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Preface 

The contributions included in the following pages were originally planned for a 
presentation on the 55th birthday of Professor PR. Krishnaiah. Unfortunately his 
illness became severe and soon after claimed his life. Hence this book is dedicated 
to honor his memory. The articles, initially intended for a standard journal, are 
based on original research by active and leading scientists in the areas of their cur-
rent interests in the multivariate field. The authors were all associated with 
Krishnaiah professionally in his research and development of multivariate statisti-
cal analysis and stochastic theory, and many of them also knew him personally. 

The chapters of this volume cover the main areas of multivariate statistical theory 
and its applications, as well as aspects of probability and stochastic analysis. They 
cover both finite sampling and asymptotic results, including aspects of decision 
theory, Bayesian analysis, classical estimation, and regression, as well as time-
series problems. There are discussions of practical applications and computational 
solutions. The works on probability include results on the (vector) central limit 
theory for dependent random variables, the rates of convergence and asymptotic 
expansions, Markov processes, and foundational problems. The material covered 
in the volume should be of considerable interest to researchers as well as to gradu-
ate students working in theoretical and applied statistics, multivariate analysis, and 
random processes. 

We wish to express our appreciation to the contributors who responded to our 
invitations and compiled their chapters within the time constraints. All the articles 
were refereed; and, as a result, several underwent revisions and alterations. We are 
deeply indebted to the many referees, whose names cannot be listed here, but 
whose assistance was essential. Also our special thanks go to the staff of Academic 
Press, Inc. for bringing out this volume expeditiously and accommodating all our 
requests. Finally, we wish to acknowledge our home institutions for providing the 
secretarial assistance to complete this project on schedule. 

C.R. Rao 
University Park, Pennsylvania 
M.M. Rao 
Riverside, California 
May 1989 
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In Memoriam 

P. R. Krishnaiah 

(1932-1987) 

Paruchuri Rama Krishnaiah was born in a suburb of Repalle in Andhra 
Pardesh, India, in 1932 into a respected middle class Kisan (or farming) 
family. He was one of the brightest students of the local high school and, 
by his parents and teachers noticing this fact, he was sent to the well-
known Loyola College in Madras for higher education. Krishnaiah passed 
the 2-year intermediate course in a high first class in 1950 and was admit-
ted to the then newly started and highly competitive (and difficult to gain 
admission) statistics honors program in the Presidency College, also of 
Madras University. Coincidentally, I joined the same school that year as a 
(mathematics) graduate student (for a master's degree) and although we 
saw each other, we met formally only at the end of the first quarter on a 
trip home for a vacation. To our mutual surprise we found that we came 
from adjacent districts, separated by the river Krishna, and our homes 
were no more than 30 miles apart. From then on, we maintained a close 
friendship, and thus it was a rude shock to me to learn in late 1986 that he 
had become a victim of a cruel disease (cancer). Indeed he was a teetotaler 
and a nonsmoker, had always been careful in whatever he ate, and had no 
bad habits. He fought the ailment with great courage and was optimistic of 
overcoming it, which he so expressed on his birthday, July 15, 1987. 
Finally, he succumbed to the dreadful disease on August 1, 1987, leaving 
his friends, loved ones, relatives, and colleagues in great sorrow. He is 
survived by his wife, Indira, two young sons, Raghu and Niranjan, five 
brothers, and two sisters. I shall now briefly describe his educational, 
professional, organizational, humanitarian, and research accomplishments. 

Soon after finishing his B. Sc. (Honors) at Presidency College, Madras, 
in 1954, Krishnaiah went to the United States and joined the University of 
Minnesota in Minneapolis to continue his graduate work in statistics. He 
was always interested in both the theory and the applications of this sub-
ject. Even as a student he assisted in statistical methodology at the Bureau 
of Educational Research in Minnesota, and this resulted in some 
publications with his colleagues there. He took an M. S. degree in 1957 
while searching for a suitable area of specialization for his dissertation. 

1 
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2 IN MEMORIAM: P. R. KRISHNAIAH 

During the summer term of 1956 the late Professor S. N. Roy of the 
University of North Carolina visited Minnesota and offered a course in 
multivariate statistical analysis. This was the first substantial account of 
that subject given there; Krishnaiah took it and became interested in it 
immediately. He spent the summer of 1957 at the IMS Summer Institute in 
Boulder, Colorado, as a student member, where he was exposed to the 
analysis of variance and related problems from the seminars of Professors 
Bose, Kempthorne, Kruskal, Scheffé, and several other visiting scholars. 
Another such session operated at the University of Minnesota a year later, 
concentrating on ranking and selection problems, to which Krishnaiah was 
again attracted. These three general areas of statistical theory became his 
main research subjects for all his later work, consultation, and publications 
as reviewed below. 

There was no central location for statistics at Minnesota until 1960, and 
students had to find the faculty whose interests (and appointments) were 
combined with other areas. For a while, Krishnaiah traveled to discuss the 
subjects of his interest, and in 1959-1960 he spent the year at Chapel Hill 
with Professor Roy for this purpose. From 1960 on he worked as a senior 
statistician at Remington Rand Univac in Blue Bell, Pennsylvania, until 
1963 when he joined the Wright-Patterson Air Force Base in Dayton, 
Ohio, as a mathematical statistician. He was also awarded the Ph. D. 
degree by the University of Minnesota during the same year. Krishnaiah 
remained at Wright-Patterson until 1976 when he joined the University of 
Pittsburgh as a Professor of Statistics. In 1982 he became the founder and 
director of the Center for Multivariate Analysis and also took a joint 
appointment as a professor in the Graduate School of Business to reflect 
his interests in substantiative applications. Before turning to his research, it 
is appropriate to consider his professional and humanitarian work at this 
point. 

Krishnaiah organized six international symposia on Multivariate 
Analysis which were held in June of 1965, 1968, 1972, 1975, and 1978 and 
in July of 1983. It is of interest to note that he dedicated the published 
"Proceedings" of the first conference to the memory of S. N. Roy and some 
of the other proceedings volumes to H. Hotelling, P. C. Mahalanobis, and 
H. Scheffé, paying his respects to these scholars from whose works and 
contacts he had learned the subject. He also organized a symposium on 
Applications of Statistics in June 1976, edited its proceedings, and gave 
short courses on multivariate data analysis. He served as a member of the 
council of the American Statistical Association for 1968-1969, was on 
various committees of the IMS, received the Statistician of the Year award 
in 1982 from the Pittsburgh chapter of the ASA, and was a member of the 
technical committee on statistical pattern recognition of the International 
Association of Pattern Recognition. Krishnaiah is a fellow of the ASA, 
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IMS, and AAAS, as well as an elected member of the International 
Statistical Institute. He was the founder and editor of the Journal of Mul-
tivariate Analysis, as well as the founder and editor of the series "Develop-
ments in Statistics," published by Academic Press (four volumes appeared), 
and the general editor of the "Handbook of Statistics," published by 
North-Holland (seven, of a dozen proposed volumes appeared). 
Krishnaiah served as a member of the editorial board of the Journal of 
Statistical Planning and Inference and was a coordinating editor of the 
North-Holland series "Statistics and Probability." He presented invited 
papers at several professional meetings, including the first, second, and 
fourth international conferences on Probability and Mathematical 
Statistics held at Vilnius, USSR, he visited the People's Republic of China 
in 1981 for 3 weeks at the invitation of some universities in that country, 
and at the time of his death he was in receipt of a fellowship by the Japan 
Society for Promotion of Science to visit Japan for a month in 1986-1987. 
Earlier, he was a visiting scientist at the Indian Statistical Institute in 1966 
and had been at the Banach center in Warsaw, as well as at the 
Department of Mathematics and Statistics and the Academy of Agriculture 
in Poznan, under an exchange visitor program between the Polish and the 
U.S. National Academies of Sciences. In 1985, the Telegu Association of 
North America conferred on him a distinguished scientist award. 

Moreover, Krishnaiah played a major role in developing the statistics 
program in the Department of Mathematics and Statistics at the University 
of Pittsburgh. This was rated as the most improved program in statistics in 
the nation. For instance, he was instrumental in bringing Professor 
C. R. Rao to this department when several other schools were trying to get 
him. Krishnaiah worked in different areas such as theoretical and com-
putational statistics, signal processing, pattern recognition, medical 
statistics, and econometrics so that he was able to assist scientists in 
various disciplines during the last 30 years, and he derived great satisfac-
tion from it. At the time of his death, he was serving as president of 
SHARE, a nonprofit organization devoted to scientific, health, and allied 
research education, helping mostly the third world countries. 

With regard to his research activities, it should be observed that 
Krishnaiah edited (or coedited) 19 books and monographs and authored 
two more (one jointly) reference books which are in press. He also was the 
principal (or coprincipal) investigator of research contracts and grants at 
the University of Pittsburgh continuously from 1976 until his death. 

Although by training he was inclined toward theoretical statistics, 
applications of statistics were always kept in view. Indeed, his initial papers 
(1959a, 1960a, 1962a) are on such applications. The early paper (1961a), 
the only joint work we published, deals with some aspects of multivariate 
gamma distribution which later played a key role in his theoretical work 
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for many years. It was used in his thesis (1963a), was analyzed further in 
(1963b, 1964a), and played a role in several papers on simultaneous tests of 
hypotheses. It was generalized for use in tests involving multivariate 
F-statistics (in addition to multivariate #2-problems), distributional 
problems with Wishart matrices, and other sample covariance matrices. See 
(1984j) for an account of the work on these topics. Also the well-known 
"union-intersection" principle of S. N. Roy played an important part in 
Krishnaiah's work. This led to the "finite intersection tests" formulated by 
him and are now known by his name. Selection of the best, or a prescribed 
subset, of a collection of multiple populations was the topic of his research 
for several papers. Many of these results are surveyed in (1976b, 1978a, 
1979a). These test procedures led Krishnaiah to consider the distributions 
of eigenvalues of various types of sample covariance matrices, comple-
menting the works of S. N. Roy, H. Hotelling, and others. He also extended 
some of these results if the errors were correlated in some way, or if they 
formed a simple Markov process. 

Since the exact distribution of the above types of statistics is quite 
involved, Krishnaiah was led to approximations and asymptotic expan-
sions of distribution functions. These questions occupied a major part of 
his work in the last 10 years and are reflected in several publications 
(1977e; 1979b; 1980a, c; 1981a; 1982a, b; 1983a; 1986d). He was also study-
ing the limit behavior of the distributions of the eigenvalues of sample 
matrices, as seen from the papers (1983e, f; 1984g, h; 1985g; 1986b, c, d). It 
is clear that his research has touched most areas of multivariate statistical 
analysis and made some inroads into time series (he was deeply interested 
in signal detection problems in the last 3 years), as well as some non-
parametric estimation, multiple comparisons, and considerable work on 
the multivariate analysis of variance. In order to apply the latter results to 
practical problems, Krishnaiah expended much effort in constructing 
several types of statistical tables for significance tests. 

A better idea of his research interests can be obtained by reading the 
titles of his extensive publication list, which is included below. He was very 
prolific in the last years. It reveals another fact. Krishnaiah interacted freely 
with different types of scientists, and this is why more than three-quarters 
of his publications involve at least one joint author. This collaborative 
effort helped widen his interests and also contributed to a broad and balan-
ced view of the subjects for publication in the editorial work of the Journal 
of Multivariate Analysis as well as his inviting people of different 
backgrounds to participate in the symposia that he organized. 

Until the end, Krishnaiah had a positive attitude toward life and was 
hopeful that he could beat the illness. He was participating in works even 
from his sick bed until almost the end. But adversity took over, and it was 
cruel. We all miss him. 
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In peparing this sketch and compiling the complete publication list, I am 
indebted to Professor C. R. Rao and to Mrs. Indira Krishnaiah for much 
help. 

M. M. RAO 

Riverside, California 
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intermediate roots of the MANOVA matrix. Sankhyä, Ser. B 35 339-358. 

d. (with WAIKAR, V. B.) On the distribution of a linear combination of correlated quadratic 
forms. Commun. Statist. 1 371-380. 
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pp. 439-476. North-Holland, Amsterdam. 

d. (with SARKAR, S. K., AND SINHA, B. K.) Some tests with unbalanced data from a 
bivariate normal population. Ann. Inst. Statist. Math. 35 63-75. 



IN MEMORIAM: P. R. KRISHNAIAH 11 

e. (with YIN, Y. Q., AND BAI, Z. D.) The limiting behavior of the eigenvalues of a 
multivariate F matrix. 7. Multivariate Anal. 13 508-516. 

f. (with YIN, Y. Q.) Limit theorems for the eigenvalues of product of two random matrices. 
J. Multivariate Anal. 13, 489-507. 

g. (with FANG, C , AND NAGARSENKER, B. N.) Asymptotic distributions of sphericity test in 
a complex multivariate normal distribution. Comm. Statist. A—Theory Methods 12 273-288. 

1984 

a. (with FANG, C.) Asymptotic distributions of functions of the eigenvalues of the doubly 
noncentral F matrix. In Proceeding, Indian Statistical Institute Golden Jubilee International 
Conference on Statistics: Applications and New Directions, pp. 254-269. 

b. (with SEN, P. K.) Tables for order statistics. In Handbook of Statistics, Vol.4 
(P. R. Krishnaiah and P. K. Sen, Eds.), pp. 873-935. North-Holland, Amsterdam. 

c. (with SARKAR, SHAKUNTALA) Nonparametric estimation of multivariate density using 
Laguerre and Hermite polynomials. In Multivariate Analysis-VI (P. R. Krishnaiah, Ed.), 
pp. 361-373. North-Holland, Amsterdam. 

d. (with LIANG, W.-Q.) Multi-stage nonparametric estimation of density function using 
orthonormal systems. J. Multivariate Anal. 15 228-241. 

e. (with LIANG, W.-Q.) An optimum rearrangment of terms in estimation of density using 
orthonormal systems. Technical Report No. 84-23. J. Statist. Plann. Inference, in press. 

f. (with SEN, P. K.) Selected tables for nonparametric statistics. In Handbook of Statistics, 
Vol. 4 (P. R. Krishnaiah and P. K. Sen Eds.). North-Holland, Amsterdam. 

g. (with BAI, Z. D., AND YIN, Y. Q.) On Limiting empirical distribution function of the 
eigenvalues of a multivariate F matrix. Teor. Veroyatnost. i Primenen. {Theory Probab. Appl.) 
29. 

h. (with YIN, Y. Q., AND BAI, Z. D.) On limit of the largest eigenvalue of the large 
dimensional sample covariance matrix. Technical Report No. 84-44. Probab. Theory Related 
Fields, in press. 

i. (with KARIYA, T., AND FUJIKOSHI, Y.) Test for independence of two multivariate 
regression equations with different design matrices. J. Multivariate Anal. 15 383-407. 

j . Multivariate Gamma distributions and their applications in reliability. In Developments 
in Statistics and Its Applications', Proceedings, First Saudi Symposium on Statistics and Its 
Applications. 

1985 

a. Multivariate Gamma distribution. In Encyclopedia of Statistical Sciences, Vol. 6, 
pp. 63-66. Wiley, New York. 

b. Multivariate multiple comparisons. In Encyclopedia of Statistical Sciences, Vol. 6, 
pp. 88-95. Wiley, New York. 

c. (with LIANG, W. Q.) Nonparametric iterative estimation of multivariate binary density. 
J. Multivariate Anal. 16 162-172. 

d. (with LIN, J., AND WANG, L.) Inference on the Ranks of the Canonical Correlation 
matrices for Elliptically Symmetric Populations. Technical Report No. 85-14, Center for 
Multivariate Analysis, University of Pittsburgh. 

e. (with LIN, J., AND WANG, L.) Tests for the Dimensionality of the Regression Matrices 
when the Underlying Distributions Are Elliptically Symmetric. Technical Report No. 85-36, 
Center for Multivariate Analysis, University of Pittsburgh. 

f. (with ZHAO, L. C , AND BAI, Z. D.) On Rates of Converence of Efficient Detection 
Criteria in Signal Processing with White Noise. Technical Report No. 85-45, Center for 
Multivariate Analysis, University of Pittsburgh. IEEE Trans. Inform. Theory, in press. 



12 IN MEMORIAM: P. R. KRISHNAIAH 

g. (with YIN, Y. Q.) Limit theorems for the eigenvalues of the sample covariance matrix 
when the underlying distributions is isotropic. Teor. Veroyatnost. i Primenen. ( Theory Probab. 
Appl. 30 810-816. 

1986 

a. (with RAO, M. B., AND SUBRAMANYAM, K.) Extreme Point Methods in the Determination 
of the Structure of a Class of Bivariate Distributions and Some Applications to Contingency 
Tables. Technical Report No. 86-01, Center for Multivariate Analysis, Univesity of 
Pittsburgh. 

b. (with YIN, Y. Q.) Limit theorems for the eigenvalues of product of large dimensional 
random matrices when the underlying distribution is isotropic. Teor. Veroyatnost. i Primenen. 
(Theory Probab. Appl. 31 394-398. 

c. (with BAI, Z. D., AND YIN, Y. Q.) On limiting spectral distribution of product of two 
random matrices when the underlying distribution is isotropic. J. Multivariate Anal. 19 
189-210. 

d. (with BAI, Z. D., AND LIANG, W. Q.) On asymptotic joint distribution of the eigenvalues 
of the noncentral MANOVA matrix for nonnormal populations. Sankhyä Ser. B 48 153-162. 

e. (with FANG, C.) On asymptotic distribution of the test statistic for the mean of the non-
isotropic principal component, Commun. Statist. 15 1163-1168. 

f. (with ZHAO, L. C , AND BAI, Z. D.) On detection of number of signals in presence of 
white noise. J. Multivariate Anal. 20 1-25. 

g. (with ZHAO, L. C , AND BAI, Z. D.) On detection of number of signals when the 
covariance matrix is arbitrary. J. Multivariate Anal. 20 26-49. 

h. (with YIN, Y. Q.) On some nonparametric methods for detection of the number of 
signals. IEEE Trans. Acoustics Speech Signal Process. ASSP-35 1533-1538. 

i. (with LIN, J.) Complex elliptic distributions. Comm. Statist. A—Theory Methods 15 
3693-3718. 

j . (with SARKAR, S.) Principal component analysis under correlated multivariate regression 
equations model. In Proceedings, Fourth International Conference on Probability Theory and 
Mathematical Statistics, Vol. 2, pp. 103-119. VNU Science Press, Vilnius, USSR. 

k. (with BAI, Z. D., AND ZHAO, L. C.) Signal processing using model selection methods. 
Technical Report No. 86-03. Inform. Set, in press. 

1. (with TANIGUCHI, M., AND CHAO, R.) Normalizing Transformations of Some Statistics of 
Gaussian ARMA Processes. Technical Report No. 86-05, Center for Multivariate Analysis, 
University of Pittsburgh. 

m. (with TANIGUCHI, M.) Asymptotic Distributions of Functions of Eigenvalues of the Sample 
Covariance Matrix and Canonical Correlation Matrix in Multivariate Time Series. Technical 
Report No. 86-08, Center for Multivariate Analysis, J. Multivar. Anal. 22 156-176. 

n. (with PUKKILA, T. M.) On the Use of Autoregressive Order Determination Criteria in 
Univariate White Noise Tests. Technical Report No. 86-15, Center for Multivariate Analysis, 
University of Pittsburgh. IEEE Trans., in press. 

o. (with PUKKILA, T. M.) On the Use of Autoregressive Order Determination Criteria on 
Multivariate White Noise Tests. Technical Report No. 86-16, Center for Multivariate Analysis, 
University of Pittsburgh. IEEE Trans., in press. 

p. (with BAI, Z. D., AND YIN, Y. Q.) Inference on the Occurrence/Exposure Rate and Simple 
Risk Rate. Technical Report No. 86-18, Center for Multivariate Analysis, University of 
Pittsburgh. Ann. Inst. Statist. Math., in press. 

q. (with NISHII, R. ) On the Moments of Classical Estimates of Explanatory Variables under 
a Multivariate Calibration Model. Technical Report No. 86-27, Center for Multivariate 
Analysis, University of Pittsburgh. 



IN MEMORIAM: P. R. KRISHNAIAH 13 

r. (with BAI, Z. D., RAO, C. R., REDDY, P. S., SUN, Y. N., AND ZHAO, L. C.) Reconstruc-
tion of the Left Ventricle from Two Orthogonal Projections. Technical Report No. 86-33, 
Center for Multivariate Analysis, University of Pittsburgh. Computer Vision Graphics Image 
Process, in press. 

s. (with BAI, Z. D., AND ZHAO, L. C.) On Simultaneous Estimation of the Number of Signals 
and Frequencies under a Model with Sinusoids. Technical Report No. 86-37, Center for 
Multivariate Analysis, University of Pittsburgh. IEEE Trans., in press. 

t. (with BAI, Z. D., AND ZHAO, L. C.) On the Rate of Convergence of Equivariation Linear 
Prediction Estimation of the Number of Signals and Frequencies of Multiple Sinusoids. 
Technical Report No. 86-38, Center for Multivariate Analysis, University of Pittsburgh. IEEE 
Trans., in press. 

u. (with TAUXE, W. N., KLEIN, H. A., BAGCHI, A., KUNDU, D., AND TEPE, P.) Clinical 

Evaluation of the Filtration Fraction: A Multivariate Statistical Analysis. Technical Report 
No. 86-41, Center for Multivariate Analysis, University of Pittsburgh. 

v. (with NISHI, R., AND BAI, Z. D.) Strong Consistency of Certain Information Theoretic 
Criteria for Model Selection in Calibration, Discriminant Analysis and Canonical Correlation 
Analysis. Technical Report No. 86-42, Center for Multivariate Analysis, University of 
Pittsburgh. 

w. (with MIAO, B. Q., AND ZHAO, L. C.) On Detection of Change Points using Mean Vector. 
Technical Report No. 86-47, Center for Multivariate Analysis, University of Pittsburgh. In 
Handbook of Statistics, Vol. 7 (P. R. Krishnaiah and C. R. Rao, Eds.). Academic Press, 
New York. 

x. (with CHEN, X. R., AND LIANG, W. Q.) Estimation of Multivariate Binary Density Using 
Orthonormal Functions. Technical Report No. 86-48. Center for Multivariate Analysis, 
University of Pittsburgh. 

y. (with CHEN, X. R. ) Test of Linearity in General Regression Models. Technical Report 
No. 86-49, Center for Multivariate Analysis, University of Pittsburgh. J. Multivariate Anal., in 
press. 

z. (with CHEN, X. R.) Estimation and Testing in Truncated and Nontruncated Linear 
Median-regression Models. Technical Report No. 86-50. Center for Multivariate Analysis, 
University of Pittsburgh. 

1987 

a. (with KARIYA, T., AND FUJIKOSHI, Y.) On tests for selection of of variables and indepen-
dence under multivariate regression models. J. Multivariate Anal. 21 207-237. 

b. (with SARKAR, S.) Tests for sphericity under correlated mulrivariate regression equations 
model. Ann. Inst. Statist. Math. 39 163-175. 

c. (with ZHAO, L. C , AND BAI, Z. D.) Remarks on certain criteria for detection of number 
of signals. IEEE Trans. Acoustics Speech Signal Process. ASSP-35 129-132. 

d. (with TEPE, P. G., TAUXE, W. N., BAGCHI, A., AND REZENDA, P.) Comparison of 

measurement of glomerular filtration rate by single sample, plasma disappearance slope/ 
intercept and other methods, European J. Nucl. Med. 13 28-31. 

e. Reduction of dimensionality. In Encyclopedia of Physical Science and Technol. Vol. 12, 
pp. 61-78. Academic Press, New York. 

f. (with FUJIKOSHI, Y., AND SCHMIDHAMMER, J.) Effect of additional variables in principal 
component analysis, discriminant analysis and canonical correlation analysis. Advances in 
Multivariate Statistical Analysis, 45-61. 

g. (with RAO, M. B., AND SUBRAMANYAM, K.) A structure theorem on bivariate positive 
quadrant dependent distributions and tests for independence in two-way contingency tables. 
J. Multivariate Anal. 23 93-118. 

h. (with BAI, Z. D., AND ZHAO. L. C.) Multivariate Components of Covariance Model in 



14 IN MEMORIAM: P. R. KRISHNAIAH 

Unbalanced Case. Technical Report No. 87-03, Center for Multivaiate Analysis, University of 
Pittsburgh. Comm. Statist. A, in press. 

i. (with BAI, Z. D., RAO, C. R., SUN, Y. N., AND ZHAO, L. C.) Reconstruction of the Shape 
and Size of Objects from Two Orthogonal Projections. Technical Reprt No. 87-08, Center for 
Multivariate Analysis, University of Pittsburgh. 

j . (with MIAO, B. Q.) Control Charts when the Observations Are Correlated. Technical 
Report No. 87-09, Center for Multivariate Analysis, University of Pittsburgh. 

k. (with MIAO, B. Q.) Detecting and Interval Estimation about a Slope Change Point. 
Technical Report No. 87-11, Center for Multivariate Analysis, University of Pittsburgh. 

1. (with BAI, Z. D., AND ZHAO, L. C.) On the Direction of Arrival Estimation. Technical 
Report No. 87-12, Center for Multivariate Analysis, University of Pittsburgh. 

m. (with BAI, Z. D., AND ZHAO, L. C.) On the Asymptotic Joint Distributions of the Eigen-
values of Random Matrices Which Arise under Components of Covariance Model. Technical 
Report No. 87-16, Center for Multivariate Analysis, University of Pittsburgh. 

n. (with BAI, Z. D., CHEN, X. R., Wu, Y., AND ZHAO, L. C.) Strong Consistency of 
Maximum Likelihood Parameter Estimation of Superimposed Exponential Signals in Noise. 
Technical Report No. 87-17, Center for Multivariate Analysis, University of Pittsburgh. 

o. (with BAI, Z. D., CHEN, X. R., AND ZHAO, L. C.) Asymptotic Property on the EVLP 
Estimation for Superimposed Exponential Signals in Noise. Technical Report No. 87-19, Center 
for Multivariate Analysis, University of Pittsburgh. 

p. (with MIAO, B. Q., AND ZHAO, L. C.) Local Likelihood Method in the Problems Related 
to Change Points. Technical Report No. 87-22, Center for Multivariate Analysis, University of 
Pittsburgh. 

q. (with BAI, Z. D., AND ZHAO, L. C.) Variable Selection in Logistic Regression. Technical 
Report No. 87-23, Center for Multivariate Analysis, University of Pittsburgh. 

r. (with ZHAO, L. C , AND CHEN, X.R.) Almost Sure Lr-Norm Convergence for Data-Based 
Histogram Density Estimates. Technical Report No. 87-30, Center for Multivariate Analysis, 
University of Pittsburgh. 

s. (with MIAO, B. Q., AND WONG, H.) Multidimensional Control Chart for Correlated Data. 
Technical Report No. 87-33, Center for Multivariate Analysis, University of Pittsburgh. 

t. (with TANIGUCHI, M., ZHAO, L. C , AND BAI, Z. D.) Statistical Analysis of Dyadic 
Stationary Processes. Technical Report No. 87-40, Center for Multivariate Analysis, Univer-
sity of Pittsburgh. 

u. (with BAI, Z. D., AND ZHAO, L. C.) On Multiplicities of the Eigenvalues of Components of 
Covariance with Applications in Signal Processing. Technical Report No. 87—41, Center for 
Multivariate Analysis, University of Pittsburgh. 

v. (with MIAO, B. Q.) Review about Estimation of Change Point. Technical Report 
No. 87-48, Center for Multivariate Analysis, University of Pittsburgh. 



Joint Asymptotic Distribution of Marginal Quantiles 
and Quantile Functions in Samples 

from a Multivariate Population* 

G. JOGESH BABU 

The Pennsylvania State University 

AND 

C. RADHAKRISHNA RAO 

University of Pittsburgh 

The joint asymptotic distributions of the marginal quantiles and quantile 
functions in samples from a /7-variate population are derived. Of particular interest 
is the joint asymptotic distribution of the marginal sample medians, on the basis of 
which tests of significance for population medians are developed. Methods of 
estimating unknown nuisance parameters are discussed. The approach is completely 
nonparametr ic . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

Let X= (x,,..., xp) be a random vector with joint d.f. (distribution 
function) F, ith marginal d.f. Fh (/, y)th marginal d.f. Fv and ith marginal 
density function / ) . We denote the ith marginal quantile function by 

ξώ) = ΡΓι{ς) = ηΐ{χ:ΡΑχ)>9}9 0<q<\ (1.1) 

and, for convenience, a specific quantile say the #,th of Ft by 

fli=W?/). (1.2) 
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Further, let 

r\iM>r) = Futti<l)^M)) (1-3) 

and denote for given qt and qj9 

°ij = *\Mi > qj)-<li<lj = Fij(ei> ej)-<li<lr ( 1 4 ) 

The parameters (1.1 )-( 1.4) defined above refer to the d.f. of X. 
Now let 

Xi = (xU9...,xpi\ I,...,/I (1.5) 

be « independent copies of X and denote the empirical d.f. of 
{Xi9 i= 1,..., n) by Fin) and the corresponding /th and (i,y)th marginal 
distributions by F5W) and F^, respectively. We denote the quantities 
(1.1)—(1.4) defined in terms of Fin\ F{?\ and /*?> by 

£{»>(?), θ\"\ and σ ^ (1.6) 

or simply as 

£,.(?), Ö,, and σ, (1.7) 

as estimates of £,(#), Ö,·, and σ/>5 respectively. 
In this paper, we derive the asymptotic distribution of 

* = 0χ,...,ορ) = (ξι(ςχ)9...9ξρ(ςρ)) (1.8) 

for given ql9..., qp and also the joint distribution of the marginal quantile 
processes 

Uq\ 0<q<l,i=l9...,p. (1.9) 

The asymptotic distributions of the empirical quantle process (Csörgö and 
Révész [6]) and of a fixed set of specified quantiles (Mosteller [11]) in 
one dimension are well known. 

Of particular interest is the joint asymptotic distribution of the marginal 
sample medians 

(£(i),..., £,(*)) (l.io) 
using which we develop tests of significance for the population medians 
analogous to tests for the means in the multivariate case (see Rao [12, 
pp. 543-573]). An early work on the joint asymptotic distribution of the 
sample medians is due to Mood [10]; see also Kuan and Ali [8 ] , where 
they assume the existence of the density function for the vector variable X. 
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We obtain the dsitribution in the general case in a form convenient for 
practical applications. 

2. DISTRIBUTION OF THE MARGINAL SAMPLE QUANTILES 

We prove the following theorem concerning the joint asymptotic 
distribution of 

( 6 ΐ 9 . . . 9 ο ρ ) = (ξι(9ι)9...9ξρ(ςρ))9 (2.1) 

the sample tfjth,..., qpth quantiles of the marginal empirical distributions of 
xu..., xp9 respectively. 

THEOREM 2.1. Let Ft be continuously twice differentiable in a 
neighborhood ofdt and δ,- = /)(ξι·(^/)) = /Χ0ι·) > 0, / = 1,..., /?, where f denotes 
the derivative of Fj. Then the asymptotic distribution of 

yn = ^t0l-el,...Jp-ep) (2.2) 

is p-variate normal with mean vector zero, and variance-covariance matrix 

' g i ( l - g i ) <f\2 °\P 

δ\ δίδ1 "' δ^δρ 

Σ = 1 I (2.3) 

g/,1 σρ2 9pi\-9p)\ 

δρδ> δρδ2 '" δρ 

where σ0 are as defined in (1.4). 

Proof By Bahadur's representation of the sample quantiles (see 
Bahadur [4]), 

(log/2)-1«3/4 |(ο,-0,)-ίΓ !(Γ/-9/)Ι - ^ °> < = *> - Λ (2-4) 

where r^F^Ö,·)· Then, it follows that 

yn = y/it(Ôl-el,...Jp-ep) (2.5) 

and 

zn = J~n{ô^{rl-ql\...,ô;i{rp-qp)) (2.6) 

have the same asymptotic distribution. By the multivariate central limit 
theorem, zn weakly converges to a /?-variate normal distribution with mean 
vector zero and covariance matrix as given in (2.3). This proves 
Theorem 2.1. 
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For practical applications we need a consistent estimate of Σ as defined 
in (2.3). There are two sets of unknown {σ/7} and {δ^1} in Σ. A consistent 
estimate of σ{> is provided by âu as shown in Theorem 2.2. 

THEOREM 2.2. Let F0 be continuous at (0,, 0,·) = (£/(?,·), £,·(?,·))· Then 

*v = F$\tT\qt\ fj">(?>)) = /*»>(0„ êj) - σ, = F,(0,, 0,) a.e. as n^œ. 

(2.7) 

Proof. 

\F^et,ej)-F^\èt,6j)\ 
< |F„(0„ 9j) - Fß„ Ôj)\ + sup |F,(*, j ) - F<;>(x, y)\. (2.8) 

Since F,·,· is continuous at (0,·, 0y) and 

sup \F0ix9 y) - ψ(χ9 y)\ - 0 a.e. (2.9) 

it follows that the expression on the left-hand side of (2.8)-►0 a.e. which 
establishes the result (2.7) of Theorem 2.2. Equation (2.9) is a consequence 
of Theorem 7.2 of Rao [13]. 

The result (2.7) implies that σ0 in (2.3) can be consistently estimated by 
its sample equivalent â0-. 

There exist several methods for the estimation of δέ (see Krieger and 
Pickards, III [7] and the references therein). Recently, a consistent and 
efficient estimator of ôj~l based on a sample of size n has been proposed by 
Bahu [2] under the assumption that /) is continuously differentiable at 
£,·(#/). There is a possibility of this estimate taking negative values, and 
when this happens some modification of the estimate may have to be made. 
Using consistent estimates of ôi} and ôr\ a consistent estimate of σ0-/δ^-, 
the (/, y)th element of Σ, can be obtained as ây/SiSj. 

Another possibility is to obtain a direct estimate of σν/δ^ by the 
bootstrap method 

ôM = Ε*1η(θ* - 0,0(0/ - 0,·)] (2.10) 

where F* is the expectation under the bootstrap distribution function. The 
consistency of the estimator (2.10) can be proved on the same lines as those 
given by Babu [3] for the bootstrap estimate of the variance of the sample 
median. 
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3. TESTS OF SIGNIFICANCE BASED ON MEDIANS 

Let 

Ο ; Η 0 Ι / , . . · Λ / ) > ^ (3.1) 

be the marginal sample medians and an estimate of Σ (as defined in (2.3)) 
obtained from a sample of size nt from a p-variate population 77,, 
i= l , . . . , k. Further let 9ί=(θ1ί9...9θρί) be the true value of the marginal 
medians for 77,. To test the hypothesis 

β ,= · · · = θ , (3.2) 

we can use the statistic 

χ2 = trace [ £ π , ^ Μ ί - ^ Σ Λ ^ Γ 1 ) » ' ] , (3.3) 

where 

Ö = ( l » ^ r ' ) ' Σ»>ΣΓ% (3.4) 

as chi-square on p(k — 1 ) degrees of freedom, provided the individual sam-
ple sizes nu ..., nk are large. 

In cases where a common Σ for the k populations can be assumed, we 
have the problem of estimating Σ from the combined sample. For this pur-
pose we consider the residual vectors by replacing each observed vector by 
its difference from the sample median vector computed from the sample to 
which the observed vector belongs. There are altogether η = {ηγ+ · · · + nk) 
residual vectors, arising out of the k different samples, from which we con-
struct a /7-dimensional empirical distribution function E with the marginal 
medians as zeros. Then σ,·,· can be estimated from Eij9 the (/, j)th marginal 
d.f. of E as indicated in (2.7) and (5, from Ei9 the rth marginal d.f. of E using 
any of the methods described at the end of Section 2. If we denote a 
common estimate of Σ by 27, then we can develop tests of significance 
concerning the structure of the median vectors θ,, / = 1,..., k9 as in the case 
of mean values (see Rao [12, p. 556]). For this purpose we compute the 
"between populations" matrix 

S= X nfift-nW (3.5) 
/ = i 

where «Θ = «1Θ1 4- ··· +«*ΘΛ, and set up the determinental equation 

\Ξ-λΣ\=0. (3.6) 



20 BABU AND RAO 

The roots of Eq. (3.6) can be used as in the table on p. 558 of Rao [12] to 
test the dimensionality of the configuration of median values. 

4. JOINT DISTRIBUTION OF THE MARGINAL QUANTILE PROCESSES 

In Section 2 of the paper, we derived the joint asymptotic distribution of 
specified marginal quantiles. We now derive the weak limits of the entire 
marginal quantile processes after suitable scaling. More specifically we 
consider the processes {Zn} indexed by (ql9..., qp)e(0, \)P, where 

ZB(?1,...,?p) = v^[/1(i1(?1))({ (
1->(?1) 

-ÎM^-JP^P{qP)WP
n\qP)-^P{qP))l (4.1) 

We first simplify the problem using the following result which is essentially 
a restatement of Theorem 5.2.2 of Csörgö and Révész [6] . 

THEOREM 4.1. Suppose that for i = 1,..., /?, the marginal d.f Ft is twice 
differentiable on (ai9 ft,-), where 

— oo ^ a / = sup{x:i7
/(x) = 0} 

oo ^ bt, = inf{x : F;(x) = 1} 

and Fj=fi^0 on (#,£/). Further assume that 

max sup F ^ ) [ l - F , . ( x ) ] l ^ U œ 
1 aj<x<bi J i\X) 

and ft is non-decreasing (non-increasing) on an interval to the right of at (to 
the left ofbi). Let 

y^qu^qP) = ^n(vnqi)-qu^vP
n\qP)-qP\ 

where V\n) is the empirical d.f of the uniform variables 

Uij = Fi(Xij)> 7 = 1 , . . . , / ! . 

Then 

sup | | r*(q)-Z„(q)l l -0 a.e. (4.2) 
q e (0,1 y 

Hence {Y*} and {Zn} have the same limit. 
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Note that the marginals of {Y'*} converge weakly to a Brownian bridge 
on C[0, 1] (see Billingsley [5, p. 105]). Since the paths of the limiting 
process are continuous, we define a new process Yn close to Y* as follows. 
Let D[n)(t) be, as a function of te 10, 1], the d.f. corresponding to a 
uniform distribution of mass («+1) _ 1 over each of the («+ 1) intervals 
[</,_!,</,], 7=1,..., Λ + 1, where d0 = 0, dn+l = l, and dl9...,dn are the 
values of uil9..., uin arranged in increasing order. Clearly 

\V\n\t)-D^\^K <Uf<la.e. 

Soif 

Yn(q) = χΑ(^(Γ}(^ι) - i i , . . . / ^ ( ί , ) - ?p) 

then 

l in(q) -^*(q)K«- 1 / 2 Vqe[0,l]^a.e. 

As a consequence, {7W} and {Zn} have the same weak limits and the 
marginals of Yn are continuous functions. Note that 

Yn e B = {A: A(q) = (Μίιλ ... hp(qp)\ht 

is a continuous function on [0, 1], i = 1,..., p}. 

Clearly B is a separable closed linear subspace of the Banach space Cp of 
continuous functions on [0, \γ into Up. 

We shall show that {Yn} converges weakly to a Gaussian measure on B. 
A probability measure μ on B is called Gaussian if for every HeB*, the 
space of real continuous linear functionals on B, μΗ~ι is Gaussian on the 
line (see Aranjo and Giné [1, pp. 140-142, 28, and problem 2 on p. 33]). 

To characterize B*, let H be a real continuous linear functional on B. 
Then 

H(hl9..., hp) = H(hl90,..., 0)+ ... +//(0, 0,..., hp) 

= /f1(A1)+...+^(A# ,) , say. (4.3) 

The zeroes in the first line of (4.3) refer to the zero function. Clearly, each 
Hi is a real continuous linear functional on C[0, 1]. It then follows that B* 
is the fc-fold direct sum of the dual space C* of C[0, 1]. By Riesz's 
representation theorem, for any L e C*, there exists a signed measure v on 
[0, 1] such that 

L(f)=Cf(x)dv(x) 
Jo 
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for any / e C [ 0 , 1] (see Dunford and Schwartz [9]). Thus for every 
HeB*, there exist signed measures Vj,..., vp on [0 ,1 ] such that for 
/ = ( / l / , ) 6 i , 

H(f)=t f7/(*) *,(*)· 
Now let 

A = < Σ α 7 ε χ . :0^χ 7 ^1 ,χ 7 , ^ra t ional ,y=l , . . . , r , r = 1,2,... 

where εχ is the probability measure putting all its mass at JC. It is easily seen 
that A is dense in C* and is countable. We now state the main result. 

THEOREM 4.2. {Yn} converges weakly to a Gaussian random element 
^ = ( ^ l v . . , Wk) in B9 where Wt is a Brownian bridge for each i and 

E( WM Wj(s)) = P(F,.(x„)< /, Fj(Xji)^s)-ts (4.4) 

for all U j and 0 ^ /, s ^ 1. 

Proof Since {y/n(D\n)(t)-1): 0 ^ / ^ 1} is tight for each i in C[0, 1], 
it follows that {Yn} is tight in B. Since A is dense in C*, in order to 
show that {Yn} has a weak limit it is enough to show that for any 
?n , . . . , #lr,..., ?,!,..., qpr in [0, 1] and oty real 

i = l > = 1 

converges weakly. This holds because of the central limit theorem and the 
fact that 

sup \v\n\t)-D\n)(t)\^- a.e. 
0 < / = ζ 1 n 

To complete the proof it is enough to show the existence of W satisfying 
(4.4). 

Since {Yn} is tight, there exists a random element Y on B and a 
subsequence {Y„>} such that Yn. converges weakly to Y=(Y{1\ ..., Y{p)). 
Further, from the above arguments 

Σ Σ « ^ ' W and f Σ «^ιί^) 
/ = 1 y = l i = l 7 = 1 
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have the same distribution as that of normal random variables. So it 
follows that Y satisfies the properties of W mentioned in (4.4) and Y is 
Gaussian. Thus Yn converges weakly to W, and in view of Theorem 4.1, 
{Z„} converges to W. 
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Kernel Estimators of Density Function 
of Directional Data 
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University of Pittsburgh 

Let X be a unit vector random variable taking values on a Â>dimensional sphere 
Ω with probability density function f(x). The problem considered is one of 
estimating f{x) based on n independent observation Xu ..., Xn on X. The proposed 
estimator is of the form fn(x) = (nhk ~l ) 'l C(h) Σ?= i # [ ( 1 - x'Xi)/h2], x e Ω, where 
K is a kernel function defined on R + . Conditions are imposed on K and / to prove 
point wise strong consistency, uniform strong consistency, and strong Lrnorm 
Consis tency Of / „ a s a n e s t i m a t o r Of / © 1988 Academic Press, Inc. 

1. INTRODUCTION 

There is considerable literature on non-parametric estimation of the 
probability density function (pdf) of a random variable taking values in Rk 

through kernel functions. If Xx,..., X„ is a sequence of random ^-vectors 
with / as the common pdf, then the Rosenblatt-Parzen kernel estimator is 
of the form 

Λ(χ) = («/**)-'£ KKx-X,)lh„-\, xeRk, (1.1) 
1 

where K is a bounded pdf on Rk and {hn} is a sequence of positive 
numbers. The object of the present paper is to develop a suitable theory 
of kernel density estimation for random variables taking values on a 
A>dimensional unit sphere Qk, which we denote simply by Ω dropping the 
suffix throughout the paper. 
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Contract F49620-85-C-0008. The United States Government is authorized to produce and 
distribute reprints for governmental purposes notwithstanding any copyright notation hereon. 
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The subject is of some practical interest as there are many situations 
where observed data are in the form of direction cosines or in the form of 
vectors scaled by an unknown positive scalar so that only the direction is 
known. Problems of inference based on such data are discussed under 
various parametric models for the pdf on Ω (for a review of the literature 
on the subject see books by Batschelet [1 ,2 ] , Mardia [7 ] , and Watson 
[11], the review paper by J. S. Rao [9 ] , and a recent paper by Pukkila 
and Rao [8] for derivation of particular parametric models for directional 
data). 

Let Xx,..., Xn be i.i.d. unit vectors with / as the common pdf on Ω such 
that 

f f(x)dœ(x)=\ (1.2) 

where ω is the Lebesgue measure on Ω. 
Theoretically speaking, to estimate the density f(x) on Ω, we can 

proceed as follows. First select a one-to-one mapping φ from Ω onto or 
into Rk~l (which may be chosen as continuous or even arbitrarily differen-
tiable). Then based on the transformed data φ(Χχ),..., φ(Χ„)9 by using 
the usual (kernel, nearest neighbor, or orthogonal series, etc.) density 
estimation, we can construct an estimate of the density of φ(Χ). Finally, by 
the inverse transform, we get an estimate of f{X). However, two kinds of 
difficulties arise in practice. First, the transform and its inverse may be 
complicated and difficult to compute, especially for large k. Second, 
whatever transformation is used, there is at least one point at which the 
density cannot be estimated. This happens even for k = 2. If we consider the 
density function f(x) on the unit circle as that on the interval [ — π, π] 
when / ( π ) = / ( — π)>0 , then f(x) is not a continuous function on Rl 

(assuming /(JC) = 0 outside this interval). Hence there is no kernel density 
estimate of f(x) which is uniformly consistent (even in the sense of weak 
convergence). Therefore, we have to choose a mapping to transform the 
unit circle onto Rl. In this case, the transform and its inverse may be com-
plicated and the value of the density at the point ( — 1,0) cannot be 
estimated since this point corresponds to infinity by the transform. The 
main purpose of this paper is to propose a method by which we directly 
estimate the density on Ω, and to investigate the limiting properties of this 
estimate. 

When k ^ 2 , we propose the following kernel estimator of f(x) based on 
X\9 ···» Xn> 

fn(x) = {nhk-l)-lC(h)£ tf[(l-*%)/A2], xeQ, (1.3) 
i= 1 
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where h = hn > 0, K{ · ) is a non-negative function defined on R + = [0, oo ) 
such that 

0 < K(v)vik-3)/2dv<oo (1.4) 

and C(A) is a positive number such that 

hk-{lC(h)Y'=\ K[(\-x'y)lh^dœ(y). (1.5) 

Here the above integral is obviously independent of x. 
Using the result (2.2.2) given in Watson [11, p. 44], the integral (1.5) 

can be written as 

2 π » * - 1 ) / 2 2 / Λ 2 

Γ [ ( * - 1 ) / 2 ] 
I iT(t;)i;(*-3>/2(2-i;A2)(*-3)/2£fc. (1.6) 
Jo 

We note that if {hn} is such that ΑΛ->0 as n-> oo, then by (1.4) and the 
dominated convergence theorem 

lim [ C ^ ] 1 ^ 1 ' n n i K(v) v<k'M dv = λ (say). (1.7) 

Some examples of the choice of the kernel function are as follows: 

K( v ) = e ~v ( Longe vin-Von Mises-Fisher distribution ) 

= 1 if v < 1, = 0 otherwise (uniform distribution on a cup). 

In this paper, we study the various conditions under which fn(x) -> f(x) 
a.s. pointwise, uniformly, and in Lrnorm. 

We quote some lemmas which will be used in the proofs of theorems in 
later sections. 

LEMMA 1. Let ξι,...,ξη be independent random variables such that 
Ε(ξί) = 0 and ν(ξ() = σ2, / = 1,..., n. Further let there exist a finite constant b 
such that P(|£/| ^ b) = 1, / = 1,..., n. Then for any ε > 0 and all n, we have 

n-1 Σ ti ̂  ε U 2 exp[ -ηε2/(2σ2 + *ε)], (1.8) 

where σ2 = η ι(σ2 + · · · 4- σ2). 
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For a proof, see Hoeffding [6] . 
In order to state Lemmas 2 and 3, we introduce some concepts and 

notations. Let xl9..., xr be r points in Rk, and se be a class of Borel sets in 
Rk. Denote by Δ^{χχ,..., xr) the number of distinct sets in {Fn A :A esé), 
where F— {xu ..., xr). Define 

νη*{τ) = max A"{xl9..., *r). (1.9) 
F 

Vapnik and Chervonenkis [10] showed that m^(r) = 2r for any positive 
integer r, or m^(r)^r5 + 1 , where ^ is the smallest integer j such that 
m^U) φ 2j. A class of sets se for which the latter case holds will be called a 
V-C class with index s. 

Let Xl9X2,..., be a sequence of i.i.d. random vectors in Rk with a com-
mon distribution μ and μ„ be the empirical distribution of Xl9.„9Xn. 
Denote a "distance measure" between μη and μ by 

/>„(.«/,/i)= Sup \μη(Α)-μ(Α)\. (1.10) 

Further, assume that 

Ό„(^,μ), sup |μ„(Λ)-μ2„(Λ)|, sup μη(Λ) (1.11) 

are all random variables. We have the following lemma. 

LEMMA 2. Let srf be a V-C class with index s such that 

sup μ(Α)^δ^Ι (1.12) 
Aej* 

Then for any ε > 0; 

Ρ{Ζ)/ ί(^,μ)>ε}^5(2«)^χρ[-Α2ε2/(91ό + 4ε)] 

+ 7(2n)5exp(-<5/i/68) 

+ 22 + V + 25exp(-(5«/8) (1.13) 

provided 

«^max(12<5/e2, [68(1+s) log 2]/(5). 

For a proof of Lemma 2, the reader is referred to Zhao [13]. 
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Denote by |||| the Euclidean norm on Rk. Write 

B(x9p)={y:\\y-x\\<p}9 xeRk,p>0, 

B(x9p)={y:\\y-x\\<p}9 xeRk
9p>0. 

We have the following lemma. 

LEMMA 3. If B(k) denotes the set of all open balls B(x9 p) and B(k) 
denotes the set of all closed balls B(x, p), then B(k) and B(k) both belong to 
the V-C class with the same index s = k + 2 for all k = 1, 2,.... 

For a proof see Wenoeur and Dudley [12] (1981). 

LEMMA 4 (A multinomial distribution inequality). Let nl9..., nm be the 
frequencies in m classes of a multinomial distribution in n = nx+ · · · +nm 

independent trials. Then for all ee(0, 1) and all m such that (m/n) ^ε2/20, 
we have 

p ( £ \ni-Eni\>ne\^3exp(-ne2/25). (1.14) 

For a proof, see Devroye [3] . 

2. POINTWISE STRONG CONSISTENCY 

We prove the following theorem on pointwise strong consistency of fn(x) 
as defined in (1.3) as an estimator of f{x). 

THEOREM 1. Let K() and {h„} satisfy the following conditions: 

(a) K is bounded on R+9 

(b) 0<J^° K(b)v{k-3)/2dv<ao9 

(Cl) limv_oov
(k-l)/2K(v) = 0or 

(c2) / is bounded on Ω, 

(d) l i m ^ ^ A„ = 0, and 

(e) lim„ _ œ(nhk- Vlog n) = oo. 

Then at any continuity point x off 

lim fn(x)=f(x) a.s. (2.1) 
n - » oo 

We need the following lemma to prove Theorem 1. For convenience of 
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notation we write h for h„ throughout the paper except in the statements of 
theorems. 

LEMMA 5. Suppose that the conditions (a) — (d) of Theorem 1 hold. Then 
at any continuity point x off 

\Efn(x)-f(x)\^0 as n^oo. (2.2) 

Further, iff is continuous on Ω, then 

lim Sup !£/„(*)-/(*)|= 0. (2.3) 
n -*■ oo x 

Proof. Using (1.5), 

\Efn(x)-f(x)\=C(h)hl-k\\ Kl(l-x'y)/h2^f(y)-Ax)ldw(y)\ 

^ ( A ) * 1 " * f Kl{\-x'y)lh^ \f(y)-f(x)\d(D(y) 

+ C(h)hi-kf(x) f Kl(l-x'y)/h2lda>(y) 
Jl — x'y > δ 

+ C(h)hi-k\ KÎl-x'y)/h2my)da>(y) 
Jl-x'y>ô 

= /I + /2 + /3 (say). (2.4) 

By continuity of / at x, we can find δ > 0 for any given ε > 0 such that 
\f(y)-f{x)\ <ε for l-x'y^S. Thus, by (1.5), 

Ii^eC(h)h1~k\ Kl\-x'y)lh2~\dw(y) = E. (2.5) 

Now, let condition (c,) of Theorem 1 hold. Then 

73<C(A)5(1-*)/2 sup K(v)v("-lV2i f{y)dco(y)-*0 as n - o o 
« > a/A2 J ß 

(2.6) 

by (1.2), (1.7), and conditions (ct) and (d) of Theorem 1. Further, we have 

^L(«-1)/2J J<v/.2 

^ ^ 7 Γ - Τ § Γ ^ * ) Γ ^ ( f ) ^ - 3 , / 2 ^ - 0 as „-»oo (2.7) Γ[(Α:-1)/2] hi* 



so that (2.8) and (2.9) imply that fn{x)-*f(x) a.s., which is the desired 
result. 

Put 

Then ξχ,..., ξη are i.i.d. and 

E^l) = 0^l\*:2hl-kC(h)M 

^(^)^A2(1/C)C2(A) f K2l(\-x'y)/h2my)dœ(y) 

<MA2(,-*»C2(A)i Kl{\-x'y)lh2]f(y)dœ(y), (2.10) 

where M is an upper bound of K on R+. By (1.7) and Lemma 5, there exist 
constants a>0 and a(x)>0 such that 

By Lemma 1, 

ρι\ίη{χ)-ηχ)\>ε~}=ρ\η-χ\Σά>λ 
L I i I J 

^2εχρ[-ηε2/(αεΑ1-* + 2α(Λ:)Α1-*)] 
= 2 exp[ -nA* " V/(2a(;c) + ae)]. 

By condition (e) of Theorem 1, 

Σ W „ M - Efn(x)\ > ε] < oo =►/„(*) -£ / , (*) = 0 a.s., 
n 

i.e., (2.9) holds, which together with (2.8) implies (2.1), the result of 
Theorem 1. 
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by (1.4) and (1.7). Equations (2.5)-(2.7) imply (2.2). The results (2.2) when 
(c2) is true and (2.3) can be proved in a similar manner. 

Proof of Theorem 1. By Lemma 5, we have 

lim Efn(x)=f(x); 
n —* oo 

(2.8) 

lim [/„(x)-£/■„(*)] = 0, a.s., 
n -*■ oo 

also we shall prove that 

(2.9) 
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3. UNIFORM STRONG CONSISTENCY 

In the following we assume that μ is a measure on Ω with f(x) as the pdf 
and μη is the empirical measure based on the sample X{,..., Xn. We have 
the following theorem which is parallel to that for the standard case given 
by Bertrand-Retali [ 4 ] : 

THEOREM 2. Suppose that f is continuous on Ω and K is bounded on R + 
and Riemann integrable on any finite interval in R + with 

i °°Sup{A:( W ) : |yü- v /^ |< l} i ; ( / r - 3 ) / 2 r f i ;<oo. (3.1) 

Ifhn^0and 

(nhk
n~

1 /log n)^oo (3.2) 

as n-> oo, then 

8 ΐ φ | Λ ( * ) - / ( χ ) | - 0 a.s. (3.3) 

Proof. The proof of Theorem 2 is similar to that of Theorem 1 in 
Devroye and Wagner [5] . Here we give only a sketch of the proof. By 
Lemma 3 of Devroye and Wagner [5] , for each η, δ small and p large we 
can find a function 

Wo 

Κ*(ν) = Σ*ίΙΑ,(ν), 
i 

where IA. is the indicator function: 

(i) OÉJ, ..., α^0 are non-negative numbers, 
(ii) Al9..., ANo are disjoint intervals contained in [0, p ] , 

(iii) \K*(v) — K(v)\ <η on [0, p ] except on a set D9 

(iv) DçB=\JY*Bi9 where BU...,BN* are intervals in [0, p ] whose 
union has Lebesgue measure less than (5, and 

(v) msixl^i^No(xi^supvK(v) = M (say). 

We note that continuity of / on Ω implies that it is uniformly continuous 
and f(x) ^ Mf (some constant) on Ω. By Lemma 5, 

sup |£ / ,
n (x) - / ( jc ) | ->0 a.s. as Λ-*ΟΟ. (3.4) 
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Uln(x) = hl-kC(h)\ \Ki(l-x'y)/h2l-K*l(l-x'y)/h2-\\f(y)da>(y), 

t/2.W = A'"*C(A)|Î K*l(l-x'y)/h2]dlßn(y)-ß(y)V, 

U3„(x) = hi-kC(h) [ |**[(1-χ>)/Α 2]-*[(1-χ>)/Α 2] |φ„(.ν) , 

we have 

sup \fn(x)-Efn(x)\ ^ X sup £/,„(*)· (3.5) 

Following Devoye and Wagner [5], we can prove that 

Sup Uln(x) and Sup U3n(x) (3.6) 

can be made arbitrarily small by choosing η, δ small and p large enough. 
Let 

A*(x)={yeQ:l(\-x'y)/h2leAi}. 

Then 

μ(Α*(χ))=\ f(y)dœ(y)^M 

(say). 

/r[(*-i)/2]J0 

= chk (3.7) 

Hereafter, c denotes a positive constant but may take different values at 
different appearances, even in the same expression. 

If we choose At= [a,·, Z>,), /'= 1,..., Λ ,̂ then 

Writing 

A f (x) = {y e Ω : φα,h < || y - x\\ < φΕ^}. 

rf = {A*(x):xeQ,i=l,...,N0} 

we have by Lemma 3, 

mJ*(n)4:2(nk + 2+l)2 for any«. (3.8) 
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Hence si is a V~C class with some index s as defined in the text following 
(1.9). Then using Lemma 2 quoted in Section 1, we have 

P{sup U2n(x)^s} ^cnl + 2sexp(-cnhk~l), (3.9) 

By (3.2), we have 

£P[sup U2n(x)^s] < oo for any ε>0. 
n x 

Then, by the Borel-Cantelli lemma, 

supi/2„(.x)-*0 a.s. (3.10) 

(3.5), (3.6), and (3.10) complete the proof of Theorem 2. 

4. STRONG Z^-NORM CONSISTENCY 

In the following, we establish under some conditions the strong Lj-norm 
consistency of fn(x)9 i.e., 

f |/„(x)-/(*)| *>(*)-> 0 a.s. (4.1) 

The precise statement is given in Theorem 3. 

THEOREM 3. Suppose that 

(a) Γ vik-3)/2K(v)dv<oo, (4.2) 
Jo 

(b) hn-+0andnhk
n-

1 -► oo asn->cc. (4.3) 

Then, for any given ε>0, there exists a constant c>0 such that 

pU\f„(x)-f(x)\dœ(x)>s^e-cn. (4.4) 

Proof By (1.5), 

Vn=\ \Efn(x)-f(x)\dco(x) 

^hl-kC(h)\ dw(x)\ Kl(\-x'y)/h2l\f(y)-f(x)\d(»{y). 
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Given ε>0, we can find a non-negative continuous function g(x) on Ω 
such that 

f \f(x)-g(x)\dœ(x)<s/6. (4.5) 

Then 
Vn^\ h^kC{h)dœ{x)\ Kl(l-x'y)/h2l\f(y)-g(y)\dœ(y) 

+ [ hx-"C(h)<ko(x) f Kl(l -x'yVh2-] |/(jf)-g(jc)| dco(y) 

+ f A'-*C(A)<*«(*)[ K[_{\-x'y)lh2-\\g(y)-g(x)\dœ(y) 

= >Λ« + Λ„ + Λ«, say. (4.6) 
By (1.5) and (4.5), 

Jln = hl-kC(h)\ \Ay)-g(y)\dœ{y)\ K[(l - x » / A 2 ] do>(x) 

= f l / ( j ) - ^ j ) l ^ ( j ) < e / 6 . (4.7) 

In the same way, 
J2n<e/6. (4.8) 

Let us denote Mg = sup{g(x)9 ΧΕΩ} and i2j(x)= {^ei2: 1 —χ>>ρΛ2}. 
As in (3.9), we can take p sufficiently large such that 

f hl-kC(h)<ko{x)\ Kl(\-x'y)/h2l\g(y)-g(x)\d(o(y) 

^Mgh
l-kC(h)[ da>(x)[ #[(1 -x'y)/h2] dco(y) 

<M* r Z i <*»<*> v^-3^K(v)dv<s/l2. (4.9) 

By uniform continuity of g(x) on Î2 and (1.5), we see that for large n, 

f Ä 1 ^C(A)^(x ) [ ^ [ ( l - x » / Ä 2 ] | g ( > ; ) - g ( x ) | ^ ( j ) 
ß - ß ! ( . x ) 

ε 
12ω(ί2). 

(4.10) 

^ . " . f άω{χ) ί Λ'-*αΑ)Α:[(1-χ»/Α2]ί/ω(>')<ε/12. 
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By (4.6)-(4.10), for large «, 

Vn<e/2. (4.11) 

Take K*(v)^0 such that 

C(h)(2n){k~i)/2 r°° 
Γ[(*-1) /2] ί Ι*(»)-**(ι ')Ι ι '<*-3 , /2*<ε/6> <4·12) 

and put 

fn*(x) = n-ihl-kC(h) £ tf*[(l-x%.)/A2]. (4.13) 

As in (1.6) we have 

f \f„(x)-f„*(x)\da>(x) 

^ΛΤ1*1-*^*) Σ ί |^[(1-χΧ)/Α2]-^*[(1-χ%)/Α2]|ί/ω(χ) 

^ ri(k- l)/2] L ' ^ ^ " ^ ^ 1 ^ " 3 ) / 2 ^ < ^ (414) 

and 

f |£/B(*)-£/„·(*)!<*»(*) <e/6. (4.15) 

We can take 

**(v) = Σ α,/^ν), 
y = i 

where Λΐ5..., ^4^ are disjoint finite intervals on R+. By (4.11), (4.14), and 
(4.15), in order that (4.4) holds, it is enough ro prove that for any ε{ >0, 
there exists a positive constant c such that 

P \]Q\f*(x)-Ef*(x)\da>(x)>sx\*ie-c». (4.16) 

Here we can take K*(v) = Iiab)(v). 
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For x = (xl9 ..., xky ΕΩ, we can represent x in polar coordinates 

X{ =COS 0 , 

x2 = sin θ{ cos 02 

(4.17) 

xk_{ = sin0! •••sin 0fc_2cos ö^_! 

x* = sin θχ --sin ö^.j 

with Ο^0,^π, ι=1,. . . , k — 2 and 0^9k_l^2n. Such a representation is 
unique except for a Lebesgue null set ΗαΩ. Take L > 0, and put 

J\p={x = x(eu...,ek_l)eQ-H:L-lh(ij-l)^0j<L-ihiJ}, 

ij = 1, 2,..., w - 1 = [A - 'Ζ,π], y=l,..., & - 2, 

i*_ ! = 1, 2,..., v - 1 = [A-x2Ln\ 

J^={x = x(ei,...,ek_l)EQ-H:(u-l)L-lh^ej^n}9 

y=l,..., fc-2, 

and 
A : - l 

Jii-ik-i
= Π ^(Λ /Ί,..., 4_2=1,2 , . . . , w;4_! = l,2,.. . , u. 

All these Jix...ik_{ constitute a pertition Ψ oi Ω — H. 
Take c and L such that 

c>max{x/2^Â:3/2,v
/2^Â:3/2H-(2L)-1Â:3} and 2L~lc<b-a. 

Put 

Λ = |>,6), ^ = [ a + L - 1 c , ^ - L - 1 c ] 

Λ * ( χ ) = { ; ; 6 ί 2 - / / : 0 ^ ( 1 - χ > ) / Α 2 < Ζ > } , ΧΕΩ-Η9 

^ * ( x ) = { j e ß - / / : ß + c L - 1 ^ ( l - x » / A 2 < Z ? - L - 1 c } , ΧΕΩ-Η, 

D(x)= (J J, ΧΕΩ-Η. 
Jef,Jc=A*(x) 

Now we proceed to prove that for x e f2 - //, 

G(x) = ̂ *(x)-D(x)c=^*(x)-Ä*(x) = G*(x). (4.18) 
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Assume that y = y(0\i...i9
,
k_i)eG(x). Then y^D{x\ and there exists a 

s e t Jii-ik-i
 a n c · a P°int ω = ω(0",..., 0*_i)e./„.. .,·*_, such that 

>>€/,·, ...,,_„ coe/,, . . .^, but ωφΑ*(χ). (4.19) 

Thus | 0 ; - 0 / | < £ - ' £ , and by (4.17), \yj-a>j\<jhL-\ where j 7 and ω, 
are the components of y and ω, respectively. Hence 

\\y-œ\\<k3/2hL-K (4.20) 

But ω£Λ*(.χ:)=> ||χ — ω|| ^y/lb h or ||JC — ω|| <Jla A, which in turn 
implies that 

\\x-y\\>(y/2b-k3/2L-l)h or | |JC- 7II < {^2~a + k3/2L~l)h 

i.e., 

l - x > > ( è - c L " 1 ) A 2 or 1-jc><(a + cL-1)A2. (4.21) 

Thus ^ 6 ^ * ( J C ) - 5 * ( 4 and (4.18) is proved. 
Since K*(v) = IA(v\ we have 

f \fn*(x)-Efn*(x)\dco(x) 

= A'-*C(A) f |μη(Λ*(χ))-/φ4*(χ)| <M*) 

^A1-*C(A)f Σ |μ,,(7)-μ(7)|Λ»(*) 

+ A'-*C(A) f MG*(*)) + A*.(G*W)]<AaW 

= ZlM + Z2„ (say). (4.22) 

For any probability measure v on Î2, we have 

hl~kC(h) f V[G*(JC)] Ao(x) 

= f rfv(j)f A|-*C(A)/y4_J,[(l-*»/A2]<fa)(x) 

αΑ)(2π)(*"ιν2Γ ( t . 3 W . ., 
^ rrA. n m v 3)/2dv<£J3 

ri(k-l)/2j heA-B 

(4.23) 
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by taking L sufficiently large. Thus 

Ζ2„<2ε,/3. (4.24) 

\{Je*P, yeJcA*(x), xeQ-H, then (l-x'y)<bh4. Hence 

0){xeQ-H:JcA*(x)} 

<f Il0,»U\-x'y)/h2-\da>(x)**chk-1, (4.25) 

where c is a positive constant. Thus by (4.22) and (4.25), we have 

Zln^cC(h) Σ |μ„(7)-ß(J)\*Zc Σ \ßn(J)-ß(J)l (4.26) 

Since # (V) ^ chx ~k= o(n) by (4.3), Lemma 4 can be used. Thus by (4.22), 
(4.24), and (4.26), we have 

P{\o\f*(x)-Ef*{x)\dco(x)>sl 

^Ρ\Σ |μΛ(/)-μ(/)Ι^(ε,/3Γ)}<*-™ 

where c>0 is a positive constant, which proves (4.16) the desired result. 
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On Determination of 
the Order of an Autoregressive Model 

Z. D. BAI, K. SUBRAMANYAM, AND L. C. ZHAO* 

University of Pittsburgh 

To determine the order of an autoregressive model, a new method based on 
information theoretic criterion is proposed. This method is shown to be strongly 
consistent and the convergence rate of the probability of wrong determination is 
e s tab l i shed . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

Consider an autoregressive (AR) model of order p (p^l, unknown) 
generated by a purely random process e(n) given by 

£ oi(j)X{n-j) = e(n\ α(0)=1. (1.1) 
j = o 

Assume that {e(n)} is a sequence of i.i.d. random variables with Ee(l) = 0, 
Ee2(\) = a2 and 0 < Var(e2(l))< oo. Suppose the coefficients in the model 
a(0), a(l),..., cc(p) satisfy 

g(z)=t * ( . / V * 0 for | z | ^ l . (1.2) 
, = o 

In time series analysis, AR models play an important role. An interesting 
problem in the analysis of AR models is the determination of the order p of 
the model. There is a considerable amount of research work done on this 
topic. To name a few, the reader is referred to Akaike [1] , Hannan [3] , 
Hannan and Quinn [4] , and Shibata [6] . 
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Let X(l\ X(2),..., X(N) denote a random sample drawn from an AR 
model of order p. Assume that the order p is known a priori to be 
p^K< oo. Using Yule-Walker equations and a recursive computing 
procedure, Hannan and Quinn [4] obtained an estimate a2 of σ2. To 
estimate /?, the following criterion based on â2 is proposed, 

xl*{p) = \ogô2
p + 2pCN-l\og\ogN, (1.3) 

where C > 1 is a constant. An estimate p of p is chosen as that one which 
minimises ψ(ρ). Under weaker conditions than mentioned above, strong 
consistency of p is obtained. 

In this article a new criterion to estimate the order of the AR model is 
proposed. Strong consistency as well as the convergence rate of the 
estimate p is established. 

The paper is organized as follows. In Section 2, a new method to deter-
mine the order AR model is described. In Section 3, convergence rates 
of Ρ{ρΦρ) is derived. Some general remarks, including the strong 
consistency of p, are made in Section 4. 

2. DETERMINATION OF THE ORDER p 

Let X(l\ X(2\..., X(N) be a random sample from an AR series. Define 

Lp(*P)= Σ (x(n)+t"WX(»-0), (2.1) 

where ap = (a(l),..., a(/?))'. The true order p of the model and the true 
regression coefficients a(l),..., oc(p) will be denoted as p0, a0(l),..., 0L0(p0), 
respectively. 

For each p ^ K choose ap = (ά(1),..., <x{p))' such that 

Lp(àp) = mmLp(à
2

p)àNâ2
p. (2.2) 

ap 

Since Lp is a quadratic form of ap, it is easy to compute ap and Lp(dp). 
Define 

φ(ρ) = Nlog Γ^ρ(Λρ)] + PCN9 (2.3) 

where constants CN will be chosen suitably. Then any p minimizing 
φ(ρ) = min φ(ρ) (2.4) 

will be taken as the estimate of the order p of the AR series. 
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Remark 2.1. In fact, {l/N) Lp(ap) is an estimate of σ2, which is slightly 
different from that used by Hannan and Quinn [4] . When N is not very 
large, (l/(N — /?)) Lp(âp) is a better estimate of σ2 as compared to 
(l/N) Lp(dp). Since we are interested in the large sample properties, there is 
no harm in using (l/N) Lp(&p) as an estimate of σ2. 

Define 
1 N 

4p(iJ)=Jj Σ Xn-iXn-j> hj = 0, 1,2,...,/?. 
™η=ρ+\ 

QP = (4P(hJ))ij=U2,..,p (2-5) 
ßp = (qp(09l\...9qp(09p))\ 

By differentiating Lp(àp\ we get 

QPàp = -PP 

or, equivalently, 

&P = -ÛplK (2-6) 

provided 0^ is nonsingular. In the proof of our main result, it is shown 
that with probability one, for large TV, Qp is nonsingular. Hence we can 
use (2.6). 

Using the above notation, the main theorems are stated below. Proofs 
are given in the next section. 

THEOREM 2.1. Suppose 

£€χρ{^(1) 2 }<οο for some i > 0 , (2.7) 

and choose CN such that 

CN/N->09 CN-+oo. (2.8) 

Then 

P(p*Po)<Cxexp{-C2CN}9 (2.9) 

where Cl9 C2 are two positive constants independent of N. 

THEOREM 2.2. Suppose (2.8) holds and 

£ > ( l ) | 2 ' < o o , for some t^2. (2.10) 
Then 

P(p*p0)^Cx/(N
t/2-'Cf) + C2e~c^, (2.11) 

where C{, C2, C3 are positive constants independent of N. 
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3. PROOF OF THE THEOREMS 

LEMMA 3.1. Let yx,..., yn be independent random variables with Eyt = 0 
and E\ y,, | ' < oo, / = 1,..., w, for some t ̂  2. Denote 

Sn=t V» Bl= t Var(^,), Aun = f £ | j , | ' . 
i = l / = 1 ι = 1 

Then for any a > 0, 

P{5„>a}<C<'»y(,,„a-' + exp{-C<2)a
2/^}, 

vvAere 

C,(1) = ( l + 2 / 0 ' and C\2) = 2{t + 2)-2e-'. 

Proof Refer to Corollary 4 of Fuk and Nagaev [2]. 

Let apo = (a0(l),..., a0(/?0))' and σ2 be the true parameters of the model. 
Let 

y(i-j) = E(X(n-i)X(n-M 

rP = ((r(i-j))hJ=i,...,p,yP = (y(^^y(p)^p^K. ( 3 , 1 ) 

Suppose p ^ /?0, then from 

X a0(i)Jf(fl-i) = e(/t), 
/ = 0 

it follows that 
P0 

Σ «o(0 yd - j) = KJ°2> y=o, i, 2,..., />, (3.2) 
i = 0 

where £,·, is Kronecker's delta. Thus, if we take a* = (a0(l),..., a0(/?0), 
0,..., 0)', then ap = a* is a unique solution of the equation 

rpap=-yp. (3.3) 

It is well known that, under the conditions (1.1 ) and (1.2), for 0 ̂  p ^ K, 

lim Qp = Γρ a.s., lim ß, = yp a.s. (3.4) 
N -> oo N -*■ co 

and 

lim a/=i - Γ " 1 γ ι , Δ α * = (α*(1),-..,α*(ρ))'. (3-5) 
N -* oo 
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(3.6) 

(3.7) 

Note that for p0^ ρ*ζΚ, 

ο* = (α0(1),...,α0(ρο),0,...,0)', 

and that 

lim σ„ = y(0) — α* Γ_α* = < , „ -

It is easily seen that, 

*\ = min jj Σ (*(») + Σ «(0 Ά» - θ) 
1 N / p+l \2 

> min - Σ *(*) + X *(i)X(n-i)\ 

^min-J- £ fjrW + ^ a W ^ - o V ^ i ^ , . (3.8) 

First we establish the following proposition which will be used to prove 
our main theorems. 

PROPOSITION 3.1. Under conditions (1.1), (1.2), and (2.8), there exists a 
constant ε>0 such that for large N9 

P{p*P*}*iPi+P2+P*+P4, 

where 

and 

Λ = Σ P{\q*iUj)-yi.Uj)\>ty/cjN} 

Ρ2 = ΣΡ 
i = 1 

P3=2KP{\e(0)\>ey/CN} 
^V n = A: + 1 

>ε x/QJv 

P4=2Ar7»{|jr(0)|>e>/Cw}. 
/V00/ Denote 

AA£)={\4AiJ)-7(i-J)\^e^CN/N for all i ,y<*} 

Λ2(ε) ■{ 

(3.9) 

: ε JCNIN for all l < i < A : j 

^3(β) = {k(»)l ^ « V C,v for all n^2K) 

Λ4(ε)={|ΑΓ(η)|<βν/0^ for all #1^2*}. 
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For p<p0, since ô2, as a function of qK(Uj)^ and X(n)X(n — /), is 
continuously differentiable, we have 

Ρ ' /Ό ■ A ) - 1 ' PO 

= ]yE (*(«) + Σ ίΛ-ΐ(0^(»-θ] 
= {^-1(0,0)-ά^_1ρΛ , - ,άΑ )_1}/σ^ 

*» 

( K 1 2 * ■) 

- C Σ |^(/, y)-y(i,7)| + - Σ ^2(«) · (3· 10) 

Hereafter, C denotes a constant independent of TV, but may take a different 
value at each appearance even in the same expression. 

From (3.7), noting (3.10), there exists ε>0 such that if A^nA^s) 
holds then for any p < p0 and large TV, 

l o g t ö / ^ l o g i a * / * * ) 

2 

>log(a*2/a2) - Ce JC^/N>(p0-p)CN/N. (3.11) 

Now assume that p0< p^K. Put Λά,,(ι) = «,,(/) — α*(ι), Jap=âp— a*. By 
(2.2) and (3.8), 

1 N ( po \ 
~K Σ ί^(Λ)+Σ«θ(0^(Λ"0) 

« = />o + 1 ^ 1 = 1 / 

1 N ( K \2 

1 " 
- * Σ Φ)2 

Iy n = p0+l 

>-^ΣΦ)2-Φ'Ωκ1Φ> (3.12) 
w = 1 

where QK is defined in (2.5) and φ = (φι,...,φκ)', $j = 
(1/ΛΟΣ„"=*+1 e{n)X{n-j), j= 1, 2,..., K. 

From this, one can see that, there exists ε>0 such that for large TV, if 
Αι(ε)ηΑ2(ε)ηΑ3(ε) holds then for any p0< p^K, 

â2 -â2 C 
âl 2TV 

N m £ < ^ r (3.13) 
P 
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which in turn implies that for any p0<p^K, 

\og(â2
p/â

2
po) > - CJN >-(p-Po) CJN. 

From (3.11) and (3.14), Proposition 3.1 follows. 

(3.14) 

Proof of Theorem 2.1. Hereafter, C is a positive constant independent 
of N which can be assigned as large as you wish, but may take a different 
value at each appearance. To prove Theorem 2.1, it is enough to show that 

Pn<Cexp{-CCN}, ^=1,2,3,4, (3.15) 

where Pn's are defined in (3.9). It is easy to see that (3.15) is true for 
^ = 3,4 using (2.7). By (2.4), 

X{n)=^aje{n-j\ \aj\ <Mp\ y = 0, 1, 2,..., (3.16) 

where pe(0, 1) and M>0 are constants. In order to prove (3.15) for 
#7=1,2, it is enough to show that for any ε > 0, 

1 X X(n)X(n-l)-y(l) 
1V n = 1 

>£y/CJN 

iSCexp{-CC„}, / = 0, 1,2,..., K, (3.17) 

and 

i Σ e{n)X{n-l) >ÈS/CN/N 

^Cexp{-CCN}, 1=1, 2,..., K. (3.18) 

By (3.16), y(l) = o2Zr=0ajal+P and 

i Σ JT(«)A-(«-/)= Σ atat_X Σ Φ-i)2 

" n = 1 / = / ^ « = 1 

+ Σ fl/fl; 
( i ,y) iv/ + y 

1 " XT? Σ e{n-i)e(n-j-l). 
^ n=\ 

(3.19) 
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Fix l^K. Take p, e(p, 1) and set 

47 

fi(£l) = 1 Σ Φ-ο2-*: <(pJp)2,-'ely/C^/N 

for/ = / , / + l - } 
0(8,) = 

1 " — £ e{n-i)e{n-j-l) 
" n= 1 

for; 

■<(pl/p)'+Jely/c^/N 

■any ίΦΐ + j , i, j = 0, 1, 2,... 1·. 

Take ε, <εΜ~2(1 — p,)2. If Αίε^ηοίε , ) occurs, using (3.19) we get 

i Σ AT(»)Jr(/i-/)-y(/) 

a^p2 i-'£ |7c#(p,//)f-' 

+M2 Σ pi+%y/cjN(Pl/Py+j 

< M 2 ( f p ' , ) eljC^/N<e^CJN. 

Thus, taking λ = ρ{/ρ(> 1) and ε2 = (Ρι/ρ) 'ε, we get 

i Σ X{n)X(n-l)-y(l) 

■ Î P \ 
i = 0 I 

fi Σ «»)2-*: 

'#> 

1 * — £ e(«)e(«-y + /) 

^X2ie2y/CN/N^ 

>X'+JS2S/CN/N\. (3.20) 

Setting /(τ) = £βχρ{τ(ί>(ί)2-σ2)}, τε(0, ί), we have / ( τ )= 1 +/ ' (0) t + 
| /"(τ ι) τ 2» where τ, e(0, τ). Hence 

/ (T)<l + CT2<exp{Cr2}. (3.21) 
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Thus, 

P\jj Σ (e(«)2-<72)>A2 i62yC^vl 

^exp(-a2ie2jNCN)f(r)» 

^exp{-xX2ie2y/NC^ + CT2N}. (3.22) 

Taking τ = δ ^/CNIN X2', where δ > 0 is small, one can see that 

^ Σ {e(nY-a2)>X2i,ls/c^ 

<exp{ -CX4'CN} < CX~2iexp(-CC„). (3.23) 

In the same way, 
P{^ Σ H n )

2
- < r

2
) ^ - A

2 ,
e 2 y c ^ J 

iSCA^'expi-CC*). (3.24) 

In a similar fashion it follows that if τ e (0, t) 
E exp(te(0) e(i-j)) < exp(Cr2). (3.25) 

For i>j, by (3.25), 

^'ïl'H Σ e(«)e(« + i-j) 
m = 0 v. « ^ #,« = m(mod(/ — y' + 1)) 

< ( / - y + 1 ) exp | - τ j - ^ - γ Ai+> v^VC^j 

x e x p f c . ^ τ 2 \ (3.26) 

Taking τ = δ ^/CN/N X'+J, where <5 > 0 is small enough to get 

^ C(i + y) exp | - C j - j - j - j - A'+ >C„ 1 

^Cexp{-CC^}A"'- J . (3.27) 
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Similarly, 

ρί Σ e(n)e(n + i-j)^-X'+Je2^NC^\ 

^Ctxp{-CCN}X-'-J. (3.28) 

Note that (3.27), (3.28) hold for i<j. Thus, by (3.20), (3.23), (3.24), (3.27), 
and (3.28), 

i Σ Χ(η)Χ(η-1)-γ(1) >ε JCTN} 

^2C Σ À-2iexp{-CCN) + 2Cexp(-CCN) £ X~'-J 

/ = 0 i,j = 0 

^Cexp(-CC^), (3.29) 

which is (3.17). The proof of (3.18) is similar. That completes the proof of 
Theorem 2.1. 

Proof of Theorem 2.2. The line of proof is similar to that of 
Theorem 2.1. Here Lemma 3.1 is used. For example, in order to prove 

i Σ X(n)2-y(0) 

<CiV- ' / 2 + 1(CJ- ' / 2 + Cexp(-CC^), 

we use y(0) = σ2 Σ]°=οα] a n ^ 
1 N oo 1 N 

Iy n=\ 7 = 0 i V n=\ 

1 N 

+ Σ aiajjr Σ e(n-i)e(n-j). 

(3.30) 

(3.31) 

Take p, e (p, 1 ) and set 

5(ε,) = i Σ Φ-7)2-σ2 
<(pi/p)2J 

xely/CN/Nîorj = 0, l,2,... | , 

Ζ)(ε ■ - { 1 " - X e(n-i)e(n-j) 

χε, y/C„/Nfor any ί # y, i, 7 = 0, 1,2, ...>. 
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As before, by taking ε, <εΜ~2(1 — p,)2, we get, when Ζ?(ε,)η£>(ε,) occurs 

■i £ Χ(η)2-γ(0) 
" n= 1 

Thus, with X = pjp ( > 1 ), we have 

i £ A-(»)2-y(0) 
^ n = 1 

^ΣΡ ji Σ <K«)2-* 
i V w = 1 

+ Σ P 
1,7 = 0, i v y 

1 " 
>A' + ' f i l V / c ^ t f i . 

By Lemma 3.1, 

oo 

7 = 0 

^ Σ M«)2-*2) >k21BXy/CNIN 

00 

+ Σ exp{-2( i + 2)-2^-/62A4^Cyv/(ATVare(l)2)} 
y=o 

QO OO 

^ C X A - 2 W - r / 2 + 1 C ^ i / 2 + C £ ^ - ^ e x p ( - C C ^ ) 
7 = 0 7 = 0 

^ C / Y - / / 2 + ic-//2 + C e x p ( _ C C ; v ) ( 3 3 3) 

For the last term of the right-hand side of (3.32), we can obtain the same 
bound. The proof of the rest is similar to that Theorem 2.1. This completes 
the proof of the theorem. 

4. SOME REMARKS 

From Theorem 2.1 and Theorem 2.2, it is easily seen that, under the 
restriction Cn = o(N), the larger the magnitude of CN, the better the detec-
tion is in the large sample cases. By the same way, if (1.1), (1.2), and (2.8) 
hold then the detection is weakly consistent. 

Now we point out that, if (1.1), (1.2) hold and 

lim CN/N = 0 and lim C^/loglog N = oo, (4.1) 
N -*■ oo N -► oo 
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then p determined by (2.4) is a strongly consistent estimate of p0. In fact, if 
p<p0, then by (2.8), (3.7), and l i m * ^ CN/N = 0, 

lim Ιφ(ρ)-φ(ρ0)1/Ν>ΙθΒ(σ*2/σ2)>0. 

It follows that, with probability one for N large, 

Φ(Ρο)<Φ(ρ)> for P<Po> (4.2) 

Now we assume p0<p^K. Under the conditions (1.1) and (1.2), by the 
law of the iterated logarithm, 

\4*(i,j)-y(i-j)\ = 0 

= 0 

for ij = 09 1,..., K. Thus, by (3.12), 

log log K 
N 

i t e(n)X(n-i) 
7 V n = K+\ 

log log N' 
N 

a.s., 

a.s. 

Λ -, -, 'log log Λ^ 
(4.3) 

By (3.7), (3.12), and l i m ^ ^ Cyv/loglog N = oo, with probability one for 
large N, 

Φ(Ρ) - Φ(Ρο) > N !og â2Jâ2
po + (p-Po)CN 

= Nlog{l + (â2
K-â2

po)/â
2
po} + (p-p0)CN 

= O(loglog^) + ( /7- /7 0 )C^>0, Po<P^K. (4.4) 

From (4.2) and (4.4), it follows that with probability one for TV large, 

p = p0. (4.5) 

This shows strong consistency of p. 
Note that for strong consistency of p, the last condition of (4.1) can be 

weakened as 

CN ^ 2C log log N with C > 1. 

But this needs more accurate calculations. 

(4.6) 
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Necessary and sufficient conditions are established for the set of all admissible 
linear estimators under M0 to be contained in the corresponding set of estimators 
under M, where M0 and M are general Gauss-Markov models with identical model 
matrices but different dispersion matrices. As preliminary results, certain new 
characterizations of admissible linear estimators are derived, including explicit 
expressions for the general representations of such estimators and extensions of the 
admissibility criteria given by Rao (Ann. Statist. 4 (1976), 1023-1037) and Klonecki 
and Zontek (J. Multivariate Anal. 24 (1988), 11-30). © 1988 Academic Press, inc. 

1. INTRODUCTION AND PRELIMINARIES 

Throughout this article Mm,„, Jt5
m, Ji^, and Jt> will denote the set of 

all m x n matrices, the subset of Jim m consisting of symmetric matrices, the 
subset of Ms

m consisting of non-negative definite matrices, and the subset of 
Jt^ consisting of positive definite matrices, respectively. Given LeJimn, 
the symbols L\ L~, L + , R(L), and r(L) will stand for the transpose, an 
arbitrary generalized inverse, the Moore-Penrose inverse, the range, and 
the rank, respectively, of L, while Im will stand for the identity matrix of 
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order m. Further, PL = LL+ and QL = Im-PL will denote the orthogonal 
projectors onto R(L) and / ^ ( L ) , respectively, where R1^) stands for the 
orthogonal complement to R(L) with respect to the standard inner 
product. Finally, tr(L) and x(L) will denote the trace and spectrum, respec-
tively, of an L 6 ^Ci,m,, while L ^ K will mean that L e Jis

m is a successor of 
KeJts

m with respect to the Loewner partial ordering, that is (cf. Marshall 
and Olkin [5, p. 462]), L-KeJi^. 

Consider a general Gauss-Markov model, 

Μ={Υ,Χβ,σ2ν}, (1.1) 

in which YeJinA has Ε(Υ) = Χβ as its expectation and D(Y) = a2V as its 
dispersion matrix, where 0^XeJtnp and VeM^ are known, while 
ßeJ/pl and σ 2 > 0 are unknown parameters. Rao [9] pointed out that an 
important tool in analyzing the model (1.1) is a matrix of the form 

T=V+XGXf, (1.2) 

with any GeJtf such that R(T) = R(X: V). Now suppose that instead of 
the model M, as defined in (1.1), we have the model M 0 = {Y, Xß, a2VQ} 
with an incorrectly specified dispersion matrix V0 φ V. Further, let J£?0 be a 
class of all statistics with certain property under M0 , let Jzf be the class of 
all statistics with the same property, but corresponding to the correct 
model M, and let the problem consist in determining conditions under 
which the class J% remains valid under M in the sense that J% ç 5£. The 
validity problem so defined has thoroughly been discussed in the literature 
in the context of best linear unbiased estimation; see, e.g., Rao [9] , Rao 
and Mitra [12, Chap. 8] , Mitra and Moore [8] , Kala [3] , Mathew and 
Bhimasankaram [6] . One of the results concerning the validity of best 
linear unbiased estimators is restated here as the following lemma. 

LEMMA 1. Let M0={ Y9 Χβ, a2V0} and M = { Y9 Xß, a2V) be general 
Gauss-Markov models, and let $0 and $ be the sets of all possible 
representations of the best linear unbiased estimator of Χβ under M 0 and M, 
respectively. Then J ^ ^ J ^ if and only if R(VZ) £ R(V0Z), where Z is any 
matrix such that R(Z) = R±(X). 

The purpose of the present paper is to investigate the validity problem 
with reference to the sets $0O and s/, comprising all linear estimators that 
are admissible for Χβ among 

<F={FY:FeJt^n} (1.3) 

under M0 and M, respectively, where admissibility is understood according 
to the following. 
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DEFINITION. Let M = {Y, Xß, a2V} be a general Gauss-Markov model, 
let & = Jtplx (0, oo ), and let We M>. Then an estimator A Y is said to be 
admissible for Xß; among ^ = {FY: FeJÎnn) under M if there does not 
exist FYe& such that the inequality 

Plv(FY;Xß)^pw(AY;Xß) 

holds for every pair (/?, σ2) e 6> and is strict for at least one such pair, where 

PiV(FY;Xß) = El(FY-XßyW(FY-Xßn 

= σ2 tr(FVF'W) + ßfX(F- In)'W(F- /„) Xß. (1.4) 

This definition is to be supplemented by pointing out that the choice of 
the weight matrix W is immaterial for the problem, for, as shown by 
Shinozaki [13] and Rao [10], if an estimator AY is admissible for Xß with 
respect to the risk function (1.4), then it is admissible for Xß with respect 
to any quadratic risk function of the form (1.4), with W replaced by any 
member of Jt>. Consequently, no loss in generality arises by restricting 
attention to the unweighted quadratic risk function, defined as in (1.4) with 
W=In and denoted by the unsubscripted p. Moreover, the admissibility of 
A Y for Xß among the set <F of all homogeneous linear estimators of Xß, 
specified in (1.3), will henceforth be denoted by the symbol AY~Xß. 

A solution to the problem of the validity of admissible linear estimators 
of Xß in the case where the dispersion matrix of the model is incorrectly 
specified is given in Section 3. It is preceded by certain results concerning 
the characterization of admissible linear estimators of Xß under a general 
Gauss-Markov model. These results include extensions of the admissibility 
criteria given by Rao [10] and Klonecki and Zontek [4] and also explicit 
expressions for the general representations of admisssible linear estimators 
οΐΧβ. 

2. CHARACTERIZATION OF ADMISSIBLE LINEAR ESTIMATORS 

The problem of the admissibility of linear estimators was investigated 
first by Cohen [2] in the context of a simple location model {Y, ξ, σ2Ι„}. 
Ten years later, an exhaustive study of the problem under a 
Gauss-Markov model {Y,Xß,a2V\ VeJt>) was given by Rao [10]. In 
particular, the following characterization of admissible linear estimators of 
Xß under this model is immediately obtainable from his Theorem 6.6. 

LEMMA 2. A Y~ Xß under {Y, Xß, a2V\ Ve M> } if and only if 

R(A)ç:R(X\ AV=VA\ and AV^AVA'. (2.1) 
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Rao's work stimulated further research in this area. Mathew, Rao, and 
Sinha [7] , Klonecki and Zontek [4] , and Baksalary and Markiewicz [1] 
extended Rao's work by relaxing the rank conditions on the design and dis-
persion matrices. In particular, Klonecki and Zontek [4] extended the 
result of Lemma 2 to the case where, instead of r( V) — «, the additional 
assumption on the model is 

r(X: V) = n. (2.2) 

LEMMA 3. AY~Xß under {Y,Xß,a2V\R(X:V) = JtnA} if and only if 

R(A)^R(X), R(A-In) = Rl{A-In)V\ AV=VA\ AV^AVA'. 

(2.3) 

Commenting on another result, also derived under the condition (2.2), 
Klonecki and Zontek [4] remarked that if (2.2) is not fulfilled, then a 
general solution can be obtained from the solution valid under (2.2) via 
appropriately modifying the latter by PT, where T is defined in (1.2). The 
same is adopted below in developing a characterization of admissible linear 
estimators under a general Gauss-Markov model. 

THEOREM 1. AY~Xß under a general Gauss-Markov model M = 
{Y,Xß9a

2V} if and only if 

RIA(X:V)^^R(X), (2.4) 

Rl(A-In)Xl^Rl(A-In)Vl (2.5) 

AV=VA\ (2.6) 
and 

AV^AVA'. (2.7) 

Proof. Using the definition (1.4), with W=In, and the equalities 

PTX=X and PTV=PT{V+ QT)= V, (2.8) 

in which T is any matrix of the form (1.2), it is fairly straightforward to 
observe that AY~Χβ under M if and only if APTY~Χβ under M, and 
also that ΑΡτΥ~Χβ under M if and only if ΑΡτΥ~Χβ under 
Μ = { 7 , Λ ^ , σ 2 ( Κ + ρ Γ ) } . Since R(X: V+ ß r ) = ^ , i > Lemma 2 is 
applicable to the model M, and hence AY~Χβ under M if and only if 

R(APT)^R(X\ (2.9) 

R(APT-I„) = Rl(APT-In)(V+QT)l (2.10) 

APT{V+QT) = (V+QT)PTA\ (2.11) 
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and 

APT{V+QT)>APT{V+QT)PTA'. (2.12) 

The equivalence of (2.9) to (2.4) follows from the definition of Γ, while the 
equivalences of (2.11) to (2.6) and of (2.12) to (2.7) are obvious by (2.8). It 
remains to prove, therefore, that (2.10) may be replaced by (2.5). From 
(2.8) it is clear that an alternative form of (2.10) is 

Ri(A-In)PT-QTl = Rl(A-In)V-QTl (2.13) 

while from (2.6) and (2.9) it is clear that 

Rl{A-IH)lT\cR(V) and Rl(A-In)PT^^R(T). (2.14) 

Consequently, in view of (2.14) and (2.8), premultiplying (2.13) by PT 

yields 

Rl(A - In) PA = Rl(A - /„) VI (2.15) 

On the other hand, since 

R±i(A-In)PT-QTl = R±l(A-In)PTlnR(T) 

and, similarly, 

R±l(A-IH)V-QT] = R±l(A-In)nnR(T), 

it is clear that (2.15) entails (2.13). This establishes the equivalence of 
(2.10) to (2.15) and actually concludes the proof, since the equivalence of 
(2.15) to (2.5) is obvious in view of the definition of T. | 

It can be easily shown that if R(X:V) = JÎnl, then the conditions (2.4) 
through (2.7) are replaceable by those given in (2.3), while in another par-
ticular case of the model M, specified by the inclusion R(X)^R(V\ 
Theorem 1 simplifies to the following extension of Lemma 2. 

COROLLARY 1. AY~Xß under {Y, Χβ, σ2 V \ R(X ) <= R( V )} if and only 
if 

R(AV)^R(X\ AV=VA' and AV^AVA'. 

An alternative characterization of admissible linear estimators (in the 
set-up of Theorem 1 ) has been obtained by Baksalary and Markiewicz 
[1, Corollary 3]. 
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THEOREM 2. AY~Xß under M = {F, Χβ, σ2V} if and only if 
(i) R(VA')^R(x\ (ii)AV=VA\ (iii)AV^AVA\ and (iv) Rl(A -In)X~] 
= R[(A - In) # ] , where H is any matrix such that R(H) = R(x) n R( V). 

It is clear that the condition (iv) of Theorem 2 may be replaced by 
rl(A-In)X]=r[(A-In)H]. For the particular choice of H, viz. H = 
X{X'T+X)X'T+V with T= V+XX\ the result of Theorem 2 was also 
proved independently by Zhu [14] using the results in Rao [10]. 

Consider now again the model {Y, Χβ, σ2Υ\ VeJÎ>}, and let LeJ(nn 

be such that L'VL = /„. Then it is easily verified, using the conditions (2.1), 
that AY~Χβ under this model if and only if 

A = LflPLXSPuxL' (2.16) 

with an arbitrary SeMs
n satisfying the condition T(PLXS)C: [0, 1]. A 

similar representation of admissible linear estimators under a Gauss-
Markov model with a singular dispersion matrix is given in the following. 

THEOREM 3. Let M = {Y9 Xß, a2V} be a Gauss-Markov model in which 
r(V) = v<n9 and let L = {Lx \L2)eMnn be nonsingular and such that 

L'VL = dmg(Iv90). (2.17) 

Further, let 

L'X=(X\:X'2y and L~lZ=(Z\ : Z'2)\ (2.18) 

where Z is any matrix such that R(Z) = R±(X). Then ΑΥ~Χβ under M ;/ 
and only if 

\ « Λ22/ 

with 

An = QZlSQZl, (2.20) 

Al2 = PZlXiX++(QZlSQZi-QZl)KlX++K2QX29 (2.21) 

A22 = PX2 + K,QXv (2.22) 

where Kx e Jtv^p9 K2 e Μυ^η _ v, KleJÎn_vn_v9 and S e J(s
v are all arbitrary 

except only for the condition T(QZIS)CZ [0, 1]. 

Proof It is clear that every AeJtnn may be represented as in (2.19), 
but with the zero matrix in the southwest corner replaced by some A2l. 

(2.19) 



A GENERAL GAUSS-MARKOV MODEL 59 

However, in view of (2.17), the conditions (2.6) and (2.7) are satisfied if 
and only if A2i = 0 holds along with 

An = A'n and x(An)c [0, 1]. (2.23) 

Further, on account of (2.17) and (2.18), it follows that the condition 
(2.4), which is alternatively expressible as the pair of equations Z'AV=0 
and Z'AX=0, is fulfilled if and only if 

Z\An = 0 (2.24) 

and 

{Z'lAl2 + Z'2A22)X2 = 09 (2.25) 

while the condition (2.5) is fulfilled if and only if 

A22X2 = X2 (2.26) 

and 

R(Al2X2) = R(An-Iv). (2.27) 

Hence, observing that the equalities (2.26) and 

Z\Xl + Z'2X2 = 0 (2.28) 

enable (2.25) to be re-expressed as 

Z\(Al2X2-Xl) = 0, (2.29) 

it follows that ΑΥ~Χβ under M if and only if A is of the form (2.19) with 
An satisfying (2.23) and (2.24), with A22 satisfying (2.26), and with Al2 

satisfying (2.27), with a given An, and (2.29). Consequently, the represen-
tation (2.20) is obtainable similarly as that in (2.16); further, (2.22) is the 
general solution to Eq. (2.26); and finally, (2.21) can be established as 
follows. 

First notice that (2.27) is alternatively expressible in the form 

Αι2Χ2 = {Αη-ΙΌ)Κθ9 (2.30) 

where K0eJivp is arbitrary but such that, given An, Eq. (2.30) is solvable 
with respect to Al2, for which it is necessary and sufficient that 

(An-Iv)K0=(An-Iv)K0Px>2. (2.31) 
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On account of (2.24) and (2.30) modified by (2.31), Eq. (2.29) transforms 
to 

Z\K0PX>2 = Z\XX. (2.32) 

From (2.28) it is clear that 

Z\XXPX'2 = Z\XX. (2.33) 

Hence 

*z\ Z\ X\ Ρχ2 = Ζγ Χγ 

which implies, according to Theorem 2.3.2 in Rao and Mitra [12], that 
(2.32) is solvable with respect to K0i having as the general solution 

Κ^ΡΖχΧγΡΧι + Κ,-ΡΖχΚγΡΧι, (2.34) 

with an arbitrary KvsJivp. The desired formula (2.21) now follows by 
substituting (2.34) into (2.30) modified by (2.31), and then solving the 
equation so obtained with respect to Al2 and replacing An by its represen-
tation given in (2.20). | 

In the particular cases of the model M, in which admissibility criteria 
were given in Lemma 2 and Corollary 1, the general representation of 
admissible linear estimators of Χβ simplifies accordingly. 

COROLLARY 2. Let {Y, Χβ, σ2 V) be a Gauss-Markov model in which 
r(V) = v<n, but R(X: V) = Jt„tl, and let a non-singular LeJtnn satisfy 
(2.17) and (2.18). Then ΑΥ~Χβ under this model if and only if A is of the 
form (2.19), with 

An = QZlSQZl, AX2 = PZJXX+ + {QZxSQZx-QZx)KxX+, A22 = In_v, 

where Kx and S are specified in Theorem 3. 

Proof The result follows from Theorem 3 by noting that r(X: V) — n if 
and only if r(X2) = n — v, in which case PXl = In_v. | 

COROLLARY 3. Let {Y, Χβ, a2V) be a Gauss-Markov model in which 
r(V) = v<n, but R(X)^R(V), and let a nonsingular LeJinn satisfy (2.17) 
and (2.18). Then ΑΥ~Χβ under this model if and only if A is of the form 
(2.19), with 

A\\ = QZiSQZl, Ai2 = K2, A22 = K3, 

where K2, K3, and S are specified in Theorem 3. 
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Proof. The result follows from Theorem 3 by noting that R(X)^R(V) 
if and only if X2 = 0. | 

Now, let si and $ denote the set of all admissible linear estimators and 
the set of all possible representations of the best linear unbiased estimator, 
respectively, of Xß under the model (1.1). Then si is characterized by the 
conditions (2.4) through (2.7), or equivalently, by the formulae (2.19) 
through (2.22), while (cf. Rao [11]) 

@={BY:BX=X,BVZ = 0} (2.35) 

= {BY:B = X(X'T+X)+X'T+ +KQT], (2.36) 

where Z is any matrix such that R(Z) = R±(X), T is defined in (1.2), and 
KeJtnn is arbitrary. The result below specifies those Gauss-Markov 
models for which the equality 

<%nsi = @, (2.37) 

where °U stands for the set of all linear unbiased estimators of Xß under the 
model (1.1), takes the form si = @. 

COROLLARY 4. For a general Gauss-Markov model M = {F, Xß, a2V) 
the following statements are equivalent: 

(i) si = @ 

(ii) R(X)nR(V)={0}. 

Proof We note that if si = <%, then every Aesi must satisfy AX=X 
and AVZ = 0. The latter condition is always satisfied, since AV=VA' and 
R(AV)^R{X) by Theorem 1. Thus s/ = @ if and only if Aesi satisfies 
AX = X. Using (2.19M2.21 ), we see that Aesi satisfies AX = X if and only 
if 

QzxSQZlXx + PZ,XXXÎX2 + (QZlSQZi-QZl)KlX^X2 = Xx (2.38) 

for any SeMs
O and KleJiv^p. Eq. (2.38) holding for all such S and Κγ is 

equivalent to 

β Ζ ι = 0 and PZlXtX+X2 = Xl9 

or, equivalently, 

PZl = I and R(X\) <= R(X'2). (2.39) 

Note that in view of (2.17) and (2.18), R(X\)^R(X2) is equivalent to 
R(X)nR(V)={0}. Also, R(X\)^R(X'2) is equivalent to R(Zl) = JtvA or, 
equivalently, PZl = Iv. This completes the proof of Corollary 4. | 
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3. VALIDITY OF ADMISSIBLE LINEAR ESTIMATORS 

A necessary and sufficient condition for a nonnegative definite matrix to 
commute with every nonnegative definite matrix having its range contained 
in a given subspace is derived below as an auxiliary result for the proof of 
Theorem 4, providing a solution to the problem of the validity of 
admissible linear estimators of the expectation vector in the case where the 
dispersion matrix of a Gauss-Markov model is incorrectly specified. 

LEMMA 4. Given AeM^ and BeJtmn such that ΛΒφΟ, let 

<#={CeJt>:R{C)^R{B)}. (3.1) 

Then AC= CA for every C e ^ if and only if AB = dB for some d>0. 

Proof Only the necessity is to be proved. Assume that r(B) = b>0, 
and let UeMm,b be such that R(U) = R(B) and U'U = Ib. Then the set <€ 
defined in (3.1) may be represented as 

<g={C=UNU':NeJif). (3.2) 

In view of (3.2), the requirement that AC=CA for every Ce%> means that 

AUNU' = UNU'A for every NeJtf, (3.3) 

and hence 

U'AUN=NU'AU forevery NsJif. (3.4) 

From the assumptions that A e Jl* and AB Φ 0, it follows that 
U'AU^O, and thus it is clear that (3.4) holds if and only if U'AU = dIb or, 
equivalently, 

UU'AU=dU (3.5) 

for some d>0. But the choice of N = Ib in (3.3) yields UU'A = AUU\ and 
thus it follows from (3.5) that AU=dU9 which gives AB = dB. | 

THEOREM 4. Let M0 = { Y, Χβ, σ2¥0} andM={ Y, Xß, a2V) be general 
Gauss-Markov models, and let <srf0 and se be the sets of all admissible linear 
estimators of Xß under M0 and M, respectively. Then in the case where 

R(X)nR(Vo)={0}, (3.6) 

the inclusion s/0^s/ holds if and only if 

R(VZ)^R(V0), (3.7) 
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where Z is any matrix such that R(Z) = R±(X)9 while in the case where 

R(X)nR(Vo)*{0}9 (3.8) 

the inclusion sé^stf holds if and only if 

R(V)^R(V0) (3.9) 

and 

VV^H=dH for some d>0, (3.10) 

where H is any matrix such that R(H) = R(X) n R( V0). 

Proof Let °U denote the set of all linear unbiased estimators of Xß 
under M0 and M, and let ^ 0

 a nd & denote the sets of all possible represen-
tations of the best linear unbiased estimators of Xß under M0 and M, 
respectively. In view of (2.37), it is clear that ^l0^s/ is equivalent to 
J ^ ^ · Bu t Corollary 4 asserts that if (3.6) holds, then @0 = s/0, and con-
sequently, sf0 ^ s/ if and only if Ĵ 0 ç @. Hence the first part of Theorem 4 
follows immediately from Lemma 1 by observing that, under (3.6), 
R(V0Z) = R(V0). To prove the second part first notice that, on account of 
Theorem 6.2.3 in Rao and Mitra [12], there exists a nonsingular LeJtnn 

such that if r(V0) = n, then 

L'V0L = In and L'VL = D, (3.11) 

while if r( V0) = v < n, then 

L,KoL = diag(/l;,0) and L'VL = dmg(Dl, D2\ (3.12) 

where D = diag(£>!, D2) is a member of Ji^. It is clear that the conditions 
(2.4) through (2.7) may equivalently be expressed by replacing V9 X, and A 
by L'VL, I X and L'AL'~l. Hence, for proving the theorem, we assume 
without loss of generality that 

K0 = diag(/P, 0) and K=diag(Z)1, D2). (3.13) 

We shall only consider the case v<n; the case v = n is treated similarly. 
First, we establish the necessity of (3.9) and (3.10) when V0 in (3.13) 
satisfies (3.8). From Theorem 3 it follows that if jtf0 £ s/9 then (2.6) leads to 
the conditions 

QzlSlQZlDl = DlQZlSlQZl for every Sxe9[ (3.14) 

and 
[ / > Z I ^1^2 + +(ßz 1 S 1 ßz I -ßz 1 )^1^2 + +^2ß^]Ö2 = 0 (3.15) 
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for every Ki eMvp, K2eJtVin_v, and Sl e ^ , where Xl9 X2, and Zx are as 
defined in (2.18) while 

^ = { S i e ^ r ; : T ( ß Z l S 1 ) c [ 0 , l ] } . 

Note that QZl φ 0, since if QZl = 0, then PZl = / and, in view of the last part 
of the proof of Corollary 4, this contradicts (3.8). Since Kl9 K2, and S{ 

vary independently and since β ζ , / 0 , (3.15) gives X2
+D2 = 0 and 

Qx2D2 = 0. These two together give D2 = 0 which is (3.9) in view of (3.13). 
Applying Lemma 4 to (3.14), we get 

VxQZx = dQZx for some </>0, (3.16) 

provided DxQZx Φ0. But this is always the case, since, when sé^sé, (2.5) 
must hold for V in (2.13) and if Z>ißZl = 0, one can exhibit Ae<s/0, not 
satisfying (2.5). To conclude the proof of necessity, it remains to show the 
equivalence of (3.16) and (3.10). For V0 in (3.13), we note that 
Ä(K0)ni?(I) = / { ( I 1 e ^ ) . Also, since Z\XX + Ζ'2Χ2 = 0, Z ' ^ ß ^ O , 
and, consequently, R(QZi) = R(X{ QXl) = R( V0) n R(X) = R(H) which 
concludes the proof of the necessity. 

To prove the sufficiency of the pair (3.9), (3.10), let ΑΥ~Χβ under M0. 
Then, according to Theorem 1, 

RlA(X:V0)]çR(X), (3.17) 

Ri(A - / „ )* ] <= Rl(A - /„) V0l (3.18) 

AV0=V0A\ (3.19) 

AV0&AV0A'. (3.20) 

The conditions (3.9) and (3.17) entail 

RIA(X: Vn S RÎA(X : K0)] £ Ä(Jr), 

which is (2.4). Further, (3.17) and (3.19) imply that 

R(AV0)çR(X)nR(V0) = R{H). 

Consequently, in view of (3.9), (3.19), and (3.10), it follows that 

VAf=VV^V0A
f=VV^AV0 = dAV0 for some rf>0, 

and hence it is clear that (3.6) and (3.7) are immediate consequences of 
(3.19) and (3.20), respectively. Finally, (3.18) implies that 

RlVVë(A-In)X-\^RlVVï(A-In) K„]. (3.21) 
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But, on account of (3.19), (3.9), and (2.6), 

RlWö(A-In) Vol = RL(A-In) VI (3.22) 

while on account of (3.17), (3.18), and (3.19), 

Rl(A - In) * ] g= R(X) n R( V0) = R(H); 

hence, according to (3.10), 

RlVVï(A-IH)JT} = Rl(A-IH)ir\. (3.23) 

Applying (3.22) and (3.23) to (3.21) yields (3.25), thus completing the 
proof. | 

Two corollaries will be given to conclude the paper. The first of them 
compares the criterion for the validity of the set of all admissible linear 
estimators of Xß, given in Theorem 4, with the criterion for the validity of 
the set of all possible representations of the best linear unbiased estimator 
of Xß, given in Lemma 1, while the second corollary establishes a necessary 
and sufficient condition for the equivalence of the models M0 and M with 
respect to admissible linear estimators of Xß. 

COROLLARY 5. Let M0 = {Y, Χβ, σ2ν0} and M={Y, Χβ, σ2V) be 
general Gauss-Markov models, and let s/0, se and @tQ, $ be the sets of all 
admissible linear estimators of Xß and the sets of all possible representations 
of the best linear unbiased estimator of Xß under M0 and M, respectively. 
Then st^si implies @0 Ç @. 

Proof The result is a direct consequence of the equalities J 0 = ^ n ^ 0 

and & = <% ns/, where °U is the set of all linear unbiased estimators of Xß 
under both M0 and M. | 

COROLLARY 6. Let M0 = {Y, Χβ, σ2ν0} and M = {Y, Xß, a2V) be 
general Gauss-Markov models, and let s/0 and se be the sets of all admissible 
linear estimators of Xß, respectively. Then séQ = sé if and only if 

R(V0) = R(V) (3.24) 

and 

V+H=dV+H for some d>0, (3.25) 

where H is any matrix such that R(H) = R(X)nR(V). 
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Proof. First observe that if s/0 = se, then either 

R(X)nR(Vo)={0} and R(X)nR(V)= {0} (3.26) 

or 

R(X)nR(Vo)*{0} and R{X)nR{V)*{0}. (3.27) 

In fact, if R(X)nR(V)= {0} and R(X)nR(V0)ï {0}, then in view of 
Corollary 4, the former condition means that s/ = @9 and consequently, 
sé^sé entails stf0^%. Hence, on account of (2.37), it follows that 
£/0 = &09 which in view of Corollary 4, constitutes a contradiction with 
R(X)nR(Vo)*{0}. 

Now it is clear that in the case characterized by (3.26) the equality 
s/0 = s/ reduces to ^ 0 = J s and also that (3.24) can be reformulated as 
R(V0Z) = R(VZ), while (3.25) is trivially fulfilled. Consequently, the 
required result is an immediate consequence of Lemma 1. In the case 
characterized by (3.27), the necessity and sufficiency of the conditions 
(3.24) and (3.25) follow by Theorem 4, in view of the equalities 
VV~H= VV£H and V0V~H= V0 V

+H valid for any generalized inverses 
VÔ and V-. | 
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The validity of formal Edgeworth expansions for statistics which are functions 
of sample averages was established in R. N. Bhattacharya and J. K. Ghosh (1978, 
Ann. Statist. 6 434—451) under a moment condition which is sometimes too severe. 
In this article this moment condition is relaxed. Two examples of P. Hall (1983, 
Ann. Probab. 11 1028-1036; 1987, Ann. Probab. 15 920-931) are discussed in this 
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INTRODUCTION 

The validity of formal Edgeworth expansions for classical statistics was 
established in Bhattacharya and Ghosh [2] under moment conditions 
which cannot be relaxed in general, but turn out to be too severe in some 
cases. Two such examples are considered in Hall [6, 7] . In these examples 
and many others the highest order of moments involved in the actual 
expansion is much smaller than the order of moments assumed finite in our 
earlier work [2] , and special methods were used by Hall [6, 7] to relax 
this moment condition. Attempts to find minimal moment restrictions for 
the general case run into unexpected analytical difficulties. 

Suppose that the statistic may be expressed as (or approximated by) 
i/(Z), where Z = (1/w) Σ"= i 2} *s a mean of i.i.d. vectors and H is a smooth 
function in a neighborhood of μ = EZj. If all the components of grad Η(μ) 
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are nonzero then one cannot significantly weaken the earlier moment 
assumptions. In this article we provide a relaxation of the moment con-
dition in case grad Η(μ) has some zero components, as is true in both 
examples of Hall. Apart from the method we present in detail here, another 
method using conditioning with respect to some coordinates of Z, (namely 
coordinates Ζψ for which (δΗ(ζ)/δζυ))(μ) = 0) is sketched as Remark 5 in 
Section 7. This last method generalizes some ideas of Hall [7] dealing with 
Student's statistic. 

1. THE MAIN RESULT 

Many classical statistics are (or, may be approximated by statistics) of 
the form H(Z\ where Ζ = (1//ΐ)ΣΐΖ, is a fc-dimensional mean vector of 
sample characteristics and H is smooth in a neighborhood of μ — ΕΖ. 
If grad//(/i)#0, and £|Z/ |

2<oo, then the normalized statistic Wn — 
y/n (H(Z) — Η(μ)) is asymptotically normal. This follows from the Taylor 
expansion 

Ψη = ^ι(Ζ-μ)^™άΗ(μ) + ορ(1)). (1.1) 

If E \Zj\s < oo for some integer s ̂ 3 and H is s-times continuously differen-
tiable in a neighborhood of μ, then one may approximate Wn better by 

^ " ^ { Σ ' Ι ^ - ^ ' Ο + ̂  Σ ΙήΑ^-μ^Ζ^-μ^) 

(1.2) 

Here superscripts denote coordinates and /, = (£>,//)(/*)> lh I2 = 
(ϋίχΏί2Η)(μ\ etc., with £>, denoting differentiation with respect to the /th 
coordinate. One may compute the yth cumulant Kjn of W'n algebraically 
(1 ̂ / Ό ) , and keep only terms up to order 0(n~{s~2)/2): 

Kj^R^ + oin-*-2*2) ( l ^ y O ) , (1.3) 

Kjn) being a polynomial in n~1/2 with coefficients determined by the 
moments of Z, and the derivatives /,, khiv..., liu...js_r One has 
KUn = 0(n-l/2), Κ2,η = σ2 + ο(η->/2)9 Kj,n = 0(nJv-2*2) (y>3), where 

σ2 = grad//(μ)·Fgrad//(/x), 
(1.4) 

F=cov Zj. 
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The characteristic function of Wn is now approximated by 

= e x p | - ^ } e x p | i ^ 1 , „ - | ( ^ 2 , „ - f f
2 ) + i f ^ ^ „ } 

= βχρ|-^}[ΐ+Σ2»-^π/ιί)] 
+ o(„-(-2,/2) = ^ n ( 0 + o( /J-(,-2)/2)) ( 1 5 ) 

say. For the second equality in (1.5) one expands in powers of «_ 1 / 2 . Here 
η^ίξ) is a polynomial (in ΐξ) whose coefficients depend on the moments of 
Zj and the derivatives of H at μ. Now ij/s„ is the Fourier transform of the 
density φίη of the formal Edgeworth expansion of the distribution of Wn, 
obtained by inversion: 

ΨΜ=U+'Σ»-'% ( -Jj)l ΦΛ*Ι 
(1.6) 

y/2na2 

Suppose that the observations Yj (7=1 , 2,...) are i.i.d. w-dimensional with 
common distribution G and that 

ZJ=(fl(Yj)9f2(Yj), ~,A(Yj)) = (Ζγ\ Zf\ ..., Zf >), (1.7) 

where f (1 ^r^k) are real-valued Borel measurable functions on Rm. Let 
Qx denote the (common) distribution of Zj — μ. The following assumptions 
were made in Bhattacharya and Ghosh [2] , Bhattacharya [1] , to prove 
the validity of the formal expansion (1.6) (i.e., to establish 
Prob(W„eB) = $Βψ3η(χ)dx + o(n~is-2)/2) uniformly for all Borel sets B): 

(B t) H is (s-l)-times continuously differentiable in a neighborhood 
of μ. 

(B2) gradHfa)*0. 

(B3) E\fr(Yj)\'<ooforl^r^k. 

(B4) There exists a nonempty open subset U ofUm with the properties'. 
(\)G has a nonzero absolutely continuous component {with respect to 
Lebesgue measure on Um) with a positive density on U; (ii)/ r (1 ̂ r^k) are 
continuously differ entiable on U; (iii) l , / l 5 ...,fk are linearly independent as 
elements of the vector space of real valued continuous functions on U. 
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Let us now assume, instead of (BJ, (B2), (B3), 

(ΒΊ) H is s-times continuously differentiable in a neighborhood of μ. 

(B'2) (i) 1^0 for l^i^k{; (η)1, = 0/οΓ k{<i^k, where kx is an 
integer satisfying \^,kl<k. 

(B'3) (i) E\fr(Yj)\'<co for 1 < ι · < * , ; (Ü) E\fr(Yj)\s~l <oo for 
&! < r ^ &, for some positive integer s^3. 

Our main result relaxing earlier moment conditions is the following. 

THEOREM. Under the assumptions (Bi), (B'2), (B'3), (B4) one has 

sup 
weR1 

= o ( „ - ( , - 2 ) / 2 ) ( 1 8 ) Prob(^„^M)-f φ,,„(χ)αχ 
| J- o o 

Proof Recall the notation Wn = Jn(H(Z) - Η(μ)). Let 

n~m r- r-

+ -JT Σ lhJlfn(Z^-^)Jn{Z^-^) 
n-(s-\)/2 

+ ·■·+—-r- Σ K^i.>frWh)-ith)) 
K / i , 12,...,/,< A: 

• • • ^ ( Ζ ^ - μ ^ ) . (1.9) 

We first prove (1.8) with Wn replaced by W'n. By Lemma 2.2 in 
Bhattacharya and Ghosh [2 ] , Q*k (i.e., the distribution of Σ ΐ ( ^ , - μ ) ) 
has a nonzero absolutely continuous component. Hence the distribution Qn 

of y/n (Z — μ) has a nonzero absolutely continuous component for n^k. 
Write 

h(z9e)= X W + i- Σ /i1.**
c,,)*c*> 

4- ··· + -
CT ^ M . - . . J 

(1.10) 

Now it is shown in Bhattacharya and Ranga Rao [3] (see the proof of 
Theorem 19.5 and the remark on p. 207) that there exists a part q'n of the 
density (component) of Q„ which has the properties 

sup 
B 

\ q'„(z)dz-Qn(B) = o(«- ( î" ) / 2) (5aBorelsubsetofR*) (1.11) 
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and 

l?;(^)-i,-i»K^i"(J"3)/2(l + klJ + *), [zeR*], (1.12) 

where £5_ι,„(ζ) is the density of the (s — 2)-term Cramér-Edgeworth expan-
sion of Qn, c is a positive constant, and δη -►0 as « -► oo. Note that (1.11) 
holds under the assumptions (B3), (B4); i.e., E \ZJ\

S~1 < 00 suffices. Indeed 
the right side in (1.11) is o{n~m) for every positive integer m (see relations 
(19.73), (19.76), (19.77) in Bhattacharya and Ranga Rao [3]). 

By (1.11) the following holds uniformly for all w: 

Prob(^;^w) = Prob[ £ liy/n(2{i)-ß{i))^u\ 

+ Prob({WB^ii}\{ Σ / ,V"(Z ( ' , - /< < ' , K"}) 

-Prob (I Σ /^ (^ ' ' - ^Κκ^»*»<«}) 

= Prob( X / ^ ( Z ^ - ^ X « ) 

+ f 9^)* 
J { Ä ( Z , £ ) < U } \ { A ( 2 , 0 ) ^ M } 

- ί +φζ- ( ί - 2 ) / 2 ) . (1.13) 
J { A ( z , 0 ) ^ M } \ { A ( z , e ) ^ M } 

But in view of (B'3)(z) (and (B4)) one has, unformly for all w, 

Prob( X /ίν£(Ζ<'>-μ<'>)<ι#) 

= f Έ,.ΛζΜζ + φ-«*-2*2), (1.14) 

where ^ , , w iAe density of the (s-l)-term Cramér-Edgeworth expansion 
of the distribution of yfn (Z(1) - μ(1),..., Z(kl) - μ{*ι)). 

On the other hand, 

I q'n(z)dz-\ q'n{z)dz 
J{h(z,e)^u}\{h(z,0)^u} J {h(z,0)^u}\{h(z,e)^u} 

• ' {Α(Γ,εΚκ}\{Α(ζ,0)^κ} J{A(z,0)^w}\{A(z,e)^M} 

(1.15) 
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where, by (1.12), 

* „ < ( [ (1 + \ζ\'+')-ιάζ)οδ„η-<'-3)/2. (1.16) 

Here A denotes symmetric difference: B AC=(B\C)KJ(C\B). Note that 
for z in {\z\< 1/ε1/(*_1)} there are positive constants cl9dl such that 

h(z,s)-cle \z\\2-dle^ih{z,0)^h(z9e) + cle \z\2 + dxe. (1.17) 

Write, for given u satisfying |i/| < 2 |/|/e1/<J"" 1>(|/|2 = Σι^/^ΑΠ '2)> 

A£ = ({h{z,s)^u} A{h(z,0)^u}n{\z\<\/si/is-l)}. (1.18) 

Then 

AEczAelvAe2, 

Ael = {u-cle\z\2-dle^h(z,0)^u}n{\z\<l/el/{s-l)}, (1.19) 

^ e 2 ={w<A(z ,0 )^w + c1 |z |2 + rf1e}n{|z|<l/£
1/(5-1)}. 

Now make an orthogonal transformation z-*y with >>(1) = A(z, 0)/|/| = 
Zi^^./^'VŒ/^^.Then 

f (l + |zr^)-^z 

= f (\ + \y\* + k)-ldy. (1.20) 
J {(u - c ie |^ | 2 - i/ie)/ |/ | *S >><lU u/\l\} o { \y\ < l / e 1 ^ " ^} 

Write |^|2 = ( y l ) ) 2 + Z2(y , ' ))2 = ( y i ) ) 2 + ''2 a n d s ° l v e t h e quadratic 
equation (in y(1)):y(1) = (u — c^iy^)2 — c^r2 — άχέ)ΙΙ\1\9 to derive from 
(1.20) the inequality 

f (l + \z\s + k)-ldz 

<\ (l + \y\s + k)-ldy^c3e, (1.21) 

which holds for some positive constants c2, c3 and for all sufficiently small 
ε > 0. Similarly, one has 

f (l + \z\s + k)-ydz^cAe (1-22) 
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for some positive constant c4 and all sufficiently small ε > 0. Also, 

f (l + \z\s + k)-ldz = œk P xk-l(l+xs + k)-ldx 
J { M > l / e

1 / u - D } J i / e i / ( * - D 

^ œk I "TTT <** ̂  c 5^ [0 < ε < 1 ] , 

(1.23) 

J l / e l /^ -DX 

where œk9 c5 are suitable positive constants. 
Combining ( 1.16)—( 1.23) one gets, with e = n~l/2, 

ηπ = ο(η-(*-2"2), (1.24) 

uniformly for all u satisfying \u\ <2 |/|/ε1/(ΐ-'>. For u^2\l\/eiis-l), Αε1 is 
empty for all sufficiently small e (see (1.20)). For w< — 2 |/ |/ει / ( ί_1>, 

Î£I (l + \y\1+k)~ldy 
{ v<'>^ - 2 / e ' / < ' - ' > } 

f (\ + \z\s + k)-ldz 

;f 

= _ £ i _ Γ 
5 + k - 1J0 

{y> < _2/ e i /<* -n} 

2 y - * + 1 

"5-*</>;(1)j</r 

, 1 / ( ^ - 1 ) + r </r 

<*6 v~s~l dv^c7s, 
J ? / Pl / ( j - l ) 

for appropriate constants c6, c7. Similarly, one shows that 

f (l + \z\s + k)-ldz = 0(e) as ε | 0 , 
JAe2 

(1.25) 

(1.26) 

in case w^ — 2 |/|/ε1/(5_1). In exactly the same manner one shows that for 
u^2\l\/si/(s-l\ the integrals of (1 + \z\)-s~k over AEl and Αε2 are Ο(ε). 
Hence (1.24) holds uniformly for all u. Now use (1.24), (1.13 H 1.15) to get 

SUP., Prob(^;^w)- f , ^sjz)dz 

+ f ^-..„(zMz 
J {/ι(ζ,ε) < w}\{A(z,0) sS u) 

- ί ^-ι,„(ζ)ώ]|=φ-(Ι-2 , /2). (1.27) 
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The reduction of the above integrals is now carried out exactly as in 
Bhattacharya and Ghosh [2] to yield 

sup P r o b i ^ i O - f " iPsJx)dx 
J — m 

= o („-(S -2) /2 ) (1.28) 

Finally note that there exists a constant c8 such that 

\Wn-W'n\^C,n-s'2l ^~η{Ζ-μ)Υ+\ (1.29) 

Now, by Corollary 17.12 in Bhattacharya and Ranga Rao [3] one has, for 
every ε > 0, 

ΡτοΗ^/η\Ζ-μ\>εηι/{^1)) = ο(η-{5-3)/2η~{5-1)/{5+1)) 

= o(n~is-2)/2) ( j^3) . (1.30) 

Since φ5„ is bounded (uniformly in «), (1.28)—(1.30) imply (1.8). | 

Remark 1. The proof essentially shows that one may replace the 
assumption (B3) by (B3): E \Z[n\s~r< 00 for all i which appear in 
the expression (1.9) for the first time in the sum η~Γ/2Σ '/,» ···> 
ι Γ + 1 > / / Λ ( 2 ( , ι ) - μ ( / ι ) ) · · · λ / Λ ( ^ + ι ) - / ι ( , ' + , ) ) (0^r^s-2). 

Remark 2. The proof goes over to the case of vector-valued statistics 
Jn (H(Z) — Η(μ)) (or, more generally, vector-valued statistics which may 
be adequately approximated, coordinate wise, in the form (1.9)). 

Remark 3. In Bhattacharya and Ghosh [2] , (also see Bhattacharya 
[1]) it is proved under the assumptions ( B J H B J that 

sup 
B 

Prob(W„e5) - f *sJ*)dx = o(n-(s-2)/2), (1.31) 

where the supremum is over the class of all Bor el subsets B of R1. Our 
proof above, under the moment relaxation (B3) (or (B3)), only provides an 
approximation of the distribution function. Although this proof may be 
extended to carry over to the case of probabilities of sets with smooth boun-
daries (e.g., Borel measurable convex sets), it does not yield (1.31). We do 
not know if (1.31) is valid under the hupothesis of the present theorem. (Of 
course, (1.31) holds in this case if the right side is replaced by o(n~is~3)/2).) 

Remark 4. An entirely analogous result holds for statistics H(Z) for 
which /, = 0 for all /, while /,,,,^Ο for some ix,i2. Thus for statistics 
η(Η(Ζ) — Η(μ)) arising in testing statistical hypotheses (See Chandra and 
Ghosh [4]) moment conditions may be relaxed for those coordinates 
which do not appear in the principal term of the Taylor expansion 
around μ. 
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Remark 5 (Conditioning argument). We write Zj= (Ζ)υ,..., Zfx)\ 
Z; = (Zf * + *>,..., Zj*>), EZ'j = /ι', £ Z / = μ". Under (B4), (Σ? Z/, ΣΪ Z/) has 
a joint density and, therefore, ΣΪ Z> has a conditional density given ΣΪ 2"/· 
Dividing up ΣΐΖ} , Σΐ Z'j i n t o consecutive blocks of fe summands each, 
one may first obtain an asymptotic expansion of the conditional dis-
tribution of the first sum (centered around its conditional expectation) 
given block sums of Z/ . The successive block sums of Z] are still indepen-
dent under this conditioning, but not identically distributed. However, by 
restricting Z" close to μ" (the complementary event having small 
probability), one may often justify an asmptotic expansion of the above 
conditional distribution (see, e.g., Bhattacharya and Ranga Rao [3, 
Theorem (9.3)]). Under this conditioning regard H(Z) as a function of Z' 
with (block sums of) Z" as parameters, center H(Z) around its conditional 
expectation, rewrite y/n (Η(Ζ)-Η(μ)) in terms of this new centering, and 
proceed as in Bhattacharya and Ghosh [2] to obtain an asymptotic expan-
sion of its conditional distribution. Finally expand the expectation of this 
expansion, this time dealing with (sample) means of i.i.d. summands. Such 
a procedure sometimes also succeeds in relaxing moment conditions. See 
Hall [7] for a similar procedure applied to the Student's statistic. Clearly, 
for the expansion of the conditional distribution of the statistic up to an 
error o(n~(s~2)/2) one only needs E \ Zj\s< oo, together with an 
appropriate moment condition on Z'J to ensure that Z" remains sufficiently 
close to μ" with probability 1 — o(n~~(s~2)/2). However, higher moments 
may be needed in carrying out the expansion of the expectation of the con-
ditional expansion mentioned above. See Example 2 in Section 2 for an 
additional comment on this. 

2. EXAMPLES 

EXAMPLE 1 (Hall [6]). Let Yj (y=l ,2 , . . . ) be a sequence of i.i.d. 
radom variables having zero mean, unit standard deviation and a nonzero 
third moment μ3, say μ 3 >0 . One may expect that the 100(1 — a)% point 
of the distribution of yjn 7= (Y{ + ··· + Y„)/n1/2 is better approximated 
(than the 100(1 — a)% point z = z(a) of the standard normal) by that of the 
normalized chisquare χ2

Ν having N degrees of freedom, where N is chosen 
so that the third moment (namely, (S/N)l/2) of TN = (2Ν)~ί/2 (χ2

Ν-Ν) 
equals that of Jn 7 (namely, μ3/η

ι/2); i.e., 

Ν=Ζη/μ2. ' (2.1) 

One may use the gamma tables to find zN = zN(cc) such that 

P r o b ( r „ 0 , v ) = l - a . (2.2) 
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Hall [6] shows that zN is indeed a better approximation of the 
100(1—a)% point for y/n Ϋ than usual estimates, under Cramer's 
condition as well as in the lattice case. In case μ3 is unknown, replace it by 
the sample third moment μ3 and write 

N=Sn/fij. (2.3) 

Hall [6, Theorem 5] provides an asymptotic expansion of 
Probi^/« Y^ZJQ) up to order o(n~l), uniformly for ae [ε, 1 — ε] for every 
ε>0, under the assumptions (i)£Ti<oo and (ii) (YUY\) satisfies 
Cramer's condition. He correctly points out that this expansion may be 
derived from Bhattacharya and Ghosh [2] only if (i) is strengthened to 
(i)' EY\2< oo. Let us show that our present results may be used to derive 
Hall's expansion under the conditions (i) EY\ < oo and (ii)" (B4) holds with 
m=\9k = 2\fx(y) = y9f2(y) = y\ 

By Lemma 1 of Hall [6], obtained by equating the asymptotic expan-
sion of Prob(7\riSj>) with 1 — a, one has 

zN = z + N~ 1/2Λ(ζ) + N- lP2(z) + o(N~l ), (2.4) 

uniformly for ae[e, 1— ε] (for every fixed positive ε). Here Pl9 f2 are 
polynomials. Thus it is enough to expand Pvob(y/n Y^z'), where 

z* = z + N- 1/2P,(z) + fi~ lP2(z) 
*2 

y/Sn 8« 
_ | μ 3 / > , ( ζ ) ^μ\Ρ2(ζ) 

Jïn 8« 

+ „-^{μ3-μ3)γ^1. (2.5) 

Expressing y/n Ϋ^ζ' in the form (1.9), one may now apply Remark 1 with 
5 = 4. Note that y/n (Z(2) — μ<2)) = Jn (μ3 — μ3) appears the first time with 
coefficient «" ' , so that (B3) becomes 

EY4, <ao, E\Y]\2sEY6
l<oo. (2.6) 

We have taken μ3 = n ~ ' Σ"_ ι Y) above. One may modify the 
calculations a little in case μ3 = Η_1Σ7=ι {Yj — ΫΫ, to prove that (2.6) 
suffices along with (B4) (with k = 3, fi(y) = y' for / = 1, 2, 3). 
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The expansion of Pvob(^/n Ϋ^ζ') in terms up to order n~l involves 
EY\ (see Hall [6, p. 1032]). It may be shown by complicated algebra that 
the coefficient of n~3/2 in the formal expansion involves EY\. Also, looking 
at (2.5) one would not expect a valid asymptotic expansion with error 
o(n~l) unless y/n(fi3 — μ3) converges in distribution. Thus it is unlikely 
that the desired expansion holds in general under the condition 
E | Y ! |r < oo for some r < 6. 

EXAMPLE 2 (Studentized statistics). Consider the Student's statistic 
t=?/â, where σ2 = ( 1 / Λ ) Σ " - Ι YJ- Ϋ2· Here m = l, k = 2; Z)l)=Yj, 
Zj2)= Yj, EYj = 0. According to the theorem in Section 1, under (B4) the 
distribution of nl/2t has an asymptotic expansion with error o(n~{s~2)/2) if 

£ y 2 ( , - l ) < 0 0 j ( 2 .7) 

instead of the earlier requirement: EYjs < oo. Thus for an error o(n~l/2) 
one needs finite fourth moments. By a conditioning argument, similar to 
the one sketched in Remark 5, Hall [7] proves that for an error o{n~x,2\ 
E | Y\ | < oo is enough. He also shows that for a higher order expansion of 
the conditional distribution of /, given {Yj9 1 ^j^n}, E | Yj\s< oo suffices; 
but we are unable to obtain the appropriate expansion of the expectation 
of the conditional expansion under this moment condition. 

Consider now the asmptotic expansion of the Studentized sample 
moment fir = n~{ Σ"=ι Yj (r ls a positive integer). The studentized statistic 
is T=(fir — μΓ)/σΓ, where â2 is obtained by replacing population moments 
by sample moments in the expression var(/2r) calculated at least 
approximately keeping the principal terms (i.e., terms of order n ~l ). For an 
expansion with an error term o(n~(s~2)/2\ the theorem in Section 1 
requires E \ Yj\2r(s~l) < oo instead of the older moment condition 
£ | y / r 5 < o o . 
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We consider a class of discrete parameter Markov processes on a complete 
separable metric space S arising from successive compositions of i.i.d. random maps 
on S into itself, the compositions becoming contractions eventually. A sufficient 
condition for ergodicity is found, extending a result of Dubins and Freedman [8 ] 
for compact S. By identifying a broad subset of the range of the generator, a 
functional central limit theorem is proved for arbitrary Lipschitzian functions 
on 5, without requiring any mixing type condition or irreducibility. © 1988 Academic 
Press, Inc. 

1. INTRODUCTION 

Recent work has shown that the Billingsley-Ibragimov martingale 
central limit theorem (Billingsley [6, Theorem 23.1]) is the right tool for 
deriving functional central limit theorems for general ergodic Markov 
processes (Gordin and Lifsic [10], Bhattacharya [2]). There are several 
reasons for this. First, no mixing type condition is needed. Computations of 
mixing rates are often virtually impossible, and there are many important 
ergodic Markov processes for which none of the usual mixing rates goes to 
zero. Second, the martingale central limit theorem is applicable to each 
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centered function belonging to the range of the generator of the Markov 
process. The class of such functions is dense in the L2-space with respect to 
the invariant probability. Last, but not least, an analytical expression for 
the variance parameter of the limiting Brownian motion is automatically 
provided. Some illustrations of these different aspects of the theory 
may be found in Bhattacharya and Gupta [4], Bhattacharya [3], and 
Bhattacharya and Lee [5]. The present article provides another class of 
such processes. The nontrivial tasks in these applications are (1) the 
derivation of a criterion for ergodicity and (2) the identification of (a, large 
subset of) the range of the generator. 

In this article, we consider a discrete parameter Markov process {X„} on 
a complete separable metric space (S, p), represented as Ar„ = artan_1 ··· 
<χ{Χ0, where X0 is a given random variable with values in S and {a„} is an 
independent and identically distributed (i.i.d.) sequence of continuous 
random maps on S into itself. Also, X0 and {a„} are independent. It is 
assumed that there exists a positive integer m0 such that with probability 
one, a m - a 1 is a contraction for each m^m0. Under two additional 
assumptions (see (At), (A2) in Section2) it is shown that there exists a 
unique invariant probability π, and that the w-step transition probability 
pin)(x, dy) converges weakly to n(dy), as w-»oo, for every xeS 
(Theorem 2.2). This extends to noncompact spaces an earlier result of 
Dubins and Freedman [8, Corollary 2.3]. What is novel about such a 
result is that the transition probability p(x, dy) need not be irreducible. 
Recall that p is said by φ-irreducible with respect to a non-zero sigma finite 
measure φ if φ(Β)>0 implies, for each x, the existence of an integer 
n = n(x, B) such that pin)(x, B)>0 (Orey [13]). Typically, irreducibility is 
violated when the distribution of al has a finite or discrete support. Such 
examples arise even in the case of linear autoregressive models of order 
one. See Bradley [7, Example 6.2] for a discussion of a example originally 
due to Rosenblatt [14]. 

Under an additional assumption (see (2.19)) it is shown that all centered 
Lipschitzian function / in L2(5, π) belong to the range of T— I, where 
{Tg)(x) = E(g(oixx)) = \ g(y) p{x, dy\ and / is the identity operator. It 
then follows from Gordin and Lifsic [10] and Bhattacharya [2] that the 
functional central limit theorem holds for such functions / (Theorem 2.5). 

2. MAIN RESULTS 

Let 5 be a complete separable metric space with metric p and ${S) its 
Borel sigma field. Let Γ be a set of continuous maps on S into S. Endow Γ 
with the topology of uniform convergence on bounded sets and let $(Γ) be 
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the Borel sigma field on Γ. Let P be a probability measure on (Γ, $(Γ)). 
Consider a probability space (Ω, &, Q) on which are defined an i.i.d. 
sequence of random maps α1,α2,... with common distribution i \ and a 
random variable X0 with values in S independent of the sequence {a„}. 
Then the following sequence {Xn} is a Markov process on S, 

* 0 , * „ : = α „ · · · α ι * ο ( O l ) . (2.1) 

Here, we write yx for the value of the map y e Γ at x, and y„·· ·yi for the 
composition of the maps y1? y2,..., y„. It is well known (Kifer [12, 
Theorem 1.1, p. 8]) that every discrete parameter Markov process on S 
may be constructed in this manner, although Γ need not be a set of 
continuous maps. 

Write rm for the usual Cartesian product Γχ · · χ Γ , and rim) for the 
set of all compositions y\y2'-ym °f elements yÉer (/= 1,..., ra). Let Pm 

denote the product probability on (Γ"1, @{rm)). 
The following assumptions are made: 

(A0) There exists m0 such that for all m^m0 every element of T{m) is 
a contraction, i.e., p(yx, yy)^p(x, y) for yer{m). 

(A!) Let m0 be as in (A0). For every ε>0 there exists βε<1 such that 
Pmo({(yi,:,ym0) e rm^.p{ym^-yxx,ym--yiy) ^ max(j8ep(*, y\ s) 
Vx,>>})>0. 

Write diam(C) for the diameter of C c S , diam(C) = sup{p(x, y)\ 
x, yeC}. Also, yC denotes the set {yx:xeC}. 

LEMMA 2.1. Under the assumptions (A0), (AJ, diam(a„ · •a1C)->0 
almost surely for every bounded C cz S, as n^ co. 

Proof. Fix a bounded set C. For each ε > 0 and positive integer N 
define the sequence {Fj} of events (in (Ω, ^, Q)) by 

^ 7 = LP( a mmo ' ' * a ( m - l)m0+ 1 X> ^mmo ' ' ' a ( m - 1 )m0 + 1 .V) 

^max{ß£p(x, j ) , ε} VJC, _y, and Vm satisfying (j— l)N<m^jN] 

(y = 2,3,...). (2.2) 

Then Q(Fj) = Q{F2) > 0, each Fy being the intersection of N independent 
events each with the probability appearing in (A{). Also, {/}} are indepen-
dent. Therefore, by the Borel-Cantelli lemma, with ß-probability one, 
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infinitely many Fj occur. Now if F} occurs (for some j^2) then for all 
n ̂  (jN + 1 )m0 one has, for every pair x, y in C, 

ρ(α„ ··-α, χ,απ ·..<*! JO 

^max{6, ßep(otiJN-1)mo · · ·α,χ, a(yW_ 1)mo · · · a, >>)} 

^max{e,/î£
2p(a(yW_2)mo · · · a^, a(y7V_2)mo · · · «! >̂ )} 

^ <max{fi,^p(a(y_1)^mo..-a1Jc,a(y_1)Armo...a1^)} 

^max{e, j?fp(*, >>)}<max{e, j8^diam(C)}. (2.3) 

Now find N such that βε diam(C)<e. Then for all sufficiently large n 
(depending on ωεΩ) one has for all x, yeC, 

p(ocn-oclx,(xn'.OL1y)^s. | 

Let pin)(x, dy) denote the n-step transition probability for the Markov 
chain {X„}9 where p{l)(x,dy) = p(x,dy). Note that pin)(x9 dy) is the 
distribution of OL„ · · · OL1 X. 

On the set 0>(S) of all probability measures on (S, @(S)) define the 
bounded Lipschitzian distance 

i/BL(^v) = sup | Ν / έ / μ - | / Λ : 11/11 oo ^ M l / l k ^ U (M,VG^(5)), 

(2.4) 

where ||/||00 = sup{| /(x) |:x6 5} , 11/11 L = sup{|/(x)-/(>>)l/p(*, y): χΦ 
ye S}. It is known that dBL metrizes the weak-star topology on 0>(S) 
(Dudley [9]). 

For the next result, we need the following additional assumption. 

(A2) For some x0 e S, pin)(x0, dy) has the following property: for every 
ε > 0 there exists Με,ηε finite such that pin\x0, {x:p(x, χ0)^Με})<ε 
Ϋη^ηε. 

THEOREM 2.2. Assume (A0), (A^, (A2). There exists a unique invariant 
probability n(dy) for p(x, dy\ and 

sup{i/BL(piw)(x, dy), n(dy)):xeC} ->0, as «-►oo, (2.5) 

for every bounded set Ccz S. 
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Proof. Fix a bounded set C. For all xx, x2 e C one has 

dBL{piH)(xl9dy),pM(x29dy)) 

= s u p { | £ / ( a n - . - a 1 x 1 ) - £ / ( a n - - - a 1 x 2 ) | : | | / | | œ ^ l , | | / | | L ^ l } 

^iE:(p(an • · α 1 χ 1 , α η · · α 1 χ 2 ) Λ 1) 

^^diamia^ - a j C ) Λ l ) ->0 as n->oo, (2.6) 

by Lemma 2.1. Similarly, writing B(x0:M) for the ball of radius M centered 
at x09 for all / satisfying U/H«, < 1, | | / | | L < 1, one has 

\Ef(<xn + m--oilXo)-Ef(atn--oilx0)\ 

= \Ef(ctl · · · ct„ · · · aM + mx0) - £/(«i ' * · a„*o)l 

^ £(p(a! · · · a„a„ + 1 · · · a„ + mx0 , ô  · · · a„x0) A 1 ) 

^Q({P(<*n+l-~*n + mXo>Xo)^M}) 

+ Q({dmm(oLi-OLnB(x0:M))>ô}) + ô9 (2.7) 

for every M > 0 , <5>0. Given ε > 0 , let δ = εβ and choose Μ = Μ'ε such 
that 

ß ( { p ( a r - . a m x 0 ^ o ) ^ A f i } ) < 6 / 3 V#w= 1, 2,.... (2.8) 

This is possible since the family of distributions of p(aj •••amjc0, x0), 
ra^l, is relatively weak-star compact, by (A2). By Lemma 2.1, 
Q({dmm((xl •(χηΒ(χο:Μ

,
ε))>εβ})^>0 as n-+co. Hence, by (2.7) and 

(2.8), for all sufficiently large n, say η>ηι(ε), 

dBL(p(n + m)(xo, dy\ p™(x0 dy)) <ε Vm = 1, 2,.... (2.9) 

Since (0*(S), dBL) is a complete metric space (Dudley [9]), it follows that 
there exists a probability measure π such that 

dBL(Pin)(xo9dy)9n(dy))^0 as n-+oo. (2.10) 

Now (2.6), (2.10) imply the uniform convergence of p{n\x, dy) to n(dy), in 
the rfBL metric, for xeC. Since *-►/>(*, </y) is weak-star continuous, it is 
easily checked that π is the unique invariant probability. | 

Theorem 2.2 extends Theorem 4.4 of Dubins and Freedman [8] . We 
state their result as a corollary. 

COROLLARY 2.3 (Dubins and Freedman [8]). Let S be a compact 
metric space, Γ a set of contractions on 5, and P a probability measure on 
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(Γ, $(Γ)). If there exists a strict contraction γ0 in the support of P, then 
there exists a unique unvariant probability π, and p{n)(x, dy) converges 
weakly to n(dy\ as n-+ oo, for each xeS. 

Proof Assumptions (A0), (A2) are trivially satisfied in this case. It is 
enough to check (At) with m0=l. For each ε > 0 define βε = 
sup{p(y0x, y0y)lp(x, y):x, y such that p(x9 y)^e}. Then βε< 1. For each 
δ > 0 let Γδ = {y e Γ:ρ(γχ, y0x) < δ Vx}. Then Ρ(Γδ) > 0. Now if y e Γδ then 

p(yx, yy) < p(y*, y0x) + p(y<>*> 7o y) + p(y0 y, yy) 

<2ô + p{y0x,yç>y) 

g 

^ 2δ + β'ε/2ρ(χ, y)X{ p(x, y)^e/2} + 2%{ P(X> y)<£/2) 

^(ße/2p(x>y) + WX{p{x.y)>s/2} + W + B/2)x{piXty)<B/2] 

<\ß'sn + — )p(x>y)X{P{x.y)>*n} + \^ + y (2.Π) 

Choose δ < ε/4 such that βε := β'ε/2 + 4δ/ε < 1. Then (2.11 ) becomes 

P(yX,yy)<ßeP(x>y)X{p(x.y)>e/2}+eX{p(x,y)<e/2} 

^ max{j?£p(x, y), ε} Vy e / y (2.12) 

D 

Remark 2.3.1. Assumption (A2) is obviously necessary. It may be 
violated even for linear autoregressive models, 

XH+1=aXm + eM+l (2.13) 

with \a\ < 1, {εη} an i.i.d. sequence. Here 5 = R 1 , Γ= {ye:e€U1} with 
ye(x) = ax + e, so that P is determined by the distribution G, say, of εί. It is 
easy to check that a unique invariant probability exists if and only if 
Σ °̂= i #% converges almost surely or, equivalently, in distribution. For 
example, if ΣΓ=ι 0({ε: \αηε\ >δ}) = co for some δ>0 then an invariant 
probability does not exist. 

Remark 2.3.2. It is not difficult to check that Theorem 2.2 holds if the 
hypothesis (At) is replaced by the following alternative (ΑΊ). A contraction 
y0 will be said to be asymptotically uniform on bounded sets abbreviated as 
aub, if 

lim sup p(y3% 7o >0 = 0 Vr>0. 
m-»oo {x, y:p{x, y)^r} 
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(A i ) There exists an a-ub contraction γ0 such that for all ε > 0 and 
all m^m0 one has 

Pm({(yl,...,ym)er":p(ym---ylx,yox)^sVx})>0. 

Assume that the hypothesis of Theorem 2.2 holds. Let T be the transition 
operator on L2(S9 π), 

(Tf)(x):=\f(y)p(x,dy), feh2(S,n). (2.14) 

Then (T"f)(x) = \ f(y) p{"\x, dy). We will denote the iAnorm on L2(S, π) 
by || || 2· Let / denote the identity operator. Write 

f=\fdK. (2.15) 

LEMMA 2.4. Let fe\?(S,n). If Σ„°°=ο \\Tn(f-f)\\2< » , then f-f 
belongs to the range ofT—I; indeed, (T—I)g=f—f, where 

OD 

*=-Σ n/-/)· (2.16) 
« = o 

Proof Apply Γ to both sides of (2.16). | 

It will be convenient to denote the sequence (2.1) as {^„(x)} if X0 = x, 

XQ(x):=x9Xn(x):=yn...yix ( O l ) . (2.17) 

In order to state the functional central limit theorem, fix feL2(S, π). 
For each positive integer /2, write 

r,(0 :=*-'* [ C £ V ( ^ (t>0), 
(2.18) 

where [«/] is the integer part of nt. 

THEOREM 2.5. Let the assumptions (A0), (A,), (A2) hold. In addition, 
assume 

£ ( j | j £ p ( ; U * ) , *„(>-)) π(</>θ] n{dx)j < oo. (2.19) 

(a) If the initial distribution is π, then for every Lipschitzian f in 
L2(S, π) the function f — f belongs to the range of T— /, and for every such 
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/ the processes Yn() converge in distribution to a Brownian motion with 
mean zero and variance parameter \\g\\\— \\Tg\\\, where (T— I)g = f — f. 

(b) If, further, 

-1/2 | Ep{Xj{x\ Xj(y)) n(dy)^ - 0, (2.20) 

as n-+ oo, then the convergence in (a) holds when X0 = x. 

Proof (a) Let / be Lipschitzian on S, \f(x)—f(y)\ ^Mp(x, y) for all 
x, y. Then 

, 2 

IT"(f-f)(x)\2 = (j lEf(Xn(x)) - Ef(Xn(y)n n(dy)^ 

\Ep(Xn(x),X„(y))n(dy)]. (2.21) ^Mz 

Therefore, 

II Tn(f-f)\\l^ M21 | j Ep(Xn(x\ Xn(y)) n(dy)\ n(dx). (2.22) 

Hence if (2.19) holds, / — / belongs to the range of T— I by Lemma 2.4. To 
prove the functional central limit theorem under the initial distribution π, 
let g be given by (2.16). Consider the representation 

" l (f(Xj)-f) = "l (Tg(Xj)-g(Xj)) 
j=0 j=0 

= t iTg{Xj_x)- g(Xj)) + {g{Xn)- g{X0)\ (2.23) 
7 = 1 

Since Tg(Xj_l) — g(Xj) (j>0) is, under the initial distribution π, a 
stationary ergodic sequence of martingale differences the functional central 
limit theorem follows (see Billingsley [6, Theorem 23.1], Gordin and Lifsic 
[10], Bhattacharya [2, Theorem 2.1]). In this case, the variance parameter 
of the limiting Brownian motion is E{Tg{Xj_l)-g{Xj))2 = \\g\\\- \\Tg\\2. 

(b) Suppose (2.20) holds for some x (By (2.19) this is true for almost 
all (n)x.) Then, i f / is as in (a), 

E[ max 
y.0 < / ÎS n 

«-1/2 Σ (/(*,(*))-/)-*-1/2 Σ (AXj(y))-f) 
j=0 j=0 

< M « - 1 / 2 Σ Ep(Xj(x), Xj(y)). (2.24) 
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Let X0 have distribution π and be independent of the sequence {a„}. 
Denoting A} = a,· · · · ο̂  Α ,̂ and letting Yn( · ) be the process defined by (2.18) 
and Y*() the corresponding process with Xj replaced by Xj(x) (y^O), one 
gets 

£(max \Y*n{t)-Yn(t)\)^Mn-"2( f f Ep(Xj(x), Xj(y)) n(dy) 

which goes to zero, as n -► oo, by (2.20). | 

Remark 2.5.1. By Holder's inequality, (2.19) implies 

\ [ £ | £ρ(*Λ(*), *„(>>)) π(φ)] π(Λ) < oo. (2.25) 

Therefore, (2.20) is a mild extra condition and holds for all x outside a set 
of π-measure zero. 

Remark 2.5.2. It is simple to check that every Lipschitzian / is in 
L2(S, π) if, for some z e 5, 

|ρ2(χ,ζ)π(Λ)<οο. (2.26) 

EXAMPLE 2.5.3 (Linear time series models). Let S=Uk, γεχ = Αχ + ε, 
where A is a kxk matrix and Γ= {ye:eeUk} is endowed with the 
Euclidean topology on the set of labels ε. Let P be a probability measure 
on (Γ, @{Γ)\ i.e., on (R*, 8(Uk)) such that J |ε|2 P(de)< oo. Assume that 
the eigenvalues of ^ are all less than one in magnitude. Since the spectral 
radius r{A\ i.e., the largest magnitude of the eigenvalues, equals 
lim \\An\\l/n (see Halmos [11, p. 182]), there exists m0 such that ||ΛΠ|| <δη 

for some <5<1 and for all n^m0. The hypotheses (A0), (AJ, (A2) of 
Theorem 2.5 are satisfied with βε = <5, and x0 = 0, since \Xn(x) — Xn(y)\ = 
Ι ^ . , Μ - ^ . ^ ) ! = · · . = M"(X-JOI ^ M " | | | x - > i Also, the 
invariant distribution π is the distribution of ΣΓ=ο ̂ %> where εη are i.i.d. 
with common distribution P. 

It is easy to check now that (2.19) holds, and (2.20) holds for all JC. 
Hence the functional central limit theorem holds for Yn() with / 
Lipschitzian, whatever the initial distribution is. In particular, 
Zn = n~ï,2Yé

n
jzl(Xj—(I—A)~lEsï) converges in distribution to a 

Gaussian law on Rk with mean zero. To calculate the dispersion matrix of 
this limiting Gaussian, check that g(x)= — c'(I— A)~l(x— (I— Α)~ίΕει) 
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solves (T— I) g(x) = c'(x — (I— A) lEe{) for every ceUk. Hence the 
variance of the limiting distribution of c'Z„ is || g\\j — ||Tg\\\ = c'Dc, where 

D = (I-A)-lV(I-AT\ 
V := dispersion matrix of ε, under P. 

(2.27) 

This D is then the desired dispersion matrix. 
One may treat the so-called AR(q) or linear autoregressive models of 

order k, and ARMA(k, q) or autoregressive-moving average models of order 
(k, q) as special cases of the above example. 

An ARMA(&, q) model is given by 

U„ + k= Σ ßiUn + k-i+ Σ &i1n + k-i + 1n + k> I (2.28) 

where η„ are i.i.d. real-valued and ßl9..., ßk, δΐ9..., bq are real constants. 
Write Xn = (Un9..., Un + k_l9 η„ + Μ-<ι,...,ηη + Μ-1Υ, εη = (0,...,0, 0,..., 0, 
tJn + k)'> Then (2.28) may be expressed as 

%n + 1 — AXn -f En + !, 

where A is the (k + q) x (k + #) matrix 

(2.29) 

Λ = 

0 
0 

0 

β„ 
0 
0 

0 

1 
0 

0 

ßk-l 
0 
0 

0 

0 · 
1 0 

0 · 

0 
0 

1 

ßx 
0 
0 

0 

0 
0 

0 

*< 
0 
0 

0 

0 
0 

0 

V. 
1 
0 

0 

0 
1 

0 

0 

0 

0 
0 

0 

0 
0 

0 
«5, 
0 
0 

0 

(2.30) 

Since Det(v4 — λΐ) = Det(2? — λΐ) · ( — À)q, where B comprises the first k rows 
and columns of A, the nonzero roots of the characteristic polynomial 
equation for A are those of Det (£-A/ ) = 0. This last equation may be 
expressed as 

-xk+ £ J M * " = O. (2.31) 

As a special case of Example 2.5.3, therefore, there exists in this 
ARMA(&, q) model a unique invariant probability for Xn on (R* + *, @k + q) 
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if the roots of (2.31) all lie within the unit circle and if Er\\ < oo, and then 
the central limit theorem also applies. 

A comprehensive account for the traditional treatment of the AR and 
ARMA models may be found in Anderson [1, Chaps. 5, 8] . By making use 
of Theorem 2.5 one may, however, prove central limit theorems for a broad 
class of nonlinear functions of X„, and therefore of [/„, not provided by the 
classical treatment. 

Remark 2.5.4. One may let Un + k in (2.28) depend on all Uj9 

— oo < j < n + k. In this case S = (R°° and, given appropriate convergence of 
the coefficients, one may again derive conditions under which Theorems 2.2 
and 2.5 apply. However, applications to nonlinear models of the form 
Xn+1 = Φ(Χ») + εη +1 promise to be of greater significance. 
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Conditionally Ordered Distributions 

HENRY W. BLOCK* AND ALLAN R. SAMPSON f 

University of Pittsburgh 

The concepts of conditionally more positively quadrant dependent, and con-
ditionally more dispersed are introduced and studied. Based on these two concepts, 
new conditions are given for multivariate cdfs F and G so that EFh(X)^EGh(X) 
for suitable h(X). Special cases include the multivariate normal distribution and 
elliptically contoured distributions. Conditional positive and negative dependence 
concepts as well as applications to the Farlie-Gumbel-Morgenstern distribution 
are a l s o c o n s i d e r e d . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

Joag-dev, Perlman, and Pitt [6] study a type of pair wise condition on a 
function of n variables which implies monotonicity of the expected value of 
the function in the covariance matrix of a multivariate normal distribution. 
A related condition has been used by Cambanis and Simons [3 ] in 
obtaining a similar result. Both sets of authors also consider extensions to 
elliptically contoured distributions. 

In this paper, we make the observation that the pairwise conditions of 
Joag-dev et al actually represent conditions of two different types: (a) a 
condition related to pairwise dependence and (b) a condition related to 
dispersion orderings. Second, we demonstrate that the monotonicity result 
of Joag-dev et al applies to any distributions which are conditionally 
pairwise dependence ordered or to distributions which are conditionally 
dispersion ordered. 

In Section 2 we consider results for distributions which are conditionally 
positively quadrant-dependent ordered and in Section 3 we examine 
distributions which are conditionally dispersion ordered. In both sections, 
we derive the results of Joag-dev et al [6 ] and Cambanis and Simon [3] 
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as special cases. We also discuss in these two sections some improvements 
of the results of Joag-dev et al. under weaker regularity assumptions. In 
Section 4, the concepts of conditional positive and negative dependence are 
examined, and in Section 5 another example is considered. 

Some notation which is used follows. For a given vector a = (al9..., ap)\ 
define for each pair of integers l^i^j^p the corresponding vector 

a U y ) = (ai,..., fl/_ i , Λ,·+ i , . . . , Λ/_ i , fl/+1, »., ap)'. 

In the case i—j we write a(0. For a given pair of integers l^i^j^p let 
ity',y)= { 1 , . . . , / - 1 , *+1, . . . , y -1 ,7+1 , ...,/>}. (In the case i=j, we write 

For a given cdf. F(xu ..., xp) and pair of integers 1 ^ i^j^p let 

F(xhXj\X
{iJ) = t) 

denote the conditional cdf of Xi9 X} given X ( , y ) = t. (In the case i=j\ we 
write F(jt,|X(,) = t).) Let /*,■(*,) and FRiu)(x

iiJ))9 l^i^j^p, denote the 
marginal cdfs, respectively, of Â  and X{iJ\ When densities exist, the 
following notations are used:/(x,, Xj\X(iJ) = t),/)(xf·) and/Ä(/ti/)(x( , ,y)). 

Let û(x) be a function defined on R1. The number of sign changes of a, 
denoted by S~(a(x)) is defined as sup S~{a(xx),..., a(xn)) (over all) 
sequences xx < · · · < xn , /i = 1, 2,..., where ^"(a!,..., a„) denotes the 
number of sign changes in al9..., a„, zero terms being ignored. 

Let ly be the matrix whose every entry is zero, except for the (i,y)th 
entry which is 1. The dimension of l0 is to be appropriate to the usage. 
Occasionally, we require a symmetrized version of the matrix, namely 
I// + I/7, which we denote by l£ . 

We follow the notation of Cambanis, Huang, and Simons [2] and say 
X: (px 1) is an elliptically contoured distribution with parameters μ, Σ, φ, 
where Σ is nonnegative definite, if the characteristic function of X — μ has 
the form 

This is denoted by X - ECp(\i, Σ, φ). 

2. CONDITIONALLY MORE POSITIVELY QUADRANT DEPENDENT 

In this section, we introduce our conditional positive quadrant depen-
dence (PQD) ordering. We show that this ordering is preserved under a 
function with a pairwise condition, and then we obtain various special 
cases. 
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DEFINITION 2.1. Let F{xl9...9xp) and G{xu..., xp) be two cdfs. Fix 
l^i<j^p and suppose that the following conditions are satisfied: 

(a) FR{iJ)(t) = GR{iJ)(t)9 for all t, 

(b) (i) F(xi9 oo\Xii>J) = t) = G(xi9 oo |X( ,^ = t), for all JC, and t, 

(ii) F(oo, Xj\XiiJ) = t) = G(oo9 Xj\XiiJ) = t)9 for all Xj and t, 

(c) F(xi9 Xj\X{i>J) = t)>G(xh Xj\XiiJ) = t), for all xi9 xj9 and t. 

Then Fis said to be conditionally more (/,j)-positively quadrant dependent 
than G, written as F-+p(iJ)G. 

Sometimes for notational ease, if X ~ F and Y ~ G , we write X -+P{i>J) Y 
instead of F -+P(iJ) G. 

Note 2.1. Conditions (a) and (b) of Definition 2.1 together are 
equivalent to both 

(a') FRii)(s) = GR(i)(s) for all s, and 

(b') FR(j)(s) = GRU)(s) for alls. 

We subsequently show that under certain conditions the elliptically 
symmetrical distributions can be (/, y)-PQD ordered and, hence, so can the 
multivariate normal distribution. In Section 4, we provide some general 
techniques for obtaining (/, y)-PQD ordered distributions and also apply 
these techniques to obtaining inequalities for the generalized Farlie-
Gumbel-Morgenstern family of distributions in Section 5. 

A function h(x9 y) is called quasi-monotone if for all xx ^x2, y\ Ĵ>2> 

A(*i > y\) + M 2̂» yi) - A(*i> yi) - A(*2, >Ί) ^ o. 

Note 2.2. (i) Quasi-monotone is sometimes termed superadditive. 

(ii) h(x, y) is quasi-monotone if and only if eh is TP2. 

(iii) If h(x9 y) is absolutely continuous, then h(x9y) is quasi-
monotone if and only if (d2/dxdy) h(x9y)^0 for almost all (x9y) in R2. 

DEFINITION 2.2. A function h(xl9..., xp) is (ij)-quasi-monotone if 
h(xl9..., xi9..., xj9..., xp) is quasi-monotone in xi9 Xj for all possible fixed 
values of x( ,y ) . We say h(xl9 ...,xp) is quasi-monotone in pairs if it is (i9j)-
quasi-monotone for all 1 ^ i^j^p. (Tchen [15, p. 824] calls functions that 
are quasi-monotone in pairs superadditive.) 

Note 2.3. (i) When viewing h(xl9..., xi9..., xj9..., xp) as a function of 
xi9 Xj for fixed \(iJ\ we sometimes employ the notation h(xi9 Xj ; xiitj)) or 
hxuj)(xi9 Xj). 
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(ii) Observe that h(xl9..., xp) is quasi-monotone in pairs if and 
only if 

h(x v y ) + h(x Λ y ) ^ h{x) + h(y) for all x, y. 

This follows from Kemperman [8, p. 329(i)], since eh>0. 

One of our two main theorems is given next. Although it holds under a 
variety of assumptions, we give it in a form with conditions on the function 
h which are easy to state. More general conditions on h under which the 
theorem is true are given following the theorem. 

THEOREM 2.1. Let F(xu...,xp) and G(xu..., xp) be cdfs and fix 
\^i<j^p. Suppose thai h(xl9...,xp) is bounded, right-continuous, and 
(ij)-quasi-monotone. If F -+P{iJ) G9 then EFh{X)^ EGh(X). 

Proof Consider h(xi9 Xj\x(l,J)) for any fixed x(,,j). This function is 
bounded, right-continuous, and quasi-monotone in (xi9 Xj). Consequently, 
since F -+P{iJ) G from Tchen [15, Theorem 2, n = 2~] we have 

^ h(xh Xj;xu>J)) dF{xj\XUJ) = xiiJ)} 

> j j h(xi9 xj; xiiJ)) dG{xi9 Xj\X^ = x<">}. 

The conclusion follows by integration. 

Note 2.4. Notice that to apply Tchen's result we only need that Λ(χ) is 
bounded and right-continuous in (xh Xj) for fixed xii,J) and so the 
assumptions above can be weakened. (See also Corollary 2.1 of Tchen 
[15].) 

Theorem 2.1 holds for many other classes of A's than those specified in 
the theorem. We state several other sets of conditions. The first set is due to 
Cambanis, Simons, and Stout [4] and various refinements of it can be 
found following Theorem 1 in that paper. The second set is due to 
Ruschendorf [11]. A comment similar to Note 2.4 above also applies to 
these conditions: 

(1) For fixed \^i<j^p9 h(x) is right-continuous, (/^-quasi-
monotone, and either of the following is satisfied: 

(i) hxuj)(xi9 Xj) is symmetric in xh Xj for almost all x(i,J) and 
J hxoA*n Xi) dF(xi9 oo I X<'·» = x<'·») and J hx{iJ)(xj9 Xj) 
dF(œ9 Xj\XiiJ) = x{iJ)) are finite for almost all x{iJ); or 
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(ii) there exist xf and xf such that J hxUJ)(xi9 xf ) dF(xh oo |X ( U ) 

= xiiJ)) and J hxuj)(xf9 Xj) dF{œ, Xj\X
{iJ) = xiiJ)) are finite for 

almost all \{UJ\ 

(2) For fixed l^i<j^p, A(x) is right-continuous, (/^-quasi-
monotone, Jhxuj)(xh Xj) dF(xi9 Xj\XiiJ) = xiiJ)) and J hxUJ)(xi9 Xj) 
dG(xi9Xj\XUJ) = \iiJ)) are finite for almost all \iiJ\ and either of the 
following are satisfied: 

(i) hxa,j)(xh Xj) is nondecreasing in xt and Xj for almost all x(/,y) or 

(ii) hxuj)(xh Xj)-^0 as *,·-» — oo or as Xj-* — oo for almost all 

We now give a situation in which quasi-monotonicity is naturally 
satisfied. 

COROLLARY 2.1. Let F(xi9...9xp) and G(xl9...9xp) be cdfs and fix 
l^i^k<j^p. Suppose h(xl9 ...9 xp)=f(xi9 ...9 xk)g(xk + l9 ...9 xp), where f 
and g are both decreasing or both increasing, are bounded, and right-
continuous. IfF^p{ij)G9 then EAh(X))>EG(h((X)). 

Proof. This follows directly from Theorem 2.1, since f(xl9...9xk) 
g(xk + i9..., xp) is (/,y)-quasi-monotone for 1 ^i^k<j^p. 

We now remove the regularity assumptions on / and g, i.e., we assume 
only that / and g are both decreasing or both increasing. 

COROLLARY 2.2. Suppose h(xi9...9xp) = f(xl9..., xk) g(xk + i9..., xp)9 

where f and g are both increasing or both decreasing and are Borel 
measurable. If F-+p(iJ) G9 then Ep(h(X))^EG(h(X)), provided the expec-
tations exist. 

Proof. The proof is divided into five steps. 

Step 1. L e t / = / C l , g = /C2, where Cx and C2 are closed upper sets. 
The result follows immediately from Corollary 2.1. Similarly if C2 is an 
open lower set, — g is increasing and right-continuous so that 

EA-h)^EG(-h) or EAh)<EG(h). 

If Ci and C2 are both open lower sets then Ep(h)^EG{h). 

Step 2. Let / = ID{9g = IDl be Borel measurable upper sets. Then as 
in Block and Savits [1] we can approximate the Z>, by closed upper sets C, 
and apply Step 1. If either of the Dt are Borel measurable lower sets we can 
approximate by an open lower set. We have Ep(h)^EG(h) for both upper 
or both lower and Ej(h)^EG(h) for one upper and one lower. 
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Step 3. Let / > 0, g ̂  0 be nondecreasing Borel measurable. Then as 
in Block and Savits [1] we can find/= (1/2*)Σ?ϋ*ι ^>* which converges 
upward to /, where Dik are Borel measurable upper sets. A similar com-
ment for g and the monotone convergence theorem gives the result. Similar 
comments apply if / and g are both nondecreasing Borel measurable 
functions or one is nondecreasing and one is nonincreasing. 

Step 4. Let / and g be nondecreasing Borel measurable functions. 
Then/+ and g+ are nondecreasing a n d / - and g~ are nonincreasing non-
negative Borel measurable functions. Thus from Step 3, 

EAf±g±)>EG(f±g±) 

and 

EG(f±g*)^EG(f*g*y 

Under the assumptions that Ef(h(X)) and EG(h(X)) exist (but are not 
necessarily finite) it is not hard to show that 

EAfg)>EG(f-g). 

Step 5. Let / and g be nonincreasing Borel measurable functions. 
The proof is similar to Step 4. 

Conditional positive quadrant ordering is a concept which follows from 
covariance conditions in the multivariate normal case and its 
generalizations. We state as lemmas some of the results where covariance 
conditions imply orderings. 

LEMMA 2.1. Let Y - N{0, Σ) and Σ - N(0, Σ + <5I?) and fix 1 ^ i <j^p. 
Assume <5 > 0 and that Σ + ölfj is nonnegative definite. Then X ->P{iJ) Y. 

Proof. Without loss of generality assume i = 1 and j = 2, and partition 
Σ accordingly into dimensions 2 and p — 2. Denote the cdfs of X and 
Y by F and G, respectively. Then F(xi,x2\X

{U2) = t) corresponds 
to Ν(Σι2Σϊ2ΐ9ΣΙΛ + δΙϊ2) and G(xl9x2\X

{lt2) = t) corresponds to 
Ν(Σι2Σ221, Σ12), where Σ12 = Σ η — Σ1 2Σ^Σ2ι , and Σ^ is a generalized 
inverse of Σ22. Clearly (a) and (b) of Definition 2.1 are satisfied. For every 
/, (c) of Definition 2.1 follows from Slepian's inequality (Slepian [14] or 
see Tong [16, Theorem 2.1.1]). 

The following result gives the conditional orderings for elliptically 
contoured distributions. We use the notation of the paper by Cambais, 
Huang, and Simons [2] throughout. 



CONDITIONALLY ORDERED DISTRIBUTIONS 97 

LEMMA 2.2. Let Y - ECp(09 Σ, φ), X - ECp{0, Σ + <5I£, φ\ and fix 
\^i<j^p. Assume <5>0 and that Σ + δΙ? is nonnegative definite. Then 
X _+P(iJ) γ 

Proof. Without loss of generality assume i = 1 and j = 2, and partition 
Σ accordingly into dimensions 2 and p - 2. Denote the cdfs of X and Y by 
F and G, respectively. Suppose t is in ^(Σ 2 2) , the row space of Σ22. Then 
by Cambanis, Huang, and Simons [2, Corollary 5] , F(x l9 x 2 |X ( 1 2 ) = t) 
corresponds to £C 2 (L 1 2 L£t ,L L 2 + 5If2 ,^ ( t ) and G(xu x2\X

iU2) = t) 
corresponds to £C2(E12L^t, Σ 1 2 , φς{ί)), where Σ 1 2 = Σ1 1-Σ1 2Σ2-2Σ2 1 , and 
Φς(ι) depends on φ and q(t) = t'L22t. When ίφ&(Σ22\ the conditional 
distributions puts mass on 0 (Cambanis, Huang, and Simons [2, (17b)]. In 
the case ί€«5?(Σ22), parts (a) and (b) of Definition 2.1 follow from the fact 
that if ( W ; : W 2 ) ' ~ £ C , I + , 2 ( M : R 2 ) ' ; Σ,φ), then W1 ~EC,S»u *n, Φ)· 
For every t, part (c) follows from Cambanis and Simon [3, Theorem 3.2]. 
For the case ίφ^(Σ22)9 the result is obvious. 

We now give the general result for elliptically contoured distributions. It 
holds under weaker regularity conditions on h as pointed out in the note 
following the corollary. 

COROLLARY 2.3. Let X~ECp(09 Σ, φ) and let h(\) be a bounded, right-
continuous function which is quasi-monotone in pairs. Then E^(h(X)) is 
increasing in the off-diagonal elements of Σ. 

Proof. Apply Theorem 2.1 and the previous lemma iteratively. 

Note 2.5. (a) If A(x) is absolutely continuous in xt and JC7 for all 
l^i<j^n we can replace the quasi-monotone assumption above with the 
condition d2h(x)/dxidxj°^0 for all x. 

(b) As mentioned in the note following Theorem 2.1 the corollary 
above holds under a variety of conditions. One strengthening of the above 
is to assume h(x) is right-continuous, quasi-monotone in pairs, and that 
there exist xi9 x2,..., xp such that E^(h(Xi\ X(/))) are finite for / = 1, 2,...,/?. 

(c) The normal case of the above corollary corresponds to the iVy 
part of Proposition 1 of Joag-dev, Perlman, and Pitt [6 ] . Because of notes 
(a) and (b) above the conditions on h are somewhat weaker than those in 
the proposition cited. 

3. CONDITIONALLY MORE DISPERSED 

We now examine a concept of one distribution being conditionally more 
dispersed than another. Our main result of this section shows that if a 
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/7-variate function is convex in its relevant argument then it preserves this 
ordering. Normal and elliptically contoured cases are then examined. 

DEFINITION 3.1. Let F(xu..., xp) and G(x l5..., xp) be two cdfs. Fix 
l^i^p and suppose the following conditions are satisfied: 

(a) FR{i)(t) = GRU)(t)îorallt, 

(b) EF(Xi\X
{l) = t) = EG{Xi\X

ii) = t)foT*a t, 
(c) for all t, both conditional distributions are degenerate, or 

(i) S-(F(xi\X
ii) = t)-G(xi\X

ii) = t))=\, and 

(ii) the sign sequence in (i) is + , —. 

Then F is said to be conditionally more i-dispersed than G, written as 
F - D ( / ) G . 

Note 3.1. (i) We have included (a) in Definition 3.1 for convenience. 
If the conditional means differ, the cdfs would be translated so that the 
means coincide. (See Shaked [13] concerning centering.) 

(ii) Sometimes for notational ease, if X ~ F and Y ~ G , we write 
X - D ( / ) Y instead of F - D ( / ) G. 

(iii) Conditions (a) and (c) imply (see Shaked [13]) for all convex h 
that, 

J AÎJCJ rffXjCil X ( / ) = t) ^ J Ä(jCi) ÄriJcJ X ( / ) = t) for all t (3.1) 

The condition given by (3.1) can be interpreted as saying that for all t the 
conditional distribution F{Xi\X{i) — t) is more dilated (e.g., Marshall and 
Olkin [10, p. 312]) than G(JC,.|X( / ) = t). 

We next give a one-dimensional concept of convexity for a /^-dimensional 
function. It says simply that the function is convex in the one relevant 
component for all other values of the remaining component. 

DEFINITION 3.2. A function A(*i, - , xp) is /-convex if h(xl9..., xi9..., xp) 
is convex in xt for all possible fixed values of x(/). 

The main result of this section follows. 

THEOREM 3.2. Let F(x{,..., xp) and G(xl,..., xp) be cdfs and fix l^i^p. 
Suppose h{xu...,xp) is i-convex. If F -*D(0 G, then EFh(X)^EGh(X\ 
provided the expectations exist. 
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Proof. Observe that for all t, it follows from Shaked [13] and 
Definition 3.3 (a), (c) that 

\h{x^)dF{xi\X" = t)>\h{xi',t)dG{xi\X" = t). 

By Definition 4.1(b), integration with respect to FR(i)(t) = GR(i)(t) 
completes the proof. 

COROLLARY 3.1. Suppose d2h(x)/dx2 exists for all x and is nonnegative. 
Then F - D ( , ) G implies EFh(X) ^ EGh(X). 

Proof Obvious. 

Conditional dispersiveness derives from comparison of variances for mul-
tivariate normal distributions. We state some of those results as lemmas to 
demonstrate this connection and then give the more general results. 

LEMMA 3.1. Let Y - N(0, Σ) and X - N(09 Σ + <5I„), and fix l^i^p. 
Assume δ>0. Then X - D ( / ) Y. 

Proof Without loss of generality, assume i= 1. Then F ^ J X ^ ^ t ) is 
ΛΓ(Σ12Σ2-2ί, *ιι + ί - Σ 1 2 Σ £ Σ 2 1 ) and G ( ^ | Y(1) = t) is ΛΤ(Σ12Σ£Ι, 
σ 1 1 -Σ 1 2 Σ 2 ^Σ 2 1 ) , where Σ is appropriately partitioned. Definitions 3.1(a) 
and (c) follow because the means are the same and Var^j |X(1) = t) = 
V a r i r j Y ^ ^ + A Part (b) is obvious. 

COROLLARY 3.2. Let X ~ JV(0, Σ) and h(\) be i-convex in each argument. 
Then 2sL(A(x)) is increasing in the diagonal elements of Σ provided that 
£Σ(Λ(Χ)) exists. 

Proof. Apply Theorem 3.2 and the previous lemma. 

COROLLARY 3.3. Let Χ~ΛΓ(0, Σ) and h(\) be a function such that 
d2h(x)/dx2 exists and is nonnegative for all x,for i= 1,...,/?. Then £Σ(/ι(Χ)) 
is increasing in the diagonal elements of^L, provided that E^(h(X)) exists. 

Proof. This is immediate from Corollary 3.2. 

Note 3.2. Corollary 3.3 contains part of Proposition 1 of Joag-dev et al. 
[6] (the i=j case), but under weaker moment conditions. 

As in Section 2 we use the notation of Cambanis et al [2] . 

LEMMA 3.2. Υ - ^ ( 0 , Σ , φ) and X~ECP(0, Σ + (5Ι„), and fix l^i^p. 
Assume δ>0. Then X ->D(,) Y. 
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Proof. Without loss of generality assume i = 1 and partition Σ accord-
ingly into dimensions 1 and p—\. Denote the cdfs of X and Y by 
F and G, respectively. Suppose ί6.£?(Σ22). Then by Cambanis et al [2, 
Corollary 5] , F(xx |X

(1) = t) corresponds to ECl(
yLn L2"2t, Σ1 2 + <5, ^ ( t ) ) , 

and G(x!|X(1) = t) corresponds to f C ^ L ^ l2"2t, Σ1 2 , ^ ( t ) ) , where 
Σ-ι.2 = σιι — Σ12Σ2~2Σ21 and ^ ( t ) is determined by φ and #(t) = 
t' Σ^ t. Parts (a) and (b) of Definition 3.1 are obvious and part (c) follows 
from the fact that for every t, ECi(

JLn^22*> £L 2 + ô, ^(t)) anc* 
/ ^ ( Σ ^ Σ ^ ί , Σ 1 2 , ^^(t)) a r e univariate cdfs differing only by a scale 
parameter. For t^if2(!L22) both conditional distributions are degenerate at 
0 and so (a), (b), and (c) are trivially satisfied. 

Note. Corollaries similar to Corollary 3.2 and 3.3 follow immediately 
for elliptically contoured distributions. These provide somewhat more 
generalized results than Joag-dev et al [6] . 

4. CONDITIONAL POSITIVE AND NEGATIVE DEPENDENCE 

In this section, we consider other distributions which are conditionally 
more (/,y)-PQD ordered. We primarily focus on techniques for con-
structing such orderings, with particular attention paid to upper and lower 
bounds, and to comparisons with certain forms of independence. 

The following definition formalizes a concept that has appeared in 
various forms in the literature. 

DEFINITION 4.1. A random vector X with cdf F(\) is conditionally (i,j)-
PQD(NQD), / # / , if 

F{xi9Xj\X^J) = s)> «)F{xi9 oo\XUJ) = s)F(ooy Xj\XiiJ) = s) 

for all xh xj9 s. 

Note 4.1. Suppose F(x) is absolutely continuous with pdf/(x). Define 
^ (χ )=Λ ω (χ ω )χΛ(ο(Χ ( 0 ) / / Α α Λ (χ α Λ ) , when fmj)(x

iuJ))>09 and 0, 
otherwise. It is direct to show that (i) g is a pdf, (ii) g(xi9 <x/|X

(,,-/) = x(,,y)) 

= / W )(x ( y ) )x /Wx ( , ) ) / ( / Ä ay)(x a y ) ) ) 2 , and (iii) gRUJ)(x
iiJ))=fR{a*iiJ^ 

Denote by G, the cdf, corresponding to g. Then F is conditionally 
(iJ)-PQD (NQD) if and only if F-+p(iJ)( +-ρ^) G. 

The next lemma provides a method for constructing multivariate 
distributions with certain prescribed conditional marginals and, more 
importantly, having certain conditional positive dependence properties. 

LEMMA 4.1. Suppose F(x,y,z\ the joint cdf of the random variables X, 
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Y, Z, is given. Let H(u,v) be a cdf with marginal distributions that are 
uniform on [0, 1]. Define 

G(x,y,z) = Γ H{Fl{x\*)9F2{y\*))dFz{m)9 
J -oo 

where Fl9F2, and Fz have the obvious interpretation. Then the following 
hold: 

(a) G(x, y, z) is a cdf. 
(b) (i) Gz(z) = Fz(z), 

(ii) Gl(x\z) = F1(x\z), 
(iii) G2(y\z) = F2(y\z), 
(iv) G(x,y\z) = H(F1(x\z),F2(y\z)). 

(c) If H satisfies any of the following, then G(x, y\z) satisfies the same 
(conditionally): 

(i) independence, 
(ii) PQD(NQD), 
(iii) upper (lower) Fréchét bound, 
(iv) TP2(RR2). 

Proof (a) This follows directly from the fact that for every z, 
H(Fx(x\z\ F2(y\z)) is a cdf in x,y. 

(b) Obvious. 
(c) This follows from the result that G(x, y\z) = HiF^x\z\F2(y\z)) 

and requiring for (i) H(u,v) = uv, (ii) //(«, v)^(^) uv, (iii) H(u9v) = 
min(w, v) (max(w + t;— 1, 0)). Result (iv) follows by a standard TP2 (RR2) 
result which gives that increasing functions preserve TP2- (RR2-) -ness. 

Note 4.2. Suppose Hx and H2 are two bivariate distributions with 
uniform marginals such that Hl is more PQD than H2. If corresponding 
Gx and G2 are constructed as in the preceding lemma, then Gx -►

/>(1,2) G2. 

EXAMPLE 4.1. To illustrate the preceding note, consider the family of 
bivariate uniform cdfs 

H(x,y;X) = x + y-\ + (l-x)l-\\-y)l-*mm((l-x)\(l-y)x), 

where O^x^l , 0<j>^l, and 0 < λ < 1. This is essentially the 
Marshall-Olkin bivariate exponential distribution with equal marginals, 
where the marginals have been transformed. See Kimeldorf and Sampson 
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[9] for a discussion of this method of transformation. The distribution 
above is one of those mentioned in Kimeldorf and Sampson [9] but the 
form given there has an algebraic error. It is direct to show that 
H(x,y\lx)^H(x,y\ λ2), whenever λι^λ2. 

Let UÜ.RUJ)
 Ξ n(F{xh oo | X('^ = x<'·»), F(cc, Xj \ XiiJ) = x<">), 

FR{ij)(x
u'j))) denote the class of /?-variate cdfs of a r.v. X, where the 

marginal of X{iJ) is FR{ij) and the conditional marginals of Xt and Xj given 
XiiJ) are respectively F(xh oo |Χ('·Λ = χ(/·») and F(oo, Xj\XiiJ) = \iiJ)). 
Then if K(x) is in this class, 

K(x)*iK+RUJx) 

"' min(F(x„ oo I X ^ ' ^ s ) , F(oo, χ,|Χ"·'> = 8) dFR(iJ)(s) (4.1) •I 
and, moreover, the r.h.s. of (4.1) is also in the class. The former statement 
follows from Dall'Aglio [5 ] and the latter from Lemma 4.1. Furthermore, 
for all Α ( χ ) 6 Π μ ( υ „ K^™>K+R{UJ). 

Thus the preceding corollary states that if h satisfies suitable regularity 
conditions 

max EKh(X) = EK+ A(X). 

Similarly, the minimum occurs at EK- A(X), where 

*^ij.R(iJ)\X) 

= Γ"'"max[F(x„ oo |X"·» = s) + F(ao, x,| X"·" = s ) - 1, 0 ] dFWJ)(s). 

5. FGM DISTRIBUTIONS 

Johnson and Kotz [7] define the generalized Farlie-Gumbel-
Morgenstern distribution as being a cdf F(x) which has representation 

F(x) = Π ^.(χ/)Γΐ+ Σ «ι,..-.* Π fy**)]. (5-1) 

where 4 = {(/,,..., ik)\k^l, l ^ / 1 < / 2 < ··· <ik<p} and the a/lt...t/ik are 
contained in a multivariate parameter space Θ and where /%(*,) = 
l—F^Xi) is a cdf, z=l,...,/?. In this paper we assume each /̂ -(JC,·) is 
absolutely continuous so that .F(x) has a pdf. 

Suppose the FGM family in (5.1) contains the parameter a,·,·. Fix the 
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remaining parameters at some value θ0 and denote the cdf. viewed as 
parametrized by <x0 as F(x, α,·,·, θ0). 

THEOREM 5.1. Let Y~F( t ; αι7, θ0) andX~F(t; aiy + <5, β0), where <5>0, 
F is given by (5.1), and (oLij9 β0), (α^ + ί, θ 0 ) 6 θ . 7%*Λ X - * W ) Y. 

Proö/ Without loss of generality, assume / = 1,7 = 2. It is easy to show 
that the marginal distributions of (Yl9 Y(1'2)), (F 2 , Y(1'2)), and Y( 1 2 ) do 
not depend on a12 and, hence, (a) and (b) of Definition 2.1 are satisfied. To 
show (c), in light of (b), it is sufficient to demonstrate that 

^ - 2 F ( t ; a 1 2 + M o ) y - 2 f l t ; a 1 2 , e o ) 
dh-dtp dt3...dtp ' l ' 

for all t. That (2) holds follows immediately from the assumption δ > 0 and 
the fact that 

St3-"dtp k
LJ3 

dP-2 

dt3---dtp U = l {ii,...,/*} #{1,2} j=\ J 
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A Discounted Cost Relationship 
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In Savits (1988. J. Appl. Probab. 4, in press) a very general cost mechanism for a 
maintained system was considered. There he established a relationship between the 
expected long run cost per unit time for the age and block maintenance policies. 
In the present paper a similar relationship is obtained for the expected total 
α - d i s c o u n t e d COSt. © 1988 Academic Press, Inc. 

1. INTRODUCTION 

Recently Savits [3] considered a very general cost mechanism for a 
maintained system. There he established a relatinship between the expected 
long run cost per unit time for an age replacement policy and that for a 
block replacement policy. 

In this paper we now consider the expected total discounted cost for the 
same model. Again we show that there is simple cost relationship between 
the age and block replacement policies. 

The basic model is first reviewed in Section 2. In Section 3 we prove 
our main result. Lastly, some further cost relationships are detailed in 
Section 4. 

2. REVIEW OF THE BASIC MODEL 

The model considered in Savits [3] can be described biefly as follows. 
The basic ingredient consists of a stochastic process {R{t)\ 0 ^ t ^ ζ}. Here 
we interpret R(t) as the operational cost of a unit on line during a time 
interval [0, t). The random variable ζ designates the time of a major 
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unrepairable breakdown. At this time, we replace the failed item with a new 
identical unit. Thus we call ζ an unscheduled or unplanned replacement. 
The cost for such an unplanned replacement is c{. 

The two maintenance policies we consider here are referred to as age 
replacement and block replacement. In the former case, a scheduled or 
planned replacement occurs whenever an operating unit reaches age T; in 
the latter case, a planned replacement occurs at the absolute times T, 
2Γ,.... In either case, the cost of a planned replacement is c2. 

We assume that items put on line are independent and identical units 
and that both planned and unplanned replacements take negligible time. 

Throughout this paper, we assume (as minimal requirements) that the 
stochastic process R has right-hand limits on [0, ζ) and that R(t+) = 
limsi, R(s) represents the unit operational cost on [0, /] . We shall 
sometimes find it convenient to extend R by setting R(t) = R(C) for / > ζ. In 
addition, we assume that R(0+) = R(0) = 0 and Ρ{ζ>0} = 1. 

In order to write down to total operational cost for the maintained 
system, it is convenient to introduce some further notation. First we con-
sider the age replacement maintenance policy. Let {R^t);0<*<£,·}, 
/= 1, 2,..., be independent copies of {R(t);Ο^ί^ζ}. Define 

rç, = min(C„ Γ), 

P - J 0 ' if k = 0 nn 
* * " ! * . + ■ ■ · + * * , if * > i , ( } 

and 

R*(t) = \Ri{î~l·) if °<t<vl' 
l^/(iy/) + c1/{fi.<r} + c2 / { c . > n if ί^ηί 

for i= 1, 2,.... Here IA denotes the indicator function of the set A. Then the 
total operational cost over [0, /] for the age replacement policy, which we 
denote by KA(t), is given by 

KA(t) = Σ */*(*/) + **% i(' - £*) (2-2) 

if £*</<£*+!, & = 0, 1,.... We adopt the standard convention that an 
empty sum is equal to zero. 

For the block replacement maintenance policy, we introduce the 
notation 

_ | 0 if k = 0 
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and 

' Rx(t) if 0^t^al 

0(t)= I k 

X Σ Rk^ + kc, + Rk+x{t-ak) if ak<t^ak + l. (2.3) 
i = l 

Next, let {£,(/); 0 ^ / } , i = l , 2 , . . . , be independent copies of {Q(t);0^t} 
and set 

ô*(/) = iÔ<('+) if ° ^ ' < Γ (24) 

Then the total operational cost over [0, i ] for the block replacement 
policy, denoted by KB(t), is given by 

KB{t)= Σ Q?(T) + Qt+i(t-kT) (2.5) 
/ = 1 

i f fc7^/<(A:+l )7; A: = 0, 1,.... 
We also denote the expected total cost over [0, / ] by 

cA(t) = cA(t;T) = EiKA(t)l 

and (2.6) 

CB(t) = CB(t;T) = ElKB(t)l 

respectively. Consequently, the expected long run cost per unit time is 
given by the ratio of the average cost per cycle to the average length of a 
cycle, i.e., 

A , - o o t Ε[_η] 

and (2.7) 

t -+ αο ΐ 1 

The above results follow from the theory of renewal reward process (cf., 
Ross [2]). We are, of course, making the implicit assumption that 
£[ |Ä*fa)l] and £ [ | 0 * ( Γ ) | ] are finite. 

If we denote the corresponding numerators by A(T) = Ε\_11*(η)~] and 
£(Γ) = £ [ 0 * ( Γ ) ] , respectively, then it was shown in Savits [3] that 

B(T)=\ A(T-x)dU(x) (2.8) 
J [0, T) 
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where υ(χ) = Σΐ)=οΡ(σ/<^χ) is the renewal function generated by the 
independent and identically distributed sequence of random variables 
Ci,C2 

3. DISCOUNTED COST RELATIONSHIP 

In this section we will establish a similar relationship between the dis-
counted costs for the age and block maintenance policies. In order to define 
the notion of discounting, however, we need to assume that, with 
probability one, the cost functions KA(t) and KB(t) generate a signed 
measure on [0, oo). This is indeed the case when the cost parameters cx 

and c2 are nonnegative and R(t) is a nondecreasing process. In order to 
avoid some technical considerations, we shall henceforth only consider the 
situation described immediately above. 

So let a > 0 . We then define the a-discounted cost over [0, t~\ by 

*!?>(/)= f e-™dKA{u) 

and (3.1) 

*£>(/)= f e-™dKB(u), 

where KA and KB are given by (2.2) and (2.5), respectively. The total 
a-discounted cost is obtained by replacing (0, r] with (0, oo). 

First we consider the age replacement case. Then 

W(T)= Hm ElK^(tn = EÏ\ e'm dKA(u)\ 

■ ocE 

= α Σ E 
k = 0 

f^' <?-*" { Σ *,*(ij,) + V+ ·(»-«*)} do. 

In the last step we used the expression (2.2). We now consider each sum 
separately. 
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For the second sum, we write 

α X Ε\\ 6 - " Λ Ϊ + 1 ( ι ; - ^ ) Α 

= α £ £·[^-α^]£|Ρ+1^-αννΛ?+1(νν)ί/ννΊ 

= α£Μ%-αννΛ*(νν)ί/νν¥ f {Είβ-αηγΑ 

= (1-Ε[β-"η])-ι(χΕηη e-awR*(w)dw]. 

The second and third equalities above follow from independence and the 
identically distributed assumptions. 

Next, we write the first sum as 

We shall denote the numerator by AM{T), i.e., 

Λ<°<>(Γ) = £·Μ e-aB'i/Ä*(H')l. (3.3) 

Consequently, 

(3.2) 
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It is the expected α-discounted cost over one cycle. For the denominator, 
we can also write 

1 - Ele-™1] = α Γ G(u) e~*u du, 

where Θ(χ) = Ρ{ζ>χ} is the survival function of ζ. Since 

£[>/]= fG(u)du, 

we note that 

JA(T) = lim α/(α)(Γ). (3.4) 
α ΐ θ 

Recall that JA(T) is the expected long run cost per unit time given in 
Eq. (2.7). 

(3.5) Remark. One can also derive the result (3.2) from a renewal 
equation approach. More specifically, if C{

A*)(t) = E[K{Z)(t)~\, one can show 
that 0%\t) satisfies the renewal equation 

Οχ\ί) = \*^e-mE\_R*(n A t>)]* + e-e'£[A*(ij Λ *)]} 

+ f e-"xC<X)(t-x)dG*{x)9 J(0,0 

where G*(x) = Ρ{η^χ}. Since e~*x dG*(x) is a defective probability 
measure, the result now follows from Feller [1, p. 361]. 

Next we consider the block replacement policy case. Here 

J^(T)=lim ElK%>(t)l=E f e-°»dKB(u)}. 
Λθ,οο) J 

By the same technique as illustrated above, it is easy to derive 

JB vn- i-e-
aT 

and (3.6) 

JB(T) = lim <xJ%\T). 
a J O 
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In this case we denote the numerator by B{a)(T\ i.e., 

I l l 

Β(Λ)(Τ) = Ε\\ e~"w dQ*(w)\ (3.7) 

Our main goal in this section is to relate A(a)(T) and Bi<x)(T). We 
proceed as in Savits [3]. Since 

f e~*wdQ*(w) = oc Γ^"α ν νρ*(ι;)^Η-^-α /ρ*(/)-ρ*(0), 

we can rewrite | ( 0 , π ^ ~*w dQ*(w) for ak<T^ak + l as 

r k 

e-«wdQ*(w)= X [ r ^ - ' Ä H y + ^ ^ i ] 
J(0,r] , = 1 

+ e-<u*Rftl{T-Gk) + e-Tc2 

using Eqs. (2.3) and (2.4). Here we set 

*<«>(/) = a ['e—vRHO+)dü + e-"'Ri{t). 
Jo 

It can be thought of as the a- discounted operational cost of the /th unit on 
line for a time interval [0, t). Consequently, 

B{«\T) = E f e-awdQ*(w)\ 
LJ(o,n 

= f E\\ e-™dQ*(w);ak<T*:ak+l] 
LJ(o,n J k = 0 

A: = 1 L y = 1 

+ e-*'»Ri°ll(T-ck) + e-«Tc2;<rk<T^ak + ^ 

CO 

A: = 0 

* = 0 

We now consider th terms in the first sum in more detail. Since 
σ*+ι=σ* + ζ* + ι, we have 
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Eie-"^R['lliCk + l) + e-"^cl;ak + 1<r\ 

= Ele-"«Rk'llUk+1) + e-"« + >cl;at<T,Çk+l<T-akl 

= E{e-"'ElRk'li(Ck + l) + e-"i>+lcl;Ck + l<T-xl\x_at;ak<T} 

= E{e-"°*E\_RM(C) + e-«cl;t;<T-xl\x = „k;ak<T}. 

Hence, the first sum is given by 

f E\_e-^Rk^+l(Ck + i) + e-"'^'ci;ak + l<n 

= £ f e-aJt£[/?(o,,(C) + e- o t i c 1 ;C<r-x]P(f f i t eÄ) 
k = oJlo,T) 

= [ ί>-<"£[Λ,α)(0 + e-^c , ; ζ < Γ - * ] <#/(*) 
J[0,r) 

where, as before, U(x) = Σ™=ο Ρ(σκ^χ) *s ^ e renewal function generated 
byCi,C2 

Similarly, we can write the terms in the second sum as 

Eie-^R^x{T-ak)^e-Tc2-Gk<T^ak^-] 

= E{e-«°kElR{«\T-x) + e-«iT-x)c2;C>T-x]\x = (Tk;ak<T}, 

and so 

£ Ele-^RplAT-aJ + e-W^kKT^at+A 
* = 0 

= f e-"ElRw(T-x) + e-'lT-x)c2;C^T-x'\dU(x). 

But, 

AW(T) = E\\ e-*wdR*{w)\ 

= EΓα j ' e—"Ä*(i)) dv + R*ü) e-*"\ 

= EÏctÇe-*vR(v+)dv + e-*i:{R(C) + cl};C<T^ 

+ E\a γe-a" R(v + ) dv + e'xT{R(T) + c2}; ζ> τ\ 

= £[Ä(a ,(0 + e-^e , ; C < T] + £[Λ(β,(Γ) + <?""rc2; C S* Γ]. 
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Consequently, we obtain the result 

Β{«\Τ)= f e-axAia){T-x)dU(x). (3.8) 
J [0, T) 

We summarize the results of this section in the following theorem. 

(3.9) THEOREM. Under the model of Section 2 with cost parameters cx 

and c2 nonnegative and R(t) a nondecreasing process, the expected total 
OL-discounted cost for the age and block replacement policies are given by 

W(T) = E\ LrdKMY^k 
and 

B(a)(T) J^(T) = E\\ e— dKB(u)]~ 
LJ(o,oo) J i — e - r . 

respectively, where ΑΜ(Τ) = ΕΙ^ηΊ e~xw dR*(w)~\ and BM(T) = 
£[ί(ο.τ·] e~*w dQ*(w)l Furthermore, 

B{«)(T)=[ e-axAia}{T-x)dU(x). 
•'Γη τ\ J10,T) 

(3.10) Remarks, (i) It is clear from the proof that the cost parameters 
cx and c2 need not be constants. Everything remains as above if c{ and c2 

are random variables. Moreover, we may allow ci and c2 to be different for 
the two polices of age and block replacement. In this case, the form of (3.8) 
changes slightly. See Savits [3] for further details. 

(ii) One can readily show that if we define a subdistribution function 
H on [0, oo) by H(x) = J[0fJC] e~*u dG{u\ and let W be the associated 
renewal function generated by H, then dW(x) = e~ax dU(x). Thus we many 
write (3.8) as 

B{«\T)=\ Ai")(T-x)dW(x). 

Consequently, we can also write 

Aict)(T) = Bia)(T)- f B{a)(T-x)dH(x). 
J [0, T) 
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4. OTHER COST RELATIONSHIPS 

Thus far we have established relationships between A(T) and B(T) and 
also between A{a){T) and Bai)(T). We complete the cycle by considering the 
relationship between A(T) and A{*\T) and also between B(T) and B{(X\T). 
Clearly A(T) = A{0)(T) and B(T) = Bi0)(T). It thus remains to express 
Ai<x)(T) and Bi<x)(T) in terms of A(T) and B(T), respectively. 

As in Section 3, we shall assume that R(t) is a nondecreasing process and 
that cx and c2 are nonnegative. In addition, we shall assume that the 
functions A(T) and B(T) are right-continuous and of bounded variation on 
compact intervals. 

(4.1) THEOREM. Under the above conditions, we have 

(i) A^(T) = $(0,ne-** dA(x) + Elc2e-*«*T>l 

(ii) B<->(r) = f ( 0 i n e - " £ « ( * ) + e - « r £ [ c 2 ] . 

Proof. We will only prove (i) since (ii) is similar. Consider 

f e"xdA(x) = <x Γe-"vA(v)dv + e-"TA(T)-A(0) 
J(0, Γ] J0 

= ElaÇe—"{R(v) + c2}do;C<T~\ 

:{«ίβ-α'{Ά(ζ) + €ί}άο;ζ<τ\ 

EIXÇ'e-a{R{O) + c2}a>;C>T~\ 

+ E 

+ e-"r£[Ä(0 + c,;C<ri 

+ El <*^Te-*vR(v+)dv + e-°T{R(T) + c2}; ζ> τ\ 

+ Eic2(l-e-"t);C<T] 

+ £ [ c 2 ( l - e - " r ) ; ^ r ] - £ [ c 2 ] 

= ^ w ( r ) - £ [ c 2 r I ( ( f t r ) ] . 

Thus we have the desired conclusion. 
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In the above derivation we replaced R(v) with R{v+) in two 
integrations. This is permissible since an increasing function can have only 
countably many discontinuities. 
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Strong Consistency of M-Estimates in Linear Models* 

X. R. CHEN AND Y. H. W U 

University of Pittsburgh 

This article studies the strong consistency of M-estimates in linear regression 
models directly from the minimization problem 

n 

£p(r,-a-X;ß):=min, 
i=\ 

where Xj. X2,... can be random observations of a p-dimensional random vector X, 
or that they are simply known nonrandom /^-vectors. It is shown that the solution 
(i„, $'„) of this minimization problem converges with probability one to the true 
parameter (α0, βί) under very general conditions on the function p and the 
s e q u e n c e { (X, ' , X , ) } . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

Consider the linear regression model 

r,. = a0 + X;ß0 + e,·, i = l , 2 , . . . , (1.1) 

where (α0, βό) is the unknown parameter, el9 e2,... are random errors. As 
for {X/}, two cases will be considered: 1. {X,} is a sequence of known 
/^-dimensional vectors. 2. (ΧΊ, Y{), (X2, Y2),... are i.i.d. observations of a 
(/?+ 1 )-dimensional random vector (Χ', Υ). 
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The M-estimate, introduced by Huber [5], takes the solution (&n9 β̂ ) of 
the minimization problem 

£ p(Yi~*-XM:=min (1.2) 
/ ' = 1 

as the estimate of (α0, βό). This paper seeks the conditions under which 
(ά„, βί,) is strongly consistent: 

ά„->α0, ß„->ßo> a.s. as AZ->OO. (1.3) 

In (1.2), p is a suitably chosen function on R and (α, β') varies over some 
set 0czRp + \ Θ is the parameter space. Two cases are often considered in 
the literature: (i) & = Rp + \ (ii) Θ is a closed subset of Rp + l containing 
the true parameter (a0, ßo) as an interior point. In the following, unless 
stated otherwise, we shall only consider the (more general) first case. 

An often-made assumption in the literature, for example, [6, 7, 10], is 
that p'(u) = dp(u)/du exists everywhere on R. In this case the solution of 
(1.2) must satisfy the equations 

£ ρ'(Γ,-α-Χ;β) = 0, £ Χ / Ρ ' (Γ,-α-Χίβ) = 0. (1.4) 
/ = 1 ι = 1 

If, in addition, p is convex, then (1.2) and (1.4) are equivalent. However, in 
many important examples of M-estimates, p'{u) does not exist for some u. 
In such cases, although one may formally write down Eq. (1.4), it may 
have no solution, or none of its solutions is a solution of (1.2). A well-
known example is furnished by p(w)=|w| (minimum Lrnorm estimate). 
Consistency results of the M-estimate in this case were given by [3, 8, 11]. 
A more sophisticated example, considered in [4], is that p{u) — 
(1 — ô)u2 + ô \u\. In the standard form of linear regression 7/ = Χ;βΗ- /̂, for 
this choice of p, formally (1.4) reduces to 

2(1 -δ) £ XX^-XißJ + i £ X;sgn(y/-X;ß) = 0, (1.5) 
/ = 1 / = 1 

where sgn(0) = 0, sgn(w) = w/M f°r w#0. Although [4] asserts that (1.5) is 
equivalent to 

(Ι-δ) t (r,-X,'ß)2 + <5 Σ Ι^-ΧίΡΙ -min, 

this is not true, as has been shown in [1]. 
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We also note that the convexity assumption excludes many functions 
with practical significance, such as p(u) = mm(\u\,k) for some constant 
k > 0. Another example is 

f|«|, |« |<* 
PW U/2+M/2, |n|>*. 

So it makes good sense to tackle this estimation problem starting directly 
from the original formulation (1.2). This we shall do in the following 
sections. 

2. FORMULATION OF RESULTS 

First consider the case where Χ1? X2,... are i.i.d. random vectors. 

THEOREM 1. Suppose that (X\, Y{), (X2, Y2), ... are i.i.d. observations of 
a random vector (Χ', Υ), and the following conditions are satisfied: 

(a) The function p is continuous everywhere on R, nondecreasing on 
[0, oo ), nonincreasing on ( — oo, 0 ] , and p(0) = 0. 

(b) Either p(oo) = p( — oo) = oo and 

P(OL + Χ'β = 0) < 1 when (α, β') Φ (0, 0') (2.1 ) 

or p( oo ) = p( — oo ) G (0, oo ) and 

Ρ(α + Χ'β = 0) = 0 when (a, ß ' )#(0 ,0 ' ) . (2.2) 

(c) For every (a, β') e Rp+1 we have 

ß(a,ß') = £ p ( F - a - X ' ß ) < o o (2.3) 

and Q attains its minimum uniquely at (a0, ßo). 
Then (1.3) is true. 

When p is a convex function, condition (2.3) can be somewhat 
weakened. 

THEOREM 2. If p is a convex function, then (1.3) is still true when con-
dition (a) of Theorem 1 is satisfied, condition (b) is deleted, and condition (c) 
is replaced by condition (c'): 

(c') For every (α, β') e Rp+1 we have 

ρ * ( α , β ' ) Ξ ^ { ρ ( 7 - α - Χ ' β ) - ρ ( 7 - α 0 - Χ ' β ο ) } (2.4) 

(1.6) 



STRONG CONSISTENCY OF M-ESTIMATES 119 

exists and is finite, and that 

β*(α ,β ' )>0 , for any (α, β ' )*(α 0 , βό)· (2·5) 

The following theorem gives an exponential convergence rate of the 
estimate (<xn, β^). 

THEOREM 3. Suppose that the conditions of Theorem 1 are met, and in 
addition that the moment generating function of p(F—α —Χ'β) exists in 
some neighbourhood of 0, then for arbitrarily given ε > 0 there exists a 
constant c>0 independent of n such that 

P(\an-<x0\>e) = O(e-c"\ P(\\L-Vo\\>e) = 0(e-c"). (2.6) 

This conclusion remains valid if the conditions of Theorem 2 are met, and the 
moment generating function of p(Y— a — Χ'β) — ρ(Υ— α0 — Χ'β0) exists in 
some neighbourhood of 0. 

We next consider the case where Xl5 X2,... are nonrandom p-vectors. 

THEOREM 4. Suppose that in model (1.1) X1,X2, .„ are nonrandom 
p-vectors and the following conditions are satisfied: 

(a) Condition (a) of Theorem 1 is true, p(oo) = p( — oo)= oo. 
(b) {X,} is bounded, and if λη denotes the smallest eigenvalue of the 

matrix Σ?_ , (Χ , -Χ„) (Χ, -Χ„) ' {Χ„ = Σ?-ιΧΜ then 

liminfA„/n>0. (2.7) 
n -*■ oo 

(c) {e,} is a sequence of i.i.d. random errors. 

(d) For any teR, Ep(e{ + t)<cc, E{p{ex + t)-p(ex)}>Qfor any 
ίφθ, and there exists a constant ci>Q such that 

E{p(e^t)-p(ex)}^cxt
2 (2.8) 

for \t\ sufficiently small. 
Then (1.3) is true. This conclusion remains valid / / (a) , (b) are replaced by 

(a') Condition (a) of Theorem 1 is true, 

0<p(oo) = p ( - o o ) < o o . (2.9) 

(b') l i m ^ o l i m ^ ^ s u p # { / : l^i^n, |α + Χ,·β| ^ε}/η = 0, 

(α,β')^(Ο,Ο'), (2.10) 
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where # (B) denotes the number of elements in set B. Note that condition 
(2.10) corresponds to condition (2.2) of Theorem 1. 

Also, when p is convex, the condition Ep{ex + /)< oo can be weakened 
to E\p(el + t)-p(el)\<co. 

Before proving the theorems, we shall make some comments concerning 
the conditions assumed: 

1. Condition (c) of Theorem 1, which stipulates that Q attains its 
minimum uniquely at the point (α0, βό), is closely related to the meaning of 
the regression. The essence is that the selection of p must be compatible 
with the type of regression considered. For example, when α0 + χ'β0 is the 
conditional median of Y given X = x (median regression), we may choose 
p(u)=\u\. Likewisely, when α0Η-χ'β0 = £(Γ|Χ = χ) (the usual mean 
regression), we may choose p(u) = \u\2. An important case is that the 
conditional distribution of Y given X = x is symmetric and unimodal with 
center α0 + χ'βο· In this case, p can be chosen as any even function 
satisfying condition (a), and such that p(t)>0 when w^O. This gives us 
some freedom in the choice of p with the aim of obtaining more robust 
estimates. 

2. Condition (2.8) of Theorem 4 reveals a difference between the two 
cases of {X,} mentioned earlier. In the case that {X,·} is a sequence of non-
random vectors we can no longer assume only that 0 is the unique 
minimization point of Ep(ex + w), as shown in the counterexample given in 
[2]forp(w)=M-

Condition (2.8) holds automatically when p(u) = u2 and Eex=0. When 
p(u)— |w|, it holds when ex has median 0 and a density which is bounded 
away from 0 in some neighborhood of 0. When p is even and ex is sym-
metric and unimodal with center 0, (2.8) holds if one of the following 
two conditions is satisfied: (i) inf{(p(w2) — p(wi))/(w2 — ux): e.^ux< 
w2<oo}>0 for any ε>0, (ii) there exist positive constants a<b and c, 
such that 

(p(w2) - pWi))IW2 -ux)^c, \f(u2) -f(u{)\/(u2 -ux)^c 

for any a^ux<u2^b, where / is the density of ex. 

3. PROOF OF THEOREMS 1-3 

Our main task is to prove Theorem 1. The proof of Theorem 1 can be 
easily modified to prove Theorems 2 and 3. For any constant />0, define 
the sets 

Λ / = [ - / , / ] ' + \ Λ,= [ - / , / ] ' . (3.1) 
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Without loss of generality, we shall assume in the sequel that 

α0 = 0, β0 = 0. (3.2) 

LEMMA 1. Suppose that the conditions of Theorem 1 are satisfied. Denote 
by {&ηΛ'η) α Borel measurable solution of the constrained minimization 
problem 

£ p ( y , - a - X i ß ) : = m i n over (a ,ß')e^„ (3.3) 
i= 1 

where / > 0 is a given constant. Then as n -► oo, 

a„-+0, p „ ^ 0 a.s. (3.4) 

Proof. Denote the T=2p + l vertices (± / , + /,..., ± / ) of At by 
(al9 bi),..., (aT, b'T). From condition (a) it can be easily shown that 

( Κ ρ ( 7 - α - Χ ' β Χ f piY-aj-X'bj) (3.5) 

for any (X\ Y)sRp + l and (a, β'^Λ, . From this, the continuity of p, and 
the dominated convergence theorem, one sees that the function Q, defined 
by (2.3), is continuous. Since (0, 0') is the unique minimum point of Q, for 
any ε > 0 we have 

^ = i n f { ß ( a , ß ' ) - 0 ( 0 , 0 ' ) : ( a , ß ' ) G ^ / - ^ } > 0 . (3.6) 

Choose ε{ e (0, q/6) and m sufficiently large such that 

Ε{Ι((Χ'9Υ)φΑ„)ρ(Υ-α-Χ'ν)}<εΐ9 when (α,Ρ')εΛ,. (3.7) 

The existence of such m follows from (2.3) and (3.5). Write 

{(xr, rn..,w, Ή)} = {(χί, ^ιλ-,ίχ;, Yn))^Am. (3.8) 
Put g = sup{\Y-a-Xfb\:(X,,Y)eAnn(a,bf)eAl}. Choose ε 2 > 0 such 
that 

sup {\p(u2)-p(ul)\: l« i l<& l " 2 l < ^ l«2-« i l<ß2}<ßi - (3·9) 

Choose ε3 > 0 such that 

sup{\a + X'b-(ä + X'h)\:(a,b')eAh (a9h')eAh 

\a-a\ ^ε 3 , | | b - B | ^ £ 3 , | | X K / w i } <ε 2 . 
(3.10) 
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Choose a finite set G= {(ocl9 ß',),..., (ak, β*)} αΑι — Αε9 such that for any 
(a, P')eA{ — At there exists j satisfying |a — a7| ^ ε 3 , ||β — β,·|| ^ ε 3 . 

In the following we shall repeatedly use the phrase "with probability one 
for n sufficiently large." For simplicity we shall abbreviate it by "wpln." 
Also, "strong law of large numbers" will be simply written as "SLLN." 

Now by SLLN, (3.6) and (3.7), we have wpln: 

n'1 Σ p ( r ,* -a y -Xrßy)>£{ / ( (X\ Y)eAm)p(Y-(xj-X'PJ)}-si 
i= 1 

>Ep{Y-aJ-X'Vj)-2Bi 

> ß ( 0 , 0 ' ) + 4e„ y = l , ...,*. (3.11) 

Fix (oi,P')eAl — Ac. Find y such that |a — ay| ^ ε 3 , ||β — ßy|| ^ ε 3 . According 
to (3.9H3.H), we have 

Σ p(Yt-a-xm> t pw-tj-xrvj) 
/ = 1 i = l 

- 1 \Ρ(Υ',-^-χ?%)-ρ(γ,-α-χΜ)\ 
i= 1 

>/ ι [β(0 ,0 ' ) + 4 ε 1 ] - / ι / ε 1 

>Λ[β(0 ,0 ' ) + 3ε,]. (3.12) 

This holds simultaneously for all (a, ß ' ) e ^ , — Λε, wpln. On the other hand, 
by SLLN, we have wpln: 

Σ P( I r / )<«[ß(0 ,0) + ß l ] . (3.13) 
/ = i 

From (3.12) and (3.13), it follows that | a j < ε and ||β„|| ^ ε wpln, so (3.4) is 
proved. 

LEMMA 2. Suppose that the conditions of Theorem 1 are satisfied. Then 
there exists a constant / > 0 such that (cin,%)eAl wpln, where (a„, %) is 
defined as a solution of (3.3). 

Proof Write S= {(a, β'): (a, ß ' ) e Ä ' + 1 , a2 + ||ß||2= 1}. By (2.1) we can 
find ε > 0 such that 

i>^inf{P(|a + X ' ß | > e ) : ( a , ß ' ) e S } > 0 . (3.14) 

Choose m>0 such that P(XeAm)> 1 —1>/4, and put w = 3 _ 1 ( l + pm)~ls. 
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Choose a finite set Sl a S such that for each 6e S there exists Qx e Sj for 
which ||θ —9J <u. By (3.14), we have wpln, 

# { / : l^i^n, |α + Χίβ|>ε}>Λΐ;/2, for every ( α , β ^ Ε ^ . (3.15) 

First consider the case p(co) — p( — oo) — oo. By SLLN, we have wpln, 

# {/: 1 ^ i^/i, X,6i4m} ^#i(l -1?/4). (3.16) 

Choose a constant AT>8[0(0,0') + l]/i>. Since p is continuous and 
p(±oo) = oo, we can find A>0 such that p(x)^K when \x\^h. Choose 
/ > 0 large enough such that 

ε/>4Λ, Ρ ( | 7 |^ε / / 4 )>1 - ι ; / 8 . (3.17) 

By SLLN, we have wpln: 

# { Ι : 1 < Ι < Λ , | ^ | < 6 / / 4 } ^ Λ ( 1 - Ι ; / 8 ) . (3.18) 

Now choose arbitrarily (α, β')£Λ,. Then (a, ß') = r(a, β') for some r>l 
and (a, ß')eS. If (a, ß^eS^, then from (3.15) and (3.18), we have wpln: 

# { I : K I ^ / I , |7 /-ά-Χ;Ρ|^3/ε/4}^3Αζι;/8. (3.19) 

If ( α , β ' ) ^ , then choose (a*,ß*')e5 1 such that | α - α * | < κ , 
| |ß-ß*| |<w. When |α* + Χ;β*| > ε and Χ , ε ^ , we have 

|α + Χ ; β | ^ ε - | α * - α + Χ;(β*-β) | 

^ε - |α*-α | - | |Χ , Ι Ι Ι Ιβ*-βΙΙ 

^s — u — pmu^s — (1 + pm)u>e/2. 

(Recall that w = 3 _ 1 ( l + pm)~ls.) Hence |α + Χ;β| >/ε/2. From this, (3.15), 
(3.16), and (3.18), we have wpln: 

# { i : l ^ / ^ / i , IK,—a-X;Pl>/e/4}>/ii?/8. (3.20) 

By (3.19), (3.20), (3.17), and the choice of A, we have wpln, 

X ρ(Υ,-&-Χ$)>νΚηβ>\:(2{0,0')+11η9 (3.21) 

simultaneous for all (α, $')φΑι. Taking εχ = { in (3.13), we see that 
(α„,β„) 6,4, wpln. 

We now consider the case 0 < p ( ± o o ) = c<oo. First note that 
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0(0, 0')<c by condition (a). Further, condition (2.2) ensures the existence 
of ε > 0 for given t < 1 such that 

inf{P(|a + X'ß|>£):(a,ß')eS}>*. (3.22) 

Based on (3.22) and modifying the previous argument appropriately, we 
can choose />0 such that for given εγ >0, we have wpln: 

Σ p(y/-a-X;ß)>A7(c-e1), forall (α,β')Μ/· (3.23) 
ι = 1 

Choose e! = [c-ß(0,0')]/3. From (3.13) and (3.23), it follows that 
|α„|^ε, and ||β„||<ε wpln, as before. This concludes the proof of 
Lemma 2. 

Proof of Theorem 1. Apply Lemmas 1 and 2. 

Proof of Theorem 2. Since p is a convex function, we need only prove 
that the conclusion of Lemma 1 holds under the assumptions of 
Theorem 2. For this purpose put p*( Y- a - Χ'β) = p( Y- a - Χ'β) - p( Y\ 
and define q* as 

q* = inf{ß*(a, β'): (α, ΜβΑ,-Α.}, (3.24) 

where g* is defined in (2.4). 
Now denote by (al9 b\)9..., (aT, b'T) the T=2p + i vertices (±/,..., ±/) of 

A/, (ΰΓ+1, b'r+i)» ···> (fl2r» b'2T) the vertices of Λ2/. We proceed to show that 

sup{ \p( Y- a - Χ'β) - p( y)l : (a, β') 6 Λ,} 

<2 max \p(Y-a,-\'b,)-p(Y)\ 

s i (X' , n (3.25) 

Indeed, if p(Y— oc-X'ß)^p(F), then by condition (a) we have 
\p(Y-a-X'V)-p{Y)\^max1<JKT\p(Y-aj-X'bj)-p(Y)\. If p(r)> 
p(F-a-X'ß) , two cases are possible: α + Χ'β>0 and α + Χ'β<0. The 
handling of these cases being similar, we shall consider only the former 
case. By convexity of p, we have 

p(Y+c)-p(Y+c-«-X'Ç)>p(Y)-p(Y-oi-X'P), for any c^O. 

(3.26) 

Since (α, β')εΛ„ there exists j^T such that α + Χ'β^α, + X'b,. Write 
ά = α-α,, B = ß-b, , and set c = a + X'b in (3.26). We obtain 

p(r)-p(r-a-x'ß)<p(r+a+x'b)-p(r-a,-x'b> 
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Obviously, (5, h')eA2i· Hence by condition (a) there exists k^2T such 
that p ( r + 3 + X'E)^p(r-£ i*-X'b*) , and we get 

\p(Y)-p{Y-*-X'l)\ 

= ρ ( 7 ) - ρ ( 7 - α - Χ ' β ) 

4Zp(Y-ak-X'bk)-p{Y-aj-X'bj) 

^\p{Y-ak-X'bk)-p{Y)\ + \p{Y-aj-X'bj)-p{Y)\ 

^2 max \p(Y-aj-X'bj)-p(Y)\ 

and (3.25) is proved. (3.25) and condition (c') together ensure that Q* is 
continuous, and therefore q* > 0. The rest of the proof is similar to that of 
Lemma 1. 

Applying Theorem 2 to the case p{u)=\u\, we obtain the following 
corollary, which was proved in [3] with the additional conditions that 
E\Y\<co, 7 - α 0 - Χ ' β 0 and X are independent, and Ρ(α + Χ'β = 0) = 0 
when(a,ß') / (0 ,0' ) . 

COROLLARY 1. Suppose that (X'1? Y{), {X2, Y2\ ··. are i.i.d. samples of 
the random vector (Χ', Υ\ which satisfies the conditions: 

1. £| |X| |<oo. 

2. The conditional distribution of Y given X — x has a unique median 
a0 + x'ßo· 

Denote by (ά„, βΛ) a solution of {1.2). Then (1.3) holds. 

Proof of Theorem 3. The proof follows from the following two lemmas. 

LEMMA 1 '. Suppose that the conditions of Theorem 3 are satisfied, and 
/ > 0 is a given constant. Then for any ε>0 there exists a constant c>0 
independent of n, such that 

P{\din-0L0\>8) = O{e-cn\ Ρ ( | | β η - β 0 | | ^ ε ) = Ο ( ^ — ) , 

where (a„, $'n) is defined as a solution of (3.3). 

LEMMA 2'. Suppose that the conditions of Theorem 3 are satisfied. Then 
there exist constants / > 0 and c>0 such that 

P{{atn-0L0J'n-p0)4Al} = O{e-™)· 

These lemmas can be proved by the same method used in proving 
Lemma 1 and Lemma 2, together with the following fact (see [9, p. 288]): 
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Suppose that ξχ,ξ2,... are i.i.d. random variables, Εξ{ = 0 and there exists 
(5>0 such that £'exp(r^1)< oo when \t\ <δ. Then for any given ε > 0 we 
can find a constant c>0 such that 

Σ Φ >e) = 0(e-cn). 

4. PROOF OF THEOREM 4 

We give only the proof of Theorem 4 under conditions (a)-(d). It is easy 
to modify the proof when (a) and (b) are replaced by (a') and (b'). 

LEMMA 3. Suppose that function p is defined on R, p(0) = 0, is non-
decreasing on [0, oo ) and nonincreasing on ( — oo, 0] . Let { Yi9 / = 1, 2,...} be 
a sequence of i.i.d. variables such that 

Ep(Yl-\-c)<oo, for any ceR, (4.1) 

and {ch i— 1, 2,...} be a sequence of bounded real constants. Then 

lim - Σ ip(Yi-ci)-Ep(Yl-ciU = 0, a.s. (4.2) 
n -*■ oo n . _ « 

Proof Apply a standard truncation argument. 

LEMMA 4. Suppose that the conditions of Lemma 3 are satisfied, and that 
p is continuous everywhere on R, {X,·} is a bounded sequence, and B is a 
bounded set in Rp+i. Then, with probability one, the sequence {(1/n) 

(zr-iPi^-a-xiPi-zy-i^pir/-«^ 
(α, β') is equicontinuous and uniformly bounded on B. 

Proof Denote by F the probability distribution of Yx. Construct the 
probability space (Ä°°, J100, F°°). Fix integer m>0, find h>0 such that 

£{p(r1 + r)/(p(r1 + r)^A) + p(y1-D/(p(r1-D>A)}<i/(3w), 
(4.3) 

where T= sup{ |α + Χ,·β| : / = 1, 2,..., (a, β') e B} ( < oo by the boundedness 
of {X,} and B). From the assumptions on p, it follows that there exists 
e'm>0 such that we have \p(ux)-p(u2)\ ^ l/(3m) when \ui — u2\^e,

m 

and minipiUi), p(u2))<h. Find eml>0 such that |(α + Χ ; β ) -
(α* + Χ;β*) | ^ε^ , ι=1,2 , . . . , whenever (OL,V)GB, ( a* ,ß* ' )eÄ and 
||(α, β ' ) - («* , P*')|| < e m l . 
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Now by (4.3) and SLLN, we can find a positive integer Nm and a set 
Dme^co with Fœ(Dm)<2-m, such that 

«"' Σ pWi+TM^Yi+T^h) 
i= 1 

+ »-1 Σ p(Y,-T)I(p(Yt-T)>h)<\IQm\ (4.4) 

whenever n^Nm and Y* = (Yl, Y2,...)$Dm. Since {X,} and B are bounded, 
for any Y*eR'x' we can find zm2(Y*) such that 

»- ' Σ ( ρ ( κ , - α * - χ ; β * ) - ρ ( 7 , - α - χ ; ρ ) ) < l/(3ifi), (4.5) 

whenever 1 < « < # „ , (a, ß')e£, (a*, ß*')e5, and ||(α·, β*')-(α, β')|| < 
£m2(r*). Take em(Y*) = min(eml,em2(Y*)). 

Now suppose that (ot,P')eÄ, (α*, ß*')efi, ||(a*, ß*')-(a, ß')|| < 
8m(F*), and r*£Z>m. Then for n^Nmwe have (4.5). If n>Nm, then 

«-' Σ (p(r,-a*-x;ß*)-p(r,-a-x;ß)) 
1 = 1 I 

<»"' f ρ (7 , -α* -Χ;β · ) / (ρ (Γ , -α* -Χίβ*»Λ) 
/ = 1 

+ «- 1 Σ ρ(ΐ-, .-α-Χ;β)/(ρ(Γ,-α-Χ;β)>Λ) 

+»-· Σ' [p(r,-a*-x;ß*)-p(r,-a-x;ß)] 

Ξ Ε Λ + Λ + Λ , (4.6) 

where the summation Σ' is over all / such that l^i^n and min^y,— 
α*-Χ;β*), ρ(Γ /-α-Χ;β))</ζ. From (4.4), the definition of T and the 
conditions imposed on p, we have 

Ji ^ the left-hand side of (4.4) < l/(3m). 

Likewise, J2^l/(3m). Finally, by the definition of s'm,sml9 and em(Y*\ 
for each / belonging to the range of summation Σ'> w e have 
|p (r / -a*-X;ß*) -p(7 / -a -X;ß) |< l / (3m) . Hence 73<l/(3/w). Sum-
ming up, we find that (4.5) is still true when l/(3m) on the right-hand side 
of (4.5) is replaced by 1/m. 

Now write D= f)?=iU%=nDm. Since Fco{Dm)<2m, we have 
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F°°(Z)) = 0. From the above discussion we see that for any 
γ* = (Υ^ Υ29...)φΒ and any positive integer m, we can find em(Y*)>0 
such that 

X ( ρ ( Γ , - α · - χ ; β * ) - ρ ( Γ , - α - Χ ; β ) ) n^l/m, for J I = 1 , 2,. 

whenever ( a ,ß ' ) e£ , (a*,ß* ' )eÄ, and ||(α·, β* ' ) - (α , ß ' ) K e m ( r * ) . This 
proves the equicontinuity of {Σ7=ι P i * ' / - α — Χ/β)Λ*: « = 1> 2,...} over 5, 
with probability one. The uniform boundedness of this sequence of 
functions follows from the fact that when Υ*φΌ, we have Y*$Dm for 
some m. Repeating the above argument, we find that 

£ > ( r , . - a - X ; ß ) / n < A + l / ( 3 m ) 

for n^Nm and (α, β ' ) e B , while for n<Nmwe have 

n Nm 

Σ ρ(Γ,-α-χ;β)/ιι< Σ (p(r, + r)+p(r,-r)) 

for any (a, ß')ei?. 
Therefore, in order to prove Lemma 4, we have only to establish that 

{Σ7=ι Ep(Yi — a —X/P)/w· " = 1, 2,...} is uniformly bounded and equicon-
tinuous on B. This is simple, since Ep{Yx + c) is continuous for each c, 
sup{|a + X,'ß|: ι=1,2 , . . . , (α, β ' ) ε β } = T< oo, and 

Äpi^-a-XißX^pi^ + D + ̂ p i ^ - D , (a,ß')e£, i=l,2 
Combining Lemma 3 and Lemma 4, we obtain 

LEMMA 5. If the conditions of Lemma 3 and Lemma 4 are satisfied, then 
there exists a set De@œ such that Fco(D) = 0, and when (Yu Υ2,...)φΌ we 
have l i m _ o o Z 7 = , [ p ( ^ - a - X ; P ) - ^ p ( ^ - a - X ; P ) ] / « = 0 uniformly 
for (α, β') G B, B is a given bounded set in Rp+i. 

In the following we adhere to (3.2), and put 

5Λ,= { ( α , β ' ) : α 2 + | | β | | 2 ^ Μ } , 

5 Λ / ={(α ,β ' ) :α 2 + | | β | | 2 = Μ} 

for any M > 0. 

LEMMA 6. Suppose that the conditions (a)-(d) of Theorem 4 are 
satisfied. 
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(i) There exist et > 0 and ε2 > 0 such that 

i n f { # ( / : l ^ / < « , |α + Χ;β|^ε1)/«:(α,β /)6Α1}^ε2 (4.7) 

for n sufficiently large. 
(ii) For each M>0 there exists a constant sM>0 such that 

t £[p(r,-a-x;p)-p(r,)]/»;M(«,ß')ll2e* (4.8) 

for (α, β') 6 SM and n sufficiently large. 

Proof. Consider 

£ (a + X,'ß)2 = «(a-X;p)2 + ß'//np, 
/ = 1 

where X„ = (X, + ··· +X„)/n, //„ = Σ?=, (Χ,-Χ„)(Χ,-Χ„)'. Suppose 
that (a ,p ' )e5, . Write M0 = sup{l, ||X,||: i= 1,2,...}. If \m\>(2pM0)-\ 
we have, according to (2.7), f\'H„fi^(2pM0)~

2δ}η for some constant 
^ i>0 and n large. If ||p|| <(2/>Μ0Γ\ then ||X;p|| ίζ(2/>)~Λ and 
\«\>^/ΐ-(2ρ)-2^^/ϊ/2. Hence |a-X;p| >yßß-\>$, and so 
η(α —ΧήΡ)2>«/9. Summing up the above gives 

Σ (« + XiP)2 5= <5n, for all (a, p') e S, and n large, (4.9) 
1 = 1 

for some δ > 0. 
Now suppose that (4.7) is false. Then we can find «,·-» oo, 0<ε ν -»0 , 

0 < e2J -+ 0, (α,-, Pj) e S,, such that 

# {i: 1 < i <«,·, |ay + Χ,'0,1 >ε„} <evnJ t j = 1, 2,..., 

which entails that 

£ (a, + X;p,-)2/«,· < 4 + ε2,Γ2, y=l,2,. . . , 
/ = 1 / 

where T=M0+ 1. This contradicts (4.9), and (4.7) is proved. 
For a proof of (4.8), we notice that since Ep(Yl + t)>Ep(Yl) when 

f#0, Ep(Yl + 0 is continuous in f and α + Χ,'β is uniformly bounded for 
/= 1, 2,... and (a, $')eSM. Hence it follows from (2.8) that there exists a 
constant δΜ>0, depending only on M, such that E\_p(Yi — α — Χ,'β) — 
P(^/)]^^A/|a + X;ß|2for (a, V)eSM. From this and (4.9), (4.8) follows. 
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LEMMA 7. Suppose that the conditions (a)-(d) of Theorem 4 are 
satisfied. Given />0, denote by (a„, %'n) the solution of the constrained 
minimization problem (3.3). Then (3.4) holds. Moreover, the conclusion of 
Lemma 2 holds. 

Proof Fix ee(0, R). Let Z> be the set mentioned in Lemma 5. Since 
||(α, β')||>ε when (α,Ρ)φΑε (see (3.1)), it follows from Lemma 5 and 
Lemma 6(b) that 

i n f j f [ p ( y / . - a - X ; ß ) - p ( F / ) ] ^ : ( a , P ' ) G ^ / - ^ } ^ 2 - 1 e 2
£ ( / ? + 1 ) / , 

for all {Yl9 Υ29...)φϋ. 
By Lemma 6(a), we still have (3.15) in a slightly different notation. 

Moreover, (3.16) remains true by the boundedness assumption of {X,·}. 
Hence the proof of Lemma 2 remains valid in the present setting. 
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Minimal Complete Classes of Invariant Tests for 
Equality of Normal Covariance Matrices and Sphericity 
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The problem of testing equality of two normal covariance matrices, Σι = Σ2 is 
studied. Two alternative hypotheses, ΣΧΦΣ2 and Σι—Σ2>0 are considered. 
Minimal complete classes among the class of invariant tests are found. The group of 
transformations leaving the problems invariant is the group of nonsingular 
matrices. The maximal invariant statistic is the ordered characteristic roots of 
S{S2\ where 5,·, i = 1, 2, are the sample covariance matrices. Several tests based on 
the largest and smallest roots are proven to be inadmissible. Other tests are 
examined for admissibihty in the class of invariant tests. The problem of testing for 
sphericity of a normal covariance matrix is also studied. Again a minimal complete 
class of invariant tests is found. The popular tests are again examined for 
admissibihty and inadmissibility in the class of invariant tests. © 1988 Academic 
Press, Inc. 

INTRODUCTION AND SUMMARY 

The problems of testing equality of two normal covariance matrices and 
testing sphericity of a normal covariance matrix are classical problems in 
multivariate analysis. See, for example, Anderson [1, Chap. 10] and 
Muirhead [7, Chap. 8] . In this paper we consider the admissibihty of 
invariant tests in these common testing problems. Two problems (two-
sided and one-sided cases) are based on S{ and S2, independent, where 

Sx~Wp(nuEx) and S2~Wp(n2,E2), (1.1) 

and Wp(n, Σ) is the Wishart distribution on pxp matrices with n degrees 
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of freedom and expectation ηΣ. We assume that /?^2, nx^p9 and n2^p9 

and that Σγ and Σ2 are positive definite. We consider testing 

Η0:Σί = Σ2 versus ΗΑ\ΣΧΦΣ29 (1.2) 

and 
Η0:Σ{ = Σ2 versus ΗΑ:Σι>Σ29 (1.3) 

where 2^ >272 means that Σι —Σ2 is positive definite. 
The third problem tests for sphericity of a covariance matrix. That is, we 

have 
S~Wp(n9E)9 (1.4) 

n^p^29 Σ>0, and test 

Η0:Σ = σ2Ι versus ΗΑ\Σφσ219 (1.5) 

where σ2>0 is unspecified and / i s the /?xp identity matrix. 
Problems (1.2) and (1.3) are invariant under the group Gl{p) of pxp 

nonsingular matrices, which acts on (Sl9 S2) via 

A: (Sl9 S2) -> {ASXA'9 AS2A
() (1.6) 

for AeGl(p), and on (Σΐ9 Σ2), similarly. A maximal invariant statistic and 
parameter are respectively 

z = diag{ordered characteristic roots of S ^ ^ 1 } , 

and 
a = diag{ ordered characteristic roots of Σ{ Σ2

 1} . 

See Anderson [1, Theorem 10.6.1]. However, to develop our results it is 
more convenient to work with the maximal invariants x and 0, where 
xi=(zl-l)/(zl+l)3ndel=(l-0Lp_t+l)/(l+(xp_i+l). As such, 

x = diag{ordered characteristic roots of (5! — S2)(Sl + S2)~
l}9 (1.7) 

and 

Θ = diagjordered characteristic roots of (Σ2 — Σχ){ΣΧ -I-Σ2)~ι}. 

Hence, χβΘ(ρ\ the set of pxp diagonal matrices, and the diagonal 
elements of x satisfy \^xx^x2^ ··· ^xp^ —1. The invariance-reduced 
problem (1.2) then tests 

Η0:θ = 0 versus ΗΑ:θβθ-{0}9 (1.8) 
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where 

Θ={θΕ®(ρ)\ 1>θί^θ2> . . . ^ 0 Ρ > - 1 } , (1.9) 

based on x with sample space 

f = { x e % ) | \>xi>x2> ... >xp> - 1 } . (1.10) 

Note that we have eliminated from the sample space the set of measure 
zero on which the x-s are not distinct. A popular test for (1.2), in terms of 
x, is likelihood ratio test (LRT), which rejects H0 when 

\I+x\-"l/2\I-x\-n2/2>c. (1.11) 

Another test, which arises from our complete class rejects H0 when 

^ ± ^ ( t r x ) 2 + t rx 2 >c, 0<c<^j^p2+p. (1.12) 

(In each case, the constant c is chosen to provide the desired level.) Other 
tests, including those based on tr x and the extreme characteristic roots, are 
listed in Muirhead [7, p. 332]. One such rejects H0 when 

trx<Cj or trx>c2, —p<cl<c2<p. (1.13) 

Tests based on the extreme roots of SiS2\ which are equivalent to those 
based on the extreme roots of (5Ί — S2)(Sl + S 2) - 1 include those which 
reject H0 when 

xl<cl or x{>c2; (1.14) 
xp<cl or xp>c2\ (1.15) 

xp<cx and x{>c2\ (116) 

and 

xp<c{ or xx>c2. (1.17) 

In each case, — 1 < cl < c2 < 1. 
Maximal invariants for problem (1.3) are x and Θ as in (1.7), but now 

the alternative parameter space is smaller: 

Ηο:θ = 0 versus HA: 0e6>+ - {0}, (1.18) 

where 

Θ+ = {θε@(ρ)\0>θι>θ2> ·.. >ΘΡ> - 1 } . (1.19) 



134 COHEN AND MARDEN 

The LRT for problem (1.3) modifies (1.11) by using the statistic x instead 
of x, where xe@(p) is defined by 

jc. = max <*.·, — ->. (1.20) 
{ " l + ^ J 

The test rejects H0 when 

\I+x\-"l/2\I-x\-"2/2>c, c>0. (1.21) 

The locally best invariant test rejects H0 when 

t r x > c , (1.22) 

where —p<c<p (see Giri [4]). The extreme root tests have rejection 
regions 

xx>c (1.23) 

and 

xp>c9 (1.24) 

where — 1 <c< 1. 
The following theorem summarizes our admissibility/inadmissibility 

results for problems (1.8) and (1.18). 

THEOREM 1.1. (a) The LRT (1.11) when nx>2(p-\) and n2> 
2(p— 1), and the test (1.12), are admissible in the invariant problem (1.8). 
The tests (1.13)—( 1.17) are inadmissible, (b) The test (1.22) is admissible in 
the invariant problem (1.18). The LRT (1.21 ) and root tests (1.23) and (1.24) 
are inadmissible. 

The result for the test (1.22) follows from the essential uniqueness of its 
local properties, although it is also easy to prove its admissibility by using 
Theorem 3.1. The admissibility of the LRT (1.11) in problem (1.8) follows 
from the stronger result of Kiefer and Schwartz [6] which proves the LRT 
is admissible Bayes for the original problem (1.2). 

The inadmissibility results are all based on violation of the following 
convexity property. (We represent a test as a measurable function 
^:x-►[(), 1], where φ(χ) is the probability of rejecting H0 when x is 
observed.) 

PROPERTY 1.2. The test φ equals \—IA, a.e. [v], for some convex set 
A ç= X for which no three points of the boundary in X are collinear. 

Here, v is the measure on X when 0 = 0, which is absolutely continuous 



MINIMAL COMPLETE CLASSES OF TESTS 135 

with respect to Lebesgue measure on Rp
9 and IA is the indicator function of 

A. We will prove the next proposition in Sections 2 and 3. 

PROPOSITION 1.3. (a) A necessary condition for a test φ to be 
admissible for problem (1.8) is that it equal \—IA, a.e. [v] , where A is either 
of the form {x | t r x ^ t f } , or {x | tr x^b}, or φ satisfy Property 1.2. 

(b) A necessary condition for a test φ to be admissible for problem 
(1.18) is that it equal 1 —IA, a.e. [v], where A is of the form {x | t r x ^ a } , 
or φ satisfy Property 1.2. 

It is fairly easy to see that tests (1.13)-(1.17), (1.21), (1.23), and (1.24) 
are not of the form required by Proposition 1.3. 

Now turn to problem (1.5). The invariance group for this problem is 
the direct product (0, oo)x O(p), where the operation for (0, oo) is 
multiplication and O(p) is the group of pxp orthogonal matrices. The 
action is 

(c, ry.S-^crsr*. (1.25) 

A maximal invariant statistic and parameter are, respectively, 

y = diag{ ordered characteristic roots of 5/tr 5} (1.26) 

and 
λ = diag {ordered characteristic roots of Σ/tr Σ}. (1.27) 

We prefer to use the parameter 

ω=ρλ-1 (1.28) 

so that the hypotheses in (1.5) become 

Ηο:ω = 0 versus ΗΑ:ωβΩ-{0}, (1.29) 

where 

Q={coe@(p) | (ρ-\)>ωί^ · · · ^ωρ> - 1 and t rœ = 0}. (1.30) 

The LRT for problem (1.5) rejects H0 when 

\y\<c, 0 < c < l , (1.31) 

where \y\ is the determinant of y. The locally most powerful invariant test 
has rejection region 

Sl = -I{y,-y)2>d, (1.32) 
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where y = Iyi/p= \jp. See Sugiura [8] . Relevant root tests have rejection 
regions 

y\>a, (1.33) 

yP<b, (1.34) 

yx>a and yp<b9 (1.35) 

and 

yx>a or yp<b, (1.36) 

where a e (1//?, 1 ) and b e (0, \/p). 

THEOREM 1.4. The LRT (1.31) and LMPI (1.32) test are admissible for 
problem (1.29). The root tests (1.32), (1.34), (1.35), and (1.36) are 
inadmissible if p ^ 3. When p = 2, the uniformly most powerful invariant test 
has rejection region {y | y{ > c}, ce (\, 1). 

Again the admissibility of the LRT is found in Kiefer and Schwartz [6] , 
and that for the LMPI test is due to its uniqueness. See also Theorem 3.1. 
The inadmissibility results follow from the next proposition. 

PROPOSITION 1.5. A necessary condition for a test φ to be admissible for 
problem (1.29) whenp^3 is that it satisfy Property 1.2 (with Of, the space of 
y, in place of 2£.) 

The proof of this proposition and the p = 2 result are given in Section 3. 
Our main results in the paper are Theorems 2.1, 2.2, and 3.1, which 

contain the minimal complete classes of tests for the reduced problems 
(1.8), (1.18), and (1.29). The proofs are in Section 4. 

2. TESTING ΣΧ = Σ2 

We will use Brown and Marden [2] heavily, so that our first task is to 
find the likelihood ratio for x. Recall 

z = diag{ ordered characteristic roots of Si S2
 l}, (2.1 ) 

and 

a = diag{ordered characteristic roots of ΣίΣ2~
ι }· 
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Then from James [5, Eqs. (33) and (65)], we have that 

/.(*)///(*)=ι«Γ",/2ι/+ζΐ/' ί \ι+ζΓ«-ιΓ'\-ι,ρ(άη 
JoiP) ( 2 2 ) 

β = (η1+η2)/2, 

where fa{z) is the density of z when a obtains, and p is the Haar 
probability measure on O(p). Now by (1.7) and (2.1) 

z = (I+x)(I-x)~l and ά = (Ι-θ)(Ι+θ)-\ (2.3) 

where i = diag(ap,..., a,). Thus the ratio (2.2) in terms of (x, Θ) is 

\Ι+ΘΓ/2\Ι-Θ\"2/1 f \Ι+χΓΘΓ'\-βρ{αΓ). (2.4) 
•W) 

(To see this, note that a can be replaced by i in (2.2), 

\ζ\ = \Ι-θ\\Ι+θ\-\ 

| / + Ζ | = | / + ( / + Χ ) ( / - Χ ) - 1 | = | / - Λ : Γ 1 | 2 / | = | / - Λ : | - 1 2 ' \ 

and 

\Ι+ζΓ<χ-ίΓ'\ = \Ι+(Ι-χ)-1{Ι + χ)Γ(Ι+θ)(Ι-θ)-ιΓ'\ 

= \Ι-χ\-1\Γ'(Ι-χ)Γ+Γ'(Ι+χ)Γ(Ι+θ)(Ι-θ)-1\ 

= \Ι-χ\-ι\Ι-θ\-'\Γ'(Ι-χ)Γ(Ι-θ) + Γ'(Ι+χ)Γ(Ι+θ) 

= \I-x\~l \Ι-Θ\~ι \2Ι+2Γ'χΓΘ\ 

= \Ι-χ\-ι\Ι-θ\~ι \Ι+χΓΘΓ'\ 2ρ.) 

Let α(θ) = \Ι+θ\-"'/2\Ι-θ\-'η/2, and define Re(x) to be α(θ) times the 
quantity in (2.4), so that 

Re{x)={ \Ι+χΓΘΓ'\-β p(dr). (2.5) 
J0(p) 

To define the minimal complete classes, we need the derivatives 

/(*) = (/,(*),...,/,(*))', where/,(x) = —Äe(x)U = 0, (2.6) 

ad 

d2 

V(x)={ViJ(x)}fJ=l, where ViJ(x) = -^-^-Re{x)\e,0. (2.7) 
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For μβΜρ, M0e£f(p) (the set of nonnegative definite symmetric pxp 
matrices), He&{0- {0}), where ^(Ψ) is the set of nonnegative measures 
on Ψ and Θ is the closure of Θ in 3){p\ and ce R, define 

d(x) = d(x; μ, Μ0, # , c) 

= μ%χ) + i tr M0 K(JC) + f ^ ^ T , 1 , 7 ^ ^ »(<») ~ '. (2-8) 
J £ - { o } ||0|| 

where Θ is the vector (0,,..., 0^). We have extended the domain of R0(x) to 
Θχ% by continuity. 

For problem (1.8) define Φ to be the class of all tests of the form 

i l i f< / (x ; M ,M o , / / , c )>0 
ΨΚ } {0 if rf(jc; μ, Af0, Ä, c) <0 , a.e. [v], l ' j 

for some 

(μ, M0, //, c)G C(0) x {yJ | y ^ 0 } χ ^ ( θ - { 0 } ) χ Κ - {(0,0, 0,0)}, (2.10) 

where C(0) is the smallest convex cone containing Θ, 

C{0)={ee®{p)\ei>e2> • • • ^ 0 , } , (2.11) 

/ i s the pxp matrix consisting of all ones, and ^0(Θ — {0}) is the set of 
measures GG^{0— {0}) which satisfy 

f \M2+1GW<CO> i = l P - l - (2.12) 
Js - {o} II0|I 

THEOREM 2.1. The class Φ is minimal complete for problem (1.8). 

The proof will be given in Section 4. 
Now we look at the local terms (2.6) and (2.7) more closely. From James 

[5, Eqs. (13) and (33)], we see that R0(x) in (2.5) is a generalized 
hypergeometric function of two matrix arguments with zonal polynomial 
expansion: 

Re(x)=lF0(ß;-9,x)=i £ c CÀ θ)α{χ) ^ ^ 
k = 0 Ke&(k) K' W U J 

Here, ^(k) is the set of partitions of the integer /c, and for each partition κ, 
CK( · ) is the corresponding zonal polynomial and cK is a positive constant. 
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The zonal polynomials for k ^ 6 are given in the Appendix of James [ 5 ] . 
We need the k ^ 2 terms, 

i/W + i) Re(x) = i _ £ l t r 0 t r x + ^ r_)r_ [ ^ [(tr x)2 + 2 tr x 2 ] [(tr Ö)2 + 2 tr 0 2 ] 

+ 

ß 
— ir σ ir Λ-ι- , „ 
/> 6 />(/> + 2) 

3 p{p-I) 
[(tr x ) 2 - tr x 2 ] [(tr Θ)2 - tr Θ2)] + he(x), (2.14) 

where 

heW = Σ Σ Ü' 
k = 3 Ke^(k) k\ CK(I) 

(2.15) 

Since for Ke^(k) and AeS>(p), CK(A) is a symmetric polynomial in 
/ I , , . . . , Ap of degree k, and each monomial making up the polynomial has a 
nonnegative coefficient (see Farrell [3 , Problem 13.1.13]), we can derive 
that 

\CK(x)\^CK(I) forxe^, 

since |x,| < 1 for each i, and that for any ε e (0, 1 ), and k > 3, 

| C K ( - 0 ) | 

(2.16) 

lier 
^sk-2CK(I) 

^£ ( 5 / 6 , *- 2 C K (e 1 / 6 / ) for | | Θ Κ ε . (2.17) 

Thus, since he(x) in (2.15) is a sum of terms with k ^ 3, 

|M*)| 
sup sup 
xe& \\θ\\ ^ ε 

< Σ Σ r fC^/ )^ 6 ' * - 2 
* = 3 KIEiS·)*) Â:! 

<ε1/2 Σ Σ fyCK(tmn 
k = 0 Ke0>(k) K' 

= εί/2\Ι-ει/6Ι\-β 

= ει/2{1-ει/6)-βρ. (2.18) 

Hence (2.14) and (2.18) make it easy to show that from (2.6) and (2.7), 

β 

P 
(2.19) 
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and 

[(tr;c)2 + 2trjc2] if i = j 

V ^ ) = \ \ ^ P ^ C(trx)2 + 2 t r x 2 ] (2.20) 
] 3 p(p + 2) 

Hence if we take μ and M0 as in (2.10), 

μ'1(χ)= --(Σμί)1τχ = δίτχ (2.21) 

and 

tr M0 K(x) = 7 Σ Σ K,(x) = yj?[j?(tr x)2 + tr x2l (2.22) 

where δ e U and y ^ 0. Thus we can alternatively define Φ to consist of all 
tests of the form 

Λίν> Π Ud(x;o,yyH,c)>0 
n ' \0 Hâ(x;ô,y,H,c)<0, a.e. [v] , l ' 

for 

(<5, y, //, c)e U x [0, oo) xjF0(<9- {0}) x R - {(0, 0, 0, 0)}, (2.24) 

where 

d(x; δ, y,H,c) = ôtrx + y\_ß tr x)2 + tr x 2 ] 

r Μχ)-1 + (β,ρ)«θ«χ)Η{α)_& ( 2 2 5 ) 
J s - { o } ||0|| 

We turn to Theorem 1.1(a) The test (1.12) is easily seen to be in Φ, 
hence is admissible for problem (1.8), by taking (<5, y, //, c) = (0, 1, 0, c) in 
(2.23). The remainder of the theorem follows as in the Introduction 
pending proof of Proposition 1.3(a), which we now give. 

Proof of Proposition 1.3.a: We start by showing that Re(x) is strictly 
convex in x if 0^0 . Using the representation of (2.2) obtainable from 
Wijsman [9] , we write 

fa(z)_ |α|"2 / 2 j \AA'\fi-P/2e-(l/2)trASlA'e-(l/2)traAS2A'dA 

f0(z)~ S\AA'\ß-p/2e-ii/2)trA^ + s>)A'dA ' ( 1 2 6 ) 
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where the integrals are over Ae^l(p). Manipulations familiar in such 
situations yield the ratio in terms of (JC, Θ) to be 

Κ\Ι+θ\-"ι/2 \Ι-Θ\~"2/2 I \ΑΑι\β-ρ/2e-(l/2)trAA'e-(i/2)treAxA'dA, (2.27) 

where K is a positive constant. It is then possible to prove that if θ φ 0, the 
expression in (2.27) is strictly convex in JC, hence Re(x) is strictly convex 
in x. 

Now consider a test φεΦ and the corresponding set from (2.23), 

B={x\d(x;S,y9H9c)^0}. (2.28) 

Since R0(x) is strictly convex in x if 0 / 0 , trx is convex in x, and 
j?(tr jc)2 + tr x2 is strictly convex in JC, we have by (2.25) that 

(i) d(x; <5, y, //, c) is strictly convex in x if (y, # ) Φ (0, 0); (2.29) 
(ii) d(x; <5, y, //, c) = -c for c ̂  0 if (<5, y, H) = (0, 0, 0); 

(iii) d(x; δ, y, H, c) = δ tr x — c for <5 φ 0 otherwise. 

In any of the cases in (2.29), B of (2.28) is convex, and since d is con-
tinuous in x and v is absolutely continuous with respect to Lebesgue 
measure on W, the boundary of B in 9C equals {x \ d(x) — 0} and has 
v-measure zero. Hence φ= 1 — IA, a.e. [v] . 

If case (ii) or (iii) in (2.29) holds, then B is either {x\ t r x ^ a } , or 
{JC | trx^b}, where we take a or be [—/>,/>]. (In case (ii), 5 is either 
empty or #*, so we take a = —/? or a=p, for example.) If case (ii) holds, 
then since the boundary of B is {x\ d(x) = 0}, and d is strictly convex, no 
three points on the boundary of B can be collinear, i.e., Property 1.2 holds. 
Hence Proposition 1.3(a) is proven. 

Now turn to the one-sided problem (1.18). Define the class of tests Φ+, 
which is a subset of Φ, to consist of all tests of the form 

fl iîd + {x;S9H,c)>0 
Φ{Χ) = \0 ifrf + (jc;<5,7/,c)<0,a.e.[v], ( 1 3 0 ) 

for 

where 

(δ, H, c)e [0, oo)x ^(6> + - {0})x R - {(0, 0, 0)}, (2.31) 

d + (x; δ, //, c) = δ tr x + f (*'f*f 1} if (Λ) - c. (2.32) 



142 COHEN AND MARDEN 

The function R0(x) is given in (2.5). The proof of the next result is in 
Section 4. 

THEOREM 2.2. The class Φ + is minimal complete for problem (1.18). 

The proof of Proposition 1.3(b) follows as the proof of part (a) above, 
where we note that δ ̂  0. An additional result is available. Note that, from 
(2.27), 

-ΧτθΑχΑ'=-ΣΣ^< (2·33) 
* J 

Since for 0e 0 + , 0 , ^ 0 for each i, the expression in (2.33) is nondecreasing 
in each xh hence Re{x) in (2.27) is nondecreasing in each xt. It is easy to 
extend the definition of Re(x) to 

xe&*= {xe@(p) | - 1 < J C , < 1 for each /} . 

This new R0(x) and the corresponding d + (x) are invariant under per-
mutations of the elements of x. See (2.27) which is in terms of ordered x-s. 
Together with the convexity of d + , we have by Proposition 4.C.2d of 
Marshall and Olkin [10] that d+ satisfies the weak submajorization 
monotonicity property, i.e., 

If x j e f with x^yuxl + x2^yi+y2>->X\+ · · · + * / , ^ > Ί + · · · +>V> 
then d + {x)^d + (y). (2.34) 

Thus we have the following: 

PROPOSITION 2.3. A necessary condition for a test φ to be admissible for 
problem (1.18) is that it equal \—IB9 a.e. [v], for some set B which is 
monotone nonincreasing in the ordering (2.34). 

3. TESTING SPHERICITY 

Let gx(y) be the density of Y in (1.26) when λ in (1.27) obtains. From 
Sugiura [8, Eq. (1.3)], we have that 

gx(y) 
= \λ\"/2\ (tr y n r ) x P(dn τ = ηρ/2. (3.1) 

g Ay) Jo(p) 

Recall from Section 2 that p is the Haar probability measure on O(p). 
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Rewriting the ratio (3.1) in terms of ω of (1.28), and multiplying it by 
\Ι+ω\~η/2

9 yields 

Kiy)= ί (1+\χγΓωΓ'Γχρ{αΓ)- (3.2) 
J0(p) 

(Recall that try=l.) 
We need to find the derivatives corresponding to (2.6) and (2.7). Note 

that for \a\ ^ 1, 

(\+α)-τ=1-τα + τ(τ21) a2 + o(a2\ (3.3) 

where o(a2) is as a->0, uniformly in \α\^ε for any ee(0, 1). Since 
yt e (0, 1 ) for each /, 

(ΧτγΓωΓ)2*Ζ(Σ\ωλ2)^ρ\\ω\\2. (3.4) 

Hence from (3.2) and (3.3) we have 

**(>>)= 1-τ ί (ΙτγΓωΓ)ρ(αΓ) + τ-^±}1 f (tr γΓωΓ)2 ρ(αΓ) 
J0(p) I J0(p) 

+ o(IM|2), (3.5) 

where ο(||ω||2) is as ω ->0, uniformly in yeW. Using zonal polynomials as 
in Sugiura [8], or calculating directly, we obtain 

f (tv γΓωΓ') ρ(άΓ) = {-^^- = 0 (since trco = 0) (3.6) 
J p 

and 

2II0H2
 S2 ( 3 7 ) 

See (1.32). Thus (3.5), (3.6), and (3.7) show that 

/ ? W ^ « W | w = o = 0 (3.8) 

and 

V^lSï ™y) ' —-(, + 2)4(,-l) S*"»- ( 3 · 9 ) 
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Now let Φ* be the class of tests of the form 

jï ud + (y,y,H,c)>Q 

^ ) = {θ ifrf'O^ff.cXO.ax.Cv·], ( 3 1 0 ) 

for 

(<5, # , c )e [0 , 00) χ ^ ( Ω - { 0 } ) χ R - {(0,0,0)}, (3.11) 

where 

rf*O0^*O>;y,i/,c) = y ^ + f R*ly)~X H(dœ)-c (3.12) 

and v* is the null measure on <&. It is absolutely continuous with respect to 
Lebesgue measure on Up~l. 

THEOREM 3.1. The class Φ* in minimal complete for problem (1.29). 

The proof is indicated in Section 4. 
Proposition 1.5 is proved as Proposition 1.3, where we note that S2

y and 
R*(y) for ωφθ are strictly convex in y. The latter result follows from the 
facts that (\+α)~τ is strictly convex in a and tr y ΓωΓ' is linear in the 
diagonal elements of y and, with p probability one the coefficients 
multiplying each diagonal element of y are nonzero. 

Finally, consider the case p = 2 in Theorem 1.4. Extend the definition of 
R*(y) to the set {yeM2 \ yl+y2=l, y{>0, y2>0}. Note that R*(y) is 
invariant under the permutation of yx and y2, and S j and R*(y) when 
ω^Ο are strictly convex in y. Thus d* is also permutation invariant and 
strictly convex unless (<5, H) = (0,0). Thus d* has a minimum at 
(^1^2) = (i> 1) an<i is either constant or strictly increasing as yx moves 
away from 5. Thus the only admissible tests are those with acceptance 
regions essentially of the form {y \y{ ^c | , ce [̂ , 1]. 

4. PROOFS OF THEOREMS 2.1, 2.2, AND 3.1 

In this section we will refer to Brown and Marden [2] by B —M. We 
first use B — M Theorem 2.4 to prove the classes Φ, Φ + , and Φ* essentially 
complete for their respective problems (1.8), (1.18), and (1.29). We need to 
verify B —M Assumptions 2.1, 2.2, and 2.3. 

Start with problem (1.8). Assumption 2.1 requires that for each JC, Re(x) 
as a function on Θ satisfies 

0<Re(x)<oo ΪΟΤΘΕΘ. (4.1) 
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By inspection of (2.5), Re(x) is positive. By (2.16) with —Θ instead of x we 
have that 

|CK(-0)|<CK(/), 

hence by (2.13) and (2.5) 

/u*xn (i-\x,\rß«x>, 
/ = 1 

since each x,.e( —1, 1). Hence (4.1) holds. 
B —M Assumption 2.2 states that the derivatives in (2.7) and (2.8) exist, 

which we have already shown, and that for sufficiently small ε > 0, for each 
x there exists Kr<cc such that 

sup 
l|0H<e 

he(x) 

\\e\V 
^κχ. (4.2) 

This result follows from (2.18), where in fact we have the stronger result 
that 

κ = sup κχ< oo. (4.3) 

B — M Assumption 2.3 is trivial in this problem since Θ is bounded. See 
the remark below Equation (2.5) in B —M. Thus the set ^ in B —M 
consists only of φ and #*, and hence can be ignored safely. 

Now B — M Theorem 2.4 guarantees that an essentially complete class 
consists of all tests of the form (2.9), where 

((/i,M),//,c)G^-((0,0),0,0) (4.4) 

and 

Mo = ̂ - f iSptfi*). (4·5) 
J s - { o } ||0|| 

and 

Ξ= {((μ, M), //, c) I (μ, M)eA(H), ΗΕ^(Θ- {0}), ce R}. (4.6) 

(We take a in B - M large enough so that 0 e Θ => ||0|| < a.] The set A(H) 
is a subset of Rpx&(p) defined in B - M (2.14). We will use B - M 
Example 4.6 to find A{H\ but first we reparametrize by letting 

n = G0e@(p\ (4.7) 

file:////e/V
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where G is the linear transformation from which 7̂  = 0 , -0 , + !, 
i=l,. . . ,p—l, and πρ = θρ. Then the transformed parameter space GO = IJ 
is locally one-sided, i.e., for some ε > 0, 

neBe=U09aoY-lxRlnBB9 (4.8) 

where Βε is the ε-ball in @{p) around 0. From B —M Example 4.6 (with 
Kx = [0, oo y - 1 and q = 1,) we have that if 

J π,(?//(</π)<οο, /= l , . . . , / ? - l , (4.9) 

then 

A(GH) = {(/i*, M*) | /**eC(77) and Mge9{p)9 

m* = 0, i = l , . . . , p - l , m*>0}. (4.10) 

If (4.9) fails, A(GH) is empty. Here, G// is the measure induced on 77 by G 
via (4.7). Now it can be seen from the definition of A(H) in B — M that 

Λ(Η)={(σ-ιμ*9 G'M^GT1) I (/Λ M*)eA(GH)l 

= {{li9M)\ßeC(0)9Mo = yJ9y&O}. (4.11) 

Hence (2.10) is equivalent to (4.4) via (4.11), proving that Φ is essentially 
complete for problem (1.8). 

The verification of B - M Assumptions 2.1, 2.2, and 2.3 for problem 
(1.18) proceeds as for problem (1.8) since it shares R0{x) and has ©+ ς θ . 
Note that O+ is locally pointed as in B - M Example 4.5. That is, there 
exists a0e@(p) and b0<0 such that for sufficiently small ε>0, 

sup m^b°' ( 4 · 1 2 ) 

ιιβικβ Iml 

To see this, take a0 — I9 and note that by (1.19), 

Γ0,· 
s u p i i ä F = _ L 

0e<9 + \\V\\ 

Thus B — M characterize the complete class as consisting of all tests of the 
form 

φ(χ)={ί
0} ifß'l(x)+\ Re{nl~l H(dB)-c{%}0, (4.13) 
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a.e. [v], for some 

(μ, //, c)eC(G + )x &(Θ+ - {0}) x R - {(0, 0, 0)}. (4.14) 

But since μΊ(χ) = - (β/ρ) Σμί tr x as in (2.21 ), and μ e C(0 + ) implies that 
Σμ,^Ο, we see that (4.13) and (4.14) are equivalent to (2.30) and (2.31). 
Hence Φ* is essentially complete for problem (1.18). 

Now turn to problem (1.29). The B - M Assumptions 2.1, 2.2, and 2.3 
are fairly easy to verify by using the approach for the previous two 
problems, and by noting that 

inf inf {\+txγΓωΓ')=ρ inf inf ( t r ^ n r ' ) 
coeQ reO(p) λεΛΓεΟ(ρ) 

= p inf Σγ;λρ_ί+ί=ργρ>0, (4.15) 
λε Λ 

so that RZ(y) in (3.2) is finite. Since l*(x) = 0 (see (3.8), we can use B — M 
Remark 2.8 and Example 4.2 to show tha the class of tests of the form 

φ(χ)={ι
0} as tr M0K + (x)+f **(*f" 1 H(dœ)-c{ % } 0, (4.16) 

J ß - { o } | |ω|| 

a.e. [v*], is essentialy complete, where 

(M, //, c) e ^(p) x &{Ω - {0}) x R - {(0, 0, 0)}. (4.17) 

Now (3.9) shows that their class is in fact Φ* of (3.10), (3.11), and (3.12). 
To complete the proofs of the theorems, we must show that the classes 

Φ, Φ + , and Φ* are minimal complete. These results follow from B —M 
Lemma 3.2, which requires verification of B —M Assumption 3.1. We will 
verify this assumption only for problem (1.8). The verification for the other 
problems can be dealt with similarly. 

Consider problem (1.8). B —M Assumption 3.1 has four parts. Parts (i) 
and (iii) are trivial since %> = {φ, &}. Part (iv) requires that 

v({x\d(x;^Mo,H,c) = 0}) = 0 

for (μ, Μ0, //, c) as in (2.10), which follows from the discussion after (2.29). 
Part (ii) requires that for each </>ΕΦ9 there exists a sequence 

{7 ,1^^(0 ) such that 

</f.(x)= f Re(x)Ji(de)-Ji({0})-^^d(x) for each x, (4.18) 
J(9 - {0} 
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(4.21) 

where d(x) is defined in (2.8), and 

lim \ (4tx)-4(x))dj(x)v(dx) = 0, (4.19) 
I -*■ OO J 

where 
ΦΜ={1} as <*,(*){ >}0. (4.20) 

Now take φεΦ and its attendant (μ, M0, H, c), and define 

Θ0={θεΘ\\\θ\\^±}, 0 , = 0 - 0 o , 

ff0(<#) = 7/(dB) /β0, #,(«») = tf(d9) /βι. 

Also, for 2> 1, let Hue&(9-{0}) be defined by 

Hu{jhA)={jh)2 Hi{A) ΐοτΑςίΘ>- <4-22> 
Then using the methods in B —M Lemma 2.5, we can find { / , } such that, 
from (4.18), 

di(x) = Ai(x) + ai(x), (4.23) 

where 

A Ax) = μ'Αχ) + \ tr M, V(x) + f ^Μ Η0ί(άθ) - c„ (4.24) 
Je0-{0) \\V\\ 

with 

ΘΘ' 
Je0-{o 

μ^μ, Λ/,.->Λ/0+ί Η0(άθ), c^c, (4.25) 
J6>o-{o} \\V\\ 

f g(e)Hm{de)^\ g(0)Ho(d0) (4.26) 
J«>o-{0} J e 0 - { 0 } 

for any continuous bounded function g with g(0) = 0, and 

It is clear from (4.24) and (4.25) that 

Afr) -* A(x) = μ'1(χ) + \ tr (M0 + f £L H0(d9)) V(x) 
\ Je0-{0} \\tf\\ ) 

+ \^Ho(d0)-c. (4.28) 

(4.27) 
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Now by (2.15) and (2.18) for Ηβ(χ)/\\θ\\2, and by (2.19) and (2.20) for l(x) 
and V(x), we have that for some N<oo, 

\A{x)\^N and \AAx)\^N for all i, x. (4.29) 

Also, for a, in (4.27), since RM(x) = Re(bx), by (4.22), 

a , w = l — m — H u m 

=l, w Hxm 

r /U(;/(/+i))*)-i-e7((//(/+i))*) „ , j m 
=Je, w ΗΜΘ) 

- ( T T Î * )
 ( 4 · 3 0 ) 

where 

f * , ( * ) - l - 8 ' / ( * ) 
{ X ) - L — M O P — H i { d 0 ) -

Since the integrand for a((i/(i+ \))x) is bounded in / for each fixed x and 
0, and continuous in 0, we have that 

^^(ά")^4 (4,32) 

Thus (4.23) through (4.27), (4.30), and (4.31) show that (4.18) holds, since 
d{x) = A{x) + a{x). 

Finally, note that a(0) = 0, and since a{x) is convex in x (see (2.30)), for 
/>0, 

a(x)^t=>al-—r*)<' 

=>aHx)^t. (4.33) 

Turn to (4.19). By (4.20), (4.23), and (4.29), when ai(x)>N, ^ (x)= 1, and 
by (4.28), (4.31), and (4.29), when a(x)>N, </>(x)=l. Thus if di(x)>2N 

(4.31) 
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then af(x)>N9 hence by (4.33), a(x)>N9 and φ((χ) = φ(χ)=1 (a.e. [v]). 
Thus 

lim \{φί{χ)-φ{χ))άί{χ)ν{άχ) 

= lim (Φΐ(χ) — Φ(Χ)) dj(x) v(dx) 
/ — oo J{di(x)^2N} 

= 0, (4.34) 

where the limit and integral can be interchanged by the bounded con-
vergence theorem (the integrand is essentially nonnegative by definition of 
φι and d, in (4.20)), and the limit of the integrand is zero a.e. [v] by (2.9), 
(4.18), and (4.20). Thus (4.34) verifies (4.19), and the proof of Theorem 2.1 
is complete. 
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We study the asymptotic behaviour of {/-statistics type processes which can be 
used for detecting a changepoint of a random sequence. Invariance principles are 
p r o v e d for t h e s e p r o c e s s e s . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

Let Xx,..., Xn be independent random variables. Suppose we want to test 
the null hypothesis 

H0. Xi9 1 < / ^ H , have the same distribution 

versus the alternative hypothesis that there is a changepoint in the 
sequence Xl9..., Xn, namely that we have 

Hx. There is a >le(0, 1) such that P{Xl^t} = P{X2^t}= -- = 
Ρ{ΧίΗλ1<ή, Ρ{Χίηλ1 + ι^ή = ~.=Ρ{Χη*ζί}9 - ο ο < ί < ο ο , and 
P{XM^t0}*P{XlnX1 + 1^t0} for some t0. 

The changepoint problem has been considerably studied in the literature 
from the parametric as well as the nonparametric point of view. Non-

* Research partially supported by a NSERC Canada grant. 
f Research done while at Carleton University, supported by NSERC Canada grants of 

M. Csörgö, D. A. Dawson, and J. N. K. Rao, and by an EMR Canada grant of M. Csörgö. 

151 
Multivariate Statistics and Probability Reprinted from J. Mult. Anal. 27(1). 
ISBN 0-12-580205-6 Copyright © 1988 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



152 CSÖRGÖ AND HORVÀTH 

parametric results are summarized in Wolfe and Schechtman [15]. 
Recently Csörgö and Horvâth [2] proposed statistics based on processes 
of linear rank statistics with quantile scores. In this paper we study tests for 
the changepoint problem which are based on processes of (/-statistics. They 
are generalizations of Wilcoxon-Mann-Whitney type statistics. 

Let h(x, y) be a symmetric function and consider 

Zk= Σ Σ k{Xt9Xj)9 \^k<n. (1.1) 
1 ^i<k k +1^ >< n 

We study Zk under the null hypothesis in Section 2, and under the alter-
native hypothesis in Section 3. Typical choices of A are xy, (x — y)2/2 (sam-
ple variancie), \x — y\ (Gini's mean difference), sign(x + j>) (Wilcoxon's 
one-sample statistic) (cf. Serfling [13]). The case of h(x, y) = sign(x — y) 
has gained special attention in the literature. We cannot apply our results 
directly in this case, because sign(x — y) is not a symmetric function. 
However, sign(x — y)= -sign(j>-x) (sign(0) = 0), i.e., sign(x- y) is an 
antisymmetric kernel. We show in Section 4 that our method can be also 
used in the case of an antisymmetric kernel. 

2. ASYMPTOTICS UNDER H0 

In Sections 2 and 3 we assume that h is symmetric, i.e., h(x, y) = h(y,x). 
Given H0, Xl9..., Xn are i.i.d.r.v.'s. We assume 

Eh2(Xl9X2)<oo (2.1) 

and let Eh(Xl9X2) = S9 7i(t) = E{h{Xl9 ή-Θ}. Condition (2.1) implies 
that Éh2(Xx)< oo and we assume 

0<σ2 = ΕΡ(Χι). (2.2) 

Here we investigate 

Uk = Zk-k(n-k)09 l^k< «, 

which can be expressed as 
Uk=U^-{U^+U^}, (2.3) 

where 

t/<»= Σ A<*„AO)-(î)e, 

up= Σ h(xl,xJ)-("-k)e, 
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and 

t/<3> = Σ h(x„Xj)-(")e. 

The latter are nondegenerate [/-statistics under the conditions (2.1) and 
(2.2). Thus while Uk itself is not a [/-statistic, in (2.3) we concluded that it 
can be expressed as a linear combination of [/-statistics. Hence the basic 
idea of studying Uk can be based on the projection of a [/-statistic on the 
basic observations (cf. Chap. 5 of Serfling [3]). 

In order to state our results we define the Gaussian process Γ by 

r(t) = (\-t)W(t) + t{W(\)-W(t)}, 0 < ί < 1 , (2.4) 

where {W(t\ 0 < ί < oo} is a Wiener process. 

THEOREM 2.1. We assume that H0 holds, and (2.1), (2.2) are satisfied. 
Then we can define a sequence of Gaussian processes {Γη(ί)9 O^t^l} such 
that, as n-> oo, 

- 3 / 2 

sup 
0 < / < l 

t/, [(«+1)0" rn(t) = oP(l), 

where for each n^l 

{Γ„(ί),0<ί<1} = {/XO,<UriU}. 

Proof. By Theorem 1 of Hall [6] we have 

(2.5) 

(2.6) 

Hence 

max 
1 ^ Λ ^ Μ 

max 
1 ^ A : < « 

max 
1 s$/r^« i= 1 

n 

UP-(n-k) Σ *(*/) 
i=k+l 

/ '= 1 

= 0,(ιι), 

= 0P(n), 

= 0P(n). 

uk - |(n -k)i t(xt)+* ( Σ to - Σ to)} 

(2.7) 

(2.8) 

(2.9) 

= 0P(n). 

(2.10) 

Thus the result follows from Donsker's theorem (cf. Theorem 2.1.2 and 
Lemma 4.4.4 in Csörgö and Révész [3]). 
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One can say more about the weak convergence of Uk if the existence of 
higher moments is assumed. 

THEOREM 2.2. We assume that H0 holds, 

£!*(*! , Jr2)|v< oo for some v > 2 , (2.11) 

and (2.2) is satisfied. Then we can define a sequence of Gaussian processes 
{rn(t), 0 ^ / ^ 1} such that (2.5) holds, 

sup 
!/(« + l)^t^n/{n+ 1) 

„-3/2 
^[ («+ i)/] ~ Γη(ί) (t(l-t)y<2 = 0F(l), (2.12) 

and we have (2.6) for each n^\. 

Proof First we note that by (2.11) we have E 1^(^)1 v < oo. We 
introduce 

sil\x) = o-1 Σ to i<*<[«/2], 
5«2>(χ) = σ - ' Σ *(X,\ i^x^n-ln/21 

n — x < i ^ n 

and show that there exist two independent Wiener processes 
{ W* \x\ 0 ίζ x < oo} and {W{2)(x), 0 si x < oo} such that 

sup Χ-1'2\8^(Χ)-Ψ^(Χ)\ = ΟΡ(\), (2.13) 

sup x-1'2 |S<2>(*)- »?>(JC)| = 0,(1). (2.14) 
1 ^ . v ^ / 7 - [w/2] 

Using the Skorohod embedding scheme or the Komlos-Major-Tusnâdy 
approximation (cf. Theorem 2.2.4 and Theorem 2.6.3 in Csörgö and Révész 
[3]), we can define a sequence of Wiener processes {W(

n
l)(x), 0 < J C < oo} 

so that 

max k-l,2\S{
n
l\k)-Wy\k)\ = 0P{\). (2.15) 

1 ÎSÂTÎS [w/2] 

By Theorem 1.2.1 of Csörgö and Révész [3] we obtain 

sup x-y2\wy\x)-Wy\lx-])\ 
1 ^ ν ^ 0 / 2 ] 

< sup x-1'2 sup mi>(M+s)-Wl1KM)\ = 0P(l). (2.16) 
1 s$ x ^ 0 / 2 ] 0 < s ίζ 1 

Now (2.15) and (2.16) imply (2.13). The proof of (2.14) is similar. Due to 
the independence of S[l)(x) and S{*](x)9 the Wiener processes W{

n
l) and 
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W^] can be defined independently. Next we define the Wiener process 
{Wn(x),0^x^n}by 

WH(x) = Ku(x), 0 < J C < [ » / 2 ] , 

Kl)(n) + K2)(n)- m»(n-x), in/2] <x^n, 

and conclude from (2.13) and (2.14) that 

sup ΙΛ-Βϊΐυονγν,, 
l / ( n + l ) ^ / ^ / i / ( n + l) I \ n ) /= l 

Ά \ / = l 1=1 / 

-c{(\-t)Wn{{n+\)t) + t(Wn{n+\)-Wn({n+\)t))} 

= oP(n 

(1/(1-0) 1/2 

The latter in turn by (2.10) implies (2.12). 
By the construction of the Wiener processes W(

n
l) and W{2) we obtain 

sup 
0 < r < 1 

,-SlLt!W)",|" ,
i ,r1, 

W \ / = l / = 1 / 

-a{(l-t)Wn((n+\)t) + t(Wn(n+\)-Wn((n+l)t))} = oP(nl/v), 

resulting also in (2.5) via (2.10). 
Let Q* be the class of functions q: (0, 1) -► (0, oo) which are monotone 

nondecreasing near 0 and monotone nonincreasing near one, and 
inf<5 ̂  r ̂  i - * 0(0 > 0 for all δ e (0, 1/2). If q e Q*, we define the integral 

I(q9c)=\l(t(l-t))-lexp(-cq2(t)/(t(l-t)))dt9 c>0. 

This integral appears in the characterization of upper class functions of a 
Wiener process (cf., e.g., Csörgö et al. [1]). 

COROLLARY 2.1. We assume that H0 holds, and (2.2), (2.11) are 
satisfied: 
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(a) IfqeQ*,then 

sup 
0 < / < 1 

, - 3 / 2 

^[(n+ 1)0 ~ * „(/) q(t) = oP(l) (2.17) 

//and only if I(q9 c) < oo for ail c>0. 

(b) IfqeQ*, then 

„ - 3 / 2 

sup \UiiH + 1)n\/q(t)-±> sup \f(t)\/q(t) (2.18) 

if and only if I(q9 c) < oo for some c>0. 

Proof First we note that I(q, c)< oo for some c > 0 implies (cf. 
Theorem 3.3 in Csörgö et al. [1]) 

lim?(0//1 /2 = oo. 
/ - 0 

(2.19) 

We have 

sup 
< 5 < / < l -δ 

-3/2 

Ul(n+ 1)0 ~ Γ„(ί) q{t) = oP{\) (2.20) 

for ail £ e(0, \) by Theorem 2.2. Also, by (2.12) and (2.19), 

sup 

as <5 -+ 0. Next 

, - 3 / 2 

^ [ ( « + 1 ) 0 ~ " · * Λ ( 0 

/V2 
i( /) = Op(l) sup 

0 < / < < 5 ? ( 0 

(2.21) 

sup \I\t)\lq(t)< sup |IF(/)|/9(0 
0 < / < l / ( « + l ) 0 < f * S l / ( * + l ) 

+ sup (t/q(t)) sup \W(\)-W(t)\ 
0 < / ^ l / ( * + l ) 0 ^ / ^ l / ( / i + 1 ) 

= M i ) 

by (2.19) and Theorem 3. of Csörgö et al. [1] . One estimates near 1 in a 
similar way, and the "if part of (a) is proven. 

Assuming now (2.17), we must have 

sup \r(t)\/q(t) = oP(l) 
0 < r « l / ( n + l ) 

(2.22) 
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and 

sup \r(t)\lq(t) = oP{\). (2.23) 
n/{n+ l)^t< 1 

It is easy to see that (2.22) and (2.33) imply 

Er2(t)/q2(t)^0 as /-►() or ί->1. (2.24) 

Consequently we have (2.22) if and only if 

sup \W{t)\lq{t) = oP{\). (2.25) 
0 < / < l / ( w + l ) 

Similarly, we have (2.23) if and only if 

sup \W(\)-W(t)\lq(t) = oP(\\ (2.26) 
n/(n + 1 ) ^ / < 1 

which is equivalent to 

sup \W(t)\/q(l-t) = oP(\). (2.27) 
0 < f ^ l / ( n + l ) 

Now Theorem 3.4 of Csörgö et al [1] combined with (2.25) and (2.27) 
results in the second part of (a). 

As to the proof of (b) we first note that (2.19) implies 

sup 
l/(w + ! ) < / < n/(n + 1 ) 

„-3/2 

σ 

Hence it suffices to show that 

^[(« + DO ~~ r„(t) q(t) = oP(l). (2.28) 

sup \r(t)\lq(t)-±> sup \r(t)\/q(t), 
\/(n+l)^t^n/(n+l) 0 < / < l 

which follows immediately from Theorem 3.3 of Csörgö et al [1]. The 
proof of the necessary part of (b) is similar to that of (a). Only here we 
have to use Theorem 3.3 of Csörgö et al [1] instead of their Theorem 3.4. 

Remark 2.1. The proof of the necessary part of Corollary 2.1(a) shows 
that if we have (2.17) with any sequence of Gaussian processes having the 
same distribution for each n ^ 1 as that of Γ, then I(q, c) must be finite for 
all c>0. This means that the necessary part does not depend on our 
construction. 

The desirability of having weight functions q around like in Corollary 2.1 
is to make our statistical test more sensitive on the tails. A typical choice of 
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q in (2.18) is the function (/(l - /) log log(l//(l - t)))l/2. The variance of 
Γ(ί) is t(\ — /), hence another choice of a weight function is (t(\ — t))l/2. 
However I((t(l — 0)1/2, c) = co for every c>0, and hence we cannot apply 
Corollary 2.1. This case is studied in the next theorem. Let a(y log n) = 
( j + 21oglogA2 + 5 log log log«-^ log^(21og log«)~ l / 2 , — oo <y< oo. 

THEOREM 2.3. We assume that H0 holds, and (2.2), (2.11) are satisfied. 
Then 

lim ρ\σ~ι max — k
 l2^a(y9logn)\ = exp(-exp(-y)\ 

(2.29) 

and 

i7k'in(k(n-k+ l)n)1 

(2.30) 

lim Ρ\σ l max JJ^—; , Λ^ l/2^a(y, log n)[ = exp(-2 exp(-y )). 

We note that it will also follow from the proof of this theorem that the 
same two limit statements hold for (n~y2/a)Ui{n + l)n/(t(\-t))

l/2, 
0 < / < l . The proof will be based on the following lemma. Let 
b(y, log n) = (y + 2 log log n + ±log log log n - \\og{$n)){2 log log n)~1/2, 
— oo < y < oo. 

LEMMA. Let Yl,Y2,... be U.d.r.v.'s with EY{=0, EY\=\, and 
Ε\Υ{\

2 + δ <oo for some δ>0. Then 

lim p j m a x k~1/2 Y Yi^b(yJogn)\ = exp(-exp(-y)) (2.31) 
«-»oo [ 1 < A: ^ « / = 1 J 

and 

lim p j m a x k~i/2 W Yi\^b(y,logn)) = Qxp(-2exp(-y)). (2.32) 

ί̂/̂ ο, if mn^> co and mjn -► 0 (H -► oo ), then 

lim p { max k'l/2 £ ri-^é(^log(/i//ii#l))} = e x p ( - e x p ( - ^ ) ) (2.33) 
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and 

lim P< max k~l/2 

n -* co lmn ^ k ^ n 

k 

Σ Y, 
i= 1 

: b(y, log(«/m„)) I = exp( - 2 exp( -y)). 

(2.34) 

Proof. For the proof of (2.31) and (2.32) we refer to Darling and Erdös 
[4] and Shorack [14]. 

Of the two statements (2.33) and (2.34) we verify only (2.34). The proof 
of (2.33) is similar. First let 1 ^«?„^log«. Then by (2.32) 

(21oglog«)1/2 max k~l/2 

1 ^ k ^ mn 

£ y, I-loglog«—^-oo, 

and 

lim P \ max k 
n -» oo \jnn ^ k ^ n 

Observing now 

- 1 / 2 Σ Y, 
k=l 

^ b(y9 log n) \ = exp( - 2 exp( ->>)). 

1/2 

log log—) -(log log«) 1/2 (loglog«)1/2 = o(l) 

and 

2 log log — + - log log lg (2 log log « + - log log log « 
m„ 2 «i„ V 2 

= o(l) 

we get (2.34). Similarly to the proof of Theorem 2.2, there is a Wiener 
process W such that 

sup x 
mn ^ x ^ n 

-1/2 Σ Γ/-*Χ*) = 0/,(m^2 + ^-1/2) = M(log«)- ' / ( 2 + ' )) . 

Let {V(t\ -co <t<oo} be an Ornstein-Uhlenbeck process. Then we 
have 

sup x-^\w(x)= sup \V(t)\= sup \V(t)\, 
"tn*ix*Z" (1/2) log m ^ / ^ (1/2) l o g « 0 « : f =s$ (1/2) log(n/mn) 

and consequently by Darling and Erdös [4] we obtain (2.34). For the 
general mn sequence of the lemma we consider its subsequence with values 
in [0, log«] and that with values in (log«, oo). 



160 CSÖRGÖ AND HORVÂTH 

Proof of Theorem 2.3. Let &{," = (log«)3 and &<,2) = n/(log«)2, and 
consider 

max 
\Uk \Uk 

:= max ,ZTin (k(n-k+\)n)l/2~l ";Γ*Ι'> (k(n-k+l)«1/2 

\Uk\ 
v max k«Uk*k™(k{n-k+l)n)1/2 

\Uk\ 
v max k<?Uk<n/2(k(n-k+\)n)l/2 

\Uk\ 
v max n/2<k<n-kW(k(n-k+\)n)l/2 

\Uk\ 
max n-kVUk*n-k[»(k{n-k+l)n)1/2 

\Uk\ 
v max 

n-kHUk<n(k(n-k+\)n)l/2 

= Ail)v · · · νΛ<6), 
n n ' 

where a v b = max(<z, b). It is easy to see that 

Α^*ζ- max fc~1/2 

+ max & -1/2 Σ to 

First we note that by the definition of h~ we have 

(2.36) 

and so 

W>iK Σ Ρ »-1 

t = i I 
Σ Σ W , *,)-&(*,)} 

l «S / < A: k+l^j^n 

= 0 ( 1 ) η - 1 Σ Vk = o(l). 
k=\ 

>ki/2} 

(2.37) 
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By Lemma we have 

^ 2 > = 0P((logloglog«)1/2), 

and thus by (2.36) and (2.37) we obtain 

(2 log log n)l/1 ΑΡ-σ log log n - — oo. 

By (2.10) we get 

A(2) = max (Α'Ί,^ 
+ («.-* +1)»,.£,**'> 

It is easy to verify that 

iky' 1 I n 

iN*<*?>W (n-k+l)l/2\i=f+l 

fn-m\m 1 
\ n ) (m+1)1' max 

= 0(l/logw) max - ^ 

Σ to 

Σ to 

= 0(l/logn) max - ^ 
1 «msSn tl 

Σ to 
= 0P(l/log/i). 

Using the lemma we have 

max 
« - * 

r-1 |(n(n-fc+l))1/2 

= 0/,((loglog«),/2/(log«)2), 

and hence (2.39) and (2.40) yield 

fc-l/2 Σ to 

Λ<2) = max A: -1/2 

By the lemma again, 

(21oglogA:iI
2))1/2 max k~1/2 

Σ to 

Σ to 

+ 0/,(l/logM). 

a log log &<,2) -

(2.38) 

+ (Ml/log «). (2.39) 

(2.40) 

(2.41) 

- 0 0 , 
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and therefore, 

f l I * 
P{- max k'l/2 Y l(Xt) 

> (.ff*i,'»«-t<*i2) |,-fi 

< *(>>, log *:<,2>)} = exp( -2 exp(->>))· 

Observing now that 

|(2 log log «)1/2 - (2 log log £<»),/2| (log log £<'>)1/2 = o(l ) 

and 

12 log log n + ^log log log n - (2 log log fcj,1 > 

+ jlogloglog*i1>)| = 0(l), 

(2.41) and (2.42) imply 

lim p\-A™^b(y,logn)\ = exp(-2exp(-y)). 
n-> oo (<7 J 

Towards estimating A(
n

3\ we first note that 

1 
max *<2)^Ä:^/2 (n-k) 1/2 

max 
Λ7/2 ^ m «Ξ « - *<,2) W 

Hence from (2.10) and (2.34) we obtain 

Σ to 
i = * + 1 

1 
"Π72 Σ to) 

k= 1 

= 0,(1). 

Λ13 )^ max 
n — k 

kW^k<n/2{k{n-k+\)nY/2 

k 
max *i2)"iTii./2 ( Λ ( Λ - Λ + 1 ) ) 1 / 2 

= 6>/,((logloglog«)1/2). 

Σ HXi) 

/ = * + ! 
+ 0/>(log«/»1/2) 

This in turn implies 

(21oglogn) 1 / 2 yj< 3 »-ff - 1 loglog/ i -^ - o o . 

(2.42) 

(2.43) 

(2.44) 
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The estimation of the r.v.'s A{*\ A{
n

5\ and Α{*} is similar, resulting in the 
statements 

(21og logA2) 1 / 2 ^ i ' ) - a - 1 l og log« -^ - o o , * = 4,6, (2.45) 

1 
Ai,S)= max 1/2 Σ to 

; = *+ ! 
+ 0P(l/\ogn), (2.46) 

and 

lim p\-A^^b(y,logn)} = exp(-2exp(-y)). (2.47) 
«-►OO ( (7 J 

The events in (2.43) and (2.47) are asymptotically independent. Therefore 
the statement follows from (2.35), (2.38), (2.43), and (2.44>-(2.47). 

3. ASYMPTOTICS UNDER Hx 

First we introduce some notations. Let 

Θ = Eh(XinX2_!, A^-,), μ = ΕΙι(Χίηλ-} + ί9 Xin^ + 2) 

τ = Ε/ι(Χίηλ1, JT[nA] + 1), 

and we write log + x = log(x v 1 ). 

THEOREM 3.1. We assume that Hl holds and 

E \h(XlnX1-l, ΧίΛλΐ)\ < °°> E l * (*W+ 1. * W ] + 2)I < » , 

E\h(XinÀVXinÀ^l)\\og^(\h(XinÀl9XinÀ^i)\)<œ (3.1) 

are satisfied. Then 

Biim z [ ( „ + 1 ) ,y« - | Μ / _ 1 ) ( 1 _ , ) + τ / 1 ( ι _ 0 ) A s S ; < u ( ^ ) 

/>2 probability. 

Proof. Let 1 < [(« -f l )r] ^ [ΛΑ]. Then 

- { X *(*„*,) 
U < i < 7 ^ [(« + 1)0 

+ Σ h(X„ Xj) 
[ («+ 1)/] + 1 ^ i < 7 ' ^ [wA] 

+ Σ Σ hW.Xj)} 
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By Hoeffding [7] (cf. Theorem A in Section 5.4 of Serfling [13]) we get 

K4)/n2 I £ h^ *j) - ^ (' - λ)2 9/2. 

Now applying Sen [12] and condition (3.1) we obtain 

RW/n2-*U λ(\ - λ)τ, &η
5>/η2-?->(λ-ί){1-λ)τ. 

These observations clearly imply the first part of (3.2). The proof of its 
second part is similar. 

Remark 3.1. If we assume the existence of the second moments in 
Theorem 3.1, then we have an a.s. convergence in (3.2) by the moment 
inequalities of Grams and Serfling [5]. 

Theorem 3.1 can be used to study the consistency of tests based on the 
process {Ui(n + l)n, 0 ̂  t < 1}. For example, we conclude that rejecting H0 

vs //j when sup0 < / < 1 (η~3/2/σ) \Ui(n + l)tl\ is large, then the latter test is 
consistent except in the case of τ = θ = μ = 0. The same can be said about 
the weighted versions of this test. 

4. ANTISYMMETRIC KERNEL 

In this section we assume that h is an antisymmetric kernel, i.e., 

* ( * J ) = - * U 4 (4.1) 

In this case Eh(Xl9X2) = 0 and similarly to the symmetric case we let 
7i(t) = Eh(t, Xx). We assume 

Eh2{Xl9 Ar
2)<oo and 0<σ2 = ΕΡ(Χι). (4.2) 

Accordingly to Section 2 we now have Uk = Zk, where Zk is defined by 
(1.1). It is easy to see that (2.3) remains true in the case of an antisym-
metric kernel, with Θ taken to be zero, of course. 

First we give an analog of Theorem 2.1. 

THEOREM 4.1. We assume that H0 holds, and (4.1 ) and (4.2) are satisfied. 
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Then we can define a sequence of Brownian bridges {Bn(t\ Ο^ ί < 1} such 
that, as n -► oo, 

sup 
0 ^ / ^ 1 

-3/2 

^[(Λ+1)Ο""^π(0 = op{\) (4.3) 

W / o r eacA n ̂  0, ££„(/) = 0, ££„(0 £„(*) = min(i, s) - ts. 

Proof The proof is similar to that of Theorem 2.1. Instead of 
Theorem 1 of Hall [6 ] we use Theorem 2.1 of Janson and Wichura (1983), 
which gives 

max 
1 «S£s$« 

max 
1 ^A:^« 

c/(2»_ £ («+*-2/+ΐ)Α(*,) 
/ = * + ! 

= 0P(n), 

and 

U^-Σ (»-2ί + 1)ί(*,) 
/ = 1 

By (4.4), (4.5), and (4.6) we have 

|tf*-{n£*<*i)-*Z*(*/) 

= 0P(«). 

max 
1 < £ < w 

= 0P(n) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

and hence Donsker's theorem implies Theorem 4.1. 

Surprisingly, the limiting processes are different in Theorems 2.1 and 4.1. 
In the special case of h(x, y) = sign(x — y) (cumulative rank tests) Pettitt 
[9] (cf. also Pettitt [10]) indicate a proof of Theorem 4.1. 

The following Theorem is an analog of Theorem 2.2. 

THEOREM 4.2. We assume that H0 holds, (4.1) and (4.2) are satisfied, 
and 

E\h(Xl,X2)\
v<oo for some v>2 . (4.8) 

Then we can define a sequence of Brownian bridges {Bn(t\ Ο^ ί ^ 1} such 
that (4.3) holds and 

sup 
-3/2 

^ [ ( / i + l ) / ] " " ^ « ( 0 (t(l-t))V2 = 0P(n (4.9) 
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Proof. Using (4.4)-(4.6) with the Skorohod embedding scheme (or with 
the Komlos-Major-Tusnâdy approximation), the proof goes along the 
lines of the proof of Theorem 2.2. 

The next results are direct consequences of Theorem 4.2. One can give 
detailed proofs using the methods of the proofs of Corollary 2.1 and 
Theorem 2.3. Let {B(t\ 0 ^ t ^ 1} be a Brownian bridge. 

COROLLARY 4.1. We assume that H0 holds and (4.1 ), (4.2), and (4.8) are 
satisfied. 

(a) IfqeQ*, then 

sup 
0 < r < 1 

„-3/2 
Uu„-n)t-]- B„(t) q(t) = oP(\) 

if and only if I(q, c) < oo for all c> 0. 

(b) If q G Q*, then 

„-3/2 
sup \Ui(„ + lul\/q(t)^> sup \B{t)\/q{t) 

σ 0<t<1 0 < / < 1 

if and only if I(q, c)<co for some c>0. 

THEOREM 4.3. We assume that H0 holds and (4.1), (4.2), and (4.8) are 
satisfied. Then 

lim ρ\σ~χ max — k
 /2^a(y, logn)\ = exp(-Qxp(-y)) 

and 

lim Ρ\σ ι max * /2^a(y, logn)\ = txp(-2exp(-y)). 
«-oo ( i^k^n (k(n — k+ \)n)' J 

Now we assume that Xx,..., Xn have a continuous distribution function, 
and study the case of h(x, y) = sign(x — y). Under H0i E s i g n ^ — X2) = 0 
and σ2= 1/12. Then 

uk = zk= Σ Σ signer,-*» 
1 ^i<k k+ 1 «SX« 

is distribution free, and the results of the present section are applicable. By 
Theorem 4.1, (12)l/2 n~3/2 Ui(n + l)n converges weakly to a Brownian 
bridge in Z)[0, 1]. This result was obtained by Pettitt [9] using heuristic 
arguments. 
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Sen and Srivastava [11] also mention (without developing any proper-
ties) non-parametric tests as analogs to some parametric likelihood ratio 
procedures. In particular, they suggest rejecting H0 for large values of 

Z)„ = (12)1/2 max \Uk\/(k(n-k+ l)n)l/2. 
1 ί ί / r ^ « 

It follows from Theorem 4.3 that Dn -+p co even under H0. This is the 
reason for them finding Dn being superior to other statistics. We can, of 
course, use Dn for testing H0 with normalizing factors as given in 
Theorem 4.3. Naturally then further power studies are also needed in order 
to conclude any superiority properties. 
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On the Area of the Circles Covered 
by a Random Walk 

P. ERDÖS 

Mathematical Institute, Budapest, Hungary 

AND 

P. RÉVÉSZ 

Mathematical Institute, Budapest, Hungary and Technical University, Vienna, Austria 

The area of the largest circle around the origin completely covered by a simple 
symmetric plane random walk is investigated. © 1988 Academic Press, inc. 

1. INTRODUCTION 

Let Xl9X2>... be a sequence of independent, identically distributed 
random vectors taking values from R2 with distribution 

p{jr1 = (o,i)} = p{jr1 = (o,-i)} = p{jr1 = (i,o)} = p{jr1 = (-i,o)} = i 

and let 

So = 0 = (0,0) and S(H) = S„ = Â  + JT2 + · · · + * „ (n=l,2,...), 

i.e., {Sn} is the simple symmetric random walk on the plane. Further let 

ξ(χ,η)= #{k:0<k^n,Sk = x} 

(n = 1, 2,...; x = (/, j)\ i, j = 0, ± 1, ±2,...) be the local time of the random 
walk. We say that the circle 

Q{N)={x = {iJ):\\x\\ = {i1+f)V2^N} 
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is covered by the random walk in time n if 

ξ(χ, n)>0 for every x e Q(N). 

Let R(n) be the largest integer for which Q(R(n)) is covered in n. We are 
interested in the limit properties of the random variables R(n) as n-> oo. 
This question was proposed by Erdös and Taylor [5] and they claim "we 
can show using the methods we have discussed above that" for any ε > 0 

R(n)^exp((logn)l/2-e) a.s. 

for all but finitely many n "but we have failed to get a satisfactory upper 
estimate and have no plausible conjecture." 

This paper is devoted to the above question and some related problems. 

2. A LOWER ESTIMATE OF R(n) 

In this section we prove 

THEOREM 1. For any ε>0 we have 

( (log«)1/2 \ 

* (^Hiog2*)3H " 
for all but finitely many n where log*, is the k times iterated logarithm. 

Before the proof we present a few notations and lemmas. 
Let y(x, n) be the probability that in the first n steps the path does not 

pass through JC i.e. 

γ(χ9η) = Ρ{ξ(χ,η-\) = 0}. 

Let a(r) be the probability that the random walk {Sn} hits the circle of 
radius r before returning to the point 0 = (0, 0), i.e., 

a(r) = P{ in f{n : | | S J |> r}< in f{ / i : / i ^ l , 5 # l = 0}}. 

Further let jS(r, t) be the probability that starting from a point of the 
circle-ring r < ||χ|| ^ r + 1 the particle hits the point 0 = (0, 0) before hiting 
the circle of radius rt, i.e., 

ß(r9t) = P{mi{n:Sn + m = 0}<mf{n:\\Sn + J\>rt}\r^\\Sm\\^r+\l 
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Finally let 

S(t) = ô(t,r) = P{maxJSd<r} 

and 

μ(χ) = μ(χ, η) = Ρ{ξ(0, η)<χ log η}. 

LEMMA 1. Let \\x\\ = φ " V ' 2 νν*7Α 20 < φ < η1β. Then 

lim μ(χ, « )= 1 — exp( — πχ) 
η —* οο 

/ö

r

 0 <

 χ

 < (lo

g

 fl)3/4 Ö/W/ the limit is approached uniformly in this

 range; 
f l - exp i -Oi / - 1 ) ) i/ / - 0 , 

i ( i ) - l e x p ( - 0 ( / ) ) ,/ ' - o c . ( 1 3 ) 

Proo/ (2.1) (resp. (2.2)) are proved in Erdös and Taylor [5 ] cf. (2.18) 
(resp. Theorem 1). The proof of (2.3) is trivial. 

Remark 1. (2.2) implies 

P{É(0,w) = 0}«7u/logn (2.4) 

(cf. also Dvoretzky and Erdös, [2]). 

LEMMA 2. We have 

lim oc(r) log r = n/2. (2.5) 
r -*■ oo 

TVoo/ Clearly we have 

{ inf{«: | |S„ | |>r}>inf{n:«^l ,5„ = 0}} 

C K ( 0 , r 2 l o g r ) > 0 } u { max \\Sk\\^r}. 
0^k^r2logr 

Since 

Ρ{ξ(0, r2 log r) = 0} « π/2 log r by (2.4) 

and 

P{ max | | S * K r } = o(l/logr) by (2.3), 
0 < k ^ r2 log r 

(2.1) 

(2.2) 
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we have 

π + ο(1) 
21ogr 

Observe also 

a ( r X P { max \\Sk\\ >r] + P{£(0, r2(log r)-1) = 0}. 

Applying again (2.3) and (2.4) we obtain (2.5). 

LEMMA 3. For any ε > 0 and r big enough we have 

provided that \<t< o((log log r)&) for any δ > 0. 

Proof. For any Ä^>0 we have 

β(Γ,»^Ρ{ξ(0,Κτ2 + η,)-ξ(0,ηι)>1\πζ\\8„\\^+1} 

+ P{ max | | 5 t | | < r i | r < | | S m | | < r + l } = I + II. 
m^k^m + Kr2 

By (2.1) 

1 - 1 r(x ΚΓ2)~21°&Φ 
1 - 1 V(x>*r)~logKr2 

for any r^\\x\\ < r + 1, where î  = A:1/2r/ll*ll and 

IKP{ max ||SJ ^( , + 2)^ =<5 (—ξ-Λ 

By choosing # = (/ + 2)2(loglog r) 1 + £ ( ε>0) we obtain 

k
 1ο§3 ' / ï ( r , / ) < ( l + e ) 
logr 

for any ε > 0 if r is big enough and \ < t < o{(\og2 r)e) (for any ε>0) . 
Hence we have (2.6). 

LEMMA 4. For any ε > 0 and r big enough we have 

ß(r,t)>l/elogr 

provided thai t ^ (log log r)1/2 + δ for some <5 > 0. 

(2.6) 

(2.7) 
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Proof. For any K> 0 we have 

0(r,/)^PK(O,J&2 + m ) - i ( a m ) > l | r < | | S J | < r + l } 

- P { max | |S A | |>r i | r^ | |5 m Kr+l} = I - ( l - I I ) , 

where 

I«log/s:/log/(:r2 

and 

1 ■II<P{ max \\Sk\\ >r{t- 1)} Xcxp(-o(^—ILY) 

provided that #>400 is an absolute constant and t = t(r)-+ oo as r-> oo. 
Choosing t^(log2 r)l/2 + s with some δ >0 we obtain (2.7). 

In order to formulate our next lemmas we introduce some further 
notations. Let 

Po = 0> Pi = min{fc:/r>0, 5^ = 0},... 

Pj = min{k:k>pj_l9 Sk = 0} (j = 2, 3,...), 

1 if max ||S*||^r, 
X.(r)= [ n-KKPi 

0 otherwise, 

Yn(r)=t Xfir\ 
i = l 

ΖΜ)=Υξ(ο,η)(Λ 
Clearly Yn(r) is the number of those excursions (among the first n) which 
are going farther than r while Zn(r) is the same number among the excur-
sions completed before n\ 

T^T^^mini/irHSJI^r}, 

τ2 = τ2(Γ, 0 = min{/i:/i^tl9 \\Sn\\ >rt}9 

τ3 = τ3(Γ, 0 = min{«:OT 2 , ||Sn|| ^r} , 

*2* = T2*(r, /) = min{«: n ^ r2k_ {, ||S„ || ̂  r/}, 

*2*+1 = *2* + i(r, 0 = min{«: n ^ τ2*, ||S„ || ̂  r}, 

6>w = 6>(«; r, 0 = max{/:: t2it + ! <«}. 

We say that 0„ is the number of the r^rt excursions completed before n. 



174 ERDÖS AND RÉVÉSZ 

LEMMA 5. With probability one for any ε > 0 we have 

n ° g " ^ ( 0 , f t K ( l + e ^ ( l o g K ) l o g 3 f l 
( log2«)1 + £ 

for all but finitely many n. 

Proof See Erdös and Taylor [5, Corollary on p. 145 and 
Theorem 4.C]. 

LEMMA 6. Let r = rn be a sequence of positive numbers with 

rn ? oo, -^—>{\ο%η)2 + δ 

logr 

for some b > 0. Then for any ε > 0 

(Ι-ε)πη^, ,_^(1+ε)πη 
2 log r 2 log r 

with probability one for all but finitely many n. 

Proof It is a trivial consequence of Lemma 2. 

Lemmas 5 and 6 imply 

LEMMA 7. Let r = rn be a sequence of positive numbers with 

r„S<x>, ^ > ( i o g 2 M ) 3 ^ 
logr 

for some <5 > 0. Then for any ε > 0 

log« 1 7r2(log/i)log3n 
- < Z n ( r ) < ( l + e ) -(log2A2)1+elogr w W ^ v ' 2 logr 

with probability one for all but finitely many n. 

LEMMA 8. Let r — rnbe a sequence of positive numbers with 

r-'œ' W>(l°ë2n)3+i 

for some δ>0. Then for any ε > 0 and for all but finitely many n we have 

Θ(Λ;Γ, /)<8(log/2)log3/î a.s. (2.8) 
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provided that 

and 

provided that 

t^(log2r)l/2 + â for some <5>0 

(log2n)1+elog3r 

t = o((log2rf) for all δ>0. 

Proof (2.8) follows from Lemmas 4 and 7, (2.9) follows from Lem-
mas 3 and 7. 

Proof of Theorem 1. Let x be an arbitrary point of the circle of radius 
rt, ie., ||jc||<r/. Then by (2.1), 

Ρ{ξ(χ,τ2ί_ι^ΚτΨ)-ξ(χ,τ2ί_ί) 

l o g * 
log Kr2t 

> 115(τ2/_,(/·, /)} ^ , _ * 2 a s > (2-10) 

provided that 400 ^ * < r4/4. By the law of iterated logarithm one gets that 

*(i+i)[(2*iog2roI>2;i(r> Ο — τίκικΐο&ηγΡιίΓ* t)^ Kr2t2. (2.11) 

Consider the paths 

{^»T2/[(2A:iog2r01/2]-l(r' 0 ^ j < τ2ι[<2* loftr/)1^] _ i(r, ί) + J&2f2 } (2 .12) 

- 1 9 1 Γ log* 1 1 1 
1 ' ' " · ' L(log2«)1 + e log3r(2*log2r01 / 2J 

and observe that by (2.9) all of these paths are included in the path 
{Sj9 1 ^j^n}. (2.11) implies that the paths (2.12) are disjoint and (2.10) 
implies that for any x belonging to the circle of radius rt and for any i the 
probability that the path of (2.12) does not pass through x is less than or 
equal to 

j . l o g * 
log Kr2t29 

assuming (2.9) and (2.11). 
Consequently assuming again (2.9) and (2.11), the conditional 

(2.9) 
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probability that the path {Sj9 1 ^j^n) does not pass through x is less 
than or equal to 

, log«(log2n)-1-£(log3r)-1(2A:iog2rO-1/2 

V \ogKr2t2) 

log K log n 
''CXP I~(log2 «)'+ e log3 r(2tflog2 rtf'2 log tfr2?2 

provided that 

400<A:<rV 

>(log2n)3 + Ä for some <5>0, 
1 θ 8 " . , , „ _*3 + i 
logr 

f = 0((log2r)*) for all <5>0. 

Choosing K=400, / = log3r, r = exp((log«)1/2(log2n)-(3/4 + 2£)), we obtain 
that the conditional probability that the path does not pass through x is 
less than or equal to 

/ (logn)1/2 \ 

Consequently the probability that the path does not pass through all points 
of the circle of radius rt is less than or equal to 

Λ (log*)172 \ / (log«)172 \ 

which easily proves Theorem 1
. 

3. CIRCLES COVERED WITH POSITIVE DENSITY 

Theorem 1 gave a lower estimate of R(n). Unfortunately we do not have 
any non-trivial upper estimation. The result of Theorem 2 suggests that 
R(n) can be much bigger. In order to formulate our result, introduce the 
following notations 

fl if ζ(χ9η)>09 „ n 
I(x>n) = \0 if « , Ä ) 4 ( 3 1 ) 

Κ(Ν9η) = (Ν2π)-1 £ I(x9n); 
xeQ(N) 

i.e., K(N, n) is the density of the points of Q(N) covered by the random 
walk {Sk90^k^n}. We prove 



CIRCLES COVERED BY RANDOM WALK 177 

THEOREM 2. For any 0 < a < 1/2 

l i m s u p / : ( « a , n ) > ( l - 2 a ) [ l - ( ( l - a ) - 1 - l ) 1 / 2 ] a.s. 
n -*■ oo 

The proof is based on the following two lemmas. 

LEMMA 9. Let 20 < ||JC|| <nlß. Then 

2 log M Λ , ^ l o g 3 N i V t 

Proof. See Erdös and Taylor [5, (2.16)]. 

LEMMA 10. We have 

mX,n)I(y,n))^l-yiX-y'")){]-Mx'"l+y{y'n))/2\ 
l-y(x-y,n)/2 

Proof. For any lattice point z let 

vz = min{k:k>0, Sk = z}. 

Then we have 

E{I(x,n)I(y9n)) 

= P(I(x,n)=l9I{y,n)=l) 

= £ P{ / ( * , / i )= l , / (^n)= l |v J C = fc<vJ,}P{vJC = * < v ^ 

+ £ Ρ{ / ( * , » )=1 , / (^« )=1 |ν > = * < ν , } Ρ { ν , = Λ<νχ} 

= £ Ρ { / ( * » ) = 1 | ν , = *<ν„}Ρ{ν, = *<ν , } 

+ £ P{I(x,n)=l\vy = k<vx}P{vy = k<vx} 
k = 0 

= £ Ρ{/(>>-χ,Η-*)=1}Ρ{νχ = Α:<ν,} 
* = 0 

+ £ P{I(x-y,n-k) = l}P{vy = k<vx} 
k = 0 

^P{I(x-y,n)=l}p\t {{vx = k<vy} + {vy = k<vx}}\ 

= P{I(x-y,n)=l}P{I(x,n) = loTl(y,n) = l} 

= P{I(x-y,n) = l}lP(I(x,n)=l) 

+ P(I(y,n)=l)-P(I(x,n)=l,I(y,n)=l)l 

(3.2) 
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Hence 

P(I{x,n)=l9I(y9n)=l) 

P(I(x- y,n)=l)lP(I(x9n)=l) + P(I(y,n)=l] 
P(I(x-y9n)=l)+l 

and we have the lemma. 

Proof of Theorem 2. Apply Lemmas 1 (resp. Lemmas 9 and 10) with 

rf 

log« 

We get 

^IMUI>>ll;ll*-;>K"a (<><«<$). 

/1 9 /v^ 

E(I(x9 n) I(y9 " ) K ( 1 , g ) (" b i ê enough) 

and 

E/ ( j c , / i ) « l - 2a . 

A simple calculation gives 

Ε(Α: (Α2 α ,Αΐ ) -Εϋ: (^«) ) 2 ^ ( 1 ~ 2 α ) —(1-2α) 2 

1 —α 

and 

EK(n\n)x\-2(x. 
Hence by the Chebishev inequality we have 

Ρ { ^ ( Α 2 α , « ) > ( 1 - ε ) ( 1 - 2 α ) [ 1 - ( ( 1 - α ) - 1 - 1 ) 1 / 2 ] } ^ ^ £ > 0 

for any ε > 0 if n is big enough. Hence we have Theorem 2. 

4. SOME FURTHER PROBLEMS 

In Section 2 we have studied the area of the largest circle around the 
origin covered by the random walk {Sk9 k^n}. The analog problem is 
clearly meaningless since in Rd (d^3) the largest covered sphere is finite 
with probability one. However, one can ask in any dimension about the 
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radius of the largest sphere (not surely around the origin) covered by the 
random walk in time n. Formally speaking, let 

Q(N,u)={x:\\x-u\\^N) 

and R*(n) be the largest integer for which there exists a r.v. u = u(n) such 
that 

ξ(χ9η)^1 if xeQ(R*(n), u). 

It is trivial to see that in Rd 

R*(n) ^ Const (log «)1M. 

However, we do not have any non-trivial estimate. 
In case d=2 clearly R*(n)^R(n). We conjecture that R*(n) will not be 

larger than R{n)9 but cannot settle this question. In fact this question is 
somewhat related to the problem of favourite values (cf. Bass and Griffin 
[1] , Erdös and Révész [3] , (1984), Erdös and Révész [4]). 

The analogous question in the case of spheres covered with positive 
density can be also raised. 

We also propose to investigate the area Tn of the smallest convex hull of 
the path {Sk,k^n}. Here we mention only a trivial result, 

Tn^2nnlog2n a.s. (4.1) 

for all but finitely many n, 

Tn^snlog2n a.s. i.o. (4.2) 

with some suitable ε > 0. 

Proof. (4.1 ) is a trivial consequence of the law of iterated logarithm. Let 
Sn = (t/„, Vn\ Then for any ε > 0 

H\Vn\^*sTn* U„>e(n\og2ny/2} = 0((logn)-E2/2). 

Consider the first crossing of the path after n with the positive y axis 
assuming that | Vn | ^ ε J~n, Un ^ ε(η log2 n )1/2. Then with a positive 
probability this crossing point will be farther from the origin than 
(ε/2)(η log2 n)l/2. The time needed to get this point will not be more than n 
with probability 0{(\ogn)~e). Hence the path {Sk, k^2n} meets the 
points (e(«log2«)1/2,0) and (0, (ε/2)(η log2 n)l/2) with probability 
0((\ogn)~2e). Having this result, (4.2) can be obtained with the usual 
methods. 
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Note added in proof. The following result can be obtained trivially: 

THEOREM 2*. For any 0 < a < 1/2 

lim sup K(na, n)^l—2a. a.s. 
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Normed Likelihood as Saddlepoint Approximation 
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University of Waterloo, Waterloo, Canada 

Barndorff-Nielsen's formula (normed likelihood with constant-information 
metric) has been proffered as an approximate conditional distribution for the 
maximum-likelihood estimate, based on likelihood functions. Asymptotic 
justifications are available and the formula coincides with the saddlepoint 
approximation in full exponential models. It is shown that the formula has wider 
application than is presently indicated, that in local analysis it corresponds to 
Laplace's method of integration, and that it corresponds more generally to a 
s a d d l e p o i n t a p p r o x i m a t i o n . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

The density function for the average x of a sample xl9..., xn from a k-
variate distribution with known cumulant generating function K(u) can be 
approximated in terms of simple characteristics of that cumulant 
generating function. The saddlepoint approximation derived by asymptotic 
analysis of the cumulant-to-density inversion formula is given by 

/(^) = ( 2 π ) - ^ [ « / | ^ ) | ] 1 / 2
6 χ ρ [ « ( ^ ) - ^ ) ] ( 1 + Γ ^ , (1.1) 

where φ = φ(χ\ called the saddlepoint, satisfies the saddlepoint equation 

Κ(φ) = χ; (1.2) 

the cumulant generating function K(u) = log M(w) is the logarithm of the 
moment generating function, K(u) = dK/du is the k x 1 gradient vector and 
K(u) = d2K/dudu' is the k x k second derivative matrix; the relative error rn 

is 0(n~l). 

181 
Multivariate Statistics and Probability Reprinted from / Mult. Anal. 27(1). 
ISBN 0-12-580205-6 Copyright © 1988 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



182 D. A. S. FRASER 

The univariate version of the saddlepoint was derived by Daniels [5] 
and the bivariate and multivariate versions by Good [8] and Barndorff-
Nielsen and Cox [4]. A comprehensive review of saddlepoint approxi-
mations and related statistical inference is given by Reid [10]. 

The saddlepoint approximation in practice is typically more accurate 
than the normal approximation or the several-term Edgeworth expansion 
and often is so accurate as to be indistinguishable from the exact density in 
a computer plot. It thus seems reasonable to view it as a means to go from 
an available cumulant generating function to a presumably accurate 
approximation to the corresponding density. Accordingly we rewrite (1.1) 
for a variable y with cumulant generating function H(u) (based on the 
identification y = x, H(u) = nK(u/n)): 

f(y)*(2n)-k/2\H(t)\-l/2 txp{H(f)-f'y}9 (1.3) 

where H((/>) = y; in effect, this is an n = 1 version of (1.1). From this present 
viewpoint we thus treat (1.3) as an empirically based approximation with a 
good performance record. 

We do note as a caution, however, that the asymptotic derivation of the 
saddlepoint suggests good approximation in normal-like case and perhaps 
poor approximation far from the normal; thus we would not expect (1.3) to 
be accurate for a very non-normal distribution such as the uniform (a, b). 

The exponential family provides an important extension from the 
normal; in terms of a natural parameter 0 it has density 

g(x;e) = exp{efy(x)-il,(e) + h(x)}9 (1.4) 

where 0 and y(x) are A>vectors. The minimal sufficient statistic y = y(x) has 
cumulant generating function 

Η(η) = ψ{θ + η)-ψ{θ). (1.5) 

The saddlepoint equation for approximating the distribution of y is 

φ(θ + φ) = ΐ9 (1.6) 

so that 0 = 0 + φ is the maximum likelihood estimate of 0; the saddlepoint 
approximation is thus 

/(γ)*(2π)-ν2\^\-1/2™ρ{ψ(θ)-ψ(θ)-(θ-θ)'γ}. (1.7) 

As {//(Θ) = -d2 log L(0)/d050' =7(0) is the observed Fisher information 
function, we obtain 

f(y)*{2n)-v217(0)| "1/2 L(0)/L(0), (1.8) 

where L(6) = L(6;y)=f(y; 0), the marginal density of the minimal suf-
ficient statistic y\ the approximation uses only a likelihood ratio so that 
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L(e)/L{ô)=f(y;e)/f(y'J) = g(x'9e)/g(x;6) is available from the original 
density function. 

The transformation from y to Θ has Jacobian matrix j(Ö); the density 
approximation for Θ obtained from (1.8) is thus 

Λ(0;0)*(2π)-*/ 2 |y(Ö)|1/2L(ö)/L(ö). (1.9) 

In the asymptotic context the relative error in (1.9) is 0(n~l). If the 
approximation is renormalized 

h(ê;9)*c\j(Ô)\l/2L(e)/L(Ô) (1.10) 

so the right side is a density, the relative error becomes 0(n~3/2). 
The expressions (1.9) and (1.10) involving normed likelihood with 

respect to the constant-information metric are called Barndorff-Nielsen's 
formula and were introduced (Barndorff-Nielsen [1]) by an asymptotic 
argument from which the preceding was derived; the renormalized version 
(1.10) was also shown to be exact for location and transformation models 
given the usual conditioning on the Fisher configuration statistic, although 
for such models the cumulant generating function may not exist. 

In Section 2 Barndorff-Nielsen's approximation formula is related to 
general formulas for exact conditional distributions, and the implicit choice 
of a Jacobian-type factor in the Barndorff-Nielsen approximation is dis-
cussed. 

In Section 3 the local form of a density for the maximum-likelihood 
estimator is examined, and the normed likelihood choice implicit in 
Barndorff-Nielsen's formula is shown to be in a logical correspondence 
with the use of Laplace's formula for approximate integration. 

In Section 4 a family of saddlepoint approximations for a density 
function at some point y0 are discussed. Then in Section 5 a score-based 
saddlepoint approximation for the density of the maximum likelihood 
estimator is shown to give Barndorff-Nielsen's formula. 

Section 6 contains some concluding remarks; in particular, it is noted 
that the inversion process from likelihood functions to corresponding 
density functions is unique, when the statistical model is complete. 

2. BARNDORFF-NIELSEN'S FORMULA 

Barndorff-Nielsen's [1] formula (1.10) for the distribution of the 
maximum likelihood estimator Θ can be presented as 

h(Ô\a; e)dÔ*cL{e: θ:α).\Μα)\ι/2αθ, (2.1) 
m 0, a) 
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where a is some exact or approximate ancillary statistic; in this form it 
covers the location and transformation model cases which have a standard 
ancillary statistic a. The choice c = (2n)~k/2 is indicated by the analysis of 
the full exponential models as discussed in the Introduction. 

The standard context for the formula presupposes a continuous 
statistical model in which the likelihood function is uniquely determined for 
each value of the maximum likelihood variable β under a given value of a. 
However, in the standard development there is no special guidance for the 
choice or determination of the conditioning variable a. 

The accuracy of (2.1) has been examined asymptotically on the sample 
space in Barndorff-Nielsen [2, 3] and in terms of cumulants in McCullagh 
[9] . 

For the case of a real parameter Θ and density f(y; Θ) on an «-dimen-
sional space, an exact formula for the distribution of Ö given a general 
(n— 1 )-dimensional statistic a (which determines a curve) is given in Fraser 
and Reid [6] , 

Η(θ\α9 Θ) dÔ = c(a9e) L(0; 0, a) C(ô9 a) · \j(ô, a)\1/2 do, (2.2) 

where 
\dS(y;9)\ 

C(0, a) = exp | Γ divv(y) ds' \ 
My) 

|y(Ml1/2, (2.3) 

and c(a, Θ) is a normalizing constant, S(y; Θ) is the score function 
dlog(y;e)/dO,v(y) is the unit vector tangent to the curve determined by 
the fixed a at the point y, div v(y) is the divergence Σϊ dvi(y)/dyi of the vec-
tor field {v(y)}9 dS(y; 9)/dv(y) is the derivative of S{y; Θ) in the direction 
v{y)9 and s designates arc length on the curve for fixed a at the point y. 
Some current work leads to a generalization of (2.2) for vector Θ that uses 

C(Ô,a) = expttSOlVV(y)ds'\\V'(y)V(y)\-i/2 dS(y; Θ) 
dV(y) L/(Ml1/2, 

(2.4) 

where V(y) records k tangent vectors to the n — k dimensional surface 
a = constant, DIV V(y) is a particular generalization of the divergence, the 
integral is along a curve from some initial point to the point y on the 
surface a = constant, and the determinant involves partial derivatives with 
respect to the vectors in V(y). 

Now consider the general formula (2.2) in relation to Barndorff-Nielsen's 
approximate formula (2.1). If a is ancillary so c(a9 9) = c(a) then (2.1) 
involves an implicit choice for the Jacobian-type factor 

C{ê,a)=l/L{ê;ô;a). (2.5) 
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This norming of the likelihood L(0; Ô, a) with respect to its maximum can 
be interpreted in terms of the approximate density (2.1): as 0 varies the 
maximum of the density function remains constant, where density is 
examined in the constant information metric. This simple choice for an 
otherwise difficult Jacobian-type factor has a certain natural appeal, and a 
clarification of this can be obtained from a local analysis discussed in the 
next section. 

From (2.2) with (2.3) or (2.4) we see that Barndorff-Nielsen's formula 
provides a valid approximation to the distribution of the maximum 
likelihood estimate subject only to whatever the support for the 
approximation (2.5) is. In the next section we present a Laplace integral-
approximation justification for (2.5). Higher order calculations can be 
made which lead to correction terms for the formula (2.1). 

In the spirit of the preceding we can comment on the generality of the 
applicability of the formula (2.1). The formula uses the likelihood function 
at each value of the variable Ô. Such a likelihood function can be available, 
if there is a density function for some initial variable, and a reduction is 
made to a sufficient statistic, and if then there is an ancillary statistic that 
complements the maximum likelihood estimate. 

For the case of a real parameter 0, differential conditions are discussed in 
Fraser and Reid [7] for an optimum determination of a conditioning 
variable a. 

3. MAXIMUM LIKELIHOOD ESTIMATE: LOCAL DISTRIBUTION FORM 

Consider a A>dimensional parameter 0 for a statistical model and sup-
pose that the maximum likelihood estimate Ô has a continuous distribution 
and uniquely determines the likelihood function, which we indicate by 
writing L(0; y) = L(0; Ô). In this section we consider how the distribution of 
Ô can be approximated when only a likelihood function L(0; Ô) is available 
for each value of 0. For this we use the general definition of likelihood, 

Wy) = Wy) = c.f{y;e)9 (3.1) 

which for any given y involves an arbitrary scale factor c; thus only ratios 
L(02 ; y)IL(6x ; y) are numerically available. 

As discussed in the preceding section this situation can arise if there is a 
sufficient statistic reduction, or if the maximum likelihood estimate is being 
examined conditionally given an ancillary, or both; accordingly we omit 
reference to the ancillary a in the formulas. 

From formula (2.2) we have that the probability element for 0 has the 
form 

A(0; 0) de=cL(0; 0) C(0) · \j(6)\1/2 do, (3.2) 
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where L(0; 0) here involves some choice of representative among the 0 
functions given by (3.1) and the notation is justified by our assumption 
that the likelihood function is uniquely determined by 0. Our concern here 
is with finding a determination for the factor C(0). 

First we make a change of variable in the parameter space so that the 
observed information determinant is constant. For a real parameter 0 let a 
new parameter η be given by 

ij = f ΙΛ0ΙΙ/2Λ, (3.3) 

where the probability integral transformation is used as pattern. In terms of 
the new parameter η we have constant observed information: 

JW=j(o) = 1. (3.4) 
n 

For a vector parameter 0 we seek a new parameter η such that 

dn = \j(6)\l<2d0. (3.5) 

There are many possibilities for this but a simple procedure is to use a 
modified probability integral transformation radially from some initial 
point 0 = 0O, say 0; following Fraser and Reid [7] we define 

^sv) = vk\S \j{tv)\x/2tk-'dt\ 

for the value of η at a distance s from 0O = 0 in a direction y, where k is the 
parameter dimension. We then assume that such a reparameterization has 
been done and use 0 now for the new parameter; in terms of this new 0, we 
have |y(0)| = 1. 

Second, we investigate the significance of the choice C(Ö) = l/L(Ö; 0). 
For this we consider the second-order form of the density function A(0; 0) 
near some (0; 0) = (0O, 0O), by examining the difference 

logA(0; 0) - log{C(0) L(0; 0)} - log c 

gU(0;0)J 
= o + /;o(0-0o) + /oi(0-0o) 

+
 i(ö-0o),/

2O
(0-0o)

 +
 (ö-0

o
r/ i i (0-0o) 

+ è(0-0o)'/o2(0-0o)+ ·· '· ( 1 6 ) 



NORMED LIKELIHOOD AS SADDLEPOINT APPROXIMATION 187 

where /10, /01 are the kxl gradient vectors (with respect to 0,0) and 
2̂o> Λι> ̂ 02 a r e the kxk second-derivative matrices of log{L(0; 0)/L(0; 0)} 

evaluated at (0O, 0O). 
From the definition of 0 we have /01(#;#) = 0 and from the constant 

maximum of L(0; 6)/L(ê; Ô) along 0 = ô we have /1O(0; ô) + l0l(ô; Ô) = 0. If 
these two properties are used at (0O, 0O) we obtain /10 = /01 =0. If they are 
then used at (0, 0) we obtain 

(ö-0o),/11 + (ö-0o)7O2 = O 
(ö-öo)V2O + (0-0o)711=O 

which gives /02= — /n = /2o· We also have /02= — j(90). The expression 
(3.6) can then be rearranged: 

logh(Ô;e)-log{C(0)L(ê;Ô)} = ïogc-^Ô-eyj(0o)(Ô-e)-l· · · · . (3.7) 

For a similar second-order analysis in a different context, see Fraser and 
Reid [7]. 

From (3.7) we now see that the choice C(0) = 1/L(0; 0) gives the density 
A(0; 0) a location normal form in (0, 0) near (0O, 0O): 

A(0;0) = cexp{-^ -0 )7 (öo) (ö -0 )}{ l + O( |0-0o | 3 , |0-0ol3)} . (3.8) 

Thus, to the second order, the density has the JV(0;y_1(0o)) form with 
inverse variance matrix y(0o) which is constant in that order of expansion. 
We note that the particular choice of parameterization for 0 gives 
|y(0)| = 1; thus along the maximum density ridge 0 = 0 the "shape" of the 
inverse variance matrix may change but its determinant remains fixed. The 
preceding location normal properties are directly linked to the choice 
C(0)=1/L(0;0). 

The density (3.8) based on the choice C(0)= 1/L(#; Ô) has local normal 
form and the Laplace method of approximate integration based on the 
second-order approximation gives c = (2n)~k/2 |y(0o)l1/2 = (2n)~k/2 which is 
in agreement with the notation c that indicates no 0 dependence. In a 
related way we can see that a different choice for C(0) followed by the 
Laplace method of integration will give a "constant" c that in fact varies 
with 0O: verification by contradiction. 

We thus have the interpretation of Barndorff-Nielsen's formula as 
providing that choice for the Jacobian factor so that the resulting nominal 
density integrates correctly in accord with the Laplace method for 
approximate numerical integration. 
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4. SADDLEPOINT APPROXIMATIONS 

Consider the saddlepoint approximation (1.3) for a density f(y) at some 
point y0. In terms of the cumulant generating function H(u) for y we have 

/ (^ 0 )^(2π)-^ | / / (^) | - 1 / 2
6 χρ{ / / (^) -^ο} , (4.1) 

where Η{φ) = y0. We can rewrite this in terms of the cumulant generating 
function H°(u) = H(u) — u'y0 for the variable y — y0, 

f{y0)*(2n)-k'2 \Η°(Φ)\-'/2™ρ{Η«(φ)}9 (4.2) 

where Η°(φ) = 0. 
One saddlepoint derivation uses an Edgeworth approximation for an 

exponentially tilted model. If the corresponding exponential family is 
generated in terms of the variable y — y0 we have 

f(y; 0) = exp{0'(y-yo)-H°(e)}f(y)9 (4.3) 

where the norming constant follows from the cumulant generating property 

exp{H°(0)}=\exp{e'(y-yo)}f(y)dy; (4.4) 

the cumulant generating function of y — y0 in this model is 
(̂w) = //°(0 + w) — Η°(Θ). Let Ô(y) be the maximum likelihood estimate in 

the tilted model f(y; Θ); then ê(yQ) = Ô0 is the solution of the score equation 

H(0) = 0. 

At θ = θ0 we have the initial derivatives 

ιΑ(0) = 0, φ(0) = Η(Οο\ $(0) = H°(Ôo) (4.5) 

for the cumulant function of the density of y — y0 ; it follows that the nor-
mal or one-term Edgeworth approximation for the density at y — y0 = 0 is 

/(JO;0O)*(2TT)-*/ 2 |A°(io)|-^exp{0}f (4.6) 

which then gives 

f(y0)X(2nrk'2 |//°(0O)|-'/2εχρ{//°(0ο)}, (4.7) 

where #°(#0) = 0. 
Now suppose we want a saddlepoint approximation for the density g(x) 
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of a variable x = r(y) at the point x0 = r(y0). We could proceed directly 
from the approximation (4.7) for the variable JC obtaining 

g(x0)*(2n)-k/2 mÖo)\-i/2exp{H°(Ö0)} J(r~\ x0\ (4.8) 

where H°(00) = 0 and 

J{r-\x0)=\dr-\x)ldx\XQ (4.9) 

is the Jacobian of the transformation. Alternatively we could use the 
cumulant generating function H°x{u) for the variable x — x0 = r(y) — r(y0), 

exp{H°x(u)}=\exp{uf(r(y)-r(y0))}f{y)dy9 (4.10) 

and obtain 

^(χο)^(2π)-^|/^(^0)|-1/2
6χρ{/^(4)}, (4.11) 

where Η°χ(φο) = 0. 
The two methods just described can be combined to produce a saddle-

point approximation to f(y) at y0 by using the cumulant generating 
function for x — Xo — r{y) — r(y0\ for some function r(y): 

Ay0)*(2n)-k'2 | /Wo)r 1 / 2 exp{#^o) } J(r,y0). (4.12) 

We can thus have a family of saddlepoint approximations corresponding to 
a family of alternative transforming variables r(y) that have cumulant 
generating functions. We examine the choice of a transforming variable in 
the next section. 

5. NORMED LIKELIHOOD AS SADDLEPOINT APPROXIMATION 

Consider a variable y that is in one-one correspondence with the 
maximum likelihood estimate Ô(y) of a parameter Θ in a statistical model. 
We suppose, in accord with preceding sections, that the likelihood function 
L(09y) = c -f(y; Θ) is available at each point y, but not the density function 
itself. This can occur if y is obtained by marginalization under sufficiency, 
by conditioning under ancillarity, or by both. 

For computation we note from the preceding assumptions that the 
observed information can be written as a function of Ö: 

](θ)=-δ21η/&θ)/δφ2\θ = 0{γ). 

In this section we consider the determination of saddlepoint 
approximations for the density f(y;9) at some point y0; the available 
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ingredients are taken to be the likelihood function (3.1) at y0 and the 
sample space first derivative of the likelihood function at y0. 

First we note that if an approximation is obtained for some parameter 
value θ = θ0 then likelihood modulation extends the approximation to all 
values for 0: 

f(yol0)=n«;y°\f{yol0o). (5.1) 

We are thus faced with choosing an appropriate value θ = θ0 to use for the 
initial approximation. Following the implicit rationale for the saddlepoint 
analysis in Section 1, we choose the maximum likelihood value 90 = U(y0). 

As indicated in Section 4 a range of possible approximations is available 
depending on the choice of modified variable r(y) to which the method is 
applied. Now the derivation of the saddlepoint depends very much on 
additivity as part of approximating the average (or sum). This argues for 
using the score function 

r(y) = S(y;0o) (5.2) 

in the neighborhood of y0. We shall make this choice for modified variable, 
but in fact do so primarily for notational reasons as the method of 
approximation will be shown to be independent of the choice. 

For the change of variable we calculate 

k(y) = dS(y;e0)/dy' (5.3) 

and obtain 

f(y;e) = g(S(y);e)\k(y)\, (5.4) 

where g(S; 0) is the density function for S(y; 0O). 
We now expand the logarithm of the density g(S; 0) to the second order 

in 0 at 0O and to the first order in 5 = 5(j;0o) at y = y0; in tensor sum-
mation notation, 

g(S; Θ) = g(0; 0O)exp {a»S* + Iia Ô'S?~HJ^ + AVaôWS") +■■■} 

= g(0;eo)exp{a^ + (Iixô
i + ^AiMô'â')S'-yiJô^+ ■■■} 

= *(Ο;βο)βχρ{α'5 + τ'5-!τ'./·(0ο)τ+ · · · } , (5.5) 

where δ = 0 — 0O, Iix = 0 or 1 according as / = a or /' φ a, 

ax = d\ng(S;e)/dS*\0,eu 

AiJa = d> Ing(S; θ)/δθ'δθ'3Ξ'\^θο
 ( 5 ' 6 ) 
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and 

τα = (5α + ±^α(5 '# (5.7) 

is a quadratic reparameterization in the neighbourhood of θ = θ0. 
The model (5.5) to the chosen order of expansion coincides with the 

exponential model 

cexp{fl'S + T'S-|T7(e0)T + ?(T)}, (5.8) 

where q(0) = q'(0) = q"(0) = 0. The saddlepoint approximation for this 
model at S = 0 and δ = τ = 0 is 

^(0,θ0)^(2π)-^2ί/·(οο)Γ1/2. (5.9) 

It is of interest to note that a range of such exponential models all have the 
same saddlepoint approximation and one of them is the normal model 

(2nrk/2\j\e0)\-^
2txp{-{U-\e0)S-TyJ\e0)U-1(e0)S-T)} (5.10) 

for which the approximation (5.9) is obvious. 
Now briefly, suppose that some other variable S = r(S) — r(0) is used to 

examine the exponential models that coincide with the given model to the 
first order in the variable S. Then dS = Bd§ at 5 = 0 where B is the 
Jacobian, and S is replaced by BS in (5.8). The resulting normalization 
constant in (5.10) is then 

(2π)^/ 2 |7(ο0) |-1 / 2 |^ | 

which is in agreement with the change of probability element 

g(0;0o)dS = g(0;eo)\B\dS. 

Thus a change of variable does not affect the effective density 
approximation implied by (5.9); the use of the score S has the advantages 
of familiarity. 

We can now make the change of variable from S = S(y; 0O) to Ö(y). The 
maximum likelihood equation 

S(y; θ(γ)) = 0 (5.11) 

can be differentiated: 

dy d0 
(5.12) 
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At y = y0 with Θ = 9(y0) = θ0 we obtain 

dS(y;eo)-j(eo)M = 0, 

giving dS= \j(90)\de. Thus the saddlepoint approximation for the density 
of Ô at Θ = θ0 when the parameter Θ = θ0 is 

(2π)-^ |7(β 0 ) | 1 / 2 (5.13) 

and, for general Θ by (5.1), is 

(2π)-^2|7(ο0)|1/2^Η. (5.14) 

We now rewrite this for an arbitrary point y and obtain the saddlepoint 
approximation for the density of Ô: 

η(θ;θ)*(2πΓ«2 \j(Ô{y))\^ ^ 1 ? , (5.15) 

which is Barndorff-Nielsen's formula (1.9). 
We can also obtain the saddlepoint approximation for the original density 

f(y; Θ) based on only the likelihood function L(9;y) = cf(y; Θ). From (5.9) 
with (5.4) we obtain 

f(y;e)*(2n)-«2\j(ê(y))\-V2\k(y)\ L(°\y) (5.16) 
L{ß(y)\ y) 

6. REMARKS 

Barndorff-Nielsen's formula (1.9), (1.10) had been proposed as a con-
ditional distribution for a maximum likelihood estimator Ô given some 
approximate ancillary statistic. The conditions under which it can be 
examined, however, are broader and cover any case where the likelihood 
function is available marginally or conditionally in unique correspondence 
with a value of the maximum likelihood statistic. 

In this general context the formula can be supported (Section 3) by a 
local analysis using Laplace's method of approximate integration. It can 
also be supported as a saddlepoint approximation (Section 5) based on 
derivatives of the likelihood function. This suggests the use of Barndorff-
Nielsen's formula as a likelihood-based alternative to the cumulant-based 
saddlepoint approximation. A modification of the formula gives an 
approximate density for a variable y in one-one correspondence with the 
mle Ö, as determined marginally by sufficiency, conditionally by ancillarity, 
or by both. 
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A natural question in relation to Barndorff-Nielsen's formula is whether 
the availability of the likelihood function at each sample point is enough to 
determine the statistical model (family of density functions) for the 
maximum likelihood estiniate. The question is whether or not C(Ô) in (3.2) 
is uniquely determined by the likelihood functions (3.1) at the various 
sample points. If C(0) is the factor for the model being examined and 
C*(Ô) = C(Ô)(l + t(Ô)) is some other factor that produces an alternative 
statistical model, then t(Ö) is bounded below and is an unbiased estimate of 
zero for the statistical model being examined. Thus the factor C(U) is uni-
quely determined if and only if the statistical model is one-sided boundedly 
complete; it follows that completeness guarantees a unique C(Ô). The 
Barndorff-Nielsen choice can thus be viewed as a first-order determination 
of this unique C(#), as based on the viewpoints in Sections 3 and 5. 
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Non-uniform Error Bounds for Asymptotic Expansions 
of Scale Mixtures of Distributions 

Y. FUJIKOSHI 

Hiroshima University, Hiroshima, Japan 

Let X = σΖ be the scale mixture of Z with the scale factor σ > 0. We consider two 
type expansions Gok{x) and Φδ^{χ) as the approximations to the distribution 
function F(x) of X. In this paper we derive non-uniform error bounds in 
approximating F(x) by the asymptotic expansions G6k(x) and Φδ,Λ

χ)- The n o n" 
uniform bounds are improvements on the uniform bounds in the tail part of the 
distribution. The results are applied to the asymptotic expansions of /- and 
F - d i s t r i b u t i o n s . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

Let Z and σ be independent random variables and suppose that σ > 0 
with probability 1. Then X= σΖ is said to be a scale mixture of Z with the 
scale factor σ. The distribution function of X can be expressed as 

F(x) = Ea{G(a-lx)}, 

where G(x) is the distribution function of Z. We are interested in the 
asymptotic approximations to F(x) in the situation where σ tends to 1. The 
uniform error bounds in the case when we approximate F(x) by G(x) have 
been studied by Heyde [7], Heyde and Leslie [8], Hall [5], etc., assuming 
that Z is distributed as N(0, 1 ) or the exponential distribution. Recently the 
following two types of refinements have been considered under the 
appropriate assumptions on the smoothness of G(x) and the moments of σ: 

(i) G3Jt(x)= Σ \bÔJ(x)E{aô-\)\ (1.1) 

(ii) ΦδΛ(χ) = "Σ-[αό/χ)Ε(σ2ό-ΐγ, (1.2) 
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where <5= — 1 or 1. Here it is assumed that the distribution of Z is sym-
metric about 0 for the second type expansion. If Ε(σδ — 1 )j or Ε(σ2δ — 1 )j is 
0(n~J), the approximation (1.1) or (1.2) is an asymptotic expansion up to 
the order of n~{k~l\ The uniform error bounds for these two types of 
approximations have been obtained by Fujikoshi [2, 3], Fujikoshi and 
Shimizu [4], Shimizu [10, 11]. The results have been applied to obtain the 
error bounds for the asymptotic expansions of /- and .F-distributions. 

In this paper we refine the uniform error bounds on \F(x) — Gôtk(x)\ or 
\F(x) — Φ ök(x% to reflect dependency on x as well as the moments of σ. In 
this direction we consider the bounds for 

sxxV(\ + \x\i)\F(x)-Ga,k(x)\ (1.3) 
x 

and 

sup(l + |x| ') |F(x)-i»M(x)| . (1.4) 
x 

In general, the non-uniform bounds are improvements on the uniform 
bounds in the tail part of the distribution of X. It may be noted that the 
order of (1.3) or (1.4) is known (Bhattacharya and Ranga Rao [1], Hall 
and Nakata [6], etc.) for asmptotic expansions of the distribution 
functions of sums of i.i.d. random variables, but its explicit bound is not 
known. Error bounds for (1.3) and (1.4) are, respectively, given in 
Sections 3 and 4. In Section 4 we apply our results to the asymptotic 
expansions of t- and F-distributions. 

2. SCALE MIXTURE OF A GENERAL DISTRIBUTION 

We assume that the support of the distribution of Z is Ω = (0, oo ) or 
( — 00,00). The approximation (1.1) with <5=—1 or 1 is based on the 
following Taylor's expansion of G{o~lx\ 

0(σ-ιχ) = *Σ-} bÔJ{x){cô-iy + AèJk(x9 σ) 
j=oJ-

= <jw(*,<r) + 4w(x,ff), (2.1) 

where 

bôJx) = (dJ/dsJ)G(s-ix)\1.l, (2.2) 

A^(x,a) = ̂ (aâ-l)k(dk/êsk)G(s-âx)\s = i + ei(n^i) (2.3) 
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and 0<θδ<\. In order to obtain the expansion (2.1) and its error 
estimate, we make the following assumption for some integers k > 0 and 
/ ^ 0 : 

ASSUMPTION 1. G(x) is k times continuously differentiable on Ω and 

M O = sup (1 + |jc|7) \b3Jt{x)\ < oo. (2.4) 
x e f l 

The following lemma is fundamental in our error estimates. 

LEMMA 2.1. Letting ξδ^(χ, σ, /) = (1 + |jt|0 Aök{x, σ), it holds that 

I «**(*. *> 01 ^BâJt{l)(l v σ'){σ v ^ - l f 

<^BsAI){°l\°-l\k+\°-l-l\k}> (2-5) 

where a v σ ~l = Max(#, σ ~1 ). 

Proo/. Noting that sJ(dJ/dsj) G(s~~sx) is a function of s_<5jt, we have 

{**(*, °> 0 = ^ [i + \t\' U + 0,(**-1)}"] 

*bô,k(t){\+eô{aô-\)}-ôk{aô-\)\ 

where t = {1 + ο^σ* - 1 )} "5jc. It is easy to see that 

and hence 

σ*, σδ^\. 
1, 0<σδ<1 

1 + \t\l {1 + 0,(<x*- 1)}"«S (1 +1/10(1 v σ'). 

Using these inequalities, we obtain the desired result. 

In order to obtain the expansion 

Gs,k(x) = EclGs,k(xia)-] 

= Σ \b6Jx)E(G*-\y (2.6) 

and its error estimate, we make the following assumption: 
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ASSUMPTION 2. E(ai+k) < oo, E(a~k) < oo. 

THEOREM 2.1. Suppose that Χ=σΖ is a scale mixture of Z. Then, under 
Assumptions 1 and 2, 

sup(l + |x | ' ) |F(*)-GM(*) | 
x 

^h,k(l)E{a'\a-\\k+\a-l-\\k}. (2.7) 

Proof. We can write 

\(\ + \x\')(F(x)-Gs,k(x))\ 

= \Εα{ξό^χ,σ)}\ 

Therefore, using Lemma 2.1 and Assumption 2 we have the desired result. 

From (2.7) we have 

\F{x)-G^k(x)\^(l + \x\')-l^B6k(l)E{a'\a-l\k + W-l-l\k}. (2.8) 

In a special case of / = 0, 

5νρ\Ε(χ)-ΟδΛ(χ)\^60<Ε{\σ-1\" + \σ-ί-1\ι<}, (2.9) 

where Βδ k = {5ôtk{0). This uniform error bounds in the cases of δ = — 1 and 
(5=1 were obtained by Fujikoshi [3] and Fujikoshi and Shimizu [4], 
respectively. In the comparison with the upper error bounds (2.8) and 
(2.9), we can say that (2.8) is better than (2.9) if x satisfies 

, ^ ( 0 1 ? { σ ν - 1 | * + | σ - ' - 1 | * } 
W > . 5 „ £ { | σ - 1 | * + |σ-»-1|*} *" ( 1 1 0 ) 

So, the error bound (2.8) gives an improvement on (2.9) in the tail part of 
the distribution of X. 
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3. SCALE MIXTURES OF A SYMMETRIC DISTRIBUTION 

Suppose that the distribution of Z is symmetric about 0, i.e., 
1 — G(x) = G( — x). It is possible to apply Theorem 2.1 to the distribution of 
X in this symmetric case. However, the result is not very useful for 
/-distribution. Here, we consider non-uniform error bounds for the second 
type of approximation (1.2) that are useful for /-distribution. We can write 

F(x) = Ea{±2 + ±sgn(x)G(a-2x2)}9 (3.1) 

where sgn(x)=l if x > 0 , = 0 if x = 0 and = — 1 if x < 0 , and G is the 
distribution function of Z2. Using this relation and considering Taylor's 
expansions of δ(σ~2χ2) we have 

\ + { sgn(x) G(o-2x2) = ΦδΛ(χ, σ) + \ sgn(x) J M ( x 2 , σ2), (3.2) 

where 

***(*· <f) = "l \ α*,Α*){°2δ - 1V (3-3) 

and 

aax)-Uw(x)l·^), j=i,..,k. (iA) 

Here we use the same notations as the ones used for G in Section 2. So, the 
expressions T)àj and Abk are defined in the same way as the ones for G. In 
order to obtain the expansion (3.2) with b = — 1 or 1 and its error estimate, 
we make the following assumption for some integers k>0 and / ^ 0 : 

ASSUMPTION 3. The distribution function G of Z2 is k times continuously 
differentiable on ( — oo, oo) and 

«*.*(/) = sup (1 + |x|z) \aStk(x)\ < oo. (3.5) 
X 

Let 

ηόΛ(χ9 σ91) = £ sgn(x)(l + \x\l) 2ô,k(x
2
9 σ2). (3.6) 

Then, ΔδΙζ has the same properties as Abk. Therefore, we have the following 
lemma: 
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LEMMA 3.1. Under Assumption 3 it holds that 

\ηΜ(χ, σ,Ι)<iâSJi(l)( 1 v σ')(σ2 v σ "2 - 1 )* 

^^ά„( / ) {σΊσ 2 -1 |* + |σ-2-1|*}. (3.7) 

In order to obtain the expansion 

*« (* ) = £„[*«(*> *)] 

= ktl^s,ME(a2S-iy (3.8) 

and its error estimate, we make the following assumption: 

ASSUMPTION 4. E(al+2k) < oo, E(a~2k) < oo. 

From (3.1), (3.2), and (3.8) we have 

(1 + \Χ\')(Ρ(Χ)-ΦΟΛΧ)) = Ε*113ΛΧ> σ> 1)1 (3.9) 

Therefore, using Lemma 3.1, we have the following theorem: 

THEOREM 3.1. Suppose that Χ=σΖ is a scale mixture of a symmetric 
random variable Z. Then, under Assumptions 3 and 4, we have 

sup(l + \x\l)\F(x)-00,k(x)\ 
x 

^ â w ( l ) £ { ( l v f f V v f f - 2 - l f ) 

^ 1 α Μ ( / ) £ { σ > 2 - 1 | * + | σ - 2 - 1 | * } . (3.10) 

Letting l = 2h and / = 0 in (3.10), we have 

mx)-0iJt{x)\^(\+x2)-i^äiJc(2h)E{aM\c2-l\k+\c-2-l\k} 

(3.11) 

and 

sup \Ι\χ)-ΦΜ(χ)\ ^αδΛΕ{\σ2- 1|* + \σ~2 - l\k}, (3.12) 
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where agk = %äSk(0). We can write 

fl4Jt(2A) = isup(l+x*)5w(x) . (3.13) 

The uniform error bounds (3.12) in the cases of δ = — 1 and δ = 1 were 
obtained by Fujikoshi [3] and Fujikoshi and Shimizu [4], respectively. 
The non-uniform error bound (3.11) is better than the uniform error bound 
(3.12) if x satisfies 

, ι 2„^Μ(2/ 1)Ε{σ 2 ' ' |σ 2-1 |*+|σ- 2-1 |*} , 
1X1 - α ^ { | σ 2 - 1 | * + |σ- 2 -1 |*} 

4. APPLICATIONS 

4.1. t-Distribution 

The r-distribution of n degrees of freedom is defined as the distribution of 
a scale mixture T„ = (xl/n)~i/2 Z, where Z is the standard normal variable 
and χΐ is the chi-square variable with n degrees of freedom. Our interest is 
to find non-uniform error bounds for well-known asymptotic expansions 
(see, e.g., Johnson and Kotz [9]) of the distribution function F(x) of Tn. 
Let the pdf and the cdf of the standard normal variable denote by φ(χ) and 
Φ{χ\ respectively. Then it is known (Fujikoshi [3 ] , Fujikoshi and Shimizu 
[4])that 

alJ(x)=-2-JH2j_l(x)</>(x\ 

(4.1) 

where Hj(x) is the Hermite polynomial defined by 

(άη<Ιχ')φ(χ) = {-\)Ή£χ)φ(χ). 

For nonnegative integers j and / and U = xl/n, let 

qj = E{U-\)\ 

r{l) = E{U-'(U-l-iy}9 

(4.2) 

with ry=r7(0). The quantities qjs exist for any j , but the quantities ry(/) 
exist for n — 2l—2j> 0. For j = 1, 2,..., 6, 

(3.14) 
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qi=0, q2 = 2/n, q3 = S/n2, q4= 12(1 + 4«"1)/«2, 

q5 = 32(5 + 12«-1 )/«3, q6 = 20(1 + 12B"1 + 32«-2)/«3, 

r1(/) = 2(/+l)»'/iV/+i, 

r2(/) = 2{« + 2(/+l)(/ + 2)}«'/JV,+2, 

Γ3(/) = 4 { ( 3 / + 7)/Ι + 2 ( / + 1 ) ( / + 2 ) ( /+3)}Π / /ΛΓ, + 3 , 

r4(/) = 4{3«2 + 4(3/2 + 17/ + 23) « 

+4(/+1)(/ + 2)(/+3)(/ + 4)}/ι'/ΛΤ/+4, 

r5(/) = 8{5(3/+ll)n2 + 4(5/3 + 50/2+160/+163)n 

+ 4(/+l)(/+2)(/+3)(/+3)(/ + 4)(/ + 5)}«'/JV,+5. 

r6(/) = 8{ 15«3 + 10(9/2 + 75/+ 152) «2 

+ 4(15/4 + 230/3 + 1275/2 + 3016/ + 2556) n 

+ 4(/+1)(/ + 2)(/+3)(/ + 4)(/+5)(/ + 6)}«'/ΛΓ/+6, 

where Nj=(n — 2)(n — 4) ···(« — 2j). Using Theorem 3.1 with the 
replacement of / -*■ 2/ we have that if n — 2/ — 2fc > 0 and k is even, 

\F(x)-<Ps,k{x)\<(l+x2Yl^äs,k(2l){rk(l) + qk}. (4.3) 

The first three approximations Φδ^{χ) are given as 

Φ_,,2(*) = Φ(χ), 

Φ_1ι4(χ) = Φ_,,2(χ) + ^ ( χ ) [ - | η - 1 ( χ 3 + χ) 

+ i « " V + 2x3 + 3x)], 

*_,.6(*) = *-i ,4W + ^ ) [ - A ( l + 4 n - I ) i | - 2 

x (JC7 + 3x5 + 9x3 + 15x) + ^ (5 + 12«- ') n"3 

x (x9 + 4x7 + 18χ5 + 60x3 + 105*)], 

Φι2(χ) = Φ(χ) - Νϊ ιφ(χ) χ, 

ΦΙ,ΛΧ) = φιΑχ) - Φ(Χ)ΙΗ» + 4) # 2~ V - 3*) 
+ £(7η + 12) TVj-'i*5 - 10χ3 + 15*)]. 

Φ.,βΜ = Φι.4(*) - Φ(χ)1&η2 + 92« + 96) ΛΓ4" ' 

χ (χ1 - 21χ5 + 105χ3 - 105JC) + i(55«2 + 652« + 480) 

x iVj- '(x9 - 36χ7 + 378χ5 - 1260.x3 + 945*)]. 
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The numerical values of äök(2l)/k\ are given for k = 2, 4, 6 and / = 0, 1 as 
follows: 

k = 2 k = 4 k = 6 

1 = 0 l=\ 1 = 0 l=\ 1 = 0 l=\ 

-110.158 0.339 0.100 0.384 0.076 0.422 
1 | 0.138 0.129 0.074 0.077 0.050 0.049 

4.2 F-Distribution 

Let x2
q and χ2

η be mutually independent chi-square variables with q and n 
degrees of freedom, respectively. Then, the distribution function of 
(xl/n)1^2,/*]) c a n be expressed as 

EG{G({a~lxq; \q)}, 

where σ = (xl/n)~l and G(x; λ) is the cdf of the gamma distribution with 
the pdîg(x;l) = x*-le-x/rW, if x>0 and =0, if x^0. Therefore, we 
may consider the distribution of Χ=σΖ with Z = the gamma random 
variable and σ = (χΐ/η)~ι instead of the F-distribution. Our interest is 
to find non-uniform error bounds for asymptotic expansions of the 
distribution function F(x; λ) of X when λ is fixed and n is large. It is known 
(Fujikoshi [3], Fujikoshi and Shimizu [4]) that the expansions (2.6) can 
be expressed as 

GsAx'>*)= Σ-}^δ^λ)Ε{ϋ-δ-\)\ (4.4) 

where U = xl/n, 

biJ(x^)=-xL^i(x)g(x^\ 

b_ÏJ{x^) = {-\y-ï xLf}l(x)g{x'^\ 

Here L(
p

À)(x) is the Laguerre polynomial defined by 

Σ(
ρ

λ)(χ) = (-\)ρχ-λ€Χ(άρμχρ)(χρ + λβ-χ) 

and 

ψ(χ) = χρ+ t {\-λ).··(ί-λ)^χρ-1. 

Using Theorem 2.1 we have that if n — 21— 2k >0 and k is even, 

l ^ î A Ï - G ^ U î ^ l ^ i l + WO-^^iftAHMO + î ,} , (4.6) 

(4.5) 
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for any positive JC, where 

M U ) = sup IÜ+*') **,*(*; ^)|. (4.7) 

We can see that 

(d/dx){l+x'} οδΛ(χ·9λ) = (-\Υι-δ^2g(x'A)D6,k(x,X\ (4.8) 

where 

DUk{x-k) = {\+xl)L["-i\x)-lxlL^_x{x\ 

D_ax^) = (\+xl)Lk>^\x)-lxÎk»l(x). 

Since Dôk(x,À) are polynomials of degree H / in x, we can obtain the 
numerical values of bôk(l\ λ) by computing the values of |(1 +x7) bSJc(x; λ)\ 
on the set of positive roots of Dôk(x; λ) = 0. The numerical values of 
buk(\; X)/kl and b_uk(\; X)/k\ for fc = 1(1)6 and λ = 0.5(0.5)10 are given in 
Tables I and II. 

TABLE I 

The Values of 6lJc{\; À)/k\ for k= 1(1)6 and λ = 0.5(0.5) 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 

0.415 
0.840 
1.31 
1.81 
2.36 
2.95 
3.57 
4.22 
4.91 
5.63 
6.38 
7.16 
7.97 
8.80 
9.66 

10.55 
11.46 
12.39 
13.35 
14.33 

0.184 
0.388 
0.658 
1.02 
1.44 
1.94 
2.49 
3.12 
3.80 
4.56 
5.37 
6.25 
7.20 
8.21 
9.28 

10.41 
11.61 
12.87 
14.20 
15.58 

0.122 
0.330 
0.634 
1.04 
1.57 
2.21 
2.98 
3.89 
4.95 
6.15 
7.51 
9.03 

10.72 
12.58 
14.63 
16.85 
19.27 
21.88 
24.69 
27.71 

0.096 
0.273 
0.546 
0.934 
1.45 
2.12 
2.96 
3.98 
5.21 
6.65 
8.33 

10.27 
12.49 
14.99 
17.80 
20.94 
24.42 
28.26 
32.49 
37.10 

0.078 
0.227 
0.465 
0.816 
1.30 
1.95 
2.81 
3.97 
5.42 
7.22 
9.39 

11.99 
15.06 
18.63 
22.77 
27.52 
32.94 
39.07 
45.96 
53.68 

0.065 
0.192 
0.400 
0.765 
1.32 
2.10 
3.17 
4.58 
6.41 
8.71 

11.56 
15.04 
19.24 
22.25 
30.15 
37.05 
45.07 
54.28 
64.87 
76.83 
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TABLE II 

The Values of £ _ u ( l ; X)/k\ for k= 1(1)6 and A = 0.5(0.5)10 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 

0.415 
0.840 
1.31 
1.81 
2.36 
2.95 
3.57 
4.22 
4.91 
5.63 
6.38 
7.16 
7.97 
8.80 
9.66 

10.55 
11.46 
12.39 
13.35 
14.33 

0.405 
0.907 
1.51 
2.20 
2.99 
3.87 
4.84 
5.89 
7.03 
8.25 
9.55 

10.94 
12.41 
13.96 
15.59 
17.29 
19.08 
20.94 
22.88 
24.90 

0.415 
0.982 
1.70 
2.58 
3.61 
4.80 
6.14 
7.65 
9.31 

11.14 
13.14 
15.30 
17.63 
20.13 
22.81 
25.66 
28.69 
31.89 
35.28 
38.84 

0.428 
1.06 
1.89 
2.94 
4.22 
5.74 
7.49 
9.50 

11.78 
14.32 
17.15 
20.26 
23.67 
27.39 
31.43 
35.79 
40.48 
45.51 
50.90 
56.64 

0.442 
1.13 
2.07 
3.30 
4.83 
6.69 
8.89 

11.46 
14.41 
17.78 
21.58 
25.84 
30.57 
35.79 
41.54 
47.82 
54.66 
62.09 
70.13 
78.79 

0.456 
1.19 
2.24 
3.65 
5.44 
7.65 

10.33 
13.51 
17.23 
21.53 
26.46 
32.05 
38.34 
45.38 
53.22 
61.89 
73.10 
87.89 

104.7 
125.5 
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We consider the problem of estimation of μ! when it is suspected that μ ι ^ μ 2 

based on independent samples from Νρ(μΐ9 o2Vx) and Νρ(μ2, o2V2). We assume 
Vx, V2 known but σ2 unknown. First, the EB estimator is derived and its Bayesian 
and frequentist properties are studied. Second, a modified EB estimator is proposed 
and shown to dominate a preliminary test estimator. Finally, a hierarchical Bayes 
approach is proposed as an alternative to EB estimators. © 1988 Academic Press, inc. 

1. INTRODUCTION 

Suppose in a laboratory, say Laboratory I, a certain instrument is 
designed to measure several characteristics and a number of vector-valued 
measurements is recorded. Our objective is to estimate the unknown pop-
ulation mean. It is known, however, that a similar instrument is used in 
another laboratory, say Laboratory II for the same purpose, and a number 
of observations is recorded from the second instrument. It is also suspected 
that the two population means are equal, in which case, observations 
recorded in Laboratory II can possibly be used effectively together with 
those in Laboratory I for estimating the population mean of the first 
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instrument. Thus, the question that naturally arises is whether one should 
use the sample mean from Laboratory I or the pooled mean from the two 
laboratories. 

In problems of this type what is normally sought is a compromise 
estimator which leans more towards the pooled sample mean when the null 
hypothesis of the equality of the two population means is accepted, and 
towards the sample mean from Laboratory I when such a hypothesis is 
rejected. 

A very popular way to achieve this compromise is to use a preliminary 
test estimator (PTE) which uses the pooled mean when the null hypothesis 
is accepted at a desired level of significance and uses the sample mean from 
Laboratory I when the opposite is the case. For an excellent review of 
PTEs, see Bancroft and Han [1] . It is known, though, in other situations 
that a PTE is typically not a minimax estimator, and estimators with 
uniformly smaller mean squared error (MSE) than the PTE can often be 
produced (see, for example, Sclove et al. [7]). Moreover, the degree of 
evidence for or against the null hypothesis is not reflected in the PTE. 

In this paper, we propose instead an empirical Bayes (EB) estimator 
which achieves the intended compromise. Such an EB estimator is quite 
often a weighted average of the pooled mean and the first sample mean. 
The weights are adaptively determined from the data in such a way that 
the larger the value of the usual F statistic used for testing the equality of 
the two population means, the smaller is the weight attached to the pooled 
sample mean. Thus, unlike the PTE, the EB estimator incorporates the 
degree of evidence for or against the null hypothesis in a very natural way. 
Also, unlike a subjective Bayes estimator, the EB estimator is quite robust 
(with respect to its frequentist or Bayesian risk) against a wide class of 
priors. 

Section 2 motivates the EB estimator, and its Bayesian properties are 
discussed in this section. Among other things, it is shown that the EB 
estimator has uniformly smaller Bayes risk than the first sample mean. In 
Section 3, the estimators are compared in terms of their frequentist risks, 
and sufficient conditions under which an EB estimator dominates the first 
sample mean are given. Also, in this section, a modified EB estimator is 
proposed, and sufficient conditions under which it dominates the PTE are 
given. Finally, in Section 5, a hierarchical Bayes approach is proposed as 
an alternative to EB estimators. It has recently come to our attention that 
Saleh and Ahmed [6] have considered estimation of μχ under the loss 
L(ô, μι) = (δ — μιγν~{(δ — μί), assuming Vl = V2=V unknown, and 
proposed the shrinkage estimator X{ + (n2c/(n{ + n2))(X2 — ^ I ) "n/Tl> 
where Τ\ = (nxn2l{nx + n2)){X2-Xx)'S-\X2-Xx\ wS = pooled sum of 
squares and products matrix, n = nl + n2 — 2, and 0<c<2{p — 2)/ 
(nl + n2—p+\). A comparison of the risk of the above estimator with 
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those of the PTE as well as Xx and («, Xx + n2X2)/(n{ + ^2) is als° 
undertaken by the above authors. 

2. THE EB ESTIMATOR AND ITS BAYESIAN PROPERTIES 

Let Xu (i= 1,..., nY) and X2i (1= 1,..., n2) be independent /?(^3)-dimen-
sional random vectors, where Ays are i.i.d. Νρ(μΐ9σ

2νι)9 while X2-s are 
i.i.d. Νρ(μ29 o2V2). In the above μι s Rp

9 μ2 e Rp
9 and σ2( >0) are unknown, 

but Vl and V2 are known pxp p.d. matrices. Our goal is to estimate μχ. 
In order to motivate the EB estimator, we need find first a Bayes 

procedure. It is immediate that the minimal sufficient statistic for 
( μ ι ,μ 2 ,σ 2 ) is (Xx,X2,\x{Vïl SY + V;1 SJ\ where Xj = n^ ΣΧ,Χβ 

0 = 1 , 2) and 5, = Σ"ί.ι (Xji-Xj)(Xji-Xj)T
9 y = l , 2. Note also that 

Xj~Npfaj, * V Ό) (7= ». 2)' w h i l e triKf1 Sl + Κ2"' S 2 ) ~ d 2 4 , i + n2_2)/?. 
In a Bayesian framework, the above is treated as a conditional dis-

tribution given μχ and μ2. We use the independent Νρ{ν,τ2η^~ι Vx) and 
Np(v9 τ

2η2
ι V2) priors for μχ and μ2; that is, the prior variance-covariance 

matrix is proportional to the variance-covariance matrix of the 
corresponding sample mean. The suspicion that μγ and μ2 may be equal is 
reflected in the choice of a priori common mean v. For a related prior in 
the general regression model, see Ghosh et al. [3] . 

In order to find the posterior distribution of μ — (£*), first note that con-
ditional on μγ and μ2, Xl9 X29 Sl9 and 52 are mutually independent, and 
the distributions of Sl9 S2 do not depend on μγ and μ2. Hence, we can 
restrict ourselves to the conditional distributions of XJs given μ/s. Also, 
since μχ and μ2 have independent normal priors, standard calculations 
yield that μχ and μ2 given Xx and X2 have independent posterior dis-
tributions with 

ßj\Jtj = xJ~Np({\-B)xJ + Bv,a2(\-B)nfl V,\ (2.1) 

j= 1, 2, where 2? = <τ2/(σ2 + τ2). Now, using the loss 

£(μ1,α) = σ - 2 ( α - μ 1 ) Γ ρ ( α - μ 1 ) (2.2) 

for estimating μχ by a (Q being a known p.d. weight matrix), the Bayes 
estimator of μγ is 

eB(Xl) = (\-B)Xl+Bv. (2.3) 

Note that the Bayes estimator does not depend on the choice of Q. The 
multiplier σ~2 is used in the loss because that makes X1 a minimax 
estimator of μχ with the constant risk not depending on any unknown 
parameter. 
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In order to find an EB estimator of μϊ9 we estimate the unknown 
parameters B and v in (2.3) from the marginal distributions of Xl9 Xl9 and 
tr(Kf1S'1 + K2-1S2). Note that marginally Xj9X29 and tr(Vîl Sx + 
V2

l S2) are mutually independent with Xj~ Np(v9 nyl(a2 + τ2) Vj) 
( y = l , 2 ) , and tr( Kf1 Sx + V2

l S2)~a2x2
ni + n2_2)p. Hence the complete 

sufficient statistic for (v, τ2, σ2) based on this marginal distribution is 
{W9Z, t_r(Kr151 + K2-152)), where W= {nx Kf1 + «2*/2~1)_1("ι ^Γ1 * ι + 
n2V2

l X2) is the pooled sample mean, Z = Fr(wfJ Vx + n2
l V2)~

lY9 and 
Y=Xl-X2. Also, marginally, W~Np(v9 {σ2 + τ2)(ηχ Kf1 H-HjK^1)), 
7 - ^ ( 0 , («f1 K ^ / i j - 1 Κ2)((7

2 + τ2)), and tr( Kf1 5 , + V2
l S 2 ) ~ 

^2Z2
wl + W2-2)p- Hence, the UMVUE of v is W9 while the UMVUE of 

(σ2 + τ 2 ) - 1 is (/? - 2)/( 7 r ( « r l v\ + «2"1 ^2)"1 *0· T h e last assertion follows 
since F r (wf ! Vx + n2

l V2)~
lY~ (σ2 + τ2)χ2

ρ. Moreover, since tr(Kf1S'1 + 
V2

l S2)^a2xll + m_2)p9 the best scale invariant estimator of σ2 is 
((nl + n2-2)p + 2)-itT(Vl~

l Sx + V2
l S2). Substituting these estimators 

for v, (σ2 + τ2) - 1 , and σ2 in (2.3), one gets the EB estimator of μΧ as 

eEB(Xl9X29 Sï9S2) = (\-ê) X{ + BW= W+ (1 -B){XX - W\ (2.4) 

where 

&_ (p-2)tv(V^S^V2
lS2) 

((nl+n2-2)p + 2)YT(nl-
1 Vx + n2

l V2)~
lY' K ' } 

Remark 2.1. Note that 0 < B < 1, while the estimator B though positive 
can take values exceeding one. Accordingly, for practical purposes, one 
proposes the positive part EB estimator 

e+B(Xi9 X29 Sl9 S2) = W+ (1 - êy{Xx - W) (2.6) 

of μ1? where a+ =max(a, 0). For simplicity of exposition, in the remainder 
of this section, we shall, however, work with eEB rather than e£B. 

A question that naturally arises is why this particular method of 
estimation is used for estimating the prior parameters. We shall answer the 
question by proving the "optimality" of eEB within the class of estimators 

ôc(Xl9 X29 Sl9 S2) 

-WJX c t r ( F r ' 5 1 + K2-'52) \ 
- ^ + V ((«1 + « 2 - 2 ) / > + 2 ) r > 1 - ' K 2 + « 2 - ' F 2 ) - ' y ; ( A l W)> 

(2.7) 

where c (>0) is a constant. Note that eEB = Sp_2. 
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THEOREM 2.1. The Bayes risk of bc under the assumed prior (say ξ) and 
the loss (2.2) is given by 

r{^ôt) = {\-B)n^ix(QVï) + Btx{Q(nïV^+n2V^)-1) 

+ Btr(QA(nrl Vx+n2' V2) AT) 

Γ c\nx+n2-2) 2 φ 1 + κ 2 - 2 ) t 1 
Xl{(nl+n2-2)p + 2}(p-2) (nl+n2-2)p + 2 ]' 

where A = (nx Kfl -\-n2 V2
l)~l n2 V2

l. Moreover, r(£, eB)^r^, Sc). 

Proof. The second part of the theorem follows immediately from (2.8). 
To prove the first part, write 

rtf,Se) = r(&eB) + a-2El(eB-Sr)
TQ(eB-ôc)l (2.9) 

Note from (2.1) to (2.3) that 

rtf,eB) = (l-B)n^tr(QVl). (2.10) 

Also, writing Êe = c tr(Kf' 5, + V2
X S2)/{((nl +n2-2)p + 2) YT(n;lVl 

+ n2
l V2)~

l Y}, one gets 

eB-Sc = (l-B)Xl + Bv-W-(l-Êe)(Xl-W) 

= -B( W- v) + (Bc - B)(X, - W) 

= -B(W-v) + (Bc-B)AY. (2.11) 

Next using the independence of W and (Y, tr(K,-1 S, + V2
l S2)) and 

the facts that E(W) = v, \aT(W) = (a2+ τ2)(ηί Ff1 +n2 V2
l)~l = 

a2B-l(nxV^l+n2V2
l)-\ one gets 

Ei(eB-Sc)
TQ(eB-oe)-\ 

= B2E\_(W-v)TQ{W-v)] + E\_{BC-B)2 YTΛTQA7] 

= a2BtT{Q(nlV^l+n2V2
l)-l}+Ei(êc-B)2YTATQAYl (2.12) 

Now we find 
E\_(BC-B)2YTATQAY] 

'AT, 
c2{ix(V^Sl + V2

lS2)}
2 

2)p + 2}2{YT(nïiVl+n 

2Bc ti(VrlSt + VïlS2) 

(YTATQAY) 
2-2)p + 2}2{YT(n^Vl+n2

i V2)-
lY}2 

(Y' A' QAY) 
{{ni+n2-2)p + 2} {YT(ni-

lVl + n;lV2)-
1Y} 

+ B2(YTATQAY)l (2.13) 

(2.8) 
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Using the independence of Y and triKf1 S: + V2
l S2) along with the fact 

that tr(Kf ' 5, + V2
l S2)~a2x2„t + „2_2)p, it follows that the right-hand side 

of (2.13) is 

,rcV(»,+»2 

L("i+«2-2 
2)p YTATQAY 

)-lY}2 

+ B2(YTATQAY)l 

2)p + 2 {YT(n^lV^n2
lV2)-

lY}2 

2Bca2(nl+n2-2)p YTATQAY 
(nl+n2-2)p + 2 {YT(n^1 Vx +n2

l V2)~
y Y} 

(2.14) 

Next observe that Fr(nf ' K, + «2~' K2)~'y is a function of the complete 
sufficient statistic while (YTATQAY)/(YT{nfl Vx + n2

l V2)~
l Y) is 

ancillary. Now using Basu's theorem (or Lemma 1 of Ghosh et al. [3]) 
along with E(YTATQAY) = (σ2 + τ2) χ iT(QA(n^1 Vx + n2

l V2) Λ
Τ), 

Ε(Υτ(ηϊ1νί+η2
ιν2)-

ιΥ)=ρ(σ2 + τ2), and ^ ( ^ ( « f ' ^ + n^'^J- 'y) - 1 

= (σ2 + τ2)~ι(ρ-2)-\ it follows that the right-hand side of (2.14) is 

c2a2B(nl+n2-2)ptr(QA(n^1 Vy+n2
x V2)A

T) 
{(ni + n2-2)p + 2}p(p-2) 

2ca2B(nl+n2-2)ptT(QA(n^lVl+n2
1V2)A

T) 
{(ni+n2-2)p + 2}p 

+ a2BtT(QA(nïx Vx+n2
l V2) A

T). (2.15) 

It follows from (2.12M2.15) that 

El(eB-ôc)
TQ(eB-ôc)-\ 

= c2Btr(Q{nlV^l + n2V2-
i)~i) + a2BtT(QA(n^1 ν{+η2

ι V2)A
T) 

j~ c2(nl+n2-2) 2C(H1 + » 2 - 2 ) J (2{6) 
Xl{(ni+n2-2)p + 2}(p-2) (n,+ n2-2)/> + 2 ]' 

The proof of the theorem is complete from (2.9), (2.10), and (2J6). 
Next we compare the Bayes risks of eEB and Xx. Note that Xt has con-

stant risk, and hence constant Bayes risk (under any prior) a2n^ilr(QVl). 
Rather than comparing the Bayes risks of eEB and Xt directly, we find it 
convenient to introduce the notion of relative savings loss (RSL) as in 
Efron and Morris [2]. 

For any estimator e of μ,, the RSL of eEB with respect to e (under the 
prior ξ) is defined as 

RSL(£; eEB, e) = [r(£, eEB) - r(£, eB)]/|>(£, e) - r(£, eB)] 

= 1 - [r({, e) - r(Ç, eEB)]/[r(£, e) - Λξ, *„)]. (2.17) 
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This is the proportion of the possible Bayes risk improvement over e that is 
sacrificed by the use of eEB rather than the ideal eB under the prior ξ. From 
(2.8) with c = p-2 and (2.10), it follows that 

RSL(i;eEB)A'1) = 

V("i+«2-2)/» + 2/J 

xCnr' tr ißK, ) ] - 1 . (2.18) 

Note that the above RSL expression does not depend on any unknown 
parameter. Also, writing 

A = (niV:
i+n2Vïi)-ln2Vïl = lVïl{nlV2 + n2Vl}Vïiyln2Vïi 

= n^vi(n^vl+n2
iv2)-\ 

it follows that 

(nlVïx+n2V2-
iyl + A(nîxVl+n2

lV2)A
T 

= n2-
lAV2 + n^iAVi = A(n^lVl + n2-

lV2) = n^iVl. (2.19) 

Now using 2(ni+n2-l)<(nl+n2-2)p + 2, it follows from (2.18) that 
RSL(^;eEB, Xi)< 1 which is equivalent to Γ(ξ, eEB) </·(<!;, Xi). Thus eEB 

has smaller Bayes risk than Xt. 
Finally, in this section, we compare the Bayes risk of eEB with that of W. 

Note that W has Bayes risk 

r(i, W) = τ{ξ, eB) + a~2El(eB - W)T Q(eB - W)l (2.20) 

Since eB - W = ( 1 - B) JP, + Bv - W = -B( W- v) + (1 - 5)(Γ, - ^ ) = 
—B{W— v) + (l — B)AY, where A is defined following (2.11), using once 
again the independence of W and Y, it follows that 

El{eB-W)TQ{eB-W)] 

= a2Btr(Q(n1V^l+n2V2-
l)-l) + (i-B)2E(YTATQAY) 

= ff2,Btr(Ô(«1F1-
,+«2F2-

1)-1) 

+ a2(l-B)2B-ltr(QA(n^iVi+n2
i V2)A

T. (2.21) 
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Thus from (2.10), (2.20), and (2.21), 

Γ(ξ, W) = n^l(l-B)tr(QVl) + Btr(Q(nlVr1 + n2Vï1)-1) 

+ (l-B)2B-ltr(QA(nrl Vi + "ïl V2)A
T). (2.22) 

Finally, from (2.8) with c=p-2, (2.10), and (2.22), it follows that 
R S L ^ E B , »0=[r(É,eEB)-r(É,eB)]/[r(É, »0 -r ( i , e B ) ] is 

tr(g(«1F,-1 + »2K2-1)-1)+ 2{r!X+"2~Xl^(QA(n^ V1 + n^ V2)A
T) 

(nl + nl — z)p +1 
tr(ß(», Kf1 + n2V2-

1rl) + (1 - Bf B-2tr(QA(n^1 Vl + n2
lV2)A

T) 

(2.23) 

which is less than one if and only if 

{(l-B)/B}2>2(ni + n2-l)/{(ni+n2-2)p + 2}. (2.24) 
Remark 2.2. The fact that eEB does not dominate W uniformly is not at 

all surprising. If, for example, τ2 is very small and μχ is nearly degenerate at 
v, then W is much closer to v than eEB. Indeed, in this case B = σ2/(σ2 + τ2) 
is very close to 1 so that (2.24) cannot hold. However, when σ2^τ2, then 
B^±<r+(1 -B)/B^ 1 so that (2.24) holds. 

3. MINIMAX ESTIMATION 

It is well known that under the loss given in (2.2), Xx is a minimax 
estimator of μ{ with constant risk Mf1 triQV^. In this section, first we find 
a class of estimators including eEB as a member which dominates Xx under 
certain conditions, and then investigate whether eEB satisfies these con-
ditions. 

With this end, first write 

F=(y>r 1 K 1 +/ Î 2 - 1 F 2 ) - 1 y) / { tr (F r
1 5 1 + F2-

152)/((«1 +„2-2)/> + 2)} 
(3.1) 

and consider the class of estimators 

ßt = Xl-MF)/F)(*i-W (3.2) 

for estimating μγ. Note that eEB belongs to this class with (j>(F)=p — 2. We 
now compute the frequentist risk of the estimator μ\ (i.e., without any 
reference to the priori). Throughout this section, E denotes expectation 
conditional on μχ and μ2, and we write V=n^lVx+ri2lV2. 
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THEOREM 3.1. 

Εί(μί-μί)
τ0(μί-μι)1/σ2 

=wrl t r (ÔKl )_2£^tr (^ô^HW)_^)2^I] 

+ σ-2ΕΪ^ΥτΛτ<2Λγ]. (3.3) 

Proof. First write 

£[(/*?-μ.Γο(μί-μ.)] 
= £ [ ( * , - μ , Γ ρ ^ , - μ , ) 

-2(φ(Ρ)/Ρ)ΥτΛτ0(Χι-μί) 

+ (42(F)/F2)YTATQAYl (3.4) 
where we have used the fact that Xy — W= AY. Next writing Xt = W + AY 
and correspondingly μ, = μ„ + Λμ0, where μ„, = («, Kf ' + «2 ^Γ ')~ ' 
(«, Kf 'μι + « 2 ^2~' Α )̂ ar»d μο = μι - ^ 2 . o n e ê e t s 

^ [ ( ^ ν ^ κ ^ ^ ρ ί ζ , - μ , ) ] 

= ΕΙ(φ(Ρ)/Γ)ΥτΛτρ((Ψ-μ* + Λ(Υ-μ0))1 

= E^(F)IF) YT ATQA(Y-μ0)], (3.5) 

where in the final step of (3.5), one uses the independence of 
(7, tr(KfJ S, + J^-1 S2)) with ^ as well as Ε{\Υ) = μ+. Now since V is 
p.d., there exists a nonsingular Z) such that D~lV(D~l)T = Ip. Write 
Z = D~l Y and η0 = ϋ~ιμ0. Then Ζ~Νρ(η0, σ2Ιρ). We rewrite 

7 Γ Λ Γ ρΛ(7-μ 0 ) = ΖΓ£/(Ζ->/0), (3.6) 

where t /= ((w/7)) = Z)r^rß^Z). Also, in terms of Z, F=ZTZ/{tr(V^1 S{ + 
^ " ' ^ / ( ( " l + n2 - 2)p + 2)}. Now using Stein's identity (cf. Stein [8]), the 
independence of Z and t ^ K f ^ + K^_152), and (3.6), we get 

El(4>(F)IF)ZTU(Z-no)-\ 

2sr r\ d ί ^ v 711 

-σ lEbzA—%uA\\ 

X{tr(Kr
15, + K2-152)/(K + «2-2)p + 2}J 
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.^[φ.^^φ.φ] 
ZTUZ 1 

'{tr(F1-'51 + F2-152)/((n1+n2-2)/7 + 2)}J 

.s£[m«AreAy)+2{«n_myï£ig\. (M) 

The theorem follows now from (3.3), (3.4), and (3.7). 

Next in this section we find an upper bound for E[(</>2(F)/F2) 
YTATQAY\ We first get the inequality 

EM2(F)/F2)(YT AT QAYY] 

= ρ[¥ίΏ. F YTATQAY ttjVr'Sy + V^S^l 
[ F 2 ' ' YTV-lY ' { ( H , + « 2 - 2 ) / > + 2 } J 

*:chl(A
TQAV)Elh2(F)FtT(VrlSi + VïlSiy((ni+n2-2)p + 2)l 

(3.8) 

where chl(A
TQAV) denotes the largest eigen value of ATQAV and 

/Î(F) = ^ (F) /F . Next applying (2.18) of Efron and Morris [2], one gets 

£[/z2(F)^tr(Kr1S1+K2-152)/((«1 + A22-2)/? + 2)] 

Γ (n^n2-2)p 2 t r (K f ' S ,+K, - 'S 2 ) 
l(nl+n2-2)p + 2 ( A I 1 + H 2 - 2 ) / ? + 2 {η{ + n2-2)p + 2 

x WF) W) F + AV )) ( - l r ( F r , 5 2 + , - , J | ( „ | + „ a _ 2 ) p + 2))] 

L(n,+«2-2)^ + : 

t r (Fr 1 5 2 +F 2 - 'S 2 ) / ( (n 1 +« 2 -2) / ) -
<i2(F) 

(nl+n2-2)p + 2 { \ F F 
2 

-2, , ,_ , J 2 ( ^ ^ - ^ U ( F ) + . 

L F (ni+n2-2)p + 2 J 
(3.9) 
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From (3.8) and (3.9), one gets 

E]?$WQAY)~\ 

*'**·'''Γ^*[Τ-(., + .,-2), + 2«')Η· <310) 

Combining (3.3) and (3.10), one gets 

σ-2ΕΙ(μ*ι-μί)
τα(μ^ι-μί)-(Χι-μ1)

τ 0(^,-/1,)] 

+ £* l Mre^£^___l__Ä f l„„] . (3.π) 

The following theorem is now easy to prove from (3.11). Recall that 
Λ = (ηίν^ι+η2 V2

xYxn2V2
x and V=n^1 Vx+n2

l V2. 

THEOREM 3.2. Suppose that 

(i) tr(AT QAV)>2chl(A
T QAV) 

(ii) Q<<l>{F)<2\_lx(ATQAV)lchx{ATQAV)-2] and 
(iii) ^(F)î in F 

hold. Then σ-2ΕΙ(μ^ι-μι)
τα(μ^ι-μι)-(Χί-μι)

τα(Χι-μι)^<0 for 
all μγ and μ2. 

Proof. Using (iii), it follows from (3.11) that 

σ~2 ΕΚμϊ-μι)
τ <2(μ*-μ^-ί^-μι)

τQi^-μΜ 

i2E[-«Pt«A*QAVH2ifWQAV) + l£!£lWQAV)] 

<0 (3.12) 

using conditions (i) and (ii) of the theorem. 
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Remark 3.1. It is an immediate consequence of the above theorem that 
if condition (i) of Theorem 3.2 holds, and 0<p-2<2l(tr(AT QAV)/ 
chx(A

T QAV) — 2], then the EB estimator eEB dominates Xx. In particular, 
if Q=vl=j2 = ip9 then tr(ATQAV)=pchx(A

TQAV), and hence eEB 

dominates Xx for p ̂  3. 
In the remainder of this section we show how a modified EB estimator 

can dominate the PTE. Once again, an appeal to Theorem 3.1 is made. 
A PTE (5PTE_of μ{ is of the form ôPTE = g(F)Xl + (1 -g(F)) W = 

X\ — (1 —g(F))(Xi — W\ where g(F) = I\F>d\ for some positive constant d, 
and / denotes the usual indicator function. The choice of d is governed by 
the level of significance that is used for testing H0: μ{ = μ2. We propose the 
rival estimator 

= W+(l-Çjg(F)(Xi-W) (3.13) 

which is a modified version of eEB with p — 2 replaced by a general c. 
Note that <5MEB = W when g(F) = 0, but <5MEB = <5EB

 w h e n g(F)=l- T h e 

following theorem is then obtained. 

THEOREM 3.3. Suppose condition (i) of Theorem 3.2 holds and 
0<c<2[tr(ATQAVych^A7*QAV)-2l Then 

σ-2ΕΙ(δΜΕΒ-μί)
τα(δΜΕΒ-μι)-(δΡΎΕ-μι)

τα(δΡΤΕ-μίΟ<0 
(3.14) 

for all μχ and μ2. 

Proof Write φ,{F) = F{\-g{F)) and </>2(F) = F(l-(l-c/F)g(F)) = 
(fi^ + cgiF). Then <5PTE = *i - (φ1(Ρ)/Ε)(Χ1 - W) while <5MEB = * I -
(<j>2(F)/F)(Xl - W). Note that both ^(F) and ^2(F) are differentiate 
everywhere except at F=d. Thus ^Ί(^) a nd ^ ( ^ ) a r e defined a.e. 
(Lebesgue). Moreover, ^ (F ) -^ 2 (F ) = -cg(F), <^(F)-^(F) = - ^ V ( ^ ) 
= -c2g(^) and φ\(F) = φ2(F)=l-g(F) a.e. (Lebesgue). Then, applying 
Theorem 3.1 twice, once with ^(F) = ^2(F), and next with ^(F) = ^(F), one 
gets the left-hand side of (3.14) as 

+ o-2 ε\^β{ΥΤΛΤ QAY)] 
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^-2E\^jßtr(ATQAV)-jcg(F)clil(A
TQAV)\ 

x -2Fr£W) F tT(V^S, + V2-
lS2) YTATQAY1 

+ <T *|_ F2 {nl+n2-2)p + 2 ' YTV~1Y\ 

< _ 2 £ [ ^ t r M r ß ^ K ) - ^ ^ - c A . M 7 ' ß ^ n ] 

Applying (2.18) of Efron and Morris [2] again with 4>(F) = g(F) so that 
φ'(Ρ) = 0 a.e. (Lebesgue), one gets 

E^-^JFtt(Vr
tSl + Vr1S2)/((ni+n2-2)p + 2)j 

= <72£[g2(F)/F] = σ2 E\_g(F)in (3.16) 

Now from (3.15) and (3.16), the 

left-hand side of (3.14) is 

- P 
CS(F) , iAT„A„AJ*{AlQAV) 

chMTQAV){2[ , iA-F„'-l)-c < 0 (3.17) 
F ~"1V" ~ " ' ' ['\chx{ATQAV) 

by using the upper bound of c given in this theorem. The proof of the 
theorem is complete. 

Remark 3.2. Note that when Q= Vx = V2 = Ip, the conditions of the 
theorem hold when 0<c<2{p — 2), and in particular when c=/> —2, 
P>2. 

4. HIERARCHICAL BAYES ESTIMATION 

Section 2 is devoted to classical empirical Bayes estimation, i.e., when the 
unknown prior parameters are estimated by classical methods of estimation 
such as uniformly minimum variance unbiased estimation, maximum 
likelihood estimation, best invariant estimation, etc. Instead, one can assign 
prior distributions (proper or improper) to the hyperparameters, and come 
up with hierarchical Bayes (HB) estimators of μχ. Note that in a classical 
EB approach, the lower stage Bayesian analysis is performed as if the 
hyperparameters were known a priori. This approach ignores the error 
associated with the estimation of the hyperparameters. On the other hand, 

(3.15) 
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the HB approach models the uncertainty of the hyperparameters by the 
second stage prior. Accordingly, unlike positive part EB estimators, the HB 
estimators are smooth, and bear the potentiality of being admissible. 

To introduce the HB model, first note that as in Section 2, one may start 
with the minimal sufficient statistic (Xl9 X29 tr(Kfl 5 t + V2

l S2)). Write 
r~l = σ2 and (pr)~l =τ2 , i.e., ρ = σ2/τ2. Now conditional on μί9 μ2, and r9 

XX9X29 and U = tr(Kfl S{ + V2 * S2) are mutually independent with 
Χ,-Ν^μ,Λη^-'ν,Χ X2~Νρ(μ29 (η2κ)'ιν2)9 and U~r-l

X
2

iHl + Hl_2)p; 
Next we assume that conditional on v, p9 and r, μχ and μ2 are mutually 
independent with μι ~ N(v9 (rp)~1n^1V1) and μ2 ~ N(v9 (pr)~l n2

l V2). 
Also, it is assumed that v, p, and r are mutually independent with v 
uniform on Rp

9 p has the type II Beta distribution with pdf 
h\{p) oc p m - 1 ( l H-p)~(m + 1)/[p>o]» where m (>0) is known, while r has a 
gamma distribution with pdf h2{r) oc exp( — j ccr) rs~ \ a ( > 0) and δ ( >0) 
being known. We shall aim at finding the posterior distribution of 
μ = (μΙ, μΐ)' given Xl9X29 and u. 

First note that the joint prior distribution of μΐ9 μ29 v, r, and p is given 
by 

/ ( μ , , μ 2 , ν , r,p)oc (pr)p 

χεχρ\-^{ηί(μί-ν)Τν^(μι-ν) + η2{μ2-ν)Τνϊ1(μ2-ν)^ 

xA,(p)A2C·). (4.1) 

Next observe that 

η , ( ^ 1 - ν ) Γ Κ Γ 1 ( μ , - ν ) + « 2 (μ 2 -ν ) Τ Κ 2 - 1 (Λ 2 -ν ) 

= [ ( ν - μ , ) Γ Κ - ' ( ν - μ * ) ] 

+ η,μΓ K 1 - V I + " 2 / Î 2 T Î / 2 " V 2 - ^ Î Î / * V * , (4.2) 

where one may recall that μ„, = («ι Kf ' + «2 ^ ' ^ ' ( " ι ^Τ' A*I + M 2 ^ 2 ~ ' ^2) 
^ ^ ♦ ' Γ ' Κ ^ Γ ' μ ι + ^ ^ - 1 / ^ ) with F"1 = « , Ff ' + n2K2-'. Now 
integrating with respect to v, one gets the joint ρά/οίμι, μ2, r, and p in the 
form 

f(pup2,r,p) 

oc (pr)p/2 exp -γ{ηιμΐν^ιμι+η2μΐν2
ίμ2-μΙν-1μ1),}\ 

xhx(p)h2{r). (4.3) 
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The exponent in (4.3) is easily simplified as 

WiVrlni + "2i*2 v2l f*2-μζ y*l μ* 

= μΐ{ηινΓ1-ηινΓιν*ηινΐ>}μι+μΐ{η2νϊ>-η2νϊιν*η2νϊ>}μ2 

-μ[ηχν^ ν*η2ν;ιμ2-μϊη2ν;ιν*ηινΓι μΐ9 (4.4) 

where V+ = (ηχ Kfl + n2V2
l)~l. Also, the joint pdf of Xl9X2, and U 

conditional on μΐ5 μ2, and r is given by 

/(χί,χ2^\μί,μ29Γ) 

x ^ e x p [ - r / 2 { M ^ i - ^ i ) r ^ r 1 ( i i - ^ i ) + «2(*2-^2)7'^2'"1(*2-^2)}] 

xQxp(-ru/2)uini + n2-2)p/2-1r{m + n2-2)p/2. (4.5) 

Next we calculate 

0 = ηί(μι-χι)
τν^ι(μι-χι) + η2(μ2-χ2)

τν2-
ι(μ2-χ2) 

+ ρ{ηιμΐν^μι+η2μϊν;> μ^μζν^μ*} (4.6) 

which is needed to derive the posterior distribution of μ given xu x2, and 
u. Using (4.4) and straightforward algebra, one gets 

G = μ\ Όημί + μ\ Ό22μ2 — 2μ\ D ημ2 — 2ηχχ[ Kf1 μ{ —2η2χ2 V2
X μ2 

+ nxx\V^xxx+n2xlV2
xx2, (4.7) 

where 

Dll=nlVrl +ρ{ηγ Kf1 - / i i Kf1 Κ,,Λ, Kf1}, 

D22 = n2V2^p{n2V2'-n2V2
l V^n2V2

l}9 

Dl2 = pniVriV^2V2
i. (4.8) 

We now write G as Gl + G2, where 

Οι = [(μι-Αηχί-Α12χ2)
τΌη(μι-Α nxl -Anx2) 

+ (μ2- A2lxx- Α22χ2)
τΌ22(μ2- A2lxx- A22x2) 

-2(μι-Αηχι-Α12χ2)
τΌί2(μ2-Α21χί-Α22χ2)] (4.9) 

and 

G 2 = l > i * F * T l * i + «2*i ν2
ιχ2-{Αηχί + Α12χ2)

τϋΙΪ{Αηχ1^Αηχ2) 

~ \A2\X\ + A22x2) D22(A2lxl 4- A22x2) 

+ 2(Anxi+Al2x2)
T'Dl2(A2lxt+A22x2)l (4.10) 
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From (4.7), (4.9), and (4.10), it follows that An,An,A2l, and A22 satisfy 

DnAii-D12A2i^niVyl 

D22A22-D
T

nAi2 = n2V2
l 

(4.11) 
DnA12 = DnA22 

D22A2l — Dl2Axx 

which can be rewritten as 

Ai2 = Dll Di2A22, A2\
 =D22 Dl2An, 

(Du-DnD22' D\2)Au=n,V^\ (4.12) 

{D22-D\2D^ Dl2) A22 = n2V2
l. 

The following lemma whose proof is omitted (see [4] for details) is crucial 
to further simplification of G2. Recall that B = σ2/{σ2 + τ2) = p/(l + p) and 
W=(nlV^l+n2V27

l)-i(nlV^lxl + n2V27
lx2)=Vt(n1V^lxl + n2V27

lx2). 

LEMMA 4.1. 

Ailx1 + Ai2x2 = (l-B)xl + BW=b1 (say), (4.13) 

A2iXl + A22x2 = (l-B)x2 + BW=b2 (say). (4.14) 

From (4.10), (4.13), and (4.14), G2 can be simplified as 

G2 = «,;tf Kf'x, +n2x2V2
lx2 

-{(l-B)xf+BWT}Dli{(l-B)xl + BW} 

- {(1 - B) xl+ BWT\ D22{(1 -B)x2 + BW} 

+ 2{(1 - B) xl + BWT} Dn{(l - B) x2 + BW} 

= xT
l{nlV^-{{\-B)I 

+ Αη,Κ,-1 V,} DU{(1 - B) 1+ BtiiV+νγ1} 

-(Bn^r'VJDniBntV.Vr1) 

+ 2{(1 -B) / + Bn} Ff1 V*} ß12(ßn, V% F f 1 ) ] *, 

+ x!in2V2
i-{(l-B)I 

+ Bn2 V2
l V,} D22{{\ - B) 1+ Bn2 K, V2

l} 

-(A«2K2-'FJZ)11(fi«2F l l tK2-1) + 2 { ( l - A ) 7 

+ £«2 K2- » K„ } D\2(Bn2 V* V2 ' )| x2 

-xlt{(l-B)I+BnlVr1Vt}Dil(Bn2V,V2~
1) 
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+ (BniV^Vjf)D22(\-B)I 

+ Βη2ν*ν^} + 2{(\ - B) 1+ BniV^1 V*} Dl2{(l - B) I 

+ Bn2V„V2-
inx2 

-xZl(Bn2VïlV,)Dn{(l-B)I 

+ BniV#V^} + {(l-B)I+Bn2V2
lVill}D22 

x5(«1KillF1-1) + 2(5n2F2-1Fi(1)/)12(5«1FJ|,F1-1)]Jc1. (4.15) 

From (4.8), one gets 

Dll + D22-2Dl2 = (l+p)(niVr1+n2V2
i) 

- p(nt Kf ' + n2 V2 ' ) PJ/i, Ff ' + «2 V2 ' ) 

= n, Ff ' +«2 K2-' (since V^ = n, Kf1 + n2 Kf1) 
= K;'. (4.16) 

Using (4.8) and (4.16), it is possible to simplify G2 considerably. This is 
done in the following lemma whose proof is again omitted (see [4] for 
details). 

LEMMA 4.2. G2 = £[*Γ{"ι Kf1 -n, Kf1 V^nx Kf1} xx +x2
T{n2Vïl -

n^V^V^} Χ2-2χΙ(η{ν^'ν^2ν21)χ2ΐ 

Therefore, from (4.9), Lemma 4.1, and Lemma 4.2, G can be written as 
G = (ßl-bl)

T Ώη(μι-οϊ)-^(μ2-ο2)
τ £2 2(μ2-£2) 

-2^-bx)
TDn^2-b2) 

+ £[xfD n *χί+ xlD12 *x2-2x1 #i2 * x2], (4.17) 

where 
Dn* = nlV^l-ni K f ' K ^ K 1 

1 

^ 2 2 * = « 2 ^ 1 - « 2 ^ 2 Γ 1 ^ « 2 ^ - 1 

Dn* = nxVîx V^n2V2-
{. (4.18) 

Returning to (4.3) and (4.5), the joint pdf of Xl9 X2, U, μΐ9 μ2, r9 and p is 
given by 

/(x,,x2,w, μι,μ2,Γ, p) 

oc r ^p r f^exp - ^ G exp[-rw/2] 

xui"l + ni-2)p/2-lr{"l + n2-2)p/2hl(p)h2(r). (4.19) 
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It follows from (4.17) and (4.19) that conditional on xl9 x2, w, r, and p, 

(;;H[G;)"-'(^ ΐ ) 1 -
Also, integrating out with respect to μγ and μ2, it follows from (4.19) that 
the joint pdf of X{, X2, U, r, and p is given by 

f{xux2,u,r,p) oc {prY11 βχρΓ~{« + Α55„}] n — n i -1 / 2 

^ 1 1 ^ 1 2 

| - Z ) f 2 D22 | 

(4.21) 

where 

SSH = x{Dn * Xi + x2
rD22 * x2 — 2x{Di2 * x2. 

Now, from (4.8), one gets 

Dn -Dl2 

-D\2 D22 

{ +p){ 0 «2F2-'J ' U T ' ^ . T 1 ^ΚΓ1^«,^-1 

(4.22) 

= (1+P)2" 

= (1+P)2" 

« .Ff 1 0 

2^2" 

0 «jKf1 

n 2 F 2 - " ' * v 

' 1/1/2 

- i - 0 

•fi|'n,F.rl ϊ ^*(«.^Γ1:«2^ΓΙ) 

Vj/2 

/ 2 P - Ä ^/v«:^)^^ 1 - 2 ^ 1 / ; ' 2 ' 2 

0 

yi/2 

= (l+p)^\nlVr
1\\n2Vi 

« 2 , 

= ( l + p ) ? p | i i , K r , | l « 2 ^ 2 - 1 l l / , - Ä / , l (since K"1 = n, F f 1 + n2F2-') 

= ( 1 + ρ Π η 1 Κ Γ
1 | Ι " 2 ^ 1 | . (4.23) 
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Hence, from (4.21) and (4.23), one gets 

fix,, x2,u9 r, p) oc p/>/2r(«1 + *2-i)P/2(1 + p)-p/2 exp[ -L(U + BSS „ + <*)] 

x | | ( « l + / » 2 - 2 ) / » / 2 - i . r i - l p m - l ^ 1 + p j - ( m + l ) i ^ 4 ) 

Integrating out with respect to r, one gets the joint pdf of Xx, Xl9 U9 and p 
as 

f(xl9x29u9p) oc ( - p - Y w(M1 + M2-2)/?/2-1(w + ^ ^ / / + a)"(ni + W2~1)/,/2"<5 

xp w - 1 ( l+P)~ ( m + 1 ) . (4.25) 

Using the transformation p/(\ + p) = B provides the joint pdf of Χγ, Xl9 U9 

and B as 

(4.26) 

Next observe from (4.20) and (4.13) that 

Ε(μι \B9xl9 x29 w, r) = 6, = (1 - B) xx + tfW. 

Hence the HB estimator of μχ is 

£(//, |xi , x2, w) = xx -E(B\xux29 u)(x{ - W). (4.27) 

But, from (4.26), one gets 

^^^1^2,«i-j iÄ P / 2 + l n - l ( l | + 1 , s ^ + a ) - ( l , 1 + # i 2 - l , p / 2 - i i / Ä · l « - » J 

Remark 4.1. From simultaneous diagonalization of«! Kf1 and n2V2\ 
it is easy to show from (4.18) that 

Dn* = D22* = Dl2* = (nl Vil+n2V2
l)-\ (4.29) 

so that from (4.22) one gets 

SSH = (xl-x2)
T(nlV^i+n2V2

i)-l(xl-x2) (4.30) 

which is precisely the numerator of F defined in (3.1). 
Remark 4.2. It is sometimes possible to reduce the above HB estimator 

to an EB estimator of the form χγ — (<f>(F)/F)(xl — W). Consider for exam-
ple the situation when a = 0, i.e., R has the improper prior h2(r) = rô~\ 
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Now writing v = SSH/u, we note from (4.30) that F= ((nl + n2-2)p + 2)v. 
Also, for a = 0, it follows from (4.28) that 

E(B\xl9x2, u) 

= Ç Bp/2 + m(\ + Βν)-(ηι + "2-1)ρ/2-δ dBI 

f BP/2^m-l^^Bvy(n^n2-\)p/2-ô d B 

Jo 

J \ (m+n2-2)p/2 + ö-m-2 / ßv \p/2 + m jß 

Jo \Î+BvJ 

" ' ο \1 + Βν) \ί + Βν) (Ι + Βν)2 

I+Bvj (l + Bv)2 

1 / Bv \P/2 + m~l / 1 \ (» i+H2-2) />/2 + Ä - m - l V(jß 

- â — m — 2 du 
rv/(l +v) 

= i ; - l Up/2 + m(l — M ) ( w l + " 2 - 2 ) p / 2 + <> 

- Γ +V up/2 + m-i(l-uyn> + "2-2)p/2 + â-m-ldu. (4.31) 

From (4.31) it follows that Ε(Β\χί9 x2, u) can be expressed as 
(/>*(v)/v = </>(F)/F. Next note that integration by parts gives numerator of 
(4.31) equals 

f / V \P/2 + m ( 1 -f v\-(ni+n2-2)p/2-ô + m+ 1-j 

I \TTv) (ni+n2-2)p/2 + ô-m-\] 

(p/2 + m) 
+ v({nx +n2- 2)p/2 + ô-m-\) 

rv/(l + v) 
up/2 + m- 1/J _ w ) ( " l +n2 + 2)p/2 + ô-m-l j u 

p + 2m 
v{(nl + n2-2)p + 2ô-2m-2} 

rv/(l+v) (•v/(l +v) 
χ uP/2 + m-Hl_uyni+m-2)p/2 + ê-m-l fa (4jj) 

Jo 
Hence from (4.31) and (4.32), 

/> + 2m 
E(B\xl9x2,u)^ v{(ni+n2 — 2)p + 2ô — 2m — 2} 

(p + 2m)((nl+n2-2)p + 2) 
' F{(nl+n2-2)p + 2b-2m-2] 

(4.33) 
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so that 

, { F ) ^ {p + 2m){{nx+n2-2)p + 2) 

^ (ni + n2 — 2) p + 2δ — 2m — 2 

<2(p-2) 

if (p + 2m){(nl+n2-2)p + 2)<2(p-2)((nl+n2-2)p-2m-2)(' ,'δ>0) 
<-► p{2m(nl + n2) + 6} < p(p - 4){ni + n2 - 2) + 4m + 8 which holds 
whenever / ? ^ 5 and m < {(/? — 4)(«! +w2 — 2) — 6}/2(/Ϊ! + «2), assuming 
wi + w 2>8. Hence, for this choice of w, ^(F) satisfies condition (ii) of 
Theorem 3.2 for Q = V{= V2 = Ip. Also, for Q==Vi = V2 = Ip9 condition (i) 
of Theorem 3.2 automatically holds when p ^ 3. 

Finally, noting that v is strictly increasing in F, and using the inequality 

J
'v/(l + v) 

uP/2 + m(\ _ u\(n{ + n2- 2)p/2 + δ - m - 2 ^ 
0 

fV/(\ + V) / fi \ 

J 0 \ 1 - " / 
/•y/( 1 +v) 

^V uP/2 + >n-l(1_uynl+n2-2)p/2 + ô-m-l du^ (434) 

Jo 

one gets after direct differentiation φ*(ν)'^0. Hence φ*(ν) is fin t?. Hence, 
condition (iii) of Theorem 3.2 also holds. Therefore, when a = 0, 
Q=Vl = V2 = Ip,p^5, and 0<m< {(p-4)(nl + «, -2)-6}/2(nl +n2\ 
the HB estimator obtained in (4.27) is minimax. 

Remark A3. The conclusion given in Remark 4.2 bears strong resem-
blance to Strawderman [9] in the one sample problem. However, the 
formulation here is much more general than the one given in Strawderman 
[9 or 10]. First, the estimator is not shrunk towards zero or a prespecified 
point, but is shrunk towards the pooled mean. In Strawderman [9] , r is 
assumed to be known, whereas in Strawderman [10], r is assumed to 
belong to (y, oo ) for some y > 0. Our formulation is also more general than 
the one given in Morris [5] because there r is assumed known and {pr)~x 

is given a uniform prior on (0, oo ). 
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On Confidence Bands in Nonparametric 
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We describe a unified approach to the construction of confidence bands in non-
parametric density estimation and regression. Our techniques are based on inter-
polation formulae in numerical differentiation, and our arguments generate a 
variety of bands depending on the assumptions one is prepared to make about 
derivatives of the unknown function. The bands are simultaneous, in the sense that 
they contain the entire function with probability at least an amount. The order of 
magnitude of the minimum width of any confidence band is described, and our 
bands are shown to achieve that order. Examples illustrate applications of the 
t e c h n i q u e . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

There is a prolific recent literature on the topic of nonparametric density 
estimation and regression. In most of the research, however, the 
methodology stops at the point of constructing a "point estimate" of the 
underlying density or regression function. Some form of interval estimation 
is obviously desirable and, ideally, one would wish for simultaneous 
confidence bands. This would allow graphical answers to questions like: 

(i) Is it plausible that the true density is unimodal? 
(ii) Is there clear evidence against the hypothesis that the true 

regression function is linear? 
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In the case of nonparametric density estimation almost no work has 
been done on the confidence band aspect of the problem, although 
Hartigan and Hartigan [3] consider a version of the problem based 
on cumulative distribution functions. There has been more activity in 
nonparametric regression. Wahba [8] and Silverman [5] use a Bayesian 
interpretation of the prescription that leads to curve estimation using 
splines, to construct confidence bands. However, these are not 
simultaneous bands in the usual sense of the term. Hardie [2] proposes 
asymptotic simultaneous confidence bands in a regression context. 

The present paper develops a unified procedure for dealing with both 
types of problems. In contradistinction to Wahba [8 ] , Silverman [5] , and 
Hardie [2] , our confidence bands are not constructed as lines on either 
side of a curve estimate, but are derived from first principles as upper or 
lower bounds to the curve. In the regression case our confidence bands are 
related to those of Knafl, Sacks, and Ylvisaker [4 ] , in that they are based 
on linear (in the data) estimates of the regression function at any given 
point. However, the linear functions used here are much simpler than those 
employed by Knafl, Sacks, and Ylvisaker [4 ] , and their foundation is such 
as to make calculation of the widths of the bands very much easier. In spite 
of this simplicity, the methods are backed up by reassuring properties of 
"asymptotic optimality." 

Section 2 describes the case of nonparametric density estimation, and 
shows how formulae from the theory of numerical differentiation may be 
used to develop a succession of confidence bands under a variety of 
assumptions. The parallel development for nonparametric regression 
follows in Section 3. Theoretical results about the widths of the bands are 
given in Section 4, two illustrative examples are described in Section 5, and 
proofs are given in Section 6. 

2. NONPARAMETRIC DENSITY ESTIMATION 

The problem of determining confidence bands is closely related to that of 
numerical differentiation. The bands proposed in this section are based on 
the number of observations which lie within adjacent intervals ("cells") of 
width A. The means of these numbers equal integrals of the density over the 
respective intervals. We numerically differentiate the integrals, to obtain 
approximate fomulae for the integrands—i.e., for the density itself. The 
errors in these numerical approximations must somehow be incorporated 
into the confidence band. Now, the errors in numerical differentiation 
procedures behave in a manner more complicated than the errors in, say, a 
Taylor expansion. In particular, if numerical differentiation of a function 
F is conducted by interpolation among a sequence of points 



230 HALL AND TITTERINGTON 

a0<a{< ··· <am9 then usually the error can be expressed in terms of a 
single value of Fim + l) only when the argument lies outside the observation 
interval (a09 am). If the argument lies inside (a0, am) then the size of the 
error depends on values of several derivatives, or on several differences of 
one or more derivatives. See, for example, the discussion in Steffensen [6, 
pp. 64-65]. It would often be unacceptable to use interpolation within 
(a0, am) to estimate F' at a point outside (a0, am\ since this might involve 
relatively large error terms. On the other hand, a confidence band which 
requires knowledge about several different derivatives of the density is not 
a practical proposition. In Subsection 2.1 below, procedures (i) and (ii) 
illustrate confidence bands obtained by interpolation outside the interval 
(a0,am) (there m=l ) , while procedure (iii) is a compromise which 
sacrifices a certain amount of "exactness" in return for a smoother 
confidence band. 

The following notation will be used throughout this section. Assume that 
a random sample of size n is drawn from the distribution with density / 
Using these data, we wish to construct a confidence band for / over a 
certain interval. In that region divide the data among k cells, the cell 
numbered i comprising the interval ((/— 1)A, ih) and h being the width of 
each cell. If the true density is / then 

f(x)dx, l^i^k, 
( i - D A 

is the probability that a given data point falls into cell i. (Our convention 
that the first cell starts at the origin serves only to simplify notation.) The 
confidence bands are developed from simultaneous confidence intervals for 
the multinomial proportions /?,. Thus, we assume intervals [Ai ,p / 2 ] , 
1 ^ / *ξ k, are given such that 

Define the function fj by interpolating among the function values 

fJ{(i+y)h}^{{-y)h-% + (^y)h-1pl+lj9 (2.1) 

for K / < & — 1 , — {<y^j, and y'=l,2. Notice that f{ and f2 are 
continuous. The band between fx and f2 forms the basis for several of our 
procedures. 

The next two subsections list several different types of confidence band. 
These examples serve to illustrate the theoretical properties of general 
confidence bands based on the confidence intervals [/?n, pi2]. They form 
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the basis for the practical procedures introduced in Subsection 2.4. 
Subsection 2.3 describes construction of the intervals [pn, pi2]-

2.1. Confidence Bands under the Assumption of a Single Derivative 

(i) Given a sequence {c,} with each c,X), define 

£{( /+ y)h}^h-'pn-\{2y+\)hCi 

and 

for l^i^k and 0< y^l. If 

sup l / 'MKc,- for l^i^k (2.2) 
( i - 1 ) Λ ^ Μ ^ ( / + 1 ) Α 

then 

^ { 7 i ( * K / ( * K / 2 M for Λ^χ<(Α:+1)Λ}^α. (2.3) 

(ii) Given ε^Ο, define 

?u±{(i+y)h}=h-lpn-{(2y+l)hlf{(i+y)h}±el 

and 

72.±{(i+y)*}=A-lA2-i(2^+l)A[/ '{(f+J ')*}-(±e)] 

for 1 ^ i^k and 0 < y ^ 1, where the +, — signs are taken respectively. If 

\f(u)-f(v)\^8 

whenever 0^u^v^(k+l)h and \u — v\^2h9 then 

P{Ti. + (x)<f(x)^Ï2. + (x) for Λ$;*<(Λ+1)Λ}^α 

and 

P{Tu-(x)^f(x)<72,-(x) for A<x^(A:+l)A}^a. 

(iii) Given a sequence {c,} with each c^O, define 

/!{(/+^)A}s/1{(i + ^ ) A } - i A ( l - 3 / + 2|y|3)c/ 

and 

72{(/+>,)Α}Ξ/2{(/+>,)Α} + έ Α ( 1 - 3 / + 2|^|3Κ. 
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for l^i^k-1 and - £ < . ν < ΐ · If (2.2) holds then 

P{Ti(x)<f(x)^?2(x) for ±h^x^(k-±)h}>*. 

Remarks, (a) Procedure (ii) is introduced only to illustrate the factors 
which influence coverage probability of a confidence band; it is not 
suggested as a practical procedure. It demonstrates that the basic 
confidence intervals [Α2Ά2] are biased by an amount 
\(2y + 1 )hf'{(i+ y)h), plus smaller order terms. 

(b) By taking ε = 0 in (ii) we deduce that equality holds in 
confidence statement (2.3) if / i s linear on (0, (k+ 1)A), if each c, equals the 
absolute value of the gradient d of/ and if the intervals [pn, pi2] are of 
the form [0, pi2] (for d<0) or [ p n , 00) (for d^O). 

(c) No such "exactness" can be claimed for the confidence band 
described in (iii). However, that band has certain practical advantages over 
the earlier procedures. First of all, the function ^(1 — 3y2 + 2 \y\3) lies 
within the interval [5, 1] for — {<y<:{, whereas the function I ( 2 J > + 1 ) 
takes values as large as \ for 0 < y < 1. Therefore the band in (iii) can have 
smaller maximum width than that in (ii). Second, if the c/s are taken to be 
identical then the functions / i and J2 defined in (iii) are continuous, and so 
the confidence bands have continuous boundaries. 

2.2. Confidence Bands under the Assumption of Two Derivatives 

(i) Given ε > 0, define 

Λ±{(*+JOM=/I{(*+>0Μ + έ( ΐ -3 / )Α 2 [/"{(/+y)h}-(±sn 

and 

72.±{(i+y)h}^f2{(i+y)h} + iii'3y2)h2UH{(i+y)h}±B^ 

for 1 ^ / ̂  k — 1 and — \ < y ̂  \. If 

whenever 0^u^v^(k+l)h and \u — v\ ^ 2Λ, then 

P{Ti. + (x)<f(x)<T2. + (x) for ±A<*<(fc-±)A}^a 

and 

P{fi.-(x)<f(x)<T2.-(x) for ±h^x^(k-±)h}^oi. (2.4) 

(ii) Given a sequence {cj with each c,^0, define 

7i{(i+y)h}^fl{(i+y)h}-^l^3y2)h2cl 
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and 

?2{d+ y)h}=M(i+ y)h} + Ül-3y2)h2
Ci 

for 1 ^ / ^ A : - 1 and -{< y ^ \ . If 

SUP |/""(JC)| ^ cf- for K i ^ & — 1 , 
( i - l ) A < x < ( / + 1)A 

then 

P{?Ax)<f(x)^Ji(x) for \h^x^{k-\)h}^oi. (2.5) 

Remarks, (a) Procedure (i) is introduced to show that the basic 
confidence band ( / i , / 2 ) (see (2.1)) is biased by an amount 
£(1 — 3>>2) A 2 / " { ( / + y)h}9 plus smaller order terms. We do not propose it 
as a practical method. 

(b) By taking ε = 0 in (i) we deduce that equality holds in confidence 
statement (2.5) if f(x) = a + bx + \dx2 for arbitrary constants a,b, and d 
and O^x^kh, provided each ct=\d\ and the intervals [/>,·ι> Ρ/2] are of 
the form [0, p n ] (for d<0) or \_pn, 00) (for d^O). 

(c) If the c,'s are identical then the functions Jx and J2 defined in (ii) 
are continuous and piecewise linear. 

2.3. Simultaneous Confidence Intervals for Multinomial Probabilities 

Suppose we seek confidence bands whose coverage probability is at least 
β. The argument given in Subsections 2.1 and 2.2 has reduced the problem 
of constructing confidence bands to one of deriving simultaneous 
confidence intervals for multinomial proportions, for which there are 
several techniques. In particular, if p n and pi2 are chosen such that 

P(Pn<Pi^Pi2)>l-(l-ß)k~l, K K f c , 

then 

If pi denotes the relative frequency in cell i then the normal approximation 
to the binomial suggests taking 

Pii = Pi-dk{pi{l-Pi)n-1}1'2 and pi2 = p , + dk{A(l - P i ) n ' l } l / 2
9 

(2.6) 

where 

0(dk)=\-(\-ß)(2k)-> (2.7) 
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and Φ is the standard normal distribution function. This is the approach 
adopted in Example 5.1 in Section 5. Almost identical results (not reported 
here) were obtained using the Poisson approximation with square-root 
transformation, where dk was defined by 

0(<4) = i(i + j?1//r) 

instead of by (2.7). The above definitions are tantamount to approximating 
the p/s by independent normal random variables. 

2.4. Discussion 

The methodology developed in Subsections 2.1-2.3 leads to a variety of 
practical procedures for constructing confidence bands for an unknown 
density / The initial band is formed by the pair of functions (fi9f2) 
defined at (2.1). To compensate for errors arising from numerical differen-
tiation, extra strips are added to this band. If the absolute value of the first 
derivative of the density does not exceed c{1\ then strips of width (i.e., 
height) \hc{l) added to both sides of the confidence band provide more 
than adequate compensation. (This follows from Subsection 2.1 (iii).) If the 
absolute value of the second derivative does not exceed c(2) then strips of 
width lh2c{2) are more than adequate. (See Subsection 2.2(ii).) The bounds 
cd) o r c(2) m a y be k n o w n from previous empirical experience, or they can 
themselves be estimated by interpolation. Formulae in Subsections 2.1 (iii) 
and 2.2(ii) show that the widths of these strips do not have to be 
maintained throughout the bands but can be varied slightly over the cells. 

The procedure just described is deliberately designed to be conservative. 
The confidence bands can be thinned a little if we have additional 
knowledge about / For example, suppose we are basing the bands on the 
second derivative of / If / is convex within a certain region then only one 
compensating strip is required there—that strip of width ^h2c(2) below the 
lower function f{. If / is concave within a certain region, then only the 
upper strip of width \h2c{2) above f2 is required there. Again, the strips 
may be reduced in places according to the formulae in subsection 2.2(ii). 

An alternative approach is to estimate not just a bound to / ' or /" , but 
the entire function. For example, if the procedure is being based on second 
derivatives and if / " is an estimate of /" , then approximate upper and 
lower confidence limits are given by 

?l{(i+y)h}=f1{(i+y)h}+i(l-3y2)h2f"{(i+y)h} 

and 

J2{(i+ y)h}=f2{(i + y)h} + i(\-3y2)h2f"{(i+ y)h), 



NONPARAMETRIC CONFIDENCE BANDS 235 

respectively, for l^i^k-l and -^<y^jl see Subsection 2.2(i). While 
this approach will give narrower confidence bands, it is difficult to be 
certain about the direction of the error in coverage probability. 

3. NONPARAMETRIC REGRESSION 

The case of nonparametric regression is similar in many respects to that 
of density estimation, and so we shall give only an outline. The only essen-
tial difference between the two cases is that we no longer estimate an 
integral, but a sum, the arguments of the terms in the sum being design 
points in the regression. This change introduces a second error term into 
the procedure, due essentially to approximation of the integral by the sum. 
The confidence bands have to be adjusted accordingly. 

We shall assume that observations are made at equally spaced design 
points, distant δ apart. See Section 3.4 for discussion of this restriction. 
Without loss of generality, the design points are the points jo for integers j . 
The model declares that the observations Yj have the form 

Yj=g(fi) + ej9 

where g is a smooth function and the e/s are independent normal N(0, σ2). 
In the region of interest, divide the Y/s among k cells, the /th cell 
containing those pairs (jo, Yj) of observations such that (/— l)h^jô^ih, 
1 ̂ i^k, where h = mô for an integer m. (Thus, the very ends of the cells 
overlap.) We shall treat two different estimates of the mean in cell i, 

Y(
i
1)^m-i(Y(i_i)m+Yu_l)m+i+.-- + Ylm_l) 

and 

Yi ~m ( 2 / (l;_ i )m + / ( / _ i )m + i + · · · + Yim - 1 + 2 Y im )·> 

whose respective means are 

ßY) = m-xlg{(i-\)h} + g{(i-\)h + 6} + . . .+g{( /_ l )A + (/fi-l)a}] 

and 

+ . . . + g { ( / - l ) A + (m-l)5}+ig(iA)] , 

and whose variances are m~xo2 and m~2(m — {)a2. Note that the 
expressions for Ϋ\Χ) and Ϋ{2) are directly related to the Rectangle Rule and 
Trapezoidal Rule for numerical integration; see, for instance, Abramowitz 
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and Stegun [9, p. 885]. Let \_ß\{\ ß\$~\, l^i^k, be simultaneous 
confidence intervals for the //^'s, with 

/ W < A 4 ° < # & !</<*) = « (3.1) 

for j = 1 and 2. 
Both Pj^and FJ2) are normally distributed, and the confidence limits ß\p 

would usually be based on this fact; see Subsection 3.3 below, where 
methods of constructing the intervals [μ,φ, μ^}] are described. The 
variables Ϋγ\ l^i^k, are independent, although the variables Fj2) are 1-
dependent. This makes it a little easier to construct confidence bands based 
on the Y\l)% than on the FJ2),s. We use the FJ2)'s when constructing 
confidence bands under the assumption of bounded second derivatives. 

Next we define analogs of the functions fx and f2 from Section 2. Set 

gy*{(i+y)h} = ti-y)fi<iP + tt + y)fiWu, (3.2) 
for j= 1, 2, /= 1, 2, 1 ^i^k—1, and — \< y^,\. 

3.1. Confidence Bands under the Assumption of a Single Derivative 

(i) Given a sequence {c,} with each c,^0, define 

g1{(i + y)h}^fi^-i{(2y+l)h + ô}ci 

and 

|2{(/+^)Α}Ξ/2/ψ + ΐ{(2^+1)Α + Μ^ 

for 1 < ι ^ k and 0 < y ^ 1. If 

sup |g'(")l<<\· for 1^/^Ä: (3.3) 

then 

^ { S i ( * K s ( * K £ 2 M for A^x^(A:+l)A}^a. 

(ii) Given ε^Ο, define 

g!.±{(i+ y)h}=fiff-i{{2y+l)h + S}lg'{(i+ y)h}±e2 

and 

| 2 , ± { ( / + j ) A } = ^ ) - H ( 2 j + l ) A + ^}[g ' { ( /+j )A}- (± e ) ] 

for 1 ^ / <k and 0< y^ 1, where the +, — signs are taken respectively. If 

\g'(u)-g'(v)\^e 
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whenever 0^u^v^(k+l)h and \u — v\ < 2Λ, then 

^{Si.+ (*X£(■*)<&. + (*) f o r h^x^(k+l)h}>oi 

and 

P{gi,-(x)^g(x)<g2,Ax) for Α<Λ:<(Α:+1)Λ}^α. 

(iii) Given a sequence {c,} with each c,^0, define 

&{(i + >,)/,} = £<i>{(/ + > , ) / , } - i { ( l - 3 / + 2 |y\ i)h + 6}ci 

and 

g2{(/+>;)/I} = g< ' ){ ( i + > ; ) / I }+ l{ ( l -3 / + 2 |^ 3 ) / I + ^}c/ 

for i^i^k—l and — j < y ^ j . If (3.3) holds then 

P{gl(x)^g(x)^g2(x) for ^h^x^(k-i)h}^oi. 

3.2. Confidence Bands under the Assumption of Two Derivatives 

(i) Given ε>0, define 

èi.±{(i+y)h} = ê?){(i+y)h} 

+ i
6{(l-3y2)h2 + iiô

2}[g"{(i + y)h}-(±eK 

and 

gx±{(i+y)h} = g2
2){(i + y)h} 

+ m-3y2)"2 + 2-ö2}[g"{(i+y)h}±el 

for K i ^ i - 1 and — 5 < y ^ 5 . If 

\g"(u)-g"(v)\^e . 

whenever 0^u^v^(k+ \)h and |u — v\ ^2Α, then 

/'{Si. + frK *(*)<&. + (*) for i A ^ * ^ ( * - i ) A } > « 

and 

^ U i . - 0 0 < * ( * ) < &.-(*) for iA^x<( / : - i )A}^a . 

(ii) Given a sequence {c,} with each c,^0, define 

£,{(/ + y)h} = g^{(i+y)h}-i{(l-3y2)h + ^2}Ci 

237 
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and 

Uii+y)h) = ê?{{i+y)h} + î{{\-iy2)h2 + hô2}Ci 

for 1 ^ / ^ f c - 1 and -\< y^\. If 

sup |g"(*)l^c,· for l^i '^fc—1, 
( / - 1 ) A ^ J C < ( I + 1)A 

then 

P{gi(x)^g(x)^g2(x)ioT\h^x^(k-{)h}>oL. 

Remarks. The confidence bands in Subsections 3.1 and 3.2 compare 
directly with those in Subsections 2.1 and 2.2. Remarks similar to those 
earlier may be made about exactness, bias, etc. The terms in δ and δ2 in the 
confidence limits compensate for the extra source of error in the regression 
case. 

3.3. Simultaneous Confidence Intervals for the μ,Λ? 
We shall concentrate on the case of two-sided confidence bands. Suppose 

first that the error variance σ2 is known. Let Φ denote the standard normal 
distribution function, and zy the solution of 2Φ(ζγ) - 1 = y, where 0 < y < 1. 
Define 

#2)= Y^-m'-\m-\)^azy, μ\ψ= f<2> + m~ V - \Y,2c.y. 

Then 

for j = 1, 2. Consequently, 

Ρ(/Ϊί}> ̂  μ̂ > ^ μ̂ > for 1 ^ / ̂  Â:) = ŷ  

and 

P(fiiV < 0/2) < fiiV iorl^i^k)^ yk. 

Taking y = (xl/k will give simultaneous coverage probability very nearly a in 
both cases. To construct a strictly conservative procedure in the case of 
μ{2\ suppose for the sake of argument that k is even. Let ^ denote the 
event that β\2) ^ μ\2) ^ fi\2) *s false· Since the variables Y\2) are 1-dependent, 

(3.4) 
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\odd/ even/ / 

>\-p(\)i\-p{\) s\ 
>oddi ' \even/ / 

= 2y* / 2 - l . 

If the error variance σ2 is unknown, we may construct a slight 
overestimate of it. Let Sf be the set of all differences Y2j — Y2J-1 such that 
neither 2/ not 2/ — 1 is of the form im for an integer /. Assume Sf has r 
elements, and let 

2^ 

Then (r—l)a2/a2 has the chi-squared distribution with r - 1 degrees of 
freedom and a noncentrahty parameter and is independent of Y[j\..., 7[J) 

for 7 = 1 , 2 . Let Φτ-Χ denote the distribution function of Student's / with 
r— 1 degrees of freedom, and ty the solution of 2Φ Γ _ 1 ( / ν ) - 1 =γ. Define 
ß\p as in (3.4), but replacing σ by â and zy by iy throughout. Then 

and 

/>(/lif) ^ μ\2) ^ fiW for 1 ^ i ̂  Λ) - yfc; 

see Johnson and Kotz [10, p. 193]. 

3.4. Discussion 

Here we use the results of Subsections 3.1-3.3 to develop practical 
procedures for setting confidence bands. 

The first derivative of g represents the rate of change of that function. In 
practice an upper bound to this rate can often be set from physical 
considerations, from previous empirical experience, or by direct estimation. 
If it is known that |g'| does not exceed c(1) then the confidence band may 
be taken to be the band formed by the pair of functions (g[l\ g2

1]) (defined 
at (3.2)), plus an extra strip on either side of width (i.e., height) {(h + <5)c(1). 
If |g"| does not exceed c(2) then we add strips of width £(A2 + ^ô2)ci2) to 
either side of the band formed by the pair (g[2\ g{

2
2)). In both cases the 

upper strip may be deleted if it is known g is convex, and the lower strip 
deleted if it is known g is concave. The full width of the strips does not 
have to be maintained throughout the band; see the formulae in 
Subsections 3.1(iii) and 3.2(ii). All these procedures are conservative and 
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give coverage probability at least a, where a is the simultaneous coverage 
probability of the intervals [fl\{\ fi$y9 see (3.1). 

An alternative approach is to estimate g' or g" directly. For example, if 
g" is an estimate of g" then 

gd(^ y)h}^g[2){(i+ y)h}^U^-^y2)h2^^2} gf'{(i+ y)h} 

and 

g2{(i+ y)h} = #>{(i + y)h} + i { ( l - 3 / ) A 2 + ^ 2 } g"{«+ y)h], 

for 1 ^ i ̂  k — 1 and — { < y < \, are lower and upper confidence bands, 
respectively, with coverage probability "approximately" a. 

Analogous confidence bands may be described without the assumption 
that design variables be equally spaced. Then formulae based on more 
complicated weighted averages should be used in place of the simpler 
bounds described above. In the case of the procedure proposed by Knafl, 
Sacks and Ylvisaker [4] , similar formulae are required to evaluate the bias 
bound B(t) which appears in the expressions for their bands. 

4. WIDTHS OF CONFIDENCE BANDS 

We begin by describing widths of the confidence bands developed for 
densities in Section2. Assume that A-»0 like n~r for some 0 < r < 1, and 
k-> oo like A-1. Let />, equal the proportion of the sample falling into the 
/th cell, and suppose / is bounded away from zero and infinity within the 
region of interest. In view of results for probabilities of large deviation (e.g., 
Feller [1]), the numbers ε, defined by either 

P(pi-si^pi^pi + ei)=l-(l-ß)k-{ 

or 

satisfy 

ei~n-i/2p)'2(2\ogkY,2~n-l,2{2f{ih)h\ogkY/2. 

(Notice that although ε, depends on /?, the dominant term in an asymptotic 
expansion of εζ does not depend on /?.) If the confidence intervals [ρίΐ9 pi2] 
are two-sided then pi2 — pn ~ 2e/5 and so the width of the band separating 
fx and f2 (see (2.1)) is asymptotically 

2A-1e/-{8/(/A)}1/2{(AzA)-1logA:}1/2. (4.1) 
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The practical procedures suggested in Subsection 2.4 lead to a confidence 
band whose width equals this amount, plus an extra term of order A or A2 

to allow for the strips added to the band (/i , /2) . Let us assume we are 
working under the assumption of a bounded second derivative, so that the 
extra term is of order A2. If A = const «"r then this extra term is 
insignificant when r^\, but dominates when r<\. Bearing in mind that 
log k ~ const log n, we see that the minimum confidence interval width is 
obtained by choosing A such that (nh)~l log n and A4 are of the same order 
of magnitude. This gives A~const(«-1 logw)1/5 as the "optimum" 
achievable by our method and results in a confidence band whose width is 
approximately («_1 log«)2/5. A similar argument in the case of a bounded 
first derivative gives the "optimal" A to be of order (n~l logw)1/3, and a 
confidence band of width approximately (n~l log«)1/3. 

Let us assume / has t bounded derivatives. The discussion given above 
shows that if t = 1 or 2, and for a given coverage coefficient a 6 (0, 1 ), we 
may construct a confidence band of fixed width C(n~l logn)t/{2t + 1) which 
covers / with probability at least a. Here C is a constant not depending on 
n. It is possible to generate procedures which give confidence bands with 
this property for any given t^\. They are based on higher order inter-
polation formulae but will not be discussed in detail here since they do not 
seem to be of general practical interest. 

In fact, the constant C may be chosen such that the coverage probability 
is at least a for all /'s in a large class of densities. Suppose the density / is 
to be estimated in the interval (0, 1 ). Let 0 < a < 1, b>0, c>0, and / ^ 1 be 
an integer, and let & = ^(a,b,c, t) denote the class of all functions / 
satisfying 

a^ l/(*)l ^a~l and l/(/)(*)l ^ whenever — czix^l+c. 

We may choose C=C(a, b, c, t) so large that a confidence band B of width 
C(n~l log«)'/(2/+1) covers / with probability at least a, uniformly in 
densities fe^: 

inf PAf(x) e B for 0 ̂  x ^ 1} ^ a, (4.2) 

A2̂ 2. (The cases t= 1 and 2 are dealt with in Subsection 2.4.) 
The width of order (n~l log«)'/(2' + 1) is "optimal," in the sense that no 

procedure can produce fixed-with confidence bands whose width is of a 
smaller order of magnitude. To see this, we first define the notion of a 
general fixed-width confidence band B. Let ξ{·): [0, 1] ->R be a random 
function, and let w ^ 0 be a random variable. Both ξ and w may depend on 
the data, but not on / Hence they are "nonparametric" in character. Let 

B = {(x, A) : 0 ^ x ^ 1 and ξ(χ) ^y^ ξ(χ) H- w}. 
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In a slight abuse of notation, we say that "f(x)eB for O ^ x ^ 1" if the 
ordered pair (x,f(x)) is in B for O ^ x ^ l ; that is, if the function / ( · ) 
restricted to [0, 1] lies between the functions £(·) and ξ(\+ w. We call B a 
"confidence band of width w and uniform coverage probability at least a 
for a l l / e J^", if (4.2) holds. 

An extreme case of this type of band has ξ = 0 and 

f0 with probability 1 — a 
w = < 

[ oo with probability a. 

Any statement we make about the size of w must take account of this 
pathology. In particular, the limit at (4.3) below may equal a, not 1. 

THEOREM 4.1. Suppose the confidence band Bn9 of width wn, satisfies 

inf PAf(x)eBnfor0^x^\}^(x, n>\. 

IfO<(x<l is fixed then for some η>0, 

lim inf sup Pf{wn^r\(n~x log«)'/ (2'+1)} ^a. (4.3) 

If wn is non-random, as in the examples considered earlier, then this 
theorem declares that no fixed-width confidence band can be narrower 
than η(η~ι log AZ)'/(2/+1), for large «, if it is to have uniform coverage 
probability at least a. 

The regression case is very similar, and so we only sketch the details. 
Assume the regression function is to be estimated in the interval (0, 1 ), and 
that the design points are distant δ = n ~l apart. If the error variance σ2 

is known, then the techniques suggested in Subsection 3.4 (and their 
analogs for t^3) give confidence bands of width no more than 
const(«_1 log«)'/(2/ + 1) with probability at least a for all ge^, provided h 
is taken to be a constant multiple of (n~l log«)1/(2/ + 1). If the error variance 
is unknown then it should be estimated, as outlined in Subsection 3.3. The 
resulting confidence band width wn is a random variable, satisfying 

inf PJw„^constin-1 log >z)'/(2/+1)} -► 1 
ge^{a,b,c,t) 

as n -► oo. Again, a coverage probability of at least a may be achieved for 
all ge &. 

The theorem below is an analog of Theorem 4.1 in the regression case. 
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THEOREM 4.2. Suppose the confidence band Bn, of width w„, satisfies 

inf PJg(x)eBnfor0^x^l}^(x9 n^l. 
ge&(a,b,c,t) 

IfO<OL<l is fixed then for some η>0, 

lim inf sup Pg{wn^η{η~ι log n)'/i2t+l)} >a. 

n->ao ge&(a,b,c,t) 

In theory it is possible to choose h so as to minimise the area of 
confidence bands. For example, suppose we are constructing a band for the 
density / under the assumption that \f"\^c. We start with the band 
separating fx and f2 (see (2.1)). The distance between f and f2 at x is 
asymptotic to 

{sf(x)y/2{(nh)-liogky^ 

see (4.1). To this we add two strips of width \h2c. Therefore the asymptotic 
total area of the confidence band for /, drawn between xx and x2, is 

A(h) = \X\{mx)}l/2{(nh)~l log k}l/2 + \h2c]dx. 

If we set h = d(n ~1 log n )1/5, then k ~ const h ~1 and 

A{h)~{(l)12 d~1'2 Γ f^Max^cd^-x^hn-'logn)2^ 

which is minimised by choosing 

rf=J3.10-1/2c-1(^2-^i)_1 j X 2 / 1 / 2 ( ^ ) ^ j 
I 2/5 

Although this formula is not of explicit practical use, it does suggest advice 
concerning choice of the bandwidth h. In particular, larger values of c and 
smaller values of / both dictate smaller values of h. 

5. ILLUSTRATIVE EXAMPLES 

In this section we report on applications of the procedures developed 
earlier to two particular examples. 

EXAMPLE 5.1 (nonparametric density estimation). A set of « = 900 
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independent pseudorandom values were generated, using the NAG Fortran 
subroutine library, from the mixture density 

f(x) = 0.2Be(x; 1,2) + O.SBe(x; 2, 1 ), 0 < x < 1, 

where Be{x\ α, β) denotes the density of the 2te(a, ß) distribution. Thus 
f(x) = 0A+l.2x, so that 

sup \f'(x)\ = 1.2. 

The value of k was chosen initially to be 30 and h was taken to be 
l/k = jQ. The pairs {(pil9 pi2), /=1, . . . , k} were chosen using the normal 
approximation discussed in subsection 2.3. Specifically, they were given by 
(2.6) and (2.7) with 0 = 0.95 (for a 95% confidence interval). 

For the sake of realism it was decided to construct confidence bands 
under the assumption of a single derivative satisfying 

sup \f'(x)\^c. 
0<x< 1 

Thus, each ct — c. We took c = 3, which is of course conservative. 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

+ 

0.0 

-0.5 

-1.0 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

FIG. 1. Bands I through IV in case of nonparametric density estimation, for k = 30. 

I I 
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Figure 1 depicts the following functions: 

(I) (Pn> Pn\ displayed as piecewise constant plots; 
(II) (fi(x), f2(x)\ from (2.1), piecewise linear; 

(III) (7i(*), J2{x)\ from Subsection 2.1(i); 
(IV) (/^JC), J2{x)\ from Subsection 2.1(iii). 

Figure 2 extracts the pair given by (IV). That is the most pleasing of the 
four pairs in Fig. 1. Of course the results still exhibit a lack of smoothness. 
Remember, however, that any envelope of a conservative confidence band 
is also a conservative confidence band, and so one may smooth out the 
bumps in a variety of ways. 

To investigate the effect of changing k, Fig. 3 depicts the results 
corresponding to Fig. 2 but with k = 50. Note that, inevitably, the bands 
are wider. The appearance would be generally much improved if bounds 
were placed on f"(x). 

EXAMPLE 5.2 (nonparametric regression). The data used here were a 
subset of larger set of data kindly supplied by Dr. E. M. Scott. The 
variables are those of radiocarbon age and tree-ring age, both measured in 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

FIG. 2. Band IV in case of nonparametric density estimation, for k = 30. 
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FIG. 3. Band IV in case of nonparametric density estimation, for k = 50. 

years before 1950 A.D. and thinned and rounded so as to achieve equal 
spacing of the tree-ring ages. Altogether 180 points were included and, 
initially, we chose k = 30 so that, in (3.4), m = 6. For simplicity we used the 
non-overlapping means Ϋγ\ and constructed the bands with jS = 0.95 and 
under the assumption of a single derivative, with uniform bound c = l on 

A somewhat different estimator for σ was used than that discussed in 
Section 3.3. To be specific, we took 

where st is of the form 

Si = yi-(yi+i + yi-i)/2 

and the summation is over all / such that none of /— 1, /or i + 1 is of the 
form im or (im+ 1) and such that all triples (i— 1, /, i + 1) are distinct. The 
symbol r denotes the number of such triples. This estimator is based on the 
residual of yt from the straight line based on yt_x and yiJtX. 
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FIG. 4. Bands I through IV in case of nonparametric regression, for k = 30. 
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FIG. 5. Band IV in case of nonparametric regression, for k = 30. 
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FIG. 6. Band IV in case of nonparametric regression, for k= 15. 

Figure 4 displays the data points along with the bands: 

(I) {fiWK ß\l2\ displayed as piecewise constant plots; 

(II) (g[l)(x)9 έ{
2
ι)(χ))> fr°m (3-2), piecewise linear; 

(III) (g[l){x\ g2
l)(x)) from Subsection 3.1(i); 

(IV) (g[l)(x), g2
l)(x)) from subsection 3.1(iii). 

Figure 5 isolates the bands defined by IV. As in the case of Example 5.1, 
slight difficulties with the ends of the range of the tree-ring ages led to the 
bands being drawn only over a restricted range. 

The estimate of σ was à = 54.1, based on r = 25. Finally, Fig. 6 gives the 
version for k= 15. In this case rf15 = 2.94, m= 12, and <r = 54.2, based on 
r = 41. 

6. PROOFS 

6.1. Proofs for Sections 2 and 3 

In the work below, g stands for either / or g. 
If g has a continuous first derivative on ((/— 1)A, (/ + 2)A), then for 

f g(u)du = hg{(i+y)h}-±2(2y+l)h2g'{(i+ξ)h}, (6.1) 
J ( / - 1 ) A 
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where - 1 ^ ξ(ί, A, y) < 1. (This follows from formula (16), p. 64 of 
Steffensen [6], on taking "m" = V = l and "/" equal to an indefinite 
integral of g.) Results in Subsections 2.1 (i) and 2.1(H) are immediate 
consequences. (The case where g is not continuous is handled by 
approximation by a continuous g.) By Taylor expansion, 

g(a) = ô~l Γ + <5 g(u)du-ôÇ g'{a + ôt)(\-t)du 

a n d so 

μ<1> = Α - 1 g(u)du-m-xb\ £ g' {(i - \)h + jô + δί}(1 -1) dt 
J ( i - 1 ) A J0 j = 0 

= g{(i+y)h}-[\(2y+l)hg'{(i + ξ)h} 

r i m-1 η 

+ m-xô\ X g'{(i-i)h + jS + ôt}{l-t)dt\9 (6.2) 
Jo y = o J 

using (6.1). Results in Subsections 3.1(i) and 3.1 (ii) are immediate 
consequences. 

Next we assess the error of piecewise-linear approximants such as / \ 
and f2. Observe that the remainder Ri(y) in the formula 

(6.3) 

may be written as 

^i(^) = A2[Q + j ) ( l - ^ 2 j ^ H ^ + ^ + i(l-^))}(l-0* 

-2/f1 g>{h{i+y-ty)}{\-t)dt 

-(^-yyi + y)2\\'{h(i+y-t{\+y))}(\-t)dt]^ 

if g is differentiable. (Use the integral formula for the remainder in a Taylor 
expansion.) Therefore if |g'| <c,on ( ( / - \)h, (i+ l)h), and -\< y^%, 

|Ä.( j )K| / ' 2{(l + >')(l->')2 + 2|>'|3 + ( i - j ) ( l + >')2}c, 
= i A 2 ( l - 3 / + 2|j|3)c,.. 
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This gives the result in Subsection 2.1 (iii). Using the first line of (6.2) we 
obtain 

Ü-y)ß\l) + ({ + y)rilli = g{(i + y)h} + h-lRAy) + *2(yl 

where \R2(y)\ ^i<5c,. This gives the result in Subsection 3.1 (iii). 
If g has two derivatives then the remainder Ä,(y) defined by (6.3) may 

be written as 

^i(^) = ^ 3 [ Q + ^ ( l - 7 ) 3 { o
1 ^ { A ( / + y + t{\ -y))}(i-t)2dt 

+ 2y*C g»{h(i+y-ty)}(l-t)2dt 

+ (\-yyi + y)3fog"{Hi+y-t(i + y))}(i-t)2dtl 

again by Taylor expansion. For — î < . y ^ 3 the functions (j +y)(l — y)3, 
2y* and ( | — y)(\ + y)3 are non-negative and add to 1 — 3y2. Results in 
Subsections 2.2(i) and 2.2(H) follow from these properties. In particular to 
prove (2.4), notice that 

P{ / . . _(x) </(*) < K -(x) for \h < x < (k - i)A} 

<^[7i . -{( ' " - i )*}^/{( ' ' -e )A}<72. -{( ' - i )A}for l<i<*] 
= PiIl,-{U-i)h}+h-lpi-f{(i-i

2)h}^h-1pi 

<72.-{(«"-i)A} + A- I / ' / - /{ ( ' " - i )A}for l^ i<*] 
</>[7i{( ' --è)A}<A"l/ ' i<72{(/-i)A}forl<i^A] 
= P(Pi.</>,< Pa for 1 < i < k) = a. 

By the Euler-Maclaurin expansion, 

ä j î ( e ) + «(fl + i ) + ·■ +g{a + (m-l)ô}+-g(a + mô)\ 

and so 

tt-y)ri2) + tt + y)ßftl = g{V+y)h} + h-lRl(y) + R2(y), 
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where 

1 r1 Γ/1 \ m~l 

Results in Subsections 3.2(i) and 3.2(ii) are immediate consequences. 

6.2. Proofs of Theorems 4.1 and 4.2 

We shall conduct the proofs together. Fix z 1 ? z 2 > 0 , let m equal the 
integer part of z^n2'log n)m2t+l\ k equal the integer part of 
z2{n/\ogn)m2t+i\ and 

h = mn~l ~zAn'1 log n)i/i2t+l\ 

Fix d>0 and let φ be a non-degenerate function on ( — 00,00) with the 
properties: 

(i) φ vanishes outside (0,1); (ii) φ has at least / + 1 bounded 
derivatives on ( — 00,00); (iii) sup \φ{ί)\^ά~ιο; (iv) $φ = 0. Given a 
sequence Θ = (0O> ···> 0*-1) of 0's and l's, set 

φ(χ) = φ{χ\9) = αΙΙ + θ,Ιιιψ{Ιι-ι(χ-αι)}] 

for /A<x^( /+1)A and O^i^k— 1, and ^(x) = rffor x < 0 and x>kh. 
Then Jo ^ ^* = ^ s o ^ restricted to [0, 1 ] may be regarded as part of a 
probability density if 0 < d< 1 and n is large. Notice that φ e ^{a, A, c, t) if 
a < d and n is large. We shall take the density / or regression function g to 
equal ^ ( |θ ) on [0, 1], for some 9e<9= {0, 1}*. 

Let s = sup |^|. If the confidence band Bn is of width wn and wn ^ \ds A', 
we define 0, = 1 if 

{x,dl\+h^{h-\x-ih)}])eBn for /A<x^(/+1)A, 

and ö, = 0 otherwise. If wn>{dsh\ define 0, arbitrarily. Let Θ be the 
fc-vector whose ith element is 0,. If w„^\ds A' and ^χ) = φ(χ\&)βΒη for 
0 ^ x ^ 1, then 0, = 0, for 1 ̂  1 ^ k. Therefore in the density case, 

Pj(wn > \ds A') ^ Pf{ôi Φ 0„ some 1, and / ( x ) G 5W for 0 ^ x ^ 1} 

A similar inequality holds in the regression case. Therefore the proof will be 
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complete if we show that for any sequence of estimates 0, of 0,, and for zt 

sufficiently small, 

lim sup inf P/0 , = 0„ 1 ^ i ̂  k) = 0. (6.4) 
n->ao fe^ 

(Interpret / as g in the regression case.) 
Let Pe denote the probability measure under the assumption that ^(·|θ) 

is the true density function or true regression function. Define 

9e<9 

for events S. In the density case, let Xx,..., Xn be the random «-sample from 
/, and set 

^ Π Ε ΐ + ^ Ι * - 1 ^ " « ) } ! 

where ^ denotes the set of values j such that Xj lies within the interval 
^ΞΞ [/A, (/+ 1)A). In the regression case, let 

Α/Ξ6χρ('(2σ2)-1Γ2^Σ(77·-^)ιΑ{Λ-1(7"-1-^)} 

»,· J/ 

where #,· is the set of values 7 such that jn~l eJt. Notice that in both cases, 
kt is a likelihood ratio for 0, = 1 over 0, = 0. Let y denote the set of all 
data—either all the sample values Xj in the density case, or all the pairs 
(jn~l

9 Yj) in the regression case. Conditional on Se, and under the 
probability measure P+, the 0,'s are independent zero-one variables with 

P*(ei=\\<e) = ki/(ki+\)EEPh 

say. Therefore 

Pm(ôl = el9l^i^k\Se)=Y\ Pje^ÔJSe). (6.5) 
/ = i 

Conditional on £f, the 0,'s are fixed, and so 

P*Wi = Θ,, | Se) ̂  max(p„ 1 - Pi) = <?,, (6.6) 
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say. Let N, equal the number of subscripts in %9 and N. = £f= ι N(. (In the 
regression case, the JV/s are fixed.) If 

P*(qi<l-e\Ni9N.)>Pi (6.7) 
then 

Em(qi\NhN.)^(l-e)Pt(qi^l-e\Ni9N.) + Pt(qt>l-e\Ni9N.) 

^ 1 - epi ^ exp( -ερ,). (6.8) 

Conditional on Ji ={Nl9 ,..9Nk}9 the /?;'s are independent and the 
conditional distribution of pt depends only on Nt and N.. Combining this 
observation with (6.5), (6.6), and (6.8), we conclude that 

Ρ^θ^θί91<ί^\^)^ΥΙ E{qi\Ni9N.) 
/ ' = 1 

^expf-ε Σ pX (6.9) 

where p, is any number satisfying (6.7). 
Take e = uk~l, for arbitrary but fixed M>0. For sufficiently large n, 

Pt(qt^l-e\NltN.) 

= Ρ^{ε(1-ε)~ι^λι^(1-ε)ε-1\Νι,Ν.} 

>P,\]agX,\^loge-l\N„N.) 

>lP.{\logXl\*Ht+l)-ilogn\Nl,N.,el = 0} 

^ ^ l - ^ i + n a o g n J - ' ^ l l o g A , ! \Ν„Ν.,θ, = 0)}. (6.10) 

In the density estimation case, and for large n, it follows from the definition 
of λ, that 

llog^KA' + Α2'Σ^2{Α-!(^-Λ)}. 

Applying the Cauchy-Schwarz inequality to the first term on the right-
hand side, we see that 

£(|log A,| | N„ N„ Θ, = OK h'(N, sup φ2)1'2 + Η*Ν, sup ̂ 2 

<2max(l,A2W,s2). (6.11) 

If each N,^2dnh then by (6.10) and (6.11), and for large«, 

P,(?,<l-e|JV,,JV:)>i{l-8(f+l)(log»)-12<M* + 1j2} 

> | {1 -17 ( /+1 )Α 2 ζ 2 , + , } > $ 
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provided 

n(t+l)ds2z2
x
t+l^{. (6.12) 

In this case we may take each pt = \ in (6.7). Therefore by (6.9), 
k 

Ρ+(ο, = θ„ l^i^k)^exp(-ek/4) + £ P *{N t> 2dnh). 
/ = i 

Since E^N^Kdnh then it may be proved by Chebychev's inequality that 
k 

£ P+{N,>2dnh)^0. 
i= 1 

In consequence, provided z{ satisfies (6.12), 

lim sup inf Ρ/Θ^θ^ 1 ^i^k) 

^ lim sup PJ$t = 0,·, 1 < ι < fc)< exp( - w/4). 
n -* oo 

(Recall that e = uk~l.) Since this is true for each w>0, the lim sup on the 
left-hand side must equal zero. This proves (6.4). The regression case is 
similar. 

Some techniques in this proof are borrowed from Stone [7]. 
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A Note on Generalized Gaussian Random Fields 

TAKEYUKI HIDA 

Nagoya University, 
Nagoya, Japan 

Given a generalized Gaussian random field on a domain D in Rd, we are 
interested in a restriction of the parameter to a lower dimensional submanifold and 
discuss the variation when the manifold varies. © 1988 Academic Press, inc. 

0. INTRODUCTION 

The present work has been motivated by P. Levy's results [1] and 
papers [5, 6, 8-10] by others. When we discuss a Gaussian random field, 
we often meet a conditional expectation or the same as the best linear 
predictor of its value at a point, under the condition that the values are 
given on a certain manifold of the parameter space of the random field. 

If the manifold changes, we may think of the variation of the conditional 
expectation which features certain properties of the field. In order to 
discuss such a property, we have to prepare some basic facts about 
generalized random fields as well as its restriction to a submanifold of the 
parameter space. Unlike the one-dimensional parameter case, we have to 
be careful about how one restricts the random field according to the 
restriction of the parameter, and we even note that the method is often 
used in applications, for example, in quantum field theory. 

1. WHITE NOISE AND GAUSSIAN RANDOM FIELDS ON D 

We start with a white noise on a bounded domain D in the rf-dimen-
sional Euclidean space. The boundary dD is assumed to be a C°°-manifold. 
Then the domain D satisfies the cone property (see [2]). Now take the 
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Sobolev space Hm(D) with m > d/2, and we wish to establish the imbedding 
mapping 

Hm(D)-*L2(D) 

which is of the Hilbert-Schmidt type. 
Let C(<J), £e//m(Z>), be a characteristic functional given by 

C(i) = exp[-^^i(/)2*| 

Then we obtain a probability measure μ on H~m(D\ the dual space of 
Hm{D), such that 

C(i)=f exp[i '<*,0]*(*) . 

The μ thus obtained is called a white noise measure on H'm(D). 
Let <*,<!;> be the canonical bilinear form connecting H~m{D) and 

Hm(D). Once £ is fixed, <*,£> = £(·*) is a random variable on the 
probability space (H~m(D)9 μ). The closure, in the Hubert space 
L2(H-m{D), μ\ of the linear space spanned by the <JC, £>, £e//m(Z>), is 
denoted by J#[(D) or simply by J^. 

The «S -̂transform introduced in [7] 

(^φ)(ξ)=\ φ{χ + ξ)αμ{χ)9 q>eJfl9 
JH-m(D) 

gives us an isomorphism 

Jfi^L2(D) 

through the correspondence: 

cp<r+Fe L2(D) (surjection), 

where 

(#>φ)(ξ)=\ F(uK(u)du 

and M\^ = \\F\\L2{D). 
We often meet Gaussian random fields which are expressed as a system 

of variables in Jt[. Such a field is said to be expressed in terms of white 
noise. 
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A probability measure v associated with a generalized Gaussian random 
field can also be defined in the same manner as a white noise. A generalized 
Gaussian random field X = {Χ(ξ), ξβΕ}, with a suitable choice of a 
function space E, is a continuous linear mapping of E to the space of 
Gaussian random variables. As is well known, the mean ηι(ξ) = Ε((Χ(ξ)) 
and the covariance functional Γ{ξ, η) = Ε{{Χ(ξ)-νη(ξ)){Χ{η)-ηι{η))\ 
completely determine the probability distribution v of {Χ(ξ),ξβΕ} on a 
space of generalized functions. If we are given an ordinary random field 
denoted by {X(t)9 teD}, then it is identified with a generalized random 
field {Χ{ξ), ζ^Ε), in such a way that 

* ( { ) = [ Χ(ί)ξ(ί)Λ9 

where we assume some regularity of X(t) in t so that the mapping 

ξ^Χ(ξ), ξβΕ, 

is continuous. 
For a generalized Gaussian random field we can define a Hubert space 

J#[{D) as in the case of a white noise, and the space forms a Gaussian 
system. 

2. RESTRICTION OF PARAMETER 

Our main topic is concerned with the restriction of the parameter of a 
generalized Gaussian random field X to a submanifold of D. 

(i) First consider the case where the parameter is restricted to a 
rf-dimensional C °°-submanifold D' of D. Then, the regular imbedding 
mapping D' -► D naturally determines the injection 

JÎÏ(D')-*Jlî(D). (1) 

With such a relation, we can proceed to the investigation of various 
stochastic properties of the field X (for instance, see [6]). 

(ii) We are particularly interested in the case where a\m(D')<d. To 
fix the idea, let X be a white noise and let D' be a boundary of a d-dimen-
sional C°°-submanifold Dl of D: D' = dDi. Also, to make the story simpler, 
the order m of Sobolev space Hm(D) is taken to be (d+l) /2 . Then, 
associated with the regular imbedding mapping D-+D\ we are given a 
natural continuous imbedding mapping 

e:Hml/2(D')-+Hm(D). (2) 
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The white noise measures, denoted by μ and μΐ9 are introduced on 
H~m(D) and H~m + l/2{D'), respectively, as was done in Section 1, where it 
is noted that the injection Hml/2(D')-+L2(D') is of the Hilbert-Schmidt 
type, since m — 1/2 = d/2 >(d—\ )/2. 

There is defined a surjective mapping e* which is the adjoint of e: 

e*: Hm{D) -> Hm + i/2(D'). (3) 

Summing up what have been discussed, we can prove the following 
assertion. 

PROPOSITION. Let D and dD = D' be C™-manifolds in Rd. Set 
m = (d+ l)/2. Then, there exist white noise measures μ and μ' on H~m(D) 
and H~m+l/2(D'), respectively, and these two measures are linked in such a 
way that 

(β*)-ιομ = μ'. 

For the proof, we only need to note that the Borel field @x generated by 
subsets of H~m + l/2(D') is equal to the image of Borel field corresponding 
to H~m(D) under the mapping e*, and the characteristic functional of μ 
and μί are the same in expression. 

3. GAUSSIAN RANDOM FIELDS DEPENDING ON A CURVE 

We use the same notation established in the last section. Consider, in 
particular, the case d=2, and introduce a class C of curves given by 

C = {C: closed, simple, C°°-curvesczZ)}. 

Note that each member of C is viewed as the boundary of a submanifold 
ofD. 

As was discussed in [5] , we are interested in a Gaussian system indexed 
by a domain or a curve. Let φ{χ) be a J?ï(Z))-functional. Then the 
associated (/-functional (^φ)(ξ) has the expression 

ϋ(Ώ,ξ)=\ F(W ){(W )^ , FeL2(D). 
JD 

In a similar manner, we have 

UX(C^)=\ σ(ιι){(ι#)Λι, GeL\C), 
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for φc(x) e Jf{(C). From our discussion in Section 2, U{(C, ξ) is viewed as 
a functional obtained from U{D, ζ) by restricting some F to C, or 
equivalently ψ€ comes from φ by the mapping e*, if C is a boundary of D. 
Thus we are able to deal with a family 

y = { i M x ) ; C e C } (4) 

within a framework of the analysis on Jtf[(D). 
Under the above setup, we can prove the following theorem (cf. [1]). 

THEOREM. Let Ψ be given by (4). Then the variation ο/φ€(χ) exists and 
its U- functional is expressed in the form 

SUt(C9 ξ) = \c lçj£ (s)- K(S)F(S) ξ(3)\ ôn(s) ds, (5) 

where δη denotes the variation bC of C and κ is the curvature. 

4. CONCLUDING REMARKS 

A few remarks are now in order. We have started with a bounded 
domain, because we wish to use the Sobolev space structure to introduce 
white noise and to use the trace theorem. However, we may start with the 
entire space Rd or a half space and still carry out the whole story with 
slight modification. Hence, there is no difficulty in discussing the 
variational calculus even when we do not limit our attention to a finite 
domain. 

In Section 3, we have dealt only with functional of white noise as a 
prototype of generalized Gaussian random fields. If we choose suitable 
function spaces like a Sobolev space, we can establish the theory in a 
similar manner. Also, it is noted that important examples of a Gaussian 
random field can be realized as functionals expressed in terms of white 
noise, so that the discussion may be reduced to that of white noise. 

The variational calculus of functionals depending on a curve would be 
generalized to the case where the kernel function F depends on C in 
addition to s in the expression (5). Important examples are seen in [10]. A 
general theory will be discussed in a separate paper. 
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Additive White Noise Filtering 
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It is shown that for a wide class of signal processes and bounded g, the con-
ditional expectation n(g, y) in the white noise filtering model is a C°°-functional of 
the observations in the sense that n(g, y) and its Fréchet derivatives (which exist) 
are random variables on the quasicylindrical probability space on which the obser-
vation model is defined. © 1988 Academic Press, Inc. 

1. INTRODUCTION 

In a recent paper, M. Chaleyat-Maurel has shown that the conditional 
expectations in the nonlinear filtering problem is a C°°-functional in 
Malliavin's sense [1] . A Malliavin calculus for functionals of finitely 
additive Gaussian white noise has not yet been developed though, in our 
view, many of the basic ideas of the former theory carry over naturally to 
the finitely additive situation. 
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In this note, we derive a result close in spirit to Malliavin calculus. We 
will be concerned with the smoothness properties of the conditional expec-
tation regarded as a functional of the observations. In the same sense as in 
[ 1 ] the result obtained by us may be regarded as a robustness property of 
the nonlinear filter in the white noise theory. Our result cannot be directly 
compared with Chaleyat-Maurefs. We are throughout in a Hubert space 
setting so that in contrast to the Malliavin theory all directional derivatives 
are admissible for us. Both the statement and the proof of the main 
theorems are straightforward. The only thing that sets the proof apart from 
a standard calculation is the need to show that the various functional 
derivatives of the filter are also random mappings as defined in [2] . The 
latter fact is established by relying heavily on properties of lifting maps. 

It must be noted that our filtering model assumes signal and noise to be 
independent whereas in [ 1 ] a more general model is considered. However, 
we are able to prove C°°-smoothness of the filter under less restrictive 
conditions. 

2. NOTATION AND TERMINOLOGY 

For most of the notation, terminology, and definitions used in this paper 
we refer the reader to [2] since it would take too much space to repeat 
them here. 

77 is an infinite dimensional, separable Hubert space, # the field of finite 
dimensional Borel cylinder sets in 77, and m the (finitely additive) 
canonical Gauss measure on 77, i.e., the measure with characteristic 
functional exp( — { \\h\\2\ (Ae77). Let 0> denote the class of all orthogonal 
projections on 77 with finite dimensional ranges. Let (Î2, se, 77) be a com-
plete (countably additive) propability space. The triple (7s, S, a) is called 
a quasicyHndrical probability space where Ε=ΩχΗ, ê^s^x^ and 
a = 77 O w. ê is a field and a is the finitely additive probability on S such 
that for any ? e ^ , the restriction of a to the σ-field stfxtfp is the 
countably additive probability measure IJxmP. Here %>P is the σ-field of 
cylinder sets with bases on PH and mP is the restriction of m to #P. 

Let (L0, 770) be a representation of m with an underlying representation 
space (β 0 , ^ο, 770) and let (Ω, se, 77) = (Ω, s/9 77)® (f20, */*, Π0). Writing 
ώ = (ω, ω0) e Ω, defining ρ(ώ) = ω and L(h)(œ) = L0(h)(œ0) for all he H, it 
is seen that (p, L, 77) is a representation of the quasicyHndrical probability 
a on the space (Ω, s3, 77). It can, in fact, be shown that (p, L, 77) can be 
chosen to possess the property that for each heH, the map (h,â>)-> 
L(h)(œ) is B(H)®s3 measurable. It is such a representation that we shall 
be working with throughout. 
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Let S be a Polish space, i.e., a complete separable metric space. We shall 
define classes of S-valued maps on E which form important subclasses of 
random variables on the finitely additive probability space (E, S, a). 

Let &°(Ε, ê, a; S) be the class of maps/from E to S such that for all 
Pe&^fp defined by fP(œ, τ/) = /(ω, Ρη) is ^p/2?(S)-measurable and for all 
sequences {Pj} a0> converging strongly to the identity (Pj -+s /), R^fpj) is 
Cauchy in //-probability. Elements of 5£°(£, S, a; S) are called 5-valued 
accessible random variables. For l ^ ^ < o o , define if *(£, <f, a; S) as the 
class of maps / as above with the additional property that 

f \Ra{fPj)-RM\qdn^Q. 
Jß J 

In this case 

f \Ra(f)\«dn< cc. 

The notation here is somewhat different from that adopted in [2] where 
the class if0 is denoted by if* and if1 by if1*. Wider classes of random 
variables are also considered in [2]. The symbol S will be suppressed 
whenever S= UK 

Let ξ: Ω-> H be a random variable, i.e., a /^//V^-measurable map, 
B(H) being the σ-field of Borel sets in H. The nonlinear filtering model in 
its abstract form is defined on (E, S,OL) by 

y = i + e, (l) 

where for {ω,η)εΕ, ξ(ω,η) = ξ(ω) and e(co, η) = €(η) = η. The identity 
map e on H is called Gaussian white noise, ξ is the signal and y the obser-
vation. 

Let Q be an arbitrary orthogonal projection on H. If g is a /Z-integrable, 
real random variable on Ω, then the conditional expectation (in the finitely 
additive theory) E0{f\Qy) exists and is given by the Bayes formula 

E.WQy)-*tfcyl, (2) 

where 

°Q(g, y)= f g(a>)exp{(y, β£(ω))-* ||βξ(ω)||2} Λ7(ω) (3) 

is called the unnormalized conditional expectation of g. The model (1) 
covers most of the filtering problems met with in practice including those in 
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which the observation process takes values in a Hubert space. In 
applications, the true signal process is denoted by an S-valued process (Xt\ 
(O^t^T) defined on Ω, and ( 1 ) takes the form 

>>, = £,+£>„ ( Κ ί ^ Γ , (4) 

where 

e is Λ -̂valued Gaussian white noise. Here H= L2([0, Γ], K) and 
K is a possibly infinite dimensional separable Hubert space; (5a) 
ξί(ω) = Ηί(Χί(ω)) where h: [0, Γ]χ5->Α" is measurable and 
satisfies the condition \l\\ht(Xt(œ))\\2

Kdt<<X) for each ω (or 
a.a. ω). (5b) 

If Qt is the orthogonal projection on H with range Ht.= {fsH: 
\J ΙΙΛ11* <& = ()} then the filter one is interested in is the conditional expec-
tation Ea(g\Qty) which is given by (2) with Q = Qt. For the sake of 
notational convenience we shall derive all our results for the abstract model 
(1) rather than (4). 

In what follows we may take, without loss of generality, g to be non-
negative and such that $ gdIJ=l. Let dIJl = gdIJ and v = IJl °{ζ)ξ)~γ. 
Then v is a probability measure on H and 

*Q(g,l)=\ ^{{^k)-k\\k\\2}dv{k\ ηεΗ. (6) 

Since, throughout this work, g and Q will remain fixed, it is convenient to 
suppress g and write σ(η) for <xß(g, */). 

For a Banach space B with norm || · ||# let L(H, B) denote the class of all 
bounded linear transformation A: H-+B, which is itself a Banach space 
with operator norm. A mapping / : H-> B is said to be Fréchet differen-
tiable if for every he H there exists fi(h)eL(H9 B) such that 

l im ι^\\Μ + Η')-Αν-Λ(ίι)ίίιΊ\\Β=ο, 
iiA'ii-o ||A || 

fi(h) is called the Fréchet derivative off at h and is written as (Df)(h). 
Let L°(H) = R9 L

1(H) = L(H, R), and for r ^ 1, Lr+X{H) = L(H, U(H)). 
It is well known that the Banach space Lr(H) can be identified with the 
class of all linear mappings from the r-fold product H x · · · x H into R. The 
norm || ||r on Lr(H) under this identification is given by 

ll/L=sup{|/[A1 ?. . .A]|:M#, IIA/K1}. 
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A function/: H-+Ris said to be (r + 1) times Fréchet-differentiable, if it is 
r-times Fréchet differentiable, and Drf: H -► Lr(H) is Fréchet-differentiable 
and then Dr + 1f:=D(Drf). 

Let Lr
{2)(H) be the subclass of Lr(H) consisting of g e Lr{H) for which 

llsll?.2- Σ Ι * [ Φ Λ . " , Φ Λ ] Ι 2 < ° ° . 

where {(?,·} is any CONS in H. It is well known that ||g||r,2 does not 
depend on the choice of CONS and that L^H) is a Hilbert space with 
norm ||.||,i2 and that \\g\\r < ||*||,,2. 

3. MAIN RESULTS 

LEMMA 1. Let the function σ(η) be defined by (6). Then 

(a) for every r ^ l , σ(η) is r-times Fréchet differentiable and the 
derivative Ώκσ(η) is given by 

D'fffo )[*„...,*,] 

= \lexp{ti,k)-±\\k\\2U(h1,k).--(fir,k)dv(k). (7) 

(b) D'a{n)eUm(H). 

Proof. Denote the right-hand side of (7) by gr[hu ..., Ar]. The integral 
appearing in (7) is finite since 

|(if,*)| ^ i {||2i,||2+ ||i*||2} = 2 NU2+ é PU2 (8) 

and 

|(A,*)|<||A||.||*||. (9) 

Let {<?,} be a CONS in H. Note that 

krll2.2= Σ 
Jl ■ ■ -Jr 

j \ ■ · Jr 

\ exp{(>,, k)-\ \\k\\2\ ■ (φΛ, k) ■ ··(<pJr, k) dv(k)^ 

Σ |βχρ{2(»ί,Λ)-||Λ||2}.(φΛ,Λ)2···(φΛ,Α:)2Λ(Λ) 
• · jr 

= \exp{2ü,k)-\\k\\2}-\\k\\2'dv(k) 

<oo, (10) 
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in view of (8) and (9). Hence gr^)eLr
(2)(H). Let us write σ{η) = g0(^/)· To 

complete the proof, we will show that gr is Fréchet differentiable for r ̂  0 
and that Dgr = gr + x. This will show that ΏΓσ(η) = gr(rç). For η, h G H, let 

v(^h)'-=\\grti + h)-grW-gr+lW(h)\\ra. 

Recall that gr+i(rç)(A)[Ai, ·.., ΛΓ] = gr(l)Lhi, - , hr, A] under the identifi-
cation of L(#, / / ( # ) ) with Lr + \H). Thus 

v2{^h)= £ l{gr(>/ + A)-gr(*/)}[(p71,..., φ,Γ] 

= Σ \\^p{(^k)-{\\k\\2} 

• (φΛ, A:) · · · (<p,r, &) · Vx(h, k) dv(k) , 

vt(h, k) :=exp{(A, k)} - 1 - (A, A:). 

where 

Since 

!»,(*, *) | < |(A, k)\2 exp((A, *)) < ||A||2 ||fc||2 exp((A, *)), 

we get from ( 1 ) 

v2(^h)^\exp{2(^k)-\\k\\2}-\\k\\2r 

.\\h\\*\\k\\*exï>(2(Kk))dv{k) 

^||A||4.exp{4||A||2 + 4||>/||2} 

.\exp{-±\\k\\2}\\k\\2r + 4dv(k) 

using (8) and (9). This shows that 

iiAii-o ||A|| 

and hence that gr: H'-*>L[2)(H) is Fréchet differentiable with Dgr = gr+l. 
Since ||-||r,2 ^ IHL this implies that gr\ H-+Lr(H) is Fréchet differen-
tiable. | 

Our next step is to show that Dra{y) is a random variable. 

(Π) 
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LEMMA 2. Suppose that v satisfies 

^\\k\\2rdv{k)<cx). (12) 

Then Dro{y) e £>(E, S, a; L[r\H)). 

Proof. Fix {/>,} s 0>, Ρζ -►* /. Let Z(&, ώ), Ζ,(Λ, ώ) be defined by 

Z{k, ώ) :=exp{(Â:, ξ{ω)) + L0{k)(œ0) - $ \\k\\2} 

and 

Z;(k, ώ) := exp{(fc, ξ(ω)) + Σ0(Ρ^)(ω0) - { \\k\\2}, ώ = (ω, ω0). 

Then from the definition of lifting for cylinder functions (see [2]) it follows 
that 

K(iDraoy^Pi [>,,... φ>Γ](ώ) = j" Zt{K ώ) fj(k) dv(k)9 

where j=(jl9...,jr) and fj(k) = (<pjrk)--((pJr,k). Let Uu(œ) := 
||Λα({Ζ>Γσ°>']Λ)-Λα([^Γσο^]ι>/)ΙΙ?,2(ώ)· Τ ο complete the proof, we will 
show that Uu -> 0 in 77-probability: 

^\\Zi(k(œ)-Zl(k9œ)\dv(k) 
J 

■\\Zi(k,m)-Zl(k,w)\-ff(k)dv(k) 

= | |ΖΧ*,ώ)-ΖΧ*,ώ)|Λ(Α) 

·||Ζ,(Α:,ω)-Ζ,(Α:,ώ)| ||*||2'Λ(Λ). (13) 

We have used Holder's inequality above. 
Define a probability measure 77' on Ù by 

^ ( < 5 ) = C.exp(-i||£(co)||2) a/7 
·εχρ(-£0(ξ(ω))(ω0- | | |ξ(ω))| |2), 
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where, ώ = (ω, ω0) G Ω. The constant C is chosen such that Π'φ) = 1. It is 
easy to see that 

|βχρ(ϋ|{(ω)||2)Λ7'<οο. 

Let μ be any countably additive finite measure on H. Then, it is easy to 
check that 

Zt-+Z in μ®Π' measure 

and 

j j Z,(Jt, ω) άΠ'{ώ) dß(k) -> j j Z(k, ώ) άΠ'(ώ) dß(k)9 

where the integrals appearing above are finite. By arguments similar to the 
proof of Scheffé's theorem, it follpws that 

jj|Z,-Z|<//7'<///->0 

and as a consequence 

| |Ζ,(Λ,ώ)-Ζ(*,ώ)|έ/μ(*)^0 (14) 

in //'-probability. Since Π<ξΠ\ (14) also holds in 77-probability. The 
assumption (12) implies that V! defined by 

dv< 

is a finite measure. Thus (14) for μ = v and μ = νχ implies that Ua -»0 in 
77-probability. | 

THEOREM 3. For any integrable function f for any orthogonal projection 
Ô» σρ(#> y) is r-times Fréchet differentiable for all r^l. Further, (a) if 

\\m(œ)\\2r-\g(œ)\dI7(œ)<oD (15) 

then 

D'aQ{g,y)e2>{E,S,x;L[2)(H)); 

0>) if \\ζ\\, g are bounded, then for all q^\, r > 1, 

jyeQ{g,y)sSe"(E,ëla;Lr
m(H)). 
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Proof. Part (a) follows from the preceeding lemmas. The proof of (b) is 
based on the easily verifiable fact that 

\lUuV/2dU-+0 

as (/,/)-> oo. We are now in a position to prove the main result of this 
paper. 

THEOREM 4. Suppose ξ and g satisfy (15). Then, nQ(g, y) is r-times 
Fréchet differentiable and 

DrnQ(g, y)eX(E, g9 a; L[2)(H)). (16) 

Proof nQ(g, y) = f(y)/f2(y), where 

f(y) = <rQ(g, y\ f2(y) = M1» y)· 

Now,/ l 5 /2 are both r-times F-differentiable and/2 >0. From this it is easy 
to check that fi/f2 is also r-times F-differentiable. It can be shown that 
Dr(fjf2) can be expressed as 

W 1 / / 2 ) = Ar(A, f2, Dfx, Df2,..., D%, D%, l//2) 

where Ar is a continuous mapping from 

M x UxL\2){H)xLl
(2)(H)x ■■■ xLr

(2)(H)xL[2)(H)x U 

into L'm{H). Since / „ f2, l//26JS?(£,/,a;R), and D%, D%e 
y{E,S,a.;L\2)(H)), K / ^ r , assertion (16) follows from the continuity 
οΪΛ,. | 

A functional f(y) will be said to be a C™-functional of the observations if 
Drf exists for all r^ 1 and Drf(y)e&(E91, a; L[2){H)). 

We have proved above that if 
£||É||r<oo for all r^l , 

then for all g bounded nQ(g, y) is a C°°-functional of the observations. 
A concrete application of this result to the models considered in [2] 

shows that the conditional expectations in the filtering, prediction, and 
smoothing problems (for finite or infinite dimensional signals) are 
C°°-functionals of the observations. 
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Equivariant Estimation of a Mean Vector μ of 
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Σ~ΛΙ2μ = οοχ Σ=σ2μ'μΙ 

TAKEAKI KARIYA 

Hitotsubashi University, Japan 

N. C. GIRI AND F. PERRON 

University of Montreal, Canada 

This paper considers the problems of estimating a mean vector μ under con-
straint μ'Σ~ιμ = 1 or Σ~ι/2μ = ο and derives the best equivariant estimators under 
the loss (a — μ)' Σ~ι(α — μ), which dominate the MLE's uniformly. The results are 
regarded as multivariate extensions of those with known coefficient of variation in a 
univariate case. As a particular case for μ'Σ~ιμ = ε, the case Σ = σ2μ'μΙ is also 
t r e a t e d . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

The problem of estimating the mean μ of a univariate normal population 
Νχ{μ,σ2) with known coefficient of variation (i.e., σ/μ = const) was 
originally considered by Fisher a long time ago and recently again focussed 
upon in the context of a curved model or a model which admits an 
ancillary statistic (see Efron [6 ] , Cox and Hinkley [4 ] , Hinkley [8 ] , and 
Amari [1,2]). The motivation behind the model is based on the 
empirically observed fact that a standard deviation often becomes large 
almost proportionally to a corresponding mean so that the coefficient of 
variation remains constant. This fact is often found also in multivariate 
(mutually correlated) variâtes. Though a well-accepted measure for 
variation between a mean vector μ and a covariance matrix Σ is not 
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available, in this paper we adopt as multivariate versions of the variational 
coefficient the following measures 

λ = μ'Σ~ιμ (1.1) 

and 

ν = Σ~ί/2μ with I-l/2eGT(p) (1.2) 

and consider the problems of estimating μ of a /7-variate normal population 
Νρ(μ, Σ) with either λ or v known under the quadratic loss function 

1(α,μ) = (α-μ)'Σ-ι(α-μ), (1.3) 

where GT(p) denotes the group of pxp lower triangular matrices with 
positive diagonal elements and Σ1/2 is the unique solution for 
Σ1/2Σί/2' = 27. The analysis is based on the invariance principle. In the 
versions of (1.1) and (1.2), the constancy of the measures means that Σ 
becomes "proportionally" large in the sense of nonnegative definiteness as 
μ becomes large. Besides these interpretations, some other interpretations 
are possible for λ and v. For example, λ is the Mahalanobis distance 
between iV(0, Σ) and Ν(μ, 27), and v is a normalized mean vector. As a 
particular case for which μ'Σ~ιμ becomes constant, the specification 
Σ = σ2μ'μΙ with σ2 known is also considered. 

Now let x/s be a random sample from Νρ(μ, Σ) with μβϋρ and 
Σε£/?(ρ), where ^(p) denotes the set of pxp positive definite matrices. 
Then a sufficient statistic is (>>, S) with 

j = v
/Äzx= £ χί/^/η~Νρ(^/ημ,Σ) 

(1.4) 

s = Σ (Xi - *)(** - *Υ~ WP(Z> η - ι )> 
/ = 1 

where η > ρ and WP(Z9 m) denotes the Wishart distribution with mean ΥΥΙΣ 

and d.f. (degrees of freedom) m. As in the univariate case, when λ (or v) is 
known, the model admits an ancillary statistic, that is, a statistic which is a 
part of a (minimal) sufficient statistic and whose marginal distribution is 
independent of unknown parameters. Thus an inference on (μ, Σ) may be 
based on what is called the principle of conditionality. However, in this 
paper, rather than using the principle directly, we derive a BEE (best 
equivariant estimator) for each problem under the loss function (1.3). 
There a conditional argument is inevitably required. The explicit forms of 
the BEE's are given only for the case of p = 2 because the complication of 
the computation. The MLE's are also derived for comparisons. Since 
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the MLE's are equivariant, which is true in general under a mild condition 
(see Eaton [5]), the MLE's here are uniformly dominated by the BEE's. In 
the particular case Σ = σ2μ'μΙ, the BEE and the MLE are also derived 
(Section 4). 

In the literature, not much work has been done on the problems with 
ancillary statistics from an equivariance viewpoint. Kariya [9] gave a 
formulation for the equivariant estimation when an ancillary statistic is 
realized as a maximal invariant. However, he assumed in the formulation 
that the sample space is homeomorphic to the product of the group leaving 
the problem invariant and the space of the ancillary statistic. In the first 
problem with λ known that we treat here, the assumption is not satisfied, 
though in the second problem with λ known, it is satisfied. A general 
description of equivariant estimation is found in Ferguson [7 ] , Eaton [5 ] , 
and Lehmann [11]. 

2. PROBLEM WITH λ KNOWN 

In this section, we consider the problem of estimating μ of Νρ(μ, Σ) with 
λ in (1.1) known. Without loss of generality, we assume that (μ, Σ) belongs 
to 

® = {{μ,Σ)β^χ^{ρ)\μ'Σ-'μ^\}. (2.1) 

Under the loss function in (1.4), it is easy to see that the problem is left 
invariant by the group G\(p) of/? x p nonsingular matrices acting on (>>, S) 
as 

(y9S) ► (Ay, ASA') with AeG\(p\ (2.2) 

which induces the action on (μ, Σ): 

(μ, Σ) > (Αμ, ΑΣΑ') with A e Gl(p). (2.3) 

Under the transformation (2.2), the statistic 

u = y'S-ly (2.4) 

is a maximal invariant and the distribution of u depends on (μ, Σ) only 
through the maximal invariant parameter λ = μ'Σ~ιμ. Therefore by the 
prior constraint (2.1), u is an ancillary statistic. Further the group Gl(p) 
acts transitively on ® in (2.1). This implies that the risk function of an 
equivariant estimator μ 

Κ(μΛμ,Σ)) = Ε{μ,Σ)[(μ-μ)'Σ-\μ-μ)1 (2.5) 



EQUIVARIANT ESTIMATION OF A MEAN VECTOR 273 

is constant for all (μ, I)e ® (see Lehmann [11]). Therefore without loss 
of generality we choose μ = e and Σ = ί, where e = (1, 0,..., 0)' e RP. 

Now to find a BEE which minimizes the risk (2.5), we shall characterize 
an equivariant estimator, that is, an estimator satisfying ß(Ay, ASA') = 
Afi(y9 S). Decompose S uniquely as 

S=WW with WeGT(p) (2.6) 

and let 

v=W~ly and q = v/\\v\\9 (2.7) 

where ||i?||2 = i/t;. Then u= \\v\\2, where u is given in (2.4). 

LEMMA 2.1. An equivariant estimator β is of the form 

ß(y,S) = k(u)Wq9 (2.8) 

where k is a measurable function of u. 

Proof Replacing y by W~ly, A by W, and S by / in ß(Ay, ASA') = 
Aß(y, S) yields ß(y, S) = Wß(v, I). Let Q be an orthogonal matrix with q as 
the first column. Then β(ν, /) = μ(οβ'ι>, QQ') = Qßi^Jue, /)· But since the 
columns of Q except the first column are arbitrary as far as they are 
orthogonal to q, it is easy to claim that the elements of ß(y/u e91) except 
the first element ß^yjue.l) are zero. Hence μ(ν9 /) = ßx{yjue, I)q, com-
pleting the proof. 

Consequently the risk function of an equivariant estimator ß in (2.5) 
with μ = e and Σ = / is expressed as 

R(ß, (e, I)) = El(k(u) Wq - e)' (k(u) Wq - * ) ] . 

Hence, using the fact that u is ancillary, a unique BEE is obtained as 
fi = k(u) Wq with k(u) minimizing the conditional risk given «: 

E\_(k(u) Wq - e)' (k(u) Wq-e)\ w]. 

Therefore we obtain 

THEOREM 2.1. The unique BEE is an estimator ß = k(u) Wq with 

£(«) = Eiq' W'e | w]/£[?' W'Wq\u\ (2.9) 
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An explicit evaluation of k(u) in (2.9) is rather complicated. Here only 
the case of p = 2 is treated. To give a form of k(u\ let 

H(a;b;c:u) = f (a\ B(b,c + k)uk, (2.10) 

u *. * * v pJn*+ß+jß) 
J(cc;ß\y;o;s;u)=loJ Γ ( α ) 

χ / Ζ ^ + ^ + ^ ε : ^ , (2.11) 

and 

p=[2m/ / ( l + w)]1/2> (2.12) 

where £(α, /?) = Γ(α) Γ(β)/Γ(α + /?) and Γ(α) denotes the gamma function. 

THEOREM 2.2. When p = 2, the BEE is given by μ = k{u) Wq with k(u) = 
kl(u)/k2(u), where 

' ■«■ ' - ( Ï I / '& I Î ' -H 
tf/îflf 

i î(„)=Tl_,(2;1|1;M:„)+,(îi0|-1:M:„) 

2«2 , / « , . 3 1 \ 

4" ,Λ* !. 1, , . 3 3 Ί 
(1+M) 1 / 2 V2 2 

+ ( „ - 1 ) 7 ^ : 0 | - ΐ φ | : « ) (2.14) 

The proof is given at the end of this section. 
For comparison, we shall derive the MLE, where p is arbitrary here. By 

using the Lagrange multiplier method, the following theorem is easily 
obtained. 

(2.13) 
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THEOREM 2.3. The M LE's of μ and Σ under (2.1) are respectively given 
by 

u-y/u{4 + 5u) . 
^MLE= ^-^ x (2.15) 

and 

Proof. Maximizing 

-^Ιοζ\Σ\-^τ5Σ-ι-^(χ-μγΣ-\χ-μ)-1(μ'Σ-ιμ-\) 

yields /2 = wJc/(w + y) and £=(\/n)S +λχχ'/(λ + η). From μ'27_1μ=1, the 
result follows. 

Clearly fiMLE is equivariant and hence it is dominated by the BEE in 
Theorem 2.1 for any p. Also the form of (2.15) is a natural extension of the 
case p— 1, where the MLE is \x— [(l/«)5 + |x 2 ] 1 / 2 . When p= 1, some 
properties on this model associated with the Fisher information are 
investigated by Hinkley [8]. Amari [1,2] proposed through a geometric 
approach what he called the dual MLE, which is also equivariant. 

Proof of Theorem 2.2. The joint pdf of (y9 S) under μ = e and Σ = / is 
given by 

fcexpE-i^-vW] 
xexp(-±trS)\detS\in-p-2)/2dydS. (2.17) 

First transforming (j>, S) into (v, S) with v=W~ly and S= WW, where 
W= W(S) eGT(2)9 and next transforming (v, S) into (r, 0, S) with r = 
\\v\\ = ul/2 and ? = ι?/||ι?|| = (cos 0, sin 0)' = (^ , ?2), the joint pdf of (r, 0, 5) 
is given by 

k | /+ r V I ~n/2 exp(V« ^ ' ^ ) g(S| r, β) rfSdB rfr, (2.18) 

where g(S|r, 0) is the pdf of W^((/ + r2qq')'\n) and - π < 0 < π . Noting 
| /+ ' W l _M/2 = (1 + r2)-"72, the conditional pdf of (0, S) given r = u1'2 is 

exp(vW^)g(S|r ,0)^Srf0/A(r) , (2.19) 

where h(r) is the integral of the numerator over (0, S). However, in the 
ratio k(u) in (2.12), A(r)'s are cancelled out. Hence in the evaluation of 
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k(u), h(u) can be ignored. Now to evaluate (2.12), we need the expected 
value of wv-s with respect to (2.19). Since wn = s\/2

9 w21 = .sf1
1/2s12, and 

w22=s22i = (s22—s2isnlsnY/2 anc* s i n c e it follows from S=(Sjj)~ 
WP(A, n\ 

w2l given sn ~N(s\?ôûl δι29 δ22Λ\ sn~Snx
2(n), s22A ~ 

à22.iX2(n-l) and (w2l,sn) and s22A (2.20) 

are independent, the expected values of w-s given Θ are evaluated by using 
(2.20), where A = (δ0) = (I+r2qq')~l and δ22Λ =δ22 -δ21 δ^1 <512. Noting 
e'Wq = wnq{ and 

we obtain 

LEMMA 2.2. Letx = y/n r/( 1 + r2 )1/2 andm„(<x) = 2T(n/2 + a)/Γ(η/2): 

(1) ^[wi.expiv^ri.w,,)!«] 

= (l+r2)-"/2 £ T^{(l+r2
92)<>+^2m„((y + a)/2)/y! 

(2) ^^,εχρίΤηΓή-,ΗΊθΙΟ] 
oo 

= Σ *Jqi(l+r2q2
2)

U-2)/2"in(J/2)/ß +r4(l +Γ2)"1 

oo 

x Σ ^ i + 2^(l+r2^)^-2>/2mw((y+2)/2)/y! 
7 = 0 

(3) £,[w12H'22exp(v/«r^1w11)|Ö] 

= - r 2 ( l+r 2 )~ 1 / 2 f TJq{+iq2(l+r2q2
2)

u-2)/2 

7 = 0 

Χ«Λ(0"+ l)/2) w^.t i l / l ) / / ! 

(4) Elw2
22t\^{y/nrqlwn)\e~] 

= Σ ^?{ii(i+'<2?i)a"2V2'«ll(y/2)ifill.1(i). 
7 = 0 

Proof. We only prove (2). The other cases are similar. Conditional 

(2.21) 
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on sll9 £ [ w 2 1 | 5 1 1 , ö ] = £ [ ( 5 J 1
1 ^ 1 2 ) 2 | 5 1 1 , ö ] = δ22Λ+*ηδΰ2δ2

12. Using 
(2.21) and expanding exp(^/n rs\^qx\ the left side of (2) is evaluated as 

^ [ ( l + ^ ^ + J n ^ ^ 

00 r-

+ r\\+r2ql)-2q\q\Yu(sßrqiy 

x^/,+ 2 , / 2£[(^)0 + 2 ) / 2 ] /y! 

gives (2). 

Next, using this lemma, we evaluate the numerator of (2.9). Since 
e'Wq = wnqu E\_e'Wq~\ = Κ$*_π ? , £ ! > „ e x p i ^ n r ^ W n ) ^ ] άθ. Here 
expanding (\ + r2q\)ß as Σk(l){r

2q\)k and using i l n c o s a ö s i n 2 * ö i / ö = 
B((a + 1 )/2, (2b + 1 )/2), we obtain 

£[,'^] = i:(l+r2)-1/22^fo[p^Q + { + 0/7^(5 
> y 2 + l / 2 \ D / - y + 2 2A: + 1 \ _ 2 , 

* H k )B{——)r2k-
This gives the expression (2.13) except the constant K=K(u), which is 
cancelled out with that of the denominator. Similarly for q'W'Wq = 
^Κ^ιι + w 12] + 2^!^2^21^22 +^2^22» * e expected value of each term is 
evaluated by using Lemma 2.2. But the details are omitted here. 

3. PROBLEM WITH V K N O W N 

In this section, the problem of estimating μ of Νρ(μ, Σ) is considered 
with the assumption that (μ, Σ) belongs to 

® = {(μ9Σ)€Κ<>χ<?(ρ)\Σ-ι/2μ = €}, (3.1) 

where 2T1/2eGT(/?) and ceRp is known. Assuming the quadratic loss in 
(1.3), this problem is left invariant under GT(p) acting on (y, S) by 

(y9S)-+(Ay,ASA') with AeGT(p), (3.2) 

which induces the action on (μ, Σ) as 

(μ,Σ)^(Αμ,ΑΣΑ') with AeGT(p). (3.3) 
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Clearly under (3.2) a maximal invariant is 

v= W~ly, where 5 = WW with WeGT(/?), (3.4) 

and since the action of GT(/?) on ® in (3.3) is transitive, the distribution 
of v does not depend on (μ, Σ) for (μ, 27) e ® . Therefore the risk function 
of an equivariant estimator defined by 

Ä(A (|i, Σ)) = Ε[(μ - μ)' Σ'\μ - μ)] (3.5) 

is constant on (μ, Σ)ε ©, which implies that without loss of generality we 
can choose μ = c and Σ — I. On the other hand, in a similar manner as in 
Lemma 2.1, an equivariant estimator is shown to be of the form 

fi(y9S)=Wfi(vJ)=Wß(v). (3.6) 

Consequently, a BEE is an estimator which minizes the conditioned risk 

El(Wß-cY{fVii-c)\O] (3.7) 

with respect to μ, where E denotes the expectation of W given v. Thus we 
obtain 

THEOREM 3.1. The unique BEE is given by 

fi = ElW'W\v']-1 ElW'c\vl (3.8) 

Because an explicit of μ in (3.8) is complicated in a general case, the case 
of p = 2 is treated here. In the evaluation, we regard W— (w,y) as a function 
of S = (sy). As in the proof of Theorem 2.2, the joint distribution of (v, S) is 
given by 

k\I+w'\-n/2exp(y/nc'WO)g(S\O)dSdv9 (3.9) 

where g(S\v) is the pdf of W((I+vv')-l
9n) (see (2.18)). Noting c'Wv = 

clwnvl +c2w2lvl +c2W22V2i w n = s\{2, w2\ = s\fsl2, and w22 = sl
2'2A, define 

the conditional moment generating function of wn =s| /12 and sl
22^l given v 

by 

a(f) = £ [ e x p ( t e i f ) | 0 ] = £ (tô^yi^r^ + Çjjr^jjl (3.10) 

and 

^ i ) = £[exp(^ 2
2

1 ) | l ; ] 

(3.11) 
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respectively, where <5U =(1 +v'vvj)/(l + v'v) and δ22ι = 1/(1 + v'vvl) with 
» = (»,, v2)' (see (2.20) and (2.21)). And by <j>(i\t) and ψί1) denote the /th 
derivatives of φ and t/*, respectively. Further, let 

i/, = ( ^ 0 , 1 » ! + «Sf,1 <512x/nc2t>,) pfände/;, =s/nc1v2ô2
lll, (3.12) 

where <512 = — u't>t>fi?|/(l + v'v), and let 

1>ι=Φ{1\αι)φ(ά2), 

b2 = [«5η1 <512^
(1 \dx) + c2v24(dly\ φ{ά2) 

ο3=φ^)φ^2), 
ά4=Φι2)(αι)ψ{ά2) 

*s = [(̂ Γ,1 ^ V ' W + ̂ t;, ίΓι' ί , ^ ' Ή ) 

+ €\ν\δ\2Λφ(άλ)-]Ηά1) 

b6 = [if,1 5i2^(,,(rfi) + c2», < W ( < M ] f ' V i ) 

THEOREM 3.2. When /? = 2, //*e /?££ m (3.8) is given by fi= Wa9 where 
a = (al9 a2Y with 

fli=Ici*i(ft4+*5) + c2(6267-ô366)] /Z) ^ 
(3.14) 

/fere Ζ> = ( 6 4 + 6 5 ) * 7 - * 6 · 

Proof. We simply outline the proof since the proof is similar to that 
of Theorem 2.2. From (3.9), the conditional pdf of S given v is given 
by exp(y/n c'Wv) g(S\v)/h(v), where h(v) is the normalizing constant. 
However, it is easy to see that the BEE in (3.8) does not depend on h(v). 
Hence what we need is the expected values of wCL

nw\2w
y
22txp(yJn c'Wv) 

with respect to g(S\v). Then using (2.20) and E[exp(y/n c2vlw2i)\sn, v~\ 

— exp(HC2t^22i/2)exp(v«C2Ui ^π1 ̂ ΐ25π2)> w e c a n show that bl = 
KElwnQ\vl b2=KElwi2Q\vl b3 = KE[_w22Q\v\ b4= KE[W\XQ\O\ 
b5=KE[w2lQ\v\ b6=KE[w2iw22Q\v], and b7 = KE[w\2Q\v\ where 
K = Q\p{nc\v\o22Aß) a ß d Q = exp(y/n c' Wv). From these moments, the 
result follows. 

It is noted that the conditional moment generating functions of φ and 
φ in (3.10) and (3.11) are Bessel functions and their derivatives can be 
computed term by term. 
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On the other hand, the M LE is routinely obtained. First the constrained 
log-likelihood function is expressed as 

L = \\x Σ-'Ξ-^ίτΣ-^χ-μ^χ-μΥ^^^-'Ι-ηλ^Σ-^μ-α) 

= tr φφ' _ tr Φ(χ - μ)(χ - μ)' Φ + η log \Φ\ - ηλ'(Φμ - c), 

where Φ = Φ\¥ with Σ~ι = ΦΦ' and ΦΕΟΊ(Ρ\ x=W~lx and μ= Ψ~ιμ. 
Differentiating L with respect to μ yields μ = x — $ ~ ιλ and substituting this 
μ into L yields 

-nliyJij&t + nlXtCi. 

Here differentiating Lx with respect to $0· and Af-, we obtain 

^ + Λ#,·/*,Λ - Λ = 0, $y = - nXjXi (i > j) 

2 Ύ ~ 
^ = 3 lZiZj(f>ijXj-Ci']-

From these equations, ^ /s are recursively obtained; e.g., since λγ = 
I (#i*i -C\\ 

etc. Then the MLE of Φ is given by φ = ^H^~1 and the MLE of μ is given 
by μ=Ψ(χ-$-1λ). 

4. THE CASE Σ = σ2μ'μΙ 

As a particular case for μ'Σ~ιμ constant, in this section we consider the 
case of Σ = σ2μ'μΙ, where σ2 is known. Then (y, w) is a sufficient statistic 
where w = tr S and (>>, S) is given in (1.4). Of course, \ν/σ2μ'μ is distributed 
as χ2

η_ί)ρ. The loss function in this case becomes 

1(α,μ) = (α-μ)'(α-μ)/σ2μ'μ (4.1) 

and the problem of estimating μ remains invariant under the group 
G = R+ x@(p) which acts on (y, w) by 

(y,w) >{bry,b2w) for (ft , f)6C, (4.2) 
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where R + ={b>0} and Θ{ρ) denotes the group of pxp orthogonal 
matrices. The following lemma is similar to Lemma 2.1 and the proof is 
omitted. 

LEMMA 4.1. An equivariant estimator fi(y, w) is of the form 

fi(y>w) = h(v)y with v = y'y/w9 (4.3) 

where A() is a measurable function from R+ into R. 

Now to find a BEE which minimizes the risk R(fi, μ) = 2Γμ[£(μ, μ)] , note 
that the action of G on the parameter space is transitive and hence the 
statistic v = y'y/w, which is a maximal invariant, is ancillary. Hence the risk 
function is constant and so taking μ = μ0 = (1, 0,..., 0)', the BEE is given 
by fi{y, w) = h0(v)y with 

ho(v) = EtM)lyl\vyE,0ly
fy\vl (4.4) 

where y = (yl9..., yp)'. Evaluating h0(v) yields the following theorem. 

THEOREM 4.1. The BEE is given by fi(y, w) = h0(v) y with 

n"2F(np/2 + 1; p/2 + 1: nv/2(l + ν)σ2) 
{V) F(np/2+l;p/2:nv/2(l+v)a2) ' l * ' 

where F(a, b: x) = Σ?=ο Γ(α + 0*7Π& + 0*! 

Proof In the density of (y, w\ transform (y, w) into (>>, v) to get the 
density of (y, v): 

oo 

O-tn-i)p/2-i £ (nl/2
yiay/il 

/ = 0 

Using this and evaluating the conditional expectations yields the result. 
The details are left to the readers. 

Next we derive the MLE. From the joint density of (y, w), maximizing 
the log-likelihood equation is equivalent to minimizing 

^ logQiTi) + \lw + y'y - 2ηι/2γ'μΜσ2μ'μ. (4.6) 
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It is then easy to see that the M LE is a solution of 

ηρσ2μ'μμ — ηι/2μ'μγ — \νμ — γ'γμ + 2nx,2y'μμ = 0. (4.7) 

We solve this equation as 

THEOREM 4.2. The MLE is given by 

Λ Γ (1+4 /7σ 2 ( (1+ ι ; ) / ι ; ) ^ -1 - | 
μΜ = I ^τ^ J y. (4.8) 

Proof. First observe that the solutions of (4.5) are of the form 
ß = h(y, w) y. Hence substituting μ = ς>>, we obtain 

c\npo\y'y)c2 + (nmy'y)c- (y'y + w)] = 0. (4.9) 

The solutions of this equation are c{ = 0, 

C2 = {-i-[i+y^j/2j|i,v, 
and c3 where c3 is [ ] in (4.8). To find the solution which minimizes (4.6), 
obtain the matrix of the second derivatives of (4.6) and evaluate it at c/s. 
Then c{ is not the solution and for μ = ο^ with c , / 0 , the matrix is 
evaluated as 

A — y'yl+ yy with A > 0, 

where bi = 2nl/2pa2ci. For this to be positive definite, è / > 0 is necessary. 
Hence c3 is the only solution, completing the proof. 
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A Generalized Cauchy-Binet Formula and 
Applications to Total Positivity 

and Majorization* 
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1. INTRODUCTION 

The identification and analysis of multivariate totally positive kernels, 
log concave densities, Schur-concave functions, and symmetric unimodal 
functions relies heavily on their conservation under convolution operators. 
An approach of wide scope incorporating many of the essential com-
position laws can be based on a generalized Cauchy-Binet formula. The 
Cauchy-Binet formula for matrix functionals plays an important role in 
studies of determinants, permanents, and other classes of matrix functions 
(e.g., Marcus [7], de Oliveira [10]). In this context a generalized matrix 
function founded on the matrix \\A{xhyj)\\\ has the canonical form 

df(x9y,A)= Σ Ζ(*)ΠΛ(*,,^(Ι)), (1.1) 
σ e JtT /' = 1 

where Jf is a subgroup of the symmetric group ifn (permutations on n 
elements) and χ(σ) is a character on Jf, i.e., χ{β) = 1, where e is the identity 
permutation and χ(στ) = χ(σ) χ(τ) for <τ, τε Jf. The specifications Jf = ^n 

and χ(σ) = signa or χ(σ)=\ produces the determinant and permanent 
functionals, respectively. The classical Cauchy-Binet formula expresses 
df(x, y, C) for the matrix product C = AB in terms of the corresponding 
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rf^-functionals of A and B. The Cauchy-Binet formula for continuous 
matrix multiplication serves abundantly in verifying and generating totally 
positive (TP) kernels, e.g., Karlin [5 ] . 

In this paper we develop an extended Cauchy-Binet formula for mul-
tivariate kernels. The setting of matrix functions is generalized to K(x9 y) as 
a function defined for a direct product domain Rn + n (Euclidean (In)· 
space) and 

df{x9y9K) = DK{x9y) 

= Σ χ(σ)Κ(\,σγ)= £ χ(σ)Κ(χϊ9...9χη;γσ{1)9...9γσ{Η)) 

(1.2) 

(the dependence on Jf and χ is suppressed where no ambiguity is likely). 
With K{x9y) = Y\"=iA(xi9yi) based on the matrix kernel A(x9 y)9 we 
recover (1.1). 

The construction (1.2) invites a generalized totally positive (GTP) 
notion. Thus K(x9 y) is said to be GTP with respect to Jf = 5fn and 
χ(σ) = signa if d{x9 y; # ) = Zae^„(sign σ) K{x9 (xy)^O for x = (xl9..., xn) 
and y = (>>i,..., yn) provided Xj < · · · < * „ and yi<--<y„. There also 
occurs the notion of generalized total positivity with respect to subgroups 
of ^ . In this perspective the property of Schur convexity for Φ(ζ), z e Rw, is 
equivalent to the GTP property corresponding to Jf consisting of per-
mutation subgroups of two elements operating on the translation kernel 
K(x9 y) = Φ(χ -h y), see Theorem 3 below. The fact that the convolution of 
Schur concave functions remains Schur concave (Marshall and Olkin [8]) 
is manifest from the Cauchy-Binet formalism. In the same vein the con-
volution of similarly elliptically contoured unimodal densities is also of the 
same kind. 

The concluding section considers generalizations involving compact 
groups ^ with (1.2) of the form 

d«(x9y9K) = ^x(g)K(x9gy)dg9 (1.3) 

where dg refers to the Haar measure of ^. 

2. A GENERALIZED CAUCHY-BINET FORMULA 
FOR THE SYMMETRIC GROUP 

Let df(y) be an invariant measure with respect to 6fn so that 
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dr(ay) = dr(y\ e.g., when dr(y) = Y\n
i=idr(yi) is a product measure of 

identical factors. The following integration formula is elementary 

f <t>(y)dr(y)= X f îpldr{y\ (2.1) 

where y = (yl,...9yn)eA, A is the increasing orthant of Rn (i.e., 

/(y) = n ^ ! (2.2) 

and mt is the number of occurrences of the /th distinct component of y. 
Equivalently t(y) is the number οϊ σβ^η for which <xy = y. Obviously 
r(y) = 1 when yeA° (the interior of A). 

Let A = {τί9..., τΓ} represent the right coset space SfJJt such that .#% 
are distinct, τχ =e and U, ^ τ / = ^ · ^η this case> it ls convenient to write 
the integration formula (2.1) as 

ί Φ(γ)άί\γ)=Σ Σ f *(*cy)-^dr(y). (2.3) 

A kernel K(x, y) defined on a region of Rw x R" is said to be invariant 
with respect to the group Jf c £fn if #(πχ, ny) = K(x,y) for all neJif and 
x, y. For a given character χ we define the generalized kernel function 

DK(*,y)= Σ χ(π)Κ(χ,πγ). (2.4) 

THEOREM 1 (The Cauchy-Binet formula for generalized kernel 
functional). Let K(x9 y) and L(y, z) fte permutation invariant kernels, 
square integrable with respect to dr(y), where Γ is a permutation invariant 
Borel measure on Rn. Consider the continuous "matrix product" 

M ( x , z ) = f K(x,y)L(y,z)dr(y). (2.5) 

Then for any subgroup J f c £fn and character χ on Jf, we have 

DM(x, z) = X [ — - DK(x, ty) DL(xy, z) dr(y), (2.6) 

where A = {y : yl ^ · · · ^yn} is the increasing orthant. 
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Proof. It is readily verified that the invariance of K and L and the 
measure Γ implies the invariance of M. Equation (2.5), definition (2.4), and 
the integration formula produce 

Ζ)Λ/(χ,ζ)= Σ χ(π)Μ(χ,πζ) = £ χ{π)\ K(x, y) L(y, πζ) </Γ(γ) 
π e J f π e JT R" 

and by virtue of permutation invariance 

Z)M(x,z) = W l j ; χ(φ)Κ(χ,φτγ) £ χίφ- 'π) L(iy, φ^πζ) dr(y) 

and, since for each cpeJf, ψ~ιπ traverses Jtif as π traverses Jf we achieve 

n rv ^ V f ^ ( x ^ y ) Z ) L ( i y , z ) ^ ^ ^ 
Z)M(x,z) = ^ I — dr(y) 

TGJJA t(y) 

as desired. 
In some situations the region of integration in (2.7) can be reduced 

to the subset B<=A defined as follows. For each y determine 
Jfy={neJt:ny = y} and let 

£ = { y e ^ : * M = l f o r a l l ^ e ^ } . (2.8) 

We claim for yeA — B and any ae£fn that DK(x, ay) = 0. Indeed, let 
s = | JF/JtCy | and choose left coset representatives 0, s Jf such that 
0le^,..., 0sJfy are distinct cosets of Jfy in f̂. Then 

£*(x,y)= Σ x(n)K(x,ny)=t Σ X(ö/) χ{μ) K(x, 0^y) 

and since /xy = y for J^ 

/>*(x,y) = I*(0,)#(x,0,y) Σ χ(μ). 
/ μ ε JÉ^ 

Because yeA-B, χ{μ0)Φ^ for some μ 0 £ ^ and therefore 
a = Z/,e *e, Χ(μ) = 0 (since χ(μ0) a = a), so that DK(x, y) = 0. Replacing y by 
ay and noting that J^ay = aJfya~l, we have 

£*(x,*y)=i xtfjKixJw) Σ ζ(^λ 
/ = 1 μ e //f fy 

(2.7) 
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for an appropriate set of #,. Also 

Σ x(/*) = Σ *(/*) = Σ χ(°)χ(μ)χ(°-ι) = Σ z(/0=o. 

Thus Z>*(x, ay) = 0 for all σ when yeA — B and we can replace A by 5 in 
the integral of (2.7). 

Where the coordinates of y are all distinct, πy = y is possible only when 
π = e = the identity permutation so that / /y = {e}, and y e B. Accodingly B 
contains all points oï A°= {y:y{<y2< ·-<yn}> When Γ is a continuous 
measure the region of integration can obviously be reduced to A° = interior 
of Ay and t(y)= 1. 

Consider χ(σ) = signer and 3tf? = £fn. If y has a pair of coincident coor-
dinates then Jfy contains the odd permutation σ which only transposes the 
coincident pair, with χ(σ)= —1 so that γφΒ. Hence in this case B = A°. 
For 3/f = yn we have A = {e} so in this case, with χ(σ) = signa, (2.7) 
becomes 

Ζ)Λ/(χ,ζ)= | . | ^(x,y)Z)L(y,z)t /r(y) . (2.9) 
> Ί < ··· <yn 

In the example where for some functions Φ,, ι= 1, 2, 

*(x, y) = Π φι(**> ytl L(y>z) = Π φ 2 ( ^ , *,), (2.10) 
ι = 1 ι = 1 

and χ(σ) = sign σ, the functional D is the classical determinant as men-
tioned before. 

If Γ = Γ 1 χ . · χ Γ 1 , then setting Ψ(χ9ζ) = ^Φί(χ9γ)Φ2(γ9 z)dr1(y) 
and 

M(x,z)=f tf(x,y)L(y,z)</r(y)=n ¥"(*„*,), (2.11) 
K / = 1 

we obtain the classical determinental Cauchy-Binet formula 

'(:::::?)- ί-ί <:::£)<:::£) n ™ <-> 
>Ί < · · · < yn -

with the notation det(0(xi9yj))
n

ij=l = Φ(*\Υ. :*;), which reduces, of course, 
to the matrix version when Γγ is a discrete measure of unit point masses. 

With the above notation but χ = 1, the functional D becomes permanent 
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and denoting Φ*{*\\;:5) = per(*(^,<v/))Jy.1, the Cauchy-Binet formula 
for permanents has the form 

ψ*(χι~'χ»\ 
\Zi--zJ 

-M,....<»>e::::>e::::;:)n™ 
(2.13) 

with the integration covering all of the increasing orthant A. 

3. GENERALIZED TOTAL POSITIVITY 

For our immediate purposes, it is useful to describe a complete set of 
coset representatives for the group ^ — ^{\,2,...,*0} consisting of all per-
mutations satisfying n(j)=j for j>k0, i.e., π permutes only the indices 1, 
2,..., k0 among themselves. When π{τ = π2θ with nu n2e Jf then r~l(j) = 
6~\j) for ally>/:o. Thus with each monotone set zx< · -<zko there are 
(w — k0)\ permutations τ inducing distinct cosets of Jf in the manner that 

τ"1(ϊ) = ζ/, / = 1, 2,..., fc0, and τ maps {1,..., n}-{zl9..., zko} 

onto {fc0+l, ..·,«}. (3.1) 

There are (ko) selections of monotone &0-element sets from {1,..., n}. Since 
\jf\=k0\ the collection of all τ as described constitutes a complete set of 
coset representatives for 6f{l,„.,*„}. In a similar manner we can delineate a 
complete set of right coset representatives for Jf = «5 ,̂·,,...,/)t} by specifying 
Zj < · · · < z^ and mapping τ_ 1(/ν) = zv with a general permutation among 
the remaining indices. 

More generally, the group Sf^u^ak j * &[ßlt...,ßk} composed of all 
permutations that permute the elements {α,,..., a*,} among themselves and 
separately permute the elements {ßu...,ßk2} among themselves and leave 
all other elements fixed, possesses a set of coset representatives {τ} charac-
terized by choosing a set of kl + fc2 increasing integers and then specifying 
zx<-'<zkl from these, leaving w{ < · · · <wk2 and prescribing τ ~1(ai) = zi9 

τ-
ϊ(β.) = \νί with an arbitrary permutation otherwise. The extension to 

*{«,.....*,> * *{* . . . . .* ,> * *{y,....y*,} e t C · i s C l e a r -
A permutation invariant kernel K(x, y) defined on R" x Rn is said to be χ 

generalized sign consistent of order p(x-GSCp) if for all pairs of monotone 

file:///Zi--zJ
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fc-tuples of indices / ! < · · · < ip9 j \ < · · · <jp9 and (x, y) in the corresponding 
monotone orthant, i.e., x,·, < · · · <xip and yh ^'-^yJp, we have 

Σ χ(π)Κ(χ,πγ)>0. (3.2) 

Thus the kernel K(\, y) is GSC2 (since ^{/ y} = {e9 / } , where e is the identity 
and t specifies the transposition of i to j) if whenever x^Xj and yt^yj 
holds for some /, 7 then (for χ = sign) 

Λ(Λ j , . . . , X(— j 9 Xj9 Xi+ 1 > ···> Xj— 1 > -*/> -*7 + 1 9 ···> ·*« > 

J i , ···> J / - 1 » JF/> yi+ i> ···> J , - i> >;> >!/+ i ' - ' ^«) 

^ Λ(Λ i , . . . , ·Χ,·_ i , X/, X/ + 1 j ···? -*_/ — 1 ? Xj9 Xj+ 1 ? ···? Xn 9 

y i9 ·.·, j \ - 1 , yJ9 yi+1,..., >>,·- ι , > \ , >>,·+1 » ···> y „)· ( 3 · 3 ) 

Note that (3.3) expresses inequality between two values of Â , where in the 
first argument (xh Xj), (yhyy) are similarly ordered, whereas in the second 
they are oppositely ordered. This property was called DT = decreasing in 
transposition by Hollander, Proschan, and Sethuraman [4] , and 
AI = arrangement increasing by Marshall and Olkin [9] . In our ter-
minology this will be called GSC2, and if, in addition, K^O then it is 
GTP2. 

A kernel K(\, y) is said to be χ-generalized totally positive of order 
ρ(χ-GTPp) if K is χ-GSC, for all q9\^q^p. 

EXAMPLES. A kernel of the form K(\, y) = E?=i Φ(*/» yd is (signa)-
GTP2 if and only if Φ^Ο and for any xx ^ x 2 , yx ^>>2, 

Φ(χΧ,yx) + Φ(χ2, y2)- Φ(χι,y2)- Φ(χ2, >Ί ) ̂  0, 

i.e., Φ is a positive set function or, equivvalently, Ψ(χ9 y) = exp^(x, y)~] is 
TP2. K(\9 y) = Z?=i &(xi>yt) is maximized when x and y are similarly 
ordered (Lorentz [6] , Rinott [11]). 

The following example was stimulated by Boland, Proschan, and Tong 
[2] . Let X = (Xl9..., Xn) be a vector of exchangeable random variables. Set 

//(a, b) = Pr {a ^ X ^ b}, a, b € R". 

Then/ / (a ,b) isGTP 2 . 

Proof. Let A = {(x3,..., χη): α^χ^ο,, / = 3,...,«} and let IA denote 
its indicator function. Because 

H(z9b) = E[IAX39..., Xn) Pr{(fllf a 2 X (*„ X2)^(bl9 b2)\X3,..., * „ } ] , 
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we see that it suffices to prove the result for 

H((aua2), {blt *2)) = Pr{(«„ e 2 X (*„ X2)^(bu b2)\X3,..., Xn}; 

that is, it suffices to consider the case « = 2. Thus the desired result reduces 
to showing for a, < a2 < bt ^ b2, 

H((aua2),(bl,b2)) = PT{al^Xi^bi,a2^X2^b2} 

> Pr {a, ^X1^b2,a2^X2^bl} = H{(au a2), (b2, bj). 

Now 

H((au a2), (b2, bl)) = H((al, a2), (bu bl)) +H((bu a2), (b2, bt)) 

= H((ai,a2),(b1,b1)) + H((a2,b1),(b1,b2)) 

(since by exchangeability Η(*π, bn) = //(a, b), where π denotes a per-
mutation) 

^H((al9a2)9(bl9bl)) + H((al9bl)9(bl9b2)) 

= H((al9a2)9(bl9b2)) 

and the proof is complete. 

If the underlying kernel function Φ(χ9 y) is ΤΡ^ in the standard sense 
then K(x9 y) = Π?= i *(*/> yd *s X-GTPP for the character χ(σ) = sign σ. 

THEOREM 2. If K and L are χ — GSCP then so is their convolution 

M ( x , z ) = f K(x9y)L(y9z)dr(y) (3.4) 

provided Γ is permutation invariant and the integral exists. 

Proof. With a given set of indices / ! < · · · < ip consider the group 
Jf = «5 ,̂·,,...,,·} and use the coset representatives τ described in (3.1). Then 
for x and z with xh ^ · · < xip and zh ^ · · · ̂  zip we have 

yMl^r^t^'''^· (3.5) 
zej

JA t(y) 

The choice of the coset representatives entails for xeA spanning 
^l^{h,...,ip} that for appropriate ax< -·<αρ9 τ(αν) = ιν; see the discussion 
of (3.1). But each ye A belongs to the monotone orthant and, in particular, 

Λ(βΙ ) ^ < y«ap) (i.e., yh ^ · · · < yip. ) 
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Since K is x-GSCp we know for *, · ,<· · ·<x i p and ah*ζ ·-^a ip that with 
xeA, DK(x,xy)^0 and similarly DL(ry, z )^0 . Since dr(y)^0, it follows 
that DM(x9 z) ^ 0. Accordingly, Theorem 2 is proved. 

There are obvious extensions of the notion of GSC^ relative to groups of 
the kind «5 α̂ι>...,ar} * ^{ßu...,ßs} etc. which lead to tensor products of deter-
minants and permanents. 

The following theorem highlights Schur convexity as a special case of 
X-GSC2(*(tf) = sign*). 

THEOREM 3 (Hollander, Proschan, and Sethuraman [4]). Let Φ be a 
real valued function defined on R" and define a kernel K by 

K(x,y) = <P(x + y). 

K is GSC2 if and only if Φ is Schur convex. The kernel L defined by 

L(x,y) = # ( x - y ) 

is GSC2 if and only if Φ is Schur concave. If<P^0we can replace GSC2 by 
GTP2. 

Proof. It suffices to consider n — 2. The notation >· refers to the 
majorization ordering, that is (a, b)>(c, d) iff a^b, a^c, a^d, and 
a + b = c + d hold. For xx ^x2,yx ^y2, obviously (xx +yl9 x2-\-y2) > 
(*i +>72>*2+J;i)· On the other hand, if (a, b) > (c,d) with a^b, c^d 
the choice x2 = b9y2 = 0, xx = c9 yl = a — c = d—b yields (a, b) = 
(JCJ +yi9x2 + y2\ (c,d) = (x{ +j>2»*2+.yi)· Hence # i s Schur convex if and 
only if 

K{(xl9x2)9(yl9 y2)) = 0{xi+yuX2+y2)^4>{xi +^2,^2 + ^1) 

= K((xi9x2)9(y29y{)). 

A similar comparison leads to the conclusion about L. 

COROLLARY 1 (Marshall and Olkin [8]). If fand g are Schur concave 
on Rn then so is their convolution h defined by 

A(x)=f A*-y)g(j)dy, 

J Rn 
provided the integral converges absolutely. 

Proof By the translation invariance of Lebesgue measure 

M(x, z) = h(x - z) = J / ( x - y) g(y - z) dy = J tf(x, y) L(y, z) dy. 

The corollary follows from Theorem 2 in view of Theorem 3. 
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There are many applications of this corollary in the theory of 
majorization. For example, If X is a random vector in R" having a Schur 
concave probability density, then F(xl,..., xn) = Pr{Xx ^xx , . . . , Xn^xn} = 
J/(x — ξ) / + ( ξ ) ί/ξ, where /+(ξ) is the characteristic function of the positive 
orthant, is Schur concave. 

4. SEMIGROUP OF GENERALIZED TOTALLY POSITIVE KERNELS 

In this section we assume that Γ = μ χ · · · χ μ , where μ is Lebesgue 
measure on R or the counting measure assigning unit mass to each integer. 
We shall exploit the fact that for any Borel set A in R, μ{Α + x) = μ(Α) for 
all xeR in the case of Lebesgue measure, xeZ ( = integer) in the case of 
the counting measure. 

In the following definition, A ç R will denote a semigroup (under 
addition) such as R, R+ = [0, oo), Z = {..., - 1 , 0, 1,...} or Z+ = {0, 1,...}. 
The product Am is again a semigroup in Rm. 

Let Am denote a semigroup in Rm. A kernel K(a, x), (a, x j e ^ x R " is 
said to possess the semigroup property if the identity 

*(α + β,χ)=[ Κ(α9χ-γ)Κ(ν,γ)αμ(γι)·-·αμ(γη) (4.1) 

holds for all α, βθΛ™, xeR". 
If K(a, x)9 ÖL e A, x G R satisfies the semigroup property with respect to μ, 

then K(a, x) = Π7-1 ^(a/> */) satisfies the semi-group property with respect 
to Γ= μ x · · · x μ for a e ΛΓ, x e R". Any infinitely divisible density / ( x ) is 
embedded in a semigroup family of densities in continuous time/,(x). Sums 
of i.i.d. variables generate a discrete semigroup family. 

The basic result in this section extends a result of (Hollander, Proschan, 
and Sethuraman [4]), see also [5, Chap. 3 ] . 

THEOREM 4. Let Κ(λ, x), XeA", xeR" be a GSCP kernel having the 
semigroup property, and suppose the real valued function Ψ on R" is such 
that the kernel L defined by L(x, y) = Ψ(\ + y) is GSCp. Define 

Φ ( λ ) = ί Ψ{χ)Κ(λ9χ)αμ(χι)·'·άμ(χΗ) (4.3) 

and Μ(α, β) = Φ(α + β). Then M is GSCP in α, β. 
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Proof. Setting dT(x) = άμ{χχ) · · ·άμ(χη), we have 

Φ(α + β ) = ί Ψ(χ)Κ(α + &χ)αΓ(χ) 

= ί ί 9>(x)K(a,x-y)K(P,y)dr(y)dr(x) 
R" R" 

= ί K(p,y)\\ K(a,z)<P(z + y)dr(z)}dny) 
JRn [JRn J 

= Jtf(ß,y)L(a,y)</r(y). 

Applying Theorem 2, we deduce that the inner integral whose resulting 
kernel is labeled L(a, y) is GSC^ in y, a. A second application yields GSC,, 
in α, β. 

COROLLARY 1. Under the assumptions of the theorem, let 

Φ(λ) = | Ψ(χ) C ( t ^ , Σ *) K(K x) άμ{Χι) ■ ■ ■ άμ(χη), (4.4) 
R" \ / = i i=i / 

where C is any non-negative function on A x R. 7Vze« Af(a, β) = Φ(α + ß) w 
GSCP. 

Proof. For the fixed vectors λ, γ set 

Î P * ( x ) = y ( x ) c ( f λ» £xt\ 

and observe that 

Σ W/ + y , ( 0 )=I (*/ + ?/) 

independent of π. It follows that ^*(x + y) is GSC^. The result follows by 
Theorem 4. 

COROLLARY 2. Suppose K(OL, X)9 OLEA^R, xeR satisfies the semigroup 
property with respect to μ, and K(a, x) is TPp. Then K(a, x) = 
YYi= i K(oLi9 Xj), ae A", x e R " is GTPp and satisfies the semigroup property. 
Hence Φ(λ) defined by (4.4) has Φ(α + β) GTPp provided Ψ(χ + y) is GTPp. 
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5. COMPLEMENTS 

The generalized Cauchy-Binet formula based on the symmetric group 
(permutations on n elements) is also amenable to representations involving 
a general compact group acting on R". This perspective will be briefly 
reviewed. 

Let 9C be a space with G a finite group acting on 9C to itself. Suppose μ is 
a measure on X invariant under G, that is, μ(gE) = μ(E) for any 
measurable E^&. Assume there is a fundamental region A <^3C such that 

ί / ( χ ) φ ( χ ) = X \ f(gx)dß(x) (5.1) 
* geG * 

akin to the integration formula (2.1). Let #(x, ξ) be a kernel invariant 
under G, that is, K(gx, #ξ) = Κ(χ, ξ) for all x, \e$C and g eG. For x(g) a 
character on G we define 

DK(x,z) = X x(g)K(x9gz) for x ,z€f . 
geG 

The method of Theorem 1 yields: Let 

A(x,z) = j7(x,y)g(y,z)Mrfy). (5.2) 

Then 

Dh(x, z) = f D/x, y) Z),(y, z) μ(άγ). (5.3) 

In particular, if Df(x, y)^0 and Z)̂ (y, z )^0 /or x, y, ZG^, iAe« a/so 
£A(x,z)^0. 

EXAMPLE 1. Let & = R" and identify G with the reflection group of 
elements g = (gl9 ...9g„) each g,= ± l and gx = (giXi, ...,£„*„). Define 
χ(£) = Π?=ι( —l)(1~gi)/2· Any positive density of the form p(x) = 
p(|jct |,..., |xw|) satisfies p(gx) = p(x) and the measure induced by p is 
invariant with respect to G. In this case (5.1) holds with A the positive 
orthant. 

Consider Λ = 2, φ{χ) = φ(\χι\ + \χ2\)
 a n d ^(x) = MI*i I + 1*21) w i t h Ψ 

and φ convex (not necessarily decreasing) on the positive axis. Then 

Σ *(s)<P(x-Sy)^° for x > 0 and y > 0 (5.4) 
geG 
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and similarly for φ. By virtue of (5.3), the composition (the integral is 
assumed to exist) 

0(x, z) = j" φ(\ - y) φ(γ - ζ) ρ(γ) dy 

with p(y) = p(|y|) satisfies £geGx(g)0(x,£z)S*O for x and z^O. 
The result can be extended to the case of n coordinates involving higher 

order convexity requirements on φ and φ. 

EXAMPLE 2. Let G, be the group of two elements {e9 y,} where ex = x, 
y,x = (*,,..., *,_!, -xi9xi+l9...9xn). For φ(χ) = φ(\χι\9...9 \χη\) and x(g) 
as before then 

Σ X(s)<P(x-*y)S*0 for w , > 0 (5.5) 

iff <p is decreasing in the /th coordinate. 
The following composition inequality holds. Let φ(\) and ^(x) satisfy 

(5.5) for each G,; i.e., φ(\χι\,...9 \χη\) and ψ(\χι\,..., \χη\) are decreasing 
in each coordinate, then the convolution 0(x) = J<p(x — ξ) Ά(ξ)^ξ is also 
decreasing in each coordinate. 

EXAMPLE 3. The property that a radial function /(||x||2) in Rn is 
decreasing away from the origin (RD) is preserved under convolution, 
where A(x) = | / ( χ —ξ)#(ξ)Λξ, follows readily from the identity 

A(y-*)-A(y + * ) = i [ / ( y - W - / ( y + W ] [ i f t - i ) - * f t + « ) ] * 
J<y,^>^o 

(5.6) 

where <y, ξ> denotes the inner product of the vectors y and ξ. Note, if 
z = Ay, 0<λ< 1, then 

A((l-A)y)_A((l+A)y) 

= i [ / ( y - « - / ( y + S ) ] [ i f t - A y ) - g « + A y ) ] * 

and both factors in the integrand are non-negative, since / and g are RD. 
The formula (5.6) can be construed as an elementary version of (5.3). 

Similar results ensue for convolutions of unimodal elliptically contoured 
functions of the same tyype. The foregoing are special cases of the Ander-
son theorem [1] on symmetric unimodal functions. 
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We close by describing a general group theoretic version of the 
Cauchy-Binet formula. Consider a locally compact space X and a compact 
group ^ acting on X. Let & = £/<& denote the factor space. Let dg be the 
unique left and right Haar measure of ^ and assume also that d(gx) = dx; 
that is, the measure dx on X is invariant under the group operation. We 
postulate the existence of a Fubini type integration formula (analog of 
(2.1)) of the form 

f f(x)dx=\ u(p)dp\ f(gx)dg, (5.7) 

where u(p) dp is an invariant measure on 0>. Examples will be given below. 
A generalized Cauchy-Binet formula based on (5.7) is accessible. Con-

sider the bivariate kernels K(x, y) and L(y, z) both invariant with respect 
to <S (i.e., K(gx, gy) = K{x, y), L(gx, gy) = L(x, y)) and form the composed 
kernel 

M(x,z) = J#(x,y)L(y,z) dy. 

It is easy to check that M is invariant since d(gy) = dy. Analogous to (2.4) 
we construct the generalized functional 

£*(x,y)=f x(g)K(x9gy)dg9 (5.8) 

where x(g) is a character defined on ^. Paralleling the derivation of (2.6) 
relying on the integration formula (5.7), we obtain 

DM(x, z) = f £>*(x, y) DL(y, z) u(p) dp, (5.9) 

where the product function DK(x, y) DL(y, z) with respect to y is actually a 
function on the coset space 91^3. In fact, for φ e ^, 

DK(x, q>y) DL(<py, z) 

= ( £ Z(g) *(*, gq>y) dg^ x(h) L(y, φ-'Αι) dh} 

= χ(φ~ι)M x(s)*(χ,sy)*J*(</>)M x(g)My,gz)dg) 

= DK(x,y)DL(y,z). 
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In the special case x(g)= 1, the formula (5.9) entails only coset variables 
such that 

DM(px, pz) = f κ(ρ)[ΖΜρχ, py) DL(py9 pz)] Φ, (5.10) 

where px, py, and pz designate the coset representatives of x, y, and z, 
respectively. 

Examples of (5.7) include 

1. 3f = Rw, & the orthogonal group on R" and & is identified with the 
radial value of x. 

2. Let 3C consist of all r x n matrices x, ^ again the orthogonal group 
of R" acting on X by left multiplication xg. The coset space 9 is recognized 
as the collection of all r x r positive semi-definite matrices. The integration 
formula (5.7) in this case is 

i/(x)i^=a-li^i^wi/(x^*· ( 5 · Π ) 

dpi denotes the determinant of p, x' the transpose matrix to x, ocnr is an 
appropriate constant.) The formula (5.11) underlies the development of the 
central and noncentral Wishart distribution. 

3. Another important example of a Fubini type formula is 
r dx dw r r dc 
j /(x, w) = a(A q) j ^ du J^/(cx, cy) — , (5.12) 

where the integral on the left covers all matrix pairs (x, w), x is p x q9 w is 
pxp nonsingular, u is p x q, du is ordinary Lesbegue measure on pq space, 
c an arbitrary pxp nonsingular matrix. The formula (5.12) can be used 
to obtain the distribution of u = w-1x which is a type of multivariate 
f-statistic. 

Similar integration formulas are available for the generalized Hotelling 
statistics, canonical correlations, etc. (see [3, Chap. 5]). 

The generalized Cauchy-Binet formula of the form (5.10) affords a 
construction of a compound kernel defined on the coset space of 9 = SC/^S 
resembling compound permanent functions. 
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Isotonic M-Estimation of Location: 
Union-Intersection Principle and 

Preliminary Test Versions 
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In a k (^2) sample model, isotonic estimators of locations θχ,..., 9k take into 
consideration the prior restraint that θγ^ ··· ^6k. Though these estimators are 
appealling, they are generally biased. The union-intersection (UI-) principle and 
the theory of A/-estimation of location are incorporated in the formulation of some 
robust, preliminary test, isotonic (M-) estimators of locations. Associated 
distribution theory of the test statistic and estimator is studied in a systematic 
m a n n e r . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

Let Xu,j= 1,..., rti be «, independent and identically distributed random 
variables (i.i.d.r.v.) with a distribution function (d.f.) Fi9 defined on the real 
line R, for / = 1,..., k (^2); all these k samples are assumed to be indepen-
dent. Consider the usual location model 

Fi{x) = F{x-8i\ i=l,...,*, (1.1) 

* Work of this author was partially supported by the Office of Naval Research, Contract 
N00014-83-K-0387. 
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where the 0, are the location parameters and F is a continuous d.f., 
assumed to be symmetric about 0. It is desired to develop suitable 
Af-estimators of the vector of location parameters Θ = (θ{,..., 9ky following 
a preliminary test of 

Η0:θ{= · · · =ek against Ηχ\θχ^ · · · <0 Λ , (1.2) 

where at least one of the inequalities is strict. The preliminary Af-test is an 
extension of union-intersection (UI-) tests considered by De [5 ] , 
Chinchilli and Sen [3, 4 ] , and Boyd and Sen [2 ] , while the preliminary 
test estimator (PTE) is formulated along the lines of Sen and Saleh [10], 
but for restricted alternatives. 

Section 2 deals (succinctly) with the classical M-estimators of location in 
this multi-sample context; the corresponding UI-Af-test for H0 against Hx 

is considered in Section 3. The results of Section 2 and 3 are incorporated 
in the formulation of isotonic Af-estimators and their PTE versions in 
Sections 4 and 5, respectively. Asymptotic properties of these estimators are 
studied under a sequence of local alternatives containing H0 as a special 
case. The concluding section deals with this relative picture through some 
simulation studies. 

2. M-ESTIMATORS OF LOCATION AND REGULARITY CONDITIONS 

We introduce first a score function ψ: R-+ R, defined by 

φ(χ) = ψ{(x) + ψ2(χ), xe R = ( - oo, oo), (2.1 ) 

where both φχ and φ2 are nondecreasing and skew-symmetric functions 
with ψι absolutely continuous on any bounded interval in R and φ2

 a s t eP 
function having finitely many jumps. We denote these jump-points by 
_co =a0<al< · · · <ap<ap+l = oo and assume that there exist real num-
bers a0 < · · · < <xp, such that φ2(χ) = <*/> f°r * e (fly> aj+1)> j' — 0, 1,..., p , and, 
conventionally, we let ψ2(η+1 ) = (a,· + a

7+1 )/2, for j = 0,..., p - 1. We 
assume that 

0<σ2
ψ=\ xlj\x)dF{x)<co, (2.2) 

and 

f {Y\(x)}2dF(x)<co, where ψ,
ι(χ) = {α/άχ)ψι(χ)9 xeR. (2.3) 

JR 
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Concerning the d.f. F, we assume that it has an absolutely continuous 
density function/, such that f\x) = (d/dx)f(x) exists almost everywhere 
(a.e.), and that 

j(f) = f {f'(x)/f(x)}2 dF(x) < oo (i.e., finite Eisher information). (2.4) 

These regularity conditions are all adapted from Jureckovâ [7] . 
Now, for each / ( = 1,..., k) and every real /, we define 

Μ , , ( 0 = Σ ^ - 0 , teR, (2.5) 

and note that by definition Min.(t) is \ in teR. Let then 

^ = sup{/:M,>,(i)>0}, ^ = inf{/:M,> i( i)<0}; (2.6) 

Ö,„, = ( ^ + ö,^)/2, i = l , ...,*; K = (ÔKni,...Jk,„ky. (2.7) 

Then, Ôw is the vector of Af-estimators of location parameters based on 
the common score function ψ. In this context, recall that the assumed 
symmetry of F and the skew-symmetry of φ (around 0) imply that 
Φ — \R ΦΜ dF(x) = 0, and this motivates the normal equations in 
(2.6) —(2.7) for the solution of the Af-estimators. These Af-estimators are 
translation-equivariant, and depending on the choice of the score function 
ψ, they are robust too. For later use, we present the following asymptotic 
results. 

First, it follows from Jureckovâ [7] and Singer and Sen [11] that for 
any (fixed) T: 0 < T< oo, for each / ( = 1,..., k), as nt -► oo, 

sup{«r
1/21 Μαθι + ηΓ^ή-Μαθ^ + η^γή: \t\ ̂  T) - ^ 0, (2.8) 

where 

y = f φ(χ){ -f'(x)/f(x)} dF(x) is finite and positive. (2.9) 
JR 

We let « = « ! + · · · + Λ* and assume that as n increases, 

k 

Λ / / Α 2 - Α / : 0 < / 1 / < 1 , foreach I ( = 1, ...,*); £ A,= l. (2.10) 
/ = i 

A direct consequence of (2.8), (2.9), (2.10), and the asymptotic normality of 
the M-statistics (studied in detail in Jureckovâ [7]) is the following: As 
n -► oo, 

η^φη-Q)-^ ^ ( Ο , ^ - ^ Λ - 1 ) ; A = Diag(A1,...,4). (2.11) 
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Finally, (2.11) ensures that 

nl/2 ||θ„ - 0|| = Op(\) (i.e., bounded in probability). (2.12) 

3. THE UI-PRELIMINARY M-TEST 

Making use of (2.11), we shall incorporate the UI-principle and extend 
the classical test of Barlow et al. [ 1 ] to general Af-statistics. Let 

ω = { θ : 0 ! = ··· =ek = eeR) and ω* = {θ: θχ ̂  ··· <0*}. (3.1) 

The (approximate) likelihood function of θ„ is given by 

Lnm= Π {ϊ^βπσΙ^^χρΙ-η^θ^-θ^γ'βσ^Ι (3.2) 
i = 1 

Therefore, we have 

sup{LM(e):eGW} = const |exp[-( 7
2 /2^) £ n ^ - B j 2 ] } , (3.3) 

where 

9 η = Σ (nJn)6UHl. (3.4) 
/ = i 

In passing, we may remark that under ω, a natural estimator of Θ might 
have been obtained by equating Σ?=ι MUrtî(t) to 0 (in the same fashion as 
in (2.6)-(2.7)). In view of (2.8), this natural estimator of Θ would be square-
root n equivalent (in probability) to dn. From the computational point of 
view, given the individual sample M-estimators in (2.6)-(2.7), (3.4) 
involves no extra computation, while the computation of the natural 
estimator is certainly more involved (although a few iterations should give 
the estimator up to any desired degree of accuracy). From the point of view 
of robustness, for small or moderate sample sizes, the natural estimator has 
some advantage, although in the aymptotic case, there is hardly any 
difference. Next, we note that 

ω*= (J co(a); ω(β)={θ:θι· = β + 5ο/, U / ^ M i ^ ··· <ak}, (3.5) 
ae A 

where δ is a positive scalar constant, and a belongs to a positively 
homogeneous cone s/. Without any loss of generality, we may set 
ä = n~l Σ?= i Λ/β,- = 0 and Σ?= i ntf = n. 
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Under co(a), based on (3.2), the MLE of δ and Θ are given by 

<5*(a) = £ ^ A « , ' ( l ^ Λ - ^ θ ) , 
'-1

 ft
 W l ' (3.6) 

0Μ*=Σ (*//*) 0,>,=9„, 

where 1(A) stands for the indicator function of the set A. Substituting (3.6) 
in (3.2) and using (3.3) and (3.4), we obtain that 

LA(a)=-21og{[sup{Lll(e):eeœ}]/[sup{Z,ll(e):eeœ(a)}]} 

= n(y2/al) j £ W ^ - B j J ·/( £ "/«Α«>θ). (3.7) 

We reject the null hypothesis //0 in favor of co(a) for large values of L„(a). 
To obtain an overall test for the entire alternative ω = []Λ€Α ω(β), we 
incorporate the Roy UI-principle, so that on letting 

stf = < a: al ^ · · · ^ ^ , 0 = 0 and £ A, a2 = 1 >, (3.8) 

we set the UI-test statistic as 

Z,„* = sup{L„(a):ae^}. (3.9) 

Our main task is to derive a simple asymptotic expression for L* and to 
study its distribution theory (under the null as well as local alternatives). 
Towards this venture, we make use of the basic results in (2.8) through 
(2.12) along with the Kuhn-Tucker-Lagrange (KTL-) point formula 
theorem in the nonlinear programming theory. We consider a sequence 
{//„} of local alternatives 

//π:θ = θ(π) = 01+Α7-1/2ξ, ξ β ^ , sothatX^ = 0, (3.10) 

where λ = (λ,,..., Xk)' and ξ is an arbitrary (fixed) vector in se. By an 
appeal to (2.12) and (3.4), we obtain that under (3.10), 
nl/2\dn-e\=Op(l\ and hence, by (2.8), we obtain that for each 
/( = 1,..., k\ as /!-► oo, 

n - 1/2[M,W/(9j - M,„,(0,„,)] = ηι/2γλ^Λί - d„) + op( 1 ), (3.11) 

n-l/2MaOi,n,) = op(\\ by (2.5M2.8). (3.12) 
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Consequently, writing Mf>. = Af/f#I|.(9n) (the residual M-statistic), i= 1,..., k\ 
M„ = (MUni,..., Mkynk)\ we obtain from (2.6), (2.11), and the above 
relations that under {Hn} (as well as i/0), 

nl/2y Σ W / , , - 9 j = «-1/2a'Mfl + Ml); (3.13) 
/ = i 

n - l/2Mw _ ^ jrk{yX^ σ 2 ( A _ λ λ Ί ) > ( 3 < 1 4 ) 

The use of these residual M-statistics eliminates the need to estimate the 
unknown parameter y (for the construction of a suitable test statistic) and 
also introduces other simplifications to follow. To construct L* in (3.9), we 
introduce another reparameterization whereby we reduce the problem to 
an orthant alternative problem, for which the KTL-point formula works 
out neatly. Let 

-1 1 0 ··· 01 

ß = D6, where D = I ~ lis of rank k-1. 
( * - l ) x * 

0 0 ··· - 1 1 

(3.15) 

Then (3.5) can equivalently be written as 

ω*= U ω » ; œ°(b)= {b: b^0J = 2, ...,£}, (3.16) 
befl 

and B is the (k — 1 )-dimensional positive orthant. Let 

^ , / = Σ ^ ν > / = 2, ...,*; MM = (Mn,2,...,MM>,r. (3.17) 

Then, 

n-1/2a'lft#I = /i-1/2bTSill whenever Ο ^ Λ , . , + Ο , , Ι = 2,...,Λ; (3.18) 

Λ - ^ ^ - ^ ^ . ^ υ Α ξ , σ ^ Α * ) ; U = ((%)), Α* = ((λ£)); (3.19) 

where 

Ujf = 0 if / <y and 1 if / » (2 ̂ 7 ̂  Â:, 1 < / ^ A:), (3.20) 

^'= Σ ^ - ( Σ ^ Υ Σ A for y,/ = 2,...,/r. (3.21) 
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Thus, the maximization problem in (3.9) reduces (asymptotically) to that 
of maximizing n~~i/2b'MnI(b'Mn>0) over the nonnegative orthant {b^O}, 
where we may set without any loss of generality that b'A*b = 1. For this 
maximization problem, the KTL-point formula may be adapted. Avoiding 
the details of this formulation (by cross reference to Chinchilli and Sen 
[3, 4], where the rank procedures have been considered in detail), we may 
formulate the ultimate solution as follows. 

Let / be the set of 2k~x possible subsets of {2,...,/:} and let / be a 
typical element of y , and T be the complementary element. For each /, 
partition (and rearrange) MM and A* as 

ft,, = (I»;y ) , l»; ( r ) ) ' and Λ* = ( ^ " ^ Λ (3.22) 

Also, let kj be the number of elements in the set /. For each J:0^J<^f, 
let 

M„(y:r) = M„(y) - A*y<n Af^IVi,,^), (3.23) 

Kj.n = A(% - A(V, A·^1, A(%. (3.24) 

Then, for the orthant problem in (3.16), he UI-statistic based on the M„ is 
given by 

&Ϊ = (ηά2
φ)-1 Σ {^ (y^ jA^^ f t ^ - r ) } 

x I(Mn(J:J1 > 0) / ( A ^ f t ^ , ^ 0), (3.25) 

where 

άφ=»~1Σ Σ Ψ'ίΧ,-θ^). (3.26) 

Following the arguments in Chinchilli and Sen [4], it follows that under 
H0, the asymptotic distribution of J£f* is the so-called chi-squared bar 
distribution; i.e., 

P{&*^c\H0}->kt wrP{x2
r^c}, VceR + , (3.27) 

r = 0 

where the wr are nonnegative weights adding upto 1, χ2
Γ has the central 

chi-square distribution with r degrees of freedom (DF), and specifically, 

wr = X lim P{MniJ:J1 >0, A f ^ M , , ^ ^ 0 \ H 0 } 
J:kj= r 

= X lim P{$ln(J:T)>0\H0} /»{A^lf t , , , , ,^0 | H0} (3.28) 
J:kj = rn^a> 
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for r = 0,..., k— 1. These orthant probabilities may be computed by 
reference to the asymptotic normality result in (3.19) (where under //0, 
ξ = 0) and the tables for the multinormal orthant probabilities considered 
by Gupta [6] and others. Once these wr are computed, the critical level c 
for which (3.27) corresponds to 1—a, for some prespecified level of 
significance a (0 < a < 1 ), can easily be obtained from the tables for the 
central chi-square distributions, available extensively in the literature. We 
denote this critical level by c*. Then, the Ul-preliminary test for H0 vs. Hl9 

based on the residual Af-statistics, may be carried out as follows: 

Reject or accept H0 according as JSP * is ̂  or < c*. (3.29) 

A key factor in the simplification of this asymptotic null distribution of 
the proposed UI-test statistic is the (asymptotic) independence (for each 
J'^^J^f) of the quadratic form and the two indicator functions in the 
right-hand side of (3.25). Unfortunately the non-null distribution (even for 
local alternatives) is not expressible in terms of averages of appropriate 
non-central chi-squared distributions. This problem arises mainly due to 
the fact that when the null hypothesis is not true, though \fJ7J})Mn{r) in 
(3.25) is (asymptotically) independent of Μ„υ.^Ί and the quadratic form 
^^j:j')^*jjlj')^n(j:j')> the la t e r random variable is not independent of 
7(ΜΠ(7:7Ί^0). As such, the best we can do is to express the asymptotic 
non-null distribution of if*, under {#„}, in the form 

P{X*^c\ Hn) ~ £ Ρ{Μηυ:η\^Ί^ηυ:η 

^ncal,Mn{J:J1^0\Hn} 

χΡ{ΑΪ,ϊ\$Ιη{,}<0\Ηη}. (3.30) 

For the right-hand side, the second factor can be evaluated using the nor-
mal orthant probability tables, but for appropriate shifts, while evaluation 
of the first factor may be quite involved. Though the non-central chi-square 
(bar) distribution may not generally hold for (3.30), there are alternative 
forms involving central chi-square distributions with mixing coefficients 
depending on the alternative hypothesis which have been worked out by 
some authors (viz., Tsai and Sen [12]), and these may be used (to a 
limited extent) to study the asymptotic power properties of the UI-test. 
Equation (3.30) is quite amenable for simulation studies of the asymptotic 
power function, and for some numerical results, we may refer to Karmous 
[8] . 
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4. ISOTONIC M-ESTIMATION OF LOCATION 

We may refer to Barlow et al. [ 1 ] for an excellent account of iotonic 
estimation of the multi-sample normal mean problem. Borrowing their 
general line of attack and the basic philosophy of M-estimation theory, we 
may present isotonic Af-estimators of the location vector Θ as the solution 
of 

\ i= 1 L / = l 

Π2 

ψ(Χ0-θ,) = minimum, Σ Φ(Χν-θι)\ 

subject to the restraint that θ{ *ζ · · · ^ 0k. (4.1 ) 

However, in view of the fact that (unlike the normal mean case), the 
^-function is not generally linear (though it could be piece-wise linear as in 
the Huber case), the computational algorithm (such as the "pool adjacent 
violators") discussed in Barlow et al. [1 ] may not be totally adaptable 
here. Leurgans [9] has addressed the basic issues underlying the use of the 
"partitionng algorithms" in the case of isotonic Af-estimation and stressed 
the lack of robustness aspects. Although in our case, we have a well-defined 
replicated design (ensuring robustness), her study reveals the general 
weakness of the usual "partitioning algorithms" in robust isotonic 
estimation problems. On the other hand, by virtue of the Jureckovâ [7] 
linearity of Af-statistics (with related first-order asymptotic expansions for 
M-estimators) and the asmptotic normality results discussed in the last two 
sections, it is possible to formulate a simple algorithm directly along the 
lines of Barlow et al. [1] . We shall follow this approach here. 

We start with the approximate likelihood function in (3.2), and based on 
this reduced data set (i.e., Ô„ and nl9...,nk), we construct isotonic 
Af-estimators of 0l5..., 0k. The isotonized Af-estimator of Θ, denoted by Θ*, 
is obtained by minimizing (with respect to Θ) 

k 

Σ ntfun-OiV subject to 0 , < ·· · <0*. (4.2) 

The algorithm for the computation of Θ * is the same one as for the ordered 
mean problem considered in detail in Section 1.2 of Barlow et al. [1 ] . In 
particular, there exist a positive integer l.l^l^k and / positive integers 
kx< · · · <ki = k, such that on letting 

kj kj 

nf= Σ "i a n d 0*,*= Σ nfajnf, y =1,...,/, (4.3) 
l = * / _ l + l / = &._ !+ 1 
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we have 

β?„ = 0*; , for i = * y - ! + l, ...,*>, 7=1, · . . , / ; *0 = 0. (4.4) 

Note that /, kJ9 and nf are all stochastic in nature and they depend on the 
relative ordering of the basic M-estimators #lrtl,..., êknk. However, there 
are only finitely many possible realizations for these stochastic elements. 
Further, note that the 9*J for a monotone (nondecreasing) sequence while 
within each of the / buckets, the individual Ôin. violate this monotone prin-
ciple. Finally, note that the isotonic M-estimators are weighted linear com-
binations of the basic M-estimators, although the weights are themselves 
stochastic elements and depend on the relative ordering of the initial k 
estimators. Thus we can conceive of a finite set 77 of partitions {π} such 
that 77= (J {π} and Rk, the sample space of Ô„, is the set theoretic union of 
disjoint sub-spaces Rn, neu. For each πε77, there exists a matrix Οπ, 
such that 

θ* = θ Α for θ„6* π , νπε77, (4.5) 

where the Όπ depend on nl9..., nk through / and nf,..., nf which are held 
fixed for the individual partitionings. A a result, we may write in a compact 
form 

θ„*= Σ / (δ η εΛ π )ϋ π θ„ . (4.6) 
πε/7 

Incorporating (4.6), we have for every xeRk, 

Ρ{η 1 / 2 (θ*-θ)^χ |θ}= X P{nl»(OA-B)<xAeRn\*}9 (4.7) 
πε/7 

and this form is quite amenable for further analysis. The asymptotic 
normality results on the classical M-estimators studied in earlier sections 
can thus be used to study the asymptotic distribution theory of isotonic 
M-estimators. 

5. THE PRELIMINARY TEST ISOTONIC M-ESTIMATOR (PTIME) 

It is quite clear from (4.6) and the partitionings Rn, neu, that the 
isotonic M-estimator Θ* may not be unbiased unless the individual 0, are 
quite apart from each other in the domain 0, < · · · < 9k. Particularly, for Θ 
close to the line 0t = ··· =0*, the isotonic M-estimator may be consider-
ably biased. For this reason, it may be quite conceivable to incorporate the 
preliminary test in Section 3 for constructing a PTE which should behave 
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more properly for small departure of Θ from the line θ{= · · · =9k and 
which for large departures should behave closely to the isotonic estimator 
Θ*. With this objective, we propose the following PTIME. 

Corresponding to a preassigned level of significance a (0 < a < 1 ), as in 
(3.29), let c* be the critical level of the test statistic JSf * in (3.25). Also, let 
S„ = dn 1 and Θ * be defined as in Sections 3 and 4. Define then 

iF-=9mi(#:<c:)+9:i(#*>c:). (5.1 > 

Thus the PTIME is a convex combination of the classical and isotonic 
Af-estimators of Θ where the mixing coefficient is data based and rests on 
the preliminary test for the homogeneity of the 0, against isotonic alter-
natives. As is generally the case with the PTE, this PTIME is not unbiased 
for Θ, even when Θ deviates from the line 0, = ··· =6k. However, the 
relative bias of the PTIME and the isotonic M-estimator generally signals 
a clear cut preference for the PTIME. A similar picture can be obtained 
with respect to the risk of the two estimators with suitable quadratic error 
loss functions. A study of the risk of the PTIME and the isotonic ME 
(IME) demands the knowledge of the exact distribution theory of these 
estimators. Unfortunately, the distribution of the PTIME or IME is not 
very simple, even in the asymptotic case. Moreover, in the finite sample 
case, the distribution may depend on the underlying density function in a 
rather involved manner. For the IME or the PTIME, the main com-
plication arises due to the distribution theory of Θ * and its close relation 
with the preliminary test statistic JSf * To obtain some meaningul results in 
this direction we consider some relevant asymptotic theory and use the 
asymptotic distributional risk measure to compare these estimates. 

In the asymptotic setup of Sections 2 and 3, we assume that (2.10) holds 
and n is large. Next, we note that if H0 in (1.2) does not hold and Hi holds, 
the test based on JSf * is consistent (against any fixed alternative within the 
class depicted by Hi), and as such, by (5.1), Ô£r and Θ* will be 
asymptotically equivalent, in probability. However, under H0 or for local 
alternatives, this asymptotic stochastic equivalence may not hold, and 
hence, the relative picture becomes an important issue for closer study. For 
this reason, we carry out our investigation in two phases: 

Phase I. Relative picture of the PTIME and IME for local alter-
natives and under H0. 

Phase II. Asymptotic properties of the IME for fixed alternatives. 

To frame the local alternatives, we conceive of a fixed vector τ = (τί,..., τ^), 
such that τχ < · · · < τ^, and set 

ΗΗη) : θ = θ(#ι) = 01 + η - 1/2τ, 0 arbitrary; (5.2) 
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by virtue of the translation equivariance of the M-estimators of location, 
we may set without any loss of generality that 0 = 0. The null hypothesis 
H0 relates to τ = 0. The asymptotic distribution of the unrestricted 
M-estimator (UME) Ô„, given in (2.11), remains intact irrespective of any 
alternative (with appropriate change for Θ), but the other versions of the 
M-estimators would have different forms. For the restricted M-estimator 
(RME) 9n in (3.4), (2.11) and (5.2) can readily be used to show that under 
{#l(n)}> 

ην2φη-θ)^^(λ%γ~2σ2
ψ). (5.3) 

For the IME and PTIME, the asymptotic distributions are of much more 
complicated forms. First, we consider the case of the IME, and denote by 

Ο0
π = Ι - Ο π , τ0

π = ο0
πτ, for neu. (5.4) 

Then, by virtue of (4.7), we have under (5.2), 

P{nll2(B:-9ln))<x} 

= Σ Ρ{ηι'2Όπφ„ - e(„,) *S x + t°, β„ e Rx | Θ(Π)}. (5.5) 
π ε / 7 

At this stage, we may note that for each % e 77, 

" ^ [ D A - e w l l - ^ ^ O j - ^ D i A - ' D J . (5.6) 

However, η1/2Όπφ„ — 0{η)) and Η 1 / 2 (0„-Θ ( Π ) ) are not asymptotically 
independent (even under 770), for every π € 77. Thus, the right-hand side of 
(5.5) may not be factorized into two terms involving the marginal normal 
probabilities. Nor is Rn a linear subspace of Rk (typically, Rn is a cone), 
and hence, nl/2(§„ — β(Λ)) may not belong to a linearly transformed form of 
Rn. On the other hand, the individual terms on the right-hand side of (5.5) 
can be expressed in terms of the multi-normal probability integrals (for 
large values of n) over specific sub-spaces in Rk, and (2.11) provides the 
access for this asymptotic simplification. Unfortunately, for such inequality-
restrained sub-spaces in Rk, for k ̂  3, compact forms for the probability 
contents based on multi-normal distributions are not available, and 
numerical integration seems to be a feasible way. On the other hand, by 
(4.6), 

£(θ*)= Σ Dj£[ê„/(Ô„6AJ]}, (5.7) 
π ε / 7 

so that using the fact that the components of Ôw are independent, 
this expectation may often be computed relatively easily. A similar 
simplification also holds for the second-order moments. 
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Let us proceed to the case of the PTIME. First, using the asymptotic 
linearity results in (2.8), it follows from (3.22) through (3.26) that under 
{Hl(n)} (as well as H0\ ^* in (3.25) is equivalent in probability to 

î̂ = ïVÎ^Î.-^ (5-8) 
/ = i 

where dn is defined by (3.4) and Θ* is the IME of Θ, defined by (4.2)-(4.4). 
As such, using (4.6) and (5.8), we have 

&> Σ ifaeRJi&'AX, (5.9) 
nelJ 

where 

Απ = (Ό'π\Ώπ-λλ')γ2σ^\ for neiJ. (5.10) 

Using (5.1), (5.8), (5.9), and (5.10), we may consider the following 
asymptotically equivalent (in probability) version of the PTIME: 

kT= Σ i{^sRK){dHu(iê'HAX^c:)+OXi(FA'HAX>c:)} 
ne Π 

= Σ {/(8.e*ü>)(tt')ÖB + /(Ö.6Ä£>)DA}, (5.11) 
π€/7 

where 

*<'„> = {Ö„ : Ô„ 6 Απ and «9; A A ^ ca*}, 

R% = Rn\R»„\ neu. 

Thus, {R{JJ, y '=l ,2 , neu) is a finer partitioning of Rk, and we may 
rewrite the right-hand side of (5.11) as Σπ6/7Σ>=ι / ( ί , ε Λ ^ ) D</>0„, where 
ϋ ^ ' ^ ΐ λ ' and Ό^] = Όπ, nelJ. As such, parallel to (5.5), we have under 
(5.2) 

/»{^(Ο^-θ,,,,Κχ} 

* Σ Σ ^ { " 1 / 2 Ο ^ Α - θ ( η ) ) < χ + <,θ„€Αω|θ( Π )} , (5.13) 
π e 77 > = 1 

and (2.11) can then be used to express (5.13) in terms of an appropriate 
multi-normal distribution over specific sectors of Rk; in this definition, 

τ°ηί = (1-Ό^)τ and τ°2 = τ° = Οπτ, for ne 17. (5.14) 

Equation (5.7) also extends in a natural way to the case of the PTIME. 

(5.12) 
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Let us next consider the asymptotic distribution theory of IME in a 
relatively more general setup. Recall that the restricted alternatives we have 
in mind relate to ω*, defined in (3.1). This is a positively homogeneous 
cone in Rk, and the asymptotic distribution theory of the IME depends on 
whether Θ belongs to the interior of this cone or near any of its edges. 
Consider an /-dimensional subspace of ω*, where for / positive integers 
kx< · · <kf = k, we have 

V i + i = *'· =ekj<Okj+l, for y = 1,...,/;fc0 = 0; and β*ι+Ι = οο. 
(5.15) 

Here, / is a positive integer less than or equal to k. It is easy to verify that 
when l = k, i.e., the 0, are all distinct and ordered, as n increases, the IME 
and classical M-estimator (based on the common score function) become 
equivalent, in probability. On the other hand, for every /: 1 ^l^k— 1, the 
IME and ME are not equivalent in probability, and they have different 
asymptotic distributions. Keeping this in mind, we would like to study the 
asymptotic distribution theory of the IME when Θ belongs to (or lies on 
the boundary of) such a lower dimensional subspace of ω*. We may, 
however, note that for ÖÄ:>Ö1, the preliminary M-test considered in 
Section 3 is consistent, and hence, the PTIME and IME would have the 
same asymptotic behaviour for every /: 2^/^fc . For / = 1, the picture has 
already been drawn earlier. Thus, there is no need to bring the PTIME into 
this asymptotic study. 

Consider a partitioning of {1, ...,&} into / subsets [£,·_! +Ι,Λ,·], 
j= 1,..., /, where the kj are defined by (5.15), and 2^l^k— 1. We denote 
the centroids of the 0-values within these subsets as 0fl)9..., 0*), respec-
tively. Consider then a sequence {77f(n)} of local alternatives: 

H\(n)'· Vkj-i + 1 + r = ^(j) + W T r > 

for r = 0, . . . ,Âry-^._1- l , j = 1,...,/; (5.16) 

where the τ* are all fixed numbers, and within each bucket, the τ* are 
ordered. Note that by definition 0*)< ··· <0*)· We shall show that the 
asymptotic distribution of the normalized form of the IME exists and is 
different from that of the classical ME, for each of these local alternatives. 

We denote by 77, the subset of Rk for which 

max 9r„r< min 0r„r^ max #r„r<min 0r„r, l^y^Z, (5.17) 
r^kj-^i ' Γ kj-i<r^kj ' kj_i<r^kj ' r > kj 

where the Ôr „r are the classical M-estimators of the 9r. This subspace 777 

may then be partitioned into further subsets π/ΐπ/6 77/, and these are 
defined as in after (4.4), but restricted to 777. We then refer to (5.5) where 
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Θ(Μ) now belongs to the lower dimensional space in (5.16) (actually the 
boundary of an /-dimensional subset of ω*). It is easy to show that under 
(5.16), P{§neRn | Θ(Λ)} converges to 0 as « increases, for every π not 
belonging to IJl. On the other hand, for π belonging to 77,, 
Ρ{ηΌπ(§„ - β(Λ)) < x + τ*°, Ô„e Rn | θ(/ι)} has a nondegenerate limit, where 
the τ*° are defined as in (5.4) with the zr being replaced by the τ*. Thus, 
under (5.16), the asymptotic distribution function of the IME is given by 

lim Ρ{/ι 1 / 2 (β*-β ( ι ι ) )^χ| (5 .16)} 

= lim Γ Σ Ρ{ηι/2Όπφη-β{η))^χ + τ*°,§ηεΚπ\ (5.16)}]. (5.1 

It may be noted that for / = 1, IJI = IJ and (5.18) reduces to (5.5), while for 
/ ^ 2 , (5.18) involves a subset of the terms appearing in (5.5), and hence, 
the two forms are not isomorphic. In passing, we may remark that if (5.17) 
holds for / = k then within each of the k buckets, there is only one element, 
and hence, TIk consists of the cone θϊηχ^ · · · ^Ôknk. As such, (4.5) holds 
with Οπ = Ι with probability converging to 1 as n-> oo. Thus, in this case, 
the classical M-estimator and the IME based on the same score function 
becomes asymptotically equivalent, in probability. Thus, (2.11) applies to 
the IME as well. 

It is quite clear that the computation of the exact bias and mean product 
matrix of the IME and PTIME is highly involved; even the asymptotic 
case is not that simple to handle. For small values of k (viz., k = 3, 4, etc.), 
term by term evaluation of (5.5) or (5.18) is possible, although the task 
becomes prohibitively laborious as k increases. For this reason, we take 
recourse to simulation studies of the relative bias and efficiency of the 
PTIME and IME. In this context, we interpret the relative efficiency (e*) 
of the PTIME with respect to the IME in the usual way as the inverse ratio 
of the generalized variance of their respective asymptotic distributions. 

6. SOME SIMULATION STUDIES 

We consider specifically the case of three samples (i.e., k = 3) and for the 
M-estimators of location, we choose the Huber score function with ^Γ=1.5, 
i.e., we take 

(x, \x\^K=l.59 , . M 

+{x)ss\K«&x, \x\>K. ( 6 1 ) 

All the samples are generated by random normal deviates with appropriate 
shifts in the location parameters. Since the M-estimators are translation-
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TABLE I 

Asymptotic Bias and Asymptotic Relative Efficiency 
of the PTE and IME under H0 

Bias 

PTIME IME 

n 

10 
15 
20 
25 
30 
35 
40 

1 

0.0061 
0.0069 
0.0070 
0.0039 
0.0057 
0.0063 
0.0063 

Component 

2 

0.0136 
0.0141 
0.0130 
0.0094 
0.0095 
0.0103 
0.0101 

3 

0.0329 
0.0251 
0.0250 
0.0220 
0.0195 
0.0209 
0.0180 

Component 

1 

-0.1099 
-0.0931 
-0.0795 
-0.0748 
-0.0685 
-0.0601 
-0.0566 

2 

0.0058 
0.0074 
0.0068 
0.0021 
0.0043 
0.0053 
0.0062 

3 

0.1318 
0.1071 
0.0955 
0.0848 
0.0776 
0.0727 
0.0692 

Relative 
efficiency 

e* 

4.3311 
4.9139 
4.2977 
4.7852 
5.4195 
5.0517 
4.7341 

equivariant, we have taken the location parameter of the first distribution 
as 0. All the three samples are taken to be of equal size (n) and various 
combinations of n and possibly uneven spacings of the location parameters. 
Tables I-VII pertain to the simulation results on the bias and relative 
efficiency (e*) of the PTE and IME. 

Recall that here n stands for the (equal) individual sample sizes, so that 
the combined sample size is 3n. It is clear from Tables I and II that under 
the null hypothesis H0 or for small departures from //0, the PTIME per-
forms better than the IME both in terms of the bias and mean product 

TABLE II 

Same Entries for θ = (0, 0.1, 0.2) (i.e., Equally Spaced Means) 

Bias 

PTIME IME 

n 

10 
15 
20 
25 
30 
35 
40 

1 

0.0894 
0.0822 
0.0799 
0.0749 
0.0750 
0.0740 
0.0717 

Component 

2 

0.0111 
0.0138 
0.0119 
0.0066 
0.0064 
0.0078 
0.0077 

3 

-0.0428 
-0.0449 
-0.0421 
-0.0420 
-0.0439 
-0.0425 
-0.0438 

Component 

1 

-0.0704 
-0.0542 
-0.0425 
-0.0382 
-0.0338 
-0.0270 
-0.0237 

2 

0.0052 
0.0068 
0.0064 
0.0046 
0.0039 
0.0052 
0.0054 

3 

0.0928 
0.0689 
0.0588 
0.0486 
0.0433 
0.0396 
0.0371 

Relative 
efficiency 

e* 

2.0132 
1.7756 
1.5676 
1.4826 
1.1027 
1.3054 
1.2109 
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TABLE III 

Average Bias and Relative Efficiency for θ = (0, 0.05, 0.15) (Uneven Spacing) 

n 

10 
15 
20 
25 
30 
35 
40 

1 

0.0636 
0.0615 
0.0614 
0.0558 
0.0580 
0.0579 
0.0565 

PTIME 
Component 

2 

0.0287 
0.0308 
0.0278 
0.0235 
0.0230 
0.0237 
0.0236 

Bias 

3 

-0.0305 
-0.0376 
-0.0376 
-0.0345 
-0.0376 
-0.0365 
-0.0380 

IME 
Component 

1 

-0.0844 
-0.0678 
-0.0554 
-0.0506 
-0.0456 
-0.0381 
-0.0347 

2 

0.0158 
0.0170 
0.0165 
0.0113 
0.0132 
0.0142 
0.0144 

3 

0.0963 
0.0723 
0.0616 
0.0513 
0.0459 
0.0418 
0.0391 

Relative 
efficiency 

e* 

2.5935 
2.3186 
2.1086 
2.0008 
1.9718 
1.8193 
1.6909 

TABLE IV 

Same Entries for θ = (0. 0.2,0.5) (i.e., Uneven Spacings) 

n 

10 
15 
20 
25 
30 
35 

1 

0.1672 
0.1446 
0.1265 
0.1103 
0.0905 
0.0671 

PTIME 
Component 

2 

0.0325 
0.0333 
0.0293 
0.0208 
0.0223 
0.0186 

Bias 

3 

-0.1174 
-0.1081 
-0.0906 
-0.0791 
-0.0641 
-0.0419 

IME 
Component 

1 

-0.0395 
-0.0261 
-0.0188 
-0.0163 
-0.0153 
-0.0076 

2 

0.0186 
0.0182 
0.0160 
0.0093 
0.0113 
0.0107 

3 

0.0485 
0.0295 
0.0256 
0.0191 
0.0174 
0.0156 

Relative 
efficiency 

e* 

1.2090 
1.0649 
0.9652 
0.9274 
0.7065 
0.8390 

TABLE V 

Same Entries for θ = (0, 0.5,1.0) (i.e., Large Equal Spacing) 

n 

10 
15 
20 
25 
30 
35 
40 

1 

0.1315 
0.0756 
0.0387 
0.0211 
0.0087 
0.0091 
0.0063 

PTIME 
Component 

2 

0.0084 
0.0072 
0.0052 
0.0002 
0.0039 
0.0037 
0.0048 

Bias 

3 

-0.1045 
-0.0572 
-0.0194 
-0.0071 

0.0033 
0.0071 
0.0095 

IME 
Component 

1 

-0.0019 
0.0031 
0.0045 
0.0013 

-0.0001 
0.0037 
0.0028 

2 

0.0015 
0.0041 
0.0043 

-0.0012 
0.0023 
0.0030 
0.0043 

3 

0.0280 
0.0143 
0.0139 
0.0119 
0.0111 
0.0112 
0.0116 

Relative 
efficiency 

e* 

0.7553 
0.7620 
0.7978 
0.8278 
0.8743 
0.9082 
0.9499 
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TABLE VI 

Average Bias and Relative Efficiency for Θ = 
(Uneven Large Spacings) 

(0,0.2,0,8) 

n 

10 
15 
20 
25 
30 
35 
40 

1 

0.1379 
0.0933 
0.0546 
0.0314 
0.0163 
0.0118 
0.0066 

PTIME 
Component 

2 

0.0766 
0.0597 
0.0446 
0.0302 
0.0259 
0.0216 
0.0194 

Bias 

3 

-0.1431 
-0.0978 
-0.0538 
-0.0311 
-0.0137 
-0.0044 
-0.0008 

IME 
Component 

1 

-0.0366 
-0.0241 
-0.0177 
-0.0159 
-0.0149 
-0.0089 
-0.0075 

2 

0.0404 
0.0340 
0.0283 
0.0174 
0.0179 
0.0161 
0.0149 

3 

0.0238 
0.0117 
0.0121 
0.0106 
0.0104 
0.0107 
0.0113 

Relative 
efficiency 

e* 

0.9315 
0.8735 
0.8454 
0.8580 
0.8732 
0.8947 
0.8940 

matrix-risk. Also, the bias of the PTIME and IME are not in concordance 
with each other. A somewhat diferent picture emerges in the uneven spac-
ing case and for alternatives not so close to the null one. The last three 
tables indicate the superiority of the IME to PTIME. This is not sur-
prising: We have both uneven spacings and moderate deviations from the 
null hypothesis. Thus, for alternatives close to the null hypothesis (of the 
homogeneity of the 0,), the PTIME performs better than the IME, while 
the opposite picture hols when Θ moves away from the line of homogeneity. 
In any case, if Θ is too far away from this line, the PTIME and IME both 

TABLE VII 

Same Entries for θ = (0, 0.5, 1.5) (i.e., Large Uneven Spacings) 

n 

10 
15 
20 
25 
30 
35 
40 

1 

0.0349 
0.0126 
0.0077 
0.0026 
0.0006 
0.0043 
0.0038 

PTIME 
Component 

2 

0.0187 
0.0120 
0.0086 
0.0019 
0.0050 
0.0045 
0.0054 

Bias 

3 

-0.0182 -
0.0010 
0.0082 
0.0094 
0.0103 
0.0111 
0.0113 

IME 
Component 

1 

-0.0018 
0.0031 
0.0045 
0.0013 

-0.0001 
0.0037 
0.0028 

2 

0.0128 
0.0099 
0.0073 
0.0011 
0.0035 
0.0036 
0.0046 

3 

0.0166 
0.0085 
0.0110 
0.0096 
0.0100 
0.0105 
0.0113 

Relative 
efficiency 

e* 

0.8411 
0.9319 
0.9615 
0.9727 
0.9629 
0.9717 
0.9596 
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perform very similarly. Moreover, the PTIME is never too inefficient 
relative to the IME, although it can be considerably more efficient (see 
Table I). Thus, the PTIME can be posed as an efficiency-robust competitor 
of the usual IME. For some further numerical studies, we refer to Karmous 
[8]. 
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Some Asymptotic Inferential Problems 
Connected with Elliptical Distributions 

C. G. KHATRI* 
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Asymptotic confidence bounds on the location parameters of the linear growth 
curve, asymptotic distribution of the canonical correlations and asymptotic 
confidence bounds on the discriminatory value for the linear discriminant function 
are established when a set of independent observations are taken from an elliptical 
distribution (or from a distribution possessing some properties on the moments). 
© 1988 Academic Press, Inc. 

1. INTRODUCTION 

Exact confidence bounds on the location parameters of the linear growth 
curve model, 

X = ΒξΑ' + ε; column vectors of ε being IN(0, 27), 

were given by Khatri [*2]. What will happen to the confidence bounds 
when the column vectors of ε are independent and have a common ellip-
tical distribution instead of normal distribution? This question is answered 
using the well-known asymptotic theory based on central limit theorem or 
the convergence theorem. For this problem, we require the asymptotic joint 
distribution of 

(Ζ-Βξ)^ι and ^n(s-^^bxl\lbu (1.1) 

where S= (ΧΧ'-ZA'AZ')ln and Z = XA{A'A)-\ Here, A and B are 
assumed to be of full rank matrices (i.e., A'A and B'B are nonsingular), 
m = Rank A, and bx is a constant depending on the structure of the 
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(elliptical) distribution. Further, the following assumptions on the nxm 
matrix A are made for large n: 

(i) elements of A are finite so that the elements of A A' are finite and 
(1.2a) 

(ii) the limit of (A'A/n) for large n tends to a nonsingular matrix C. 
(1.2b) 

The above two conditions are essential for the application of the central 
limit theorem. The asymptotic normality results are established in Section 2 
and Section 3 justifies the asymptotic confidence bounds on ξ similar to 
those mentioned by Khatri [2] based on i=(B'SiB)i B'SlZ. 

Since the sample canonical correlations between the two sets of variables 
depend on the elements of S, we consider the problem of establishing the 
asmptotic distribution of canonical correlations similar to normal variâtes. 
This was first established by Krishnaiah et al. [5] for the elliptical variâtes. 
We reestablish this for a wider class of distribution in Section 4. 

In a particular case, the matrix Z and S have been utilized by Khatri et 
al. [4] in the study of performance of linear discriminant function for the 
normal variâtes and developed the asmptotic results concerning the con-
fidence bounds on the discriminatory values in different situations when 
B = I and m — 2. If ξ = (μ,,μ2) and Z = ( x 1 , x 2 ) , then the discriminatory 
value of linear Fisher's discriminant function w'x (or w'x 4- c) for the future 
observation x is 

Dw= [£(w'x | π ι ) - £ ( * ' χ | 7i2)]/Var(w'x))1/2, 

where π, is the population having the mean μ, and the covariance matrix 27, 
so that 

^ = ν ν ' ( μ ι - μ 2 ) ^ ' ^ ) 1 / 2 

which is a function of unkown parameters. The three situations considered 
for Khatri et al. [4] are based on the following situations: 

(i) μ{ — μ2 is known, Σ is unknown, and ^ = 5_ 1(μ! — μ2), 

(ii) μ{— μ2 is unknown, Σ is known, and w = 2 , _ 1(x1 — x2), and 

(iii) μι ,μ2 , and Σ are unknown and w = 5'"1(x1 — x2), 

giving rise to the three functions Da, D'a, and Da (for Dw\ respectively. 
Asymptotic confidence bounds on these values similar to those for normal 
variâtes are established for elliptical variâtes in Section 5. 

Thus, it appears that in the problems where Z and S are utilized, one 
can develop the asymptotic results similar to those developed for the above 
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three types of problems. Here, we mention that similar results for the com-
plex elliptical distributions are available but will be presented in a later 
communication. 

2. ASYMPTOTIC DISTRIBUTION OF Z AND S 

Let y be a random vector such that 

£y = 0, E(yy') = blIp, E{yiyjyk) = 0 for all ij9 k, 

Ey* = 3b2, E(y*yJ) = b2 for i*j, 

and all other E(yty}yk yt) = 0, (2.0) 

where yt denotes the i th component of y. We observe that if y has spherical 
distribution or its characteristic function (cf.) is *A(Zf=i'?) a n d the 
first four moments exist, then the moment relations (2.0) hold with 
bx — —2φ'(0) and Z>2 = 4i^"(0). It may be noted that the moment relations 
(2.0) may be true for the wider class of distributions including spherical 
ones. Suppose x is a random vector such that £χ = μ and Varx = 
Ε(χ — μ)(χ — μ)' = Σ is positive definite and y = 27f1(x —μ) satisfies the 
moment relations given in (2.0). Here Σ — ΣγΣ\ and Σχ is nonsingular. 
These conditions are satisfied for the elliptical distribution whose cf. is 

exp ia i ί'μ) ψ(ΪΣί) for all t e 0ip, 

and this is denoted by χ~Ερ(μ, Σ; φ), an elliptical distribution. 
Let there be n independent observations on y whose distribution 

function G((y) satisfies (2.0) and let us define 

W=t tiifi-bjjlfnb, with n>p. (2.1) 
i = 1 

Let W={Wij)9 H>; = (w n , w22,..., wpp), w2 = (w12, w13,..., wlp, w23,..., 
W2P> ···» wp-up) a n d w'(w'i> w2)· Let vec W be defined as the column vector 
obtained by putting vectors one by one; (i.e., if W=(vl9 v2,..., vp), then 
(vec W)' = (vi, v2,..., v ,̂)). Notice that from (2.1), we have 

n 

vec W= z yfn with z, = (y, ® y, - b{ vec Ip)lbx and z = J] Z,/H, 
i= 1 

where A ® B denotes the Kronecker product of A with B and is defined by 
(αϋΒ) if A = (ay). Using the central limit theorem for independent and 
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identically distributed random variables, z's (see, for example, Cramer [1, 
pp. 213-217]), we see that 

yfn z is asymptotically normal 

which is equivalent to the statement that yvl and w2 are asymptotically 
independent normal variâtes and 

w2 ~ N(0, (ic + 1 ) Ipip_ 1)/2) and w, ~ N(0, Σ0)9 (2.2) 

where κ + 1 = b1jb\, and 270 = 2(/c -f 1 ) /p + κ\ρ\'ρ with lp being a /̂ -vector 
of unit elements. 

Assume that the column vectors of ε in (1.1) are independently 
distributed such that if Σ — ΣΧΣ\9 Σι is nonsingular and 

(γϊ9..,γΛ)=Υ=ΣΓιε = ΣΓι(Χ-ΒξΑ) (2.3) 

then y,· (/= 1, 2,..., n) are identical and independent and satisfy the moment 
conditions (2.0). 

If Zl=YA{A'A)-l = YAC^In = ^n
i=lyia'iln, where Cln = A'A/n and 

Crn
lA' = (il9a29...9an)9thcn 

vecZ!= t (*i®yi)/n> ^ v e c Z ^ O , (2.4) 
/ = i 

EnivecZ.MvecZ,)^*, £ (d,d; ®/„)/« 
i = 1 

= Z.,(Cr„1®//,)-è1(C-1®/,) (2.4a) 

as n -» oo, using assumption (ii) of (1.2). 
In order to use, the Lyapunov's theorem for independent random 

variables (see, for example, Cramer [1, p. 215-217]), we observe that 

£ £|d,.®y,|7n3 / 2-0 as M-OO (2.5) 
;' = 1 

because 
£|d,.®y,.|3 = £(y'y)3/2(d,'d,.)3/2 

d.-C.-'f,, ^ ' = (f„f2,...,f„), 
d;d, = f;cr„2f,.<Af„f;f,.^MA2„ 

with λχ„ = maximum eigen value of (C,"1), and 

Σ (d;d,.)3/2/«3/2^A3„M3/2/«1/2-0 as « - o o , 
/ = 1 
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where M = max/(fz-f/) is finite by assumption (i) of (1.2), and 
Itn-+oo λίη = maximum eigen value of C_ 1 (by assumption (ii)). Hence 

y/n\ecZl = ^/n\Qc(YA(A'A)-1)^ N(0, b^C'1 ®IP)). (2.5) 

Further, using (2.1) and (2.4), we have 

Cov(vec W, Jn vec Zx ) 

= Σ Coviy^y.-éjvec/^d.OyJ/wft^O. (2.6) 

Hence W and Jn vec Zx are stochastically independent normal variâtes. 
Now since 

nS = XX'-XA(A'A)-lA'Xf 

= Σ{ ΥΥ'Σ\-ΣΧ ΥΑ(ΑΆ)1 ΑΎ'Σ\, 

we get 

^(rr'srr1-^*./,)/*, 
^W-b^lJnZM'AI^TiJn-mbJ^lJn. (2.7) 

We observe that 

Pliml(^iZl)(A'A/n)(^Zly-mbiIp-\ = Plim(Tn) = 0 (say). (2.8) 
n -*■ oo n -» oo 

Hence, from (2.6), (2.7), and (2.8), we get 

THEOREM 1. Let χ,-^/ϋ^μ,-, Γ; i/f) {i=\,2, ...,n). Then, (Ζ-Βξ)^/η 
and y/n(S—(n — m)n~lbl£)/bl are asymptotic independent, and are 
normally distributed, under the assumptions (i) and (ii) o/(1.2). 

Further, 

yjn vec(Z- Βξ) *~ N(0, b^C'1 ®Γ)) 

7 ^ vec (s-^^b^lb, ~y 7V(0, Γ2) 

νν/7/ί 

Γ2 = Var[(x ® x) ftf* - vec Γ] am/ X - Ep(0, Σ; ψ). 

and 
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Here Z = XA(A'A)~\ S = (XX' - ZA'AZ')/n, andX=(xi,\2,..., x„). From 

where Tln = -r„[«/èl(n-/w)] + (n/(«-/M))(ff7v/n). ΓΑ<?« wiA fi, = Γ Γ 1 5 , 
ξ-ξ = (FS- 'Är 'Ä'S-UZ-ÄO = [5'1(/+(1/ν/^)^+(1/«)Γ1„)-1 

BlY
iB\{I+(\lJn)W+(\ln)TuylZuor 

(ξ-ξ) = (Β\Βι)-
ιΒ\Ζι + 0(ί/η) (2.9) 

andforÊ = S+(I-B(B'S-lB)-1B'S-l)ZCl„Z'(I-S-lB(B'S-lB)-lB'), 

yfiiZ^ÊE'C* -bJJIb^W+Od/yfi). (2.10) 

From (2.9) α/κ/ (2.10), we have 

THEOREM 2. Jfï/A the notations of Theorem!, ^/η(ξ — ξ) and 
yfn (Σ— blE)/bl are asymptotic independent, 

V^vecd-É) '* NW,bxC-l®(B'E~lB)-1) 

and 

y/nb^1 vec(r - A, 2T) ~y JV(0, 2Γ2), 

r 2 = Var[(x®x)Ar1-vecZ'] a«rf x~£/)(0,2"; ^). 

3. ASYMPTOTIC CONFIDENCE BOUNDS ON ξ 

Let us consider the nonzero eigen values /, > l2 > · · · > / , > 0 of 

«(fi'f-15)(^-<i)(/i'/i/«)(<f-07A1 = rn (say), (3.1) 

where / = min(#, m). We observe that 

Plim (Β'£-ιΒ) = (Β'Σ-1Β) by Theorem 2 

and by assumption (ii), lim„_+a0(A'A/n) = C. Then, the asymptotic dis-
tribution of li9 /2,..., /, is the same as the eigenvalues of the / x / Wishart 

where 
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matrix V distributed as Wt(u,It), where w = max(#, m). For this, one can 
obtain the asymptotic distribution of lx, or the asymptotic distribution of 
Σ ί - ι // = tr Tn. Suppose, 

P ( / 1 ^ c a ) = l - a . 

Then for all non-null vectors a e ^ r and be0tm, 

or the simultaneous confidence bounds for a'£b for all ae^2r and be£lm 

are 

2L'^±{bica{b'(A'A)-lb){2it(B'Ê-lB)-ï2L)Y/\ (3.2) 

We can use tr Tn^cla to find the confidence bounds on ξ. 

4. ASYMPTOTIC DISTRIBUTION OF CANONICAL CORRELATIONS 

In this section, we shall consider without loss of generality, 

AM Dr ° 
Σ=1ϋρ IPI 0 |, /),, = diag(p,/„,...,ρΛ_,/Λ_„ρΑ/Α) 

\ 0 0 ln_PKj 

with Σ* = , g,,=ρ,, p2 >Pi, and p, > p2 > ■ · · > p*-1 > Pk = 0, its estimate Σ 
and the asymptotic distribution of Σ as given in Theorem 2. Let us write 

lDy\Dn\ 0 

/„ I 0 I with Z>, = diag(Vl - p\ Igl,.... ^/l - p j /„) 

0 ·/«-„< .0 

and 

» ' = > / « ( ^ Γ Ι ^ ' Γ , - * ι ^ ) / * ι or b1[n-1/2£iWI\ + £-\ = i. 

Let us partition Σ and Ĥ  as 

/ Â Σ3\ΡΙ lwx w2\Pl 

Σ=\Σ'3 Σ4]ρ2 and W= \W\ W,jp2. 

Pi Pi P\ Pi 
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Then 

I2 = bi 

E3 = b, 

Then 

DlW,Dl + (D,,^)W'2Dl + DlW2[
DA + (Dp,0)W3^ 

+ /. 

■DiW2 + (Dp,0)lV3 

+ (/>„0)] and Γ4 = * , [ ^ ^ 3 + /Ρ 2] . 

brlP(r) = (r2î2-£3î^£'3)/bl 

= (r2Ipi-Dl) + -yJr2DlWiDl + (Dp,0)iV'2Dl(r
2-l) 

+ (r2- 1)Z), W2 ( M + (r 2 - 1 )(/>„, 0) ^ 3 (^P 

- - ( f f 2 W 2 ) + 0(«-3/2). (4.1) 

Let us denote 

Wa = ^(r-Pa)/(\-pl) for a=l ,2 , . . . , fc- l (4.2) 

and wk = y/nr. (4.2a) 

If P(r) = (Ραα< for a, a' = 1, 2,..., £) and Ραα is a ga x ga> sub-matrix of P(r), 
then 

V^ PJh = 2pe(l - p 2 ) w.Iu + pa(l -pl)Zp.( WlAX - WXm) 

- ( Wi« + ^2.«)(1 - P«)1/2] + 0(«~1/2) 

for a = l ( l ) f c - l , 

P„./6, = 0(«- , / 2) for α?έα'(<Λ-1) 

(Pa,/o1ori'yta/Z>1) = 0(«-1). 

From (4.3) to (4.5), it is obvious that 

Ι Λ Γ ) Ι = Ο = > | Π , Κ / , . - / Ι . + 0 («- Ι / 2 ) | | 

x\wlIgk-Bk + O{n-i/2)\=0, 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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where Bk = (W2 W2)kk is a submatrix of order gk x gk obtained from W2 W'2 

by taking the last gk rows and gk columns, and 

Ä ^ i C i l - p ^ i ^ ^ + ^ ^ - p . i ^ . « . - ^ « ) ] (4.7) 

for a = 1, 2, . . . , £ - 1. Let Ba = (baJj; ij= 1, 2, . . . , g j . Then 

*«,,7=(l-P«)1 / 2W2 f a«,i7-i(wi f a e , / /-W3 f e f l l f / | . )pa 

and 

^ « / ^ i i l -Pa)1/2(w2,««,iy + ^.««j,·) 

- W w i , « « . * y - W 3 , « « , , y ) 

for /#y, / , y= l ,2 , ...,ga. 
We observe that νν 1 α α / / - νν3,αα// and wliflcVlV - H>3ffltVir (for α φ a'or zV /') 

are asymptotic independent, and hence Ba (a= 1, 2,..., k—\) and 2?* are 
asymptotic independent, Ba is symmetric, and the elements are independent 
normals or the joint density of the elements of Ba is 

2 -^ / 2 (Ä(K:+l ) ) -^ U a + 1 ) / 2 exp[- tr^/2(K:+l ) ] (4.8) 

and Bk ~ a s y Wg(p2, (κ+\) Igk). Now, if rl >r2> · · · >rpi > 0 are the 
sample canonical correlations (or the square root of the eigen values of 
Σ^Σ\2Σ22

ΧΣ\2) and ria)J = rgl+... +ga_l+J for y= l , 2 , . . . , g a and <x = 
1, 2,..., k with g0 = 0, we see that 

w*j = \/n (r(«)j-p«)/(l -Pl\ J= U 2, ...,ga 

are the eigen values of ΒΆ (for a = 1, 2,...,& — 1), while w\j = r2
{k)j are the 

eigen values of Bk. These distributions can be easily obtained from (4.8). In 
particular, if all the population canonical correlations are nonzero and they 
are of multiplcity one, then 

J~n (rj-Pj)/(l -pj) ~ ΙΝ(09 κ+ 1), j= 1, 2, ...,ρ,. (4.9) 

These results are similar to those of Krishnaiah et al [5 ] and Khatri [3] 
but here we have given a simple proof. 

5. ASYMPTOTIC CONFIDENCE BOUNDS ON DISCRIMINATORY VALUES 

Let us denote A = (l£ ,° ), n = nl+n2, m = 2, B = Ip9 XA(AfA)'1 = 

(x l 9x 2) and X = S = ( l7/ i ) [Zy. i (xiy-Xi)(xiy-*i) ' + Z ^ i ( x ^ - x 2 ) 
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(x2j — X2)']· We shall assume that nx and n2 are large so that lim,,^^ njn 
= κ0 is fixed and constant. Let Σ = ΣΧΣ\ and δ = 271~

1(μ1 — μ2). 

Case (i). When δΐ =μ! — μ2 is known but Σ is unknown, then 

D'^^S-^JMS^IS-1^)1'2 and 0' = {&\3-%)1/2. (5.1) 

We know from Section 2 that if 

W=yfi(IilSZ[-l-bln/bi = (Wii) or S/ft, = (2Γ, ΨΣ\Ι^~η) + Σ, 

then (vvu,..., H>PP) and wiy's (i^j) are asymptotic independent normals, 
W^^IN^K+I) and (wn,..., W/v)' ^a s y#(0, 2(/c + ΐ μ , + κΐ,ΐ;) with 
κ+1=£2 /62 . Notice that 

β; = δ' ( /+^/ν^)- 1 δ/{δ' ( /+»7 λ / ί ) - 2 δ} 1 / 2 , 

^ ^ ^ { δ ν + ^ / ν ^ ) " 1 0 } 1 7 2 · 

By expanding (7+ ^VxA)-1 *n powers of n~\ we get 

Ζ)- = 4 [ 1 - έ^ + 1 )Ζρ- ι ] + 0 ί Λ " 3 / 2 ) (52) 

and 

+ 0(«"3/2), (5.3) 

where A = (δ'δ)1/2 or Δ2 = δ'δ = δ', Σ~ 'δ,, 

κ = δ'^δ/δ'δ and (κ+1)χ2_1 = (δ'»'2δ/δ'δ)-Μ2 (5.4) 

and it can be easily verified that u and χ2
ρ _, are asymptotic independent, 

asy asy 
w ~ N(09 3/c + 2) and *;,_i - Chi-square with (/? - 1 ) (5.5) 

degrees of freedom. 
If (δ/̂ /δ^δ, Γ,) = Γ is an orthogonal matrix and V= ΓΊΥΓ= (νν)9 then 

vn = «, i712,..., î ip are asymptotic independent normals and 

ζ2- ι (κ+1)=ί>?*· (5-6) 
J = 2 
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Then it is easy to write 

[^,(.-^"8;^-")]/o; 
1
 :UAiK + i){x2 {p_l)) 
7= « ' 

-l(u2-3K-2) + ̂ -tl + 0(n-3'2). 
8« 4« 

Hence, 

TOF^ "3™'> 
or 2ν/η(^ά-^Ί)/^Ί(3κ + 2)1/2^38)'ΛΓ(0, 1) and hence the simultaneous 
confidence bound on D'a is 

Z ) ; [ 1 ± { 4 ( 3 K + 2 ) 1 / 2 / 2 V « } ] , 

where J*^ ^(x) d* = 1 — a with φ denotes the density of 7V(0, 1 ). 

Case (ii). When δ, =μ! — μ2 is unknown but Σ is known, then 

D'^iXi-xJ L-'bJD" and 
(5.7) 

D" = {(x, - x 2 ) ' Σ~1(χι -x2)}
1/2. 

By Section 2, 

7 ^ [ r r
1 ( x 1 - x 2 ) - 8 ] / V

/ ^ = yaiy^(0,//)), (5.8) 

where Ζ>(1) = Ζ»1/κ0(1 — κ0). Taking δ'δ = /ί2, we can write 

D'^Jil-b^xl^Jln^ + Oin-3'2) (5.9a) 

and 

^^^[l+^i/.+^xt^j + Oi/i-n (5.9b) 

where M, = y'ô/J and χ2
>ρ_ι = y'y-u2. w, and χ2,,,_ι are asymptotic 
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independent, u^ ^asy N(0, 1) and χ 2 ^ , is asymptotic Chi-square with 
(p— 1) degrees of freedom. Notice that 

D:-D" + bU)(p-l)/nD" 

or 

^ ( Z ) ; -Z)" + Z>(1)(/>- 1 ) /«Z)") /7^ (1 + 2A(I)(/>- 1 )lnD"2y'2 

= - « , + 0(«"1/2) 

because (1 + b(l)(p - \)/n42)/(l+2b(t)(p - l)/nD"2) = l + 0(«-' /2). 
Therefore, 

yfiW-D' + b^p-iynD'yy/b^ 

x(l+2b(l)(p-\)/nD"2)1'2 ~ JV(0, 1 ), 

and the simultaneous confidence bound on D"a is 

{D"-bw{p-\)(nD")-1} 

±{dlb{l)(l+2b(1)(P-mD"2)/ny<2, 

where da is defined at the end of Case (i). 

Case (iii). When μΐ9 μ2, and Σ are unknown, then 

Da = (x{ -x2y S - V K * ! - x 2 ) ' S"1rS-1(x1 -x 2 )} 1 / 2 (5.10) 

and 

Z)={(x1-x2) '5-1(x1-x2)}1 / 2 . (5.10a) 

If δ = Ζ,
1

_1δ1 and Σ — ΣΧΣ\, then by Theorem 1, > y ^ y = 
λ/« (iTf1^ — x2) — δ) and b^^^/n (Σ^ι3Σ[~ι — b{I) are asymptotic 
independent normals. Let δ'δ = zf2, y'6/Λ = w, and χ2_ j = y'y — u2. 

Let Γ=((δ, y)(J ^ ) - 1 , Γ2) be an orthogonal matrix. Then, it is easy 
to verify that Γ'ΨΓ= V and W are identically distributed, and further 

6 T = J e i , ( x 1 - x 2 ) ' i ; - 1 r 

= [^(i)/«)1/2" + ^ ] e ; + (6(1)/«)1/2^_1e2, 

where β! and e2 are the first and the second column vectors of Ip. Notice 
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that V, u, and χ2
ρ_χ are asymptotically independent, u~N(0, 1), and χ2

ρ_Χ 

is distributed as Chi-square with (p—l) degrees of freedom. Then 

- "" ' ( /v^Mi ' i i + V ^ u î f p - i ^ - ^ Σ »ÏÎJ 

+ o(«-3/2) 

ό?(χ1-χ2)'5-1Ζ"5-1(χ1-χ2) 

= Δ2 + 2â{sfb^)u-Δνη)n~i/2 + n~l (b(1)x
2
p_, + b{l)u

2 

-4y/b^)a(mïl + vl2xp.l) + 3 t νΐΔ2\ + 0(η-"2) 
1=1 / 

and 

6 1 ( x , - x 2 ) ' S - 1 ( S i - X 2 ) 

= A2 + J(2s/b^)u-Jvn)n'l/2 (
. p 

b(l)XP^l+b{l)u
2-2sJbil)A(uvii + vl2xp_l)+ £ υΙΔ'~ 

i= 1 

+ o(«-3/2) 

Hence, 

Da = A + (2n)-l(2y/b^)xP.1v12-J t <>1-Λ-11>(1)4-ι) 

+ 0(n~3'2) (5.11) 

and 

Di = s/b~lD = J + n-'/2{s/b^~)u-Jii/2) + (2n)-i 

x\à t v2
i+(3/4)Av2

n-s/b^)(uvii + 2vl2xp_l) + J-lb(l)xp_t^ 

+ 0(n-3/2). (5.12) 
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Therefore, 

^(Di-Da) = (s/b^)u-Jvn/2) + n-i/2\/i t vl + IMi 

and if 

then 

y = y/ü(Dl-Da)-n-l/2i(K+l)(p-l)Dl + (3ß){3K + 2)Dl 

+ bU){p-l)Drll, (5.13) 

E(y) = 0(n~1) 

and 

£>2 = è(1) + zl2(3)c + 2)/4 + 2«-1 [^2 (K+l )2 (p- l ) + (|)2/<2(3/c + 2)2 

Hence if 

then 

+ ^- 2 6 2
1 ) ( />-1) + 2ό ( 1 ) ( ( Κ +1)( /7-1) + (3κ + 2)/16)] + 0 ( » - 2 ) . 

j 2 = (è(1) + Z)2(3K + 2)/4) + (4«)-1 

χ [Ζ) 2 (κ+1)( /7-1)(5κ + 6) + Ζ)2(3κ + 2)2(16)-1 

+ 8Ζ>Γ2/>2
1)(/>-1) + * ( 1 ) ( />-1) (13κ+14)] , (5.14) 

Ey2 = Ey2 + 0(n-2) and y/yfc ~ N(0, 1 ). (5.15) 

This can be utilized to get an approximate confidence bound on Da. The 
first approximate confidence bound on Da is 

ß.±K2(£(.) + ö2(3/c + 2)/4)/«}1/2
) (5.16) 

where dx is defined at the end of Case (i), and from (5.15), we get an 
approximate confidence bound on Da as 

yi±{d2y2/n} (5.17) 
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where 

yï = D1-n-l((K+l)(p-l)Dl + {3/S){3K + 2)Dl 

+ è(1)(/>-l)Z>r1 

and y2 is defined in (5.14). 
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Stochastic Integrals of Empirical-Type Processes 
with Applications to Censored Regression 

TZE LEUNG LAI* AND ZHILIANG YING 

Stanford University and University of Illinois 

Motivated by the analysis of linear rank estimators and the Buckley-James non-
parametric EM estimator in censored regression models, we study herein the 
asymptotic properties of stochastic integrals of certain two-parameter empirical 
processes. Applications of these results on empirical processes and their stochastic 
integrals to the asymptotic analysis of censored regression estimators are also 
g i v e n . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

Consider the linear regression model 

γ^α + βχ,+ε, (/=1,2,. . .) , ( Π ) 

where the ε, are i.i.d. random variables with mean 0, and the xt are either 
non-random or are independent random variables independent of {ε,}. 
Suppose that the responses yt are not completely observable and that the 
observations are (xi9 zh 5,·), where z, =min{yi 9 /,·}, δ( = I{y.^ti]9 and the /, 
are independent random variables, independent of {ε,·}. This is often called 
the "censored regression model" and the tt are called the "censoring 
variables." 

In 1979, Buckley and James [3] proposed the following method to 
estimate a and /?. They started by replacing yt by 

yf = yièi^E{yi\yi>ti){\-ôi\ (1.2) 
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and regressing the yf (instead of the yt) on the xt to obtain 

ß = \ i y?(Xi-**)}li (*/ -*«)2> (1.3) 
d = yf-ßx„, (1.4) 

noting that Eyf = £>>,· = a +ßx i9 where xn=n~iYJ"xi. Since E(yi\yi>ti) 
in (1.2) is unknown, they replaced (1.3) by an iterative scheme in which 
E(yi\yi>h) is substituted by its successive estimates. Specifically, let 
ei(b) = zi — bxi and order the uncensored e^b) as e(i)(b)^ '-eik)(b\ 
assuming that there are k uncensored observations. Let 

nAb)=*{ï.etb)>e{î)(b)}9 (1.5) 

where ΦΑ denotes the number of elements of a set A. Buckley and James 
first used the Kaplan-Meier estimator 

Λ » = 1 - Π («,(*)-!)/«,(*>) (1.6) 
i:e(i)(b)^u 

to estimate the common distribution function F of et à α + ε,. Assuming 
the xt to be nonrandom, they then replaced E(yi\yi>ti) = ßxi + 
£(*,!<?, > / , - / * * , ) by 

ztb) = bx,+ f udÈ^uW-È^tt-bx,)). (1.7) 

Replacing (1.2) by yf(b) = yt <5, + ζ,(6)(1 - <5Z), they proposed to estimate β 
by iterative solution of the equation 

b = \t (Xl-*n)y?(b)}li (*i-*n)\ (1.8) 
v. i = 1 J I i = 1 

in analogy with (1.3). Note that (1.8) is equivalent to the equation 

Wn(b) = 0, 

where 

Wn(b)=j^ 5,(x,-*„)(*-**,) 
i = 1 

+ f (l-^)(x,.-x„)(2,.(è)-6x,). (1.9) 
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Once a slope estimator b* is determined, an estimator of a can be obtained 
as the mean of Fb*. 

To analyze the asymptotic properties of the Buckley-James estimator, a 
crucial step is to study the random function Wn(b) as n -> oo. Of particular 
importance is the behavior of Wn{b) for b near ß. Useful tools to study this 
kind of problems are provided by the concept of metric entropy of 
empirical-type processes and their stochastic integrals, which are discussed 
in Sections 2 and 3 below. Applications of these results to the random 
function Wn(b\ or more precisely, to a slight modification thereof, are dis-
cussed in Section 5. In this modification, we ignore the factors 1 —n^l(b) in 
the Kaplan-Meier estimator (1.6) when η$)/η is too small, causing 
instability in the estimator. Specifically, we redefine Fnb by 

F„»=l - Π {\-ρη{η-\φ))/η^)1 (1.10) 
i:e(i){b)<u 

where pn is a smooth weight function on [0, 1 ] that will be specified in 
Section 5. In addition, we also use the weight function pn to modify the 
definition (1.7) of z^b) in Section 5. 

In Section 4, we apply the results of Sections 2 and 3 to another class of 
estimators of ß in the censored regression model, introduced in [7] as 
extensions of the classical rank estimators with complete (uncensored) 
data. The rank estimators of ß in [7] are defined by the equation 

Sn(b) = 0, (1.11) 

where 

£„(*)= Σ Φ -Pn{FnAeu)(b))){x{i)~x(Ub)} pn{n-\{b)\ (1.12) 

* ( ' » = Σ V{*A»e(/)<6)} \ "&)> ( L 1 3 ) 

Fnb is defined in (1.10), pn is a smooth function on [0, 1] that will be 
specified in Section 4, and φ · pn denotes the product of pn and φ9 which is 
a given "score function" (cf. [7]), i.e., ψ - ρη(χ) = ψ(χ) pn(x). Since 
Eq. (1.11 ) may not have a solution, we define a rank estimator ffn of β as a 
zero-crossing of the step function Sn(b)9 i.e., the right and left hand limits 
Sn(ßn + ) and S„(ßn — ) do not have the same sign. This zero-crossing 
notion of a solution of the equation Wn(b) = 0 was also used by James and 
Smith [5] to give a more precise definition of the Buckley-James 
estimator. 

The functions Wn{b) and Sn{b\ defined by (1.9) and (1.12), respectively, 
appear to be rather intractable analytically. An important step in our 
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analysis of these functions is to express them using stochastic integrals of 
empirical-type processes. In particular, as shown in [7 ] , 

Sn(b) = Π Φ- Pn(Kt(s)) Pn(n-l # n(b, s)) 
Js= - oo 

idY^s)-^)dL^s)] (u4) 

where 

#n(b,s)= £ I{ej*(tj-ßXj)>s + (b-ß)xj}> (1.15a) 
7 = 1 

^ » ( Μ ) - 2̂  Xjl{ej Λ (tj-ßxj)>s+(b-ß)xj}> ( 1 . 1 5 b ) 

7 - 1 
n 

L„(b,s)= 2̂  I{ej^Uj-ßXj) Λ (s + (b-ß)xj)}9 (1.15c) 
7 = 1 

n 

Yn{b,s)= Σ xjl{ej^(tj-ßxj) Λ (s + (b-ß)xj)}' (1.15d) 
7 = 1 

Here and in the sequel, e7 = a + ε7, x A y denotes min(x, y), and x v y 
denotes max(x, y). We call the two-parameter processes # „ — £ # „ , 
Xn —EX„, Ln —ELni Yn —EYn empirical-type processes because they are 
similar to empirical processes and can be analyzed by techniques similar to 
those recently developed in empirical process theory, as will be shown in 
Section 2. In particular, these techniques enable us to obtain probability 
bounds, which are uniform in b and s, in the approximation of the random 
function #„(6, s)- #„(/?, s) (or Ln(b,s) — Ln(ß,s\ etc.) by its mean 
E#n(b,s) — E#n{ß,s). In Section 3, we apply these results to analyze 
stochastic integrals involving empirical-type processes. Making use of these 
stochastic integrals, we then study the asymptotic properties of Fnb, Sn{b\ 
and Wn(b) in Sections 4 and 5. 

2. METRIC ENTROPY AND CONVERGENCE PROPERTIES OF 

EMPIRICAL-TYPE PROCESSES 

In this section we first review some recent results in empirical process 
theory due to Alexander [ 1 ] and then extend these results to the empirical-
type processes (1.15). Let ξΐ9 ξ2,.., be independent random variables tak-
ing values in a measurable space (S9 @) and let Pt denote the probability 
distribution of <*,· (i.e., Ρί(Β) = Ρ{ξίβΒ}). Consider the empirical measure 
and process 

« . ^ - ' Σ ί ί , . vn=ni/2(n„-F„), 



338 LAI AND YING 

where Pn=n~xYd
n

i=lPi and δχ denotes the unit point mass (delta 
function) at x. Let !F be a class of real-valued measurable functions on S 
such that l/l ^A for a l l / e ^ and some A >0. Let 

vrt(/) = j/rfvn=«-1/2 X (/({,)-TO)). 

An important concept in Alexander's [1] analysis of sup/e & |νΛ(/)| is the 
"metric entropy" of & defined as follows. Given ε>0, ρ>0, and a 
probability measure μ on (S, 3S\ let 

Νρ(ε, #", μ) = min{A:: There exist / , . . . , fke^ such that 

m i n | | / - / J , < 6 f o r a l l / e ^ } , 

Nfa SF. μ) = min{k: There exist /f7, /f,..., / £ / ^ E ^ 

such that / f < / ^ /f7 for some ι for every / e «^, 
and H/? - / , % <ε for all/}. 

The "metric entropy" and "metric entropy with bracketing" of !F in Ζ/(μ) 
are log Np and log JV*, respectively. 

Given a class J* with finite Lp(Pn) entropy and δ0>δί > - >δκ>0, 
there exist J^czJ^ (y'</w) such that \&;\=Νρ(δ^&9Ρη) and for each 
felF there exists/·(/) G ̂  with ||/—/•(/)|| /, <£,·. A basic idea in Alexan-
der's probability bounds for supjr |v„(/)| is the following "chaining 
argument" (cf. also [4]). Writing 

vxn=v„(/0(/))+Y v„ifJ+m-fwi+Kif-Mm an 
we have 

/>*{sup |v„(/)| > M} ^ | ^ | sup P{\v„(f)\ > (1 -e/4)Af} 

+ *Σ \Fj\\pi+l\ 

xsup^lv^.^i/)-///)]^^} 

+ />*{sup |ν„(Λ(/)-/)| >εΜ/8 + ^} 

àRl+R2+R^ (2.2) 
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where the η] > 0 are so chosen that Σ/=ο fy < εΜ/S, and P* denotes outer 
measure. Bounds for the terms R{ and R2 in (2.2) are provided by 
Bennett's [2] inequality for sums of bounded independent random 
variables: If Χγ,..., Xn are independent random variables such that EX,= 0 
and \Xt\^ A, then for α ^η~ l ΣΊ Var(JTf), 

p | L - 1 / 2 £ A r J>MU2exp | - iM 2 a- 1 g (^M/î - 1 / 2 a - 1 ) | , (2.3) 

where 

g(A) = 2A-2{(l+A)log(l+A)-A}. 

Making use of (2.2) and (2.3) together with an appropriate choice of the 
ôj and ηρ Alexander [1] obtained sharp probability bounds for 
sup̂ r |vn(/)| under a variety of metric entropy assumptions on &\ the 
method to bound R3 in (2.2) varies with these assumptions on #'. In 
particular, he showed that for ε>0, 0<r<2 , and 0>O, there exists 
C=C(r,e,s) such that if 

logiV00(5,J2r,PJ^Ö<5-r for all 0 < ό ^ 1 (2.4) 

and if 

MK{a ( 2 - r ) / 4 v« ( r - 2 , / 2 ( r + 2 ) ) , (2.5) 

then analogous to (2.3), 

P*{sup\vn(f)\>M}^5exp{-^(l-e)M2(x-lg(AMn-l/2(x-l)}9 (2.6) 

where a ^ sup̂ r n l £?= { Var /(<!;,·)· The term R3 in this case is handled by 
taking δκ =sMn~i/2/\6, so that 

\vn(fAf)-f)\^2n^2 \\fK(f)-f L· ^eM/S. (2.7) 

Let 3) be a class of measurable subsets of 5 and let ^ = {ID\ De3}. 
Alexander [1] showed that if we replace (2.4) by 

logWf(<5,#;P„K0<rr for all 0<(5^1, (2.4*) 

then (2.6) still holds for M satisfying both (2.5) and 

Μ^εα/ι1/2/16. (2.8) 
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Note that in this case w i t h / = / D , sup^ |v„(/)| =sup^ |vn(Z))| and α^ 
supcj n~l ΣΊ Pi(D)(l - Pi(D)). The term R3 in (2.2) is handled by taking 
δ2

κ = εΜη~ι/2/16 and using the bound 

| v „ r a / ) - / ] | ^ | ν Λ [ / 2 ( / ) - / ί Κ / ) ] | +2nV2\\fï(f)-fï(f)\\l 

< | ν „ [ / ί ί ( / ) - / ί Κ / ) ] | + 2 Λ ^ ί ^ (2.9) 

since EID = EI2
D = ||/D Ĥ . Hence 

R3 ^ \<FK\ sup P { | ν „ [ / ^ ( / ) - / έ ( / ) ] | >!,, ,}, 

which can then be bounded by using Bennett's inequality (2.3). 
As a corollary of (2.6), we obtain the following result on empirical-type 

processes, which will be used in Section 3. Throughout the sequel, replacing 
tf — ßXi in (1.15) by ti9 we shall assume without loss of generality that 
/? = 0. We shall also restrict b in (1.15) to a bounded interval |ô |<p . For 
notational simplicity we shall write sup6>J to denote supremum over the 
region \b\ ^ p and — oo < s < oo. 

LEMMA 1. Let (ei9 xi9 /,), / = 1, 2,..., be independent random vectors such 
that for some nonrandom constant A9 

\xt\^A for all L (2.10) 

Let Zn(b9 s) be any of the four empirical-type processes defined in (1.15) with 
ß = 0. Let un\ [ — p9 p] x ( — oo, oo)-» ( — oo, oo) be a nonrandom Borel 
function such that 

(2.11) 
\uH(b9s)-un(b\s')\^A{\b-b'\ + \s-s'\}9foralln9b9b'9s9s'. 

Then for every 0 ^ y < 1 and ε > 0, 

[«„(6, ί) - «„(*', i ) ] rf(Z„(i>, s) - EZn(b, s))\ 
\Js= — oo I 

= 0(« ( 1 - y ) / 2 + e) α.Λ (2.12) 

Proof We shall only consider the case Z„ = Y„. First note that 

Î
OO 

lun(b,s)-un(b',s)-)dYn(b,s) 
s= - co 

n 

= Σ xiiun(b,ei-bxi)-un{b,
9ei-bxi)^I{e.^ti). 

sup 
\b-b'\ </i" 
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For fixed n, let i//b^(ei9 xi9 tt) = xXun{b, et - bxt) - un(b\ et - 6*,)] / {e /< , . } . 
Letting ξί = (ei9 xi9 /,), the class & = {^btb>:\b\ <p , \b'\ ^ p } clearly satisfies 
the entropy assumption (2.4) for every r > 0 , in view of (2.10) and (2.11) 
(which in fact implies that log Ν^δ, &, Pn) = 0(logô) as δ-+0). 
Moreover, by (2.11), there exists A' such that Var ij/bjbiei9 xi9 /,·)< 
A' \b — b'\ for all /. Hence the desired conclusion (2.12) follows from (2.6) 
with M = n -y/2 + ε and the Borel-Cantelli lemma. | 

We next modify Alexander's arguments sketched above to prove the 
following result, which will be used repeatedly in the subsequent sections. 

THEOREM 1. Let el9 el9... be i.i.d. random variables whose common 
distribution function F satisfies the Lipschitz condition \F(x) — F(y)\^ 
C\x — y\ for all x9 y and some C > 0. Let (xi9 /,), i = 1, 2,..., be independent 
random vectors that are independent of {en}. Assume that (2.10) holds and 

n 

sup £ P{s ^ /, - bxt ^ s + h} 
\b\ <p , — oo < 5 < oo i 

= 0(nh) asn-+ oo andh-* 0 with nh -► oo, (2.13) 

supE(\el A ti\r)< oo for some r>0. (2.14) 

Let Z„(b, s) be any of the four empirical-type processes defined in (1.15) with 
J? = 0. For 0<d^l let 

*n,d = sup n-lV2LT{ZH{b,s)-Zn(b'9s')}. (2.15) 

JAe/j /or every 0 < ε < 1 , as «-►oo an</ M = o(nm<xnd) but 

My{<r)/2vM-(i-e)/2}-*oo, 
/»{ sup n-i/2\Zn(b,s)-EZn(b,s)-Zn(b\s') + EZn(b's')\>M} 

\b-b'\ + \s-s'\^d 

= 0 ( β χ ρ { - Κ ΐ - ε ) ^ 2 ^ } ) · ( 2 1 6 ) 

Consequently, for every 0*ζγ<\ and 0 > 0, 

sup \Z„(b, s) - £Z„(Z>, s) - Z„(b', s') + EZn(b', s')\ 
\b-b'\ + \s-s'\^n-y 

= 0(η(1-7)/2 + θ) a s ( 1 1 7 ) 

Proof We shall only consider the case Zn=Xn. To prove (2.16), note 
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that the assumptions on M here satisfy Alexander's conditions (2.8) and 
(2.5) (with sufficiently small r). Let 

An(b,s;b',s') = n-i/2{Xn(b,s)-EXn(b,s) 

-Xn{b\s') + EXn{b',s')Y 

As in Alexander's argument outlined above, choose δ0> · ·· >δκ with 
δκ ~CeMn~i/2, where Ce is some positive constant depending on ε. For 
fixed y = 0, 1,..., K9 partition the interval [ — p, p] by points ß[j) < ß[jl, such 
that ß[Jl ! — ß[J) ^ èj (v = 1, 2,...), with equality except possibly for the case 
v = l {ß[J)= — p). Thus, the number Nj of sub-intervals is the smallest 
integer ^2ρ/δ]9 so logNj ~log(5y (in analogy with (2.4*)). Fory = 0,..., K 
and -p ^b<p, define v(b9 j) by ß%„ ^b<ßi

vHJ)+i. In view of (2.14), 

supP{\ei Ati\^ô'l/r} = 0(ô) as Ô-+0. (2.18) 
i 

Fory = 0,..., K, partition the interval [ — <5/~1/r, <5/
rl/r] by points ο\1)<σ\1\ι 

such that σ\1\ γ — σ^ ^ δ] (m = 1, 2,..., MJ) with equality except possibly for 
the case m = 1 (a\j) = — < $ r ^ Thus, the number A/,· of such sub-intervals is 
the smallest integer ^ 2 cJy- 1/r_ *, so log Mj ~ log (5y. Let σ^ = — oo, 
σ$+2 = oo- For any given s, define m(s, 7) by σ ^ 7 ) ^ ^ < σ ^ 7 ) + 1. As in 
(2.1), note that 

A (b r b' s') = A (ß{0) σ(0) · ß(0) π·(0) 1 
Α - - ι 

7 = 0 

Hv(b'J+l)> °m(s'J+\)) nn\Pv(bJ)> °m(sJ)-> 

RU) σϋ) \1 

+ lA,,(b,s;b',s')-an(ß
{&K),a%lK); 

ßi^\^<l;K))l (2.19) 

arid apply the chaining argument (2.2) with v„ replaced by An. Since 
\xiI{*i*t&s + bxi}\^A and the (<?,,*,,/,) are independent, we can apply 
Bennett's inequality (2.3) to obtain probability bounds as in Alexander's 
argument [1], noting that by the Lipschitz continuity of F and the 
assumption (2.13) on /,·, 

sup VarCzU^, ^ ;£',,*;) 
1̂ 1 - t>2\ v \b\ - b'2\ v \s\ - s2\ v \s\ - s'2\ s$ h 

-A„(b29s2;b'2,s2)] 

= 0(h) as n -► 00 and /* -> 0 such that 72/2 -* 00. (2.20) 
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The rest of the proof of (2.16) is similar to that in Alexander [1, proof of 
Theorem 2.3]. In particular, the last term in (2.19) can be handled by a 
"bracketing argument" as in (2.9), noting that n δκ ~CEMnl/2 -► oo and 
that Xn(b, s) can be decomposed as monotone functions in b and s: 

%ηΦ> S)= 2J Xjl{ej Λ tj7*s + bxj} 

— L \Xj\ hej * tj>s-b\xj\}' 
j ίξ «, xj < 0 

Setting M = n~y/2 + e in (2.16) and noting that <xnn-y = 0(n~7) as in 
(2.20), (2.17) follows from (2.16) and the Borel-Cantelli lemma. | 

In the preceding proof, the chain δ0> -- >δκ terminates with 
δκ~ΟεΜη~γ/2, and therefore we can apply condition (2.13) with A = <5y 

(since min,·^*«<$,·-► oo). Since the chain δ0> -- >δκ in Alexander's 
proof of (2.6) under the assumption (2.4) also terminates with 
δκ ~εΜη~ l/2/16, we can introduce the following relaxation of the 
assumption (2.11) in Lemma 1, which we have shown to be a corollary of 
(2.6) by setting Μ = η~γ/2 + ε (and therefore n(Mn~l/2)-+ oo). 

LEMMA 2. Suppose that in Lemma 1 we replace the assumption (2.11) by 

sup \un(b9 s)\ = 0(1) and sup \un(b, s) — un(b\ s')\ = 0(h) 
b,s \b~b'\ + \s-s'\^h 

as n-> oo and h -► 0 such that nh -► oo. (2.21 ) 

Then the conclusion (2.12) still holds for every 0 ^ y < 1 and ε > 0. 

Under the assumptions of Theorem 1 we can further strengthen the 
conclusion (2.12) of Lemma 1 for our main result in Section 3. This is the 
content of 

LEMMA 3. With the same notation and assumptions as in Theorem 1, let 
un: [ — p, p ] x ( — oo, oo ) -► ( — oo, oo) be nonrandom Bore I functions satisfy-
ing (2.21 ). Then for every 0 ^ y < 1 and ε > 0, 

sup [ [un(b, s) - un(b\ s)] d(Z„(b, s) - EZn{b, s))\ 
\b-b'\^n-y,-oo < y<ao \Js= - co \ 

= 0(„(ΐ-τ)/2 + ε) a s ( 1 2 2 ) 

Proof. We shall only consider the case L„(b, s). For fixed n, denote 
L„(b,s), EL„(b,s), u„(b,s)-u„{b',s) by Lb(s), lb{s), ubib.(s), respectively, 
and let V{b, b', s) = ^_œ u^U) d(Lb(t) - Lb(t)). As in the proof of 
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Theorem 1, choose δ0> ~- >δκ, and for y = 0,.., K, partition the real line 
by the points a{

0
J) = — oo < a\J) < · · · < σ{$+ x < oo = σ%\+2, and the interval 

[ — P> p] by the points / ^ = — p < · · · < βψ+χ = p. Analogous to (2.19), we 
now have 

V(b,b\s)=V(ß^0),ß$l,0),a%l0)) 
K- 1 

7 = 0 

~~ V\ßv\bJ)-> ßvib'J)·» am(sJ))i 

+ \_V(b, b\ s)- V(ß[fb\K}, ß[fb\K), σ<*> *,)]. 

Note that for σ ;ζ s, 

V(b, b', s) - V(a, α', σ) = [ V(b, b', σ) - V(a, α', σ)] 

+ \\b,b.(t)d(Lb(t)-Lb(t)). 

The rest of the proof is similar to that of Theorem 1 and Lemma 1. | 

An argument similar to the proof of Theorem 1 can also be used to 
prove the following result, which will be used in Sections 4 and 5. 

LEMMA 4. With the same notation and assumptions as in Theorem I, for 
every 0 ̂  y < 1 and Θ > 0, 

sup \Zn{b,s)-EZn(b,s)\ 
(b,s): VSLT Z„(b,s)^n-V 

= 0(nil-?)/2 + e) a.s. 

3. STOCHASTIC INTEGRALS OF EMPIRICAL-TYPE PROCESSES 

In this section we apply the results of Section 2 to study stochastic 
integrals of the form 

Γ Un{b9s)dLn{b9s) or Γ Un{b9s)dYH(b9s)9 
^ J = — OO JS = — OO 

where Ln and Yn are the empirical-type processes defined by (1.15c) and 
(1.15d), and Un(b, s) are random variables for which there exist nonran-
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dorn Borel functions un(b, s) satisfying the following assumptions for some 
ξ ̂  0: For every 0 ̂  y < 1 and ε > 0, 

(Al ) sup | UH(b, s) - u„(b, s) - Un(a, s) + un(a, s)\ 
\b — a\^n V, — oo <s < co 

= 0 ( „ - l / 2 - y / 2 + £ + £ ) a s 

(A2) sup \Un(b,s)-un{b,s)\ = 0(n-l/2 + t + e)a.s. 
b,s 

(A3) For fixed be [ — p, p], Un(b, s) has bounded variation in s and 

\dUn(b,s)\ = 0(nt) a.s. 
\o\^p s= -co 

(A4) n~*-un satisfies condition (2.21). 

An example of such stochastic integrals is the linear rank statistic Sn(b) 
defined in (1.12). In view of (1.14), we can express S„(b) in the form 

U„(b, s) dYn(b, s) - Ü„(b, s) dLn(b, s), 
vs = — oo ys= — co 

where U„(b,s) = φ />„(Fn»)ρη(η~ιΦH[b,s)) and ϋη=υ„Χ„/Φ„. 
Another example is given by (1.10), which can be expressed in the form 

log( 1 - / ^ 0 0 ) 

= f log{l - p„(n-l#„(b, s))/#„{b, s)} dL„(b, s). 
J — oo < 5 < y 

Theorem 2 below, which will be applied to these two examples in Section 4, 
shows that under certain conditions we can approximate the stochastic 
integral ly_aoUn(b,s)dZn{b,s) by the nonrandom function j ^ w ^ è , s) 
dEZn(b,s) with Zn=Ln or Yn, and also provides two kinds of error 
bounds for the approximation. The first kind of results, given in (3.3) 
below, shows that the difference between the stochastic integral and its 
nonrandom approximation is of the order 0(ηι/2 + ξ + ε\ where ε>0 can be 
arbitrarily small. Hence if ξ < \, the approximation error is of the order 
o(n). For example, in the case of the linear rank statistic Sn(b) to be studied 
in Section 4, this implies that s u p ^ ^ w-1 \Sn(b) — hn(b)\ -►O a.s., where 
hn(b) is a nonrandom function defined in (4.3). This result can be used to 
establish the consistency of the rank estimator βη (which is a zero-crossing 
of Sn(b)) under certain assumptions on hn(b). To prove that ηι/2(βη — β) 
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has a limiting normal distribution, however, the order 0(ηϊ/2 + ξ + ε) in the 
approximation of S„(b) by hn(b) is obviously too crude, and we need 
another kind of results, given by (3.2) in Theorem 2 below. Applying (3.2) 
to S„(b) yields that with probability 1, 

Sn(b) = Sn(ß)+{hn(b)~hn(ß)}-hO(n^^-^^) 

uniformly in \b — β\^η~γ. Thus, if £<y/2, we can approximate 
S„(b)-S„(ß) by hn(b)-hn(ß) with an error of the order o(nl/2) for 
\b — β\ ^η~γ. This result is important for establishing the asymptotic nor-
mality of /?„, as will be discussed further in Section 4. Hence, (3.2) enables 
us to dampen the factor ηξ in the assumptions (A1)-(A4) on U„ by using 
the proximity of b to /?, and its usefulness will be illustrated by the 
applications in Sections 4 and 5. 

THEOREM 2. Let ex, e2,... be i.i.d. random variables having a continuously 
differentiable density function f such that 

ΛΟΟ 

( sup |/'(/)|)öfc<oo for some d>0. (3.1) 
- c o 5 ^ t^s + d 

Let (xi9 tf), i= 1, 2,..., be independent random vectors that are independent of 
{en} and such that conditions (2.10), (2.13), and (2.14) are satisfied. Define 
L„(b, s) and Y„(b, s) by (1.15c) and (1.15d) with β = 0. Let U„(b, s\ un(b, s) 
be the same as above (satisfying (A1)-(A4) for some ξ^Ο). Then for every 
0 ^ y < 1 and ε > 0, 

\b — a\ ^ n~y,— oo <y< oo \ s = 

sup | Γ Un(b,s)dLn(b,s) 
~y, — oo < y < oo \ s= — oo 

Î
y çy 

u„(b9 s) dEL„(b, s) - U„(a, s) dL„(a, s) 

s = — oo Js = — oo 

+ I u„(a9 s) dEL„(a, s)\ 
"S = — OO 

= 0 ( n ( i - r V 2 + i + «) a s ( 3 2 ) 

sup Γ U„(b,s)dLn(b,s) 
\b\ ^ p, - co < y < co I J j = _ co 

- f w„(Z>, s) dEL„(b, s) 
Js= — co 

0(n1/2 + i + c)a.s. (3.3) 

Moreover, (3.2) aw/ (3.3) if/// AoW /// ,„ is replaced by Yn. 
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Proof. For fixed n, denote Un(b, s\ un(b9 s), Ln(b, s), ELn(b9 s) by 
Ub(s), ub(s), Lb(s\ and Lb(s\ respectively, to simplify the notation. Note 
that 

ry ry _ ry ry 
UbdLb-\ ubdLb-\ UadLa + \ uadLa 

*' —oo J — oo J — oo J — oo 

= Γ (Ub-ub-Ua + ua)dLb + \y Uad(Lb-Lb-La+La) 
J — oo ·' —oo 

+ Γ (ub-ua)d(Lb-Lb)+r (Va-ua)d(Lb-La). 
J — oo ·' —oo 

Since supn55l ^ ,^ AZ_1 J^^ </LÄ ^ 1, it then follows from (Al) that 

ΛΟΟ 

sup \Ub-ub-Ua+ua\dLb 

= 0(η(1-7)/2 + ξ + ε) a s 

Likewise, by (A3) and Theorem 1, 

ΛΟΟ _ _ 

sup \Lb-Lb-La + La\\dUa\ 

=ζ0(η(1-ν)/2 + ξ + ε>> a $ 

By (A4) and Lemma 3, 

ί η t{ub-ua)d(Lb-Lb) 
J - o o 

= 0(n(l-y)/2 + E) a.s. 

sup 
\b — a\ ^n~y, — oo < y < oo 

We shall show that 

Γ (Ua-ua)d(Lb-La) 
J - o o 

= 0(ηί/2-γ + ξ + ε) a.s. 

sup 
\b — a\^n~y, — ao<y<oo 

Hence the desired conclusion (3.2) follows. 
To prove (3.4), first note that 

dLb(s)-dLa(s)= £ EU(s + °Xj)I{tj>s + bXj) 

-f(s + axj)l{tj^s + axj}] ds. 

(3.4) 

(3.5) 
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By (2.10) and (2.13), 

sup E 
\b-a\^n-y 

X if(s + bxj)-As + axj)-\ I{IJ9S 
+ bxj} 

s + bxj) ' {tjtts + axj}) 

*S sup \ΑΠ1-*\Γ(Ζ)\ 
s— Ap^z^s+ Ap L 

+ / (z) sup J£P{s-An-y^tj-bxj^s + An-y}\. 

Since sups_Ap^z^s + Apf(z) *ζ f(s) + Ap sups_Ap^z<s + Ap | /'(z)|, (3.4) 
follows from (3.1), (3.5), and (A2). 

To prove (3.3), apply (A2)-(A4) and Lemma 3 together with the bounds 

ry ry _ I 
UbdLb-\ ubdLb\ 

J — oo ^ —oo | 

<Γ |l/f t-«6|Ä6 + | r Ubd(Lb-Lb) 
^ —oo I •' — oo 

r°° _ r00 — 
< | I / 6 - « 6 | £ / L é + |L A -L 6 | |< /I / 6 | 

• ' - o o • ' - c o 

+ (IUb(y)- ub(y)\ + \ub{y)\) \Lb(y) - Lb(y)\. | 

4. APPLICATIONS TO CENSORED RANK ESTIMATORS 

In this section we apply Theorems 1 and 2 to study the properties of the 
linear rank estimator $„ of the slope ß in the censored regression model 
described in Section 1. Since fi„ is defined as a zero crossing of the function 
Sn(b) defined in (1.12), it is important to study the function S„(b) first. The 
function S„(b), however, is not a smooth function in b and therefore one 
cannot apply standard techniques (based on Taylor's expansion of the 
random function defining the estimator in a neighborhood of the true 
parameter) that are commonly used to prove asymptotic normality of 
maximum likelihood estimators, Af-estimators, etc. Moreover, S„(b) is not 
a monotone function in b, so one cannot make use of the monotonicity and 
contiguity arguments (cf. [6]) that have been applied to prove asymptotic 
normality of rank estimators of ß in the regression model (1.1) based on 
complete (uncensored) data (xi9 >>,). Without loss of generality, we shall 



EMPIRICAL PROCESSES AND CENSORED DATA 349 

assume that ß = 0. Theorems 1 and 2 enable us to approximate S„(b), in a 
neighborhood of ß( = 0\ by S„(ß)+ {h„(b) — h„(ß)}9 where h„ is a nonran-
dom function which is much more tractable than S„(b). This is the content 
of 

THEOREM 3. With the same notation and assumptions as in Theorem 2, 
define F„b by (1.10) and S„(b) by (1.14), where φ is a twice continuously 
differentiable function on (0, 1) such that for some 0 ^ 0 and i = 0, 1, 2, 

| ^ < / ) ( ι ι ) | = Ο ( ι | - β - / ν ( 1 - ι ι ) - β - 0 as M ( 1 - K ) - > 0 , (4.1) 

and the weight function p„ is of the form 

Pn(x) = P(n\x - cn~k)\ ( K x < 1, (4.2a) 

with c > 0, 0 < Λ, < 1, and p being a twice continuously differentiable function 
on the real line such that 

p(y) = 0fory^09 p(y)=\ for y>\. (4.2b) 

lpn(n-lE#n(b,s))/Eitn(b,sn dEL„{b,s\ 
J — oo < 5 < y 

f oo 

ψ.ρ„(1-βΑ-*'>) Ρη(η-ιΕΦηφ, s)) (4.3) 
— oo 

AdEYÀb-s)-WûdELÀb-s)} 
Then for every 0 < y < 1 and ε > 0, 

sup |log(l - F „ » ) - A„,b(s) - log( 1 - F„Js)) + A„Js)\ 
\b — fl| ̂  n ~~^, — oo < 5 < oo 

= 0(/ί-1/2-ν/2 + 3Λ + ε ) β Λ > ( 4 4 ) 

sup|log(l-/)I»)-^ll»| = 0(»-I/2 + M + ·) βΛ, (4.5) 
6,5 

sup \S„(b)-hm{b)-Sn(a) + hn(a)\ 
| ί > - α | < Μ - » 

= 0 ( η ( 1 - ν ) / 2 + (3 + β μ + ε) a.j. 

Define 

h„(b) 

(4.6) 
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Proof. To apply Theorem 2 we shall make use of the following 
inequality: For any twice continuously differentiable function g on (0, 1 ), 

\g(xt)-g(x2)-g(y,) + g(y2)\^(sup\g'(t)\)\Xl -x2-yt + y2\ 

+ (sup \g»(t)\)\y1-y2\ 
t 

χ{Ι*ι -xi\ + \y\ - ^ l + l ^ - ^ l } · 
(4.7) 

Since 
p„(n-1 #(*,*)) = 0 if # „ ( M ) W " A , (4.8) 

it follows from (1.10) that 

log(l - / „ , * ( « ) )= - f {/>„(»-' #„(6, i )) /#„(6,ä) 
^ — OO < 5 < M 

+ 0 ( # - 2 ( 6 , Î ) ) } A , I I ( Ô , J ) . (4.9) 

Let g„(x) = «-3V(«A(x-^-A))/x for 0 < x ^ l . Then supo<Jc^1(|^;(x)| + 
I £«(■*)! ) = 0(1 ). By (2.13) and the continuity of/, as AZ -> oo and h -► 0 such 
that H/Z -► oo, 

sup |«-1£#w(/3,5)-«-1£#n(/3' ,^) | = 0(A). (4.10) 

Hence it follows from Theorem 1, Lemma 4, and (4.7) that for every 
0 ̂  y < 1 and ε > 0, 

sup \gn(n~l #n(bs))-gn(n-1E#n(b,s)) 
\b — a\ ^ n v, — co <s<oo 

- £ „ ( " - ' #n(a,s))+g„(n-1E#n(a,s))\ 

= 0(n-l/2-y/2 + e) a.s., 
sup\g„(n-1 #n(b,s))-gn(n-lEifin(b,s))\ = 0(n~v2+°) a.s. 
b,s 

Moreover, /,»__„ !*„(«- ' #„(6, s))| ^sup, |g;(/)|. Noting that 

f ÎPnin-1 #n{b,s))l#n(b,s)-]dLn{b,s) 
J — oo <s < u 

= nu~l\ g„(n-l#„(b,s))dLn(b,s), 
J — oo < s < u 

conclusions (4.4) and (4.5) follow from Theorem 2 (with £ = 0). 
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To prove (4.6), let φη(χ) = ψ - pn(l-e~x) for x^O, so that 
^ • P » ( ^ » ) = ^ „ ( - l o g ( l - F w » ) ) . Using (4.8), (4.9), and dL„ ^ 
\d # J , it can be shown that there exists K>0 such that 

sup \\og(\-Fnb{s))\^\o%{Knx) for all large n. (4.11) 
b,s 

In view of (4.1) and (4.2), s u p ^ ^ * - ' ^ * ) ! + I^WI + l«*) l ) = 
0(1); moreover, s u p 1 / 2 ^ - , ^ η~« + θ)λ(\φ„(χ)\ + |fl,(x)| + l«*) l ) = 0(1). 
Hence using a similar argument as before, we obtain the desired conclusion 
(4.6) for (1.14) by applying Theorem 2 to the cases U„(b, s) = 
n-{3 + e)*<t>n(-log(l-Fn,b(s)))pn(n-l#n(b9s)) and U„(b, s) = n~* + e» 
x^„(-log(l-/„,,(*))) x n-lXn(b9s)xpn(n-x #„(6, s))/^'1 #„(b,s)l 
respectively, making use of (4.4), (4.5), and Theorem 1 in this connec-
tion. | 

Suppose that λ in the weight function (4.2) is so chosen that 
6(3 + β μ < 1. Then by (4.6), with probability 1, 

S„(b) - S„(a) = hn(b) - h„(a) + o(n1'2) uniformly in 

a,bel-p,p^mth\b-a\^n~l/\ (4.12) 

\Sn(b)- S„(a)-hn(b) + hn(a)\ = o(n2/3) = o(n \b-a\) uniformly in 
a, be [ - p , p] with \b-a\^n~1/3. 

(4.13) 

Since n~l \S„(b) — h„(b)\ -+0 a.s. for every fixed b, it follows from (4.12) 
and (4.13) that 

sup n~l \S„(b)-h„(b)\^0 a.s. (4.14) 

Under certain assumptions on the nonrandom function A„, it can be shown 
by making use of (4.12)-(4.14) that the rank estimator /?„, which is a zero-
crossing of S„(b), is strongly consistent and asymptotically normal. The 
details are given in [7]. In particular, the following steps are used in [7] to 
prove the asymptotic normality of β„ after establishing its consistency. 
First, by (4.12) and (4.13) with α = β, we have with probability 1, 

S„(b) = S„(ß)+{h„(b)-h„(ß)} 

+ o(nl/2 v n \b - ß\ ) uniformly in \b\ ̂  p. (4.15) 

Next, an asymptotic analysis of the nonrandom function h„(b) (defined in 
(4.3)) shows that under certain conditions, 

h„(b)-h„(ß)~Cn(b-ß) as « - oo and b-+ß, (4.16) 
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for some nonrandom CVO. The third step uses a martingale central limit 
theorem which can be used to show, under certain assumptions, that as 
n-> oo, 

n~l/2S„(ß) has a limiting normal 7V(0, τ) distribution, (4.17) 

for some constant τ. After showing that fin converges to ß a.s. and recalling 
that j?„ is a zero crossing of Sn(b\ we then obtain from (4.15)-(4.17) that 
ηί/2(βη-β) has a limiting JV(0, τ/C2) distribution. In view of (4.14), a 
sufficient condition for the consistency of ßn is 

lim inf Λ"1 |Λ„(*)Ι >0 forevery δ>0. (4.18) 
w-oo \b-fl\>6 

5. APPLICATIONS TO THE BUCKLEY-JAMES ESTIMATOR 

In this section we consider the Buckley-James estimator, which is a zero-
crossing of the function Wn(b) defined in (1.9). Instead of the 
Kaplan-Meier-type estimator (1.6) originally used by Buckley and Jariies, 
we use here the modified version (1.10), involving a weight function pn as 
in Section 4, for the Fnb in z,(è). In addition, we change the definition (1.7) 
of Zi(b) as follows. Noting that 

E{ei\ei>z)=\ sdF(s)/(l-F(z)) 

= z + [ (l-F(s))ds/(l-F(z)), 
Js>z 

we replace (1.7) by 

*/(*) = ', + {[ (!-£,») 
[Js> /,· — bxi 

x /»,(»-' *Àb, s)) dslhl-f^it.-bx,)). 

Using this definition of z,(i>) in (1.9), we obtain that 

^(b)-W„(ß) = (ß-b)t(Xi-Xn)2 + i(l-Sl)(xl-JcK) 
1 1 

x LU„(b, tt-bx,)-Um(ß, ί,-βχ,η, (5.1) 
where 

U„(b,z) = {\s>^-FnJs))pn(n-1 #„(A, ί ) ) ώ ! / ( 1 - /^ (7) ) . (5.2) 
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Our analysis of W„(b) depends on the following theorem on the 
approximation of Un(b, z) by the nonrandom function 

un(b,z)= f pn{n-lE #n(b,s))exp{An,b(s)-AnJz)} ds, (5.3) 

where Anb is defined in (4.3). Without loss of generality we shall again 
assume that ß = 0. 

THEOREM 4. With the same notation and assumptions as in Theorem 2, 
define Fnb by (1.10) and Un(b,z)9 un(b,z) by (5.2), and (5.3), where the 
weight function pn is of the form (4.2a) with c>0, 0 < A < | , and p being a 
twice continuously differentiable function satisfying (4.2b). Assume further-
more that 

M à mf{a: P[ex ^ a] = 1} < oo, f(M) > 0, and 

l iminffl^f P{t^M}>0. (5.4) 
n -* Qo j 

sup \Un(b,z)-un(b,z)\ 
\b\^n~y,z^ -ηθ 

= 0(η-ι/2+ί{λ-γ)+ ν θ ] + ε) a.s. 

Moreover, ify>X and θ<γ/2, then 

sup | i/„(è, z) - w„(6, z) - £/„(?, z 4- a) + w„(5, z + a)\ 
\b\ v |£| v \a\^n-y,z^n~° 

= o(n~l/2) a.s. (5.6) 

/V00/. From (4.8) and Lemma 4, it follows that 

pn(n-1 #n(b,s))>0^#n(b,s) 
>cnx~x and # „(*, j) ~ £ # „(ft, J), 

(5.7) 
/7„(A2-^ #„(£ , * ) ) > 0 ^ £ #„(Z>,*) 

>c«!-A and #n{bys)~E#n{b,s). 

Since /?;,(*) = 0 if x^cn~x or x^(c+l)n~À and since /? (̂χ) = 0(«Λ) = 
0(x_ 1) for c«_yl<x<(c+1)/ι~Λ, it then follows that there exists K>0 
such that 

\Pn(x)/x-Pniy)/y\^K\x-y\/x2xï<x/y<î(x,ye{09i)). (5.8) 

(5.5) 

Then for every 0 ^ y < 1, 0^0, and ε > 0, 
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From (5.7) and (5.8) together with Lemma 4, we obtain that with 
probability 1, 

ί 
Jz^ s< 

/>„(«"' #„(*,*)) pn(n-*E#„(b,s)) 
dln-lELn(b,sn n-l#n(b,s) n-lE#„(b,s) 

= o(n-l/2 + *tt ^ («-'£#„(ô,5))2
i/[«-1£Ln(*,i)]J^ 

= 0(/ i -1 / 2 + 7«-|£#„(6,>')), (5.9) 

uniformly in z<y with E #„(b, y)^jcnl~x. Here and in the sequel, ε is 
chosen to be an arbitrarily small positive number. Moreover, using 
integration by parts and Lemma 4, it can be shown that with probability 1, 

Pn(» ' #n(b,s)) 

(5.10) 

=T-—77—— din lL„(b,s)-n lEL„(b,s)] 
\->zsis<y n #„(b,s) 

= 0 ( H - > / 2 +7«-'#„(£,>>)), 

uniformly in z<y with #„(b, y)^jcnl~x, noting that by (5.8), 

\d\_P„{n-1 # „ ( è , i ) ) / « - 1 # „ ( è , j ) ] | 

= 0( («- 1 #„( ί» , ί ) ) - 2
< / («- 1 #„(ό ,5) ) ) . 

We now apply (5.9) and (5.10) to prove (5.5). Let Gnb = 1 -Fn,b, G„tb = 
exp(/l„Ä). It follows from (4.3) and (4.9) that 

G„,b{y) G„ib(y) 

G„,b(z) Gn,biZ) 

Gn,b(y) 
exp ■j Pn(" l #n(b,s)) 

p„(n-lE#n(b,s)) 

y E#n(b,s) + j 
JZ^S< J 

dLn(b, s) 

dELn(b,s) + 0(nA-{)\-\\ (5.11) 

First consider the case y = 0. From (5.7), (5.9), and (5.10), it follows that 

rM + Ap 

Î
M + Ap 

\G„,b(s) Pn(n-x #„(b, s))/Gn,b(z) - G „ » 
. „ . «T „ 7 

I CM+Ap r ( J W - l ) v z \ 
:Pn(n-lE#n(b,s))/GnJZ)\ds = + 

V J { # - l ) » 2 J2 / 

= 0(« - 1 / 2 + ε + Λ + «- 1 / 2 + £ | ζ | ) a.s. 
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and therefore (5.5) follows. Here and in the sequel we use the convention 
J" = 0 if v^u. Note in this connection that, by (1.10), Gnb(z) remains con-
stant for all z^inf{^: #„(£, 5)^«1_A} and that Gnb(z) remains constant 
for all z^inf{.s: E #„{b, s)^nl~~*}, by (4.3). Moreover, since \bXj\^Ap 
and e^M a.s., the range of integration in (5.2) or (5.3) can be restricted to 
be ^Μ + Αρ. 

We next consider the case y>0. Then by (5.4), with probability 1, as 
n-+ oo and s->M such that M — s^n~y + \ 

n~l #n(b,s)~n-lE#n(b,s) 

~f{M)(M-s)n-1 £ P{tt>s + bXi} 

uniformly in \b\ ̂ n~\ (5.12) 

since \bxt\ ^Αη~γ = o(M — s). Moreover, by (4.3) and (5.4), as «-► oo and 
y-+M such that M — y^n~y + e

9 

G„,b(y) = Qxp(Anb{y)) 

= (M-y)1 + oil) uniformlyin|è|^«-y. (5.13) 

To prove (5.5 ,̂ it suffices to assume that γ^λ. From (5.9)—(5.13), it then 
follows that with probability 1, 

\Gmb(s) pe(n-1 #„(b,s))/Gn,b(z)-Gn,b(S) 

( fM-n-y + E r(M-l)v z\ 
+ 

J ( M - l ) v z Jz / 

= 0(n-1/2 + 2ε + n-,/2 + e|z|) uniformly in z and in |6|<«-y, (5.14) 

noting in view of (5.12) and (5.4) that pn(n~lE #„(£>,s)) = 1 for s< 
M-n~v + e and large«, since y < 1 For M-n~r + t^s^M +An~Y, we use 
the bounds G „tb(s)/G nb(z) ^ 1 if s^z, and 

!<?«.*(*) Z U « - 1 * Ab, s))/Gntb(z)-G„,b(s) 

xpn(n-lE#„(b,s))/Gn<b(z)\ 

^\Gn_b(s)/G^b(z)-G„Js)/G„Jz)\ p„(n-1 #„(M)) 

+ [G.»/G„.»(z)]| «-«#,,(*,*) 

-n~lE #„(b,s)\nxsup \p'(x)\. (5.15) 
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From (5.9)-(5.11) and (5.15) together with Lemma 4, it follows that with 
probability 1, 

rM + An-y 

|G„»/>„(«"'#„(*>, i))/G„,6(z) 

- Gn,b(s) Pn(n - lE # n(b, s))/GHtb(z)\ ds 

= 0(η-ι/2 + λ + 2ε-γ) uniformly in z and in |i>|^w"y. (5.16) 

From (5.14) and (5.16), we obtain (5.5) (with ε replaced by ε = 2ε, which 
can be arbitrarily small). 

We now assume that y > λ and Θ < y/2 to prove (5.6). First note that for 
\b\^n~y, supi\bxi\^An~y = o(n~x). Hence analogous to (5.12), we now 
have for \b\ ^n~y, 

#„(b,s)^cnl-x and s-+M => #„(*, s) 

~E#n(b,s)~f(M)(M-s)fjP{ti>s + bxi}. (5.17) 

Moreover, analogous to (5.13), we now have for \b\ *ζη~γ, 

E#n(b,s)^cnl-À and s - M^>Gnb{s) = (M-s)l + 0{i\ (5.18) 

Since E #n(b, s)~ f(M)(M-s) Σϊ P{t>^s + bx;} = 0(ηι~ξ) uniformly in 
\b\^n~y and s^M — η~ξ, we obtain from Lemma4 together with (5.7) 
and (5.8) the following refinement of (5.9) and (5.10): With probability 1, 

Pn(n~l #n(b,s)) 
dLn(b, s) K\f (M-n-Z)^s<y [ Φ n(b, S) 

pn{n-lE#n(b,s)) ,')} dELn(b 
E #n(b,s) 

= 0(n-i/2-t/2 + E/n-lE#n(b9y)). (5.19) 

From (5.11), (5.17), (5.18), and (5.19), it follows that with probability 1, 

[M + An-y 

sup \G„^s)p„(n-^n(b,s))/GnJz)-G„Js) 
|fr|sS«-» J z v ( A / - « " « ) 

xpn(n-lE#n(b,s))/Gn,b(z)\ds 

= 0(n~1/2 + 2e~i/2), uniformly in z, (5.20) 

where ξ > 0 and ε > 0 are so chosen that 

λ>ξ>4ε, 3ξ + θ + ε<γ/2, 6ξ + 2ε + θ<±. (5.21) 
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Since ξ < λ, pn(n~lE #n(b, s))= 1 and n~lE #„(6, s)^constant χη~ξ for 
3^Μ — η~ξ and large n. Hence the same argument used to prove (4.4) and 
(4.5) of Theorem 3 can be used to show that 

sup \\ogG^b{s)-Anjb{s) 
\b\ v \b~\ v \a\^n-y,s^M-n-Z 

- l o g G„,J(J + a) + A„j(s + a)\ 

= 0 ( „ - i / 2 - v / 2 + 3i + £ ) a s ( 5 2 2 ) 

sup \logGnJs)-A„,b(s)\ 
\b\ ^p,s^M -n~Z 

= 0{η~ι/2 + 3ξ + ε) a.s. (5.23) 

From (5.22) and (5.23) together with the inequality (4.7) applied to 
g(x) = ex with JC^ 1, it follows that 

sup 
\b\ v \h\ v \a\ ^n~y, -ηθ ^ζ^ M - n-t 

CM-"-(fG„,b(s) G„Js)\± 

I \Gnh(z) G„h(z)) S 

{M-"-(f_G„j(s) Gnj(s) \ ώ 

^Gn,nz + a) Gn,uz + a)' 
= 0(n-l/2-y/2 + H + e + e + n-i + 6t + 2e + e)2L.s. (5.24) 

From (5.20), (5.21), and (5.24), (5.6) follows. | 

Suppose that λ in the weight function pn above is so chosen that 
3 < λ < 5. Then making use of (5.1 ) and Theorem 4 and following the steps 
similar to those outlined at the end of Section 4 for the rank estimator ]?„, 
we can prove the consistency and asymptotic normality of the Buckley-
James estimator under certain regularity conditions. The details are given in 
[8] . 
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Nonminimum Phase Non-Gaussian Deconvolution 

KEH-SHIN LII 

Department of Statistics, University of California, 
Riverside, Riverside, California 92521 

AND 

MURRAY ROSENBLATT 

Department of Mathematics, University of California, 
San Diego, La Jolla, California 92093 

A procedure for deconvolution of nonminimum phase non-Guassian time series 
based on the estimation of higher order (greater than two) spectra is given. This 
can be applied to the analysis of seismograms. The procedure allows estimation of 
the wavelet. Knowledge of cumulant spectra of order greater than two allows 
estimation of the phase of the wavelet. In this way one has access to information 
not available in the ordinary second-order deconvolution procedures. Com-
putational details of the method for estimating the phase of the wavelet are given. 
There are simulated illustrative examples. One of the examples is based on an 
actual reflectivity series from a sonic well log. The method is effective asymptotically 
in the nonminimum phase non-Gaussian context where the Wiener-Levinson 
p r o c e d u r e d o e s n o t a p p l y . © 1988 Academic Press, Inc. 

INTRODUCTION 

We shall make use of a model that has been used often in deconvolution. 
It is that of a linear process 

where {a*.} is the wavelet sequence, {xt} the seismogram, and {<!;,} the 
reflectivity sequence which is here assumed to be a sequence of inde-
pendent, identically distributed non-Gaussian random variables. It has 
been claimed that many seismograms are non-Gaussian [1, 12] and we 
shall indicate how a non-Gaussian character (as contrasted with a 
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Gaussian character) allows us to resolve most of the phase information. 
We shall just deal with this model and not consider many real difficulties 
like multiple reflection and multipaths. We shall assume that the 
seismogram sequence {xt} is observed but that the wavelet and reflectivity 
are unknown. The object is to estimate as much as one can about the 
wavelet and to deconvolve xt so as to estimate the reflectivity series ξ(. This 
will be accomplished by making use of higher order moment (cumulant) or 
spectral estimates. A discussion of the method has been given elsewhere 
[3, 9] but our object here is to give an exposition in a geophysical context. 
The method described has the positive feature that for a non-Gaussian 
nonminimum phase stationary sequence, it will yield estimates that 
converge to the wavelet with probability one as the sample size increases 
and correspondingly will also effect deconvolution with probability 1 (see 
[3]). Such a result has not been established in Donoho [1] , Matsuoka 
and Ulrych [7] , and Wiggins [12], where computational aspects of related 
procedures are described. Wiener-Levinson deconvolution will not 
converge to a nonminimum phase wavelet asymptotically and thus will not 
deconvolve in such a context. In the spirit of exposition of what appears to 
us a fruitful procedure which does not solve by any means many of the real 
difficulties but does represent an advance relative to an important aspect of 
deconvolution, we try to describe relevant features. One of our examples 
has some attempted aspect of a geophysical context. We should mention 
that the method discussed is only effective in the non-Gaussian case and is 
suggested for nonminimum phase series. We shall presently give a more 
detailed discussion of the model. In the next section we shall describe the 
computational procedures associated with the method. In the third section, 
a number of illustrations will be given. One example will involve a wavelet 
with three nonzero values and an exponentially distributed reflectivity 
series. Other examples will have spikey data with trinomial reflectivity 
series. The wavelet then has 20 nonzero values. In the last example, using a 
well-log reflectivity series provided by Henkart and a wavelet that is a 
recorded water gun signature, we will generate by convolution a possible 
seismogram xr By using our method, we shall estimate the wavelet and 
deconvolve. This will be compared with a Wiener-Levinson deconvolution 
(see [8]). It should be noted that the wavelet is not strictly minimum 
phase. Of course, the reflectivity series we give is obtained by a sonic 
measuring device and there is consequently a distortion of the real 
reflectivity that we shall discuss later. 

Assume that {£,} is a non-Gaussian sequence with mean zero and &th 
order cumulant yk Φ 0 for some k > 2. Further let the ô 's be real with 

Σ Ια*Ι2<°°· 
k 
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Actually stronger assumptions will be made later on. Then the spectral 
density of the xt sequence is 

where 

α(ζ) = Σ α * ζ * 

and σ2 > 0 is the ξ variance. The kth order cumulant of random variables 
y,,..., Yk is given in terms of moments by the relation 

cumiYt,..., Yk) = £ (-If-1 (p-iy. 

x£(n YX-EÎU Y\ 

where vl5..., vp is a partition of (1, 2,..., k) and the sum is over all such par-
titions. We write out these relations in the case k = 2, 3, 4 when EYj = 0, 

j— 1,..., k. Notice that then the cumulants of order 2 and 3 are the same as 
the corresponding moments 

cvm(Yl9Y2) = E(YlY2) 

οητη(Υ,9Υ2,Υ3) = Ε(Υ,Υ2Υ3) 

but the cumulant of order 4 differs, as is the case with higher order 
cumulants, 

cum(y1? y2, r3, Y4) = E(Y1Y2Y3Y4) 

-E{Y,Y2)E{Y,YA) 

-Ε(Υ,Υ,)Ε(Υ2ΥΑ) 

-Ε(ΥγΥΛ)Ε{Υ2Υζ). 

If Yx = Y2 = Y3 = Y4 the corresponding 4th cumulant is sometimes called 
the coefficient of kurtosis. It is more appropriate to consider Fourier trans-
forms (series) in higher order cumulants rather than the corresponding 
higher order moments. Further, the kth order cumulant for the process 
xt is 

cum(xto9xtr...,xtk_l) = YJocs(xs + tl_to-"<xs + tk_l_toyk 
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and so the kth order cumulant spectral density [10] of the process xt is 

A*(*i,..., **-i) = / 9 jA- i Σ c u m(*o, */,,.«, **_,) 

xexp 
* - l \ 

- Σ iisK) 
5 = 1 / 

= ,„ yA-i a(g""l)---«(g""*- |)a(g/ ( i | +-+^- l ) ) . (1) 
(2π)* 

Introduce the function 

assuming that a( 1 ) φ 0. Relation ( 1 ) implies that 

= arg IiSnr} »*,ΜΑ„-.Λ4_Ι)], 
since h{ — λ)= —h(k). This relation clearly implies that knowledge of the 
fcth order cumulant spectral density bk(Àu..., kk_x) gives one information 
about h(X). 

We shall actually require that 

Σ 1***1 <°° (2) 

because we want to have continuous differentiability of oc(e~a). One can 
show that there is an integer linear indeterminacy in the phase of <x(e~a) 
for these stochastic models under the conditions we specify [3]. The linear 
indeterminacy in the phase corresponds to an indeterminacy in the time 
indexing of the ξ, process. For convenience we shall actually assume more 
than (2), specifically that a(z) is analytic in an annulus containing the unit 
circle. Then, of course, <x(e~a) can have zeros but they are at most finite in 
number. 

To effect deconvolution in the non-Gaussian case one must estimate the 
argument of oi(e~lÀ) or Η(λ). Information of this character requires 
knowledge about higher order moments or cumulants. It cannot be 
obtained from information on the covariances alone. The deconvolution is 
carried out by estimating ct(e~iÀ)'1. Information on the absolute value of 
a{e~a) (or its inverse) can be obtained from the second-order spectral 
density. But information on the argument or phase of oc(e~a) can only be 
obtained from data on kth order cumulant spectra with k > 2. 
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COMPUTATION 

We shall now consider computational questions. For convenience, the 
case k = 4 will be discussed in some detail but the case k = 3 can be con-
sidered in quite an analogous manner. We focus on k = 4 assuming y4 φ 0 
because the skewness of data encountered often seems to be small [2, 
p. 2110; 13, p. 2723]. Since fc = 4, we shall be dealing with fourth-order 
cumulant spectral estimates. Initially we will assume that 

α(*-α)*0 (3) 

for any λ and later see how to remove this assumption. Because of (2) and 
(3) A is continuously differentiable and 

Η(λ)=\λ {Η(ιι)-Ηφ)}(Ιιι + €λ = Ηγ{λ) + €λ, c = h'(0). (4) 

Now h(n) has to be an integral multiple of π because the α/s are real. One 
therefore can rewrite (4) as 

h(k) = hx(k)-^^ λ + αλ 
it 

with "a" an indeterminate integer. Thus 

h'(0)-h'(k) = lim -L {h{X) + 2h(A)-h(k + 2A)} 
j - o 2A 

up to an indeterminancy in sign. Let us set A = A(n\ kA = k, and consider 
A = A(n) -► o as n -► oo. Now è(0, 0, 0) is positive if γ4 > 0. For the sake of 
simplicity, assume y4 > 0. 

Notice that 

k— 1 k— 1 

Σ argft(y/M,J)= Σ {A(yJ) + 2A(/l)-A(.//f+ 2J)} 
7 = 1 > = 1 

= 2[Α:Α(Λ)-Α(Α:Λ)] + 5 

with 

£ = h(2a) - A(/f) + h(U) - h({k + 1 ) Δ ) 

and so if A = kJ, 

A,(A) = A(A)-A'(0)AS-^ f argA(yJ,4,/l)-^A 
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We start with phase zero at frequency zero and then proceed by proximity 
or continuity. If A is small, B would also be expected to be small. A 
plausible estimate of hx(k) would then be given by 

Οη(λ)=-^Σ arg „ο(Μ 4 J), 

where nb(jA,A,A) is an estimate of the fourth-order cumulant spectral 
density b(jA, A, A) based on a sample of size n. 

Of course estimates nb(jA, A, A) can be computed in terms of the fast 
Fourier transform of the data. A more detailed discussion of this procedure 
using FFT can be found in [6] . If there are 1000 data points and there are 
at most ten nonzero contiguous a '̂s, this method based on FFT appears to 
lead to reasonable results. However, if one still has 1000 data points and 
the number of nonzero contiguous a*'s is as long as 50 (as often is the case 
with real data) methods based on FFT do not appear to give reasonable 
estimates. This might be due to the fact that a third- (fourth-) order 
periodogram using a FFT based on data of length m has a variance of the 
order m2 (m3) (see [6] 1976) and reduction of the size of this variance is 
accomplished in part by smoothing over disjoint sections in frequency 
domain. It is perhaps startling that better estimates (in terms of resolution) 
than those obtained by FFT are obtained by making use of classical 
Fourier analysis in our experience. One estimates cumulants and then 
Fourier transforms them with appropriate weights. Of course, the weights 
have to be appropriately chosen. Our computations, for the most part in 
this paper, will be based on this classical Fourier transform procedure. 

We shall briefly describe such a computation. Our estimates of the 
moments 

E(xQXjXkxt\ \jl |Λ|, |/| < A f <ζη 

on the basis of a sample x0,..., xn are 

1 

n-2M I 1 , _ K4 

Here we assume Ext = 0. The second moments 

are estimated by 

1 n- M 

—— 2^, xtxt+u-
"-2M, , ,_„ 
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The natural estimates of the cumulants 

365 

cjtkJ = cum(x09 xj9 xk9 xt) 

= EixoXjXtXg) - E(x0Xj) E(xkXt) 

- E(x0xk) EixjXf) - E(x0x,) E(xjXk) 

WL DECONVOLUT ON 

S E I S M O G R A M l 

80 
I 

160 
I 

240 
I 

320 

FIG. 1. Deconvolution of a second-order moving average xt = ε, — 5ε, _ { + 6ε/ _ 2 which has 
roots \ and \. The reflectivity ε/s are generated by independent identically distributed 
exponential random variables with parameter 1. (2) is the reflectivity ε, which generates the 
seismogram xn (4). (1) and (3) are deconvolution of x, to estimate ε, by the Wiener-Levinson 
method and the non-Gaussian method, respectively. The horizontal scale is from 1 to 320 
units. Vertical scale is normalized to mean 0 and variance 1. 
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are given in terms of the moment estimates. The estimate 

1 
nb\A\, λ2, A3) — ,_ .3 Σ ChkJ 

\j\,\kl\l\^m 

x^/exp{-/(yA1+/cA2 + M3)}, 

with w$j an appropriately chosen set of weights. In our case we often 
chose 

--l"-M'-£X-£ 
If one appears to have zeros of a(e ιλ) it is appropriate to add a small 

NG DECONVOLUTION 

FIG. 2. Figure 2 is the same as Fig. 1 except that the seismogram is generated by 
x, = £, — 2.33ε, _t + 0.867ε, _ 2 which has the roots \ and 3. 
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amount of Gaussian white noise to the data and then deconvolve as 
suggested above. This type of procedure has been suggested in Treitel and 
Wang [11]. A more formal justification can be found in Lii and Rosenblatt 
[5]. These procedures appear to be robust relative to the addition of a 
mild amount of Gaussian noise (see [4]). 

ILLUSTRATIONS AND EXAMPLES. The first and second examples are the 
moving averages 

xt = et-5et_l + 6ε,_ 

and 
xt = ε, — 2.33ε,_ ! + 0.667ε,_2, 

respectively with the ε/s independent, identically distributed exponential 

(1) WL ESTIMATION OF D WAVE (4) WL ESTIMATION OF D WAVE INVERSE 

(2) D WAVE (5) D WAVE INVERSE 

(3) NG ESTIMATION OF D WAVE (6) NG ESTIMATION OF D WAVE INVERSE 

l ^ 
10 20 10 20 

FIG. 3. The D wavelet is generated by expanding (1 - 5 e - * + 6é?-2/A)/(l -0.667*>-'A) and 
then truncating at e~i20X. This wavelet has two roots inside of the unit circle (£ and j) and 
seventeen roots outside of the unit circle. The D wavelet is given in (2). (1) and (3) are 
estimates of (2) by the Wiener-Levinson method and the non-Gaussian method, respectively. 
(4), (5), and (6) are the inverses of (1), (2), and (3), respectively. The horizontal scale is 1 
through 20 with arbitrary time shift. The vertical scale is arbitrary. 
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random variables with parameter 1. The first and second figures have 
graphs of the reflectivity series (the ε/s), the seismogram (xt series) 
generated, as well as the results of our non-Gaussian deconvolution and 
the Wiener-Levinson deconvolution for these two examples. In all cases, 
the sample size is 1280 points and a fourth-order cumulant spectrum is 
used in the deconvolution. It is apparent in both these cases that the non-
Gaussian deconvolution does a better job of reproducing the reflectivity 
than the Wiener-Levinson deconvolution. Of course, both these examples 
are nonminimum phase and non-Gaussian. 

The second and third examples have as their wavelets the D and F 
wavelets as given in Figs. 3 and 4, respectively. The reflectivity series for 
these examples are generated from a sequence of independent, identically 
distributed trinomial variables with the instantaneous distribution 

Î
1 with probability 0.05 

— 1 with probability 0.05 
0 with probability 0.90. 

(1) WL ESTIMATION OF F WAVE (4) WL ESTIMATION OF F WAVE INVERSE 

(3) NQ ESTIMATION OF F WAVE (β) NG ESTIMATION OF F WAVE INVERSE 

i 1 1 i 1 1 
1 10 20 1 10 20 

FIG. 4. Figure 4 is the same as Fig. 3 except that the wavelet F is obtained by the revers-
ing of the time direction in wavelet D. Roots of the z-transform of wavelet D are the inverse of 
the roots of the z-transform of the F wavelet. Notice that (1 ) and (4) are the same as (1 ) and 
(4) in Fig. 3. 
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The D wavelet is obtained by expanding 

\-5e-a + 6e-m 

1-0.7*-* (5) 

and truncation at e~i20À. The F wavelet is obtained by replacing e~a in (5) 
by eu, expanding, and truncating at βαολ. A graph is given of the zero 
locations of the z-transforms of the D and F wavelets in Fig. 5. Notice that 
the roots in the case of the D z-transform are the inverses of the roots of 
the F z-transform. In Figs. 6 and 7 graphs are given of the reflectivity series, 
the seismogram generated, the results of our non-Gaussian deconvolution 
and the Wiener-Levinson deconvolution. The version of Wiener-Levinson 
we have used is based on the computation of the one step prediction error. 
In these two examples the non-Gaussian deconvolution does give a closer 
estimate of the reflectivity series than the Wiener-Levinson deconvolution. 
The object in the case of the D and F wavelets was to generate simulated 

(3) WATER GUN 60 

(2) F ROOT 

FIG. 5. (2) and (4) give locations of the roots of the z-transform of wavelets F and Z), 
respectively. Locations are given relative to the unit circle on the complex plane. (1) and (3) 
give locations of roots of the z-transform of a water-gun signature truncated at 50 and 60 lags, 
respectively. 
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series with a larger number of lags, relative to the data sample size, than in 
the first two examples. Notice that in Figs. 3 and 4 both the wavelet and 
the Fourier inverse of the wavelet are graphed. Then the Wiener-Levinson 
and non-Gaussian estimates of the wavelet and the inverse are also given. 

The last example concerns an actual set of well-log reflectivity readings 

SEISMOGRAM 

80 160 
" T -

240 
—i 

320 

FIG. 6. Reflectivity in (2) is generated from a sequence of independent, identically 
distributed trinomial random variables which take values 0 with probability 0.9 and take 
values 1 and —1 with probability 0.05 each. Seismogram (4) is generated by the convolution 
of the D wavelet with (2). Decon volution results by the Wiener-Levinson method and the 
non-Gaussian method are given in (1) and (3), respectively. The horizontal scale is from 1 to 
320; the vertical scale is normalized to mean zero and variance one. 
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obtained by an oil company and supplied to us by Paul Henkart. This 
reflectivity series was passed through the filter corresponding to the water 
gun wavelet shown in Fig. 8. The result was the simulated seismogram pic-
tured in Fig. 9. This was then deconvolved by the non-Gaussian and the 
Wiener-Levinson deconvolution procedures. We note that the effective 
length of the water gun signature is about 50 to 60 lags. The non-Gaussian 
deconvolution does appear to give a series closer to the reflectivity than 
does the Wiener-Levinson deconvolution. The contrast of the non-
Gaussian deconvolution with the Wiener-Levinson deconvolution in this 

S E I S M O G R A M 

—r~ 
80 

FIG. 7. Figure 7 is the same as Fig. 6 except that the D wavelet is replaced by wavelet F. 
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case is not as pronounced as previous simulated cases and is perhaps due 
to the relative length of the wavelet with respect to the length of the data 
(seismogram). Asymptotic theory tells us that the longer the length of the 
seismogram relative to the wavelet length the better the filter estimates 
and the deconvolution. However, in comparing the deconvolution with 
the reflectivity we should note that the assumption of independence of 
reflectivity readings in our model is certainly not satisfied by the actual 
reflectivity readings. These readings are made by a sonic device from 
overlapping sections in the descent. For this reason it might be better to 
model the reflectivity readings as a moving average. 

iMAVVt^l 

(1) WL-WATER GUN WAVE 

(3) NG-WATER GUN WAVE 

~1 
80 

I ! ψψ^ 

(4) WL-WATER GUN WAVE INVERSE 

j ^ - V l/| 

(5) WATER GUN WAVE INVERSE 

\lk&^ v\M 

(6) NG-WATER GUN WAVE INVERSE 

80 

FIG. 8. A water-gun wavelet is plotted in (2). (1) and (3) give estimates of (2) by the 
Wiener-Levinson method and non-Gaussian method, respectively. (4), (5), and (6) give the 
inverses of (1), (2), and (3), respectively. The horizontal scale is 1 through 80. The vertical 
scale is arbitrary. 
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SEISMOGRAM 

—Γ" 
80 

- ι — 
160 

—] 
240 

— ι 
320 

FIG. 9. Reflectivity (2) is from well-log data. Convolution of (2) with the watergun 
signature is given in (4). (1) and (3) are deconvolutions of (4) using the Wiener-Levinson 
method and the non-Gaussian method, respectively. The horizontal scale is from 1 to 320. The 
vertical scale is normalized to mean zero and variance one. 

CONCLUSIONS 

In this paper we describe and illustrate a procedure for deconvolution 
that allows us to estimate the phase of the transfer function in the non-
Gaussian case without making use of the ad hoc minimum phase 
assumption. This method converges asymptotically as the sample size 
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increases relative to the effective length of the wavelet. This is not true of 
the Wiener-Levenson procedure in the nonminimum phase context. 
Questions relating to multiple reflections, multipath data, and heavy noise 
are not addressed. 

ACKNOWLEDGMENTS 

We are indebted to Paul Henkart for the well-log data, the water gun wavelet, and for some 
stimulating discussions. We also wish to acknowledge the great assistance given us by the 
National Science Foundation in providing access to the Boeing Cray computer. This allowed 
us to carry out the analysis of the well-log data. This research was also supported by the 
Office of Naval Research. 

REFERENCES 

[1] DONOHO, D. (1981). On minimum entropy deconvolution. In Applied Time Series 
Analysis II (D. F. Findley, Ed.), pp. 565-608, New York/London. 

[2] JURKEVICS, A., AND WIGGINS, R. (1984). A critique of seismic deconvolution methods, 
Geophysics 49 2109-2116. 

[3] Lu, K. S., AND ROSENBLATT, M. (1982). Deconvolution and estimation of transfer 
function phase and coefficients for nonGaussian linear processes, Ann. Statist. 10 
1195-1208. 

[4] Lu, K. S., AND ROSENBLATT, M. (1984). Remarks on nonGaussian linear processes with 
additive Gaussian noise, Lecture Notes in Statistics, Vol. 26, pp. 185-197. 

[5] Lu, K. S., AND ROSENBLATT, M. (1986). Deconvolution of non-Gaussian linear 
processes with vanishing spectral values, Proc. Nat'I. Acad. Sei. USA 86 199-200. 

[6] LII, K. S., ROSENBLATT, M., AND VAN ATTA, C. (1976). Bispectral measurements in 
turbulence, J. Fluid Mech. 77 45-62. 

[7] MATSUOKA, T., AND ULRYCH, T. (1984). Phase estimation using the bispectrum, Proc. 
IEEE 12 1403-1411. 

[8] PEACOCK, K. L., AND TREITEL, S. (1969). Predictive deconvolution: Theory and 
practice, Geophysics 34 155-169. 

[9] ROSENBLATT, M. (1980). Linear processes and bispectra, J. Appl. Probab. 17 265-270. 
[10] ROSENBLATT, M. (1985). "Stationary Sequences and Random Fields," Birkhaüser, Basel. 
[11] TREITEL, S., AND WANG, R. J. (1976). The determination of digital Wiener filters from 

an ill-conditioned system of normal equations, Geophys. Prospecting 24 317-327. 
[12] WIGGINS, R. (1978). Minimum entropy deconvolution, Geoexploration 16 21-35. 
[13] WIGGINS, R. (1985). Entropy guided deconvolution, Geophysics 50 2720-2726. 



Inference in a Model with at Most 
One Slope-Change Point 

B. Q. MIAO 

University of Pittsburgh 

In this paper the problem of slope-change point in linear regression model is 
discussed with the help of the theory of Gaussian process. The distribution of the 
estimators of the change point proposed in this paper can be approximated by the 
first type of extremal distribution. Based on this fact, the detection and interval 
estimation of a change-point in various situations are discussed. © 1988 Academic 
Press, Inc. 

1. INTRODUCTION 

Consider the model 

x{t)=f{t) + et9 0 < / < l , (1.1) 

where/(/) is a nonrandom function with the form 

\μ + β2(ί-ί0\ t0<t^\. 

t0 is called the slope change point (of/(i), or the model (1.1)), ε, is the ran-
dom error of the model, while μ, ßl9 ß2, and t0 are unknown parameters. 

For given integer n we take observations of x(t) at t — ijn, i— 1,..., n. For 
simplicity of writing, x(i/n) and e(i/n) will be abbreviated to xt and ε,, 
respectively. 

* Research sponsored by the Air Force Office of Scientific Research under Contract 
F49620-58-C-0008. The U.S. Government's right to retain a nonexclusive royalty-free license 
in and to the copyright covering this paper, for governmental purposes, is acknowledged. 
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The problem of making statistical inference in this model is important 
in practical applications and of much theoretical interest. Many authors 
have contributed to it. To name a few among others, Hudson [6 ] , 
Hinkley [4, 5] , Feder [3] , Krishnaiah and Miao [10], and Csörgö and 
Horvâth [2] . 

In this paper we shall propose a method of dealing with this problem. 
Our method possesses a desirable feature in that the asymptotic dis-
tribution of the proposed statistic is very simple, which allows us to derive 
simple procedures for various inference problems in this model. The basic 
idea of the method is motivated by recent works of Yin [12] and 
Chen[ l ] . 

In Section 2 we treat the case where εΐ9..., εη are normal with zero mean 
and known variance σ2. In Section 3 we consider the normal case with 
unknown σ2. Section 4 considers the nonnormal case. Finally, in Section 5 
we discuss the estimation of the slope change β{—β2 under some mild 
conditions. 

2. NORMAL ERROR WITH KNOWN VARIANCE 

In this section we suppose that ε i,..., ε„ are i.i.d. with mean zero and 
known variance σ2. Our method is based on the following theorem: 

THEOREM 1. Suppose that 

k 
xk = a + -ß + eki k=l, ..·,", (2.1) 

where ε{,..., εη are i.i.d., εχ ~ Ν(0, σ2). Let m = mnbe a positive integer such 
that 

n$>m$>n2ß\og2/3n. (2.2) 

Here and in the sequel, un > v„ > 0 means lim„_> ao(un/vn) = oo. Set 

*k =~ 7= L\Xk-4m + 1 + " · * + * * - 3 m ) ~ (*fc-3m+ 1 + " * * + Xk-2m) 

l^Jm 
— \Xk-2m+l+ " · +Xk_m) + \Xk__m+ i + · · · + * * ) ] , 

k = 4m,4m+\,...,n, (2.3) 

ξ„= max \Yk\, 
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and 

*Η Ι ο 6 ( ΙΗ + ^ 1 ο 8 ( ΙΗ-5 Ι ο 8 π ) (2·4) 

77ien 

lim P( — ̂ An(x)) = exp{-2e-x}, - o o < x < o o . (2.5) 
«-♦oo \ G ) 

Proof. Construct a standard Brownian Motion {W(t):t^O}, such that 

A:(Ä: + 1 ) 
o i / σ, /c = tm,. . . 

(2.6) 

Define a Gaussian process Z(/) by 

Ζ(/) = -1-Γ»Γ(/ + 5)-2»Γ(/ + ̂  + 2^(ί + ̂ - ί Γ ( θ ] , ?^0. (2.7) 

It is easy to see that 

Yk = a z ( ~ s \ k = 4m,...,n, (2.8) 

and the covariance function ρ(τ) of Z(t) is 

(2.9) 

Set 

/ 1 — |T| 

P ( T ) = < | | T | -

\ 0 

£„ = supj|Z(i)l 

»i» = ?«-»"'ί»· 

2 § < | τ | ^ . 

|τ|>5 

5n ,1 
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Similarly to Chen [ 1 ] it can be shown that 

lim rçrtN/log n = 0, a.s. (2.10) 
n -*■ oo 

For the Gaussian process Z(t) with covariance function ρ(τ), the 
conditions of the theorem of Quails and Watanable [11] are satisfied, and 
we get 

lim PßH^AH(x)) = exp{-2e-*}. (2.11) 
n -*■ oo 

Since An(x) is linear in x, for n large we have 

/>(?„^Λ„(*- M*| )) -/>(!»„^ 1^1/^/2log«) 

^Ρ(ξη/σ^Αη(χ)) 

^ Ρ(ξη ^ An(x + \Ax\ )) + />(>/„ > |4x|/V21og/i). (2.12) 

From (2.10) to (2.12), letting n-+ oo, then JJC-»0 , we obtain (2.5). 
This theorem suggests a way to test the null hypothesis that no change 

points exists, i.e., 

Ηο:θ = β2-β{=0. (2.13) 

For this purpose, we have only to solve the equation exp( — 2e~x)= 1 —a 
for a chosen level a 6 (0, 1 ). The solution is 

x ( a ) = - l o g ( - i l o g ( l - a ) ) . 

Set 

d = —, Cn(öL,d) = An(x(*)). (2.14) 
n 

The null hypothesis (2.13) is rejected when and only when 

£„>aCw(a,</). (2.15) 

From Theorem 1 it is seen that this test has an asymptotic level a as the 
sample size n tends to infinity. 

We can give an approximate power βη = βη(βι, β2, σ) of this test. Let r 
be the integer such that 

r r + 1 
n n 
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Then 

im312 \ 

Hence, 

ßn(ßi,ß2,*)>P(\Yr+2n\>°Cn(x,d)) 

>Φ[^\β2-β>\-€η(χ,α)), (2.16) 

where 

Φ(χ)=Γ -±=e-
t2/2dt. 

J - co ^ / 2 π 

Next consider the interval estimate of the slope change point t0. The 
existence of t0 may be a fact known in advance, but usually it is evidenced 
by the rejection of the null hypothesis. 

RULE. Find an integer k such that \Υ/ί\=ξη. Take \_(k — 4m)/n, kjn\ as 
the confidence interval of t0. 

The length of this interval is 4m/n. Hence, the smaller the value of m, the 
more accurate is the estimate, m cannot be taken too small, for from (2.16) 
it can be seen that the risk of false acceptance of the hypothesis (2.13) will 
increase. We can give an approximate value of the confidence coefficient y 
of this rule: 

fk-4m k\ 

>P({ sup \Yk\^aCn(oL,d)}n{\Yr+2m\>aCMd)}). 

Set 

A = { sup \Yk\^aCn(oi,d)}9 
Am ^ k < r 

B={ sup \Yk\^aC„(<x,d)}, 
r + Am < k *ζ η 

Bt = { sup \Yk\^aC„(x,d)}, 
r + dm <k ίζη 

and 

C={ | r r + 2J>aC„(a,</)}. 
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Notice that the event Bx is independent of both A and C, and Ä c Ä ^ w e 
have 

y^ P((Au B)C)^ P(C)- (PiB,)- P(B))- P(Â) PiB.l 

where D denotes the complementary event of D. Again, using Theorem 1, 
we get 

- (exp{-2e-x*a)} -exp{-2e-x*a)}) 

-(l-exp{-2e-x,(a)})(l-exp{-2e-x'M}), (2.17) 

where 

xl=xl{a) = C,,{a,d)(2log(~Sj\ 

-(2 ΐ 0 β(έ-5) + 5ΐ08ΐ0β(έ-5)^10^)' (218) 

x2 = x2{a) = C„(a, d) (l log (^p- - 5 ^ 

- 2 log 
5(«-r) 

- 5 ) + i l o g l o g ( ^ ^ - 5 ) - i l o g , c ) , (2.19) 
4m 

and 

x3 = ^(a) = C M ( a , J ) ( 2 1 o g ( ^ ^ - 7 : 5 ^ 

+ 1 log log ( ^ ^ - 7 . 5 ) —log π). (2.20) 

Since 

P( sup \Yk\^cC„(<x,d))>P( sup |yt|<ffCB(a,rf)) 
^^[ r , r + 4w] Am ^k^n 

« 1 - a . (2.21) 

We get 

y > * ( 2 ^ ~ ^ _ C " ( a ' r f ) ) _ a ' ( 2 '2 2 ) 
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By the above inequalities, we see that y increases with 
(2na)~lmV2 \ß2 — ß\\. But the length of the confidence interval is 4m/n. 
So in the choice of m we must strike a balance between these two 
considerations. Usually the slope-change point is of practical importance 
only when \ß2 — ß\\ is reasonably large as coompared with σ, 
say \β2 — βι\/2σ^Μ9 where M is a constant decided by practical 
considerations. 

In practical applications we often have to give an answer to the following 
important question: How can we choose suitable integers m and n so that 
the confidence interval of t0 formed above has a length not greater than d0 

and confidence coefficient not smaller than 1 — a0? For this purpose, take 
α = α0/2 in (2.22). Solve the equations 

ΦΙΜ C(a0/2,rfo) -a 0 /2=l -a 0 , 
v n J (2.23) 

d0 = 4m/n; 

we obtain 

m = (4/rf0M)2(C„(a0/2, d0) + t/ao/2)
2, n = 4m/d09 (2.24) 

where wao/2 is the upper percentile (a0/2)-point of JV(0, 1). 
If we know in advance that a^t0^b, for some known constants a, b, 

0<a<b<l, then an^r^bn. From (2.18)-(2.20) we can calculate the 
minimum value Xi(cc0) of Χι(α0) and the maximum values Jc2(a0), Jc3(a0) of 
x2(a0), *3(ao)> aH under the restriction that an^r^bn. (2.17) suggests that 
in this case we should choose m as the solution of the equation 

-(l-exp{-2e-xli«°)})(l-exp{-2e-x*ao)})=\-(x09 (2.25) 

and n = 4m/d0i as before. 
From this we see that if some prior information about t0 is available, 

then it can be utilized to construct a confidence interval with greater 
confidence coefficient. Also, the related test will have a smaller critical 
value. 

3. NORMAL ERROR WITH UNKNOWN VARIANCE 

When σ2 is unknown, we form an estimate, say 6\. Substitute ση for σ in 
(2.15) to perform the test. Following Chen [1 ] , we can prove the following 
theorem. 
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THEOREM 2. Under the conditions of Theorem 1, if â\ is an estimator of 
σ2 satisfying 

lim \σ2
η — σ | log« = 0, in probability. (3.1) 

n -*■ oo 

Then lim / > ( ^ - ^ ( * ) ) = exp{-2*-*}. 

« —► oo 

Our problem is to find an estimator satisfying (3.1). We propose to use 
the MLE of σ2 given below in (3.5). It will be shown that this estimator 
satisfies (3.1). 

Suppose xl5..., xn are observations from the model (1.1) and (1.2) such 
that 

μ{ + βχ + ε,, / = 1,..., ηχ 

*i={ n (3.2) 
μ2 + β2 + ε,-, / = «i + 1,..., «. 

6j,..., ε„ are random errors. We assume that the slope-change point t0 falls 
into [njn, (n{ + l)/w). By (1.2), we have 

\μι-μ2\<
1-\β2-βι\. (3.3) 

Let 

1 c 1 " 
χ ΐΓ=τ Σ */» X 2 f = r z 7 Σ **■> 

/ = 1 " / = <·+ 1 

2 f 2 " 
^ ^ — π Σ ( c - 0 ^ Γ ^ = 7 w τ π Σ (*-€)χΐ· 

Φ - 1 ) ,.^, (« - <0(* - c +1 ) /=7+ ! 
THEOREM 3. Suppose that εΐ5..., επ are /./.*/., a«*/ £j ~ JV(0, σ2). Set 

/ = 1 i = c+\ C-\- I 

3{n-c)(n-c+l),r _._ *2. 
n — c— 1 

( r Ä f - x 2 c ) 2 ; (3.4) 

<ΐ«Γ = - 5 η ο c = w + l , . . . , « -m . (3.5) 
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Then 

min | â^ . -a 2 | log«^->0 . (3.6) 
m ^ c ^ n — m 

Proof. Write 

Then 

and 

(3.7) 

e>; = (i,...,i)'i*„ / , = ( y - i , y - 2 , . . . , i , o ) ' l x , 

g} = (l9...JYlxj9 β = (μι,βι,μ2,β2Ϊ (3.8) 
X = (JC1,...,JC„)', ε = (ε1,...,επ)/. 

* = Fniß + e (3.9) 

FeWFc)-
lFe = (fl

0
l ^ 9 (3.10) 

where 

/ i l = βΐΓ*Γ*Γ - Û 2 c / c < - « 2 c ^ c / c + " ^Icfcfc, 

f22 = blcen_ce'n_c-b2cg„_ce'n_c-b2cen_cg'n_c + n-lb3cgn_cg'n_c; 

2(2c-l) 6 12/i 

(3.11) 

*.,= 

φ-1)' φ+l) Jc φ 2 - 1 ) 

2 ( 2 # i - 2 c + l ) 6 12« 
( / Ï - C ) ( / Î - C - 1 ) ' 2r ( / i - c ) ( « - c - l ) ' 3f (n-c)(n-c+l)(n-c-l)' 

(3.12) 

Without loss of generality, we assume that n>c>nl. Set fc = c — ηγ\ 

Fc_n^Fc-Fnr (3.13) 
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We have 

(Fc-FnyFc(F'cFXxF'c = 

2 , 6k(c-k) k 
7 ^{4c^-9kc + 6k2)e'ni-^\ ~'fHX 

?((c* -Ike2 + Ak2c-2k*)e'nx + k('hc-'2k)f'nx) 
ne 

k 
{{4c2-_9kc + 6k2)e>ni_6(c_k)ff}) 

3((2(c-k)2e'ni-(3c-2k)f'ni) 
ne 

(c(4c-3k)e'c_ni-6(c-k)f'c_J 

k 

+ 0 - . 
;(c(c-kye'c_n, + k(3c-2k)f'c_J 0 

- - 5 ( ^ - 3 1 ) ^ , , - ^ ^ ) / ; - , , ) o 

—^(c(2c-k)e'c_ni-(3c-2k)f'c_n>) 

(3.14) 

Set G = JF<.(FfTi.)-1F£: - / ; , ( / · ; F , ) - ' F ; = ( i f L r By a tedious 
calculation, we can get 

Σ g,,*\ ^ΕΣ {tr(Fe{FlFe)-
lF;) 

i*j 

+ tr(Fn,(F;F„1)-'F;)}e? = 8ff
2 + o Q , (3.15) 

= Xg^4^280ff
4 + o Q . (3.16) Σ su*·*] 

Write γ' = ß'F;._JI-FC(F;FC.)~1F;). From (3.14) and (3.3), we get 

Var(y'e) = σ2 tr(yy') = σ2/ν (3.17) 

^ , , , - , , , ^ ^ , . , , , Η « « ^ « . «3,8, 
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By (3.8), (3.9), and (3.5), 

âlc - âL = -2 / f i + s'Ge + y'y. (3.19) 

Now consider {à2
nc — ô2

nnx). 

Case 1. βγφβ2 and k=\c-nl\^nßog2 n. We have, by (3.15)-(3.18), 

P(à2
nc-â

2
nni^0) 

= Ρ(-2γ'ε + εΌε^ -y 'y) 

y'y 16 
(yy) 

< 

>( 
/ = 1 

>?) 
64σ2 32 , 64χ280σ4 

<-^ - + — σ2+ , 2 
y? y y (y y) 

< 130ff2(i?2 - /? , ) - 2 ( log n) - 2 -» 0. (3.20) 

This shows that the minimization point A of {<x2
c} satisfies 

|A —n,| <n/log2n 

with probability approaching 1 as « -> oo. 

Case 2. /?, Φβ2, k = \c — «,| <n/log2n. It follows that for any « > 0 , 

g n) 
P[\âl-âmi\>log 

< P | - 2 / e + 6'Ge|2* un 
2 log ; ) 

64log2« , 2 4log« 0 2 280σ4
 Λ , ^ , 

^ τ-^-·ν'νσ2 + —-8σ2 + , , , - 0 , (3.21) τ ^ — -yy° +-
un un 

τ2 log2 n 

by (3.15H3.18). 
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Now note that Σ " = ι ( ε ? - σ 2 ) is a martingale and Αηι(Α'ηιΑηι)~
ιΑ'ηι^0. 

Hence by Marcinkiewicz-Zygmund-Burkholder's martingale inequality, we 
have, for any τ, δ, and u: 0 < τ < <5/(l + <5), w>0: 

1 - τ 

^ c A l ( £ | 6 l | 2 + 4"-( I + 4 , ( I - t ) . « 

+ p(^T(A„i(A:iAnir
1A'Je'e^^-^j 

^cs,uE\si\
2 + *°-<>-« + s»+ f ; "g 2 - 0 . (3.22) 

//(«, + l ) (n-«, + l) 
From Cases 1 and 2, the theorem is true if /?, # /?2. When /?, = jî2, a similar 
argument gives 

lC-<?2oHog«-o 

and 

in probability. Thus we complete the proof. 

4. NONNORMAL ERROR 

When the distribution of random error s(t) is nonnormal, we can use 
the theory of strong approximation of partial sums of i.i.d. variables by 
Brownian Motion process to extend Theorem 1 to such cases. 

THEOREM 4. Let ε1,ε2,... be i.i.d. random errors, and the moment 
generating function of ex exists in some neighborhood or zero, i.e., 

£'exp(/61)< oo for \t\ small enough, (4.1) 

then the conclusion of Theorem 1 remains valid. 

Proof. Put 

Sk^Snk= Σ (xt-a-^ß^ja, k=l,2,...,n, 



SLOPE-CHANGE POINT 387 

then, by Komlos-Major-Tusnâdy [7, 8 ] , there exists a Brownian Motion 
process {W(t)9t^0} such that 

lim sup{sup \Sk- W(k)\ßogn} < oo, a.s. 
» — <*> k^n 

1 

Since 

σ 2jm 

we have for 4m ^ k ^ n, 

1 

\$k ~ 2Sk - m + 25 .̂ _ 3m — Ο̂ . _ 4m), 

— 7=(W(k)-2W(k-m) + 2W(k-3m)-W(k-4m)) 
<* ijm 

sup |S*-W(*) | . 
2yJVU 4m^k^n 

By (4.2), and noticing that log njjm -► 0 as n -► oo, we get 

— \—(W{k)-2W(k-m) 
σ 2y/m 

lim ( max 

+ 2^(Ä: -3w) -^ (A: -4m) ) = 0, a.s. 

From Theorem 1, we get 

lim P 
n -*· oo 

I sup 
2 ^ 

( W(k) - 2 W(k - m) + 2 W(fc - 3m) 

W(jfc-4m)) <4,(*)} = exp{-2*-*}, 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where An(x) is defined by (2.5). Thus, (2.6) is also true in view of 
(4.3)-(4.5). Theorem 4 is proved. 

A close inspection of the proof of Theorem 3 convinces us that this 
theorem is still true under assumption (4.1). Therefore, the method of the 
previous two sections can be applied. 

Further, using a result of Major [9 ] , the following theorem can be 
established. 

THEOREM 5. Let ε1,ε2,..· be i.i.d. random errors with finite (2 + <5)th 
moment, where <5>0, and nt>m$>n2/i2 + S). Then (2.6) remains true. 

Also, the conclusion of Theorem 3 remains valid under the conditions of 
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Theorem 5. So the previous methods still apply. We note, however, that the 
requirement on m is more stringent in this case. 

5. ESTIMATION OF THE SLOPE CHANGE ßi—ß2 

In order to form a point estimate of the slope change Θ = ßl — ß2, we first 
find c such that | Yc\ = ξη = max4m^k^n\ Yk\, and compute 

••*-*Ä('̂  
12κ " / . n + c+V 

(n-c)((n-c)2-l)i=^\l 2 

(F;FC)~1FX (5.1) 

which is taken as an estimator of Θ. Generally, if c is near 4m or n, then the 
slope change point t0 is near 0 or 1, and the samples at our disposal are 
perhaps not enough to give a reasonable estimate. For an interval estimate 
of 0, we prove the following asymptotic theorem for Ô. 

THEOREM 6. Suppose that t0 is the slope change point and E\ex\
2 + Ô < oo 

for some <5 > §, and m <̂  n3/4. Then, as n -► oo, 

Jj^Oï' + d-h)-3)-1 0-θ)-±+ N(0,1), (5.2) 

L 
where ► means "converges in law." 

Proof. Without loss of generality, we assume # = 1. Choose c such that 
| Yc\ = max4m<y^„ | Yj\. Then, for any 0 < a < 1 and a > 0, 

P(nt0^c^nt0 + 4m) 

= P(t0<:-^t0 + 
n T) 

>P({ sup \Yj\^cn(z,ci)}n{\Yc\>cn(<x,d)}) 
j/n<t[to,t0 + 4m/n] 

= P( sup \Yj\^cn(<x,d))P(\Yc\>cn(*,d)). (5.3) 
y/w*[f0,'0+(4m/«)] 
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Using Theorem 5 and slightly modifying the argument of Section 2, we can 
easily prove that 

lim P(nt0^c^nt0 + 4m)=\. (5.4) 

Denote n{ = min{/: l/n^t0, 4m^l^n — 4m}. Without loss of generality 
assume nx ^c^n — Am. By (3.7) and (3.8), Θ can be rewritten as 

A-jff2 = (0,l,0,-l)(Fc'Fc)-IFe'x 

= (0, 1,0, -\)(F'Fcy
lF'(Fniß + E). (5.5) 

So it follows that 

( Ä - & ) - ( 0 1 - 0 2 ) = (0,1,0, -IWFJ^F^-F^^ß + e), (5.6) 

where Fc_m is defined as (3.11). We can easily calculate that 

(FcTf)-'Fc' = 
(au-ka2c)e'm-a2cf'm aue'k-a2cfk' 0 

(na2c-a4ch)ëm-aAJ'm na2ce'k-avfk 

0 
0 

0 
0 blce'„_c-b2cg'„-c 

0 -nb2ce'„_c + b4cg'„_ 

(5.7) 

where ajc, bJC,j= 1,2,4, em,fm, etc., are defined in (3.8) and (3.12), and 
k = c — nx. According to (3.3) and (3.13), on replacing pn — qnl±\ by 
pn — qnu where p, q are some integers, we get 

| £ 0 - 0 | = |-(O, 1,0, -\){F'cFcy
lF'cFc_niß\ 

6nkrii A:2(c + 2«t) 
= ——(^2~μι)+ -3 (02-0i)l 

^ 
/6Ä:«! 3fc2c\ . . , 4/t2 

I02-0J, (5.8) 

and 

Var{(A-&)-(0,-02)} 
= (0, ι,ο, - IM^TJ-'^TJ- 'ÎO, ι,ο, -î)' 

= (o, ι,ο, -ΐ)(^;^)-'(ο, ι,ο, -î)' 
= l2n2(c-1(c2-l)-1 + (n-c)-1((n-c)2-l)-i). (5.9) 
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To justify the use of the standard CLT, we note the following three easily 
verified facts: 

1. From the expressions (5.1) and (5.6), we have 

Var{(ßl-ß2)-(ßl-ß2)}-{2 + 0)<2 

c+\\ 
* Σ , - , ν Φ 2 - 1 ) . 

+ Σ 

1)/ 
12« 

2 + δ 

E\e,V 

/_r+A(»-i)[(»-c)-n 

2 + S n + c + 1 
/ —-

2 + δ 

E\e ,\2 + '} 
^KE\et\ 

n 2 + Ä / c - 3 ( 2 + i ) + (3 + Ä ) + / n _ c j - 3 ( 2 + i ) + (3 + i)v 

n2 + S{c-M2 + 6)/2 + {n_c)-M2 + ô)/2) 

<2K(ma\(c, n - c))~m ^2Kc'â/2 <2Ktö s , 2 n~ s / 2 -*0, 

where £ is a constant. 
2. Since w3/4 > k, we get 

Hm ^ { ( ^ - ^ ) - ( j g . - ^ ) } [ 
« — y V a r i O ? , - & ) - ( / ? , - 0 2 ) } 

4£2 

< lim -2- |^ 2 -^ , | - (12« 2 c- 3 ) - , / 2 

/ ! —► OO C 

2£2 

==S lim —7= = 0. 

3. It is easy to see that 

(5.10) 

(5.11) 

12«3(c""1(c2-l)-1 + ( « - c ) - 1 ( ( « - c ) 2 - l ) - 1 ) - 1 2 ( i 0 - 3 + ( l - / 0 ) - 3 ) . 
(5.12) 

Theorem 6 is proved. 
Notice that t0 — (c — 2m)/n is a consistent estimator of t0. (Of course, 

only when 0^0, hence /0 is well defined.) In Section 3 we introduced a 
consistent estimator ση of σ. Substituting i0 to t0 and ân for σ, we have the 
following result. 

THEOREM 1. Suppose that the conditions of Theorem 6 are satisfied. We 
then have 

( n Ί 1/2 

ΐ Ί ^ ( ' 0 ~ 3 + ( ' ~ ' ο ) ~ 3 ) j { ^ - 0 } - ^ ^ ( ° > Η (5.13) 

as n-^ GO. 
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When ßi=ß2, though t0 does not exist, the statistic t0 is still well 
defined. Since it is not known whether or not (5.13) is true for βί = jS2, so 
(5.13) cannot be used to give a test for the hyperthesis /?, = β2. However, 
(5.13) can be utilized to form a confidence interval of (βγ — β2) if we know 
β\φβ2 a priori, when the null hypothesis (2.13) is rejected. 
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Maximum Likelihood Principle and Model Selection 
when the True Model Is Unspecified 

R. NISHII 
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Suppose that independent observations come from an unspecified unknown 
distribution. Then we consider the maximum likelihood based on a specified 
parametric family which provides a good approximation of the true distribution. 
We examine the asymptotic properties of the maximum likelihood estimate and of 
the maximum likelihood. These results will be applied to the model selection 
p r o b l e m . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

The maximum likelihood principle is a basic and useful technique in 
statistics. It has a long history and there is quite a bit of literature treating 
its asymptotic properties, e.g., Wald [16] and LeCam [10]. These classical 
results are based on the assumption that the unknown density function lies 
in a specified parametric family. However, if this assumption is not true, do 
similar results remain valid? Cox [4, 5] first considered such a problem in 
testing separated families (see also Berk [2,3]) . Huber [8] pointed out 
that this problem is connected with robust estimation. White [17] 
reviewed this problem and showed the consistency and the asymptotic nor-
mality under the assumptions corresponding to the regularity conditions in 
the classical theory. Additional related references are Akaike [1] and 
Foutz and Srivastava [6] . 

In Section 2 we give the consistency order of the maximum likelihood 
estimate and of the maximum likelihood under the usual conditions and 
the additional assumptions on higher order derivatives of the specified 
densities. Further we treat the testing problem of two families. Section 3 is 
concerned with model selection. We prove the strong consistency of BIC 
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type criteria in a very general setting. The inconsistency of AIC will also be 
shown. However we reconsider the consistency in model selection in 
Section 4. 

2. OBSERVATIONS AND A FAMILY OF DENSITIES 

Let n observations (which may be multivariate) JC19..., xn (eR*) be 
independently and identically distributed as a probability density function 
(pdf) g with respect to a fixed measure v on Ud. Note that v may be 
discrete. Suppose that |logg(x)| g(x) dv(x) < oo. Next consider the family 
of pdf s: 

*={/(χ\θ)\θεθ}9 (2.1) 

where © is a convex set in Up. Define the quasi log-likelihood and the 
quasi maximum likelihood estimate (QMLE) based on n observations as 

L„(0) = £ log/(x,|0) and L„(0) = maxLM(0). (2.2) 
i = l θ €θ 

Recall the Kullback-Leibler information: 

l(g;f,0) = \ g(x)log{g(x)/f(x\9)} dv>0 ' (2.3) 

provides some closeness from g to f(-\9). Define the expected log-
likelihood e(g;f9 Θ) and the quasi true parameter 9g as 

e(g;f,e)=\g(x)logf(x\0)dv and e(g;f,eg) = maxe{g;f9e). (2.4) 
J θ€θ 

Obviously I(g; / , Θ) is minimized at Θ = 6g. We call the density / ( · 10g) the 
quasi true pdf. If g(x) is exactly specified by M, i.e., g(x)=f(x\90) for 
Θ0ΕΘ, then the quasi true parameter 0g is given by 0O. 

EXAMPLE 1. Let xu...,xn be random samples from a pdf g(x) = 
{φ(χ — 1 — δ) + φ(χ 4-1 )}/2, where δ is a constant and φ(χ) is the standard 
normal density function. When we approximate g(x) by a set of normal 
densities 

Λ={%/θ;ιφ((χ-θι)/%/θ2)\θ = {θι,θ2)€θ}9 0 = Rx(O, oo), 
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the QMLE of 0 is given by 0 = (x, n~l Σ?=ι (·*/-*)2)> where x is the 
sample mean. The quasi true density in Ji is given by the normal density 
with mean δ/2 and variance 2 + 5(<5 + 4)/4, i.e., θ8 = (δ/2, 2 + <5(<5 + 4)/4) 
since Eg(xl) = δ/2 and Eg(xl - bjlf = 2 + δ(δ + 4)/4, where £ , denotes the 
expectation with respect to the true density g. Also the maximized expected 
log-likelihood is given by — j\og[2ne{2 + δ(δ + 4)/4}]. 

Now we make assumptions on (g, Ji) which will enable us to study the 
asymptotic behavior of the maximum likelihood principle. 

ASSUMPTION Al. There exists the quasi true parameter 6g uniquely, and 
6g is an interior point of Θ. 

ASSUMPTION A2. (a) The derivatives 1Λ(χ\θ) = δΙ(χ\θ)/δθα and 
Ιαβ(χ\θ) = δ21(χ\θ)/δθαδθβ (a, 0 = 1 , ...,/>) of /(x|0) = log / (x |0 ) are 
measurable with respect to xe Ud for each ΘΕΘ and continuous with respect 
to θ for each x. (b) |/(x|0)|, | / a(x|0)| , \Ιαβ(χ\θ)\, \1Λ(χ\θ)Ιβ(χ\θ)\ are 
dominated by integrable functions with respect to g(x\ which do not depend 
on 0. 

ASSUMPTION A3. Define pxp matrices K(0) and W{9) by 

ηθ) = Ε^Ι(Χ\θ)^1(Χ\θ)] and W(0)= -Eg[-J^l(X\e)] 

where Eg denotes the expectation with respect to the true density g, a random 
variable X has the true pdf g(x) (X~g(x)), and /(x|0) = log/(jc|0). Then 
V(0g) and W(dg) are positive definite, where 6g is the quasi true parameter. 

ASSUMPTION A4. There exists the quasi maximum likelihood estimate 
θ = θη which tends to 0g with probability 1. 

ASSUMPTION A5. (a) Ιαβγ(χ10) = d3l(x\ θ)/δθα δθβ δθγ (α, β, y = 1,..., ρ) 
are measurable with respect to x for each 0. (b) | /a(x|0)|2, |/a^(x|0)|2, 
\1<χβγ(χ\θ)\ are dominated by integrable functions with respect to g, which do 
not depend on 0. 

Remark on A4, (i) When g(^)=/ (^ |0 o ) · Several sufficient conditions 
ensuring the assumption A4 are known, e.g., Wald [16], Huber [8] , and 
5e.2 of Rao [11]. (ii) When g(x) is not a member of M\ White [17] 
showed that A1-A3 with 

ASSUMPTION A4'. The parameter space Θ is a compact set ofUp, ensure 
A4. Conditions by Huber, derived without assuming that g lies in Ji, suffice 
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for A4. Also Wald's assumptions can be modified to this situation by sub-
stituting df(x, eo)for g(x) dv and 0O for 9g, which meet A4. 

If the true density does not lie in M and is completely unknown, any of 
our conditions is not checked. However, if M gives a good approximation 
to g and Ji meets conditions A1-A5 for g(x)=f(x\60\ then (g, Ji) will 
satisfy A1-A5. 

The assumptions A1-A4 correspond to the regularity conditions in the 
classical theory. They ensure the strong consistency of θη on Ln(Ö). Further, 
the asymptotic normality of θ„ can be shown, e.g., White [17] and Foutz 
and Srivastava [6]. If we assume A5 additionality, the consistency order 
may be evaluated as in the following theorem which will play a key role in 
studying model selection criteria. 

THEOREM 1. Let n independent observations x !,..., xn come from the 
distribution with the density g and let Ji be a parametric family as (2.1). If 
(g, Ji) meets A1-A5, the stochastic orders relating to the QMLEÔn and the 
quasi log-likelihood are: 

(i) ôH = eg + 0(y/(n-l\oglogn))aj.9 

(ii) LßH) = Lm(eg) + 0{loglogn)as.9 

(iii) (l/n)LM = e(g;f9eg) + 0(y/(n-lloglogn))as.9 

where 6g is the quasi true parameter, Ln(0) is the quasi log-likelihood of (2.2) 
and e(g;f Θ) is the expected log-likelihood of (2.4). 

Proof From Al and A4, 0„ = 0 exists and is an interior point of Θ for 
large n. Employing Taylor's expansion we get 

O = ̂ LM(ö)/aö = ^Ln(Ö,)/ßö-^r t(0,)(0-ö,) + rM, (2.5) 

where 

1¥η(θ) = - - d2Ln(eySe δθΎ: pxp9 r„ = (r1#l,..., rpn)T
9 n 

' ™ Μ 0 - β , ) τ ^ [ 3 2 { ^ £ » ( 0 ) } / 3 0 θ 0 τ ] ( 0 - 0 , ) (α = 1, ...,/>), (2.6) 

9 = 9g + s(9-eg), 0 < ε < 1 . 

The expected log-likelihood e{g;f, Θ) of (2.4) is maximized at 0 = 0g, 
which yields that ôe{g;f,eg)/d9 = 0. Hence ΕβΙδΙ{Χ\θβ)/ΒΘ] = 
ôEgV(X\ θΒ)-\/δθ = de(g; f, θΒ)/δθ = 0 (by A2), where X~g(x) and l(x 10) = 
log/(x|0). Hence ô/(x,-|0g)/ô0 (/= 1,..., n) are i.i.d. with mean zero vector 
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and finite variance-co variance matrix (by A3). Therefore by the law of 
iterated logarithm, we have 

dLn(0g)/d0 = 0(y/(n log log n)) a.s. (2.7) 

Similarly by the law of the iterated logarithm and A2 and A4, 

W„(eg)= W(0g) + O(J(n-llog\ogn)) a.s. (2.8) 

From A3 W(0g) is positive definite, and so is Wn(0g) when n is large. 
Solving (2.5) with respect to 0 — 0g, we get 

0 - 0 , = ΐνΗ(θβ)-
1 QdLH(ee)/de + fH}. (2.9) 

By A5 there exist an integrable function H with respect to g(x) and a 
constant K> 0 such that for any a, /?, y = 1,..., /?, 

-δΊη(θ)/δθ0ίΟθβδθ1 n 
^ - £ H(xt)<K. (2.10) 

Consequently by (2.6) we know that ren = (θ-θ8)
τ0(1)(0-θ8) = 

O(\)(Ô-0g) a.s. and that r„ = 0(1)0-6g) a.s. since Ô-0g = o(l) a.s. (by 
A4), where 0(1) denotes a random vector or a random matrix whose all 
elements are 0(1), and o(l) is similarly defined. Thus by (2.9) 

o-eg = 0(y/(n-lloglogn)) a.s. (2.11) 

Again by the law of the iterated logarithm we know 

^Ln(eg) = e(g;f90g) + O(y/(n-1loglogn)) a.s. (2.12) 

Using Taylor's expansion we get 

L„(eg) - L„(Ô) = (Ô- eg)
TdLn(eg)/de + i(0 - eg)

T\_Ô2Ln(B)/Ô9 δθτ10 - 9g), 

and by the relations (2.11), (2.7), and (2.10), 

L„(0) = Z,„(0g) + 0(loglogH) a.s. (2.13) 

Hence, by (2.12) and (2.13) 

X-Lß)J-Ln(eg) + \{Ln(e)-Ln{eg)} 
" " (2.14) 

= e(g;/,Ög) + 0(v/(«-1loglogn)) a.s. 

This completes the proof. 
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Note that Theorem 1 is new even if g is exactly specified by Jt. Under 
non-regular case the consistency order of θη may be higher than 
0(>J{n~l log log«)). However, (ii) still remains valid because the order of 
(ii) is based on the law of iterated logarithm for £„(0) = Σ7=ι log / (x , | 0). 

Cox [4, 5] introduced the problem: Which family specifies the true den-
sity? He proposed the corrected likelihood ratio test. Our problem is: 
Which family is closer to the true density? We take a simple likelihood 
ratio approach. Let 

^/={ / ι ( * |0 , ) |0 ,6β , } ( ί=1,2) 

be families of densities (which may not be separated). Assume both (g, J(t) 
satisfy A1-A5. Let 6ig be the quasi true parameter in Θ, associated with the 
true density g(x), and put 

si = \g(x)logfi(x\eig)dv(x) ( i= l ,2) 

which is the maximized expected log-likelihood in Jtt. Then test the 
hypothesis 

Η0:εί=ε2 versus Ηι:ει>ε2. (2.15) 

If Hx is true, from (iii) of Theorem 1 the likelihood ratio 

λη=Σ\ο&{Μχ]\θί)//2(χ)\θ2)} (2.16) 
i = 1 

tends to infinity since η~ιλη->ει—ε2>0 a.s., which implies the likelihood 
ratio can asymptotically find the family closer to the unknown true density 
g(x). To make more detailed discussion, we get: 

THEOREM 2. Consider the testing hypothesis (2.15) under the conditions 
A1-A5. Then the likelihood ratio test is consistent. 

Proof. The asymptotic normality of the likelihood ratio λη of (2.16) is 
known by Foutz and Srivastava [6] as 

%/η~ί{λ„-η(εί— ε2)} —^ N(0, σ2) as «->oo, 

where a2 = Eg[}og{fl(X\elg)/f2(X\e2e)}]
2, 6ig (/= 1, 2) are the quasi true 

parameters and X~ g(x). Define a estimator of σ2 as 

*l = "~l Σ D0g{/i(X||ôi)//2(*i|02)}]2· 
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Using Theorem 1, we can show that à\ is a consistent estimator of σ2. Now 
we make the rejection region of H0 by 

Κη)={λ„>^/ηξηά„}, 

where ξη is the upper 100//-percent point of the standard normal dis-
tribution. The significance level of this test procedure is asymptotically η 
because λη/ση^>Ν(09 1) under H0. On the other hand, under Hl9 ε{-ε3 

( = μ, say) is positive. Hence 

ΡίΚη)\Η^ = Ρ^(λη-ημ)^σηξη-^ημ\Η^ 

- ► 1 (n -► oo ) , 

because ^/η~ι(λη — ημ)->ί' Ν(0. σ2) and σηξη — ^/η μ^ρ — oo. This com-
pletes the proof. 

Let σ2 be the asymptotic variance of ^/η~ιλη. Then if d= \εγ —ε2\/σ is 
large, we can discriminate the families by using small data. However, when 
d is small we need a large data. Hence in such a case it would be preferable 
to develop similar discussion as the corrected likelihood ratio proposed by 
Cox. See also Kent [9] . 

3. MODEL SELECTION 

We have shown that the likelihood ratio test is useful when two models 
are under consideration. When we have more than two models which are 
candidates for the true density g, a multiple divergence criterion are 
proposed, e.g., see Sawyer [13]. Alternatively we take the model selection 
procedures. Consider k models Jt(= {fi{x\ei)\6ie0i} (/= 1,..., k). We 
treat here the information criteria (IC) given by the form 

IC(i)= -2LH\êi) + cnPi ( f = l *:), (3.1) 

where 0,, L£°(0|)> a n d Pi are respectively the QMLE, the quasi log-
likelihood, and the number of parameters under the model M{. The model 
minimizing (3.1) will be regarded as the best model. This procedure is a 
sort of maximum likelihood principle. Akaike [ 1 ] proposed to take cn = 2 
(AIC), Schwarz [14] and Rissanen [12] proposed cn = \ogn (BIC), and 
Hannan and Quinn [7] proposed cn = K\og\ogn (K>0). Suppose the 
expected log-likelihood of JCX is largest among those of k families. By 
Theorem 2, IC(/) (/= 1,..., k) will take almost surely its minimum value at 
IC(1) for large n if \imn^œn~lcn = 0. Every criterion above satisfies this 
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condition. Hence we can find asymptotically the model which is closest to 
g. Further we treat the case that the closest model Mx (M\ say) is divided 
into several subfamilies (nested case). 

Let θ(0) = (θ<?\ ..., θρ
0)) be a fixed and given interior point of <9. Then 

define a subfamily M{{\, 2}) of M by 

Λ({1,2})={ΑΧ\Θ)ΕΛ\Θ = (Θ^Θ29Θ?\...,Θ™)ΕΘ}. 

This subfamily has two free parameters θχ and 02 and the set {1,2} 
specifies such indices of parameters. For simplicity we call ^({1,2}) a 
model {1,2}. In general let J= {jï9-..9ji} be a subset of the set of all 
indices Jp = {1,..., p}. Then the submodel of M specified by /, say Ji{J\ is 
defined by {/(x|0(/)) |0e0}, where 9(J) is a pxl vector whose y,th 
(i = 1,..., /) elements are given by 9Jt and remaining elements are given by 
those of 0(O). For simplicity we call J({J) a model J and call Ji — JH{JP) 

the full model. 
Now suppose the unknown quasi true density lies in the model 

Jt({\,..., q}\ l^q^p, i.e., the quasi true parameter vector 0g can be 
written as 

0g = (0f,..., 0 *, 0<°> x,..., 0<°>), flf Φ 0iO),... 0* Φ 0f-

This assumption implies that the parameters 6q+19..., θρ are redundant. We 
denote {1,..., q) by /* and call it the quasi true model. 

EXAMPLE 2 (continued). Let 0(O) = (0<°>, 0£») = (0, 2) and the full model 
J2 = {1, 2}. Then the submodels of Ji are given by 

full model: ^ ( { 1 , 2}) = { V / 0 2 - V ( ( ^ - 0 I ) / X / Ö 2 ) | ( 0 1 , 0 2 ) G K X ( O , OC)}, 

model {\}: JÎ{{\})={j2-^{{x-eï)lj2)\eïeU}, 
model { 2 } : ^ ( { 2 } ) = { V / 0 2 - 1 ^ ( X / X / 0 2 ) | 0 2 G ( O , O O ) } , 

model { YM{{ })^{^/ΐ'ιφ(χφ)}. 

Recall that the true parameter is 0g = (δ/2, 2 + δ(δ + 4)/4). Hence the quasi 
true model J* = { } if 5 = 0; ={1} if δ= - 4 ; = {1, 2} = J2 if <5/0, - 4 . 

Suppose (g,Ji{J)) meet the assumptions A1-A5 for every submodel 
Jt{J\ J<^JP, and write the quasi true parameter and the QMLE in 
the model / by 0Jg and 0y, respectively. Hence the relation between 
the expected log-likelihoods of a model / and of the full model is 
e(g>f> ßJg) = e(g;f9 6g) if the model / is bigger than or equal to the quasi 
true model /*, and e(g; /, 0Jg) < e(g; / , 9g) if the model / does not include 
the quasi true model /*. 

THEOREM 3. Let λη be the likelihood ratio Ln(Ôj) — Ln(Ôj*) associated 
with the models J and J*. Then if J is bigger than or equal to the quasi true 
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model J*, λη is nonnegative and has almost surely the order 0(log log n). On 
the contrary if Jdoes not include the quasi true modelJ*, η~ιλη tends almost 
surely to e(g;fejg) — e(g;f6g)<0 (which yields that λη tends to minus 
infinity). 

Proof If the model J is bigger than the quasi true model /*, λη = 
Ln(Ôj)-Ln(Ôj.)^0, and by (ii) of Theorem 1, we get Ln(Oj) = Ln(0Jg) + 
0(loglog«) and L„(0y) = Lrt(0yv) + O(loglogn), where 0Jg and 0j*g are 
quasi true parameters in the model Jt(J) and JÎ(J*\ respectively. By the 
definition of the quasi true model and /=>/*, we know that 0Jg = 9j*g = 9g. 
Hence An = 0(loglogn). If the model J does not include /*, by (iii) of 
Theorem 1 

^ Ln(Ôj) = e(g; f 9j) + 0( J{n~l log log n)) 

and 

l- Ln0j.) = e(g; f 9j.) + 0(y/(n'1 log log n)). 

Hence 

^„^eigife^-e^fe^ + OiJin-'loglogn)) 

^e(g;fejg)-e(g;fej.g)<0. 

THEOREM 4. Let Jn be a selected model by the information criterion 
(3.1), i.e., Jn minimizes 

\C(J)=-2Lnißj) + cn*J 

based on n samples with respect to submodels J= [jl9 ...»y,}, where *J—l 
denotes a number of free parameters. If cn satisfies both conditions 

1 c 
lim -cn = 0 and lim - — ^ — = +oo, (3.2) 

n - oo n n-+oo l o g l o g « 

then Jn is a strongly consistent estimator of the quasi true model /*, i.e., 
limn _«, /„ = / * a.s. 
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Proof. When the quasi true model J* is a proper subset of a model /, 
then by Theorem 3, 

ICW-lCiJ^^i'J-q^-liLß^-Lßj.)} 

= (*J-q)cn-0(\og\ogn) 

= log log n{( *J- q)cnj\o% log n - 0(1 )} 
-> +00 a.s., 

since *J—q>0 and lim„_00 c„/loglogw= +oo. This implies for large «, 
IC(/)>IC(/*) a.s. Now we are finding the model which minimizes the 
information criterion function IC, henceforth for large «, the selected model 
/„ will not be bigger than the true model J*. 

When a model J does not include the true model /*, 

IC(J) - IC(/*) = In j i L „ ( M - 1 Lm(0j) - ( *J-q)cJ(2n)} 

-* oo a.s., 

since (1/«) L„(0y-) - (1/«) L„(0y) - e(g;/, β,) - e(g;/, fly,) > 0 and 
n icn-*0. Thus IC(/)>IC(/*) for large n. Therefore the information 
criterion prefers /* to /. Combining two cases, Jn = J* for n^N, where N 
depends on the sequence of xl9x2> ··, xn-

Note that if we relax the conditions of (3.2) as 

lim -c„ = 0 and lim cn= +oo, (3.3) 
n -* oo Yi n -*■ oo 

then J„, obtained by such an information criterion, is a weakly consistent 
estimator of /*, i.e., lim„ _ ^ P\Jn = 7*] = 1. 

However, we need extensive calculation to obtain Jn when p is large 
because there are 2P — 1 possible models. Our alternate procedure, due to 
Zhao, Krishnaiah, and Bai [18], saves computation. Let J -j— {1,..., j — 1, 
y+ 1,..., p) be a p — 1 set omitted y from / p for y'= 1,..., p. Define 

Jn={l^j^p\lC(J_j)>IC(Jp)}. 

This set consists of the indices j of the parameters which is important in the 
sense that the information criterion prefers the full model to the model 
omitted the 7th parameters. This model is obtained by calculating 
\C(J_l),..., IC(J_P) and IC(JP) only. However, by the similar lines of the 
proof of Theorem 4, we get 
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THEOREM 5. If cn satisfies (3.2) or (3.3), then Jn is also a strongly or 
weakly consistent estimator of J*. 

AIC is not consistent because cn = 2 does not meet (3.2) nor (3.3). It will 
overestimate the quasi true model. The probability l im, , .^ P [ / n AIC = / ] 
>0 , for /=>/* will be expressed using positive linear combinations of 
independent chi-square variâtes, however, its formula is hard to evaluate in 
a simple form. 

4. DISCUSSION 

We may again note that the condition A5 is not assumed in the usual 
regularity conditions. Under strong regularity conditions A1-A5, we can 
evaluate the stochastic orders relating to the QMLE and the quasi log-
likelihood by Theorem 1, which are useful to show the strong consistency 
of the information criteria satisfying (3.2). Our results are based on the i.i.d. 
assumption. However, Theorems 1-5 still remain valid even if n obser-
vations have weak dependency which ensure the central limit theorem and 
the law of the iterated logarithm. Hence our results are quite general. 

Next we try to reconsider the consistency in the model selection problem. 
From the point of view that the model is an approximation with finite 
parameters to the true density with infinite parameters (see Shibata [15]), 
the quasi true model under M becomes the full model in many cases. Then 
AIC also becomes consistent since it does not underestimate the quasi true 
model. Unfortunately our observations do not provide the difference of 
AIC and BIC in this case. 

The purpose of the model selection may be to find the model by which 
we can get some good prediction for future observation, not the model 
which provides a good fitting for given observations. Recall AIC is 
proposed as an estimator of the predictive density. The consistency is one 
criterion for classifying the model selection procedures, and this criterion 
may not always lead a suitable conclusion in practical situation. 
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An Asymptotic Minimax Theorem of Order n 1 /2 

J. PFANZAGL 

University of Cologne, Cologne, West Germany 

The asymptotic minimax theorem of LeCam and Hâjek is refined by inclusion of 
terms of order n ~1/2. This renders more precise informations about the local proper-
ties of SUperefficient estimator-sequences. © 1988 Academic Press, Inc. 

1. THE RESULTS 

Let (X,s/) be a measurable space, and Ps\s/, 5 e 0 , a family of 
probability measures with parameter set Θ c= U. Assume that P9 has density 
p(-yS) with respect to some dominating measure, say μ. In regular cases 
a(9):=($((d/d9)logp(x, 9))2 P9(dx))~l/2 exist. The socalled asymptotic 
minimax theorem, specialized to the loss function 1 — 1(_M M), implies the 
following. 

For any sequence of estimators 9{n): X" -► R, n e N, and any u > 0, 

lim îîm inî P"9 + a-ißt{n
l/2\SiH)-{S + n-l/2t)\<u} 

a] ao n -*■ oo | / | < α 

^N(-u/a(9),u/a(9)), (1.1) 

where N denotes the standard normal distribution. 
Relation (1.1) implies in particular that for any sequence a „ | oo 

ïïrn" inf P"a+n-yil{n
i/2\9in)-(9 + n'i/2t)\ <u} 

^N(-u/a(9),u/a(9)). (1.2) 

It does, however, not exclude the possibility that 

Hm inf PS + „->/2({n1/2|5(")-(5 + / j - 1 / 2 i ) |<w}>iV(-M/a(3) , M M5)) 
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for all a > 0, i.e., that superefficiency holds uniformly on all neighborhoods 
of 9 which are of the order n ~1/2. 

The purpose of this paper is to "quantify" the possible amount of 
superefficiency. We shall show that superefficiency of order 0(n~l/2) is 
impossible on all neighborhoods of 9 which are of the order n ~1/4. 

To formulate this result appropriately, we have to take into account that 
the normal approximation N{ — u/a{x\ u/a(x)) to Ρη

τ{ηϊ/2\9(η)— τ\ <u} 
deviates from N( — u/a(9), u/a(9)) by an amount of order \τ — 9\, hence by 
an amount of order n ~ l/2t if τ = 9 + n ~1/21. 

To seize on differences of order n ~1/2 in an appropriate way, we have, 
therefore, to replace the normal approximation N{ — u/a(9), u/a(9)) by 
N{-ula{9 + n-l/2t\ u/a(9 + n~l/2t)). 

Let 
Jn(t):=Pl + n-l/2t{n^2\9^-(9 + n-^2t)\<u} 

-N{-ulG{9 + n-ll2t\ula{9 + n-l,2t)). (1.3) 

(Since 9 and u remain fixed throughout the following considerations, they 
are omitted in the symbol A„(t).) 

With this notation, relation (1.1) may be rewritten as 

lim îîm inf An(t)^0 
a | oo n -*■ co | / | <,a 

(presuming that σ is continuous at 9). 
Our paper is concerned with the asymptotic behavior for n f oo of 

\t\^anV4 

In regular cases, N{ — u/a(x), u/a(x)) is certainly an appropriate standard for the asymptotic 
evaluation of Ρη

τ{η
ι/2\$(η) — τ| <w}. This follows from the fact that the bound, implicit in the 

interpretation of (1.1), is attained by certain estimator-sequences. The same argument justifies 
the use of N( — u/a(x\ ι//σ(τ)) as a reference for an evaluation of Ρη

τ{η
ι,2\&(η) — τ\ <u} taking 

into consideration also terms of order 0(n~l/2). Is it plausible that no terms of order n~l/2 are 
needed for the "standard"? The answer is "yes," because the «~1/2-term of the Edgeworth-
approximation to the distributions of estimator-sequences which are maximally concentrated 
up to o{n~l/2) is odd and cancels out in approximations for symmetric intervals: In regular 
cases, N{ — ι//σ(τ), u/a(x)) is a bound of order o{n~l/2) (and not just o{n0)) for the concen-
tration of estimator-sequences (see [6, p. 35/6] for the parametric case, and [7, Theorem 
9.2.7, p. 295] for a "nonparametric" version). 

THEOREM. Assume that the family P9, 9ΕΘ9 is regular in the sense 
specified in Section 4 by (i)-(v). Assume that there exists a0>0 and a sub-
sequence N0cz N such that 

lim inf nl/2An(t)>0. (1.4) 
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Then there exists α{>α0 such that 

ÏÏm inf ni/2An(t)<0. (1.5) 
ne No \t\^ain^4 

To obtain another equivalent formulation of the theorem, we provide the 
following lemma which refers to arbitrary sequences of nonincreasing 
functions Dn : U + -► (R. The theorem asserts that property A is fulfilled for 

Dn(a)= inïnl/2An(t). (1.6) 
\t\ ^ α « 1 / 4 

LEMMA. For any sequence of nonincreasing functions Dn : M+ -* R, the 
following two properties are equivalent: 

A. For every subsequence N0a N, 

lim Dn(ao)>0 for some a0sU + 

ne No 

implies 

lim Dn(ax) < 0 for some a^>aQ. 
ne NQ 

B. For every subsequence N0a N, 

lim D„(a)^0 for every aeU + 

ne No 

implies 

lim Dn(a) = 0 /or euery a e M + . 
ne No 

ADDENDUM. A or B imply 

lim Dn(an) ^ 0 for every sequence an \ oo. (1.7) 
we N 

The idea to describe the local properties of superefficient estimator-
sequences by an as. minimax theorem (of order n°) goes back to LeCam 
[3] . 

Deviations of higher order in the as. minimax theorem are thoroughly 
investigated in Bickel, Götze, and van Zwet [1] . Using Bayes-type 
arguments, these authors arrive at results of order 0(n~l/2) and 0(η~ι) for 
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symmetric bowl-shaped loss functions. Specialized to the loss function 
1 - !(-«,«) t h e i r 0(«~1/2)-result (see [1, Theorem la, p. 753]) leads to 

hmDn(anl/2)^0, 
ne N 

a result weaker than (1.7). 
A detailed study of second-order differences in the asymptotic minimax 

theorem for estimators of the means of normal distributions is due to Levit 
(see [5] and the references cited there). 

Proof. A implies B. Let f^0czf^ be an arbitrary subsequence. If 
lini/ieNoA*(fl)^0 for every aeU + , and limn€NoDn(ao)>0 for some 
a0e (R + , choose a subsequence f^i_c^N0 such that l imn e N l Dn(ao)>0. By A 
there exists ax>aQ such that lim„eNl Dn(a{)<0, in contradiction to 
lim„e N oDn(a)^0 for every aeU + . 

B implies A. Let N0cz N be an arbitrary subsequence. Assume that 
limneNoDn(a0)>0 and l\mneNoDn(a)^0 for all a>a0, hence for all 
aeU + . Choose a subsequence Ĵx c= f̂ J0 and a sequence an\ oo such that 
limneNlDn(an)^0. This implies limrfçNl Dn(a) ^Οϊοτ all aeU + 9 hence, by 
B, limrteNl Dn(a) = 0 for all aeU+, in contradiction to \imneNoDn(a0)>0. 

Proof of the Addendum. If limwe N D„(a„) > 0 for some sequence an | oo, 
there exists a subsequence ^J0czf^ for which limneNoDn(an)>0. Hence 
limwe No Dn(a) > 0 for every a e U +, which is impossible by B. 

The question poses itself whether the theorem can be improved, for 
instance, by showing that (1.5) follows from a weaker version of (1.4), say 
one in which the infimum over |/| ^a0n

l/4 is replaced by an infimum over 
|/| ^an n{/4 with a„l0. The following example shows that improvements of 
this kind are impossible, in general: The order n~i/4 is a sort of threshold 
for the region of superefficiency of order n ~~1/2. 

EXAMPLE. For the location parameter family of normal distributions, 
{Ν(3, n : i9e!R}, the following holds true: 

(a) For every a>0 there exists an estimator-sequence such that 

Hm inf nl/2An(t)>0. 

(b) For every sequence a„l0 there exists an estimator-sequence such 
that 

lim inf nl/2An(t)>0 
neN \t\ ^annV4 
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and 

liminf nl/2 A„(t)^0. 
neNteU 

Remark. The theorem is stated for one-parameter families to keep the 
regularity conditions transparent. It holds, in fact, for an arbitrary family 
^, and any twice differentiable functional κ: 0* -» R. A precise statement for 
this general case requires, however, an unrestricted use of concepts like 
tangent space, canonical gradient, etc. To obtain a proof of the general 
version replace s -> Ps + s by a twice differentiable path s-+ Ps and let 

AJtt) := Pn
n-mt{n

l,2\ κ(η)- κίΛ,-ι/2t)\<u} . 

-N(-u/a(Pn-v2t), u/a{P„-1/2,)), 

with σ(Ρ) = (J κ*(χ9 P)2 P(dx))i/2. 
The proof goes through with Qn,k = P^-i/2tnk, where tnk is defined induc-

tively by i„,k + i = tnk + 2ulo(Qnk)
2 + n~x,2rn k, with rnk chosen such that 

K(Qn,k+l)1K(Qn,kJ>2un-{/2. ' 
Instead of Lemma 1 use [7, relation (4.5.6), Theorem 6.6.3, pp. 194-195, 

in particular (6.6.4) and (6.6.5)], instead of Lemma 2 use [7, relation 
(4.5.6), p. 125. See also 9.2.1(H), pp. 291-292.]. 

The literature now has plenty of nonparametric minimax theorems of 
order n°. The idea of such nonparametric versions goes back to Le vit [4] 
(who takes suprema over non-shrinking neighborhoods of P). 

2. PROOF OF THE THEOREM 

Throughout the proof, rn, ne N, denotes a generic null-sequence, and n^ 
a generic element of N, with "η>η+" indicating that a certain statement 
holds for all sufficiently large neN. 

(i) We use the following notations: 

SHtk:=9 + 2ukn-l/2, 

Qn,k :== Pn8nk 

*;y-=Qn.k{n
mW-Kk)*z-»} 
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(ii) If the assertion is wrong, we have 

lim Dn(ao)>09 and lim Dn(a)^0 for every a>0. 
we No we No 

W.l.o.g. we assume Dn(ao)^A>0 for neN0. Moreover, there exists a 
sequence an \ oo, nsN, such that limwe No Dn(an) ̂  0. We may assume that 
the convergence of an,neN, to infinity is sufficiently slow so that 
l\mneNoann~l/4 = 0. Hence we obtain the following relations: 

(a) There exists a sequence c„|oo, neN, with \imneNocnn~l/4 = 0 
such that for all integers ks [0, cnnx,4~\ and neN0 

Qn,kW
/2\»{n)-Kk\<u}^N{-un^u^k)^n-^rn', (2.1) 

equivalently 

^k + <k^W{-Un,k) + n-l,2rn. (2.1') 

(b) There exists c0>0 such that for all integers Are [0, c0n
l/4] and 

nsN0 

Qn^W,2\^n)-Kk\<u}^N{-u^kiu^) + n-il2A', (2.2) 

equivalently 

α-, + αΜ%^2Φ(-^,)-Α2-1/2Α (2.2') 

In the following we replace the somewhat clumsy expression "for all 
integers fce [0, m„Y by "for k^m„r 

Notice that <xfke(0, 1). This can be seen as follows: α„% = 
QnA"V\${n)-Kk)>»} = ̂  ™P»es Qn,k^W,2{^n)-Kk)^u}=6. By 
definition of #„ k we have 

{n^\9^-9n^^u} = {n^9^-S,k,l)^-u}; (2.3) 

hence a~Ä + 1 = 1, in contradiction to (2.Γ). 
From (2.2'), applied for & = 0, we obtain that at least one of the 

following inequalities holds for infinitely many ne N0: 

α-0^Φ(-«π,0)-Αΐ-1/2^/2, (2.4') 

<o^^(-"w,o)-«-1 / 2^/2. (2.4") 

W.l.o.g. we may assume that this is the case with (2.4"). 
Let Mj c= N0 denote the infinite subsequence for which (2.4") holds true. 

For k^cnnl/4, neNl9 we define numbers ηη k by 

Kk = &(-Un,k-1n,k)· (2.5) 
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From (2.4") we have for ne N{ 

Φ(-»η,ο-ηη,ο)^Φ(-«η,ο)-«-ι/2 A/2. 

Hence there exists A0>0 such that 

ηη0>Α0η-χ'2 for / l e N j . (2.6) 

(iii) Considering {n1/2(9(n) — 9nJc) > u} as a critical region for testing 
the hypothesis Qn k at level cc+k against the alternative (?„,* +1 we obtain 
from Lemma 1 and relation (2.5) for k^cnni/4, neNl9 

Qn,k + iW,2(${n)-Kk)>u} 

<Φ{φ-\*:Λ) + 2ηηΛ + η-ν2\ηηΛσ\ΖηΛ) 

^12ηη^ΜΚ^^^Κ^)-φ-\<^ΗΚ^)^η-''2Γη 

= Φ{ηηΛ^η-''2η2
ηΛσΙΛ{2α(»η^)^ο{»ηΛ)) 

-ηη,^-η-ι/2^η^σ\^,)ο(9η^)) + η~ι/\. (2.7) 

By a Taylor expansion of s^>a(S + n~l/2s) up to o(n~i/2) which holds 
uniformly for δ and s varying in bounded sets, we obtain that 

for k ^ cnnl/2 and n e N, ; hence 

« a + i = « u + « " , X * ^ * ) 3 [ ^ * ) + ^ * ) ] + « ' 1 / 2 V (2·8) 

For k^c„nl/4 we have |5„,*-«9| ^2WCW«~1 / 4 = Ö(«°). Since σ and 6 are 
continuous at <9, Bnk:=^unka

3($nk)b(9nk) is uniformly bounded for 

From (2.7) and (2.8) we obtain for k^cnnl/4, neNl9 

^ ( « α + ι - ΐ Μ ( 1 - " " 1 / 2 ^ α ) ) + " " \ · (2.9) 

From (2.3) and (2.9) we obtain 

^Φ^^,-η^^Ι-η-^Β^^^η-^ν^ 

whence 

Φ(-«„,* + ι + ' /Μ,*(1-«- , / 2Αη, ,))<α„-;, + 1+«-1 / 2Γ„. (2.10) 
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Relations (2.Γ) and (2.2'), applied with k replaced by k+l read as 
follows: For k < c„ n1/4, neNu 

«„:* + i+ <* + ι<2Φ(- Μ „,* + 1) + /Ι-
1/2/·„. (2.11) 

Uniformly for k < c0 n
l/A, n e N0, 

«**+ι + < , + 1 ^ 2 Φ ( - Μ „ , , + 1 ) - « - 1 / 2 ^ . (2.12) 

By definition of */„<jt+( (see (2.5) with k replaced by k+ 1), we obtain 
from (2.10) 

Φ(-"π.*+1+'/«,*(1-"~1/2Α„,Λ)) + Φ(-Μ„^ + 1 - / / η , λ + 1) 

^«η:* + ι + < * + 1 + « ~ 1 / 2 ' · η · (2.13) 

From (2.11H2.13) we obtain for k^c„nl/4, neNu 

Φ(-"„.* + ι+>7,,,*(1-«~1/2 Bn,k)) + 4>(-un,k + i-fln,k+i) 

^24>(-un,k + l)-n-i/2AlLO,conWl(k) + n-l/2rn. (2.14) 

The proof will be concluded by showing that (2.14) is contradictory. To 
prepare this proof, we apply Lemma 2 to (2.14) and obtain 

i/„.*(l-«-1/2B»,*)ç»(«1,.*)<<P(-«l,*) + «-1/2r(1 (2.15') 

and 

i f . . * ( l - n - I / 2 B B . t K i , B . t + I +«- 1 ' 2 r l l . (2.15") 

Hence {ηη k\k^cnnl/4, neNx} is bounded, and positive because of (2.6). 

(iv) Let u0 :=u/a(9). In this section we shall prove the existence of 
n^eM such that 

f„ .*<2 M o f o r k^nV^neN^n>n*· ( 2 1 6 ) 

Assume that, on the contrary, there exists an infinite subsequence 
N2 <= Mi and, for each n e N2, an integer kn < (c„/2) ni/4 such that 

*/».*„>§"<>» neN2. (2.17) 

Let 

c(v) := ( | - 2Φ( -ι>) - Φ(2ι>))/φ(0). (2.18) 

Notice that c(v) > 0 for v > 0. 
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W.l.o.g. we may assume that the elements of N2 are large enough so that 
the following relations hold for n e N2, k ^ (cn/2) nl/4: 

Kk-Uo\<Uo/* (2.19') 

c(un,k)>3c(u0)/4 (2.19") 

bk
H>h (2.19'") 

where bn := 1 -nl/2B9 with B :=sup{BnJc:k^(cn/2)nl/\ zieMj}. 
Let kn ^ (cn/2) nl/4, n e H2, be a sequence fulfilling (2.17). We shall show 

that for neN2,v^(cn/2)ni/4, 

rin,kn + v>(*1n,kn + ^)bl with A = c(u0)/2. (2.20) 

From (2.14) we obtain for k^cnnl/4, « G N 2 , 

^ 2 Φ ( - ^ , + 1 ) + « - 1 / 2 Γ Μ . (2.21) 

Relation (2.20) is trivial for v = 0. Assume now that (2.20) is true for 
v - 1 . From (2.21 ), applied for k = kn + v - 1 we obtain 

1 - Φ{"ηΛη+ v + *?„,*„ + v) + * ( - U„tkn+ v + f|„,ArÄH- v - 1 6 „ ) 

<2<P(-i<ll,ikji + v) + i i - 1 ' 2 r i r (2.22) 

If (2.20) holds true with v replaced by v - 1 , we obtain from (2.17), 
(2.19"), and (2.19"') 

*ln,kn + v-\t>n^nn,knbv
n^lu0>un,kn + v. (2.23) 

Let A n v be defined by 

Άη, kn + v = rin,kn + v-ibn + Δη^ν. (2.24) 

From (2.22), (2.24), and (2.23), 

1-2Φ(-ΐίη^η + ν) 

+ ç>(0)Jn , v l ( 0 ) O O )(Jn , v) + A2-1/2rrt 

^ Φ ( 2 ^ , Λ + ν ) - Η ^ ( 0 ) ^ η , ν 1 ( 0 , ο ο ) ( ^ Λ , ν ) + « " 1 / 2 ^ . 

For the last inequality, use ηηΛη + ν_γ bn>unkn + v (see (2.23)). 
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Using (2.18) and (2.19") we obtain for n^n+ 

^c(u0)/2 = A>0. 

This implies An v ̂  A for n ̂  n+. 
From (2.24) and (2.20) with v replaced by v— 1 we obtain 

1n,kH + v^1n,kH + v-ibn + A>tin,kH + (v-l)A)bv
n + /l 

This concludes the proof of (2.20). 
Let kn := l(cn/2)nl/4l From (2.20), applied with v = £„, and (2.19"') we 

obtain for ne N2 

rin,kn + iin>knAb^^lAkn; 

i.e., the sequence */„,*„ + £„, ne f̂ 2, tends to infinity. Since £„ + £Λ^(;Μ«1/4, 
this contradicts (2.21). This concludes the proof of (2.16). 

(v) From (2.16) we obtain the existence of n+ e N such that 

3 c 
1n,k<2Uo<2u">k f o r ^ Τ " 1 / 4 ' neNl9n^n+. 

By Lemma 2 there exists A > 0 such that for k ^ (cn/2) nl/4
9 neNun^n+, 

&(-un,k+i+1n,kb„) 

>&(-Un.k+l) + 1ntkl>n<P(Un.k+l)) + 'llkbl4 (2.25') 

and 

# ( - w „ , * + i - > U * + i ) 

>*(-«».* + i)-V«,*+i ? K * + i ) + l i t + i A (2·25") 

Together with (2.14) this implies for k^(cn/2)nl/4
9 neNl9n^n+, 

(in* ύη-ηηΛ+ι) φ(»η, *+1) + (n\k bl + f iU+1) J 

^ - » - ^ i i l ^ ^ W + n-^r,, . (2.26) 

With 0<c^c(unk + l) for « e Ml9 « ^ Λ ^ , Λ:<(c„/2)/21/4, we obtain 
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With ξηΛ :=η^/ζΑ/^Αί := AAjlc2 we obtain for k^{cn/2)ni/4, « e N „ 

< -n-^lA, l [ „ , ^ ] ( * ) + /i-1 / 2r„. (2.27) 

(vi) Relation (2.27) implies in particular for k^c0n
i/4, neNlyn^n^., 

ί** + ι>5 . .*Α. + « - ι / 2 ^ ι · (2-28) 

We shall show that for k ^ c0n
i/4, n e N, , n ^ « + , 

t*k>»-l/2Al\^. (2.29) 

For i = 0 we have ^„ , 0 >0 (since η„,0>® by (2.6)), hence (2.29) is 
trivially true. Relation (2.29) now follows from (2.28) by induction. 

With kn := [c0A21/4] we obtain 

l-bk
n*=l-(l-n-l/2B)k*^l-(l-$n-l/2BkH) 

^{Bc0n~l/4. (2.30) 

Therefore, (2.29), applied for k = kn, yields for n e N j , η ^ «+ , 

tn,kn>A2n-l/A with A2>0. (2.31) 

Let now 

ω„,ν :=<!;„,*„ +v. (2.32) 

From (2.27), applied for k = kn + v, we obtain for v^(c„/3) «1/4, 
ne Nl9 n^n^, 

ω„,ν b„-ωΜ,ν+ ! + œ2
nvb

2
n + ω2

ην + ι ^η~ί/2Γη. (2.33) 

We write rn rather than r„, because from now on Fn,neN, is a fixed 
(rather than generic) null-sequence. 

From (2.31), 

ωη,ο>Α2η-ι'4>0. (2.34) 

Moreover, 

1 c 
0 < ω „ ν ^ - for v^-~ni/4, neNl9n^n^. (2.35) 
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The first inequality follows immediately from (2.33) and (2.34). To 
establish the second inequality, observe that (2.33) is equivalent to 

{<0n.vbn + \)2 + {œntV + l-ï)
2^i + n-l/2rn. 

Therefore, 

from which the second inequality follows easily. 

(vii) The proof will be concluded by showing that (2.33) and (2.35) 
are contradictory. For this purpose we derive from (2.33) the following 
weaker inequality. For v ^ (cJ3) AI1/4, ΠΕΝΙ,Π^Π^, 

ω„,v b n ^ ωη%v + ! - ω2
η v + l + n~1/2 rn. (2.36) 

Let 

™Λ:=[2/ωΛ,ο]-4. (2.37) 

By this choice of mn we achieve that 

\-\mn<on^2<on%o, {231') 

a relation needed later on. Because of (2.34), we have mn^(c„/3)nl/4 for 
neNl9 n^n+, so that (2.36) holds, in particular, for all v^mn. 

Let 

^ , ν - ω ^ σ - έ ν α ν ο Γ 1 . (2.38) 

For later use we remark that 

an%v<\ for v^mn (2.39') 

an,mn>k for n^n*. (2.39") 

(For (2.39") observe that b™*-> 1, so that anmn>œn0l(l-\mnœn^)-1.) 
We shall show that v^mn,neNl9n^n^, implies 

* * v - i * « ^ f l „ . v - < v + ""1/2f,r (2·40) 

An elementary computation shows that (2.40) is equivalent to 

^ 1 - Ι ^ 1 ω Λ , 0 ) [ ~ * ; + Λ - | / 2 Γ π ω - § Λ - ^ ] . 

(2.41) 
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Since 1 -^νωηΟ>0 for v^mn, relation (2.41) follows from 

l-bl + n-Wr.œ-lb;* (l ~ω„,0)2<0. (2.42) 

For v^m„ we have bv
n>\ and |1 - (ν /2)ω η § 0 | ^ 1 by (2.34) and (2.37'). 

Together with (2.34) this implies that the left-hand side of (2.42) is smaller 
than 

k-\ + n-ll2rn(A2n-l,A)-2\= - i + M ^ ^ O for n>nm. 

This concludes the proof of (2.40). 

(viii) Now we shall show that 

ωη, v^
an,v f°r v^mn9neNl9n'^nill. (2.43) 

For v = 0 this follows immediately from (2.38). Assume now that (2.43) is 
true for v— 1. From (2.33), (2.40), and the inductive assumption, we obtain 

ωη, v - ω2
 ν ̂  ω„, v _ l bn - n ~1/2 rn 

>an,vbn-n-i,2rn>an^-a2
nv. (2.44) 

From (2.35) and (2.39') we have ωη v < \ and an v < \. Since v -► v — v2 is 
increasing for VG [0, £], relation (2.44) implies ωη v^an v. This concludes 
the proof of (2.43). 

From (2.43) and (2.35) we obtain an v^\ for v^mn9 YIG Ml5 n^n+, 
which contradicts (2.39"). 

3. CONSTRUCTION OF THE ESTIMATOR-SEQUENCE 

(i) To prepare the construction, let g be an arbitrary odd and 
increasing function with the following properties: \g\ ̂  1, g' is nonincreas-
ing on [0, oo), and 0^g'^{ . Then the following relations hold for v, WGU 
and ee [0 , 1]: 

w<v + sg(v) — ε2 implies w — eg(w)<v (3.1) 

v + £g(v) + e,2< w implies v<w — eg(w). (3.2) 

We prove (3.1). Since w-+w — sg(w) is increasing, w<v + eg(v) — ε2 

implies w — sg(w) <(v + eg(v) — ε2) — sg(v + eg(v) — ε2) ^ v9 since 

g(v)-g(v + eg(v)-s2)^e. 
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(If Ο θ , this is trivial. If v<0 we have v + εg(v) — ε2<ν, hence 
g(v) - g(v + εg(v) - ε2) < έ(ν){ε \ g(v)\ + ε2) < ε.) 

From (3.1), applied with w = t + y, v = t + u, and (3.2), applied with 
w = t + >>, v = t — w, we obtain for arbitrary t e R, w > 0, ε 6 [0, 1 ] , 

( - « + ε^(/-Μ)4-ε2,Μ + ε^(/ + Μ)-ε2) ί={>;6ΐΚ:|7-ε^(7 + 0 Ι < " } . (3.3) 

For w, J e R , 

|Φ(ι/ + ζΙ)-Φ(Μ)-4φ(ι ι ) |<42 /4 . 

Hence we obtain from (3.3) for arbitrary te R, w>0, εε [0, 1], 

JV{>>eR:|j;-6g(j> + 0 l < w } 

^iV(-M,w) + e9(w)[g(/ + w ) - g ( / - w ) ] - 3 e
2 . (3.4) 

(ii) For a > 0 let 

ga(t;):=t;/(a+M), ueR. 

Observe that ga fulfills the assumptions imposed in (i) on g, provided α ̂  2. 
We shall show that a ^ w implies 

inf{ga(/ + W ) - g a ( / - M ) : | / | ^ a } ^ w / 2 a . (3.5) 

If te [w, a ] , we have 

2ucc 2UOL u 
> * > — . 

(<x + t + u)((x + t-u) (a + 0 2a 
ga(t^u)-ga(t-u) = / ι , t w , , ^ ^ | 2 ^ 

If re [0, n], we have 

2u<x + 2(u2-t2) 2UOL u 
= — ^ ö ^ — . 

((x + t + u)(oi + u-t) (a-l·«)2 2a 
Hence 

ga(' + w) - £ * ( ' -u)> w/2a for / G [0, a] . 

Since gJ^-t + ^-g^-t-^^g^t + ^-g^t-uX the same inequality 
holds for i e [ - a , 0 ] . 

Inequalities (3.4) and (3.5) together imply for ee [0, 1], a^max{w, 2}, 

inf (7V{>>eR: \y-sga(y + t)\<u}-N(-u,u)) 

^ι*φ(ΐ4)ε/2(χ-3ε2. (3.6) 
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(iii) Given sequences ε„ JO and a „ | oo, we define the estimators i9(w) 

by 

&">(xu...,xn) = xn-n-i/2engXn(n
i/2xn) with *„ = « - ' £ * , . (3.7) 

1 

Let Nt denote the normal distribution with mean / and variance 1. (As 
above, we write N for N0.) Since the distribution of nx,2xn under Ν"-ι/2, is 
Nn we obtain 

N:-v2t{nl/2\^-n-l/2t\<u} = N{yeU:\y-engJy + t)\<u}. (3.8) 

With 

An(t) := N"n-mt{nl/2\3(n)-n~l/21\ <u} -N(-u, u), 

we obtain from (3.6) and (3.8) 

inf ni/2A„(t)^u<p(u) ηί/2ε„/2οίη-3ηί/2 ε2
η. (3.9) 

\t\^Oin 

(iv) Given 0>O, we choose ε„ = (ucp(u)l%a)n~x,A and ocn = anl/4. (3.9) 
implies for all n e N 

inf nx,2An{t) > u2(p(u)2/64a2 > 0. 

This proves part (a) of the example. 

(v) Given a sequence fl„|0, let än :=max{aw, (2 + w)n~ l /4} and 
εη = άηη~1/4, oe„ = änη

ί/4. (3.9) implies for all sufficiently large neN9 

mfni/2An(t)> Mni/2Jn(t) 

^u(p(u)/2-3ä2
n>0. 

Since ga is increasing, we obtain from (3.4) and (3.8) 

inf nl/2 An(t) > inf (nl/2 eMu)igJt + u)~gain{t - M)] - 3AZ1/2 ε2
η) 

teM ten " 

7*-3ηι/2ε2
η=-3α2

η = ο(η°). 

This proves part (b) of the example. 
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4. LEMMAS 

In the proof of the theorem, we need an asymptotic expansion of order 
o(n~l/2) for a power function. Such an expansion holds true under 
appropriate regularity conditions on the densities /?(·, 5), 9ΕΘ. Various 
sets of sufficient conditions are available. The result of Götze [3, Theorem 
1.4, p. 262] seems particularly useful for our purpose because it asserts the 
validity of this expansion without a Cramér-type condition. Strictly 
speaking, we need slightly more than Götze's theorem asserts, namely 
uniformity over 9 in bounded sets. Lemma 1 below is the specialization of 
such a uniform version to families with one real parameter. 

Let /(JC, 9) :=logp(x, 9). Let l{k)(x,9) denote the partial derivative of 
5-> /(*, 9) of order &. 

Regularity Conditions 

(i) The probability measures P9,9e&, are mutually absolutely 
continuous. 

(ii) The functions /(/r)(·, 9\ k = 1, 2, are not linearly dependent μ-ζ.ζ. 
(iii) j /(1)(x, 9) Ps(dx) = 0, J (/(1)(x, 9)2 + /<2)(x, 9)) P9(dx) = 0, 

J (/(1)(x, 9)3 + 3/(1)(χ, 9) /(2)(JC, 9) + /(3)(x, 9)) P9(dx) = 0. 

(iv) For every 9 e Θ there exists an open neighborhood U9 of 9 such 
that 

sup f l{k)(x9 9)4 Pô(dx) < oo for k = 1, 2, 3. 
<5e£/5 J 

(v) /(3) fulfills a local Lipschitz condition: For every 9 e Θ there exists 
an open neighborhood U9 of 9 and a function m(·, 5): Z-̂ IR with 
suP<5e u9 ί

 m(*> ^)4 pô{dx) < oo such that for all δ\ δ" G U9, 

\P\x, (5')-/(3)(JC, (5")| < \δ'-δ"\ m(jc,5). 

Let 

a(S) := J /(1)(x, 5) /<2>(x, 5) Zy<&) (4.4) 

6(θ):=|/(1)(χ,5)3/>,(Λ). 
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LEMMA 1. Assume regularity conditions (i)-(v). Given a sequence of 
critical functions φη, neN, let αη(δ) := J φη(\) Pn

ô{dx). Assume there exists a 
neighborhood U9 of S such that {α„(<5): δ e U9, n e N} is bounded away from 
0 and 1. Then uniformly for <5 e t / 5 , teU, 

J φη(χ) Pn
ô + n-v2t(dx) 

^Φ(Φ~ί((χη(δ))^ίσ(δ)-ί +η~γ/2 ±ίσ(δ)1ί(3α(δ) + ^δ)) 

-φ-ι(αη(δ))σ(δ)^δΚ) + ο(η-ι/2). 

LEMMA 2. Given 0 < u' < u" and 0<v' there exists A > 0 such that 

0(-u-\-v)^0(-u)-l· vcp(u) + v2A 

for — t / O ^ 2 w , M ' ^ w ^ u". 

Proof. Let Ψ(μ, v) := Φ( — u + v) — Φ( — «) — vq>(u). We have 

3 .„, , f > 0 for 0 < t ; < 2 « 
TvnU>V){<0 for „<0. 

Since ^(w, 0) = 0 for ueU, we have *F(u, v)>0 for v^2u,v*0. The 
function 

. (ν-2Ψ(^ν), νΦ0 
w(u,v):=< 

lu(p(u)/2, v = 0 

is continuous on W:— {(w, v)eU2: —v'^v^2u,u'^u^u"} and positive. 
Hence A :=inf{w(w, v): (w, v)e W} >0 . 
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An Improved Estimation Method for 
Univariate Autoregressive Models 

TARMO M. PUKKILA 

University of Tampere, Tampere, Finland 

Autoregressive models are important in describing the behaviour of the observed 
time series. One of the reasons is that a covariance stationary process can be 
approximated by an autoregressive model. Thus, e.g., the spectrum of a covariance 
stationary time series can be approximated by the spectrum of an autoregressive 
process. The estimation of the autoregressive parameters is therefore of special 
importance in time series analysis. Several methods have been introduced to 
estimate autoregressive models. The most popular method has been the 
Yule-Walker method. The Yule-Walker estimates for the autoregressive parameters 
are known to have poor statistical properties in certain cases. On the other hand, 
the Burg estimates have better statistical properties. For example the Burg estimates 
are less biased than the Yule-Walker estimates. In this paper an alternative to the 
Burg estimates will be introduced. In the proposed method the true correlation 
matrix of the lagged variables is calculated for the lags 1,2,.... From each 
correlation matrix the corresponding partial autocorrelation can be calculated. 
These, on the other hand, will lead to autocorrelation estimates with improved 
statistical properties. From the autocorrelation estimates the autoregressive 
parameters can be estimated by solving the Yule-Walker equations. The statistical 
properties of the new estimates are studied by simulations. © 1988 Academic Press, inc. 

1. INTRODUCTION 

Assume that the observed time series Xl9 X2,...,Xn is generated by a 
univariate autoregressive process of order /?, i.e., 

Χ,-μ= Σ Φά*,-Μ-μ) = αη (1) 
k = \ 

where {a,} is a normal white noise process with mean zero and variance 
a1. Besides σ2 the model (1) also contains the parameters φΐ9 φ2,..., φρ and 
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μ to be estimated on the basis of the observations. It is assumed that (1) 
represents a stationary model. This requirement is satisfied if the roots of 
the equation 

1 - £ φ>Β* = 0 (2) 
k= 1 

lie outside the unit circle. In a stationary case μ = £{ΑΓ,}, i.e., the mean of 

Especially in the past solving the Yule-Walker equations has been a 
popular means of estimating autoregressive models. The resulting 
Yule-Walker estimates φΐ9 φ2,...,φρ possess some nice properties. First, 
they are obtained by solving a system of linear equations. Second, the 
Yule-Walker estimates lead to stationary models, i.e., 

1 - Σ fk&^O for \B\^\ 
k= 1 

(see Anderson and Mentz [2]). Third, the Yule-Walker estimates can be 
calculated iteratively for p = 1, 2,.... 

In this paper we will introduce a new method of estimating univariate 
autoregressive models. The first step in the new method is to estimate par-
tial autocorrelations which will lead to autocorrelation estimates with 
improved statistical properties compared with the estimates calculated in 
ordinary fashion. Finally the autocorrelation estimates are used to solve the 
Yule-Walker equations to produce the estimates for the autoregressive 
parameters. Also in the Burg method to estimate autoregressive models the 
first step is to estimate partial autocorrelations. Here we, however, use a 
different method to estimate partial autocorrelations, or at least we will 
give a different interpretation to the estimates of partial autocorrelation 
estimates. 

Tjostheim and Paulsen [10] study the bias of Yule-Walker and least 
squares estimates for univariate and multivariate autoregressive processes. 
They also give explicit formulae for the large sample bias of Yule-Walker 
estimates in the scalar first- and second-order processes and for least 
squares estimates in the general case. Lysne and Tjostheim [7] show that 
autoregressive spectral analysis depends on the method used for estimating 
the autoregressive parameters. Because of the large bias in the Yule-Walker 
estimates Lysne and Tjostheim [7] state that least squares estimates 
should be preferred to the Yule-Walker estimates. 

The paper is organized as follows. In Section 2 we will demonstrate the 
statistical properties of the Yule-Walker estimates for the parameters of the 
autoregressive parameters using simulated time series from an AR(4) 
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model as an example. In Section 3 we will discuss the Yule-Walker and 
Burg methods of estimating autoregressive models. In Section 4 we will 
introduce improved methods to estimate partial autocorrelations, 
autocorrelation, and autoregressive parameters. We will also discuss the 
relation of the method to the method of Burg. We will also describe the 
performance of the method by using simulations. Finally in Section 5, we 
will offer some concluding remarks. 

2. SIMULATION RESULTS 

In practice, the above properties of the Yule-Walker estimates are, of 
course, important. Besides these, even more important, however, is that the 
statistical properties of the autoregressive estimates should be good. In 
spite of the fact that the Yule-Walker estimates are asymptotically 
equivalent with the maximum likelihood estimates, in finite samples the 
performance of the Yule-Walker estimates can be really poor. This can be 
seen, for example, using the univariate AR(4) model 

Xt = 2.7607*,_, -3.8106Χ,_2 +2.6535*,_3 -0 .9238*,_ 4 + a„ (3) 

where {at} is a normal white noise process with mean zero and σ2 as its 
variance. 

The model (3) was considered by Beamish and Priestley [4] , Priestley 
[9, p. 609], as well as Newton and Pagano [8] to illustrate the biasedness 
of the univariate Yule-Walker estimates. 

In order to see how poor the statistical properties the Yule-Walker 
estimates can have in finite samples, we generated 1000 time series of length 
50, 100, and 200 from (3). For each sample size we calculated the means 
and standard deviations of the estimates over 1000 realizations. For com-
parative purposes we calculated the same statistics also for the Burg's 
estimates (see Burg [6] , Ulrych and Bishop [11], Anderson [1] and 
Newton and Pagano [8] . The results are given in Table I. 

In Table I we see that the Yule-Walker estimates are extremely biased. 
We can see that the bias of these estimates is reduced only marginally as n 
increases from 50 to 200. A striking feature is that the variances of the 
Yule-Walker estimates become larger as n increase from 50 to 200. In this 
study we did not, however, go beyond the sample size 200 to see how long 
time series would be needed in order that the observed variances of the 
Yule-Walker estimates would begin to decrease. On the other hand, the 
Burg estimates behave as would be expected on the basis of the asymptotic 
theory for the maximum likelihood estimates. 
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TABLE I 

Means and Standard Deviations of the Yule-Walker (YW) and Burg Estimates over 1000 
Realizations of Length 50, 100, and 200 from the AR(4) Model (3) 

Par 

« = 50 

2.7607 
-3.8106 

2.6535 
-0.9238 

«=100 

2.7607 
-3.8106 

2.6535 
-0.9238 

« = 200 

2.7607 
-3.8106 

2.6535 
-0.9238 

Means 

YW 

1.3164 
-0.9206 

0.0538 
-0.0662 

1.5041 
-1.1888 

0.2328 
-0.0803 

1.7179 
-1.5508 

0.5196 
-0.1441 

Burg 

2.7278 
-3.7008 

2.5359 
-0.8646 

2.7424 
-3.7521 

2.5927 
-0.8940 

2.7474 
-3.7702 

2.6116 
-0.9040 

Standard deviations 

YW 

0.3183 
0.4681 
0.3537 
0.0995 

0.3417 
0.5938 
0.4967 
0.1461 

0.3573 
0.6909 
0.6161 
0.1996 

Burg 

0.0836 
0.1809 
0.1757 
0.0806 

0.0518 
0.1206 
0.1169 
0.0533 

0.0345 
0.0781 
0.0741 
0.0311 

3. THE YULE-WALKER AND BURG METHODS 

In the univariate case the partial autocorrelation (j>kk at lag k, k — 1, 2,..., 
is defined as an ordinary partial correlation between the variables X, and 
Xt+k given X, + i,..., Xl + k-i. The partial autocorrelations can be obtained 
by solving the Yule-Walker equations 

7(0) 

7(1) 
7Ü) 
7(0) 

y(k-l) y(k-2) 

y(*-Dl 
y(k-2) 

7(0) 

ΓΜ 
^*2 

Φ/ck 

= 

[7(1)] 
7(2) 

y(k)\ 

(4) 

with respect to <f>kk, k-\,2,.... In (4) we have written 

1^) = Ε{(Χ,-μ)(Χι + , - μ ) } , 
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for the autoco variance of {X,} at lag A:. In univariate case we can replace 
the autocovariances y(k) in (4) by the corresponding autocorrelations 

p(k) = 
y(k) 
y(0Y 

k = 0, 1,.... Therefore if the autocovariances y(k) are known, by solving (4) 
for k= 1, 2,..., p the partial autocorrelations </>kk can be obtained. On the 
other hand, if the partial correlations </>kk are known, we can calculate p(k). 

Using the autocorrelations the solutions of Eq. (4) can be expressed as 
the ratio of two determinants as 

(5) 

for k = 1, 2,..., where 

Pt = 

P(0) 

P(l) 
P(l) 
P(0) 

p(k-l) p(k-2) 

Pik-I) 
p(k-2) 

MO) 

The matrix Pkk is obtained from Pk by replacing the last column of Pk 

by the vector pk where pj = (p(l), p(l),..., p(k)). Here the superscript T 
refers to the transpose of a matrix. Therefore, for an example we have 

^ n = P ( l ) , Φι 
P(2)-P2(l) 

1 >2(1) 

On the other hand, 

ρ(\) = φη, ρ(2) = ρ2(1) + φ22(1-ρ2(\)). 

For example, from (5) it is easy to see that an autocorrelation p(j) can 
be calculated from φη and p(l),..., p(j— 1); i.e., the autocorrelations can be 
calculated recursively from the partial autocorrelations. On the other hand, 
the partial autocorrelations can also be calculated recursively from the 
autocorrelations (see, e.g., Box and Jenkins [5, pp. 82-84]). 

In practice the autocovariances y(h) and autocorrelations p(h) are 
usually estimated by the quantities 

\ " c(h) 
(6) 
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A = 0, 1, 2,.... Using the definition c(-h) = c{h\ h =1,2, . . . , the auto-
covariances and autocorrelation can be estimated also at negative lags. 

If we replace y(h) by c(h) or r(h) in (4) we can obtain the estimates $kk9 

k= 1, 2,... for the partial autocorrelations. The solutions $ku ..., $kk of (4) 
are then called the Yule-Walker estimates for the parameters of an 
autoregressive model of order k. As we have seen above, in finite samples 
the statistical properties of the Yule-Walker estimates can be really poor. It 
would be surprising if the Yule-Walker estimates would not suffer from the 
corresponding weaknesses in the multivariate case. 

The method of Burg provides us with an alternative approach to 
autoregressive estimation. In the estimation method developed by Burg, 
partial autocorrelations are first obtained. These are then transformed into 
autoregressive parameter estimates. It can be seen that the Burg estimates 
are calculated by applying the definition of partial correlations. This means 
that in order to obtain an estimate for the partial autocorrelation at lag A, 
both the forward autoregression 

Xt=ochlXt_i + · · · + aM_1JT,_A + 1 + ε„ (7) 

and the backward autoregression 

* , - Ä = ^ i * , - i + " - + / W i * r - A + i + ^ (8) 

are estimated and the corresponding residual series ε, and St are calculated. 
By definition, the correlation between ε, and St is then the partial 
autocorrelation estimate at lag h. 

In the univariate case the coefficients for forward and backward are, 
however, theoretically the same, i.e., oihj,= ßhj, j= 1,..., h— 1. Therefore, 
only one-way autoregressions need to be estimated. 

Suppose that the estimates άΑ1,..., <xhth_l are available. Then we can 
calculate the forward residuals 

êt=Xt-âhlXt_l &Kh-\Xt-h (9) 

and the bachward residuals 

St=Xt_h-dhlXt_l &h.h-iXt-h- (1 0) 

The correlation estimate calculated from ε, and St then gives an estimate 
</>hh for φΗΗ. If we originally have the observations Xl9...9 Xn, we can 
calculate the forward residuals έ, for ί = Λ+1,..., η and the backward 
residuals S, for / = 1,..., n — h. For this reason only n — 2h pairs (έ,, <£,), / = 
h + 1,..., n — h, are available for the estimation of the correlation coefficient. 
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In the method of Burg <j>hh is obtained by applying the formula 

(11) 

In (11) the sums are formed over those fs for which both the forward and 
backward residuals are available, i.e., for / = A + 1,..., n — A. If n — 2h is 
large, then we have approximately 

Σ«?=Σ#> 

which implies that (j>hh defined by (11) is approximately the ordinary 
Pearson's product moment correlation between êt and St. In the method of 
Burg the partial correlation estimates can be calculated recursively for 
A =1,2, . . . . 

4. IMPROVED ESTIMATION OF AUTOREGRESSIONS 

In the following we will consider the estimation method of an 
autoregressive model which is similar to the method of Burg in the sense 
that at the first stage the partial autocorrelations are estimated. The second 
stage then produces the autocorrelation and autoregressive estimates. As, 
e.g., Newton and Pagano [8] demonstrates, the poor statistical properties 
of the Yule-Walker estimates are caused by the way the end effects are 
treated in the estimation of the autocovariances. In what follows we will 
provide an alternative method to handle the problem. The method can also 
be applied in the estimation of multivariate autoregressions. 

The first step in the proposed method is to estimate the partial 
correlations <j>hh. To calculate <jihh, A =1,2, . . . , we form the ordinary 
correlation matrix for the variables Xn Xt_,,..., Xt_h. Because the variable 
Xt_h has defined observed values for />A, we can calculate the 
correlations using the the observations for / = Λ+ 1,..., n. Let it be men-
tioned that the resulting A + 1 x A 4-1 matrix is not a Toeplitz matrix. Of 
course, the theoretical correlation matrix of the variables Xn Xt_u ..., Xt_h 

has the Toeplitz property. Let us denote the estimated correlation matrix 
by Rh. It can be written in the form 

RH = 

r(0, 0) 

'(1,0) 

r(h, 0) 

r(0, 1) · 

r(U) · 

r(h,\) ■ 

■ r(0,A) 
• r(l,h) 

■ r(h,h) 



IMPROVED ESTIMATION METHOD 429 

The correlations r(i9 j) are the ordinary correlation coefficients calculated 
from the formula 

V c('> 0 C U J) 

where 

1 n-h 

c^ÏÏ = -^Th Σ ( ^ + Α - / - ^ ( ο ) ( ^ + Α - > - * ω ) (1 4) 

and 

*(') = ίΖΑ Σ**. + * - / · ( 15 ) 

From the correlation matrix ÄA we then calculate the ordinary partial 
autocorrelation $hh between the variables Xt and Xt-h given 
Xt_i9...9Xt_h + l (see, e.g., Anderson [3, pp. 125-130]. These partial 
correlations are denoted here by <j>hh. They are estimates for the true partial 
autocorrelations of the process {Xt}- Therefore </>hh are also called 
estimated partial autocorrelations at lag h. In this way we can calculate the 
partial autocorrelation estimates $hh9 h =1,2, . . . , p . 

It is clear that the autocovariance estimators c(h) and c(i9 j) defined 
correspondingly by (6) and (14), have the same asymptotic distributions. 
Therefore the estimated partial autocorrelations φΗΗ as defined here 
have the same asymptotic distributions as the partial autocorrelations 
considered by Box and Jenkins (see [5, p. 65]). 

Using the estimated partial autocorrelations we can calculate the 
corresponding autocorrelation estimates r(h) using the relation (5) such 
that we replace </>hh in (5) by $hh and solve the resulting equation with 
respect to p(A), h = 1, 2,.... The solution will provide us with an alternative 
autocorrelation estimate r(h). As indicated above, the partial 
autocorrelations φη, φ22>-> ΦΡΡ

 c a n a l s o be transformed into the 
autoregressive parameter estimates $l9 φ2,...,φρ. These are the final 
autoregressive parameter estimates. In the following this estimation method 
is called the first modified Yule-Walker method (FMYW). 

The proposed autoregressive estimation method is based on the true 
covariances c(i, j) defined in (14). These covariances are calculated from 
the centered data such that for centering actual means x(i) are used. An 
alternative and natural way to center the data is to use the mean x of all 
the observations Xi9 Xl9...9Xn9 instead of Jc(/). In this way we can also 
obtain autoregressive estimates which, in small samples, can slightly differ 
from FMYW estimates. The latter autoregressive estimates will be called 

(13) 
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the second modified Yule-Walker estimates, shortened as SMYW estimates 
in the following. 

It is worth mentioning that as a biproduct of our method we also obtain 
an alternative autocorrelation function estimate r(A), A= 1, 2,.... From r(h) 
we can calculate the corresponding autocovariance estimators c(h) = 
c(0) r{h\ where 

1 c:\2 c(0) = - £ (Xt-x) 

is the usual formula for the variance of the observed time series. 
It is clear that the proposed method, similarily to the method of Burg, 

leads to the estimated stationary models. This is equivalent to the property 
that the estimated autocorrelation and autocovariance sequences {r(h)} 
and {c(h)} are positive semidefinite. 

To illustrate the performance of the proposed two estimation methods 
we generated 1000 time series of length 50, 100, and 200 from the model 
(3). For each time series an AR(4) model was estimated using both of the 
proposed methods. Similarly as for Table II we can calculated the means 

TABLE II 

Means and Standard Deviations of the FMYW and SMYW Estimates over 

Par 

« = 50 

2.7607 
-3.8106 

2.6535 
-0.9238 

«=100 

2.7607 
-3.8106 

2.6535 
-0.9238 

« = 200 

2.7607 
-3.8106 

2.6535 
-0.9238 

of Length 50, 100, 

Means 

FMYW 

2.7176 
-3.6971 

2.5413 
-0.8756 

2.7412 
-3.7527 

2.5946 
-0.8962 

2.7470 
-3.7701 

2.6120 
-0.9045 

and 200 from the AR(4) Model (3) 

SMYW 

2.7278 
-3.6995 

2.5333 
-0.8629 

2.7427 
-3.7527 

2.5930 
-0.8940 

2.7474 
-3.7702 

2.6117 
-0.9041 

1000 Realizations 

Standard deviations 

FMYW 

0.0808 
0.1814 
0.1778 
0.0812 

0.0503 
0.1180 
0.1147 
0.0525 

0.0344 
0.0778 
0.0736 
0.0307 

SMYW 

0.0823 
0.1809 
0.1776 
0.0830 

0.0504 
0.1178 
0.1146 
0.0526 

0.0343 
0.0778 
0.0737 
0.0307 
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TABLE III 

The Estimation Results for Four Realizations of Length 50 Generated from the 
AR(4) Model (3) 

Par 

FMYW 

2.7607 
-3.8106 

2.6535 
-0.9238 

SMYW 

2.7607 
-3.8106 

2.6535 
-0.9238 

Burg 

2.7607 
-3.8106 

2.6535 
-0.9238 

1 

2.7465 
-3.8058 

2.6760 
-0.9693 

2.7434 
-3.8323 

2.6973 
-0.9651 

2.7250 
-3.8058 

2.6750 
-0.9621 

2 

2.6927 
-3.6734 

2.5354 
-0.8906 

2.6962 
-3.6689 

2.5248 
-0.8807 

2.7024 
-3.6865 

2.5429 
-0.8887 

Realization 

3 

2.6709 
-3.5385 

2.3406 
-0.7711 

2.6919 
-3.5303 

2.3059 
-0.7323 

2.6206 
-3.4015 

2.1966 
-0.6986 

4 

2.7058 
-3.7162 

2.5735 
-0.9012 

2.7034 
-3.7107 

2.5679 
-0.8988 

2.8264 
-3.8763 

2.6808 
-0.8959 

and standard deviations of the parameter estimates FMYW and SMYW 
over 1000 replications for each sample size. The statistics given in both 
tables were calculated using the same time series for each sample size. 

As we can see, the means and the standard errors for the two estimation 
methods are practically the same. Furthermore, when we compare the 
numbers in Table I and Table II, we observe that the Burg method, 
FMYW and SMYW produce estimates whose means and standard 
deviations are practically the same. Therefore, and because the SMYW 
estimates are easier to calculate than the FMYW estimates, we recommend 
the usage of the SMYW method. 

In order to illustrate further the three estimation methods, in Table III 
we give the estimation results for 5 realizations of length 50, generated from 
the model (3). Also these results show that all of the methods produce 
similar estimates. 

5. CONCLUDING REMARKS 

In this paper we have introduced a new method to estimate univariate 
autoregressive models. As the first step of the method, partial 



432 TARMO M. PUKKILA 

autocorrelations are estimated. The partial autocorrelations lead to 
improved autocorrelation estimates. These can be used to obtain 
autoregressive parameter estimates by solving the Yule-Walker equations. 
Simulation results show that the proposed methods leads to autoregressive 
estimates which have similar statistical properties as the Burg estimates of 
the autoregressive parameters. 

One of the striking features observed in the simulations carried out for 
this paper was that the variance of the Yule-Walker estimates for the 
autoregressive parameters increased as the number of observations 
increased from 50 to 200 in the case of an AR(4) model considered also by 
Beamish and Priestley [4] . Of course, the consistency of the Yule-Walker 
estimates implies that the variances of the estimates finally approach zero, 
but for the model considered it was observed to be the exception rather 
than the rule. In applications one has often to rely on asymptotic results. 
For the model studied, asymptotics do not, however, work, in spite of the 
fact that the number of observations is as high as 200. 

How can we explain the increase of variances of the Yule-Walker 
estimates in the case of the model studied in this paper? An explanation 
might be due to the large bias of the estimates. When the number of obser-
vations is increased, estimates closer to the true parameters are obtained 
more often. This causes increased variability in the parameters and this 
increase is faster than the bias reduction in the parameter estimates. Of 
course, these considerations are only valid for the AR(4) model considered 
in the paper and for the number of observations varrying between 50 and 
200. 

The next step of our study in the future will be the generalization of the 
method to cover also multivariate time series. To estimate the multivariate 
partial autocorrelation matrices will be a straightforward generalization of 
the ideas presented in the paper. 
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Paradoxes in Conditional Probability 

M. M. RAO 

University of California, Riverside 

It is shown that paradoxes arise in conditional probability calculations, due to 
incomplete specification of the problem at hand. This is illustrated with the Borel 
and the Kac-Slepian type paradoxes. These are significant in applications including 
Bayesian inference. Also Rényi's axiomatic setup does not resolve them. An open 
problem on calculation of conditional probabilities in the continuous case is 
n o t e d . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

In presenting his famous twenty-three problems in 1900, Hubert [4] 
begins his sixth problem as: "the investigations on the foundation of 
geometry suggest the problem: To treat in the same manner, by means of 
axioms, those physical sciences in which mathematics plays an important 
part; in the first rank are the theory of probabilities and mechanics." At that 
time, Hubert was influenced by a published lecture given for high school 
teachers by Bohlmann, containing a brief account of the axioms of 
probability which clearly were not satisfactory. In presenting a solution of 
this sixth problem as it concerns probability theory, Kolmogorov went 
further in 1933 and included a general definition of conditional 
probability [6] . The latter concept was, until then, used only for discrete 
random variables and probability spaces. However, no systematic method 
of calculating these general conditional probabilities was given in [6] . In 
some of its practical applications, ad hoc methods of calculation usually 
resulted in different answers for the same problem, giving rise to paradoxes. 
These difficulties have not been adequately addressed in the literature and 
are skipped often by indicating heuristic advice. 

The purpose of this article is to discuss these troubles in some detail by 
using an analog of the Borel and the Kac-Slepian paradoxes, and a 
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"strange" identity for the (conditional) expectations. It will be shown that, 
except in the elementary case of discrete probability spaces, the problem of 
finding the conditional probability or expectation given a condition or 
hypothesis on a set of negligible probability is not well posed for the 
traditional calculations using the L'Hôpital type approximation procedure, 
and to make it unique additional restricts that are inherent in the 
Kolmogorov model should be specified. Thus after presenting a precise 
framework (to avoid ambiguities) for Kolmogorov's general definition in 
the next section, integration relative to the conditional probability measure 
and a resulting difficulty will be sketched in Section 3. The paradoxes men-
tioned above are analyzed in Section 4 and the final section contains some 
complements on a related problem regarding a computational method to 
obtain conditional probabilities unambiguously. Thus although known 
examples are used to illustrate the problems, the main focus of this paper is 
to point out the difficulty, to present a solution, and to bring the just-noted 
(unavailable) nontrivial constructive mathematical procedure to the user's 
attention. 

2. THE FRAMEWORK 

To state the questions precisely, let (Ω, Σ, P) be a probability space. 
Thus Ω is a point set representing all possible outcomes of an experiment, 
Σ is a (j-algebra containing all the events of interest to the experimenter, 
and P is a probability function on Σ describing the experiment. Then a 
random variable (r.v.) is a mapping/: ß -* R such that f~i(I)eΣ for each 
interval la R. The expectation of/, denoted E(f), is 

E(f)=\ fdP, (1) 

and E(f) is a Lebesgue integral so that E(f) exists iff E(\f\)< oo. For any 
event A (i.e., A e Σ), P(A ) > 0, the conditional probability of an event B 
given A, denoted P(B\A), is defined as 

PA(B) = P(B\A) = P(BnA)/P(A). (2) 

Clearly P( · | A ) : Σ -► R + is a probability, and then the conditional expec-
tation off given A becomes 

£,(/) = f / ^ ~ i / ^ (3) 
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whenever E(f) exists. Two events C, D are independent if P(CnD) = 
P(C) P(D\ so that in general PA() and EA() vary with A. 

Both (2) and (3) are easily extended to countable partitions 
0>={Ai,i'£l} of events of Ω, i.e., if P{Ai)>0, Q = [)°°=lAh AinAj=0i 

ίφ). Indeed for each r.v. / with |£(/) |<oo, the conditional expectation 
relative to ^ is 

CO 

£ " ( / ) = Σ * * ( / ) · JU (4) 

and then the conditional probability is given by 
CO 

Ρ*(Β) = Ε*{χΒ)=Σ PASWXA,, Bel. (5) 
n = 1 

In applications, frequently one has to apply these formulas to events of the 
form: A = {ω: g(œ) = y}9 B = {œ:f(œ)<x} for r.v.'s/, g. If Αφ0>, then 
it is necessary to extend (5). For this, it is useful to express (4) and (5) 
alternately. If E(f) exists, for any ,4ealg(^), one has, on noting that the 
event A<={JieJAh J<=N (natural numbers), 

f E*(f) dP=\ Σ EAi(f) - lAi dP, by (4), 
A A i= i 

= l f fdP=\ fdP. (6) 

Taking f=xB one gets a similar set of equations for P^: 

J P*(B)dP = ^ xBdP = P(AnB), BeI,Ae0>. (7) 

If P(A) = 0, then PA(·) in (2) is undefined. Moreover, if έ% is the smallest 
σ-algebra containing such a ^ , then (4) and (5) easily extend. But if 3& c Σ 
is a more general σ-algebra, this constructuve procedure fails. However, (6) 
and (7) show how E*, Pm can still be defined, but with a sophisticated 
idea. If vf: A\-+ \Af dP, Ae@, then the P-integrability of / implies vf is 
σ-additive on $ and is absolutely continuous relative to P#9 the restriction 
of P to J·, still a probability. Hence by the Radon-Nikodym theorem there 
is a P^-unique function /, measurable relative to ^ , such that 

Vj{A)=\jdPM, Ae@. (8) 
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Then the mapping F*:/h->/is well defined on Ll(Q, Σ9 P)9 is linear, and 
has range Ll(Q, ®, ΡΆ\ Em and Pm coincide with Ef and P* of (4) and 
(5) on &>9 and P*(B) is Em(xB\ Bel. These are called the (abstract) con-
ditional expectation and probability, respectively, following [6]. Since they 
are only P^-unique, one chooses a member of the equivalence class and 
calls it a version. Note that in contrast to (2) and (3), the general theory 
with (8) first yields the conditional expectation from which the conditional 
probability is obtained. Further the constructions of Em{f) and PM{B\ 
given by (8), are not easy. Ad hoc methods to obtain them lead to 
paradoxes, as illustrated below. Also it is seen that (1), (6), and (8) imply 
the identity 

£(£"(/)) = E(f)9 fe Ll(Q9 Σ9 P). (9) 

Several properties of the operator Ea may be found in [7, 10], and an 
extended analysis of Em and P® is in [8]. 

3. CONDITIONAL PROBABILITY AS AN INTEGRATOR 

Here the standard practice of integrating relative to conditional 
probability (and their "densities") will be discussed and some "side effects" 
analyzed. Thus let X9 Y be a pair of r.v.'s on (Ω, Σ, P)9 with an absolutely 
continuous distribution F. Let its density be/V, r , so that 

Fx,Y(x9y) = P({œ:X(œ)<x9 Y(œ)<y})9 {x9y)eUxU9 (10) 

and/*- Y(x9 y) = (d2Fx Y/dxdy)(x, y). The marginal distributions are then 
given by Fx{x) = X\my^a,FXY{x9y)9 FY(y) = limy^00 FXY(x, y)9 which 
have densities fX9 fY (say). A common problem in applications, with 
such r.v.'s, is to find explicitly P(B\A)9 where B= {ω: Χ(ω)<χ} and 
A = {ω: Υ(ω) = y}. Since P(A) = 09 formula (2) is not applicable. To 
simplify matters, let Ω = R2, Σ — the smallest σ-algebra containing 
all rectangles of U2

9 X, Y:U2-+U be functions such that X(x9 y) = x, 
Y(x,y) = y> {x,y)eQ9 and P(E) = \\Ef(x9y)dxdy9 where / is a 
probability density. It is verfied that X9 Y are coordinate functions, 
Fx y(x9 y) = $x_O0j

y_a0 f(u9v)dv du9 defines FXY to be the distribution of 
(X9Y) in (10), w\hfx,Y=ffx'-x^\Mf(x,y)dy9fy\yy->\uf(x9y)dx. 
Let us also define 

fx,r(x,y)/fr(y\ if / i O ) * 0 , 
δ>ο9 if My) = o. (11 ) 



438 M. M. RAO 

Then j R fxl y(x \ y)dx= 1, fxl Y(-\ y) is termed a conditional density of X 
given Y = y. For definiteness take <5 = 0 hereafter. It is not obvious that this 
new "definition" giving the conditional probability P(X<x\ Y — y) = 
j^oo fX\ Y(u I y) du, satisfies (7). It must be shown that this does imply (7) 
so that there is no conflict between the definition of P(X<x\ Y= y) using 
(11) and the general Kolmogorov concept. 

For this verification, one takes 31 as the σ-algebra generated by 
(= smallest σ-algebra containing) the "cylinders" or strips Rx/ , / c R 
being an interval. Let äS2 be the σ-algebra generated by the intervals of IR, 
and π,·: IR2 -> (R be the ith (i = 1, 2) coordinate projection. Then it follows 
that & = π2

ι(@2)<=:Σ, and ^ is also the σ-algebra generated by Y, i.e., 
by {Y~l(I): IcU intervals}. Observe that ^ or âS2 is n o t generated by 
countable partitions of IR2 or IR. Now define P^ by the equation: 

Ρ*{Ε){ω)=\ fxlY(u\y)du=\ fxiY(u\n2(co)) du, (12) 

for all ω = (x, y) e Ω, (w, y)eE = IxxI2,& rectangle of (R2. Standard results 
in real analysis show that /**(·)(ω) is σ-additive on the algebra of all such 
rectangles, Ρά*(Μ2)(ω)= 1, and has a unique extension to be a probability 
on Σ, for each a>eQ = U2. It is also measurable relative to ^ , and a 
computation (using Tonelli's theorem) shows that for any A e$, 

f P*(E)(ù))dP(co) = P(nl(A)xn2(E)) = P(AnE). (13) 

(The omitted detail can be found, e.g., in [10, p. 118].) Thus P® satisfies 
(7). Consequently by the essential uniqueness, P^ is a version of the 
(image) conditional probability, thereby showing that the concrete 
definition provided by (11) and the abstract version given by Kolmogorov 
agree on their image space. Note that this verification, usually omitted, is 
not entirely trivial; but it becomes necessary in order to use the abstract 
theory. 

Since Ρ®(Ε){ω) = Ε3*(χΕ){ω\ Eqs. (11 )—( 13) imply, first for simple and 
then for general r.v.'s X^O, the representation, 

Ε"(Χ){ω)= f Χ{ω')Ρ*{άω')(ω)= f xfX{y(x \ n2(co))dx, (14) 

for all ωβΩ, with a/ = (x, y)eQ, Χ(ω') = χ. This equation is usually 
expressed symbolically as 

E(X\Y)(y) = E(X\Y=y)=\ xfx{ Y(x \ y) dx. (15) 
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In this form, the integral is defined for all random variables for which (15) 
is meaninful. On the other hand, it is natural to ask whether an expression 
E(X | Y)() of (15) always represents a conditional expectation of X given 
Y. A negative answer is provided by the following: 

EXAMPLE. Let (Î2, 27, P) be as defined for (11 ), and let fx Y be 

y{\ +x2)}, — oc < x < oo, 0< y< oo, 
(16) 

otherwise. 

Then fY(y) = {ny)-l/2e~y
9 y>09 and =0 for y^O. It follows from (11) 

that fX\Y(x\ y) = (y/n)~i/2 exp(—x2y\ for - o o < x < o o , y>0 and =0 
elsewhere. Hence (12) holds and fx{y is a conditional density of X given 
Y=y. It results from (15) that E(X"\Y)(y) = 0 for all n = 2m-l, m ^ l , 
and all y > 0. If E{Xn \ Y) is the conditional expectation of X" given Y, then 
E{E{Xn | Y)) = E(0) = 0, where ^ = σ-algebra generated by Y. However, by 
(9) this must also equal E(Xn) which does not exist for any «> 1, since 
E(X") = $ßx"fX\y(x,y)dxdy = (l/n)lu(x

n/(l+x2))dx. Thus (9) is not 
valid! This example is essentially given in [3]. (Here m, n are integers.) 

What has gone wrong here? A direct calculation shows that E(X" \ Y) 
exists for all n ̂  1, while for no n ̂  1, E(Xn) exists on (Ω, Σ, P). Here the 
set function v ^ ( ) in (8) is not σ-additive for n = 2m— 1, w ^ l , and the 
Radon-Nikodym theorem is not applicable. Since the latter is the basis for 
Kolmogorov's generalization from which the identity (9) is deduced, it is 
not valid in this case. Note that if n = 2m, m^ 1, then v ^ ( ) is σ-additive 
and nonnegative for which (8) is well defined and (9) holds with both sides 
becoming +oo. It follows that (9) is true for all r.v.'s / for which the 
positive or negative part of/is integrable. 

At this point another remark is in order. In the special case considered 
for (11), /**(·)(·) defined by (12) and verified by (13) has the following 
two properties: (ί)Ρ^(·)(ω) is an honest probability measure, ωεΩ, and 
(ii) Ρ^(Ε)() is J'-measurable for each ΕεΣ. These two properties 
(especially (i)) need not hold for /**, given by (8) abstractly. If they hold, 
P*(-)(-) is termed regular. Since by definition PM(A) = Ε®(χΑ\ ΑΕΣ, one 
can extend this by linearity of Em to express 

W ) = f f(a>)P*(dco\ (17) 

first for step functions and then for all bounded measurable (for Σ) 
functions using a standard argument. The appropriate procedure here turns 
out to be the Dunford-Schwartz integral. This coincides with the Lebesgue 

1 ; 
-exp{ — 

Ό, 
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integral iff P® is regular (cf., e.g., [13, Theorem 2.3.11). It follows that the 
conditional expectation cannot always be evaluated by an elementary 
procedure such as that implied by (4)-(6). Further formula (2) when 
P(A) = 0, using some form of the L'Hôpital rule to calculate P(-\ A), leads 
to paradoxes, as is shown by the examples in the next section. 

It should be noted, however, that there are several important 
applications in which P® is regular. If, for instance, X, Y are random 
variables (or vectors) which are represent able as coordinate functions 
(extending the case of the above example of (16)) and 01 is the σ-algebra 
generated by Y, then Pm( · ) is regular. A general discussion of this non-
trivial problem is given in [7, p. 360ff] and in more detail in [10, p. 119ff]. 

4. Two TYPES OF PARADOXES 

If X, Y are a pair of r.v.'s on a nonatomic (or diffuse) probability space 
(Ω, Σ, P) with an absolutely continuous distribution, having a density fx r , 
then the work in (11)-(15) shows that one can calculate the following 
conditional probability: 

PlX<x\A] = [ f(u\y)du, A = lY=yl (18) 
J — oo 

Also writing the left side as P(B\y), B= [Ar<;c], it represents a regular 
conditional probability and satisfies the system of Eqs. (13). However, 
P(A) = 0 now and P(B\y) is not directly obtainable from formula (2). It 
will now be shown, by two types of examples, that P(B\ y) is not uniquely 
determined with computations often used in applications, and the under-
lying difficulties will be exposed. 

(a) The Borel-type paradox. The problem here is analogous to 
that considered in [6, p. 51]. A simple but vivid case is detailed for 
computational clarity. Let X, Y be independent r.v.'s having a common 
distribution: 

HJr<x]-nr<x].{JL-""· m (.9, 

For any α>0, let Z=(X-a)/Y, so that - o o < Z < +oo. If aeR, and 
A = [Z = a], then P(A) = 0. The problem is to calculate P[Y<y\ A\ If 
fYZ and/ z are the density functions of (Y, Z) and Z, then using (19) and 
an elementary change of variables technique one finds 

.yexp[ — (yz + a) — >>], ^>0and yz> —a, 
0, otherwise, fy,z(y>z) = \ (20) 
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and fr, z ( y\ a. ) = / K z ( .y, a )//z(z ) becomes 

/ n z ( y | a ) - { o , otherwise, ( 2 1 ) 

and somewhat more complicated expression for a < 0. It is not needed here. 
Since clearly the event [Z = a] is the same, in this example, as the event 

[X-YoL = a\ the corresponding conditional density fY]U of (F, U) is 
obtained from a similar computation, after setting U = X- Y<x, as 

Λ.^.«)-{^ρ[-ΜΙ + β)-,]· j> > 0, ay + u > 0, 
otherwise, 

and 

/ r i t / ( j k ) = ( l + a ) e x p [ - ^ ( l + a ) ] , j ^ O . (22) 

It is now evident t h a t / y ( z a n d / y u / agree for almost no values of y (α^Ο 
being fixed). Consequently the conditional probabilities calculated with 
(18) using the densities (21) and (22) will be different. Thus a paradox has 
resulted! 

In [6, p. 51] discussing an analogous problem originally raised by 
Borel [1 ] , Kolmogorov makes a brief statement: "the concept of a con-
ditional probability with regard to an isolated given hypothesis whose 
probability equals zero is inadmissible." Since the above type calculations 
frequently occur in many probabilistic and statistical practices, with (11) 
playing a key role, a deeper reason should be found. Indeed, this paradox 
can be satisfactorily explained with the general theory as follows. 

The problem involved is the calculation of P(B\Aa) ( = £ (χ Β |Ζ = α)), 
Λ α = [ Ζ = α] with Ρ(ΑΛ) = 0. The desired value should be the same as 
Ε(χΒ\Ζ)((χ) of the general theory, by (15) and (18). Now for any integrable 
r.v. F, E(Y\Z) = g(Z) by the Doob-Dynkin lemma, where g:(R->IR is a 
(Borel) measurable function. This is essentially a standard fact (cf., e.g., [7, 
p. 343; or 10, Proposition4, p. 102]). Hence P(B\Z = OL) = g(a) if Υ=χΒ. 
Here the function g is uniquely defined by the conditioning σ-algebra @z of 
the r.v. Z, and hence by Z. For (21) and (22) two different σ-algebras 0&z 

and $υ are at work and Ααβ@υη0&ζ. Consequently P(B\Z = OL) and 
P(B\U = oc) are different. Thus in lieu of a paradox, the meaning of 
Kolmogorov's statement should be understood as follows. The problem of 
calculating P[B\Aa] with P(Aa) = 0 is not completely specified and so a 
unique solution is not possible; in other words, the problem is not well 
posed. Here the analogy with the classical Bertrand paradox is appropriate. 
On the latter, with an accompanying discussion regarding its incomplete 
specification, see [11, Section 3] . 
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(b) The Kac-Slepian paradox. Instead of evaluating P(B\A) by 
(18) when Ρ(Λ) = 0, one can use the formula (2) in which A is replaced by 
a sequence of events An [ A with P(An) > 0 for each n. Consequently, with a 
type of L'Hopital's rule, it is reasonable to define 

P{B\A) = limP[B\Am) = \hnP{"n/"\ Bel, (23) 

whenever this limit exists. It is not obvious, however, that this definition is 
not in conflict with the earlier accepted concept from [6] . The fact that 
P( · | A ) is σ-additive and hence is a probability is also nontrivial, but this 
follows from the classical Vitali-Hahn-Saks theorem [12, p. 176], and a 
more elementary proof is in [15, p. 190]. Since P(-\A) is thus a 
probability, for each bounded random variable X, let EA(X) = 
\ΩΧ(ω) P(dœ\A). This is well defined. To see that it satisfies the 
Kolmogorov definition in the sense that it is a version of a conditional 
expectation of X given A, let σ({Αη,η^1}) = @, the σ-algebra generated 
by the sets shown. Then & c 27, A e $, EAn(X) is given by (3), and for each 
Ano of the generators, with PAn{) for Ρ(· | An\ 

as n -+ oo, 

= \ EA(X)dP, (24) 

where the preceding fact that PA() is a probability and the Helly-Bray 
theorem are used (or one can reduce this to the Lebesgue bounded 
convergence through the Skorokhod mapping theorem, cf. [10, pp. 336 and 
218]). Since Am is a generator of ^ , (24) implies that EA(X) is a version of 
E®(X) as asserted. 

In this argument, it is evident that such an A may be determined by 
several sequences {An, n^\}. Then the corresponding 0& families are dif-
ferent. To illustrate this, consider a stationary ergodic Gaussian process 
{X{t\ t^O} with mean 0 and covariance function r ( ) . Suppose that the 
point wise derivative X'(t) of X(t) exists so that it is the slope of the 
continuous curve X( · ) at /. The existence of such a process follows from the 
general theory. The problem is to find the conditional probability (or 
density) of ^'(0) given that (^(0) = ^) for any fixed a. Since X' is obtained 
by a linear operation, it follows that ^'(0) is also normally distributed with 
mean 0, and variance σ2 (>0 , say). The event ^ = [^(0) = ^] has 

| XdP = \ EAn(X)dP = \ M XdpAdP, 
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probability 0, and let us use one of the approximations indicated above. 
Thus if δ > 0, and weR, consider 

A% = {ω : Χ,(ω) passes through the line y = a + mt 

of length δ for some t ̂  <5( 1 + m2) ~1/2} 

= {ω:ΛΓ
/(ω) = α + mi for some 0^/^<5(l + m2)~1/2}. 

Clearly A^\A for each m, as δ JO through a sequence. By (23), one has 

ΡΙΧ'(0)<χ\Α]=ητηΡΙΧ'(0)<χ\ΑΖΐ O^m^oo. (25) 
δΐο 

A standard but nontrivial argument shows (for a detailed computation, see, 
e.g., [10, p. 128]) that (25) becomes 

UmPlX'(0)<x\An=\ ' , ' ^ τ - τ - · (26) 
^io ' J J-ao2a2e-">2/2*2 + $>"_ne-v2/2°2dv 

From (25) and (26) one sees that P(X'(0)<x | A~\ is different for each 
value of 0 ̂  m ^ oo, and hence there are uncountably many answers to the 
problem at hand so that one has a "bad" paradox. There is no single 
correct answer here. This example is extracted from [5]. 

Letting m -* oo in (26), one gets the limit through the vertical line, called 
a "vertical window" (v.w.) solution, and letting m -► 0, one has a "horizon-
tal window" (h.w.) solution given respectively by 

P[jr(0)<jc|i4]v.w.= Γ β-ν2/2σ\2πσ2)-ι/2άν9 (27) 
• ' - o o 

PlX'(0)<x\A\.w=\X \v\e-^2a2(2a2)-ldv. (28) 
J - c o 

Here (27) corresponds to the fact that ^'(0) and X(0) are independent, and 
this explanation ignores part of the information that Α (̂0) is obtained as a 
limit of the quotients (X(t)-X(0))/t as / | 0 . On the other hand, the h.w. 
solution (28) seems to have some special relation to the "mean recurrence 
time" studied in statistical mechanics as noted in [5]. Considering other 
approximations of A (e.g., through circles with center (a, 0) and radius δ) 
still different values for the left side of (25) can be obtained. Thus the 
problem is again not well posed as in the last subsection. 

To understand the problem, consider the abstract theory. Since A™^> A™, 
for δ>δ\ let @m be the σ-algebra generated by {Λ^, δ>0}. Then 
AeÇ\m@m and P(A) = 0. The above computation merely shows that 
P^m(X'(0)<x)(a) gives different values for different m, since the 0$m vary 
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with m, and there is no paradox and for a unique solution the conditioning 
σ-algebra should be specified (but a lattice will not be sufficient as classical 
measure theory shows, cf., e.g. [12, p. 459]). 

There is no universal recipe to calculate ΡΛ( · ) for a given ^, in contrast 
with the elementary case. The work here naturally leads to differentiation 
theory and is relatively involved. For some discussion on the problem, see 
[10, p. 130]). 

5. ANOTHER APPROACH AND COMPLEMENTS 

An alternative method to the above difficulties is an axiomatic approach 
to conditional probability concept itself. This was proposed by Rényi [14] 
and his axioms may be stated as follows. If (ß, Σ) is a measurable space, 
$0αΣ is a nonempty class (not a ring), let Ρ(· \ -):Σχ@0-+ U+ be a 
mapping which satisfies the axioms: 

I. ΑΕΣ,ΒΕ^Ο^>0^Ρ(Α\Β)^19 P(B\B)=\, 

II. P(-1 B) is d-additive (i.e., a measure) for each 5 e J 0 , 

III. (a) AeZ, Ββ@=>Ρ(Α\Β) = Ρ(ΑηΒ\Β), and 

(b) ΑΕΣ, {B,C}Œ<%,AŒBŒC=>P(A\B)P(B\C) = P(A\C). 

The class {Ω, 27, ̂ 0 , Ρ(· | ·)} is then termed a conditional probability space 
(in the sense of Rényi). From axioms I and II, it follows that φφ@0. Also I 
and III imply a disintegration formula, i.e., {Bn;n^ 1} <= 0̂> disjoint, 
B=\J„B„, then for any C e ^ 0 , CaB and for each Ce@0, CczB, with 
CnBne&0 one has 

00 

P(A\C)= Σ P(A\Bk)P(Bk\C), A el. (29) 

It is clear that PA of (2) satisfies this system for each ΑβΣ with P(A)>0. 
Also Rényi [15, p. 40], and later Csâszàr [2, p. 351] in somewhat more 
generality, proved that if Qe@0, then P(A \ B) = P(A n B)/P(B) for a 
probability P() = P(\ Ω). A number of properties including a treatment 
of the Borel paradox for a class called "Cavalieri spaces" are in [14]. But 
the solution obtained in [14] differs from the earlier work and, as expec-
ted, depends on the method used. The problems of Kac-Slepian type seem 
harder to fit in this system. An enlargement of J^ t o t r e a t the latter type 
introduces the same difficulties as in the previous case. A further analysis 
with examples of this, and an elaboration of the preceding section, appears 
in Chapters III and IV of a monograph [13]. 

A consequence of this analysis in current practice should be recorded. 
Conditional probability theory is basic in such areas as Markov processes 
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and Bayesian inference. In the discrete case (i.e., for Markov chains) the 
original model (2) suffices. In the general case, one assumes that Pa(·)(·) is 
regular and develops the subject. The theory is valid with any fixed version. 
But again computational difficulties appear in the general case. The 
problem in the Bayesian case has the following structure. 

Let Xx,..., X„ be random variables with a joint distribution 
Fn(xi9..., xn | 0), depending on a parameter Θ. Suppose that Fn is either 
absolutely continuous, or discrete, with density fn(xl9 ..., χη\θ) relative to 
μ„, a Lebesgue or a counting measure, respectively. In the Bayesian 
analysis, Θ is a value of a random variable Θ. If the latter takes values in 
Ta Uk with density ξ(θ), then 

Η Μ ( ί ϊ 9 . . . 9 Ε Λ 9 θ ) = / Λ ( ί ΐ 9 . . . 9 ί Η \ θ ) ζ ( θ ) 

is the joint density of the vector (Xl9..., Χη9θ) in UnxT. Thus the con-
ditional density of Θ9 given Xx = JC, ,..., Xn = xn9 called the posterior density, 
is ξη(Θ | Χγ,..., xn) as in ( 11 ). Hence the posterior probability of Θ given the 
^-values is obtained as usual by the equation 

Ρ(Θ G A | Xx = Xl,..., Χη = χη)=\ ξη(θ I x,,..., *„) dB. (30) 

If @η = σ(Χί9...9 X„) and P*"(Ä)(xl9...9xn) is calculated with the 
Kolmogorov definition, where A = UnxA9 then our examples and analysis 
of the last sections show that this and the value given by (30) need not 
agree. The situation becomes more pronounced for stochastic processes. 
Since one accepts the Kolmogorov model in the current practice of these 
subjects, the correct value is P^n( ·)(·), and not necessarily that given by 
(30). There are several conditions on the basic probability model, derived 
from the classical differentiation theory, to calculate Pm*. Unfortunately, an 
efficient and implementable procedure to actually use in practical problems 
is still not available. The methods leading to (30), and the only other place 
[17, Chap. 9 ] ; cf., also [16], where such a problem is discussed prescribing 
a similar procedure, do not give a recipe for calculating the correct value. 
The L'Hôpital type ratio approximations are necessarily not well posed, 
yielding essentially always nonunique solutions. A rigorous analysis of this 
note and the exact reasons for the difficulties with the traditional 
calculations seem to be missing in the literature for too long. Further 
detail, discussion, and applications are included in [13], cited above. 
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This paper introduces a one-parameter bivariate family of distributions whose 
marginals are arbitrary and which include Fréchet bounds as well as the 
distribution corresponding to independent variables. Some geometrical and 
statistical properties on the stochastic dependence parameter are studied, 
considering this family as a member of Efron's curved exponential families of 
d i s t r i b u t i o n s . © 1988 Academic Press, Inc. 

1. INTRODUCTION 

Let X, Y be two random variables with continuous distribution functions 
F(x\ G(y). Let us consider the class & of all possible joint cdf's H for 
(x, n 

Hoeffding [11] and Fréchet [10] stated that the following extremal 
cdf's 

H+(x,y) = mm{F(x)9G(y)} 

H-(x9y) = max{F{x) + G(y)-l,0} 

define two elements of &* with associated extreme correlations, i.e., 
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p ^p^p + , where p , p, p+ are the correlation coefficients for H , //, 
/ / + , respectively. H~9 H

+ are called the Fréchet bounds. It is verified that 

H(x,y)^H(x,y)^H+(x,y) V ( X J ) G R 2 . 

Furthermore, if H=H~ then 

F(X) + G(Y)=l (a.s.), 

and if H = H+ then 

W = G(7) (a.s.). 

Many authors have been interested in constructing parametric families of 
cdf's with given marginals F and G. Fréchet states that every family should 
include H~ and H+. Kimeldorf and Sampson [12], proposed five 
desirable conditions that should be satisfied by any one-parameter family 
{Ηθ\ — 1 ^ 0 ^ + 1 } of cdf s with absolutely continuous marginals F and 
G. These conditions are: 

(a) Hl(x,y) = H+(x,y); 

(b) H0(x,y) = F(x)G(y); 

(c) Η_γ(χ,y) = H~(x,y) (i.e., the family contains the Fréchet 
bounds as well as the stochastic independence case); 

(d) Ηθ is continuous in Θ e [ — 1, 1 ] ; 

(e) Ηθ is absolutely continuous for fixed 0e ( — 1, 1). 

The uniform representation (Kimeldorf and Sampson [13]) and the 
notion of copula (Schweizer and Sklar [18]) provide the natural 
framework in which to study certain dependence properties of bivariate 
distributions and non-parametric measures of correlation. The uniform 
representatin or copula of Ηθ is 

£/„(!!, v) = H(F-\u\ G\v)) (II, v)e [0, l ] 2 , 

the marginal distributions of UH then being uniform on [0, 1]. 
Fréchet, Farlie, Gumbel, Morgenstern, Plackett, Mardia., Kimeldorf, 

Sampson, Ruiz-Rivas, Cuadras, Auge, Algarra, Nelsen, and others, have 
proposed one-parameter families. One of these families (see Section 2.2) is 
studied here. 

Some applications deal with: 

(a) Variance reduction in statistical simulation (Fishman [9 ] , Whitt 
[20]). 
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(b) The construction of non-negative quantum-mechanical dis-
tribution functions, given the marginal distribution of position and 
moment (Cohen and Zaparovanny [4], O'Connell and Wigner [15], 
Cohen [3]). 

(c) The construction of upper and lower bounds of the cdf's when 
the marginal are given, under the additional condition that X^Y with 
probability one (Smith [19]). 

2. ONE-PARAMETER SYSTEM 

2.1. Definition 

Cuadras and Auge [6] defined the cdf on R2, 

He(x,y) = F(xY~eG(y) if F(x)>G(y\ 

He(x,y) = F(x)G(yy-e if F(x)<G(y), 

0 being a parameter satisfying 0 ^ 0 ^ 1. The general definition, including 
the negative parameter case, is: 

H0(x,y)=lmin{F(x),G(y)}y-lF(x)G(y)y-e for 0 ^ 0 ^ 1, 

He(x,y) = F(x)-lmin{F(xll-G(y)}reiF(x)(l-G(y))V^ ( 1 ) 

for - 1 ^ 0 < 0. 

2.2 General properties 

The one-parameter system Ηθ of cdf's has some interesting properties: 

(1) If (X, Y) is distributed as He(x,y\ ( K 0 < 1 , and Z verifies 
G(Z) =\-G(Y) (a.s.) then (X, Z) is distributed as Η_θ(χ,y). 

(2) Η^Η+, H0 = FG, Η_ι = Η~, and Ηθ is continuous in 0. 
(3) Ηθ is not absolutely continuous for 0 Φ 0, but can be decomposed 

as 

ΗΘ = Η^ + Η$\ (2) 

Ηθ
1) being its absolutely continuous part with density function (for 

0e[O, 1]) 

he(x,y) = (\-e)f(x)g(y)max{F(x),G(y)}-e V(x,y)eU\ (3) 

provided that F, G are absolutely continuous with densities/, g, and Ηθ
2) 

being its singular part corresponding to a positive mass over the curve 



450 RUIZ-RIVAS AND CUADRAS 

F(x) = G(y). (The negative case ÖG [ - 1 , 0 ) is straightforward considering 
property (1).) In fact, 

HV)(x,y)=\* Γ he(u,v)dudv 
J — CO ^ — GO 

= -^™™{Fi*\G{y)}2-e 

+ mm{F(x\G(y)}lmax{F(x\G(y)}y-e 

= - H^(x9 y) + Ηθ(χ, y) V(x, y)eU2. 

(4) Let Ρθ = Ρ(
θ

ί} + Ρ(
θ

2) be the probability measure related to Ηθ. The 
family {Ρθ: ÖG [0, 1]} is dominated by a σ-finite measure μ, and 

fe{x,y) = he(x9y)Ic(x9y) + Iie(x)rc(x9y) V ( x , j ) e i 2 , Ö G [ 0 , 1 ] (4) 

are the corresponding Radon-Nykodim derivatives, where C = 
{(x, y) | F(x) = G(y)}, I is the indicator function, and 

Ux) = ef(x)F(xy-e. 

Proof. Let λ2, λ be the Lebesgue measures in IR2 and IR, respectively. 
For any Borel set B in U2 let us define 

μ0(Β) = λ{χεΜ\ (x,GlF(x))eB}9 

μ = /ί2 + μ0; 

μ0 can be characterized as a product measure on (IR2, β2) 

μ0(Α x B) = ί μ(χ, Β) άλ(χ\ Α,Βεβ, 
* A 

where β is the Borel σ-algebra of (R, and 

μ ( χ , £ ) = 1 if GlF(x)eB, 

= 0 if G'F(x)iB. 

Applying Fubini's theorem it is easily shown that 

H?Hx,y)=r Γ ϊθ(ιι)άμ0(ϋ9Ό) 
J - o o J - 8 

so that he = dP{
0
2)/dßo. 
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Noting that A2(C) = 0, po(C) = 0, and hQ = dP^ldX2, the result (4) 
follows. 

(5) Po(F(X)>G{Y)) + Pe{F(X)<G(Y)) = 2{\-e)l{2-ei 

Pe(F(X) = G(Y)) = e/(2-e). 

(6) The relations among Θ and the Pearson's p, Kendall's τ, and 
Spearman's ps correlations are 

p = -—— (for uniform marginals), 
4 - \V\ 

θ 30 
τ " 2 - | ο | ' P s " 4 - | 0 | 

(Cuadras and Auge [6]; Cuadras [5]). 
(7) If (Xl9 Yx\ (X2, Y2) are i.i.d. as //0, then 

0 = 2-lPe((Xl-X2)(Yl-Y2)>O)rl. 

Hence Θ is invariant under monotone transformations of X and Y 
(Cuadras [5]). 

3. SOME STATISTICAL PROPERTIES 

3.1. One-Parameter Curved Exponential Family 

Let (Xl9 Yx),..., (Xn9 Yn) be a bivariate random sample from Ηθ, 
0e[O, 1] (the study of the negative case 0 e [ —1,0) is straightforward 
using suitable modifications). 

Let a cz {1, 2,..., n] be the set of indexes of points in the sample lying on 
the curve C (i.e., /ea iff (χ,- jJeC). 

Using the density function (4) with respect to the measure μ, the joint 
density function of the sample can be expressed as 

Λ ( { * „ > ' / } ) = Γ Π Μ * „ > \ ) ] Γ Π &«(*/)] 
L/^α JL/ea J 

M l -0)"/({*,,>\})exp{0r+H f log(0/(l-0))}, 0e[O, 1] 
(5) 

where 

•/({^>',}) = [ n / ( ^ ) ] [ n ^ ( > ' . ) ] e x p { Z l o g ^ - ) } 
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does not depend on Θ, 

nc=#<x, Γ = - f log max{F(x,), G(y,)}. (6) 
i = 1 

The family of densities (5) constitutes a curved exponential family as 
named by Efron [7] , where its curvature is the geometric curvature of 
JS?= {(0, log(0/(l - 0 ) ) : 0e [0, 1]} with respect to the inner product Σ θ , 
being Σβ the covariance matrix of (7, nc). 

It immediately follows that (Γ, nc) is a minimal sufficient statistic for 0. 

3.2. /oiVif and Marginal Distribution of (Γ, «c) 

(1) As «c is the number of points in the sample lying on the curve C 
and Pe(F(X) = G(Y)) = 0 / (2 -0) , ΛΓ is a Binomial random variable 
£(«, 0/(2-0)) . 

(2) T is a gamma random variable G(2 — 0, n). 

Proof. Let Z = max{F(Ar), G(7)}. Then Ρθ(Ζ^ζ) = He{F~\z\ 
G-l(z)) = z2-e, O^z^\^P0(-logZ>u) = e-ui2-e\ w>0. Thus 
- l o g max{F(X\ G( Y)} ~ G(2 - 0, 1 ) and hence Γ ~ G(2 - 0, «). 

(3) F and A7f are independent random variables. 

Proof nc = ^"i=lUh where C/,= l if F(x/) = G(>;/), and i/, = 0 if 
F(xf.) # G(^.). Then £/ ,~£(1, 0 / (2-0)) , /=1, . . . ,« , are all independent. 
Γ = Σ 7 « ι Ρ / being K,= - l o g m a x { T O ) , 0(7, )} ~ G ( 2 - 0 , 1). It is 
obvious that i/,· is independent of K, for zVy. In the case i=j9 let 
Ζ{ = Ρ(Χ,)9 Z2 = G(Yi). Then 

/>(£/,= 1, F/>t;) = P(Z1 = Z 2 ,Z 1 <^- i ; ,Z 2 <^- 1 ' ) 

1 0 / ( 2 - 0 ) if i?<0, 

) r r 0 x 1 - ö r f x = - ^ - - ^ - ^ - 0 ) if O 0 , 
\ Jo 2 - 0 

and thus 

P(Ui=l9Vl>O) = P(Ui=l).P(Vi>v). 

Analogously 

P(£/, = 0, K/>i?) = P(t// = 0)-P(Ki>t;). 

Let us remark that (T9nc) is not a complet statistic. For instance, from 
(1) and (2), we have 

Ee(2T-nc) = n V0e[O, 1]. 
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3.3 Curvature and Fisher Information Measure 

Let us denote ηθ = (0, log(0/(l - 0))', ΣΘ the covariance matrix of (Γ, nc) 
and 

M (ή'θΣθήθ ή'θΣθήθ\ 
\ή'θΣθήθ ή'Σθήθ) 

the point meaning componentwise derivatives with respect to 0. If i0(X) 
represents the Fisher information measure obtained for the r.v. X, we have 
(Efron [7]) 

«(0(1-0)+ 2) 
ήθΣθήθ = (2-fl)2 fl(i-fl)= M T^+ ^n^ = ^ T> η<^' 

The curvature being 

/ We\ \1'2 (2f l - l ) (2-0) fi . . . . . 

These properties may be used to study second-order efficiency and to con-
struct confidence intervals for the estimation of 0 (Efron [8], Moolgavkar 
and Venzon [14]). 

3.4. Rao Distance 

Let φ = φ(θ) be an admissible transformation of the parameter 0. The 
Fisher information measure on φ contained in (Γ, nc) satisfies 

Mr>rt
c)

 = (-^) ie(T,nc). 

Thus, i0(T, nc) can be considered as a covariant tensor of the second order 
for all 0e (0, 1) and we can obtain the Rao distance [17] for the family Ηθ 

(see Burbea and Rao [2]; Burbea [1]; Oiler and Cuadras [16]). The Rao 
distance between 0t and 02 is given by 

}e> (2-θ)^/θ(ΓΎ) 

This distance is invariant under any admissible transformation of the 
parameter Θ and the random vector (X, Y). 
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Using the function 

-LS(eue2) = ^2 + ei{1 g l ) [ s i n - 1 ( 2 g 2 - l ) - s i n - 1 ( 2 ö 1 - l ) ] 

+ 0 ( ( β 2 - ο 1 ) ( λ / ^ - > / ^ ) ) , 

which provides a useful approximation for 5(0!, 02). 

4. MAXIMUM LIKELIHOOD ESTIMATION OF Θ 

From expression (5) we obtain the log-likelihood function 

l o g L ( { ^ , ^ } ; e ) = ( / i - / i c ) l o g ( l - e ) + / i c lo g e + e r 

and by solving the equation 

- log L( {*„>>,.}; 0) = O 

we get the maximum likelihood estimation of Θ 

where 

o , s ( l ; 2 ; i ) 1 . ' ( 2 i — l ; - 2 ; * r — 1 ) . 2(i_k). . 
β2Α9) = -Ί!Γ9-Ί»ηφ«»9Σι 2»- ( f ;_1 ; J f c )

 sin2" "M 

with 

(fl;*;c) = fl(fl + *)(fl + 2*)--.(a + ( c - l ) f t ) 

for real numbers a, b, and integer number c, we obtain 

If θλ ~ ö2, it is easy to check that 
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Let a = y/(n-T)2 + 4ncT. Since \n- T\ ̂ a^n+ Γ, we see that 

IT ^ IT ^ IT 

Thus, we check that Ο^θ^ 1. 
Let (*,, ^j),..., (xn,yn) be a bivariate random sample from Ηθ, 

- 1 ^ 0 < O . Let Z, be such that G(Z,)= 1 -F^ , - ) (a.s.), i=l,...,/i, so 
(xl5 Zj),..., (x„,zn) is a sample from //_0 and we obtain the maximum 
likelihood estimate for 0, 

Δ_η-Τ-^(η-Τ)2 + 4η€Τ 
IT 

where now nc is the number of pairs (xi9 yf) satisfying F(x,) + G(yt) = 1 and 
Γ= -Σ1= i log max{F(x,), 1 - G{yt)}. 
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Asymptotically Precise Estimate of the Accuracy of 
Gaussian Approximation in Hubert Space 

V. V. SAZONOV, V. V. ULYANOV, AND B. A. ZALESSKII 

V. A. Steklov Mathematical Institute, Moscow, U.S.S.R. 

1. INTRODUCTION 

In [1] employing F. Götze's ideas (see [2]) V. V. Yurinskii obtained the 
following result. 

Let Xl9X2,... be independent random variables with the same dis-
tribution P on a separable Hubert space //. Assume that EXi = 0, 
β = Ε\Χί\

3 <cc. Denote by V the co variance operator of σ~ιΧΐ9 where 
σ2 = Ε\Χι\

2
9 and let Y be a (0, V) Gaussian //-valued random variable. 

Put Sn = n-l/2a-lJl\Xt. Then for all aeH, r^O, 

An(a,r)=\P(\Sn-a\<r)-P(\Y-a\<r)\ 

^c{V)ßG-\\ + \aY)n-l/\ (1) 

where c( V) depends only on the eigenvalues o\ ^ σ\ ^ - o f V. 
From V. V. Yurinskii's proof it follows that c(V) in (1) depends on no 

more than the first 13 eigenvalues of V. Later S. V. Nagaev proved (see 
[3]) that c(V) may be taken to be c((Y\] σ , Γ ^ + ^ ι ^ ^ ) " 1 ) , where c is 
an absolute constant (see also [4, 5]). 

On the other hand, from [6, 7] one can deduce that for any c 0 > 0 and 
any Ι ^ τ ^ '->τ\ there exist aeH, \a\>c0 and a probability dis-
tribution P on H such that if Xu X2,... are independent random variables 
with distribution P, then they satisfy the above-mentioned conditions, 
σ2 = τ2

η i= 1, 6, and 

l i m i n f « 1 / 2 s u p J M ( a , r ) ^ c f n ^ r l ) ^ - 3 | û | 3 , (2) 

where c is an absolute constant. This implies that, in general, it is 
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impossible to construct an estimate of type ( 1 ) with c( V) depending on less 
than the first six eigenvalues of V. 

In this paper an asymptotically precise estimate of type (1) with c(V) 
depending on the first six eigenvalues of V will be obtained. Our proof uses 
F. Götze's approach (see [2]) to the estimation of the characteristic 
function of ΙΣ ΐ^ / Ι 2 a s w e H a s some ideas due to V. V. Yurinskii (see 
the proof of his Theorem 1, p. 82 in [8]). Note that in the special case 
when, in certain basis the first six coordinates of Xx are independent 
of the others, an estimate with c(V) depending only on the first six 
eigenvalues of V was also constructed by V. V. Senatov [5] . Before 
V. V. Senatov in an even more special case (when all coordinates of Xl are 
independent), the first steps in this direction were made by S. V. Nagaev 
and V. I. Chebotarev [9] . 

In what follows χΑ denotes the indicator function of a set A, i.e., 
χΑ(χ) = 1 or 0 according to x e A or x $A; Br(a) is the open ball of radius r 
with center at a, Br = Br(0); if P is a measure then Pn is the «-fold 
convolution of P with itself. 

2. THE MAIN RESULT 

THEOREM. There exist an absolute constant c such that in the notation 
introduced in ( 1 ) for any aeH, r ̂  0, integer n ^ 1, and δ: 0 ^ δ < ^ 

An(a,r)^c(S)(a^ßa-3n~l/2y+0 

+ ^ ( Π ^ Γ 1 ) ^ " 3 ( 1 + Μ3)Λ-Ι / 2 . (3) 

Comparing this with V. V. Senatov's example (2) we see that (3) is an 
asymptotically precise estimate. 

In what follows we will assume for simplicity that σ = 1. The general case 
is reduced to this one if we replace Xj by a~lXj,j^ I. 

Proof The theorem follows from Lemmas 1, 6, and 12 proved below if 
condition (9) is satisfied. When condition (9) is violated the theorem is 
obvious. 

3. AUXILIARY LEMMAS 

LEMMA 1. Let Xj, j= 1, 2,..., Sn be the same as in the theorem and let Xj 
be the indicator function on {\Xj\ <« 1 / 2 } , ^ = Λ ~ 1 / 2 Σ Ϊ * / Χ / · Then for any 
Borel set AaH, 

A{ = \P(SneA)-P(S'neA)\^ßn-"2. 
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Proof. We have (cf. (39) in [8, p. 95]), 

Al^\P(SneA,\Xj\<nl/2J = T^i) 

-P(S'neA, \Xj\ <η"2,] = Ύ^ι)\ + £/»(l*yl >η1'2) 

= ηΡ(\Χ1\^ηι/2)ζβη-ι/2. 

Let P be the distribution of X{. Fix n and define 

Pi(A) = P(AnBnl/2) + P(B^l2)xA0), 

P2(A) = P(AnBR)/P(BR), 

assuming that P(BR)>0 (below R will be specified, but in Lemma 2 R is 
any number satisfying (5)). 

Denote Vk the covariance operator of Pk and let a2
ki ^ σ|2 ̂  - b e its 

eigenvalues, k = 1,2. 

LEMMA 2. We Aaue 

σ\^σ2, σΐ^ρσ2, 1=1,2,..., (4) 

n>Aere p = 1/P(BR). Moreover, if 

ί |χ|2/>(</*) < ^ / 3 , (5) 

fAen 

andforni/2^R, 

σ2^(2β)σ2, i = l , 6 , (6) 

σΪ,^(5/9)σ?, ι=1 ,6 . (7) 

Proo/ Inequalities for σ2,· are proved in Lemma 8 in [5] . As to σ2, we 
have similarly to (9) in [5 ] , 

iVxy,y) = (Vy,y)-\ (x, y)2 P(dx) - ( f (*,>>) * W ) 

^ ( F y , j ) - ( l + 9 ) i (x,j)2P(Ä), 

where # = P(Bc
ni/2). Now the same reasoning as in the proof of Lemma 8 in 

[5] gives (4) for a2
u and (7). 
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Put now 

s = 3ßa;\ R = {ßn)l/\ (8) 

and observe that if 

j3<76-3«-1 / 20-3 / 2 (9) 

then s^R^n1/2 and hence P(\XX\^R)^\9 since we always have 
P(\Xl | >$)<£. Thus if (9) is satisfied then since Ρ^Ρ2/2, P2^P'2/2, 
where P'2(A) = P(A nBs)/P(Bs) (cf. [8, p. 89]), we have 

PX = (P2 + P*)IX P2 = (P'2 + P'3)/2, (10) 

P3i P'3 being some probability measures. 
In what follows, s, R will be always defined by (8) and condition (9) will 

be assumed to be satisfied (if not, the theorem is obviously true). Thus (5) 
is also fulfilled. 

Let P4 be the probability measure corresponding to the //-valued 
random variable Z' = ξΖ" + Y' + EZ\ where ξ is a bounded real random 
variable such that Εξ = 0, Εξ2 = £, Εξ3 = 1 (see [8, p. 84]), Z" = Z-EZ9Z 
is distributed according to P2, Y' has Gaussian distribution with 
parameters (0, K2/2), and ξ, Z, Y' are independent. Note that Z' has mean 
£Z, covariance operator V2, and for any hl9 A2, A3e/ / , 

E(Z\ hx){Z\ h2)(Z\ h3) = E(Z, hx)(Z9 h2){Z, h3) 

(cf. [8, p. 85]); i.e., Z and Z' have the same first, second, and third 
moments. Finally, put P5 = (P4 +P3)/2. 

LEMMA 3. Let Xjk\j= 1, 2,... be independent H-valued random variables 
with distribution Pk, k = 1, 5. For any p^O, nx:\ ^n^n, 

E\n~l/2 £ X}k>\'^c{p), k = TT5. (11) 
7 = 1 

Moreover, if Z is a Gaussian H-valued random variable then 

E\Z\^c(p)(E\Z\2Y/2. (12) 

Proof. For p ^ 2, we have 

1̂  
„-1/2 £ X(k) ^c(p)n-f'/2anl\EX\k)\r 

+ (« ,£ Ι ^ Ι ^ + Β , Ε \X[kY) (13) 
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(see, e.g., [10]). Obviously |JSrf>|<n1/2 a.s., E\Xjk)\2^2 for fc = l,3, so 
that 

E \X[V \" < In"'1 - \ k = 1, 3, p > 2. (14) 

Furthermore, 

IE*}1'!» f xP(dx) 

J |x |>n'/2 

f *i>(</x) 

<n -1/2 

<2/?Ä"2<«-1/2, 

and, by (10), 

so that 

|£*33)| ^ l ^ 1 ' ! + \EX)V\ *S 3n~1/2, 

|£ΛΤ}*Μ<3ιι-Ι/2, jfc=l,3. (15) 

Inequalities (13)-( 15) imply (11) for k = TT%, p>2. Inequality (12) when 
Z has mean zero is proved, e.g., in [8, pp. 85-86]. The general case follows 
easily. 

Now represent XjA) as 

XP = £,(A-j2) - EX™) + Yj + EXf\ (16) 

where ξj, Xf\ 7, are independent and <*;, Yj are distributed as ξ, Υ' (see 
the definition of p4 above). We have 

n-l*£V4)\'<'(P)(E\»-l/2ïtAXj2)-EXi2)) 
i l V I i 

+ E n-l,2lYj ' + (ιι1»-Ι/2|£*)2)|)Λ. 

Using, as before, the inequality from [10] and observing that ξ} are 
bounded by an absolute constant and £,· are independent of X]2), we obtain 
E |n- 1 /2Σΐ'£,*]2Τ^c(p). 

Now since η_1/2Σϊ' Yj >s (0, (/ι,/2/ι) V2) Gaussian, by (12), 

n-l,2lrj tkcipHinJrtElXYWt^dp). 

Finally, as we observed above, ni/2\EXj2)\ ^ 1. Hence (11) is true for k = A, 
P>2. 
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If 0^P<2, fc=l,4 the lemma follows now from the well-known 
moment inequalities. 

Denoting Pk( ·) = Pk(n
l/2 · ) and using (11) with k = 3, 4 we have 

H - 1 / 2 £ A 7 > 

= 2-"· £ (ΠΛ[|^^*Λ[«-'(Λ) 

<c(p)2-> Σ (/jj (i^r+bn^i^^-'irfF) 

The lemma is proved. 

Remark. For future use note that while proving (11) with k = 4, we also 
proved that 

E |« - 1 / 2 Σ (£,(*j2) - EX™) + EX™)\' ^ c(/>). 

LEMMA 4. Lei Zj,j= 1, 2, ..., oe H-valued independent random variables 
with the same distribution Q such that ß = (ßi + Ö2)/2, where Ql9Q2 cire 
probability measures, Q\{BL)=\ for some L > 0 , and the covariance 
operator V of Qx has trace t r F ' ^ 2 . Let YJ9j—\,2,..., be independent 
(0, V) Gaussian random variables and let Z 0 be an H-valued random variable 
independent of Yj9 Zj9 j= 1, 2,.... Finally let /, m, nl9n be positive integers 
satysfying l^m9 l + m^n, b{^n. Put 

I + m n\ 

Then for any A >0, even k^O, integer k'^0, kg^0, q=l, k\ and any t, 
Xj G //, j'= 1, k, if l^L2 or if 1>L2 and 

2/U-1/2 

/ = 

\t\^c(A)L-ln(l\n(L~2l)) 

tfexpiiïll^ + ZoHlCM* Π (Χ,,υ^"' 

^Kc{ Π \xq\
kq {exv{-c2l} +c'{L2/l)A + hi,2(c"t2lmln2,V')), (17) 

where 

K= SUp £ 
1 < / i S £ 

, - 1 / 2 
Σ ζ , 
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k = k + Y1
k' kq, Cj are functions ofk; c', c" are functions of A and k, 

t^miniUUL-'nimlnim/L2))-1'2}, 

Λ(^Κ' , )=Π(1 + 2ί(<τ;)4)-1/2, 
j= i 

and (σ[ )2^(σ2)
2^ · · · are eigenvalues of V'. 

Moreover, for any /, 

I^E\Zt\*ft \xq\\ 

£exp{<7 \U2 + Z0\
2} \U2\

k Π (*„ t/2)**| 
? = 1 I 

^ s Π (Vxq,xq)
k^2hl/2(c,t2n2/n2, V). 

q= 1 

(18) 

We omit the proof of this lemma since it is basically the same as the 
proof of Lemma 11 in [5] which it is a generalisation of. 

LEMMA 5. Let Xjk) be the same as in Lemma 3. Then for any beH, 
η'^η90*ζδ< 1/9, 

Δ' = iïn-l/2ZX}2)-b\<r)-p( n-"2Y^X^-b <r 

^a-3(c(<5)j?1 + V 3 ~ 2 * " ~ ( ^ ^ 

where a = n'/n, 

Sl(b) = (β4β + n'l/3E(X[2\ b)4)3/A. 

Proof From the structure of Xj4) (see ( 16)) it follows that n~1/2 Σϊ' ^)4 ) 

can be represented as a sum of two independent //-valued random 
variables Zx and Yi9 where Yi is (0, (a/2) V2) Gaussian. Hence, since (9) 
implies (5), by (28) (see below) and Lemma 2, the density function of 
\Y1 + Zl—b\2 which is equal to j p(b — v,r) PZx(dv\ where p(b — v9r) is 
the density function of \Yx + v — b\2, is not greater then c a - 1 a f l σ^Κ 
Applying Esseen's inequality (see, e.g., [11, Theorem 2, Section 1, 
Chap. V]), we have 

(19) 
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*„(')= ΙΛΛΟ-Λ,ΟΙ, 

f2n(t) = Eexp\it "}· 
f4„(t) = Eexp{it\ 

Choose 

r=c(3/2)a-1/2(5-,n1/2)10/9 (1η(φ-2«)8/9)Γ1/2, s = 3ßa^2, 

where c(3/2) is from Lemma 4. Also put 

Γ, = (n/s2(b))1/6, T2 = c ^ X / w - X ^ - 2 ) ) 1 ' 2 . 

First we estimate /, = ir2«uis;7-g»(') I'l_1 <#· Obviously, 

Λ < ί (ΙΛΛ0Ι + ΙΛ,(ΟΙ) I T 1 dt = iu + i12. (20) 

Using the representation n 1/2 Σ"' ^ j 4 ) =Yi + Zi (see above), Lemma 1 in 
[8, p. 82] and Lemma 2 we have 

\f4n(t)\ = \Eexp{it\Y1 + Zl-b\2}\ 

^Π(ΐ + ' 2 « 2 4)" , / 4 

<Û(l + (4/9)t2ot2a*ri/4 

ι 

< Π 0 + (4/9) >2<*2σ,4Γ1/4 (1 + (4/9) ί2α2σ|)"1/8. (21) 

It follows, since σ6"2(σ1σ2σ^/2)-1 ^ Π Ϊ σ / 1 + σ6"3, that if Ο^δ< 1/9, 

/12<ca-5'Vi*2*3/2)~I7'2-5/4 

<ca-5 / 4K"Vi^ff3/ 2)" ,»"1 / 2(J2»"1) l / 8(ln(j-2/i))s / 8 

^ « - " ♦ U j f f j - ' - ^ ' + ' r ^ w + c i n f f r ' j i » - " 2 ) . (22) 
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To estimate In we apply Lemma 4 with Q = P2, Q\ = P2 (see (10), L = s, 
A = \, £ = 0, /-n'(s2/n)l/9, m = n'-l. We obtain 

Ι Λ , ί Ο Κ φ - 3 ^ 2 » " 1 ) 4 ^ ! ! ( l + c a 2 ^ ^ - 1 ) 1 / ^ ^ ) - 1 / 4 ) (23) 

for all Γ2 < M < Γ. Hence if <5: 0 ̂  δ < 1/9 

^6·α-3 /ν«"1+^6-2(σ1σ2σ5 / 2)-1Λ-1 / 2(52«-1)^2)1ηΓ 

< a - 3 / 2 ^ ) a 6 - 3 - 2 ^ 1 + ̂ - ( 1 + ^ 2 + c ^ n a r A ) ? w - V 2 y ( 2 4) 

Next we estimate 72 = jV, ̂  ,„ ^ Tl gn(t) \t\ ~1 dt assuming that TX^T2. We 
have I2 = I2i + hi'> where (see (21)) 

/ 2 2 = ί ΙΛ.(0Ι M " ! A 

<2Î°°U|- 1 Π (1 + (4/9)ί2α2σ4)-1/4Λ 

^ c a - 3 ^ ^ ^ , ^ ) « - ^ (25) 

and by Lemma 4, with the same parameters as in (23) except that now 
l~rijl, m = n' —/, 

/21 = ί Ι Λ , ί Ο Ι Μ " 1 * 

^c \T2 \t\~l (a-3/2(s2n-l)3/2 + fl (1+^2α2σ4)-1 /4)Α 

^ca-3L2n-l + (Ylaj-l\Si(b)n-l*Y (26) 

Finally, estimate 73 = j^^T'SnU) Ul_1 A, where T' = m i n ^ , T2). 
Denote P2 (resp. P4) the distribution of Χψ n'112 (resp. X[4)n-l/2). We 
have 
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/3=ξ f \t\-l\{exp{it\x-b\2}(P"2-P»4)(dx) 

^"ϊΊ Ul^lttcxpiitlx + y-bl2} 

dt 

xP%* Pn
4'-

m-l{dx)(P2 - P4)(dy) dt= Σ hm-

Note that P2 and P4 have the same moments of the first three orders. Thus 
expanding/(A) = exp{/71x +Ay — b\2} by Taylor's formula we may write 

'3m = f l̂ l"11 Γ7ί/<4>(Λ)^*^"~"ΗΛ)(ρ2-ρ4)(^)(ΐ-Α)3Λ 
J\(\^T' J0 J J 

dt, 

where 

+ 6(2//)3 (x + Xy- b, yf \y\2 + 3(2i7)2 \y\4). 

To estimate the inner integral of the type 

I=jfW(x9y)kP?*FÎ-"-l{dx) 

= \\Qxp{it\xl + x2 + Ày-b\2}(xl^x2,y)kP^(dx{)P
n

4-
m-i(dx2), 

we may apply Lemma 4 as above, assuming without loss of generality that 
ri is large enough, say ri^S. Namely if m^(ri — l)/2 we use (17) with 
Λ = 3/2, l~m/2, m~m/2, and if ri — m— 1 > (ri — l)/2 we use (18). Also 
applying Lemma 3 we thus obtain for all \t\ ^ T2, 

\I\^c{k) \y\k L-3/2(s2n-lY/2+ \\ (1 +<·/2α2σ7
4)-1/4Υ 

Observing that for k ^ 4, 

\\y\kP2(dy)^n-2E\X^\4 

and, by (12), 

\\y\kP,{dy)^c{k)n-2E\X^\\ 
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we find 

Moreover, for F, from the representation (see (16)) 

AY> = ξ^χΜ - EX[2)) + F, + ΕΧψ, 

we have 

E(r,, b)4 *S l(\VJ>, b)2 <\Ε(Χ$\ b)\ 

so that E(X?\b)4^cE(X[2\bY and E\X\2>\*KRE\XY>\3<2nl/3β*'3. 
Hence, 

/*■ < ex-3 (j\ °7') (*i(*))~ 1/3(^4/3 + «"1/3 W . *)4) »_3/2 

<«χ-3(Πο>-!)ίι(*)»-3 / 2 · (27) 

Combining (22), (24)-(27), we obtain for (K<5< 1/9, 

If ^(o / - 1 *! 

<a- 3 ^)cr 6 - 3 - M p 1 + < 5 / i - ( 1 + a ) / 2 + c('na-1)i1(fe)«-1 / 2Y 

Now this relation, together with (19) and the obvious inequality 

(σ,σ2σ|) ' < ̂ ΓΚ'+'.-3)/* 

implies the lemma. 

Furthermore, using (9) we obtain 
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LEMMA 6. Let X(jk), pk, k = 1, 5, j = 1, 2,..., be the same as in Lemma 3. 
Define S'„ as in Lemma 1 and put Ξ'^ = η'υ2Σ"*j5)· Then for any 

A2=\P(\S'n-a\<r)-P(\S:-a\<r)\ 
6 

<c(i)ff6-3-2i/il + , « - ( 1 + i W + f(n^-|)i1(e)«-w
) 

where $ι(·) is the same as in Lemma 5. 

Proof. Let as above Pk() = Pk{nl/2 ■ ). By (10) the distribution of 5; 
may be written as ((P2 + P3)/2)n. Similarly, the distribution of S'n may be 
written as ((F4 + F3)/2)". Consequently, 

à2 = \(((P~2 + Λ)/2)" - ((P4 + P3r)(Br(a))\ 

^2"·[Σ + Σ)[ηι)\(
Ρ2-Ρ7)*Ρη

ί-
η'(ΒΑα))\ 

= /,+/2, 
where Σι *s the summation over all integers m such that \m — n/2\ <n/4 
and Σ 2 is the summation over the remaining m, O^m^n. By the 
exponential inequality for the binomial distribution (see, e.g., [11]), 
2~"Z2(mK2 e xP(-"/8) · Hence I2^cn~l/2. Furthermore, 

(F>?-F>?)*P»-m(Br(a)) 

= ^(P'?-P'?)(Br(a-x))F"3-'"(dx) 

and, by Lemma 5, if \m — n/2\ <«/4, 

\(F?-F7)(Br(a-x))\ 

-1/2 j J0 2 ) - f l + x <r 

- P <r I i I 

Note also that, since 

E{X[2\a-x)4^c(E(X[2\a)4 + E\X\2)\4\x\4) 

^c(E(X[2\a)4 + ß4/3nl/3\x\4\ 

1/2 
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we have s^a — x) ̂ c(sx(a) + ß \x\3) and, by Lemma 3, 

469 

j\x\3P$-m(dx) = < -1/2 Σ *?] ^c. 

Hence, 

I1^c(S)a^-2öß1+ön-il+0)/2 + c (Π°Γι)*Λ«)η 
- 1 / 2 

The lemma is proved. 

LEMMA 7. Let Fi(u\ F2(u) be real continuous functions defined on 
[0, oo) such that there exist continuous derivatives F[{u\ F2(u) on (0, oo) 
and 

\Fi(u)\ + \F^(u)\^cmax(hu-i/2). 

Define F3(u) = Jg Fx(u - v) F2(v) dv. Then for any u^O, 

Fi(u) = ^(0) F2(u) + Γ F[(u - v) F2(v) dv 

= F,(«) F2(0) + Γ FAu-v) Fi(v) dv 

and for w>0, 

F;\u) = Λ(0) Fi(u) + Fi(M) F2(0) + Π Fi(« -i;) F{(v) dv. 

The proof of the lemma employs standard reasoning used in analysis and 
is omitted. 

LEMMA 8. Let Yt be (0, σ2) Gaussian real random variables i"=l, 6, 
\^σ\^ · · · ^ σ̂ . Assume that Yt are independent and denote pm) = />m)(x, w) 
{resp. pm) = pm){x,u)\ x = {xl9..., xm)eRm

9 the density function of 
Σ7 ( Yt + Xi)2 (resp. Σ7 ( x/2 Yt + *,)2). Then form = 4,6,u>0 

'm)\ ^ατ, *σ; 

dp m) 

du 
<ο\[στ\ Ô2Pm) 

ôxj du ^^'Πτ ' 
δ2ρ4) 

du2 
1 

fiô\ + δ2 + <53 

52P6, 

\dxt* dx? dxppm) 

where i,j, k = M> α«</ <5i + <52 + <53 < 3. 

du2 

Kcorilaj-'*oït>pm) 

^ Π τ 

(28) 

(29) 

(30) 

(31) 
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Proof. The density function Pi(u)=Pj(ah xi9 u) of ( Yt + x,)2 is equal to 

Λ(«) = (2πιι)-|/2(ΤΓ1^(«λ 

where 

*,.^,,,,,„,4(exp{-li^}+e»p{-<i^}), 

the density function of (y/2 Γ, + χ,)2 is pi(u) = (nu)'l/2(2ai)~
i <?f(w), where 

di(u) = di(y/2ahxi9u). Denote pA{u)=pA{x,u) (vesp.pA(u)) the density 
function of Σ / ^ (Γ, + *,)2 (resp. Σ ^ ( ^ Γ , . + χ,·)2). We have 

Py(u)= f Pi(u-v)pj(v)dv 

= (2πσ^ I ((l-»)<2 ^ (32) 

Hence /?,y(w) ̂  carlorl and 

Pm)(u) = I /?i2(w - v) Pxti(v) dv ^ car1 σ2"! ; 

i.e., (28) is true. Furthermore, by Lemma 5 in [12], for all w^O, 

p^u)^cmm{(crl + aj-l)u-l/2
9criari}. (33) 

From representation (32) it is easy to deduce that p0(u) is continuous 
at all w^O on [0, oo) and p'y(u) exists and is continuous at all w>0. 
Moreover, since |x|aexp(-x2)^<:(a), a^O, we have for s^O 

ddi(su) 

du 

d%(su) 
dxl

; 

^car^s/uY^disul 

^carldj(su)9 1 = 073. 

(34) 

(35) 

Note also that /?,(w) < Jl /?,(«) and by induction it is easy to see that for 
any Ac{l,..., 6}, 

pA{u)^2a/2pA(u\ (36) 

where a is the number of elements in A. 
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If i<j we have by (34) 

Furthermore, applying Lemma 7 to pn and p34 we can write 

M") = Pn(0) p34(w) + f P\i(u - ν) ρφ) dv, u ^ 0, 
Jo 

and, by (33), (37) 

cellar1; 
1 

moreover, since /?4)(0) = 0, by Lemma 7 applied to p4)(u) and p5,6(w) 

P6)(u) = | P'*)(u - v) PsAv)dv-

471 

(37) 

(38) 

(39) 

(40) 

Hence 
ru 4 

IP6)(M)I < IP4)(M - v)\ PsAv)dv <c Π σΓ1 · 
0 1 

This proves the first inequality in (29). 
From (32) and (35) we have if i<j 

dp0(x9 u) 
dxt 

> 
dp0(x, u) 

dxj 
\CGj lpij{x,u)^CGi

 XGj 

By (33), (37), (41) it follows from (38) that if i = 3, 4 

d2p4)(x, u) 
dxt du 

^ca4
xY\arK 

(41) 

(42) 

Using the relation 

/>4)(w) = PnW ΡιΛΟ) + [ Pii(v) Piau ~ v) dv 

instead of (38), we get (42) if i= 1, 2. Differentiating (40) now we obtain, 
by (39), (41), and (42), 

I d2p6) 

dx: du 
^οσ^'Πσ, ι. 
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By Lemma 7 applied to pl2, p34 we also have 

/»;>(«) = Pu(0) p'M(u) + Pa(«) PM(0) + f" p\2(u - v) ρ'φ) dv. 

Together with (37) this implies the first inequality in (30). Applying 
Lemma 7 to p'4) and p56 we deduce from (40) 

Pl){u) = p'4)(0) PS,Ô(U) + I PA)(U ~ v) P5,e(v) dv-
Jo 

Using now (33), (39), and the first inequality in (30) we get 

IK»I <c(f\arl + σϊισϊι (ft σ,"1) 

xj" (ιι-Ό)-ι/2Ό-ι/2Λ> + σϊισϊι1[ΙσΓι) 

^cftarK 

Finally for any different i, j , k we have 

piJk(x,u) = (2n)-3/2ar^-^-^ul/2\ -±± n " 
7 Jo Jo ((1 — v)vwy'1 

x dj(u(\ — w)v) dk(uw) dv dw. 

Together with (35), (36) this implies (31). The lemma is proved. 

LEMMA 9. Let fx(u) be a real continuous function on R such that 
/ i(0) = 0 and f\(u) exists everywhere except, possibly, at 0 and \f\{u)\ ^ c . 
Let f2(u) be a continuously differentiable function such that /2(w) = 0 if 
\u\^A. Then f(u) = J"_^ fx(u — v) f2(v) dv is a continuously differentiable 

function and/'(«) = J 1 ^ f\(u - v) f2(v) dv. 

The proof is elementary and we omit it. 

LEMMA 10. Let Yi9 / = 1, 6, pm) be the same as in Lemma 8. Let ξ be an 
independent of Yi9 i = l , 6, real random variable with continuously differ-
entiable density function f^u) such that f^u) = 0 if \u\ ̂  1. For a T>0 
denote pm){u) = pm){x, u) the density function of Σ7 (Yi + Xi)2 + ζΤ~ι, 
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x = (x{, ...,xm)eRm. Then p4)(u) is continuously differentiable, p6)(u) is 
twice continuously differentiable, and for m = 4, 6, 

\Pm)\^cal
 ισ2

ι, dp> m) 

du2 ^Πτ1. 

du 

d2Pm) 
dXj du 

1 

0δ, + Ô2 + S) 

dxp dxp dxp Pm) ^ca-^a-^a^pm), 

(43) 

(44) 

(45) 

where i, j , k = 1, 6, δι + δ2 + δ3 ^ 3, and pm) is the density function of 
ΣΠΛ/ΪΓ ,+Χ,^ + ΕΓ-1. 

Proof We have obviously 

Pm){u) = j pm){u - v) Tfç(Tv) dv 

and the lemma follows easily from Lemmas 8 and 9. 

LEMMA 11. Let Z be an H-valued (0, W) Gaussian random variable with 
ixW^l. Let τ\^τ\^ · · · denote the eigenvalues and el,e2,... the 
corresponding eigenvectors of W. Let P5 be the same as in Lemma 3, G be 
(0, V) Gaussian, and R = P5-G, where P5() = P5(n

i/2>), G() = G(ni/2). 
Then for any r^O, beH, 

δ' = I P{\Z + x-b\<r)R(dx)\ 

where B2 = Σ?= 5 (*> */) ei9 S3 = Σ,°°= ι (*, */) */■ 

Proof We will show that if ξ is a real random variable, independent of 
Z, with the continuously differentiable density function f^u) such that 
/«*(«) = 0 if \u\ ̂  1, then for any T>0, 

δ'Τ
 = \ρ(\Ζ + χ-ο\2 + ξΤ-ι<τ2)Κ(άχ) 

'(nv)(/î+i;ii^.w)»-w. (46) 
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where c is an absolute constant. Letting Γ-* oo, we obtain the lemma since 
δ'τ-> δ' as T-* oo. 

For any he H define A, = (A, *,.), ^ = ΣΪ M„ Ä2 = Σ5 hien Ä3 = Σ700 */*/ 
and put £/(A) = ΙΖ, + λχ,— 5,12, i = l , 3 . Letting #6 denote the density 
function of ξι(1) + ξ2(Ί.) + ξΤ~ι we can write 

(2 = Ρ(\Ζ + χ-^2 + ξΤ-ι<Γ2) 

q6(u) du, 

where η3{λ) = τ2 — ξ3(λ). Now expand the function F3(X) = jt12{r-iq6(u)du 
by Taylor's formula up to the term of the third order. We have 
Q = Zl(ßrlQp where 

Ôo = E\ q6(u) du, 

ρ ι = - 2 £ ( Ζ 3 - 63,χ3)ς6(η3{0)) 

*3I
 2 ?6(V3(0)) - 2(Z3 - 53, *s)2 Yu ?6(?3(0))] 

ρ3 = i2^(z3 + 0x3 - 53, JC3)|X3I
2 YU UUO)) 

du2 %Ε(Ζ3 + θχ3-Β3,χ3γ—2ξ6{ηΑθ)1 <U0^1, 

a n d ^ = Z ^ ( y ! ) - 1 i ^ ( ^ ) = Z^/y. 
To estimate /,, y = 0, 3, we first observe that since Px = (P2 + P3)/2 and 

P5 = (P4 + P3)/2 have the same first and second moments (see the 
paragraph preceding Lemma 3) and the same is true for P and G, we have 

\(g,x)R(dx)\=n-l/2\{ (g,x)P(dx) 

^c(ß + E\(Xlig)\
3)n 3* - - 3 / 2 (47) 

and, similarly, 

\j(g,x)(h,x)R(dx) 

|j"|*,|2H(<fe) 

çctf + EM^gtf + EHX^Wftn Î\„-V2 

(48) 

^βη -3/2 7=1,3. 
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We also will need estimates of 

Λ = j* | (A, x)|3 (^5+ <?)(<&), J2 = j\x\k(P5 + G)(dx), 

where k ̂  3 is an integer. We obviously have 

\\(h,x)\3G(dx) = E\(Y,h)\3^c(Vh,h)3'2 

= c(E(Xl,h)2)3/2^cE\(X1,h)\3 

and (see (12)) 

J|je|*G(i&)<c(ife). 

To estimate integrals with respect to P5 = (P4 + P3)/2 we first observe that 
since P3 < 2P, 

\\(h,x)\3P3(dx)^2E\(Xl,h)\3 

^\x\kP3(dx)^2ßn{k-3)/2. 

It remains to estimate only integrals with respect to probability measure 
P4 corresponding to ζ,Χ^ + F, + (1-ξι)ΕΧ?) (see (16)). Since F, is 
(0, V2/2) Gaussian and P2^2Pi we have 

E\(F,, A)|3 < c(E( Yu h)2)3'2 < c{E(Xf\ h)2)3'2 

<<<£(*„ A)2)3/2^c£|(Jr„A)|3 

and consequently 

j\(h,x)\3P4(dx)Kc{E\(XYKh)\3 + E\(Yl,h)\3) 

^cE\(Xuh)\3. 

Finally 

\ \x\k P4(dx)^c(k)(E\X^2)\k + ElYA") 

^cikKElXYY + iElY^2)"'2) 

^c(k)ßnik-3)/2. 
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Thus, 

Jl^cE\{Xl,h)\3n-3/2, J2^c(k)ßn-3/2. (49) 

From (12), (43), (44), and (49) it follows that 

Ι/ΐΚ^Πτ,-1) (/* + £!(*., M 3 )»- 3 * <5°) 

To estimate I2 we use Taylor's expansion of q = q6 and q = (d/du) q6 as a 
function of xl9..., x6: 

6 5 
q(xl,..., x6, w) = <7(0,..., 0, u) + Σ */ j - ?(0*i,..., 0x6, w), 0 *S 0 < 1. 

Applying (43)-(45), (48), (49), we obtain 

|/2I<«6" ι ( Π τ Γ
1 ) ( ^ + £|(^ι,53)Ι3)Λ-3/2. (51) 

Consider now / j . Using Taylor's expansions, represent q6(xi9..., x6, w) as 

q6(xl,..., x6, u) = q6(09..., 0, xS9 x6, u) + ^(w), (52) 

where 

S , (« )=I* / [^ ; Î6 (0 , . . . , 0 ,« ) 

+(7|5^Ι;)έ^(0'···'0'0'"5'0'"6'Μ)] 
1 / 4 3 V 

+ 2V Σ Xi~fa) Μ0χι,^θχΛ9χ59χ69ύ) 

and 0^0, _ö^ l . Put Qn = -2E(Z3-B39 x3) q6(09..., 0, x5, x69 η3(0))9 

Öi2= — 2E(Z3 — B39 x3) 5Ί(^3(0)). Denoting #4 the density function of 

ξγ(\) + ξΤ-\ we have 
q6(09..., 0, x5, x69 v) = Eq4(09..., 0,t?- ξ2( 1 )) 

and expanding q4(09..., 0, i? — ξ2{λ)) as a function of A, we may write 

§4(0,..., 0, t; - ξ2( 1 )) = ,4(0,..., 0, v - ξ2(0)) 

- 2 f (Z2 + θχ2 - B29 x2) ψ· (0,..., 0, v - ξ2(θ)) dB. 
JQ OU 



SAZONOV, ULYANOV, AND ZALESSKII 4 7 7 

Thus 

Qn= -2Ε{Ζ3-Β39χ3)Ε2ιΜ09...,0,η3{0)-ξ2{1)) 

= -2E(Z3 - £3, x3) ?4(0,..., 0, i,3(0) - ξ2(0)) 

+ 4 ̂ E(Z3-53,x3)\x2\
2^(0,...9 0,1,3(0) -ξ2(θ))θαθ 

+ 4 1 ! £ (Z3 - fi3, x3)(Z2 - i 2 , jc2) ^ (0 , . . . , 0, i,3(0) - ξ2(θ)) άθ 

= 0111 + 0112 + 0113. 

Denote /„ = J QuR(dx)9 /= 1, 2, 7lly = J ßiyÄ(<fc),y = 17X All 712, 7 i n , 7112 
are estimated by applying (47)-(49) and Lemma 10. We have 

Ι/12ΜΛ11Ι, |/ιΐ2ΐ^^τΓ1τ2-1τ4-1τ6-1(^ + ^Ι(^1,Α3)|3)"-3 /2. 

To estimate 7113 we observe that if q(u) is #4(0,..., 0, u) or 
(d/du) #4(0,..., 0, w) then for any 0, 0 ̂  0 ^ 1, A: = TT3, 

£?(ι?-^(β)) = ΐ9(ι;-5)ρ(5)Λ, (53) 

where £2fc(0)= |Z2/,y& + 0.x2 —6J2 and /?(S) = /?(JC5, x6, s) is its density 
function, bk G H. On the other hand, 

6 οσ 
p(x59x6,s) = p(0,0,s)+ Σ Xi-^-ie'x^e'x^s), (54) 

i = 5 "Xi 

where 0 < 0' < 1, and exactly as in (41 ) we have for i = 5, 6, 

<icxïlp9 (55) 

where p is the density function of |>/2/fc Z2 4- 0x2 — ft*|2. 
Now let Z21, Z22 be independent and distributed as Zjyjl. Then from 

(53M55), (43) we deduce 
Ε(Ζ2-Β29χ2)ς(ν-ξ2(θ)) 

= E(Z2l - B2/2, x2) g(v - \Z22 + 0JC2 - 52 + Z21|2) 

+ Ε(Ζ72-Β2Ι29χ1)ξ(Ό-\Ζ21 + θχ2-Β2 + Ζ22\
2) 

= J (>> - 52/2, *2) J 9(1; - 5) Pl(0, 0, 5) A P221(<fy) 

+ 1 (>> - 62/2, x2) j" §(!> - 5) />2(0, 0, s) ds PZn(dy) + S2, (56) 
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where />,(0,0, s) is the density function of |Z22 — B2 + y\2, p2(0, 0, s) is the 
density function of \Z2l — B2 + jl2» a nd 

\S2\^c(E\(Z2,x2)\ + \(B2, x2)\)(\x5\ + |χ6Ι)τ6-' Π τ Γ ' · 

Hence denoting r2-\z-53\
2 by z, we have by (43), (48), (49), 

| /ml=4 j jj(z-B3,x3)E(Z2-B2,x2) 

*^{ζί-ξ2(θ))ΡΖ3(<1ζ)11(<Ιχ)Μ 

■ 4 I £ JJJJ (2 - fi3, *3)(J' - «2/2, *2)*(<k) 

χ ^ (z, - ί ) /»,(o, o, j) Λ pZ21(<fy) ρ Ζ ι (ώ) de 

+ 4 I £ JJ/J* (z-f i„ x3Ky-6j2, x2)R(dx) 

x^(Zl-s) p2(0, 0, ί) <fc ΡΖ22(φ>) />Zj(<fe) <tf 

+ | i £(Z3-53,Jc3)S2/î(<&:)i 
| J o 

^«6-,Πτ/-1(/?+Σ^Ι(^.Μ3)»"3/2· 
Thus 

(57) 

(58) 

\Ii\^cziiY\zr
l(ß+ Σ £|(^,^)|3)«-3 /2. (59) 

1 \ 7 = 2 / 

To estimate I0 we represent Q0 in the form 

Oo = ^ i ( i ) + ^ ( i ) + ^(0) + ^ r - 1 < r 2 ) 
r » / 2 ( i ) 

= £ #4(Μ) du, 
J-T-l 

where #4 as above is the density function of ξχ{\) + ξΤ~ι and 
η2(λ) = κ2-ξ2(λ)-ξ3(0). Expanding F2(k) = \»^UqA(u)du by Taylor's 
formula up to the term of the second order we have Q0 = Σο Q0j, where 
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Ôoo = £ q*{u)du, 
j _ T - \ 

QOi=-2E(Z2-B2,x2)q4(V2(0)) 

ρ02= - 2 £ ψ 2 | 2 ? 4 ( > 7 2 ^ ^ 

Thus we have /0 = ΣοΛ>;> Λ>; = ί QojR(dx). 
The term /00 is estimated by expanding q4(u) = q4(x1,..., x4, w) as a 

function of JC19 ..., x4: 

^4(x1,...,x4,w)= £ (i!)-1 X *,^~ ^4(0, ...,0, w 
i = 0 V = l VXjJ 

+l*iix'è) 
ÖXjJ 

3 

§4(θχ1 , . . . ,θχ4 ,«), 

where ( K 0 < 1. Applying (47)-(49), (45) we obtain 

| / οο Ι^τ 4 -> - 3 / 2 . 

To estimate /01 we use Taylor's expansion of q4(x{,..., x4, w) as a function 
of xl9..., x4 up to the terms of the second order and obtain similarly, using 
(47M49), (43), (45), 

\Ιοι\^€τ^τ2
ιτ4

2(β^Ε\(Χί,Β2)\
3)η-3/2. 

Finally, to estimate 702 we use Taylor's expansions of q4 and dqjdu as 
functions of xl9...9 x4 up to the terms of the first order and write 
βο2 = Σ??ο2/> where 

Ö021 = - 2 f ' |Jc2|
2 £?4(0, - , 0, iy3(0) - ξ2(0))(1 - β) dö 

Jo 

Ô022 = 4 [' £(Z2 - fi2, X2)
2 A 94(0, ..., 0, l,3(0) - f2(0))(l - 0) dB 

Ωο23 = \Ί-2\χ2\
2Ε(Σχί^(θ1χι,...,θιχ4,η2(θ)) 

+ 4E(Z2 + θχ2 -B2, x2)
2 ( Σ x<^^ ( M i . - , θ2χ4, »hi«)) 

+ 4£(20(Ζ2-ά2,χ2)|χ2|2 + θ2|χ2|4)^4(0,...,0,^(θ))](1-θ)ί/ο, 
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O<0lf 02<1. Then /ο2 = Σι/ο2ί ΐ hn = \ QoiMdx). Applying (49) and 
Lemma 10, we obtain 

Ι / Ο ^ Ι ^ ^ - ^ Π Τ Γ ^ ^ + ^ Κ ^ , ^ ) ! 3 ) « - 3 / 2 . 

Furthermore using (53}-(55), (48), (49), and (43) we find 

\Ιο2ΐ\^€τ^τ^τ^βη-ν2. 

It remains only to estimate /022· To this aim we represent Z2 as Y\Z'2j, 
where Z2J,j = 1, 3 are independent and distributed as Z2/y/3. Then Q022 is 
a finite sum of terms 

4 £ E(Z'2i-52/3, x2)(Z2>-62/3, Χ2)^9Λ (O, ..., 0, ι,3(0) 

2 \ 
(1 -0 ) dB, 

where Λ#ι, k^j\ i',y,fc = T73. Using (53)-(55) a n d reasoning as in 
(56H58) we obtain 

Ι ^ Ι ^ ^ - ^ Π Τ Γ ^ ^ + ^Κ^,^) ! 3 )« - 3 / 2 . 

Combinig the above estimates we find 

| /o l<c(nTr 1 ) ( i» + £|(Jrlf52)|3)n-3/2. (60) 

Relations (50), (51), (59), and (60) imply (46). This proves the lemma. 

LEMMA 12. In the notation of the theorem and Lemmas 6 and 11, 

A,= \P{\S:-a\<r)-P(\Y-a\<r) 
6 

^ C Π*Γ!)(/» + Σ (Ε\(Χι,ά^ + Ε\(Χΐ9ά})\ήη-ν\ 

where a} is a constructed according to W=V and a) according to W=V2. 

Proof. Without loss of generality we will assume that n^2. In the 
notation of Lemma 11 we may write 

Λ3 = \(Ρ»5-Ο
η)(ΒΓ(α))\^"Σ Im, 
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where 

Im = \PZ*G"-m-1 * R(B,{a))\. 

If m < (n — 1 )/2 we will write Im as 

/„,= J| G — - » ( ^ ( e ) - * - y)R{dx) P?{dy)\ 

and observe that G"~m~l is (0, ( ( « - m - 1)/«)K) Gaussian with the 
covariance operator having eigenvalues ((n — m — 1 )/«) σ? ^ σ?/4. Applying 
Lemma 11, we obtain 

UG"-m-1(Br(a)-x-y)R{dx)\ 

*c(fl<Ti)(ß+ Σ ^ l (J r„â ; -^) l 3 )" - 3 / 2 . 

But E\iX1,äj-yJ)\
3^c(E\(Xl,äj)\3 + ß\y\3),j = 2,3, and by Lemma 3 

J \y\3 P?{dy) < c. Thus if m < (w - 1 )/2, 

(Π^Γ1)( /»+Σ^Κ^ι.β,)Ι3)»-3 / 2 . (61) 

If m > (n — 1 )/2 we write 7m as 

/„,= J{/>?(Är(a)-x-j)/?(Ä)G"-'"-1(^) (62) 

We have 

Ρ? = ((Ρ4 + Ρ3)/2Γ = (Σι + Σ2)2- (I) P**P' 3 » 

where Σγ is the summation over all integers k such that \k — m/2\ < 
m/4 and Σ2 is the summation over all remaining k from 0, m. By the 
exponential inequality for the binomial distribution (see, e.g., [11]) 
2~m Σ2 (J!) ^ 2 exp( -m/8) and in our case exp( -m/8) < cn~3/2. Hence 

/ ^ 2 - " T ■d) Imk + cn -3/2 (63) 

where 

7-* = I Jïf P^B^ - * - y - z)R(dx) G" - m - \dy) P? - "(dz) 
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Furthermore, P$ = Gk* Pk, where Gk is (0, (k/2n) V2) Gaussian and Pk is 
the distribution of n~l/2 ΣΊ (£,(*j2 )- ΕΧ)2)) + EX)2)). Thus 

lrnk=\\\\\Gk{BXa)-x-y-z-u)R{dx)Gn-m-\dy)P 

Applying Lemma 11 we have by Lemma 2 and the remarks after it 

f Gk(Br(a) - x - y - z - u)R(dx) 

^ ( j W 1 ) ^ * Σ E\(xlyä;-y;.-z;-ü;.)\3y-3/\ 

since k/n >{n-\ )ßn ̂  1/16. But 

£ | ( A ^ ; - J ; - Z ; - W ; ) | ^ 

y = 2, 3, and by Lemma 3 and the remark following it, 

\\\ (\y\3 +\z\3 +\u\3) G"-™-\dy) P?~k(dz) Pk(du)^c. 

Thus 

U^c(j\ar^ß+ £ Ε\(Χΐ9α})\ήη-ν2. (64) 

Combining (61)—(64) we obtain the lemma. 
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The Estimation of the Bispectral Density Function and 
the Detection of Periodicities in a Signal 

T. SUBBA RAO AND M. M. GABR 

University of Manchester, Manchester, England 

In a recent paper Subba Rao and Gabr (J. Time Ser. Anal. (1987), in press) con-
sidered the estimation of the spectrum and the inverse spectrum based on the 
method by Pisarenko (Geophys. J. Roy. Astronom. Soc. 28 (1972), 511-531). The 
asymptotic properties of these estimates were studied using the properties of 
Wishart matrices. In this paper we show how the method can be extended to the 
estimation of the bispectral density function, an important tool in the study of non-
Gaussian time series. All these methods of estimation are illustrated with simulated 
examples. In the illustrations considered, the emphasis is on the detection of 
periodicities in the "signal" (possibly in the presence of noise). We also considered 
an example based on real data. These data arise in the study of the earth's magnetic 
reversals and the detection of periodicities. © 1988 Academic Press, inc. 

1. INTRODUCTION 

The second-order spectrum plays an important role in Gaussian time 
series analysis and in signal processing. In view of its importance several 
techniques have been proposed for estimating the spectral density function 
given sample data from a time series. The methods of estimation proposed 
so far can be grouped into two categories, viz. (i) nonparametric methods, 
(ii) parametric methods. 

The parametric methods are based on model fitting (usually of the AR 
type) while the standard nonparametric method is based on "smoothing" 
the periodogram by a suitable weight function or a "spectral window" (see, 
e.g., [12]). There are, however, two special nonparametric approaches 
which have attracted considerable attention in the engineering literature. 
They are (a) Pisarenko's method [9, 10] and (b) Capon's method [2] . 
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The second-order spectra will not adequately characterise the series, 
(unless it is Gaussian) and hence there is a need for higher order spectral 
analysis. The simplest type of higher order spectral analysis is bispectral 
analysis. In recent years the bispectrum has been used in a number of 
investigations, for example, testing linearity [16] and decon volution of 
seismic signals [6] . There are two widely used methods of estimation of the 
bispectrum and they are: (i) using fast Fourier transforms and (ii) 
smoothing the third-order periodogram (see [17]). However, in this study 
we concentrate on generalising Pisarenko's method to the bispectral case. 

In Section 2, the spectral and bispectral properties of various models are 
discussed. The "truncated bispectrum" is defined in Section 3, and its 
estimation is considered in Section 4. This method of estimation is a 
generalisation of Pisarenko's method given for the estimation of the 
second-order spectrum [18]. The estimation of spectrum and bispectrum 
of simulated data is considered in Section 5. The detection of periodicities 
via the spectrum and bispectrum is considered in Section 6 and is 
illustrated with simulated examples. The methods are further illustrated 
with application to real data in Section 7. 

2. SPECTRAL AND BISPECTRAL DENSITY FUNCTIONS 

Let {X(t)} be a real-valued discrete parameter third-order stationary 
time series with μ = Ε(Χ(ί))9 R(s) = E(X(t) - μ) (Α^ + ^ - μ ) , c(sl9s2) = 
E(X(t) - μ) (X(t + sj - μ) (X(t + s2) - μ). Since X(t) is real valued we have 
the obvious symmetry relations, 

R(s) = R(— s) and c(sl9 s2) = c(s29 si) = c(— sl9s2 — si) = c(si — s29 —s2). 

The spectral and the bispectral density functions are defined respectively by 

1 °° 
Mw) = ^ Σ R(s)e~is"9 |ω |^π , 

π - ° ° (2.1) 

% ^ 2 ) = 7 ^ Σ Σ Φ ^ 2 ) ^ ' ΐ ι ω ι " / ΐ 2 ω 2 , - π ^ ω 1 ? ω 2 < π . 
( 2 7 Γ ) τ, τ2 

In view of the symmetry of the third-order covariances, we have 

h{œl9 ω2) = Α(ω2, œl) = h( — ω1? —ωλ—ω2) 

= h(—œl—œ2,œ2) = h*( — œl, —ω2) (2.2) 

(where Α*(ωΐ9 ω2) denotes the complex conjugate of Α(ωΐ5 ω2)). 
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The bispectral density function η(ωί9ω2) is usually complex and can 
sometimes be explicitly evaluated from a given model. For example, let 
Χ(ί) = Σ^ g{u)e(t — w), where {e(t)} are mutually independent with 
E(e(t)) = 0, E(e2{t)) = a2

e9 Ε(β3(ί)) = μ3. Then the relations Α(ω) = 
σ2

β(2π)-1 |//(ω)|2, η(ωί9ω2) = μ3(2π)~2 Η{-ωχ-ω2) Η{ωχ) Η{ω2\ 
where H(œ) = YéUg{u)e~iuw can easily be obtained. 

In many practical situations, X(t) may correspond to a "signal," but one 
observes a contaminated version of the signal, say, Z(t). Let us assume, for 
each /, we can write Z(t) = X{t)+ Y(t), where the "noise" Y(t) is assumed 
to be a zero mean stationary (up to third order) process. Further, we 
assume that X(t) and Y(t) are independent. Then we have Αζ(ω) = 
hx(a>) + hy(œ\ hz((jûu co2) = hx(œl9 œ2) + hy(œl9 ω2). An important 
problem in signal processing is the estimation of the parameters (say, 
frequencies) of the signal X(t) when we observe {Z(/)}. We notice from 
these relations the estimation depends heavily on the behaviour of hv(œ) at 
the "natural frequencies" of {X(t)}9 even if {^(0} is Gaussian. 

However, if {Y(t)} is Gaussian (or has any symmetric distribution), then 
hz(œl9 œ2) = hx(a>l9 ω2), for all ωχ and ω2. This shows that the evaluation 
(and estimation) of the bispectrum can be an extremely important part of 
signal processing, and we will illustrate this usefulness in later sections. 

In an earlier paper [18], we considered the estimation of the "truncated 
spectral density function" and its relationship with the Pisarenko estimate. 
In the following section we define a "truncated bispectrum" and then 
consider its estimation. 

3. TRUNCATED BISPECTRUM 

Let (X(l)9 X(2)9...9 X(n)) be a sample from the series {X(t)} and let 
Χ=(1/η)ΣΧ(*)· We evaluate the finite Fourier transform, Jx(co) = 
Σ (X(t) — X)e~it(°9 and the third-order periodogram Ιη(ω{, ω2, ω3) by 

/„(ω1,ω2,ω3) = -—-2-7χ(ω1)7χ(ω2)7χ(ω3). (3.1) 
(Ζη) η 

Then we can show that (provided ω1 + α)2 + α)3 = 0 (mod In)) 

£,(/π(ω1,ω2,ω3)) 

\Δπ> n n ti t> 

= /ζ„(ω1,ω2), say. (3.2) 



SUBBA RAO AND GABR 487 

<n-1) 

-<n-1) 

/ A / 
3 / 1 

7i ^ 
/ 81 

4 / 6 y 

' 5 X 

(n-1) 

-<n-1) 

FIG. 1. The third-order covariances c(slts2). 

We will call hn(col9 ω2) the truncated bispectral density function, and we 
now consider its estimation. (Note that Α„(ω1,ω2) tends to η(ωι,ω2) as 
w-> oo ). 

In view of the symmetry relations, c(xux2) is calculated only in one 
sector of Fig. 1, say sector (2). To simplify the triple summations in (3.2), 
we proceed as follows: Let 

c*(sl9s2) = 

(n-sl)c(si,s2) 

c*(s2,si) 

if 0 O 2 O i <n— 1 (i.e.) sector (1) 

if O O j <;S2^n— 1 (i.e.) sector (2) 

c*(s2 — su -s{) if (i!,^2) lies in sector (3) 

c*(si—s29 -s2) if (sl9s2) lies in sector (4) 

c*(-s29 sl -s2) if (si9 s2) lies in sector (5) 

c*(—sus2 — s{) if (s{, s2) lies in sector (6). 

We can now write (3.2) as 

Μω,ω^^ΥΥ^-« ,^ -« ) . -^ -^ ' - '^ -^ 2 . (3.3) 
{Infn ^ £x 
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As in the case of a truncated spectrum (see [18]) we can write (3.3) in 
terms of eigenvalues and eigenvectors of a symmetric matrix c* of order 
(2n — 1 ) x (2n — 1 ), given by 

~c*(n-l,n-\) c*(n-l,n-2) ·■· c*(«-l,0) 0 0 · · · 0 

c*{n-2yn-\) c*(n-2,n-2) ··· c*{n-2,0) c*(n-2,-l) ··· 0 

c*=| c*(0yn-\) c*(0,/i-2) ··· c*(0,0) c*(0, -1) ··· c*(0,-«+l) 

0 0 

0 0 ··· c*(-/i+l,0) c*(-w+l,-l) ··· c*(-n+\,-n + \)_ 

Let {μ„,7, 7= — (n— 1),..., 0, 1,...,(«—1)} be the eigenvalues of c* and 
Art _ ( n _ n , A„ _(„_2), ..·, A„( M_1 ) the corresponding normalised eigenvec-
tors. Since c* is symmetric, we have c* = Σ"= i(„-i)^M,y AnJrAJ^, where 
\'nJ = (üj(—n+1 ), Qj( — n +2),..., ^.(/i — 1 )). Hence we obtain 

1 « - 1 
Αι,(ωι,ω2) = -τ--2- Σ ^ . y A J / c t ) ! ) ^ * ^ ) , (3.4) 

1 Ζ π ; nj= -(n-l) 

where Λ ' / ω ) = ΣΗ,Ζ V D φ ) eisai■ 
At this stage it may be noted that the eigenvalues μη} cannot be in any 

way related to h„(col,co2)9 unlike the case of spectral density functions 
[18]. However, there is an advantage in writing (3.3) in terms of the eigen-
values and vectors, and when we consider the estimation of (3.4), the 
reason for doing so will become clear. 

4. ESTIMATION OF THE TRUNCATED BISPECTRAL 

DENSITY FUNCTION hn(œu ω2) 

Given a sample (X(l), X(2)9..., X(n)) from {X(t)}9 let n = Mk, where M 
and k are integers. Divide the data into M groups, where each group 
consists of k observations. Let the observations in the /th group 
(/= 1, 2,..., M) be denoted by the vector X,, where X,= (X((l- 1) k+ 1), 
X((l-l)k + 2),..., X(lk)) (/= 1, 2,..., M). Let % = (1/Μ)ΣΐίιΧΜ), where 
XM) = X((l-l)k+j), 

1 M _ 
cj(sus2) = - Σ (Wj)-Xj) (XAJ+sJ-Xj+J (X,U+s2)-xJ+S2), 

M 1= 1 

c*{Sl,s2) = (l/k) Σ cplts2), (i, = 0, ±1 , ±2,.. . , ±(k-l), 
j= i 

*2 = 0, ±1 , +2,..., ± ( * - l ) ) , 
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where t = max(.s1, s2). We now define a symmetric matrix c* of order 
(2k — l ) x (2k — 1) similar to c* where, for example, we replace 
c*(n- 1, n- 1) by c*(k- 1, k- 1), etc. Let {fikj9j = 0, ±1, . . . , ± ( * - 1)}, 
{vi^y, y = 0, ±1, . . . , ±(fc—1)} be the eigenvalues and normalised eigen-
vectors of c*. Consider the estimate 

1 k~1 

^ ( ω 1 ? ω 2 ) = 2 Σ fikj^tjWi)Âlj(œ2)9 (4.1) 
yzn) Kj=_(k_X) 

where Α£,(ω) = Σ*ΓL(*_ υ âkJ(s) e~is(ü. 
In order to study the asymptotic sampling properties of the estimate 

(4.1), we need to know the sampling properties of {ßkJ}9 and {âkJ{s)}; 
and at present these are not known (since c* is not a Wishart matrix). 
However, it is reasonable to conjecture that for fixed k and as Af->oo, 
^(CÜ!, ω2) will be a consistent estimate of hk(coi9 ω2). We now discuss the-
advantages of using the expression (4.1) for estimating hn(a)u ω2). 

The choice of k, in relation to n, is quite important, and in a way is 
similar to the choice of the truncation point in the estimation of spectral 
density functions. One way of choosing k is to plot c*(sl9 s2) against sl9 s2i 

and see whether c*(k, k), where k = max(sl9s2\ decays to zero beyond 
some value, k09 say. If it does, we can choose k = k0. This is consistent with 
the assumption that Σ Σ ΙΦι» ·*2)| < oo. Though in theory it is possible to 
find k0 in this way, we see that k0 must be found from a 3-dimensional plot 
and this can be quite difficult. This is where the representation (4.1) in 
terms of the eigenvalues {μ*,,} can be extremely useful. Since the eigen-
values contain most of the information contained in the matrix c*, an 
examination of {fikJ} for some values of A:, will clearly indicate the choice 
of k0. Besides, the modulus of the bispectral estimate computed from (4.1) 
is usually very smooth. 

5. NUMERICAL ILLUSTRATIONS 

In the following section we illustrate the methods of estimation of 
spectrum and bispectrum. The theoretical forms of the estimates are given 
below (for details see [18]). 

Let (A^l), X(2\ ..., X(n)) be a sample from the zero mean third-order 
stationary time series {X(t)}. Let R(t9 s) = co\(X(t\ X(s)). Define the 
Toeplitz matrix Rn of order nxn, where the element corresponding to 
the rth row, rth column (t9s= 1, 2,..., n) is R(t9 s). Let λη 0, ληΛ,..., λη,„_ι 
be the eigenvalues of R„ and let b„ 0> ·>„ i,..., bn^n_i be the corresponding 
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normalised eigenvectors. Further, let b„, = (bw>(0), bny(l),..., bnj(n- 1)) 
(y = 0, 1,..., n- 1). We define the truncated spectral density Α„(ω) and the 
theoretical form of the Capon's estimator, as hncap(œ). They are 

1 "-1 

Α»(ω) = — Σ KjBnj{<*>\ 
j' = o 

Α».«Ρ(ω) = ^ ["Σ Ι Α- ;Α Ι Ι ι /ω) ] , (5.2) 

where BnJ(œ) = (2/η)\Σ"=ο bnJ(t)e
ita)\2. We proceed as in Section 4 and 

form the sample variance-covariance matrix &k = M~l Σ / l i X/X/· Let XkJ 

(7 = 0, 1,2, ...,& — 1) be the eigenvalues of the matrix R* and let the 
corresponding normalised eigenvectors be hkJ (y = 0, 1, 2,..., k — 1), where 
fi*,y= (£*j(0), £*,,(!), -, £*,/*:- 1)). Then the estimates of Λ„(ω), hncap(œ) 
are obtained by %(ω), ftk,cap(co), respectively. These estimates are 

1 k~l ~ ~ 
hk((o) = — £ XkJBkJ{œ\ 

^71 j■ = o 

^Ρ(ω) = -\"Σ 'Κ) 4 ,(ω)1 , (5.4) 
πΙ_7 = ο J 

where BkJ(co) = (2/k) IXfrJ £*,;(0*//<ül2. The examples considered for 
illustration are as follows: 

EXAMPLE 1. Let the time series {X(t)} satisfy the equation 

X(t)-0AX(t-l) + 0JX(t-2) = e(t), (5.5) 

where {e(t)} are independent, identically distributed normal variables 
with mean zero and variance unity. The theoretical spectral density 
function Α(ω), for the above model is given by Α(ω) = 
(2π)~1|1-0.4^~/ ω + 0.7^-2,ωΓ2. The spectrum Α(ω) has a maximum at 
ω = 0.4π. 

Two time series of lengths n = 2800 and n = 3600 are generated from the 
model (5.5). The above estimates (at the frequencies ω7=7'π, y = 0(0.1) 1) 
are computed in three cases. They are: (i) AI = 2800, AC = 20, M= 140; (ii) 
n = 3360, k = 24, M = 140; and (iii) n = 3360, k = 28, M= 120. The graphs 
of the theoretical spectrum h(a>) and the estimates hk(co) and hkjCap(cü) for 

(5.1) 

(5.3) 
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FIGURE 2 

case (i) are given in Fig. 2; for case (ii) in Fig. 3; for case (iii) in Fig. 4. In 
each of these cases, there is a clear peak at ω = 0.4π in the estimated spec-
trum. From the simulations we have performed we found that Capon's 
high resolution estimate is good when the ratio k/M is small. Since the 
series {X(t)} is Gaussian, the bispectral density function is zero. 

EXAMPLE 2. We now consider a time series {AXO} generated from the 
model 

Jf(0-0.4Jf(/- l) + 0.7Jf(/-2) = iy(/), (5.6) 

η(ΐ) = β2(ΐ)— 1, where {e(t)} are as in Example 1. Since the variance of η(ί) 
is 2, the spectral density function of X(t) is 2Λ(ω), where Α(ω) is given in 
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Example 1. In this case X(t) is non-Gaussian (though linear). The bispec-
tral density function is given by 

h(œl,œ2) = -^2G(e-^)G(e-i^)G(e + i^+^), (5.7) 
(2π) 

where G{e~ia)) = (1 -0Ae~ia)-^OJe'2^)-1. The modulus of h(œl9œ2) is 
given in Fig. 5, and the estimated modulus is given in Fig. 6 (here n = 2000, 
A: = 20, M =100). We see clear peaks at C0j=0, ω2 = 0.4π; ω!=0.4π, 
ω2 = 0; and α̂  = ω2 = 0.4π confirming that the bispectrum can be used to 
detect pseudo periods the time series may have. 

EXAMPLE 3. A nonlinear (and non-Gaussian) time series {X(t)} is 
generated from the model ^(0 = 0 .7^/ -4) e(t-4) + e(t). The theoretical 
spectrum, the estimated spectrum and the high resolution estimate are 
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given in Fig. 7; and the theoretical (modulus) bispectrum and its estimate 
(where n= 1000, k= 10, M= 100) are given in Figs. 8 and 9, respectively. 
It is interesting to observe that the estimates reproduced the periodic 
features of the spectrum and bispectrum. 

6. THE RETRIEVAL OF HARMONICS VIA SPECTRUM AND BISPECTRUM 

Parametric estimates of spectrum, such as AR estimates and ARMA 
estimates, are widely used to detect periodicities of signals which are 
represented by harmonic processes. To show how AR spectral estimates 
can be used to detect the periodicity, let X(t) = ASin{cot + \l/). Since 
§\η(ωί + ψ) = 2οο$ω$ϊη(ω(ί-1) + ψ)-$'ιη(ω((-2) + ψ)9 we have the 
difference equation X(t) — 2 cos ω X(t— 1) + X(t — 2) = 0. In other words, 
harmonic process with a single freqency ω can be written as an AR(2) 
process with the input term e(t) identically zero. The associated charac-
teristic polynomial Z2 — 2coscoZ+ 1, has roots Z = eia), e~ia). Therefore, if 
the AR(2) spectrum is computed for the series {X(t)}9 one observes a peak 
at the frequency ω corresponding to the frequency of the signal {X(t)}. 
This extends to the case of several harmonic terms (see Chan, La voie, and 
Plant [3]). Let Χ(ΐ) = Σ?=ι ^ ySin(œ/ + ^ ) ; then X(t) satisfies the 
equation ΑΓ(/) = Σ>=ι ajX(t— j). Suppose now that instead of observing 
the signal {X(t)}, one observes a contaminated version, say, 
Z(t) = X(t)+ Y{t\ where Y(t) is noise (see Section 2). Then the above 
model for X(t) can be written as an ARMA (2m, 2m) of the form 

2m 2m 

Z(0- Σ ajZ(t-j)= Y(t)~ Σ *j nt-A (6.1) 

Therefore, if one wants to extract the harmonics of a signal contaminated 
by noise, an ARMA spectrum has to be computed, and not just an AR 
spectrum. Alternatively, as shown by Ulrych and Clayton [19] (see also 
Subba Rao, [15]), one can perform principal component analysis on the 
variance matrix of (Z(/), Z(t— 1),..., Z(t — 2m)) and obtain the estimate of 
the variance of Y(t) and the parameters (a{. a2,..., a2m), and these in turn 
give the harmonic components because they correspond to the roots of the 
polynomial Zlm-axZ

lm-1 -a2Z
2m~2 a2m (see [5]). As shown by 

Ulrych and Clayton [19], this is the basis of Pisarenko's algorithm 
(Pisarenko, [10]) for estimating the parameters of the signal X(t\ when 
X(t) satisfies an AR model and the noise {^(0} is independent of X(t). 
The method proposed by Subba Rao [15], was based on canonical factor 
analysis, which here reduces to principal component analysis. 
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The above approaches depend on spectral analysis (or covariance 
analysis) for detecting the periodicities of the signal in the presence of 
noise. As pointed out in Section 2, an alternative would be to estimate the 
bispectrum of {Z(t)} and this would be equal to the bispectrum of the 
signal (assuming the signal is non-Gaussian and the noise is Gaussian) and 
the following examples illustrate clearly its usefulness. 

EXAMPLE 4. A time series {X(t)} is generated from the model 
X(t) = 2Sin(Q.25n)t + e(t) (t= 1,2,..., «), where {e(t)} are as before. 
n = 3000, k = 30, M = 100, £*(ω), Α^Ρ(ω), and the bispectral modulus are 
calculated. The spectral estimates are given in Fig. 10 and the bispectral 
modulus is given in Fig. 11. In the spectral estimate there is a clear peak at 
ω = 0.25π and in the bispectrum at a*! = ω2 = 0.25π. 

EXAMPLE 5. A time series {X(t)} is generated from the model 

X(t) = 4 Sin(0.157i)/ + 4 Sin(0.357r)/ + e(t). 
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For the estimation of the spectrum, we have chosen « = 5000, A: = 50, 
M= 100, and for the bispectrum, n = 3000, k = 30, M = 100. The graphs of 
the spectral estimates and the modulus of the bispectral estimate are given 
in Figs. 12 and 13, respectively. The peaks at ωλ =0.15π and ω2 = 0.35π in 
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fik(œ) stood out clearly, but it is not the case in dkyCap(œ). In the bispec-
trum there are clear peaks at ωχ = ω2 = 0.15π, ωχ = 0.15π, ω2 = 0.35π, and 
(οχ = ω 2 = 0.35π. At other frequencies, the values of the modulus are very 
small. 

35 F 

30 h 

25 l· 

20 Y 

15 

10 l· 

II 
II 
II 
h 
II 
h 
I I 
I I 
I I 
i U 
» I 

h (a 
k 

0.0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ω. = 0 ( 0 . 1 ) π 
3 

FIGURE 14 



500 BISPECTRAL DENSITY AND SIGNAL PERIODS 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

).2 

KO 

. 
/\ 

' i 
| » ^ h ( ω ) j 

I I 

I | 

; Λ \ 
' / / !■ \ 

J ! \ \ 
f I \ \ 
1 > \ - < h, (ω) 
/ / \ » k , c a p 

' \ * ' f \ \ 
J1 ^ 

V - - / " / " \ \ 
I ■ ■ ■ | ~~i Γ- — 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ω. = 0 ( 0 . 1 ) π 
3 

FIGURE 15 

EXAMPLE 6. As our final illustration, a time series {Z(t)} is generated 
from the model Z(t) = 4 Sin(0.157i)i + 4 Sin(0.557r) / + Y(t\ where Y(t) is a 
coloured Gaussian noise generated from the model Y(t) — 0.4Y(t— 1)4-
0.7Y(t — 2) = e(t\ where {e(t)} is defined earlier. We note that the spectrum 
of {Y(t)} has a peak at ω = 0.4π, which is in between the frequencies of the 
signal X(t), and this complicates the "identification" procedure. The 
estimates fik{œ) and ίι^ΟΆρ{ω) are calculated using: (i) « = 5000, k = 50, 
M = 100; (ii) « = 4000, jfc = 40, M = 100. The graphs of these are given in 
Figs. 14 and 15. When fc = 50 and M= 100, there are clear peaks in fik(œ) 
(see Fig. 14) at the frequencies ω!=0.15π and ω2 = 0.55π, which are 
frequencies of the signal. When A: = 40 and M = 100 there are no visible 
peaks (see Fig. 15) at these frequencies; instead, we observe a peak at 
ω = 0.4π which corresponds to "pseudo" periodicity of the noise. In order 
to understand why this happened, we note that Rz(s) = Rx(s) + Ry(s), and 
Ry(s) -► 0 as \s\ -* oo. Therefore, unless we include terms of very high-order 
lagged autocovariances, the periodicity of the signal will not be visible in 
the estimate. This is in fact similar to the observation made by Priestley 
[11], in his analysis of mixed spectra and the construction of his Ρ(λ) test. 
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FIGURE 16 

Let us now look at the bispectral estimate. The bispectral estimate of 
{Z(t)} is estimated using n = 3000, k = 30, and M= 100, and the modulus 
is plotted in Fig. 16. We see clear peaks at ω1 = ω2 = 0Λ5π and 
ω! = ω2 = 0.55π, and smaller peaks at ω1=0.15π and ω2 = 0.55π. This 
example clearly demonstrates the usefulness of evaluating the bispectrum, 
in addition to the spectrum. 

7. THE PERIODICITY OF THE EARTH'S MAGNETIC REVERSALS 

We now illustrate the above methods of estimation with a real example 
which has received considerable attention in geophysics literature. The 
problem is to detect the periodicity in the earth's magnetic reversals. The 
theoretical results postulate long term periodicity in magnetic stratigraphy 
with reversal periods of 285, 114, 64, 47, and 34 million years. Recently 
several authors [19, 8, 13, 7] have analysed this data. Negi and Tiwari 
[8], have come to the conclusion that the spectral peaks at around 285, 
114, 64, 47, and 34 million years seem to be very significant. However, the 
data sets analysed by various authors seem to be different. Stothers [14] 
considered the 296 magnetic reversals over the past 165 million years, the 
dates (intervals) of these reversals are given by Harland [4]. The data 
analysed by Stothers [14] corresponds to the number of reversals over 4 
million year intervals. For our illustration we considered the number of 
reversals during the first 124 million years as given by Harland [4]; the 
data corresponding to the number of reversals over 2 million year intervals. 
Thus we have 62 observations, the spacing between observations being 2 
million years. The spectrum and the bispectrum are estimated using k = 6 
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and M =10, the spectrum is plotted in Fig. 17 and the values of the 
modulus of the bispectrum are given in Table I. No clear peaks in the low 
frequency of the spectrum are seen, but we observe two small peaks at the 
frequencies ω = 0.45π and ω = 0.8π. The peak of ω = 0.45π corresponds to 
approximately 9m years, and the peak of ω = 0.8π correspond to 5m years. 
It is instructive to examine the values of the bispectrum (modulus) given in 
Table I. We see that the values are very large in the low frequency range, 
conforming that this might be due to a long periodicity. The value at 
ω1 = ω2 = 0.05π is very significant. Though this does not correspond to a 
peak, we see that there is a sudden drop in magnitude at the next fre-
quency. This frequency, ω1 = ω2 = 0.05π, corresponds to 80 million years, 
and Negi and Tiwari [8] pointed out that this may correspond to the 
variational period of the sun being perpendicular to the galactic plane 
which is 85m years. There are other peaks at ωί = 0, ω2 = 0.45π 
corresponding to, approximately, 9 million years and the peak at 0^=0, 
ω2 = 0.8π corresponds to 5 million years. These peaks are also observed by 
Stothers [14] and others. The data set we have analysed is not large 
enough to draw any valid conclusions. However, the above preliminary 
bispectral analysis clearly shows that the above data is non-Gaussian. 
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2XA7 Ordinal Contingency Tables* 
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The set of all bivariate probability distributions with support contained in {(/, j)\ 
i= 1, 2 and 7=1,2, . . . , n) which are totally positive of order two is shown to be a 
convex set under some conditions on one of the marginal distributions. The extreme 
points of this compact convex set are explicitly enumerated. Using the structure of 
this convex set, we show that the power function of any test for testing the 
hypothesis of independence against the hypothesis of strict total positivity of order 
two in 2 x n ordinal contingency tables has a simple form in terms of the extreme 
points. A numerical illustration IS provided. © 1988 Academic Press, Inc. 

1. INTRODUCTION 

Let X and Y be two random variables each taking a finite number of 
values. For simplicity, assume that X takes values 1, 2,..., m and Y takes 
values 1, 2,...,«. Let piJ = Pr(X=i, Y=j), /=1 to m, and 7=1 to n. In 
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order to describe local association between X and Y, (m — 1 )(n — 1 ) odds 
ratios defined by 

eu = Pä£l±hi±Ly / = 1, 2 m - 1, 7 = 1, 2 #ι - 1 
Pi + \jPi,j+ 1 

have been commonly used in the literature. See Agresti [1] . In practice, the 
joint distribution of X and Y will be unknown and one would like to test 
the hypothesis 

H0 : X and Y are independent 

against certain ordered alternatives involving the odds ratios 0,/s based on 
a random sample of size N on (X, Y). See Grove [7, 8] , Patefield [13], 
Barlow, Bartholomew, Bremner, and Brunk [2] , and Bartholomew [4] , 
among others. One such alternative hypothesis is given by 

Hx: 0 ^ 1 , i = l , 2 , . . . , w - l ; y = l , 2 , . . . , r t - l . 

The condition imposed by Hx is also stated in the form 

PijPi+u+i >Pu+iPi+ij> 

i = 1, 2,..., m— l ; y = 1, 2,..., n—1, 

or, equivalently, in the form that the determinants 

Py Pij+i 

Pi+lJ Pi+lJ+l 

^ 0 , / = 1, 2,..., m— l ; y= 1, 2,..., n—\. 

Using induction, one can show that (1.3) is equivalent to 

(1.1) 

(1.2) 

PiiJ, Pi, A 

Pnh Phh 
>o 

(1.3) 

(1.4) 

for all 1 ^z, <i2^m and 1 ^j\ <j2 ^n. Condition (1.4) is precisely the 
condition that the matrix P= (ρ0) is totally positive of order two (TP2) or 
the joint distribution of X and Y is totally positive of order two. See Karlin 
[10, p. 18]. For this definition and its ramifications, see Barlow and 
Proschan [3, p. 143]. In the literature, this notion also goes by the name 
positive likelihood ratio dependence. See Lehmann [11, p. 1150]. 

There are various tests available in the literature for testing H0 against 
Hl given above. In the context of 2xn bivariate distributions, Grove [7] 
derived the likelihood ratio test for H0 versus an alternative which is 
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slightly weaker than / / , given above. Patefield [13] and Hirotsu [9] 
worked within the framework of H0 and Hx given above. One of the major 
stumbling blocks on a critical examination of the tests used in this connec-
tion is the lack of a suitable apparatus by which one can compute the 
power at any given distribution in the alternative. Comparison of the 
performance of the tests is also fraught with similar difficulties. 

In this paper, by looking at the notion of total positivity of order two 
from a global point of view, we show that some of the difficulties men-
tioned above can be overcome under some conditions. Let M(TP2) denote 
the collection of all bivariate distributions with support contained in {(i, j)\ 
1 ̂ i'^rn, l^j^n}. Any member of M(TP2) can be regarded as a matrix 
^ = (/>ι>·)ι </<m,i <><#i s u c h that each pu is nonnegative, ΣίΣ]ρί] = 1 and all 
the second-order determinants of the type mentioned above are non-
negative. In Section 2, we examine the convexity properties of the set 
M(TP2). Using the structure of the convex sets described in Section 2, we 
give a simple formula for evaluating the power function of any test 
proposed to test independence of X and Y against the alternative 
hypothesis of strict total positivity of order two for X and Y in Section 3. 
This formula is useful in evaluating the exact size and power of any test 
proposed. The mechanism of the formula is explained with the help of a 
particular example. Section 4 is concerned with extensions of the results of 
Section 2. 

2. CONVEXITY PROPERTIES 

In this section we assume that m = 2. Let qx, q2,..., ^„ben positive num-
bers such that qx + q2 + · · · + q„ = 1. Let M^(TP2) be the collection of all 
bivariate distributions of total positivity of order two and whose second 
marginal distribution is qu q2,.»>qn, where q = (qu q2, ···,#„). More 
precisely 

M(f(TP2)={P=(pu)eM(TP2);plj + p2j=qpj=l ton}. 

The following result gives the structure of the above set. 

THEOREM 1. The set Mq(TP2) is a compact convex set. It has exactly 
(n + 1 ) extreme points given by 

ro o ... e i 
L?i a2 -" qnj 

|_0 0 · · · 0 ql+l qi+2 . . · qn\ 
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Proof. It is clear that Mq(TP2) is bounded and closed. We prove the 
convexity of M</(TP2). Let P=(Pij)i^i^2,i^j^n be a given matrix. Then 
PeMq(TP2) if and only if 

(i) ρ^ ^ 0 for all i and j , 

(") Piy + />2y = 0y for ally, and 

(iii) Pihqh-Pihqh ^ 0 for all 1 ̂ j\ <j2 ^n. 

Let P = (pu) and Q = (qu) belong to Mq(TP2) and 0 < A < 1. Then for 1 < 

I A/?lyi + ( 1 - λ) qljx Àplj2 + ( 1 - λ) qlj21 
I Ap2-/1 + ( 1 - λ) q2Jl Xp2h + ( 1 - λ) q2j2\ 

= ^ÎPijlqj2-Pij2aJ^^(1-À)la^aj2-aij2ajJ 

^ 0 in view of property (iii) above. 

Consequently, λΡ+ (1 -X)QeMq{TP2). This proves that Mq{TP2) is a 
convex set. 

It is obvious that each P/eAf<7(TP2) and is also an extreme point of 
Mq(TP2). In order to show that these are the only extreme points of 
Mq(TP2\ it suffices to show that every member of Mq(TP2) is a convex 
combination of these P/s. Let P=(pij)eMq{TP2) be given. Let a0 = 
l-PnlQu <*i = Pu/<li-pii+i/qi+i> * = 1, 2,..., w - 1, and a„ = pln/qn. One 
can check that α 0 + α , + · · · + α Λ = 1, α,^Ο for i= 1, 2,..., n— 1 from 
property (iii) above, and a„ ^ 0 and a0 ^ 0 from /?n +/?21 = #!. Further, 

This completes the proof. 
Thus we see that every distribution P in Mq(TP2) is a mixture of a fixed 

finite number of special distributions in Mq(TP2). Is the representation of P 
in terms of P0, P,,..., P„ given above unique? In the parlance of iden-
tifiability of mixtures the above question translates into whether the family 
of distributions in Mq(TP2) is identifiable with respect to {P0, Pl9..., P„}. 
See Teicher [14, p. 244]. This is indeed the case. This follows from the fact 
that the vectors (ql90, 0,..., 0), (ql9q2, 0, 0,..., 0), {ql9 q2, q3, 0, 0,..., 0),..., 
(qu q2,..., qn) are a (Hamel) basis for the «-dimensional Euclidean space 
Rn. Thus we have the following result. 

THEOREM 2. The family of distributions Mq(TP2) is identifiable with 
respect to {P0, P1?..., Pn}. 
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Remarks. 1. A close look at the extreme points of Mq(TP2) reveals 
the following information. Under each of P0 and Pn, X and Y are indepen-
dently distributed. Under each of Pl9 P29...,Pn_u X and Y are not 
independently distributed. 

2. The set M(TP2) is not convex. For example, take n = 2 and look 
at the following two bivariate distributions. 

'-Bö «-[ill 
Each of P and Q is TP2 but not { P + \ Q. 

3. An examination of Theorem 1 provides the following information 
on the position of zeros of any bivariate distribution Ρ = (ρν) in M^(TP2). 
The matrix P is one of the following types: 

A. P = Pi for some i = 0, 1, 2,..., n. 

B. Every entry in P is positive. 

C. P can be partitioned as 

ΓΛι Λ2] 
L 0 P22\ 

in which every entry in the submatrices Pll9 P12, and P22 is 
positive. 

D. P can be partitioned as 

Γ" Ί 
in which every entry in the submatrices Pn, P2l, and P22 is 
positive. 

P can be partitioned as 

ΓΛι Pn 0 I 
L 0 P22 P23] 

in which every entry in the submatrices Pn, P12, P22, and P23 

is positive. 

4. If X and Y are independent under P, then P is a convex 
combination of P0 and P„. 
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3. AN APPLICATION 

Theorem 1 is useful in computing the size and power function of any 
given test under the following setting. Let (X, Y) be a random vector with 
some probability law P={pij)\^i^2A^j^n. The onty information we have 
about P is that the marginal distribution q = (qu #2> ···> <ln) of Y is known 
and that Pe M//(TP2). Suppose we wish to test the null hypothesis H0 that 
X and Y are independent against the alternative Hx, that X and Y are 
strictly totally positive of order two, i.e., X and Y are totally positive of 
order 2 but not independent, based on N independent realizations {Xl9 Υχ)9 

(X2, Y2\ ..., {XN9 YN) of (X, Y). Note that both the hypotheses are com-
posite. Suppose T=T((Xl, Yx\ (X2, Y2\...9{XN, YN)) is a test statistic 
proposed and C is the critical region of the test based on T to discriminate 
the hypotheses H0 and Hv. Let βτ() be the power function of the test 
based on Γ, i.e., 

βτ(Ρ) = Pr {TeC/P}, PeM,(TP2). 

The computations of βτ(Ρ) for P in MqÇTP2) can be simplified by 
using Theorem 1. For a given P in Mq(TP2) we can find nonnegative 
numbers a0, «!,..., art with sum equal to unity such that P = 
α 0 Λ ) + α ι Λ + ·■· + α„Λι· The joint distribution of (Xu Yx\ (X2, Y2\ ..., 
(A^, Fyy) is given by the product probability measure 

P^ = P(g)P(g) ... (g)i> 

= Γ,· 27,· · - · EiN a,· α,·2 · · · *lN(Pix ® Ph ® · · · ® PiN\ 

where each ij e {0, 1, 2,..., n},j = 1, 2,..., N. Assume that T is a symmetric 
function of (A',, 7,), (JT2, 72), ···» ( ^ . YNY li i s n o t difficult to see that 

βΓ(Ρ) = Lh Li2 · · · LiN α,- α/2 · · · α/Λ, 

= 2T(^!/r0!r1!.-T#l!)a8,a?-.-a? 

xirWei!1® ■■•®Prnn\ (3.1) 
where the summation is taken over all nonnegative integers, r0, r1?..., rM 

subject to the condition that r0 + r{ + · · · + r„ = N. 
The above formula expresses the power of the test T evaluated at P 

as a convex combination of the powers of the test T evaluated at the 
distributions Pr

0° ® Ργ ® · · · ® P;M with r0 + r ! + · · · + rn = N with the 
coefficients in the convex combination coming from the multinomial dis-
tribution (N; a0, al,..., a„). The precise meaning of ßT(Pr<?® Ρ\λ ® · · · ® Pr

n
n) 
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is given by Pr(T rejects H0\(Xl9 Y^,..., (Xro,Yro) has distribution 
Λ>; (^ΓΟ+Ι. ^Γο+ιλ-^ί^Γο + Γ,» Γ̂Ο + Π) has distribution P,,..., and 
(Ar

ro + r i +. . .+ r i i_1 + 1, rro + r i + . . .+ r n_I + i),..., (XN9 YN) has distribution P„). 
For moderate values of N, the above formula can be used effectively to 
evaluate the exact power of the test T at any distribution P in Af<7(TP2). 

We can also give a simple formula to evaluate the size a of the test T. Let 
Mj,</(TP2) be the family of all distributions in M</(TP2) under which X and 
Y are independent. M/(/(TP2) is precisely the family of all distributions 
specified by the null hypothesis H0. M7 <7(TP2) is a compact convex set with 
extreme points P0 and Pn. This can be seen as follows. Let 

pJPn Pn ·· PinlM ( T P ) # 

L/>21 P22 ·'· />2J 

Let P u + P 1 2 + · · · + P i « = P i and p2i + P22+ ~- + Pzn= Pi- T h e n 

/>// = PMj f°r all / and 7, and also 

Ρ = />2Ρ0+/>ιΛ,· 

Consequently, 

and the size of the test T is given by 

a= sup i(N)^-P^PNrrßr(Pro®PN
n-r\ (3.2) 

Note that the numbers ßT(Pro®Pn~r) depend on r and gl9 q2,..., qn only. 
We illustrate the foregoing ideas by an example. At this juncture, some 

comments on Goodman-Kruskal's gamma ratio Γ are in order. For any 
bivariate distribution P= (ρ<:/)ιο·<2,ι<./<π» t h e Goodman-Kruskal gamma 
ratio Γ{Ρ) is defined by 

r{P) = (nc-nd)l(nc + nd\ 

where 

π Γ = / > 1 ΐ ( / > 2 2 + Ρ 2 3 + · · ' + ^ 2 « ) 

1«- 1 /*2w 

and 

Kd = pXn{p2\ + P22 + "' +Pm-i) 

+ P\n-l(P2l + P22 + · · ' + />2n-2) + ' · · + />12/>21· 
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It is easy to verify that 0 < Γ ( Ρ ) ^ 1 for every P in Mq(TP2). Further, 
Γ(Ρ;) = 1 for / = 1, 2,..., n — 1. The gamma ratio also characterizes indepen-
dence as explained in the following result. 

THEOREM 3. For any bivariate distribution P=(Pij)\^i^2,i^j^n *n 

Af</(TP2), Γ(Ρ) = 0 if and only if X and Y are independent under P. 

Proof If X and Y are independent under P, it is obvious that Γ(Ρ) = 0. 
Suppose Γ(Ρ) — 0. This implies that nc — nd = 0 and also 

Pijx PiJi 

Pvx Pih 
= 0 

for every l^jl< j 2 ^ n. We distinguish two cases. 

Case 1. None of the column marginal totals is zero. Then we can write 

[%]-«[$ -Pu 

for some constants c2, c3,..., cn. Let pl9 p2 be the row marginal totals and 
ql9 q2,...,qn the column marginal totals. Then pn + pl2+ · · · -l·P\n = 
pl =(1 + c 2 +c3 + ··· +c„)/7n and qj = cjql for 7 = 2, 3,..., n. Conse-
quently, 1 =ql +q2 H- ··· +qn = (1 + c2 + c3 4- · · · + cn) qx and 1 + c2 + 
c3 -h ···+<;„ = 1/^j. This implies that Pn=P\q\. Using a similar 
argument, one can show that p0 = p^j for all / and j . 

Case 2. Some of the column marginal totals are each equal to zero. 
Ignoring these columns and dealing with the reduced matrix, one can 
establish independence by adapting the argument given in Case 1. 

The foregoing discussion indicates that it is reasonable to construct a test 
based on the gamma ratio. An estimator f of Γ is built as follows. Let 
Nu = number of (Xr, Yr)

Js with Xr = i and Yr = f i= 1, 2; j= 1, 2,..., n. 
The data {(Xr, Yr); r= 1, 2,..., N} can be summarized in the form of a 
contingency table: 

~NU Nl2 ·.· N 

_N2l N22 ..· N, :} 
The estimator of Γ=Γ= (C-D)/(C + D), where 

C=Nn(N22+N2J+...+N2n) 

+ Nl2(N2,+N2A+ ...+N2n)+ ■■■+Nin_iN2„ 
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and 

D = Nln(N2l + ^ 2 2 + - - - + i V 2 n _ 1 ) 

+ NlH_x{N2l + W22 + ... + tf2n_2) + .. . +Nl2N2l. 

f is obviously a symmetric function of (Xl9 YJ, (X2, Y2\ ..., (A^, y^). 
One can build a test T based on Γ: 

Test T: Reject / / 0 if and only if / > c for some fixed 0 < c < 1. 

A NUMERICAL ILLUSTRATION. Let n = 2 and TV =6. The extreme points 
of Af/ΓΡ2) are 

Random Sample: (*„ r,), (*2, r2),..., (JT6, Y6). 

If the joint distribution of the random sample is Pg> ® P̂ 1 <g) P£ with 
r0 + r , + r 2 = 6 , i.e., each of (ΛΓ,, 7,), (*2, F2),..., (*„, r j has dis-
tribution P0; each of (*„+„ Fro+1), (A-ro + 2, y + 2 ) , . . . , (Jr„ + ri, r̂o + n) has 
distribution P,; and each of the remaining (Xi9 Yrfs has distribution P2, 
we denote this joint distribution by (r0, rlf r2). 

One can check that the estimator f can take any one of the seven values 
— 1, — | , —5, 0, 5, 3, and 1. The probability that f=d under any given 

joint distribution of the sample is of the form dxq\ + d2q\q2 +d3q\q\ + 
drflql + d5q]q2 + deqxq

5
2 + d1q\ for some nonnegative integers dx, d2,..., d7 

which depend on the joint distribution and the value d. We denote this 
probability by the vector (dl9 d2,..., d7) under the joint distribution and the 
value d. If each dt = 0, we denote the corresponding vector by Ö. The 
distribution of f is listed in Table I under each of the 28 possible joint 
distributions of the sample. 

Using the distribution of f, we can compute the size of any test based on 
f, and also its power function. We calculate the size of the following three 
tests under different values of qx. 

Test Critical region 

Tx Reject H0 i f f ^ 1 
T2 Reject H0 if f ^ c for any fixed c satisfying | ^ c< 1 
TT, Reject H0 if Γ ^ c for any fixed c satisfying { < c < \ 
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TABLE II 

Size of the Tests Tu T2, and T3 

\ ql 

T e s t \ 

T, 
T2 

T3 

0.1 

0.247 
0.248 
0.252 

0.2 

0.346 
0.352 
0.362 

0.3 

0.359 
0.373 
0.394 

0.4 

0.332 
0.353 
0.391 

0.5 

0.291 
0.323 
0.381 

0.6 

0.332 
0.353 
0.391 

0.7 

0.359 
0.373 
0.394 

0.8 

0.346 
0.352 
0.362 

0.9 

0.247 
0.248 
0.252 

Note that 

Sizeofr,= max Y (6) (l-pi)
rp6rr 

xßTl(P
ro®P62-r), i= l ,2 ,3 . 

Comments on Table II. It appears that the size depends so little on the 
critical region chosen. Since the sample size N is small, the range of values 
that f takes is very limited, and the probabilities P(f^ 1), P(t^\\ and 
(t^\) are not all that different under each of the joint distributions 
Pro®P\~\ r = 0, 1,2,..., 6, of the sample (Xu Yx), {X29 Y2\ ..., (X6, Y6). 
From Table I, the following information can be gleaned for qx = q2 = \, for 
the tail probabilities of Γ 

Joint 
distribution 

n 
Po®P\ 
Pl®p\ 
Pl®p\ 
n®p\ 
Pl®p2 

P6 

Ρ(Γ^Ι) 

0 

*mr 17(f)6 

13(f)6 

m? 
mi)6 

0 

P(r>\) 

0 
31(e)6 

17(i)6 

22(e)* 

mi)6 

31(e)* 
0 

P(t>i) 

0 
31(f)6 

25(f)6 

22(e)6 

25(f)6 

31(f)6 

0 

The sizes of Γ,, Τ2, and T3 work out to be 

Γ, Hl)\max( J31 Q (l-p)/>5+17 Q (!-/>)V 

+ , 3 ( 6 ) ( -

+ 31 Q (I-,)·,}. 

pYp'+ni^a-pfp' 
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T2 = (i)
6
 omaxi J31 Q (1 - p)p5 + 17 Q (1 - pf p4 

+ 22Q(l-p)3p3 + nQ{l-p)*p2 

+ 31 Q (I-pfp}, 

T3 = (i)
6
omaxi J31 Q (1 -/>)/>' + 25 Q (1 -/>)V 

+ 22Q(l-/,)
3/,3 + 25Q(l-/,)V 

+ 3lQ(l-p)5/»}· 

From these expressions, it is clear that one cannot expect substantial 
differences between the sizes. 

As qx moves away from \, the three columns of probabilities in the above 
table tend to be closer leading to very small differences between the sizes. 

Power Function. The power of each of the above three tests has been 
evaluated under each of the following joint distributions of X and Y 
figuring in Hx : 

1. (0.2)Ρο + (0.2)Λ+(0.6)Ρ2 

2. (0.2)Ρ0 + (0.4)Λ+(0.4)Ρ2 

3. (0.2)Λ) + (0.6)Λ+(0.2)Ρ2 

4. (0.4)/>0 + (0.2)Λ+(0.4)Ρ2 

5. (0.4)Ρ0 + (0.4)Λ+(0.2)Ρ2 

6. (0.6)Ρ0 + (0.2)Λ+(0.2)/>2. 

Let α0, αΐ5 and α2 be the generic symbols for the coefficients of P0, Pu and 
P2, respectively, in the above. In Table III the joint distribution of A'and Y 
is denoted by (α0,αι,α2). The power function of a test Γ, in this case, 
works out explicitly as 

/ Μ « ο , « ι , « 2 ) = Σ Σ Σ Γ t r ' t r , « g « ! 1 

*<*?βτ(Ρ$®Ργ®Ρ?)9 

where the summation is taken over all r0, ru r2 ^ 0 with rQ+rx +r2 =6, 
and βτ(Ρ

Γ
0°®Ργ®ΡΓ

2
2) = Ρτ(Τ rejects H0\ the joint distribution of 
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{Xl9 Fj),..., (X69 Y6) is P;?® P?®/^2). The computations are summarized 
in Table III. 

General Case. In the case of 2 x n tables with sample size N, the com-
plexity of the calculations involved in the exact evaluation of power and 
size of tests increase as TV increases. One needs to compute the powers 
ßT(P$ ® P\l ® · · · ® Pr

n
n) for all partitions r0 + rx + r2 + · · · + rn = N of N 

(see (3.1) and (3.2)). But the number of partitions is enormous even 
for moderate values of N. The evaluation of the probability 
βτ(Ρο®Ρ?® *·· ®Prn) involves the determination of the exact dis-
tribution of the test statistic on which the test T is based under the joint 
distribution PrJ ® P\x ® · · ® Pr

n
n of the sample. If the sample size N is small 

this may not be difficult. It is now clear that the formulas (3.1) and (3.2) 
are useful from a practical point of view for evaluation of exact size and 
power of tests when N is small. For large N, one may have to take recourse 
to asymptotics to evaluate size and power of tests approximately. 

4. SOME GENERALIZATIONS 

As has been pointed out in Remark 2 in Section 2, the set Af(TP2) is not 
convex in general. Even if we fix both the marginal distributions, the set is 
not convex. More specifically, let p = (Pu Pi> ···» Pm) a n d q — (qi9 qi,.., qn) 
be two fixed probability vectors. Let Mpq(TP2) be the collection of all 
bivariate distributions with support contained in {(/, j); i=\ to m and 
7 = 1 to w}, the first marginal p and the second marginal distribution q. 
This set is not convex. As an example, let p = (5, %,\) = q and look at the 
following two bivariate distributions. 

3 0 0"| 

0 i 0 . 

0 0 ^J 

Each of Px and P2 is TP2 but (f ) Px + (̂ ) Ρ2 is not TP2. 
However, under certain special circumstances certain convex com-

binations of TP2 distributions turn out to be TP2. Let M^(TP2) be the 
collection of all TP2 bivariate distributions with support contained in 
{(1,7): i = l to m and 7 = 1 to n) and the second marginal distribution 
being q. If Px and P2 are two bivariate distributions in M^(TP2) under each 
of which X and Y are independent, then OLPX + (1 - a ) P2 is also TP2 for 
every 0 < a < 1. We simply note that under OLP1 + (1 - a) P2, X and Y are 
independent. 

Λ = P,= 
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5. CONCLUDING REMARKS 

In the context of 2 x n bivariate distributions, extreme point methods 
have been used to provide explicit formulas for the evaluation of size and 
power of any test one proposes for testing 

H0 : X and Y are independent against 
H x : All odds ratios are ^ 1 with at least one strict inequality, based on 

a random sample of size N on (X, Y). These formulas are also helpful in 
comparing the performance of two competing tests. If N and n are small, 
one can find the exact distribution of the test statistic involved and the 
computation of size and power becomes practically feasible. 

Bhaskara Rao, Krishnaiah, and Subramanyam [5] examined the 
problem of testing H0 against Hx : X and Y are strictly positive quadrant 
dependent. The notion of positive quadrant dependence is weaker than 
total positivity of order two. Nguyen and Sampson [12] examined the 
convexity property of the set of all discrete bivariate positive quadrant 
dependent distributions. Cochran [6] presents a 2x5 contingency table 
which seems to conform to the pattern described by Hi above. 
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Asymptotic Expansions of the Distributions of 
Some Test Statistics for Gaussian ARMA Processes 

MASANOBU TANIGUCHI 

Hiroshima University, Hiroshima, Japan 

Let {Xt} be a Gaussian ARMA process with spectral density /0(A), where Θ is an 
unknown parameter. The problem considered is that of testing a simple hypothesis 
Η:θ — Θ0 against the alternative Α\ΘΦθ0. For this problem we propose a class of 
tests y , which contains the likelihood ratio (LR), Wald (W), modified Wald (MW) 
and Rao (R) tests as special cases. Then we derive the χ2 type asymptotic expansion 
of the distribution of TeSf up to order n~\ where n is the sample size. Also we 
derive the χ2 type asymptotic expansion of the distribution of T under the sequence 
of alternatives An: θ = θ0 + ε/^/η, ε > 0 . Then we compare the local powers of the 
LR, W, MW, and R tests on the basis of their asymptotic expansions. © 1988 
Academic Press, Inc. 

1. INTRODUCTION 

In multivariate analysis, the asymptotic expansions of the distributions 
of various test statistics have been investigated in detail (e.g., Peer [4 ] , 
Hayakawa [1 ,2 ] , Hayakawa and Puri [3]). On the other hand, in time 
series analysis, the first systematic study was tried by Whittle [12]. For an 
autoregressive process or a moving average process, he gave the limiting 
distribution of a test statistic of likelihood ratio type, and indicated a 
method to give its Edgeworth expansion. Recently Phillips [5] gave the 
Edgeworth expansion of the /-ratio test statistic in the estimation of the 
coefficient of a first-order autoregressive process (AR(1)). For an AR(1) 
process, Tanaka [6] gave the higher order approximations for the dis-
tributions of the likelihood ratio, Wald and Lagrange multiplier tests under 
both the null and alternative hypotheses. Also Taniguchi [8 ] derived the 
asymptotic expansion for the distribution of the likelihood ratio criterion 
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for a Gaussian autoregressive moving average (ARMA) process under a 
sequence of local alternatives. 

In this paper we consider a Gaussian ARMA process with the spectral 
density /θ(λ) which depends on an unknown parameter Θ. We assume that 
Θ is scalar in order to avoid unnecessarily complex notations and formulas. 
The problem considered is that of testing a simple hypothesis Η:θ = θ0 

against the alternative Α:θφθ0. For this problem we propose a class of 
tests Sf, which contains the likelihood ratio (LR), Wald (W), modified 
Wald (MW) and Rao (R) tests as special cases. Then we derive the χ2 type 
asymptotic expansion of the distribution of Te Sf up to order 1/«, where n 
is the sample size. 

In Section 4 we investigate a correction factor p which makes the term of 
order \/n in the asymptotic expansion of the distribution of (\+p/n)T 
vanish (i.e., Bartlett's adjustment) and give the necessary and sufficient 
condition for Τεέ? such that T is adjustable in the sense of Bartlett. 

In Section 5 we derive the χ2 type asymptotic expansion of the dis-
tribution of Se£f under the sequence of alternatives An: 9 = 90 + e/y/n, 
ε > 0. Using the asymptotic expansion for 5, we compare the local powers 
of the LR, W, MW, and R tests on the basis of their asymptotic expan-
sions. Then it is shown that none of the above tests is uniformly superior. 

2. PRELIMINARIES 

We introduce 3) and ®ARMA, the spaces of functions on [ —π, π] , 

@ = \f:fW= £ a(u)exp{-iuX)9a(u) = a(-u), 
v- u = — oo 

OO 

Σ (1 + \u\) \a(u)\ <d, for some d< oo 
u = — oo 

a - \f-f(X) σ 2 Ι Σ ΐ = ο ^ Ι 2
 ( f f2>0) Α κ Μ Α - | 7 · ; μ ) - 2 π | Σ Ρ _ Ο ^ | 2 . ( '

 > 0>' 

\Yq a zJ\2 Ί 
ε^\ζρ~\/

z>|2^ê,for|z|^l,0<ç<c<ooj. 

We set down the following assumptions. 

ASSUMPTION 1. {Xt;t = 09 ±1,.. .} is a Gaussian stationary process 
with the spectral density/θο(λ)e^ARMA, eoeC^G<^Rl, and mean 0. Here 
Θ is an open set of Rl and C is a cmpact subset of Θ. 

• 
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ASSUMPTION 2. The spectral density /θ(λ) is continuously five times dif-
ferentiable with respect to θεθ, and the derivatives δ/θ/δθ, δ2/θ/δθ2, 
δ%/δθ\ δ4/θ/δθ\ and δ%/δθ5 belong to S. 

ASSUMPTION 3. There exists dx > 0 such that 

7(0) = ̂  f jJjlog/eU)! <tt>rf,>0, for all ΘΒΘ. 

Suppose that a stretch, Χ„ = (ΑΊ,..., X„)' of the series {A',} is available. 
Let Σ„ be the covariance matrix of X„. The likelihood function based on 
X„ is given by 

Ln(Ö) = (2n)-^|rj-1 / 2exp{- iX;2--1Xn} . 

Let 
Z i ( ö ) = _ 7^a l o g L " ( ö ) ' 

1 f d2 d2 

■SnWl0gLM~EesT2' Ζ2(θ) = -r \ss2 loS LM - Εθ ^ log Ln{ß) }· 
and 

ΖΛΘ) = - r {^3 log L„(fl) - £ , ^3 log Ln(0)I. 

The asymptotic moments (cumulants) of Zt(ö), Z2(0), and Z3(0) are 
evaluated by Taniguchi [9] as follows. 

LEMMA 1. Under Assumptions 1-3, we have 

Εβ{Ζ1(θ)2}=Ι(θ) + 0(η-1), 

Εθ{Ζί(θ)Ζ2(θ)}=ΆΘ) + 0(π-1), 

Εθ{Ζι(θγ}=-^Κ(θ) + 0(η-3'2), 
'η 

Εβ{Ζί(θ)Ζ3(θ)} = Σ(θ) + 0(η-1), 

Var9{Z2(ö)} = M(0) + O(«-'), 

Εθ{Ζ,φ)2Ζ2(θ) }=-LN(0) + 0(n-il2\ 
'η 

cume{Z,(0), Z,(0), Z,(0), Z,(0)} = ^7/(0) + 0(«-2)( 
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where 

m'-hL{^Mi)ïMX)~3dX 

+έΓ.{^Λ( Α )}{έΛ ( Α )}Λ ( Α )"2 Α· 

L^TnL{ÎefM4fe{Xr4dX 

-èr.{^^>}{é^>F^">A 

2 ï 2 

Henceforth, for simplicity, we sometimes use Zl 5 Z2, Z3, /, / , K, etc. 
instead of Ζγ(θ\ Z2(0), Ζ3(θ), 7(0), 7(0), #(0), etc., respectively. 

Now we consider the equation 

^ /„ (0 ) = O, 0e<9, (2.1) 

where /„(0) = logL„(0). The maximum likelihood estimator Ôn of 0o is 
defined by a value of 0 that satisfies Eq. (2.1). The following lemma is due 
to Taniguchi [10]. 
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LEMMA 2. Assume that Assumptions 1-3 hold. Let a be an arbitrary 
fixed number such that 0 < a < §. 

(1) There exists a statistic Ôn which solves (2.1) such that for some 
d2>0, 

Pne0l\0n-e0\<d2n*-l/2l = l-o(n->)9 (2.2) 

uniformly for θ0 e C. 

(2) For {θ„} satisfying (2.2), we have the stochastic expansion 

Γηώ < n - z ' + Z l Z 2 E±£y2 

+ / 3 w j 2 2 2/ Z ' Z 2 + 2/2 Z ' 

Z^ + op(n-1), (2.3) 4L + 3M + 6N+H 
6/ 

wAere/„ = £:(Z2). 

3. ASYMPTOTIC EXPANSIONS FOR THE NULL DISTRIBUTIONS 

Consider the transformation 

w2 = z2-jr
lzl, 

fV3 = Z3-L-rlZi. 

For the testing problem Η:θ = θ0 against Α:ΘΦθ0, we introduce the 
following class of tests: 

yH = \T\T=W2
1+-^=(aiW

2
lW2 + a2W\) 

+ -(b1W
2

i+b2W
2

lW
2

2 + b3W
4
1 + b4W

3
1lV2 + b5lV]fV3) + op(n-1), 

under H, where a, (i = 1, 2) and 6, (/= 1,..., 5) 

are nonrandom constants >. 
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This class yH is a very natural one. 

(i) The likelihood ratio test LR = 2[/„(0„) - /„(0O)] belongs to £fH. In 
fact, expanding LR in a Taylor series at θ = θ0, and noting Lemma 1 and 
(2.2), we obtain 

LR = 2(0„ - 0O) ̂  /„(0O) + (0„ - 0O)2 ^5 Wo) 

+ ^(θη~θ0)
3 —3 /„(0O) + τ^Φη-θ0)

4^3ΙΛΘ0) + ορ(η-') 

= 2 ̂ ηφη- θη) Ζ,(0Ο)- {^~ηφη- 0Ο)}2{/(0Ο) + Λ(0Ο)/«} 

+-Lz2(e0){^i(ên-e0)y 
'Π 

^η{^ηφη-90)γ{ΕΧ-^Ιη{θο] 
1 

+ γη{^βΦη-θο)ΥΖ,(θ0) 

1 
+ΊΤ/ι {^φη-θ0)γ^ΕΧ-^Ιη{θ0)^ + ορ(η-'), (3.1) 

where ΕΖ^Θ)2 = Ι(θ) + J(d)/n + o{n~l). Notice that 

£ [ ^ / " ( 0 o ) ] = " " 3 / _ / i : + O ( " ~ , ) ' ( 3 · 2 ) 

EÏ^4l„(e0)]=-4L-3M-6N-H+O(n-1) (3.3) 

(see Taniguchi [9]). Substituting (2.3), (3.2), and (3.3) in (3.1) we have 

LR = W\ + (3IV2W\W2-KWi.) + - ^ [- 12/2 Δ W\ + \2IW\ W\ 
iy/nr' 12«/ 

+ {3(7 + K)2 -I(3M + 6N + H)} W\- 12/1/2(/+ K) W\ W2 

+ 4I3/2W]W3-] + op(n->), 

which implies that LR belongs to £fH. 

Similarly, we can get results (ii)-(iv): 

(ii) Wald's test W = η(Οη-θο)
2Ι0„) belongs to SfH with the coef-

ficients a, = 2//, a2 = J/I3/2, bl = -2A/I, b2 = 3/I2, b3=-(3J2 + 
4JK+ K2)/4I3 + (4L + 3N + H)/6I2, b4 = -K/I5/2, and b5 = l//3/2. 
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(iii) A modified Wald's test MW = η(θη-θ0)
2Ι(θ0) belongs to ¥H 

with the coefficients a, =2//, a2= - ( / + K)/I3/\ bx = -2A/I9 b2 = 3/l\ 
b3 = {9J2+\4JK+5K2)l4I3-{L + m+6N+H)ßI2, b4= -(6J+4K)/I5/\ 
and65=l//3 / 2 . 

(iv) Rao's test R = Z1(0O)2/(0O)~1 belongs to £fH with the coefficients 
al=a2 = bi= b2 = b3 = b4 = b5 = 0. 

To derive the asymptotic expansion of the distribution of Te£fH, we 
need the following lemma (see Taniguchi [10]). 

LEMMA 3. Uner Assumptions 1-3, Yf = (lVl9 W29 W3)' has the following 
Edgeworth expansion: 

PI[we Bi = f fi(wl)Λ(Η-2, w3) Γi + -L· Σ cjf;jy^w) 

+ 72n 
1 3 η 

ΓΓ- Σ c%)c%Hjklrk.r(*) \dYi + <>(« ') 
ΙΔη j,kJ,j\k\r = \ J 

= I ^(wj i /w + oiw"1) jûy, 

wAere £ w α tfore/ $ef o/ Λ3, w' = (wl9 w2, w3), /1(w1) = (2π)"1/2^_Μ;Ϊ/2, 
/2(w2, νν3) = (2π)-1 | ß 2 | - 1 / 2 e x p - i ( w 2 , w3)ß2-1(>v2, w3)', am/ //,, ,f(w) 
tfre the H ermite polynomials. Here the above coefficients c{'}. and the matrix 
Ω2 can be expressed by using the spectral density. 

For TeSfH, define cT(t) = E\_eitT\ By Lemma 3 we have 

Cj{t) = J j J exp it < w\ + —r= (ax w\ w2 + a2 w\) 

+ -(*iH>2 + b2w\w\ + b3w\ + bAw\w2 + b5w\wA qn(w) dw + o(n~l) 

= exp(mv2)x [1 +—f={axw\w2 + a2w\) 

+ — (6 j w2 + 62 w2 w| + Ä3 w^ + 64 w\ w2 + 65 w] w3 ) 

+ ^ ( t f i w > 2 + tf2w3)2 φ ί Λ + φ - 1 ) . 
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In the first place we calculate the above integral with respect to w2 and w3. 
Second, integrating it with respect to Wj, it is not difficult to show the 
following lemma. 

LEMMA 4. Under Assumptions 1-3, the characteristic function cT(t) has 
the following asymptotic expansion: 

cT{t) = (\-2it)-l,2\\+n-1 £ A?\\-2it)-J~\ + o(n-l\ 

where 

-12/2zf + 3///-5/i:2}/24/3, 

A^)={-6l\lM-J2)a\-iI{IN-JK)a^\5Pa2
2^r6P,2Ka2 

+ 4I3b{ + M\IM-J2)b2- I213b3 + AI2A -2IH + 5A:2}/8/3, 

Λ<Τ) = { 3 ( / 3 M - I2J2) a\ + 6I{IN-JK)ax - 30/3a2 - \6KI3/2a2 

+ M3b3 + IH-5K2}ßI3, 

A<3
T) = 5(3I3/2a2 + K)2/24I3. 

From the above lemma we have 

THEOREM 1. Under Assumptions 1-3, the asymptotic expansion of the 
distribution of Te^H is given by 

Ρ"θοίΤ^χ1 = ΡΙχ2<χ1+η-> £ A™Plx2
l + v*ixl + o(n-1). (3.4) 

y - o 

For concrete spectral models we can give the coefficients AjT) in (3.4) for 
the four tests T = LR, W, MW, and R in simple forms (cf. Taniguchi [9]). 

EXAMPLE 1. For the autoregressive spectral density 

/βο(Λ) = ^ | 1 - α * * Γ 2 (öo = *), 

we can show that 

(i) for T = LR (likelihood ratio test), 

^ L R ) = 1 , v4<LR>=-l, ^LR> = ^ L R ) = 0; 
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(ii) for T = W (Wald's test), 

C-2 j 2 ■ i -j 
4 < W I _ , 4 < W > - _ _ _ _ _ _ J ( W ) _ £ J ( W ) _ A . 

^0 "4(1-α 2 ) ' ^1 " 2(1-a2)' *2 ~ 4 ' 3 ' 

(iii) for T = MW (modified Wald's test), 
c „ 2 _ | Λ _ „2 

4 ( M W ) _ J " i ( M W ) _ ^ α 

Λ 0 ~ i l \ _ 2 \ ' Λ 1 — ' 4(1-α2)' ι 2(1-a2) ' 

- 3 3 a 2 - 3 .,„„„ 15a2 
i ( M W ) _ _ _ H _ _ J (MW)_ 

2 — j / l „2\ ' Λ3 ~ 4 ( 1 - a 2 ) ' 3 2(1-a2) ' 

(iv) for T = R (Rao's test), 

^ _ _ _ _ _ _ _ Λ < Κ ) _ _ _ — -
0 " 4 ( l - a 2 ) ' ' ~ 2 ( l - a 2 ) ' 

Λ < * > _ _ _ _ _ _ _ ^ ( R . - . 1 5 « 2 

4(1-a2) ' ' 3 2(1-a2)' 

EXAMPLE 2. For the moving average spectral density 

feoW = ^\i-ßea\2 (θ0 = β), 

we can show that 

(i) forT = LR, 

1+2/*2
 , ( L R , _ J _ _ _ _ : 

2(1 -β2)' ' 2(1 -β2)' 
J l L R ) — _ _ _ _ _ _ _ J ( L R ) _ _ _ _ _ _ _ J ( L R ) _ J ( L R ) _ n · 

0 — T i l θ 2 \ ' Λ 1 — Ή 1 o2\> Λ 2 — Λ 3 _ υ> 

(ii) forT-W, 

9 - 7 ^ 2 _,w. 5/?2-3 j ( W ) _ _ _ _ _ _ _ _ / i ( w ) _ 
0 4(1 -/S2)' ' 2(1 -β2)' 

W ) _2_J__; 15/?2 . 
2 4 (1 -0 2 ) ' 3 2(1 -β2)' 

(iii) forT = MW, 

<IMW)_ ~ 9 — Iß i ( M W | _ _ _ £ _ _ 
0 4(1-j?2)' ' 2(1 -ß2)y 

3)82 + 9 
4(l-)92)' 

J (MW) _ _ _ _ _ _ _ _ _ _ / ( M W I . i l . 
2 — ^ d 0 2 \ ' Λ 3 — " ' 
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(iv) forT = R, 

0 ~4(l-j?2) ' ' 2(\-β2Υ 

Λ™ 3(3-23^) \Sß2 

2 ~ 4(ί-β2) ' 3 2(1-)32)· 

4. BARTLETT'S ADJUSTMENT 

In this section we illuminate Bartlett's adjustment for Te£fH. Since 
Te£fH, it is easy to show that 

E(T)=i-p/n + o(n-1), 

where 

p = - {I2A + Pbi + I\IM -J2)b2 + 3I3b3 + IatfN - JK) + P'2Ka2 }//3. 

Thus we have 

T/E(T) = (l+^T + op(n-1). 

The above p is called Bartlett's adjustment factor. If the terms of order n ~1 

in the asymptotic expansion of the distribution of T* = (1 + p/n)T vanish 
(i.e., Ρ20[Τ*<χ] = />[/i ^ * ] + o(n~l)\ we say that T is adjustable in the 
sense of Bartlett. 

Denoting cT*(/) = EeitTm, we have 

= ( l -2 / i ) - , / 2 [ l+«- , {^ T ) - f + (̂ <
1
T) + 0 ( l -2 /O- 1 

+ Λ<τ>(1 -lit)-2 + A?>(1 -2i7)-3j"| + o(#i "'). (4.1) 
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In (4.1), putting Λ<τ>-ρ/2 = 0, Λ<τ> + ρ/2 = 0, Λ<τ> = 0, and Λ<Τ) = 0, we 
have the following theorem. 

THEOREM 2. The test statistic Tet?H is adjustable in the sense of Bartlett 
if and only if the coefficients {aj} and {bj} satisfy the relations (i) and (ii): 

(i) a2=~K/3I3/2
9 

(ii) 3l\lM- J2)a2 + (>I{I1SI- JK)a,-l· 12/3Z>3 + IH-3K2 = 0. 

Among the four tests LR, W9 MW9 and R, the LR test is the only one which 
is adjustable in the sense of Bartlett. 

For the LR test, Bartlett's adjustment factor p = pLR(0o) is given by 

. -M + 2N+H 3J2-6JK-5K2 

PLR(0O) = ^2 + Ï2? ' 

In particular, for the ARMA spectral density 

c2\l-ßeiÄ\2 

fe0W = 
2n\l-ocea\: 

the Bartlett's adjustment factors are given by 

PLR(<*2)= - 1 / 3 , for 0ο = σ2, 

PLR(a) = 2, for 0o = a, 

pLAß)=~l~ß2 . for θ0 = β. 

5. ASYMPTOTIC EXPANSIONS FOR THE NONNULL DISTRIBUTIONS 

Here we introduce a class £fA of tests and derive the χ2 type asymptotic 
expansion of the distribution of S e ¥A under the sequence of alternatives 
An : 0 = 0O + ε/y/n, ε > 0. Consider the transformation 

C/1(Ö) = Z1(Ö)/X/7(0J, (5.1) 

υ2(θ) = (ζ2(θ) - Αθ) ΐ(θ) - ^(BMysUß))* (5.2) 

where γθ = (Μ(θ) Ι(θ)- Ι(θ)2)ί/2/Ι(θ)3/2. In this section, for simplicity, we 
use Ul9U29Zi9Z29I9J9K9y9 instead of 17,(0), ϋ2(θ)9 Z,(0),Z2(0), 7(0), 
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7(0), Κ(θ\ γθ9 respectively, if they are evaluated at e = e0 + e/y/n. Define 
the following class of tests: 

SfA = {S\S={Ul+I{e0)
l*e}2 + -^lclU

3
l + c2U

2
lU2 

'n 
+ { c 3 i ^ + C 4 t / 1 t / 2 } 6 + { c 5 t / 1 + C 6 l / 2 } ß

2 + C 7 e 3 ]+O p (n- 1 / 2 ) , 

under A„, where c7 = P,2cx — Ic3 + Il/2c5}. 

This class <9̂  is also very natural: 

(i) The likelihood ratio test LR = 2[/„(0J - /„(0O)] belongs to seA. In 
fact, expanding LR in a Taylor series at 0 = 0„, we obtain 

LR = - (0 O -θ„) 2 —2 ln(Ô„) + -(ôn-ö0)3 —3 l„(Ôn) + op(n-"2) 

= - ( ê „ - θ + θ- θ0)
2 \—2 Ιη(θ) + φη - θ) —31„(θ) 

+ \φη-β + θ- Θ0Ϋ ̂  Ιη(θ) + ορ(η -ι'2) 

= -1--^-21„(θ)(ν2 + 2νε + ε2) 

-γ-Γ { ^ ' - ( β ) } (2»3 + 3ι>2β-β3) + ο,(«-Ι/2), (5.3) 

where ν = ^/η(0„-θ). Substituting 

v = Zi/I+{zlZ2-
:^±£z2}l{I2^} + op(n-

1'2) (cf. (2.3)), 

E{l^f3
l^=-3J-K+0(n-1) (cf. (3.2)), 

Ï-LW)= -I+-^Z2 + 0(n-1), 

for (5.3) we have 

LR = {^ + W'M2+-y=n [ -φ-2 u\ + yu\ u2 

iJ+Krr rrr] 2 3 7 + 2 * , 1 

+ \jijr u> -yIui\ε + — 3 — Ê I + op(n 
- 1 / 2 Λ 

file:///jijr
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Similarly we can get the results (ii)-(iv): 

(ii) Wald's test W = η(0„-θ0)
2Ι(0„) belongs to SfA with the coef-

ficients c, = ///3/2, c2 = 2y, c3 = {3J+K)/I, c4 = 2yl1/2, cs = 2(2J+ K)/I1/2, 
c6 = 0, and cn = (2J+K). 

(iii) The modified Wald's test MW = η(0„-θ0)
2Ι(θ0) belongs to ^ 

with the coefficients c, = -{J+K)/P'2, c2 = 2y, c3= -{3J + 2K)/I, 
c4 = 2yl1/2, c5 = - (2/ + K)/I1/2, and c6 = c7 = 0. 

(iv) Rao's test R = Ζ,ίθο)2/^,,)-1 belongs to SfA with the coefficients 
Cl = c2 = 0, c3 = K/I, c4=-2ylm, c5 = (J+2K)/Il/2, c6=-2yl, and 
c7 = J + K. 

The following lemma is essentially due to Taniguchi [ 1 0 ] . 

LEMMA 5. Under Assumptions 1-3, 

Pne0 + i/J-„lUl<yl,U2<y2-] 

ry\ ry2 ry\ ryi 
φ(^)φ(Η2) 

J — oo J — oo 

L 6y/n lA^o) 

+ 3c122(w! u\ - ux) + c222(w2 -3w2) > rfwi rfw2 + o(n~1/2) 

= f(ui,u2)duldu2 + o(n~l/2) say, 
' — oo v — oo 

vvAere ^(w) = ( l / x / 27r )exp( —w2/2), and the coefficients c U 2 , c 1 2 2 , a«rf c2 2 2 

are expressed by the spectral density (see Taniguchi [ 1 0 ] ) . 

Using Lemma 5 we can evaluate the characteristic function cs(t) of 
S6£fA, under A n . In fact, 

cs(t) = Eeo + e/y-n{eitS} 

= J{/("i,"2)exp[/r{Ml+/(ö0)1/2e}2] 

x 1 + —■p {clu
3
i + c2u

2
iu2 L v« 

+ (c3 w
2 + cAuxu2)& + (c5W! + c6u2)s

2 

+ c7e
3} \dul du2 + o(n~1'2) 
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= j j^ , )^2)exp[ / /{ W l +/ (0 o ) 1 / 2 e} 2 ] 

: 1+A= {cxu 
L Jn 

\ + c2u\u2 

+ {c3u\ + c4uiu2)e + (c5ul +c6u2)e
2 + c1s

i] 

1 f Κ(θ0) , 3 
+^17(^ ( W l-3 w l ) 

+ 3c1 1 2(l /2M2 - W2) + 3C1 2 2(«1 M
2 - «! ) 

+ c222(t^-3w2) i: |i/w,i/M2 + 0(/J-1 /2). 

Integration of (5.4) with respect to w2 yields 

csW = e x p { ^ ^ } - ( l - 2 i 7 ) - 1 / 2 } ( 2 ^ - 1 / 2 ( l - 2 / i ) 

Γ 1-2/7 f 2είί/(0ο)1/2]2Ί 

*«P|_-—{«t—rzärjj 
x 1 + - 7 = { c ^ + ^ t ^ e + CsW^ + Cye3} 

L y/n 

1/2 

+ -
*(flo) 

·] (M?-3κ,) </M,+o(n-,/2). 

(5.4) 

6 v^/(ö0)3/2 

Calculation of the above integral leads to 

LEMMA 6. Under Assumptions 1-3, the characteristic function cs(t) of 
S e ifA under Θ = 0O + ε/y/n has the asymptotic expansion 

csW = e x p { ^ } x ( l - 2 i 7 ) -

χΓΐ+η-1 / 2 X 5f»(l-2//)->l + o(«-1/2), 

B(oS) = έ [{-9/(0o)3/2c, + 6/(0o)c3 - 3/(Ö0)'/2c5 - Κ(θ0)}ε3 

+ {9I(e0)
>/2

Cl - 3c3 + 3ΑΓ(0ο)//(0ο)}β], 
B\S) = *[{6/(Ö0)3/2c, - 31{0o)c3 + W2c5 + Κ(θ0)}ε3 

+ {c3 - 6/(Ö0)1/2c, - 2tf(0o) / ( 0 O ) - ' }ε] , 

where 
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Βψ} = L2 [ {/(0o)cj - 4/(0o)3/2c, - Κ(θ0)}ε3 

+ {3/(00)^,+ ί:(ο0)/(θ0)-1}ε], 
Ä<s) = H3/(ö0)3/2c1 + ^(Ö0)}63. 

This lemma implies, 

THEOREM 3. Under Assumptions 1-3, the distribution function o /Se«^ 
for θ = θ0 + ε/yjn has the asymptotic expansion 

+„-!*£ 5f>p[tf+2,.(<5)<*]+0(«-n 
, = o 

wAere δ2 = Ι{θ0)ε
2/2, and χ2(δ) is a noncentral χ2 random variable with j 

degrees of freedom and noncentrality parameter δ2. 

For the four tests S = LR, W, MW, and R, we can give more explicit 
expressions for the coefficients 5jS) in Theorem 3. 

EXAMPLE 3. (i) S = LR (likelihood ratio test) 

5<LR> = - (3/(0o) + *(0ο))ε3/6, 5<LR> = Αθ0)ε
3/2, 

£<LR> = tf(0o)e76, 5<LR> = 0, 

(ii) S = W (Wald'stest) 

5<W)=-(*(0o) + 3./(0o))e76, 
£<W) = {/(0ο)ε3 - (3/(β0) + Κ(θ0))ε/Ι(θ0)}/2, 

5<w> = { -/(0ο)ε3 + (3/(0ο) + Κ(θ0))ε/Ι(θ0)}/2, 

5<*> = (*(0ο) + 3/(0ο))ε3/6, 

(iii) S = MW (modified Wald's test) 
Β^>=-(Κ(θ0) + 3ΑΘ0))ε

3/6, 

Ä<MW. = {J{9oy + (3/(ö0) + 2Κ(θ0))ε/Ι(θ0)}/2, 

5<MW> = {(Κ(θ0) + /(0ο))ε3 - (3/(0o) + 2Κ{θ0))ε/Ι(θ0)}/2, 

Βγ*ν)= -(2Κ(θ0) + 3ΆΘ0))ε
3/6, 

(iv) S = R (Rao's test) 

5<R> = - (Κ{θ0) + 37(0ο))ε3/6, Β\*> = (Αθ0)ε
3 - Κ{θ0)ε/Ι(θ0))/2, 

5<R> = Κ(θ0)ε/{2Ι(Θ0)}, 5<R> = *(0ο)ε3/6. 
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6. POWER COMPARISONS BETWEEN THE TEST CRITERIA 

In view of Theorem 3 we can investigate the local power properties in 
the class £fA. By Theorem 3 and Example 3, it is not difficult to show that 
for SeSfA, 

P-eo + e/Sn [ S > x ] - P g 0 + e/v^ [LR>x] 

=-^[\{Ρ(χ2>(δ)>χ)-Ρ(χ2
5(δ)>χ)} β?>(β0) 

+5 {Ρ[χΐ(δ)>χ)-Ρ{χΙ(δ)>χ)} ßis>(fl0) 

+ \{P(xl(ô)>x)-P(xi(ô)>x)}Q[^e0)^o(n-l/2\ (6.1) 

where 

ß(iS)(ö0) = {3/(ö0)
3/2Ci - 2Ι(θ0)ο3 + Ι(θ0)

ι/2€5 - Αθ0)}ε* 

+ {α3-3Ι(θ0)
ι/2€ι-Κ(θ0)/Ι(θ0)}ε9 

Q?K90)={I(Ô0)c3-3I(e0)V
2ci-K(e0)}s

3^ 

Q?)(90)={3I(e0)V
2cl + K(e0)}ey3. 

The following relation is well known, 

Plxj+2(à)>xl-nxj(ô)>xl=2pJ+2(x;ô\ (6.2) 

where Pj(x,ô) is the probability density function of χ2(δ). (6.1) and (6.2) 
above imply 

THEOREM 4. Under Assumptions 1-3, 

n, + «S» [S > *] - /% + ,φ [LR > x] 

=4- [ß^s,(ö0) p7(*; 5) + e m ) /M*; )̂ 

+ Ô(,S)(oo)^(x;<5)] + o(«-1/2), 

forSeSrA. 

By Theorem 4, for an ARMA process, we can compare the local power 
properties among the four tests LR, W, MW, and R. 
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Consider the following ARMA (/?, q) spectral density 

, „ Ϊ - * 2 Π Ι - Ι ( 1 - * * « " ) ( 1 - * * < Τ " ) (,.Λ 

Jeo\A) — 7Γ" 7=Γ7 T\ JFT7Z ^ΤΚ» \Ό'0) 
2 π Π ^ ι ( 1 - Ρ ^ a ) ( \ - p k e a) 

where φΐ9..., ^ , ρΐ5..., ρρ are real numbers such that |^ | < 1, j= 1,..., #, 
|py| < 1, y = 1,..., p. For the spectral density (6.3) we can get the following 
local power comparisons. 

EXAMPLE 4. W versus LR under An, 

P-Oo + e/y-n [W>X]- />S 0 . £ / ^ [LR>X] 

= - ^ (3^(0Ο) + ̂ (0o)} {^- ,P7(^; 5 > + 7 ^ ) ^^(^; ^)} + oc«-1/2). 

(i) If 0O = <Λ then 3J(90) +Κ(θ0)= -2 /σ 6 <0, which implies that 
LR is more powerful than W. 

(ii) If 90 = ^ , then 3/(0o) + Κ(θ0) = 6^/(1 -ψΙ)\ which implies 
that W is more powerful than LR if ij/k > 0 and vice versa. 

(iii) If 0O = pk, then 3/(0o) + Κ(θ0) = 0, which implies that LR and W 
have identical local powers. 

EXAMPLE 5. MW versus LR under A„, 

n 0 + £ / ^ [ M W > x ] - P g 0 + £ / ^ [ L R > x ] 

= - l {-u(i0)-2i:(flo)} {y ̂ ; ί ) + ^ ^ ; ί ) } + Φ-1/2). 

(i) If 0O = σ2, then -Μ(Θ0)-2Κ(Θ0)= 1/σ6>0, which implies that 
MW is more powerful than LR. 

(ii) If 0O = ^ , then -3/(0 ο ) -2#(0 ο ) = Ο, which implies that MW 
and LR have identical local powers. 

(iii) If 90 = pk9 then -Μ(Θ0)-2Κ(Θ0)= -6pk/(\ - p2
k)\ which 

implies that LR is more powerful than MW if pk > 0 and vice versa. 

EXAMPLE 6. R versus LR under An9 

/ , ; + ^ [ R > ^ ] - ^ 0 + ^ [ L R > X ] 

Κ{θθ)ίζρΛχ;δ) + ^Ρ5(χ;δ)\ + ο(η-η 
Jn 1 3 — ^ / ( 0 O ) 
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(i) If θ0 = σ2, then Κ(θ0) = l/σ6 > 0, which implies that R is more 
powerful than LR. 

(ii) If 0O = ΨΜ> t h e n κ(θο) = -6<A*/(1 - ΦΙ)2, which implies that R is 
more powerful than LR if \\/k < 0 and vice versa. 

(iii) If 90 = pk9 then Κ(θ0) = 6pk/(l —pi)2, which implies that LR is 
more powerful than R if pk < 0 and vice versa. 

These examples show that none of the LR, W, MW, and R tests is 
uniformly superior. 
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This paper addresses the problem of estimating the population coefficient of 
agreement kappa (κ) among a set of raters who independently classify a randomly 
selected subject into one of two categories. Of the many possible probability models 
for these classifications, only mixtures of binomial models incorporate random rater 
effects, although limiting forms of additive and multiplicative (log-linear) models 
may themselves be represented as mixtures of binomials. Mixture models also 
motivate a simple new estimator icx of κ that is appropriate in the important 
situation where one of the categories is rare. In the case of a rare category, 
simulations under multiplicative and mixture models demonstrate the substantially 
smaller mean squared error of icx compared to its more popular competitor. An 
example of psychiatric classification illustrates the plausibility of a simple mixture 
model as well as sizable discrepancies among estimators of κ. © 1988 Academic Press, 
Inc. 

1. INTRODUCTION 

1.1. Motivation 

Suppose that a diagnostic procedure is established to classify subjects 
into a fixed set of categories. Various types of inter-rater reliability have 
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been proposed to measure the agreement among raters who independently 
apply the diagnostic procedure to the same set of subjects. Several such 
indices are reviewed in Landis and Koch [18]. In the case where subjects 
are thought to represent a population of interest, a population κ coefficient 
takes the form 

K = I Pagree ~~ Pchance )l\ * ~~ Pchance h I * · 1 ) 

where />agree is the probability that two raters will agree about the 
classification of a randomly chosen subject, and />chance is the probability 
that the two raters will agree if they independently choose a category with 
probability given by a fixed marginal distribution. If the raters themselves 
are chosen at random from a population of raters, then for a 
positive-negative dichotomous categorization 

Pagiee = £[/>?+(! - A ) 2 l · 

where /?, is the proportion of raters categorizing subject i as positive, and 
the expectation is taken over the population of subjects. With this notation, 
μ = E(pi) is the overall proportion of positive responses among all raters 
and all subjects, and a simple measure of chance agreement is 

Ahance = ^ 2 + ( 1 - ^ ) 2 · (1-2) 

Kraemer [17] motivates this choice of/?chance by showing that the increase 
in sample size needed to compensate for errors in categorization is a 
function of κ defined in this way. 

Alternatively, let μα and μ0 represent the proportions of subjects given 
positive categorization by raters a and Z>, respectively. If each rater indepen-
dently chooses the positive category at random according to his own 
propensity for assigning that category, then the probability that raters a 
and b will agree is μαμ0-\- (1 -μ α ) (1 — Ht)- Thus 

Pch*nce = E*lVaHb+ (1 - μα)(1 - Vbïï, (L3) 

where the expectation E* is now taken over all pairs of different raters. 
For any finite population of R raters, pchance given by (1.3) is smaller 

than that given by (1.2) by a factor proportional to the variance of the μα. 
If the population of raters is large, there is little difference between (1.2) 
and (1.3). For a fixed value of />agree, κ is a decreasing function of/?chance, 
and so Kraemer's κ defined by (1.1) and (1.2) cannot be greater than κ 
defined by (1.1) and (1.3). Thus for two diagnostic procedures giving the 
same pagree, Kraemer's κ penalizes the procedure that has the greatest 
variability among raters. Presumably, the diagonostic procedure will 
ultimately be employed by individual raters, since that is the type of 
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reliability that is being measured. Kraemer's κ thus offers some protection 
against the potentially disasterous situations when diagnoses are made by 
outlying raters. 

This feature of penalizing rater variability is a property of intraclass 
correlations extolled by Bartko [4] . Fleiss and Cohen [26] first 
demonstrated that their coefficient of agreement, the sample analog of 
Kraemer's /c, is indeed an intraclass correlation and argued forcibly for its 
use. Nevertheless, Tanner and Young [23] advocate adjusting for differen-
ces in the marginal distributions of raters before measuring agreement. 

In this paper we have chosen to adopt Kraemer's [17] definition of κ 
because of its importance in distinguishing good diagnostic procedures and 
because of its potential use in designing experiments that allow for errors in 
the diagnostic classification. Our goal is to identify good estimators of κ 
under various conditions, especially when the probability μ of a positive 
response is small 

1.2. Basic Model, Literature Review, and Summary of Results 

Consider the situation where a sample of n subjects is selected at random 
from a population, and the ith subject receives R{ independent ratings as to 
whether or not a certain characteristic is present. Let Xi} = 1 if the jth 
rating of subject / is positive, and ^ = 0 otherwise {j — 1,..., Rt\ / = 1,..., n). 
All of the models in this paper are special cases of the basic model in which 
the set of Rt variables {JTiy|7= 1,..., /?f-} are exchangeable with 
P(Xij= 1 )=/>,·. Loosely speaking, we refer to this assumption as the finite 
exchangeability of raters. If, in addition, we assume that the finite sequence 
{XiJ\j=l,...,Ri} is part of an infinite sequence {^17=1 ,2 , . . . } of 
exchangeable random variables, we may invoke deFinetti's famous theorem 
to conclude that: 

For i= l , . . . , «, the variables {X^j— 1, ...,/£,·} are conditionally 
independent given pt = Ρ(Χ0 = 1 ). (1.4) 

Because subjects are sampled, the /?, represent i.i.d. random effects rather 
than fixed numbers. Further interpretation of model (1.4) depends on its 
application. Consider the following two situations. 

In the first situation, different sets of raters are selected at random from a 
population of qualified raters. The probabilities p{ may then be interpreted 
as the proportion of raters in the population who would judge on the basis 
of a particular examination that subject / has the characteristic in question. 
Variation of {XiJ\j=l,...,Ri} might then be due to raters focusing on 
different aspects of the examination, or raters having different beliefs about 
the association of these aspects with the characteristic in question. 

In the second situation, each subject is repeatedly evaluated by a non-
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intrusive, memoryless mechanism for detection of a stable characteristic. 
Here /?, is the long-run proportion of times that subject i displays evidence 
of the characteristic in question. In this case variation of {Xij\j = 1,..., Rt} 
reflects random variation in the behavior of subject i under repeated 
examinations. 

The first situation involves measuring inter-rater reliability; the second 
involves measuring test-retest reliability. In this paper we adopt language 
appropriate for the first situation, but this language easily translates to 
cover the type of test-retest reliability described in the second situation. 
The only way to distinguish the two situations mathematically is to identify 
fixed rater effects in the first situation. Given our motivation we do not 
undertake such an analysis here, but see Landis and Koch [19] for an 
analysis with fixed rater effects in an additive model, or Tanner and Young 
[23] for a similar analysis with multiplicative models. 

Under model (1.4) with μ = Ε(ρί\ Kraemer's κ measure of reliability 
may be expressed as 

κ = { £ [ ^ + ( 1 - Α ) 2 ] - [ ^ 2 + ( 1 - μ ) 2 ] } / { 1 - [ μ 2 + ( 1 - μ ) 2 ] } 
= \&ΐ(ρί)/μ(1-μ). 

If all raters simply give positive ratings at random (without examining sub-
jects) with probability μ, then Ρί = μ for each /, and thus κ = 0. At the 
opposite extreme, the maximal variance of the pt is obtained when the 
proportion μ of subjects have /?, = 1 and the remaining proportion 1 — μ of 
subjects have /?, = (). In this case var(/?,) = /*(l — μ) and κ=\. 

Model (1.4) permits a reduction of the data to the statistics Y^LjXy, 
since these statistics are sufficient for estimating the random effects /?,. That 
is, under model (1.4) the likelihood of the effects pt given the observations 
{Xij} is expressed as 

U{P,}\{*„})= Π (* 'W* ( 1 -P')*'~y'· i1·5) 
#■= 1 \yij 

Any further reduction depends upon assumptions about the distribution of 
the /?,. In particular, we shall be interested in distributional forms under 
which the statistical information for κ is large when μ is small. Estimators 
that are optimal under such conditions should be generally efficient 
whenever μ is small; that is, whenever the diagonosis is rare. 

Historically, an index of multiple rater agreement first appeared in 
Fleiss [11 ] . In the case when Rx = ·· = /?„ = R, Fleiss proposed the follow-
ing statistic, which he described as a generalization of Cohen's [7] kappa: 

KF= {T- [x2 + (1 - * ) 2 ] } / { l - [x2 + (1 - x ) 2 ] } , (1.6) 
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where 

τ=η-1 Σ L2/R(R-inR£ £ [AV^ + U-^KI-* ,* ) ] 

is the observed proportion of pairs of raters who agree, and 

is the observed proportion of positive ratings. Fleiss and Cohen [26] 
related (1.6) to the intraclass correlation coefficient of reliability studied by 
Bartko [4] . Fleiss [30] also showed how correcting for chance agreement 
reduces many other indices of association to (1.6). When the sample is the 
entire population, Kraemer [17] showed that KF in (1.6) is the same as κ 
defined by (1.1) and (1.2). It is easy to prove that, under model (1.4), KF 

converges almost surely to κ as n becomes large. 
In the special case where Rl — · · · = Rn = R, an alternative formulation 

to (1.4) is to think of Xt = (Xn,..., XiR) as an observation in a 2R 

contingency table. The assumption of the finite exchangeability of raters 
then corresponds to the assumption of homogeneous marginal distribu-
tions for that table. Landis and Koch [18] took this approach to test the 
assumption of marginal homogeneity as well as various other hypotheses 
about agreement, using the additive models of Grizzle, Starmer, and Koch 
[15] for contingency tables. Fleiss, Nee, and Landis [12] showed that 
Fleiss' KF in (1.6) is closely related to the weighted least squares estimates 
of K obtained in Landis and Koch [19]. 

Under chance agreement the statistics Yt come from the same binomial 
distribution. Altham [1] offers two generalizations to the binomial dis-
tribution: the multiplicative model which is the distribution induced upon 
the Yt when the {X^} follow a marginally homogeneous log-linear model 
(cf. Bishop, Fienberg, and Holland [5]); and the "additive" model for Yh 

which corresponds to a Lancaster additive model for {Χ0}. For a com-
parison of log-linear, additive (in the sense of Grizzle, Starmer, and Koch 
[15], and Lancaster additive models for contingency tables, see Darroch 
[27] or Darroch and Speed [28]. 

In Section 2, we adopt a log-linear model for contingency tables, and 
show that KF is the maximum likelihood estimator of κ under the 
assumption of homogeneous two-way marginal distributions and no higher 
order interactions. Our treatment improves upon that of Altham in that 
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our parameterization allows us to compute explicit maximum likelihood 
estimates, whereas she employed an iterative method. Our investigation of 
KF under the multiplicative model roughly parallels that of Landis and 
Koch [18] who determined its asymptotic distribution under an additive 
model. We derive the asymptotic distribution of KF under the multiplicative 
model, and examine its small sample behavior in a simulation study. 
Finally, in situations where raters really are representatives from a pop-
ulation of raters, we note a logical inconsistency inherent in any finitely 
exchangeable model, such as the additive and multiplicative contingency 
table models, in which the raters are not infinitely exchangeable. 

Infinite exchangeability and its consequential form (1.4) are assumed 
throughout Section 3. Using deFinetti's theorem, we prove that only such 
induced distributions on the {A",·,} are compatible when different numbers 
of raters rate each subject. After considering general mixing distributions 
for the ph we examine two particular distributions in detail, namely the 
beta distribution and a distribution concentrated on two points, one of 
which is 0. This latter distribution leads to a simple case of Kraemer's [17] 
"true dichotomy" model, with a somewhat different interpretation, and 
allows for precise estimation of κ when μ is small. We do not propose this 
model itself as being realistic; but it does afford a simple rationale for 
constructing a simple estimator that may improve upon KF in the case of a 
rare diagnosis. 

Crowder [8] was the first to examine the role of the incidental 
parameter μ in estimating κ (his σ2) under the assumption that the Yt 

follow a beta-binomial distribution. Although stable over most of the range 
of μ, the variance of the maximum likelihood estimator (m.l.e.) of κ grows 
rapidly as μ decreases below a value of about 0.1. In contrast, the m.l.e. for 
K under the special mixing model remains relatively well behaved. This 
result suggests using this last estimator, or a simple approximation to it, 
whenever μ is small. In Subsection 3.4 we simulate the small sample 
behavior of several estimators under the multiplicative and special mixing 
models when μ = 0.1. The simple approximation to the m.l.e. under special 
mixing performs remarkably better than KF in these situations. Finally, in 
Section 4 we compare the various models and estimators on a set of 
psychiatric ratings obtained from Fleiss [11]. 

The new results in this paper are (1) the characterization of KF as the 
m.l.e. for κ in the multiplicative interaction model and the derivation of its 
asymptotic distribution under this model; (2) the conclusion that mixing 
models of the form (1.4) are the only models logically consistent with 
randomly selected raters; and (3) identification of a simple estimator, icx 

defined in (3.7), that may serve as a better index of reliability than KF in the 
case of a rare diagnosis whether or not raters are randomly selected from a 
population of raters. 
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2. MULTIPLICATIVE MODEL 

Throughout this section, we treat a set of R ratings on a subject / as an 
observation Xi=(Xil9..., XiR) of O's and l's in a 2R contingency table, and 
we adopt a log-linear model in order to obtain some parsimony in 
explaining the distribution of Xt over subjects. In particular, we examine 
the simplest such model of interest, that of no second or higher order 
interaction. This first-order log-linear model is the multiplicative inter-
action counterpart of the additive interaction one-way ANOVA model in 
Landis and Koch [19]. The multiplicative interaction model introduced in 
Subsection 2.1 allows an explicit m.l.e. for κ and also a simple method for 
computing its asymptotic variance, both given in Subsection 2.2. In 
Subsection 2.3 the asymptotic variance is compared to the exact 
small sample variance under several instances of the model. Finally in 
Subsection 2.4 we explain the source of difficulty in extending the 
multiplicative model to situations where different numbers of raters rate 
each subject, which motivates the mixing models of Section 3. 

2.1. Derivation of the Multiplicative Interaction Model from the Symmetric 
Log-Linear Model 

In the notation of Bishop, Fienberg, and Holland [5] , the first-order 
log-linear model gives the probability of observing a particular vector x of 
ratings as 

Γ R R-\ R η 
P(X=x) = exp \u0+ X upj)+ £ Σ »jk(XpXk) [ (2.1) 

L j= 1 j= 1 k=j+ 1 J 

where wy measures the main effect of the judgment of rater j ; ujk measures 
the interaction between a pair of raters; and u0 scales the function P( · ) so 
that it is a bona fide probability mass function. 

By the basic assumption in Section 1, the ratings (Xil9 ,XiR) are 
assumed to be exchangeable random variables. This assumption implies 
that the functions wy() must be identical for ally = 1,..., R, as must be the 
functions ujk(xj9xk) for j= 1,..., R- 1 and k=j+ 1,..., R. This distribu-
tional symmetry leaves just two unconstrained parameters that we can 
identify using the following system: 

Uj(\) = U9 

w,(0) = 0, 

ιι^(Ο,Ο) = 1/^(1, l) = v, and 

W,*(1,0) = M,*(0,1) = 0. 
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Under this system model (2.1) induces the following distribution upon Y, 
the number of positive ratings that a randomly chosen subject receives: 

P(Y=y) = [ ( * ) Φ(", v;y)j^(uf v\ (2.2) 

where 

and 

^(w, v)= £ f U(w, v;y). 
y=o\y J 

Moreover, Y is sufficient for the parameters u and v under this symmetry 
version of (2.1). To see how the parameters u and v relate to /c, first note 
that for randomly sampled subjects 

is the probability of a positive diagonosis; and 

Pu=p{Xij= i , ** = i )= Σ (R
yZl)<t>(«>v'>yW(»>v)> 

for each j Φ k, is the probability that two raters give a positive diagonosis 
to the same subject. With some simple algebra, Kraemer's [17] κ defined 
by (1.1) and (1.2) becomes 

κ = (Ρη-μ2)/(μ-μ2). (2.3) 

The range of the parameter space {(μ, κ)} is 0 < μ < 1, and λ(μ)^κιζ 1, 
where λ(μ) is a symmetric function about μ = \, approaching its upper 
bound 0 as μ-> 1, and achieving a lower bound of — (R— 1 ) _ 1 for μ = \ 
when R is even and for μ = (R ± 1 )/2R when R is odd. Although the m.l.e.'s 
of u and v generally do not have a closed form, those for μ and κ do, as we 
now prove. 

2.2. Maximum Likelihood Estimates 

THEOREM 2.1. Let {^,-1/= 1,..., Λ} be the observed numbers of positive 
ratings received by a random sample of n subjects, where each random 
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variable F, is distributed according to the multiplicative model (2.2). Then the 
maximum likelihood estimators (mle's) of μ and κ are 

and 

fi = S/(nR) 

KF=l-(l-T)/i2fi(l-fi)l 

(2.4) 

(2.5) 

(2.6) 

where 

s= Σ y, 
/ = 1 

is the total number of positive ratings, and 

is the proportion of pairs of raters who agree. 

Proof The log-likelihood of observing {yt\ i= 1,..., n) under (2.2) is 

LL(u,v;{yi}) = Su + n(*jTv-nloglil,(u,v)^ (2.7) 

where ij/(u,v) is defined as in (2.2). 
Setting the partial derivatives of (2.7) with respect to u and v equal to 

zero produces the equations 

5 = ηΕ(Υ) = η11μ 

and 

■©'-[(?MV)]--G)* 
where q=pagTce is the probability that any two raters agree on the diagnosis 
of a subject. Because the log-likelihood is strictly concave, the m.l.e.'s of μ 
and q are uniquely determined by (2.5) and (2.7), respectively. 

Again some simple algebra shows that Kraemer's κ can be written in the 
form 

κ = 1 - { ( 1 - ί ) / [ 2 Μ 1 - μ ) ] } . (2.8) 

Substituting the m.l.e.'s for μ and q into (2.8) gives the m.l.e. for κ. | 

The estimator KF in Eq. (2.5) is exactly the index of interrater agreement 
proposed by Fleiss [11]. Theorem 1 characterizes this index as the m.l.e. of 
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Kraemer's κ under the multiplicative model (2.2). This formulation makes 
explicit the assumptions underlying the use of KF as an efficient estimator: 

1. Raters are finitely exchangeable. 

2. No second or higher order multiplicative interaction arises among 
the R diagnoses given to a subject. 

Under these conditions κ is interprétable as the common (intraclass) 
correlation between pairs of raters. 

A further benefit of this formulation is that the asymptotic distribution of 
KF can be determined for arbitrary values of the parameter κ. The variance 
of the asymptotic normal distribution of KF is given by 

\κ(κΡ) = η-χΔ'Σ-χΔ, (2.9) 

where 
Δ' — (δκ/du, ÔK/ÔV) 

and 

fe2i///du2 d2\l//dudv\ 

~\d2il//dudv δ2ψ/δν2 ) ' 

This result follows directly from the theory of exponential families (see, for 
example, Barndorff-Nielsen [3, Chap. 8]). The partial derivatives are easily 
calculated from expressions (2.2) and (2.3). 

Because the variance (2.9) of KF depends on the unknown parameters u 
and v, estimates of u and v must be substituted into that expression to 
obtain a numerical estimate for \ar(KF). The m.l.e.'s for u and v may be 
obtained numerically from the log-likelihood (2.7). In fact, the log-
likelihood provides a device for calculating the parameter pair (w, v) as a 
function of the (μ, κ) pair of parameters. For any admissible values (μ, κ), 
substitute Ε(Ξ) = ηΚμ and E(T)= 1 - [2μ(1 -μ)(\ - κ ) ] for S and T, 
respectively, in Eq. (2.7), and solve for the maximizing values of u and v. 
This technique is used in the next section to examine the exact small 
sample mean and variance of KF. 

2.3. Small Sample Behavior of KF 

In this section, the exact small sample expectation and standard 
deviation of KF are computed for various values of μ and κ in the mul-
tiplicative model. To do this, we first generate all (n~^R) possible samples 
{Yt\ i= 1,..., n) of fixed size n (see Feller [10, p. 52]). For each set { F j we 
compute KF (set equal to 1 when μ = 0 or 1 ) as well as the probability of 
observing {y,} under independent sampling from the multiplicative model 
(2.2) with parameters ι/ = ι/(μ, κ) and ν = ν(μ, κ). 

Table I lists the expected value and standard deviation of KF for R = 3; 
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TABLE I 

Small Sample Expectation and Standard Deviation of Fleiss' Kappa 
under the Multiplicative Model 

Sample size 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

10* 

K 0.1 

μ 0.1 

0.629 
0.644 

0.491 
0.591 

0.375 
0.555 

0.288 
0.511 

0.223 
0.466 

0.176 
0.423 

0.142 
0.383 

0.117 
0.347 

0.099 
0.316 

0.086 
0.289 

0.261 

0.5 

-0.004 
0.704 

-0.066 
0.455 

-0.027 
0.363 

0.004 
0.315 

0.026 
0.282 

0.040 
0.257 

0.050 
0.238 

0.057 
0.222 

0.063 
0.209 

0.067 
0.198 

0.197 

0.1 

0.800 
0.510 

0.729 
0.485 

0.663 
0.487 

0.609 
0.485 

0.565 
0.477 

0.531 
0.466 

0.504 
0.453 

0.484 
0.439 

0.468 
0.425 

0.457 
0.412 

0.367 

0.5 

0.5 

0.435 
0.724 

0.339 
0.564 

0.351 
0.458 

0.376 
0.389 

0.397 
0.341 

0.411 
0.307 

0.419 
0.282 

0.425 
0.265 

0.428 
0.252 

0.429 
0.242 

0.204 

0.1 

0.956 
0.248 

0.938 
0.250 

0.921 
0.266 

0.906 
0.280 

0.892 
0.292 

0.880 
0.300 

0.870 
0.305 

0.862 
0.309 

0.854 
0.312 

0.848 
0.313 

0.192 

0.9 

0.5 

0.883 
0.398 

0.847 
0.368 

0.841 
0.327 

0.842 
0.292 

0.844 
0.266 

0.846 
0.249 

0.846 
0.239 

0.844 
0.235 

0.842 
0.235 

0.839 
0.237 

0.111 

a Asymptotic approximation of the standard deviation. 
Note. The first entry of each cell is the expectation and the second entry is the standard 

deviation. 

n = 1 (1 ) 10: κ = 0.1, 0.5, 0.9; and μ = 0.1, 0.5. The last line of the table con-
tains the asymptotic approximation obtained from (2.9) to the standard 
deviation of KF when n — 10. Several features of this table are noteworthy: 

(1) s.d. (KF) is larger when μ = 0.1 than when μ = 0.5; 

(2) s.d. (KF) is largest when κ = 0.5 rather than 0.1 or 0.9; 

(3 ) var(fcF) > bias2(/cF); 

(4) formula (2.9) underestimates var(/cF) when « = 10; 

(5) bias(/cF) appears to be getting worse as n increases in this range! 
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Features (1) and (2) indicate a weakness of KF; namely it performs worst 
over that portion of the range of (μ, κ) of greatest interest—infrequent 
diagnosis and moderate agreement. In Section 3 we develop an estimator 
that performs better in this region of interest and not much worse 
elsewhere. Feature (3) indicates that most gains are to be had by trying to 
reduce the variance of KF rather than its bias. Features (4) and (5) should 
remind us not to rely too heavily on asymptotic formulas. 

We are also interested in how well KF performs when the underlying dis-
tribution is not in the multiplicative family. If κ = K(F) is expressed as a 
function of the distribution F of Y, then KF=K(F), where F is the empirical 
distribution function, and the function κ(·) is continuous in the weak 
topology. Thus the almost sure convergence of the empirical distribution F 
to F implies that KF-+K (a.s.), and KF is a consistent estimator of κ under 
any distribution F. In fact, KF is Fisher consistent (cf., Rao [22, p.345]), a 
much stronger property. Although this type of consistency is a desirable 
property, some estimators of κ may be more efficient at estimating κ than 
KF is, especially if the distribution fuction F is naturally restricted to a 
parametric family other than the multiplicative one. 

We now offer some reasons why the multiplicative model in particular, 
and the log-linear model in general, may not naturally correspond to the 
ratings of randomly chosen judges for each subject in a representative sam-
ple of subjects. The basic difficulty is that interactions among the random 
variables {Xy\j= 1,..., R}, although associated with the variability of the 
random effects /?,, depend on the number R of raters involved. In par-
ticular, the multiplicative model, which assumes no interactions of order 
higher than two, makes different assumptions about the distribution of the 
sum of a fixed number k of ratings on a subject, as the total number R of 
raters varies. This problem and a possible solution are discussed in the next 
section. 

2.4. Varying Numbers of Raters 

Altham [1] noted that if a 2R contingency table corresponding to a mul-
tiplicative model is collapsed over one of its dimensions, the resulting 2R~l 

table does not correspond to a multiplicative model. (This is true for R ^ 4 
and κφθ.) Thus the assumption of no second or higher order interaction 
among R raters is different from the assumption of no second or higher 
order interaction among R- 1 raters (R^4). Why should the distribution 
of the ratings given by any three raters depend in any way on the presence 
or absence of a fourth? 

Even if we were willing to accept different assumptions about the dis-
tribution of positive diagnoses among groups of subjects who are assessed 
by different numbers of raters, there are practical problems with maximum 
likelihood estimation in this situation, because the parameters u and υ 



VERDUCCI, MACK, AND DE GROOT 551 

depend on R. Thus the log-likelihood (2.7) for each group cannot be 
simply added together. The parameters μ and κ do remain the same when 
the tables are collapsed, and these common values may still be estimated 
under the combined multiplicative models, although with some difficulty. 

One way to mend the problem of incompatibility of the assumptions of 
no interaction is to define a sequence of probability functions for different 
numbers of raters in such a way as to ensure compatibility. 

DEFINITION. A sequence of probability functions f(R) (R=l,2,...,) 
defined on (0, 1,..., R) is symmetrically marginally compatible (SMC) if 

f(R-l)(y)= L(R-y)/Rlf{R)(y)+ [(l +y)/RlfiR)(i +y) (2.10) 

for each y = 0, 1,..., R - 1 and R = 2, 3,. . . . 

It is possible to construct a sequence of SMC probability functions 
whose members are all multiplictive models with the same μ and κ. The 
construction proceeds according to the following theorem whose proof is 
an immediate consequence of the convergence of the iterative proportional 
fitting algorithm (cf. Andersen [2, Theorem 6] or Bishop, Fienberg, and 
Holland [5, Theorem 3.5-1]). 

THEOREM 2.2. Letf{l)(y) be Bernoulli (μ) and let f{R\y) = P(y) be the 
multiplicative model defined by (2.2) for R = 2, 3. Corresponding to each of 
these f(R\ let MR be the symmetric log-linear model on a 2R table 
(R= 1, 2, 3). That is, under MR 

P{X=x) = [/<*>(.v)]/(*) (R = 1, 2, 3), 

where y = Σ Xj. For R^A let MR be the symmetric log-linear model on a 2R 

table with fixed 2R~l marginal probabilities given by MR_i and no Rth 
order interaction', and let f{R)(y) be the multiplicative model associated with 
MR. Then the sequence fm {R=l, 2,...,) is SMC. 

In the next section we show that {f(R)} is SMC if and only if the infinite 
sequence Xl9X2, ..·, of ratings given by the judges to any one subject is 
exchangeable. In that context, Theorem 2.2 gives a method for constructing 
an infinite exchangeable sequence with each finite subsequence following a 
log-linear model. 

3. MIXING MODELS 

We return to the basic model (1.4) where the probability p of receiving a 
positive diagnosis varies from subject to subject and where, for each 
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subject, raters make their diagnoses independently. Thus each subject has 
his own personal probability p of being given a positive diagnosis by any 
randomly selected rater and has probability 

of receiving exactly y positive diagnoses from any group of R raters. The 
probability p is a random variable that has a distribution function ξ over 
the population of subjects. It follows that the probability distribution of the 
number of positive diagnoses Y that a randomly chosen subject will receive 
from R raters is 

P{Y = y) = \X^py(\-p)R-y άξ{ρ) >> = 0, ...,*. (3.1) 

This formulation allows us to interpret agreement among raters in terms of 
properties of the distribution ξ. In particular, the inter-rater reliability of 
the diagnostic procedure is related to the dispersion of the mixing dis-
tribution ξ. Among all distributions with a given μ, extremes of dispersion 
are given by the distributions ξ° and ξ0 defined as 

Ρ(ρ = 0\ξ°)=\-μ9 Ρ(ρ=1\ξ°) = μ, 

and 

Ρ(ρ = μ\ξ0)=1. 

Under ξ° all the mass is concentrated at p = 0 and p=l; hence all raters 
agree on every subject. Under ξ0 all the mass is concentrated at a single 
point; hence raters randomly assign positive diagnoses with probability μ 
to all subjects. 

Let Zj be the response of they'th rater to a randomly chosen subject. The 
mixing model (3.1) implies that 

Ε(ΖίΖ2)=\1ρ2αξ(ρ) = Ε(ρ2\ξ) 

and 

Ε{Ζχ) = Ε{Ζ2) = μ = Ε{ρ\ξ\ 

so that 

οον(Ζ,, Z2) = E(p21 ξ) - μ 2 = var(/>|{) 
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and 

var(Zj ) = var(Z2) = μ — μ2. 

Thus 

K = corr(Z1, Z2) = [E(p2 \ ξ) - μ2]/[μ - μ2] = var(/> | £)/var(/> | ξ°). (3.2) 

That is, the common correlation between pairs of raters is measured by the 
ratio of the variance of the mixing distribution to the largest possible 
variance for mixing distributions with the same mean. 

When each subject in a random sample is rated by the same number R 
of raters, the moment estimator of var(p| ξ) is simply the sample variance 
of Y/R. In this case a consistent estimator of κ is 

Krn^iyJR- ßf^iin-X) μ(\- μ)\ (3.3) 

where yt is the number of positive ratings given to subject i (i= 1,..., n) 
and μ = (Σ yd/nR. If the number Rt of raters judging subject i differs for 
some subjects, then some weighting of the Yt according to Λ, may be 
appropriate. In general, optimal weights depend on ξ. 

3.1. Compatibility 

The following theorem shows that mixing models and only mixing 
models are compatible over varying numbers of raters. 

THEOREM 3.1. Let {f{R)\R= 1,2,...,} be a sequence of probability 
functions withf{R) defined on {0,..., R}. Then {f{R)} is SMC if and only if 
f{R) has the form (3.1) with the same ξ for each R. 

Proof First suppose that each/( / ? ) has the form (3.1) with the same ξ. 
Then 

[ ( Ä - > ' ) / / l ] / w ( j ' ) = ( Ä ~ 1 ) j o
, ( l - / ' ) / ' ' ( l - P ) < Ä " J ' ) " , « ( / ' ) (3·4) 

and 

ί(l+ymfR\^+y) = (R~ί^\,
oP

y+1(l-p){R-y>-ldξ(p). (3.5) 

Adding (3.4) and (3.5) shows t h a t / w is SMC. 
To prove the converse, it suffices to show that e a c h / w is the probability 

function for the finite sum 

j= i 
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of an infinite exchangeable sequence of Bernoulli random variables. Let 
{Zj} be such an exchangeable sequence with moments defined by 

* ( n z y ) =/<*>(*), k =1,2,.... 

It remains only to show that 

f("\y) = P(Y^=y) 

for each y = 0,..., R and R = 1, 2,.... This equality is a consequence of the 
following three facts: 

(1) Each fiR\y) is determined by the probabilités {f{k)\k= 1,..., R} 
and the recurrence relation defined by the SMC property. 

(2) f™(k) = P(Z1 = ..' = Zk=l) = P(Y™ = k), Λ=1,2,.... 
(3) The probability functions of r ( /° are SMC. | 

Under the following parametric model estimation of κ is simple, even 
with varying numbers of raters. 

3.2. Beta-Binomial Model 

When the mixing distribution ξ in (3.1) is a beta distribution, then the 
distribution of Y is beta-binomial. If each subject i is independently judged 
by Rt raters (i= 1,...,«) then the log-likelihood from these beta-binomial 
models can be written explicitly as a function of μ and κ, namely 

The m.l.e. κΒ for κ under the beta-binomial model comes directly from 
numerically maximizing this expression. 

Although the beta-binomial distribution has been applied to many dif-
ferent areas of statistics (cf. Griffiths [14], for refeences), Plackett and Paul 
[21] seem to be the first to consider this distribution, as a special case of 
the Dirichlet-multinomial distribution, for modeling observer agreement. 
Kraemer [17] also mentions its use in this context. Since the publication of 
these papers some further technical work on the beta-binomial distribution 

LL(ß, κ) = constant 
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has appeared. We briefly connect these newer results to the context of 
diagnostic agreement. 

A major technical problem with the beta-binomial model, not shared by 
the multiplicative model, is that the conditional distribution of {7,1/2 = 
(nR)~l Σ^/} still depends on the nuisance parameter μ. Tarone [24] uses 
the C(a) procedure of Neyman [20] to surmount this problem when 
testing HO:K = 0. He further shows that the asymptotically optimal tests of 
this null hypothesis versus beta-binomial and multiplicative alternatives are 
not equivalent. Thus model selection does play a role in testing for 
inter-rater agreement. One shortcoming of the C(a) method is that its 
assumptions are not valid for testing Η0:κ = κ0 when κ0Φ0 in the 
beta-binomial model. 

Crowder [8] carefully examined the likelihood function for κ con-
ditional on the observed value μ and concluded that it is a fairly constant 
function of μ, except when μ is close to 0 or 1. Thus, although the beta-
binomial model may be convenient for estimating inter-rater agreement for 
a prevalent diagnostic characteristic, it is difficult to form precise inference 
about K when the diagnosis is rare. One possibility is to form conservative 
tests as, for example, in Potthoff and Whittinghill [29]. Another is to 
adopt a more appropriate model, like the special mixing model. 

3.3. Special Mixture of Two Binomials 

Suppose that the population of subjects consists of two subpopulations, 
those that possess the characteristic in question and those that do not. For 
simplicity, assume that those which do not possess the characteristic are 
never misdiagnosed, but that any subject which possesses the characteristic 
has fixed probability π of receiving a positive diagnosis. The key 
assumption here is that ξ has a mass point at p = 0. If the prevalence of the 
characteristic in the population is l-£, then the distribution of positive 
responses Y is 

ί ζ + ( 1 - ζ ) ( 1 - π ) * for >> = 0, 

P(r=y)= ,R. (3-6) 
( ( l - C ) i ) π * ( 1 - π ) * - * for >>=1, ...,*. 

The following theorem shows how to find the m.l.e. κχ for κ under model 
(3.6). Its proof appears in the appendix. 

THEOREM 3.2. Let {yt;\ i = 1,..., n) be a random sample from model (3.6), 
and suppose that 0 < S = Σ y% ·.< n^ so tnat tne ml-ës it, C, and κχ are well 
defined. Let Α = ΣΙ(γί = 0)9 where I{Y=0) is an indicator of the event 
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{ r = 0}. IfA/n^(l-S/nR)R, then n = S/nR, C = 0, and κχ = 0. If A/n> 
(1 — S/nR)R, then π is the unique root of 

f(n) = S(\-n)R + (n-A)Rn-S = 0 

in the range 0<n<\;C = (A—nq)/(n — nq\ where q = {\—n)R; and 
κχ = πζ/1(\-π) + πζΙ 

The above theorem separates the cases where the observed number of 
perfect negative agreements A is more or less than an estimate of its expec-
ted value under chance guessing. If the underlying κ is close to 1, then the 
observed A will almost always be grater than its chance expected value. In 
this case, as well as in the situation where R is large, a good approximation 
to κχ is 

iix =[/*/(» -An\_S/(nR-S)l (3.7) 

which is obtained from the simplified estimators ζ=Α/η and 
n = S/(n-A)R. 

The estimator icx is easy to compute and performs well in the situation of 
most interest: rare but moderately reliable diagnosis (μ small, κ large). We 
now offer a convenient formula for its variance, before comparing its 
performance against that of KF. 

The asymptotic variance of kx may be approximated by assuming that 
A ~ Binomial^, () and S ~ Binomial(«/?( 1 — ζ), π) are independent. 
Because the approximation depends only on the moments of A and S it is 
not necessary for nR(\—C) to be an integer. Letting B = A/(n — A) and 
C=S/(nR-S) gives 

var(/cJ = var(£) var(C) + E(B)2 var(C) + E(C)2 var(#). (3.8) 

Using the ^-method (cf. Bishop, Fienberg, and Holland [5, p. 481]), we 
compute the asymptotic means 

Ε(Β) = ζ/(1-ζ) + 0(1/η) 

and 

£ ( Ο = [ ( 1 - ζ ) π ] / [ 1 - ( 1 - 0 π ] + 0(1/«); 

and the asymptotic variances 

var(B) = C/»d-C) + o(l/») 

and 

ν Μ ( Ο = [ ( 1 - 0 π ] / » Λ [ 1 - ( 1 - 0 π ] + 0(1/ιι). 
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Substituting these and the sample values ζ = A/n and π = S/(n — A)R into 
(3.8) leads to the approximation 

vai{Kx) = *xl(B/R) + Cyn. (3.9) 

3.4. Small Sample Comparison of kx and kF 

Using the same sample-generating method as in Section 2, we now com-
pare the exact small sample expectation, standard deviation, and mean 
squared error of kx and kF under both the multiplicative and special mix-
ing models. For ease of computation wefix i? = 3 and focus on the case 
K = 0.7, μ = 0.1 (π = 0.73, C = fi) as a typical point in the interesting region 
of the parameter space. 

As Table II shows, the values for kx are very close to those for kx. 
Moreover, the mean squared error (mse) of kx is consistently smaller than 
that of KF under either model, due mainly to the smaller standard deviation 
of kx. In fact when n = 10 the mse of kx is less than half that of kF. 

Table II makes the point that it is possible to improve substantially on 
kF as an estimator of κ under certain circumstances (models like the mul-
tiplicative or mixing models; rare but moderately reliable diagnoses). We 
now compare the estimators on actual data to see if such circumstances are 
realized. 

4. EXAMPLE 

An example in Fleiss' [11] paper concerns the reliability of psychiatric 
diagnoses of 30 patients who are each judged by 6 different raters. Here we 
fit the multiplicative, special mixing, and beta-binomial models to the 
observed distribution of positive ratings for the diagnosis of schizophrenia. 
Table III displays the data along with the estimated expected values based 
on the maximum likelihood estimates we have derived under each of the 
three models. The relative squared error (χ2 goodness of fit statistic) is 
computed for each model. Although the small expected counts suggest that 
the distribution of this statistic is not well approximated by the χ2 

distribution, the relative squared error is still a reasonable gauge for 
comparing these models, because each model has the same number of 
estimated parameters. 

Table III shows the similarity between the fits of the multiplicative and 
beta-binomial models. Both fit the distribution of number of positive 
diagnoses of schizophrenia poorly. The reason is that the distribution is 
bimodal, with the second mode not too close to Y=R. Diagnosis of 
schizophrenia is better modeled by the special mixing distribution. 
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TABLE II 

Small Sample Expectation, Standard Deviation, and Mean Squared Error of κ, κχ, 
and κχ for 3 Raters under the Multiplicative and 

Special Mixing Distributions with K = 0J and μ = 0.1 

Model Multiplicative Mixing 
Estimator 

KF 

0.877 
0.410 
0.199 

0.833 
0.397 
0.175 

0.791 
0.408 
0.175 

0.755 
0.417 
0.177 

0.725 
0.421 
0.178 

0.701 
0.420 
0.176 

0.682 
0.417 
0.174 

0.666 
0.412 
0.171 

0.654 
0.406 
0.167 

0.645 
0.398 
0.161 

Kx 

0.901 
0.332 
0.151 

0.874 
0.301 
0.121 

0.845 
0.298 
0.110 

0.818 
0.301 
0.105 

0.794 
0.301 
0.099 

0.773 
0.300 
0.095 

0.755 
0.297 
0.091 

0.740 
0.293 
0.087 

0.727 
0.287 
0.083 

0.716 
0.282 
0.080 

K.x 

0.918 
0.273 
0.122 

0.884 
0.276 
0.106 

0.852 
0.282 
0.103 

0.824 
0.288 
0.098 

0.800 
0.291 
0.095 

0.779 
0.291 
0.091 

0.760 
0.289 
0.087 

0.745 
0.286 
0.084 

0.731 
0.281 
0.080 

0.720 
0.276 
0.077 

KF 

0.878 
0.409 
0.199 

0.859 
0.340 
0.141 

0.830 
0.334 
0.128 

0.802 
0.337 
0.124 

0.777 
0.338 
0.120 

0.756 
0.338 
0.117 

0.739 
0.335 
0.110 

0.724 
0.330 
0.109 

0.712 
0.325 
0.106 

0.702 
0.319 
0.102 

Kx 

0.908 
0.309 
0.139 

0.898 
0.250 
0.102 

0.878 
0.239 
0.089 

0.858 
0.239 
0.082 

0.840 
0.239 
0.077 

0.824 
0.238 
0.072 

0.810 
0.236 
0.064 

0.797 
0.234 
0.064 

0.786 
0.230 
0.060 

0.777 
0.226 
0.057 

Kx 

0.918 
0.272 
0.122 

0.903 
0.235 
0.096 

0.882 
0.230 
0.086 

0.861 
0.232 
0.075 

0.843 
0.233 
0.075 

0.826 
0.234 
0.071 

0.812 
0.232 
0.063 

0.799 
0.230 
0.063 

0.789 
0.227 
0.059 

0.779 
0.223 
0.056 

Note. The first entry of each cell is the expectation, the second entry is the standard 
deviation, and the last entry is the mean squared error. 

The next logical step is to see how the choice of model affects the 
estimation of the parameter κ. Table IV compares all the estimators that 
we have discussed, namely Fleiss' kF (eq. (1.5)), the moment estimator km 

Sample size 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
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TABLE III 

Distribution of Positive Ratings for the Diagnosis of Schizophrenia 

Observed 
data 

Multiplicative 
model 

Beta-binomial 
model 

Special mixing 
model 

0 

22 

18.6 

16.3 

22.1 

1 

0 

5.2 

3.7 

0.2 

Number of 

2 

1 

1.9 

2.4 

0.9 

3 

2 

1.0 

1.9 

2.1 

positive ratings 

4 

3 

0.8 

1.7 

2.6 

5 

2 

1.0 

1.7 

1.7 

6 

0 

1.7 

2.1 

0.5 

RSE" 

16.0 

9.7 

0.8 

a RSE is relative squared error = £ (observed-expected)2/expected. 

(Eq. (3.3)), the m.l.e. under the beta-binomial kB (Section 3.2), the m.l.e. 
under special mixing kx (Theorem 3.2), and its approximation kx 

(Eq. (3.7)), Standard errors were computed according to the asymptotic 
formulas for kF, kB, and kx9 formula (3.9) for kx, and the bootstrap 
method (Efron [9]) for km. As a comparison, the bootstrap standard error 
for kF was 0.105 versus the asymptotic approximation 0.133; the bootstrap 
standard error for kx was 0.073 versus the approximation 0.110 given by 
Eq. (3.9). 

The table demonstrates sizable differences in the estimates of /c, from 
0.517 for kF to 0.620 for km. The value of ^ = 0.550 represents a rough 
compromise between these. Greater relative differences are seen in the 
estimated standard errors. The standard error of kF is estimated to be 
between 21 to 35% larger than that of kx, for the asymptotic and 
bootstrap estimates, respectively. Thus all indications are that kx is more 
stable in this region of the parameter space. 

TABLE IV 

Estimates of Kappa for the Diagnosis of Schizophrenia 

Estimator 

Estimate 0.517 0.620 0.552 0.549 0.550 
Asymptotic SE 0.133 0.117 0.078 0.110 
Bootstrap SE 0.105 0.065 0.073 
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5. CONCLUDING REMARKS 

This paper is meant not just as a concept paper, linking the log-linear 
and mixing model approaches, but also as a demonstration that very prac-
tical estimators such as icx arise out of the mixing distribution approach to 
measuring and estimating diagnostic agreement. In future work we hope to 
develop the mixing distribution approach for multiple categories. 

APPENDIX: PROOF OF THEOREM 3.2 

The log-likelihood LL(n, ζ) for a sample {yt\i= 1,..., n) from the 
distribution (3.6) is 

LL(B,C) = ^log[C + ( l - C ) i ] + (»->4)log[(l-C)9] 

+ 51ο8[π/(1-π)] + χ ΐ ο 8 ^ 

forO<C<l and0<7t<l, where q = (1 -n)R, A = Σ^{>Ί = 0}, and /is an 
indicator function. The partial derivative of the log-likelihood with respect 
to ζ is 

a LL/ac = [ M - « ? ) - ( « - « ? ) { ] / { [ ? + ( i - ? ) C ] ( i - C ) } . 

Thus LL(7i, C) is strictly decreasing in ζ when q>A/n, and in the range 
0<q^A/n the log-likelihood has a unique maximum at C = (A — nq)/ 
(n — nq). We can therefore restrict the search for the maximum likelihood 
point (π, ζ) to the path [π, ζ(π)] defined by 

f 0 if 0 < π ^ π ο , 

\{A-nq)/(n-nq) if π 0 <π<1 , 

where π0= 1 - (A/n)l/R. Define 

nR log(l - π) + S log|>/(l - π)] for 0 < π ^ π0, 
*(π)=( AloglA/(n-A)]+nlog(\-A/n) 

+ (n-A)\oglq/(\-q)-] + S\og\_nl(\-n)] for π 0 <π<1 , 

so that g(n) is a monotone function of ΙΧ[π, ζ(π)] along the path 
[π, ζ(π)]. The problem reduces to maximizing g(n) over 0 < π < 1. Notice 
that both g( · ) and its derivative 

,, HS-nRn)/ln(l-n)] for 0 < π ^ π ο , 
g \lS(\-q)-(n-A)Rny[n(l-n)(l-q)-] for π 0 <π<1 , 
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are continuous throughout the range 0 < π < 1 . Over the course of the 
range 0 < π ^ π0, g(n) is either strictly increasing or has a unique maximum 
at π = S/nR depending on whether or not π0<S/nR. Let h(n) = S(i—q) — 
(n-A)Rn. Then h(\) = S-S(n-A) R^09 and h'(n) = RS(l -n)R~l -
R(n — A ) is non-increasing. It follows that g( · ) is either strictly decreasing 
or has a unique maximum in the range π0 < π < 1 depending on whether or 
not h(n0) < 0. Since q = A/n when π = π0, Α(π0) = 0 if and only if π0 = S/nR. 
Thus if n0^S/nR then π = S/nR and ζ=0; if n0<S/nR then π is the 
unique root of h(n) in the range π0 < π < 1 and ζ— (A — nq)/(n — nq), where 
q = (1 — π)*. The result for κχ comes from formula (3.2) and the invariance 
property of maximum likelihood estimators. 
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