(15.9)

− .067(11.6) + .076(8.7) − .024(21.2) + .114(17.1)

.= −2.22

LDF2
.= −.211(4.1) − .097(17.2) + .046(17.5) − .025(13.8) + .122(15.9)

+ .114(11.6) − .183(8.7) + .039(21.2) + .057(17.1)

.= 1.40

White students appear to differ from Black and Hispanic students on the first
dimension. On the second dimension Hispanic students appear to differ from
White and Black students.

15. (a) �
.= .929

(b) F
.= 4.550

(c) ν1 = 9 and ν2 = 533

(d) P
.= .000

(e) The variables that separate the groups are counsum (−.453), learnsum
(−.403), qelib (−4.24), and qesci (.513).

CHAPTER 10

1. (a) 4 × 5

(b) A =







1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1







(c) The contrasts are independent but they are not orthogonal.

2.

H .= 20









1.48
3.18
3.78
−.92

−7.52









[
1.48 3.18 3.78 −.92 −7.52

]

.=









43.8 94.1 111.9 −27.2 −222.6
94.1 202.2 240.4 −58.5 −478.3

111.9 240.4 285.8 −69.6 −568.5
−27.2 −58.5 −69.6 16.9 138.4

−222.6 −478.3 −568.5 138.4 1131.0









3. �
.= 1 − .326

.326

19 − 4 + 1

4
.= 8.267



“bansw1” — 2006/3/9 — page 468 — #20

468 ANSWERS TO EXERCISES

4. (a) (−2)(2) + (−1)(−1) + (0)(−2) + (1)(−1) + (2)(2) = 0

(b) For the first contrast w
.= √

1/10
.= .316

For the second contrast w
.= √

1/14
.= .267

For the third contrast w
.= √

1/10
.= .316

For the fourth contrast w
.= √

1/70
.= .120

A .=







−.632 −.316 .000 .316 .632
.535 −.267 −.535 −.267 .535

−.316 .632 .000 −.632 .316
.120 −.478 .717 −.478 .120







5. It appears that the sphericity assumption is violated. The variances differ by as
much as a factor of 3.8 (121.2/31.4) and the covariances vary between −35.0
and 8.2.

6. (a) W
.= 4.27 × 106

[
(121.2 + 45.8 + 38.6 + 31.4)

4

]4
.= .347

(b)
d

.= 1 − 2(5)2 − 3(5) + 3

6(20 − 1)(5 − 1)

.= .917

χ2 .= −(20 − 1).917(ln.347)
.= 18.441.

(c) df
.= (5(5 − 1)

2
− 1 = 9.

There is some evidence to indicate that the sphericity assumption is violated.
This is consistent with the observations made in Exercise 5.

7. (a) ε∗ = 1

5 − 1
= .25

(b) ε′ = (237)2

(5 − 1)(22930.44)

.= .612

(c) ε̃
.= 20(5 − 1).612 − 2

(5 − 1)[(20 − 1) − (5 − 1).612]
.= .709

8. MSS×T
.= (121.2 + 45.8 + 38.6 + 31.4)

4
.= 59.25

9. (a)
ψ̂linear

.= −.632(252.2) − .316(253.9) + .000(254.5)

+ .316(249.8) + .632(243.2)

.= −6.984

(b) s
ψ̂linear

.=
√

121.2
(−.632)2 + (−.316)2 + .0002 + .3162 + .6322

20
.= 2.46
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(c) t
.= −6.984

2.46
.= −2.839

(d) df = 20 − 1 = 19

(e) ψ̂quadratic
.= .535(252.2) − .267(253.9) − .535(254.5)

− .267(249.8) + .535(243.2)

.= −5.606

(f) s
ψ̂quadratic

.=
√

45.8
.5352 + (−.267)2 + (−.535)2 + (−.267)2.5352

20
.= 1.514

(g) t
.= −5.606

1.514
.= −3.705

(h) df = 20 − 1 = 19

10. If the sphericity assumption had been met, the univariate approach would use
the average contrast variance (i.e., MSS×T ) rather than each individual contrast
variance when computing the standard error of a contrast.

11. (a) i. W
.= .140

ii. χ2 .= 34.265

iii. df = 9

iv. P
.= .000

(b) ε̃
.= .557

12. Yes, there is statistical evidence to indicate that behavior changed over the
5-week period.

(a) �
.= .044

(b) F
.= 86.998

(c) ν1 = 4 and ν2 = 16

(d) P
.= .000

13. ξ2 .= .956 and ξ2
adj

.= 1 − 100 − 1

100 − 4 − 1
(1 − .956)

.= .952

14. (a) For a fourth-degree polynomial t (19)
.= .873, P

.= .394.

(b) For a cubic polynomial t (19)
.= 1.488, P

.= .153.

(c) For a quadratic polynomial t (19)
.= −6.888, P

.= .000.

(d) For a linear model t (19)
.= 16.292, P

.= .000.

Using a Bonferroni-adjusted P ′ (.05/4=.0125), the results provide evidence for
a quadratic relationship between the repeated-measure variable and the outcome
variable.

CHAPTER 11

1. Three; there is one covariance matrix for each of the three weight groups.
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2. d
.= 1 −

[
2(4)2 − 3(4) + 3

6(45 − 3)(4 − 1)

]
.= .970

3. χ2 .= −(45 − 3).970[ln(.728)] .= 12.933

4. ε̃
.= 45(4 − 1).840 − 2

(4 − 1)[(45 − 3) − (4 − 1).840]
.= .941

5. F
.= 1 − .8181/2

.8181/2

42 − 3 + 1

3
.= 1.409 with ν1 = 2(3) = 6 and ν2 =

2(42 − 3 + 1) = 80

6.

HMinutes
.= 45







1.4
.1

−.7
−.8







[
1.4 .1 −.7 .8

]

.=







88.2 6.3 −44.1 −50.4
6.3 .45 −3.15 −3.6

−44.1 −3.15 22.05 25.2
−50.4 −3.6 25.2 28.8







7. ξ2 .= .548 and ξ2
adj

.= 1 − 180 − 1

180 − 3 − 1
(1 − .548)

.= .540

8. s
ψ̂G×linear

.=
√

2.70
[−.6712+ −.2242+ · · · + .6712]+[−.6712+ −.2242+ · · · + .6712]

15.= .6

9. (a) i. ψ̂linear
.= −.671(14.8) + (−.224)(13.5) + .224(12.7) + .671(12.6)

.= −1.655

ii. slinear
.=

√

2.70
−.6712 + (−.224)2 + .2442 + .6712

45
.= .245

iii. t
.= −1.655

.245
.= −6.755

(b) i. ψ̂quadratic
.= .500(14.8) + (−.500)(13.5) + (−.500)(12.7)

+ .500(12.6)
.= .600

ii. squadratic
.=

√

1.62
.5002 + (−.500)2 + (−.500)2 + .5002

45
.= .190

iii. t
.= .600

.190
.= 3.158

(c) There is a quadratic relationship between muscle soreness and warm-up
time.
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10. (a) M
.= 22.903

(b) χ2 .= 20.046

(c) df = 30

(d) P
.= .915

11. (a) i. W
.= .116

ii. χ2 .= 119.371

iii. df = 9

iv. P
.= .000

(b) ε̃
.= .579

12. (a) �
.= .037

(b) F
.= 56.577

(c) ν1 = 8 and ν2 = 108

(d) P
.= .000

(e) ξ2
adj

.= 1 − 300 − 1

300 − 8 − 1
(1 − .784)

.= .778

13. For the interaction contrast comparing changes in behavior for Group 1 with
Group 3.

(a) F
.= 55.02

(b) v1 = 4, v2 = 228

(c) P
.= .000

The test comparing the quadratic trends for Group 1 with Group 3 indicates a
statistical difference, t (57)

.= −6.141, P
.= .000.

14. Averaged over the 5-week observation period, there is evidence to indicate that
the groups differ:

(a) F
.= 245.01

(b) ν1 = 2 and ν2 = 57

(c) η2
G

.= 2317.76

2317.76 + 269.61 + 936.34
.= .658

15. (a) There is evidence of a difference between Group 1 and Group 3.

i. t
.= 21.719

ii. ν = 57

iii. P
.= .000

(b) There is evidence of a difference between Group 2 and Group 3.

i. t
.= 7.153

ii. ν = 57

iii. P
.= .000
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CHAPTER 12

1. d2 = 42 + 62

= 52

d
.= 7.21

2. 2 = [−2 − 2 1 − 7]







2 −3

2

−3
5

2







[−4
−6

]

= [10 −9]
[−4
−6

]

= 14

3. (a)

[6 − 10 7 − 12]







2 −3

2

−3
5

2







[−4
−5

]

= [7 −6.5]
[−4
−5

]

= 4.5

[6 − 2 7 − 3]







2 −3

2

−3
5

2







[
4
4

]

= [−4 4]
[

4
4

]

= 0

(b) [10 − 2 12 − 3]







2 −3

2

−3
5

2







[
8
9

]

= [−11 10.5]
[

8
9

]

= 6.5

4. (a) Distance between Leah and Joe:

2 = [30 − 30 20 − 30]
(

1

144

[
9 −9

−9 25

]) [
0

−10

]

= 1

144
[90 − 250]

[
0

−10

]
.= 17.36

(b) Distance between Leah and John:

2 = [30 − 20 20 − 25]
(

1

144

[
9 −9

−9 25

]) [
10
−5

]

= 1

144
[135 − 215]

[
10
−5

]
.= 16.84

(c) Distance between Joe and John

2 = [30 − 20 30 − 25]
(

1

144

[
9 −9

−9 25

]) [
10

5

]

= 1

144
[45 35]

[
10

5

]
.= 4.34
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5.
�Y =

[
25 0
0 9

]

�−1
Y = 1

225

[
9 0
0 25

]

�X =
[

1 0
0 1

]

= I

2
Y of Sherrie and Kama:

[20 − 30 6 − 3]
(

1

225

[
9 0
0 25

]) [−10
3

]

= 1

225
[−90 75]

[−10
3

]

= 5

2
Y of Sherrie and Sandy:

[20 − 25 6 − 9]
(

1

225

[
9 0
0 25

]) [−5
−3

]

= 1

225
[−45 − 75]

[−5
−3

]

= 2

2
Y of Kama and Sandy:

[30 − 25 3 − 9]
(

1

225

[
9 0
0 25

]) [
5

−6

]

= 1

225
[45 − 150]

[
5

−6

]

= 5

d2
X of Sherrie and Kama:

[
20

5
− 30

5

6

3
− 3

3

] [−2
1

]

= 5

d2
X of Sherrie and Sandy:

[
20

5
− 25

5

6

3
− 9

3

] [−1
−1

]

= 2

d2
X of Kama and Sandy:

[
30

5
− 25

5

3

3
− 9

3

] [
1

−2

]

= 5

6.
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7.

8. (a) Unknown. But, assume that P(x|2) = .55.

(b) Group 2, because .55 > .30.

(c) P(1|x) = .30

.30 + .55
.= .35

P(2|x) = .55

.85
.= .65

(d) 1.0; yes.

(e) P(2) = 1 − .70 = .30

(f)
P(1|x) = .70(.30)

.70(.30) + .30(.55)

.= .56

P(2|x)
.= 1 − .56 = .44

(g) Group 1.

CHAPTER 13

1. f (1.20)
.= .1942

2. f (2)
.= .0997

f (6)
.= .0605

3. To determine predicted group membership.

CHAPTER 14

1. (a) Group 2

(b) Posterior probabilities
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(c) Typicality probabilities

(d) 1 − (.30 + .65) = .05

(e) About .039, using Eq. (12.6) (with equal priors); unknown for unequal priors

2. To seek in-doubt and outlying units.

3. (a) Briefly, there is a reuse of data; data idiosyncrasies are capitalized on.

(b) Same

4. (a) P̂ (3|x24)
.= .286

P̂ (x24|3)
.= .477

(b) obs/unit 1,137 (from SAS or SPSS)

(c) obs/unit 4,59 (from SPSS)

(d) For group 2: 17.19 percent
For group 3: 67.21 percent
For all five groups: (11 + 22 + 82 + 10 + 8)/545

.= .244

CHAPTER 15

1. Apparent hit rate

2. Linear internal

3. Probability associated with distance that analysis unit is from centroid of
assigned group.

4. Large N/p ratio

5. (a) Use new priors.

(b) Yes; simply use new priors in rule, which otherwise is built on 2004
data.

6. Internal (external): Build rule on a data set; then use same (different) data set to
assess rule.

7. (a) D2 .= 1.2398, D̃2 .= 0.9844

(b) Hit Rate

G1 G2 Overall

Internal .26 .93 .67

(c) Hit Rate

G1 G2 Overall

L-O-O .21 .89 .63
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(d) Hit Rate

G1 G2 Overall

M-P-P/I .26 .90 .69
M-P-P/L-O-O .26 .90 .69

8. (a) P̂ (1|x21)
.= .580

P̂ (2|x21)
.= .261

P̂ (3|x21)
.= 1 − (.580 + .261) = .159

(b) P̂ (x21|2)
.= .692

(c) See Table 13.1.

9. Linear L-O-O
Group Hit Rate

1 .145
2 .172
3 .672
4 .065
5 .121

Total group hit rate
.= .244

10. Answers depend on located fence riders.

11. (a) Total group hit rate = 23/91
.= .253

Predicted Group
Actual
Group 1 2 3 4 5

Predicted
Cases

In-doubt
Students

Grand
Total

G1 2 4 8 0 0 14 62 76
(.026)

G2 3 2 7 0 0 12 116 128
(.016)

G3 1 3 19 0 1 24 98 122
(.156)

G4 0 4 25 0 1 30 123 153
(.000)

G5 1 1 9 0 0 11 55 66
(.000)

Total 7 14 68 0 2 91 454 545

(b) 5/24
.= .208

12. (a) q2 = .20, q3 = .30
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(b) P̂ (1|x88)
.= .060, P̂ (3|x88)

.= .156, P̂ (25|x88)
.= .255

(c) Group 3

13. A significant F or χ2 value with α < .01, or “wide” differences among the six
covariance matrix log determinants, or among the six matrix traces.

CHAPTER 16

1. (a) z
.= 5.219, P

.= .000; therefore, yes.

(b) I
.= .594

(c) e = 150, z
.= .816, P

.= .205; therefore, no.

2. (a) Is an obtained hit rate (statistically) better than the corresponding chance
hit rate?

(b) Are the results of one classification rule (statistically) better than those of a
second rule?

3. Linear composite/combination.

4. (a) e1 = .15(76) = 11.4; e2 = 25.6; e3 = 36.6; e4 = 30.6; e5 = 9.9

(b) e = 114.1; o = 118

(c) z
.= 0.411, P

.= .342
LL

.= 102.4

(d) The observed total-group hit-rate (118/545) is not statistically different
from chance. Similarly for the separate-Group hit rates except for Group 3.

(e) I
.= .009

(f) Proportional chance

5. (a) Linear L-O-O Group 1 hit rate: .145

(b) Quadratic L-O-O Group 1 hit rate: .158

(c) Quad. Rule
Hit Miss McNemar:

Lin. Hit 67 66 133 χ2(1)
.= 1.923

Rule Miss 51 361 412 P
.= .165

118 427 545 Therefore, no.

6. Note that in terms of hit rates, Eq. (16.4) may be expressed as:

z = Ho − He√
He · (1 − He)/N

Similarly for Eq. (16.6).

(a) Group 1, z
.= 0.947; Group 2, z

.= 2.167; Group 3, z
.= 9.149; Group 4,

NA; Group 5, z
.= 0.844; total-group, z

.= 7.493.
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(b) Group 1, I
.= .046; Group 2, I

.= .096; Group 3; I
.= .542; Group 4, NA;

Group 5, I
.= .044; total-group, I

.= .165.

CHAPTER 17

1. Deleting some predictor(s) may increase the hit rate of interest (separate-group
or total-group).

2. (a) X5, X7, X8, X9

(b) X4, X7, X8, X9

(c) X2, X7, X8, X9

3. X5, X7, X3 & X8, X9, X6

4. (a) Three best subsets of size

8 X1, X3, X4, X5, X6, X, X8, X9 (.136)

X1, X2, X3, X4, X5, X6, X, X9 (.132)

X1, X2, X3, X4, X5, X6, X7, X8 (.130)

7 X1, X3, X4, X5, X7, X8, X9 (.143)

X, X3, X5, X6, X7, X8, X9 (.143)

X1, X2, X4, X5, X7, X8, X9 (.141)

6 X1, X2, X4, X5, X6, X9 (.145)

X1, X2, X3, X4, X5, X7 (.141)

X1, X2, X5, X6, X7, X8 (.141)

5 X1, X3, X4, X5, X7 (.147)

X1, X2, X3, X5, X8 (.145)

X1, X3, X5, X7, X8 (.145)

4 X5, X6, X8, X9 (.149)

X2, X4, X5, X8 (.147)

X2, X5, X7, X9 (.147)

3 X1, X3, X5 (.149)

X1, X5, X9 (.147)

X2, X5, X9 (.147)

2 X5, X6 (.149)

X3, X5 (.143)

X5, X9 (.143)

1 X5 (.147)

X8 (.106)

X3 (.106)

(b) X5, X1, X7, X3, X4
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CHAPTER 18

1. (a) Regression Weight (b) LCF Difference (c) Ratio (a/b)

X1 .037 −.1697 −.22
X2 .004 −.0204 −.20
X3 .010 −.0472 −.21
X4 .004 −.0197 −.20
X5 −.028 .1276 −.22
X6 .004 −.0171 −.23
X7 .003 −.0157 −.19
X8 .007 −.0303 −.23
X9 −.012 .0562 −.21

(e) R2 .= .093
D2 .= 2.368

2. D
.= 1.54; n1 = 76 is OK (with p = 9) for hit rate estimate to be within .05.

3. Pred. Group Pred. Group
1 2 1 2

Actual 1 66 10 76 Actual 1 61 15 76
Group 2 95 27 122 Group 2 97 25 122

161 37 198 158 40 198
(Internal) (L-O-O)

CHAPTER 19

1. (a) Interger scaling: Poor (1), Fair (2), Good (3), Excellent (4)

(b) 0–1 scoring: Initial (0), Advanced (1)

(c) Fisher–Lancaster scaling

2. For the lone categorical predictor, define two variables with scores:
v1: 1 if in the first category
v2: 0 if in second category
So, the original (categorical) predictor is replaced with two predictors.
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Accuracy:
classification, 302, 317
predictive, 302

All-possible-subsets, 104, 111, 337
Analogy, 9, 349, 351
Analysis of covariance (ANCOVA), 163

adjusted means, 169
contrast, 170
equality of slopes, 166
omnibus test, 168

Analysis of variance (ANOVA), 44, 57
contrast, 67, 68
effect size, 62
mixed model, 230
repeated measures, 196
two-factor, 134

Analysis unit, 5, 17
Apparent hit rate, 300
Applications of PDA, 381
Available-case analysis, 403

Bartlett–Pillai criterion (U ), 51, 56, 71
Base rate—see Prior probability
Bayes probability, 263
Bayes Theorem, 350
Bayesian networks, 389
Bernoulli, 400
Better than chance, 317, 330
Bhattacharyya distance, 388
Biserial correlation, 77
Bonferroni method, 30, 71, 135, 170, 216,

243, 246

Bootstrap, 114, 311, 346, 358, 359, 373
Box M , 41, 54, 141, 237

Canonical correlation, 6, 63, 82, 84, 354,
368

Canonical discriminant analysis, 410
Categorical variable, 366, 371
Centroid, 20, 23, 47

in LDF space, 91, 120
Chance classification, 315, 331

maximum, 319
proportional, 316

Chaos theory, 408
Characteristic:

equation, 25
root, 26, 51
vector, 26

Classification accuracy, 302f

Classification analysis:
external, 287, 300, 311, 322
internal, 287, 299, 322, 352

Classification and regression trees (CART),
385, 388

Classification function:
linear (LCF), 274, 277, 278, 299, 351,

370, 397
quadratic (QCF), 274, 277, 278

Classification results:
group, 290, 376
new unit(s), 291
unit, 287, 377

Applied MANOVA and Discriminant Analysis, Second Edition, by Carl J. Huberty and Stephen Olejnik
Copyright © 2006 John Wiley & Sons, Inc.
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Classification rule, 256
choice, 278, 393
distance, 275, 277, 288
linear, 274, 277, 288, 326
maximum-likelihood, 260, 261
maximum-probability, 263, 272, 273,

276
minimum chi-squared, 276
nearest neighbor, 363
normal, 278
quadratic, 274, 277, 288, 327

Classification table, 290
Clinical prediction, 407, 409
Cluster analysis, 6, 7, 259, 371, 386, 388,

389, 407
Cochran Q, 323
Coefficient of racial likeness (CRL), 3
Cohen d, 27, 38
Cohen kappa, 331, 332
Common principal component, 283
Common sense, 31, 110
Comparison of classification rules, 320,

372
Compatible matrices, 21
Complete-case analysis, 404
Composite/combination:

linear, 7, 8, 9, 28, 68, 82, 83, 92, 295,
352

quadratic, 329, 352
weights, 28, 329

Computer applications for MANOVA and
MANCOVA:

McCabe analysis, 105
McHenry analysis, 111
Mixed model, 237

contrasts, 243
MANCOVA, 247

One-factor MANCOVA, 175
contrasts, 180
equality of slopes, 173
multiple covariates, 184, 185

One-factor MANOVA, 52
Box M , 54
contrasts, 72, 96, 111, 146
descriptive statistics, 52
dimensionality, 93
effect size, 66, 96
eigenvalues, 85
LDF plot, 94, 121
omnibus test, 52
raw LDF weights, 85, 96
standardized LDF weights, 85
structure r’s, 85, 96

Stepwise analysis, 108

Repeated measures, 202
contrasts, 214
factorial, 217
Mauchly test, 210
simple effects, 220, 221

Two-factor MANOVA, 139
Box M , 141
cell contrasts, 155
dimensionality, 142, 144
effect size, 142, 143, 144
interaction, 142
LDF Plot, 145
main-effect contrasts, 146
simple effects, 153
structure r’s, 143, 144

Computer applications for PDA:
All-possible-subsets via the Morris

program, 337
Applying linear rule to new units, 326
Applying quadratic rule to new units, 327
Comparing linear and quadratic hit rates,

321
Hit-rate estimates, 286, 304
Linear rule, 286
Obtaining QCF weights, 328

Computer package information, 123, 379
Conditional probability, 29, 265
Configural frequency analysis, 100
Confirmatory analysis, 399
Confusion matrix, 290
Construct, 17, 81, 84, 88, 99, 121, 396, 397
Content validity, 127
Contrast:

cell, 155
complex, 72, 73, 76, 198
Helmert, 215
interaction, 241
linearly independent, 200, 202
multivariate, 68, 72, 75, 96, 110, 121,

146
orthonormal, 205
pairwise, 69
trend, 197, 205, 241
univariate, 67

Correlation Matrix, 119
Correspondence analysis, 389
Cost of misclassification, 264, 281, 282,

340, 350, 357, 358, 382, 394, 407
Counting estimator, 304
Covariance, 19

analysis:
multivariate (MANCOVA), 170

contrast, 180
omnibus, 174
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matrix, 20, 272
equality, 41, 53, 74, 118, 141, 237,

272, 279, 283, 376
error, 39, 47
log determinant, 118, 280

Covariate, 164
Criterion variable, 12
Cross-validation, 300
Curse of dimensionality, 367
Cutoff score, 357, 375

Data, 16
summarizing, 18

Data-based structure, 398
Data imputation, 402, 410
Data matrix, 401
Data reduction, 283
Data set, 16
Data sets used herein:

BAUMANN2, 164, 166
BAUMANN2g2v, 16
BAUMANN3g2v, 44
FLEX, 224
FLEX2, 250
HSB, 369
SELFESTEEM, 196
SELFESTEEM2, 228
SELFESTEEM3, 247
STRESS, 132
3GED, 105, 108, 111, 117, 275, 285,

290, 304, 308, 313, 321, 324, 327,
337, 340, 347, 359, 363, 374

5GED, 59, 78, 102, 161, 191, 313, 333,
347

Decision tree, 389
DDA versus PDA, 125
DDA versus MCA, 9
Degrees of freedom:

error, 37
hypothesis, 46

Deleting variables:
in DDA, 103, 151
in PDA, 336, 345, 346, 376, 409

Density:
estimate, 366
function, 261, 269

Descriptive discriminant analysis (DDA),
1, 4, 5, 6, 10, 123, 125, 126

Descriptives, 118
Design:

in discriminant analysis (DA), 9
nonorthogonal, 150
orthogonal, 150

Determinant, 23
Determinantal equation, 50
Dimension of LDF space, 88

proportion of variance, 91
tests, 89, 90, 118, 120, 145, 179

Dimension reduction, 283, 371
Direct probability estimation, 367
Discriminant analysis (DA), 1, 3–5
Discriminant function, 100

analysis, 380
linear, 4, 82, 83, 87, 98, 144, 177, 352,

397 (see LDF)
Discriminant scores, 264
Distance, 256, 264

Bhattacharyya, 388
Euclidean, 26, 257, 358
Mahalanobis, 27, 40, 259, 271, 364

Doubt rate, 308
Dummy coding, 367, 371

e, 270
Effect size:

adjustment, 66, 72
bias, 65
multivariate:

D2, 27
eta-squared (η2), 62, 65, 204
omega-squared (ω2), 64, 65
tau-squared (τ2), 63, 65, 143, 178
xi-squared (η2), 64, 65, 66, 72
zeta-squared (ζ 2), 64, 65

univariate:
d, 38, 136
eta-squared (η2), 62
generalized eta-squared (η2

G), 134,
169, 197, 231

omega-squared (ω2), 62
point-biserial-squared (r2

pb), 38, 357
Eigenanalysis, 25, 82

eigenequation, 83
eigenvalue, 25, 26, 50, 83
eigenvector, 26, 83

Epsilon lower-bound (ε∗), 208, 211
Error correlation:

matrix, 53, 54, 119
structure, 84

Error covariance matrix, 40, 69, 206, 241
Estimator:

formula, 302
plug-in, 302
posterior probability, 302
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Estimator: (Continued)
precision, 311, 395
probability, 29

Eta-squared (η2):
generalized, 134, 169, 197, 231
multivariate, 62, 65
univariate, 62

Euclidean distance, 26, 257, 358
Expected loss, 336
Expected value, 295f , 330
Exploratory analysis, 399
External validity, 9

Fact, 284
Factor analysis, 6, 10, 85, 389, 398, 399
Factorial design:

cell contrasts, 155
multivariate, 136
nonorthogonal, 150
orthogonal, 150
simple effects, 152
univariate, 134

Feature extraction, 336
Fence-rider, 288, 382
Fisher–Lancaster analysis, 368
Fisher testing, 29
Focused test—see Contrast
Forced classification matrix, 307
Forced-in predictor(s), 338
Formula estimator, 302
F-to-remove, 108, 118

Gamma function, 223
General linear model (GLM), 155
Generalized discriminant analysis, 388
Generalized distance, 264
Generalized eta-squared (η2

G), 134, 169,
197, 231

Generalized variance, 23, 270, 283
Goal programming, 373
Goodness-of-fit, 265, 312
Greatest characteristic root, 51
Greenhouse–Geisser estimator (ε′): 209,

211
Group misclassification, 406
Grouping variable, 6, 9, 17

History of discriminant analysis, 3
Hit rate:

actual, 296, 297
apparent, 300
conditional, 296
expected, 355

expected actual, 296
optimal, 296, 297, 354, 355
resubstitution, 300
true, 296
unconditional, 296

Hit rate estimation, 295, 395
choice, 280, 393
counting, 304
D-method, 298
formula, 297
holdout, 300
leave-one-out (L-O-O), 301, 308, 309,

311, 358, 376, 395, 400
plug-in, 297, 302, 354
resubstitution, 284, 300
unconditional, 296

Holdout method, 300
Hotelling–Lawley criterion (V ), 52, 56, 71
Hotelling T 2, 39, 43, 69
Huynh–Feldt estimator (ε̃), 209, 211

I , 320, 331
Identification analysis, 358
Identification versus prediction, 7, 260,

408f

Identity matrix, 24
Image analysis, 387
Importance of variables:

in DDA, 88, 106, 118
in PDA, 340, 344

Improvement over chance (I ), 320, 331,
332

Imputation, 402, 409, 410
Indicator variable, 82, 367
In-doubt unit, 288, 289, 307, 311, 380
Infinity, 359
Influential data, 307, 358, 406, 409, 410
Initial group misclassification, 256, 283,

291, 406
Integer scaling, 367, 371
Interaction:

multivariate, 137, 142, 151, 232
univariate, 134, 230

Internal validity, 9
Inverse normal scores, 366
Inverse of a matrix, 24
Inverse probability, 261

Jackknife, 311, 346
Judgment, xxx, 1, 12, 30, 55, 76, 87, 91, 99,

106, 110, 118, 280, 281, 291, 307, 308,
315, 319, 320, 337, 339, 344, 371,
376, 380, 391, 394, 402, 405–407
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Julius Ceasar, 249

Kappa, 331, 332
Kernel classification, 357, 366, 371, 373,

409

Latent structure analysis (LSA), 6
Latent variable, 17, 84, 99
Latin square, 159, 249
Leave-one-out (L-O-O), 301, 308, 309,

311, 357, 376, 395, 400
Linear classification function (LCF), 274,

277, 278, 299, 351, 370, 397
Linear discriminant function (LDF), 4, 82,

83, 87, 98, 352, 397
dimensionality tests, 89, 118, 145, 179
in classification, 352f
plot, 91, 121, 145, 179
rotation, 85
space, 88, 289, 292
weights, 98, 99

Linear/mathematical programming, 283,
346, 358, 359, 372, 373, 388, 389

Linear versus quadratic PDA, 280, 393,
400

Linearly independent contrasts, 200
Location model, 372
Logistic:

classification, 311, 358, 366, 369, 372,
373, 388, 389, 403, 404

regression, 6, 358, 372, 385, 388, 389
Logit classification, 372, 373

Mahalanobis distance (D2), 27, 40, 259,
271, 364

MANCOVA, 170
contrast, 180
equality of slopes, 171
multiple covariates, 184
omnibus test, 174

MANOVA test criteria, 56, 71
Bartlett–Pillai, 51
contrast, 68, 70, 76, 96
Hotelling–Lawley, 52, 75
mixed-model, 231
repeated measures, 199
Roy, 51
Wilks, 48

Matching problem, 330
Mathematical/linear programming, 283,

346, 358, 359, 372, 373, 388, 389
Matrix:

compatible, 21

confusion, 290
correlation, 119
covariance, 20, 272
data, 20, 401
determinant, 23
error SSCP, 47, 83, 136, 170, 200, 206,

232
hypothesis SSCP, 48, 83, 137, 201, 207,

232
identity, 24
inverse, 24
multiplication, 21
operations, 21
order, 20
singular, 25
SSCP, 22
symmetric, 20
trace, 55, 77, 280, 283
transpose, 20

Mauchly test, 207
Maximum-chance criterion, 319
Maximum likelihood, 260
Maximum-posterior-probability (M-P-P),

302
McCabe analysis, 104
McHenry analysis, 111
McLachlan estimator, 299
McNemar statistic, 321
Mean Square:

error, 46, 135, 169, 197, 230
hypothesis, 45, 135, 169, 197, 230

Minimax, 292
Minimum distance probability, 389
Misclassification costs, 264, 281, 282, 340,

350, 357, 358, 382, 394, 407
Missing data, 401, 409, 410
Mixed-model analysis:

contrast, 240
interaction, 232
multivariate, 231
univariate, 229

Model specificity:
in DDA, 114
in PDA, 344

Morris analysis, 337
MRA versus PDA, 9, 311
Multidimensional scaling, 6, 389
Multinomial model, 269, 367
Multiple ANOVAs, 13
Multiple correlation, 5, 6, 9, 88, 103,

104f , 295, 335, 353, 354
Multiple discriminant analysis, 380
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Multiple regression, 5, 6, 8, 9, 103, 104f ,
255, 260f , 295, 299, 302, 330, 335,
349, 351, 403

Multiple testing, 30, 32, 71, 73, 319
Multivariate:

analysis, 9
analysis of covairance (MANCOVA),

164, 170
analysis of variance (MANOVA), 4, 6,

47, 126, 136
methods, 5, 19
mixed-model, 231
repeated-measures, 199

Nearest-neighbor (NN) analysis, 363, 373,
388

Neural networks analysis, 386, 388, 389
New unit classification, 260f , 325
Neyman–Pearson Lemma, 350
Neyman–Pearson testing, 29
Nominal scaling, 361, 371
Nonnormal predictors, 371, 394
Nonorthogonal design, 150
Normality:

multivariate, 279, 394
univariate, 269

Notation, xxxi

Objectivity, 30
Omega-squared (ω2):

multivariate, 64, 65
univariate, 62

Optimal:
allocation, 387
discriminant analysis (ODA), 359, 371,

389
scaling, 389

Ordinal scaling, 373
Orthogonal design, 150
Outcome variable, 6, 12
Outlier, 289, 306, 312, 382, 405, 409, 410
Overall–Woodward analysis, 368

Paradigm, 410
Partial lamda, 108
Partially classified data, 409
Partial R2, 108
Pattern recognition, 6, 311, 387, 388, 389
Pearson chi-squared statistic, 331
Penalized discriminant analysis, 373
PDA applications, 381
PDA versus DDA, 125
PDA versus MRA, 9, 311

Plug-in estimator, 302
Point-biserial-squared (r2

pb), 38, 357
Polynomial trend, 198, 205, 214, 241
Posterior probability, 262, 264, 271, 285,

364
estimator, 302
threshold, 289, 307, 311, 364, 378

Precision, 311, 395
Predictive accuracy, 302f
Predictive discriminant analysis (PDA), 1,

4, 5, 6, 7, 9, 12, 13, 253, 256, 264,
297, 335, 375, 382, 393, 409

Predictive method, 282
Predictor deletion, 336, 345, 346, 376, 382,

409
Predictor ordering, 340, 344, 382
Predictor variable, 12, 17, 253, 255
Predictor variable mixture, 359, 369
PRESS statistic, 302
Principal component analysis (PCA), 6,

283, 368, 371, 389
Prior probability, 263, 264, 265, 281, 323,

331, 357, 382, 394
Probability, 28

conditional, 29, 265
distribution, 29
estimation, 29
inverse, 261
posterior, 262, 264, 271, 285, 364
prior, 263, 264, 265, 281, 323, 331, 357,

382, 394
tail, 30
typicality, 261, 273, 289, 292, 307, 405

Projection pursuit DA, 389
Proportion of variance, 87, 91
Proportional chance, 316
Proportional reduction in error (PRE), 332
P value, 29, 270
P -value approach, 29

Q, 323
Quadratic classification function (QCF),

274, 277, 278
Quadratic form, 271, 274
Quadratic versus linear PDA, 280, 393, 400

Random selection, 12
Rank transformation, 346, 362
Ranking of variables—see Variable

ordering:
in DDA, 110
in PDA, 340

Raw scores, 32
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Reanalysis in PDA, 343
Recursive partitioning, 373
Regularized discriminant analysis, 357,

359, 388, 389
Reliability, 325
Repeated measures, 193, 323

and PDA, 409
contrast, 197, 212
multivariate, 199
multivariate vs. univariate, 204
sphericity test, 207, 238
univariate, 196

Reporting results:
of DDA, 117
of PDA, 375

Reporting terms:
in DDA, 123
in PDA, 379

Response variable, 6, 9
Resubstitution hit rate, 284, 300
Rotation of LDFs, 85
Roy criterion (θ ), 51, 56, 71

Sample size, 74, 280, 301, 309, 310, 311,
335, 355, 356, 370, 389

Sample specificity:
in DDA, 114
in PDA, 345

Scaling:
integer, 367, 371
nominal, 361, 371
optimal, 389
ordinal, 373

Selection bias, 163
Serious error rate, 308
Shrinkage formula, 299, 349
Shrunken D2, 354, 358
Shrunken R2, 354
Simple effect, 152
Smoothed classification, 359
Sphericity test, 207, 238
Squared canonical correlation, 63
SSCP matrix, 22

error, 47, 70, 136, 200, 233
hypothesis, 48, 70, 137, 175, 180, 201,

233
Standard deviate, 347
Standard deviation, 13
Standardized LDF weights, 87, 107, 115
Statistical versus clinical prediction, 407,

409
Statistical test, 29, 317

Stepwise analysis:
in DDA, 103, 104, 108, 126, 396
in multiple regression/correlation, 395
in PDA, 337, 345, 346, 381, 396

Stepwise regression, 332
Stratified PDA estimator, 304
Strength of association, 62
Structure, 10, 13, 81, 84, 120, 126, 255,

398
Structure r , 84, 85, 87, 96, 98, 121, 123,

144, 147, 179, 396
Subjectivity, 30, 32, 341
Sum-of-cross-products (CP), 20
Sum-of-squares (SS), 18

error, 46, 47, 134, 230
hypothesis, 48, 134, 230

Tail probability, 30
Tau-squared (τ2), 63, 65, 143, 179
Test of covariance matrix equality:

in DDA, 41, 53, 74, 118, 141, 238
in PDA, 279, 283, 376

Test of dimensionality, 89, 90, 120, 145,
179

Test sample, 300
Threshold, 289, 307, 311, 364, 378
Trace of a matrix, 55, 77, 280, 283
Training sample, 291, 300, 325
Transpose, 20
Trend analysis, 197, 205, 241
t test, 383

with equal variances, 36
with unequal variances, 37

Two-factor design, 133
Typicality probability, 261, 273, 289, 292,

307, 405
Typology, 389

Uncertainty, 30
Unconditional hit rate, 296
Unit, 5, 17
Univariate analysis,

analysis, 35
analysis of covairance (ANCOVA), 166
analysis of variance (ANOVA), 44, 134
classification, 356
mixed-model, 229
repeated-measures, 196

Univariate classification, 356
Unstratified PDA estimator, 304
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Validity, 295, 325
external, 9
internal, 9

Variable deletion:
in DDA, 103, 125, 151
in PDA, 336, 382

Variable mixture, 359, 372, 388, 389
Variable ordering:

in DDA, 106, 113, 126, 151
in PDA, 344, 382

Variable ranking:
in DDA, 110
in PDA, 340

Variable reduction, 11
Variable screening, 11
Variable type:

categorical, 366, 371
criterion, 12
grouping, 9, 17
latent, 17, 84, 85, 99
outcome, 6, 12

predictor, 12, 17
response, 6, 9

Variance:
error/pooled, 36, 46
generalized, 23, 270, 283
univariate, 18

Vector, 20
characteristic, 26
eigen, 26, 83

Weighted k-NN classifier, 373
Wilks criterion (�), 48, 56, 71

Xi-squared (ξ2), 64, 65
adjusted, 66, 72

Yao test, 43

Zeta-squared (ζ 2), 64, 65




