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Preface

The contributions included in the following pages were originally planned for a
presentation on the 55th birthday of Professor P.R. Krishnaiah. Unfortunately his
illness became severe and soon after claimed his life. Hence this book is dedicated
to honor his memory. The articles, initially intended for a standard journal, are
based on original research by active and leading scientists in the areas of their cur-
rent interests in the multivariate field. The authors were all associated with
Krishnaiah professionally in his research and development of multivariate statisti-
cal analysis and stochastic theory, and many of them also knew him personally.

The chapters of this volume cover the main areas of multivariate statistical theory
and its applications, as well as aspects of probability and stochastic analysis. They
cover both finite sampling and asymptotic results, including aspects of decision
theory, Bayesian analysis, classical estimation, and regression, as well as time-
series problems. There are discussions of practical applications and computational
solutions. The works on probability include results on the (vector) central limit
theory for dependent random variables, the rates of convergence and asymptotic
expansions, Markov processes, and foundational problems. The material covered
in the volume should be of considerable interest to researchers as well as to gradu-
ate students working in theoretical and applied statistics, multivariate analysis, and
random processes.

We wish to express our appreciation to the contributors who responded to our
invitations and compiled their chapters within the time constraints. All the articles
were refereed; and, as a result, several underwent revisions and alterations. We are
deeply indebted to the many referees, whose names cannot be listed here, but
whose assistance was essential. Also our special thanks go to the staff of Academic
Press, Inc. for bringing out this volume expeditiously and accommodating all our
requests. Finally, we wish to acknowledge our home institutions for providing the
secretarial assistance to complete this project on schedule.

C.R. Rao
University Park, Pennsylvania

M.M. Rao
Riverside, California

May 1989
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In Memoriam

P. R. Krishnaiah
(1932-1987)

Paruchuri Rama Krishnaiah was born in a suburb of Repalle in Andhra
Pardesh, India, in 1932 into a respected middle class Kisan (or farming)
family. He was one of the brightest students of the local high school and,
by his parents and teachers noticing this fact, he was sent to the well-
known Loyola College in Madras for higher education. Krishnaiah passed
the 2-year intermediate course in a high first class in 1950 and was admit-
ted to the then newly started and highly competitive (and difficult to gain
admission) statistics honors program in the Presidency College, also of
Madras University. Coincidentally, I joined the same school that year as a
(mathematics) graduate student (for a master’s degree) and although we
saw each other, we met formally only at the end of the first quarter on a
trip home for a vacation. To our mutual surprise we found that we came
from adjacent districts, separated by the river Krishna, and our homes
were no more than 30 miles apart. From then on, we maintained a close
friendship, and thus it was a rude shock to me to learn in late 1986 that he
had become a victim of a cruel disease (cancer). Indeed he was a teetotaler
and a nonsmoker, had always been careful in whatever he ate, and had no
bad habits. He fought the ailment with great courage and was optimistic of
overcoming it, which he so expressed on his birthday, July 15, 1987.
Finally, he succumbed to the dreadful disease on August 1, 1987, leaving
his friends, loved ones, relatives, and colleagues in great sorrow. He is
survived by his wife, Indira, two young sons, Raghu and Niranjan, five
brothers, and two sisters. I shall now briefly describe his educational,
professional, organizational, humanitarian, and research accomplishments.

Soon after finishing his B. Sc. (Honors) at Presidency College, Madras,
in 1954, Krishnaiah went to the United States and joined the University of
Minnesota in Minneapolis to continue his graduate work in statistics. He
was always interested in both the theory and the applications of this sub-
ject. Even as a student he assisted in statistical methodology at the Bureau
of Educational Research in Minnesota, and this resulted in some
publications with his colleagues there. He took an M. S. degree in 1957
while searching for a suitable area of specialization for his dissertation.

1
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2 IN MEMORIAM: P. R. KRISHNAIAH

During the summer term of 1956 the late Professor S.N.Roy of the
University of North Carolina visited Minnesota and offered a course in
multivariate statistical analysis. This was the first substantial account of
that subject given there; Krishnaiah took it and became interested in it
immediately. He spent the summer of 1957 at the IMS Summer Institute in
Boulder, Colorado, as a student member, where he was exposed to the
analysis of variance and related problems from the seminars of Professors
Bose, Kempthorne, Kruskal, Scheffé, and several other visiting scholars.
Another such session operated at the University of Minnesota a year later,
concentrating on ranking and selection problems, to which Krishnaiah was
again attracted. These three general areas of statistical theory became his
main research subjects for all his later work, consultation, and publications
as reviewed below.

There was no central location for statistics at Minnesota until 1960, and
students had to find the faculty whose interests (and appointments) were
combined with other areas. For a while, Krishnaiah traveled to discuss the
subjects of his interest, and in 1959-1960 he spent the year at Chapel Hill
with Professor Roy for this purpose. From 1960 on he worked as a senior
statistician at Remington Rand Univac in Blue Bell, Pennsylvania, until
1963 when he joined the Wright-Patterson Air Force Base in Dayton,
Ohio, as a mathematical statistician. He was also awarded the Ph. D.
degree by the University of Minnesota during the same year. Krishnaiah
remained at Wright-Patterson until 1976 when he joined the University of
Pittsburgh as a Professor of Statistics. In 1982 he became the founder and
director of the Center for Multivariate Analysis and also took a joint
appointment as a professor in the Graduate School of Business to reflect
his interests in substantiative applications. Before turning to his research, it
is appropriate to consider his professional and humanitarian work at this
point.

Krishnaiah organized six international symposia on Multivariate
Analysis which were held in June of 1965, 1968, 1972, 1975, and 1978 and
in July of 1983. It is of interest to note that he dedicated the published
“Proceedings” of the first conference to the memory of S. N. Roy and some
of the other proceedings volumes to H. Hotelling, P. C. Mahalanobis, and
H. Scheffé, paying his respects to these scholars from whose works and
contacts he had learned the subject. He also organized a symposium on
Applications of Statistics in June 1976, edited its proceedings, and gave
short courses on multivariate data analysis. He served as a member of the
council of the American Statistical Association for 1968-1969, was on
various committees of the IMS, received the Statistician of the Year award
in 1982 from the Pittsburgh chapter of the ASA, and was a member of the
technical committee on statistical pattern recognition of the International
Association of Pattern Recognition. Krishnaiah is a fellow of the ASA,
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IMS, and AAAS, as well as an elected member of the International
Statistical Institute. He was the founder and editor of the Journal of Mul-
tivariate Analysis, as well as the founder and editor of the series “Develop-
ments in Statistics,” published by Academic Press (four volumes appeared),
and the general editor of the “Handbook of Statistics,” published by
North-Holland (seven, of a dozen proposed volumes appeared).
Krishnaiah served as a member of the editorial board of the Journal of
Statistical Planning and Inference and was a coordinating editor of the
North-Holland series “Statistics and Probability.” He presented invited
papers at several professional meetings, including the first, second, and
fourth international conferences on Probability and Mathematical
Statistics held at Vilnius, USSR, he visited the People’s Republic of China
in 1981 for 3 weeks at the invitation of some universities in that country,
and at the time of his death he was in receipt of a fellowship by the Japan
Society for Promotion of Science to visit Japan for a month in 1986-1987.
Earlier, he was a visiting scientist at the Indian Statistical Institute in 1966
and had been at the Banach center in Warsaw, as well as at the
Department of Mathematics and Statistics and the Academy of Agriculture
in Poznan, under an exchange visitor program between the Polish and the
U.S. National Academies of Sciences. In 1985, the Telegu Association of
North America conferred on him a distinguished scientist award.

Moreover, Krishnaiah played a major role in developing the statistics
program in the Department of Mathematics and Statistics at the University
of Pittsburgh. This was rated as the most improved program in statistics in
the nation. For instance, he was instrumental in bringing Professor
C. R. Rao to this department when several other schools were trying to get
him. Krishnaiah worked in different areas such as theoretical and com-
putational statistics, signal processing, pattern recognition, medical
statistics, and econometrics so that he was able to assist scientists in
various disciplines during the last 30 years, and he derived great satisfac-
tion from it. At the time of his death, he was serving as president of
SHARE, a nonprofit organization devoted to scientific, health, and allied
research education, helping mostly the third world countries.

With regard to his research activities, it should be observed that
Krishnaiah edited (or coedited) 19 books and monographs and authored
two more (one jointly) reference books which are in press. He also was the
principal (or coprincipal) investigator of research contracts and grants at
the University of Pittsburgh continuously from 1976 until his death.

Although by training he was inclined toward theoretical statistics,
applications of statistics were always kept in view. Indeed, his initial papers
(1959a, 1960a, 1962a) are on such applications. The early paper (1961a),
the only joint work we published, deals with some aspects of multivariate
gamma distribution which later played a key role in his theoretical work
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for many years. It was used in his thesis (1963a), was analyzed further in
(1963b, 1964a), and played a role in several papers on simultaneous tests of
hypotheses. It was generalized for use in tests involving multivariate
F-statistics (in addition to multivariate y>-problems), distributional
problems with Wishart matrices, and other sample covariance matrices. See
(1984j) for an account of the work on these topics. Also the well-known
“union-intersection” principle of S. N. Roy played an important part in
Krishnaiah’s work. This led to the “finite intersection tests” formulated by
him and are now known by his name. Selection of the best, or a prescribed
subset, of a collection of multiple populations was the topic of his research
for several papers. Many of these results are surveyed in (1976b, 1978a,
1979a). These test procedures led Krishnaiah to consider the distributions
of eigenvalues of various types of sample covariance matrices, comple-
menting the works of S. N. Roy, H. Hotelling, and others. He also extended
some of these results if the errors were correlated in some way, or if they
formed a simple Markov process.

Since the exact distribution of the above types of statistics is quite
involved, Krishnaiah was led to approximations and asymptotic expan-
sions of distribution functions. These questions occupied a major part of
his work in the last 10 years and are reflected in several publications
(1977¢; 1979b; 1980a, c; 1981a; 1982a, b; 1983a; 1986d). He was also study-
ing the limit behavior of the distributions of the eigenvalues of sample
matrices, as seen from the papers (1983e, f; 1984g, h; 1985g; 1986b, c, d). It
is clear that his research has touched most areas of multivariate statistical
analysis and made some inroads into time series (he was deeply interested
in signal detection problems in the last 3 years), as well as some non-
parametric estimation, multiple comparisons, and considerable work on
the multivariate analysis of variance. In order to apply the latter results to
practical problems, Krishnaiah expended much effort in constructing
several types of statistical tables for significance tests.

A better idea of his research interests can be obtained by reading the
titles of his extensive publication list, which is included below. He was very
prolific in the last years. It reveals another fact. Krishnaiah interacted freely
with different types of scientists, and this is why more than three-quarters
of his publications involve at least one joint author. This collaborative
effort helped widen his interests and also contributed to a broad and balan-
ced view of the subjects for publication in the editorial work of the Journal
of Multivariate Analysis as well as his inviting people of different
backgrounds to participate in the symposia that he organized.

Until the end, Krishnaiah had a positive attitude toward life and was
hopeful that he could beat the iliness. He was participating in works even
from his sick bed until almost the end. But adversity took over, and it was
cruel. We all miss him.
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In peparing this sketch and compiling the complete publication list, I am

indebted to Professor C. R. Rao and to Mrs. Indira Krishnaiah for much
help.
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The joint asymptotic distributions of the marginal quantiles and quantile
functions in samples from a p-variate population are derived. Of particular interest
is the joint asymptotic distribution of the marginal sample medians, on the basis of
which tests of significance for population medians are developed. Methods of
estimating unknown nuisance parameters are discussed. The approach is completely
nonparametric.  © 1988 Academic Press, Inc.

1. INTRODUCTION

Let X=(x,,..,x,) be a random vector with joint d.f (distribution
function) F, ith marginal d.f. F,, (i, j)th marginal d.f. F; and ith marginal
density function f;. We denote the ith marginal quantile function by

¢Aq)=F '(q)=inf{x: F(x)>q}, 0<g<t (1.1)
and, for convenience, a specific quantile say the g,th of F; by

0;=¢(q,). (1.2)

* Research sponsored by the Air Force Office of Scientific Research under Contract
F49620-85-C-0008. The U.S. Government’s right to retain a nonexclusive royalty-free license
in and to the copyright covering this paper, for governmental purposes, is acknowledged.

15

Muitivariate Statistics and Probability Reprinted from J. Mult. Anal. 27(1).
1SBN 0-12-580205-6 Copyright © 1988 by Academic Press, Inc.
Ali rights of reproduction in any form reserved.



16 BABU AND RAO

Further, let
ni{q, r)=F(SLq), {(r)) (1.3)
and denote for given ¢, and g,
0, =14, 49,)—49:9,= F(0,, 0;) — q,4;. (14)

The parameters (1.1)-(1.4) defined above refer to the d.f. of X.
Now let

Xi= (X145 s Xpi)s i,.,n (1.5)

be n independent copies of X and denote the empirical df of
{X.,i=1,..,n} by F" and the corresponding ith and (i, j)th marginal
distributions by F{” and F{", respectively. We denote the quantities
(1.1)~(1.4) defined in terms of F™), Fi", and F{" by

&g, O and ol (1.6)

or simply as

N

é{q), 6, and 4y (1.7)

as estimates of £,(¢), 0,, and o, respectively.
In this paper, we derive the asymptotic distribution of

-~

0,=(él""5 ép)=(£l(ql)’ Rt Ep(qp)) (18)

for given ¢, ..., g, and also the joint distribution of the marginal quantile
processes

E(q), O<g<l,i=1,..,p. (1.9)

The asymptotic distributions of the empirical quantle process (Csorgé and
Révész [6]) and of a fixed set of specified quantiles (Mosteller [11]) in
one dimension are well known.

Of particular interest is the joint asymptotic distribution of the marginal
sample medians

(€,(3), - E,(3)) (1.10)

using which we develop tests of significance for the population medians
analogous to tests for the means in the multivariate case (see Rao [12,
pp- 543-573]). An early work on the joint asymptotic distribution of the
sample medians is due to Mood [10]; see also Kuan and Ali [8], where
they assume the existence of the density function for the vector variable X.
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We obtain the dsitribution in the general case in a form convenient for
practical applications.

2. DISTRIBUTION OF THE MARGINAL SAMPLE QUANTILES

We prove the following theorem concerning the joint asymptotic
distribution of

(01, 6,)= (€i(q1), - E(4,)), (21)

the sample g, th, ..., g,th quantiles of the marginal empirical distributions of
Xy, . X,, TESPECtively.

THEOREM 2.1. Let F; be continuously twice differentiable in a
neighborhood of 6; and 6,= f{¢(q,)) = fA0,)>0, i=1, .., p, where f; denotes
the derivative of F,;. Then the asymptotic distribution of

Ya=+/n(0,—06,,..,0,-06) (2.2)

is p-variate normal with mean vector zero, and variance-covariance matrix

q(l—q,) oy O1p
37 3,0, 3.9,
0,1 apZ . qp(l _qp)
0,0, 0,0, o2

where o ; are as defined in (1.4).

Proof. By Bahadur’s representation of the sample quantiles (see
Bahadur [41]),

(logn)-ln3/4 |(éi_0i)—5i_l(ri—.qi)| £ 0’ i= 11 s Py (2'4)
where r; = F")(8,). Then, it follows that

Ya=/n(0,—6,,.,0,-6,) (2.5)
and '

2y =/NETN P = 1), s 05, —4,)) (2.6)

have the same asymptotic distribution. By the multivariate central limit
theorem, z, weakly converges to a p-variate normal distribution with mean
vector zero and covariance matrix as given in (2.3). This proves
Theorem 2.1.
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For practical applications we need a consistent estimate of 2’ as defined
in (2.3). There are two sets of unknown {¢;} and {6, '} in 2. A consistent
estimate of g, is provided by 6, as shown in Theorem 2.2,

THEOREM 2.2.  Let F;; be continuous at (0,, 0;)=((q,), £(q,)). Then

6U= Ff';’)(éf'n)(qi)’ fj(")(qj)) = F‘")(el’ j) e 0' gy F (915 _/) ae.as n-— .
(2.7)

Proof.
|F,(0,,0,)—F(,,6,)
<IF,(0,,0,)—Fy 0, ,)I+Sup|F,,(x V-FP(x p)l. (28)

Smce F; is continuous at (6,, 6,) and
sup [Fy(x, y)— F(x, )| >0 ae (29)

it follows that the expression on the left-hand side of (2.8) — 0 a.e. which
establishes the result (2.7) of Theorem 2.2. Equation (2.9) is a consequence
of Theorem 7.2 of Rao [13].

The result (2.7) implies that o, in (2.3) can be consistently estimated by
its sample equivalent 6

There exist several methods for the estimation of §; (see Krieger and
Pickards, III [7] and the references therein). Recently, a consistent and
efficient estimator of §,7! based on a sample of size » has been proposed by
Bahu [2] under the assumption that f; is continuously differentiable at
£4q,). There is a possibility of this estimate taking negative values, and
when this happens some modification of the estimate may have to be made.
Using consistent estimates of 6,; and J; ', a cons1stent estimate of 6,/6,4,,
the (i, j)th element of X, can be obtamed as a,j/é

Another possibility is to obtain a direct estlmate of ¢,/6,6, by the
bootstrap method

=E*[n(6 —0,)(0*—0,)] (2.10)

where E* is the expectation under the bootstrap distribution function. The
consistency of the estimator (2.10) can be proved on the same lines as those
given by Babu [3] for the bootstrap estimate of the variance of the sample
median.
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3. TESTS OF SIGNIFICANCE BASED ON MEDIANS

Let
61, a (911" ey épi)s Z“i (31)

be the marginal sample medians and an estimate of X (as defined in (2.3))
obtained from a sample of size n, from a p-variate population IT,,
i=1,.., k. Further let 8,=(8,,, .., 0,) be the true value of the marginal
medians for I7,. To test the hypothesis

0,= =0 (32)

we can use the statistic

k k
xz=trace[z niZi‘lﬁiﬁ,f—(Z n,-Zi“) 09’], (3.3)

=

where

k -1 k%

0=< Y n,.z,.*> Y nZ 0, (34)
i=1 i=1

as chi-square on p(k — 1) degrees of freedom, provided the individual sam-

ple sizes n,, ..., n, are large.

In cases where a common 2 for the k populations can be assumed, we
have the problem of estimating 2 from the combined sample. For this pur-
pose we consider the residual vectors by replacing each observed vector by
its difference from the sample median vector computed from the sample to
which the observed vector belongs. There are altogether n=(n,+ --- 4+ n,)
residual vectors, arising out of the k different samples, from which we con-
struct a p-dimensional empirical distribution function E with the marginal
medians as zeros. Then ¢ can be estimated from E;, the (i, j)th marginal
d.f. of E as indicated in (2.7) and &, from E,, the ith marginal d.f. of E using
any of the methods described at the end of Section2. If we denote a
common estimate of £ by X, then we can develop tests of significance
concerning the structure of the median vectors 0,, i=1, ..., k, as in the case
of mean values (see Rao [12, p. 556]). For this purpose we compute the
“between populations” matrix

n,0,0, — ndd’ (3.5)

1

S=

el
-

i

where n®=n,0,+ --- +n,0,, and set up the determinental equation

|S— A% =0. (3.6)
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The roots of Eq. (3.6) can be used as in the table on p. 558 of Rao [12] to
test the dimensionality of the configuration of median values.

4. JOINT DISTRIBUTION OF THE MARGINAL QUANTILE PROCESSES

In Section 2 of the paper, we derived the joint asymptotic distribution of
specified marginal quantiles. We now derive the weak limits of the entire
marginal quantile processes after suitable scaling. More specifically we
consider the processes {Z,} indexed by (q,, .., ,) € (0, 1), where

Z(q1s - 4,) = /N LALE(G)NEM(gy)
—E(@)) o L EAGEN ) = E(gN]. (A1)

We first simplify the problem using the following result which is essentially
a restatement of Theorem 5.2.2 of Csorgé and Révész [6].

THEOREM 4.1. Suppose that for i=1, ..., p, the marginal df. F; is twice
differentiable on (a;, b;), where

—o0 <a;=sup{x: F(x)=0}
002 b, =inf{x: F(x)=1}

and F;=f,#0 on (a;b,). Further assume that

max sup F(x)[1- F(x)] ';28'

<0

and f; is non-decreasing (non-increasing) on an interval to the right of a; (to
the left of b,). Let

Yq1s o 4,) = /HOVHG) — g1y o VI(G,) — 4,

where V") is the empirical df. of the uniform variables

ulj= Fl(x‘])’ ]= 1, ey N

Then

sup [|[YXQ)—Z, (@I -0  ae (4.2)

qe 0.1y

Hence {Y}} and {Z,} have the same limit.
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Note that the marginals of {¥*} converge weakly to a Brownian bridge
on C[0,1] (see Billingsley [5, p. 105]). Since the paths of the limiting
process are continuous, we define a new process Y, close to Y* as follows.
Let D{”(¢) be, as a function of te[0,1], the df corresponding to a
uniform distribution of mass (n+1)~! over each of the (n+ 1) intervals
(di_..d], j=1,.,n+1, where dy=0, d,,, =1, and d,, .., d, are the
values of u;, ..., u,, arranged in increasing order. Clearly

1
|Vi(t) — D) S;’ 0<r<lae

So if

Y,(a)=/n(D{(q1) = g1, . D(4,) — 4,)
then

1Y.(q)— Y*q)|<n~"? Vqe[0,1]7ae.

As a consequence, {Y,} and {Z,} have the same weak limits and the
marginals of Y, are continuous functions. Note that

Y,e B={h: h(q)=(hi(q,), -, hy(q,)), h;
is a continuous function on [0, 1], i=1, ..., p}.

Clearly B is a separable closed linear subspace of the Banach space C, of
continuous functions on [0, 1]” into R”.

We shall show that {Y,} converges weakly to a Gaussian measure on B.
A probability measure y on B is called Gaussian if for every He B*, the
space of real continuous linear functionals on B, uH ' is Gaussian on the
line (see Aranjo and Giné [1, pp. 140-142, 28, and problem 2 on p. 33]).

To characterize B*, let H be a real continuous linear functional on B.
Then

H(hy, ... h,)=H(h,,0,..,0)+ --- + H(O,0, .., h,)
=H,(h)+ --- +H,(h,), say. (43)
The zeroes in the first line of (4.3) refer to the zero function. Clearly, each
H, is a real continuous linear functional on C[0, 1]. It then follows that B*
is the k-fold direct sum of the dual space C* of C[0,1]. By Riesz’s

representation theorem, for any L e C*, there exists a signed measure v on
[0, 1] such that

LU= £ dx)
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for any feC[0,1] (see Dunford and Schwartz [9]). Thus for every
He B*, there exist signed measures v,,..,v, on [0,1] such that for

f=f, .. f,)EB,

4

=3 [ 1 dvix)

i=1

Now let
={ Y we,:0<x,;< 1, x;, a;rational, j=1,.,r,r=1,2, },
f=1

where ¢, is the probability measure putting all its mass at x. It is easily seen
that A4 is dense in C* and is countable. We now state the main result.

THEOREM 4.2. {Y,} converges weakly to a Gaussian random element
W=(W,,., W) in B, where W, is a Brownian bridge for each i and

E(W (1) Wi(s))=P(F(x;) <t, Ffx;)<s)—1s (44)

foralli, jand 0<1t, s< 1.

Proof. Since {/n(D™(1)—1):0<1<1} is tight for each i in C[O0, 1],
it follows that {Y,} is tight in B. Since A is dense in C*, in order to
show that {Y,} has a weak limit it is enough to show that for any
Gits s Qs s Gp1s o G 0 [0, 1] and a; real

_Z 2, /(DI Ng,)—4,)

converges weakly. This holds because of the central limit theorem and the
fact that

1| M'a

1
sup |V{(t)—D{(1)] <; a.e.

O0<r<1

To complete the proof it is enough to show the existence of W satisfying
(44).

Since {Y,} is tight, there exists a random element Y on B and a
subsequence {Y,} such that Y, converges weakly to Y= (Y, ., Y'?).
Further, from the above arguments

ll M'b

r P r
Z s Y(q;) and YN a;Wiqy)

i=1 j=1
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have the same distribution as that of normal random variables. So it
follows that Y satisfies the properties of W mentioned in (4.4) and Y is
Gaussian. Thus Y, converges weakly to W, and in view of Theorem 4.1,
{Z,} converges to W.
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Kernel Estimators of Density Function
of Directional Data

Z. D. Bal, C. RADHAKRISHNA RA0, AND L. C. ZHAO

University of Pittsburgh

Let X be a unit vector random variable taking values on a k-dimensional sphere
2 with probability density function f(x). The problem considered is one of
estimating f(x) based on n independent observation X, ..., X,, on X. The proposed
estimator is of the form f,(x) = (nh* =) "'C(h) 37_, K[ (1 — x'X,)/h*], x € Q, where
K is a kernel function defined on R . Conditions are imposed on K and f to prove
pointwise strong consistency, uniform strong consistency, and strong L,-norm
consistency of f, as an estimator of f.  © 1988 Academic Press, Inc.

1. INTRODUCTION

There is considerable literature on non-parametric estimation of the
probability density function (pdf) of a random variable taking values in R*
through kernel functions. If X, .., X, is a sequence of random k-vectors
with f as the common pdf, then the Rosenblatt—Parzen kernel estimator is
of the form

fx)=(nk%) 'S K[(x— X)/hy],  x€R", (L.1)

where K is a bounded pdf on R* and {h,} is a sequence of positive
numbers. The object of the present paper is to develop a suitable theory
of kernel density estimation for random variables taking values on a
k-dimensional unit sphere Q,, which we denote simply by 2 dropping the
suffix throughout the paper.
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distribute reprints for governmental purposes notwithstanding any copyright notation hereon.
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The subject is of some practical interest as there are many situations
where observed data are in the form of direction cosines or in the form of
vectors scaled by an unknown positive scalar so that only the direction is
known. Problems of inference based on such data are discussed under
various parametric models for the pdf on @ (for a review of the literature
on the subject see books by Batschelet [1,2], Mardia [7], and Watson
[11], the review paper by J.S. Rao [9], and a recent paper by Pukkila
and Rao [8] for derivation of particular parametric models for directional
data).

Let Xy, .., X, be i.i.d. unit vectors with f as the common pdf on Q such
that

j f(x) dor(x) =1 (12)

Q

where w is the Lebesgue measure on Q.

Theoretically speaking, to estimate the density f(x) on 2, we can
proceed as follows. First select a one-to-one mapping ¢ from £ onto or
into R*~!' (which may be chosen as continuous or even arbitrarily differen-
tiable). Then based on the transformed data ¢(X),), .., ¢(X,), by using
the usual (kernel, nearest neighbor, or orthogonal series, etc.) density
estimation, we can construct an estimate of the density of ¢(X). Finally, by
the inverse transform, we get an estimate of f(X). However, two kinds of
difficulties arise in practice. First, the transform and its inverse may be
complicated and difficult to compute, especially for large k. Second,
whatever transformation is used, there is at least one point at which the
density cannot be estimated. This happens even for k = 2. If we consider the
density function f(x) on the unit circle as that on the interval [ —m, ]
when f(n)=f(—n)>0, then f(x) is not a continuous function on R'
(assuming f(x)= 0 outside this interval). Hence there is no kernel density
estimate of f(x) which is uniformly consistent (even in the sense of weak
convergence). Therefore, we have to choose a mapping to transform the
unit circle onto R'. In this case, the transform and its inverse may be com-
plicated and the value of the density at the point (—1,0) cannot be
estimated since this point corresponds to infinity by the transform. The
main purpose of this paper is to propose a method by which we directly
estimate the density on £2, and to investigate the limiting properties of this
estimate.

When k > 2, we propose the following kernel estimator of f(x) based on
X, X,

fo(x)=(nh*"")"1C(h) Zn: K[(1—x'X,))/h*], xef, (1.3)

i=1
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where h=h,>0, K(-) is a non-negative function defined on R, =[0, )
such that

0<j K(0) v dy< o0 (14)
and C(h) is a positive number such that
h""'[C(h)]”=fQ KL(1 —x'y)/h*] dax( y). (1.5)

Here the above integral is obviously independent of x.
Using the result (2.2.2) given in Watson [11, p.44], the integral (1.5)
can be written as

, 2n(k*1)/2 .‘-
SRk - 1)2]
2n(k —1)/2 z/hZ

TTIk—1)2]%

We note that if {A,} is such that A, —0 as n— oo, then by (1.4) and the
dominated convergence theorem

[Ch)]~ K[(l—z)/hz](l—zz)"“3/2 dz

p) %22 — oh?)* 2 dp, (1.6)

. 2m)* D2 e .
lim [C(h,)1~ =h£} K()v* = dy=2  (say). (1.7)

Some examples of the choice of the kernel function are as follows:
K(v)=e™" (Longevin—Von Mises—Fisher distribution)
=1 if v <1, =0 otherwise (uniform distribution on a cup).

In this paper, we study the various conditions under which f,(x) — f(x)
a.s. pointwise, uniformly, and in L,-norm.

We quote some lemmas which will be used in the proofs of theorems in
later sections.

LEMMA 1. Let &, .., &, be independent random variables such that
E(¢)=0and V(¢,)=02, i=1, .., n. Further let there exist a finite constant b
such that P(|&,)<b)=1, i=1, .., n Then for any ¢>0 and all n, we have

7

where 6°=n"'(c2+ --- +02).

n! 2": g, 23)<2exp[—n£2/(2az+bs)], (1.8)

i=1
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For a proof, see Hoeffding [6].

In order to state Lemmas 2 and 3, we introduce some concepts and
notations. Let x, ..., x, be r points in R*, and &/ be a class of Borel sets in
R,. Denote by 47(x,, ..., x,) the number of distinct sets in {FNA4:4€.%},
where F= {x,, .., x,}. Define

m”(r)=m’§x A7 (X1, vy X,). (1.9)

Vapnik and Chervonenkis [10] showed that m<(r)=2" for any positive
integer r, or m¥(r)<r**', where s is the smallest integer j such that
m7(j)#2’. A class of sets o/ for which the latter case holds will be called a
V-C class with index s.

Let X,, X,, .., be a sequence of i.id. random vectors in R* with a com-
mon distribution g and g, be the empirical distribution of X, .., X,.
Denote a “distance measure” between u, and u by

D, (o, 1) = Sup | (A4) — u(A)l. (1.10)

Ae
Further, assume that

Dn("ds #)’ sup I#M(A)_#Zn(A)l’ sup p'n(A) (111)

Aesd Ae st

are all random variables. We have the following lemma.

LEMMA 2. Let o/ be a V-C class with index s such that

sup w(A)<SS<4. (1.12)

Then for any ¢ > 0;
P{D (A, p)>e} <5(2n) exp[ —ne*/(916 + 4¢)]
+ 7(2n)° exp(—on/68)
+22* 0" * 2 exp(—dn/8) (1.13)
provided
n = max(1258/¢%, [68(1 + 5) log 2]/8).

For a proof of Lemma 2, the reader is referred to Zhao [13].
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Denote by || the Euclidean norm on R*. Write

B(x,p)={y:ly—xl<p}, xeRp>0,
B(x,p)={y:lly—xl<p}, xeRp>0.

We have the following lemma.

LeEMMA 3. If B(k) denotes the set of all open balls B(x,p) and B(k)
denotes the set of all closed balls B(x, p), then B(k) and B(k) both belong to
the V-C class with the same index s=k+2 for all k=1,2, ...

For a proof see Wenoeur and Dudley [12] (1981).
LEMMA 4 (A multinomial distribution inequality). Let n,, .., n,, be the
Jfrequencies in m classes of a multinomial distribution in n=n,+ --- +n,,

independent trials. Then for all € (0, 1) and all m such that (m/n) < €%/20,
we have

P(Z |n,-—Enil>n£><3exp(—nez/25). (1.14)
i=1

For a proof, see Devroye [3].

2. POINTWISE STRONG CONSISTENCY

We prove the following theorem on pointwise strong consistency of £,(x)
as defined in (1.3) as an estimator of f{(x).

THEOREM 1. Let K(-) and {h,} satisfy the following conditions:
a) K is bounded on R,

b) 0<_[f,’° K(b) v* =32 gy < o0,

c,) lim,_  v*~Y2K(v)=0 or

¢,) f is bounded on L,

d) lim,_ h,=0, and

e) lim,_ . (nh%~'/logn)= co.

Then at any continuity point x of f,

lim f,(x)=f(x) as. (2.1)

n— oo

We need the following lemma to prove Theorem 1. For convenience of
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notation we write 4 for h, throughout the paper except in the statements of
theorems.

LEMMA 5. Suppose that the conditions (a) — (d) of Theorem 1 hold. Then
at any continuity point x of f

|Ef(x)—f(x) >0  as n- oo (2.2)
Further, if [ is continuous on Q, then
lim Sup |Ef,(x)— f(x)| =0. (23)
Proof. Using (1.5),

|Ef,(x)— f(x)|=C(h) h* ~*

J, KL(1=xy)RIL/(3) = fx)] da( )

<CIR*[ KI(1=xy)hTIf(9) = ()] doxy)

L-xy<d

+Clh) B * f(x) |

1—x'y>

S K[(1 - x'y)/h*1dw(y)

+C(h)h""_f K[1 = x'p)/h*] f(y) do(y)

1—x'y>é
=L+0L+1 (say). (24)
By continuity of f at x, we can find § >0 for any given ¢>0 such that

1f(y»)—f{x)| <e for 1 —x'y < 4. Thus, by (1.5),

1, <eC(h) hl-"j K[1—x'y)/h*] do(y)=c¢. (2.5)
Q
Now, let condition (c¢,) of Theorem 1 hold. Then

L<C(h) 897 syp K(v)v"‘""/zj f(»)do(y) =0 as n—oo
Q2

v > 8/h2

(2.6)

by (1.2), (1.7), and conditions (c,) and (d) of Theorem 1. Further, we have

2/m?

(k—1)/2
)z K)[0(2—h%)1* > dy
2

*TTI=D2]
_en*-2Cm)
SThk-12]

/|

S/h

f(x)j Kw)o* = 2dp 50  as n-ow (27)

o0
é/h?
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by (1.4) and (1.7). Equations (2.5)-(2.7) imply (2.2). The results (2.2) when
(c,) is true and (2.3) can be proved in a similar manner.

Proof of Theorem 1. By Lemma 5, we have

lim Ef,(x)=f(x); (2.8)
also we shall prove that
lim [f,(x)— Ef,(x)]=0, as., (2.9)

so that (2.8) and (2.9) imply that f,(x)— f(x) a.s., which is the desired
result.
Put

&=h""*C(h)(K[(1 - x'X,)/h*] — EK[(1 — x'X,)/h*]).
Then ¢&,, ..., &, are 1.1.d. and

E()=0,1¢,| <2h' " C(h)M

EE)<h0CH) [ K11 = xy)/] /(y) daly)

< Mr =0 C(h) L? K[(1-x'y)/h*] f(y) de(y),  (2.10)

where M is an upper bound of K on R, . By (1.7) and Lemma 5, there exist
constants a >0 and a(x)> 0 such that

IE 1 <ah'™* — EE<a(x)h' ™~

Ze]

<2exp[ —ne?/(ach' ~* + 2a(x) h' ~*)]
=2exp[ —nh* " 'e*/(2a(x) + at)].

By Lemma 1,

n

2&

1

PLIf(x)— f(x)| > ] =P [n“

By condition (e) of Theorem 1,
ZP[Ifn(x)—'Efn(x)l>s]<°o=>fn(x)—Efn(x)=0 a.s.,

i€, (2.9) holds, which together with (2.8) implies (2.1), the result of
Theorem 1.
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3. UNIFORM STRONG CONSISTENCY

In the following we assume that u is a measure on 2 with f(x) as the pdf
and p, is the empirical measure based on the sample X, .., X,,. We have

the following theorem which is parallel to that for the standard case given
by Bertrand-Retali [4]:

THEOREM 2. Suppose that f is continuous on Q and K is bounded on R ,
and Riemann integrable on any finite interval in R, with

jw Sup{K(u): |/u— /ol <1} 0%~ 2 dy < 0. (3.1)
1]
If h,— 0 and

(nh*='/log n) > oo (3.2)

as n— oo, then

sup | f,(x)—f(x)| =0 a.s. (3.3)

Proof. The proof of Theorem 2 is similar to that of Theorem 1 in
Devroye and Wagner [5]. Here we give only a sketch of the proof. By

Lemma 3 of Devroye and Wagner [S], for each #, 6 small and p large we
can find a function

No
K*v)= z aiIA,(U)’
where I, is the indicator function:

(i) oy, .., ay, are non-negative numbers,
(ii) Ay, .., Ay, are disjoint intervals contained in [0, p],
(iii) |K*(v)— K(v)| <n on [0, p] except on a set D,

(iv) D< B=JY"B,, where B,, .., By. are intervals in [0, p] whose
union has Lebesgue measure less than 6, and

(v) max, < x, o <sup, K(v)= M (say).

We note that continuity of f on @ implies that it is uniformly continuous
and f(x)< M, (some constant) on £. By Lemma 5,

sup |Ef,(x)— f(x)| =0 as.as n— oo. (3.4)
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Putting
Ui(x)=h'~*C(h) L} |K[(1 —x'y)/h*] = K*[(1 = x'y)/h*]| f(y) de(p),
Unl(x) = k' =+ C(h) ' J, K=Y dLn )~ w01,

Usa(x)=h'~*C(h) L |K*[(1=x'y)/h*]— K[(1 = x'y)/k*]| du,( y),

we have

3

sup | f,(x) — Ef(x)| < .Z

sup U, (x). (3.5)
i=1 X
Following Devoye and Wagner [5], we can prove that

Sup U, ,(x) and Sup U,,(x) (3.6)

can be made arbitrarily small by choosing », § small and p large enough.
Let

AXx)= {ye@: [(1-xy)hTe A},

Then
~ (2rh?) & =172 rp k~3)2
#(A,#(x))—Li‘mf(,V) dw(y)<Mfm o do
=ch*! (say). (37

Hereafter, ¢ denotes a positive constant but may take different values at
different appearances, even in the same expression.
If we choose A,=[a,, b;), i=1, .., N,, then

A¥(x)={yeQ:/2a,h<|y—x| <./2b;h}.
Writing
A ={A¥x):xeQ,i=1,.., Ny}
we have by Lemma 3,

m?(n)<2(n**?+1)> foranyn. (3.8)
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Hence &/ is a V-C class with some index s as defined in the text following
(1.9). Then using Lemma 2 quoted in Section 1, we have

P{sup U,,(x)=¢} <cn'**exp(—cnh* 1), (3.9)

X

By (3.2), we have

Y P[sup Up,(x)=2¢e]<oo  forany ¢>0.

Then, by the Borel-Cantelli lemma,

sup U,,(x)—0 a.s. (3.10)

(3.5), (3.6), and (3.10) complete the proof of Theorem 2.

4. STRONG L,-NORM CONSISTENCY

In the following, we establish under some conditions the strong L,-norm
consistency of f,(x), ie.,

J, 1/x) =[] dox) =0 as. (4.1)
The precise statement is given in Theorem 3.
THEOREM 3. Suppose that

(a) jw pk =372 K(p) db < o0, (42)

0

(b) h,— 0 and nhX =1 > cc asn - . 4.3)

Then, for any given ¢ >0, there exists a constant ¢ >0 such that
P{jﬂ 1f.(x) = f(x)] dw(x)zs}se-f". (4.4)
Proof. By (1.5),
Vo= | 1B = ()] doo(x)

<h'EC) [ dotx) [ KL =xy)H1 1) = f(x)] doo(y).
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Given ¢>0, we can find a non-negative continuous function g(x) on @
such that

j |£(x) — g(x)] dor(x) < &/6. (4.5)
Then
Vo< | HECUy dolx) | KL —xy)I°T 1f(3)~ 8()] doo( )

B ECU) dotx) | KL= xp)h] 106) — g(x)] o )

+J B TEC) dotx) | KT xp)h] |8(y) — g()] doo( )
=Jy,+ o+ Ty,  say. (4.6)

By (1.5) and (4.5),

T = HCH) | 11(3) = &(p)] doly) | KL~ xy)/i*] dos(x)

= |, /)~ &)l doty) <6 (4.7)

In the same way,
J,, < £/6. (4.8)

Let us denote M, =sup{g(x), xeQ} and Q,(x)={yeQ:1-x'y>ph*}.
As in (3.9), we can take p sufficiently large such that

L; BEC(h) dootx) [ KT(L=x'p)/h*] [ g(y) — g(x)] doo( y)

2)(x)
<M b *"C(h)j do(x) fm KL= xy)/i] doy)

h'~*C(h)(2m)% -2
ST Tke-1)2)

fdw(x)f o 2Ky do<g/12. (49)

By uniform continuity of g(x) on Q and (1.5), we see that for large n,

J e dot [ KL= xy/hT 1g()~ g0l doly)
e .
<12w(9)L,“""(x)fg oy O KL = xy)yh* ] do(y) <12

(4.10)
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By (4.6)—(4.10), for large n,

V, <&/ (4.11)
Take K*(v) = 0 such that
k—1)/2 oo
% | K(v)— K*(v)| v'* 32 dv < ¢/6, (4.12)
- 0
and put
fXx)=n"h"*C(h) i K*[(1 —x'X))/h*]. (4.13)

i=1

As in (1.6) we have
J,| 1/uk) = 1) deox)

<n~'h'*C(h) Zf (K[(1—x'X)/h*] — K*[(1 — x'X,)/h*]| dox(x)

2 e
\—C;i[)((kz—ﬂ%j |K(0) — K*(0)] v~ D7 dp < /6, (4.14)
and
j |Ef,(x) — Ef.*(x)| do(x) < /6. (4.15)
We can take

K*)= Y al(v),

j=1

where 4, ..., A are disjoint finite intervals on R, . By (4.11}, (4.14), and
(4.15), in order that (4.4) holds, it is enough ro prove that for any &, >0,
there exists a positive constant ¢ such that

P{Llf,,*( — Ef*x |dw(x)>e}<e (4.16)

Here we can take K*(v) =1, ,)(v).
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For x=(x,, .., X;) € L2, we can represent x in polar coordinates
x,=cos 0,
x,=sin 0, cos 0,
(4.17)
Xe_y1=s8inf,---sin@, _,cosf,_,
xX,=sinf,---smnf, _,

with 0<0,<n, i=1,.,k—2 and 0<0, _, <2n. Such a representation is
unique except for a Lebesgue null set H < Q. Take L>0, and put

JPN={x=x(0y, ... 0,_)eQ—H: L 'h(i,— 1)<, <L 'hi}},
=12, ., u—1=[h""'Ln], j=1,.,k-2
ik—l= 1, 2’ N A 1 = [hilan],

JN={x=x(0,,..0,_)eQ—H: (u—1)L~'h<8,<n},
j=1 k=2,

JUD=A{x=x(0, ., 0_)EQR—H:(v—1)L'h<0,_,<2n}

and

= ﬂ J(-j), il,..., ik—2= 1, 2, ey U, ik—l= 1, 2, veey U.

P
All these J; ., _, constitute a pertition ¥ of 2 — H.

Take ¢ and L such that

¢>max{,/2b k¥, J2ak**+(2L)~"'k*} and 2L 'c<b—a.
Put

A={[a,b), B=[a+L 'e,b—L 'c]

A*(x)={yeQ—H:a< (1 —x'y)/h*<b}, xeQ—H,

B*(x)={yeQ—-H:a+cL '<(1—x'y)/h*<b—L"'c}, xeQ—H,

D(x)= U J, xeQ—H.

Je¥,Jc A*(x)
Now we proceed to prove that for xe 2 — H,

G(x)=A*(x)— D(x) < A*(x) — B*(x) = G*(x). (4.18)
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Assume that y= y(0}, .., 0,_,)eG(x). Then y¢ D(x), and there exists a

set J, ..., , and a point w=w(07, .., 0;_,)eJ,  , _, such that

yed,. wel;. ., but w¢ A*(x). (4.19)

cik-12 -1

Thus (8, —6;| <L 'h, and by (4.17), |y;— w;| <jhL~', where y, and w,
are the components of y and w, respectively. Hence

Iy — ol <k¥hL~". (4.20)

But w¢A*(x)=x—ow|=/2bh or || x~w| <./2ah, which in turn
implies that

lx=yll>(/26—Kk">L™ Yk or  |x—yl<(/2a+Kk">*L™")h

ie.,

l—xy>((b—-cL™Y)h®> or 1—xy<(a+cL ")h%. (4.21)

Thus y e A*(x) — B*(x), and (4.18) is proved.
Since K*(v)=1,(v), we have

J, 10— B0 deo)
= KCR) | 1 (4*(6)) = (A% () deo()

<hrew | % ) = s dofx)

2 jew,Jc A%(x)
+h'=KC(h) L [u(G*(x)) + pa(G*(x))] doo(x)
=Z,+2Z,, (say). (4.22)

For any probability measure v on €2, we have

B =% C(h) jn v[G*(x)] dw(x)

=J, ) [ HEC) Lo L1~ xy)h] do()

_Clh@n)= 1

LG 6= gy < ,3 423
STTh=DRT heus’ B8V (“.23)
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by taking L sufficiently large. Thus
Z,,<2¢,/3. (4.24)
IfJeVW, yeJc A*(x), xe Q2 — H, then (1 — x'y) < bh*. Hence
w{xeQ—-H:Jc A*(x)}

<[ Trom (1= X)) do(x) < ch ', (4.25)
Q
where ¢ is a positive constant. Thus by (4.22) and (4.25), we have

Z,,<cCh) 3 () —pDI<e Y uald) = pI)l. (4.26)

Je¥ Jey¥

Since # (%)< ch' *=o(n) by (4.3), Lemma 4 can be used. Thus by (4.22),
(4.24), and (4.26), we have

PAJ 10— £ ) dotx) 20}

< P{ Z Iun(J)_ﬂ(J)l = (61/3(')} <e~('n,

Je¥

where ¢ >0 is a positive constant, which proves (4.16) the desired result.
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On Determination of
the Order of an Autoregressive Model

Z. D. Bal, K. SUBRAMANYAM, AND L. C. ZHAO*

University of Pittsburgh

To determine the order of an autoregressive model, a new method based on
information theoretic criterion is proposed. This method is shown to be strongly
consistent and the convergence rate of the probability of wrong determination is
established.  © 1988 Academic Press, Inc.

1. INTRODUCTION

Consider an autoregressive (AR) model of order p (p =1, unknown)
generated by a purely random process e(n) given by

i ol j) X(n— j)=e(n), a(0)=1. (1.1)

j=0

Assume that {e(n)} is a sequence of ii.d. random variables with Ee(1)=0,
Ee*(1)=0¢? and 0 < Var(e?(1)) < o0. Suppose the coefficients in the model
a(0), a(1), ..., a p) satisfy

g(z)= i a(j)z' #0 for |z]<1. (1.2)
j=o

In time series analysis, AR models play an important role. An interesting
problem in the analysis of AR models is the determination of the order p of
the model. There is a considerable amount of research work done on this
topic. To name a few, the reader is referred to Akaike [1], Hannan [3],
Hannan and Quinn [4], and Shibata [6].
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Let X(1), X(2), .., X(N) denote a random sample drawn from an AR
model of order p. Assume that the order p is known a priori to be
p<K<o. Using Yule-Walker equations and a recursive computing
procedure, Hannan and Quinn [4] obtained an estimate 6] of o2. To
estimate p, the following criterion based on 67 is proposed,

Y(p)=logé2+2p CN~'loglog N, (1.3)

where C'>1 is a constant. An estimate p of p is chosen as that one which
minimises ¥ (p). Under weaker conditions than mentioned above, strong
consistency of p is obtained.

In this article a new criterion to estimate the order of the AR model is
proposed. Strong consistency as well as the convergence rate of the
estimate p is established.

The paper is organized as follows. In Section 2, a new method to deter-
mine the order AR model is described. In Section 3, convergence rates
of P{p+#p} is derived. Some general remarks, including the strong
consistency of p, are made in Section 4.

2. DETERMINATION OF THE ORDER p

Let X(1), X(2), ..., X(N) be a random sample from an AR series. Define

N

2
Lya,)= 3 (X(n)+ i (i) X(n—i)) , (2.1)
i=1

n=p+1
where a, = (a(1), .., a(p))". The true order p of the model and the true
regression coefficients a(1), ..., a{ p) will be denoted as p,, ag(1), ..., %o(Po)
respectively.
For each p < K choose @,=(d(1), .., &(p))’ such that
L,(8,)=min L,(82) & Né2. (2.2)
@p

Since L, is a quadratic form of @, it is easy to compute &, and L,(d,).
Define

#p)=N1og| 3 L,(6,) |+ pC, (3)

where constants C, will be chosen suitably. Then any p minimizing
#(5)=min ¢(p) (24)

will be taken as the estimate of the order p of the AR series.
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Remark 2.1. In fact, (1/N) L,(@,) is an estimate of o2, which is slightly
different from that used by Hannan and Quinn [4]. When N is not very
large, (1/(N—p))L,(4,) is a better estimate of 6’ as compared to
(1/N) L,(d,). Since we are interested in the large sample properties, there is
no harm in using (1/N) L,(4,) as an estimate of ¢°.

Define
1 N
qp(l’j) N Z Xn—anfjs i,j=0,1,2,...,p
n=p+1
Qp ( (l .]))l j=L2..p (25)
ﬂp - (qp(o 1) . qp(oa P)),
By differentiating L,(&,), we get
Qp ép = ﬁp
or, equivalently,
i,=-0,'B, (2.6)

provided Q,, is nonsingular. In the proof of our main result, it is shown
that with probability one, for large N, Q,, is nonsingular. Hence we can
use (2.6).

Using the above notation, the main theorems are stated below. Proofs
are given in the next section.

THEOREM 2.1.  Suppose

Eexp{tre(1)’} <oc  forsome >0, 2.7
and choose C, such that
Cn/N -0, Cy — . (2.8)
Then
P(p# po) < C exp{—C,Cp}, (29)

where C,, C, are two positive constants independent of N.
THEOREM 2.2. Suppose (2.8) holds and
Ele(1)|* <0,  forsome t=2. (2.10)
Then
P(p# po) SC /(N2 1Ci2) + Cre ™ SN, (2.11)

where C,, C,, C are positive constants independent of N.
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3. PROOF OF THE THEOREMS

LemMAa 3.1. Let y,, .., ¥, be independent random variables with Ey;, =0
and Ely;|'< o0, i=1,..,n, for some t=2. Denote

Snz Z yi’ Bg: Z Var(yi), Al.n= Z Elyxll
i=1

i=1 i=1
Then for any a> 0,
P{S,=>a}<CVA,,a "+exp{—CPa’/B?},
where
CV=(1+2/t) and CO=21+2)%e "
Proof. Refer to Corollary 4 of Fuk and Nagaev [2].

Let @, = (ag(1), ..., ao(po))’ and o* be the true parameters of the model.
Let

Yi—Jj)=E(X(n—1i) X(n— j)),

.. (3.1)
Fp = ((r(l_.])))i,j= 1,..p, ‘Yp= (7(1), eey V(P)), pSK
Suppose p = p,, then from
J) )
Y, ag(i) X(n—i)=e(n),
i=0
it follows that
PO
Z ao(i)y(i—j)=60,jaz, Jj=0,1,2,..,p, (3.2)

i=0

where 0, is Kronecker’s delta. Thus, if we take @ = (ap(1), -, 2o{Po)s
0,..,0), then @, =@} is a unique solution of the equation

I'a,=—7,. (3.3)

It is well known that, under the conditions (1.1) and (1.2), for 0< p<K,

lim 0,=I,as, lim B,=1v,as. (3.4)
N-—>w N—
and
lim &,% —I; 'y, & af=(a*(1), .., a*(p)). (3.5)

N—
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Note that for p, < p< K,
u,’," = (a(1), ... %o( Po), O, ..., 0, (3.6)

and that

(3.7)

lim 62 9(0)—a} I,af=

N—-

{a*2>02, if p<po,
y(0)—a, I, a, =0c>, if p>p,.

PO~ PO PO
It is easily seen that,

1 N p 2
62=min— Y (X(n)+}: a(i)X(n—i))

% n=p+1 i=1

N P+ 2
> min lN Z (X(n)+ 2‘ a(i) X(n—i))

apypa(p+1)=0 n=p+2 =1
1 N p+1 2
>zmin— Y (X(n)+ y oc(i)X(n—i)) =6),,. (3.8)
E+1 Y o p 2 i=1

First we establish the following proposition which will be used to prove
our main theorems.

PrROPOSITION 3.1. Under conditions (1.1), (1.2), and (2.8), there exists a
constant ¢ >0 such that for large N,

P{ﬁ¢Po}<P1+P2+P3+P4,

where
K
Py = Z P{|gx(i, j)—y(, N>e /Cy/N}
ij=0
P, = f P{% i e(n) X(n—1i) >s,/CN/N}
i=1 n=K+1
P, =2KP{le(0) >¢./Cy} (3.9)
and

P, =2KP{|X(0)| >e/Cy}.
Proof. Denote
Ay(e)={14x(i, )—y(i— ))i<e/Cy/N forall i j<K}

<e./Cy/N forall lsisK}

A;(e)={le(n)| <e /Cy forall n<2K}
Ale)={|X(n)|<e/Cy forall n<2K}.

40={[7 T emxt-p

n=K+1
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For p<p,, since ¢ as a function of (i, jy's and X(n) X(n—1), is
continuously differentiable, we have
62162, > 63, /6%,
1 N po—1 2
2 <X(n)+ ; Gy 1(0) X(n—i)) /éf,o
= {gp,—1(0, 0)—6;0_1Qm_1ﬁp0_1}/6§0
2 {(y0)~ap_ Ty 0} _}/0°

{z i )= )+ ZXZ n)} (3.10)

Lj=0

Hereafter, C denotes a constant independent of N, but may take a different
value at each appearance even in the same expression.

From (3.7), noting (3.10), there exists ¢ >0 such that if A4,(¢)~ A,(¢)
holds then for any p < p, and large N,

log(62/67 ) > log(62, _,/a})
>log(a**/6%)— Ce /Cn/N>(po — p) Cy/N.  (3.11)

Now assume that p, < p< K. Put 4d,(i) =4d,(i) —a*(i), 4a, =&, —a). By
(2.2) and (3.8),

>ﬁn=§+1 <X(n)+ f & k(1) X(n—i))2

i=1

1 N 2
-— Y (X(n)+2a0(z)X(n—z)>

=po+1 i=1

=% i (e(n)+ Y AaK(t)Xn——l)>

1 f e(n)?

- Z e(n)’—y¥'Qg'y, (3.12)

where Qi is deﬁned in (25) and ¥ = (f,, .. ¥x), :ﬁj=

(YNYZV_xore(n) X(n—)), j=1,2,.., K.
From this, one can see that, there exists ¢ >0 such that for large N, if

A, (e) n A,(e) n A5(g) holds then for any py, < p< K,
;2 22
6t —¢6 <_C_’X
G2 2N

(3.13)
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which in turn implies that for any p, < p <K,

log(6}/62)> —Cy/N = —(p— ps) Cy/N. (3.14)
From (3.11) and (3.14), Proposition 3.1 follows.

Proof of Theorem 2.1. Hereafter, C is a positive constant independent
of N which can be assigned as large as you wish, but may take a different
value at each appearance. To prove Theorem 2.1, it is enough to show that

P, <Cexp{—CCy}, n=1,2,3,4, (3.15)

where P,’s are defined in (3.9). It is easy to see that (3.15) is true for
n=3,4 using (2.7). By (24),

X(n)=Y ae(n—j), la|<Mp’, j=0,1,2,., (3.16)

j=0

where pe(0,1) and M >0 are constants. In order to prove (3.15) for
n=1,2, it is enough to show that for any ¢ >0,

Pﬂ—]lv i X(n)X(n—l)—y(I)‘ >£\/CN/N}

<Cexp{—CCy}, 1=0,1,2,..K, (3.17)

and

Cexp{—CCy}, I=1,2,., K (3.18)

By (3.16), y(l)=0’ X2 a;a,, ;, and

+
™
)
B

Lj)itl+

Z e(n—i)e(n—j—1) (3.19)
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Fix /< K Take p, €(p, 1) and set

<(p1/p)* &, /Cn/IN

] N
B(e )={|—— e(n—i)*—o?
: Nngl
fori=1,1+l,...}
1 X . . it
Dlen={|5 T etn=idetn—j=D| <(pulp) 0, ST
n=1
foranyi#/+j,i, j=0,1,2, }

Take ¢, <eM ~2(1 —p,)> If B(¢,) n D(g,) occurs, using (3.19) we get

1 N
N

=1

X(n)X(n—l)—vu)'

<SM? Y p* e, /Cu/N (p1/p)* !
i=1
+M? Y e JCy/N (o /o)

(L, j)i#l+j

e e 2
<M?2 < y p;> &1 /Cn/N<e/Cy/N.
i=0

Thus, taking A=p,/p(>1) and &, = (p,/p) &, we get

P{'—l]\; ﬁl: X(n)X(n-l)—y(l)'>s‘/CN/N}

< i Pﬂ]iv i e(n)’ —o?

> A%, | /CN/N}

+Y P{'% f: e(n)ye(n—j+i)

> Ai+g, | /CN/N}. (3.20)

Setting f(1) = Eexp{t(e(i)* —a?)}, 1€ (0, r), we have f(t)=1+ f'(0)r+
1 f"(z,)7% where 1, € (0, t). Hence

f(r) <1+ CP<exp{Cr?}. (3.21)
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Thus,
N
{N Z =2 82,/CN/N}

Sex P(—Tiz'Sz VNCN) f(t)Y
<exp{—14%, /NCy + C1’N}. (3.22)

Taking 1=6 ./Cxy/N A%, where 6 >0 is small, one can see that

{3 5 - ]

<exp{—CA¥Cy} < CAi ¥ exp(—CCy). (3.23)
In the same way,
| 4
{ﬁ Y (e(n)?—a?)< — A%, CN/N}
< CA % exp(—CCy). (3.24)
In a similar fashion it follows that if 7€ (0, ¢)
E exp(te(0) e(i — j)) < exp(Ct?). (3.25)

For i> j, by (3.25),

{i e(n e(n+z—j)>l’“82./NCN}
< i P{ y e(n)e(n+i—j)
m=0

n< Non=m(mod(i— j+ 1))

2 i+j /
1—j+1'1 NCN}
<(i—j+1)exp{ J+1/1'+’«/NC~}
C 2 3.26
xexp( _1+1 ) ( )

Taking t=6 ./Cy/N A%/, where § >0 is small enough to get

N
P{ Y e(n)e(n+i~j)>/l"+j82‘/NCN}

SC(i+j)exp{—Ci_j+1/V“CN}

<Cexp{—CCy}A "7/ (3.27)
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Similarly,

r—A-"\
|| Mz

e(nye(n+i—j)< — A’”sz,/NCN}

<Cexp{—CCN},l‘i‘j. (3.28)

Note that (3.27), (3.28) hold for i < j. Thus, by (3.20), (3.23), (3.24), (3.27),
and (3.28),

P{'% f X(n)X(n—l)—y(l)‘ >e,/cN/N}

<2C Y A %exp(—CCy)+2Cexp(—CCy) Y. A7

i=0 Lj=0

< Cexp(—CCy), (3.29)

which is (3.17). The proof of (3.18) is similar. That completes the proof of
Theorem 2.1.

Proof of Theorem22. The line of proof is similar to that of
Theorem 2.1. Here Lemma 3.1 is used. For example, in order to prove

{ £ ror-sofoe )

SCN 2+ C\) "+ Cexp(—CCy), (3.30)
we use y(0)=0? Y2, a? and
1 N 5 o0 1 N ;
NZ X(n)}=3) a Z (n—j)
n=1 j=0 =
N
+ Y aaq Z e(n—i)e(n— j). (3.31)
i#j N
Take p, € (p, 1) and set
1 X . .
Be)={|5 £ etn=iy'=o"| <(o1/0)”
n=1

x &, +/Cn/Nfor j=0,1,2, },
1 X o
D(81)={’1—V Y €(n—i)e(n—j)‘<(l71/ﬂ)’”

x &, +/C,/Nforanyi#j, i, j=0,1,2, }
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As before, by taking &, <eM ~*(1 — p,)? we get, when B(g,) n D(¢,) occurs

i X(n)z—y(O)‘ <&, /C'N/N.

n=1

1
N
Thus, with A=p,/p (> 1), we have
N
p{)% 5 X(n)Z—y(0)| >e\/CN/N}
n=1
> A%, ./CN/N}
> it | /CN/N}.

S'Z P {‘%’gl e(n)? —a?

i—0

+

i P{'-;—/ Y. e(n)e(n—j+1i)

Lj=0.i#]

By Lemma 3.1,

=) p 1 N )2 2)
Lol 2 oo

n=1

= 1%, ,/CN/N}

<(1+2/0)' Y NEle(1)>—o?|" e[ A" (NCy) ™"

j=0

+ i exp{ —2(t+2) " *e '¢?A*NC,/(N Var e(1)?)}

j=0

SCY A UN-PHICTP 4 C Y A7 exp(—CCy)
j=0 Jj=0

S CN~7*1C " 4 Cexp(—CCy). (3.33)

For the last term of the right-hand side of (3.32), we can obtain the same
bound. The proof of the rest is similar to that Theorem 2.1. This completes

the proof of the theorem.

4. SOME REMARKS

From Theorem 2.1 and Theorem 2.2, it is easily seen that, under the
restriction C, = o(N), the larger the magnitude of C,, the better the detec-
tion is in the large sample cases. By the same way, if (1.1), (1.2), and (2.8)
hold then the detection is weakly consistent.

Now we point out that, if (1.1), (1.2) hold and

lim Cy/N=0 and lim C,/loglog N= 0, (4.1)
N—w

N—
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then p determined by (2.4) is a strongly consistent estimate of p,. In fact, if
P < po, then by (2.8), (3.7), and lim, _, , Cy/N=0,

lim [4(p)— $(po)}/N >log(c**/0) >0.

It follows that, with probability one for N large,

#(po)<4(p),  for p<po. (4.2)

Now we assume p, < p< K. Under the conditions (1.1) and (1.2), by the
law of the iterated logarithm,

log log N
i, J) =i J) =o< /i;g-—) as.

| . A log log N
angHe(n)X(n—z) —0< ,T—)

for i, j=0, 1, .., K. Thus, by (3.12),
A log log N
0>af,—a,2,0=0<—> a.s. 4.3)

By (3.7), (3.12), and lim, _, ,, Cy/loglog N = oo, with probability one for
large N,

¢(p)—d(po) = Nlog 63/62 + (p— po) Cy
=Nlog{l +(6%x—6,)/6;}+(p—po)Cn
=0(loglog N)+(p—pg)Cny >0, po<p<K (44)

From (4.2) and (4.4), it follows that with probability one for N large,
P = po. (4.5)

This shows strong consistency of p.
Note that for strong consistency of g, the last condition of (4.1) can be
weakened as

Cy=2Cloglog N with C> 1. (4.6)

But this needs more accurate calculations.



52 BAI, SUBRAMANYAM, AND ZHAO

REFERENCES

[1] AkAIKE, H. (1969). Fitting autoregressive models for prediction. Ann. Inst. Statist. Math.
21 243-247.

[2] Fuk, D. K. H., AND NAGAEV, S. V. (1971). Probability inequalities for sums of indepen-
dent random variables. Theory Probab. Appl. 16, No. 4, 643—660.

[3] HannaN, E. J. (1970). Multiple Time Series. Wiley, New York.

[4] Hannan, E. J., anD QuinN, B. G. (1979). The determination of the order of an
autoregression. J. Roy. Statist. Soc. Ser. B 41 190-195.

[5] Hannan, E. J. (1980). The estimation of the order of an ARMA process. Ann. Statist. 8
1071-1081.

[6] SHiBaTA, R. (1976). Selection of the order of an autoregressive model by Akaike’s
information criterion. Biometrika 63 117-126.



Admissible Linear Estimation in
a General Gauss—Markov Model with
an Incorrectly Specified Dispersion Matrix

JERZY K. BAKSALARY*

Academy of Agriculture in Poznan, Poznan, Poland
AND

THOMAS MATHEW'
University of Maryland Baltimore County

Necessary and sufficient conditions are established for the set of all admissible
linear estimators under M, to be contained in the corresponding set of estimators
under M, where M, and M are general Gauss—Markov models with identical model
matrices but different dispersion matrices. As preliminary results, certain new
characterizations of admissible linear estimators are derived, including explicit
expressions for the general representations of such estimators and extensions of the
admissibility criteria given by Rao (Ann. Statist. 4 (1976), 1023-1037) and Klonecki
and Zontek (J. Multivariate Anal. 24 (1988), 11-30). © 1988 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARIES

Throughout this article .4, ,, #%,, .#Z, and .# will denote the set of
all m x n matrices, the subset of .#,, ,, consisting of symmetric matrices, the
subset of ¢, consisting of non-negative definite matrices, and the subset of
# 2 consisting of positive definite matrices, respectively. Given Le .4, ,,
the symbols L', L=, L*, R(L), and r(L) will stand for the transpose, an
arbitrary generalized inverse, the Moore—Penrose inverse, the range, and
the rank, respectively, of L, while I, will stand for the identity matrix of
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order m. Further, P, =LL"* and Q, =1, — P, will denote the orthogonal
projectors onto R(L) and R*(L), respectively, where R*(L) stands for the
orthogonal complement to R(L) with respect to the standard inner
product. Finally, tr(L) and (L) will denote the trace and spectrum, respec-
tively, of an L € 4, ,, , while L > K will mean that L e .43, is a successor of
Ke #$, with respect to the Loewner partial ordering, that is (cf. Marshall
and Olkin [§, p.462]), L—-Ke .# 2.
Consider a general Gauss—Markov model,

M={Y, Xp, o?V}, (1.1)

in which Ye ., , has E(Y)= Xp as its expectation and D(Y)= ¢V as its
dispersion matrix, where 0#Xe.#, , and Ve.#7 are known, while
pe.#,, and >0 are unknown parameters. Rao [9] pointed out that an
important tool in analyzing the model (1.1) is a matrix of the form

T=V+XGX, (1.2)

with any Ge # such that R(T)= R(X:V). Now suppose that instead of
the model M, as defined in (1.1), we have the model My = {Y, XB, 0V}
with an incorrectly specified dispersion matrix ¥, # V. Further, let %, be a
class of all statistics with certain property under My, let ¥ be the class of
all statistics with the same property, but corresponding to the correct
model M, and let the problem consist in determining conditions under
which the class %, remains valid under M in the sense that %, < .%. The
validity problem so defined has thoroughly been discussed in the literature
in the context of best linear unbiased estimation; see, e.g., Rao [9], Rao
and Mitra [12, Chap. 8], Mitra and Moore [8], Kala [3], Mathew and
Bhimasankaram [6]. One of the results concerning the validity of best
linear unbiased estimators is restated here as the following lemma.

LEMMA 1. Let My={Y, XB,0?V,} and M= {Y, XB, a*V} be general
Gauss—Markov models, and let B, and B be the sets of all possible
representations of the best linear unbiased estimator of Xf under M, and M,
respectively. Then B,< B if and only if R(VZ)<S R(VyZ), where Z is any
matrix such that R(Z)= R*(X).

The purpose of the present paper is to investigate the validity problem
with reference to the sets % and o/, comprising all linear estimators that
are admissible for X among

F ={FY:Fe ,,) (1.3)

under M, and M, respectively, where admissibility is understood according
to the following.
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DEFINITION.  Let M= {Y, XB, 6°V'} be a general Gauss—Markov model,
let @ =.4,,x(0, ©), and let We .#>. Then an estimator AY is said to be
admissible for XB; among & = {FY: Fe .4, ,} under M if there does not
exist FY € & such that the inequality

Pw(FY; XB)<pulAY; XB)
holds for every pair (8, 6) € © and is strict for at least one such pair, where

pw(FY; XB)=E[(FY— XB) W(FY — XB)]
= t(FVF' W)+ B X (F—IYW(F—1,) XB. (1.4)

This definition is to be supplemented by pointing out that the choice of
the weight matrix W is immaterial for the problem, for, as shown by
Shinozaki [13] and Rao [10], if an estimator 4Y is admissible for X with
respect to the risk function (1.4), then it is admissible for X8 with respect
to any quadratic risk function of the form (1.4), with W replaced by any
member of .# . Consequently, no loss in generality arises by restricting
attention to the unweighted quadratic risk function, defined as in (1.4) with
W =1, and denoted by the unsubscripted p. Moreover, the admissibility of
AY for X among the set # of all homogeneous linear estimators of X3,
specified in (1.3), will henceforth be denoted by the symbol 4Y ~ XB.

A solution to the problem of the validity of admissible linear estimators
of XB in the case where the dispersion matrix of the model is incorrectly
specified is given in Section 3. It is preceded by certain results concerning
the characterization of admissible linear estimators of X under a general
Gauss—Markov model. These results include extensions of the admissibility
criteria given by Rao [10] and Klonecki and Zontek [4] and also explicit
expressions for the general representations of admisssible linear estimators
of XB.

2. CHARACTERIZATION OF ADMISSIBLE LINEAR ESTIMATORS

The problem of the admissibility of linear estimators was investigated
first by Cohen [2] in the context of a simple location model {V, ¢, ¢%1,}.
Ten years later, an exhaustive study of the problem under a
Gauss-Markov model {Y, XB,6*V|Ve #_} was given by Rao [10]. In
particular, the following characterization of admissible linear estimators of
XP under this model is immediately obtainable from his Theorem 6.6.

LEMMA 2. AY ~ XB under {Y, XB,a’V|Ve M} if and only if

R(A)SR(X), AV=VA', and AV>AVA. (2.1)
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Rao’s work stimulated further research in this area. Mathew, Rao, and
Sinha [7], Klonecki and Zontek [4], and Baksalary and Markiewicz [1]
extended Rao’s work by relaxing the rank conditions on the design and dis-
persion matrices. In particular, Klonecki and Zontek [4] extended the
result of Lemma 2 to the case where, instead of r(¥)=n, the additional
assumption on the model is

nHX:V)=n. (2.2)

LEMMA 3. AY ~ XB under {Y, XB, 6*V|R(X:V)= M, ,} if and only if

R(A)SR(X), R(A—1)=R[(A—1,)V], AV=VA, AV>AVA'
(2.3)

Commenting on another result, also derived under the condition (2.2),
Klonecki and Zontek [4] remarked that if (2.2) is not fulfilled, then a
general solution can be obtained from the solution valid under (2.2) via
appropriately modifying the latter by P, where T is defined in (1.2). The
same is adopted below in developing a characterization of admissible linear
estimators under a general Gauss—Markov model.

THEOREM 1. AY ~ XB under a general Gauss—Markov model M=
{Y, XB, a*V} if and only if

R[A(X:V)] € R(X), (24)
R[(A-1)X]<=R[(A-1,)V], (2.5)
AV=VA', (2.6)

and
AV = AVA'. 2.7)

Proof. Using the definition (1.4), with W=1,, and the equalities
P X=X and P, V=P (V+Q7)=V, (2.8)

in which T is any matrix of the form (1.2), it is fairly straightforward to
observe that 4Y ~ Xf under M if and only if AP;Y~ Xf under M, and
also that AP, Y~Xf under M if and only if AP,;Y~ X under
M={Y,XB,6*(V+Qr)}. Since RX:V+Q;)=.4#,,, Lemma2 is
applicable to the model M, and hence AY ~ Xf8 under M if and only if
R(AP;)<S R(X), (2.9)
R(APr—1)=R[(APr—1,)V+Q7)],  (210)

AP (V+Q)=(V+ Q) PrA, (2.11)
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and

AP (V+ Q)2 AP (V+ Q) P A (2.12)

The equivalence of (2.9) to (2.4) foliows from the definition of T, while the
equivalences of (2.11) to (2.6) and of (2.12) to (2.7) are obvious by (2.8). It
remains to prove, therefore, that (2.10) may be replaced by (2.5). From
(2.8) it is clear that an alternative form of (2.10) is

R[(A—1,) Pr—Q7;]=R[(4-1,)V—-07], (2.13)

while from (2.6) and (2.9) it is clear that
R[(A-IL)V]=R(V) and R[(A-1,)Pr]=R(T). (2.14)

Consequently, in view of (2.14) and (2.8), premultiplying (2.13) by P,
yields

R[(A—1,)P;1=R[(A—1,)V]. (2.15)
On the other hand, since
R'[(A—1,)Pr—Q7]1=R'[(A—1,) Pz] N R(T)
and, similarly,
RUA-1)V~Q71=R'[(A-1,)V]n R(T),

it is clear that (2.15) entails (2.13). This establishes the equivalence of
(2.10) to (2.15) and actually concludes the proof, since the equivalence of
(2.15) to (2.5) is obvious in view of the definition of T. ||

It can be easily shown that if R(X:V)= .4, ,, then the conditions (2.4)
through (2.7) are replaceable by those given in (2.3), while in another par-
ticular case of the model M, specified by the inclusion R(X)< R(V),
Theorem 1 simplifies to the following extension of Lemma 2.

COROLLARY 1. AY~ XB under {Y, XB, s’V|R(X)< R(V)} if and only
if

R(AV)< R(X), AV=VA and AV =2 AVA'.

An alternative characterization of admissible linear estimators (in the
set-up of Theorem 1) has been obtained by Baksalary and Markiewicz
{1, Corollary 3].
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THEOREM 2. AY~XB under M={Y,XB,0*V} if and only if
(i) R(VA')= R(x), (i) AV =VA' (iii) AV = AVA’', and (iv) R[(A—1,)X]
= R[(A—1,) H], where H is any matrix such that R(H)= R(x) R(V).

It is clear that the condition (iv) of Theorem 2 may be replaced by
ri(4—1)X]=r[(A—1,)H]. For the particular choice of H, viz. H=
X(X'T*X) " X'T*V with T=V+ XX', the result of Theorem 2 was also
proved independently by Zhu [14] using the results in Rao [10].

Consider now again the model {Y, XB, ¢’V |Ve #>}, and let Le 4, ,
be such that L'VL =1,. Then it is easily verified, using the conditions (2.1),
that AY ~ X under this model if and only if

A=L"'P, SP, . L (2.16)

with an arbitrary Se.#; satisfying the condition (P, ,S)={0,1]. A
similar representation of admissible linear estimators under a Gauss—
Markov model with a singular dispersion matrix is given in the following.

THEOREM 3. Let M= {Y, XB, an} be a Gauss—Markov model in which
r(Vy=v<n, and let L=(L,:L,)€ #,, be nonsingular and such that

L'VL =diag(1,, 0). (2.17)

Further, let
L'X=(X|:X3) and L7'Z=(Z,:2)), (2.18)
where Z is any matrix such that R(Z)= R*(X). Then AY ~ XB under M if

and only if
A=L"‘<A0“ jz) L, (2.19)

with

A1 =0250z, (2.20)
Ap =Pz X, X +(02,502,—-02) K, X; + K,Qx,, (2.21)
Ay =Py, +K;Qy,, (2.22)
where K, e M, ,, K, e M,,_,, Kse M,_,,_,, and S€ M are all arbitrary

except only for the condition 1(Q, S)< [0, 1].

Proof. 1t is clear that every A€ .4, , may be represented as in (2.19),
but with the zero matrix in the southwest corner replaced by some 4,,.
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However, in view of (2.17), the conditions (2.6) and (2.7) are satisfied if
and only if 4,, =0 holds along with

A, =4, and  t(4,)<[0,1]. (2.23)

Further, on account of (2.17) and (2.18), it follows that the condition
(2.4), which is alternatively expressible as the pair of equations Z'AV =0
and Z'AX =0, is fulfilled if and only if

ZiA,,=0 (2.24)
and
(Z14,+Z54,,) X, =0, (2.25)
while the condition (2.5) is fulfilled if and only if
ApX,=X, (2.26)
and

R(A, X,) S R(A,,—1,). (2.27)

Hence, observing that the equalities (2.26) and

Z X, +2Z5X,=0 (2.28)

enable (2.25) to be re-expressed as

Zi(42 X, — X,)=0, (2.29)

it follows that AY ~ X under M if and only if 4 is of the form (2.19) with
A, satisfying (2.23) and (2.24), with A,, satisfying (2.26), and with 4,
satisfying (2.27), with a given 4,,, and (2.29). Consequently, the represen-
tation (2.20) is obtainable similarly as that in (2.16); further, (2.22) is the
general solution to Eq.(2.26); and finally, (2.21) can be established as
follows.

First notice that (2.27) is alternatively expressible in the form

ApX,=(4,,—1,) Ko, (2.30)
where K, € 4, , is arbitrary but such that, given 4,,, Eq. (2.30) is solvable
with respect to A4 ,,, for which it is necessary and sufficient that

(Au—Iu)Ko=(Au"1u)K0Px’2- (2.31)
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On account of (2.24) and (2.30) modified by (2.31), Eq. (2.29) transforms
to

Z\KoPy,=2Z X,. (2.32)
From (2.28) it is clear that
Z\X\Py=2X,. (2.33)
Hence
Pz Z\X\Py,=21X,

which implies, according to Theorem 2.3.2 in Rao and Mitra [12], that
(2.32) is solvable with respect to K,, having as the general solution

KO=P21X1PX5+K1_PZ|K1PXE’ (2.34)

with an arbitrary K, € .#, ,. The desired formula (2.21) now follows by
substituting (2.34) into (2.30) modified by (2.31), and then solving the
equation so obtained with respect to 4, and replacing 4,, by its represen-
tation given in (2.20). J

In the particular cases of the model M, in which admissibility criteria
were given in Lemma2 and Corollary 1, the general representation of
admissible linear estimators of Xf simplifies accordingly.

COROLLARY 2. Let {Y, XB,a’V} be a Gauss~Markov model in which
r(Vy=v<n, but R(X:V)=M,,, and let a non-singular Le #,, satisfy
(2.17) and (2.18). Then AY ~ X under this model if and only if A is of the
form (2.19), with

Au:Qz,SQz,, A12=PZ|X1X;—+(QZISQZ|_QZ|)K1X;’ Ay=1,_,,

where K, and S are specified in Theorem 3.

Proof. The result follows from Theorem 3 by noting that r(X:V)=n if
and only if r(X,)=n—v, in which case Py,=1, ,. |

COROLLARY 3. Let {Y, XB, a*V} be a Gauss—Markov model in which
r(V)=v<n, but R(IX)< R(V), and let a nonsingular L € #, , satisfy (2.17)
and (2.18). Then AY ~ X under this model if and only if A is of the form
(2.19), with

A11=QZ,SQzl, A12=K2, A22=K3,

where K,, K5, and S are specified in Theorem 3.
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Proof. The result follows from Theorem 3 by noting that R(X)< R(V)
if and only if X,=0. |

Now, let ./ and # denote the set of all admissible linear estimators and
the set of all possible representations of the best linear unbiased estimator,
respectively, of X under the model (1.1). Then o is characterized by the
conditions (2.4) through (2.7), or equivalently, by the formulae (2.19)
through (2.22), while (cf. Rao [11])

#={BY:BX=X, BVZ=0} (2.35)
={BY:B=X(XT*X)*"X'T* +KQ+}, (2.36)
where Z is any matrix such that R(Z)= R*(X), T is defined in (1.2), and

Ke #,, is arbitrary. The result below specifies those Gauss—Markov
models for which the equality

UNoA =B, (2.37)

where % stands for the set of all linear unbiased estimators of X8 under the
model (1.1), takes the form o/ = 4.

COROLLARY 4. For a general Gauss-Markov model M = { Y, XB, 6*V'}
the following statements are equivalent:
(i) =%
(i) R(X)nR(V)={0}.
Proof. We note that if o =2, then every 4 € .o/ must satisfy 4AX=X
and AVZ =0. The latter condition is always satisfied, since 4V = VA’ and
R(AV)< R(X) by Theorem 1. Thus o =% if and only if A€o/ satisfies

AX = X. Using (2.19)}(2.21), we see that 4 € o satisfies AX = X if and only
if

02,502, X+ P2 X\ X7 X+ (02,502, — 02) Ki X7 X, = X (238)

for any Se #; and K, € #, ,. Eq. (2.38) holding for all such § and X, is
equivalent to

Qzl=0 and P21X1X2+X2=X1’
or, equivalently,
P,=1 and R(X}|) € R(X?3). (2.39)

Note that in view of (2.17) and (2.18), R(X})< R(X3) is equivalent to
R(X)n R(V)={0}. Also, R(X})< R(X3) is equivalent to R(Z,)= 4, , or,
equivalently, P, =1I,. This completes the proof of Corollary 4. §
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3. VALIDITY OF ADMISSIBLE LINEAR ESTIMATORS

A necessary and sufficient condition for a nonnegative definite matrix to
commute with every nonnegative definite matrix having its range contained
in a given subspace is derived below as an auxiliary result for the proof of
Theorem 4, providing a solution to the problem of the validity of
admissible linear estimators of the expectation vector in the case where the
dispersion matrix of a Gauss—-Markov model is incorrectly specified.

LemMA 4. Given Ae #7 and Be M, , such that AB#0, let
€={CeM;:R(C)S R(B)}. (3.1)
Then AC=CA for every Ce¥ if and only if AB=dB for some d> 0.

Proof. Only the necessity is to be proved. Assume that r(B)=5>0,
and let Ue #4,, , be such that R(U)=R(B) and U'U=1,. Then the set ¢
defined in (3.1) may be represented as

€={C=UNU:Ne#}}. (3.2)
In view of (3.2), the requirement that AC = CA4 for every C € ¥ means that
AUNU =UNU'A forevery Ne.#Z, (3.3)

and hence
UAUN=NUAU  forevery Ne#. (34)

From the assumptions that A€ .#2 and AB #0, it follows that
U'AU #0, and thus it is clear that (3.4) holds if and only if U'AU = dI, or,
equivalently,

UU'AU =dU (3.5)

for some d > 0. But the choice of N=1, in (3.3) yields UU'4A = AUU’, and
thus it follows from (3.5) that AU =dU, which gives AB=dB. |

THEOREM 4. Let My={Y, XB, 6*V,} and M= {Y, XP, 6°V'} be general
Gauss~-Markov models, and let <, and s/ be the sets of all admissible linear
estimators of XB under M, and M, respectively. Then in the case where

R(X)n R(V,)= {0}, (3.6)
the inclusion o4, < o holds if and only if
R(VZ)< R(V,), (3.7)
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where Z is any matrix such that R(Z)= R*(X), while in the case where
R(X)N R(V,)# {0}, (3.8)
the inclusion o4y < o/ holds if and only if
R(V)<S R(V,) 39)

and
VVeoH=dH  forsome d>0, (3.10)

where H is any matrix such that R(H)= R(X)n R(V,).

Proof. Let % denote the set of all lincar unbiased estimators of Xj
under M, and M, and let %4, and % denote the sets of all possible represen-
tations of the best linear unbiased estimators of Xf under M, and M,
respectively. In view of (2.37), it is clear that %,< & is equivalent to
B, <= %. But Corollary 4 asserts that if (3.6) holds, then %, = <4, and con-
sequently, o4 < .« if and only if #,< #. Hence the first part of Theorem 4
follows immediately from Lemma 1l by observing that, under (3.6),
R(V,Z)= R(V,). To prove the second part first notice that, on account of
Theorem 6.2.3 in Rao and Mitra [12], there exists a nonsingular L€ .4, ,,
such that if r(V,)=n, then

L'Vy,L=1, and L'VL=D, (3.11)
while if r(V,) =v <n, then
L'V,L=diag({,, 0) and L'VL=diag(D,, D,), (3.12)

where D = diag(D,, D,) is a member of .# 2. It is clear that the conditions
(2.4) through (2.7) may equivalently be expressed by replacing V, X, and A
by L'VL, L'X, and L'AL' ~'. Hence, for proving the theorem, we assume
without loss of generality that

Vo=diag(/,,0) and V=diag(D,,D,). (3.13)

We shall only consider the case v <n; the case v=n is treated similarly.
First, we establish the necessity of (3.9) and (3.10) when V, in (3.13)
satisfies (3.8). From Theorem 3 it follows that if 4, = &, then (2.6) leads to
the conditions

02,802D,=D,0;S5,Q for every S,e¥ (3.14)

and
[P X\ X$ +(025:0,-02)Ki X3 +K,Q0x,]D,=0 (3.15)
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for every K, e A, ,, K,e 4, ,_,, and S, € ¥, where X, X,, and Z, are as
defined in (2.18) while

SK={S e QS )=[0,1]}

Note that 0, #0, since if 0 =0, then P, =1 and, in view of the last part
of the proof of Corollary 4, this contradicts (3.8). Since K,, K,, and S,
vary independently and since Q. #0, (3.15) gives XfD,=0 and
QOx,D,=0. These two together give D, =0 which is (3.9) in view of (3.13).
Applying Lemma 4 to (3.14), we get

D,Q, =dQ,  forsome d>0, (3.16)

provided D, Q, #0. But this is always the case, since, when o, < o, (2.5)
must hold for V' in (2.13) and if D,Q, =0, one can exhibit 4 € 24, not
satisfying (2.5). To conclude the proof of necessity, it remains to show the
equivalence of (3.16) and (3.10). For V, in (3.13), we note that
R(Vo) N R(X)=R(X,Qy,). Also, since Z'X,+Z5X,=0, Z1X,0y,=0,
and, consequently, R(Qz)=R(X,Qy)=R(V,)n R(X)=R(H) which
concludes the proof of the necessity.

To prove the sufficiency of the pair (3.9), (3.10), let AY ~ XB under M,
Then, according to Theorem 1,

R[A(X : Vo)1 S R(X), (3.17)
R[(A-T1,)X]<R[(4-1,)V,], (3.18)
AVy= VoA, (3.19)
AV, AV A'. (3.20)

The conditions (3.9) and (3.17) entail
R[AX: V)] = R[A(X : V)] = R(X),
which is (2.4). Further, (3.17) and (3.19) imply that
R(AV,)S R(X)n R(Vy)=R(H).
Consequently, in view of (3.9), (3.19), and (3.10), it follows that
VA =VVy VoA =VVy AV =dAV, for some d>0,

and hence it is clear that (3.6) and (3.7) are immediate consequences of
(3.19) and (3.20), respectively. Finally, (3.18) implies that

RIVVG(A-L)XISR[VV;(A4-1,)V,]. (3.21)
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But, on account of (3.19), (3.9), and (2.6),
R(VV(A-1)Vo]=R[(A-1,) V], (3.22)

while on account of (3.17), (3.18), and (3.19),

R{(4—1,) X]1<= R(X) " R(Vo) = R(H);

hence, according to (3.10),

R{(VVg(A-1,)X]=R[(A-1,)X] (3.23)

Applying (3.22) and (3.23) to (3.21) yields (3.25), thus completing the
proof. |

Two corollaries will be given to conclude the paper. The first of them
compares the criterion for the validity of the set of all admissible linear
estimators of Xf, given in Theorem 4, with the criterion for the validity of
the set of all possible representations of the best linear unbiased estimator
of Xf, given in Lemma 1, while the second corollary establishes a necessary
and sufficient condition for the equivalence of the models M, and M with
respect to admissible linear estimators of X.

COROLLARY 5. Let My={Y, XB,0*V,} and M={Y, XB,0’V} be
general Gauss—Markov models, and let sy, of and %B,, B be the sets of all
admissible linear estimators of X and the sets of all possible representations
of the best linear unbiased estimator of XB under My and M, respectively.
Then o < o implies B, < B.

Proof. The result is a direct consequence of the equalities B, =% N o
and # =% n o/, where 4 is the set of all linear unbiased estimators of X8
under both M; and M. |}

COROLLARY 6. Let My={Y, XB,0*V,} and M={Y, XB,c’V} be
general Gauss—Markov models, and let <y and of be the sets of all admissible
linear estimators of Xp, respectively. Then sfy= < if and only if

R(Vo)=R(V) (3.24)
and

ViH=dV*H  forsome d>0, (3.25)

where H is any matrix such that R(H)= R(X)n R(V).
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Proof. First observe that if o, = .o/, then either
R(X)nR(V,y)= {0} and R(X)nR(V)={0} (3.26)

or
RIX)NR(Vy)#{0} and  R(X)nR(V)#{0}.  (327)

In fact, if R(X)NR(V)={0} and R(X)n R(V,)# {0}, then in view of
Corollary 4, the former condition means that o/ =%, and consequently,
< of entails 4<% Hence, on account of (2.37), it follows that
oy =%B,, which in view of Corollary 4, constitutes a contradiction with
R(X)nR(V,)# {0}.

Now it is clear that in the case characterized by (3.26) the equality
oAy =4 reduces to H, =%, and also that (3.24) can be reformulated as
R(V,Z)=R(VZ), while (3.25) is trivially fulfilled. Consequently, the
required result is an immediate consequence of Lemma 1. In the case
characterized by (3.27), the necessity and sufficiency of the conditions
(3.24) and (3.25) follow by Theorem4, in view of the equalities
VVeH=VV{Hand Vo,V H=V,V*H valid for any generalized inverses
Vo and V™. |}
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The validity of formal Edgeworth expansions for statistics which are functions
of sample averages was established in R. N. Bhattacharya and J. K. Ghosh (1978,
Ann. Statist. 6 434-451) under a moment condition which is sometimes too severe.
In this article this moment condition is relaxed. Two examples of P. Hall (1983,
Ann. Probab. 11 1028-1036; 1987, Ann. Probab. 15 920-931) are discussed in this
context. © 1988 Academic Press, Inc.

INTRODUCTION

The validity of formal Edgeworth expansions for classical statistics was
established in Bhattacharya and Ghosh [2] under moment conditions
which cannot be relaxed in general, but turn out to be too severe in some
cases. Two such examples are considered in Hall [6, 7]. In these examples
and many others the highest order of moments involved in the actual
expansion is much smaller than the order of moments assumed finite in our
earlier work [2], and special methods were used by Hall [6, 7] to relax
this moment condition. Attempts to find minimal moment restrictions for
the general case run into unexpected analytical difficulties.

Suppose that the statistic may be expressed as (or approximated by)
H(Z), where Z=(1/n)¥"_, Z;is a mean of i.i.d. vectors and H is a smooth
function in a neighborhood of = EZ,. If all the components of grad H(u)
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are nonzero then one cannot significantly weaken the earlier moment
assumptions. In this article we provide a relaxation of the moment con-
dition in case grad H(p) has some zero components, as is true in both
examples of Hall. Apart from the method we present in detail here, another
method using conditioning with respect to some coordinates of Z; (namely
coordinates Z‘" for which (0H(z)/0z'”)(u)=0) is sketched as Remark 5 in
Section 7. This last method generalizes some ideas of Hall [7] dealing with
Student’s statistic.

1. THE MAIN RESULT

Many classical statistics are (or, may be approximated by statistics) of
the form H(Z), where Z=(1/n) Y7 Z, is a k-dimensional mean vector of
sample characteristics and H is smooth in a neighborhood of y=EZ.
If grad H(u)#0, and E|Z]?<oo, then the normalized statistic W,=
\/; (H(Z)— H(u)) is asymptotically normal. This follows from the Taylor
expansion

W.=/n(Z—p)-grad H(z)+ 0,(1)). (1.1)

If E|Z;|* < oo for some integer s >3 and H is s-times continuously differen-
tiable in a neighborhood of y, then one may approximate W, better by

k — . 1 & —. = .

W, = n'? { Z l,-(Z(') "H(')) +_2_' Z I.‘.,.'z(Z(”) _#(u))(z(u)_#(m)
i=1 ‘=1

1 k

+ .. +—(s_1)! imz

is—1=1

1 . (Z(il)_#(il)).,_(Z(i:—l)_#(i:—l))}
Iseenls—1 .
(1.2)

Here superscripts denote coordinates and [,=(DH)(u), 1, ,=
(D, D,H)(p), etc., with D, denoting differentiation with respect to the ith
coordinate. One may compute the jth cumulant K, of W, algebraically
(1 <j<s), and keep only terms up to order O(n "~ 27?):

K,,=K,,+o(n =22 (1<j<s), (1.3)

K;,, being a polynomial in n~"? with coefficients determined by the
moments of Z;, and the derivatives /,k; ;,..,/; ., ,- One has
El,n = O(n - 1/2)’ I?Z.n = 62 + O(n B 1/2)’ Kj,'l = O(n —U- 2)/2) (.]> 3)9 Where

ot=grad H(u) -V grad H(y), (14)
V=covZ, ’
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The characteristic function of W, is now approximated by
24 i
‘o (i) }
€x — K, ,
SR

2£2 2 s—2 (FEVS

—exp{ =T bewp iRy 5 (R4 T LR,
2 2 ' S L
a’§?

=exp{ 5 }[1 + Z n=i2g (lé)]

+0(n"“"2’/2)=ws.n(§)+0(n'“ 272), (1.5)

say. For the second equality in (1.5) one expands in powers of n~ %, Here
n;(i¢) is a polynomial (in i) whose coefficients depend on the moments of
Z and the derivatives of H at u. Now y, , is the Fourier transform of the
denszty V., of the formal Edgeworth expansion of the distribution of W,

obtained by inversion:
[ + Z n” ,(——)]mz( )
i=1

1
Poa(x)= \/z—m_—z

Suppose that the observations Y, (j=1, 2, ...) are i.i.d. m-dimensional with
common distribution G and that

Z/= (fl( Yj), f2( Yj)’ '"’fk( Yj)) = (2}1)9 Z](‘Z)’ ety Zj('k))’ (17)

where f, (1 <r<k) are real-valued Borel measurable functions on R™. Let
Q, denote the (common) distribution of Z; — u. The following assumptions
were made in Bhattacharya and Ghosh [2], Bhattacharya [1], to prove
the wvalidity of the formal expansion (1.6) (ie, to establish
Prob(W, e B) =gy, ,(x) dx + o(n~“~2"?) uniformly for all Borel sets B):

l/’s ’I( )

(1.6)

e~ x2/202

(B,) H is (s— 1)-times continuously differentiable in a neighborhood
of 1.

(B,) grad H(u)#0.

(B;) E|f(Y)F<oo for 1<r<k.

(By) There exists a nonempty open subset U of R™ with the properties:
(i) G has a nonzero absolutely continuous component (with respect to
Lebesgue measure on R™) with a positive density on U; (ii) f, (1 <r<k) are
continuously differentiable on U, (iii) 1, f}, ..., f; are linearly independent as
elements of the vector space of real valued continuous functions on U.
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Let us now assume, instead of (B,), (B,), (B;),
(BY) H is s-times continuously differentiable in a neighborhood of p.
(By) (i) [;#0 for 1 <i<k,; (i) ;=0 for k, <i<k, where k, is an
integer satisfying 1 <k, <k.
(B3) () EIf(Y)I'<oo for 1<r<k,; () E|f(Y)I* ' <o for
k,<r<k, for some positive integer s = 3.
Our main result relaxing earlier moment conditions is the following.

THEOREM. Under the assumptions (B)), (B), (B}), (B,) one has

sup =o(n= -2, (1.8)

ueR!

Prob(W,,Su)—r W (x) dx

Proof. Recall the notation W, = \/;(H(Z )— H(u)). Let

Wy= Y 1,/n(Z%—pu®)
1<igky

- 1/2

2!

n

Y Lo/ (20— p ) n (2 — )

I<iia<k
p-G-D2

o — y lig‘iz,.”.is\/;(Z”l)_#“”)

s! 1€ itigeis <k
oo SN (20 — ), (1.9)

We first prove (1.8) with W, replaced by W,. By Lemma22 in
Bhattacharya and Ghosh [2], @** (ie., the distribution of Y% (Z;— u))
has a nonzero absolutely continuous component. Hence the distribution Q,,
of \/r_1 (Z — p) has a nonzero absolutely continuous component for n> k.
Write

+

h, € o
h(Z, 8) = Z 1,»2(') +5 Z ll'lvizz(”)z(’“
I<isi T1<ini<k
s—1

+ -+

(1.10)
h(z0)= Y 120,

1<i<k

Now it is shown in Bhattacharya and Ranga Rao [3] (see the proof of
Theorem 19.5 and the remark on p. 207) that there exists a part g/, of the
density (component) of @, which has the properties

sup f q.(z)dz— Q. (B)| =o(n= V%) (B a Borel subset of R*)  (1.11)
B B
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and

19:(2) =& 1 a2 < e,n= O (A 4+ 2°0F), [zeR*], (1.12)

where &, _ | ,(z) is the density of the (s —2)-term Cramér—Edgeworth expan-
sion of Q,, ¢ is a positive constant, and 4, - 0 as n —» co. Note that (1.11)
holds under the assumptions (B3), (B,); i€, E|Z;°~ ! < oo suffices. Indeed
the right side in (1.11) is o(n~") for every positive integer m (see relations
(19.73), (19.76), (19.77) in Bhattacharya and Ranga Rao [3]).

By (1.11) the following holds uniformly for all u:

Prob(W, < u) = Prob ( Y L (Z0—p) < u>

I1<igk

+Prob({W;<u}\{ y li\/r_x(Z‘i’—u‘i’)Su})

1<i<k

— Prob <{ AN (Z‘“—p“’)su}\{w;su})

I<igk

=Prob< Y 1,.\/5(2“"—;1"")@)

1<i<k

+| gz) dz
{h(z,e) Sul\{A(z,0) < u}

- +o(n=t-22), (1.13)
{h(z.0)<u}\{h(z.e) S u}

But in view of (B%)(i{) (and (B,)) one has, unformly for all u,

Prob( y l,-\/;(Z“’—u"’)Su)

I<isk

1, (2)dz+o(n= 6~ (1.14)

_I ki,
{zeRkl:lel,-z"‘Su}

where &, is the density of the (s— 1)-term Cramér-Edgeworth expansion
of the distribution of\/; (ZM — W, ., Z%0 — ey,
On the other hand,

gi(z) dz— | 4:(z) dz

J‘{h(Z,S)S ui\{Mz,0) < u} {(h(z,0) S up\{h(z.6) S u}

Eeial2) dz— | & rl2) dz 41,

'[{h(Z.E)Su}\(h(Z.O)<M} {h(z,0) S u}\{h(z,e) < u}
(1.15)
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where, by (1.12),

n,,s(f (1+|z|”")“dz> 8,n= G2 (1.16)
{h(z,e) s u}A{h(z,0)<u}

Here 4 denotes symmetric difference: B AC =(B\ C)u (C\ B). Note that
for z in {|z| <1/~ D} there are positive constants c,, d, such that

h(z,e)—c,e|z|]|*—d,e<h(z,0)< h(z,e) +c,e |z +d,e.  (1.17)

Write, for given u satisfying [u| <2 |/|/e"* " V(11 =3, ci <, ),
A.=({h(z,e)<u} A{h(z,0)<u} n {|z] < /e~ D} (1.18)
Then

A, c A,V A,,
Ay ={u—cielzl’—de<h(z,0)<u}n {]z] <1/eVC~ 1}, (1.19)
Ao={u<h(z,0)<u+c, |z|>+de} n {|z] < 1/eV¢" D}

Now make an orthogonal transformation z -y with y"'=h(z, 0)/)]| =
leiskl I;Z‘i’/(Z 1.2)1/2- Then

f (14 1z +%) "1 dz
A

13}

] L+[pI"*4) " tdy.  (1.20)
{(u— 1|y — die)/ill < VD </} o {1 | < etts— D}

Write |y|2= (") + 3% ()2 =(y")*+r* and solve the quadratic
equation (in y): y"'=(u—c,e(y")?* —c,er* —d,e)//Ml|, to derive from
(1.20) the inequality

[ a+pzr e
A

£l

<

=

L+ 1yI***) ' dy<cse, (121)

L(u/lln—czeSy“'su/lll)n {lyl < 1/eM= 1y
which holds for some positive constants c,, ¢, and for all sufficiently small

&> 0. Similarly, one has

j (1+1z)°*%) " dz < cae (1.22)
A

£2
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for some positive constant ¢, and all sufficiently small ¢ > 0. Also,

A+ de=o, [ U1+ xtt4)

1/51/(S— 1)

J.{|z| > 1/et/ts= 1}

{
kaj —7dx < csg, [0<e<1],
1/els =1 X

(1.23)

where w,, cs are suitable positive constants.
Combining (1.16)-(1.23) one gets, with e =n~'72

n,=o0(n~ "2, (1.24)

uniformly for all u satisfying |u| <2 |/|/e"“~ Y. For u=2|l|/e'*~ Y, 4, is
empty for all sufficiently small ¢ (see (1.20)). For u< —2 |/|/e"/* 1,

[ a+izr e

<

=

] (L+1y1) ' dy
(D g —2/els—1yy

<c6j r"‘z{J ([y“)|+r)‘s"dy“’}dr
0 {y(lbg _2/51/(:»”

—s—k+1
s+k—l.[ < 1/(s~1)+") dr
c6 ® —s—1
< <
Ts+k J.Z/EI/(:»I) v @ < ¢q8, (1.25)

for appropriate constants ¢4, ¢,. Similarly, one shows that
j (1+)z21°*%) 1 dz=0(c) as |0, (1.26)
Az

in case u< —2 |/|/e"*~ 1. In exactly the same manner one shows that for
u>=2|l)/e"¢="Y), the integrals of (1+ |z|)~*~* over 4,, and A, are O(e).
Hence (1.24) holds uniformly for a/l u. Now use (1.24), (1.13)-(1.15) to get

supu eR!

Prob( W;,Sll)—[j lés,n(z) dz

{ze Rklzz’,hz("’< u}

+| & ralz) dz
{h(z,e) Suf\{h(z,0) < u}

és,‘,,(z)dz] =o(n= =272, (1.27)

f ul\{A(z,e) <u}



MOMENT CONDITIONS FOR EXPANSIONS 75

The reduction of the above integrals is now carried out exactly as in
Bhattacharya and Ghosh [2] to yield

sup | Prob(W, < u)— jﬁ Vonlx) dx| =o(n=6-22)  (1.28)

ue R!

Finally note that there exists a constant ¢4 such that
|W, = Wil <Can™% (/n(Z—p)"*". (1.29)

Now, by Corollary 17.12 in Bhattacharya and Ranga Rao [3] one has, for
every £¢>0,
Prob(\/; |Z — | >en'/CrD)=g(n= =32 = (s -Dis+ 1))
=o(n=¢-212) (s =3). (1.30)

Since y, , is bounded (uniformly in n), (1.28)-(1.30) imply (1.8). |

Remark 1. The proof esseatially shows that one may replace the
assumption (B3) by (B3): E(ZV\*~"<oo for all i which appear in
the expression (1.9) for the first time in the sum n "Y1, ..,
i,H\/r_l(Z“”—u“”)---\/;(Z“'“)—u“’“)) O<r<s—2).

Remark 2. The proof goes over to the case of vector-valued statistics
\/r—t (H(Z)— H(u)) (or, more generally, vector-valued statistics which may
be adequately approximated, coordinate wise, in the form (1.9)).

Remark 3. In Bhattacharya and Ghosh [2], (also see Bhattacharya
[1]) it is proved under the assumptions (B,)-(B,) that

sup Prob(W"eB)—j W, (x) dx| = o(n~ b~ 22), (1.31)
B B

where the supremum is over the class of all Borel subsets B of R'. Our
proof above, under the moment relaxation (B3) (or (B3)), only provides an
approximation of the distribution function. Although this proof may be
extended to carry over to the case of probabilities of sets with smooth boun-
daries (e.g., Borel measurable convex sets), it does not yield (1.31). We do
not know if (1.31) is valid under the hupothesis of the present theorem. (Of
course, (1.31) holds in this case if the right side is replaced by o(n~“~32).)

Remark 4. An entirely analogous result holds for statistics H(Z) for
which /;=0 for all i, while /; ,#0 for some i, i,. Thus for statistics
n(H(Z)— H(u)) arising in testing statistical hypotheses (See Chandra and
Ghosh [4]) moment conditions may be relaxed for those coordinates
which do not appear in the principal term of the Taylor expansion
around u.
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Remark 5 (Conditioning argument). We write Z;=(Z{", .., Z{*),
Z)=(Zk+Y, .., Z"0), EZ; = i/, EZ] = y". Under (B,), (X} Z;, 3} Z}) has
a joint density and, therefore, 3°% Z; has a conditional density given 3% Z;'.
Dividing up Y7 Z;, 37 Z; into consecutive blocks of k summands each,
one may first obtain an asymptotic expansion of the conditional dis-
tribution of the first sum (centered around its conditional expectation)
given block sums of Z;'. The successive block sums of Z; are still indepen-
dent under this conditioning, but not identically distributed. However, by
restricting Z” close to u” (the complementary event having small
probability), one may often justify an asmptotic expansion of the above
conditional distribution (see, e.g., Bhattacharya and Ranga Rao [3,
Theorem (9.3)]). Under this conditioning regard H(Z) as a function of Z’
with (block sums of) Z/ as parameters, center H(Z) around its conditional
expectation, rewrite \/n (H(Z)— H(u)) in terms of this new centering, and
proceed as in Bhattacharya and Ghosh [2] to obtain an asymptotic expan-
sion of its conditional distribution. Finally expand the expectation of this
expansion, this time dealing with (sample) means of i.i.d. summands. Such
a procedure sometimes also succeeds in relaxing moment conditions. See
Hall [7] for a similar procedure applied to the Student’s statistic. Clearly,
for the expansion of the conditional distribution of the statistic up to an
error o(n ®~??) one only needs E|Z|°<o, together with an
appropriate moment condition on Z; to ensure that Z” remains sufficiently
close to u” with probability 1 —o(n~*~2"2). However, higher moments
may be needed in carrying out the expansion of the expectation of the con-
ditional expansion mentioned above. See Example 2 in Section 2 for an
additional comment on this.

2. EXAMPLES

ExampLE 1 (Hall [6]). Let Y; (j=1,2,..) be a sequence of iid.
radom variables having zero mean, unit standard deviation and a nonzero
third moment u;, say u;>0. One may expect that the 100(1 —a)% point
of the distribution of \/; Y=(Y,+ --- +Y,)/n"* is better approximated
(than the 100(1 — a)% point z = z(a) of the standard normal) by that of the
normalized chisquare y3 having N degrees of freedom, where N is chosen
so that the third moment (namely, (8/N)"?) of Ty=(2N)~'?(x3—N)
equals that of \/; Y (namely, u,/n'?); ie.,

N=8n/u2. (2.1)
One may use the gamma tables to find z, = z{a) such that

Prob(Ty<zy)=1—a. (2.2)
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Hall {6] shows that z, is indeed a better approximation of the
100(1 —a)% point for \/t_l Y than usual estimates, under Cramér’s
condition as well as in the lattice case. In case u, is unknown, replace it by
the sample third moment fi, and write

N =8n/ji2. (2.3)

Hall [6, Theorem5] provides an asymptotic expansion of
Prob(\/; Y <zy) up to order o(n '), uniformly for a € [¢, 1 —¢] for every
¢>0, under the assumptions (i) EY$<oo and (ii)(Y,, Y3) satisfies
Cramér’s condition. He correctly points out that this expansion may be
derived from Bhattacharya and Ghosh [2] only if (i) is strengthened to
(i) EY1* < 00. Let us show that our present results may be used to derive
Hall’s expansion under the conditions (i) EY$ < oo and (ii)” (B,) holds with

m=1,k=2;fi(y)=y, [(y)=)>.
By Lemma 1 of Hall [6], obtained by equating the asymptotic expan-
sion of Prob(Ty <y) with 1 —a, one has

Zy=2+N"2P(z)+ N 'Py(z) +o(N"), (24)

uniformly for ae[¢, 1 —¢] (for every fixed positive ¢). Here P,, f, are
polynomials. Thus it is enough to expand Prob(\/r_l Y <z'), where

2 =z4+ NP, (2)+ N~ 'P,(z)

fi 43
=z+ \/%';P,(z) +8—; P,(z)

P1(2)+H§Pz(2)

U3
J8n 8n
2
R VTRICS SE O]

Pz(z)

+ 172 /n (3 — ) (2.5)

Expressing \/;1- Y <z’ in the form (1.9), one may now apply Remark 1 with
s=4. Note that \/; (Z® — u') = /n (i, — p,) appears the first time with
coefficient n~!, so that (B}) becomes

EYi<ow, E|Y}?=EYé<ow. (2.6)

We have taken fd,=n"'37_, Y’ above. One may modify the

calculations a little in case fi;=n"" "_, (Y Y)?, to prove that (2.6)
suffices along with (B,) (with k=3, f(y)=)' for i=1,23).
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The expansion of Prob(\/; Y<Z') in terms up to order n~! involves
EY?{ (see Hall [6, p. 1032]). It may be shown by complicated algebra that
the coefficient of n~*? in the formal expansion involves EY$. Also, looking
at (2.5) one would not expect a valid asymptotic expansion with error
o(n~') unless \/; (f1; — u5) converges in distribution. Thus it is unlikely
that the desired expansion holds in general under the condition
E|Y,|"< oo for some r <6.

ExampPLE 2 (Studentized statistics). Consider the Student’s statistic
t=7Y/é, where ¢*=(1/n)X]_, Y?—Y> Here m=1, k=2; Z"=Y,
Z@®=1Y?, EY;=0. According to the theorem in Section 1, under (B,) the

distribution of n'?t has an asymptotic expansion with error o(n ¢ ~27?) if
EY?- D<o, (2.7)

instead of the earlier requirement: EY* < co. Thus for an error o(n~"?)
one needs finite fourth moments. By a conditioning argument, similar to
the one sketched in Remark 5, Hall [7] proves that for an error o(n~'/?),
E | Y3| < o0 is enough. He also shows that for a higher order expansion of
the conditional distribution of ¢, given {¥?, 1 <j<n}, E|Y)|* < oo suffices;
but we are unable to obtain the appropriate expansion of the expectation
of the conditional expansion under this moment condition.

Consider now the asmptotic expansion of the Studentized sample
moment fi, =n"" 7_1 Y7 (r is a positive integer). The studentized statistic
is T=(d,—u,)/é,, where 62 is obtained by replacing population moments
by sample moments in the expression var(i,) calculated at least
approximately keeping the principal terms (i.e., terms of order n~'). For an
expansion with an error term o(n ©“~2"2), the theorem in Section 1
requires E|Y;|”“ Y<oo instead of the older moment condition
E|Y|* < co.
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We consider a class of discrete parameter Markov processes on a complete
separable metric space S arising from successive compositions of i.i.d. random maps
on § into itself, the compositions becoming contractions eventually. A sufficient
condition for ergodicity is found, extending a result of Dubins and Freedman [8}
for compact S. By identifying a broad subset of the range of the generator, a
functional central limit theorem is proved for arbitrary Lipschitzian functions
on S, without requiring any mixing type condition or irreducibility.  © 1988 Academic
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1. INTRODUCTION

Recent work has shown that the Billingsley-Ibragimov martingale
central limit theorem (Billingsley [6, Theorem 23.11]) is the right tool for
deriving functional central limit theorems for general ergodic Markov
processes (Gordin and Lifsic [10], Bhattacharya [2]). There are several
reasons for this. First, no mixing type condition is needed. Computations of
mixing rates are often virtually impossible, and there are many important
ergodic Markov processes for which none of the usual mixing rates goes to
zero. Second, the martingale central limit theorem is applicable to each
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centered function belonging to the range of the generator of the Markov
process. The class of such functions is dense in the L>-space with respect to
the invariant probability. Last, but not least, an analytical expression for
the variance parameter of the limiting Brownian motion is automatically
provided. Some illustrations of these different aspects of the theory
may be found in Bhattacharya and Gupta [4], Bhattacharya [3], and
Bhattacharya and Lee [5]. The present article provides another class of
such processes. The nontrivial tasks in these applications are (1) the
derivation of a criterion for ergodicity and (2) the identification of (a large
subset of) the range of the generator.

In this article, we consider a discrete parameter Markov process {X,} on
a complete separable metric space (S, p), represented as X, =a,a,_,---
a, Xo, where X, is a given random variable with values in S and {«,} is an
independent and identically distributed (i.i.d.) sequence of continuous
random maps on S into itself. Also, X, and {«,} are independent. It is
assumed that there exists a positive integer m, such that with probability
one, a,,---a, is a contraction for each m>=m,. Under two additional
assumptions (see (A,), (A,) in Section 2) it is shown that there exists a
unique invariant probability n, and that the n-step transition probability
p"(x,dy) converges weakly to n(dy), as n— oo, for every xeS§
(Theorem 2.2). This extends to noncompact spaces an earlier result of
Dubins and Freedman [8, Corollary 2.3]. What is novel about such a
result is that the transition probability p(x, dy) need not be irreducible.
Recall that p is said by @-irreducible with respect to a non-zero sigma finite
measure ¢ if @(B)>0 implies, for each x, the existence of an integer
n=n(x, B) such that p®(x, B)>0 (Orey [13]). Typically, irreducibility is
violated when the distribution of «, has a finite or discrete support. Such
examples arise even in the case of linear autoregressive models of order
one. See Bradley [7, Example 6.2] for a discussion of a example originally
due to Rosenblatt [14].

Under an additional assumption (see (2.19)) it is shown that all centered
Lipschitzian function f in L%(S, n) belong to the range of T — I, where
(Tg)(x)=E(g(a,x))=_fg(y)p(x, dy), and [ is the identity operator. It
then follows from Gordin and Lifsic [10] and Bhattacharya [2] that the
functional central limit theorem holds for such functions f (Theorem 2.5).

2. MAIN RESULTS

Let S be a complete separable metric space with metric p and #(S) its
Borel sigma field. Let I be a set of continuous maps on S into S. Endow I
with the topology of uniform convergence on bounded sets and let #(I") be
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the Borel sigma field on I'. Let P be a probability measure on (I, #(I)).
Consider a probability space (€2, #, Q) on which are defined an ii.d.
sequence of random maps «a,, «,, ... with common distribution P, and a
random variable X, with values in S independent of the sequence {«,}.
Then the following sequence {X,} is a Markov process on S,

Xoy Xpi=0, -0 X (n=1). (2.1)

Here, we write yx for the value of the map ye I at x, and y, ---7, for the
composition of the maps 7y,,y5, ... 7,. It is well known (Kifer [12,
Theorem 1.1, p. 8}) that every discrete parameter Markov process on S
may be constructed in this manner, although I" need not be a set of
continuous maps.

Write I'™ for the usual Cartesian product I'x --- x I, and '™ for the
set of all compositions y,y,---7,, of elements y,eI" (i=1,..,m). Let P”
denote the product probability on (I"™, Z#(I"™)).

The following assumptions are made:

(Ay) There exists mgy such that for all m = mq every element of I''™ is
a contraction, ie., p(yx, yy) < p(x, y) for ye '™,
(A,) Let mgy be as in (A,). For every ¢ >0 there exists B, <1 such that

PP 15 s Vo) € T p(Vmg V1% V- V1Y) < max(B.p(x, y), ¢)
Vx, y})>0.

Write diam(C) for the diameter of Cc< S, diam(C)=sup{p(x, y):
x, ye C}. Also, yC denotes the set {yx:xe C}.

LEMMA 2.1. Under the assumptions (Ag), (A,), diam(a,---2,C)—>0 "
almost surely for every bounded C < S, as n — co.

Proof. Fix a bounded set C. For each ¢>0 and positive integer N
define the sequence {F,} of events (in (2, #, Q)) by

Fj=[p(ammo'”a(m—l)mo-é-lx, ammo"'a(m~l)mo+ly)
<max{f,p(x, y), ¢} Vx, y, and Vm satisfying (j — 1) N<m < jN]
(j=2,3,..). (22)

Then Q(F;)= Q(F,)>0, each F, being the intersection of N independent
events each with the probability appearing in (A,). Also, {F;} are indepen-
dent. Therefore, by the Borel-Cantelli lemma, with Q-probability one,
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infinitely many F; occur. Now if F; occurs (for some j>2) then for all
n= (jN + 1)m, one has, for every pair x, y in C,
plo, -0ty X, e -0y Y)
S P(X g+ Xy Xy By =+ 0y V)
<max{3a Bcp(a(jN*l)mo"'alx’ a(jN—l)mo"'aly)}
< max{s, ﬂzp(a(ijZ)mo Sl X AN 2)me % J’)}
< - <max{e, BYp(o;_ 1ywmy %1 X, B 1yNmg A1 V) }

<max{e, Y p(x, y)} <max{e, BY diam(C)}. (2.3)

Now find N such that pY diam(C)<e. Then for all sufficiently large n
(depending on w € Q) one has for all x, ye C,

p(an'“alx’an"'aly)gs' .

Let p"(x, dy) denote the n-step transition probability for the Markov
chain {X,}, where p"(x,dy)= p(x,dy). Note that p™(x,dy) is the
distribution of a,, --- o, x.

On the set P(S) of all probability measures on (S, #(S)) define the
bounded Lipschitzian distance

dye (11, v) = sup {]deu—jfdv

Al <1, l|fl|L<1} (1, ve 2(S)),
(2.4)

where || fll, =sup{|f(x)l:xe S}, IfllL=sup{lf(x)—f(y)/p(x, y): x #
yeS}. It is known that dy; metrizes the weak-star topology on 2(S)

(Dudley [9]).
For the next result, we need the following additional assumption.

(A,) For some xy€ S, p"(x,, dy) has the following property: for every
£>0 there exists M, n, finite such that p"™(x,, {x:p(x, xo)=M,})<e
Vnzn,.

THEOREM 2.2. Assume (A,), (A,), (A,). There exists a unique invariant
probability n(dy) for p(x, dy), and

sup{dp, (p"™(x, dy), n(dy)):xe C} -0, as n-— oo, (2.5)

for every bounded set Cc S.
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Proof. Fix a bounded set C. For all x,, x,€ C one has

dp (p'"(xy, dy), p(x2, dy))
=sup{|Ef(a, - a,x,) — Ef(a, -, )l : | fllo <L, I fllL <1}
<E(p(a,---ayxy,a,---a;x;) A l)
< E(diam(a,---a,C) A 1)>0 as n-— oo, (2.6)

by Lemma 2.1. Similarly, writing B(x,: M) for the ball of radius M centered
at x,, for all f satisfying || fll <1, |fil. <1, one has

LEf (0t 4+~ - 01 Xo0) — Ef (@, - - - 0y Xo)
= |Ef(a; -+~ -+ %y 4 ;Xo) — Ef (@ - - 2, Xo)|
SE(p(oy -+ 0,0, 4y 0+ 0y X, 0p - 0, Xo) A T)
SOU{P(@nt s Uy mXos X0) = M})
+ Q({diam(a, ---a,B(xq: M))>6})+ 9, (2.7)

for every M >0, 6>0. Given ¢>0, let d=¢/3 and choose M =M, such
that

Q({p(a, -~ a,,x0, Xo) = M_})<¢/3 Ym=1,2,... (2.8)

This is possible since the family of distributions of p(a,---a,,xq, Xo),
m=1, is relatively weak-star compact, by (A,). By Lemma?2.l,
Q({diam(a, -- -, B(xo:M;))>¢/3}) >0 as n— co. Hence, by (2.7) and
(2.8), for all sufficiently large n, say n>n,(e),

dpr (P xo, dy), pPxody)) <& VYm=1,2, ... (29)

Since (£(S), dg.) 1s a complete metric space (Dudley [9]), it follows that
there exists a probability measure n such that

dpi(p"(xo, dy), m(dy)) >0 as n— oo (2.10)

Now (2.6), (2.10) imply the uniform convergence of p™(x, dy) to n(dy), in
the dg; metric, for xe C. Since x — p(x, dy) is weak-star continuous, it is
easily checked that = is the unique invariant probability. |

Theorem 2.2 extends Theorem 4.4 of Dubins and Freedman [8]. We
state their result as a corollary.

COROLLARY 2.3 (Dubins and Freedman [8]). Let S be a compact
metric space, I a set of contractions on S, and P a probability measure on
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(I, B(I)). If there exists a strict contraction y, in the support of P, then
there exists a unique unvariant probability n, and p"(x, dy) converges
weakly to n(dy), as n— oo, for each x€ S.

Proof. Assumptions (A,), (A,) are trivially satisfied in this case. It is
enough to check (A,) with my=1 For each £¢>0 define f.=
sup{p(yoX, 7o ¥)/p(x, y):x, y such that p(x, y)>¢}. Then B, < 1. For each
6>01let I's={yel:p(yx, yox)<dVx}. Then P(I';)>0. Now if y € I'; then

p(yx, vy) < p(¥x, yox) + p(yoX, Y0 ¥) + p(yo ¥, v¥)
<26+ p(70x, Y0 ))
, €
K20+ Beap(% ¥) Kot 01521 + 5 Lot 1) <an)
< (ﬂ;/zp(x, y)+26) Liotx, yze2y T (20 +¢/2) Xip(x, y)<e/2}
, 40 £
S ﬂe/2+'8_ P(X, ¥) X (otx. ey 25+§ Lot <oy (2.11)

Choose 6 < ¢/4 such that . := f,,+46/e < 1. Then (2.11) becomes

P(yx, YY) < B.p(X, ¥) X (pix, 112 o2} F EX{p(x, vy <2/2}
Smax{ﬂep(x, y)’g} vyer&' (212)
0

Remark 2.3.1. Assumption (A,) is obviously necessary. It may be
violated even for linear autoregressive models,

Xn+1=aXn+8n+l (213)

with |a| <1, {e,} an iid. sequence. Here S=R', I'={y,:eeR'} with
7.(x)=ax + ¢, so that P is determined by the distribution G, say, of ¢,. It is
easy to check that a umique invariant probability exists if and only if

© a", converges almost surely or, equivalently, in distribution. For

n=1

example, if 3> , G({¢: |a"¢| >d})= oo for some 6 >0 then an invariant

n=1

probability does not exist.

Remark 2.3.2. It is not difficult to check that Theorem 2.2 holds if the
hypothesis (A,) is replaced by the following alternative (A}). A contraction
7o will be said to be asympiotically uniform on bounded sets abbreviated as
a-u-b, if

lim sup pyax, ya y)=0 Vr>0.

m— o {x y:p(x,y)<r}
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(A}) There exists an a-u-b contraction y, such that for all ¢ >0 and
all m>=my one has

Pm({(yh eey ym)erm:p(ym"'ylx’ ‘VOX)SEVX})>O'

Assume that the hypothesis of Theorem 2.2 holds. Let T be the transition
operator on L*(S, ),

(T)(x): Jf(y)p(x dy),  feL*S,n). (2.14)

Then (T%f)(x) = f(y) p"(x, dy). We will denote the L>-norm on L*(S, m)
by | 15- Let 1 denote the identity operator. Write

f:ffdn, (2.15)

LEMMA 24. Let feLXS,n). If S IT(f—F)l<oo, then f—f
belongs to the range of T — I, indeed, (T —I) g = f — f, where

g=-Y T~ (2.16)
n=0

Proof. Apply T to both sides of (2.16). |

It will be convenient to denote the sequence (2.1) as {X,(x)} if X,=x,
Xo(x) :=x, X, (x):==y,--7x  (n21) (2.17)

In order to state the functional central limit theorem, fix feL?(S, n).
For each positive integer n, write

[nt
Y,(1):= ”2[2 f(xX) -1+ <1—m> (f(X gy ) — f] (t120),
(2.18)

where [nt] is the integer part of ar.

THEOREM 2.5. Let the assumptions (A,), (A,), (A,) hold. In addition,
assume

'S} 2 1/2
> ([|[ 2ottt a@n | at@n) <. @19)

(a) If the initial distribution is n, then for every Lipschitzian f in
L(S, n) the function f — f belongs to the range of T— I, and for every such
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[ the processes Y, (-) converge in distribution to a Brownian motion with
mean zero and variance parameter | g|\3— ||Tg\|%, where (T—1)g=f—f.

(b) If, further,

ey U Ep(X(x), X/(»)) n(dy)] -0, (2.20)
k=0

as n— o0, then the convergence in (a) holds when X, = x.

Proof. (a) Let f be Lipschitzian on S, |f(x)— f(y}| < Mp(x, y) for all
x, y. Then

T = D60 = (LB, — B, )] mlay) )

2
<] [Botmaone@ . @2
Therefore,
2
17~ P30 [ | [ Eptx,o) X ata) | mian). 222)

Hence if (2.19) holds, f — f belongs to the range of T— I by Lemma 2.4. To
prove the functional central limit theorem under the initial distribution =,
let g be given by (2.16). Consider the representation

n—1 n—1
Y. (f(X)=f)= Y (Tg(X)) - g(X)))
j=0 j

j=0
i —8(X;))+ (8(X,) — g(Xo)). (223)

Since Tg(X; ,)—g(X;) (j>=0) is, under the initial distribution =, a
stationary ergodic sequence of martingale differences the functional central
limit theorem follows (see Billingsley [6, Theorem 23.1], Gordin and Lifsic
[10], Bhattacharya [2, Theorem 2.1]). In this case, the variance parameter
of the limiting Brownian motion is E(Tg(X; ,)— g(X;))*=|gl%- lTgl?.

(b) Suppose (2.20) holds for some x (By (2.19) this is true for almost
all ()x.) Then, if f is as in (a),

E( max

0</j<n

w3 ) =1)=n ' $ (e -1

<Mn—'7? i Xi(x), X)) (2.24)
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Let X, have distribution = and be independent of the sequence {a,}.
Denoting X; =, ---«, X,, and letting Y,(-) be the process defined by (2.18)
and Y;(-) the corresponding process with X replaced by X (x) (j>0), one
gets

E( max |YX(1)—7Y, (t)l)<Mn“”2(i pr (X,(x), X(y))n(dy)>

0<r<i

which goes to zero, as n — o0, by (2.20). |

Remark 2.5.1. By Holder’s inequality, (2.19) implies

[ £ [Boxio xonm@n |sam<o. @29

=0

Therefore, (2.20) is a mild extra condition and holds for all x outside a set
of n-measure zero.

Remark 2.5.2. It is simple to check that every Lipschitzian f is in
LS, n) if, for some z€ S,

fpz(x, z) n(dx) < co. (2.26)

ExaMPLE 2.5.3 (Linear time series models). Let S=R y,x=Ax+e¢,
where 4 is a kxk matrix and I'={y,;:ee R*} is endowed with the
Euclidean topology on the set of labels ¢. Let P be a probability measure
on (I, #(I')), ie., on (R*, B(R*)) such that { [¢|> P(de) < 0. Assume that
the eigenvalues of A are all less than one in magnitude. Since the spectral
radius r(A), ie., the largest magnitude of the eigenvalues, equals
lim | 4"||'" (see Halmos [11, p. 182]), there exists m, such that [|4"]] <"
for some d <1 and for all n=m,. The hypotheses (A,), (A,), (A,) of
Theorem 2.5 are satisfied with 8,=4, and x,=0, since |X,(x)— X, (y)| =
l4X, _1(x) — AX, _(y)| = --- = |A"(x — y)| < [|[47] |x — y|. Also, the
invariant distribution = is the distribution of > *_, A", where ¢, are i.i.d.
with common distribution P.

It is easy to check now that (2.19) holds, and (2.20) holds for all x.
Hence the functional central limit theorem holds for Y,(-) with f
Lipschitzian, whatever the initial distribution 1is. In particular,
Z,=n""23"_0(X,—(I—A) 'Ee,) converges in distribution to a
Gaussian law on R" with mean zero. To calculate the dispersion matrix of
this limiting Gaussian, check that g(x)= —c'(I—A4) ' (x—(I—A) 'Eg,)
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solves (T—1I) g(x)=c'(x—(I—A) 'Ee,) for every ceR* Hence the
variance of the limiting distribution of ¢'Z, is | g||3— || Tgll3 = ¢'Dc, where

D=(I-A)y"'v(I-4)"",
) ) ) (2.27)
V .= dispersion matrix of ¢; under P.

This D is then the desired dispersion matrix.

One may treat the so-called AR(q) or linear autoregressive models of
order k, and ARMA(k, q) or autoregressive-moving average models of order
(k, q) as special cases of the above example.

An ARMA(k, g) model is given by

k q
Un+k= Z ﬂiUn+k~i+ Z 5i"n+k—i+'7n+k9 (228)

i=1 i=1

where 75, are iid. real-valued and B, .., B, 6,, .., 6, are real constants.
Write Xn=(Un,..., Un+k—l7 ’7"+k_q,...,'1"+k*l),, £"=(0,...,0, 0,...,0,
N,.4+«). Then (2.28) may be expressed as

Xu+l=AXn+8n+l9 (229)

where A4 is the (k + q) x (k + ¢q) matrix

0 1 0o - . 0 0 O 00
0 0o t 0 - 0 0 O 00
0 0 o0 t 0 0 00
A= 1B Bi- B, o, 6,1 - d (2.30)
0 o0 0 0 1 0 - 0
0 0 0 0 0 10 0
| 0 0 -+ - 0 0 0 00 - - 0]

Since Det(4 — Al) = Det(B — AI) - (— 4)¢, where B comprises the first k rows
and columns of A, the nonzero roots of the characteristic polynomial
equation for 4 are those of Det(B— Al)=0. This last equation may be
expressed as

k
_1k+z B Ak—i=0. (2.31)
i=1

As a special case of Example 2.5.3, therefore, there exists in this
ARMA(k, q) model a unique invariant probability for X, on (R**4, #**9)
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if the roots of (2.31) all lie within the unit circle and if En2 < oo, and then
the central limit theorem also applies.

A comprehensive account for the traditional treatment of the AR and
ARMA models may be found in Anderson [ 1, Chaps. 5, 8]. By making use
of Theorem 2.5 one may, however, prove central limit theorems for a broad
class of nonlinear functions of X, and therefore of U, not provided by the
classical treatment.

Remark 2.54. One may let U,,, in (228) depend on all U,
— o < j<n+k. In this case S=R> and, given appropriate convergence of
the coefficients, one may again derive conditions under which Theorems 2.2
and 2.5 apply. However, applications to nonlinear models of the form
X,.1=6¢(X,)+¢,,, promise to be of greater significance.
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Conditionally Ordered Distributions

HENRY W. BLOCK* AND ALLAN R. Sampson?

University of Pittsburgh

The concepts of conditionally more positively quadrant dependent, and con-
ditionally more dispersed are introduced and studied. Based on these two concepts,
new conditions are given for multivariate cdfs F and G so that E-h(X) > E¢h(X)
for suitable #(X). Special cases include the multivariate normal distribution and
elliptically contoured distributions. Conditional positive and negative dependence
concepts as well as applications to the Farlie-Gumbel-Morgenstern distribution
are also considered.  © 1988 Academic Press, Inc.

1. INTRODUCTION

Joag-dev, Periman, and Pitt [6] study a type of pairwise condition on a
function of n variables which implies monotonicity of the expected value of
the function in the covariance matrix of a multivariate normal distribution.
A related condition has been used by Cambanis and Simons [3] in
obtaining a similar result. Both sets of authors also consider extensions to
elliptically contoured distributions.

In this paper, we make the observation that the pairwise conditions of
Joag-dev et al. actually represent conditions of two different types: (a) a
condition related to pairwise dependence and (b) a condition related to
dispersion orderings. Second, we demonstrate that the monotonicity resulit
of Joag-dev et al. applies to any distributions which are conditionally
pairwise dependence ordered or to distributions which are conditionally
dispersion ordered.

In Section 2 we consider results for distributions which are conditionally
positively quadrant-dependent ordered and in Section 3 we examine
distributions which are conditionally dispersion ordered. In both sections,
we derive the results of Joag-dev et al. [6] and Cambanis and Simon [3]
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as special cases. We also discuss in these two sections some improvements
of the results of Joag-dev er al. under weaker regularity assumptions. In
Section 4, the concepts of conditional positive and negative dependence are
examined, and in Section 5 another example is considered.

Some notation which is used follows. For a given vector a = (ay, .., a,),
define for each pair of integers 1 <i<j< p the corresponding vector

i, j) — ’
A = (g, s @iy, Qs e Ay, Ay gy e A,)

In the case i=j we write a'). For a given pair of integers 1 <i<j<p let
R, j))={1,.i—Li+1, ., j—1,j+1,.,p}. (In the case i=j, we write
R(i).)

For a given cdf. F(x,, .., x,) and pair of integers 1 <i<j<p let
F(x;, x| X@7) =t)

denote the conditional cdf of X, X, given X“/’=t. (In the case i=}, we
write F(x,|X” =t).) Let F(x;) and Fg; ;(x*”), 1<i<j<p, denote the
marginal cdfs, respectively, of X; and X/). When densities exist, the
following notations are used: f(x;, x;| X**/'=t), fi(x,) and fp( ;(x*/).

Let a(x) be a function defined on R!. The number of sign changes of q,
denoted by S (a(x)) is defined as sup S (a(x;), .., a(x,)) (over all)
sequences x; < --- <x,, n=1,2 ., where S (a,,..,a,) denotes the
number of sign changes in a,, .., a,, zero terms being ignored.

Let I, be the matrix whose every entry is zero, except for the (i, j)th
entry which is 1. The dimension of 1; is to be appropriate to the usage.
Occasionally, we require a symmetrized version of the matrix, namely
I; +I;, which we denote by I7.

We follow the notation of Cambanis, Huang, and Simons [2] and say
X: (px 1) is an elliptically contoured distribution with parameters p, X, ¢,
where I is nonnegative definite, if the characteristic function of X —p has
the form

Px _ u(t) = §(t'Et).
This is denoted by X ~ EC,(m, L, ¢).

2. CONDITIONALLY MORE POSITIVELY QUADRANT DEPENDENT

In this section, we introduce our conditional positive quadrant depen-
dence (PQD) ordering. We show that this ordering is preserved under a
function with a pairwise condition, and then we obtain various special
cases.
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DeFINITION 2.1, Let F(x,,..,x,) and G(x,, .., x,) be two cdfs. Fix
1 <i<j<p and suppose that the following conditions are satisfied:

(@)  Frg jy(t) =G, (t), for all ¢,

(b) (i) F(x;, o] X“)=t)=G(x;, 00|X%) =t), for all x, and t,
(ii) F(oo, x,] X" =t)=G(o0, x,| X*)) =1t), for all x, and t,

(€) F(x;, x| X" =t)>G(x;, x;| X*) =t), for all x,, x;, and t.

Then F is said to be conditionally more (i, j)-positively quadrant dependent
than G, written as F -/} G,

Sometimes for notational ease, if X ~ F and Y ~ G, we write X » 7)Y
instead of F -»F¢/) G,

Note 2.1. Conditions (a) and (b) of Definition 2.1 together are
equivalent to both

(a’) FR(,-)(S)= GR(,-)(S) for all S, and
(b")  Fr;(8)=Grs) for all s.

We subsequently show that under certain conditions the elliptically
symmetrical distributions can be (i, j)-PQD ordered and, hence, so can the
multivariate normal distribution. In Section 4, we provide some general
techniques for obtaining (i, j}-PQD ordered distributions and also apply
these techniques to obtaining inequalities for the generalized Farlie-
Gumbel-Morgenstern family of distributions in Section 5.

A function h(x, y) is called quasi-monotone if for all x, < x,, y, <y,,

h(xy, y1)+h(xz, y2) — h(xy, y2) — h(x3, y,) 2 0.

Note 2.2. (i) Quasi-monotone is sometimes termed superadditive.
(ii) A(x, y) is quasi-monotone if and only if e is TP,.

(i) If h(x,y) is absolutely continuous, then h(x,y) is quasi-
monotone if and only if (62/0xdy) h(x, y) =0 for almost all (x, y) in R

DEFINITION 2.2. A function h(x,, .., x,) is (i, j)-quasi-monotone if
h(Xy, ws X5 oy X5 .y X,) IS quasi-monotone in x;, x; for all possible fixed
values of x“/). We say h(x,, ..,x,) is quasi-monotone in pairs if it is (i, j)-
quasi-monotone for all 1 <i<j<p. (Tchen [15, p. 824] calls functions that
are quasi-monotone in pairs superadditive.)

Note 2.3. (i) When viewing h(x,, .., X;, .., X;, .., X,) as a function of
x;, x; for fixed x*/), we sometimes employ the notation h(x;, x;; x*/)) or
hxu,j)(xi, xj).
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(i) Observe that h(x,,..,x,) is quasi-monotone in pairs if and
only if

h(x v y)+h(x Ay)=h(x)+h(y) for all x, y.

This follows from Kemperman [8, p. 329(i)], since " > 0.

One of our two main theorems is given next. Although it holds under a
variety of assumptions, we give it in a form with conditions on the function
h which are easy to state. More general conditions on 4 under which the
theorem is true are given following the theorem.

THeOREM 2.1. Let F(xy,..,x,) and G(x,,..,x,) be cdfs and fix
1<i<j<p. Suppose that h(x,, .., x,) is bounded, right-continuous, and
(i, j )-quasi-monotone. If F —*) G, then Ep h(X) = Egh(X).

Proof. Consider h(x,, x;;x""/)) for any fixed x“/). This function is
bounded, right-continuous, and quasi-monotone in (x;, x;). Consequently,
since F =%/ G from Tchen [15, Theorem 2, n =27 we have

” h(x;, x;; x40 dF{x,] X% = x4/}
;J] h(x,-, X;; x(i.j)) dG{x,., lex(i.j)z_ x(i,j)}.

The conclusion follows by integration.

Note 2.4. Notice that to apply Tchen’s result we only need that h(x) is
bounded and right-continuous in (x, x;) for fixed x*“/) and so the
assumptions above can be weakened. (See also Corollary 2.1 of Tchen

[151.)

Theorem 2.1 holds for many other classes of A’s than those specified in
the theorem. We state several other sets of conditions. The first set is due to
Cambanis, Simons, and Stout [4] and various refinements of it can be
found following Theorem 1 in that paper. The second set is due to
Ruschendorf [11]. A comment similar to Note 2.4 above also applies to
these conditions:

(1) For fixed 1<i<j<p, h(x) is right-continuous, (i, j)-quasi-
monotone, and either of the following is satisfied:

(i) hgin(x,;, x;) is symmetric in x,, x; for almost all x/ and
jhx(i,1>(xi, x;) dF(x;, oo | XD = x"'j)) and Ihx(:,j)(xj, xj)
dF(0, x;| X"/ =x"7) are finite for almost all x‘*; or
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(ii) there exist x* and x}* such that [ A .(x;, x*) dF(x;, ©|X%)
=x"")and | hyan(x}, x;) dF(o0, x;| X*) = x"“7) are finite for
almost all x*“/,

(2) For fixed 1<i<j<p, h(x) is right-continuous, (i, j)-quasi-
monotone, [ hyun(x;, x;)  dF(x;, x;| X*)=x%") and [ hyen(x,, x;)
dG(x;, x;| X/ =x"7) are finite for almost all x**/, and either of the
following are satisfied:

(1) h,un(x;, x;) is nondecreasing in x; and x; for almost all x'*/ or

(i) hyen(x;, x;) >0 as x,—» —co or as x;—» —oo for almost all
)
x /),

We now give a situation in which quasi-monotonicity is naturally
satisfied.

CoroLLARY 2.1. Let F(x,,..,x,) and G(x,, .. x,) be cdf’s and fix
1<i<k<j<p. Suppose h(xy, ... x,)=f(x(, ., X¢) 8(X 4 15 s X,), Where [
and g are both decreasing or both increasing, are bounded, and right-
continuous. If F PN G, then E(h(X)) 2 Eo(h((X)).

Proof. This follows directly from Theorem 2.1, since f(x,, .., x,)
8(Xy 41, - X,) 18 (i, j)-quasi-monotone for I <i<k<j<p.

We now remove the regularity assumptions on f and g, i.e., we assume
only that f and g are both decreasing or both increasing.

COROLLARY 2.2. Suppose h(xy,..,x,) = f(Xy, . Xi) 8(Xis1s 0 X)),
where f and g are both increasing or both decreasing and are Borel
measurable. If F -7 G, then Eh(X))= Eg(h(X)), provided the expec-
tations exist.

Proof. The proof is divided into five steps.

Step 1. Let f=1.,g=1.,, where C, and C, are closed upper sets.
The result follows immediately from Corollary 2.1. Similarly if C, is an
open lower set, —g is increasing and right-continuous so that

E{—h)=Es(—h) or Edh) < Eg(h).

If C, and C, are both open lower sets then E{(h) = E;(h).

Step 2. Let f=1,,g=1p, be Borel measurable upper sets. Then as
in Block and Savits [ 1] we can approximate the D, by closed upper sets C;
and apply Step 1. If either of the D; are Borel measurable lower sets we can
approximate by an open lower set. We have E{(h) > E(h) for both upper
or both lower and E/{h) < E;(h) for one upper and one lower.
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Step 3. Let f20, g >0 be nondecreasing Borel measurable. Then as
in Block and Savits [1] we can find f= (1/2%) %%, I, which converges
upward to f, where D, are Borel measurable upper sets. A similar com-
ment for g and the monotone convergence theorem gives the result. Similar
comments apply if / and g are both nondecreasing Borel measurable

functions or one is nondecreasing and one is nonincreasing.

Step 4. Let f and g be nondecreasing Borel measurable functions.
Then f* and g* are nondecreasing and /'~ and g~ are nonincreasing non-
negative Borel measurable functions. Thus from Step 3,

E{f*g*)2Es(f*g*)

and
Eq(ffg¥)<Eg(f*g¥)

Under the assumptions that E{(h(X)) and E;(h(X)) exist (but are not
necessarily finite) it is not hard to show that

EAf-8)ZEq(f-8).

Step 5. Let f and g be nonincreasing Borel measurable functions.
The proof is similar to Step 4.

Conditional positive quadrant ordering is a concept which follows from
covariance conditions in the multivariate normal case and its
generalizations. We state as lemmas some of the results where covariance
conditions imply orderings.

LemMMA 2.1. Let Y~ N(0, L) and T~ N(0, X+ 1)) and fix 1<i<j<p.
Assume 6 >0 and that X + 61} is nonnegative definite. Then X —*¢-)Y.

Proof. Without loss of generality assume i=1 and j=2, and partition
X accordingly into dimensions 2 and p—2. Denote the cdfs of X and
Y by F and G, respectively. Then F(x,,x,|X"?=t) corresponds
to NZ,ZIntZ,,+6I5) and G(x;, x,|X"?=t) corresponds to
NELHELL X)), where £,,=E,,— X, £, X,,, and X}, is a generalized
inverse of 2'5,. Clearly (a) and (b) of Definition 2.1 are satisfied. For every
t, (c) of Definition 2.1 follows from Slepian’s inequality (Slepian [14] or
see Tong [ 16, Theorem 2.1.11]).

The following result gives the conditional orderings for elliptically
contoured distributions. We use the notation of the paper by Cambais,
Huang, and Simons [2] throughout.
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LEMMA 2.2. Let Y~EC,0,X%,¢), X~EC,0,E£+0I},¢), and fix
1<i<j<p. Assume 6>0 and that L+ 013 is nonnegative definite. Then
X 5PNy,

Proof. Without loss of generality assume i=1 and j=2, and partition
I accordingly into dimensions 2 and p — 2. Denote the cdfs of X and Y by
F and G, respectively. Suppose t is in Z(X,,), the row space of ,,. Then
by Cambanis, Huang, and Simons [2, Corollary 5], F(x,, x,| X" =t)
corresponds to EC,(E;,Z5t K, +01f,, 6., and G(x,, x,| X" =t)
corresponds to ECy(E,,E55t, X5, ¢,,)), where &, , =X, —E, L %,, and
$,) depends on ¢ and ¢(t)=t'L;;t. When t¢ £(X,,), the conditional
distributions puts mass on 0 (Cambanis, Huang, and Simons [2, (17b)]. In
the case te £(X,,), parts (a) and (b) of Definition 2.1 follow from the fact
that if (Wi W3)' ~EC,,,,((;:13)s ), then W,~EC, (1, Ey, 4).
For every t, part (c) follows from Cambanis and Simon [3, Theorem 3.2].
For the case t¢ .#(X,,), the result is obvious.

We now give the general result for elliptically contoured distributions. It
holds under weaker regularity conditions on /4 as pointed out in the note
following the corollary.

COROLLARY 2.3. Let X~ EC,(0, L, ¢) and let h(x) be a bounded, right-
continuous function which is quasi-monotone in pairs. Then Eg(h(X)) is
increasing in the off-diagonal elements of X.

Proof. Apply Theorem 2.1 and the previous lemma iteratively.

Note 2.5. (a) If h(x) is absolutely continuous in x; and x, for all
1 <i<j<n we can replace the quasi-monotone assumption above with the
condition 9%h(x)/dx,;0x;> 0 for all x.

(b) As mentioned in the note following Theorem 2.1 the corollary
above holds under a variety of conditions. One strengthening of the above
is to assume A(x) is right-continuous, quasi-monotone in pairs, and that
there exist x,, x,, ..., x, such that Eg(h(x;; X")) are finite for i=1,2, ..., p.

(c) The normal case of the above corollary corresponds to the i#j
part of Proposition 1 of Joag-dev, Perlman, and Pitt [6]. Because of notes
(a) and (b) above the conditions on 4 are somewhat weaker than those in
the proposition cited.

3. CONDITIONALLY MORE DISPERSED

We now examine a concept of one distribution being conditionally more
dispersed than another. Qur main result of this section shows that if a
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p-variate function is convex in its relevant argument then it preserves this
ordering. Normal and elliptically contoured cases are then examined.

DEFINITION 3.1. Let F(x,,.. x,) and G(x,,.., x,) be two cdfs. Fix
1 < i< p and suppose the following conditions are satisfied:
(b) ELX,|XD=t)=E X,;|X?=t) for all t,
(c) for all ¢, both conditional distributions are degenerate, or
(i) S~ (F(x,|X"=t)—G(x;,| X" =t))=1, and
(ii) the sign sequence in (i) is +, —.
Then F is said to be conditionally more i-dispersed than G, written as
F ->P0¢,

Note 3.1. (i) We have included (a) in Definition 3.1 for convenience.
If the conditional means differ, the cdfs would be translated so that the
means coincide. (See Shaked [13] concerning centering.)

(i) Sometimes for notational ease, if X~ F and Y~ G, we write
X - 2% ¥ instead of F -2 G.

(iii) Conditions (a) and (c) imply (see Shaked [13]) for all convex 4
that,

Jh(xi)dF(x,-IX“":t);jh(xi) dG(x;| X" =t) forallt. (3.1)

The condition given by (3.1) can be interpreted as saying that for all t the
conditional distribution F(x,|X'”?=t) is more dilated (e.g., Marshall and
Olkin [10, p. 312]) than G(x,;| X"’ =t).

We next give a one-dimensional concept of convexity for a p-dimensional
function. It says simply that the function is convex in the one relevant
component for all other values of the remaining component.

DerFINITION 3.2 A function A(x,, .., x,) is i-convex if A(x,, .., X;, ..., X,)
is convex in x; for all possible fixed values of x!.

The main result of this section follows.

THEOREM 3.2. Let F(x,, .., x,) and G(x,, .., X,) be cdfs and fix 1 <i<p.
Suppose h(x,, .., x,) is i-convex. If F—-P"G, then E-h(X)> E;h(X),
provided the expectations exist.
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Proof. Observe that for all t, it follows from Shaked [13] and
Definition 3.3 (a), (c¢) that

'[h(xi;t)dF(xilx‘i)=t)>J.h(xi; t) dG(x,| X = t).

By Definition 4.1(b), integration with respect to Fpg)(t)=Gg(,)(t)
completes the proof.

COROLLARY 3.1.  Suppose 0*h(x)/0x? exists for all x and is nonnegative.
Then F »° G implies E h(X) = Egh(X).

Proof. Obvious.

Conditional dispersiveness derives from comparison of variances for mul-
tivariate normal distributions. We state some of those results as lemmas to
demonstrate this connection and then give the more general results.

LemMa 3.1. Let Y~N(0,£) and X~ N(0, £ +01,), and fix 1<i<p.
Assume 6>0. Then X -»P0Y.

Proof. Without loss of generality, assume i=1. Then F(x,|X'"=t) is
NE,EZHt 0,+0—LpE5E) and G(y, YV =t) is NEZ,I5t,
61, — X, L5 X,,), where X is appropriately partitioned. Definitions 3.1(a)
and (c) follow because the means are the same and Var(X,;| X" =t)=
Var(Y,| Y =t) + 4. Part (b) is obvious.

CoOrROLLARY 3.2. Let X~ N(0, X) and h(x) be i-convex in each argument.
Then Ey(h(x)) is increasing in the diagonal elements of T provided that
Ex(h(X)) exists.

Proof. Apply Theorem 3.2 and the previous lemma.

CoroLLARY 3.3. Let X~ N(0,X) and h(x) be a function such that
0%h(x)/0x? exists and is nonnegative for all x, for i=1, ..., p. Then Ex(h(X))
is increasing in the diagonal elements of X, provided that Es(h(X)) exists.

Proof. This is immediate from Corollary 3.2.

Note 3.2. Corollary 3.3 contains part of Proposition 1 of Joag-dev et al.
[6] (the i=j case), but under weaker moment conditions.

As in Section 2 we use the notation of Cambanis et a/ [2].

LeMMa 3.2. Y ~EC,(0,%, §) and X ~ EC,(0, T + 61,,), and fix 1 <i<p.
Assume 6 >0. Then X -2 Y.
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Proof. Without loss of generality assume /=1 and partition £ accord-
ingly into dimensions 1 and p—1. Denote the cdfs of X and Y by
F and G, respectively. Suppose te £(X,,). Then by Cambanis et al. [2,
Corollary 5], F(x,| X" = t) corresponds to EC,(E,, Z5,t, £, + 6, 1)
and G(x,|X"V =1t) corresponds to EC,(X,,E5t X5, @) Where
L,=0,—-L,E5K, and 4, is determined by ¢ and g¢(t)=
t' I, t. Parts (a) and (b) of Definition 3.1 are obvious and part (c) follows
from the fact that for every ¢ EC(X,X5;tX,,+0,6,,) and
EC\(£,,E5¢ £,,, ¢,4) are univariate cdfs differing only by a scale
parameter. For t ¢ %,(X,,) both conditional distributions are degenerate at
0 and so (a), (b), and (c) are trivially satisfied.

Note. Corollaries similar to Corollary 3.2 and 3.3 follow immediately
for elliptically contoured distributions. These provide somewhat more
generalized results than Joag-dev et al. [6].

4. CoNDITIONAL POSITIVE AND NEGATIVE DEPENDENCE

In this section, we consider other distributions which are conditionally
more (i, j)-PQD ordered. We primarily focus on techniques for con-
structing such orderings, with particular attention paid to upper and lower
bounds, and to comparisons with certain forms of independence.

The following definition formalizes a concept that has appeared in
various forms in the literature.

DEFINITION 4.1. A random vector X with cdf F(x} is conditionally (i, j)-
PQD (NQD), i#j, if

F(x;, x;] X¢D=g)> (<) F(x;, 00| X" =s) F(c0, x;| X4 =5s)
for all x,, x;, s.

Note 4.1. Suppose F(x) is absolgtely continuous with 'pdf f(x). Define
g(x)=fR(j)(x(“)xfk(i)(xm)/fk(i,j)(x(U)), when fR(i,j)(x("n) >0’_ Aand ) Q’
otherwise. It is direct to show that (i) g is a pdf, (ii) g(x,, x;| X"/ = xf"{’)
=fR(j)(x(J)) XfR(i)(xm)/(fk(i‘j)(x("”))za and (iii) gk(i.j)(x("j))=fR(i,j)(x("”)-
Denote by G, the cdf, corresponding to g. Then F is conditionally
(i, /))-PQD (NQD) if and only if F -»f@)( PN G,

The next lemma provides a method for constructing multivariate
distributions with certain prescribed conditional marginals and, more
importantly, having certain conditional positive dependence properties.

LemMma 4.1. Suppose F(x, y, z), the joint cdf of the random variables X,



CONDITIONALLY ORDERED DISTRIBUTIONS 101

Y, Z, is given. Let H(u,v) be a cdf with marginal distributions that are
uniform on [0, 1]. Define

Gx,y,2)= [ HF\(x|W), Foy|w)) dFy(w),

where F\, F,, and F; have the obvious interpretation. Then the following
hold:

(a) G(x,y,z)is acdf.
(b) (1) Gz(z)=Fy2),
(i) Gi(x|z)=F(x]|z),
(iii) Ga(ylz)=Fy(ylz),
(iv) G(x, ylz)=H(F\(x|z), F,(y|z)).
(c) If H satisfies any of the following, then G(x, y|z) satisfies the same
(conditionally):
(i) independence,
(i) PQD (NQD),
(i) upper (lower) Fréchét bound,
(iv) TP, (RR,).
Proof. (a) This follows directly from the fact that for every z,
H(F,(x|z), Fy(yiz))is a cdf in x, y.
(b) Obvious.

(c) This follows from the result that G(x, y|z)= H(F,(x|z), F,(y|z))
and requiring for (i) H(u,v)=wuv, (ii) H(u, v) = (<) uv, (iii) H(u,v)=
min(u, v) (max(u + v — 1, 0)). Result (iv) follows by a standard TP, (RR,)
result which gives that increasing functions preserve TP,- (RR,-) -ness.

Note 4.2. Suppose H, and H, are two bivariate distributions with
uniform marginals such that H, is more PQD than H,. If corresponding
G, and G, are constructed as in the preceding lemma, then G, -2 G,.

ExampPLE 4.1. To illustrate the preceding note, consider the family of
bivariate uniform cdfs

H(x,y; A)=x+y—1+(1—-x)'"4(1—-y)'~*min((1 - x)*, (1 -p)*),

where 0<x<1, 0<y<l1, and O<Ai<|1. This is essentially the
Marshall-Olkin bivariate exponential distribution with equal marginals,
where the marginals have been transformed. See Kimeldorf and Sampson
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[9] for a discussion of this method of transformation. The distribution
above is one of those mentioned in Kimeldorf and Sampson [9] but the
form given there has an algebraic error. It is direct to show that
H(x, y; 2,) = H(x, y; 2,), whenever A, < 4,.

Let I—[U‘R“‘” = H(F(xi, o | XN — x("j)), F(oo, le X ) — x(i‘j))’
Fri (x'*7)) denote the class of p-variate cdfs of a r.v. X, where the
marginal of X*” is Fg ;, and the conditional marginals of X; and X; given
X%/ are respectively F(x,, oo|X*/=x*") and F(oo, x; | X"/ =x"7).
Then if K(x) is in this class,

K(x)< K,;R(.;j)(x)

x{iJ)
EJ min(F(x;, oo | X" =s), F(oo, x;| X =s) dFg ;(s) (4.1)

and, moreover, the r.h.s. of (4.1) is also in the class. The former statement
follows from Dall’Aglio [5] and the latter from Lemma 4.1. Furthermore,
for all K(x)€TL;ri ) K< Kipisy-

Thus the preceding corollary states that if 4 satisfies suitable regularity
conditions

i
KeTlTlijrij yRED

h(X).
Similarly, the minimum occurs at E K.,‘.Ru,,»h(x)’ where
K rii (%)

(-9 P ;o
= [ max[F(x,, 0| X" =s) + F(oo, x| X*/ =) = 1, 0] dF  (5).

5. FGM DISTRIBUTIONS

Johnson and Kotz [7] define the generalized Farlie-Gumbel-
Morgenstern distribution as being a cdf F(x) which has representation

F(x) ﬁmmb+ Y mwﬂﬁamﬂ, (5.1)
i=1 [ j=1

iy oo B € I
where I, = {(iy, .., i)lk=1, 1<i;<i,<--- <i,<p} and the «, _, are
contained in a multivariate parameter space @ and where F(x;)=
1—F(x;) is a cdf, i=1,..,p. In this paper we assume each F(x,) is
absolutely continuous so that F(x) has a pdf.
Suppose the FGM family in (5.1) contains the parameter «,. Fix the
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remaining parameters at some value 8, and denote the cdf. viewed as
parametrized by a; as F(x, a;, 0,).

THEOREM 5.1. "Let Y ~ F(t; 0, 0,) and X ~ F(t; a; + 9, 0,), where 6> 0,
F is given by (5.1), and (x;;, 8,), (a;+ 8,0)€ ©. Then X =741 Y.

Proof. Without loss of generality, assume i=1, j=2. It is easy to show
that the marginal distributions of (Y,, Y?), (Y,, Y*?), and Y? do
not depend on «,, and, hence, (a) and (b) of Definition 2.1 are satisfied. To
show (c), in light of (b), it is sufficient to demonstrate that

07 2F(t; a5+, 00)~ap‘2F(t; %12, 00)>0

Oty---0t, Oty ---0t (2)

P

for all t. That (2) holds follows immediately from the assumption é >0 and
the fact that

07 2F(t; a5, 05)
Oty---0t

=F\(t,) F5(t:)(1 + a5 Fy(t,) F5(15)) ﬁfk(tk)

P

o0~ ko _
vl [n F(y Y W TES t,,)]
37" p j=1

k=1 {il‘..,,ik};e(l,z}
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A Discounted Cost Relationship
C. S. CHEN* AND THOMAS H. Savitst

University of Pittsburgh

In Savits (1988. J. Appl. Probab. 4, in press) a very general cost mechanism for a
maintained system was considered. There he established a relationship between the
expected long run cost per unit time for the age and block maintenance policies.
In the present paper a similar relationship is obtained for the expected total
a-discounted cost. © 1988 Academic Press, Inc.

1. INTRODUCTION

Recently Savits [3] considered a very general cost mechanism for a
maintained system. There he established a relatinship between the expected
long run cost per unit time for an age replacement policy and that for a
block replacement policy.

In this paper we now consider the expected total discounted cost for the
same model. Again we show that there is simple cost relationship between
the age and block replacement policies.

The basic model is first reviewed in Section 2. In Section 3 we prove
our main result. Lastly, some further cost relationships are detailed in
Section 4.

2. REVIEW OF THE Basic MODEL

The model considered in Savits [3] can be described biefly as follows.
The basic ingredient consists of a stochastic process { R(t); 0 <1< {}. Here
we interpret R(?) as the operational cost of a unit on line during a time
interval [0, 7). The random variable { designates the time of a major

* Partially supported by AFOSR Grant AFOSR-84-0113.
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unrepairable breakdown. At this time, we replace the failed item with a new
identical unit. Thus we call { an unscheduled or unplanned replacement.
The cost for such an unplanned replacement is c,.

The two maintenance policies we consider here are referred to as age
replacement and block replacement. In the former case, a scheduled or
planned replacement occurs whenever an operating unit reaches age T; in
the latter case, a planned replacement occurs at the absolute times 7,
2T, .... In either case, the cost of a planned replacement is c,.

We assume that items put on line are independent and identical units
and that both planned and unplanned replacements take negligible time.

Throughout this paper, we assume (as minimal requirements) that the
stochastic process R has right-hand limits on [0, () and that R(t+ )=
lim,,, R(s) represents the unit operational cost on [0,7]. We shall
sometimes find it convenient to extend R by setting R(t)= R({) for > {. In
addition, we assume that R(0+)=R(0)=0 and P{{>0}=1.

In order to write down to total operational cost for the maintained
system, it is convenient to introduce some further notation. First we con-
sider the age replacement maintenance policy. Let {R(t);0<:<(,},
i=1,2,.. be independent copies of {R(¢); 0<t<{}. Define

r’i=min(C1‘, T);
0, if k=0

&= ! 1)
/P o/ I if k21,

and
| i < )
R,*(t)={Rl(t+) lf 0 t<11,
Rin)+elycrytely.ry if t2n,

for i=1, 2, ... Here I, denotes the indicator function of the set A. Then the
total operational cost over [0, ¢] for the age replacement policy, which we
denote by K ,(¢), is given by

k
K )= Y RX¥n)+RE (180 (22)

i=1

if &,<t<éy,,, k=0,1,... We adopt the standard convention that an
empty sum is equal to zero.

For the block replacement maintenance policy, we introduce the
notation

=
x> X

i
- O

]

_{0
7= C1+ +Ck

—
=
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and
Rl(t) if 0<t<0'l
Q)= & )
Y R{{)+ke,+ Ry, (t—0y) if o,<t<a,,,. (23)
i=1

Next, let {Q(7); 0<1t}, i=1,2, .., be independent copies of {Q(¢);0<1}
and set
0.(t+) if 0<t<T

QM) +c, if t>T (2.4)

Q:*(z)={

Then the total operational cost over [0, ] for the block replacement
policy, denoted by K(t), is given by

k
Ky(t)= 3, QXT)+ QF. (1 —kT) (2:5)

i=1

ifkT<t<(k+1)T, k=0,1, ...
We also denote the expected total cost over [0, ¢] by

CAt)=Ct; T)=E[K ()]
and (2.6)
Cp(t)=Cy(t; T)=E[Kp(1)],

respectively. Consequently, the expected long run cost per unit time is
given by the ratio of the average cost per cycle to the average length of a
cycle, i.e.,

Cu; T) _E[R*n)]

J(T)= lim

t Eln]
and 2.7)
17 = i CoBT)_ELQYT]

The above results follow from the theory of renewal reward process (cf.,
Ross [2]). We are, of course, making the implicit assumption that
E[|R*(n)|] and E[|Q*(T)|] are finite.

If we denote the corresponding numerators by A(T)= E[R*(n)] and
B(T)= E[Q*(T)], respectively, then it was shown in Savits [3] that

B(T):f A(T — x) dU(x) (2.8)

[o.7m
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where U(x)=3%>_, P(o,<x) is the renewal function generated by the
independent and identically distributed sequence of random variables

{15 8oy e

3. DiScCOUNTED COST RELATIONSHIP

In this section we will establish a similar relationship between the dis-
counted costs for the age and block maintenance policies. In order to define
the notion of discounting, however, we need to assume that, with
probability one, the cost functions K ,(#) and Kpz(#) generate a signed
measure on [0, c0). This is indeed the case when the cost parameters c,
and ¢, are nonnegative and R(¢) is a nondecreasing process. In order to
avoid some technical considerations, we shall henceforth only consider the
situation described immediately above.

So let > 0. We then define the a-discounted cost over [0, ¢] by

KO(y=| e ™dK (u)

(0,1]

and (3.1)

Kpw=[ e aK,w)

0,11

where K, and K are given by (2.2) and (2.5), respectively. The total
a-discounted cost is obtained by replacing (0, ¢] with (0, o).
First we consider the age replacement case. Then

J(T)= ,li"; E[K®(1)] = EU(

2y E[f“‘e—w{i Rr(ni)+R:+.(u—ck)}dv.
k=0

$k i=1

e ™ dKA(u):l

0,00)

It

Jw e ¥ K (v) dv]

0

In the last step we used the expression (2.2). We now consider each sum
separately.
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For the second sum, we write

‘Y E[f“'e*”R:Hw—mdv]

¢

-~

o) [j -“”e—“‘*RzH(w)dw]

I|
I Ms

Ele™1 E U" ‘“”Rz‘+1(w)dw]

k=0

=ch|:.[:e‘°‘WR* ](ij {E[e*"]* )

=(1—E[e"*])"'aE U" e‘“wR*(w)dw].

The second and third equalities above follow from independence and the
identically distributed assumptions.
Next, we write the first sum as

= i E[R}(n) e = f E[e™*"R}(1,)] E[e~*']

=(1-E[e])'E[e " R*(n)].

Consequently,

Je(T)=(1—E[e~*"])"" {E [a f: e~ ™ R*(w) dw] + E[e"""R*(n)]}

_Elfone " dR*w)]

I E[e "] (3.2)

We shall denote the numerator by 4‘(T), i.e.,

A‘“’(T)=E|:j o= dR*(w)]. (3.3)
0,71
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It is the expected a-discounted cost over one cycle. For the denominator,
we can also write

T _
| —Efe ] =aj G(u) e~ du,
0

where G(x)= P{{>x} is the survival function of {. Since
T P
Efn) =] G du,
0

we note that

J (T) =lim aJ\(T). (3.4)

alO0

Recall that J,(T) is the expected long run cost per unit time given in
Eq. (2.7).

(3.5) Remark. One can also derive the result (3.2) from a renewal
equation approach. More specifically, if C'*)(¢)= E[K'#(r)], one can show
that C'(t) satisfies the renewal equation

C‘,:"(t)={a [[e=ELR*(n A v)1dvo+e *ELR¥(y A tﬂ}
(1]

+| e CW(1—x)dG*(x),

(0.1]
where G*(x)=P{n<x}. Since e **dG*(x) is a defective probability
measure, the result now follows from Feller [1, p. 3617].

Next we consider the block replacement policy case. Here

JNT) = lim E[KE(0)] =EU e dKB(u)].
t— (

0,00)
By the same technique as illustrated above, it is easy to derive

ElJo.rye ™ dQ*(w)]

JG(T)===0e0

and (3.6)
J5(T)=lim aJG(T).
axl0
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In this case we denote the numerator by B*(T), i..,
B“"’(T):EU e dQ*(w)]. (3.7)
©.7]

Our main goal in this section is to relate 4A*X(T) and B“N(T). We
proceed as in Savits [3]. Since

J. e mdgrom=a e~ 0*() do+ e~ Q*(1)- Q*(0)
0,2] 0
we can rewrite j(o.r] e ™do*(w)foro, <T<0,,, as

k
[ emmdgrw)= ¥ [em* REC) +e ;]
0,7} j=1

+e RE (T—o0y)+e e,

using Egs. (2.3) and (2.4). Here we set

R&(1) =aj e~ R(v+)dv+e *Rt).
0
It can be thought of as the a- discounted operational cost of the ith unit on
line for a time interval [0, ¢). Consequently,

B*(T)=E U( e dQ*(w)]

0.7]

= Z E[J eawdQ*(W)§0k<T<0'k+1:|
k=0 0.7]

Ie'e) k
=E[R(T)+e *Tcy]+ Y, E[Z {e 7 'R +e *e,}

k=1 =1
+e R (T—a)+e *Tey; 04 < T<0k+1]
oo}
= Z E[e ™R (Lxy ) +e ™ ey04 1 <T]
k=0

[o o]
+ Y E[e ™R (T—0,)+e *Tcy;0,<T<0,,,]
k=0

We now consider th terms in the first sum in more detail. Since
Ory1=0,+ ., We have



112 CHEN AND SAVITS

Efe ** R (Liiy)+e ™ ics00,,<T]
=E[e R ({ry)+e * ;00 <T, (1 <T—0y]
=E{e " E[R®) (Ciy)+e ;i1 <T—x]| g3 66 < T}
=E{e “*E[R™()+e “c;{<T—x]lcep;0:<T}

Hence, the first sum is given by

@
Y E[e ™ RE) ((avr)+e > eys 044, <T]
k=0

-y LO . e~ *E[R™()+e%c ;L < T—x] P(a, € dx)
k=0 d

= e"“E[R™(()+e % c;;{ < T—x]dU(x)

[0,7)

where, as before, U(x)=3°_, P(c, <x) is the renewal function generated

by {,, {5, .-
Similarly, we can write the terms in the second sum as

E[e ™R (T—o)+e *Tcy;0,<T<04 4]
=E{e “*E[R(T—x)+e T ¥¢y; (2T —x]10;0c<T},
and so

oo
Y, Ele ™R (T—o,)+e *Tcy; 0, <T<044 4]
k=0

= e E[R(T—x)+e "~ Y¢,;{ 2 T—x] dU(x).

[0.7)
But,
]
A‘“’(T):Ej e’“wdR*(w):I
L (0,11
r

=F|a .[0" e *R*(v)dv+ R*(n) e‘“"]

L

=E —aj‘ge‘“"R(v+)dv+e‘°‘c{R(C)+C1};C< T]
0

+ E[a Jre"’"’R(u+ Ydv+e *T{R(T)+c,}; = T]

=E[R(0)+e *¢c;;0<T1+E[R™(T)+e *Tc,y; (= T]
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Consequently, we obtain the result

B™(T)= j e=* AT — x) dU(x). (3.8)

[o.7)

We summarize the results of this section in the following theorem.

(3.9) THEOREM. Under the model of Section 2 with cost parameters c,
and ¢, nonnegative and R(t) a nondecreasing process, the expected total
a-discounted cost for the age and block replacement policies are given by

A(a)(T)

720 =£| | TEe T

e dKA(u):I

0,0)
and

(@)
Jﬁ;‘)(T)=EU e dKB(u)]=-B—(_T)T,
(0,00) 1—e™®

respectively, ~where A“NT)=E[[qo, e ™ dR*(w)] and B“(T)=
E(f0.r1€ " dQ*(w)]. Furthermore,

B‘“(T):f e~ AT = x) dU(x).

[o.7)

(3.10) Remarks. (i) It is clear from the proof that the cost parameters
¢, and ¢, need not be constants. Everything remains as above if ¢, and ¢,
are random variables. Moreover, we may allow ¢, and ¢, to be different for
the two polices of age and block replacement. In this case, the form of (3.8)
changes slightly. See Savits [3] for further details.

(i) One can readily show that if we define a subdistribution function
H on [0, ) by H(x)= e *dG(u), and let W be the associated
renewal function generated by H, then dW(x)=e~** dU(x). Thus we many
write (3.8) as

B‘“’(T)=J AD(T = x) dW(x).

(0. 7)
Consequently, we can also write

AD(T) = BY(T) —J B™(T— x) dH(x).

[0.7)
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4. OTHER COST RELATIONSHIPS

Thus far we have established relationships between A(T) and B(T) and
also between A*)(T) and B*"(T). We complete the cycle by considering the
relationship between 4(T) and A*(T) and also between B(T) and B‘*(T).
Clearly A(T)=A“YT) and B(T)=B(T). It thus remains to express
A®(T) and B®(T) in terms of A(T) and B(T), respectively.

As in Section 3, we shall assume that R(¢) is a nondecreasing process and
that ¢, and ¢, are nonnegative. In addition, we shall assume that the
functions A(T) and B(T) are right-continuous and of bounded variation on
compact intervals.

(4.1) THEOREM. Under the above conditions, we have
(l) A(a)(T)___I(O'T]e—mx dA(x)-}-E[Cze'“(c/\ T)]‘
(i) B“(T)={w,r e * dB(x)+e *TE[c,).

Proof. We will only prove (i) since (i1) is similar. Consider
T
0

.[ e”“"dA(x)=aJ e A(v) do+e™*"A(T)— A(0)
(0.7]
=E[a‘(te_”{R(U)+Cz}d”;C<T:|
)]
T
+E[aj e‘“”{R(C)+Cl}dv;C<T:|
¢

+E[aJ‘Te°‘”{R(v)+c2} dv; (= T]
0
e *TE[R()+c, ;L <T]

+e *TE[R(T)+¢5;{=T]—E[c,]

=E[a fce‘“"R(v+ Jdv+e “{R({)+c, };L< T]

1]
+E[a jre’“”R(v+)dv+e““T{R(T)+c2};C> T]
4]

+E[cy(1—e %);{<T]
+E[cy(1—e ") {>T]1—E(c,]
— A"(T)— E[c,e~¢» D],

Thus we have the desired conclusion.
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In the above derivation we replaced R(v) with R(v+) in two
integrations. This is permissible since an increasing function can have only
countably many discontinuities.
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This article studies the strong consistency of M-estimates in linear regression
models directly from the minimization problem

i p(Y;,—a—X;Pp) :=min,

i=1

where X, . X,, ... can be random observations of a p-dimensional random vector X,
or that they are simply known nonrandom p-vectors. It is shown that the solution
(G,, B,) of this minimization problem converges with probability one to the true
parameter (ao, po) under very general conditions on the function p and the
sequence {(X;, Y;)}. © 1988 Academic Press, Inc.

1. INTRODUCTION

Consider the linear regression model
Yi=ao+X/Bote, i=12,.., (1.1)

where (o, B) is the unknown parameter, ¢,, ¢,, ... are random errors. As
for {X,}, two cases will be considered: 1. {X;} is a sequence of known
p-dimensional vectors. 2. (X}, ¥,), (X}, Y,), ... are i.i.d. observations of a
(p + 1)-dimensional random vector (X', Y).

* Research sponsored by the Air Force Office of Scientific Research under Contract
F49620-85-C-0008. The United States Government is authorized to reproduce and distribute
reprints for governmental purposes not-withstanding any copyright notation hereon.

116

Multivariate Statistics and Probability Reprinted from J. Muit. Anal. 27(1).
ISBN 0-12-580205-6 Copyright © 1988 by Academic Press, Inc.
Al rights of reproduction in any form reserved.



STRONG CONSISTENCY OF M-ESTIMATES 117

The M-estimate, introduced by Huber [5], takes the solution (4, B.,) of
the minimization problem

p(Y;—a—X;B) :=min (1.2)

1

N agE

i

as the estimate of (g, By). This paper seeks the conditions under which
(&, B,) is strongly consistent:

G, >, P.—Bo, as. as n-— oo (1.3)

In (1.2), p is a suitably chosen function on R and («, p’) varies over some
set @ < R”*', O is the parameter space. Two cases are often considered in
the literature: (i) @ = R”*!, (ii) @ is a closed subset of R”*! containing
the true parameter (o, B;) as an interior point. In the following, unless
stated otherwise, we shall only consider the (more general) first case.

An often-made assumption in the literature, for example, [6, 7, 107, is
that p'(u) =dp(u)/du exists everywhere on R. In this case the solution of
(1.2) must satisfy the equations

n

S p(Y—a-XB)=0, ¥ Xp(Y,—a-XB)=0. (1)

i=1 i=1

If, in addition, p is convex, then (1.2) and (1.4) are equivalent. However, in
many important examples of M-estimates, p'(x) does not exist for some u.
In such cases, although one may formally write down Eq. (1.4), it may
have no solution, or none of its solutions is a solution of (1.2). A well-
known example is furnished by p(u)=|u| (minimum L,-norm estimate).
Consistency results of the M-estimate in this case were given by [3, 8, 11].
A more sophisticated example, considered in [4], is that p(u)=
(1 —8)u?+ 8 |u|. In the standard form of linear regression Y, =X +¢,, for
this choice of p, formally (1.4) reduces to

21-8) Y, X(¥,~X;p)+5 Y. X, sgn(¥,—X;B)=0, (L5
i=1

i=1
where sgn(0) =0, sgn(u) = u/|u] for u # 0. Although [4] asserts that (1.5) is
equivalent to
(1-6) Y (Y,—X;B)*+0 Y |Y,—X;B| :=min,
i=1 i=1

this is not true, as has been shown in [1].
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We also note that the convexity assumption excludes many functions
with practical significance, such as p(u)=min(|u|, k) for some constant
k > 0. Another example is

~{lul, lul <k
g (“)‘{k/2+ )2, |ul>k. (1.6)

So it makes good sense to tackle this estimation problem starting directly
from the original formulation (1.2). This we shall do in the following
sections.

2. FORMULATION OF RESULTS
First consider the case where X, X,, ... are i.i.d. random vectors.

THEOREM 1. Suppose that (X1, Y,), (X35, Y,), ... are iid. observations of
a random vector (X', Y), and the following conditions are satisfied:

(a) The function p is continuous everywhere on R, nondecreasing on
[0, c©), nonincreasing on (— o0, 0], and p(0)=0.

(b) Either p(o0)=p(— )= o0 and
Pa+X'p=0)<1 when (a,B')#(0,0') (2.1)
or p(c0)=p(—o0)€(0, c0) and
Pa+X'p=0)=0 when (o, B') # (0,0"). (2.2)
(c) For every (a, B')e R?*! we have
O, B)=Ep(Y —a—X'B) < o0 (23)
and Q attains its minimum uniquely at (g, Bo).

Then (1.3) is true.

When p is a convex function, condition (2.3) can be somewhat
weakened.

THEOREM 2. If p is a convex function, then (1.3) is still true when con-
dition (a) of Theorem 1 is satisfied, condition (b) is deleted, and condition (c)
is replaced by condition (c'):

(c’) For every («, p'Ye R+ we have

O*(o, B)=E{p(Y—a—X'B)— p(Y — o —X"Bo)} (24)
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exists and is finite, and that

O*(0, B')>0,  for any (a,B')+ (a0, Bo)- (2:5)

The following theorem gives an exponential convergence rate of the
estimate (d,, B.).

THEOREM 3. Suppose that the conditions of Theorem 1 are met, and in
addition that the moment generating function of p(Y —a—X'B) exists in
some neighbourhood of 0, then for arbitrarily given ¢>0 there exists a
constant ¢ > 0 independent of n such that

P(ld, —ag| 2e)=0(e™™),  P(IB,—Bol &)= 0(e™").  (26)

This conclusion remains valid if the conditions of Theorem 2 are met, and the
moment generating function of p(Y —o—X'B)— p(Y — oo — X'By) exists in
some neighbourhood of 0.

We next consider the case where X,, X,, ... are nonrandom p-vectors.

THEOREM 4. Suppose that in model (1.1} X,, X,, .. are nonrandom
p-vectors and the following conditions are satisfied:

(a) Condition (a) of Theorem 1 is true, p(00) = p(—o0)= c0.

(b) {X;} is bounded, and if 1, denotes the smallest eigenvalue of the
matrix 1, (X,— X, )(X,—X,)" (X, =37_, X/n), then

lim inf 4,/n > 0. 2.7)

n— oo

(c) {e;} is a sequence of i.id. random errors.

(d) For any teR, Ep(e,+1t)< o0, E{p(e;+1)—ple,)} >0 for any
t #0, and there exists a constant ¢, >0 such that

E{ple,+t)—ple))} =c, 1 (28)

for |t| sufficiently small.
Then (1.3) is true. This conclusion remains valid if (a), (b) are replaced by

(a’) Condition (a) of Theorem 1 is true,
0 < p(00) = p(—0) < co. (2.9)
(b") lim,_,lim,_ sup #{i:1<i<n, |a+X[B|<e}/n=0,

(o, B’y # (0, 0%), (2.10)
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where #(B) denotes the number of elements in set B. Note that condition
(2.10) corresponds to condition (2.2) of Theorem 1.

Also, when p is convex, the condition Ep(e, + )< oo can be weakened
to E{p(e, +1)—p(e,)| < 0.

Before proving the theorems, we shall make some comments concerning
the conditions assumed:

1. Condition (c) of Theorem 1, which stipulates that Q attains its
minimum uniquely at the point (a,, Bg), is closely related to the meaning of
the regression. The essence is that the selection of p must be compatible
with the type of regression considered. For example, when o, + xB,, is the
conditional median of Y given X =x (median regression), we may choose
p(u)=|u|. Likewisely, when o,+x'Bo=E(Y]|X=x) (the usual mean
regression), we may choose p(u)=|u|%. An important case is that the
conditional distribution of Y given X =x is symmetric and unimodal with
center ao+ x'P,. In this case, p can be chosen as any even function
satisfying condition (a), and such that p(¢z)>0 when u#0. This gives us
some freedom in the choice of p with the aim of obtaining more robust
estimates.

2. Condition (2.8) of Theorem 4 reveals a difference between the two
cases of {X,} mentioned earlier. In the case that {X,} is a sequence of non-
random vectors we can no longer assume only that 0 is the unique
minimization point of Ep(e, + u), as shown in the counterexample given in
[2] for p(u)=]ul.

Condition (2.8) holds automatically when p(u) =u* and Ee, =0. When
p(u)=|u|, it holds when e, has median 0 and a density which is bounded
away from 0 in some neighborhood of 0. When p is even and e, is sym-
metric and unimodal with center 0, (2.8) holds if one of the following
two conditions is satisfied: (i) inf{(p(u,) — p(u))/(u;—u,): e<u, <
u, < o0} >0 for any ¢>0, (ii) there exist positive constants a<b and c,
such that

(p(uz) = p(u )y —uy) 2 e, 1f(u)— flu)l/(uy—u) 2 c

for any a <u, <u, <b, where f is the density of ¢,.

3. PrROOF OF THEOREMS 1-3

Our main task is to prove Theorem 1. The proof of Theorem 1 can be
easily modified to prove Theorems 2 and 3. For any constant /> 0, define
the sets

A,=[-L07*Y  A,=[-117" (3.1)
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Without loss of generality, we shall assume in the sequel that

oy =0, Bo=0. (3.2)

LEMMA 1. Suppose that the conditions of Theorem 1 are satisfied. Denote
by (&,,B.) a Borel measurable solution of the constrained minimization
problem

i p(Y,—a—X/p) :=min over (o, P')eA,, (3.3)

where [ >0 is a given constant. Then as n — oo,

é@,—0, B,-0 as (3.4)

Proof. Denote the T=27*' vertices (+/, +/,.., +1) of A, by
(a,, b)), ..., (ar, b%). From condition (a) it can be easily shown that

0<p(Y—oa—X'B)< f p(Y—a,—X'b)) (3.5)

for any (X', Y)e R**! and (a, p’) € 4,. From this, the continuity of p, and
the dominated convergence theorem, one sees that the function Q, defined
by (2.3), is continuous. Since (0, 0’) is the unique minimum point of Q, for
any ¢>0 we have

g=inf{Q(a, ') = 0(0,0'): (¢, B')eA,— A} >0. (3.6)
Choose ¢, € (0, ¢/6) and m sufficiently large such that
E{I[(X,Y)¢A,)p(Y—a-X'B)} <¢,, when (o, p')ed,. (3.7)
The existence of such m follows from (2.3) and (3.5). Write
{(XF,Y¥*), .. XX, YN} ={X}],Y)),..(X,,Y,)}nA,,. (3.8)

Put g=sup{|Y—a—X'b|: (X, Y)eA,,, (a,b')e 4,}. Choose &,>0 such
that

sup{|p(uy) —p(u)|: lu)) < g, luy| < g, luy —uy| ey} <éy. (39)
Choose ¢; >0 such that

sup{ja+X'b— (G +X'b)|: (a,b')e4,, (a,b)e 4,

(3.10)
la—a| <es, Ib—bll <es, IXI < pm} <e,.
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Choose a finite set G = {(a,, B}), ... (2, i)} = 4,— A4,, such that for any
(o, B'Ye A, — A, there exists j satisfying |a —a| <e;, [|B—B,ll <e;.

In the following we shall repeatedly use the phrase “with probability one
for n sufficiently large.” For simplicity we shall abbreviate it by “wpin.”
Also, “strong law of large numbers” will be simply written as “SLLN.”

Now by SLLN, (3.6) and (3.7), we have wpln:

n 'Y p(YF—a—X*'B)> E{I(X', Y) € A,,) p(Y —o,— X'B))} &,

i=1
>Ep(Y —a,—X'B;) — 2¢,
> 0(0,0) 4+ 4¢,, j=1, .,k (3.11)

Fix (o, B')e A,— A4,. Find j such that |a —a;| <e;, || — B,/ <e&;. According
to (3.9)-(3.11), we have

L

p(Yi—a=XiB)> Y. p(Yi—o,= X',
i=1

1 =

B i p(Yi—o;—X*'B))— p(Y;—a —X}*'B)]

i=1
2n[Q(0,0') +4e,]1—n'e
>n[Q(0,0) + 3¢, ]. (3.12)

¢

This holds simultaneously for all (a, ') € A,— A4,, wpln. On the other hand,
by SLLN, we have wpln:

S p(¥) <n[Q(0,0) +5,1. (3.13)
i=1

From (3.12) and (3.13), it follows that |#,| <¢ and ||f,| <¢ wpln, so (3.4) is
proved.

LEMMA 2. Suppose that the conditions of Theorem 1 are satisfied. Then
there exists a constant |>0 such that (&,, P,)e A, wpln, where (4, B.) is
defined as a solution of (3.3).

Proof. Write S= {(a, p'): (2, B')e R”*', o> + |B|*=1}. By (2.1) we can
find ¢> 0 such that

v=inf{P(Jla+ X'B| >¢): (o, B') € S} >0. (3.14)

Choose m >0 such that P(Xe 4,,)>1—v/4, and put u=3"'(1+ pm)'s.
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Choose a finite set S, = S such that for each 0e S there exists 8, S, for
which |0 —0,|| <u. By (3.14), we have wpln,

#lir1<i<n, la+X[p| >} =nv/2, for every (o, p')esS,. (3.15)
First consider the case p(c0)=p(— o0)— 0. By SLLN, we have wpln,
#{i:1<ignX,eA,,}=n(l—v/4). (3.16)

Choose a constant K>8[Q(0,0")+1]/v. Since p is continuous and
p(+00) =00, we can find #>0 such that p(x)> K when |x| > h. Choose
/>0 large enough such that

gl > 4h, P(|Y| <el/4)>1—v/8. (3.17)
By SLLN, we have wpin:
#{i:1<i<n, |Y,|<el/d} =n(1 —v/8). (3.18)

Now choose arbitrarily (&, §') ¢ 4,. Then (& B')=r(x, p’) for some r>1/
and (o, p')e S. If (o, p') € S, then from (3.15) and (3.18), we have wpln:

#{ii1<i<n |Y,—a—X;Bl =3le/4} > 3nv/8. (3.19)

If (o, p')¢S,, then choose (a* P*')eS, such that [a—a*| <y,
IB—PB*| <u. When |a* + X p*|>¢ and X,e 4,,, we have

o+ X Bl =& — |a* — o+ Xi(B* — B)|
Ze—|a* —a| — X, [B* — B

ze—u—pmuze— (14 pm)u>¢g/2.

(Recall that u=3"!(1 + pm)~'c.) Hence |& + X,P| > le/2. From this, (3.15),
(3.16), and (3.18), we have wpin:

#{:1<ig<n, |Y,—&— Xl > le/d} = nv/8. (3.20)
By (3.19), (3.20), (3.17), and the choice of A, we have wpln,

S p(Y,—3—X!B)>vKn/8> [Q(0,0') + 1]n, (3.21)
i=1

simultaneous for all (& P’')¢ A4, Taking &, =4 in (3.13), we see that
(&n, gn)EAI Wpln
We now consider the case O0<p(+ow)=c<oo. First note that
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0(0, 0') < ¢ by condition (a). Further, condition (2.2) ensures the existence
of ¢ >0 for given ¢ <1 such that

inf{P(la+X'B|>¢): (a0, p') €S} > 1. (3.22)

Based on (3.22) and modifying the previous argument appropriately, we
can choose />0 such that for given ¢, >0, we have wpln:

Z": p(Y,—a—X;B)>n(c—¢), forall (o, p')¢A,. (3.23)

i=1

Choose ¢, =[c—Q(0,0'))/3. From (3.13) and (3.23), it follows that
|&, <e and [P, <e wpln, as before. This concludes the proof of
Lemma 2.

Proof of Theorem 1. Apply Lemmas | and 2.

Proof of Theorem 2. Since p is a convex function, we need only prove
that the conclusion of Lemma 1 holds under the assumptions of
Theorem 2. For this purpose put p*(Y —a— X'B)=p(Y—a—X'B) — p(Y),
and define ¢* as

q* =inf{Q*(a, B'): (o, B') € 4, — 4.}, (3.24)

where Q* is defined in (2.4).
Now denote by (a;, b)), ..., (a, by) the T=27+1 vertices (+/, .., +/) of
A, (ary, by, ), ..., (ay7, b5y) the vertices of 4,,. We proceed to show that

sup{|p(Y —a—X'B) —p(Y)|: (a, ') € 4,}
<2 max |p(Y—a;—X'b;)—p(Y)|

1<j<2T
=K(X', Y). (3.25)
Indeed, if p(Y—a—X'B)=p(Y), then by condition (a) we have
p(Y—a—X'B)— p(Y)| <max, . ;crlp(Y —a;— X'b)) —p(Y)|. If p(Y)>
p(Y —a—X'B), two cases are possible: a+X'$>0 and «+X'B<0. The

bandling of these cases being similar, we shall consider only the former
case. By convexity of p, we have

pY+c)—p(Y+c—a—X'B)=p(Y)—p(Y—a—X'B), forany ¢=0.
(3.26)

Since («, B')€ 4, there exists j< T such that a+X'B>a,+X'b,. Write
a=a—a, 5=B—bj, and set c=a+ X'b in (3.26). We obtain

p(Y)—p(Y—a—X'B)<p(Y+a+X'b)—p(Y—a,— X'B)).
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Obviously, (4, b')e 4,,. Hence by condition (a) there exists k <27 such
that p(Y+a+X'b)<p(Y—a,—X'b,), and we get
lp(Y)—p(Y —a—X"B)|
=p(Y)—p(Y—a—X'B)
<p(Y-a,—X'b)—p(Y—a,—X'b))
<|p(Y—a, —X'b) — p(Y)| + |p(Y —a;— X'b)) — p(Y)|
<2 max [p(Y—a;—X'b;)—p(Y)|

1<j<2T

and (3.25) is proved. (3.25) and condition (c’) together ensure that Q* is
continuous, and therefore ¢g* > 0. The rest of the proof is similar to that of
Lemma 1.

Applying Theorem 2 to the case p(u)=|u|, we obtain the following
corollary, which was proved in [3] with the additional conditions that
E|Y|<ow, Y—a,—X'B, and X are independent, and P(a + X'B=0)=0
when (a, p’) # (0, 0').

COROLLARY 1. Suppose that (X}, Y,), (X5, Y,), .. are iid samples of
the random vector (X', Y), which satisfies the conditions:

1. EJX| < 0.

2. The conditional distribution of Y given X =x has a unique median
%o+ X'Bo-

Denote by (é,, B,) a solution of (1.2). Then (1.3) holds.
Proof of Theorem 3. The proof follows from the following two lemmas.
LeEmMMA 1. Suppose that the conditions of Theorem 3 are satisfied, and

[>0 is a given constant. Then for any &> 0 there exists a constant ¢ >0
independent of n, such that

P(la,— ool 2&)=0(e™"),  P(IB,—Boll =¢)=0(e™"),
where (,, B.,) is defined as a solution of (3.3).

LEMMA 2. Suppose that the conditions of Theorem 3 are satisfied. Then
there exist constants | >0 and ¢ >0 such that

P{(d,—aq, B, —Bo) ¢ A} =O0(e™).

These lemmas can be proved by the same method used in proving
Lemma 1 and Lemma 2, together with the following fact (see [9, p. 288]):
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Suppose that £,, &,, ... are i.i.d. random variables, E¢, =0 and there exists

>0 such that Eexp(t&,)< oo when |t} <. Then for any given ¢>0 we
can find a constant ¢ >0 such that

P15

4. PROOF OF THEOREM 4

>£)=O(e“").

We give only the proof of Theorem 4 under conditions (a)-(d). It is easy
to modify the proof when (a) and (b) are replaced by (a’) and (b’).

LEMMA 3. Suppose that function p is defined on R, p(0)=0, is non-
decreasing on [0, o) and nonincreasing on (— 0, 0]. Let {Y;,i=1,2,..} be
a sequence of i.id. variables such that

Ep(Y,+¢)< 0, for any ceR, (4.1)

and {c;,i=1,2,..} be a sequence of bounded real constants. Then

lim Z [p(Y,—c)—Ep(Y,—¢,)]=0, as. (4.2)

n—w N .
i=1

Proof. Apply a standard truncation argument.

LEMMA 4. Suppose that the conditions of Lemma 3 are satisfied, and that
p is continuous everywhere on R, {X,} is a bounded sequence, and B is a
bounded set in RP*'. Then, with probability one, the sequence {(1/n)
(Y, —a—X[B)— 3", Ep(Y,—a—X;B)):n=1,2, ..} of functions of
(o, B') is equicontinuous and uniformly bounded on B.

Proof. Denote by F the probability distribution of Y,. Construct the
probability space (R*, #=°, F*). Fix integer m > 0, find /> 0 such that

E{p(Y +T)I(p(Y,+ T)2h)+p(Y,—T) I(p(Y,—T) = h)} <1/(3m),
(4.3)

where T=sup{|a+ X/B|: i=1,2, .., (, B')e B} (<o by the boundedness
of {X;} and B). From the assumptions on p, it follows that there exists
€, >0 such that we have |p(u;)—p(u,)|<1/(3m) when |u, —u,| <eg,
and min(p(u,), p(uy))<h. Find ¢,,>0 such that |(a+X/B)—
(a*+ X/B*)| <e¢,,, i=1,2,.., whenever (a,p’)eB, (a* p*')eB and
(o, B) — (o*, B* ") < &y -



STRONG CONSISTENCY OF M-ESTIMATES 127

Now by (4.3) and SLLN, we can find a positive integer N,, and a set
D, e %> with F*(D,,})<2~™ such that

n! z p(Yi+T) I(p(Y,+ T) = h)

tn! i p(Y,—T)I(p(Y,— T)=h)< 1/(3m), (4.4)

i=1

whenever n>N,, and Y*=(Y,,Y,,..)¢ D,,. Since {X;} and B are bounded,
for any Y* e R® we can find ¢,,,(Y*) such that

n”! i (p(Y,»—ot*—X{B*)—p(Y,-—a—Xiﬂ))‘<1/(3m), (4.5)
i=1

whenever 1<n<N,,, (¢,p')e B, («*, B*’'}e B, and ||(a*, p*')— (a, P')Il <
e2(Y*). Take ¢,(Y*)=min(e,,, &,.2(Y*))

Now suppose that (a,p')eB, (a*,p*')eB, l(a* B*')— (a0 P )<
e(Y*), and Y*¢ D,. Then for n< N,, we have (4.5). If n> N,,, then

ey (p(Yi—a*—X;B*)—p(Yi—a—x;ﬂ)>|
i=1

<n™' Y p(Yi—a*—X:B*) I(p(Y,— a* — XB*) > h)

i=1

+n 1Y p(Yi— = XiB) oY, ~x~ X(B) > h)
i=1

+n7 | oY = a* = X(B) —p(Y,— 2= X;B)]
=J,+J,+J5, (4.6)

where the summation Y’ is over all i such that 1 <i<n» and min(p(Y,—
a* — X/p*), p(Y;,—a—X/B))<h. From (4.4), the definition of 7 and the
conditions imposed on p, we have

J, < the left-hand side of (4.4) < 1/(3m).

Likewise, J, < 1/(3m). Finally, by the definition of ¢,,, ¢,,,, and ¢,,(¥Y*),
for each i belonging to the range of summation ', we have
|p(Y, —a* —~X/p*)—p(Y,—a—X;B)| < 1/(3m). Hence J;<1/(3m). Sum-
ming up, we find that (4.5) is still true when 1/(3m) on the right-hand side
of (4.5) is replaced by 1/m.

Now write D=NO*,U®_,D,,. Since F*(D,)<2™™, we have
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F*(D)=0. From the above discussion we see that for any

Y*=(Y,,Y,,..)¢ D and any positive integer m, we can find ¢,,(Y*)>0
such that

3 (oY —a* ~X(B*) — p(¥,~x~ X;B)

/ngl/m, for n=1,2,..

whenever («, B') e B, (a*, *')e B, and || (a*, B*')— (o, P')|| <&,,(Y*). This
proves the equicontinuity of {¥7_, p(Y,—a—X/B)/n: n=1,2,..} over B,
with probability one. The uniform boundedness of this sequence of
functions follows from the fact that when Y*¢ D, we have Y*¢ D, for
some m. Repeating the above argument, we find that

1=

p(Yi—a—X;B)/n<h+1/(3m)

i=1

for n= N,, and (a, B') € B, while for n< N,, we have

p(Y—a=XByn< Y ((Yi+T)+p(Y,=T))

1 i=1

(NagF!

for any («, §') € B.

Therefore, in order to prove Lemma 4, we have only to establish that
{3r_Ep(Y,—a—X B)/n: n=1,2,..} is uniformly bounded and equicon-
tinuous on B. This is simple, since Ep(Y,+c) is continuous for each ¢,
sup{la+X;B|: i=1,2,.., (¢,p')eB}=T< 0, and

Ep(Y,—a—XB)<Ep(Y,+T)+ Ep(Y,—T), (a,8)eB, i=1,2,...

Combining Lemma 3 and Lemma 4, we obtain

LEMMA 5. If the conditions of Lemma 3 and Lemma 4 are satisfied, then
there exists a set D e B% such that F*(D)=0, and when (Y,, Y,,..)¢ D we

have lim,_ 37 , [p(Y,—a—X;B)— Ep(Y,—a—XB))/n=0 uniformly
for (o, B') € B, B is a given bounded set in RP*".

In the following we adhere to (3.2), and put
Su={(a, B'): 0’ + |BI> < M},
Swu={(a, p'): a® + B> = M}

for any M >0.

LEMMA 6. Suppose that the conditions (a)-(d) of Theorem 4 are
satisfied.
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(i) There exist ¢, >0 and ¢,>0 such that
inf{#@:1<i<n, la+X[B| =¢,)/n: (0, )eS,} =&, 4.7

Jor n sufficiently large.
(ii) For each M >0 there exists a constant ¢,,>0 such that

S E[p(Y,—a—X;B)— p(Y)1n > | B) e (48)
i=1

i=

Jfor (o, B')€ S,, and n sufficiently large.

Proof. Consider

2 (a+XB)Y=n(a—X,B)>+§ H,B,
i=1
Where xn=(x1 + - +Xn)/n’ Hn=2?=1 (X,-—X,,)(X,-—X,,),. Suppose
that (o, p’)eS,. Write My=sup{1, |X,|: i=1,2,..}. If |[B] = (2pM,) ",
we have, according to (2.7), p'H,Bp> (2pM,)~>6,n for some constant
;>0 and n large. If |B| <(2pM,)"", then |X.BI<(2p)"!, and
lal 2/T—(2p) 22./3/2. Hence |a—X,B|>./32—1>1, and so

n(o — X, B)> > n/9. Summing up the above gives
Y (x+X;p)*=dn,  forall (e, p')eS, and n large, (4.9)
i=1

for some 6> 0.
Now suppose that (4.7) is false. Then we can find n;—» 0, 0<¢;; >0,
0<ey—0, (2, B;)e S, such that

#li:1<isn, |0, +X/Bl>¢} <eyn,, j=1,2,.,

which entails that
2 (aj+X,fﬂj)2/nj<sfj+sij2, j=1,2, ..,
i=1

where T= M, + 1. This contradicts (4.9), and (4.7) is proved.

For a proof of (4.8), we notice that since Ep(Y,+t)> Ep(Y,) when
t#0, Ep(Y, +1t) is continuous in ¢ and « + X is uniformly bounded for
i=1,2, .. and (o, p’)e S,,. Hence it follows from (2.8) that there exists a
constant 6,,>0, depending only on M, such that E[p(Y,—a—X/B)—-
p(Y)]1=6,a+X.B|? for (o, p') e S,,. From this and (4.9), (4.8) follows.
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LEMMA 7. Suppose that the conditions (a)-(d) of Theorem 4 are

satisfied. Given 1>0, denote by (d,,P.) the solution of the constrained
minimization problem (3.3). Then (3.4) holds. Moreover, the conclusion of
Lemma 2 holds.

Proof. Fix ¢€(0, R). Let D be the set mentioned in Lemma 5. Since
l(x, B')| =& when (a, B')¢ 4, (see (3.1)), it follows from Lemma 5 and
Lemma 6(b) that

inr{i [p(Y.-—a—x:n)—p(Yi)]/n:(a, B')eA,—As}sz-‘sze(,W,

i=1

for all (Y,, Y,,..)¢D.

By Lemma 6(a), we still have (3.15) in a slightly different notation.
Moreover, (3.16) remains true by the boundedness assumption of {X,}.
Hence the proof of Lemma 2 remains valid in the present setting,
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Minimal Complete Classes of Invariant Tests for
Equality of Normal Covariance Matrices and Sphericity

ARTHUR COHEN* AND JOHN I. MARDENT

Rutgers University and University of lllinois

The problem of testing equality of two normal covariance matrices, 2, =2, is
studied. Two alternative hypotheses, 2 #Z2, and X, —2,>0 are considered.
Minimal complete classes among the class of invariant tests are found. The group of
transformations leaving the problems invariant is the group of nonsingular
matrices. The maximal invariant statistic is the ordered characteristic roots of
S, S5, where S;, i =1, 2, are the sample covariance matrices. Several tests based on
the largest and smallest roots are proven to be inadmissible. Other tests are
examined for admissibility in the class of invariant tests. The problem of testing for
sphericity of a normal covariance matrix is also studied. Again a minimal complete
class of invariant tests is found. The popular tests are again examined for
admissibility and inadmissibility in the class of invariant tests. © 1988 Academic

Press, Inc.

INTRODUCTION AND SUMMARY

The problems of testing equality of two normal covariance matrices and
testing sphericity of a normal covariance matrix are classical problems in
multivariate analysis. See, for example, Anderson [1, Chap.10] and
Muirhead {7, Chap. 8]. In this paper we consider the admissibility of
invariant tests in these common testing problems. Two problems (two-
sided and one-sided cases) are based on S, and S,, independent, where

Si~W,(n, %)) and Sy~ W,oin,, 25), (1.1)

and W,(n, 2) is the Wishart distribution on p x p matrices with n degrees
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of freedom and expectation nX. We assume that p>2, n, 2 p, and n, 2 p,
and that X, and X', are positive definite. We consider testing

Hy 2 =2, versus H; 2 #2%,, (1.2)

and
Hy: X, =%, versus H, .2 >, (1.3)

where 2’| > X, means that 2, — X, is positive definite.
The third problem tests for sphericity of a covariance matrix. That is, we
have

S~ W,n, %), (1.4)
nzpz=2, 2>0, and test
Hy,: X =0’  versus H, . X #0, (1.5)

where o2 > 0 is unspecified and 7 is the p x p identity matrix.
Problems (1.2) and (1.3) are invariant under the group Gl(p) of pxp
nonsingular matrices, which acts on (S,, §,) via

A: (S, S;) (AS,41, A5, A4") (1.6)

for A€ Gl(p), and on (X, 2,), similarly. A maximal invariant statistic and
parameter are respectively

z=diag{ordered characteristic roots of §,5; '},

and
o =diag{ordered characteristic roots of 2, X, '}.

See Anderson [1, Theorem 10.6.1]. However, to develop our results it is
more convenient to work with the maximal invariants x and 6, where
x;=(z;—1)/(z;+1)and 0,=(1 —a,_;,,)/(1 +a,_;, ) As such,

x = diag{ordered characteristic roots of (S, — S;)(S, +S>) '}, (1.7)
and
0 = diag{ordered characteristic roots of (X, — X )}(Z,+Z,) '}

Hence, xe 2(p), the set of pxp diagonal matrices, and the diagonal
elements of x satisfy 1>x,>x,> --- 2x,> —1. The invariance-reduced
problem (1.2) then tests

Hy:0=0 versus H,:0e®—{0}, (1.8)
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where

O0={0€2(p)|1>0,260,>---20,> —1}, (1.9)
based on x with sample space

T={xeD(p)|1>x>x,> - >x,> —1}. (1.10)

Note that we have eliminated from the sample space the set of measure
zero on which the xs are not distinct. A popular test for (1.2), in terms of
x, is likelihood ratio test (LRT), which rejects H, when

[T+ x) =™ |- x| =" > c. (1.11)
Another test, which arises from our complete class rejects H, when

ny+n,

3 (trx)’ +trx?>¢, 0<c<fl%p2+p. (1.12)

(In each case, the constant ¢ is chosen to provide the desired level.) Other
tests, including those based on tr x and the extreme characteristic roots, are
listed in Muirhead [7, p. 332]. One such rejects H, when

tr x <, or tr x>c,, —p<c<cy,<p. (1.13)

Tests based on the extreme roots of S, S, !, which are equivalent to those
based on the extreme roots of (S;—S,)(S,+S,) ! include those which
reject H, when

x; < ¢y or X{> €y (1.14)

X,<c or X,>Cy; (1.15)

X,<c and X, >Cy; (1.16)
and

x,<cy or X, >c,. (1.17)

In each case, — 1 <c¢;<c¢,< 1.
Maximal invariants for problem (1.3) are x and ¢ as in (1.7), but now
the alternative parameter space is smaller:

Hy,:0=0 Versus H,0e0t —{0}, (1.18)
where

0+ =1{0eP(p)|0>6,>0,>--->0,>—1}. (1.19)
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The LRT for problem (1.3) modifies (1.11) by using the statistic X instead
of x, where X e 9 (p) is defined by

X;=max {xi, i —nz}' (1.20)
ny+n,
The test rejects Hy, when
[+ % ~"72 | 1—x%] "?>c, ¢>0. (1.21)

The locally best invariant test rejects H, when
tr x > ¢, (1.22)

where —p<c<p (see Giri [4]). The extreme root tests have rejection
regions

X, >c (1.23)
and
X,>c, (1.24)

where —1<c<1.
The following theorem summarizes our admissibility/inadmissibility
results for problems (1.8) and (1.18).

THEOREM 1.1. () The LRT (1.11) when n,>2(p—1) and n,>
2(p—1), and the test (1.12), are admissible in the invariant problem (1.8).
The tests (1.13)-(1.17) are inadmissible. (b) The test (1.22) is admissible in
the invariant problem (1.18). The LRT (1.21) and root tests (1.23) and (1.24)
are inadmissible.

The result for the test (1.22) follows from the essential uniqueness of its
local properties, although it is also easy to prove its admissibility by using
Theorem 3.1. The admissibility of the LRT (1.11) in problem (1.8) follows
from the stronger result of Kiefer and Schwartz [6] which proves the LRT
is admissible Bayes for the original problem (1.2).

The inadmissibility results are all based on violation of the following
convexity property. (We represent a test as a measurable function
¢:x—[0,1], where #(x) is the probability of rejecting H, when x is
observed.)

PROPERTY 1.2. The test ¢ equals 1 —1,, ae. [v], for some convex set
A < X for which no three points of the boundary in X are collinear.

Here, v is the measure on X when 6 =0, which is absolutely continuous
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with respect to Lebesgue measure on R?, and I, is the indicator function of
A. We will prove the next proposition in Sections 2 and 3.

PROPOSITION 1.3. (a) A necessary condition for a test ¢ to be
admissible for problem (1.8) is that it equal 1 — 1, a.e. [v], where A is either
of the form {x|tr x<a}, or {x|trx=b}, or ¢ satisfy Property 1.2.

(b) A necessary condition for a test ¢ to be admissible for problem
(1.18) is that it equal 1 —1,, ae. [v], where A is of the form {x|trx<a},
or ¢ satisfy Property 1.2.

It 1s fairly easy to see that tests (1.13)-(1.17), (1.21), (1.23), and (1.24)
are not of the form required by Proposition 1.3.

Now turn to problem (1.5). The invariance group for this problem is
the direct product (0, 0)x O(p), where the operation for (0, ©) is
multiplication and O(p) is the group of p x p orthogonal matrices. The
action is

(¢, I'): S—> cI'ST". (1.25)
A maximal invariant statistic and parameter are, respectively,
y =diag{ordered characteristic roots of S/tr S} (1.26)

and
A =diag{ordered characteristic roots of Z/tr 2'}. (1.27)

We prefer to use the parameter
w=pi-—I, (1.28)
so that the hypotheses in (1.5) become
Hyo=0 versus Hi weQ—-{0}, (1.29)
where
Q={we2(p)l (p—1)>w2 - 2w,> —1 and tr o =0}. (1.30)
The LRT for problem (1.5) rejects H, when
ly| <c, O<ce<l, (1.31)

where |y| is the determinant of y. The locally most powerful invariant test
has rejection region

Y

Szz% - pP>d (132)
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where y=ZXy,/p=1/p. See Sugiura [8]. Relevant root tests have rejection
regions

y.>a, (1.33)
yp,<b, (1.34)
yi>a and y,<b, (1.35)
and
Y, >a or y,<b, (1.36)

where ae (1/p, 1) and be (0, 1/p).

THEOREM 1.4. The LRT (1.31) and LMPI (1.32) test are admissible for
problem (1.29). The root tests (1.32), (1.34), (1.35), and (1.36) are
inadmissible if p = 3. When p =2, the uniformly most powerful invariani test
has rejection region {y | y,>c}, ce(3, 1).

Again the admissibility of the LRT is found in Kiefer and Schwartz [6],
and that for the LMPI test is due to its uniqueness. See also Theorem 3.1.
The inadmissibility results follow from the next proposition.

PROPOSITION 1.5. A necessary condition for a test ¢ to be admissible for
problem (1.29) when p = 3 is that it satisfy Property 1.2 (with %, the space of
v, in place of Z.)

The proof of this proposition and the p =2 result are given in Section 3.

Our main results in the paper are Theorems 2.1, 2.2, and 3.1, which
contain the minimal complete classes of tests for the reduced problems
(1.8), (1.18), and (1.29). The proofs are in Section 4.

2. TESTING &' =2,

We will use Brown and Marden [2] heavily, so that our first task is to
find the likelihood ratio for x. Recall

z=diag{ordered characteristic roots of S;S;'}, (2.1)
and

a = diag{ordered characteristic roots of £, X ;'}.
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Then from James [5, Egs. (33) and (65)], we have that

SAFH) =1l = L2l [ |+ 2l TP p(dr),
ow (2.2)
B=(n,+ny)/2,

where f,(z) is the density of z when o obtains, and p is the Haar
probability measure on O(p). Now by (1.7) and (2.1)

z=(I+x)(I—x)! and a=I-0)I+6)"", (23)

where d = diag(a,, ..., @;). Thus the ratio (2.2) in terms of (x, 6) is
[T+ 0]™/2 |1 — )™ '[ |1+ x| =8 p(dr). (24)
O(p)

(To see this, note that « can be replaced by 4 in (2.2),
le| =1—06] |[T+6]~",
4zl =T+ T+ x)I—x)"=|I—x|"" |2l =|I—x| " 27,

and
[I+zloa 'r|={I+(I—x)""(I+x) FI+6)([—6)"' I
=[I—x|""\"I—x)T+T'(I+x)(1+0)(I—-0)""|
=|I—x|"'"[[-0| " \I"I-x)I'(I—0)+T'(I+x)I'(I1+80)
=|I—x|""|I—6]7" |21+ 2I''xI6|
=|I—x|""|I—6|""|I+xI6I"} 2".)

Let a(f)=|I+0] "/ |I—0|~™"?, and define Ry(x) to be a(f) times the
quantity in (2.4), so that

R,(x) = f \r+xror ~8 p(dr). (2.5)

Oof(p

To define the minimal complete classes, we need the derivatives

0
I(x)=(I,(x), .., [,(x)), where li(x)=_OF Ry(x) |g_os (2.6)

ad

2

~ 26,00, Ro(x) lg=0- (27)

Vix)={Vi{x)}?;-1» where V,(x)
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For neR?, Mye #(p) (the set of nonnegative definite symmetric pxp
matrices), He # (0 — {0}), where # () is the set of nonnegative measures
on ¥ and @ is the closure of @ in 2(p), and c € R, define

dx)=d(x; u, My, H, c)

=pl(x)+5tr M, V(x)+f Ry(x) — 1~ 0(x)

o qoF @me 29

where 0 is the vector (6, .., 8,). We have extended the domain of R,(x) to
OxZ by continuity.
For problem (1.8) define & to be the class of all tests of the form

" )_{1 if d(x; u, My, H,c)>0

Tl0 ifd(x;p, My, H, ) <0, ae. [v], (29)

for some

(4, Mo, H, c)e C(O) x {3J | 720} x F(@ — {0})x R— {(0,0,0,0)}, (2.10)

where C(@) is the smallest convex cone containing ©,

C(O)={0eD(p)]6,26,> - 20,}, (2.11)

J is the p x p matrix consisting of all ones, and %(® — {0}) is the set of
measures G € (0 — {0}) which satisfy

0.9
j Ll Gy < o, i=1,..p—1. (2.12)
-0 61

THEOREM 2.1. The class @ is minimal complete for problem (1.8).

The proof will be given in Section 4.

Now we look at the local terms (2.6) and (2.7) more closely. From James
[5, Egs.(13) and (33)], we see that Ry(x) in (2.5) is a generalized
hypergeometric function of two matrix arguments with zonal polynomial
expansion:

-(';':‘ Cx( —0) CK(x)

Ri(x)= Folfi=6.x)= 3. ¥ B—"c

k=0 ke Pk)

(2.13)

Here, 2(k) is the set of partitions of the integer &, and for each partition x,
C.(-) is the corresponding zonal polynomial and c, is a positive constant.
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The zonal polynomials for k <6 are given in the Appendix of James [5].
We need the k£ <2 terms,

B 1 B(B+1)

Ry(x)=1—-=trftrx+ (tr x)? + 2 tr x?][(tr 6)> + 2 tr 6]
’ P 6 plp+2) LTV

+l ’3_(/3‘_—1/2)) [(tr x)? —tr x2][(tr 0)> — tr 62)] + ho(x), (2.14)

3 p(p—1

where

d C(-8)C
hix)= 3 T me A (.15)

k=3 kePk) "

Since for ke #(k) and Ae2(p), C.(A) is a symmetric polynomial in
Ay, .., A, of degree k, and each monomial making up the polynomial has a
nonnegative coefficient (see Farrell [3, Problem 13.1.13]), we can derive
that

|IC.(x) < C.(]) for xe &, (2.16)
since |x;| <1 for each i, and that for any e (0, 1), and k>3,

)
o1

<& 7C (D)

<eBO%=2C (V%) for |10 <e. (2.17)
Thus, since Ay(x) in (2.15) is a sum of terms with k > 3,

ho(x)

”0“2 < Z Z & CK(81/61) 8(5/6)k72

!
k=3 xePk) k!

<Y Y O

!
k=0 xeP(k) k
=g\ |[—glep)

=gl2(1 —¢gV8)~Fr, (2.18)

sup sup
xed 0] <¢

Hence (2.14) and (2.18) make it easy to show that from (2.6) and (2.7),

l(x)= ——ﬁ- tr x, i=1,..,p, (2.19)
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and
B(B+1) 2 2 i
i) [(tr x)*+ 2 tr x*] ifi=j
Vix)= %% [(trx)>+2tr x*] (2.20)
2BB=12) (o i
+3 o= 1) [(tr x)* —tr x?] ifi##j.

Hence if we take u and M, as in (2.10),
ul(x)= —g (Zpu)trx=otrx (2.21)

and
tr MoV(x)=7 Y. Y Vi(x)=yB[B(tr x)* +tr x?], (2.22)

where 6 € R and y > 0. Thus we can alternatively define @ to consist of all
tests of the form

-y ficonnacoeep, 0
for
(6,7, Hyc)eRx [0, 0)x F(@ —{0})x R— {(0,0,0,0)}, (2.24)
where

d(x;8,y, H,¢)=05tr x+y[Btr x)?+tr x?]

+J (Ro(x)— 1+ (B/p)trBtrx)
8- {0}

T H(d0)—c.  (2.25)

We turn to Theorem 1.1(a) The test (1.12) is easily seen to be in @,
hence is admissible for problem (1.8), by taking (4, y, H,¢)=(0, 1,0, ¢) in
(2.23). The remainder of the theorem follows as in the Introduction
pending proof of Proposition 1.3(a), which we now give.

Proof of Proposition 1.3.a: We start by showing that Ry(x) is strictly
convex in x if 8#0. Using the representation of (2.2) obtainable from
Wijsman [9], we write

f (Z) Ial"Z/ZI |AAr|ﬂ—p/2 e_(1/2)[r'4s"41€_“/2)"“'432”[dA
& —
folz) [TAA|P= P72 o= (WA T S04T 4 4 ,

(2.26)
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where the integrals are over A e %I(p). Manipulations familiar in such
situations yield the ratio in terms of (x, 8) to be

K |1+ 0| —m/2 |I__ 0| —ny/2 J' |AAllﬁ—p/2 e—(l/2)trAA'e—(l/2)tr0AxA’ dA, (227)

where K is a positive constant. It is then possible to prove that if 8 # 0, the
expression in (2.27) is strictly convex in x, hence Ry(x) is strictly convex
in x.

Now consider a test ¢ € @ and the corresponding set from (2.23),

B={x|d(x;é,7, H,c)<0}. (2.28)

Since Ry(x) is strictly convex in x if 8#0, trx is convex in x, and
B(tr x)? + tr x2 is strictly convex in x, we have by (2.25) that

() d(x; 6,7y, H, c) is strictly convex in x if (y, H) # (0, 0); (2.29)
(ii) dx;8,7,H,c)= —c for c #0if (3, y, H)= (0, 0, 0);
(iii)  d(x;6,y, H,c)=dtrx—c  for & # 0 otherwise.

In any of the cases in (2.29), B of (2.28) is convex, and since d is con-
tinuous in x and v is absolutely continuous with respect to Lebesgue
measure on R”, the boundary of B in & equals {x|d(x)=0} and has
v-measure zero. Hence ¢=1—1,, ae. [v].

If case (ii) or (iii) in (2.29) holds, then B is either {x|trx<a}, or
{x|trx=>b}, where we take a or be [ —p, p]. (In case (ii), B is either
empty or Z, so we take a= —p or a=p, for example.) If case (ii) holds,
then since the boundary of B is {x | d(x)=0}, and d is strictly convex, no
three points on the boundary of B can be collinear, i.e., Property 1.2 holds.
Hence Proposition 1.3(a) is proven. '

Now turn to the one-sided problem (1.18). Define the class of tests @,
which is a subset of @, to consist of all tests of the form
1 ifd*(x;0,H,¢c)>0

¢(x)={o if d*(x: 6, H, c) <0, ae. [v], (2.30)

for
(6, H,c)e [0, 0)x F(OF—{0})xR—{(0,0,0)}, (2.31)

where

(Ro(x)—1)

d*(x;0,H,c)=0trx+
( ) T

H(d8)—c. (2.32)
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The function Ry(x) is given in (2.5). The proof of the next result is in
Section 4.

THEOREM 2.2. The class @ is minimal complete for problem (1.18).

The proof of Proposition 1.3(b) follows as the proof of part (a) above,
where we note that 6 > 0. An additional result is available. Note that, from
(2.27),

—trAxA'= -y ) 0,x;al. (2.33)
i

Since for e @, 8, <0 for each i, the expression in (2.33) is nondecreasing
in each x;, hence Ry(x) in (2.27) is nondecreasing in each x,. It is easy to
extend the definition of Ry(x) to

xeZ*={xe2(p)|—1<x,<1foreach i}.

This new Ry(x) and the corresponding 4 *(x) are invariant under per-
mutations of the elements of x. See (2.27) which is in terms of ordered x;'s.
Together with the convexity of d*, we have by Proposition 4.C.2d of
Marshall and Olkin [10] that d* satisfies the weak submajorization
monotonicity property, ie.,

Ifx,yeZ with x<y,, x;+ X, <y +ya, e X1+ - + X, <)+ - +y,
then d*(x)<d*(p). (2.34)

Thus we have the following:

PROPOSITION 2.3. A necessary condition for a test ¢ to be admissible for
problem (1.18) is that it equal 1 —Ig, ae. [v], for some set B which is
monotone nonincreasing in the ordering (2.34).

3. TESTING SPHERICITY

Let g,(y) be the density of Y in (1.26) when 4 in (1.27) obtains. From
Sugiura [8, Eq. (1.3)], we have that

oq

) -
=|4|"? LAY =* p(dr = . .
oS ey T ewn),  w=mp2. (1)

Recall from Section 2 that p is the Haar probability measure on O(p).
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Rewriting the ratio (3.1) in terms of w of (1.28), and multiplying it by
I+ w| =2, yields

R;(y)sj (1 +tr yTwl") " p(dr). (3.2)
Ofp)
(Recall that try=1.)
We need to find the derivatives corresponding to (2.6) and (2.7). Note
that for |a| <1,

(1+a)*=1-ta+ a’+ o(a®), (3.3)

(t+1)
2

where o(a®) is as a—0, uniformly in |a| <e¢ for any ee(0,1). Since
y;€(0, 1) for each i,

(tryTol")? < (Zwl?) <p o] (34)

Hence from (3.2) and (3.3) we have

(tr yTwl*)? p(dll)

Ri(y)=1-7 (tryFwF‘)p(dl")+T(t+l)'[
op) 2 o

(p)

+o([lo]?), (3.5)

where o(||w||?) is as w — 0, uniformly in y € %. Using zonal polynomials as
in Sugiura [8], or calculating directly, we obtain

f (trylol) pdr)="2"%_0  (since tr 0 =0) (3.6)
and
J (tryrwf’)zp(dr)=—ﬂ“—2—— [ptry’—1]
pp+2)(p—1)
2000° g2 (3.7)

Tt
See (1.32). Thus (3.5), (3.6), and (3.7) show that

d

1

and
2

4
* _— S
awiaw.Rw(y)‘w=0 (p+2)(p_1) y4i J}

J

Vily)=
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Now let @* be the class of tests of the form

R I G PRI
for
(6, H, c)e [0, o0) x (@ — {0})x R— {(0,0,0)}, (3.11)
where
d*(y)=d*(y;y, H, c)=yS§+fa_{0} R—:’“(ay% H(do)—c (3.12)

and v* is the null measure on #. It is absolutely continuous with respect to
Lebesgue measure on R?~*,

THEOREM 3.1. The class ®* in minimal complete for problem (1.29).

The proof is indicated in Section 4.

Proposition 1.5 is proved as Proposition 1.3, where we note that S2 and
RX(y) for w #0 are strictly convex in y. The latter result follows from the
facts that (1 +a) ™" is strictly convex in a and tr yI'w/l'’ is linear in the
diagonal elements of y and, with p probability one the coefficients
multiplying each diagonal element of y are nonzero.

Finally, consider the case p=2 in Theorem 1.4. Extend the definition of
RX*(y) to the set {yeR*|y, +y,=1, y,>0, y,>0}. Note that R*(y) is
invariant under the permutation of y, and y,, and S and R%(y) when
w #0 are strictly convex in y. Thus d* is also permutation invariant and
strictly convex unless (3, H)=(0,0). Thus 4* has a minimum at
(y1,¥,)=(4,1) and is either constant or strictly increasing as y, moves
away from 1. Thus the only admissible tests are those with acceptance
regions essentially of the form {y |y, <cl|, ce[4, 1]

4. PrROOFs OF THEOREMS 2.1, 2.2, AND 3.1

In this section we will refer to Brown and Marden [2] by B—M. We
first use B—M Theorem 2.4 to prove the classes @, &%, and @* essentially
complete for their respective problems (1.8), (1.18), and (1.29). We need to
verify B— M Assumptions 2.1, 2.2, and 2.3.

Start with problem (1.8). Assumption 2.1 requires that for each x, Ry(x)
as a function on @ satisfies

0<Ry(x)<ow for 0. (4.1)
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By inspection of (2.5), Ry(x) is positive. By (2.16) with — @ instead of x we
have that

hence by (2.13) and (2.5)

Rox)< [T (1= Ix)~P < o,

i=1

since each x,€ (—1, 1). Hence (4.1) holds.

B —M Assumption 2.2 states that the derivatives in (2.7) and (2.8) exist,
which we have already shown, and that for sufficiently small ¢ > 0, for each
x there exists x, < oo such that

ho(x)
1112

sup <K,. (4.2)

et <e

This result follows from (2.18), where in fact we have the stronger result
that

K=sup K, < o0. (4.3)
xXeX

B —M Assumption 2.3 is trivial in this problem since @ is bounded. See
the remark below Equation (2.5) in B—M. Thus the set ¥ in B— M
consists only of ¢ and %, and hence can be ignored safely.

Now B —M Theorem 2.4 guarantees that an essentially complete class
consists of all tests of the form (2.9), where

(g, M), H, ¢)e E—((0, 0), 0, 0) (4.4)
and
06’
M,= M_LV o TOF H(d0), (4.5)
and

E={((up M), H,c)| (u, Mye A(H), He F(@ — {0}),ceR}. (4.6)

(We take o in B—M large enough so that e @ = ||| <a.] The set A(H)
is a subset of R”x % (p) defined in B—M (2.14). We will use B—M
Example 4.6 to find A(H), but first we reparametrize by letting

n=GO0e 2(p), 4.7)
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where G is the linear transformation from which #,=6,—-0,,,
i=1,.,p—1,and n,=0,. Then the transformed parameter space GO =11
is locally one-sided, i.e., for some ¢ >0,

HHeB,=[[0,0) '"xR]nB,, (4.8)

where B, is the ¢-ball in 2(p) around 0. From B—M Example 4.6 (with
=[0, )"~ ! and g=1,) we have that if

fn,.GH(dn)<oo, i=1, ., p—1, (4.9)

then
A(GH) = {(u*, M*) | u* e C(IT) and M ¢ € D(p),
=0,i=1,.,p—1, m,’,“;O}. (4.10)

If (4.9) fails, A(GH) is empty. Here, GH is the measure induced on /7 by G
via (4.7). Now it can be seen from the definition of A(H) in B— M that

AH)={(G 'u*, G 'M*(G") ") | (u*, M*)e A(GH)]
={(m, M) | ue C(0), My=yJ,7>0}. (4.11)

Hence (2.10) is equivalent to (4.4) via (4.11), proving that @ is essentially
complete for problem (1.8).

The verification of B—M Assumptions 2.1, 2.2, and 2.3 for problem
(1.18) proceeds as for problem (1.8) since it shares R,(x) and has @+ < 6.
Note that &7 is locally pointed as in B— M Example 4.5. That is, there
exists age Z(p) and b, <0 such that for sufficiently small ¢ >0,

sup bg. (4.12)

—<
16l <e “0”

To see this, take a, =1, and note that by (1.19),

“u 20, _
Ny TTE

Thus B — M characterize the complete class as consisting of all tests of the
form

-1
po={y i+ R

=8 H(d9)— {2} 0, (4.13
o 1o 100 (d6)—c{Z}0, (413)
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ae. [v], for some

(4, H,c)e C(O*)x F(B* — {0})x R— {(0, 0, 0)}. (4.14)

But since p'l(x)= — (f/p) Zu,tr x as in (2.21), and pe C(® ™) implies that
Zu,; <0, we see that (4.13) and (4.14) are equivalent to (2.30) and (2.31).
Hence @* is essentially complete for problem (1.18).

Now turn to problem (1.29). The B— M Assumptions 2.1, 2.2, and 2.3
are fairly easy to verify by using the approach for the previous two
problems, and by noting that

inf inf (1+trylfwl)=pinf inf (tr yIFAI")

weQ e O(p) Aed e O(p)

=P32£ 2yidp iv1=py,>0, (4.15)

so that R*(y) in (3.2) is finite. Since /*(x) =0 (see (3.8), we can use B—M
Remark 2.8 and Example 4.2 to show tha the class of tests of the form

RX(x)—1

p) =i} asuMVT)+| =

H(dw)—c{Z}0, (4.16)

a.e. [v*], is essentialy complete, where

(M, H, c)e #(p)x F (@ — {0})x R—{(0,0,0)}. (4.17)

Now (3.9) shows that their class is in fact @* of (3.10), (3.11), and (3.12).

To complete the proofs of the theorems, we must show that the classes
&, &*, and P* are minimal complete. These results follow from B—M
Lemma 3.2, which requires verification of B—M Assumption 3.1. We will
verify this assumption only for problem (1.8). The verification for the other
problems can be dealt with similarly.

Consider problem (1.8). B—M Assumption 3.1 has four parts. Parts (i)
and (iii) are trivial since € = {¢, Z'}. Part (iv) requires that

V({X , d(x, H, MOa H’ C)’__O}):O

for (u, M, H, ¢) as in (2.10), which follows from the discussion after (2.29).
Part (ii) requires that for each ¢e®, there exists a sequence
{J;} = Z(O) such that

d,.(x)zf Ry(x) J{(d0) —J({0}) === d(x)  for each x,  (4.18)
© - {0}
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where d(x) is defined in (2.8), and

Jim j (¢:4x) — ¢(x)) di(x) v(dx) =0, (4.19)

where
px)=1{s} asd(x){z}O0. (4.20)

Now take ¢ € @ and its attendant (u, M, H, ¢), and define

0,={0e0 |0l <15}, 6,=60-0,, 21)
Hy(d0) = H(d0) I,,, H,(d9)= H(d9) I,,. ’
Also, for i> 1, let H,;e #(© — {0}) be defined by
o (= a)=(- zH(A) for A @ (4.22)
"i+17) i+t ! =T '

Then using the methods in B—M Lemma 2.5, we can find {J,} such that,
from (4.18),

d(x)= A(x) +a(x), (423)
where
A(x)=ptl(x)+ L tr M, V(x) + j QLXZ)HO,.(do)—c,., (4.24)
U
with
00’
pon Moo Mot | s Hd0),  eme (425)
s0-10) 1]

[ e@Hu)~[ g(6) Ho(db) (4.26)
69— {0} 60— {0}

for any continuous bounded function g with g(0)=0, and

Ry(x)—1—8'(x)
a(x)= Ll ) e H,(d6). (4.27)

It is clear from (4.24) and (4.25) that

A(x)~ A(x) = pl(x) + b tr <M0+ AL Ho(d9)> V(x)
60— {0} IOl

o 2oy ap) . (428)
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Now by (2.15) and (2.18) for hy(x)/||0]|% and by (2.19) and (2.20) for /(x)
and V(x), we have that for some N < 0,

[A(x)| <N  and |[4(x))<N  forall i x. (4.29)

Also, for a; in (4.27), since R,4(x) = Ry(bx), by (4.22),

—-1—9
ax)= [, 2= o)
_ Riyix1ye(x)—1—=(i/(i+ 1)) 0'/(x)
-, 812 H.(d6)
=f Ro((i/(i+1))x)—1—0U(i/(i+ 1)) x) H,(d0)
o 16112 ’
i
=a <l+_1 x>, (430)
where
[ Relx)—1-0(x)
a(x) = L, e H,(d9). (431)

Since the integrand for a((i/(i + 1))x) is bounded in i for each fixed x and
0, and continuous in 8, we have that

a(x)=a (l—_:—l x> - a(x). (4.32)

Thus (4.23) through (4.27), (4.30), and (4.31) show that (4.18) holds, since
d(x)= A(x)+ a(x).

Finally, note that a(0) =0, and since a(x) is convex in x (see (2.30)), for
>0,

i
< — X<t
a(x) t=>a<i+1x>

=a x)<t. (4.33)

Turn to (4.19). By (4.20), (4.23), and (4.29), when a,(x) > N, ¢,(x) =1, and
by (4.28), (4.31), and (4.29), when a(x)> N, ¢(x)=1. Thus if d(x)>2N
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then a,(x)> N, hence by (4.33), a(x)> N, and ¢(x)=¢(x)=1 (ae. [v])
Thus

lim | (4,(x)— #(x)) di(x) v(dx)

i— o

= lim } (¢:(x) — ¢(x)) d(x) v(dx)

i~ Y{df{x)<2N

=0, (4.34)

where the limit and integral can be interchanged by the bounded con-
vergence theorem (the integrand is essentially nonnegative by definition of
¢, and d; in (4.20)), and the limit of the integrand is zero a.e. [v] by (2.9),
(4.18), and (4.20). Thus (4.34) verifies (4.19), and the proof of Theorem 2.1
is complete.
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1. INTRODUCTION

Let X, .., X, be independent random variables. Suppose we want to test
the null hypothesis

H,. X, 1<i<n, have the same distribution

versus the alternative hypothesis that there is a changepoint in the
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parametric results are summarized in Wolfe and Schechtman [15].
Recently Csorgé and Horvath [2] proposed statistics based on processes
of linear rank statistics with quantile scores. In this paper we study tests for
the changepoint problem which are based on processes of U-statistics. They
are generalizations of Wilcoxon-Mann-Whitney type statistics.

Let A(x, y) be a symmetric function and consider

Zi= Y Y h(X,X), 1<k<n. (1.1)

I1<i<k k+1<j<n

We study Z, under the null hypothesis in Section 2, and under the alter-
native hypothesis in Section 3. Typical choices of 4 are xy, (x — y)?/2 (sam-
ple variancie), |x — y| (Gini’s mean difference), sign(x + y) (Wilcoxon’s
one-sample statistic) (cf. Serfling [13]). The case of A(x, y)=sign(x - y)
has gained special attention in the literature. We cannot apply our results
directly in this case, because sign(x— y) is not a symmetric function.
However, sign(x— y)= —sign(y—x) (sign(0)=0), ie., sign(x— y) is an
antisymmetric kernel. We show in Section 4 that our method can be also
used in the case of an antisymmetric kernel.

2. ASYMPTOTICS UNDER H|

In Sections 2 and 3 we assume that A is symmetric, i.e., A(x, y)=h(y, x).
Given Hy, X, .., X, are iid.r.v.’s. We assume

ER¥(X,, X,) < o0 (2.1)

and let Eh(X,, X,)=0, h(t)=E{h(X,,t)—0O}. Condition (2.1) implies
that ER*(X,) < o0 and we assume

0 <o?= ER¥(X)). (2.2)
Here we investigate
U,=2Z,—k(n—k)o, 1<k<n,
which can be expressed as
U,=UQ—{UV+ U2}, (23)

where

vp= Y h(X,-,X,»)—(k>@,

Igi<jgk 2

vp= Y h(X,.,Xj)—<n;k)@,

k+1<i<j<gn
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and

U= Y X, X,)-(”) )
I<i<j<n 2
The latter are nondegenerate U-statistics under the conditions (2.1) and
(2.2). Thus while U, itself is not a U-statistic, in (2.3) we concluded that it
can be expressed as a linear combination of U-statistics. Hence the basic
idea of studying U, can be based on the projection of a U-statistic on the
basic observations (cf. Chap. 5 of Serfling [3]).
In order to state our results we define the Gaussian process I” by

r=1—1 W+ {wl)—w()), 0<r<l, (2.4)

where {W(r),0<t< o0} is a Wiener process.

THEOREM 2.1. We assume that Hy holds, and (2.1), (2.2) are satisfied.
Then we can define a sequence of Gaussian processes {I',(1),0<t<1} such
that, as n — oo,

n73/2
sup |—— Uiy —Ta(t)|=0p(1), (2.5)
O0<r<1 o
where for each n>1
(r(n,0<1<1} 2 {I(1),0<e<1}. (2.6)

Proof. By Theorem 1 of Hall [6] we have

max_ Uy —k él h(X;)| = 0p(n), (2.7)
max |UP— (n—k) z F(X)| = 0p(n), (28)
} U —n il h(X,)|=0p(n). (2.9)
Hence —
max U,— {(n —k) é RX)+k (é h(X,)— é Z(X,))} ‘ = 0p(n).

(2.10)

Thus the result follows from Donsker’s theorem (cf. Theorem 2.1.2 and
Lemma 4.4.4 in Csorgé and Révész [3]).
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One can say more about the weak convergence of U, if the existence of
higher moments is assumed.

THEOREM 2.2. We assume that H holds,
Eh(X,, X,)|’< o0 for some v>2, (2.11)

and (2.2) is satisfied. Then we can define a sequence of Gaussian processes
{I,(1),0<t< 1} such that (2.5) holds,

n—3/2
sup _U[(n+l)l]_rn(t)

Yin+D<rsnn+1y| O

/(t(l—t))’/2=0p(l), (2.12)

and we have (2.6) for each n>= 1.

Proof. First we note that by (2.11) we have E|h(X,)|'< . We
introduce
SH(x)=ec"" Y KX, I<x<[n/2],
1gi<x
SP(x)=c=' ¥ KX) 1<x<n—[n2],

n—x<isn

and show that there exist two independent Wiener processes
{W(x),0<x< o0} and {W?)(x),0< x < o0} such that

sup  x2[S(x) = WD(x)| = 0p(1), (2.13)
1< x<[n/2]
sup  x " '2|SPx)— WD(x)| = O0p(1). (2.14)

1<x<n—[n/2]

Using the Skorohod embedding scheme or the Komlos—Major-Tusnady
approximation (cf. Theorem 2.2.4 and Theorem 2.6.3 in Csorg6é and Révész
[3]), we can define a sequence of Wiener processes { W()(x),0<x< o0}
so that

max k™2 [SU(k)— WO(k)| = 0p(1). (2.15)

1<k<[n/2]
By Theorem 1.2.1 of Cs6rgd and Révész [3] we obtain
sup  x™ 2 (W (x) - W([x])
1< x<n/2]

< sup x7' sup [W([x]+5) = WO(IxXD) = 04(1).  (2.16)

1< x<[n/2] 0<s<1

Now (2.15) and (2.16) imply (2.13). The proof of (2.14) is similar. Due to
the independence of S{"(x) and S{?(x), the Wiener processes W'" and
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W can be defined independently. Next we define the Wiener process
{W,(x),0<x<n} by

w ()< [ (), 0<x<[n2],
Ax)= { W)+ WO(n)— WP(n—x), [n2]1<x<n,

and conclude from (2.13) and (2.14) that
[+ 1]
<1_ [(n+nl)z]) >

i=1

[(n+1)1]
P (S - Y )

—o{(l=0) W, (n+ D))+t (W,(n+1)— W, ((n+1)1))}

sup
1/(n+1)<t<nf(n+ 1)

(X))

/ (ni(1 — 1))

= 04(1).

The latter in turn by (2.10) implies (2.12).
By the construction of the Wiener processes W' and W'» we obtain

(1 _M> U"ilm

i=1

h(X;)

sup
O<r<1

n n+1)1]
+ [(”_:2’_]<2 Xy — ‘z) F(X,»))

—o{(1 =W, (n+ 1))+ (W, (n+ 1) = W,((n+ 1)1))} ‘ =o0p(n'"),

resulting also in (2.5) via (2.10).

Let @* be the class of functions ¢: (0, 1) — (0, co) which are monotone
nondecreasing near 0 and monotone nonincreasing near one, and
inf, ., _59(¢)>0 for all $e(0, 1/2). If ge Q*, we define the integral

I(q, c)= L: (t(1 — 1)) " exp(—cq*(2)/((1 — 1)) dt, ¢>0.

This integral appears in the characterization of upper class functions of a
Wiener process (cf., e.g., Csorgd et al. [1]).

COROLLARY 2.1. We assume that H, holds, and (2.2), (2.11) are
satisfied:
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(a) If qe Q*, then

n43/2

sup

O<t<l1

U[(n+1)r]*rn(t)‘/4(1)=0p(1) (2.17)

if and only if (g, c) < oo for all ¢>0.
(b) If ge Q*, then

n—3/2

sup |Upine1ynl/a(t) == sup |I(1)l/q(t) (2.18)
1

O<1t< O<t<1

if and only if 1(q, c) < o0 for some ¢ > 0.

Proof. First we note that I(q,c)<oo for some ¢>0 implies (cf.
Theorem 3.3 in Csorgd et al. [1])

lim q(1)/1"? = co. (2.19)
t—0

We have

n—3/2

sup

LEEY S )

U[(n+l)t]_rn(t)‘/q(t)=oP(l) (2.20)

for all 6 (0, ) by Theorem 2.2. Also, by (2.12) and (2.19),

-3 12
/q(t)=0p(1) sup ——0

sup —U n ! —rn(t)
Yin+t)sr<s| O tors bl 0<r<s9(1)
(2.21)
as 0 — 0. Next
sup  |I(e)l/g(e) < sup  [W(t)l/q(t)

O<tgl/(n+1) O<t<g/(n+1)

+ sup  (t/q(r)) sup  [W(1)— W(1)|
O<t<1/(n+1) o<I</(n+1)
=o0p(1)

by (2.19) and Theorem 3. of Csorgé et al. [1]. One estimates near 1 in a
similar way, and the “if” part of (a) is proven.
Assuming now (2.17), we must have

sup  [I'(#)l/q(1) = 0p(1) (2.22)

O0<r<1/(n+1)
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and

sup  [1(1)l/g(t)=o0p(1). (2.23)

nfn+1)<r<1

It is easy to see that (2.22) and (2.33) imply
Er(1)/q*(1)-0 as t-0 or -1 (2.24)

Consequently we have (2.22) if and only if

sup  [W(1)l/q(t) = 0p(1). (225)

O<r<g1/(n+1)

Similarly, we have (2.23) if and only if
sup  |W(1)~ W(1)i/g(1) = 0p(1), (2.26)

nfn+1)<t<1

which is equivalent to

sup  [W(1)l/g(1—1)=04(1). (2.27)

O<r<1l/(n+1)

Now Theorem 3.4 of Csorgé eral. [1] combined with (2.25) and (2.27)
results in the second part of (a).
As to the proof of (b) we first note that (2.19) implies

n-3n
sup — Utweyg— A1)

Yin+ <e<n/n+ 1)1 O

/q(t)=0p(1)- (2.28)

Hence it suffices to show that

sup |1(2)l/q(1) = sup |T(1)l/q(e),

n+1)sesn/(n+1) O<t<l1

which follows immediately from Theorem 3.3 of Csorgé etal. [1]. The
proof of the necessary part of (b) is similar to that of (a). Only here we
have to use Theorem 3.3 of Csorgd et al. [1] instead of their Theorem 3.4.

Remark 2.1. The proof of the necessary part of Corollary 2.1(a) shows
that if we have (2.17) with any sequence of Gaussian processes having the
same distribution for each n>1 as that of I', then I(g, ¢) must be finite for
all ¢>0. This means that the necessary part does not depend on our
construction.

The desirability of having weight functions ¢ around like in Corollary 2.1
is to make our statistical test more sensitive on the tails. A typical choice of
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g in (2.18) is the function (£(1—t)loglog(1/t(1 —¢)))"%. The variance of
I'(t) is #(1 —1t), hence another choice of a weight function is (¢(1 —1¢))"2
However I((¢(1 — 1)), ¢) = oo for every ¢ >0, and hence we cannot apply
Corollary 2.1. This case is studied in the next theorem. Let a(y-logn)=
(y+2loglogn+ilogloglogn—4ilog n)(2loglogn)~'2 —oo < y<oo.

THEOREM 2.3. We assume that H, holds, and (2.2), (2.11) are satisfied.
Then

U
lim P{a“ max k

n-» o I<k<gn (k(n—k + 1)”)1/2 Sa(y, log n)} =exp(_exp( —y)),

(229)

and

U
lim P{¢~! max Uil

n—w { l<k<n(k(n—k+1)n)l/2<a(y, IOE”)}=eXP(”2‘3XP(—}’))-

(2.30)

We note that it will also follow from the proof of this theorem that the
same two limit statements hold for (n *?/a)Ur,, 1)/(H(1—1))"?,
O<t<1. The proof will be based on the following lemma. Let
b(y,log n)=(y + 2 log log n + ilog log log n — Llog(4n))(2 log log n) ~'72,
—o < y<oo.

LEMMA. Let Y, Y,,.. be iidrv’s with EY,=0, EYi}=1, and
E|Y,|**? < w0 for some 8> 0. Then

k
lim P{ max k"2 Y Y,<b(y, logn)}:exp(—exp(—y)) (2.31)

n-— oo I1<k<n i—1

and

lim P{ max k'

n— o I1<k<gn

i Yi‘ < b(y, log n)}=exp(~2 exp(—y)). (2.32)

i=1

Also, if m,— oo and m,/n -0 (n— o), then

k
lim P{ max k7 Z Y. <b(y, log(n/m,,))}=exp(—exp(—y)) (2.33)

n— oo my,<k<n i1
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and

lim P{ max k2

n— o0 mp<k<n

k
5 Y,-| <b(y, log(n/m,,»} — exp(—2 exp(—))
i=1

(2.34)

Proof. For the proof of (2.31) and (2.32) we refer to Darling and Erdos
[4] and Shorack [14].

Of the two statements (2.33) and (2.34) we verify only (2.34). The proof
of (2.33) is similar. First let | <m,<logn. Then by (2.32)

(2loglogn)? max k=2

1sk<sm,

k
Y Y.|-loglogn—t5 — oo,

i=1

and

lim P{ max k12

n— mp<k<n

k

y Y,.‘ < b(y,log n)} =exp(—2exp(—y)).
k=1
Observing now

1/2
<log log m1> — (log log n)'?| (log log n)'? = o(1)

n

and

; =o(1)

1 |
‘2 log logml+ilog log lgmi— <2 log log n + = log log log n)

n

we get (2.34). Similarly to the proof of Theorem 2.2, there is a Wiener
process W such that

21 ¥, = W(x)| = 0p(mY2+9-172) = g ((log n) ~¥2+ ),

1<ig<x

sup x°

Mmp<x<n

Let {V(t), —oo <t<oo} be an Ornstein—Uhlenbeck process. Then we
have

sup  x~ 1% W(x)= sup V() = sup V()

my<x€n (1/2)log my< 1< (1/2)logn 0 <1< (1/2) log(n/my)

and consequently by Darling and Erdés [4] we obtain (2.34). For the
general m, sequence of the lemma we consider its subsequence with values
in [0, log n] and that with values in (log n, «).
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Proof of Theorem 2.3. Let k!"=(logn)’ and k= n/(logn)? and
consider

max U UL
1<k<n (k(n—k+ 1)) chcun (k(n—k+1)n'?
v max Ul
<<k (k(n—k+ 1)n)'"?
v m | Uyl
kf,z’sksnp(k(n—k-i-l)n)l/z
v max Ul
m2<k<n—i® (k(n—k+1)n)"?
v max |Ul
n— P <k<n—ikl (k(n—k+1)n)'?

v max |Uk|
n—kW<k<n (k(n—k+ 1)n)'?

=A£ll)\/ VAf,G),

where a v b=max(a, b). It is easy to see that

2
A<= max k7

) Y {nX,X)—-h(x)}

i<kl I<i<k k+l=j<n
k
+ max k72| Y R(X)
t<k <kl =
=AY+ AL, (2.36)

First we note that by the definition of 7 we have

E(n“ > > {h(X,-,)r,-)~%<X,-)}> = O(k¥/n),

ISisk k+1<j<n

and so

KD
P{AGH>1}< Y P{nl
k=1

X X {h(Xi,)(,>—%(Xi)}’>k‘/z}

1<isk k+l<j<n
&M

=o()n~' Y 1/k=o(1). (2.37)

k=1
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By Lemma we have

A = 0p((log log log n)'?),
and thus by (2.36) and (2.37) we obtain

(2loglogn)* AV — g loglogn —£» — co. (2.38)

By (2.10) we get
n—k

k
—1/2 .
(n(n—k+1))k L h(xi)

i=1

AP =

ax
<k <l
k

t kT )7 Y h(X)|+0p(1/log n). (2.39)

i=k+1

It is easy to verify that

k\'? 1 i
KD <5) (n—k+ D)7, gﬁ )
12
2 n—m 1
2 o (5 i £ )
=0(1/10gn)n_k£‘2)r<naxn o ,/2 Z h(X)) ‘
= 0(1/logn)11<nax ;ﬁ Z E(X,-)‘
€£m<n i=1
= Op(1/log n). (2.40)
Using the lemma we have
n—k _12 ‘
max |————— h(X;
KV <k < k@ (n(n—k+1))‘/2 , g‘ (X2)
= Op((log log n)'*/(log n)?),
and hence (2.39) and (2.40) yield
k
AP= max k'Y F(X,-)‘+0,,(1/]ogn). (2.41)
K<k <kl i1

By the lemma again,

(2loglog k)2 max k=2

1<ksk?

k
y E(X,)‘ —ologlogk® 25 — oo,
i=1
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and therefore,

k
: 1 —172 '
"ILHZO d {0 kl,”rsnkskf,“ ,-;1 Z(X'){
< b(y, log k‘f’)} — exp(—2 exp(—)) (242)

Observing now that

|(2log log n)'? — (2 log log k{1")'7?| (log log k{")"> = o(1)

and

|2 log log n + ilog log log n — (2 log log k)
+ llog log log k)| = o(1),

(2.41) and (2.42) imply

] 1
lim P {; AP < b(y, log n)} =exp(—2exp(—y)). (2.43)

Towards estimating A!», we first note that

max

W <k<nn (n—k)"?

Z Z(X\

i=k+1

@2
= max

ni2<m<n—k?

O4(1).

Hence from (2.10) and (2.34) we obtain
n—k

3)
4 <k(2iTka<n/2 (k(n—k+1)n)"? Z E(X)‘
k
+ max —— & F(X,)| + O p(log njn'?
K <k < 2 (n(n_k+l))l/2 ,-=§'+, ( ) P( Ogn/n )

= 0 p((log log log n)'/?).
This in turn implies

(2loglogn)'* A — 6 'loglogn—» — 0. (2.44)
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The estimation of the r.v.’s 4%, A%, and A® is similar, resulting in the
statements

(2loglogn)? A9 —g~'loglogn -5 —c0, i=4,6, (245)
1

(5) — —— 3 .
Al n-kif‘?l?:hkf.” (n—k)” i=§+IE(X,) + Op(1/log n), (2.46)
and
lim P{%Aﬁf’sb(y, log n)}=exp(—2 exp(—y)). (2.47)

The events in (2.43) and (2.47) are asymptotically independent. Therefore
the statement follows from (2.35), (2.38), (2.43), and (2.44)-(2.47).

3. ASYMPTOTICS UNDER H,

First we introduce some notations. Let
0=Eh(X[n).]—l’X[ml])’ H=Eh(X[nA]+1aX[nu+2)
= Eh(X[nl] , X[n}.] +1)
and we write log™* x=1log(x v 1).
THEOREM 3.1. We assume that H, holds and
Eh(X 15 Xpaapl < 00, E (X {pi74 15 Xpnag+2)l <0,
E V(X tnig> Xpnaz+1) |108+(|h(X[n/1], Xinay+ <o (3.1)

are satisfied. Then

. Ot(A—t)+tz(1— 1), O0<t<4,
2 32
Jm 2w na/n {y(t—,l)(l——t)+t/1(1—t), i<i<1, P
in probability.
Proof. Let 1<[(n+1)t]<[nA]. Then
Zinryn= > X, X))+ X ) h(X;, X))

1€i<j<[nA] t<ig<[nd] [MA+1<j<n

—{ Y kX, X)
I1<i<j<[(n+1)t]

+ Y h(X,, X})
[(n+ 1))+ 1<i<j<[nd]

+ > Y mxn&%
[(n+1)1]+1<i<[nd] [MAl+1<j<n

=R+ RO~ {RP + ... + RO},
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By Hoeffding [7] (cf. Theorem A in Section 5.4 of Serfling [13]) we get
RM/n? —2> 20/2, R®/n? —=— 129)2,

R%/n? 2 y h(X,, X;)—22 (1—1)? 6/2.

I<i<jg[ni]—[(n+1)t]

Now applying Sen [12] and condition (3.1) we obtain
ROn* L a(1—2)t, RO~ (A—1)(1 - M.

These observations clearly imply the first part of (3.2). The proof of its
second part is similar.

Remark 3.1. If we assume the existence of the second moments in
Theorem 3.1, then we have an a.s. convergence in (3.2) by the moment
inequalities of Grams and Serfling [5].

Theorem 3.1 can be used to study the consistency of tests based on the
process { U, 41y, 0<1<1}. For example, we conclude that rejecting H,
vs H, when supo., ., (n7*?/0) |Uns 1) is large, then the latter test is
consistent except in the case of t=0=pu=0. The same can be said about
the weighted versions of this test.

4. ANTISYMMETRIC KERNEL

In this section we assume that 4 is an antisymmetric kernel, i.e.,
h(x, y)= —h(y, x). (4.1)

In this case Eh(X, X,)=0 and similarly to the symmetric case we let
h(t)= Eh(z, X,). We assume

Eh¥X,,X,)<o and O<a?=ER¥ X)) (4.2)

Accordingly to Section 2 we now have U,=Z,, where Z, is defined by
(1.1). It is easy to see that (2.3) remains true in the case of an antisym-
metric kernel, with @ taken to be zero, of course.

First we give an analog of Theorem 2.1.

THEOREM 4.1. We assume that H, holds, and (4.1) and (4.2) are satisfied.
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Then we can define a sequence of Brownian bridges {B,(t),0<t<1} such
that, as n - oo,
—-3/2

n
sup

[(E4ES] g

Utine 1y — Ba(0)| = 0,(1) (4.3)

and for each n =0, EB,(t)=0, EB,(t) B,(s)=min(¢, s) — ts.

Proof. The proof is similar to that of Theorem 2.1. Instead of
Theorem 1 of Hall [6] we use Theorem 2.1 of Janson and Wichura (1983),
which gives

max. U;g)—é (k—2i+ I)E(Xi)‘ =0p(n), (4.4)
max. U@ — i:’il (n+k—=2i+1) Z(X,.)‘ =0 p(n), (4.5)

and
|U:,3)— Z (n—2i+ 1)Z(X,.)| = 0p(n). (4.6)

i=1

By (4.4), (4.5), and (4.6) we have

max

I<ksn

k n
vi~{n L R)-k S0} =0 @)

and hence Donsker’s theorem implies Theorem 4.1.

Surprisingly, the limiting processes are different in Theorems 2.1 and 4.1.
In the special case of A(x, y)=sign(x — y) (cumulative rank tests) Pettitt
[9] (cf. also Pettitt [10]) indicate a proof of Theorem 4.1.

The following Theorem is an analog of Theorem 2.2.

THEOREM 4.2. We assume that H, holds, (4.1) and (4.2) are satisfied,
and

Elh(X,, X,)|'< for some v>2. (4.8)

Then we can define a sequence of Brownian bridges {B,(t),0<t<1} such
that (4.3) holds and

n—32
sup - U[(n+l)l]—Bn(t)

Yin+D<egsnn+ )l O

/(z(l — )= 0,(1). (49)



166 CSORGO AND HORVATH

Proof. Using (4.4)-(4.6) with the Skorohod embedding scheme (or with
the Komlos—Major-Tusnady approximation), the proof goes along the
lines of the proof of Theorem 2.2.

The next results are direct consequences of Theorem 4.2. One can give
detailed proofs using the methods of the proofs of Corollary 2.1 and
Theorem 2.3. Let {B(z),0<7<1} be a Brownian bridge.

COROLLARY 4.1. We assume that H, holds and (4.1), (4.2), and (4.8) are
satisfied.

(a) If ge Q*, then

n~3/2

sup
O<r<l

Utin+ 1y — Balt)

/q(t)=0p(1)

if and only if I(q, ¢) < oo for all ¢ > 0.
(b) If ge Q*, then

n~3/2

sup [Upus1l/g(t) —=> sup |B(1)l/q(1)

O<r<l1 O0<r<1

if and only if I(q, ¢) < oo for some ¢ >0.

THEOREM 4.3. We assume that H, holds and (4.1), (4.2), and (4.8) are
satisfied. Then

. . U

Jim, P{" X ke DA log")}zexp(_exp(_y))
and

. 1 'Uk‘
Jm P MK Tkt Dy S 40 logn) ¢ =exp(—2 exp(—y)).

Now we assume that X, ..., X, have a continuous distribution function,
and study the case of A(x, y)=sign(x — y). Under H,, Esign(X, — X,)=0
and ¢>=1/12. Then

U=Z,= Y Y sign(X,— X))
I<i<k k+1<j<n
is distribution free, and the results of the present section are applicable. By
Theorem 4.1, (12)'?n=*? U, ,,; converges weakly to a Brownian
bridge in D[0, 1]. This result was obtained by Pettitt [9] using heuristic
arguments.



INVARIANCE PRINCIPLES 167

Sen and Srivastava [11] also mention (without developing any proper-
ties) non-parametric tests as analogs to some parametric likelihood ratio
procedures. In particular, they suggest rejecting H, for large values of

D,=(12)"2 max |U,|/(k(n—k+ 1)n)"".
I1<k<n

It follows from Theorem 4.3 that D, —” cc even under H,. This is the
reason for them finding D, being superior to other statistics. We can, of
course, use D, for testing H, with normalizing factors as given in
Theorem 4.3. Naturally then further power studies are also needed in order
to conclude any superiority properties.
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On the Area of the Circles Covered
by a Random Walk
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The area of the largest circle around the origin completely covered by a simple
symmetric plane random walk is investigated.  © 1988 Academic Press, Inc.

1. INTRODUCTION

Let X,, X,,.. be a sequence of independent, identically distributed
random vectors taking values from R? with distribution

P{X,=(0, 1)} =P{X,=(0, - 1)} =P{X,=(1,0)} =P{X,=(-1,0)} =4
and let

S;=0=(0,0) and Sn)=S,=X,+X,+ --- +X, (n=1,2,..)

ie, {S,} is the simple symmetric random walk on the plane. Further let
E(x,n)=#{k:0<k<n, S, =x}

(n=12,..;x=(Jj)ij=0 +1, +£2,..) be the local time of the random
walk. We say that the circle

Q(N)={x= (i, j): Ixll = (> + j?)'* < N}
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is covered by the random walk in time n if

E(x,n)>0 for every xe€ Q(N).

Let R(n) be the largest integer for which Q(R(n)) is covered in n. We are
interested in the limit properties of the random variables R(n) as n — oo.
This question was proposed by Erdos and Taylor {5] and they claim “we
can show using the methods we have discussed above that” for any £¢>0

R(n)=exp((logn)'?~¢)  as.

for all but finitely many n “but we have failed to get a satisfactory upper
estimate and have no plausible conjecture.”
This paper is devoted to the above question and some related problems.

2. A Lowegr ESTIMATE OF R(n)
In this section we prove

THEOREM 1.  For any ¢>0 we have

(log n)'” )
a.s.

R e (g e

for all but finitely many n where log, is the k times iterated logarithm.

Before the proof we present a few notations and lemmas.
Let y(x, n) be the probability that in the first n steps the path does not
pass through x i.e.

y(x, n)=P{&x,n—1)=0}.
Let a(r) be the probability that the random walk {S,} hits the circle of
radius r before returning to the point 0= (0, 0), i.e.,
a(r)=P{inf{n: ||S, | =r}<inf{n:n>1,5,=0}}.
Further let f(r, t) be the probability that starting from a point of the

circle-ring r < || x|| <r + 1 the particle hits the point 0 = (0, 0) before hiting
the circle of radius ri, ie.,

B(r,t)y=P{inf{n: S, ,,, =0} <inf{n: S, Il =rt}|r<|S, | <r+1}.



CIRCLES COVERED BY RANDOM WALK 171
Finally let

o(t)=0(1,r)= P{’r(nsa’i(z ISkl <r}

and
u(x) = p(x, n) = P{&(0, n) < x log n}.

LEMMA 1. Let ||x|| =y~ 'n'? with 20 <y <n'?. Then

_, 2logy log, ¥
y(x,n)=1— Tog n <1+0(]og¢>>' 2.1)
lim p(x,n)=1—exp(—nx) (2.2)

n— oo

for 0 < x < (log n)** and the limit is approached uniformly in this range;

— _— -1 } —
sty={! -0 i 10

exp(—0(t)) if t— . (23)

Proof. (2.1) (resp. (2.2)) are proved in Erdos and Taylor [5] cf. (2.18)
(resp. Theorem 1). The proof of (2.3) is trivial.

Remark 1. (2.2) implies
P{&(0,n)=0}~mn/logn 2.4)
(cf. also Dvoretzky and Erdds, [2]).

LEMMA 2. We have
lim a(r)logr=mn/2. (2.5)

Proof. Clearly we have
{inf{n: IS, =r} >inf{n:n>1,8,=0}}

= {&(0,r*logr)>0} U {0 max . (Sl <r}.

sk<rilo

Since
P{£0,r’logr)=0}~mn/2logr by (24)
and

P{ max |[IS<r}=o0(l/logr) by (2.3),

OSkSrzlogr
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we have

n+o(l)

()/ZIgr

Observe also
a(r) < P{ max ||Sk||>r}+lP{£(0 r’(logr)~')=0}.

0<k<rilogr
Applying again (2.3) and (2.4) we obtain (2.5).
LEMMA 3. For any >0 and r big enough we have

log; r
log r

B(r,r)<(1+¢) (2.6)

provided that 1 <t < o((log log r)®) for any 6 > 0.
Proof. For any K> 0 we have
Br, ) SP{EO, Kr* + m)—EO0, m)2 1|r<||S,, | <r+1}
+P{ max o 1Sl <rt|r< S, <r+1}=1+1IL

m<k<m+

y (2.1)

log y

I=1—-y(x, Kr2)~1 g K

for any r < ||x|| <r+1, where ¢ = K"?r/||x|| and

K
<P, o, 15020420 =8 ()

By choosing K= (t+ 2)*(loglog r)! ** (¢ > 0) we obtain

B < (14 e) o

for any ¢>0 if r is big enough and 1<1t<o((log,r)?) (for any £>0).
Hence we have (2.6).

LEMMA 4. For any £¢> 0 and r big enough we have
B(r,ty=1/elogr 2.7)

provided that t > (log log r)'?**° for some 6 > 0.
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Proof. For any K> 0 we have

B(r, 1) = P{(0, Kr* +m)—~ &0, m) 2 1|r< IS, [ <r+1}
—P{ max S |zrtlr<|S,l<r+1}=1-(1-1I),

m<k<m+ Kr
where
I ~log K/log Kr?

and

__1)2
I-I<P{ max (S >r(t—1)}ze"P(_0((t Kl) ))
<k<Kr

provided that K> 400 is an absolute constant and ¢t=1(r) » o0 as r — oco.
Choosing ¢ > (log, r)"?*¢ with some é >0 we obtain (2.7).

In order to formulate our next lemmas we introduce some further
notations. Let

p0=0, p1=min{k2k>0,sk=0},...
py=min{k:k>p, |, 5, =0}  (j=23,.)

1 if max ||S¢ll=r,

pi-1Sk<p;

X(r)=

0 otherwise,

Y=Y X(r)

i=1
Z,(r)= Y.f(o,m(’)-

Clearly Y,(r) is the number of those excursions (among the first n) which
are going farther than r while Z,(r) is the same number among the excur-
sions completed before n;

t,=1,(r)=min{n: |S,| =r},
T,=1,(r, t)=min{n:n=1t, ||S, || =>rt},

Ty=15(r, ) =min{n:n=1,, S, <r},

Ty =tulr t)=min{n:n2 1y _, |S,1=rt},
T 1 =T (H )y=min{n:n>1,, |S, <r},
0,=0(n;r,t)=max{k: 1, ,,<n}.

We say that @, is the number of the r — rt excursions completed before n.
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LEMMA 5. With probability one for any ¢ >0 we have

logn
WS £0,n)<(l +¢)n(logn)logsn
for all but finitely many n.

Proof. See Erdos and Taylor [5, Corollary on p. 145
Theorem 4.C].

LEMMA 6. Let r=r, be a sequence of positive numbers with

r, 7 o, > (log n)**?

log r
for some 6> 0. Then for any ¢>0

(l1—¢)mn (1+¢)mn
——< Y, (r)f———
2logr (r) 2logr

with probability one for all but finitely many n.
Proof. 1t is a trivial consequence of Lemma 2.

Lemmas 5 and 6 imply

LeMMma 7. Let r=r, be a sequence of positive numbers with
logn
A o0, — > (log, n)**?
n log r ( g2 )

Jor some 8 >0. Then for any ¢>0

log n 1 n? (log n) log; n
__OBR <7 (r)<(14+¢) 108080
(log,n)! **log r (r)<(I+e) 2 log r

with probability one for all but finitely many n.

LeMMA 8. Let r=r, be a sequence of positive numbers with

logn

r, 7 o,
log r

n

> (log, n)**+*°

and

for some & > 0. Then for any ¢ >0 and for all but finitely many n we have

O(n;r,t)<e(logn)log,n as.

(2.8)
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provided that
t>(log, r)'"?*°  forsome 6>0
and

log n 1
(log, n)' **log; r

On;r, 1) = (2.9)

provided that

t=o((log,r)’)  forall §>0.
Proof. (2.8) follows from Lemmas 4 and 7, (2.9) follows from Lem-
mas 3 and 7.

Proof of Theorem 1. Let x be an arbitrary point of the circle of radius
rt, ie., | x|| <rt. Then by (2.1),

P{&(x, Ty + KrP?)—&(x, 15 )

log K
>l|S(1'2,-_1(r, t)}?m a.s., (210)

provided that 400 < K < r*r*. By the law of iterated logarithm one gets that
T+ [ @K logarn21 (s 1) ~ Tipak 1ogyrnii2y (15 1) 2 Krie. (2.11)
Consider the paths

{8}, Tark o riy21— 105 1) < J S Tk togyryy — 1 (1 1) + Kr't?}  (2.12)

log n 1 1
(log, n)' *¢log, r (2K log, rt)'?

i=1,23, ., |:

and observe that by (2.9) all of these paths are included in the path
{S;, 1<j<n}. (2.11) implies that the paths (2.12) are disjoint and (2.10)
implies that for any x belonging to the circle of radius r¢ and for any i the
probability that the path of (2.12) does not pass through x is less than or
equal to

log K

s
2t2

- log Kr

assuming (2.9) and (2.11).
Consequently assuming again (2.9) and (2.11), the -conditional
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probability that the path {S,, 1<j<n} does not pass through x is less
than or equal to

< log K )log n(logz m)~ 1 —¢(logs r)~ (2K logy r1)~ 112

" log Kr'i?
<e log Klogn >
SCeXP (log, n)! *¢log, r(2K log, rt)/* log Kr*t*
provided that
400< K<
l_o_g_r5> (log,n)**°  forsome &>0,
log r

t = o((log,r)%) forall 6>0.

Choosing K =400, t =log,r, r = exp((log n)"/ - (log, n) = ¥**2%), we obtain
that the conditional probability that the path does not pass through x is

less than or equal to
o ( (logn)l/Z )
P\ Tlog, 7/

Consequently the probability that the path does not pass through all points
of the circle of radius rt is less than or equal to

(log n)' (log n)'/? )
°"p<2 (log, %) “P\ " (log, m™*—*)

which easily proves Theorem 1.

3. CircLES COVERED WITH PoOSITIVE DENSITY

Theorem 1 gave a lower estimate of R(n). Unfortunately we do not have
any non-trivial upper estimation. The result of Theorem 2 suggests that
R(n) can be much bigger. In order to formulate our result, introduce the
following notations

1 if &(x,n)>0,
0 if &(x,n)=0,

K(N,n)=(N*n)~' ) I(x,n);
x€Q(N)

I(x,n)={ (3.1)

ie, K(N, n) is the density of the points of Q(N) covered by the random
walk {S,,0<k<n}. We prove
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THEOREM 2. For any O <a<1/2

limsup K(n*, n) > (1 -2a)[1—((1—2)"'=1"?*] as.

The proof is based on the following two lemmas.

LeMMAa 9. Let 20 < | x|| < n'”. Then

177

2log |IxIl ( (1023 IIXH>>
== — ). 32
7(x, n) Tog n 1+0 Tog Ix] (32)

Proof. See Erdos and Taylor [5, (2.16)].

LemMMa 10. We have

E(I(x, ) I(p, n)) < L2 3 MI1 = (45 1) +7(3, 1))/2)
3 b ~ l—y(x—y,n)/?_, .

Proof. For any lattice point z let
v.=min{k: k>0, S, =z}
Then we have
E(1(x, n) I(y, n))
=P(x,n)=1,1(y,n)=1)

P{l(x,n)=1,Ly,n)=1|v,=k<v }P{v,=k<v,}

k=0
+ Y P{I(x,n)=1,1(y,n)=1|v,=k<v } P{v,=k<v,}
k=0
=Y P{I(y,n)=1|v,=k<v }P{v,=k<v,}
k=0

+
k

IIM=

P{I(x,n)=1v,=k<v,} P{v,=k<v,}

0

= 2": P{(y—x,n—k)y=1} P{v,=k<v,}

+ i P{Ix—y,n—k)=1}P{v,=k<v,}

=P{I(x—y,n)=1} P{I(;,n)=lor1(y,n)=l}
=P{l(x—y,n)=1}[P((x,n)=1)
+PU(y,n)=1)—Pl(x,n)=1, I(y,n}=1)].

SP{I(x—y,n):l}P{i {{vx=k<vy}+{vy=k<vx}}}
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Hence

P(I(x,n)=1,1(y,n)=1)

LU=y m)=D[PUx,n)=1)+ Py, n)=1]
= P(I(x—y,n)=1)+1

and we have the lemma.

Proof of Theorem?2. Apply Lemmas 1 (resp. Lemmas 9 and 10) with

a

ogn < I I —yl<m® (O<a<y)

We get
1—2a)? .

E(/(x, n)I(y,n))S(—(l——g))— (n big enough)

and
El(x,n)~1—2a.
A simple calculation gives
1 —2a)?
E(K(n®, m) — EK(n", m))? < 22 (1~ 22

1—
and

EK(n*, n)~1—2a.

Hence by the Chebishev inequality we have
P{K(n*, n)>(1—e)(1 —20)[1 —((1 —a)" ' = 1)'"*]} >46,>0

for any £> 0 if n is big enough. Hence we have Theorem 2.

4. SOME FURTHER PROBLEMS

In Section 2 we have studied the area of the largest circle around the
origin covered by the random walk {S,, k <n}. The analog problem is
clearly meaningless since in R? (d> 3) the largest covered sphere is finite
with probability one. However, one can ask in any dimension about the
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radius of the largest sphere (not surely around the origin) covered by the
random walk in time n. Formally speaking, let

Q(N, u)={x: | x—ul <N}

and R*(n) be the largest integer for which there exists a r.v. u = u(n) such
that

E(x,n)=1 if xe Q(R*(n), u).
It is trivial to see that in R?
R*(n) = Const(log n)"/.

However, we do not have any non-trivial estimate.

In case d=2 clearly R*(n)>= R(n). We conjecture that R*(n) will not be
larger than R(n), but cannot settle this question. In fact this question is
somewhat related to the problem of favourite values (cf. Bass and Griffin
[1], Erdos and Révész [3], (1984), Erdos and Reévesz [4]).

The analogous question in the case of spheres covered with positive
density can be also raised.

We also propose to investigate the area T, of the smallest convex hull of
the path {S,, k <n}. Here we mention only a trivial result,

T,<2nnlog,n a.s. (4.1)

for all but finitely many n,

T,zenlog,n a.s. 1.0. (4.2)

with some suitable ¢ > 0.

Proof. (4.1)is a trivial consequence of the law of iterated logarithm. Let
S,=(U,, V,). Then for any ¢>0

P{lV.I<e \/r—i, U, > ¢(nlog, n)*} = O((log n)~*7).

Consider the first crossing of the path after » with the positive y axis
assuming that |V,,|<a\/;, U,>e(nlog,n)”. Then with a positive
probability this crossing point will be farther from the origin than
(¢/2)(n log, n)'%. The time needed to get this point will not be more than »
with probability O((logn) ¢). Hence the path {S,, k<2n} meets the
points (e(nlog, n)%,0) and (0, (¢/2)(nlog, n)""?) with probability
O((log n)~*). Having this result, (4.2) can be obtained with the usual
methods.
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Note added in proof. The following result can be obtained trivially:

THEOREM 2*. For any O0<a<1/2

lim sup K(n*, n) 2 1 — 2a. as.

n— o
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Normed Likelihood as Saddlepoint Approximation
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Barndorff-Nielsen’s formula (normed likelihood with constant-information
metric) has been proffered as an approximate conditional distribution for the
maximum-likelihood estimate, based on likelihood functions. Asymptotic
justifications are available and the formula coincides with the saddlepoint
approximation in full exponential models. It is shown that the formula has wider
application than is presently indicated, that in local analysis it corresponds to
Laplace’s method of integration, and that it corresponds more generally to a
saddlepoint approximation.  © 1988 Academic Press, Inc.

1. INTRODUCTION

The density function for the average x of a sample x,, .., x,, from a k-
variate distribution with known cumulant generating function K(u) can be
approximated in terms of simple characteristics of that cumulant
generating function. The saddlepoint approximation derived by asymptotic
analysis of the cumulant-to-density inversion formula is given by

f(%)=(2r)~*[n/|K()| 1" exp[n(K($) — §'H)I(1 +r,),  (L1)
where ¢ = §(%), called the saddlepoint, satisfies the saddlepoint equation
K($)=x; (1.2)

the cumulant generating function K(u) =log M(u) is the logarithm of the
moment generating function, K(u) = 0K/0u is the k x 1 gradient vector and
K(u) = 0%K/0udu’ is the k x k second derivative matrix; the relative error r,
is O(n=").
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The univariate version of the saddlepoint was derived by Daniels [5]
and the bivariate and multivariate versions by Good [8] and Barndorff-
Nielsen and Cox [4]. A comprehensive review of saddlepoint approxi-
mations and related statistical inference is given by Reid [10].

The saddlepoint approximation in practice is typically more accurate
than the normal approximation or the several-term Edgeworth expansion
and often is so accurate as to be indistinguishable from the exact density in
a computer plot. It thus seems reasonable to view it as a means to go from
an available cumulant generating function to a presumably accurate
approximation to the corresponding density. Accordingly we rewrite (1.1)
for a variable y with cumulant generating function H(u) (based on the
identification y =X, H(u) =nK(u/n)):

S()=(2n) 2| H($)| 7 exp{H($) — §'y}, (1.3)

where H(¢) = y; in effect, this is an n =1 version of (1.1). From this present
viewpoint we thus treat (1.3) as an empirically based approximation with a
good performance record.

We do note as a caution, however, that the asymptotic derivation of the
saddlepoint suggests good approximation in normal-like case and perhaps
poor approximation far from the normal; thus we would not expect (1.3) to
be accurate for a very non-normal distribution such as the uniform (a, b).

The exponential family provides an important extension from the
normal; in terms of a natural parameter 9 it has density

g(x; 0) =exp{0’ y(x) —y(8) + h(x)}, (1.4)

where 8 and y(x) are k-vectors. The minimal sufficient statistic y = y(x) has
cumulant generating function

H(u)=y(0+u)—y(06) (1.5)
The saddlepoint equation for approximating the distribution of y is
Yo+4)=1, (1.6)

so that § =0 + ¢ is the maximum likelihood estimate of ; the saddlepoint
approximation is thus

)= (2n) 2 1§(0) ~ 7 exp{y(8) —y(8) — (6 —6)y}. (1.7)

As §(0)= —0%log L(0)/0606" = j(#) is the observed Fisher information
function, we obtain

f(y)=(2r)~*?1j(6)| "> L(B)/L(H), (1.8)

where L(6)= L(0;y)=/(y;0), the marginal density of the minimal suf-
ficient statistic y; the approximation uses only a likelihood ratio so that
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L(OY/L(G)=1(y;0)/f(y; 6) = g(x; 8)/g(x; §) is available from the original
density function.

The transformation from y to # has Jacobian matrix j(f); the density
approximation for 6 obtained from (1.8) is thus

h(8; 8) = (2m)~*? | j(6)| 2 L(B)/L(6). (19)

In the asymptotic context the relative error in (1.9) is O(n~'). If the
approximation is renormalized

h(8; 6) ~ c | () '*L(6)/L(6) (1.10)

so the right side is a density, the relative error becomes O(n~%?).

The expressions (1.9) and (1.10) involving normed likelihood with
respect to the constant-information metric are called Barndorff-Nielsen’s
formula and were introduced (Barndorff-Nielsen [1]) by an asymptotic
argument from which the preceding was derived; the renormalized version
(1.10) was also shown to be exact for location and transformation models
given the usual conditioning on the Fisher configuration statistic, although
for such models the cumulant generating function may not exist.

In Section 2 Barndorff-Nielsen’s approximation formula is related to
general formulas for exact conditional distributions, and the implicit choice
of a Jacobian-type factor in the Barndorff-Nielsen approximation is dis-
cussed.

In Section 3 the local form of a density for the maximum-likelihood
estimator is examined, and the normed likelihood choice implicit in
Barndorff-Nielsen’s formula is shown to be in a logical correspondence
with the use of Laplace’s formula for approximate integration.

In Section 4 a family of saddlepoint approximations for a density
function at some point y, are discussed. Then in Section 5 a score-based
saddlepoint approximation for the density of the maximum likelihood
estimator is shown to give Barndorff-Nielsen’s formula.

Section 6 contains some concluding remarks; in particular, it is noted
that the inversion process from likelihood functions to corresponding
density functions is unique, when the statistical model is complete.

2. BARNDORFF-NIELSEN’S FORMULA

Barndorff-Nielsen’s [1] forn)ula (1.10) for the distribution of the
maximum likelihood estimator 6 can be presented as

L(6; 6,a)
C—_ -

h(f)a; 0)di~ >
L(6;0,a)

|6, a)|'? df, (2.1)
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where a is some exact or approximate ancillary statistic; in this form it
covers the location and transformation model cases which have a standard
ancillary statistic a. The choice ¢ = (2n) %7 is indicated by the analysis of
the full exponential models as discussed in the Introduction.

The standard context for the formula presupposes a continuous
statistical model in which the likelihood function is uniquely determined for
each value of the maximum likelihood variable § under a given value of a.
However, in the standard development there is no special guidance for the
choice or determination of the conditioning variable a.

The accuracy of (2.1) has been examined asymptotically on the sample
space in Barndorff-Nielsen [2, 3] and in terms of cumulants in McCullagh
[9].

For the case of a real parameter # and density f(y; 8) on an n-dimen-
sional space, an exact formula for the distribution of § given a general
(n — 1)-dimensional statistic a (which determines a curve) is given in Fraser
and Reid [6],

h(f)a, 0) db = c(a,0) L(6; 8, a) C(8, a) - j(0, )| db, (2.2)

where

C(0, a)=exp {r divo(y) ds'}

ds(y; 9)| , . 2
20) }I/(li a)l'?, (23)

and c(a, 0) is a normalizing constant, S(y;f) is the score function
0log(y; 6)/08, v(y) is the unit vector tangent to the curve determined by
the fixed a at the point y, div v(p) is the divergence 37 dv/(y)/dy; of the vec-
tor field {v(y)}, dS(y; 8)/dv(y) is the derivative of S(y; 0) in the direction
v(y), and s designates arc length on the curve for fixed a at the point y.
Some current work leads to a generalization of (2.2) for vector 6 that uses

05(y; 8)

C(b,a)=exp {[' DIV Vi) a f 17y v~ | S

| 16, @)™,
(2.4)

where V(y) records k tangent vectors to the n—k dimensional surface
a=constant, DIV V(y) is a particular generalization of the divergence, the
integral is along a curve from some initial point to the point y on the
surface @ = constant, and the determinant involves partial derivatives with
respect to the vectors in V().

Now consider the general formula (2.2) in relation to Barndorff-Nielsen’s
approximate formula (2.1). If @ is ancillary so c(a, 8)=c(a) then (2.1)
involves an implicit choice for the Jacobian-type factor

C, a)=1/L(6; 6; a). (2.5)
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This norming of the likelihood L(8; §, a) with respect to its maximum can
be interpreted in terms of the approximate density (2.1): as 6 varies the
maximum of the density function remains constant, where density is
examined in the constant information metric. This simple choice for an
otherwise difficult Jacobian-type factor has a certain natural appeal, and a
clarification of this can be obtained from a local analysis discussed in the
next section.

From (2.2) with (2.3) or (2.4) we see that Barndorff-Nielsen’s formula
provides a valid approximation to the distribution of the maximum
likelihood estimate subject only to whatever the support for the
approximation (2.5) is. In the next section we present a Laplace integral-
approximation justification for (2.5). Higher order calculations can be
made which lead to correction terms for the formula (2.1).

In the spirit of the preceding we can comment on the generality of the
applicability of the formula (2.1). The formula uses the likelihood function
at each value of the variable §. Such a likelihood function can be available,
if there is a density function for some initial variable, and a reduction is
made to a sufficient statistic, and if then there is an ancillary statistic that
complements the maximum likelihood estimate.

For the case of a real parameter 6, differential conditions are discussed in
Fraser and Reid [7] for an optimum determination of a conditioning
variable a.

3. MAXIMUM LIKELIHOOD ESTIMATE: LoCAL DISTRIBUTION FORM

Consider a k-dimensional parameter 8 for a statistical model and sup-
pose that the maximum likelihood estimate 6 has a continuous distribution
and uniquely determines the likelihood function, which we indicate by
writing L(6; y) = L(8; §). In this section we consider how the distribution of

can be approximated when only a likelihood function L(6; ) is available
for each value of §. For this we use the general definition of likelihood,

L(0;y)=L(6;y)=c-f(y;0), (3.1)

which for any given y involves an arbitrary scale factor ¢; thus only ratios
L(0,; y)/L(6,; y) are numerically available. '

As discussed in the preceding section this situation can arise if there is a
sufficient statistic reduction, or if the maximum likelihood estimate is being
examined conditionally given an ancillary, or both; accordingly we omit
reference to the ancillary a4 in the formulas.

From formula (2.2) we have that the probability element for § has the
form

h(G; 0) db = cL(8; 6) C(6) - | j(6) > db, (32)
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where L(6; §) here involves some choice of representative among the 6
functions given by (3.1) and the notation is justified by our assumption
that the likelihood function is uniquely determined by . Our concern here
is with finding a determination for the factor ().

First we make a change of variable in the parameter space so that the
observed information determinant is constant. For a real parameter 0 let a
new parameter y be given by

n=fo LI at, (3.3)

where the probability integral transformation is used as pattern. In terms of
the new parameter n we have constant observed information:

Lo |dO
j(n)=1(9)|;1;

2
=t (3.4)

For a vector parameter § we seek a new parameter # such that
dn=j(0)"" 8. (3.5)

There are many possibilities for this but a simple procedure is to use a
modified probability integral transformation radially from some initial
point 8 =48,, say 0; following Fraser and Reid [7] we define

s 1/k
n(sv)=v {k j |j(t0)] 2k ! dt}
50

for the value of n at a distance s from 6, =0 in a direction v, where k is the
parameter dimension. We then assume that such a reparameterization has
been done and use 6 now for the new parameter; in terms of this new 8, we
have |j(f) = 1.

Second, we investigate the significance of the choice C(6)=1/L(6; 0).
For this we consider the second-order form of the density function A(f; )
near some (6; 8) = (6, 8,), by examining the difference

logh(0; 8) —log{C() L(0; )} —log c
—log {L((i; fi)}
L(6; 6)
=0+ 1106 — 0,) + ,(0 — 6,)

+ ’%(é_ 00) 10(0 — 0o) + (6 —0,)1,,(0— o)
+3(0—00) lo2(6 —0o) + -, (3.6)
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where Iy, lo; are the kx 1 gradient vectors (with respect to 6, 0) and
L, Iy, Iy, are the k x k second-derivative matrices of log{L(8; 8)/L(0; §)}
evaluated at (6,, 0,).

From the definition of § we have /,,(§;§)=0 and from the constant
maximum of L(8; §)/L(6; §) along 0 =8 we have /,4(; 6) + 1,,(8; §)=0. If
these two properties are used at (8, 8,) we obtain /,, =/, = 0. If they are
then used at (6, §) we obtain

(é‘ 90)/111 + (é“ 90)1102 =0
(é“‘ 00)'120 + (é— 00)(111 =0

which gives [y, = — 1/, =1/,,. We also have [y, = —j(f,). The expression
(3.6) can then be rearranged:

logh(8; 8) —log{C() L(6;6)} =logc — L6 —8)j(B )6 —0)+ ---. (3.7)

For a similar second-order analysis in a different context, see Fraser and
Reid [7].

From (3.7) we now see that the choice C(0) = 1/L(6; §) gives the density
h(0; 8) a location normal form in (6, 8) near (8,, 6,):

h(f; 0) = c exp{ ~ 30— 0) j(8o)(6 — 0)} {1+ 016 —6,/°, 10— 6,°)}.  (38)

Thus, to the second order, the density has the N(6;;~'(6,)) form with
inverse variance matrix j(6,) which is constant in that order of expansion.
We note that the particular choice of parameterization for 6 gives
| j(0)| = 1; thus along the maximum density ridge § = the “shape” of the
inverse variance matrix may change but its determinant remains fixed. The
preceding location normal properties are directly linked to the choice
C(f)=1/L(6; 0).

The density (3.8) based on the choice C(f)=1/L(0; §) has local normal
form and the Laplace method of approximate integration based on the
second-order approximation gives ¢ = (2n) %2 |j(0,)| /* = (2n) ~*/> which is
in agreement with the notation ¢ that indicates no 6 dependence. In a
related way we can see that a different choice for C(f) followed by the
Laplace method of integration will give a “constant” ¢ that in fact varies
with 6,: verification by contradiction.

We thus have the interpretation of Barndorff-Nielsen’s formula as
providing that choice for the Jacobian factor so that the resulting nominal
density integrates correctly in accord with the Laplace method for
approximate numerical integration.
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4. SADDLEPOINT APPROXIMATIONS

Consider the saddlepoint approximation (1.3) for a density f(y) at some
point y,. In terms of the cumulant generating function H(u) for y we have

fo) = (2n) 2| H(§)| ~ " exp{H($)— §'y,}, (4.1)

where H($) =y, We can rewrite this in terms of the cumulant generating
function H°(u)= H(u)~ u'y, for the variable y — y,,

(o) = (2m) =42 |H($)| =2 exp{ H°(4) }, (4.2)
where H°($)=0.

One saddlepoint derivation uses an Edgeworth approximation for an
exponentially tilted model. If the corresponding exponential family is
generated in terms of the variable y — y, we have

f(y; 8)=exp{0'(y—yo)— H%O)} f(»), (4.3)

where the norming constant follows from the cumulant generating property
exp{HO(0)} = [ exp{6'(y — yo)} f(») dy; (44)

the cumulant generating function of y—y, in this model is
Y(u)=H(0 + u) — H°(8). Let O(y) be the maximum likelihood estimate in
the tilted model f(y; 8); then O(y,) =8, is the solution of the score equation

H(f)=0.
At 0 =0, we have the initial derivatives
Y(0)=0, Y(0)=H(b,), ¥(0)=H b, (4.5)

for the cumulant function of the density of y — y, ; it follows that the nor-
mal or one-term Edgeworth approximation for the density at y — y,=0is

f(o; 0o) = (2m) 42 | H%(6,)| ~ 2 exp{0}, (4.6)
which then gives
(o) = (2m) %2 | H°(B,)| ~ 2 exp{ H°(8,)}, (4.7)

where H°(f,)=0.
Now suppose we want a saddlepoint approximation for the density g(x)
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of a variable x=r(y) at the point x,=r(y,). We could proceed directly
from the approximation (4.7) for the variable x obtaining

g(xo) = (21) ¥ | HO(6,)| =17 exp{ H°(8,)} J(r ", xo), (4.8)

where H°(6,)=0 and
J(r=1 xo) = 10r =" (x)/8x| 5, (4.9)

is the Jacobian of the transformation. Alternatively we could use the
cumulant generating function H%(u) for the variable x — xy=r(y) —r(y,),

exp{H3(u)} = [ exp{u'(r(y) = r(3o))} /() dy, (4.10)

and obtain
g(xo) = (2m) ~2 | HY(Bo)| ' exp{ HA(Ho) }, (4.11)

where H%(d,)=0.

The two methods just described can be combined to produce a saddle-
point approximation to f(y) at y, by using the cumulant generating
function for x — xo=r(y) — r(y,), for some function r(y):

S(ro) = 2m) ™2 |H(Jo) =7 exp{ HYUo) } J(r, yo). (4.12)

We can thus have a family of saddlepoint approximations corresponding to
a family of alternative transforming variables r(y) that have cumulant
generating functions. We examine the choice of a transforming variable in
the next section.

5. NORMED LIKELIHOOD AS SADDLEPOINT APPROXIMATION

Consider a variable y that is in one-one correspondence with the
maximum likelihood estimate §(y) of a parameter 6 in a statistical model.
We suppose, in accord with preceding sections, that the likelihood function
L(0, y)=c-f(y; 0) is available at each point y, but not the density function
itself. This can occur if y is obtained by marginalization under sufficiency,
by conditioning under ancillarity, or by both.

For computation we note from the preceding assumptions that the
observed information can be written as a function of 4:

j@)= —3*Inf(y; 0)/0¢] - 4iy) -

In this section we consider the determination of saddlepoint
approximations for the density f(y; ) at some point y,; the available
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ingredients are taken to be the likelihood function (3.1) at y, and the
sample space first derivative of the likelihood function at y,.

First we note that if an approximation is obtained for some parameter
value 6 =6, then likelihood modulation extends the approximation to all
values for 6:

_Lb; yo)
L(8o; yo)

We are thus faced with choosing an appropriate value 8 = 8, to use for the
initial approximation. Following the implicit rationale for the saddlepoint
analysis in Section 1, we choose the maximum likelihood value 6, = ( y,).

As indicated in Section 4 a range of possible approximations is available
depending on the choice of modified variable r(y) to which the method is
applied. Now the derivation of the saddlepoint depends very much on
additivity as part of approximating the average (or sum). This argues for
using the score function

f(yo; 0) S(¥o; 8o). (5.1)

r(y)=S(y; 0,) (52)

in the neighborhood of y,. We shall make this choice for modified variable,
but in fact do so primarily for notational reasons as the method of
approximation will be shown to be independent of the choice.

For the change of variable we calculate

k(y)=05(y; 6,)/0y’ (5.3)
and obtain

J(y;0)=g(S(y); 0) |k(y)l, (54)

where g(S; 0) is the density function for S(y; 6,).

We now expand the logarithm of the density g(S; 8) to the second order
in @ at 6§, and to the first order in S=S(y;0,) at y=y,; in tensor sum-
mation notation,

g(S;0)=g(0; 0,) exp {a,S*+ 1, 6'S* — 3(j;0'0/ + Ay, 6'¥S*)+ ---}
=g(0; 0y) exp{a, S+ (1,0'+ 3 A,;,0'0) S*—1j,;60/+ --- }
=g(0;0y) exp{a’'S+1'S—37j(0) T+ --- }, (5.5)
where 6=0—-6,, 1,,=0 or 1 according as i=u or i #q,
a,=01ng(S; 0)/05% o4,

o (5.6)
Ay =01ng(S; 0)/06'06/0S* | ,
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and
"=0%"+14,,0¥0 (5.7)

is a quadratic reparameterization in the neighbourhood of 6 = 6,,.
The model (5.5) to the chosen order of expansion coincides with the
exponential model

cexp {a'S+1'S—11%(8,) T +4(7)}, (5.8)

where ¢g(0)=4'(0)=4"(0)=0. The saddlepoint approximation for this
model at S=0and d=1=01is

8(0, 85) = (2m) = [j(Bo) ~ 2. (59)

It is of interest to note that a range of such exponential models all have the
same saddlepoint approximation and one of them is the normal model

(2m) = 2 1 j(80)1 " exp{ = 3(j~(8) S—1)j(8o)i(8o)S—1)}  (5.10)

for which the approximation (5.9) is obvious.

Now briefly, suppose that some other variable §=r(S)—r(0) is used to
examine the exponential models that coincide with the given model to the
first order in the variable S. Then dS=BdS at S=0 where B is the
Jacobian, and S is replaced by BS in (5.8). The resulting normalization
constant in (5.10) is then

(2m) "2 1j(85)1 =" | B]

which is in agreement with the change of probability element

£(0; 6,) dS=g(0; 0,) | B| dS.

Thus a change of variable does not affect the effective density
approximation implied by (5.9); the use of the score S has the advantages
of familiarity.

We can now make the change of variable from S= S(y; 6,) to §( ). The
maximum likelihood equation

S(y; 0(y))=0 (5.11)
can be differentiated:

oS(y, 6) v+ aS(y; 0)

o = db =0, (5.12)
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At y =y, with 6=0(y,) =0, we obtain
ds(y; 0o) —Jj(8,) d0 =0,

giving dS = |j(6,)|d6. Thus the saddlepoint approximation for the density
of § at § =6, when the parameter 8 = 0, is

(2m) 472 | j(8o)] 12 (5.13)
and, for general 8 by (5.1), is
P L(6; yo)
2m) TR | j(0o)| VP . 5.14
(2m) =2 6" 15 (5.14)

We now rewrite this for an arbitrary point y and obtain the saddlepoint
approximation for the density of 0:
. L(6;
WO 0) > (2m) 2 0|2 ) (5.15)
L(6(y); »)

which is Barndorff-Nielsen’s formula (1.9).

We can also obtain the saddlepoint approximation for the original density
f(y; 8) based on only the likelihood function L(8; y)=cf(y; 6). From (5.9)
with (5.4) we obtain

L(6; y)

0)% (2m) 2 (G|~ k()] —2
S 0y~ (2m) 2 [jOGDI ™| y)IL(é(y); 0

(5.16)

6. REMARKS

Barndorff-Nielsen’s formula (1.9), (1.10) had been proposed as a con-
ditional distribution for a maximum likelihood estimator § given some
approximate ancillary statistic. The conditions under which it can be
examined, however, are broader and cover any case where the likelihood
function is available marginally or conditionally in unique correspondence
with a value of the maximum likelihood statistic.

In this general context the formula can be supported (Section 3) by a
local analysis using Laplace’s method of approximate integration. It can
also be supported as a saddlepoint approximation (Section 5) based on
derivatives of the likelihood function. This suggests the use of Barndorff-
Nielsen’s formula as a likelihood-based alternative to the cumulant-based
saddlepoint approximation. A modification of the formula gives an
approximate density for a variable y in one-one correspondence with the
mle 6, as determined marginally by sufficiency, conditionally by ancillarity,
or by both.
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A natural question in relation to Barndorff-Nielsen’s formula is whether
the availability of the likelihood function at each sample point is enough to
determine the statistical model (family of density functions) for the
maximum likelihood estimate. The question is whether or not C(f) in (3.2)
is uniquely determined by the likelihood functions (3.1) at the various
sample points. If C(f) is the factor for the model being examined and
C*(0) = C(6)(1 + «(8)) is some other factor that produces an alternative
statistical model, then #(6) is bounded below and is an unbiased estimate of
zero for the statistical model being examined. Thus the factor C(§) is uni-
quely determined if and only if the statistical model is one-sided boundedly
complete; it follows that completeness guarantees a unique C(f). The
Barndorff-Nielsen choice can thus be viewed as a first-order determination
of this unique C(6), as based on the viewpoints in Sections 3 and 5.
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Non-uniform Error Bounds for Asymptotic Expansions
of Scale Mixtures of Distributions

Y. FunkosHI

Hiroshima University, Hiroshima, Japan

Let X = 6Z be the scale mixture of Z with the scale factor ¢ > 0. We consider two
type expansions G;,(x) and @;,(x) as the approximations to the distribution
function F(x) of X. In this paper we derive non-uniform error bounds in
approximating F(x) by the asymptotic expansions G;,(x) and @;,(x). The non-
uniform bounds are improvements on the uniform bounds in the tail part of the
distribution. The results are applied to the asymptotic expansions of /- and
F-distributions.  © 1988 Academic Press, Inc.

1. INTRODUCTION

Let Z and ¢ be independent random variables and suppose that ¢ >0
with probability 1. Then X =¢Z is said to be a scale mixture of Z with the
scale factor ¢. The distribution function of X can be expressed as

F(x)=E,{G(c 'x)},

where G(x) is the distribution function of Z. We are interested in the
asymptotic approximations to F(x) in the situation where ¢ tends to 1. The
uniform error bounds in the case when we approximate F(x) by G(x) have
been studied by Heyde [7], Heyde and Leslie [8], Hall [5], etc., assuming
that Z is distributed as N(0, 1) or the exponential distribution. Recently the
following two types of refinements have been considered under the
appropriate assumptions on the smoothness of G(x) and the moments of g:

()

(i1)

Multivariate Statistics and Probability
ISBN 0-12-580205-6

kot )
Gsulx)= 3, j—,baJ(X)E(G"—l)’, (L.1)
j=0/:
k=11 _
P il(x)= Z j—‘an(x)E(az's— 1y, (1.2)
i=o/:
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where d = —1 or 1. Here it is assumed that the distribution of Z is sym-
metric about O for the second type expansion. If E(a® — 1)’ or E(6®® — 1)/ is
O(n~/), the approximation (1.1) or (1.2) is an asymptotic expansion up to
the order of n~*~", The uniform error bounds for these two types of
approximations have been obtained by Fujikoshi [2, 3], Fujikoshi and
Shimizu [4], Shimizu [ 10, 117]. The results have been applied to obtain the
error bounds for the asymptotic expansions of #- and F-distributions.

In this paper we refine the uniform error bounds on |F(x)— G;,(x)| or
|F(x)— @;,(x}|, to reflect dependency on x as well as the moments of ¢. In
this direction we consider the bounds for

sup (1 + |x]') [F(x) — G5 4(x)| (1.3)
and

sup (1 + |x}) |F(x) — @, (x)I. (1.4)

In general, the non-uniform bounds are improvements on the uniform
bounds in the tail part of the distribution of X. It may be noted that the
order of (1.3) or (1.4) is known (Bhattacharya and Ranga Rao [1], Hall
and Nakata [6], etc.) for asmptotic expansions of the distribution
functions of sums of ii.d. random variables, but its explicit bound is not
known. Error bounds for (1.3) and (1.4) are, respectively, given in
Sections 3 and 4. In Section4 we apply our results to the asymptotic
expansions of ¢- and F-distributions.

2. SCALE MIXTURE OF A GENERAL DISTRIBUTION

We assume that the support of the distribution of Z is Q=(0, o) or
(— o0, ©). The approximation (1.1) with §=—1 or | is based on the
following Taylor’s expansion of G(o ~ 'x),

G(o~'x) = jg}' by (X)(0° — 1) + As4(x, 0)
=Gsulx, o)+ 4;5,(x, 0), (2.1)
where
bs (x)=(87/0s") G(s~°x) |, -1, (22)
4,05 0) == (0 = DHEOS) G ™%) oo ey (23)

k!
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and 0<6;<1. In order to obtain the expansion (2.1) and its error
estimate, we make the following assumption for some integers k>0 and
120

ASSUMPTION 1. G(x) is k times continuously differentiable on Q and

bsi(l)=sup (1 + |x]') |65 x(x)| < c0. (24)

xef

The following lemma is fundamental in our error estimates.
LEMMA 2.1. Letting &s,4(x, 0, 1) = (1 + |x]") 45 4(x, ), it holds that

83050, DI <55 b1 v 0')o v o~ 1)F

<kl!55,k(l){a’|a—1|"+Ia“——ll"}, (2.5)

where ¢ v 6 ' =Max(o, 07 ").

Proof. Noting that s7/(8//ds’) G(s ~°x) is a function of s ~°x, we have

ouls 0, )= (1411 {1 +6,(0°~ 1)}]

X bs(1){1+05(a°— 1)} ~%*(a®— 1),
where 1= {1+605(6°—1)} ~°x. It is easy to see that

<l 2L,
and hence

T+ e {1+ 65— 1)} < (L +]2))(1 v &)
Using these inequalities, we obtain the desired result.

In order to obtain the expansion

Gsx(x)=E;[Gsx(x, 0)]

1 .
=2 71 b.(x) E(c®—1) (2.6)
j=0J:

and its error estimate, we make the following assumption:
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ASSUMPTION 2. E(6'**)< o0, E(c %) < o0.

THEOREM 2.1.  Suppose that X = 6Z is a scale mixture of Z. Then, under
Assumptions 1 and 2,

sup (1 + |x|") |F(x) — G (x)|
<;lils(s.k(l) E{(1 va')o v o t—1)}

S%ﬁa,k(l)E{o’]a—1]"+)a“—1|"}. (2.7)

Proof. We can write
11+ |xI)F(x) = G5 4(x))]
=|E {&sulx, o)}
S E {I&sulx, o)l }.

Therefore, using Lemma 2.1 and Assumption 2 we have the desired resulit.

From (2.7) we have
1
|F(x)_G5,k(x)|<(l+|x|1)_lF56‘k(1)E{alla_1|k+la_l_1|k}- (2.8)

In a special case of /=0,

1
sup |F(x) — Gou(x) <75 bsiE{lo—11"+]a~" 1]}, (29)

where b, = 1b;,(0). This uniform error bounds in the cases of 6= —1 and
d=1 were obtained by Fujikoshi [3] and Fujikoshi and Shimizu [4],
respectively. In the comparison with the upper error bounds (2.8) and
(2.9), we can say that (2.8) is better than (2.9) if x satisfies

bsull) E{a’ lo—1|*+|o "' =1}
* 56,kE{I0'—1|k+l0'_l—llk}

|x}' =

1. (2.10)

So, the error bound (2.8) gives an improvement on (2.9) in the tail part of
the distribution of X.
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3. SCALE MIXTURES OF A SYMMETRIC DISTRIBUTION

Suppose that the distribution of Z is symmetric about 0, ie,
1 — G(x) = G(—x). It is possible to apply Theorem 2.1 to the distribution of
X in this symmetric case. However, the result is not very useful for
t-distribution. Here, we consider non-uniform error bounds for the second
type of approximation (1.2) that are useful for r-distribution. We can write

F(x)=E,{3 +1sgn(x) 6(072x2)}, 3.1
where sgn(x)=1 if x>0, =0 if x=0 and = —1 if x<0, and G is the

distribution function of Z% Using this relation and considering Taylor’s
expansions of G(a ~*x?) we have

3+ §sgn(x) G(o x?) = D5 4(x, 0) + 4 sgn(x) Z&,k(xz’ a?), (3.2)

where
ko A
Dsu(x,0)= Y J—-"'aé,j(x)(az‘s—l)] (3.3)
j=0J
and
_ G(x), =0,
a5,/ (x) = {% sgn(x) bs (x?),  j=1, ..k (34)

Here we use the same notations as the ones used for G in Section 2. So, the
expressions b ; and A5, are defined in the same way as the ones for G. In
order to obtain the expansion (3.2) with d = —1 or 1 and its error estimate,
we make the following assumption for some integers k>0 and /> 0:

ASSUMPTION 3. The distribution function G of Z* is k times continuously
differentiable on (— 0, o) and

a5 ,(1)=sup (1+1x]') as.(x)| < 0. (35)

X

Let

M5a(X, 0, 1) = § sgn(x)(1 + |x|') A5 x(x%, 0°). (3.6)

Then, 4, has the same properties as 4 s.x- Therefore, we have the following
lemma:
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LeMMA 3.1.  Under Assumption 3 it holds that

1
11sx(x, 0, 1) Spd“(l)(l va')e?va - 1)

S—=ads(D{c’ o> =1 + |62 —1]¥}. (3.7)

In order to obtain the expansion

Ds(x)=E,[DPs(x, 0)]

k—1

1 4
=) 7 984(%) E(c®—1)/ (3.8)

j=0/J:

and its error estimate, we make the following assumption:

ASSUMPTION 4. E(c'**)< o0, E(6~%*) < 0.
From (3.1), (3.2), and (3.8) we have
(1 4+ 1xIWF(x) — @5 4(x)) = E,[54(x, 0, )]. (3.9)

Therefore, using Lemma 3.1, we have the following theorem:

THEOREM 3.1. Suppose that X=0Z is a scale mixture of a symmetric
random variable Z. Then, under Assumptions 3 and 4, we have

sup (14 |x|") |F(x) — @5 4(x)]
s;:—!d“ )E{(1 v a')a? v a=2—1)*}

<7 a,;k(l E{c'|6*—1|*+ 67— 1}*}. (3.10)

Letting /=2h and /=0 in (3.10), we have

[F(x) — @5,(x) < (1+x7)7! %ﬁa,k(?-h) E{c® o> — 1"+ |0 72— 1]*}
(3.11)

and

1
sup [F(x) — @5 4(x)| < aakE{IU —1*+le 2 =11}, (3.12)
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where a;, =1a;,(0). We can write

@s54(2h) = Lsup (1 4+ x") by (). (3.13)
x>0
The uniform error bounds (3.12) in the cases of 6= —1 and =1 were

obtained by Fujikoshi [3] and Fujikoshi and Shimizu [4], respectively.
The non-uniform error bound (3.11) is better than the uniform error bound
(3.12) if x satisfies

s (2h) E{c™ |6 —1|*+ |6 "2~ 1]}

2h
X >
IxI™> ascE{le*—1{*+|c"2—1]%}

—1. (3.14)

4. APPLICATIONS

4.1. t-Distribution

The t-distribution of n degrees of freedom is defined as the distribution of
a scale mixture T, = (x2/n) ™' Z, where Z is the standard normal variable
and x2 is the chi-square variable with n degrees of freedom. Our interest is
to find non-uniform error bounds for well-known asymptotic expansions
(see, e.g., Johnson and Kotz [9]) of the distribution function F(x) of T,,.
Let the pdf and the cdf of the standard normal variable denote by ¢(x) and
@(x), respectively. Then it is known (Fujikoshi [3], Fujikoshi and Shimizu
[4]) that

al,j(x)= _2_jH2j~ 1(x) é(x),

R P = =1\ L .
a)= (=2 T s @imn (1] ) e b g,

i=1

4.1)
where H(x) is the Hermite polynomial defined by
(d’/dx’) ¢(x) = (= 1)’ H)(x) (x).
For nonnegative integers j and / and U= y2/n, let
=E({U-—1y,
@ (4.2)

ri)=E{U (U -1)/},

with r;=r(0). The quantities g;s exist for any j, but the quantities r;(/)
exist for n—2/—2j>0. For j=1,2, .., 6,
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0:=0, @=2/n, q;=8/n’, q,=12(1+4n""Yn?
gs=32(5+12n='Yn’,  go=20(1+ 120"+ 32n-2)/n’,
r)=2(1+1)n"/N,,,
ral)=2{n+ 21+ 1)1 +2)} 7N, »,
ro(l)=4{(31+T) n+2(+ )+ 2)(I + 3)} n/N,, 5,
rdl)=4{3n> +4(3P + 171+ 23) n

+AU+ 1) +2)0+3)(I+4)) 7N, .,
ro(1) = 8{5(31+ 11) % + 4(5P + SO + 160/ + 163) n

+4(I+ DI+ 2)(+3)I+3) (I +4)(I+5)} n'/N, 5.
re(1)=8{15n + 10(97* + 75 + 152) n?

+4(15/* + 230 + 127517 + 3016/ + 2556) n

4+ 1)+ 2)1 4 3)I+4) U+ )+ 6)) nYN,, 6

where N,=(n—2)(n—4)---(n—2j). Using Theorem3.1 with the
replacement of / — 2/ we have that if n—2/—2k >0 and k is even,

1
as (2D {r () +q}. (4.3)

|F(x) = @5 4(x)] < (1 +x*) ! i

The first three approximations @;,(x) are given as
D _, 2(x) = B(x),
D 4(x)=D_o(x) +$(x)[—4n ' (x* +x)
+in72(x%+ 2x* + 3x)],
D_y6(x)=P_14(x)+$(x)[—F(1 +4n"")n?
x(x7+3x°+9x> + 15x) + Z5(5+ 12n~ ") n 3
x (x° + 4x7 + 18x° + 60x> + 105x)],
D,,2(x)=P(x) — Ny '¢(x) x,
D, 4(x) =D, »(x)— $(x)[§(n +4) Ny '(x’ —3x)
+ 5(7n+ 12) N7 Y(x® — 10x* + 15x) ].
D, o(x) =D, 4(x)— $(x)[3(3n° +92n+96) N !
x (x7—21x% 4+ 105x> — 105x) + $(551° + 652n + 480)
x N5 (x® —36x" + 378x° — 1260x> + 945x)].
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The numerical values of a;,(2/)/k! are given for k=2, 4, 6 and /=0, 1| as
follows:
k=2 k=4 k=6

T ol

=0 [=1 [=0 [=1 =0 =1

—110.158 0.339 0.100 0.384 0.076 0.422
1]0.138 0.129 0.074 0.077 0.050 0.049

4.2 F-Distribution

Let x? and y; be mutually independent chi-square variables with ¢ and »
degrees of freedom, respectively. Then, the distribution function of
(x2/m)~"(x2/q) can be expressed as

E,{G(307'xq; 39)},

where o =(x2/n)~ ' and G(x; A) is the cdf of the gamma distribution with
the pdfg(x;A)=x*"te */I'(A), if x>0 and =0, if x<0. Therefore, we
may consider the distribution of X=0¢Z with Z= the gamma random
variable and o= (x2/n)~"' instead of the F-distribution. Our interest is
to find non-uniform error bounds for asymptotic expansions of the
distribution function F(x; 2) of X when 4 is fixed and n is large. It is known
(Fujikoshi [3], Fujikoshi and Shimizu [4]) that the expansions (2.6) can
be expressed as

k=11 )
Gsulx; )=} j_'bé,j(X;'{)E(U_é_l)Ja (44)
j=o0t?
where U= y2/n,
by j(x; 2)= —xL{? (x) g(x; 1),

‘ N (4.5)
by (x;2)=(=1) "' xL?, (x) g(x; 4).

Here L{V(x) is the Laguerre polynomial defined by
LP(x)=(—1)? x*e*(d?/dx?)(x"* e )

and

[Px)=x"+ 3 (1—1)--‘(i—x)<f) xP i

i=1
Using Theorem 2.1 we have that if n—2/— 2k >0 and k is even,

1F(x; 1) = G loe; )< (14 |x]") 7V bl M) {reD) + g} (4.6)
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for any positive x, where

bisu(l; A)=sup |(1 +x') bsxlx; 1)I. (4.7)

x>0
We can see that

(dfdx){1+x"} by (x; 2) = (— 1)~ D2 g(x; 1) Dy 4(x; A), (4.8)
where

Dy 4(x: 2)= (14 x') LE~D(x) ~ 'L (x),
D_ (6 A)= (1 +x) [+ (x) = XL (x).

Since D;,(x; A) are polynomials of degree k+/ in x, we can obtain the
numerical values of b;,(/; 1) by computing the values of |(1 + x’) bs_(x; 4)|
on the set of positive roots of D;,(x;4)=0. The numerical values of
by (1; A)k! and b_, (1; A)/k! for k=1(1) 6 and 1 =0.5(0.5)10 are given in
Tables I and IL

TABLE 1
The Values of 5, ,(1; A)/k! for k=1(1)6 and 1=0.5(0.5)

0.5 0.415 0.184 0.122 0.096 0.078 0.065
1.0 0.840 0.388 0.330 0.273 0.227 0.192
1.5 1.31 0.658 0.634 0.546 0.465 0.400
20 1.81 1.02 1.04 0.934 0.816 0.765
25 236 1.44 1.57 1.45 1.30 1.32
3.0 295 1.94 2.21 2.12 1.95 2.10
35 3.57 249 298 296 281 317
40 4.22 3.12 3.89 3.98 397 4.58
45 491 3.80 4.95 5.2t 5.42 6.41
5.0 5.63 4.56 6.15 6.65 7.22 8.71
55 6.38 5.37 751 833 9.39 11.56
6.0 7.16 6.25 9.03 10.27 11.99 15.04
6.5 797 7.20 10.72 12.49 15.06 19.24
7.0 8.80 8.21 12.58 14.99 18.63 2225
7.5 9.66 9.28 14.63 17.80 2277 30.15

8.0 10.55 10.41 16.85 20.94 27.52 37.05
8.5 11.46 11.61 19.27 24.42 32.94 45.07
9.0 12.39 12.87 21.88 28.26 39.07 54.28
9.5 13.35 14.20 24.69 3249 45.96 64.87
10.0 14.33 15.58 VAND 37.10 53.68 76.83
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TABLE 11
The Values of 5_,,(1; A)/k! for k=1(1)6 and 1 =0.5(0.5)10

A

. 1 2 3 4 5 6
0.5 0415 0.405 0.415 0.428 0.442 0.456
1.0 0.840 0.907 0.982 1.06 1.13 1.19
1.5 1.31 1.51 1.70 1.89 207 224
20 1.81 2.20 2.58 294 3.30 3.65
25 2.36 2.99 3.61 422 483 5.44
30 2.95 3.87 4.80 5.74 6.69 7.65
35 3.57 484 6.14 749 8.89 10.33
40 422 5.89 765 9.50 11.46 13.51
4.5 491 7.03 9.31 11.78 14.41 17.23
50 563 8.25 11.14 14.32 17.78 21.53
5.5 6.38 9.55 13.14 17.15 21.58 26.46
6.0 7.16 10.94 15.30 20.26 25.84 32.05
6.5 797 12.41 17.63 23.67 30.57 38.34
70 8.80 13.96 20.13 27.39 35.79 45.38
15 9.66 15.59 22.81 3143 41.54 53.22
8.0 10.55 17.29 25.66 35.79 47.82 61.89
8.5 11.46 19.08 28.69 40.48 54.66 73.10
9.0 12.39 20.94 31.89 45.51 62.09 87.89
95 13.35 22.88 35.28 50.90 70.13 104.7

10.0 14.33 24.90 38.84 56.64 78.79 1255
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Preliminary Test Estimators in
Two Sample Problems
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We consider the problem of estimation of p, when it is suspected that p,~p,
based on independent samples from N, (i, ¢’V;) and N,(n,, 62V,). We assume
V., V5 known but 62 unknown. First, the EB estimator is derived and its Bayesian
and frequentist properties are studied. Second, a modified EB estimator is proposed
and shown to dominate a preliminary test estimator. Finally, a hierarchical Bayes
approach is proposed as an alternative to EB estimators.  © 1988 Academic Press, Inc.

1. INTRODUCTION

Suppose in a laboratory, say Laboratory I, a certain instrument is
designed to measure several characteristics and a number of vector-valued
measurements is recorded. Our objective is to estimate the unknown pop-
ulation mean. It is known, however, that a similar instrument is used in
another laboratory, say Laboratory II for the same purpose, and a number
of observations is recorded from the second instrument. It is also suspected
that the two population means are equal, in which case, observations
recorded in Laboratory II can possibly be used effectively together with
those in Laboratory I for estimating the population mean of the first

* Research partially supported by NSF Grant DMS 8600666.
* Research partially supported by Air Force Office of Research (AFOSR) under contract
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instrument. Thus, the question that naturally arises is whether one should
use the sample mean from Laboratory I or the pooled mean from the two
laboratories.

In problems of this type what is normally sought is a compromise
estimator which leans more towards the pooled sample mean when the null
hypothesis of the equality of the two population means is accepted, and
towards the sample mean from Laboratory I when such a hypothesis is
rejected.

A very popular way to achieve this compromise is to use a preliminary
test estimator (PTE) which uses the pooled mean when the null hypothesis
is accepted at a desired level of significance and uses the sample mean from
Laboratory I when the opposite is the case. For an excellent review of
PTEs, see Bancroft and Han [1]. It is known, though, in other situations
that a PTE is typically not a minimax estimator, and estimators with
uniformly smaller mean squared error (MSE) than the PTE can often be
produced (see, for example, Sclove et al. [7]). Moreover, the degree of
evidence for or against the null hypothesis is not reflected in the PTE.

In this paper, we propose instead an empirical Bayes (EB) estimator
which achieves the intended compromise. Such an EB estimator is quite
often a weighted average of the pooled mean and the first sample mean.
The weights are adaptively determined from the data in such a way that
the larger the value of the usual F statistic used for testing the equality of
the two population means, the smaller is the weight attached to the pooled
sample mean. Thus, unlike the PTE, the EB estimator incorporates the
degree of evidence for or against the null hypothesis in a very natural way.
Also, unlike a subjective Bayes estimator, the EB estimator is quite robust
(with respect to its frequentist or Bayesian risk) against a wide class of
priors.

Section 2 motivates the EB estimator, and its Bayesian properties are
discussed in this section. Among other things, it is shown that the EB
estimator has uniformly smaller Bayes risk than the first sample mean. In
Section 3, the estimators are compared in terms of their frequentist risks,
and sufficient conditions under which an EB estimator dominates the first
sample mean are given. Also, in this section, a modified EB estimator is
proposed, and sufficient conditions under which it dominates the PTE are
given. Finally, in Section 5, a hierarchical Bayes approach is proposed as
an alternative to EB estimators. It has recently come to our attention that
Saleh and Ahmed [6] have considered estimation of yx, under the loss
LS, u)=(6—pu) V=" (6—pu,), assuming V,=V,=V unknown, and
proposed the shrinkage estimator X, + (nyc/(n,+n,))(X;—X,)-n/T?,
where T2 = (n n,/(n, +n,))}(X,— X,)’'S'(X,— X,), nS=pooled sum of
squares and products matrix, n=n,+n,—2, and O<c<2(p—2)/
(n,+n,—p+1). A comparison of the risk of the above estimator with
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those of the PTE as well as X, and (n, X, +n,X,)/(n,+n,) is also
undertaken by the above authors.

2. THE EB ESTIMATOR AND ITS BAYESIAN PROPERTIES

Let X, (i=1,..,n,) and X,; (i=1, ..., n,) be independent p( > 3)-dimen-
sional random vectors, where X/’s are iid. N,(u,, a?V,), while X,’s are
iid. N,(u;, 6*V,). In the above u, € R?, u, € R?, and o*(>0) are unknown,
but ¥, and ¥V, are known p x p p.d. matrices. Our goal is to estimate y,.

In order to motivate the EB estimator, we need find first a Bayes
procedure. It is immediate that the minimal sufficient statistic for
(15 425 0%) s (X}, Ko, te(VT!1 S, + V51 S,)), where X;=n7' 30, X,
(j=1, 2) and S;=3%, (X;—X,)(X;,—X,)", j=1, 2. Note also that
X, ~N,(u,6’n ' V) (j=1,2), while tr(V7 ' S, + V' )~ 0742, 4 ns2yp

In a Bayesian framework, the above is treated as a conditional dis-
tribution given y, and p,. We use the independent N,(v,°n; ' V) and
N, (v, t°ns' V,) priors for u, and p,; that is, the prior variance—covariance
matrix is proportional to the variance—covariance matrix of the
corresponding sample mean. The suspicion that u, and u, may be equal is
reflected in the choice of a priori common mean v. For a related prior in
the general regression model, see Ghosh et al. [3].

In order to find the posterior distribution of p = (4), first note that con-
ditional on u, and u,, X,, X,, S;, and S, are mutually independent, and
the distributions of S,, S, do not depend on u, and p,. Hence, we can
restrict ourselves to the conditional distributions of X /s given u/’s. Also,
since p, and pu, have independent normal priors, standard calculations
yield that u, and u, given X, and X, have independent posterior dis-
tributions with

w1 X, = %~ N,((1— B) %;+ By, c*(1— B)n; 1 V), 1)
j=1, 2, where B=a?%/(6*+1%). Now, using the loss
L(py, a)=0 *a—p,)"Qa~—py) (22)

for estimating y, by a (Q being a known p.d. weight matrix), the Bayes
estimator of u, is

es(X,)=(1—B) X, + Bv. (2.3)

Note that the Bayes estimator does not depend on the choice of Q. The
multiplier ¢ 2 is used in the loss because that makes X, a minimax
estimator of u, with the constant risk not depending on any unknown
parameter.
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In order to find an EB estimator of u,, we estimate the unknown
parameters B and v in (2.3) from the marginal distributions of X, X,, and
tr(V;'S;+V;'S,). Note that marginally X, X,, and tr(V['S,+
V;'S,) are mutually independent with X,~N,(v,n '(c>+1%)V))
(j=12), and tr(V[' S, + V5" S)~0’x%, 4,2, Hence the complete
sufficient statistic for (v, 7%, 6?) based on this marginal distribution is
(W, Z, tr(V 'S, + V51S,)), where W=(n, V' +n, V) Yn, V' X, +
n, V5! X,) is the pooled sample mean, Z=Y"(n;' V,+n5;!V,)" 'Y, and
Y=X,—X,. Also, marginally, W~N,v, (¢>+1*)(n, Vi '+n,V;")),
Y~N,0, (n; ' Vi+ny7! Vo) o?+1%)), and te(V 'S + V7 S,)~
02, 4 m -2y Hence, the UMVUE of v is W, while the UMVUE of
(62413 is (p—=2)/(YT(n;' V,+ny; ' V,)~'Y). The last assertion follows
since Y7 (n; 'V, +n5'V,)"'Y ~ (0% +17) x2. Moreover, since tr(V;' S, +
Vi'8:)~6°%2 +m—2p» the best scale invariant estimator of o is
((ny+n,—2)p+2) "tr(V 'S, + V51S,). Substituting these estimators
for v, (62+1?)"!, and o2 in (2.3), one gets the EB estimator of y, as

een( X, X5, 81, 8,)=(1-B) X, + BW=W+ (1 - B)(X,— W), (24)
where

(p=2)tu(V{'S +V;'S,)

B= :
((ny+n,=2)p+2) Y (n7 ' Vi+ny' V,y)" Y

(2.5)

Remark 2.1. Note that 0 < B < 1, while the estimator B though positive
can take values exceeding one. Accordingly, for practical purposes, one
proposes the positive part EB estimator

eEB(Yl’XZ’Sl’SZ)=W+(1_B)+(YI_W) (2.6)

of u,, where a* =max(a, 0). For simplicity of exposition, in the remainder
of this section, we shall, however, work with ey rather than efy.

A question that naturally arises is why this particular method of
estimation is used for estimating the prior parameters. We shall answer the
question by proving the “optimality” of egy within the class of estimators

5(-(A_fla 1‘—,2’ Sl9 SZ)

ctr(Vi1 S+ V7S,
((ny+n,=2)p+2) Y (n ' Vy+ng' V,) !

=W+<1— Y) (X, — W),
(2.7)

where ¢ (>0) is a constant. Note that ezp=9,_,.
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THEOREM 2.1. The Bayes risk of 8, under the assumed prior (say &) and
the loss (2.2) is given by

r(&, 0 )=1—=B)n; " tr(QV )+ Btr(Q(n, V' +n, V"))
+Bt(QA(n;' V,+ny' V,) A7)

x[ c*(n, +ny,—2) _2c(n;+n,-2)
{(ny+ny=2)p+2}p—2) (n,+n,—2)p+2

+ I:I, (2.8)

where A= (n V'+n,V;')y ' n, V5. Moreover, r(, eg) <r(&, 6.).

Proof. The second part of the theorem follows immediately from (2.8).
To prove the first part, write

r(&0.)=r(¢ ep)+ 0 *E[(eg—0.)" Qleg—9.)]. (29)
Note from (2.1) to (2.3) that
r(& eg)=(1—B)n; ' tr(QV)). (2.10)

Also, writing B, =ctr(V7'S,+ V5! S8)/{((n;+ny—2)p+2) Y (n;'V,
+n;' V,)"' Y}, one gets

ep—90,=(1—B)X,+ Bv—W—(1-B)X,— W)
= —B(W—v)+(B.— B)(X,— W)
—B(W—v)+(B.,— B) AY. (2.11)

It

Next using the independence of W and (Y, tr(V'S,+V5'S,)) and
the facts that E(W)=v, Var(W)=(c’+1)n,V;'+n,V;) '=
6’B ' (n, V'+n,V;")" !, one gets

E[(eg—9.)" Q(es—4.)]
=B*E[(W—-v)TQ(W—v)]1+E[(B,— B> YTAT QAY]
=a?Btr{Qn, V' +n,V;") 'Y+ E[(B.— B)*YTATQAY]. (2.12)
Now we find

E[(B,—B)*Y" AT QAY]

AV S, + V51 8,))?

=E 1 1 2 2 YTAT AY

[{(nl+n2—2)p+2}2{YT(n1“Vl+n2“Vz)“Y}z( Q4Y)
B 2Bc t(Vi' S, +V;ts,) (YT AT 0AY)

{ny+n,—2)p+2} {Y"(n 'V, +n; ' V,)" 'Y}
+ BA(YTATQAY)]. (2.13)
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Using the independence of Y and tr(V; ! S, + V5! S,) along with the fact
that tr(V ' S, + V5! §)) ~ 672, wy—2),» it follows that the right-hand side
of (2.13) is

I:cza“(nl +n,—2)p YTATQAY
(ny+ny,—2)p+2 {Y'(n'Vi+n;7'V,)" ' Y}?
2BC02(n1+n2—2)p YTATQAY 2 T 4T
(n,+n,—2)p+2 .{YT(n(‘V,+n;‘V2)—1Y}+B (Y1 47QA4Y)].
(2.14)

Next observe that Y'(n 'V, +n;'V,)"'Y is a function of the complete
sufficient  statistic while (Y7AT QAY)(Y (n;'V,+n;'V,)"'Y) s
ancillary. Now using Basu’s theorem (or Lemma 1 of Ghosh ez al. [3])
along with E(YTATQAY) = (6 +1%) x te(QA(n;' V,+n5' V,) A7),
E(Y'(n7 'V, +ny 'V,) 1Y) =p(o®+12), and E(YT(n; 'V, +n; ' V,)~ty) !
=(o24+ 1% '(p—=2)", it follows that the right-hand side of (2.14) is
26’ B(n +n, —2) ptr(QA(n; ' Vi+ny' V) A7)
{(ny+n,=2)p+2} p(p—2)
_2ca’B(n, +ny,=2) ptr(QA(n; 'V +n57 ' Vy) A7)
{(ny+n,—2)p+2}p
+ 02 B(QA(n " V,+ny' Vy) A7), (2.15)

It follows from (2.12)—(2.15) that
E[(es—9.)" Qes—9.)]
=02Btr(Q(n, Vi ' +n, V) N+ a?Btr(QA(ny ' Vi +ny' Vo) AT)

x[ c*(ny+ny,—2) _ 2c(n +ny-2)
{(n+n,=2)p+2}(p—2) (n,+n,—2)p+2

+1]. (2.16)

The proof of the theorem is complete from (2.9), (2.10), and (2.16).

Next we compare the Bayes risks of egy and X,. Note that X, has con-
stant risk, and hence constant Bayes risk (under any prior) o’n; 'tr(QV).
Rather than comparing the Bayes risks of egp and X, directly, we find it
convenient to introduce the notion of relative savings loss (RSL) as in
Efron and Morris [2].

For any estimator e of u,, the RSL of egg with respect to e (under the
prior &) is defined as

RSL(E; egp, €)= [r(¢, exn) — r(&, es)1/[r(S, €) — r(&, ep) ]
=1-[r(& e)—r(& een))/[r(& e) —r(& ep)) (2.17)
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This is the proportion of the possible Bayes risk improvement over e that is

sacrificed by the use of ey rather than the ideal e under the prior £. From
(2.8) with ¢=p—2 and (2.10), it follows that

RSL(¢; egp, X1) = [tr(Q(nl Vit+n,¥Vyh™h)

~ B 2(ny+ny—1)
+tr(QA(ny ' Vi +n; ‘Vz)/’r)<(n, +nz—2)P+2>]

x [nytte(QV)] " (2.18)

Note that the above RSL expression does not depend on any unknown
parameter. Also, writing

A= Vi +m V) P,V =V {n Vo ny, VR VT my V!
=n 'Vi(n{'"Vy+n' V)7

it follows that

(M Vi V)Y T+ An V + s V) AT
=n; AV, 40 AV = An ' Vi+ a7 V)=V (219)

Now using 2(n, +n,— 1)< (n, +n,—2)p+2, it follows from (2.18) that
RSL(&; egp, X,) <1 which is equivalent to r(&, egg) <r(¢, X,). Thus egg
has smaller Bayes risk than X,.

Finally, in this section, we compare the Bayes risk of egy with that of W.
Note that W has Bayes risk

r(& W)y=r(& eg) + 0 2E[(es— W) Qes — W)]1. (2.20)

Since eg— W=(1—B)X,+Bv—W= —B(W—-v)+(1—B}{X,— W)=
—B(W —v)+(1—B) AY, where A is defined following (2.11), using once
again the independence of W and 7V, it follows that

El(eg— W) Q(ep— W)]
— 2 Btr(Q(n, V' +m Vi) ") + (1 — BYE(YTATQAY)
=a’Btr(Q(m, Vi ' +n, V)Y
+0*(1 = BB~ "te(QA(n; 'V, +n;'V,) AT (2.21)
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Thus from (2.10), (2.20), and (2.21),

r& W)=n'(1-B)t(QV )+ Btr(Q(n, V' +n, V7))
+(1=BYB 'tr(QA(n; 'V, +n;'V,)AT). (2.22)
Finally, from (2.8) with c=p—2, (2.10), and (2.22), it follows that
RSL(¢; e, W)= [r(&, egp) —r(&, eg)1/[r(&, W) —r(, ep)] is
2(”1 +n2— 1)
(n,+nm2—-2)p+2
t(Q(n Vi +ny, V)™ )+ (1= BB 2tr(QA(n; 'V, +n; ' V,) A7)
(2.23)

tr(Q(n, Vi'+n, V) )+ tr(QA(ni ! Vi+ny ' Vy) A7)

which is less than one if and only if
{(1=B)/B}*>2(n, +ny,— 1)/{(n, +n,—2) p+2}. (2.24)

Remark 2.2. The fact that egp does not dominate W uniformly is not at
all surprising. If, for example, 12 is very small and y, is nearly degenerate at
v, then W is much closer to v than egy. Indeed, in this case B=0?/(¢% + 1?)
is very close to 1 so that (2.24) cannot hold. However, when 62 < t°, then
B<ie (1-B)/B=1 so that (2.24) holds.

3. MINIMAX ESTIMATION

It is well known that under the loss given in (2.2), X, is a minimax
estimator of u; with constant risk n; ! tr(QV,). In this section, first we find
a class of estimators including egy as a member which dominates X, under
certain conditions, and then investigate whether ey satisfies these con-
ditions.

With this end, first write

F=(YT(n7' Vi4+n7' V) 'V {te(VI S + V3 S)/((ny +ny,—2) p+2)}
(3.1)

and consider the class of estimators
ut=X,—($(F)/F)X,— W) (32)

for estimating u,. Note that egy belongs to this class with ¢(F)=p—2. We
now compute the frequentist risk of the estimator u? (i.e., without any
reference to the prior &). Throughout this section, E denotes expectation
conditional on y, and u,, and we write V=n;'V,+n;'V,.



214 GHOSH AND SINHA

THEOREM 3.1.

E[(u?—p,)" Q(ut —py)l/o’
=n; " tr(QV,)—2E ["“:’ tr(ATQA V)+2(¢’(F)~¢(F)) Y 4 _QIAY]

F YTv-ly
+a‘2E|:¢F(,f) YTATQAY] (3.3)
Proof. First write
E[(u$—p)" Q(uf —py)]
=E[(1\71—/11)TQ(X/1—111)
—2(J(F)F) YT AT Q(X, —u,)
+ (QAF)/F?) YTATQAY], (34)

where we have used the fact that X, — W= AY. Next writing X’, W+ A4Y
and correspondingly g, =u, +Ap,, where p,=(nV'+n, V5!
(ny Viluy+ny Vi'p,) and po=p, — p,, one gets

E[($(F)/F) YTAT Q(X, — ;)]
=EU$(F)/F) YT AT QW — p + A(Y — 1)) ]
=E[(¢(F)/F) YT ATQA(Y — )], (3.5)
where in the final step of (3.5), one uses the independence of
(Y, te(V 'S, +V5'S,)) with W as well as E(W)=pu,. Now since V is
p.d., there exists a nonsingular D such that D~'V(D~')"=1,. Write
Z=D""Y and no=D""po. Then Z ~ N (1o, 6°1,). We rewrite
YTATQA(Y — po) = ZTU(Z — 1), (3.6)

where U=((uy))=D"ATQAD. Also, in terms of Z, F=Z"Z/{te(V' S, +
V;18,)/((ny+ny—2) p+2)}. Now using Stein’s identity (cf. Stein [8]), the
independence of Z and tr(V 'S, + V;'S,), and (3.6), we get

E[($(F)/F) Z"U(Z ~n,)]

o e £ o)

2 2,
2 % ¢(F) ¢'(F) ¢(F)
§E[ F ”""+{ F _FZ}
2Z, r_ V UGZ;
{tr(V IS+ V5 S))/(n, +n2—2)p+2}]

1
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1| GF) ¢'(F) _¢(F)
- E[ F (U)+2{_F_- Fz}
_ zZ'uz
{r(rris i+ vyt Sz)/((n1+nz—2)p+2)}]

=o'k [M tr(A7QAV) +2 {MF ) )} p.Y4704 Y]

F F? YTVv-ly
#(F) $(F)) YTAT Q4
[ tr(AT QAV) +2 {¢ (F)— =% } STy Yy]. (3.7)

The theorem follows now from (3.3), (3.4), and (3.7).

Next in this section we find an upper bound for E[(¢*(F)/F?)
YTATQAY). We first get the inequality

E[($*(F)/F*)(Y" AT QAY)]

.F. .
F? YV-'Y {(n,+n,—2)p+2}

[¢ (F) . YTATQAY tr(Vl"Sl+V2“S2)]
Sch(AT QAV)E[W(F)F-tt(V' S, + V5! S)/((ny+n,—2) p+2)],
(3.8)

where ch,(ATQAV) denotes the largest eigen value of A7 QAV and
h(F)= ¢(F)/F Next applying (2.18) of Efron and Morris [2], one gets

E[RA(F)Ftr(V;' S, + V' S)/((ny+n,—2) p+2)]

E[ (ny+ny,=2)p W(F)F 2 (V'S +Vy'Sy)

(n,+n2—2)p+2 (n,+n2—2)p+2 (ni+n,—2)p+2
, F

"(2"(”"(F)”hz(”’(‘trwr' S+ V; Sz)/((n1+n2—2>p+2)>]

=0’2E[ (ny+n,—2)p ‘¢2(F)
(ny+n,—2)p+2 F

F §(F) HF) #(F)
‘2<n,+n2—2>p+2{2< F F2)¢(F)+ P H

F (ny+n,=2)p+2

¢(F)¢'<F>]. (39)
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From (3.8) and (3.9), one gets

E [¢2F(2F ) (YT AT 04 Y)]

H(F) 4
F (ny+n,—-2)p+2

<alch (AT QA V)E[ é(F) ¢’(F)]. (3.10)

Combining (3.3) and (3.10), one gets
U_ZE[(M _#1)TQ( T_#l)_(/‘_/l —#I)TQ(YI —u1)]

—2E [M tr(A7 QAV) + 2(¢'(F) - "’(p) nyVTQI/;,Y]

$(F) 4
F (ny+n,—2)p+2

+ch1(ATQAV)E[ ¢(F)¢’(F)]. (3.11)

The following theorem is now easy to prove from (3.11). Recall that
A=m Vit +n, Vi) 'nyVytand V=n 'V, +n; ' V,.

THEOREM 3.2. Suppose that
(i) tr(AT QAV)>2ch, (AT QAV)
(il) 0<@(F)<2[tr(AT QAV)/ch (AT QAV)—2] and
(iii) HF)t in F

hold. Then o~ E[(ut—pu)" Q(ut — 1) — (X, — )" Q(X, — 1)1 <0 for
all u, and p,.

Proof. Using (iii), it follows from (3.11) that

0_2E[( ¢—ﬂ1)TQ(.U‘f_ﬂ1)_(1\71—ﬂl)TQ(X,l_#l)]

szE[ d )t(A 0AV) + ¢(If)~YY;iV_QIAYY+%¢;_F)ch,(ATQAV)]

<2E[—¢—(-)t(/1 QAV)+2Mch (47 Q4Y) 2¢(F) ]
ATQAV

=2E[—% chy(AT QAV){ <%%A_V)_)—2)_¢(F)}]

<0 (3.12)

using conditions (i) and (ii) of the theorem.
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Remark 3.1. It is an immediate consequence of the above theorem that
if condition (i) of Theorem 3.2 holds, and 0<p—2<2[(tr(AT QAV)/
ch, (AT QAV)—2], then the EB estimator exp dominates X,. In particular,
if Q=V,=V,=1I,, then tr(A7QAV)=pch,(A” QAV), and hence egy
dominates X, for p>3.

In the remainder of this section we show how a modified EB estimator
can dominate the PTE. Once again, an appeal to Theorem 3.1 is made.

A PTE 6pre of pu, is of the form Sprg=g(F) X, + (1 —g(F)) W=
X, —(1—g(F))(X,— W), where g(F)=1Ir. 4 for some positive constant d,
and 7 denotes the usual indicator function. The choice of d is governed by
the level of significance that is used for testing Hy: u;, = u,. We propose the
rival estimator

e =T, (1-(1-F) etFE = W)

=W+<1—%>g(F)()?,—W) (3.13)

which is a modified version of egy with p—2 replaced by a general c.
Note that dyeg = W when g(F)=0, but dygg =0 When g(F)=1. The
following theorem is then obtained.

THEOREM 3.3. Suppose condition (i) of Theorem 3.2 holds and
O0<ce<2[tr(AT QAV)/ch (AT QAV)—2]. Then

0 2E[(6mes — #1)" Q(8mes — #1) — (Opre — 1) Q(0pre — 11(1 <0
(3.14)

for all u, and u,.

Proof. Write ¢,(F)=F(1—-g(F)) and ¢,(F)=F(1—(1—c/F)g(F))=
$:1(F)+ cg(F). Then éprg=X,—(¢,(F)/F)(X,— W) while dygp=2X,;—
(¢,(F)/F)(X,— W). Note that both ¢,(F) and ¢,(F) are differentiable
everywhere except at F=d. Thus ¢(F) and ¢5(F) are defined a.e.
(Lebesgue). Moreover, ¢,(F)—¢5(F)= —cg(F), $3(F)—¢3(F)= —c’¢*(F)
= —c’g(F) and ¢(F)=¢5(F)=1—g(F) a.e. (Lebesgue). Then, applying
Theorem 3.1 twice, once with ¢(F) = ¢,(F), and next with ¢(F) = ¢,(F), one
gets the left-hand side of (3.14) as

F 2 Y7 AT QA
—2E [Cg; ) tr(AT QAV) —;,cg(F)—YT_QW}f]

2 F [———625:2” (YTAT QA Y)]
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< —2E [E%Q tr(ATQAV) — %_cg(F) ch (AT QA V)]

. _2E|:c2g2(F) p VIS +V5S)) YTATQA}]
6 . .

F2 " (n4+n,—-2)p+2 YTVY

cg(F)
F

tr(A7 QAV)— 2ch(F) :

< —25[ ch,(ATQAV)]

c’g*(F) P te(VIS, + VS,)
F? (ny+n,—2)p+2

+a2chl(ATQAV)E[ ] (3.15)

Applying (2.18) of Efron and Morris [2] again with ¢(F)=g(F) so that
¢'(F)=0 ae. (Lebesgue), one gets

2
E[<glg)> Fte(Vit S, + V1 18)/((ny +n2—2)p+2)]

=0’ E[g*(F)/F] =0’ E[g(F)/F]. (3.16)
Now from (3.15) and (3.16), the

left-hand side of (3.14) is
cg(F) tr(47QAV)

by using the upper bound of ¢ given in this theorem. The proof of the
theorem is complete.

Remark 3.2. Note that when Q=V,=V,=1,, the conditions of the
theorem hold when 0 <c¢<2(p—2), and in particular when c=p—2,
p=3.

4, HIERARCHICAL BAYES ESTIMATION

Section 2 is devoted to classical empirical Bayes estimation, i.e., when the
unknown prior parameters are estimated by classical methods of estimation
such as uniformly minimum variance unbiased estimation, maximum
likelihood estimation, best invariant estimation, etc. Instead, one can assign
prior distributions (proper or improper) to the hyperparameters, and come
up with hierarchical Bayes (HB) estimators of u,. Note that in a classical
EB approach, the lower stage Bayesian analysis is performed as if the
hyperparameters were known a priori. This approach ignores the error
associated with the estimation of the hyperparameters. On the other hand,
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the HB approach models the uncertainty of the hyperparameters by the
second stage prior. Accordingly, unlike positive part EB estimators, the HB
estimators are smooth, and bear the potentiality of being admissible.

To introduce the HB model, first note that as in Section 2, one may start
with the minimal sufficient statistic (X, X,, tr(V; 'S, + V;'S,)). Write
r~'=¢%and (pr)~' =12 ie., p=06?%/1% Now conditional on u,, u,, and r,
X, X,, and U=tr(V;'S,+V;!S,) are mutually independent with
)—(1 ~Np(“1a (nlr)'lVl)a /\72~Np(#2, (”2’)_1V2), and U~r_1X%n1+n2—2)p‘
Next we assume that conditional on v, p, and r, u, and u, are mutually
independent with p, ~ N(v, (rp)~'n;'V,) and p,~N(v, (pr)~ ' n;' V,).
Also, it is assumed that v, p, and r are mutually independent with v
uniform on R?, p has the type II Beta distribution with pdf
hi(p) oc p™ (1 +p) "+ VI, ¢, where m (>0) is known, while r has a
gamma distribution with pdf A,(r) oc exp(—4ar)r’~!, « (> 0) and & (>0)
being known. We shall aim at finding the posterior distribution of
p=uT, uIy given X, X,, and u.

First note that the joint prior distribution of u,, u,, v, r, and p is given
by

S(ys pa, v, 1, p) o (pry?
XCXP[—% {nu, =)V (=) + 0y —v)” V{‘(uz—V)]
x h(p) hy(r). (4.1)
Next observe that

ny(pu, —v)T VI =)+ npy, —v) TV gy —v)
=[(V—H*)TV;1(V—H*)]
+npul Vituy+npul Vz'lﬂz—ﬂ: V;l#*, (4.2)

where one may recall that u, =(n, V' +m, Vi) ', Vit pi+n, Vit py)
=V Mm Vit +nyVitp,) with Viol=n Vit4n, V', Now
integrating with respect to v, one gets the joint pdf of u,, y,, r, and p in the
form

Sy, s r, p)
r _
o (pry’? exp[—% {muT Vit +nppd Vitp,—py V*lu*}]

x hy(p) hy(r). (43)
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The exponent in (4.3) is easily simplified as
mpul Vit +nul Vit —ul V' p
=u{{m Vi'=n Vi Ven Vit u+ul{n Vil —nVi'Von,Viliy,
—puin Vil Ven, Vilu,—uln, VilVem Vilpy, (4.4)
where V,=(n,V;'+n,V;')"". Also, the joint pdf of X, X,, and U
conditional on u,, i,, and r is given by
f(xl’ 22, ullul’ /12, r)
oc rPexp[ —r/2{n,(x, —u)TVTNE, — py) + ny(X,— py)" Vil(x,—us)}]
x exp(—ru/2) um+m=Dp2=1 plnrm=2p2 (4.5)
Next we calculate
G=n(u,—x)" Vi — %)+ nylp,— %) Vi, —X,)
+o{mul Vit +npl Vit uy—piVy'n,} (4.6)

which is needed to derive the posterior distribution of u given ¥,, X,, and
u. Using (4.4) and straightforward algebra, one gets

G=u{ Dyypy+ 4] Dogpy = 2u] Dippty =20 X7 V' = 2n, X7 Vi 'y
+mxTViix, +nx] V%, (4.7)
where
Dy=mVi'+p{nVi'=n, V'V n V')
Dyy=n Vi +p{n, Vil —n, V'V n, V'),
Dy=pn V'V n, Vil (4.8)
We now write G as G, + G, where
G =[(u,—A, x,— A, %,) D (u,— A X, — A5 %,)
+ (U — Ay Xy — Ay X,)T Doy(py — Ay X — Apy X5)
—2(py— Ay X — A3 %) " Ds(py— Ay X, — A2y X,)] (4.9)
and
Gy=[mxT V' +nxI Vilx,— (A %+ A13%,) D (A4, %+ A, X%,)
— (A X, + Ay %) Dpp( Ay X + Ay X5)
+2(A) X+ A13%,)T D (A %+ 45 %5) ] (4.10)
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From (4.7), (4.9), and (4.10), it follows that A4,,, 4,,, 4,,, and A,, satisfy
DAy —~DpAy=nVi!
Dy Ay —~Df, Ap=n,V5!
Dy A;,=D,,A4,,
D22A2,=D,T2A“

(4.11)

which can be rewritten as
A,=D'D Ay, Ay =D5' DT, Ay,
(D —D, DDA, =n V], (4.12)
(D, — DL, D D) Ay=n, Vit
The following lemma whose proof is omitted (see [4] for details) is crucial

to further simplification of G,. Recall that B=06?/(6>+1%)=p/(1 + p) and
W= Vit +nm Vi) i Viix +n Vi) =V, (n VIiZ +n Vi x,).

LEMMA 4.1.
A x,+A,x,=(1-B)x,+ BW=b, (say), (4.13)
Apxi+Apx,=(1—-B)X,+ BW=b, (say). (4.14)
From (4.10), (4.13), and (4.14), G, can be simplified as
G,=mxTVi'x, +n,x7V;'x,
—{(1—-B)xT+BW"} D,,{(1 - B) %, + BW}
—{(1=B)xT+ BW"} D,,{(1 — B) X, + BW}
+2{(1—=B)xT+BW"} D,{(1 — B) x, + BW}
=xTn, V1= {(1-B)I
+Bn V7'V D, {(1-B)I+Bn V VI'}
—(Bn, V'V, )Dy(Bn, V V1)
+2{(1=B)YI+Bn V'V, }Dy(Bn, V, V)] x
+xI[n, V' —{(1-B)I
+Bn, V'V, } Dp{(1—B)I+Bn,V, V5'}
—(Bny V'V, ) Dy(BnyV, Vi) +2{(1-B) I
+Bn, V'V, } DIL(Bn, V, Vi) x,
—xT({(1=B)I+Bn, V'V, } D (Bn,V Vi)



222 GHOSH AND SINHA

+(Bn, V'V, )Dyp(1—-B)I
+ BV, V' +2{(1—B) I+ Bn, V'V, } D, {(1-B) I
+ Bn, V Vi'}]%,
—xI(Bn, V'V, ) D {(1—-B)I
+Bn V, V' +{(1-B)I+Bn,V5'V,} Dy,
x B(n,V V') +2Bny V5 V,) Dys(Bn, V, Vi)1%,.  (4.15)
From (4.8), one gets
D, +Dy—2D,,=(1+p)m V' +n, V")
—pm Vit +m VYV (n, Vit+n, V)
=n Vi '+nV;! (since V,'=n Vit +n,V; 1)
—v; (4.16)

Using (4.8) and (4.16), it is possible to simplify G, considerably. This is
done in the following lemma whose proof is again omitted (see [4] for
details).

LemMa 42. G, = B[xT{n V{'—n V'V nV '} X +x7{n, V'~
m Vit Vem Vil %= 2X{(n Vit Ven, Vi7) %21,

Therefore, from (4.9), Lemma 4.1, and Lemma 4.2, G can be written as
G=(uy— b)) Dyy(uy = by) + (2= b2)" Dy — b))
~2(py = b,)" Dyy(py —by)
+ B[xID %X, +XIDy % X, —2XT D}, * %,], (4.17)
where

Dy*=nV'—n V'V n v
Dyx=nVi'—n V'V n, V!

Dx=n V'V n, Vit (4.18)

Returning to (4.3) and (4.5), the joint pdf of X,, X,, U, u,, s, r, and p is
given by

f()zla )EZ’ u, ul, qu r, P)
oc rP(pr)P* .exp [ —% G] -exp[ —ru/2]

x M+ m—2)p/2 =1 (g + 2= 2)p/2 hl(P) hz(r). (4.19)
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It follows from (4.17) and (4.19) that conditional on x,, X,, 4, r, and p,

Uy b1> _1< D, _D12>~1]
~N , . 4.20
(#2) i [(bz _DITZ D,, ( )

Also, integrating out with respect to u, and py,, it follows from (4.19) that
the joint pdf of X,, X,, U, r, and p is given by

Dy =Dy, "
_ll)lr Dz;z exp[—% {u+BSSH}:|
12

><’,(n|+nsz)p/2 'u(n1+n2—2)p/2—l ‘pm-—!(l +p)—(m+l)‘exp(_ar/2) réwl,

f(fnfz, u,r, p) o (Pr)p/z

(4.21)

where

SSH=X"1TD“*il+f{DZZ*iz_2irDl2*i‘2. (4.22)
Now, from (4.8), one gets
’ Dy, —D,,
_DITZ D22
~lasp n V! 0 mVi'v.n V! n,V,—‘V*nzV;‘)'
=0y s m Vi Von V' mVilVon, V!

n V-1 0 n V!
= w7 ! -B{ '} VnV“:nV“l
(1+p) ( 0 nszl) (nszl) *(1 1 Vi)
n V1 0
=(1 2p |17
(1+p) 0 my;!
V:/z V{/2 0
9 1
n, an1~l> -1 —1 ny
—B V Votin, V.
S I [ EECUELERY I
n2 n2
=(1+p)?*in Vi n V3!
V
n_l 0 n V!
—B(n, Vitin, V! ! i )V
x|, mVitin, Vit . _V_z (nszl *
n,

=(1+p)*|n, V' |ny V5" |1,— BI,| (since Vy'=mVi'+n,V;")
=(1+pV In, Vit n ¥yt (4.23)
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Hence, from (4.21) and (4.23), one gets

SRy, ) o pPRP T PR p) P exp| <3 (u+ BSS+0) |

Xu(n1+n2~2)p/z,|‘ré—lpm-vl(l+p)—(m+l)‘ (424)

Integrating out with respect to r, one gets the joint pdf of X, X,, U, and p
as

/2
f(il,fz,u,p)oc<—1i >,, um+m =202 =Ny 4 BSS, 4 o) Tt Dp2=8
p

xp" (14 p) - mE 0, (4.25)

Using the transformation p/(1 + p) = B provides the joint pdf of X,, X, U,
and B as

f(xl’xz’ u, B) oc Bp/2+m7lu(n|+n272)p/271(u+BSSH+a)~(n|+n2—-l)p/2—6.

(4.26)
Next observe from (4.20) and (4.13) that
E(p,|B, x, X5, u,r)=b,=(1—B) X, + BW.
Hence the HB estimator of y, is
E(u,|x,, X,,u)=%,— E(B|X,, X5, u)(x,— W). (4.27)
But, from (4.26), one gets
E(B|%,, %, u 8 B”?*™(u+ BSSy+ o)~ (mrm-2-2 4p (4.28)

lep/2+m—l(u+BSSH+a) (n+ny—1)p/2 — 6dB

Remark 4.1. From simultaneous diagonalization of n, ¥; ! and n, V3!,
it is easy to show from (4.18) that

D x=Dypx=D,*x=(nV'+n,V;") (4.29)
so that from (4.22) one gets
SSy=(x—%) (n V' +n V) 1(x,—%,) (4.30)
which is precisely the numerator of F defined in (3.1).

Remark 4.2. It is sometimes possible to reduce the above HB estimator
to an EB estimator of the form x, — (¢(F)/F)(x, — W). Consider for exam-
ple the situation when a =0, i.e., R has the improper prior h,(r)=r’"".
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Now writing v = SS,/u, we note from (4.30) that F= ((n, +n,—2) p+2)v.
Also, for a =0, it follows from (4.28) that

E(B|X,, X, u)

=J‘1 Bp/2+M(1 +Bv)—(n1+n2—1)p/2—6 dB/
4]

Jl Bp/2+mfl(1 +Bv)—(m+,,zfl)p/2—6 dB
0

» 1 1 (nm+m—2)p/2+6—m-—2 BU pl2+m UdB
=Y fo <1+Bv> (1+Bv> (1+ Bv)?

1 By Pl2+m—1 1 m+m=—2)p/2+6—m—1 vdB
TJ0(1+BU) <1+Bv) (1+ Bv)?

P AL 2)p/2+6
v j up/ +M(1_u)(n|+nz~ )p/2 + —mwzdu
0

v/(1+v) s
_J. up/ +m71(1_u)(n1+n2—2)p/2+6~mfldu' (431)
0

From (4.31) it follows that E(B|x,,X,,u) can be expressed as
¢*(v)/v=¢(F)/F. Next note that integration by parts gives numerator of
(4.31) equals

p-! _( v P/2+m(l+v)(n|+nz—2)p/2_5+m+l}
T+v (ny+n,—2)p/2+3—m—1
+ (p/2+m)
v((ny +ny~2)p/2+6—m—1)

XJw/(l+v)uP/2+m~1(l _u)(nl+n2+2)p/2+6-—m71 du
0

< p+2m
So{(ny+n,—2)p+26—2m—2}

v/(1+v) 1 2\p/24 5 1
x [ e m (e e st gy (432)
0

Hence from (4.31) and (4.32),
p+2m
v{(n, +n,—2)p+26—2m—2}

- (p+2m)((n,+n,—2)p+2)
T F{(n,+ny,—2)p+25—-2m—2}

E(Bliufz, u)<

(4.33)
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so that

(p+2m)((n, +1,—2) p+2)
¢(F)<(n,+n2—2)p+25——2m—2

<2(p-2)

if (p+2m)((n,+ny,—2)p+2)<2(p=2)((n,+ny—2) p—2m—2)("."6>0)
o p{2m(n, +n,) + 6} <p(p—4)(n, + n,—2)+4m+8 which holds
whenever p>5 and m< {(p—4)(n,+n,—2)—6}/2(n, +n,), assuming
n,+n,>8. Hence, for this choice of m, ¢(F) satisfies condition (ii) of
Theorem 3.2 for Q=V,=V,=1,. Also, for Q =V, =V, =1,, condition (1)
of Theorem 3.2 automatically holds when p > 3.

Finally, noting that v is strictly increasing in F, and using the inequality

v/ +v) 2 2)p/2+ 8 2
f uP/ +m(1_u)(n|+nzf WP/2+8—m— du
0

v/(1 +v) u
=j <1__>up/2+ml(l_u)(n1+n2—2)p/2+(5‘m—ldu
) —Uu

v/(1 +v)
SU'[ up/2+mfl(l_u)(n|+n2*2)l?/2+5*'"”1du’ (4.34)
0

one gets after direct differentiation ¢*(v)’ > 0. Hence ¢*(v) is Tin v. Hence,
condition (iii) of Theorem 3.2 also holds. Therefore, when «=0,
Q=V,=V,=1,p>5 and 0<m<{(p—4)(n, +n,—2)~6}/2n, +n),
the HB estimator obtained in (4.27) is minimax.

Remark 4.3. The conclusion given in Remark 4.2 bears strong resem-
blance to Strawderman [9] in the one sample problem. However, the
formulation here is much more general than the one given in Strawderman
[9 or 10]. First, the estimator is not shrunk towards zero or a prespecified
point, but is shrunk towards the pooled mean. In Strawderman [9], r is
assumed to be known, whereas in Strawderman [10], r is assumed to
belong to (y, c0) for some y > 0. Our formulation is also more general than
the one given in Morris [5] because there r is assumed known and (pr) ™'
is given a uniform prior on (0, ).
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On Confidence Bands in Nonparametric
Density Estimation and Regression

PETER HALL

Australian National University, Canberra, Australia
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D. M. TITTERINGTON

University of Glasgow, Glasgow, Scotland

We describe a unified approach to the construction of confidence bands in non-
parametric density estimation and regression. Our techniques are based on inter-
polation formulae in numerical differentiation, and our arguments generate a
variety of bands depending on the assumptions one is prepared to make about
derivatives of the unknown function. The bands are simultaneous, in the sense that
they contain the entire function with probability at least an amount. The order of
magnitude of the minimum width of any confidence band is described, and our
bands are shown to achieve that order. Examples illustrate applications of the
technique. © 1988 Academic Press, Inc.

1. INTRODUCTION

There is a prolific recent literature on the topic of nonparametric density
estimation and regression. In most of the research, however, the
methodology stops at the point of constructing a “point estimate” of the
underlying density or regression function. Some form of interval estimation
is obviously desirable and, ideally, one would wish for simultaneous
confidence bands. This would allow graphical answers to questions like:

(i) Is it plausible that the true density is unimodal?

(i) Is there clear evidence against the hypothesis that the true
regression function is linear?
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In the case of nonparametric density estimation almost no work has
been done on the confidence band aspect of the problem, although
Hartigan and Hartigan [3] consider a version of the problem based
on cumulative distribution functions. There has been more activity in
nonparametric regression. Wahba [8] and Silverman [5] use a Bayesian
interpretation of the prescription that leads to curve estimation using
splines, to construct confidence bands. However, these are not
simultaneous bands in the usual sense of the term. Hirdle [2] proposes
asymptotic simultaneous confidence bands in a regression context.

The present paper develops a unified procedure for dealing with both
types of problems. In contradistinction to Wahba [8], Silverman [5], and
Hirdle [2], our confidence bands are not constructed as lines on either
side of a curve estimate, but are derived from first principles as upper or
lower bounds to the curve. In the regression case our confidence bands are
related to those of Knafl, Sacks, and Ylvisaker [4], in that they are based
on linear (in the data) estimates of the regression function at any given
point. However, the linear functions used here are much simpler than those
employed by Knafl, Sacks, and Ylvisaker [4], and their foundation is such
as to make calculation of the widths of the bands very much easier. In spite
of this simplicity, the methods are backed up by reassuring properties of
“asymptotic optimality.”

Section 2 describes the case of nonparametric density estimation, and
shows how formulae from the theory of numerical differentiation may be
used to develop a succession of confidence bands under a variety of
assumptions. The parallel development for nonparametric regression
follows in Section 3. Theoretical results about the widths of the bands are
given in Section 4, two illustrative examples are described in Section 5, and
proofs are given in Section 6.

2. NONPARAMETRIC DENSITY ESTIMATION

The problem of determining confidence bands is closely related to that of
numerical differentiation. The bands proposed in this section are based on
the number of observations which lie within adjacent intervals (“cells”) of
width A. The means of these numbers equal integrals of the density over the
respective intervals. We numerically differentiate the integrals, to obtain
approximate fomulae for the integrands—i.e., for the density itself. The
errors in these numerical approximations must somehow be incorporated
into the confidence band. Now, the errors in numerical differentiation
procedures behave in a manner more complicated than the errors in, say, a
Taylor expansion. In particular, if numerical differentiation of a function
F is conducted by interpolation among a sequence of points
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a,<a,< --- <a,,, then usually the error can be expressed in terms of a
single value of F'"* " only when the argument lies outside the observation
interval (ao, a,,,). If the argument lies inside (a,, a,,) then the size of the
error depends on values of several derivatives, or on several differences of
one or more derivatives. See, for example, the discussion in Steffensen [6,
pp. 64-65]. It would often be unacceptable to use interpolation within
(ay, a,,) to estimate F' at a point outside (a,, a,,), since this might involve
relatively large error terms. On the other hand, a confidence band which
requires knowledge about several different derivatives of the density is not
a practical proposition. In Subsection 2.1 below, procedures (i) and (ii)
illustrate confidence bands obtained by interpolation outside the interval
(ag, a,,) (there m=1), while procedure (iii) is a compromise which
sacrifices a certain amount of “exactness” in return for a smoother
confidence band.

The following notation will be used throughout this section. Assume that
a random sample of size »n is drawn from the distribution with density f.
Using these data, we wish to construct a confidence band for f over a
certain interval. In that region divide the data among k cells, the cell
numbered i comprising the interval ((i — 1)4, i#) and h being the width of
each cell. If the true density is f then

ih
p,-Ef f(x)dx, 1<i<k,
(

i— 1)

is the probability that a given data point falls into cell i. (Our convention
that the first cell starts at the origin serves only to simplify notation.) The
confidence bands are developed from simultaneous confidence intervals for
the multinomial proportions p,. Thus, we assume intervals [ j;;, .1,
1 < i<k, are given such that

P(pi<pi<pn, 1<i<k)=a

Define the function fj by interpolating among the function values
SR+ DR =h""p, 1,

FAG+ Iy =G=»)h '+ G+ y)h b1 (2.1)

for 1<i<k—1, —i<y<i, and j=1,2. Notice that f, and f, are
continuous. The band between £, and f, forms the basis for several of our
procedures.

The next two subsections list several different types of confidence band.
These examples serve to illustrate the theoretical properties of general
confidence bands based on the confidence intervals [ p,,, p;»]. They form
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the basis for the practical procedures introduced in Subsection 2.4.
Subsection 2.3 describes construction of the intervals [ p;,, p;» ]

2.1. Confidence Bands under the Assumption of a Single Derivative
(i) Given a sequence {c;} with each ¢, >0, define

T+ p)h}=h~"py =32y + Dhe,
and

Hl+ )y =h"p,+ 32y + L)k,
forl<i<kand O<y<l If

sup Iff(w)l<c; for 1<i<k (22)

(i—lh<su<(i+ 1)

then

P{J.(x)<f(x)<Tolx)  for h<x<(k+1)h} > (2.3)

(ii) Given £>0, define
Jio{(i+phy=h="py =32y + DALS{(i+ y)h} +e]
and
T {i+ p)hy=h""po =42y + DALS{(i+ y)h} — (£e)]
for 1 i<k and 0 < y <1, where the +, — signs are taken respectively. If
I/ (u) - f(v)I<e
whenever 0<u<v<(k+ 1)k and |u —v| < 2h, then
P{f c(0)Sf(x)< Fo o (x)  for h<x<(k+1)h}=a
and
P{J._(0)<f)< T _(x) for h<x<(k+1h}<a
(iii) Given a sequence {c,;} with each ¢, >0, define
TG+ i} = Fi{(i+ )} —3h(1 =3y + 2| yP)e,
and

LlGi+ yh} = L{i+ y)h} +5h(1 =32 +2 | yP)e;
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for 1<i<k—1and —i< y<i If (2.2) holds then
P{i0)SS()<Jolx)  for $h<x<(k—Hh}>a

Remarks. (a) Procedure (ii) is introduced only to illustrate the factors
which influence coverage probability of a confidence band; it is not
suggested as a practical procedure. It demonstrates that the basic
confidence intervals [p,,, p;»] are biased by an amount
12y + 1) " {(i + y)h}, plus smaller order terms.

(b) By taking ¢=0 in (ii) we deduce that equality holds in
confidence statement (2.3) if f is linear on (0, (k 4+ 1)h), if each ¢, equals the
absolute value of the gradient 4 of f, and if the intervals [ p;,, p,»] are of
the form [0, p,,] (for d<0) or [ p;,, o) (for d=0).

(c) No such “exactness” can be claimed for the confidence band
described in (iii). However, that band has certain practical advantages over
the earlier procedures. First of all, the function 3(1—3y?+2|y|?) lies
within the interval [4, 1] for —4< y <4, whereas the function {(2y+1)
takes values as large as 3 for 0 < y < 1. Therefore the band in (iii) can have
smaller maximum width than that in (ii). Second, if the ¢,’s are taken to be
identical then the functions 7, and f, defined in (iii) are continuous, and so
the confidence bands have continuous boundaries.

2.2. Confidence Bands under the Assumption of Two Derivatives
(i) Given &> 0, define

Jisll+ 0} =7 {G+ p)h} + 5 =3y) R [f"{(i+ )k} — (8)]
and
Fo s {i+ )} = H{G+ p)h} + 30 =3y R [f"{(i+ y)h} 1 €]
for 1<i<k—1land —j<y<i. If
/")~ f"(v)l <e
whenever 0 <u<v<(k+1)h and |u—v| <2h, then
P{J, . ()<Sf()<Joi(x)  for Sh<x<(k—{h}>a
and
P{J. ()SfX)<fo_(x)  for Ih<x<(k—ih}<a (24)
(ii) Given a sequence {c;} with each ¢,>0, define

Filli+yn} = Fi{(i+ p)h} =41 - 3y*) k%,
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and

DG+ p)h}=fH{G+ p)h}+ 31 =3y%) A%,
for Ii<k—1land —i<y<i If

sup If"(x)<¢;  for 1<igk—1,
(i—1)h<x<(i+1)h

then
P{li(x)<fx)<fa(x)  for dh<x<(k—Hh}za  (25)

Remarks. (a) Procedure (i) is introduced to show that the basic
confidence band (f;, f,) (see (2.1)) is biased by an amount
Y1 —=3y*) K2f"{(i + y)h}, plus smaller order terms. We do not propose it
as a practical method.

(b) By taking é=0in (i) we deduce that equality holds in confidence
statement (2.5) if f(x)=a+ bx + 1dx? for arbitrary constants a, b, and d
and 0 < x <kh, provided each ¢;=|d| and the intervals [ p;,, p,»] are of
the form [0, §,,] (for d<0) or [ p;;, o) (for d=0).

(c) If the ¢;’s are identical then the functions f, and 7, defined in (ii)
are continuous and piecewise linear.

2.3. Simultaneous Confidence Intervals for Multinomial Probabilities

Suppose we seek confidence bands whose coverage probability is at least
p. The argument given in Subsections 2.1 and 2.2 has reduced the problem
of constructing confidence bands to one of deriving simultaneous
confidence intervals for multinomial proportions, for which there are
several techniques. In particular, if j,, and p;, are chosen such that

P(pa<pi<pn)21-(1-Pk~, 1<igk,
then
P(piy<p;<Pifort<igk)zp.

If p; denotes the relative frequency in cell i then the normal approximation
to the binomial suggests taking

ﬁi1=ﬁi_dk{ﬁi(1_ﬁi)”_l}l/z and ﬁi2=ﬁi+dk{p‘i(1_ﬁi)n_l}l/z,
(2.6)

&(d)=1~(1-p)(2k)~" (2.7)
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and @ is the standard normal distribution function. This is the approach
adopted in Example 5.1 in Section 5. Almost identical results (not reported
here) were obtained using the Poisson approximation with square-root
transformation, where d, was defined by

®(dy) =31+ )

instead of by (2.7). The above definitions are tantamount to approximating
the p,’s by independent normal random variables.

2.4. Discussion

The methodology developed in Subsections 2.1-2.3 leads to a variety of
practical procedures for constructing confidence bands for an unknown
density £ The initial band is formed by the pair of functions (f;, f5)
defined at (2.1). To compensate for errors arising from numerical differen-
tiation, extra strips are added to this band. If the absolute value of the first
derivative of the density does not exceed c‘!), then strips of width (i.e.,
height) 1hc'" added to both sides of the confidence band provide more
than adequate compensation. (This follows from Subsection 2.1(iii).) If the
absolute value of the second derivative does not exceed ¢®) then strips of
width 4%c'® are more than adequate. (See Subsection 2.2(ii).) The bounds
¢V or ¢'® may be known from previous empirical experience, or they can
themselves be estimated by interpolation. Formulae in Subsections 2.1(iii)
and 2.2(ii) show that the widths of these strips do not have to be
maintained throughout the bands but can be varied slightly over the cells.

The procedure just described is deliberately designed to be conservative.
The confidence bands can be thinned a little if we have additional
knowledge about f. For example, suppose we are basing the bands on the
second derivative of f. If f is convex within a certain region then only one
compensating strip is required there—that strip of width 1h*c® below the
lower function f,. If f is concave within a certain region, then only the
upper strip of width 1#%c® above f, is required there. Again, the strips
may be reduced in places according to the formulae in subsection 2.2(it).

An alternative approach is to estimate not just a bound to f” or f”, but
the entire function. For example, if the procedure is being based on second
derivatives and if f” is an estimate of f”, then approximate upper and
lower confidence limits are given by

Ji{G+ )} =7 {6+ ph}+ 3013y 2" {(i + y)h}

and

i+ phy = LG+ p)h}+ 51 =3y 21" {(i+ )k},
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respectively, for 1<i<k—1 and —§< y<}j; see Subsection 2.2(i). While
this approach will give narrower confidence bands, it is difficult to be
certain about the direction of the error in coverage probability.

3. NONPARAMETRIC REGRESSION

The case of nonparametric regression is similar in many respects to that
of density estimation, and so we shall give only an outline. The only essen-
tial difference between the two cases is that we no longer estimate an
integral, but a sum, the arguments of the terms in the sum being design
points in the regression. This change introduces a second error term into
the procedure, due essentially to approximation of the integral by the sum.
The confidence bands have to be adjusted accordingly.

We shall assume that observations are made at equally spaced design
points, distant & apart. See Section 3.4 for discussion of this restriction.
Without loss of generality, the design points are the points j§ for integers .
The model declares that the observations Y; have the form

where g is a smooth function and the e,’s are independent normal N(0, ¢?).
In the region of interest, divide the Y’s among k cells, the ith cell
containing those pairs (jo, Y;) of observations such that (i—1)h < jé <ih,
1 €i<k, where h=md for an integer m. (Thus, the very ends of the cells
overlap.) We shall treat two different estimates of the mean in cell i,

YO=m " Yo im+ Yicimer+ o+ Yim_y)

and
YO=m "AY i im+ Yu tpmer+ - A Yo+ 3170,

whose respective means are
pP=m "[g{(i—Dh}+g{(i—Dh+}+ -+ g{(i—1)h+(m—1)5}]
and

u@=m='[g{(i— Dk} +g{(i—1)h+5}

+ -+ g{i—1h+(m—1)8} +1g(ih)],

and whose variances are m~'¢? and m~*(m—1)o>. Note that the
expressions for Y1) and Y? are directly related to the Rectangle Rule and
Trapezoidal Rule for numerical integration; see, for instance, Abramowitz
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and Stegun [9,p.885]. Let [49, 4], 1<i<k, be simultaneous
confidence intervals for the u!/’s, with

PP <pu < i, 1<i<k)=a (3.1)

for j=1 and 2.

Both YV and Y'® are normally distributed, and the confidence limits j$’
would usually be based on this fact; see Subsection 3.3 below, where
methods of constructing the intervals [4{), 4] are described. The
variables ¥V, 1 <i<k, are independent, although the variables ¥{ are 1-
dependent. This makes it a little easier to construct confidence bands based
on the Y{’s, than on the Y?”’s. We use the Y?’s when constructing
confidence bands under the assumption of bounded second derivatives.

Next we define analogs of the functions f, and f, from Section 2. Set

g+ =G—y) AP+ G+ y) A, (3.2)
for j=1,2,/=1,2, 1<i<k—1,and —i<y<i

3.1. Confidence Bands under the Assumption of a Single Derivative

(i) Given a sequence {c;} with each ¢,>0, define
g{(i+y)h} =l —3{Q2y+ Dh+ 6},
and
LA+ yh}=a)+3{Q2y+ Dh+é}e
for1<i<kand O<y<1 If

sup lg'(w)<c; for 1<i<k (3.3)

(i—1Dh<sugs(i+1)h
then
P{g(x)< g(x) < &.:(x) for h<sx<(k+1)h}za

(i1) Given ¢ >0, define
g1+ {i+ h} =P —H{Qy+ DHh+6}[g'{(i+ y)h} te]
and
L2 {4+ YA} =4 - H{Qy+ Dh+ 6} {(i+ y)h} — (ze)]
for 1 <i<k and 0< y< 1, where the +, — signs are taken respectively. If

lg'(u)—g'(v)l <e
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whenever 0 <u<v<(k+1)h and [u—v| <2h, then
P{g.(x)<gx)<Z.(x) for h<x<(k+Dh}>a
and

P{g,_(x)<gx) <@ (x) for h<x<(k+1h}<a

(ili) Given a sequence {c;} with each ¢, >0, define
E{i+ I} =g {(i+ )k} =31 =3y + 2|y h+ b e,
and
i+ y)h} =g {(i+ y)h} + 31 - 3y* + 2|y )h+d}c,
for 1 <i<k—1and —1< y<i If (3.3) holds then
P{g,(x)<g()<&(x) for th<x<(k—ih}>a

3.2. Confidence Bands under the Assumption of Two Derivatives
(i) Given ¢> 0, define

g1, {(i+y)h} =g {(i+ y)h}
+§{(1=3y")h* + 382} g"{(i + y)h} — (2e)]
and
&2+ {(i+ y)h}=gP{(i+ y)h}
+3{(1=3p")h* + 30%} [ g"{(i+ y)h} +¢]
for I<ig<k—1land —i<y<i If
lg"(u)—g" ()l <e
whenever 0 <u<v<(k+1)h and |u—v| <2h, then

P{g, . (x)<g(x)<g,(x) for th<x<(k—hh}>a

N=

and
P{g _(x)<g(x)<g, _(x) for 3h<x<(k—3h}<a
(ii) Given a sequence {c;} with each ¢;>0, define

g{li+h}=gP{(i+ ph} —¢{(1 =3y h+ 6%},
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and
A+ y)h} = g2{(+ y)h} + (1 =3y*)h* +38%}c;

for1<i<k—1land —i<y<i If

sup lg"(x)| < for 1<ig<k-—1,
(i—Dh<sx<(i+ DA

then

P{g(x)<g(x)< fx)forth<x<(k—3)h} >a

Remarks. The confidence bands in Subsections 3.1 and 3.2 compare
directly with those in Subsections 2.1 and 2.2. Remarks similar to those
earlier may be made about exactness, bias, etc. The terms in 6 and 6° in the
confidence limits compensate for the extra source of error in the regression
case.

3.3. Simultaneous Confidence Intervals for the p;’s

We shall concentrate on the case of two-sided confidence bands. Suppose
first that the error variance o is known. Let @ denote the standard normal
distribution function, and z, the solution of 2&(z,)—~ 1 =7, where 0 <y < 1.
Define

~(1) — Y ~-172 2(1) — V(1 —1/2

ﬂ§1)= Y'( )—m / O'Zy, ﬂ52)= Yf )+m O'Z.V, (3 4)
“(2) = P 21 1\1/2 A2) — P2 ~1 14172 :
= TD m m— )P0z, A= TO - m m— )0z,

Then

P < u) < ff) =

for j=1, 2. Consequently,
P(AY <p < afy) for 1 <ik) ="
and
P(EP <pP <aB for 1 <igk) =y~
Taking y = «'* will give simultaneous coverage probability very nearly a in
both cases. To construct a strictly conservative procedure in the case of

u'®, suppose for the sake of argument that k is even. Let & denote the
event that 4! < u? < 42 is false. Since the variables Y!? are 1-dependent,
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PR <P < for1<isk)=1-P( ) &0 U 4)

odd/ eveni
i-r(y0)-r(u)

oddi eveni
=292 1.

If the error variance o® is unknown, we may construct a slight
overestimate of it. Let & be the set of all differences Y,;— Y,; , such that
neither 2j not 2j—1 is of the form im for an integer i. Assume & has r
elements, and let

2
= {2(r— 1)} { Y s2—r7! < Y s) }
ses ses
Then (r—1)6%/o* has the chi-squared distribution with r—1 degrees of
freedom and a noncentrality parameter and is independent of ¥{/, ..., ¥{)
for j=1,2. Let &,_, denote the distribution function of Student’s ¢ with
r—1 degrees of freedom, and ¢, the solution of 2&, _(¢,)— 1 =y. Define
A9 as in (3.4), but replacing ¢ by ¢ and z, by ¢, throughout. Then

PEP <pM<a@ for 1 <i<k)=y*
and

P(A < p? < p@ for 1 i <k) = 9%
see Johnson and Kotz [10, p. 193].

3.4. Discussion

Here we use the results of Subsections 3.1-3.3 to develop practical
procedures for setting confidence bands.

The first derivative of g represents the rate of change of that function. In
practice an upper bound to this rate can often be set from physical
considerations, from previous empirical experience, or by direct estimation.
If it is known that |g’| does not exceed ¢*’ then the confidence band may
be taken to be the band formed by the pair of functions ( gV, ") (defined
at (3.2)), plus an extra strip on either side of width (i.e., height) (4 + 8)c'V.
If |g”| does not exceed c¢® then we add strips of width (k% +45%)c? to
either side of the band formed by the pair (£{%), ). In both cases the
upper strip may be deleted if it is known g is convex, and the lower strip
deleted if it is known g is concave. The full width of the strips does not
have to be maintained throughout the band; see the formulae in
Subsections 3.1(iii) and 3.2(ii). All these procedures are conservative and
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give coverage probability at least a, where « is the simultaneous coverage
probability of the intervals [41), 4{5]; see (3.1).

An alternative approach is to estimate g’ or g” directly. For example, if
g" is an estimate of g” then

G+ )y =P+ y)} +§{(1 =3y*)K* + 167} g"{(i + y)h}
and
A+ P} = g2+ yh} +{(1 =3y )h* + 16} ¢"{(i + y)h},

for I<i<k—1 and —~1< y<}, are lower and upper confidence bands,
respectively, with coverage probability “approximately” a.

Analogous confidence bands may be described without the assumption
that design variables be equally spaced. Then formulae based on more
complicated weighted averages should be used in place of the simpler
bounds described above. In the case of the procedure proposed by Knafl,
Sacks and Ylvisaker [4], similar formulae are required to evaluate the bias
bound B(z) which appears in the expressions for their bands.

4. WIDTHS OF CONFIDENCE BANDS

We begin by describing widths of the confidence bands developed for
densities in Section 2. Assume that 2 — 0 like n~" for some 0 <r<1, and
k — oo like A", Let p, equal the proportion of the sample falling into the
ith cell, and suppose f is bounded away from zero and infinity within the
region of interest. In view of results for probabilities of large deviation (e.g.,
Feller [1]), the numbers ¢; defined by either

P(p,—e;<p;<pi+e)=1—(1-B)k !
or
P(p;—e; < pi< pi+e)=p%,
satisfy
g,~n~"2pl2(2log k)2 ~n="*{2f(ih) hlog k} "

(Notice that although ¢; depends on B, the dominant term in an asymptotic
expansion of ¢; does not depend on f.) If the confidence intervals [ p;,, p;»]
are two-sided then j,, — p;, ~ 2¢;, and so the width of the band separating
£, and f, (see (2.1)) is asymptotically

2h~ g, ~ {8 (ih)}2{(nh)~ " log k } 2. (4.1)
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The practical procedures suggested in Subsection 2.4 lead to a confidence
band whose width equals this amount, plus an extra term of order /4 or h?
to allow for the strips added to the band (f,, /). Let us assume we are
working under the assumption of a bounded second derivative, so that the
extra term is of order A% If h=constn~" then this extra term is
insignificant when r >4, but dominates when r <}. Bearing in mind that
log k ~ const log n, we see that the minimum confidence interval width is
obtained by choosing 4 such that (nh) ! log n and A* are of the same order
of magnitude. This gives h~const(n~'logn)"° as the “optimum”
achievable by our method and results in a confidence band whose width is
approximately (n~'logn)%°. A similar argument in the case of a bounded
first derivative gives the “optimal” h to be of order (n~!logn)'?, and a
confidence band of width approximately (n~! log n)">.

Let us assume f has ¢ bounded derivatives. The discussion given above
shows that if 7=1 or 2, and for a given coverage coefficient a € (0, 1), we
may construct a confidence band of fixed width C(n~"'log n)¥**" which
covers f with probability at least a. Here C is a constant not depending on
n. It is possible to generate procedures which give confidence bands with
this property for any given t>1. They are based on higher order inter-
polation formulae but will not be discussed in detail here since they do not
seem to be of general practical interest.

In fact, the constant C may be chosen such that the coverage probability
is at least « for all f/7s in a large class of densities. Suppose the density f is
to be estimated in the interval (0,1). Let 0<a<1,5>0,c>0,and 1> 1 be
an integer, and let & =%(q, b, ¢, t) denote the class of all functions f
satisfying

ag|f(x) <a™! and |l f(x)|<b  whenever —c<x<1+ec

We may choose C = C(a, b, c, t) so large that a confidence band B of width
C(n 'logn)/?*" covers f with probability at least «, uniformly in
densities fe #:

inf P {f(x)eBforO0<x<1}>ua, 4.2)
fe#F

n=2. (The cases t=1 and 2 are dealt with in Subsection 2.4.)

The width of order (n~'logn)”**"V is “optimal,” in the sense that no
procedure can produce fixed-with confidence bands whose width is of a
smaller order of magnitude. To see this, we first define the notion of a
general fixed-width confidence band B. Let £(-): [0, 1] = R be a random
function, and let w > 0 be a random variable. Both £ and w may depend on
the data, but not on f. Hence they are “nonparametric” in character. Let

B={(x,h):0<x<1and &(x)< y<Ex)+w).
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In a slight abuse of notation, we say that “f(x)e B for 0<x<1” if the
ordered pair (x, f(x)) is in B for 0< x<1; that is, if the function f{)
restricted to [0, 1] lies between the functions £(-) and &(-.+ w. We call B a
“confidence band of width w and uniform coverage probability at least a
for all fe #”, if (4.2) holds.

An extreme case of this type of band has £ =0 and

Y 0 with probability 1 —«
o with probability «.

Any statement we make about the size of w must take account of this
pathology. In particular, the limit at (4.3) below may equal «, not 1.

THEOREM 4.1.  Suppose the confidence band B,, of width w,, satisfies

inf P {f(x)eB,for0<x<1}>a, nxl.
SeF(a,b, 1)

If 0<a <1 is fixed then for some n >0,

liminf sup P{w,=n(n""logn)’**V}>q (4.3)
n— o feF(ab,ct)

If w, is non-random, as in the examples considered earlier, then this
theorem declares that no fixed-width confidence band can be narrower
than n(n~"logn)”** 1, for large n, if it is to have uniform coverage
probability at least a.

The regression case is very similar, and so we only sketch the details.
Assume the regression function is to be estimated in the interval (0, 1), and
that the design points are distant § =n~" apart. If the error variance g2
is known, then the techniques suggested in Subsection 3.4 (and their
analogs for ¢>3) give confidence bands of width no more than
const(n ' log n)”?'* 1 with probability at least « for all ge &, provided h
is taken to be a constant multiple of (n ="' log n)"/'*1_If the error variance
i1s unknown then it should be estimated, as outlined in Subsection 3.3. The
resulting confidence band width w, is a random variable, satisfying

inf Pg{wn < COIlSt(n'l log n)l/(21+ 1)} 1
geF(ab,c1)

as n— co. Again, a coverage probability of at least « may be achieved for
all ge #.
The theorem below is an analog of Theorem 4.1 in the regression case.
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THEOREM 4.2. Suppose the confidence band B,, of width w,, satisfies

inf P {g(x)eB,for0<x<l1}>ua, nzl.
ge F(ab,c,t)

If 0 <a <1 is fixed then for some n>0,

liminf sup P{w,=n(n"'logn)’*+YV}>a

n—o o geFl(ab,ct)

In theory it is possible to choose 4 so as to minimise the area of
confidence bands. For example, suppose we are constructing a band for the
density f under the assumption that |f”]<c. We start with the band
separating f, and f, (see (2.1)). The distance between f, and f, at x is
asymptotic to

{8f(x)}*{(nh) 'log k}';

see (4.1). To this we add two strips of width LA%c. Therefore the asymptotic
total area of the confidence band for f, drawn between x, and x,, is

A(h)sf” [{8£(x)}2{(nh)~ ' log k} "2 + Lh%c] dx.
If we set h=d(n"'logn)'?, then k ~const h~! and

8 1/2 X3 1
A(h)~{(§> d‘”zj f‘/z(x)dx+§cd2(x2—x,)} (n~'log n)*>,

which is minimised by choosing
x 2/5
d={3.10"/2c'(x2—x,)"j f'/z(x)dx} .
x|

Although this formula is not of explicit practical use, it does suggest advice
concerning choice of the bandwidth A. In particular, larger values of ¢ and
smaller values of f both dictate smaller values of A.

5. ILLUSTRATIVE EXAMPLES

In this section we report on applications of the procedures developed
earlier to two particular examples.

EXaMPLE 5.1 (nonparametric density estimation). A set of n=900
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independent pseudorandom values were generated, using the NAG Fortran
subroutine library, from the mixture density

f(x)=0.2Be(x; 1, 2) + 0.8Be(x; 2, 1), O0<x<l,

where Be(x;a, ) denotes the density of the Be(a, f) distribution. Thus
f(x)=0.4+ 1.2x, so that

sup | f'(x) =1.2.

The value of k& was chosen initially to be 30 and 4 was taken to be
1/k =4 The pairs {(p;, Pia), i=1, .., k} were chosen using the normal
approximation discussed in subsection 2.3. Specifically, they were given by
(2.6) and (2.7) with B =0.95 (for a 95% confidence interval).

For the sake of realism it was decided to construct confidence bands
under the assumption of a single derivative satisfying

sup |f'(x)[<ec

O<x<l

Thus, each ¢, =c. We took ¢ =3, which is of course conservative.

3.5} -

FiG. 1. Bands I through IV in case of nonparametric density estimation, for k = 30.
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Figure 1 depicts the following functions:

(I) (Pi1, Prr), displayed as piecewise constant plots;
(I (fi(x), f5(x)), from (2.1), piecewise linear;

(1) (fi(x), fo(x)), from Subsection 2.1(i);

(IV)  (fi(x), fo(x)), from Subsection 2.1(iii).

Figure 2 extracts the pair given by (IV). That is the most pleasing of the
four pairs in Fig. 1. Of course the results still exhibit a lack of smoothness.
Remember, however, that any envelope of a conservative confidence band
is also a conservative confidence band, and so one may smooth out the
bumps in a variety of ways.

To investigate the effect of changing k, Fig.3 depicts the results
corresponding to Fig. 2 but with k= 50. Note that, inevitably, the bands
are wider. The appearance would be generally much improved if bounds
were placed on f"(x).

ExaMPLE 5.2 (nonparametric regression). The data used here were a

subset of larger set of data kindly supplied by Dr. E. M. Scott. The
variables are those of radiocarbon age and tree-ring age, both measured in

3.5+ -

3.0} -

1ol s N L L A s s s
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.8

FiG. 2. Band IV in case of nonparametric density estimation, for k = 30.



246 HALL AND TITTERINGTON

3.5}

-1.0 . s s L L N s \ s
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1G. 3. Band IV in case of nonparametric density estimation, for k = 50.

years before 1950 A.D. and thinned and rounded so as to achieve equal
spacing of the tree-ring ages. Altogether 180 points were included and,
initially, we chose k = 30 so that, in (3.4), m = 6. For simplicity we used the
non-overlapping means ¥, and constructed the bands with §=0.95 and
under the assumption of a single derivative, with uniform bound ¢=1 on

18" (x).

A somewhat different estimator for ¢ was used than that discussed in
Section 3.3. To be specific, we took

22 __2.,—1 2
0'—3'}) Zsi’

where s, is of the form

5;=yi—(Yir 1+t yi_1)2

and the summation is over all i such that none of i—1, i or i + 1 is of the
form im or (im+ 1) and such that all triples (i — 1, i, i + 1) are distinct. The
symbol r denotes the number of such triples. This estimator is based on the
residual of y, from the straight line based on y,_; and y,,,.
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7500+

7000

6500

6000

5500

n n " 1 n — " i

500 A n i
54005600580060006200 6400 6600 68007000720074007600

FiG. 4. Bands I through IV in case of nonparametric regression, for k = 30.

7500l

7000

6500

6000

5500

4500 L A

: 1 .

s _ . " . "
540056005800 6000 6200 6400 6600 6800 700072007400 7600

FiG. 5. Band IV in case of nonparametric regression, for k£ =30.
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7500 -
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FiG. 6. Band IV in case of nonparametric regression, for k =15,

Figure 4 displays the data points along with the bands:
(1) (a9, afd), displayed as piecewise constant plots;
(I (8{M(x), 81(x)), from (3.2), piecewise linear;
(IID)  (&{V(x), g{"(x)) from Subsection 3.1(i);
(IV) (g{"(x), g(x)) from subsection 3.1(iii).

Figure 5 isolates the bands defined by IV. As in the case of Example 5.1,
slight difficulties with the ends of the range of the tree-ring ages led to the
bands being drawn only over a restricted range.

The estimate of o was ¢ = 54.1, based on r =25. Finally, Fig. 6 gives the

version for k=15. In this case d,s=2.94, m=12, and ¢ =54.2, based on
r=41.

6. PROOFS

6.1. Proofs for Sections 2 and 3

In the work below, g stands for either f or g.
If g has a continuous first derivative on ({(i — 1)A, (i +2)h), then for
O0<yxl

[ e du=hg{(i+ )b} =42y + DR {G+OR, (61)
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where —1<¢(i, h, y)<1. (This follows from formula (16), p.64 of
Steflensen [6], on taking “m”="“n"=1 and “f” equal to an indefinite
integral of g.) Results in Subsections 2.1(i) and 2.1(ii)) are immediate

consequences. (The case where g is not continuous is handled by
approximation by a continuous g.) By Taylor expansion,

a+d 1
g@=6""["" gwydu—s[ ga+ory1-na,
a 0
and so

ik 1m=1
= 1 g(u) du—m~"! 5jo Y g {(i—1)h+jo+0t}(1—1)dt
j=0

(i—1h

1
=g{(i+ y)h}—[i Ry+1) hg'{(i+&)h}

+m—1<sj0l mz_:lg’{(i—1)h+j6+6t}(1—t)dt], (6.2)
j=0

using (6.1). Results in Subsections 3.1(1) and 3.1(ii) are immediate
consequences.

Next we assess the error of piecewise-linear approximants such as f,
and f,. Observe that the remainder R,(y) in the formula

| ih J 1 i+ LA e bt B4R
(3-2)[" e+ (54 5) [ g du= g+ 338} + R
(6.3)

may be written as
1
R(y)=h [(5+ y)(l -y jol g {hi+y+tl—y)}1—1)at
—2p° [ g thti+ y— )} -0y

1 1 i
~(3-2) a2 [ e thir -4 -
if g is differentiable. (Use the integral formula for the remainder in a Taylor
expansion.) Therefore if |g'| <¢; on ((i—1)h, (i+ 1)h), and —3< y <3,

IR, (M <3P{(E+ )1 =y +2yP+ (= y)1 + p) e,
=1h3(1=-3y*+2|y’)c.
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This gives the result in Subsection 2.1(iii). Using the first line of (6.2) we
obtain

A=+ G+ »)ul? = g{i+ y)h} + 7 'Ri(y)+ R y),

where |R,(y)| < 1dc,. This gives the result in Subsection 3.1(iit).
If g has two derivatives then the remainder R,(y) defined by (6.3) may
be written as

1 1
R =30 (3+7) 1= [ g i+ 1=y -0 a
+2y° J;: g {hi+y—ty)} 1 —1)dt
1
+<§—y>(1+yf ”{h(z+y—t(1+y))}(1—t)2dt:|

again by Taylor expansion. For —4< y <1 the functions (3 + y)(1— y)>,
2y* and (34— y)(1+ y)* are non-negative and add to 1—3y° Results in
Subsections 2.2(i) and 2.2(ii) follow from these properties. In particular to
prove (2.4), notice that

P{J1_(x) < f(X)< T, - (x) for $h < x < (k — b}
<PLT, =Dy <f{G—Dh}<To_{(i—Ph} for 1<i<k]
=PLJy, {(i=Dh}+h~'p;= f(i-Dh}<h™'p,
<o {ti= 9k} +h'pi— f{(i—Dh} for 1 <i<k]
SPLA{G—Dh}<h™'p,< f{(i— bk} for 1 <i<k]

=P(p,<p;<pirforl<i<k)=a

By the Euler—Maclaurin expansion,

5[% gla)+ gla+d)+ --- +g{a+(m——1)6}+%g(a+m5)]

a+ mé 1 1 m—1
=J g(u)du+§53J‘ t(l—t){ Y g"(a+j5+5t)}dt
a 0

j=0

and so

G=uP+ G+ )@ =g{(i+ y)h} +h~'R(y) + Ry( ),
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where

1 1 m—1
Ri9=55 z(l—t)[(%—y)m“ T g~ 1)h+jo+ 1)

1 m—1
+<§+ y)m"' Y g'(ih +j5+5t)] dt.
j=0

Results in Subsections 3.2(i) and 3.2(ii) are immediate consequences.

6.2. Proofs of Theorems 4.1 and 4.2

We shall conduct the proofs together. Fix z,,z,>0, let m equal the
integer part of z,(n*logn)V**Y k equal the integer part of
z,(n/log n)"/®** Y and

1 ~Zl(nfl logn)l/(21+ l).

h=mn~
Fix d>0 and let ¥ be a non-degenerate function on (— o0, c0) with the
properties:

(i) ¥ vanishes outside (0,1); (ii) ¢ has at least r+1 bounded
derivatives on (—co, ); (iii) sup [y|<d™'b; (iv) [¥=0. Given a
sequence 8= (0,, .., 0, _,) of 0’s and 1’s, set

P(x)=¢(x|0)=d[1+0,hY{h~"(x—ih)}]

for ih<x<(i+1)h and 0<i<k—1, and ¢(x)=d for x<0 and x> kh.
Then () ¢ dx=d, so ¢ restricted to [0, 1] may be regarded as part of a
probability density if 0 <d < 1 and n is large. Notice that g € F(aq, b, ¢, 1) if
a<d and n is large. We shall take the density f or regression function g to
equal ¢(-|0) on [0, 1], for some 6e O = {0, 1 }*.

Let s =sup |y/|. If the confidence band B, is of width w, and w, < 1lds k',
we define 0,=1 if

(x,d[1+hY{h~'(x—ih)}1)eB, for ih<x<(i+1)h,

and §,=0 otherwise. If w,,>ids h', define @, arbitrarily. Let & be the
k-vector whose ith element is 6,. If w,<idsh’ and f(x)=¢(x|0)e B, for
0<x<1, then 8,=46, for 1 <i<k. Therefore in the density case,

PAw,>4dsh')> P,{8,+#0,, somei and f(x)e B,for0<x<1}

>a—P0,=0,1<i<k).

A similar inequality holds in the regression case. Therefore the proof will be
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complete if we show that for any sequence of estimates f; of 6,, and for z,
sufficiently small,

lim sup inf PA#,=0,,1<i<k)=0. (6.4)

n—so fe#F

(Interpret f as g in the regression case.)
Let P4 denote the probability measure under the assumption that ¢(-|0)
is the true density function or true regression function. Define

P(&)=275 3 Py(&)

0ecE

for events &. In the density case, let X, ..., X, be the random n-sample from
/, and set

4=TTC1+hY{h™" (X, ~ i)} ],

where €, denotes the set of values j such that X, lies within the interval
S, = [ih, (i + 1)h). In the regression case, let

A, = exp ((202)_‘ [Zdh'Z(Y,—d)x//{h‘(jn“—ih)}

— T o = in)} ),

where &, is the set of values j such that jn ~'€.£. Notice that in both cases,
A; is a likelihood ratio for 6,=1 over 8,=0. Let & denote the set of all
data—either all the sample values X in the density case, or all the pairs
(jn',Y,) in the regression case. Conditional on &, and under the
probability measure P, the 6,’s are independent zero-one variables with

P (0,=11F)=4;/4;+1)=p,,

say. Therefore

k
P(0,=0,1<i<k|#)=[] P,(6,=0,%). (6.5)
i=1

Conditional on &, the 8,’s are fixed, and so

P,(0,=8,|%)<max(p,, 1 —p)=gq, (6.6)
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say. Let N, equal the number of subscripts in €,, and N.=3%_, N,. (In the
regression case, the N,’s are fixed.) If

P(q;<1—¢|N;,N)=p; (6.7)
then
E*(qilNi, N.)<(1*8)P*(q,-<1—3|Nn N-)+P*(qi>l"6|Ni9N-)
<1 —ep,<exp(—ep,) (6.8)

Conditional on 4" ={N,,.., N}, the p’s are independent and the
conditional distribution of p, depends only on N; and ¥,. Combining this
observation with (6.5), (6.6), and (6.8), we conclude that

k
P*(éi=0i’1<i<k|~/‘/)< H E(q;|N;, N.)

i=1

<ep(—2 3 ). (69)

i=1
where p; is any number satisfying (6.7).
Take ¢ =uk ', for arbitrary but fixed u > 0. For sufficiently large n,

P(q;<1—¢|N;, N.)
=P {e(l—e) '<A<(1—g)e !N, N}
>P,|logl;|<iloge '|N,N,)
24P {llog A;|<4t+1)"'logn|N;, N.,0,=0}
>1{1—4(t+ 1)(log n) ' E(llog ;] |N;, N., 6,=0)}.  (6.10)

In the density estimation case, and for large n, it follows from the definition
of 4; that

llog | <A* | XY {h~1(X,— i)} |+ k¥ T2 (h~ (X, — ih)}.
€

€i

Applying the Cauchy-Schwarz inequality to the first term on the right-
hand side, we see that

E(llog 2,/ | N, N., 8;=0) < h'(N;sup y*)"? + h* N, sup y*
<2 max(1, A¥N,s?). : (6.11)
If each N, < 2dnh then by (6.10) and (6.11), and for large n,

P,(q:;<1—¢|N; N)=4{1 —8(r+1)(log n)~' 2dnh**'s*}
> U1 —17(c+ 1) ds?22+1) 2}
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provided
17(t + 1) ds?z2+ ' < L (6.12)

In this case we may take each p,=1 in (6.7). Therefore by (6.9),

k
P,(0,=0,,1<i<k)<exp(—ek/4)+ Y P, (N;>2dnh).

i=1
Since E,(N,) <dnh then it may be proved by Chebychev’s inequality that

k
Y P (N,>2dnh)—0.

i=1

In consequence, provided z, satisfies (6.12),

limsup inf P(0,=0,,1<i<k)

n—-ow [feF

<limsup P,(8,=0,, 1 <i<k)<exp(—u/4).

n— oo

(Recall that ¢ =uk ~'.) Since this is true for each u >0, the lim sup on the
left-hand side must equal zero. This proves (6.4). The regression case is
similar.

Some techniques in this proof are borrowed from Stone [7].
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A Note on Generalized Gaussian Random Fields
TAKeYUKkl Hipa

Nagoya University,
Nagoya, Japan

Given a generalized Gaussian random field on a domain D in RY we are
interested in a restriction of the parameter to a lower dimensional submanifold and
discuss the variation when the manifold varies. © 1988 Academic Press, Inc.

0. INTRODUCTION

The present work has been motivated by P. Lévy’s results [1] and
papers [5, 6, 8-10] by others. When we discuss a Gaussian random field,
we often meet a conditional expectation or the same as the best linear
predictor of its value at a point, under the condition that the values are
given on a certain manifold of the parameter space of the random field.

If the manifold changes, we may think of the variation of the conditional
expectation which features certain properties of the field. In order to
discuss such a property, we have to prepare some basic facts about
generalized random fields as well as its restriction to a submanifold of the
parameter space. Unlike the one-dimensional parameter case, we have to
be careful about how one restricts the random field according to the
restriction of the parameter, and we even note that the method is often
used in applications, for example, in quantum field theory.

1. WHITE NoOISE AND GAUSSIAN RaNnpoMm FIELDS ON D

We start with a white noise on a bounded domain D in the d-dimen-
sional Euclidean space. The boundary éD is assumed to be a C *-manifold.
Then the domain D satisfies the cone property (see [2]). Now take the
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Sobolev space H™(D) with m > d/2, and we wish to establish the imbedding
mapping

H™(D) - L*(D)

which is of the Hilbert-Schmidt type.
Let C(&), £ e H™(D), be a characteristic functional given by

C(&)=exp [ -% jD £(1)? d,].

Then we obtain a probability measure 4 on H~ (D), the dual space of
H™(D), such that

C@=] . epliCx >l dulx)

The u thus obtained is called a white noise measure on H~"(D).

Let {x,£) be the canonical bilinear form connecting H "(D) and
H™D). Once ¢ is fixed, {(x, ¢>=E&(x) is a random variable on the
probability space (H~"(D), u). The closure, in the Hilbert space
L*(H~™(D), u), of the linear space spanned by the {x, ¢>, £ H™(D), is
denoted by (D) or simply by .

The #-transform introduced in [7]

FOO)=] | o6tOdux)  pe,

H™m
gives us an isomorphism
= L*(D)
through the correspondence:
¢ — Fe L}(D) (surjection),

where
(Fo)E)=] Flu)e(u) du

and @l 4, = I1Fll 12(p)-

We often meet Gaussian random fields which are expressed as a system
of variables in . Such a field is said to be expressed in terms of white
noise.
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A probability measure v associated with a generalized Gaussian random
field can also be defined in the same manner as a white noise. A generalized
Gaussian random field X = {X(¢), £e E}, with a suitable choice of a
function space E, is a continuous linear mapping of E to the space of
Gaussian random variables. As is well known, the mean m(¢&) = E((X(£))
and the covariance functional I'(¢, n)= E{(X(&)—m(E))X(n)—m(n))}
completely determine the probability distribution v of {X(&), (€ E} on a
space of generalized functions. If we are given an ordinary random field
denoted by {X(t), e D}, then it is identified with a generalized random
field {X(¢), £e E}, in such a way that

X@)=] X,

where we assume some regularity of X(z) in ¢ so that the mapping

¢—X(S), (Cek

is continuous.

For a generalized Gaussian random field we can define a Hilbert space
M, (D) as in the case of a white noise, and the space forms a Gaussian
system.

2. RESTRICTION OF PARAMETER

Our main topic is concerned with the restriction of the parameter of a
generalized Gaussian random field X to a submanifold of D.

(i) First consider the case where the parameter is restricted to a
d-dimensional C *-submanifold D’ of D. Then, the regular imbedding
mapping D’ — D naturally determines the injection

H (D) - H#(D). (1)

With such a relation, we can proceed to the investigation of various
stochastic properties of the field X (for instance, see [6]).

(i) We are particularly interested in the case where dim(D') <d. To
fix the idea, let X be a white noise and let D’ be a boundary of a d-dimen-
sional C *-submanifold D; of D: D'=08D,. Also, to make the story simpler,
the order m of Sobolev space H™(D) is taken to be (d+1)/2. Then,
associated with the regular imbedding mapping D — D', we are given a
natural continuous imbedding mapping

e: H"~V2(D') - H™(D). (2)
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The white noise measures, denoted by u and u,, are introduced on
H~™(D) and H~™*"2(D’), respectively, as was done in Section 1, where it
is noted that the injection H™ '?(D')— L*(D’) is of the Hilbert-Schmidt
type, since m — 1/2=d/2 > (d— 1)/2.

There is defined a surjective mapping e* which is the adjoint of e:

e*: H-"(D)—> H "*'*(D"). ' (3)

Summing up what have been discussed, we can prove the following
assertion.

PROPOSITION. Let D and 0D=D' be C*-manifolds in R® Set
m=(d+ 1)/2. Then, there exist white noise measures p and y' on H~"(D)
and H="*'2(D"), respectively, and these two measures are linked in such a
way that

(e*) top=p'

For the proof, we only need to note that the Borel field 4, generated by
subsets of H~"*'%(D’) is equal to the image of Borel field corresponding
to H~"(D) under the mapping e*, and the characteristic functionals of u
and p, are the same in expression.

3. GAaussiaAN RANDOM FIELDS DEPENDING ON A CURVE

We use the same notation established in the last section. Consider, in
particular, the case d=2, and introduce a class C of curves given by

C = {C:closed, simple, C *-curves < D}.

Note that each member of C is viewed as the boundary of a submanifold
of D.

As was discussed in [S], we are interested in a Gaussian system indexed
by a domain or a curve. Let ¢(x) be a J#(D)-functional. Then the
assoctated U-functional (¥ ¢)(&) has the expression

U, &)= Fué)du,  FeL¥(D).
D
In a similar manner, we have

UAC.&)=] Gu)ét)di,  GeL¥C)



GENERALIZED GAUSSIAN RANDOM FIELDS 259

for Y (x) € #,(C). From our discussion in Section 2, U,(C, &) is viewed as
a functional obtained from U(D, ) by restricting some F to C, or
equivalently Y~ comes from ¢ by the mapping e*, if C is a boundary of D.
Thus we are able to deal with a family

¥={yc(x);CeC} (4)

within a framework of the analysis on (D).
Under the above setup, we can prove the following theorem (cf. [1]).

THEOREM. Let ¥ be given by (4). Then the variation of Y x) exists and
its U-functional is expressed in the form
OF - &
on

8ULC, &)= [ (T (6) =) Fls) €00 ) m(s) 5)

where on denotes the variation 6C of C and k is the curvature.

4. CONCLUDING REMARKS

A few remarks are now in order. We have started with a bounded
domain, because we wish to use the Sobolev space structure to introduce
white noise and to use the trace theorem. However, we may start with the
entire space R? or a half space and still carry out the whole story with
slight modification. Hence, there is no difficulty in discussing the
variational calculus even when we do not limit our attention to a finite
domain.

In Section 3, we have dealt only with functionals of white noise as a
prototype of generalized Gaussian random fields. If we choose suitable
function spaces like a Sobolev space, we can establish the theory in a
similar manner. Also, it is noted that important examples of a Gaussian
random field can be realized as functionals expressed in terms of white
noise, so that the discussion may be reduced to that of white noise.

The variational calculus of functionals depending on a curve would be
generalized to the case where the kernel function F depends on C in
addition to s in the expression (5). Important examples are seen in {10]. A
general theory will be discussed in a separate paper.
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Smoothness Properties of
the Conditional Expectation in Finitely
Additive White Noise Filtering
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It is shown that for a wide class of signal processes and bounded g, the con-
ditional expectation n{g, y) in the white noise filtering model is a C*-functional of
the observations in the sense that n(g, y) and its Fréchet derivatives (which exist)
are random variables on the quasicylindrical probability space on which the obser-
vation model is defined.  © 1988 Academic Press, Inc.

1. INTRODUCTION

In a recent paper, M. Chaleyat-Maurel has shown that the conditional
expectations in the nonlinear filtering problem is a C*®-functional in
Malliavin’s sense [1]. A Malliavin calculus for functionals of finitely
additive Gaussian white noise has not yet been developed though, in our
view, many of the basic ideas of the former theory carry over naturally to
the finitely additive situation.

* Research supported by the Air Force Office of Scientific Research Contract F49620 85 C
0144.

261

Multivariate Statistics and Probability Reprinted from J. Mult. Anal. 27(1).
ISBN 0-12-580205-6 Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.



262 HUCKE, KALLIANPUR, AND KARANDIKAR

In this note, we derive a result close in spirit to Malliavin calculus. We
will be concerned with the smoothness properties of the conditional expec-
tation regarded as a functional of the observations. In the same sense as in
[1] the result obtained by us may be regarded as a robustness property of
the nonlinear filter in the white noise theory. Our result cannot be directly
compared with Chaleyat-Maurel’s. We are throughout in a Hilbert space
setting so that in contrast to the Malliavin theory all directional derivatives
are admissible for us. Both the statement and the proof of the main
theorems are straightforward. The only thing that sets the proof apart from
a standard calculation is the need to show that the various functional
derivatives of the filter are also random mappings as defined in [2]. The
latter fact is established by relying heavily on properties of lifting maps.

It must be noted that our filtering model assumes signal and noise to be
independent whereas in [1] a more general model is considered. However,
we are able to prove C®-smoothness of the filter under less restrictive
conditions.

2. NOTATION AND TERMINOLOGY

For most of the notation, terminology, and definitions used in this paper
we refer the reader to [2] since it would take too much space to repeat
them here.

H is an infinite dimensional, separable Hilbert space, € the field of finite
dimensional Borel cylinder sets in H, and m the (finitely additive)
canonical Gauss measure on H, ie., the measure with characteristic
functional exp( — 4 ||4]|?), (h€ H). Let 2 denote the class of all orthogonal
projections on H with finite dimensional ranges. Let (L2, <, IT) be a com-
plete (countably additive) propability space. The triple (E, &, «) is called
a quasicylindrical probability space where E=Qx H, &= x% and
a=IIOm. & is a field and « is the finitely additive probability on & such
that for any Pe &, the restriction of o to the o-field o/ x%, is the
countably additive probability measure ITx m,. Here %, is the o-field of
cylinder sets with bases on PH and m, is the restriction of m to €p.

Let (L, I1,) be a representation of m with an underlying representation
space (2, A, I1,) and let (@, o, [1)=(Q, o, T)® (2,4, S, I1,). Writing
@ = (o, w,) € @, defining p(®) = w and L(h)(@®)= Lo(h)(w,) for all ke H, it
is seen that (p, L, IT) is a representation of the quasicylindrical probability
a on the space (2, o7, IT). It can, in fact, be shown that (p, L, IT) can be
chosen to possess the property that for each he H, the map (h, @)—
L(h)(®) is B(H)® </ measurable. It is such a representation that we shall
be working with throughout.
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Let S be a Polish space, i.e., a complete separable metric space. We shall
define classes of S-valued maps on E which form important subclasses of
random variables on the finitely additive probability space (E, &, «).

Let L%(E, &, a; S) be the class of maps f from E to S such that for all
Pe 2, fp defined by fp(w, n)= flw, Pn) i1s &p/B(S)-measurable and for all
sequences {I:J} < & converging strongly to the identity (P; =*I), R,(fp) is
Cauchy in [I-probability. Elements of #°(E, &, a; S) are called S-valued
accessible random variables. For 1< g < oo, define £YE, &, «; S) as the
class of maps f as above with the additional property that

J,, |R75) = Rol )1 dT 0.
In this case
J,, |RI* dlT < co.

The notation here is somewhat different from that adopted in [2] where
the class #° is denoted by #* and £' by £'*. Wider classes of random
variables are also considered in [2]. The symbol S will be suppressed
whenever S=R".

Let & Q— H be a random variable, i.e., a B(H)/</-measurable map,
B(H) being the o-field of Borel sets in H. The nonlinear filtering model in
its abstract form is defined on (E, &, «) by

y==EC+e, (1)

where for (w,n)eE, &(w,n)=¢(w) and e(w, n)=e(n)=n. The identity
map e on H is called Gaussian white noise, £ is the signal and y the obser-
vation.

Let Q be an arbitrary orthogonal projection on H. If g is a [l-integrable,
real random variable on Q, then the conditional expectation (in the finitely
additive theory) E,(f | Qy) exists and is given by the Bayes formula

oolg y)

Ii"a(ngy)'—‘aQ(1 0’

(2)
where
oo(8 ¥)= L g(w) exp{(y, Q&(w)) — 3 1Q&(w)I?} dll(w) (3)

is called the unnormalized conditional expectation of g. The model (1)
covers most of the filtering problems met with in practice including those in
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which the observation process takes values in a Hilbert space. In
applications, the true signal process is denoted by an S-valued process (X,),
(0<r<T) defined on ©, and (1) takes the form

y.=¢ +e, 0<1<T, (4)
where

e is K-valued Gaussian white noise. Here H = L*([0, T], K) and
K is a possibly infinite dimensional separable Hilbert space; (5a)

¢ (w)=h,(X(w)) where h: [0, T] xS — K is measurable and
satisfies the condition {3 ||h(X (w))|% dt< oo for each w (or
a.a. w). (5b)

If Q, is the orthogonal projection on H with range H,:={feH:
{T1f,1% ds=0} then the filter one is interested in is the conditional expec-
tation E,(g|Q,y) which is given by (2) with Q=Q,. For the sake of
notational convenience we shall derive all our results for the abstract model
(1) rather than (4).

In what follows we may take, without loss of generality, g to be non-
negative and such that [ gdIT=1. Let dIl, = gdIl and v=11, -(Q¢&)~".
Then v is a probability measure on H and

oole.)=| exp{(n k)= IkI*} dv(k),  neH. (6)

Since, throughout this work, g and @ will remain fixed, it is convenient to
suppress g and write a(n) for 6,(g, n).

For a Banach space B with norm | -|| ; let L(H, B) denote the class of all
bounded linear transformation A: H — B, which is itself a Banach space
with operator norm. A mapping f: H — B is said to be Fréchet differen-
tiable if for every he H there exists f,(h#)e L(H, B) such that

L rh s by = = £ TR T =0,

lim
i —o [[A"]

fi(h) is called the Fréchet derivative of f at h and is written as (Df)(h).

Let L°(H)=R, L'(H)= L(H, R), and for r> 1, L"*'(H) = L(H, L'(H)).
It is well known that the Banach space L’(H) can be identified with the
class of all linear mappings from the r-fold product H x --- x H into R. The
norm |||, on L"(H) under this identification is given by

AN, =sup{IfThy, ... h,]I: h;e H, |h;] <1}



SMOOTHNESS PROPERTIES 265

A function f: H — R is said to be (r + 1) times Fréchet-differentiable, if it is
r-times Fréchet differentiable, and D’f: H — L"(H) is Fréchet-differentiable
and then D"*'f:= D(D'f).

Let L7,,(H) be the subclass of L'(H) consisting of g € L'(H) for which

lgh?, =3 lgle), . e,]1 <,

Juedre

where {¢;} is any CONS in H. It is well known that |ig||,, does not
depend on the choice of CONS and that L{5)(H) is a Hilbert space with
norm |-{,, and that |igli, <l gl..

3. MAIN RESULTS

LEMMA 1. Let the function o(n) be defined by (6). Then

(a) for every r=1, o(n) is r-times Fréchet differentiable and the
derivative D"a(n) is given by

D'o(n)Lhys .. h,]
=f [exp{(n, k)~ 3 |kl*} 1(hy, k) - (h,, k) dv(k). (7)
(b) Dra(n)e L, (H).

Proof. Denote the right-hand side of (7) by g,[4,, .., #,]. The integral
appearing in (7) is finite since

[, KL< 3 {12002 + I3 &I} =2l + ¢ 1k (8)
and
|(h, &) < I - 11K )
Let {¢,} be a CONS in H. Note that

2
PALES) Uexp{(n,k)—% nk||2}-(w,.,k)---(coj,,kwv(k)]

Jve-r

< 3 [exp(20m k)= IKI?} - (g, k) (@, 6)? dv(k)

= [[exp{2(1, k) — 1k} - Ikl dv(k)

< o0, (10)
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in view of (8) and (9). Hence g.(n) € L{,,(H). Let us write a(n) = g4(n). To
complete the proof, we will show that g, is Fréchet differentiable for r >0
and that Dg, = g,, ;. This will show that D'a(n)= g.(n). For n, he H, let

v(n, h) :=llg.(n+h)—g.(m)— g, . .(mM(MW,>.

Recall that g, (g}(")[hy, ... b, 1= g.(m)[h,, -, h,, h] under the identifi-
cation of L(H, L"(H)) with L"**(H). Thus

v’(n, h) = A Z. {g.(m+h)—g.(m)}e - ¢,]

JLeecdr

— 8-+ 1(’7)[‘/’/,, eey (pj,a h]|2

=X Uexp{(mk)—%ukuz}

Jyocdr
2
(@) k) (@1 k)-vl(h,k)dV(k)] : m
where
vi(h, k) :=exp{(h, k)} —1— (, k).
Since

|vi(h, k)| < |(h, k)I* exp((h, k)) < [[2)1* |KI1* exp((h, k)),

we get from (1)

v2(n, h) < [ exp{201, k)~ IkI12} - Ik]1>
1A I exp(2(h, K)) dv(k)
<IhI*-exp{4 412 +4 In]*}

[ exp{ = §UKI2) Wk *# dv()
using (8) and (9). This shows that

1
Iim — - Lh)=0
o g 0 )

and hence that g,: H— L{,(H) is Fréchet differentiable with Dg, =g, .
Since |-fl,» <|l-li,, this implies that g,.: H— L'(H) is Fréchet differen-
tiable. |i

Our next step is to show that D’¢(y) is a random variable.
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LEMMA 2. Suppose that v satisfies
j k|| dv(k) < co. (12)

Then D'o(y)e Z(E, &, «; LY(H)).
Proof. Fix {P,} <@, P,>°I Let Z(k, ), Z,(k, @) be defined by
Z(k, ®) :=exp{(k, &(w)) + Lo(k)(wo) — 5 I1k)*}
and
Z (k, @) :=exp{(k, {(w)) + Lo(Pik)wo) — 5 [k||*}, @ = (@, @p).

Then from the definition of lifting for cylinder functions (see [2]) it follows
that

RALD0 15, [0, 0,1(@) = | Zik, ) (k) dv(k),

where .]= (.]1 3 ety .’r) and f](k) = ((lea k) to ((pj,’ k) Let le(d)) =
IRA{D'6°y]p)— R([D'aoylp)llZ, (&) To complete the proof. we will
show that U, — 0 in fI-probability:

0u)<E | [1206 )~ Ztk o) 10 aio) |
<T [1Zk(@) — ik, @) dvik)
[ 12k, )= Z e, )] - £(K) dv k)
=f 1Z(k, ®) — Z (k, @) dv(k)

J | Zi(k, )~ Z(k, ®)| IkI* dv(k). (13)

We have used Hoélder's inequality above.
Define a probability measure I7' on Q by

o (@)= C-exp(~ § [E(@)I)

-exp(— Lo(&(w)) (@0 — 5 1E(@))]1?),
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where, @ = (w, w,) € . The constant C is chosen such that /7'(2)=1. It is
easy to see that

[expd 1e(@)?) drt’ < .

Let u be any countably additive finite measure on H. Then, it is easy to
check that

Z, -»Z in p® I’ measure

H

and
[ zk, @) diT (@) duk) - [[ Z(k, @) i (@) du(k),

where the integrals appearing above are finite. By arguments similar to the
proof of Scheffé’s theorem, it follows that

j \Z, — Z| dIT’ du -0
and as a consequence

j|zi(k,a)~2(k,<:>)| du(k) — 0 (14)

in IT'-probability. Since fT<II’, (14) also holds in fT-probability. The
assumption (12) implies that v, defined by

dv, _ 2
=L (k) = k]

is a finite measure. Thus (14) for p=v and p=v, implies that U; -0 in
II-probability. |

THEOREM 3. For any integrable function f, for any orthogonal projection
Q, o,lg, y) is r-times Fréchet differentiable for all r > 1. Further, (2) if

_[llQé(w)Ilz“lg(w)l dll{w) < (15)

then
D'oglg, y)e Z(E, &, a; L{,(H));
(b) if |&ll, g are bounded, then for all g=1, r = 1,

D'oy(g, y)e LUE, 6, a; Li,(H)).



SMOOTHNESS PROPERTIES 269

Proof. Part (a) follows from the preceeding lemmas. The proof of (b) is
based on the easily verifiable fact that

[twae it -0

as (i, /) » co. We are now in a position to prove the main result of this
paper.

THEOREM 4. Suppose { and g satisfy (15). Then, ny(g, y) is r-times
Fréchet differentiable and

D'ny(g, y)e L(E, &, o; L5 (H)). (16)

Proof. my(g, y)= fi(y)/fa(y), where
fl()’)=UQ(g, »), fz()’)=0Q(1, »)

Now, f,, f, are both r-times F-differentiable and f, > 0. From this it is easy
to check that f,/f, is also r-times F-differentiable. It can be shown that
D’(f,/f,) can be expressed as

Dr(fl/f2)=Ar(f1af2’ Dfl, Df,, ... D'fy, Dera 1//3)

where A, is a continuous mapping from
RxRx L, (HYx Ly (H)x -+ x Ly (H)x L{,(H)x R

into LY, (H). Since f, fo, 1/f,€L(E & oR), and DY,, DYf,e
Y(E, &, a; Li,,(H)), 1<i<r, assertion (16) follows from the continuity
of A,.

A functional f{ y) will be said to be a C®-functional of the observations if
D’f exists for all r>1 and D'f(y)e L(E, &, a; L(,,(H)).
We have proved above that if

E|él <o forall r>1,

then for all g bounded n,(g, y) is a C* -functional of the observations.

A concrete application of this result to the models considered in [2]
shows that the conditional expectations in the filtering, prediction, and
smoothing problems (for finite or infinite dimensional signals) are
C>-functionals of the observations.
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Equivariant Estimation of a Mean Vector y of
N(u, £) with p’2~'u=1 or
S V2u=corXZ=0%'ul
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This paper considers the problems of estimating a mean vector u under con-
straint u'2 ~'u=1o0r £ "2y =¢ and derives the best equivariant estimators under
the loss {a—u)' £ ~!(a— u), which dominate the MLE’s uniformly. The results are
regarded as multivariate extensions of those with known coefficient of variation in a
univariate case. As a particular case for u'X ~'u=c, the case X =c2u'ul is also
treated.  © 1988 Academic Press, Inc.

1. INTRODUCTION

The problem of estimating the mean u of a univariate normal population
N(n, 6%) with known coefficient of variation (i€, o/u=const) was
originally considered by Fisher a long time ago and recently again focussed
upon in the context of a curved model or a model which admits an
ancillary statistic (see Efron [6], Cox and Hinkley [4], Hinkley [8], and
Amari [1,2]). The motivation behind the model is based on the
empirically observed fact that a standard deviation often becomes large
almost proportionally to a corresponding mean so that the coefficient of
variation remains constant. This fact is often found also in multivariate
(mutually correlated) variates. Though a well-accepted measure for
variation between a mean vector u and a covariance matrix X' is not
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available, in this paper we adopt as multivariate versions of the variational
coeflicient the following measures

A=p'Z ' (1.1)
and
y=X"1y  with X 2eGT(p) (1.2)

and consider the problems of estimating u of a p-variate normal population
N,(u, 2') with either 4 or v known under the quadratic loss function

L(a, p)=(a—p) Z~(a—p), (1.3)

where GT(p) denotes the group of pxp lower triangular matrices with
positive diagonal elements and X'? is the unique solution for
X2g12'= ¥ The analysis is based on the invariance principle. In the
versions of (1.1) and (1.2), the constancy of the measures means that
becomes “proportionally” large in the sense of nonnegative definiteness as
u becomes large. Besides these interpretations, some other interpretations
are possible for 4 and v. For example, 4 is the Mahalanobis distance
between N(0, 2) and N(u, 2), and v is a normalized mean vector. As a
particular case for which u'2 ~'u becomes constant, the specification
2 = o?u'ul with ¢? known is also considered.

Now let x’s be a random sample from N,(u, X) with pgeR? and
2 e S (p), where ¥(p) denotes the set of p x p positive definite matrices.
Then a sufficient statistic is (y, S) with

y=\/’_”?= i xi/\/—'”Np(\/;”’z)

=1 (1.4)

S= En: (x; = X)x;, —x) ~W,(2,n—1),

i=1

where n> p and W ,(Z, m) denotes the Wishart distribution with mean mX
and d.f. (degrees of freedom) m. As in the univariate case, when 4 (or v) is
known, the model admits an ancillary statistic, that is, a statistic which is a
part of a (minimal) sufficient statistic and whose marginal distribution is
independent of unknown parameters. Thus an inference on (u, 2') may be
based on what is called the principle of conditionality. However, in this
paper, rather than using the principle directly, we derive a BEE (best
equivariant estimator) for each problem under the loss function (1.3).
There a conditional argument is inevitably required. The explicit forms of
the BEE’s are given only for the case of p =2 because the complication of
the computation. The MLE’s are also derived for comparisons. Since
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the MLE’s are equivariant, which is true in general under a mild condition
(see Eaton {5]), the MLE’s here are uniformly dominated by the BEE’s. In
the particular case X =o¢u'ul, the BEE and the MLE are also derived
(Section 4).

In the literature, not much work has been done on the problems with
ancillary statistics from an equivariance viewpoint. Kariya [9] gave a
formulation for the equivariant estimation when an ancillary statistic is
realized as a maximal invariant. However, he assumed in the formulation
that the sample space is homeomorphic to the product of the group leaving
the problem invariant and the space of the ancillary statistic. In the first
problem with 4 known that we treat here, the assumption is not satisfied,
though in the second problem with 4 known, it is satisfied. A general
description of equivariant estimation is found in Ferguson [7], Eaton [5],
and Lehmann [11].

2. PROBLEM WITH A KNOWN

In this section, we consider the problem of estimating u of N,(u, 2) with
A in (1.1) known. Without loss of generality, we assume that (u, 2') belongs
to

@ ={(mDeRxF(p)WZ u=1}. (21)

Under the loss function in (1.4), it is easy to see that the problem is left
invariant by the group Gl(p) of p x p nonsingular matrices acting on (y, S)
as

(v, S)—> (Ay, ASA") with A4 e Gl(p), (2.2)
which induces the action on (u, 2):

(1, Z)—> (Ap, AZA’)  with AeGl(p). (2.3)
Under the transformation (2.2), the statistic

u=yS-'y (2.4)

is a maximal invariant and the distribution of u depends on (u, 2) only
through the maximal invariant parameter 1= p'Y 'y Therefore by the
prior constraint (2.1), u is an ancillary statistic. Further the group Gl(p)
acts transitively on @ in (2.1). This implies that the risk function of an
equivariant estimator fi

R (1, 2N =E 5l(A—p) 2~ (@—p)] (2.5)
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is constant for all (4, £)e @ (see Lehmann [11]). Therefore without loss
of generality we choose u=e and X'=1, where e=(1,0, .., 0)' € R”.

Now to find a BEE which minimizes the risk (2.5), we shall characterize
an equivariant estimator, that is, an estimator satisfying fi(Ay, ASA4A’)=
Aj(y, S). Decompose S uniquely as

S=Www’ with WeGT(p) (2.6)

and let

v=W7y and  g=v/|v], 2.7)

where |jv]|?>=v'v. Then u = |[v]|?, where u is given in (2.4).

LEMMA 2.1. An equivariant estimator [i is of the form

iy, S)=k(u) Wy, (2.8)
where k is a measurable function of u.

Proof. Replacing y by W'y, A by W, and S by I in fi(Ay, ASA')=
Afi(y, S) yields ji(y, S) = Wii(v, I). Let Q be an orthogonal matrix with g as
the first column. Then (v, I) = i(QQ'v, QQ') = Qﬂ(\/; e, I). But since the
columns of Q except the first column are arbitrary as far_as they are
orthogonal to g, it is easy to claim that the elements of ﬁ(\/; e, I) except
the first element ﬁ,(\/; e, I} are zero. Hence ji(v, 1)=ﬁ1(\/; e, INq, com-
pleting the proof.

Consequently the risk function of an equivariant estimator fi in (2.5)
with u=e and X =1 is expressed as

R(f, (e, 1)) = E[(k(u) Wq —e)' (k(u) Wg—e)].

Hence, using the fact that « is ancillary, a unique BEE is obtained as
fi = k(u) Wq with k(u) minimizing the conditional risk given u:

E[(k(u) Wq—e) (k(u) Wq—e)|u]l.
Therefore we obtain

THEOREM 2.1. The unique BEE is an estimator ji = k(u) Wq with

k(u)=E[q¢'W'e|ul/E[qg' W Wq|u]. (29)
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An explicit evaluation of k(x) in (2.9) is rather complicated. Here only
the case of p=2 is treated. To give a form of £(u), let

Ha; by c:uy= Y <Z> B(b, ¢ + k)u, (2.10)
k=0
Bl s ey S P Tt Bt j2)
J(a; Bly; &; e,u)—jgo i )
xH<y+§:5+%:s:u>, (2.11)
and
p=[2nu/(1+u)]'"?, (2.12)

where B(a, p)= I'(a) I'(B)/I'(« + B) and I'(a) denotes the gamma function.

_ THEOREM 2.2. When p =2, the BEE is given by fi=k(u) Wq with k(u) =
k,(w)/k (u), where

- 2\ /n 1|1 1

and

T+u \2’ 7
4u n 1 33
‘mﬁ’(z‘z""l’z’z-“)
n 13
+(n—1)J<5.0|—1.§.§.u> (2.14)

The proof is given at the end of this section.

For comparison, we shall derive the MLE, where p is arbitrary here. By
using the Lagrange multiplier method, the following theorem is easily
obtained.
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THEOREM 2.3. The MLE’s of p and X under (2.1) are respectively given

by
R u—.Ju(4+ 5u) _
P RaVL Cht)) \/2()x (2.15)
u
and

R t Ju(4
_S+u+ u( +5u)jj,.

3 =
MLE = 5 2u

Proof. Maximizing

n 1
—5log 2] —5tr SZ“—g(f—#)’Z“(i—#)—-;-(#'z‘?‘lﬂ— 1)
yields ji=n%/(n+y) and £ = (1/n)S + AX%'/(A+n). From @'Z ~'fi=1, the
result follows.

Clearly jiyie is equivariant and hence it is dominated by the BEE in
Theorem 2.1 for any p. Also the form of (2.15) is a natural extension of the
case p=1, where the MLE is § x— [(1/n)S + 5 x*]"2. When p=1, some
properties on this model associated with the Fisher information are
investigated by Hinkley [8]. Amari [1, 2] proposed through a geometric
approach what he called the dual MLE, which is also equivariant.

Proof of Theorem 2.2. The joint pdf of (y, S) under u=¢ and X =1is
given by
kexp[ -4y —/nel]
x exp( —4tr S) |det S| =722 4y d8S. (2.17)
First transforming (y, S) into (v, S) with v=W "'y and S= WW', where
W=W(S)e GT(2), and next transforming (v, S) into (r,d, S) with r=

lol =u'? and g =v/||v]| = (cos 6, sin 8) = (q,, q,), the joint pdf of (r, 6, S)
is given by

k|I+riqq|~"? exp(\/; re’'Wq) g(S|r, 0) dS do dr, (2.18)

where g(S|r, 6) is the pdf of W,((I+r’qq’) "', n) and —n <60 <. Noting
[T+ r2qq’} ~"* = (1 + r*)~"?, the conditional pdf of (6, S) given r=u'?is

exp(\/r; re'Wq) g(S|r, 0) dS db/h(r), (2.19)

where A(r) is the integral of the numerator over (6, S). However, in the
ratio k(u) in (2.12), A(r)s are cancelled out. Hence in the evaluation of
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k(u), h(u) can be ignored. Now to evaluate (2.12), we need the expected
value of w;’s with respect to (2.19). Since wy, =s{7%, wy =5;"25,,, and

Wy =832 = (55 — 55157;'5y,)"% and since it follows from S=(s;)~

W, (4, n),
. _ 2
Wy BIVED Sy "N(S:{z‘snl 012,021), S ~0px°(n), Sy~

021 x°(n—1) and (wy,, 5,,) and sy, (2.20)

are independent, the expected values of w,’s given 0 are evaluated by using
(2.20), where 4=(8,) = (I+r’qq’)~" and 0221 =02 — 85 853" 6,,. Noting
e'Wg=w,,q, and

14122 2 i
PR S S — (21

1472 %27 1+r24142’ 022.1 1+r2q§’

we obtain
LemMa 2.2. Let t=./nr/(1+r*)" and m,(a)=2°I'(n/2 + «)/ I (n/2):
(1) E[ws, exp(y/n rg,w,,)16]
= (1477 3 Tgl(1+Pgn)V* 2 m((+ a)2)!

j=0

(2) E[wy exp(\/; rq,wi){0]

3 a4 PR m G )

x 2, Uit ?q5(1 +r’gd)Y "2 m,((j +2)/2)/)!

(3) E[wiwy exp(y/nrgwy,)|0]
= P14+ r) 2 Y gl gyl +righu
x m,((j+1)/2) ;n,i (17251
(4) E[wl, exp(y/nrg,w,,)|6]

Z ‘glg3(1+7°g3)V = m(jj2) m, (1),

Proof. We only prove (2). The other cases are similar. Conditional
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on sy, E[w} |5y, 0]=E[(s5;"%513)*|811,0] = 063, +51, 65,2 63,. Using
(2.21) and expanding exp(\/n rsii?q,), the left side of (2) is evaluated as

E{[(1+7r7q2) " +5,,¢3¢%r*(1 + r*q2) 21 exp(/n rs2q,)| 60}

=(1+7g) " ¥ (Jurg,Y SRELGEY?Y)

+r(1+r2g) 2 @3 Y (nrg,Y

j=0

x OY* PEL(x2)V 22!
gives (2).

Next, using this lemma, we evaluate the numerator of (2.9). Since
eWq = wq,, E[eWq] = an_n Q1E[W116XP(\/;"11W11)|9] df. Here
expanding (1 +r’¢3)? as Z.(f)(r’¢3)* and using [*  cos®@sin** 0df =
B((a+1)/2, (2b + 1)/2), we obtain

E[¢Wq]=K(1 47772212 3 [P’F@*%*%)/ﬂreﬂ

j=0

j2+ 172 j+2 2k+1\ ,
ka( k B 7 r’k.

This gives the expression (2.13) except the constant K= K(u), which is
cancelled out with that of the denominator. Similarly for ¢'W' Wg=
@}[w3, + w3, 1+2q,q, W wyy + g3w3,, the expected value of each term is
evaluated by using Lemma 2.2. But the details are omitted here.

3. PROBLEM WITH v KNOWN

In this section, the problem of estimating u of N,(u, X) is considered
with the assumption that (u, 2) belongs to

@ ={(n, D)eR"xF(p)| 2~ Vp=c}, (3.1)

where X'2e GT(p) and ce R” is known. Assuming the quadratic loss in

(1.3), this problem is left invariant under GT(p) acting on (y, S) by
(y, S)—> (Ay, ASA’) with A4 e GT(p), (3.2)
which induces the action on (u, 2) as

(1, £)— (Au, AZA')  with A4eGT(p). (3.3)
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Clearly under (3.2) a maximal invariant is
v=W~'y,  where S=WW with WeGT(p), (3.4)

and since the action of GT(p) on @ in (3.3) is transitive, the distribution
of v does not depend on (y, X)) for (u, 2)e @. Therefore the risk function
of an equivariant estimator defined by

R, (u, 2))=EQ(A—p) £~ (A~ )] (3.5)

is constant on (u, 2'}e @), which implies that without loss of generality we
can choose y=c and £ =1 On the other hand, in a similar manner as in
Lemma 2.1, an equivariant estimator is shown to be of the form

Ay, S)= Wi, I) = Wi(v). (3.6)
Consequently, a BEE is an estimator which minizes the conditioned risk
E[(Wi—c) (Wi—c)|v] (3.7)

with respect to i, where E denotes the expectation of W given v. Thus we
obtain
THEOREM 3.1. The unique BEFE is given by
A=E[WW|v] ' E[Wc|v]. (3.8)
Because an explicit of ji in (3.8) is complicated in a general case, the case
of p=2is treated here. In the evaluation, we regard W= (w;;) as a function

of S =(s;). As in the proof of Theorem 2.2, the joint distribution of (v, S) is
given by

k| I+ov'|~"? exp(\/f_w’Wv) g(S\v)dS dv, (3.9)

where g(S|v) is the pdf of W((I+vv')~ !, n) (see (2.18)). Noting ¢'Wv =
CiWi Uy + CaWo 0 +CaWaaly, Wiy = S{P, Way =S5117515, and wy, =537, define
the conditional moment generating function of w,, = s}{> and s}, given v
by

5(t) = E[explis!®) |l = 3 (t5;42)f2f/2r(f+1>/r<'1>j! (3.10)
ey 272)]°\2

and

0(t) = E[exp(1s}2)|v]

& =1 —1
=y (tagg?,)fzf/2r<"—2—+’5)/r(”2 )j! (3.11)
ji=0
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respectively, where 6,, = (1 +v'vw3)/(1 +v'v) and 8,,, = 1/(1 + v'vv?) with
v=(vy, v,)" (see (2.20) and (2.21)). And by ¢’(¢) and ‘" denote the ith
derivatives of ¢ and i, respectively. Further, let

dy=(/nev, +65 81, /ncyv)) 842 and d, = /n cyv, 812, (3.12)

where 8, = —v'vviv3/(1 + v'v), and let

b, =¢“)(d1)‘//(dz)a

by =[085 6129"(d)) + c,026(d))] Y(dy)

by =¢(d,) Y (4,),

by =¢(2)(d1)'//(d2)

bs=[(85:' 612)* $N(d)) + 2¢,0, 81" 6,,4")(d))

+civ} 63,16(d1)] ¥(dy) _

be =[085 0120(d)) + c0, 822, 4(d))1¥(d))
b, =¢(d1)¢(2)(d2)~

(3.13)

THEOREM 3.2. When p=2, the BEE in (3.8) is given by ji= Wa, where
a=(a,, a,) with

a, =[c1b1(by +bs)+cy(byb; —b3be)1/D
ay={—cbibs+cy[by(bs+bs)—b,bs]1}/D.
Here D= (b, + bs5)b, — bs.

(3.14)

Proof. We simply outline the proof since the proof is similar to that
of Theorem 2.2. From (3.9), the conditional pdf of S given v is given
by exp(\/; ¢'Wv) g(S|v)/h(v), where h(v) is the normalizing constant.
However, it is easy to see that the BEE in (3.8) does not depend on A(v).
Hence what we need is the expected values of wf, wh,w3, exp(y/n ¢’ Wv)
with respect to g(S|v). Then using (2.20) and E[exp(\/; o0 Way) |81y, U]
= exp(nciv? 622,1/2)exp(\/;czv,5,’1'612s{/,2), we can show that b, =
KE[w,, Qlv], b, =KE[w,Q|v], b3 =KE[wy,Q|v], by=KE[w} Q|v],
bs = KE[w,,@|v], bg=KE[w, w,,Qlv], and b, = KE[w3,Q|v], where
K =exp(nciv? 6,,,/2) and Q=exp(\/; ¢'Wv). From these moments, the
result follows.

It is noted that the conditional moment generating functions of ¢ and
¢ in (3.10) and (3.11) are Bessel functions and their derivatives can be
computed term by term.
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On the other hand, the MLE is routinely obtained. First the constrained
log-likelihood function is expressed as

i
L=ztr E*‘S—-gtrZ“()E~u)(i—y)'+glog 1Z Y —ni/(ZPu—c)

= —%u &P’ —g tr §(x — fi)(x — i) @ +nlog |®| —nk'(Pji—c),

where & = ®W with £ ~' = &' and @e GT(p), x=W 'xand =W 'p.
Differentiating L with respect to /i yields ji = X — & ~'A and substituting this
fi into L yields

1 3n
Li=-3%, ?j+n210g$,-j+721f

- nZ,-zjé',.jfli +nXic,.
Here differentiating L, with respect to $,~ and 4;, we obtain

f,+n$,-,-§<l<—n=0, y=—nxA, (i>))
[ZIZjalj / 1'

From these equations, 5 s are recursively obtained; e.g., since i, =

3($1x1

2 ~ 4 N 2 . 1/2 4 -
3. ={ n);101+|:_9_n2)glc§+4n<1+-§nif>:| }/<2+§nif>,

etc. Then the MLE of @ is given by é=¢W " and the MLE of p is given
by ji=W(x—-& 1))

4. THE CASE X =c*p'ul

As a particular case for y'X ~'u constant, in this section we consider the
case of X =gu'ul, where o2 is known. Then (y, w) is a sufficient statistic
where w=tr S and (y, S) is given in (1.4). Of course, w/o*u'y is distributed
as x¢,_1),- The loss function in this case becomes

L(a, p)=(a—p)' (a—p)/o’u'n (4.1)

and the problem of estimating pu remains invariant under the group
G =R, xO(p) which acts on (y, w) by

(y, w)—> (bI'y, b*w)  for (b, I'€G, (4.2)
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where R, ={b>0} and O(p) denotes the group of px p orthogonal
matrices. The following lemma is similar to Lemma 2.1 and the proof is
omitted.

LEMMA 4.1. An equivariant estimator [i(y, w) is of the form

Ay, wy=h(v)y  with v=y'y/w, (4.3)
where h(-) is a measurable function from R* into R.

Now to find a BEE which minimizes the risk R(f, u)= E,[ L(fi, #)], note
that the action of G on the parameter space is transitive and hence the
statistic v = y'y/w, which is a maximal invariant, is ancitlary. Hence the risk
function is constant and so taking u=pu, =(1,0, .., 0)’, the BEE is given
by A(y, w)=ho(v) y with

ho(v)=E [y, |vY/E,Ly'yIv], (4.4)
where y=(y,, .., y,)". Evaluating hy(v) yields the following theorem.

THEOREM 4.1. The BEE is given by [i(y, w) = hy(v) y with

h )_n”zF(np/2+ 1; p/2 + 1: nv/2(1 +v)6?)
0= F(np/2 + 1; p/2: nv/2(1 + v)6?)  °

(4.5)

where F(a, b: x)=Y ['(a+ i)x'/T'(b+i)i!
Proof. In the density of (y, w), transform (y, w) into (y, v) to get the

density of (y, v):
/140N | n .
CCXP{—E( " ).V}"*'_az}(}’}’)( ez

0
v-(n—l)p/ZAI Z (nl/zylo.)i/i!
i=0

Using this and evaluating the conditional expectations yields the result.
The details are left to the readers.

Next we derive the MLE. From the joint density of (y, w), maximizing
the log-likelihood equation is equivalent to minimizing

np

1
> log(w'p) +3lw+y'y— 2n'%y'uljo’ ' p. (4.6)
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It is then easy to see that the MLE is a solution of

1/2

npo’u'up —n'Pu'py —wpu— y'yp+2n'2y'up =0. (4.7)

We solve this equation as
THEOREM 4.2. The MLE is given by
. (1+4ps((1 +v)w)?—1
[ Ld / ». (48)

hu = 2n'?pg?

Proof. First observe that the solutions of (4.5) are of the form
fi=h(y, w)y. Hence substituting u = cy, we obtain

clnpa®(y'y)e® + (n'?y'y)e—(y'y + w)1=0. (49)

The solutions of this equation are ¢, =0,

1 1/2
Cc, ={—1 —I:l +4pa? %] }/Zn”zpa",

and ¢, where ¢; is [ ] in (4.8). To find the solution which minimizes (4.6),
obtain the matrix of the second derivatives of (4.6) and evaluate it at c/s.
Then ¢, is not the solution and for u=c;y with ¢; #0, the matrix is
evaluated as

1
A [5— yyl+ yy:l with 4>0,

where b, =2n'?pa*c;. For this to be positive definite, b, >0 is necessary.

Hence c; is the only solution, completing the proof.
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A Generalized Cauchy-Binet Formula and
Applications to Total Positivity
and Majorization*

SAMUEL KARLIN
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Hebrew University

1. INTRODUCTION

The identification and analysis of multivariate totally positive kernels,
log concave densities, Schur-concave functions, and symmetric unimodal
functions relies heavily on their conservation under convolution operators.
An approach of wide scope incorporating many of the essential com-
position laws can be based on a generalized Cauchy-Binet formula. The
Cauchy-Binet formula for matrix functionals plays an important role in
studies of determinants, permanents, and other classes of matrix functions
(e.g., Marcus [7], de Oliveira [10]). In this context a generalized matrix
function founded on the matrix | A(x;, ;)| has the canonical form

ar(x,y, A=Y 1(0) [T ACxs yoir): (L1)

age XN i=1

where & is a subgroup of the symmetric group &, (permutations on n
elements) and x(o) is a character on 3¢, i.e., y(¢) = 1, where e is the identity
permutation and y(o1) = (o) x(t) for o, 1€ #. The specifications # = %,
and y(o)=signo or y(¢)=1 produces the determinant and permanent
functionals, respectively. The classical Cauchy-Binet formula expresses
df (x,y, C) for the matrix product C = AB in terms of the corresponding
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dy -functionals of 4 and B. The Cauchy-Binet formula for continuous
matrix multiplication serves abundantly in verifying and generating totally
positive (TP) kernels, e.g.,, Karlin [5].

In this paper we develop an extended Cauchy-Binet formula for mul-
tivariate kernels. The setting of matrix functions is generalized to K(x, y) as
a function defined for a direct product domain R"*" (Euclidean (2n)-
space) and

dy (x,y; K)=Dg(x, y)

=Y x0)K(x,0y)= Y x(6) K(Xy5 r Xp} Va(iys s Vom)

oceN ceN

(1.2)

(the dependence on J# and y is suppressed where no ambiguity is likely).
With K(x,y)=T17_, A(x;, y;) based on the matrix kernel A(x,y), we
recover (1.1).

The construction (1.2) invites a generalized totally positive (GTP)
notion. Thus K(x, y) is said to be GTP with respect to # =<, and
x(o)=signo if d(x,y; K)=3,.  (signo) K(x, 0y) 20 for x=(x,, .., x,)
and y=(y;,..,y,) provided x;<.--<x, and y,<---<y,. There also
occurs the notion of generalized total positivity with respect to subgroups
of &,. In this perspective the property of Schur convexity for &(z), ze R", is
equivalent to the GTP property corresponding to J# consisting of per-
mutation subgroups of two elements operating on the translation kernel
K(x,y)=®(x+y), see Theorem 3 below. The fact that the convolution of
Schur concave functions remains Schur concave (Marshall and Olkin [8])
is manifest from the Cauchy-Binet formalism. In the same vein the con-
volution of similarly elliptically contoured unimodal densities is also of the
same kind.

The concluding section considers generalizations involving compact
groups ¥ with (1.2) of the form

dy(x v K)= 1(8) K(x. gy) de, (13)

where dg refers to the Haar measure of 4.

2. A GENERALIZED CAUCHY-BINET FORMULA
FOR THE SYMMETRIC GROUP

Let dI(y) be an invariant measure with respect to %, so that
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dl'(cy)=dI(y), e.g., when dI'(y)=]17_,dIl'(y,;) is a product measure of
identical factors. The following integration formula is elementary

D
jewary= 3 [ Zar) 1)

o€ S A t(Y)

where y=(y,,..,v,)€A, A is the increasing orthant of R”" (ie,
yEAlffylssyn)’

y)=[Tm,! (22)

and m, is the number of occurrences of the ith distinct component of y.
Equivalently f(y) is the number of o€ ¥, for which gy=y. Obviously
t(y)=1 when y e 4° (the interior of A).

Let 4= {t,, .., 7,} represent the right coset space &,/# such that #1,
are distinct, 7, =¢ and |J, #1,=,. In this case, it is convenient to write
the integration formula (2.1) as

1
[ owmarm=3 ¥ [ o (1Y) 7y A0 (23)

tednen "4 ( )

A kernel K(x, y) defined on a region of R"x R" is said to be invariant
with respect to the group & < &, if K(nx, ny)= K(x, y) for all e # and
X, y. For a given character y we define the generalized kernel function

Di(x,y)= 3 x(n)K(x, my). (24)

ne N

THEOREM 1 (The Cauchy-Binet formula for generalized kernel
functionals). Let K(x,y) and L(y,z) be permutation invariant kernels,
square integrable with respect to dI'(y), where I' is a permutation invariant
Borel measure on R". Consider the continuous “matrix product”

M(x,z)= fm K(x,y) L(y, z) dI'(y). (2.5)

Then for any subgroup # < ¥, and character y on ¥, we have

Du(x,2)= ¥ [ ——Dylx,1y) Dy(2y, ) dIy), (26)

Ted At( )

where A={y:y <---<y,} is the increasing orthant.
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Proof. 1t is readily verified that the invariance of K and L and the
measure /" implies the invariance of M. Equation (2.5), definition (2.4), and
the integration formula produce

utoz)= T xm) Mix72)= T z(n) | K(x,y) Liy. 72) dI(y)

ne N ne XN

L
=Y ym Y ¥ f (x wy)y(my,nZ)dny)

neN ted pe N t( )
and by virtue of permutation invariance
Duix2)= T [ == T o) Kixory) T rio~'n) Lizy, o~ 'm2) dI(y)
1€d At(y)(pe.)(f’ neE N
and, since for each @ € #, ¢ ~'n traverses # as m traverses # we achieve

Dy(x, 1y) D, (1y,
Dy(x,7)= ZA L (x Tyt()y) (1y. 2)

driy) (2.7)

as desired.

In some situations the region of integration in (2.7) can be reduced
to the subset Bc A defined as follows. For each y determine
H,={neH:my=y} and let

B={yeA:y(p)=1forall pe i#}. (2.8)

We claim for ye A — B and any ce &, that D,(x, ay)=0. Indeed, let
s=|H#/H,| and choose left coset representatives 6,€# such that
0,5,, .., 0,5, are distinct cosets of #, in #. Then

Duxy)= 3 xmKxay)=Y T x6)x(n) Kx, 0,uy)

ne N i=1peHy

and since uy =y for

Di(x,y)= Zx(ﬂ)Kx 8,y) 3. x(w).

ne Ny

Because yed—B, x(po)#1 for some ppes, and therefore
a=3Y,cxx(n)=0 (since x{uo) a = a), so that D(x, y) =0. Replacing y by

oy and noting that #,, =o#,0 ', we have

D(x, oy) =_i ) K(x,0.0y) Y x(u

pne Hgy
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for an appropriate set of §,. Also

Yo=Y x(u Y @) xwx(e™ =Y x(u)=0.

ne Hgy neaHyo™ pe Hy ne Hy

Thus D (x, ay) =0 for all ¢ when ye A — B and we can replace 4 by B in
the integral of (2.7).

Where the coordinates of y are all distinct, ny =y is possible only when
n = e = the identity permutation so that H, = {e}, and y € B. Accodingly B
contains all points of 4°={y:y,<y,<---<y,}. When I' is a continuous
measure the region of integration can obviously be reduced to 4° = interior
of 4, and (y)=1.

Consider y(o)=sign ¢ and ' =5,. If y has a pair of coincident coor-
dinates then ., contains the odd permutation ¢ which only transposes the
coincident pair, with y(¢)= —1 so that y¢ B. Hence in this case B= A°.
For s# =Y, we have 4= {e} so in this case, with y(¢)=signo, (2.7)
becomes

Dy(x,2)= [ j Dx(x,y) D.(y, z) dI(y). (29)

YI< o <yn

In the example where for some functions @;, i=1, 2,

K(x,y ﬁ G(xny)  Ly.z)=[] Salynz (210)

i=1

and y(g)=sign o, the functional D is the classical determinant as men-
tioned before.

If '=ryx---xTI'y, then setting ¥(x,z)=[g®P(x,y) Py, z)dl(y)
and

M(x,2)=] K(xy) L(y2) dI(y)= I #x, 20, (2.11)

i=1

we obtain the classical determinental Cauchy-Binet formula

'I’( ) j jqb( >¢2<2- zn)ﬂdl"l(y) (2.12)

i=1

with the notation det(®(x;, y,))} -, = P(}! .. ;;r), which reduces, of course,
to the matrix version when I, is a discrete measure of unit point masses.
With the above notation but y = 1, the functional D becomes permanent
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and denoting @*(3!::3") = per(P(x,, ¥))ij~1, the Cauchy-Binet formula
for permanents has the form

W*(xl...xn
zl-..z"
1 Xy X, y n
=f"'jy,<‘..<ynry)¢'* (}’i"')’ )dj; (Zi >n iy
(2.13)

with the integration covering all of the increasing orthant A.

3. GENERALIZED TOTAL POSITIVITY

For our immediate purposes, it is useful to describe a complete set of
coset representatives for the .group # =4, , _ 4, consisting of all per-
mutations satisfying n(j)=j for j> k,, i.e., m permutes only the indices 1,
2, ..., ky among themselves. When n,t = n,0 with n,, n,€ # then t~'(j)=
6~'(j) for all j>k,. Thus with each monotone set z; < --- <z, there are
(n—ky)! permutations t inducing distinct cosets of »# in the manner that

t ' (iy=z;,i=1,2, .., ko, and T maps {1, .., n} — {zy, .., 24, }
onto {ko+1,..,n}. (3.1)

There are (1) selections of monotone k,-element sets from {1, ..., n}. Since
| # | =k,! the collection of all T as described constitutes a complete set of
coset representatives for &, 4. In a similar manner we can delineate a
complete set of right coset representatives for #" =%, ixg) by specifying
2y <<z and mapping t~!(i,) =z, with a general permutatlon among
the remaining indices.

More generally, the group ¥, . a,) * L1 o Biy) composed of all
permutations that permute the elements {al, .y 0z, } among themselves and
separately permute the elements {f,, ..., f;,} among themselves and leave
all other elements fixed, possesses a set of coset representatives {t} charac-
terized by choosing a set of k, + k, increasing integers and then specifying
z, < --- <z, from these, leaving w, < --- <w,, and prescribing ™ Ya)=2z,,

1= Y(B,)=w, with an arbitrary permutation otherwise. The extension to
'%an iy} ¥ yﬂn o By} ¥ '% v Vhy) etc. is clear.

A permutatlon invariant kernel K(x, y) defined on R” x R” is said to be y

generalized sign consistent of order p(x-GSC,) if for all pairs of monotone
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k-tuples of indices i, <--- <i,, j, <--- <j,, and (x, y) in the corresponding
monotone orthant, ie., x; <---<x; and y; <---<y;, we have

Y x(n)K(x, my)>0. (3.2)
Thus the kernel K(x, y) is GSC, (since |, ;, = {e, t}, where e is the identity
and ¢ specifies the transposition of i to j) if whenever x;<x; and y,<y;
holds for some i, j then (for y = sign)

K('xl’ A xi—l’ xi’ xi+l, ooty xj*|9 xja xj+l’ ooy xn;

Vi s Vi l,yi’yi+l"“’ijl’yj’yj+l’ ""yn)

Z KXy ooy X515 Xy X1 oo Xj 15 Xy Xjg 15 oo Xip
Yis ""yi~l,yj’yi+l’""yjfl’yi’yj+l’ ---»y,.)- (33)

Note that (3.3) expresses inequality between two values of K, where in the
first argument (x,, x;), (y;, y;) are similarly ordered, whereas in the second
they are oppositely ordered. This property was called DT = decreasing in
transposition by Hollander, Proschan, and Sethuraman ([4], and
Al = arrangement increasing by Marshall and Olkin [9]. In our ter-
minology this will be called GSC,, and if, in addition, K>0 then it is
GTP,.

A kernel K(x,y) is said to be y-generalized totally positive of order
p(x—GTP,) if Kis x-GSC, for all ¢, 1 <g<p.

ExaMPLES. A kernel of the form K(x,y)=>"_, ®(x,,y;) is (signo)-
GTP, if and only if @ >0 and for any x, <x,, y, <y,,

D(xy, yi)+ DP(xy, y,) — Plxy, y3) — P(x,,5,) =0,

i.e., @ is a positive set function or, equivvalently, ¥(x, y) =exp[®(x, y)] is
TP,. K(x,y)=37_, ®(x;, y;) is maximized when x and y are similarly
ordered (Lorentz [6], Rinott [11]).

The following example was stimulated by Boland, Proschan, and Tong
[2]. Let X=(X,, .., X,,) be a vector of exchangeable random variables. Set

H(a,b)=Pr{a<X<b}, a,beR"

Then H(a, b) is GTP,.

Proof. Let A= {(x;,..,x,):a;<x,<b;, i=3,..,n} and let I, denote
its indicator function. Because

H(aab)zE[IA(XSs ey Xn) Pr{(ah az)s (XI’ /YZ)< (bl’ bZ)IXJ’ ey Xn}l
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we see that it suffices to prove the result for
H((ay, a3), (b, b)) =Pr{(a,, a2) < (X1, Xo) < (by, b)) X3, oy X, )5

that is, it suffices to consider the case n=2. Thus the desired result reduces
to showing for a, <a, < b, <b,,

H((ay, a3), (by, by)) =Pr{a, < X,<b,,a,< X, <b,}

2Pr{a, <X,<by,a,<X,<b,}=H((a;, a;), (b;, b))).
Now
H((ay, a,), (b,, b)) = H((a,, ay), (b, by)) + H((by, a,), (b1, b))

= H((a;, a5), (b1, b)) + H{(ay, by), (by, b))

(since by exchangeability H(arn, bn)= H(a, b), where n denotes a per-
mutation)

< H{(ay, a,), (by, b))+ H({a,, b)), (b, b,))
=H((a,, a,), (b,, b,))
and the proof is complete.
If the underlying kernel function @(x, y) is TP, in the standard sense

then K(x, y)=T1;_, ®(x;, ;) is x-GTP, for the character y(c)=sign o.

THEOREM 2. If K and L are y— GSC, then so is their convolution
M(x,2)=[ K(xy) L(yz)dIy) (34)

provided I is permutation invariant and the integral exists.

Proof. With a given set of indices i, <-.-<i, consider the group
H =, ..i,; and use the coset representatives 1 described in (3.1). Then
for x and z with x; <---<x, and z;, <--- <z, we have

Dutr,a)= 3 [ 22l D ary) (35)

The choice of the coset representatives entails for ted spanning
&%, ...,y that for appropriate a, <---<a,, ©(a,)=1,; see the discussion
of (3.1). But each y € 4 belongs to the monotone orthant and, in particular,

yt(a,)s"‘g)’r(ap) (i-ewJ’i.S"'S}’ip-)
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Since K is x-GSC, we know for x; <---<x, and g, <---<gq, that with
te€d, Dg(x, ty) =0 and similarly D,(zy, z)>0 Since dI'(y) =0, it follows
that D,,(x, z) > 0. Accordingly, Theorem 2 is proved.

There are obvious extensions of the notion of GSC, relative to groups of
the kind ,, ., * ¥, .5, €tc. which lead to tensor products of deter-
minants and permanents.

The following theorem highlights Schur convexity as a special case of
1-GSC, (x(o)=sign g).

THEOREM 3 (Hollander, Proschan, and Sethuraman [4]). Let & be a
real valued function defined on R" and define a kernel K by

K(x,y)=®(x +Yy).
K is GSC, if and only if @ is Schur convex. The kernel L defined by
L(x,y)=®(x—y)

is GSC, if and only if @ is Schur concave. If ® >0 we can replace GSC, by
GTP,.

Proof. It suffices to consider n=2. The notation > refers to the
majorization ordering, that is (a, b) > (¢, d) iff a=b, azc, a>d, and
a+b=c+d hold. For x,>x,,y,2y,, obviously (x,+y;, x,+y,) >
(x,+ 3, X5+ ;). On the other hand, if (a, b) > (c,d) with a=2b, c>d
the choice x,=b,y,=0, x,=¢, y,=a—c=d-—b yields (a,b)=
(x,+y1, X2+ y,), (¢, d)=(x, + y5, X+ y,). Hence & is Schur convex if and
only if

K((xy, x2), (1, ) =P(x1+y1, X3+ y2) 2 P(x; + y,, X2+ yy)
=K((xl7x2)’ (y2, }’1))

A similar comparison leads to the conclusion about L.

CoOROLLARY 1 (Marshall and Olkin [81). If f and g are Schur concave
on R” then so is their convolution h defined by

mx)=[ f(x—y)g(y) dy,

provided the integral converges absolutely.

Proof. By the translation invariance of Lebesgue measure

M(x,2)=h(x—~2)=[ f(x—y) gy —2) dy = [ K(x,y) L(y, 2) dy.

The corollary follows from Theorem 2 in view of Theorem 3.
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There are many applications of this corollary in the theory of
majorization. For example, If X is a random vector in R” having a Schur
concave probability density, then F(x,, .., x,) =Pr{X, <x,, ., X, <x,} =
[f(x—8) I, (&) d&, where I, (§) is the characteristic function of the positive
orthant, is Schur concave.

4. SEMIGROUP OF GENERALIZED TOTALLY POSITIVE KERNELS

In this section we assume that I'=pux---xyu, where g is Lebesgue
measure on R or the counting measure assigning unit mass to each integer.
We shall exploit the fact that for any Borel set A in R, u(A4 + x) = pu(A4) for
all xe R in the case of Lebesgue measure, x € Z (=integer) in the case of
the counting measure.

In the following definition, 4 <R will denote a semigroup (under
addition) such as R, R, =[0,0), Z={.., ~1,0,1,..} or Z, ={0, 1, ..}.
The product A™ is again a semigroup in R”.

Let A™ denote a semigroup in R™. A kernel K(a, x), (@, x)e A" xR" is
said to possess the semigroup property if the identity

Ka+x)=] K@ x—y)K@.y)duy))--duly)  (41)

holds for all @, e A™, xeR".

If K(a, x), 2 € A, x € R satisfies the semigroup property with respect to g,
then K(a, x) =T]7_, K(«;, x;) satisfies the semi-group property with respect
to F=pux---xpu for ae A”, xeR”, Any infinitely divisible density f(x) is
embedded in a semigroup family of densities in continuous time f,(x). Sums
of i.i.d. variables generate a discrete semigroup family.

The basic result in this section extends a result of (Hollander, Proschan,
and Sethuraman [4]), see also [5, Chap. 3].

THEOREM 4. Let K(A,x), Ae A", xeR" be a GSC, kernel having the
semigroup property, and suppose the real valued function ¥ on R”" is such
that the kernel L defined by L(x,y)= ¥(x+Yy) is GSC,. Define

P(A)= fw ¥(x) K, x) du(x,) - - - dulx,) (43)

and M(a, p)=P(a+B). Then M is GSC, in a, B.
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Proof. Setting dI'(x)=du(x,)--- du(x,), we have

¢(a+p)=jm (x) K(a + B, x) dI(x)
= ][, 00 K@, x—y) K(B, y) dr(y) dr'(x)
~J K00 {[ Ko o) wary) are)} arcy)
R" R’l

- j K(B,y) L(a, y) dI(y).

Applying Theorem 2, we deduce that the inner integral whose resulting
kernel is labeled L(a, y) is GSC, in y, a. A second application yields GSC
in a, p.

P

COROLLARY 1. Under the assumptions of the theorem, let

s)=[ vf(x)C(?, iy 3 x )K(x,x)du(xo---du(x,,), (44)

= i=1

where C is any non-negative function on A xR. Then M(a, B)= ®(a +B) is
GSC,.

Proof. For the fixed vectors A, y set
Y*(x)= x)C(i A i x,-)
i= i=1
and observe that
Y Gt =T (i)

independent of n. It follows that ¥*(x +y) is GSC,. The result follows by
Theorem 4.

COROLLARY 2. Suppose K(a, x), ae A S R, x € R satisfies the semigroup
property with respect to u, and K(a,x) is TP,. Then K(a,x)=
_1 K(a;, x;), e A", x e R" is GTP, and satisfies the semigroup property.
Hence ®() defined by (4.4) has ®(a+ B) GTP, provided ¥(x +y) is GTP,,.
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5. COMPLEMENTS

The generalized Cauchy-Binet formula based on the symmetric group
(permutations on n elements) is also amenable to representations involving
a general compact group acting on R” This perspective will be briefly
reviewed.

Let & be a space with G a finite group acting on & to itself. Suppose u is
a measure on % invariant under G, that is, u(gE)=u(E) for any
measurable £< %. Assume there is a fundamental region 4 < 2 such that

[ 700 dux)= T [ f(gx) dutx) (5.1)

geG 4

akin to the integration formula (2.1). Let K(x, &) be a kernel invariant
under G, that is, K(gx, g&)=K(x, &) for all x,{eZ and ge G. For y(g) a
character on G we define

Dy(x,z)= Y x(g)K(x,gz) for x,zeZ.

geG

The method of Theorem 1 yields: Let

hx,2)= [ f(x, y) g(y, 2) (). (52)

Then

Dy(x.2)= Dy, y) Dyly.2) uldy). (53)

In particular, if D(x,y)>0 and D,(y,z)>0 for x,y,z€ A, then also
D,(x,z)=0.

ExaMmpLE 1. Let £ =R” and identify G with the reflection group of
elements g=(g,,..,g,) each g,=+1 and gx=(g,x,, .., g,x,). Define
wg)=T1"_,(—1)" &2 Any positive density of the form p(x)=
p(1xil, ... | x,|) satisfies p(gx)=p(x) and the measure induced by p is
invariant with respect to G. In this case (5.1) holds with 4 the positive
orthant.

Consider n=2, ¢(x)=¢(|x,| +|x,]) and y(x)=y(Ix,| +|x,|) with ¢
and ¥ convex (not necessarily decreasing) on the positive axis. Then

Y x(g)o(x—gy)=0 for x>0 and y>0 (54)

g€G
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and similarly for . By virtue of (5.3), the composition (the integral is
assumed to exist)

0(x,2)= [ o(x—y) ¥(y—2) p(y) dy

with p(y) = p(|y|) satisfies 3_, . s x(g) 8(x, gz) >0 for x and 2> 0.
The result can be extended to the case of n coordinates involving higher
order convexity requirements on ¢ and ¥.

ExaMpLE 2. Let G, be the group of two elements {e, y,} where ex =x,
yix = (xla s Xj 1 — X5 xi+19 hddl xn)' For (p(x)= (p(lxl I, i lxn') and x(g)
as before then

Y x(g)o(x—gy)=0  for x,y,>0 (5.5)

geG;

iff ¢ is decreasing in the ith coordinate.

The following composition inequality holds. Let ¢(x) and y(x) satisfy
(5.5) for each G;; ie., ¢(|x,], ., | X,|) and ¥(] x|, .., | x, ) are decreasing
in each coordinate, then the convolution 8(x)= | ¢(x —&) y(§) && is also
decreasing in each coordinate.

ExaMpLE 3. The property that a radial function f(f|x{?) in R” is
decreasing away from the origin (RD) is preserved under convolution,
where h(x)={ f(x — &) g(§) d&, follows readily from the identity

h(y—Z)—h(y+Z)=j LA(y—8)—f(y+8)I[g(E—2)—gE+2)] &,

(y.§>20

(5.6)

where <y, £)> denotes the inner product of the vectors y and & Note, if
z=1y, 0<l<, then

A((1=A4)y)—hA((1+4)y)

=[O+ 8ILeE— 1y) — s+ 1)

and both factors in the integrand are non-negative, since f and g are RD.
The formula (5.6) can be construed as an elementary version of (5.3).

Similar results ensue for convolutions of unimodal elliptically contoured
functions of the same tyype. The foregoing are special cases of the Ander-
son theorem [ 1] on symmetric unimodal functions.
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We close by describing a general group theoretic version of the
Cauchy-Binet formula. Consider a locally compact space Z and a compact
group ¥ acting on &. Let 2 =%/% denote the factor space. Let dg be the
unique left and right Haar measure of 4 and assume also that d(gx) = dx;
that is, the measure dx on % is invariant under the group operation. We
postulate the existence of a Fubini type integration formula (analog of
(2.1)) of the form

70 dx= up)dp | f(ex)de, (5.7)

where u(p) dp is an invariant measure on 2. Examples will be given below.

A generalized Cauchy-Binet formula based on (5.7) is accessible. Con-
sider the bivariate kernels K(x, y) and L(y, z) both invariant with respect
to % (ie., K(gx, gy) = K(x, y), L(gx, gy) = L(x, y)) and form the composed
kernel

M(x,2)= | K(x,y) L(y,2) dy.

It is easy to check that M is invariant since d(gy)=dy. Analogous to (2.4)
we construct the generalized functional

Dixy)= x(g) Kix, gy) dg. (58)

where x(g) is a character defined on %. Paralleling the derivation of (2.6)
relying on the integration formula (5.7), we obtain

Dyl 2)=] Di(x,y) Dy(y,2) u(p) db, (59)

where the product function D (x, y) D,(y, z) with respect to y is actually a
function on the coset space #/%4. In fact, for pe 9,

D «(x, oy) D,(oy, z)

~(J, 10 Ktx.go) de )( [, xth) Liv, o~ ha) )

~xto™) (], 1) Kex. gy ) o) ([ ) Lty )

= DK(x’ Y) DL(y’ Z).
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In the special case y(g) =1, the formula (5.9) entails only coset variables
such that

Du(px, p2)= | u(p)[Dx(px. BY) Do(py, p2)] o, (510)

where px, py, and pz designate the coset representatives of x, y, and z,
respectively.
Exampiles of (5.7) include

1. & =R", % the orthogonal group on R" and 2 is identified with the
radial value of x.

2. Let Z consist of all r x n matrices x, ¢ again the orthogonal group
of R™ acting on & by left multiplication xg. The coset space £ is recognized
as the collection of all r x r positive semi-definite matrices. The integration
formula (5.7) in this case is

dx dp
ff(x) m—“n,r LW'Lf(Xg) ag. (5.11)

(jp| denotes the determinant of p, x' the transpose matrix to x, a,,, is an
appropriate constant.) The formula (5.11) underlies the development of the
central and noncentral Wishart distribution.

3. Another important example of a Fubini type formula is

dx dw de
Jremprm=apo | d] fe e, (512)

le|”’

where the integral on the left covers all matrix pairs (x, w), X is px ¢, W is
p x p nonsingular, u is p x g, du is ordinary Lesbegue measure on pq space,
¢ an arbitrary p x p nonsingular matrix. The formula (5.12) can be used
to obtain the distribution of u=w 'x which is a type of multivariate
r-statistic.

Similar integration formulas are available for the generalized Hotelling
statistics, canonical correlations, etc. (see [3, Chap. 5]).

The generalized Cauchy-Binet formula of the form (5.10) affords a
construction of a compound kernel defined on the coset space of Z =% /%
resembling compound permanent functions.
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Isotonic M-Estimation of Location:
Union-Intersection Principle and
Preliminary Test Versions
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In a k (=2) sample mode), isotonic estimators of locations 8, ..., 6, take into
consideration the prior restraint that 6, < --- <6,. Though these estimators are
appealling, they are generally biased. The union-intersection (UI-) principle and
the theory of M-estimation of location are incorporated in the formulation of some
robust, preliminary test, isotonic (M-) estimators of locations. Associated
distribution theory of the test statistic and estimator is studied in a systematic
manner. ) 1988 Academic Press, Inc.

1. INTRODUCTION

Let X, j=1, .., n; be n, independent and identically distributed random
variables (1.i.d.r.v.) with a distribution function (d.f.) F,, defined on the real
line R, for i=1, .., k (=2); all these k samples are assumed to be indepen-
dent. Consider the usual location model

Fx)=F(x-8)), i=1,..,k, (1.1)
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where the 6, are the location parameters and F is a continuous d.f,
assumed to be symmetric about 0. It is desired to develop suitable
M-estimators of the vector of location parameters 0= (0, ..., 8,) following
a preliminary test of

Hy,: 0,=-..=6, against H,:0,< --- <0,, (1.2)

where at least one of the inequalities is strict. The preliminary M-test is an
extension of union—intersection (UI-) tests considered by De [5],
Chinchilli and Sen [3, 4], and Boyd and Sen [2], while the preliminary
test estimator (PTE) is formulated along the lines of Sen and Saleh [10],
but for restricted alternatives.

Section 2 deals (succinctly) with the classical M-estimators of location in
this multi-sample context; the corresponding UI-M-test for H, against H,
is considered in Section 3. The results of Section 2 and 3 are incorporated
in the formulation of isotonic M-estimators and their PTE versions in
Sections 4 and 5, respectively. Asymptotic properties of these estimators are
studied under a sequence of local alternatives containing H, as a special
case. The concluding section deals with this relative picture through some
simulation studies.

2. M-ESTIMATORS OF LOCATION AND REGULARITY CONDITIONS

We introduce first a score function : R — R, defined by

Y(x) =y (x)+¥(x), xe€R=(—-00, ), 21

where both y, and ¥, are nondecreasing and skew-symmetric functions
with i, absolutely continuous on any bounded interval in R and i, a step
function having finitely many jumps. We denote these jump-points by
—w=@gy<a,;< --- <a,<a,,,;= o0 and assume that there exist real num-
bers ¢y < --- <a,, such that y,(x)=w;, for xe(a;, a;,,), /=0, 1, .., p, and,
conventionally, we let ¥,(a;,,)=(a;+0a;,,)/2, for j=0,..,p—1. We
assume that

0<o} = ¥(x)dFx) <o, (2.2)

and

I{df’l(x)}zdF(x)<oo, where Yi(x)=(d/dx)¥(x), xeR. (2.3)
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Concerning the df F, we assume that it has an absolutely continuous
density function f, such that f'(x)= (d/dx)f(x) exists almost everywhere
(a.e.), and that

F(f)= j {f'(x)/f(x)}*dF(x)< o (ie., finite Fisher information). (2.4)

These regularity conditions are all adapted from Jureckova [7].
Now, for each i (=1, .., k) and every real ¢, we define

Mo (=3 y(X,~1), 1R, 2.5)

and note that by definition M,,(¢) is \ in t€ R. Let then
é(l):sup{z-M,.,,(t)>0}, 62 =inf{r: M,,(1)<0}; (2.6)
=00 +62y2, i=1,.k  8,=(0,,,0,) (27

in;

Then, 8, is the vector of M-estimators of location parameters based on
the common score function . In this context, recall that the assumed
symmetry of F and the skew-symmetry of y (around 0) imply that
V= _[ rY(x)dF(x)=0, and this motivates the normal equations in
(2.6) — (2.7) for the solution of the M-estimators. These M-estimators are
translation-equivariant, and depending on the choice of the score function
¥, they are robust too. For later use, we present the following asymptotic
results.

First, it follows from Jureckova [7] and Singer and Sen [11] that for
any (fixed) 7:0< T < o0, for each i (=1, ..., k), as n, > o0,

sup{n; 2| M, (0, +n72t) = M, (0)+nPy|: || < T} 50, (28)

where
y= jR W(x){ —f"(x)/f (x)} dF(x) is finite and positive. (2.9)
We let n=n,+ .-- +n, and assume that as » increases,
n/m—-i:0<l <1, foreachi(=1,.,k); Y A,=1. (2.10)

A direct consequence of (2.8), (2.9), (2.10), and the asymptotic normality of
the M-statistics (studied in detail in Juretkova [7]) is the following: As
n— o0,

n'?(0,—0)—5 40,7y %63 A™Y);  A=Diag(4,, .. A). (2.11)
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Finally, (2.11) ensures that

n'?8,-0|=0,1) (i.e., bounded in probability). (2.12)

3. THE UI-PRELIMINARY M-TEST

Making use of (2.11), we shall incorporate the Ul-principle and extend
the classical test of Barlow et al. [1] to general M-statistics. Let

w={0:0,=---=0,=0€R)} and w*={0:0,< ---<0,}. (3.1)
The (approximate) likelihood function of 8, is given by

L,(8)= ﬁ {y’n/2n0%)' exp[ —n0,,,— 0 v*/2031}.  (3.2)

i=1
Therefore, we have
k
SUp{Ln(e): 0660} = const {exp[_(‘yz/zoi) Z ni(éi.n,-_ gn)z]}9 (33)
i=1
where

7, =

1

LN g B3

(n;/n) éi,n,' (34)
1

In passing, we may remark that under w, a natural estimator of 8 might
have been obtained by equating 3°¥_, M, ,(¢) to O (in the same fashion as
in (2.6)-(2.7)). In view of (2.8), this natural estimator of § would be square-
root n equivalent (in probability) to 8,. From the computational point of
view, given the individual sample M-estimators in (2.6)-(2.7), (3.4)
involves no extra computation, while the computation of the natural
estimator is certainly more involved (although a few iterations should give
the estimator up to any desired degree of accuracy). From the point of view
of robustness, for small or moderate sample sizes, the natural estimator has
some advantage, although in the aymptotic case, there is hardly any
difference. Next, we note that

o*= ) w(a); ow(@)={0:0,=0+da,1<i<k,a, < --<a}, (3.5

aeA

where 6 is a positive scalar constant, and a belongs to a positively
homogeneous cone . Without any loss of generality, we may set
a=n"'Y* na;=0and X%  nat=n

i=1
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Under w(a), based on (3.2), the MLE of é and @ are given by

k k
ox(a)=% )‘iaiéi,n.'1< ) niaiéi.m>0>a
o o (3.6)
0: = Z (nl'/n) gi,n,=pn,
i=1

where J(A) stands for the indicator function of the set A. Substituting (3.6)
in (3.2) and using (3.3) and (3.4), we obtain that

L,(a)= —2log{[sup{L,(0):0 € }1/[sup{L,(8): cw(a)} ]}

2
—n(y03) {i hail, =0 (3 mafn>0) (1)
i i=1

i=1

We reject the null hypothesis H; in favor of w(a) for large values of L,(a).
To obtain an overall test for the entire alternative w=), . w(a), we
incorporate the Roy Ul-principle, so that on letting

k
Jz/z{a:als---Sak,d=OandZA,a?=l}, (3.8)

we set the Ul-test statistic as

LY¥=sup{L,(a)aes}. (3.9)

Our main task is to derive a simple asymptotic expression for L* and to
study its distribution theory (under the null as well as local alternatives).
Towards this venture, we make use of the basic results in (2.8) through
(2.12) along with the Kuhn-Tucker-Lagrange (KTL-) point formula
theorem in the nonlinear programming theory. We consider a sequence
{H,} of local alternatives

H,:0=0,,=01+n"Y%  Eeco, sothatAE=0, (3.10)

where L=(4,,..,4,) and & is an arbitrary (fixed) vector in &/. By an
appeal to (2.12) and (34), we obtain that under (3.10),
n'218,—6|=0,(1), and hence, by (2.8), we obtain that for each
i(=1,..,k), as n—> o0,

n‘l/z[Mi.n,(an) - Mi.n,(éi‘n,)] = nl/z’yii(éi,n, - yn) + op(l )9 (31 1)

n "M, ,(0,,)=0,(1), by (25)(28). (3.12)
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Consequently, writing M =M ,4‘,,,(9,,) (the residual M-statistic), i=1, .., k;
M (M1 nys oo Mk ) s we obtain from (2.6), (2.11), and the above
relations that under {H,} (as well as H,),

n'?y Y Aaf6,,—8,)=n"""a'M,+o0,1); (3.13)
n='"2M, —Z> A, (yAE, 63 (A — L)), (3.14)

The use of these residual M-statistics eliminates the need to estimate the
unknown parameter y (for the construction of a suitable test statistic) and
also introduces other simplifications to follow. To construct L* in (3.9), we
introduce another reparameterization whereby we reduce the problem to
an orthant alternative problem, for which the KTL-point formula works
out neatly. Let

-1 1t 0 --- 0
p = D#, where D = 0 -1 1 -0 is of rank & — 1.
k—1)xk R ceeeeesieeiaine
0 0 ... —-11
(3.15)
Then (3.5) can equivalently be written as
w*= ] o’b); o’(b)={b:5,20,j=2, ...k}, (3.16)

be B

and B is the (k — 1)-dimensional positive orthant. Let
k
M,=YM,,, i=2..k M, =(,,.,M,) (317

Then,

n~'"2a'M,=n""*'M,  whenever a,=a, ,+b, i=2, .,k (3.18)
n~ "M, > A, (YUAE, 62 A*); U=((u;)), A*=((A})) (3.19)

where

u; =0 if j<j and 1 if j

J
p 3 (E

Jj o 2<jgk 1<) <k), (3.20)

>
k
y i), for j,j=2,..,k (3.21)
=j
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Thus, the maximization problem in (3.9) reduces (asymptotically) to that
of maximizing n~"?b'M,, I(b’'M,, > 0) over the nonnegative orthant {b>0},
where we may set without any loss of generality that b’A*b=1. For this
maximization problem, the KTL-point formula may be adapted. Avoiding
the details of this formulation (by cross reference to Chinchilli and Sen
[3, 4], where the rank procedures have been considered in detail), we may
formulate the ultimate solution as follows.

Let # be the set of 2*~' possible subsets of {2, ...k} and let J be a
typical element of #, and J’ be the complementary element. For each J,
partition (and rearrange) M, and A* as

* *
M,=(M;,,M,,) and A* =<AL”’ A;”"). (3.22)
A(J'J) A(J'.l’)
Also, let £, be the number of elements in the set J. For each J: gfcJ< ¢,
let

Mn(.l:.l') = Mn(.l) - A?'JJ')A?‘J?])M,.(J'), (3.23)

A=Al — MG AL AL (3.24)
Then, for the orthant problem in (3.16), he Ul-statistic based on the M, is
given by

$:=(mfi)“ Y {M, . AL M }

p=Js ¥
x I(M,,(;.,-,20) I(A?}G'I)Mn(f)go), (3.25)
where
k n; n
6$=n_1 Z Z lﬁz(X,-j—O,-_m). (3.26)
i=1j=1

Following the arguments in Chinchilli and Sen [4], it follows that under
H,, the asymptotic distribution of £} is the so-called chi-squared bar
distribution; i.e.,
k—1
P{L¥<c|Hy}—> Y wP{y’<c}, VceR*, (3.27)

r=0
where the w, are nonnegative weights adding upto 1, x? has the central
chi-square distribution with r degrees of freedom (DF), and specifically,
w, = Z lim P{Mn(J:J')?O: A:I"_I")Mn(.l')so | Ho}

./:k./=r"_’OO

= Y lim P{M,,,,>0|H,} P{A%; M, ,,<0| Hy} (3.28)

Jiky=r T ®
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for r=0,..,k—1. These orthant probabilities may be computed by
reference to the asymptotic normality result in (3.19) (where under H,,
£=0) and the tables for the multinormal orthant probabilities considered
by Gupta [6] and others. Once these w, are computed, the critical level ¢
for which (3.27) corresponds to 1—a, for some prespecified level of
significance a (0 <a < 1), can easily be obtained from the tables for the
central chi-square distributions, available extensively in the literature. We
denote this critical level by ¢¥. Then, the Ul-preliminary test for H, vs. H,,
based on the residual M-statistics, may be carried out as follows:

Reject or accept H, according as £ ¥ is > or < c*. (3.29)

A key factor in the simplification of this asymptotic null distribution of
the proposed Ul-test statistic is the (asymptotic) independence (for each
J:p=J< #) of the quadratic form and the two indicator functions in the
right-hand side of (3.25). Unfortunately the non-null distribution (even for
local alternatives) is not expressible in terms of averages of appropriate
non-central chi-squared distributions. This problem arises mainly due to
the fact that when the null hypothesis is not true, though A¥; ,)M,,( s 10
(3 25) is (asymptotlcally) independent of M,,,.,, and the quadratic form
M, AL ,)M,,( sy, the later random variable is not independent of
I(M,,,.;,,>0). As such, the best we can do is to express the asymptotic
non-null distribution of & ¥, under {H,}, in the form

P{,Z’,’,"gc l Hn} ~ Z P{Mn(.l:.l')Atl.;.ll’)Mn(J:J')
A=y A=
<neay, M, ., 20| H,}

x P{A% 7 M, <O | H,,}. (3.30)

For the right-hand side, the second factor can be evaluated using the nor-
mal orthant probability tables, but for appropriate shifts, while evaluation
of the first factor may be quite involved. Though the non-central chi-square
(bar) distribution may not generally hold for (3.30), there are alternative
forms involving central chi-square distributions with mixing coefficients
depending on the alternative hypothesis which have been worked out by
some authors (viz., Tsai and Sen [12]), and these may be used (to a
limited extent) to study the asymptotic power properties of the Ul-test.
Equation (3.30) is quite amenable for simulation studies of the asymptotic
power function, and for some numerical results, we may refer to Karmous

[8].
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4. IsotoNic M-ESTIMATION OF LOCATION

We may refer to Barlow er al. [1] for an excellent account of iotonic
estimation of the multi-sample normal mean problem. Borrowing their
general line of attack and the basic philosophy of M-estimation theory, we
may present isotonic M-estimators of the location vector @ as the solution
of

k

)

i=1

nj k n; 2
» w(X,-,«—e,»)‘ (or 5 [z t#(Xi,-—Bi)] >=minimum,

j=1 i=1Lj=1
subject to the restraint that 8, < --- <86,. (4.1)

However, in view of the fact that (unlike the normal mean case), the
y-function is not generally linear (though it could be piece-wise linear as in
the Huber case), the computational algorithm (such as the “pool adjacent
violators”) discussed in Barlow er al. [1] may not be totally adaptable
here. Leurgans [97] has addressed the basic issues underlying the use of the
“partitionng algorithms” in the case of isotonic M-estimation and stressed
the lack of robustness aspects. Although in our case, we have a well-defined
replicated design (ensuring robustness), her study reveals the general
weakness of the usual “partitioning algorithms” in robust isotonic
estimation problems. On the other hand, by virtue of the JureCkova [7]
linearity of M-statistics (with related first-order asymptotic expansions for
M-estimators) and the asmptotic normality results discussed in the last two
sections, it is possible to formulate a simple algorithm directly along the
lines of Barlow et al. [1]. We shall follow this approach here.

We start with the approximate likelihood function in (3.2), and based on
this reduced data set (ie, 0, and n,,..n,), we construct isotonic
M-estimators of 6, ..., 8,.. The isotonized M-estimator of 0, denoted by 0*,
is obtained by minimizing (with respect to 0)

k
Y nf[0,,—61 subjecttof, < --- <6,. (4.2)

i=1

The algorithm for the computation of 8 is the same one as for the ordered
mean problem considered in detail in Section 1.2 of Barlow et al. [1]. In
particular, there exist a positive integer /: 1 </<k and / positive integers
k,< --- <k,=k, such that on letting

k; kj
n*= Y n, and 0x*= Y  nb.,/m¥,  j=1.,1 (43)

i=kji_y+1 i=kj_+1
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we have
0, =0rr, for i=k;,_;+1,.,k;, j=1,.,1 ko=0. (4.4)

Note that /, k;, and n}* are all stochastic in nature and they depend on the
relative ordering of the basic M-estimators é,,,,l, - ék‘,,k. However, there
are only finitely many possible realizations for these stochastic elements.
Further, note that the 0¥ for a monotone (nondecreasing) sequence while
within each of the / buckets, the individual é,.‘,,i violate this monotone prin-
ciple. Finally, note that the isotonic M-estimators are weighted linear com-
binations of the basic M-estimators, although the weights are themselves
stochastic elements and depend on the relative ordering of the initial k
estimators. Thus we can conceive of a finite set /7 of partitions {n} such
that IT={J {n} and R, the sample space of 8, is the set theoretic union of
disjoint sub-spaces R,, melIl. For each ne Il, there exists a matrix D,,
such that

~ -

0=D_0, for 0,eR,, Vnell, (4.5)

where the D, depend on n,, .., n, through / and nf, .., n¥ which are held
fixed for the individual partitionings. A a result, we may write in a compact
form

0= Y I®,eR,)D,0,. (4.6)

nell

Incorporating (4.6), we have for every x € R,

P{n'?(0*-0)<x|0}= Y P{n'*D,0,-0)<x,0,eR,|0}, (4.7)

nell

and this form is quite amenable for further analysis. The asymptotic
normality results on the classical M-estimators studied in earlier sections
can thus be used to study the asymptotic distribution theory of isotonic
M-estimators.

5. THE PRELIMINARY TEST IsoTONIC M-ESTIMATOR (PTIME)

It is quite clear from (4.6) and the partitionings R,, mell, that the
isotonic M-estimator 8* may not be unbiased unless the individual 8, are
quite apart from each other in the domain 6, < --- <8,. Particularly, for 0
close to the line #, = --- =0,, the isotonic M-estimator may be consider-
ably biased. For this reason, it may be quite conceivable to incorporate the
preliminary test in Section 3 for constructing a PTE which should behave
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more properly for small departure of 0 from the line §,= ... =60, and
which for large departures should behave closely to the isotonic estimator
0. With this objective, we propose the following PTIME.

Corresponding to a preassigned level of significance a (0 <a < 1), as in
(3.29), let ¢* be the critical level of the test statistic £ in (3.25). Also, let
8,=10,1 and 6 be defined as in Sections 3 and 4. Define then

07T =0, I(L*<cX)+0XI(L*>cH) (5.1)

Thus the PTIME is a convex combination of the classical and isotonic
M-estimators of @ where the mixing coefficient is data based and rests on
the preliminary test for the homogeneity of the #; against isotonic alter-
natives. As is generally the case with the PTE, this PTIME is not unbiased
for 8, even when 0 deviates from the line 8,= -.. =0,. However, the
relative bias of the PTIME and the isotonic M-estimator generally signals
a clear cut preference for the PTIME. A similar picture can be obtained
with respect to the risk of the two estimators with suitable quadratic error
loss functions. A study of the risk of the PTIME and the isotonic ME
(IME) demands the knowledge of the exact distribution theory of these
estimators. Unfortunately, the distribution of the PTIME or IME is not
very simple, even in the asymptotic case. Moreover, in the finite sample
case, the distribution may depend on the underlying density function in a
rather involved manner. For the IME or the PTIME, the main com-
plication arises due to the distribution theory of 0¥ and its close relation
with the preliminary test statistic ¥ To obtain some meaningul results in
this direction we consider some relevant asymptotic theory and use the
asymptotic distributional risk measure to compare these estimates.

In the asymptotic setup of Sections 2 and 3, we assume that (2.10) holds
and n is large. Next, we note that if H, in (1.2) does not hold and H, holds,
the test based on £} is consistent (against any fixed alternative within the
class depicted by H,), and as such, by (5.1), 8”7 and 0* will be
asymptotically equivalent, in probability. However, under H,, or for local
alternatives, this asymptotic stochastic equivalence may not hold, and
hence, the relative picture becomes an important issue for closer study. For
this reason, we carry out our investigation in two phases:

Phase I. Relative picture of the PTIME and IME for local alter-
natives and under H,.

Phase II.  Asymptotic properties of the IME for fixed alternatives.

To frame the local alternatives, we conceive of a fixed vector 1= (1, ..., 1),
such that 7, < --- <1,, and set

H,:0=0,=01+n""21, 0 arbitrary; (5.2)



ISOTONIC M-ESTIMATION OF LOCATION 311

by virtue of the translation equivariance of the M-estimators of location,
we may set without any loss of generality that 8 =0. The null hypothesis
H, relates to t=0. The asymptotic distribution of the unrestricted
M-estimator (UME) 8, given in (2.11), remains intact irrespective of any
alternative (with appropriate change for @), but the other versions of the
M-estimators would have different forms. For the restricted M-estimator
SLRME) f,in (3.4), (2.11) and (5.2) can readily be used to show that under
Hy )

n'?(@,—-0)—5 4 (M1, y 202). (5.3)

For the IME and PTIME, the asymptotic distributions are of much more
complicated forms. First, we consider the case of the IME, and denote by

D=I-D,, 12 =D%1, for nell (5.4)
Then, by virtue of (4.7), we have under (5.2),
P{n'*(0}—0,)<x}

=Y P{n'D,0,-0,)<x+1%8,eR, |0} (5.5)

nell

At this stage, we may note that for each ne 11,
n'2[D,(8,—8,)] - 40,7’} D;A"'D,). (5.6)

However, n'?D,®,-0,,) and n'?*(®,—90,) are not asymptotically
independent (even under H,), for every n e I1. Thus, the right-hand side of
(5.5) may not be factorized into two terms involving the marginal normal
probabilities. Nor is R, a linear subspace of R* (typically, R, is a cone),
and hence, n'*(0, — 6,,)) may not belong to a linearly transformed form of
R,. On the other hand, the individual terms on the right-hand side of (5.5)
can be expressed in terms of the multi-normal probability integrals (for
large values of n) over specific sub-spaces in R*, and (2.11) provides the
access for this asymptotic simplification. Unfortunately, for such inequality-
restrained sub-spaces in R¥, for k >3, compact forms for the probability
contents based on multi-normal distributions are not available, and
numerical integration seems to be a feasible way. On the other hand, by
(4.6),

E@®r) =Y D, {E[0,I®,cR,)]1}, (5.7)

nell

so that using the fact that the components of 8, are independent,
this expectation may often be computed relatively easily. A similar
simplification also holds for the second-order moments.
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Let us proceed to the case of the PTIME. First, using the asymptotic
linearity results in (2.8), it follows from (3.22) through (3.26) that under
{H\w} (as well as Hy), £ ¥ in (3.25) is equivalent in probability to

k
_.YZO.JZ Z tn_a)2 (58)

where 8, is defined by (3.4) and 0 is the IME of 0, defined by (4.2)-(4.4).
As such, using (4.6) and (5.8), we have

=Y I18,eR,)n0,A,D,, (5.9)
nell
where

A, =(D,AD,— M) y,0,2,  for mell. (5.10)

Using (5.1), (5.8), (5.9), and (5.10), we may consider the following
asymptotically equivalent (in probability) version of the PTIME:

=Y I10,eR,){0,11(nb,A,8,<c*)+D,0,I(nd,A.0,>c*))}

nell
=Y {18,e RY1V)D,+1(0,e RZ)D,D,}, (5.11)
nell
where
RY)=1{8,:8,eR, and n0,A 0, <c*},
R®=R\RY) nell

nn ¥

(5.12)

Thus, {RY), j=1,2, mell} is a finer partitioning of R*, and we may
rewrite the right-hand side of (5.11)as X, . 7 37_, 18, RY)) DYD,, where
DM =17" and D¥ =D,, ne Il. As such, parallel to (5.5), we have under
(5.2)

P{n'?®7T-0,)<x}
~ T Y P(nVDY®,—0,) <x+12, 8,6 RY 0, (5.13)
nell j=1

and (2.11) can then be used to express (5.13) in terms of an appropriate
multi-normal distribution over specific sectors of R*; in this definition,

0, =1-DMt and 19,=1"=D,1, for nell. (5.14)

Equation (5.7) also extends in a natural way to the case of the PTIME.
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Let us next consider the asymptotic distribution theory of IME in a
relatively more general setup. Recall that the restricted alternatives we have
in mind relate to w*, defined in (3.1). This is a positively homogeneous
cone in R,, and the asymptotic distribution theory of the IME depends on
whether 0 belongs to the interior of this cone or near any of its edges.
Consider an /-dimensional subspace of w*, where for / positive integers
k< --- <k,=k, we have

for j=1,..,5Lky=0; and 0,,, = o.
(5.15)

+1°

0k,_1+1= =9k,<0k,

Here, / is a positive integer less than or equal to k. It is easy to verify that
when /=k, ie., the 8, are all distinct and ordered, as n increases, the IME
and classical M-estimator (based on the common score function) become
equivalent, in probability. On the other hand, for every I: 1 <I/<k—1, the
IME and ME are not equivalent in probability, and they have different
asymptotic distributions. Keeping this in mind, we would like to study the
asymptotic distribution theory of the IME when 8 belongs to (or lies on
the boundary of) such a lower dimensional subspace of w*. We may,
however, note that for 6,>6,, the preliminary M-test considered in
Section 3 1s consistent, and hence, the PTIME and IME would have the
same asymptotic behaviour for every I: 2</<k. For /=1, the picture has
already been drawn earlier. Thus, there is no need to bring the PTIME into
this asymptotic study.

Consider a partitioning of {1,..,k} into [/ subsets [k;,_,+1,k;],
Jj=1, .., 1, where the k; are defined by (5.15), and 2</<k — 1. We denote
the centroids of the #-values within these subsets as 8, ..., 0f;,, respec-
tively. Consider then a sequence { HY,,} of local alternatives:

* . — % ~1/2. %
H,(,,).Bkl_l+,+,—0m+n ¥,

for r=0,..k—k,_,—1, j=1,.,1 (5.16)

where the t* are all fixed numbers, and within each bucket, the 7* are

ordered. Note that by definition 0%, < --- <8,. We shall show that the

asymptotic distribution of the normalized form of the IME exists and is

different from that of the classical ME, for each of these local alternatives.
We denote by I, the subset of R* for which

Py Py Py

max 6,, < min 6,,< max 0,,<mind
r<kio kj_1<r<k; ki <r<k; r>kj

rong 1<j<l, (5.17)
where the 9,,,,, are the classical M-estimators of the #,. This subspace 17,
may then be partitioned into further subsets =,:m,ell,, and these are
defined as in after (4.4), but restricted to I1,. We then refer to (5.5) where
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0,,, now belongs to the lower dimensional space in (5.16) (actually the
boundary of an /-dimensional subset of w*). It is easy to show that under
(5.16), P{d,eR, | 0.} converges to 0 as n increases, for every m not
belonging to II,, On the other hand, for =n belonging to 17,
P{nD,(, —0,,) <x+1*°, 0,€R, | 0, } has a nondegenerate limit, where
the 7*° are defined as in (5.4) with the 7, being replaced by the t*. Thus,
under (5.16), the asymptotic distribution function of the IME is given by

lim P{n'*8 —0,,)<x|(5.16)}

n— o

= lim [ Y P{n'D8,-0,)<x+1*° 6,,eR,,1(5.16)}]. (5.18)

1~ © nell;

It may be noted that for /=1, II,= IT and (5.18) reduces to (5.5), while for
/=2, (5.18) involves a subset of the terms appearing in (5.5), and hence,
the two forms are not isomorphic. In passing, we may remark that if (5.17)
holds for /= k then within each of the k buckets, there is only one element,
and hence, 7, consists of the cone 9,‘,,1 < - Sék‘nk- As such, (4.5) holds
with D, =1 with probability converging to 1 as n— oo. Thus, in this case,
the classical M-estimator and the IME based on the same score function
becomes asymptotically equivalent, in probability. Thus, (2.11) applies to
the IME as well.

It is quite clear that the computation of the exact bias and mean product
matrix of the IME and PTIME is highly involved; even the asymptotic
case is not that simple to handle. For small values of k (viz., k =3, 4, etc.),
term by term evaluation of (5.5) or (5.18) is possible, although the task
becomes prohibitively laborious as k increases. For this reason, we take
recourse to simulation studies of the relative bias and efficiency of the
PTIME and IME. In this context, we interpret the relative efficiency (e*)
of the PTIME with respect to the IME in the usual way as the inverse ratio
of the generalized variance of their respective asymptotic distributions.

6. SOME SIMULATION STUDIES

We consider specifically the case of three samples (i.e., K = 3) and for the
M-estimators of location, we choose the Huber score function with K= 1.5,
ie., we take

¢(X)={x, x| £K=1.5, 6.1

K sign x, x| > K.

All the samples are generated by random normal deviates with appropriate
shifts in the location parameters. Since the M-estimators are translation-
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TABLE 1

Asymptotic Bias and Asymptotic Relative Efficiency
of the PTE and IME under H,

315

Bias
PTIME IME
Component Component Relative
efficiency
n 1 2 3 1 2 3 e*

10 0006t 00136 0.0329 —-0.1099 00058 01318 43311
15 00069 00141 00251 —0.0931 00074 0.1071 4.9139
20 00070 00130 0.0250 —0.0795 00068  0.0955 4.2977
25 00039 00094 00220 —0.0748 00021  0.0848 4.7852
30 00057 00095 00195 —0.0685 0.0043 00776 5.4195
35 00063 00103  0.0209 —0.0601 0.0053 00727 5.0517
40 00063 0010t 0.0180 —0.0566 0.0062  0.0692 4.7341

equivariant, we have taken the location parameter of the first distribution
as 0. All the three samples are taken to be of equal size (n) and various
combinations of #n and possibly uneven spacings of the location parameters.
Tables I-VII pertain to the simulation results on the bias and relative
efficiency (e*) of the PTE and IME.

Recall that here n stands for the (equal) individual sample sizes, so that
the combined sample size is 3n. It is clear from Tables I and II that under
the null hypothesis H, or for small departures from H,, the PTIME per-
forms better than the IME both in terms of the bias and mean product

TA

BLE 11

Same Entries for 8 = (0, 0.1, 0.2) (i.e., Equally Spaced Means)

Bias
PTIME IME
Component Component Relative
efficiency
n 1 2 3 1 2 3 e¥

10 00894 00111 —00428 —0.0704 0.0052 0.0928 20132
15 00822 00138 —00449 —0.0542 0.0068  0.0689 1.7756
20 00799 00119 —0.0421 -—0.0425 0.0064 0.0588 1.5676
25 00749 00066 —0.0420 —0.0382 0.0046 0.0486 1.4826
30 00750 0.0064 —0.0439 —0.0338 0.0039 0.0433 1.1027
35 00740 00078 ~—0.0425 —0.0270 00052  0.0396 1.3054
40 00717 00077 —0.0438 —0.0237 00054 0.0371 1.2109
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TABLE III

Average Bias and Relative Efficiency for 8 = (0, 0.05, 0.15) (Uneven Spacing)

Bias
PTIME IME
Component Component Relative
efficiency
n 1 2 3 1 2 3 e*
10 00636 00287 00305 —0.0844 0.0158 0.0963 2.5935
15 00615 00308 —-00376 —0.0678 00170 0.0723 2.3186
20 00614 00278 -—00376 —0.0554 00165 0.0616 2.1086
25 00558 00235 —-00345 —0.0506 00113 0.0513 2.0008
30 00580 00230 —-00376 —0.0456 0.0132 0.0459 1.9718
35 00579 00237 -—0.0365 —00381 00142 00418 1.8193
40 00565 00236 —0.0380 —0.0347 00144 0.0391 1.6909
TABLE 1V
Same Entries for 8 = (0. 0.2, 0.5) (i.e., Uneven Spacings)
Bias
PTIME IME
Component Component Relative
efficiency
n 1 2 3 1 2 3 e
10 01672 00325 —0.1174 —0.0395 00186  0.0485 1.2090
15 01446 0.0333 -0.1081 —00261 00182 0.0295 1.0649
20 01265 00293 —0.0906 —0.0188 0.0160 0.0256 0.9652
25 01103 00208 —-00791 —0.0163 0.0093 00191 0.9274
30 00905 00223 -—-00641 —00153 00113 00174 0.7065
35 00671 00186 —0.0419 —-0.0076 00107 00156 0.8390
TABLE V
Same Entries for = (0, 0.5, 1.0) (i.e., Large Equal Spacing)
Bias
PTIME IME
Component Component Relative
efficiency
n 1 2 3 1 2 3 e*
10 0.1315 00084 —0.1045 —0.0019 0.001S 0.0280 0.7553
15 00756  0.0072 —0.0572 0.003t1  0.0041 00143 0.7620
20 00387 00052 —0.0194 0.0045 00043 0.0139 0.7978
25 0.0211 0.0002 —0.0071 0.0013 —0.0012 00119 0.8278
30 00087  0.0039 0.0033 —0.000t 0.0023 00111 0.8743
35 0.0091  0.0037 0.0071 0.0037 00030 00112 0.9082
40  0.0063  0.0048 0.0095 0.0028 00043 00116 0.9499
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Average Bias and Relative Efficiency for 8= (0, 0.2, 0,8)

TABLE VI

(Uneven Large Spacings)
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Bias
PTIME IME
Component Component Relative
efficiency
n 1 2 3 1 2 3 e*

10 01379 00766 —0.t1431 —0.0366 00404 0.0238 09315
15 00933 00597 -00978 —00241 00340 0.0117 0.8735
20 00546 00446 —0.0538 —0.0177 0.0283 0.0121 0.8454
25 00314 00302 -0.0311 —0.0159 00174 0.0106 0.8580
30 00163 00259 —0.0137 —0.0149 00179 0.0104 0.8732
35 00118 00216 —0.0044 —0.0089 0.0161 0.0107 0.8947
40 00066 00194 —0.0008 —0.0075 00149 00113 0.8940

matrix-risk. Also, the bias of the PTIME and IME are not in concordance
with each other. A somewhat diferent picture emerges in the uneven spac-
ing case and for alternatives not so close to the null one. The last three
tables indicate the superiority of the IME to PTIME. This is not sur-
prising: We have both uneven spacings and moderate deviations from the
null hypothesis. Thus, for alternatives close to the null hypothesis (of the
homogeneity of the 6,), the PTIME performs better than the IME, while
the opposite picture hols when 8 moves away from the line of homogeneity.
In any case, if 0 is too far away from this line, the PTIME and IME both

TABLE VII

Same Entries for 8 = (0, 0.5, 1.5) (i.e., Large Uneven Spacings)

Bias
PTIME IME
Component Component Relative
efficiency
n 1 2 3 1 2 3 e*
10 00349 00187 -00182 —0.0018 00128  0.0166 0.8411
15 00126 00120 0.0010 0.0031 00099  0.0085 0.9319
20 0.0077  0.0086 0.0082 0.0045 00073 00110 0.9615
25 00026 0.0019 0.0094 0.0013 00011  0.0096 09727
30 0.0006 0.0050 0.0103 —0.0001 0.0035 0.0100 0.9629
35 0.0043  0.0045 0.0111 0.0037 00036  0.0105 09717
40 00038  0.0054 0.0113 0.0028 0.0046 0.0113 0.9596
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perform very similarly. Moreover, the PTIME is never too inefficient
relative to the IME, although it can be considerably more efficient (see
Table I). Thus, the PTIME can be posed as an efficiency-robust competitor
of the usual IME. For some further numerical studies, we refer to Karmous

(8]
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Some Asymptotic Inferential Problems
Connected with Elliptical Distributions

C. G. Kyamri*

Gujarat University, Ahmedabad, India

Asymptotic confidence bounds on the location parameters of the linear growth
curve, asymptotic distribution of the canonical correlations and asymptotic
confidence bounds on the discriminatory value for the linear discriminant function
are established when a set of independent observations are taken from an elliptical
distribution (or from a distribution possessing some properties on the moments).
© 1988 Academic Press, Inc.

1. INTRODUCTION

Exact confidence bounds on the location parameters of the linear growth
curve model,

X=BtA +¢; column vectors of ¢ being IN(0, X),

were given by Khatri [2]. What will happen to the confidence bounds
when the column vectors of ¢ are independent and have a common ellip-
tical distribution instead of normal distribution? This question is answered
using the well-known asymptotic theory based on central limit theorem or
the convergence theorem. For this problem, we require the asymptotic joint
distribution of

(Z-BE)/n  and ﬁ(s—";mmz)/b,, (1.1)

where S=(XX'—ZA'AZ')/n and Z=XA(A'A)"'. Here, A and B are
assumed to be of full rank matrices (i.e., A’4 and B'B are nonsingular),
m=Rank 4, and b, is a constant depending on the structure of the

* Deceased on March 31, 1989.
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(elliptical) distribution. Further, the following assumptions on the nxm
matrix 4 are made for large n:

(i) elements of A are finite so that the elements of A4’ are finite and
(1.2a)

(ii) the limit of (A'A/n) for large n tends to a nonsingular matrix C.
(1.2b)

The above two conditions are essential for the application of the central
limit theorem. The asymptotic normality results are established in Section 2
and Section 3 justifies the asymptotic confidence bounds on ¢ similar to
those mentioned by Khatri [2] based on £=(B'S™'B)"' B'S™'Z.

Since the sample canonical correlations between the two sets of variables
depend on the elements of S, we consider the problem of establishing the
asmptotic distribution of canonical correlations similar to normal variates.
This was first established by Krishnaiah er al. [5] for the elliptical variates.
We reestablish this for a wider class of distribution in Section 4.

In a particular case, the matrix Z and S have been utilized by Khatri et
al. [4] in the study of performance of linear discriminant function for the
normal variates and developed the asmptotic results concerning the con-
fidence bounds on the discriminatory values in different situations when
B=1I1and m=2.If {=(p,,p,) and Z=(X,, X,), then the discriminatory
value of linear Fisher’s discriminant function w’x (or w'x + ¢) for the future
observation X is

D, =[E(wx|m)—EWx|n,)]/Var(wx))'?,

where =, is the population having the mean p,; and the covariance matrix X,
so that

D, =w'(p, —p,)/(wZw)'?

which is a function of unkown parameters. The three situations considered
for Khatri er al. [4] are based on the following situations:

(i) m,—n, is known, 2 is unknown, and w=S""'(u, —p,),
(i) p,—n, is unknown, X is known, and w= X (X, — X,), and
(i) ., p,, and X are unknown and w= S~ (%, — k,),

giving rise to the three functions D), D, and D, (for D,), respectively.
Asymptotic confidence bounds on these values similar to those for normal
variates are established for elliptical variates in Section 5.

Thus, it appears that in the problems where Z and S are utilized, one
can develop the asymptotic results similar to those developed for the above
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three types of problems. Here, we mention that similar results for the com-
plex elliptical distributions are available but will be presented in a later
communication.

2. ASYMPTOTIC DISTRIBUTION OF Z AND S

Let y be a random vector such that

Ey=0, E(yy)=b1,, E(y,y;y:)=0 forallij k,
Ey}=3b,, E(y?y})=b, for i#j,

i

and all other E(y;y; y« ) =0, (2.0)

where y; denotes the ith component of y. We observe that if y has spherical
distribution or its characteristic function (cf) is Y (37_,7?) and the
first four moments exist, then the moment relations (2.0) hold with
b, = —2y'(0) and b, =4y"(0). It may be noted that the moment relations
(2.0) may be true for the wider class of distributions including spherical
ones. Suppose x is a random vector such that Ex=p and Varx=
E(x —p)(x—p) =2 is positive definite and y=2,!(x —p) satisfies the
moment relations given in (2.0). Here 2'=2%,2" and X, is nonsingular.
These conditions are satisfied for the elliptical distribution whose c.f. is

cxp(\/T tp) Y(t'2t) for all te #7,

and this is denoted by x ~ E,(p, 2 ), an elliptical distribution.
Let there be n independent observations on y whose distribution
function G((y) satisfies (2.0) and let us define

w=Y (yy,—b)/nb,  with n>p. (2.1)

i=1

Let W=(w;), wi=Wi, Wa,s ey Wpp), W2=(Wia, Wizs ey Wiy, Wag,y oo
Waps - W, 1,) @and w'(w}, w3). Let vec W be defined as the column vector
obtained by putting vectors one by one; (ie., if W=(v,,v,,..,V,), then
(vec W) = (v}, ¥3, .., V,)). Notice that from (2.1), we have

vec W=i\/;—1 with z,=(y,®y,—b,vecl,)/b, and Z=) z/n,
i=1

where 4 ® B denotes the Kronecker product of A with B and is defined by
(a;B) if A=(a,). Using the central limit theorem for independent and
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identically distributed random variables, z’s (see, for example, Cramér [1,
pp- 213-217]), we see that

\/; z is asymptotically normal

which is equivalent to the statement that w, and w, are asymptotically
independent normal variates and

wo~ N, (k+ 1)1, ,_)  and  w,~N(0, Z,), (2.2)

where k +1=5,/b%, and Xy=2(x+1)1,+«1,1, with 1, being a p-vector
of unit elements.

Assume that the column vectors of ¢ in (1.1) are independently
distributed such that if =X, %, X, is nonsingular and

(Y1, ¥a) =Y =27 "e=Z7 (X = BlA) (23)

theny; (i=1, 2, .., n) are identical and independent and satisfy the moment
conditions (2.0).

If Z,=YA(A'A)"'=YAC;!/n=3"_,yd]/n, where C,,=A'A/n and
Cld4'=(d,,d,, .. d,), then

vecZ, =Y (d,®y,)/n, EvecZ,=0, (24)
i=1

En(vec Z,)(vec Z,)' =b, Y (dd;®1,)/n
i=1
=b(CL'®1,)=b,(C7'®1,) (24a)
as n — 00, using assumption (it} of (1.2).

In order to use, the Lyapunov’s theorem for independent random
variables (see, for example, Cramér [1, p. 215-217]), we observe that

Y Eld,®y|*/n*? >0 as n-— oo (2.5)

because o
E|d, @y’ = E(yy)"(d;d,)*
d,=C; ', A =11, ..,1,),
d1d,=1,C, 20, < 13, 68, < M3,
with A, = maximum eigen value of (Cy,'), and

n
Y (did)¥* ¥ <23, M /n'? >0 as n-— oo,

i=1
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where M =max/(f;f;) is finite by assumption (i} of (1.2), and
It,_ » A;,=maximum eigen value of C~' (by assumption (ii)). Hence

Jnvec Z, = /nvec(YA(L'4)"") 2 N0, b(C'®1,)). (25
Further, using (2.1) and (2.4), we have

Cov(vec W, \/}; vec Z,)
=Y Cov(y,®y,— b, vecl,,d,®y,)/nb, =0. (2.6)
i=1

Hence W and ./nvec Z, are stochastically independent normal variates.
Now since

nS=XX'— XA(A'A) ' A'X
=3, YYZ| - Z, YA(AA)  AYE,

we get

ﬁ(z;lsz;-'—";mbllp)/b,
=W—b7'[\/n Z(A'A/n) Z;, /n—mb, 1,1/ /n. (2.7)
We observe that
Plim [(/n Z,)(A4'A/n)(/n Z,) —mb,1,]=Plim (T,)=0  (say).  (28)

Hence, from (2.6), (2.7), and (2.8), we get

THEOREM 1. Let x,~IE,(n;, Z;y) (i=1,2,..,n). Then, (Z—Bé)\/;
and \/; (S—(n—m)n' b, Z)/b, are asymptotic independent, and are
normally distributed, under the assumptions (i) and (ii) of (1.2).

Further,

Jnvec(Z— BE) = N0, b,(C ' ®Z))

and
Jn vec (s-"—;i"-blz)/b1 2 N, Z,)

with

Z,=Var[(x®x) b ' —vec 2] and  x~E,0,Z;y).
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Here Z=XA(A'A)~", S=(XX' —ZA'AZ')n, and X = (X,, X3, ..., X,,). From
2.7)

W n— 1. \"!
(2;‘52;*’)*':(5—#’ mb,1~;T>

“n .

where T, = — T,[n/b,(n—m)]+ (n/(n—m))(W/\/n). Then with B, = E{' B,
E-¢ = (BS™'B)"'BS(Z-B¢) = [Bi(1+(1/\/;) W+ (1/n)T,,) "
B,17' Bi(I+(1//n) W+ (1/n) T,,) "' Z,, or

(-¢&)=(ByB,)"" BiZ,+0(1/n) (29)
and for £=S+(I-B(B'S~'B)"'B'S~")\2C,,Z'(I-S~'B(B'S~'B)"'B),
Sr(ETIEET = b, L)k, = W+ O(1//n). (2.10)

From (2.9) and (2.10), we have

THEOREM 2. With the notations of Theorem 1, Jn(—¢) and
n(2—b,2)/b, are asymptotic independent,

Jnvee§—&) = N(0,5,C'®(B'Z'B)"")

and

asy

\/;1-b,—1 vec(E —b,%) ~ N0, X,),
where

Z,=Var[(x®x) b; ' —vec 2] and x~E,0,Z;¢).

3. AsympTOTIC CONFIDENCE BOUNDS ON ¢

Let us consider the nonzero eigen values I, >1,> -.- >/, >0 of

n(BE'BYE—ENA'AnNE-¢E) /by =T,  (say), (3.1)
where ¢ =min(g, m). We observe that

Plim (B'X 'B)=(B'~X~'B) by Theorem 2

n— o

and by assumption (ii), lim,_, (4'A/n)= C. Then, the asymptotic dis-
tribution of /, /,, .., [, is the same as the eigenvalues of the ¢ x ¢ Wishart



ASYMPTOTIC INFERENTIAL PROBLEMS 325

matrix V distributed as W ,(u, I,), where u=max(q, m). For this, one can
obtain the asymptotic distribution of /,, or the asymptotic distribution of
‘_,l;=tr T,. Suppose,

i=1
P(l,<c)=1—uq.
Then for all non-null vectors ae #” and be #™,
[a'(E—&E)bl/{(B'(4'A)~' b)@ (BE'B)'a)} <c,b,.

or the simultaneous confidence bounds for a’éb for all ae #” and be 2™
are

a'lbt {b,c,(b'(4'4)"'b)(a'(B'E~'B) 'a)}' (32)

We can use tr T, < ¢, to find the confidence bounds on £

4. AsYMPTOTIC DISTRIBUTION OF CANONICAL CORRELATIONS

In this section, we shall consider without loss of generality,

I, D, 0
= p Ipl 0 > Dp=diag(p11g|1'--9 pkvllgk_p pklgk)
0 0 IPZ—PI

with 3%, g,=p,, p,>pi,and p;>py> -+ > > p, =0, its estimate z
and the asymptotic distribution of 2 as given in Theorem 2. Let us write

D,'D,! 0
B

;= o1, 0 with D, =diag(\/1—p31l,,, .. /1—-pil,)
N I A
00 .1, ,

and

W= n(Z 122, '=b, )b, or b [n P, Wwri+Z]=2.
1 14

Let us partition £ and W as

fz “fs P W, Wy\p:
£=\2y £,lp, and W=\W, W,;]|p,.

Py P2 P P2
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Then
1 DP DI’
D,W,D,+(D,,0)W,D,+D, W, 0 +(D,,0)W, 0
2,=b, \/;1' +1p |
- D w - 1
Z,=b, [D‘W2+( »9) 3+(D,,,0)] and £,=b, [— W3+I,,2:|.
N N

Then
by P(r)=(r,— 2, 2,1 24)/b,

1
=(r21pl_ug)+——[ﬂul W\D,+(D,,0) W3D,(r~1)

N

+(r*=1)D, W, <DO”>+(r2— 1(D,,0) W, (?)")]

1
—— (W, W2)+ O(n =), (4.1)
Let us denote
we=/n(r—p)/(1—p2) for a=1,2 ., k-1 (4.2)
and W= \/; r. (4.2a)

If P(ry=(P,, fora,a’'=1,2, .., k)and P, is a g, x g, sub-matrix of P(r),
then

V1 Pafby =201 = p2) Wl o, + 91 = POV 1 = W)
- ( WIZ.:m + W2,aa)(1 - pi)l/z] + O(n‘ 1/2)

for a=1(1)k—1, (4.3)

NP /by =wil, — (W Wy) + O(n™'?), (44)
P /by=0(n""*) for oa#a'(<k—1)

(Py/byor Ppy/b))=0(n""). (4.5)

From (4.3) to (4.5), it is obvious that

|P(r)] =0={k1‘[1 |walg,—Ba+0(n*”2)i}

ax=1

x|wil, — B+ 0(n~"?)| =0, (4.6)
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where B, = (W, W}),, is a submatrix of order g, x g, obtained from W, W
by taking the last g, rows and g, columns, and

Bm = %[(1 - pg)l/Z( W,Z,aw( + WZ,aa) - pa( Wl,aa— W3.amz)] (47)
fora=1,2,..,k—1. Let B,=(b, ;;i,j=1,2,..g,) Then

12
b'x,ii‘: (1 —Pi) / W3 anii — %(wl.rm,ii— W3 aaii) P

and

1/2
baz,ij= %(1 _pi) / (w2,auz.ij+ w2,aa.ji)
—%pa(wl,aa,y'_wlza,ij)

fori#j, i,j=12,..,¢g,.

We observe that w ,, i — W3 g DA Wy i — W3 g (fOr o # o’ Or i 13")
are asymptotic independent, and hence B, (x=1,2,..,k—1) and B, are
asymptotic independent, B, is symmetric, and the elements are independent
normals or the joint density of the elements of B, is

278 (n(k + 1)) &t D2 exp[ —tr B2/2(x +1)] (4.8)

and B, =™ W, (p,, (k+1)1,). Now, if r,>r,>--->r, >0 are the
sample canonical correlations (or the square root of the eigen values of
2R 2512Y) and ry=rh i ,e, fOor j=1,2,..,g, and a=
1,2, .., k with g, =0, we see that

Way =1 (P — (1 —p2), =12, .8,

are the eigen values of B, (for a=1,2, .., k—1), while wi ,=rZ, are the
eigen values of B,. These distributions can be easily obtained from (4.8). In
particular, if all the population canonical correlations are nonzero and they
are of multiplcity one, then

Jnr=p)(1=p) = INO,k+1),  j=12,.,p,.  (49)

These results are similar to those of Krishnaiah et al. [5] and Khatri [3]
but here we have given a simple proof.

5. AsYMPTOTIC CONFIDENCE BOUNDS ON DISCRIMINATORY VALUES

Let us denote A=('3l °), n=n,+n,, m=2, B=1, XA(A'4) ' =

1,

(xy,X;) and I=5= (U")[Z?Ll (xlj_il)(xlj—’_‘l),'*'z;z:] (x5, —X,)
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(x5, —X,)"]. We shall assume that n, and n, are large so that lim,_, ., n,/n
=K, is fixed and constant. Let =221 and 6 =2"'(p, — p,).

Case (i). When 8, =pu, —p, is known but 2 is unknown, then

D,=8,5"5,/(8,S"'25S"'8,)2 and D'=(8,S'8,)"2 (5.1)

We know from Section 2 that if

W= /n(E718Z, ' —b D)/by=(w,) or  S/b,=(Z,WE;//n)+Z,

then (w,y,..,w,,) and w;’s (i#j) are asymptotic independent normals,

w; =" IN(0, k + 1) and (wyy, .., w,,) =¥ N(0, 2(x + 1) I, + k1,1;) with
k + 1 =b,/b%. Notice that
D, =8I+ W/ /n) "' 8/{8'(I+ W/ /n)"28}'7,
\/b—lDr___ {67(1+ W/\/;)-l 6}1/2‘

By expanding (I + W/\/;)*1 in powers of n~!, we get
1
D, =4 I:I—Z(K-f- 1)x§_1]+0(n‘3/2) (5.2)

and

Dy=b, D=4 [1 —ﬁu+%};(l€+ D2, +%3;u2]
+0(n=??), (5.3)
where 4=(8'8)"? or 4°=86'0=8,X"'5,,
u=298Wo/8'd and (k+1)x2_,=(8'W?/8'8)—u’ (5.4)
and it can be easily verified that « and y?_, are asymptotic independent,
u=~ N0, 3k +2) and Xi_1 2 Chi-square with (p—1) (5.5)
degrees of freedom.

If (8/{/8'8, I')) =TI is an orthogonal matrix and V' =I"WI = (v;), then
vy =u, Uy, .., Uy, are asymptotic independent normals and

xf,;,(x+ )= Ep: v3,. (5.6)

i=2
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Then it is easy to write

[D;~D’, (1_1c(8p+1)+2(4p—1)>]/l),l
8n

1 1
=2\/;u—;(x+1)(x,2,_1—(17—1))

3k+2
n

+0(n=¥%),

1
—8—n(u2—3x—2)+

Hence,

2\/;1{D,_D,l<1_x(8p+1)+2(4p—1)>}

8n
DiGr+2)7 =NOD

or 2 \/; (D, —D})/D\(3x +2)"* ~*Y N(0, 1) and hence the simultaneous
confidence bound on D), is

D1+ {d,(3k +2)"/2 /n}],
where j"_ﬁ 4, #(x) dx=1—a with ¢ denotes the density of N(0, 1).

Case (ii). When 8, =y, —p, is unknown but X is known, then

D!=(%,—%,) £°'8,/D"  and

(5.7)
D" = {(X; — %) Z7(X; —X,)} 2.
By Section 2,
SnIZT 1R, ~ %) — 81/ /by =y~ N(O, 1), (5.8)
where b ;= b, /ko(1 — k). Taking 86 = 4, we can write
D =4[1 —b(,,xf'p_l/ZnAZ] +0(n=%?) (5.9a)
and
” \ b(l) b(l) —
D =A|:1+7—Eul+2nA21ip_l +0(n 3/2), (59b)

where u,=y'6/4 and yx}, ,=y'y—uj. u, and yi,_, are asymptotic
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independent, u, ~*¥ N(0,1) and x},_, is asymptotic Chi-square with
(p—1) degrees of freedom. Notice that
D, —D"+b,(p—1)/nD"

buy by p—1D\ by ~
=_>_0 O F Y T2 _ 1)+ O(n-37
\/; ul( + YL nd (XLp—l p+1)+0(n )

or

\/’—I(DZ —D"+byy(p—1)/nD")//by,(1+2b\(p—1)/nD"?*)"?
=—u;+0(n"?

because (1 + buy(p — 1)/nd*)(1+2by(p — 1)/nD"?) = 1+0(n~"?),
Therefore,

Jn{D:=D"+by(p—1)nD"}/ /b,
asy

x (14 2b,(p—1)/nD"*)"* ~ N(0, 1),
and the simultaneous confidence bound on D] is
{D"=by(p~1)nD")~}
+ {d2b)(1+2b(p—1)/nD"?)/n}'7?,

where d, is defined at the end of Case (i).

Case (iii). When p,, p,, and X2 are unknown, then
D,=(X,—X,) $7'8,/{(X, —%X,) ST'ZS (X, —%,)}'*  (5.10)
and
D={(X,—%,) ST'(X,—%,)}'~ (5.10a)

If 8=2;7'8, and ZX=23,3), then by Theoreml, buy=
\/; (274X, —X,)—8) and b, W=\/r_t (Z7'SX "' —b,I) are asymptotic
independent normals. Let 6'6 = 4%, y'8/4=u, and y2_, =y'y —u’.

Let I'=((8, y)(4 Xp"_l)“, I',) be an orthogonal matrix. Then, it is easy
to verify that I"WI'=V and W are identically distributed, and further

8 r=de,,(X,—X,) X, 'I
= [(b(l)/”)l/2u+ d]e + (b(l)/n)l/zxp— 1€2,

where e, and e, are the first and the second column vectors of ,. Notice
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that ¥, u, and y; _, are asymptotically independent, u ~ N(0, 1), and xf,_,
is distributed as Chi-square with (p — 1) degrees of freedom. Then

by(x, "’—‘2)’5—161 =4 [A + (b(l)/")l/zu_ (A”u/\/’;)

P
—n~!(f. bayuvy + /by xp_1012—4 Z U%i):l
i=1
+0(n=?)
bI(X, —X,) STIZS (X, — ;)

=42+ 24( /by u— v, )n P +n~! <b(,))(,2,_,+b(,,u2

p
—4. /by d(uvyy +v13x,-1)+3 Z U%,»Az)-i-O(n_m)
i=1

iz
and

by(X, —%,) STHX, —X,)
=A%+ A2 /by u—dv,)n"?
P
+n! (b(l)X,%_x +b(1)“2“2 Voo duvy +vx, 1)+ Z U%i42>
=1

i=

+0(n=?)

Hence,

P
Da=A+(2")-l<2 buyxp-1vi—4 Y U%i—AAlb(l)X;~l>
i=2

+0(n=%?) (5.11)
and

D, =\/b_1D=A+n‘l/2(\/ b(l)l“‘4111/2)'f'(2n)71

p
X [A Z v+ (3/4)dvi, — /by, (uvy + 2012Xp~1)+4_’b(1,x,2,_ 1]

i=2

+ O(n=?). (5.12)
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Therefore,

P
\/;(D,—Da)=( byyu—Adv /2)+n" 172 [A Y v+ 34vl,
(=2

+A_Ib(1,X,2;-1 —-2/by (vlzxp_1+uvu/4)] +0(n™"),

and if
y=+/n(D,~D)—n""?[(kx+1)(p—1) D, +(3/8)(3x +2) D,
+bu(p-1)Di '], (5.13)
then

E(y)=0(n"")

and
Ey2=bm+A2(3K+2)/4+2n”[42i'c+ D p—1)+ (3 4°Ce+2)?
+A“2bfl,(p— 1)+2b,((k+1)(p— 1)+ (3x +2)/16)] + O(n~?).

Hence if
y2= (b, + D¥3k +2)/4) + (4n) !
x [D(k + 1)(p — 1)(5k + 6) + D*(3x + 2)*(16) !
+8D; 2% (p—1)+byy(p—1)(13x + 14)], (5.14)
then
Ey,=Ey*+0(n~2) and  y/\/y, = N(O, 1). (5.15)

This can be utilized to get an approximate confidence bound on D,. The
first approximate confidence bound on D, is

D, + {di(bu,+ Di(3k +2)/4)/n} 72, (5.16)

where d, is defined at the end of Case (i), and from (5.15), we get an
approximate confidence bound on D, as

J’Ii{dzf)ﬁ/”}m, (5.17)
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where

yi=Dy—n"'((k+1)(p—1) D, +(3/8)(3x + 2) D,
+b(1)(17_ I)Dfl

and y, is defined in (5.14).
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Stochastic Integrals of Empirical-Type Processes
with Applications to Censored Regression
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Motivated by the analysis of linear rank estimators and the Buckley-James non-
parametric EM estimator in censored regression models, we study herein the
asymptotic properties of stochastic integrals of certain two-parameter empirical
processes. Applications of these results on empirical processes and their stochastic
integrals to the asymptotic analysis of censored regression estimators are also
given.  © 1988 Academic Press, Inc.

1. INTRODUCTION

Consider the linear regression model
yi=o+fx;+eg; (i=12,.), (1.1)

where the ¢; are ii.d. random variables with mean 0, and the x, are either
non-random or are independent random variables independent of {e,}.
Suppose that the responses y,; are not completely observable and that the
observations are (x,, z;, 0;), where z; =min{y,, t,}, 6, =1I,. <, and the ¢,
are independent random variables, independent of {¢,}. This is often called
the “censored regression model” and the ¢; are called the “censoring
variables.”

In 1979, Buckley and James [3] proposed the following method to
estimate « and f. They started by replacing y, by

y¥*=y.6,+E(y:ly;>1)1-6), (1.2)
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and regressing the y* (instead of the y;) on the x; to obtain

{Z y*x; —f,,)}/i (x; = %)%, (1.3)

yx—Bx,, (1.4)

f

a

noting that Ey* = Ey, = a + fx;, where x, =n"'Y7 x,. Since E(y,|{y, >1t,)
in (1.2) is unknown, they replaced (1.3) by an iterative scheme in which
E(y;|y,>t;) is substituted by its successive estimates. Specifically, let
e b)=z,—bx; and order the uncensored e b) as e(,(b)< ---ey(h),
assuming that there are k uncensored observations. Let

n(b)=#{je(b)y=e;lb)}, (1.5)

where # A denotes the number of elements of a set 4. Buckley and James
first used the Kaplan—Meier estimator

Fowy=1— ] (n(b)—1)/n(b) (16)

ie(b) < u

to estimate the common distribution function F of e; £ a +¢,. Assuming
the x; to be nonrandom, they then replaced E(y,|y,>1,)=px;+
E(e;le; > 1, — Bx;) by

2b)=bx, + | udF, (w)/(1 — F, (1, — bx,). (1L7)
u>ti— bx;

Replacing (1.2) by y*(b) =y, 6, + z{b)(1 — §,), they proposed to estimate f
by iterative solution of the equation

b= =20 3201} 3 -z (18)
i=1 i=1
in analogy with (1.3). Note that (1.8) is equivalent to the equation
w.(b)=0,

where

W,(b)= 3. 8x;— %)y, ~ bx,)

£ Y (1=6)(x, = %,)(zb) — b)), (19)

i=1
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Once a slope estimator b* is determined, an estimator of « can be obtained
as the mean of F,..

To analyze the asymptotic properties of the Buckley—James estimator, a
crucial step is to study the random function W, (b) as n — co. Of particular
importance is the behavior of W, (b) for b near §. Useful tools to study this
kind of problems are provided by the concept of metric entropy of
empirical-type processes and their stochastic integrals, which are discussed
in Sections 2 and 3 below. Applications of these results to the random
function W,(b), or more precisely, to a slight modification thereof, are dis-
cussed in Section 5. In this modification, we ignore the factors 1 —n; !(b) in
the Kaplan-Meier estimator (1.6) when n,(b)/n is too small, causing
instability in the estimator. Specifically, we redefine £, , by

Ey=1~ T[] {1=p(n~'nd)/nid)}, (1.10)

ieib) <u

where p, is a smooth weight function on [0, 1] that will be specified in
Section 5. In addition, we also use the weight function p, to modify the
definition (1.7) of z{(b) in Section 5.

In Section 4, we apply the results of Sections 2 and 3 to another class of
estimators of f in the censored regression model, introduced in [7] as
extensions of the classical rank estimators with complete (uncensored)
data. The rank estimators of § in [7] are defined by the equation

S,(b)=0, (1.11)

where

S/by= 2 ¥ - Pul By ple (D)) {x) — %, )} pa(n~'n (b)), (1.12)

i=1

X(i, b)= [ Z le{gj(,,)zem(b)}]/ni(b), (1.13)
j=1

-

F,, is defined in (1.10), p, is a smooth function on [0, 1] that will be
specified in Section 4, and ¥ - p, denotes the product of p, and y, which is
a given “score function” (cf. [7]), ie., ¥-p.(x)=y(x)p,(x). Since
Eq. (1.11) may not have a solution, we define a rank estimator j, of § as a
zero-crossing of the step function S,(b), i.e., the right and left hand limits
S.B.+) and S,(B,~) do not have the same sign. This zero-crossing
notion of a solution of the equation W,(b)=0 was also used by James and
Smith [5] to give a more precise definition of the Buckley-James
estimator.

The functions W,(b) and S,(b), defined by (1.9) and (1.12), respectively,
appear to be rather intractable analytically. An important step in our
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analysis of these functions is to express them using stochastic integrals of
empirical-type processes. In particular, as shown in [7],

S0V =[" ¥ pulFrsls) paln ™ #,(65))

X [dY,,(b, s) ——;% dL,(b, S)], (1.14)
where

#alb, 5) = Z":l Lio) n (5= pxpz s+ 6— pro) (1.15a)

P
X, (b, 5)= Z":l Xilie, n (- pxp > s+ 5 prx) (1.15b)

-
L,(b,s) =,§ Liey<t b1 n 556 prop1s (1.15¢)
Y, (b, S)=j=il Xl < iy- gy a s+ 5- Brept- (1.15d)

Here and in the sequel, e;=a+¢;, x A y denotes min(x, y), and x v y
denotes max(x, y). We call the two-parameter processes #,— E#,,
X,—EX,, L,—EL,, Y,—EY, empirical-type processes because they are
similar to empirical processes and can be analyzed by techniques similar to
those recently developed in empirical process theory, as will be shown in
Section 2. In particular, these techniques enable us to obtain probability
bounds, which are uniform in b and s, in the approximation of the random
function #,(b, s)— #,(B,s) (or L,(b,s)—L,(B,s), etc.) by its mean
E# (b, s)—E#,(B,s). In Section3, we apply these results to analyze
stochastic integrals involving empirical-type processes. Making use of these
stochastic integrals, we then study the asymptotic properties of F, ,, S,(b),
and W ,(b) in Sections 4 and 5.

2. METRIC ENTROPY AND CONVERGENCE PROPERTIES OF
EMPIRICAL-TYPE PROCESSES

In this section we first review some recent results in empirical process
theory due to Alexander [ 1] and then extend these results to the empirical-
type processes (1.15). Let &,, &,, ..., be independent random variables tak-
ing values in a measurable space (S, #) and let P, denote the probability
distribution of ¢; (i.e., P(B)= P{¢&; € B}). Consider the empirical measure
and process

n
nn—_’n‘l Z 6{.’ vnznl/z(nn_Pn)9

i=1
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where P,=n"'3¥"_, P, and §, denotes the unit point mass (delta
function) at x. Let & be a class of real-valued measurable functions on S
such that | f| < 4 for all fe % and some A > 0. Let

vf)=[ fdv,=n" S (&)~ EE))

An important concept in Alexander’s [1] analysis of sup,. & |v,(f)] is the
“metric entropy” of & defined as follows. Given ¢>0, p>0, and a
probability measure u on (S, #), let

N, (¢, #, u) = min{k: There exist f}, .., f; € # such that

min || f— fi||, <eforall fe # },
i<k

N2(e, #, p) = min{k: There exist f{, f{, .. f{, fieF
such that £ < f < fY for some i for every fe &,

and | fY — fFll, <eforall i}.

The “metric entropy” and “metric entropy with bracketing” of & in L?(u)
are log N, and log N7, respectively.

Given a class & with finite L?(P,) entropy and 8y >3, > --- > 05 >0,
there exist & <% (j<m) such that |#|=N,(6;, #, P,) and for each
f€F there exists f(f)e Z with || f— f(f), <8,. A basic idea in Alexan-
der’s probability bounds for supg |v,(f)] is the following “chaining
argument” (cf. also [4]). Writing

V) =vafol /) + i vl i )= SNT L = ()] (21)
=0

7

we have

P*{sup |v,(f)| > M} < || sup P{lv,(f)| > (1 —¢/4) M}
F F

K-1
+ 2 1FNF ]
j=0

xsup P{v, [ f;e:1(f) = [N >n;}

+ P*{S;P Vi) = ) >eM/8 +nx}

A R, +R,+R,, (2.2)
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where the 7, >0 are so chosen that 3% ,n; <eM/8, and P* denotes outer
measure. Bounds for the terms R, and R, in (2.2) are provided by
Bennett’s [2] inequality for sums of bounded independent random
variables: If X, ..., X,, are independent random variables such that EX; =0
and |X;| < A4, then for a >n~' 3% Var(X,),

g

where

L 1
n~2y X,-’ >M} <2exp { —EMza_‘g(AMn“‘/Za“’)}, (2.3)

i=1

g(A)=24"2{(1+ A)log(1 + A)—i}.

Making use of (2.2) and (2.3) together with an appropriate choice of the
6, and 7, Alexander [1] obtained sharp probability bounds for
sup# |v,(f)! under a variety of metric entropy assumptions on %; the
method to bound R; in (2.2) varies with these assumptions on &. In
particular, he showed that for ¢>0, O0<r<2, and 6>0, there exists
C=C(r, 0, ¢) such that if

log N(6,F,P,)<06~" forall 0<d<] (2.4)

and if

M> C{a(Z-r)/‘t v n(r-—Z)/Z(r+2)}’ (25)

then analogous to (2.3),

P*{sup |v,(f)| > M} <Sexp{—L(1 —¢) M?a"'g(AMn= "0~ ")},  (2.6)

where a >supge n~' 37| Var f(£,). The term R, in this case is handled by
taking &, = eMn~12/16, so that

W fi ) =N <202 | fil f) = fll oo <EMJS. (2.7)

Let 2 be a class of measurable subsets of S and let # = {I,: De 2}.
Alexander [1] showed that if we replace (2.4) by

log N3(6, #,P,)<06 " forall 0<é<l, (2.4%)

then (2.6) still holds for M satisfying both (2.5) and
M < ean'’?/16. (2.8)
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Note that in this case with f=1,, sups |v,(f)| =supg |v,(D)| and a>
supy, n ' 37 P{D)(1 — P{D)). The term R, in (2.2) is handled by taking
8% =eMn~"?/16 and using the bound

v L) =S NS ILLF RO = LR+ 202 R = RO
<L) = RO+ 202 83, (29)

since El,, = EI3 = |1,/3. Hence

Ry < |F] sup P{v,L ) =R >nk},

which can then be bounded by using Bennett’s inequality (2.3).

As a corollary of (2.6), we obtain the following result on empirical-type
processes, which will be used in Section 3. Throughout the sequel, replacing
t; —PBx; in (1.15) by ¢;,, we shall assume without loss of generality that
B =0. We shall also restrict b in (1.15) to a bounded interval |b} < p. For
notational simplicity we shall write sup, , to denote supremum over the
region |b| <p and — o0 <s< 0.

LEmMMA 1. Let (e;, x;, t;), i=1, 2, ..., be independent random vectors such
that for some nonrandom constant A,

|x;| <A  forall i (2.10)

Let Z (b, s) be any of the four empirical-type processes defined in (1.15) with

B=0. Let u,: [—p,pJx(—o00,00)—(—00,00) be a nonrandom Borel

Sfunction such that
lu.(b, )| < 4,
) (2.11)
lu, (b, s)—u, (b, sV <A{|b—=b'|+|s~5'|}, foralln b b, s, 5"

Then for every 0<y<1 and ¢ >0,

sup

b—bl<n?

=O(n'1~72+e) as. (2.12)

|7 Db, )= w6, )1 d(Z,(b, 5)~ EZ,(b, 5))

F= — 0O

Proof. We shall only consider the case Z, = Y,,. First note that

I

[un(b7 S) - un(bl’ S)] dYn(b’ S)

n

=Y x[u,b e;~bx;)—u b, e,—bx)] .y

i=1
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For fixed n, let ¥, ,(e;, x;, t,) = x,[u,(b, e; —bx;) —u,(b', e, —bx )] I, < 1y
Letting &, = (e,, x,, t;), the class F = {y,, ,:|b| < p, |b’'| < p} clearly satisfies
the entropy assumption (2.4) for every r>0, in view of (2.10) and (2.11)
(which in fact implies that log N_(6, &, P,)=0(logd) as 6—0).
Moreover, by (2.11), there exists 4’ such that Vary, (e, x; ;)<
A' |b—b'| for all i. Hence the desired conclusion (2.12) follows from (2.6)
with M =n~""2+*¢ and the Borel-Cantelli lemma. |

We next modify Alexander’s arguments sketched above to prove the
following result, which will be used repeatedly in the subsequent sections.

THEOREM 1. Let e,, e,,.. be iid. random variables whose common
distribution function F satisfies the Lipschitz condition |F(x)— F(y)| <
C|x—y| for all x, y and some C>0. Let (x,,t,), i=1, 2, ..., be independent
random vectors that are independent of {e,}. Assume that (2.10) holds and

sup Y P{s<t,—bx;<s+h}

bl <p, —0<s<oo |

= O(nh) as n — o and h — 0 with nh - oo, (2.13)

sup E(le; A t;|")< Jfor some r>0. (2.14)

{

Let Z,(b, s) be any of the four empirical-type processes defined in (1.15) with
B=0. For 0<d<1 let

Upg= sup n~'Var{Z(b,s)— Z, (b, 5')}. (2.15)

1b—b'l+|s—s'I<d

Then for every O<e<l, as n—o and M=o(n"a,,) but
MY{a} 797y n=1=92) | oo,

P{ sup n=12\Z(b,s)—EZ,(b,s)—Z,(b,s')+EZ,(b' s') > M}

b—b'|+|s—s'|<d

= O(exp{ — (1—¢) M7 }}). (2.16)

Consequently, for every 0<y<1 and 6>0,

sup |Z,(b, s)— EZ,(b,s)—Z,b, s+ EZ,(b,s")]|
|b—b'l+is—s|<n™?
=0(n"'-V2+%) g5 (2.17)

Proof. We shall only consider the case Z, = X,. To prove (2.16), note
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that the assumptions on M here satisfy Alexander’s conditions (2.8) and
(2.5) (with sufficiently small ). Let

A,(b,s;b',5"y=n""2{X,(b,s)— EX,(b, s)
—X(b, 5')+ EX, (b, ).

As in Alexander’s argument outlined above, choose 6, > --- >, with
Sx ~C,Mn~'2 where C, is some positive constant depending on &. For
fixed j=0, 1, ..., K, partition the interval [ —p, p] by points ¢ < ) | such
that V), — B <4, (v=1, 2, ...), with equality except possibly for the case
v=1 ({7 = —p). Thus, the number N, of sub-intervals is the smallest
integer >2p/d;, so log N; ~log d; (in analogy with (2.4*)). For j=0, .., K
and —p < b < p, define v(b 7) by B, <b< B 41 In view of (2.14),

sup P{le; A ;| 26"} =0(8) as 6-0. (2.18)

For j=0, .., K, partition the interval [ —4,'7, 6,""] by points ¢’ <c{/), |

such that ¢, | —6{’ <6, (m=1, 2,. ) with equallty except possibly for
the case m=1 (¢\) = -6, N, Thus, the number M; of such sub-intervals is
the smallest integer >2 6“/’“ !, so logM,~ log 9;. Let gf’= —o0,

ok}, = co. For any given s, define m(s, j) by (;',,,(“,Ss<o'm(”)+1 As in
(2. 1) note that

VR oy — 0 0 0
4,(b,s;b",5')=4, (Bi(b’ 0)’a£n()s0)’ S'(i); 0)> fn()s'.O))
G+1)
+ Z [4.( v(bj+l)’6m(.\‘/+1)’

B‘v{bf‘}{rw oaw e ) — B s o iy
Bl i o )]
+ [An(b’ 55 b,’ M )_ n(ﬁv(b K)» m(;,K);
ﬂifb)’,l()’ afrﬁl'.K))]’ (2.19)
and apply the chaining argument (2.2) with v, replaced by 4,. Since
1Xil (o n 1,>5+6xy| S A4 and the (e;, x;, t;) are independent, we can apply
Bennett’s inequality (2.3) to obtain probability bounds as in Alexander’s

argument [1], noting that by the Lipschitz continuity of F and the
assumption (2.13) on ¢,,

Sup var[An(bhsl;b,l,s’l)
by —ba| v 16y — by v |si—sal v sy —syl < h
_An(b2$ S5 b’2’ s,2)]

= O(h) as n —» oo and # — 0 such that nh — 0. (2.20)
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The rest of the proof of (2.16) is similar to that in Alexander [1, proof of
Theorem 2.3]. In particular, the last term in (2.19) can be handled by a
“bracketing argument” as in (2.9), noting that nd, ~ C,Mn'? > oo and
that X,(b, s) can be decomposed as monotone functions in » and s:

X"(b, S)= Z le{e,/\1,>:+bx,-)

j€nxj=z0

- Z llel{ejAljZ:—bIX/l}'
jsnx;<0
Setting M=n""2*% in (2.16) and noting that a,,-,=0(n"") as in
(2.20), (2.17) follows from (2.16) and the Borel-Cantelli lemma. §

In the preceding proof, the chain d,> --- >dx terminates with
0x ~C.Mn~'?, and therefore we can apply condition (2.13) with h=4;
(since min; 4, nd; = ). Since the chain §, > --- >, in Alexander’s
proof of (2.6) under the assumption (2.4) also terminates with
Ox ~eMn~'?/16, we can introduce the following relaxation of the
assumption (2.11) in Lemma 1, which we have shown to be a corollary of
(2.6) by setting M =n""?*¢ (and therefore n(Mn="?) - o).

LEMMA 2. Suppose that in Lemma 1 we replace the assumption (2.11) by
sup |u,(b, s)| = O(1) and sup [u,(b, s)—u,(b', s')| = O(h)
b,s |b—b'l+|s—sI<h

asn— oo and h — 0 such that nh - 0.  (2.21)

Then the conclusion (2.12) still holds for every 0 <y <1 and ¢ > 0.

Under the assumptions of Theorem 1 we can further strengthen the
conclusion (2.12) of Lemma 1 for our main result in Section 3. This is the
content of

LemMA 3. With the same notation and assumptions as in Theorem 1, let
u,: [—p, p]x(—o0, 0)— (—00, ) be nonrandom Borel functions satisfy-
ing (2.21). Then for every 0<y <1 and ¢ >0,

P

sS= —

sup

b—b'l<n 7, —o < y< o

=om"' -2+ g (2.22)

[un(b’ S) - un(b/’ S)] d(Zn(b’ S) - EZ,,(b, S))

Proof. We shall only consider the case L,(b,s). For fixed n, denote
L.(b,s), EL,(b,s), u,(b,s)—u,(b’,s) by Lb(_s), L,(s), uy »(s), respectively,
and let V(b b',s)={*, upp(t)d(Ls(t)—Ly(t)). As in the proof of
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Theorem 1, choose d, > --- > d, and for j=0, .., K, partition the real line

by the points 0§’ = —c0 <g{'< --- <0l ,, <0 =0y, ,, and the interval
[ —p, p] by the points )= —p < - /3‘,&1 =p. Analogous to (2.19), we
now have

Vb, b, s)= V(ﬁ(v(()g,op B(v(()g 0)? am(s 0))

+ X DV 10 B 1y a8t Sh )
j=0

— V(ﬂv(b ) i{g ;)’ (s.j))]
+ [V(b, b, 5) = VB k), BLE

(K)
ok Bus.xy> Omon k) J-

Note that for o <,
Vb, b',s)— V(a,a’,a)=[V(b,b',0)— V(a,a',ag)]

+f up (1) d(Ly(1) — Ly(1)).

The rest of the proof is similar to that of Theorem 1 and Lemma 1. ||

An argument similar to the proof of Theorem 1 can also be used to
prove the following result, which will be used in Sections 4 and 5.

LEMMA 4. With the same notation and assumptions as in Theorem 1, for
every 0<y<1 and >0,

sup  1Z(b,5)— EZ,(b, 5)]
(b,5): Var Z,(b,s)sn~"

=0(n!'~12+8) g

3. STOCHASTIC INTEGRALS OF EMPIRICAL-TYPE PROCESSES

In this section we apply the results of Section2 to study stochastic
integrals of the form

J‘)’
s= —

U, (b, s)dL,(b,s) or j’ U, (b, s) dY, (b, ),

$= — 0O

where L, and Y, are the empirical-type processes defined by (1.15c) and
(1.15d), and U,(b, s) are random variables for which there exist nonran-
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dom Borel functions u,(b, s) satisfying the following assumptions for some
£>20: For every 0<y<1 and ¢>0,

(Al) sup |Un(ba S)—u"(b, S)— Un(a’ s)+u,,(a, S)I

|b—al€n~7 —0<s< ®

— O(n—l/Z—y/2+{+e) a.s.

(A2) sup |U, (b, s)—u,(b, s)| =O0O(n="?*¢+)as.
b,s

(A3) For fixed be [—p, p], U,(b, s) has bounded variation in s and

sup [©|dU(b,5)| =0(nf)  as.

(A4) n‘u, satisfies condition (2.21).

An example of such stochastic integrals is the linear rank statistic S,(b)
defined in (1.12). In view of (1.14), we can express S,(b) in the form

S.b)=]"

5= -

U, (b, s)dY, (b, s)— f C b, s)dL(b, ),

§= —

where U, (b, s) = Y - p(F,0(5)) paln ' #,(b,s)) and T, = U,X,/#,.
Another example is given by (1.10), which can be expressed in the form

log(1—F, (1))

= log{1— p,(n ™" # (b, $))/# (b, 5)} dL,(b, 5).

—o<s<y

Theorem 2 below, which will be applied to these two examples in Section 4,
shows that under certain conditions we can approximate the stochastic
integral {? , U,(b,s)dZ,(b,s) by the nonrandom function [* _ u,(b,s)
dEZ,(b,s) with Z,=L, or Y,, and also provides two kinds of error
bounds for the approximation. The first kind of results, given in (3.3)
below, shows that the difference between the stochastic integral and its
nonrandom approximation is of the order O(n'/?*¢+¢), where £> 0 can be
arbitrarily small. Hence if ¢ <4, the approximation error is of the order
o(n). For example, in the case of the linear rank statistic S,(b) to be studied
in Section 4, this implies that sup, <, n ' [S.(b)—h,(b)| =0 as., where
h,(b) is a nonrandom function defined in (4.3). This result can be used to
establish the consistency of the rank estimator f§, (which is a zero-crossing
of S,(b)) under certain assumptions on h,(b). To prove that n'?(f, — B)
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has a limiting normal distribution, however, the order O(n'?*¢*¢) in the
approximation of S,(b) by h,(b) is obviously too crude, and we need
another kind of results, given by (3.2) in Theorem 2 below. Applying (3.2)
to S,(b) yields that with probability 1,

S,(b)=S.(B)+ {h.(b) — h(B)} + O(n"/>+ -2 +e)

uniformly in |b—pBl<n~?. Thus, if £<7y/2, we can approximate
S.(b)—S.(B) by h,(b)—h,B) with an error of the order o(n'?) for
|b— Bl <n~". This result is important for establishing the asymptotic nor-
mality of f§,, as will be discussed further in Section 4. Hence, (3.2) enables
us to dampen the factor n‘ in the assumptions (A1)-(A4) on U, by using
the proximity of b to B, and its usefulness will be illustrated by the
applications in Sections 4 and 5.

THEOREM 2. Let ey, e,, ... be i.id. random variables having a continuously
differentiable density function f such that

jw ( sup |f'())ds<oo  forsome d>0. (3.1)

— 0 sgt<s+d

Let (x;, t;), i=1, 2, ..., be independent random vectors that are independent of
{e,} and such that conditions (2.10), (2.13), and (2.14) are satisfied. Define
L,(b,s) and Y (b, s) by (1.15c) and (1.15d) with §=0. Let U (b, s), u,(b, 5)
be the same as above (satisfying (A1)-(A4) for some £ =2 0). Then for every
0<y<1ande>0,

sup [" vs)dLe.s)
b—al<sn i ~w<y<oo |[Vs= —c0
_f (b, 5)dEL, (b, 5) — j U (a, s)dL,(a, s)

Y
+ f u,(a, s)dEL (a, s)

=0(n Y2+ irey g, 3.2)
¥y
sup U, (b, s) dL(b,
bl <p, —w < y< o J;=—oo "( S) (b S)

—f «(b, 5) dEL (b, 5)| = O(n'**¢*%) as. (3.3)

Moreover, (3.2) and (3.3) still hold if L, is replaced by Y,
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Proof. For fixed n, denote U, (b, s), u,(b,s), L,(b,s), EL,b,s) by
Uy(s), u,(s), Ly(s), and L,(s), respectively, to simplify the notation. Note
that

fj Udeb——J.y ubdib—,’.j UadLa-i-J‘j u,,dZa
[ Wy-u,-UtuydL, +| U,dL,-L,-L,+L,)

+ m-udl,~L)+[ (U.-u)dL,~L,)
Since sup, 1 1<, _f°° dL, <1, it then follows from (A1) that

sup j \U, —u, — U, +u,| dL,

|b—algn-?"—©

=0(n! —Y2+i+e) a6

Likewise, by (A3} and Theorem 1,

sip | |L,—L,—L,+L,||dU,]

b—alsn 7" —®

=0(n'~V2+i+e) g5

By (A4) and Lemma 3,

sup

b—al€n ", —c0o<y<©

=0(n'~V2+*5) g

[t —u)dr, - L,)

We shall show that

sup [" w.—w)aL,
lb—al<n?,—wo<y<ow |"—®
=0(n'"2"7+5%%)  as. (3.4)

Hence the desired conclusion (3.2) follows.
To prove (3.4), first note that

dLy(s)—dL(s)= ), E[f(s+bx) I(;5,ssx)

j=1

—f(s+a'xj)1{lj>s+ax,}]ds' (35)
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By (2.10) and (2.13),

sup FE

|b—alsn™?

S [fs+bx)— f(s+ax)] Tiyms vy
j=1

+ Z f(s+axj)(1{lj>s+bxj-} "I{Ij>s+axj-))

j=1

< sup [An' @)

s-Ap<z<s+ Ap

+f(z) sup Y, P{s—An"7"<t; — bx; <s+An‘V}].

bl<p 1

Since Sup:—ApSzS:+Apf(z) < f(S) + Ap Supx—Ap<2<s+Ap If,(z)l’ (34)
follows from (3.1), (3.5), and (A2).
To prove (3.3), apply (A2)-(A4) and Lemma 3 together with the bounds

Uj U,,dLb—jy u, dL,

Y — ¥y -
< (Ub—ubldL,,+“_ Uyd(L,—L,)

<[" WW,—wldL,+ | |L,~L,|1dU,|

— 0

+(1U(p) = up(D) + lup(P)) ILo(¥) = Lo(¥)- 1

4, APPLICATIONS TO CENSORED RANK ESTIMATORS

In this section we apply Theorems 1 and 2 to study the properties of the
linear rank estimator J, of the slope B in the censored regression model
described in Section 1. Since J, is defined as a zero crossing of the function
S,(b) defined in (1.12), it is important to study the function S,(b) first. The
function S,(b), however, is not a smooth function in b and therefore one
cannot apply standard techniques (based on Taylor’s expansion of the
random function defining the estimator in a neighborhood of the true
parameter) that are commonly used to prove asymptotic normality of
maximum likelihood estimators, M-estimators, etc. Moreover, S,(b) is not
a monotone function in b, so one cannot make use of the monotonicity and
contiguity arguments (cf. [6]) that have been applied to prove asymptotic
normality of rank estimators of § in the regression model (1.1) based on
complete (uncensored) data (x,, y;). Without loss of generality, we shall
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assume that f=0. Theorems 1 and 2 enable us to approximate S,(b), in a
neighborhood of f( =0), by S,(8)+ {h,(b)— h,(B)}, where h, is a nonran-
dom function which is much more tractable than S,(b). This is the content
of

THEOREM 3. With the same notation and assumptions as in Theorem 2,
define F, , by (1.10) and S,(b) by (1.14), where ¥ is a twice continuously
differentiable function on (0, 1) such that for some 6 20 and i=0, 1, 2,

WO =0 v (1-u)y) as u(l—u)-0, (4.1)
and the weight function p, is of the form

pux)=pn*(x—cn™%), 0<x<l, (4.22)

with ¢ >0, 0< A< 1, and p being a twice continuously differentiable function
on the real line such that

p(y)=0fory<0,  p(y)=1fory=1. (4.2b)
Define
A= =[  [pnT'E# (b 9)VE # (b, 5)1 dEL,(b, 5),
hB)=[" Y- p(1 ™) p,(n = E # (b, 5)) (43)
EX (b, 5)
X l:dEY,,(b, S) —E—#m dEL,,(b, S):]

Then for every 0<y<1 and ¢>0,

sup llog(1 — £, ,(s)) — 4,,5(5) —log(1 — £, .(5)) + 4,,,u(5)|
|b—al€n 7’ —w<s< o
=0(n-1/2—y/2+3x+c) as., (44)
sup [log(1 — F, 4(5)) — 4,5(s)| = O(n~"2+%*%) as, (4.5)
b,s

sup  [S,(b)—h,(b)— S.(a)+ h,(a)]

|b—alsn™?

= O(n! ~PRHBHOEY g (4.6)
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Proof. To apply Theorem2 we shall make use of the following
inequality: For any twice continuously differentiable function g on (0, 1),

lg(x,)—g(x2)—g(y))+ g(y)l <(sup [g' (D)) |x; —x2 — ¥y + ¥,

+ (sup [ (D) |y1 =yl
t

x{lxl =X+ |y —y2|+|x2—y2|}.

4.7)
Since
paln !t #(b,5))=0 if #,(b,s)<cn' (4.8)
it follows from (1.10) that
log(1 - F, ,(u)) = - | (Puln™" # (b, )/ # 4(b, 5)
+ O(# (b, 5))} dL,(b, s5). (4.9)
Let g,(x)=n"*p(n*(x —cn=*))/x for 0 < x < 1. Then supg. ., (|g,(x) +

|ga(x)])=0(1). By (2.13) and the continuity of f, as n — o0 and h — 0 such
that nh — oo,

sup n'E# (b, s)—n"'E#,(b,s)=0(h). (4.10)

=6 +is—s'|<h

Hence it follows from Theorem |, Lemmad4, and (4.7) that for every
0<y<1and¢>0,

sup |gan " #,(b, 5)) = ga(n"'E# (b, 5))

lb—alsn i, —o<s< oo
- gn(n71 #n(a’ S))+ gn(nilE#n(a» S))l
=0(n~2"72+¢) a5,

sup |g.(n~" # (b, 5)) — g.(n"'E# (b, 5))| =0(n""2*%) as.
b,s
Moreover, [ _ . |dg,(n~" # (b, s))| <sup, |g,(t)|. Noting that

| [Pan ! #4(b, $))/# (b, 5)1 dL,(b, 5)

—o<s<U

—nt | gun™" # (b, 5)) dL,(b, ),

conclusions (4.4) and (4.5) follow from Theorem 2 (with & =0).
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To prove (4.6), let $u(x)=y-p,(l—e”) for x>0, so that
Y- palF,5(5)) = —log(1 — F, ,(s))). Using (4.8), (49), and dL, <
|d # ], it can be shown that there exists K> 0 such that

sup |log(1 — F,, ,(s))| <log(Kn) for all large n. (4.11)
b, s

In view of (4.1) and (4.2), sup, < v ki 2~ *(194(X)] + 14,(x)] + |$7(x)]) =
O(1); moreover, sup pc.-r<;n 24|, (x)] + |$,(x)] + |6(x)]) = O(1).
Hence using a similar argument as before, we obtain the desired conclusion
(4.6) for (1.14) by applying Theorem?2 to the cases U, b, s)=
n=Cr0% g (—log(1—F,,(5))) pa(n~" #,(b,5)) and U,(b,s)=n"0C+"
X ¢,(—log(1—F, ,(s))) x n~'X,(b,s) x p,(n~" #,(b,5))/[n"" #,(b,5)],
respectively, making use of (4.4), (4.5), and Theorem 1 in this connec-
tion. |

Suppose that A in the weight function (4.2) is so chosen that
6(3+ 8)A < 1. Then by (4.6), with probability 1,

S,(b)— S,(a) =h,(b) — h,(a)+ o(n"*) uniformly in
a,be[—p, p]with |b—a|<n 13, (4.12)
[S,.(b)— S,(a)—h,(b)+ h,(a)l = o(n**)=o0(n |b—al|) uniformly in
a,be[—p,p]lwith|b—a|=n"13
(4.13)

Since n='|S,(b)— h,(b)] =0 as. for every fixed b, it follows from (4.12)
and (4.13) that

sup n '|S,(b)—h,(b)] >0 as. (4.14)

bl <p
Under certain assumptions on the nonrandom function #4,,, it can be shown
by making use of (4.12)-(4.14) that the rank estimator B, which is a zero-
crossing of S,(b), is strongly consistent and asymptotically normal. The
details are given in [7]. In particular, the following steps are used in [7] to
prove the asymptotic normality of B, after establishing its consistency.
First, by (4.12) and (4.13) with a=f§, we have with probability 1,

S,(b)=S,(B)+ {h.(b)—h,(B)}
+o(n'?v n|b—p|) uniformlyin |b| <p. (4.15)

Next, an asymptotic analysis of the nonrandom function 4,(b) (defined in
{(4.3)) shows that under certain conditions,

h(b)—h(B)~Cn(b—PB) as n— ooandb—p, (4.16)
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for some nonrandom C#0. The third step uses a martingale central limit
theorem which can be used to show, under certain assumptions, that as
n— oo,

n~Y2S (p) has a limiting normal N(0, t) distribution, (4.17)

for some constant 7. After showing that §, converges to f as. and recalling
that f, is a zero crossing of S,(bh), we then obtain from (4.15)-(4.17) that
n'?(B, — B) has a limiting N(0, t/C?) distribution. In view of (4.14), a
sufficient condition for the consistency of 5, is

lim inf n '|h,(b)>0  forevery &>0. (4.18)

n—w |b-fl=6

5. APPLICATIONS TO THE BUCKLEY-JAMES ESTIMATOR

In this section we consider the Buckley-James estimator, which is a zero-
crossing of the function W,(b) defined in (1.9). Instead of the
Kaplan—Meier-type estimator (1.6) originally used by Buckley and Jarhes,
we use here the modified version (1.10), involving a weight function p, as
in Section 4, for the F, , in z,(b). In addition, we change the definition (1.7)
of z,(b