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PREFACE 

To those interested principally in the application of quantum physics to 
the development of new technology, it may seem eminently pragmatic to 
accept experimental phenomena following from the wavelike behavior of 
particles as concrete facts without troubling to consider the quantum leap in 
the intellect required to explain the phenomena. To those who experience 
the joy of formulating and solving equations of motion resulting from the 
application of Newton's second and third laws to macroscopic particles, 
however, the dichotomy of the reasoning processes required to view an en-
tity simultaneously as a wave and as a particle is very real. One must marvel 
at the theoretical physicists such as Werner Heisenberg and Erwin Schrö-
dinger, who developed the conceptual basis and the theoretical structure 
required for quantum calculations. As one probes more deeply into the ori-
gins of this abstruse and highly mathematical discipline, however, it be-
comes quite clear that these esoteric theorists were in fact hardheaded real-
ists, driven to develop the new approach only because of the failure of the 
esteemed "classical" physics to provide an accurate description of nature at 
the electronic and nuclear levels. The acceptance of this failure and the de-
velopment of a successful alternative is in the spirit of the highest principles 
of applied science; in this respect, the architects of quantum theory are ex-
cellent models for those aspiring to become outstanding engineers and ap-
plied physicists. After all, P. A. M. Dirac, who developed the well-known 
relativistic wave equation, received his early training in electrical engineer-
ing, and the physics Nobel laureate Ivar Giaever, famous for his work on 
electron tunneling in superconductors, was initially a successful mechanical 
engineer. 

The predictive powers of quantum theory are so great that those aspiring 
to develop new technology certainly wish to be able to use the theory. Quan-
tum mechanics is our only method of understanding and predicting the be-
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havior of modern atomic and solid-state devices, including masers and la-
sers, atomic clocks, superconducting magnets, Esaki diodes, and Josephson 
tunnel junctions. Many of these are already employed in industry, and cur-
rent technical advances are leading to the development and use of even more 
such quantum devices. Therefore the need is urgent for applied scientists to 
develop a functional knowledge of quantum concepts and methodology. It 
can be said that the Schrödinger equation is to quantum devices what New-
ton's laws of motion are to the space shuttle. However convincing these 
arguments may be, the question of the practicality of obtaining such a work 
ing knowledge without working through the equivalent of earning a physics 
Ph.D. remains. Pragmatic individuals have often concluded that it is beyond 
the realm of possibility for them to clarify their muddled concept of the semi-
conductor energy gap, and that quantum tunneling of a particle through an 
energy barrier is a theoretical exercise involving talents second only to those 
required to be an international chess champion. This text was conceived to 
enable such individuals to "tunnel" through "barriers" of ignorance so that 
they may participate in the enlightened spirit of the quantum way of viewing 
nature. It is intended to lead them into developing a mental facility for doing 
practical quantum calculations. To sense nature's beautiful harmony at work 
as electrons flow through a metal wire is as delightful as listening to a Mozart 
piano concerto. Moreover, it is vastly elevating as well as pragmatic to have 
full assurance that one is correctly applying a mathematical formula to a 
given situation, such confidence stemming from an understanding of the der-
ivation of the formula. 

This book evolved from practical experience in training engineers and ap-
plied physicists. Initially a set of notes was written with the objective of 
providing an elementary and self-contained development of the fundamen-
tals of quantum mechanics. Emphasis was placed on those aspects of quan-
tum mechanics and quantum statistics that are essential to an understanding 
of solid-state theory. The notes were kept honest in the sense that all devel-
opments were carefully worked out, complete details were given for each of 
the derivations, and successive derivations were developed on a firm basis 
provided by the preceding material. This approach was adopted to minimize 
frustration for the serious reader. The notes were so successful in their ob-
jective of grounding students thoroughly in the quantum method that the 
author was prompted to submit them as the basis for a full text. Encourage-
ment was offered by the editorial staff of Academic Press to develop the 
material into its present form. The changes and additions were field-tested 
on upper-level undergraduates and on graduate students at Auburn Univer-
sity as they were incorporated, and simultaneously, problems and projects 
were developed for the text. 

Basic quantum mechanics, using the Schrödinger equation, is completely 
developed from first principles in Chap. 1. Quantum statistics (Chap. 2) is 
developed as a prelude to the important free-electron theory of metals 
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(Chap. 3). Perturbation theory (Chap. 5) is developed and employed to eval-
uate modifications in free-electron theory to accommodate the effects of ion 
cores in the solid. The WKB approximation (Chap. 4) is employed to deduce 
the transmission coefficient for electron tunneling in solids. The theory of 
electronic energy bands (Chap. 7) is developed by applying the Schrodinger 
equation to the problem of the periodic potential of a crystalline solid (Chap. 
6). Throughout the text, examples from solid-state physics are employed to 
illustrate specific applications and to demonstrate the principal results that 
can be deduced by means of quantum theory. This serves to bridge the artifi-
cial gap between quantum mechanics and solid-state physics, thereby cir-
cumventing the cardinal difficulties encountered by applied physicists and 
engineers in learning solid-state physics from conventional monographs. Be-
cause of the strong emphasis on the rapid development of the background 
needed to understand energy bands and electron transport in crystals, a 
somewhat lesser emphasis has been placed on the mathematical details of 
the hydrogen atom and harmonic oscillator problems than is traditional. 
Even though the advisability of this sacrifice might be questioned by some, it 
can be argued that so many excellent developments of these two problems 
are already available that it is somewhat difficult to justify still another. 

Several tactics are used to increase the effectiveness of the material as a 
learning aid. First, a determined effort has been made to avoid requiring 
from the reader a heavy mathematical background. The usual courses in 
calculus and differential equations are presumed, but very little beyond this 
is required. Second, the physics background required of the student is mini-
mal. In fact, the usual two-semester sequence in calculus-based elementary 
physics will be found to be adequate for most students. Rigorous detailed 
derivations are sometimes preceded by simpler derivations containing the 
essential features. Parallel developments leading to the same important final 
result are occasionally given. Previews are given whenever needed. (For 
example, the energy band picture for an insulator is introduced in Chap. 4 
for metal-insulator-metal tunneling; this provides an overview that antici-
pates the illustration of energy gaps using perturbation theory in Chap. 5 and 
the formal development of energy bands using Bloch functions in Chap. 7.) 
Expanded treatments of some topics are given because of high current inter-
est in specific areas of applied research, electron tunneling being one case in 
point. 

This is sufficient material for a four-semester sequence for upper-level 
undergraduates and beginning graduate students in applied physics and engi-
neering. The four parts of the book (Elementary Quantum Theory; Quantum 
Statistics and the Free-Electron Model; WKB Approximation and Perturba-
tion Theory; and Energy Bands in Crystals) each require a semester. In an 
alternative usage mode, Parts I, II, and III can be covered in a two-semester 
course in basic quantum mechanics for physics majors. In a third mode, 
Chaps. 3, 4, 6, and 7 have been used frequently for an elementary course in 
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solid-state physics. In a fourth mode, the author has on occasion used Chap. 
2 for a special-topics course in the quantum mechanics of many-particle sys-
tems and the development of quantum statistics. 

Exercises for the reader provide motivation to work out simple details of 
the central developments and in some cases to extend these developments. 
Problems have been designed to encourage practical numerical computa-
tions with hand-held calculators or computer-terminal facilities. A series of 
projects, frequently requiring outside study and consultation of technical 
literature, will be found to be enjoyable and profitable by many. Such proj-
ects are intended to provide enough in the way of important extended devel-
opments to enable the reader to expand upon the "bare bones" of the tex-
tual material and develop competence and style in open-ended applied re-
search problems. Apart from the goals of motivating the reader to 
understand and develop a working knowledge of the material, are not the 
really important objectives those of training the reader to develop ideas logi-
cally and to synthesize diverse concepts? Is this not one of the better ways 
to develop latent research capabilities? These projects will often require 
other textbooks to broaden the reader's basic knowledge in physics, to de-
velop his capability in relevant mathematical techniques, or to acquaint him 
with the published experimental data on a topic. They may be pursued as an 
individual or a group effort. The number and variety of these study aids are 
thus sufficient to allow choices in accord with individual tastes and abilities. 
One can view the text as a "variable-difficulty" learning aid, with the "diffi-
culty index" determined by the degree of incorporation of these materials. 
The major objective should, of course, be initially the mastery of the text 
material. Then, even a careful reading of the problems and projects will 
broaden scientific horizons and will aid in correlating the material with that 
in more advanced works. 



ACKNOWLEDGMENTS 

Dr. W. Beall Fowler, Jr., and Dr. Frank J. Feigl of Lehigh University 
carefully read the entire first draft of the manuscript and made numerous 
helpful comments and detailed suggestions; the author acknowledges with 
sincere thanks their labors, which led to a much higher quality end product. 
The editorial staff of Academic Press offered continuous encouragement to 
the author, yet remained firm in its exhortation to render the manuscript into 
the best possible form before going to press. The author is much indebted to 
his former department head, Dr. Howard E. Carr, who offered him the op-
portunity to teach so many courses in modern physics, quantum mechanics, 
and solid-state physics at Auburn University. Dr. Charles H. Holmes made 
several constructive suggestions for improvement of the work, based on his 
extensive experience in working with engineering students and practicing 
engineers. Never to be forgotten, of course, are the students who represent 
the raison d'etre for the typed class notes, and who were always courteous 
and encouraging when questioned regarding the value of the notes as a learn-
ing aid. The author and these students are much indebted to a number of 
departmental secretaries who worked at one time or another over the years 
on the class notes, painstakingly typing and retyping the several versions 
which culminated in this text. Mrs. Gail Pressneil and Mrs. Patricia Ray, in 
particular, spent much time on this effort; Mrs. Sara Watkins, Mrs. Carol 
Henderson, Mrs. Karen Sollie, Mrs. Mary Childers, and Mrs. Paula Howell 
also worked diligently on the notes during their tenures, while Mrs. Sherry 
Walton and Mrs. Jo Hawkins graciously assisted whenever they could spare 
the time from their regular duties. The author is likewise very grateful to the 
hardworking and talented student draftsmen, Mr. Danny Creamer and Mr. 
Don Cooper, who labored diligently to create professional-quality drawings 
out of sometimes crude and abstruse sketches. This list would not be com-
plete without the author's acknowledgment of the invaluable technical as-

XV 



XVI ACKNOWLEDGMENTS 

sistance of his wife, Regina, who aided throughout with editorial sugges-
tions, typing of preliminary drafts, and proofreading. Even more important 
were the words of encouragement she offered when his spirits were low and 
the patience she exhibited during his preoccupation with this long-term ef-
fort. 



P A R T I 

Elementary Quantum Theory 

C H A P T E R 1 

AN INTRODUCTION TO QUANTUM MECHANICS 

Today we know that no approach which is founded on classical mechanics and 
electrodynamics can yield a useful radiation formula. A. Einstein (1917) 

1 Wave-Particle Duality 

1.1 Domain of Quantum Mechanics 

Quantum mechanics is a theory that can be used to correlate and predict the 
behavior of atomic and subatomic systems. These systems constitute the 
microscopic domain in nature where the predictions of "classical" physics (e.g., 
Newton's three laws of motion) are not always in accord with experimental 
results. Quantum mechanics not only predicts correctly the results of physical 
observations in the microscopic domain, it also continues to predict correctly in 
the macroscopic domain where classical physics is applicable. 

1.2 Particle and Wave Properties 

Matter and electromagnetic radiation individually have both particlelike 
properties and wavelike properties. By "particlelike" we mean localized and 
acting in some sense as individual entities. By "wavelike" we mean nonlocalized 
and periodic, with the capability of interacting constructively or destructively 
with similar entities. The coexistence of wavelike and particlelike aspects in a 
single physical entity is known as "wave-particle duality." 

1.3 Quantization and Discreteness 

Certain properties of matter and certain properties of radiation are found to 
be quantized. Matter in the atomic and nuclear domain consists of a variety of 
particles of electronic and nuclear scale (e.g., electrons, protons, neutrons) and 
combinations of such; each is found to have a discrete set of values for the 
various physical properties such as mass, charge, spin angular momentum, 
magnetic moment, and electric quadrupole moment. For example, a continuous 
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2 AN INTRODUCTION TO QUANTUM MECHANICS [Chap. 1 

range of values of the charge on an electron is not found, but instead, all 
electrons have the same fixed charge. In this sense the charge is quantized. 
Similarly, the mass, spin angular momentum, and magnetic moment of the 
electron are quantized. 

The quantization of radiation, on the other hand, is manifested by the fact 
that it is frequently observed to interact with matter as if it were an ensemble of 
discrete entities, each such entity having a fixed amount of energy and 
momentum. An example of this behavior is the photoelectric effect, which is the 

Fig. 1.1 Photoelectric effect. (A photon of frequency v and energy <^phot = hv ejects an electron 
from a metal surface with a work function φ, the outgoing electron having a maximum kinetic energy 
£„ = hv - φ.) 

Before Collision 

hi/ 

e" 

Fig. 1.2 Compton effect. (An incoming photon of frequency v and energy hv is scattered at an 
angle Θ by a free electron e~, thereby undergoing a decrease in frequency to v' and a decrease in 
energy to hv\ with the difference in energy h{v - v-) appearing as an increase in the kinetic energy of 
the free electron scattered at an angle y.) 
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ejection of electrons from a metal by a particlelike interaction of the incident 
electromagnetic radiation with the conduction electrons in the metal. This is 
illustrated in Fig. 1.1. Another example is the Compton effect, as illustrated in 
Fig. 1.2, which is the observation of an increase in the wavelength of 
electromagnetic radiation due to particlelike collisions of photons (such as x 
rays) with unbound electrons in a solid. These characteristic properties of matter 
and radiation may be viewed as "particlelike" properties rather than specifically 
"quantum" properties, since the word "quantization" as it is used in quantum 
mechanics often has the connotation of certain specific sets of allowed and 
disallowed values. 

The discreteness of physical properties persists when elementary particles 
combine to form atoms and nuclei. In particular, experimental measurements of 
spectral lines and particle-atom collision processes lead directly to the viewpoint 
that atoms possess discrete energy levels. This observation provides the basis for 
the semiclassical atomic model (Bohr atom) in which the electron is visualized as 
undergoing planetary-type motion in certain "allowed orbits" around a parent 
nucleus (see Fig. 1.3). The corresponding quantum-mechanical model is one in 

Fig. 1.3 Classical picture (Bohr model) of the atom. (An electron of mass m and charge e~ is 
visualized as undergoing planetary-type motion at a speed v in certain "allowed" orbits around an 
oppositely charged nucleus having a much greater mass M.) 

2 s state 

Fig. 1.4 Quantum-mechanical picture (probability density model) of the atom. (An electron is 
visualized in terms of "patterns" of probability density about the nucleus, the pattern being 
characteristic of the electronic state.) 

Is state 
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which the electron is described at a given time by certain "allowed patterns" of 
probability density (see Fig. 1.4). The allowed "orbits" or "patterns" are 
designated simply as electronic states. These discrete electronic states can be 
shown to be characterized by specific values for the energy and angular 
momentum of the electron. The atomic absorption of electromagnetic radiation 
or the collision of the atom with a bombarding particle promotes the electron in 
the atom to one of the higher energy states. The emission of electromagnetic 
radiation is then considered to follow from a transition of the electron to one of 
the lower energy states. The lowest energy state of the electron for the system in 
question is called the ground state; this state is stable with respect to decay by 
radiation. 

1.4 Nature of Radiation 

The picture of transitions between discrete electronic states through absorp-
tion and emission of electromagnetic radiation is consistent with energy 
conservation. The amount of radiation absorbed or emitted in a given transition 
represents a relatively fixed amount of energy, the amount being equal to the 
difference in energy between the initial and final states (cf. Fig. 1.5). Although 
this in itself does not give us any details concerning the various possible forms in 
which the electromagnetic radiation might be emitted, we deduce from 
experimental optical spectral lines that the energy AS emitted in the transition of 
an electron from a given higher energy (or excited) state to a given lower energy 
state occurs in the form of radiation which has a characteristic spectral 
frequency v. The frequency v is linearly related to AS, 

AS = hv (energy-frequency relation). (1.1) 

The proportionality factor A, known as Planck's constant, has the value 

h = 6.626 x 1(T34 J sec = 6.626 x 1(T27 erg sec. (1.2) 

This restriction of the emission or absorption of radiation to discrete bundles 
(or "packets") of energy AS = hv having a specific spectral frequency v leads to 
the postulate that the radiation emitted by natural atomic radiators occurs in the 
form of a particlelike quantity (known as the photon) with energy hv. A radiation 
"field" can then be established by a radiation source consisting of a large 

w 
c *n'-cn=hv 

(a) (b) 

Fig. 1.5 Energy absorption (a) and emission (b) in electronic transitions between discrete energy 
levels involving electromagnetic radiation of frequency v in quantized increments hv. (The amount of 
radiation absorbed or emitted in an electronic transition represents a relatively fixed amount of 
energy, the amount being equal to the difference in energy between the initial and final electronic 
states.) 
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number of atoms emitting photons simultaneously. The electromagnetic field is 
known to have wavelike properties; nevertheless, the wavelike field (associated, 
for example, with a propagating light wave) can ultimately be resolved into 
discrete packets of radiation called photons which are emitted by the discrete 
atoms of the source. This in itself can lead one to speculate that light (or more 
generally, electromagnetic radiation) has a dual nature, since it is endowed with 
both wavelike and particlelike properties. 

1.5 Photoelectric Effect 
Einstein applied the concept of particlelike properties to light to explain the 

photoelectric effect. This experimental effect, associated with the ejection of 
electrons from metal surfaces when the surfaces are illuminated with elec-
tromagnetic radiation (see Fig. 1.1), cannot be understood on the basis of purely 
classical physics [Gamow (1966)]. For example, if the illumination were 
perfectly uniform, it would take a very long time for any single electron in the 
metal to receive enough energy from direct radiation to surmount the 
metal-vacuum work-function barrier because an electron is extremely small, 
having a radius of the order of 2.8 x 10"13 cm. In the experimental observation 
of electron ejection, however, there is no minimum time for electrons to be 
ejected after illumination begins, even in the limit of very low illumination 
intensities. This is in accordance with the concept that each quantum of 
radiation hv is absorbed by a single electron and serves to eject the electron 
immediately whenever hv is larger than some minimum energy hv0 necessary to 
remove the electron from the metal. This minimum energy hv0 is called the 
photoelectric work function φ for the metal in question. If hv is less than 0, 
ejection is not generally found to occur even if the metal is illuminated for very 
long periods of time at very high intensities. It therefore appears that the ejection 
of electrons fronl metals by electromagnetic radiation is not a process in which 
energy is absorbed uniformly by the metal with subsequent electron ejection; 
rather it is a process in which individual photons of energy hv interact with the 
metal to eject individual electrons from the metal. This conclusion is especially 
reinforced by the above-mentioned experimental observation of the cutoff in 
electron ejection as the photon energy hv is decreased below φ. (The absorption 
of a single photon with energy less than φ does not provide the electron with 
enough energy to surmount the work function barrier, and the probability for 
the simultaneous absorption of two or more photons to provide sufficient energy 
for surmounting the work function barrier is too small under normal experimen-
tal conditions for this process to be observed.) In addition, the kinetic energy of 
the individual ejected electrons is found to increase with the frequency of the 
light as h(v — v0) but it is found to be independent of the intensity of the 
radiation. The rate of electron ejection for fixed frequency, however, is related 
linearly to the intensity of the radiation provided v > v0 (see Figs. 1.6a and 1.6b). 
These facts are in accord with the concept of an interaction of individual photons 
of energy $ = hv with the unbound electrons in the metal, with the density of 
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such photons being proportional to the radiation intensity. In summary, the 
photoelectric effect can be said to be an experimental observation that 
emphasizes the "corpuscular" or "quantum" properties of light. 

(a) I 

εκ 

I 

(b) 

Rate 

I 

Fig. 1.6 Photoelectric emission of electrons from a metal surface having workfunction φ by 
radiation of a given frequency v > φ/h. (a) The maximum kinetic energy $K of the ejected electrons is 
independent of radiation intensity /. (b) The rate of electron ejection increases linearly with radiation 
intensity /. 

1.6 Gedanken Experiments with Light 

Can one reconcile the well-known phenomena of the interference and 
diffraction of light with the photoelectric effect? Let us investigate a typical 
interference experiment, in which light passing through the slits of a grating (see 
Fig. 1.7) is analyzed. As a detector we could use a photographic plate, which on 
detailed examination would reveal a multitude of spots with a density given by 
the classical wave theory (see Fig. 1.8). Each individual spot is actually the result 
of a photochemical reaction that is triggered by a single photon. This is shown by 
reducing the beam intensity to a point where, on the average, only one photon is 
passing through the apparatus at a time. Thus only one chemical reaction in the 
detector is triggered at a time. This result is in complete disagreement with the 
classical theory, which predicts that the continuous interference pattern should 
remain entirely unaltered, regardless of the degree to which the total intensity is 
reduced. In the one-photon-at-a-time experiment, we see only one spot at a time. 
In this sense it can be said that an individual photon does not interfere with itself. 
If we make a long exposure so that many photons pass through the apparatus, 
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such that we fail to resolve the different spots on the photographic plate, we 
regain the classical wave pattern illustrated in Fig. 1.7. Thus in a statistical sense 
the photon does experience an interference effect in that its trajectory is 
determined by its interaction with the entire grating. In other words, the wave 
theory gives the specific probability of a light quantum striking the detector at a 
given point. Thus we have a quantum-statistical process that is based on the 

Incident 
Light 

Diffraction 
Grating udJ 

Interference 
Pattern 

Photographic Plate 

Fig. 1.7 Schematic illustration of the interference of light passed through the slits of a grating. 
(An interference pattern characteristic of the wavelength λ of the light, the spacing d between slits, 
and the length L of the transmission grating is observed in the transmitted light by means of a 
suitable detector such as a photographic plate. The pattern illustrated is characteristic of that 
expected for two very narrow slits, for which the intensity / in terms of the maximum intensity /0 is 
I = IQ COS2/?, where β = (πά/λ) sin Θ. The angle Θ is determined by tan Θ = y/D, where D is the 
perpendicular distance between the grating and the photographic plate and y is the distance along the 
photographic plate. Thus for small values of y/D, β ^ n(d/X)(y/D), and /is a cosine-squared function 
of y.) 

I(y) 

_l 1 I L _ L _L_ _l L _ L _1 L _1_ 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Fig. 1.8 Intensity / versus position y along the photographic plate. (In the limit of high 
intensities, the smooth continuous curve for intensity versus position along the photographic plate is 
obtained, in accordance with a wave theory of light. In the limit of low intensities, however, the 
intensity must be obtained by counting the areal density of discrete spots at incremental positions 
along the photographic plate. The seemingly random spots accrue at a given position with a 
probability governed by the wave theory.) 
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l i 
T 

3#« 

Fig. 1.9 Interference pattern produced by light passing through two slits of finite width a 
separated by a distance d. (The light bands indicate exposure on the photographic plate, and the 
peaks to the right indicate the variation of the intensity of the transmitted light with position given by 
the scattering angle Θ. The angle Θ determines the distance y along the photographic plate in 
accordance with the relation, tan Θ = y/D, where D is the perpendicular distance between the 
transmission grating and the photographic plate.) 

I(y) 

1.0< 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

- I I ^ B f l f l ^ a ^ ^ a a a o « 
β β β© < ϊ « ' ® β « > β β Θ β β β β ® β β 6 βί ) β( 

2f££2tl* 
0 1 2 3 4 5 6 7 8 

y 

Fig. 1.10 Single-slit diffraction pattern produced by light of wavelength λ passing through one 
slit of width a. (The expression for the intensity / in terms of the maximum intensity I0 and as a 
function of the angle 0, the wavelength A, and the slit width a is given by / = /0a~2 sin2a, with 
a = (πα/λ) sin 0, as derived by considering interference between all components originating at 
different points on the wave front at the slit [see Halliday and Resnick (1974)]. This expression was 
numerically evaluated by means of a calculator, choosing a = 0.01 mm and λ = 5461 A, with 
distance D = 1 m to the detector screen. The results of this calculation for the single slit is to be 
compared to the results for the double slit illustrated in Fig. 1.11.) 
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innate properties of radiation (and also matter) separate from the thermody-
namic temperature that underlies classical statistical considerations. 

It is of interest to ask whether a specific trajectory can be ascribed to the 
photons that reach the detector (cf. Fig. 1.9). That is, can the photon be localized 
not only in the act of absorption by the detector, but also throughout its course 
in the apparatus? Let us presume that initially the entire grating in Fig. 1.7 is 
illuminated with photons uniformly, and the resulting pattern observed. Then 
let us form a second pattern by illuminating the grating in sections L « L for a 
fixed time increment. (For example, L could be chosen to include only two or 
three slits.) At any given moment the trajectories of the photons striking the 
photographic plate in this second case are thus restricted to a given portion L of 
the grating. If different sections L of the grating are then exposed sequentially 
until the entire grating has been exposed to the same intensity as in the first case, 
we might, in our ignorance, presume that the resultant pattern formed in the 
second experiment would be much the same as the pattern formed in the first 
experiment. This is not found to be the case. The patterns obtained in the second 
experiment are each characteristic of a grating of length L', whereas the pattern 

Ky) 

10 L^ 

0.91-

0.8 p 

0.7k 

0.6 U 

0.5 k 

0.4 k· 

0.31-. 

0.2 k ' 

01V' 

\ 

* . \ 
. \ . · \ 

• · · : >> • · . \ . * · \ 

_t_l > ZL_ _i£ k* \7 · ·^η ̂ . - r f c T i 

Fig. 1.11 Double-slit diffraction pattern produced by light of wavelength λ passing through two 
parallel slits, each of width a, separated by a distance d. (The expression for the intensity / in terms of 
the maximum intensity I0 and as a function of the angle 0, the wavelength A, and the slit width a is 
given by / = I0ct~ 2 sin2a cos2/?, with a = (πα/λ) sin 0, and β = (nd/λ) sin 0, as derived by modulating 
the single-slit pattern illustrated in Fig. 1.10 by the cos2/? factor characteristic of the two slits [see 
Halliday and Resnick (1974)]. This expression was numerically evaluated by means of a calculator, 
choosing a = 0.01 mm, d = 0.10 mm, and λ = 5461 Ä, with distance D = 1 m to the detector screen. 
The parameter y was defined in the caption of Fig. 1.9; its units in Figs. 1.10 and 1.11 are 
centimeters.) 
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obtained in the first experiment is characteristic of a grating of length L. In fact, 
if we cover all the slits but one, on the assumption that the photon has atomic 
dimensions and goes through only one slit, then we completely lose the multislit 
interference pattern. This is well illustrated by Figs. 1.10 and 1.11 (see also Fig. 
1.12). The act of localizing the trajectory of the photon in the manner just 
described does affect the resulting pattern. Therefore it appears that each 
individual photon in some way interacts with the entire apparatus, since its 
trajectory is influenced by the total number and arrangement of slits. It is in this 
sense, and in this sense only, that it can be said that an individual photon 
interferes with itself. 

I(y) 
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0 7 Γ 
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0 -40 -30 -20 -10 0 10 20 30 40 

y 

Fig, LI2 Single-slit diffraction pattern of Fig. 1.10 plotted on a smaller scale than Fig. 1.10 for 
distance y parallel to the photographic plate in order to illustrate the modulations produced at larger 
angles Θ by the secondary maxima of the single-slit diffraction pattern. (This is also the envelope 
function represented by the dashed lines in Fig. 1.11.) 

We may thus conclude quite generally that in any arrangement that causes 
light to traverse different paths followed by recombination, either we may 
observe an interference pattern and remain ignorant of the photon's path, or we 
may experimentally determine which path the photon followed but thereby 
destroy the interference pattern. This is the enigma with which we are forced to 
live; experimentally it is found to be an innate property of particles as well as of 
radiation. It is so fundamental that it has been enshrined in the so-called 
"complementarity principle" of Bohr: An experimental arrangement designed to 
manifest one of the classical attributes (e.g., wavelike or particlelike aspects) 
precludes the possibility of observing at least some of the other classical attributes. 
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1.7 Wave Properties of Matter 

Since light, considered generally to be wavelike, can therefore be shown in 
certain experiments to exhibit particlelike properties, it is certainly a reasonable 
extrapolation to speculate that particles of matter may have certain wavelike 
properties that could be emphasized under the proper experimental conditions. 
A man possessing the imagination for such speculation was de Broglie, who 
proposed that the wave-particle duality may be characteristic not only of light, 
but may be a universal characteristic of nature. De Broglie thus postulated the 
wave nature of matter. If particles do exhibit a wavelike character, they should 
give rise to interference and diffraction phenomena such as those commonly 
observed for light. Successful experiments designed to test this hypothesis are 
discussed in §5. 

If the reader initially wonders how a wavelike description of particles could 
ever be in accord with our visual observations of the existence and motion of 
macroscopic objects, it may be recalled that the wave equations of elec-
tromagnetic theory have wavelike solutions that, in the limit of short wave-
lengths, yield results equivalent to the rays (or straight-line paths) of geometrical 
optics. An appropriate wave equation for matter would have wavelike solutions 
that in the appropriate limit of short wavelengths yield results equivalent to the 
predictions of classical physics such as Newton's equations of motion for 
particles. 

At this point it proves helpful to delineate more clearly just what we mean by 
the concepts of particle and wave. Particle traditionally means to us an object with 
a definite position in space. Wave means a periodically repeated pattern in space 
with no particular emphasis on any one crest or valley, it is characteristic of a wave 
that it does not define a location or position sharply. Although these concepts at 
first seem to be mutually exclusive, some thought will show that a synthesis of 
discreteness and wave motion is sometimes evident in classical macroscopic 
physics, one prime example being the discrete frequencies of vibrating bodies of 
finite extension such as strings, membranes, and air columns. These systems 
have natural standing-wave modes representing sets of discrete wavelengths and 
frequencies. Mathematically the discreteness arises from boundary conditions 
imposed on the solutions from physical considerations such as zero-amplitude 
displacements at the fixed ends of a vibrating string. These discrete waves can be 
superimposed to yield various wave shapes; this is closely analogous to the 
superposition of sine and cosine functions to form arbitrary functions in a 
Fourier series or Fourier integral (see §4). This is the really important point, 
namely, that classical sinusoidal waves, each representing a nonlocalized 
disturbance, can be superimposed to obtain a localized disturbance. This is 
effected by constructive and destructive interference of the various wavelength 
components at different points in space. These statements are further explained 
and justified in the following sections dealing with classical waves and Fourier 
series. 
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2 Classical Wave Motion 

2.1 Solutions to the Classical Wave Equation 

Let us consider some of the mathematical details of wave motion, as would be 
generally suitable for a description of electromagnetic waves or sound waves. 
Solutions φ(χ,t) of the classical wave equation 

δ2φ _ 1 δ2φ 

'dx2 ~ c2 dt 2— 2 2 (one-dimensional classical wave equation) (1.3) 

give a representation of the amplitude of some wavelike disturbance which 
happens to be a function of position in one direction x and time t. The function φ 
could represent, for example, the displacement of a uniform stretched string or 
the electromagnetic field in free space. Consider a function/which is arbitrary 
except for the requirement that its argument be x + ct or x — ct. Both of these 
cases can be indicated by writing x ± ct. Although / is a function of the two 
variables x and t, we have restricted the manner in which these two variables 
appear. If we designate x ± ct by η and further assume that the first and second 
derivatives off with respect to η exist, then we obtain the results 

dx \θη J \dx J \δη J\ dx J θη ' 
d2f d (df\ d fdf\ (δη\ d (df\ d2f 
dx2 dx\dxj δχ\δη/ \dxj δη\δη J δη2 

(1.4) 

(1.5) 

Sf / ö / V M (df\(d{x±ct)\ (df\ 
'= ±c — , (1.6) dt \δη/\δί/ \δη/\ dt J \δη 

dt2 dt\dt) ~Cdt 

Equating expressions for δ2//δη2 obtained from Eqs. (1.5) and (1.7) yields an 
equation identical to Eq. (1.3) except that/replaces φ. Therefore we have shown 
that any arbitrary properly differentiable function/satisfies the wave equation 
and thus represents one possible solution φ(χ, t) provided only that the 
argument o f / i s x + ct or x — ct. 

Consider fix ± ct) evaluated at t = 0 to be a curve represented byf{x), and 
choose some time-dependent point xp on the x axis which is denoted at t = 0 by 
x°p with the corresponding amplitude of/given by/(*£). As t increases, the value 
of/(.x;p ± ct) will change unless we permit xp to be time dependent in such a way 
that xp ± ct remains constant. If we define xp(t) as the value of xp that satisfies 

xP(t) ± ct = x°p, (1.8) 

then differentiation gives the velocity vp of the point xp(t), 

vp = dxp(t)/dt = -(±)c. (1.9) 
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Thus the point of constant amplitude moves with a constant velocity, 
independent of the initial choice of x°p. Since the point represented by xp was 
initially arbitrary, it follows that the solutions f(x + ct) and/(x — ct) represent 
displacements f(x) which move without deformation with velocities c in the 
negative and positive x directions, respectively. These solutions are linearly 
independent since it is clear that one of these solutions is not a constant multiple 
of the other. Moreover,/itself as originally defined was arbitrary, so that it can 
represent any number of different functional forms at t = 0. This class of 
solutions of the wave equation therefore has the property that the amplitude and 
shape of the wave remain undeformed in time and the wave translates along the 
direction x with a velocity of ±c. Since the wave equation (1.3) is linear, any 
linear combination of such solutions will also be a solution, as can be shown 
immediately by substitution of the linear combination into Eq. (1.3). 

EXERCISE Deduce the classical wave equation by applying Newton's second law to small 
transverse displacements of a stretched wire. 

EXERCISE Deduce the classical wave equation by combining Maxwell's equations for time-
dependent electric and magnetic fields in free space. 

2.2 Elementary Properties and Superposition of Waves 

Fourier series and Fourier integrals (see §4) constitute powerful mathematical 
tools for representing arbitrary functions [such as the function f(x) introduced 
above] in terms of a linear combination of sine and cosine terms. If each of the 
individual components of the Fourier series (or Fourier integral) representing 
f(x) is given the argument x + ct (or alternatively, each is given the argument 
x — ct), as discussed above, then the resultant superposition of these com-
ponents in the form of a linear combination will represent the propagating 
solutions/(x ± ct) deduced above for the wave equation. This will become more 
apparent as we continue our development. 

Let us now examine in more detail the particular function 

gk{x ± et) = sin[Ä:(x + ct)], (1-10) 

which can represent the individual terms making up a "Fourier representation" 
of fix ± ct). [Alternatively we could examine the function hk(x ± ct) = 
cos[k(x ± ct)'].'] The parameter k is at this point simply an arbitrary constant. 
Clearly gk(x ± ct) satisfies Eq. (1.3), in accordance with our above discussion of 
solutions with argument x ± ct, or as can be verified immediately by direct 
substitution into Eq. (1.3). The function gk(x ± ct) has the following elementary 
properties: 

(a) A change of phase by any multiple of 2π has no effect on the value of the 
function at any point in space or at any point in time. That is 

sin[k(x ± ct) + 2mn] = sin[fc(x ± ct)], (1.11) 

where m is an arbitrary positive or negative integer. 
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(b) It follows, therefore, that at a given time / the function gk(x ± ct) repeats 
itself spatially in basic intervals Ax = 2n/k. This basic interval is called the 
wavelength λ, 

λ = 2n/k, (1.12) 

and it is illustrated in Fig. 1.13. 

r x 1 

^ — X 

Fig. LI3 Diagrammatic representation of a sinusoidal wave with wavelength λ within the spatial 
interval 0 ^ x ^ L. 

(c) It likewise follows that at a given position x the function gk(x ± ct) 
repeats itself in time in basic intervals A t = 2n/kc. This basic interval is called the 
period T, 

T = 2n/kc. 

Thus gk(x ± ct) is periodic in space and in time. 

(1.13) 

Since the temporal frequency v is the number of repetitions of the periodic 
function in unit time, and T is the time for one repetition, then 

v = 1/Γ. (1.14) 

For example, if the time required for each repetition is T = 0.1 sec, then the 
frequency v is 10 cycles/sec. Thus from Eqs. (1.13) and (1.14) we obtain v = 
kc/2n, which yields upon substitution of λ = 2n/k as deduced in Eq. (1.12), the 
relation 

λν = c. (1.15) 

For those who are knowledgeable in elementary wave motion, this is im-
mediately recognized as the familiar relation between wavelength, frequency, 
and wave-propagation velocity. Since the angular frequency ω is 2πν, Eq. (1.15) 
can be written 

ω = ck, (1.16) 

which is called the dispersion relation for the wave motion under consideration. 
The velocity c = ω/k is known as the phase velocity of the sinusoidal wave under 
consideration, and k = 2π/λ is a measure of the wave number, since at a given 
time it gives the number of spatial oscillations of the function in a spatial interval 
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of length 2π. Some of these elementary wave relationships can be noted in Fig. 
1.14, where gk(x — ct) is plotted as a function of time. If the velocity eis to be the 
same for any function gk(x ± ct) satisfying the wave equation, it is clear that 
λν = ω/k = c must be independent of the frequency v and wavelength λ of the 
wave under consideration. In this case, where each Fourier component 
gk{x ± ct) of an arbitrary wave/i* + ct) has the same phase velocity, the velocity 
of the superimposed Fourier components (namely, the velocity of the wave 
represented by/) will also be c. The velocity with which/(x + ct) moves is known 
as the group velocity because f(x ± ct) is represented by the superposition of the 
group of Fourier component waves. We have already shown independently that 
the velocity of the wave represented byf(x ± ct) is c along the x axis. Thus the 
group velocity is equal to the phase velocity for the classical wave motion under 
consideration. In physical situations where the phase velocity depends on the 
frequency v of the component wave, the velocity of a group of such waves can no 
longer be obtained by such simple considerations. The superposition of a group 
of waves differing from each other in wavelength yields what is commonly 
known as a wave packet. Wave packets can have various shapes, depending upon 
the distribution of wavelengths and the relative amplitudes of the superimposed 
waves in the packet. A wave packet is the physical analog of the mathematical 
superposition of waves in a Fourier integral (see §4). A general treatment of the 
group velocity is presented in §7.4. 

Fig, 1,14 Traveling wave gk(x — ct) = sin[fc(jc — ct)~\ illustrated at t = 0 (solid curve) and at a 
later time t (dashed curve); during time t, the point on the wave denoted by the displacement g{xj) 
moves parallel to the x axis from the initial point x°p at t = 0 to the new point xp{t). 

2.3 Standing Waves 

Consider now the specific linear superposition of two of the above solutions 
gk(x ± ct) defined by 
Gk(x, t) = \\_gk(x + ct) + gk(x — ct)~\ = \[sm(kx + cot) + sin(kx — ωί)~\, (1.17) 
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which is the same as 

Gk(x, t) = sin kx cos cot. (1-18) 

Equation (1.18) follows simply from application of the Euler formulas to Eq. 
(1.17), or more directly from the trigonometric identity 

sin x + sin y = 2 sin[^(x + y)~] cos[^(x — >>)]· (1-19) 

The "packet" or "group" Gk(x, t) of two sinusoidal waves of equal amplitude 
traveling with speed e in opposite directions represents a standing wave in space 
which oscillates periodically in time. The spatial points where Gk(x, t) = 0 are 
entirely stationary with passing time. These are the nodal points or "nodes" of the 
function. A little thought (or mathematical manipulation) shows quickly that 
there is in general no continuous function xp(t) that can be employed to trace the 
time dependence of the position of an arbitrary (but fixed) value for Gk on the 
wave. That is, it is simply impossible to pick an arbitrary Gk(x°p, 0) and maintain 
Gk(xp, t) = Gk(x°p, 0) with continuously progressing time. This is in contrast to 
the case discussed previously for the solutions f(x ± ct). We thus conclude that 
the group velocity of this particular group or packet composed of two equal 
amplitude waves traveling in opposite directions has no meaning within the 
context of our previous discussion of group velocity. The nodes of the function 
Gk(x, t) remain stationary in time, so from this standpoint we can say that the 
group velocity for Gk(x, t) is zero, thus justifying the terminology "standing 
wave." This example shows quite clearly that the superposition of traveling-
wave solutions of the type gk(x + ct) with those of the type gk(x — ct) can yield 
resultant solutions that are not traveling waves. The standing-wave solutions 
formally satisfy the wave equation as well as the traveling-wave solutions, as can 
be seen immediately by the substitution of Gk(x, t) into Eq. (1.3); the resulting 
condition ω2 = c2k2 allows each of the two component waves to be considered 
as retaining its individual phase velocity ±c in the negative or positive x 
direction. A general solution to the wave equation will require a linear 
combination (i.e., a superposition) of the two types of solution denoted by 
f(x + ct) and/(x — ct), and the group velocity, i.e., the velocity of a group or 
packet of such superimposed waves, can in general be quite different from the 
"phase" velocity, i.e., the velocity ±cofthe individual periodic component waves. 

2.4 Fixed Boundary Conditions 

If we apply the wave equation to describe the displacement of a vibrating 
string as a function of the time and the position along the string, the boundary 
conditions of the physical problem will serve to restrict the range of solutions to 
the wave equation. For example, the quantity k employed in our function 
gk(x ± ct) is an arbitrary constant, but it may prove to be somewhat restricted in 
its allowable values because of requirements of the boundary conditions. For 
example, suppose that the ends of a string of length L are fixed such that the 
displacement is required to be zero at the two end points x = 0 and x = L. This is 
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an example of fixed boundary conditions. A little thought convinces us that 
individual traveling waves such as gk(x + ct) or gk(x — ct) as defined by Eq. 
(1.10) will not be zero at x = 0 or at x = L for arbitrary times; however, a 
superposition of these functions such as is given by the quantity Gk(x, t) in Eq. 
(1.18) will indeed satisfy these conditions for all time t if it satisfies the conditions 
at t = 0. That is, the conditions 

0 = Gk(0, t) = {sin[(fc)(0)]} cos cot, (1.20) 

0 = Gk(L, t) = {sin[(Ä:)(L)]} cos cot (1.21) 

can be satisfied for arbitrary t. The first condition is of course satisfied for any 
arbitrary finite value oik, while the second equation requires that kL = mn, with 
m being any integer. We can designate these allowed values of k by the symbol 
km. Therefore the set of functions 

Gk(x,t) = [sin(mnx/L)] cos cot (1.22) 

satisfy both the wave equation and the imposed boundary conditions. One such 
function is illustrated in Fig. 1.15. Any wave packet constructed by arbitrary 
linear combinations of the Gk(x, t) will also satisfy both the wave equation and 
the boundary conditions for this problem. Such linear combinations at a given 
time t take on the appearance of a Fourier series (see §4) for an arbitrary function 
of position. 

Fig. 1.15 Sinusoidal wave satisfying/bee*/ boundary conditions of zero displacement at positions 
x = 0 and x = L. (This condition of zero displacement at x = 0 and x = L requires an integral 
number of half-wavelengths within the interval 0 ^ x ^ L. The wave illustrated is the one given by 
Eq. (1.22) for m = 4; at a given time t the accumulated phase over the spatial region 0 < Λ: ^ L is 4π, 
which is equivalent to two wavelengths. The time factor cos cot causes the displacement at any given 
point x to oscillate periodically with time, taking on both positive and negative values.) 

It is an important point that the restriction in the values of A: corresponds to a 
restriction in the values of λ, since k = 2π/λ [Eq. (1.12)]. Thus for fixed boundary 
conditions, 

\Xm = j(2n/km) = L/m (m = integer), (1-23) 

which shows that each wave in the discrete set of allowed wavelengths satisfies 
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the condition that an integral number of half wavelengths must equal the length 
L. Furthermore, this restricts the values of the allowed frequencies. The relation 
ω = ck [Eq. (1.16)] leads to the set of frequencies 

vm = com/2n = ckm/2n = m(c/2L). (1.24) 

Waves having other wavelengths than the discrete set given by km = 2L/m [see 
Eq. (1.23)] are excluded. To elaborate on this, a linear combination of terms 
such as [sin(A:x) cos(atf)] for k Φ mn/L which do not individually meet the 
boundary conditions for arbitrary t, but with coefficients chosen for mutual 
cancellation effects in order to meet the boundary conditions at some time t', 
would in general no longer meet the boundary conditions at a time t' + At, since 
the oscillation frequencies v of the different waves are different. 

Standing waves varying as cos kx instead of sin kx follow directly from the 
superposition of gk(x + ct) and - gk(x - ct), quite analogous to the con-
struction of the sinusoidal standing waves given by Eq. (1.18). The cosine 
standing waves, however, cannot individually meet the given boundary 
conditions for the above example at x = 0, since cos(0) Φ 0. For this reason, the 
Fourier representation of an arbitrary function which satisfies the wave 
equation and the boundary conditions currently under consideration need 
contain no terms other than those constructed by linear superposition of the 
above sine functions Gk(x, t). On the other hand, different boundary conditions, 
or even a different choice of coordinate system for the same problem, could well 
require the cosine terms. This would be the case, for example, for a string 
extending from x = — \L to x = \L. These points will be clarified by the 
detailed treatment of Fourier series and Fourier integrals given in §4. First, it is 
helpful to consider complex (as contrasted with real) solutions to the wave 
equation and give some consideration to an alternate type of boundary 
condition. 

EXERCISE For a string extending from x = — \L to x = \L, what functions are required in the 
Fourier-series representation of an arbitrary transverse displacement? 

3 Periodic Boundary Conditions and Complex Fourier Components 

3.1 Complex Basis Functions 

For a general solution of the wave equation, we would of course need to 
consider the inclusion of terms such as 

hk(x ± ct) = cos[fc(x ± et)]. (1.25) 

Complex linear combinations of the traveling waves gk(x + ct) [see Eq. (1.10)] 
and hk(x + ct), or alternatively of g(x — ct) and h(x — ct), are frequently very 
useful. Consider, for example, the functions Hk(x ± ct) defined by 

Hk(x ± ct) = hk(x ± ct) + igk(x ± ct) 

= cos[k(x ± ct) + / sin[k(x ± ct)~] = exp[/A:(x + ct)~\. (1.26) 
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These complex functions satisfy the conditions necessary to be solutions to the 
wave equation, and any linear combination of such complex functions will also 
be a solution. The coefficients in arbitrary linear combinations of these complex 
functions should be allowed to be complex; otherwise the superposition would 
not be capable in general of representing real functions. The choice of complex 
coefficients for linear combinations of the Hk provides us with an alternate 
description of any linear combination of the real functions hk(x ± ct) and 
gh(x + ct) containing real coefficients. The Hk(x ± ct) can be considered to be 
basis functions for a complex-number representation of an arbitrary solution to 
the wave equation. (This is elaborated upon in §4 on Fourier series and Fourier 
integrals.) Although the linear combination of complex basis states can 
represent a physically meaningful solution to the wave equation (such as the 
displacement of a vibrating string as a function of position and time), there is 
certainly no reason to expect all such linear combinations to represent physically 
meaningful solutions. For example, any solution that is complex would not in 
itself be physically meaningful for the vibrating string. Since the basis vectors 
Hk(x ± ct) are themselves complex, it follows that one of these functions 
considered alone does not represent anything that is physically meaningful for a 
vibrating string. 

3.2 Use of Complex Numbers for Real Physical Problems 
There are some generally accepted practices using complex numbers, apart 

from simple superposition of complex solutions to effect real solutions, which 
sometimes lead to confusion in this matter. One practice crops up when phase 
differences exist for energy storage in different elements of a mechanical or 
electrical system with an attendant continuous time-dependent energy transfer 
between elements. One example is the impedance diagrams in ac circuits, where 
impedances are plotted in a complex plane; the angles between vectors in the 
plane denote the phase differences between the voltages across the various 
elements or currents through the various elements. This procedure works for 
series ac circuits because there are 90° phase differences between voltages across 
capacitive, resistive, and inductive elements carrying a common ac current, as 
can be shown directly by solving the relevant differential equation for the circuit. 
The maximum applied ac voltage is thus given in terms of a right-triangle 
relation between the total voltage (hypotenuse), the resistive component (which 
is plotted on the real axis), and the net value of the reactive components (which 
are plotted on the imaginary axis). This type of procedure works also for parallel 
ac circuits because there are 90° phase differences between the currents through 
parallel capacitive, resistive, and inductive elements having a common im-
pressed ac voltage, as also can be shown directly by solving the relevant 
differential equation for the circuit. The applied ac current is thus given in terms 
of a right-triangle relation between the total applied current (hypotenuse), the 
current through the resistive component (plotted on the real axis), and the net 
current through the reactive components (plotted on the imaginary axis). 
Analogous practices exist for mechanical systems. For example, the kinetic and 
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potential energies of a simple harmonic oscillator (such as a mass attached to a 
fixed spring with the mass set in horizontal motion on a frictionless plane) are 
90° out of phase, as one finds in §12.3 by direct solution of the relevant 
differential equation for the classical behavior of this mechanical system. A 
right-triangle relation can thus be set up between a velocity-dependent quantity 
and a position-dependent quantity, with the hypotenuse denoting the constant 
total energy of the mechanical system. 

Another confusing practice is to write the complex functions Hk{x ± ct) with 
the understanding that only the real (or occasionally the imaginary) part is the 
physically meaningful portion. This is often done for propagating elec-
tromagnetic fields in free space. This practice also arises often in ac circuits, with 
the real parts of several complex rotating phasors used to give the instantaneous 
values of the time-dependent voltages and currents associated with the various 
discrete resistors, capacitors, and inductors in the circuit. 

In addition, an extension of the practice of writing complex functions with the 
understanding that only the real part is physically meaningful constitutes a 
frequently employed trick for simplifying mathematical manipulations when 
solving nonhomogeneous differential equations involving sine and cosine 
functions. Namely, real driving forces varying sinusoidally in time as cos cot or 
sin cot are denoted by considering either the real or the imaginary part of e±Uot to 
be the physically meaningful portion, and trial solutions of the form of linear 
combinations of e±iwt with real or complex coefficients are employed. The 
corresponding real or imaginary part of the resulting complex solution is then 
taken as the physically meaningful solution for the problem. This method is 
valid for linear equations in the real-number domain, since linearity assures that 
there will be no mixing of the real and imaginary parts in the homogeneous part 
of the equation. 

3.3 Physical Implications of Basis States 
The conclusion stands that unless complex solutions are qualified in some 

manner, such as outlined above, or else are combined in such a way as to yield a 
real result, then they are not physically meaningful for real quantities such as 
amplitudes. This provides evidence for a more far-reaching conclusion, namely, 
basis states are not necessarily either physically meaningful or physically 
realizable. This conclusion it supported by the fact that the choice of basis states 
is to a large extent arbitrary, and frequently there exist transformations that can 
generate new sets of basis states from any given set. [Note, for example, that the 
Hk(x ± ct) in Eq. (1.26) were formed from a linear combination of gk(x ± ct) and 
hk{x ± ct).'] These conclusions will be referred to in Chap. 7 when the so-called 
"Bloch functions" are used to describe electronic states in solids. 

3.4 Periodic Boundary Conditions 
The complex functions Hk(x ± ct) defined by Eq. (1.26) are generally used as 

basis states whenever the periodic boundary condition concept, as explained 
below, is used. 
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Periodic boundary conditions require simply that each of the component waves 
represent a function that is periodic with respect to some spatial unit of 
periodicity derived from physical considerations. For example, the total length 
L of a vibrating string is a natural choice, in which case we require the 
displacement and phase at JC = L to be the same as at x = 0. Periodic boundary 
conditions in one sense are not as stringent as fixed boundary conditions, since 
each wave can have an arbitrary phase at x = 0. However, the requirement that 
the wave be periodic over the length L imposes the condition that the phase at 
x = L be the same as the phase at x = 0, even though this phase may vary 
periodically in time, as it would in the case of running waves. There must 
therefore be an integral number of whole wavelengths between x = 0 and x — L, 
as can be noted in Fig. 1.16. This is similar to, but not quite the same as, the 
requirement for the case of fixed boundary conditions [cf. Eq. (1.23)] based on 
the assumption that the displacement is zero at fixed positions 0 and L. This 
requires that an integral number of half wavelengths equal the length L. 

Fig .1.16 Sinusoidal wave satisfying periodic boundary conditions requiring the phase of the wave 
to be the same at positions x = 0 and x—L. (The requirement of the same phase can be met only if 
there are an integral number of whole wavelengths within tjie interval 0 ^ x ^ L. The phase at x = 0 
is unspecified, and thus it can be time dependent as required for a traveling wave such as $k{x - ct) = 
sm\k(x - ct)"].) 

3.5 Alternative Method of Solving the Classical Wave Equation 

It is interesting to see how naturally the Hk(x ± ct) arise when we employ an 
elementary trial solution in the complex number domain for the wave equation. 
Suppose, for example, that we attempt a trial solution having the separated form 

Ψ(χ, t) = η(χ) exp(± icot). 

Substitution into the classical wave equation [Eq. (1.3)] yields 

ά2η{χ)Ιάχ2 + k2Y\ = 0, 

(1.27) 

(1.28) 

where we have used the relation ω = ck. Attempting a second trial solution in 
the complex number domain, we find that the function 

η(χ) = exp(±ikx) (1.29) 

satisfies Eq. (1.28). Thus we obtain product solutions given by Eq. (1.27) which 
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are of the form 

Wk(x, t) = Ak exp(± ikx ± icot), (1.30) 

where any combination of signs in ±k and ±ω is allowable, and Ak is an 
arbitrary constant. These solutions for the case of the positive sign for k are 
simply the solutions given by our functions Hk(x ± ct). If k were chosen to be 
imaginary or complex instead of real, the above mathematical formalism would 
remain unchanged; however, the relation ω = ck [Eq. (1.16)] would then 
impose the condition that either ω or c (or else both) would have to be imaginary 
or complex. Formally Eq. (1.30) would still represent a valid solution to Eq. 
(1.28). Physically, however, such a solution would be exponentially damped or 
exponentially increasing with x, since ik would then have a real component. For 
the propagation of electromagnetic radiation in free space, we know that the 
velocity c and the angular frequency ω are real, so that k for this situation is real, 
corresponding to an unattenuated propagating wave. 

4 Fourier Series and Fourier Integrals 

4.1 Basic Concepts 

The concept of resolution of arbitrary solutions^* + ct) to the wave equation 
into a superposition of individual Fourier components such as gk(x ± ct) = 
sin[&(x + ct)~\ and hk(x ± ct) = cos[k(x ± ct)~\ was introduced in §2, and we 
discussed the wavelike properties exhibited by the individual Fourier com-
ponents. The pertinent mathematical formulas that govern this resolution into 
Fourier components are summarized in this section. 

First we consider only functions that are real (i.e., not complex) and are 
periodic in the mathematical sense. This is not as restrictive from a physical 
standpoint as it would appear to be, since nonperiodic functions which happen 
to be physically meaningful only over a finite interval L in some specific 
problem, such as a string of length L, can be described completely by real 
periodic functions with period L or period L/m, where m is a positive integer. 
Since all solids are bounded in extent, all wave amplitudes in solids can thus be 
described by appropriate Fourier series. Therefore, for wave propagation in 
solids it is generally unnecessary to consider the strictly aperiodic (nonperiodic) 
limit of unbounded media in which the Fourier series must be replaced by the 
corresponding Fourier integrals. We must remember, however, to restrict our 
consideration of the final results to the region that is physically meaningful. 

The Fourier series for the spatially periodic function f{x), 

Ax + A)=Ax\ (1.31) 

having fundamental period A is given by 

" Γ {2πηχ\ . [ΙπηχΧ] 
f(x) = l^\An cos I I + Bn sin I I (real Fourier series), (1.32) 
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where the coefficients An and Bn are real. The Fourier components are seen to be 
individually periodic with period λη = A/n. In analogy with the relation 
k = 2π/λ given in §2 for a wave of wavelength λ, we define kn 

kn = 2π/λη = 2π/(Α/η) = Inn/A (1.33) 
as the corresponding quantity for each component wave of our Fourier series. 
The coefficients are easily determined in principle: simply multiply both sides of 
Eq. (1.32) by one of the Fourier components, such as cos(2nnx/A) with 
ή = 0,1,2,..., and integrate over any interval of length A, such as from x0 to 
x0 + A. The integral appearing on the left-hand side of the resulting expression 
can be performed graphically or numerically, if not analytically. The series of 
integrals on the right-hand side obtained from term-by-term integration are zero 
for ri Φ n due to orthogonality of the trigonometric functions in the series. 
Likewise the integral for ή = n which involves the product COS(27IH'X//1) 
x ύη{2πήχΙΑ) is also zero due to orthogonality of the two functions (see 
exercise). The only nonzero integral is the one multiplying the coefficient An>, 
thus yielding the evaluation of An>. In a similar manner, multiplying by 
sm{2nrixlA) instead of co^nnx/A) and integrating yields the coefficient Bn>. 
The final results can be written as follows. For n = 0, 

1 
A0 = - A*)dx, (1.34) 

For n φ 0, 
Bo = 0. (1.35) 

A = - I Ax) cos ί — - \ dx, (1.36) 

*„ = - | A * ) s i n ( — - \ d x . (1.37) 

Considering the specific choice x0 = —\A, it can be seen by a change in 
variable x' = — x in the integrals that if fix) is an even function, namely, 

f[-x)=f[x\ (1.38) 
then the coefficients Bn are zero. On the other hand, if f[x) is an odd function, 
namely, 

J{-X)=-J[X), (1.39) 

then the coefficients An are zero (see exercise). 
The above results are based on the assumptions that the series can be 

integrated legitimately term by term and that the products of f{x) with the 
functions ύη{2πήχ/Α) and cos{2%nx/A) are integrable. This restricts the range 
of possibilities for the function f(x) somewhat. The convergence of the Fourier 
series to/(x) is expected over regions where/(JC) is continuous, since the set of 
sine and cosine functions is complete. The class of functions that is generally 
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suitable for Fourier expansion and the convergence at points where the 
functions are discontinuous are matters that are delineated by the Dirichlet 
theorem, which can be stated as follows: Iff{x) is a bounded periodic function with 
at most a finite number of maxima and minima and a finite number of 
discontinuities in any one period, then the Fourier series off{x) converges tof[x) at 
all points where f(x) is continuous, and converges to the average of the right- and 
left-hand limits off{x) at each point where f{x) is discontinuous. The conditions on 
f(x) embodied in the Dirichlet theorem are called the Dirichlet conditions. 
Functions that satisfy the Dirichlet conditions have a number of important 
properties. For example, the integral of any periodic function/^) satisfying the 
Dirichlet conditions can be found by termwise integration of the Fourier series 
representing the function. If, in addition, the function is continuous everywhere 
and has a derivative df\x)jdx which satisfies the Dirichlet conditions, then the 
derivative df(x)/dx can be found anywhere it exists by termwise differentiation of 
the Fourier series fovf^x). It is also found that for sufficiently large n, the Fourier 
coefficients of a function satisfying the Dirichlet conditions always decrease in 
magnitude at least as rapidly as \jn. If the function f[x) has one or more 
discontinuities, the coefficients can decrease no more rapidly with n than l/n. If 
the function is continuous everywhere but has one or more points where its 
derivative is discontinuous, the Fourier coefficients decrease as l/n2. If a 
function and its various derivatives all satisfy the Dirichlet conditions and if the 
/th derivative is the first which is not continuous everywhere, then for sufficiently 
large n the Fourier coefficients of the function approach zero as l/nl+1. 

Since the Dirichlet conditions are not particularly stringent, periodic func-
tions which represent physically meaningful quantities do generally meet the 
conditions necessary for expansion in a Fourier series. Furthermore, the 
smoother the function, the more rapid the convergence of the series. The fact 
that the function can be differentiated and integrated easily by termwise 
differentiation and integration of the sine and cosine functions in the series 
makes it very useful for many applications. Thus Fourier series constitute very 
powerful tools in solid state physics and in all branches of engineering. 

EXERCISE Prove (by direct integration) the statements in this section concerning the zero 
values of the integrals. 

EXERCISE Prove the statements in this section relating to even and odd functions by carrying 
out the suggested variable change in the integrals. 

4.2 Fourier Series in the Complex-Number Domain 

The complex Fourier series, containing terms such as the Hk(x ± ct) = 
exp[ik(x ± cf)~\ discussed in §3, can be obtained readily [Wylie (1951)] by 
substitution of the exponential equivalents of the sine and cosine terms into the 
real form of the Fourier series. The result (see exercise) is 

00 

f{x) = Σ CnQxp(i2nnx/A) (complex Fourier series), (1.40) 
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with 

Cn = 
Χο+Λ ( ilnnx\ 

/ (x)expl Ύ~*άχ (Λ = 0 , ± 1 , ± 2 , . . . ) . (1.41) 

EXERCISE Evaluate the coefficients C„ given in Eq. (1.40), obtaining as a result Eq. (1.41). 

EXERCISE Using the Euler identities, show that the complex Fourier series representation 
[Eqs. (1.40) and (1.41)] reduces to the real Fourier series representation [Eqs. (1.32)—(1.37)] for cases 
in which the periodic function f(x) is real. 

4.3 Fourier Integrals 

We now proceed from the Fourier series representation ofa periodic function 
to the Fourier-integral representation of an aperiodic function. Suppose we let 
x0 = — \A specifically and change the dummy variable from x to x' in the 
integral for Cn. Substituting the result into f{x) yields 

yw= Σ ιίΖ/χ')βχρ(" 
%Λ/2 ( i2nnx'\ , 

f{x') exp ( :— ) dx' 
-A/1 A J 

exp 
ilnnx 

A 
(1.42) 

The fundamental unit of periodicity of/(;c) is A, and we have previously defined 
quantities kn = 2π/λη = InnjA. The difference Ak between successive values of 
kn is simply 

Ak = kn+1 -kn = 2n/A. (1.43) 

Using these definitions, the above expression forf{x) can be written in the form 

Αχ) 
oo Γ 1 ΛΛ/2 

n=-aoLZ7tJ -All 
f{x') exp( — iknx') dx' exp(iknx) Ak. (1.44) 

If now we consider the limiting process in which A becomes larger and larger, 
then the range of the integral becomes greater and greater and Ak = In/A 
becomes smaller and smaller. The parameter kn = n Ak, with n = 0 ,1 ,2 , . . . , 
takes on the properties of a continuous variable which we can call k, 

kn = n Ak-+k, 

kn+i — kn = Ak -> dk. 

(1.45) 

(1.46) 

If the limiting process of letting \A -+ oo is carried out in a mathematically 
proper fashion, the limit of the sum is a definite integral, so that/(x) becomes 

Λ ̂  J-ool_27j-
f(xf) exp(— ikx' ') dx^ Gxp(ikx) dk. (1.47) 

In this limit for which \A oo, the function is aperiodic instead of periodic, 
since the period has become infinite in length. Defining g(k) as 

</(*) = 
1 

β,χ') exp( — ikx') dx', (1.48) 
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theny(x) becomes 

Ax) g{k) exp(ikx) dk. (1.49) 

This pair of expressions g(k) andf(x) constitutes a Fourier transform pair, and 
the integral expression for/(x) is called a Fourier integral. 

The Fourier integral is a valid representation of f{x) provided that in every 
finite interval the function/(x) satisfies the Dirichlet conditions, and the integral 

L/WI dx (1.50) 

exists. The Fourier integral converges to f(x) at all points where f(x) is 
continuous, and it converges to the average of the right- and left-hand limits at 
all points where fix) is discontinuous. 

4.4 Application to Solutions to the Classical Wave Equation 

The above consideration of Fourier series and Fourier integrals involves only 
one variable x which can be considered to be the position variable in the 
arbitrary solution f[x ± ct) to the wave equation discussed in §2. Thus/(x,0), 
representing/^ + ct) evaluated a t / = 0, can be expanded in a Fourier series or 
Fourier integral with the formulas of the present section. In accordance with the 
conclusions arrived at in §2, then, the arbitrary solution/(x ± ct) is obtained by 
substituting the argument x ± ct in place of x in each of the Fourier components. 
Thus, for the complex Fourier series representation we have 

f{x ±ct)= £ Cn exp [ ί2πη(χ 

Λ 

±ct) 

with 

For the Fourier-integral representation we have 

Ax ± ct) = g{k) exp[/&(x ± c/)] dk 

with 

g(k) 
1 Γ 0 0 

2TTJ -a, 
0) exp( — ikx') dx'. 

If we define a new function G(k) as 

G(k) = (2nY'2g(k), 

(1.51) 

1 fXo+/1 / i2nnx\ , 
C„ = - I Ax, 0) exp ί - — — ) dx. (1.52) 

(1.53) 

(1.54) 

(1.55) 
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then Eq. (1.49) for/(x) can be modified in appearance (though not in value) by 
substituting (2π)~ 1/2G(k) for g(k). Let us refer to this modified form οΐ/(χ) as 
F(x). Then we have as an alternative to Eqs. (1.48) and (1.49) the Fourier 
transform pair F(x) and G(k) given by the Fourier integrals 

FW = (̂ i-
G(k) = 

(2π) 1/2 

G(k) exp(ikx) dk, 

F(x) exp( — ikx) dx. 

(1.56) 

(1.57) 

This pair has greater symmetry than the pair f^x) and g(k); it is frequently 
employed in wavepacket descriptions because it has the property of preserving 
normalization of F(x) and G(k). Nonsymmetrical Fourier transform pairs are 
converted immediately to the symmetrical form by replacing the symbols/and g 
by Fand G while simultaneously changing the factors of unity and 1/2π in front 
of the integrals fo r / and g, respectively, to (1/2π)1/2. 

If F happened to be a function of several independent variables X19X2,...,XN 

instead of a single variable x, then from a mathematical standpoint we could 
consider F to be a function of one variable Xj at a time and obtain a function 
G(kj) defined analogously to G(k) above. Carrying out this mathematical 
procedure for each of the N independent variables and considering the factor of 
(2π)"1/2 arising each time, we obtain the result 

F(Xi, X2, · . · ,XN) -m dk, dk, l dkN G(k1,k2 

x exp[/(^1x1 + k2x2 + · · · + kNx^)\ 

G(ki,k2, · · · , k]y) — 
i γ/2 Γοο Λοο 

dxi 
J — οο J — c 

dXy 

If we consider 

x exp[— i(kixl + k2x2 + · · · 

X = ( -^ l? -^2) · · · 5 · % ) » 

k = (kuk2,...,kN) 

ClXjsf JryXi, X2i 
00 

H- kNxNy]. 

>ΚΝ) 

(1.58) 

>XN) 

(1.59) 

(1.60) 

(1.61) 

to be two vectors in an iV-dimensional orthogonal abstract linear vector space, 
then the arguments of the exponentials contain the simple dot product, 

k · x = kiXi + k2x2 + · · · + kNxN. (1.62) 

In particular, at a specific time (such as t = 0) the function F(x) given by Eq. 
(1.58) can represent the spatial part of a solution to the three-dimensional 
classical wave equation 

δ2φ δ2φ δ2φ 

dx2 dy + dz2 

1 δ2ψ 
(1.63) 
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The vector r, 
r = xx + yy + zz, (1.64) 

represents the position vector in real space with projections x, y, and z along the 
unit vectors x, y, and z in a Cartesian coordinate system. Then for real three-
dimensional space, 

1 \ 3 / 2 

* ' G(k)exp(/k-r)rfk, (1.65) 
W=W 

UJ L, G(k) = ( — ) | F(r)exp(- /k-r)</r . (1.66) 

The vector k is given by 
k = kxx + A:yy + kzz. (1-67) 

The unit vector 
k = k/|k| (1.68) 

characterizes the direction of propagation of the particular plane wave 
exp[/(k · r — ωί)~]. The symbols dx and dk represent the volume elements dx dy dz 
and dkx dky dkz, respectively, in "real space" and in "k space." The symbols Ωτ 

and Qk associated with the integrals mean that the three-dimensional integrals 
are to be carried out from — oo to oo in each of the three orthogonal directions in 
"real space" and in "k space," respectively. The term "real space" refers to the 
domain of all position vectors r = xx + yy + zz. The term "k space" refers to 
the domain of all vectors k = kxx + kyy + kzi. Since k · r must be dimension-
less, occurring as it does in Eqs. (1.65) and (1.66) as the argument of an 
exponential function, the dimensions of kx, ky, kz must be reciprocal to the 
dimensions of x9y, z. If x, y, and z are measured in meters, then kx, ky, and kz are 
measured in units of (meters)-1. Thus the k vectors could be referred to as 
"reciprocal vectors," and the domain mapped out by such vectors could be 
referred to as "reciprocal space." These latter terms, however, will be reserved 
for the subset of such k vectors which are sufficient for a Fourier series 
representation of periodic functions in a solid. (See Chap. 6 for further details.) 

In the three-dimensional case, as in the one-dimensional case [see Eq. (1.12)], 
the magnitude of k is 2π/λ. This is required if we are to have self-consistency 
between the one-dimensional and three-dimensional cases whenever one of the 
axes of the three-dimensional system is chosen to coincide with the direction of 
propagation of the plane wave, thus effectively reducing the three-dimensional 
case to the one-dimensional case. Let us now interpret physically the k-vector 
components kx, ky, kz of a plane wave in terms of the wavelength as measured in 
each of the three component directions. In terms of the spherical polar 
coordinates r, 0, φ, the components kx, ky, and kz of the vector k are 

kx = |k| sin Θ cos φ = (2π/λ) sin Θ cos φ, (1-69) 
ky = |k| sin Θ sin φ = (2π/λ) sin Θ sin φ, (1-70) 
kz = |k| cos θ = (2π/λ) cos Θ. (1.71) 
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Ic =lccos0 

/Icx=ksin0coi<£ 

Fig. 1.17 Resolution of the wave propagation vector k into components kx, ky, and kz in a 
spherical polar coordinate system. 

The resolution of k into these components is illustrated in Fig. 1.17. Defining 
"component wavelengths" λχ, λγ9 and λζ as 2n/kX9 2n/ky, and 2n/kz, respectively, 
we thus obtain 

λ = λχ sin Θ cos φ, (1-72) 
λ = Xy sin Θ sin φ, (1-73) 

λ = λχοο*θ. (1.74) 
Therefore each of the component wavelengths is larger than the wavelength 

Fig. 1.18 Illustration showing that the Λ: component kx of the wave vector k represents a longer 
wavelength λχ = 2n/kx than the k vector itself, for which λ = 2n/\k\. 
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along the propagation direction, as one can readily visualize from a physical 
picture such as that given by ocean waves traveling at some angle with respect to 
the two rectangular coordinates located in a plane parallel to the surface of the 
ocean (see Fig. 1.18). 

To convert the time-independent Fourier integral F(r) to an arbitrary solution 
F(r, t) of the three-dimensional wave equation (1.63), we must add to k · r a time-
dependent term analogous to the term + kct added to kx in Eq. (1.53) for the 
one-dimensional case. We thus replace k · r by k · r + cot, where the quantity 

ω = \k\c = k · c = c · k (dispersion relation for classical wave motion) 

(1.75) 

is the three-dimensional classical dispersion relation analogous to Eq. (1.16) for 
one dimension. The velocity of propagation is in this three-dimensional case a 
vector quantity c which is parallel to k. In writing Eq. (1.75), it is assumed that 
the frequency ω depends only on the magnitude of k and not on the direction of 
k. This is equivalent to assuming that the wave propagation is taking place in an 
isotropic medium such as free space. Equation (1.75) leads to 

k r ± c o / = k r ± c|k|i = k · (r ± cit), (1.76) 

where k = k/|k| is a unit vector parallel to k. Thus we obtain 
1 y/2 r 

G(k) exp[/k · (r ± cit] Λ , (1.77) 

G(k) = ( — ) F(T, 0) exp( - /k · r) Λ, (1.78) 

K- .0 - . 

where F(r, 0) is the solution F(r, t) evaluated at t = 0. Since k represents the 
propagation direction for any plane wave exp[/(k · r + ωί)~\ in question, and the 
integration is over the domain of k, the integral expression (1.77) can be 
interpreted as a superposition of plane waves of various wavelengths propagat-
ing in various directions. Changing the dummy variable in the integral 
expression (1.78) for G(k) from r to r' and substituting G(k) into F(r, /) yields the 
integral form for a general'solution to the classical three-dimensional wave 
equation (1.63): 

F(v, t) = (J-ήί Γ J F(r',0) exp[/k · (r - r')] A 'Jexp(± ic|k|i) dk. (1.79) 

5 Wave Nature of Particles 

5.1 Diffraction of Waves 

We have previously discussed the wondrous fact that light exhibits both 
wavelike and particlelike properties, and have enunciated the startling hy-
pothesis put forth by de Broglie that such wave-particle duality may also be a 
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property of matter (see §1). Then we treated the fascinating subject of classical 
wave motion in some detail to establish the background for a wave description of 
particles (see §2). One such wave description of particles is given by the seemingly 
omnipotent Schrödinger equation. Before carrying out our own development of 
the Schrödinger equation, however, we should ask whether there exists 
unambiguous experimental evidence which supports the de Broglie hypothesis 
that matter can exhibit wavelike properties. Some of the most important 
experiments which convince us that matter does indeed have wavelike properties 
are provided by experimental observations of electron diffraction and neutron 
diffraction. These experiments using particles give results that are entirely 
analogous to results obtained using x rays. 

First of all, let us consider the essentials of x-ray diffraction in solids. The x-
ray diffraction results obtained from crystals are readily understood from a 
simple one-dimensional model in which a monochromatic x-ray beam of 
wavelength λ impinges at angle Θ with respect to a given set of atomic planes of 
spacing d i n a crystal, as illustrated schematically in Fig. 1.19. Constructive 
interference is obtained whenever the waves reflected from the various planes in 
the crystal happen to be in phase. This requires that the difference in path length 
between the waves reflected from the different planes be an integral number n of 
wavelengths. The dashed line BP in Fig. 1.19 is drawn perpendicular to the 
direction of propagation of the incident waves. The difference in path length 
between the waves reflected from adjacent planes is BA — PA, so the condition 
for constructive interference of the waves is 

^ = B Ä - P Ä . (1.80) 
If this condition is satisfied, then reflected waves from all such parallel planes 
will be in phase. We now deduce the expression for BA — PA in terms of the 
angle Θ and the lattice spacing d. The two angles designated φ in Fig. 1.19 are 

Incident N Reflected 
Beam Beam 

Partially Reflecting Planes fJfX d 

Fig, 1.19 Reflection of incident waves of wavelength λ by a sequence of partially transparent 
parallel planes of equal spacing d. 
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equal because the angle of reflection is equal to the angle of incidence, a well-
known law in geometrical optics. It can be shown geometrically that this is the 
requirement that all parts on a plane-wave front incident at angle φ to a 
reflecting surface travel equal optical path lengths to reconstitute a plane-wave 
front after reflection. The two angles designated 0 in Fig. 1.19 are therefore 
equal. 

From elementary geometry, it can be seen that the angle 0' in Fig. 1.19 is equal 
to 0, so the angle labeled ε is given by 

ε = | π - 2 0 . (1.81) 

Since 0 = 0' = 0", it follows from the figure that 

sin 0 = sin 0" = d/BA. (1.82) 

Note further that 

sine = PÄ/BÄ. (1.83) 

We thus can use Eqs. (1.82) and (1.83) to write 

BÄ = d/(sin 0), (1.84) 

PA = BA sin ε = (d sin e)/(sin 0). (1.85) 

Therefore 

BÄ - PA = d{\ - sin e)/(sin 0). (1.86) 

Employing Eq. (1.81), we see from trigonometry that 

sin ε = βΐηφτ - 20) = cos 20 = cos20 - sin20. (1.87) 

Substituting into Eq. (1.86) gives 

BÄ - PÄ = J[(l - cos20) + sin20]/sin Θ = 2d sin 0. (1.88) 

Substituting this result into the condition (1.80) for constructive interference 
gives the Bragg condition 

nX = 2dsm6. (1.89) 

This derivation is rigorous in the sense that it considers the proper superposition 
of reflected waves originating from all the various reflecting planes, and thus 
correctly describes the net wave impinging on a detector. It is therefore preferred 
over the much simpler derivation using the condition that the phases of the 
reflected components arising from the points of intersection of the perpendicular 
N to the reflecting planes (cf. Fig. 1.19) differ by integral multiples of 2π. 
Although this is a necessary requirement because the reflected wave from the 
first plane is a plane wave, it is more straightforward to consider explicitly the 
superposition of all wave contributions arising from different points in the 
various reflecting planes. To express this matter in somewhat different 
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terminology, we have considered the conditions for waves to interfere (con-
structively or destructively) with one another at given positions in space instead 
of imposing the usual condition of constant phase for selected points on the 
wavefront of an outgoing plane wave. That the phase is uniform over a plane 
wavefront when the Bragg condition is satisfied is interesting in itself since it 
implies that the outgoing wave is indeed a plane wave, but this is not so 
important with regard to the detector reading for these reflected waves. 

An alternate derivation of the Bragg condition (1.89) is illustrated in Fig. 1.20, 
with the approach outlined in the caption. It is suggested that the reader carry 
through this derivation with the details. 

Fig. 1.20 Alternate geometrical proof of the Bragg condition (1.89) for constructive interference 
between reflected wave components. (Note that Θ + y = 90°, so that sin y = cos Θ. The path 
difference between the two superimposed reflected rays is (AB + BC) - DC. However, 
BC = ÄB = d/sin 0, and DC = 2ÄB cos Θ sin y. The path difference is therefore 2(<//sin 0) ■ 
[1 - cos20] = 2d sin 0, which in turn must equal an integer multiple of the wavelength λ for 
constructive interference between the superimposed reflected waves.) 

EXERCISE Derive the Bragg condition (1.89) by means of Fig. 1.20. 

5.2 The Wave Behavior of Particles 

Clearly the explanation of diffraction which has just been presented is based 
on the consideration that light is wavelike; no particlelike properties have been 
invoked in the explanation. Now if matter exhibits wavelike properties also, in 
accordance with the mind-boggling hypothesis of de Broglie, then a beam of 
monoenergetic particles should have associated with it some wavelength, and 
this beam should also be diffracted by the crystal whenever the Bragg condition 
(1.89) is met. Since the wavelength of the x-ray beam is related to the x-ray 
photon energy Sp by 

<f p = Av = Ac//i, (1.90) 

the wavelength associated with the beam of particles should also presumably be 
energy dependent. The experiment could be carried out by varying the energy of 
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the incident particle beam. This is easily done for an electron beam by changing 
the voltage on an accelerating grid electrode. A change in energy is somewhat 
harder to achieve in the case of a beam of neutrons, but the experiment can be 
executed by filtering out a narrow band of energies from a broader energy 
spectrum of neutrons with the aid of a mechanical chopper (see Fig. 1.21). 
Putting aside the complexities of the experimental apparatus and the technical 
difficulties of the experiments, however, the results can be summarized briefly by 
saying that diffraction peaks are indeed observed! The diffraction peaks are 
analogous to those observed in x-ray diffraction, which we explained above by 
invoking the wave properties of electromagnetic radiation. The results appear 
unambiguous in verifying the hypothesis of de Broglie that matter has wavelike 
properties; furthermore, the wavelength associated with the beam of particles 
can be deduced from the Bragg condition. In this way, a correlation has been 
established between the particle energy and the wavelength associated with the 
particle beam. That is, if it is assumed that Θ and d are determined from the 
analogous x-ray experiment, then the Bragg condition gives ηλ for a given 
diffraction peak. If a series of diffraction peaks are then measured for several of 
the sets of crystal planes differing in d spacing from one another, the value of n 
can be established for each of the peaks. The correlation that is found between 
wavelength and particle energy is expressed most simply in terms of the 
momentum p of the individual particles in the beam, 

λ = Η/ρ (de Broglie relation), (1.91) 

where h is Planck's constant. This is called the de Broglie relation, since it was 
first postulated by de Broglie from theoretical considerations based on 
wave-particle duality. The experimental verification of this hypothesis has 
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Fig. 1.21 A mechanical chopper consisting of two slotted wheels rotating at a common angular 
velocity ω can serve as a velocity selector for particles in a beam. (During the period T = 1/v = 2π/ω 
of one revolution, a particle having speed v passing through the slot in the first wheel will travel a 
distance d = vT; it will thus pass through the slot in the second wheel only if the separation distance 
D between the two wheels is equal to d or some integer multiple of d, namely, D = nd = nvT 
(n = 1,2,3,. ..)· The discrete velocities vn selected are thus given by v„ = D/nT = ωϋβπη. In 
practice, there will be some spread about each of these values due to the finite width of the slots.) 
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far-reaching consequences since it provides a sound basis for the development of 
a wave equation for matter. 

It is perhaps worthwhile to emphasize that the wavelength as given by the 
above expression (1.91) involves the particle mass but is independent of the 
particle charge; the lack of dependence on charge is also evident from the fact 
that the same equation is obeyed in both electron diffraction and neutron 
diffraction. It is also very significant that it is the momentum of the individual 
particles of the beam instead of the beam intensity which determines the 
wavelength. 

In many respects, the results of particle diffraction are similar to the 
description given earlier of the experiment involving photons passing through an 
array of slits and individually triggering a photochemical reaction on a 
photographic plate behind the slits. The distribution of photons impinging 
individually on the photographic plate is in statistical accord with the 
predictions of classical wave theory. Particles can be identified individually in 
modern detection devices such as counters, cloud chambers, bubble chambers, 
and photographic plates [see Leighton (1959)]. It has been established 
unequivocally with such detectors that the observed diffraction peaks are simply 
the statistical result of an experiment involving a very large number of 
independent particles, each particle retaining its discrete individuality and 
traversing its individual path. The distribution of a statistical group of such 
particles is found to be in accordance with the predictions of a wave picture. That 

Fig, 1.22 Particles in a beam passing through wave interference slits form individual spots on a 
photographic plate detector, with the density of spots statistically distributed in accordance with 
wave predictions. (Corresponding intensity measurements are illustrated schematically as in the case 
of photons by Fig. 1.8.) 
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particles can be accelerated and detected individually allows us to produce a 
diffraction pattern in a stepwise fashion, a particle at a time (see Fig. 1.22). The 
individual particles seemingly traverse random paths, but when many particles 
have been detected in this way, a regular diffraction pattern is formed just as in 
the case of high beam intensities and correspondingly shorter exposure times. 
The conclusion seems inevitable that the behavior of each individual particle is 
governed by statistical laws which are in accord with the predictions of a wave 
picture. This is emphasized by the fact that individual particles even traverse 
paths which would be completely inaccessible from the viewpoint of classical 
mechanics where the particles follow straight-line trajectories. In a sense, 
quantum particles act in much the same way as larger particles observed with an 
optical microscope that undergo Brownian motion when in thermal equilibrium 
with a heat bath; the seemingly random movement of the larger particles, 
however, is in fact produced by collisions with much smaller molecules 
unobserved in the optical microscope. In both cases the prediction of the exact 
trajectory and the time dependence of the momentum of each observed particle 
is impossible, albeit for different reasons, but statistical techniques predict very 
accurately the behavior of a large ensemble of such particles in both cases. 

It is certainly a paradox that each individual localized particle seemingly 
obeys statistical laws in accord with a wave picture in which interference effects 
are explained by an interaction of the wave with the entire diffracting structure. 
Apparently the particle interacts with the diffracting crystal in somewhat the 
same way as if it were some wave packet capable of being resolved into Fourier-
component waves, with each Fourier-component wave being able to interact 
with the entire diffracting crystal since the component waves are not spatially 
localized. The difficulty with this picture is that the conditions for reflection for 
each component wave would be different, so that the packet of Fourier 
component waves might be expected to be decomposed by the diffraction 
process. We know, however, that the particle which we have represented by the 
packet of Fourier component waves is not decomposed by diffraction. Thus it 
must be concluded that internal forces maintaining the integrity of the particle 
take precedence over the tendency for the diffraction process to decompose the 
packet. The overall effect is that the particle can seemingly traverse any path 
which is consistent with the diffraction pattern obtained from the superposition 
of Fourier component waves, the probability for selection of a given path being 
determined by the relative intensity of the diffraction pattern in that direction. 
To keep this view of the diffraction process realistic, we must remember that the 
wavelength of each of the component waves depends on the momentum of the 
component wave in accordance with the de Broglie relation, and in fact, a 
particle with a well-defined momentum can be described in terms of a single 
component wave. 

Thus we can say that single particles are subjected to wave interference effects 
in the sense that the particle can follow a path which would be a forbidden path 
according to classical mechanics. If we perform a Gedanken experiment (i.e., a 
thought experiment) in which we pass a beam of particles one by one through a 
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two-slit structure similar to the grating previously discussed (see §1.6) for the 
case of light interference, then some of the particles will strike the detection 
screen behind the slits at locations which they could not reach if they moved 
along straight-line paths through either slit. The appearance of the interference 
fringes depends on the passage of the wave through both slits at once, just as a 
propagating electromagnetic plane wave is described as passing through both 
slits in the analogous optical interference experiment. If the wave describes the 
behavior of a single particle, then it follows that we cannot decide through which 
one of the two slits the particle has gone. (If we try to avoid this consequence by 
determining experimentally with some monitoring device through which slit the 
particle has passed, we shall by the very action of the monitoring mechanism 
localize the particle and thereby change its wave packet drastically and destroy 
the plane-wave interference pattern. A single particle would then go definitely 
through one slit or the other, and the accumulation of a large number of particles 
on the screen would result in two well-separated traces. Exactly the same traces 
would be obtained by closing one slit at a time, thereby predetermining the path 
of each particle. We are forced to conclude that the conditions necessary for 
producing the interference pattern forbid a determination of the slit through 
which the particle passes.) 

The simultaneous appearance of wave and particle aspects compels us to be 
resigned to some degree of inevitable indeterminism in the results of an 
experiment. Wave aspects and particle aspects in one and the same object are 
compatible only if we do not ask certain questions of nature which are not really 
meaningful from an experimental standpoint, such as whether or not we can see 
the interference fringes produced by particles whose paths through an arrange-
ment of slits we have determined. This line of thought could very quickly get us 
into an interesting discussion of the interaction between the object being 
observed and the experimenter (or the experimental apparatus). 

On the other hand, the probability doctrine of quantum mechanics accepts as a 
basic hypothesis that such indeterminism is a property inherent in nature. If this 
is a valid hypothesis, then we can never expect to explain this seeming 
indeterminism by a future theory which is either better or more complete. 
However, the probability doctrine is purely philosophical speculation, and it 
therefore has at best a precarious place in physics. The important point is that we 
can construct a coherent theory for predicting experimental observations on the 
basis of the wave picture of matter, even though it does involve use of some 
radically new thought patterns on our part as compared to those developed in 
working physics problems with Newton's equations of motion or with other 
classical approaches. 

The experimental manifestation of the dual nature of matter led Bohr to 
the formulation of what is called the principle of complementarity, in which the 
wave nature and the particle nature are considered to be complementary aspects 
of matter. Both of these classical aspects are equally essential for a full 
description of matter; although they may appear to be mutually inconsistent, 
they are assumed to be capable of coexistence. One important aspect of the 



38 AN INTRODUCTION TO QUANTUM MECHANICS [Chap. 1 

complementarity principle is that an experimental arrangement designed to 
manifest one of the classical attributes (e.g., a wavelike or a particlelike aspect) 
precludes the possibility of observing at least some other classical attribute. This 
was emphasized in our earlier description of the interference and diffraction of 
light as compared to the photoelectric effect. 

PROJECT 1.1 Wavelengths: Electromagnetic and Particle Waves 

1. Compute the range of λ for the following: (a) y rays, (b) x rays, (c) green light, (d) microwaves, (e) 
radio waves. (Tabulate results; give equations.) 
2. Compute the wavelength λ for the following particles at speeds of 10"2, 1, 100, 10,000, and 106 

m/sec: (a) electron, (b) proton, (c) neutron, (d) silver atom, (e) macromolecule consisting of 
approximately 106 carbon atoms and 106 oxygen atoms, (f) 0.1 g speck of copper, (g) basketball. 
Express results in tabular form, and give equations used.) 

PROJECT 1.2 Photon Production and Electron Ejection 

1. What are your concepts of energy absorption and energy emission for a system in which the 
angular momentum is quantized? 
2. Give a qualitative explanation of the production of light in a mercury arc source in terms of 
electronic energy levels. 
3. Describe the effect of an interference filter (with peak transmission at 5461 A) on photons 
emerging from such a source in terms of the wave properties of light. (How does this differ from the 
results that would be expected if photons were purely corpuscular?) 
4. Compute the energy and momentum of photons emerging from the source-filter system in part 3. 
5. What would be the results of an experiment in which the photons in part 3 with a beam intensity of 
one W/m2 impinge on a metal with a vacuum work function of 1 eV? (Consider both energy and 
momentum transfer.) 
6. How would part 5 be modified if photons were purely wavelike? 
7. Compute the wavelength of the de Broglie wave associated with a photoelectron (if any are ejected 
in part 5) if all the energy of a single photon is absorbed by a single electron. 
8. Would the situation described in part 7 be allowable, assuming the conservation of both energy 
and momentum? 

PROJECT 1.3 Diffraction of Particles 

For a crystal lattice constant d = 4Ä and an incidence angle Θ = 45°, compute λ,ρ, S, and v for the 
first 5 diffraction peaks for electron and neutron diffraction. Present the results in tabular form so 
that a comparison between the electrons and neutrons can be made. 

5.3 The Bohr Atom and Energy Quantization 

Accepting that individual particles have wavelike properties, then, let us ask 
what this implies qualitatively regarding the behavior of a particle in the 
neighborhood of a potential energy minimum. Consider an electron bound by 
the attractive Coulomb potential οΐ a. fixed nucleus. The Coulomb potential energy 
%(r) [see Eq. (5.221)] between two point charges qx and q2 in free space 
decreases inversely with increasing separation r = |r| between the two charges, 
^(r) = #ι<72/4πε0Γ, where ε0 is the permittivity of free space. From the 
standpoint of classical mechanics, we can picture the specific case of a circular 
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orbit for which the momentum in a direction tangent to the orbit (see Fig. 1.3) 
has a fixed magnitude independent of position on the orbit. Let us digress a bit in 
order to summarize the approach to the hydrogen atom as viewed from classical 
Newtonian physics, and note where the results obtained are incomplete with 
regard to providing a formula which correctly predicts the experimentally 
observed optical spectra. 

The Coulomb force between the two charges follows by taking the negative 
gradient of the Coulomb potential energy, 

F = - F*(r) = - x — + y - + i - ) ^ -
\ ox oy oz/4ns0r 

= - - X— + y— + Z— UX
2+y2+z2) 1/2 

4πε 0 \ ox oy ozj 

= ~ f ^ ( - ί)(*2 + y2 + ζ2Γ3/2ΙΗ2χ) + y(2y) + z(2z)] 
4πε0 

ffi<?2 qiQi A 

4πε0^3 4πε0^2 

where r = xjr is a positive unit vector directed outward along the line of centers 
between the two charges. This has a positive sign for a repulsive force (q± and q2 

of same sign); it has a negative sign for an attractive force (qx and q2 of opposite 
sign). The force can be noted to have the characteristic inverse-square 
dependence on separation distance r. 

In the hydrogen atom, an electron of charge q2 = — e may be viewed from the 
standpoint of classical mechanics as circulating around an essentially stationary 
nucleus of opposite charge q^ = Ze, in which case the product qxq2 is negative 
and is given by qxq2 = — Ze2 = — \q\q2\. The potential energy ^(r) and the 
attractive Coulomb force are both negative. In this case the orbit for a bound 
state may be elliptical or circular [see Goldstein (1956)]. The dynamical 
equilibrium requirement of classical mechanics must be satisfied at each point on 
the orbit. This requirement is simply that the centripetal force provided by the 
attractive Coulomb force must have the magnitude mv2Jr at each point on the 
orbit, where vL is the component of electron velocity v perpendicular to the 
vector r giving the instantaneous position of the electron with respect to the 
nucleus. The parameter m is the electron mass, which is quite small relative to the 
nuclear mass. We neglect correction terms of the order of the ratio of electron 
mass to nuclear mass. For a circular orbit, v± = v and the dynamical equilibrium 
condition becomes 

mv2Jr0 = \qiq2l4%E0r
2\ = Ze2/4ns0rl, 

where the subscript 0 denotes specifically a circular orbit. The kinetic energy 
<̂ κ = hmvl is therefore seen to be 

<f K = \mv2 = \Ze2l4%&0r0 = -%%(r), 
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and the total energy $ of the electron given by the sum of the kinetic and 
potential energies is simply 

£ = £K + %(j) = - i*(r) + *(r) = + £#(r) = - SK. 

The angular momentum L for a circular orbit is given by L = r0p0 = mv0r0, 
where the subscript 0 again denotes the circular orbit case. Substituting the value 
of v0 = (Ze2/4ns0mr0)

1/2 obtained from the above dynamical equilibrium 
condition gives L = (mZe2r0/4n80)

1/2, or equivalently, the radius r0 increases as 
the square of the angular momentum, r0 = (4ne0/mZe2)L2. The total energy can 
thus be written in terms of L2, 

g = i^(r) = -±Ze2/4ns0r0 = - ^(Ze2/4ns0)(mZe2/4nso)L~2 

= - mZ2e*/(32n2s2
0L

2). 

Classical mechanics imposes no restriction upon the orbit radius r0, in which 
case the total energy $ and the angular momentum L can take on any values 
between 0 and — oo and 0 and oo, respectively. This classical mechanics result for 
the hydrogen atom (Z = 1) problem is in stark contrast to the quantum 
mechanical treatment which yields the following set of discrete (quantized) 
values for the total energy and the angular momentum, 

δn = — me4'/2(4ne0nfi)2, Ln = nh (n = 1,2,3,... ,oo), 
where h is Planck's constant h divided by 2π, and the integer n is called the 
principal quantum number. The "allowed angular momentum values" are thus 
integer multiples of a basic unit given by Planck's constant, and the "allowed 
energy values" Sn (in units of electron volts) are Sn = — (13.6/«2) eV. Optical 
spectra involving absorption and emission of radiation are in good experimental 
agreement with energy differences obtained using the energy formula, and this 
constitutes strong experimental evidence for quantization. The quantization is 
brought about by appropriate boundary conditions applied to the "stationary-
state" wavelike solutions obtained for the quantum problem. For example, the 
probability of finding the bound electron at a given point in space in the 
neighborhood of the nucleus is assumed to be a single-valued function of 

Fig, 1.23 Concept of a single-valued wave of wavelength λ = h/p existing around the circular 
orbit of radius r0 for classical planetary motion of an electron about an oppositely charged nucleus. 
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position which approaches zero at infinite separation.We expect from the de 
Broglie relation (1.91) that such an electron would have a fixed value for the 
wavelength A, independent of position on a circular orbit (see Fig, 1.3). If, in 
addition, at each given instant we consider the wave as existing on the entire ring 
of the classical orbit (see Fig. 1.23) of the electron around the nucleus, then from 
the physical consideration that wave value must be a single-valued function of 
position we deduce that there should be an integral number of wavelengths 
around the orbit. That is, mathematically we impose periodic boundary 
conditions (cf. §3.4) as might be expected from the wave properties of matter, 
even though it is not completely clear to us what this means physically for a 
particle. We simply speculate that there is some single-valued stationary or 
traveling wave associated with an electron bound to a nucleus which is somehow 
related to the confinement of the particle to an orbit. By means of the de Broglie 
relation λ = h/p, the criterion of an integral number of wavelengths around a 
circular orbit of radius r0 yields the result 

2nr0 = ηλ = nh/p0 (H = 1,2,...), (1-92) 

where p0 is the fixed value of the magnitude of the momentum tangent to the 
orbit. Since the product r0p0 is the angular momentum L of a particle in a 
circular orbit, this result can be stated as 

L = roPo = nhßn = nh (n = 1,2,3, . . . , oo) 

(quantized angular momentum values); (1.93) 

that is, the angular momentum must be the product of some integer and Planck's 
constant divided by 2π. Therefore we have shown by means of de Broglie waves 
that the angular momentum for the circular orbits is quantized! The basic 
quantization unit (cf. §1) for the angular momentum can be noted to be Planck's 
constant divided by 2π. 

The semiclassical approach, based on combining the classical formulas with 
the de Broglie relation λ = h/p for the wavelength of the electron, has thus led us 
to the concept of quantization, and we shall show that it yields the correct 
expression for the quantized energy values. The argument has been simple 
enough if one accepts the above-mentioned idea that the de Broglie wave is in a 
"stationary state" such that it appears as a smooth continuous wave around the 
classical orbit. In order for the wave to close on itself around a circular orbit 
without a discontinuity in value and slope, an integral number of wavelengths 
λ = h/p0 must be contained within the circumference 2nr0. This gives condition 
(1.92), which leads immediately to the quantized values Ln for the angular 
momentum given by Eq. (1.93). However, the classical dynamical equilibrium 
condition of a balance between centripetal and centrifugal forces was shown to 
lead to the relation r0 = (4ns0/Ze2m)L2 between the radius r0 of the circular 
orbit and the angular momentum L of the electron in its classical mechanical 
orbit. In contrast to the situation in classical mechanics where there is no 
restriction on the value of the angular momentum of the electron in its orbit, the 
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de Broglie wave concept imposes the restriction contained in Eq. (1.93) on the 
values of the angular momentum consistent with single-valuedness of the wave 
on the orbit. Substituting the semiclassical quantization condition Ln = nh given 
by Eq. (1.93) into this expression for the radius r0 of the circular orbit gives a set 
of quantized values for the radius of the semiclassical circular "orbits," 

r0 = (4ns0/Ze2m)n2h2 = n2a0/Z (n = 1,2,3, . . . , oo), (1.94) 

where the parameter 

a0 = 4ns0h
2/me2 (1.95) 

is called the Bohr radius. These "allowed" orbits are illustrated in Fig. 1.24. The 
value of a0 is approximately 0.529 Ä. Substituting the expression for r0 into the 
above expression for the total energy, $ = ^ ( r ) , then yields the following 
quantized values for the total energy, 

Sn = ¥ll{x) = ±(qiq2/4nso)l(n2n2)-l(Ze2m/4ns0n 

= -mZ2e*/32n2n2e2n2 = - (13.6 Z2/n2) eV 

(quantized energy levels for Bohr atom). (1.96) 

This result agrees with the exact quantum result for the hydrogen atom, 
assuming the nucleus to be a stationary proton with Z = 1. The derivation is 
referred to as the Bohr theory of the hydrogen atom. It was presented to the 
scientific world by Niels Bohr in 1913, a decade or so before the advent of 
quantum mechanics. 

If we consider the more general case of elliptical orbits as deduced in classical 
mechanics for the motion of an electron about a fixed nucleus, then the radius of 

Fig. 1.24 Schematic diagram of discrete circular semi-classical orbits. [These are predicted by 
Eq. (1.94), which is derived on the basis of the de Broglie relation λ = h/p and the wave concept 
illustrated in Fig. 1.23.] 
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the classical orbit and the magnitude of the momentum/? tangent to the orbit are 
functions of position on the orbit. The de Broglie relation would then imply that 
the wavelength λ varies around the orbit, as illustrated schematically in Fig. 1.25. 
However, the physical considerations of continuity and single-valuedness again 
lead to the conclusion that there must be an integral number of wavelengths 
around the orbit. 

Fig. 1.25 Concept of a single-valued wave with local wavelength λ = h/p varying with position 
around an elliptical orbit for classical planetary motion of an electron about the oppositely charged 
nucleus. 

The integral number n of wavelengths around the orbit is given by n = <j> ds/λ, 
where ds is an increment of length on the orbit, and the circle through the integral 
sign means, by convention, that the integral is a line integral over the entire 
closed orbit. Employing the de Broglie relation λ = h/p, where in the present 
instance p represents the magnitude of the momentum parallel to the orbit at any 
given position on the orbit, we obtain <j> p ds = nh (n = 1,2,...). This integral 
has the dimensions of angular momentum. However, angular momentum has 
the same dimensions as the product of energy and time, such products being 
called action. Planck's constant likewise has the units of action. The above 
integral expression is analogous to the semiempirical quantum conditions 
employed in the early stages of the development of quantum mechanics: The 
classical action {or phase) integrals for periodic motion were required to be 
quantized according to <j> pt dq{ = nh, where the quantum number n is an integer 
and the integral is over the complete period of the generalized coordinate qt. The 
momentum pt is that which is canonically conjugate to qt. Canonically conjugate 
variables are defined and utilized in advanced treatments of classical mechanics 
[see Goldstein (1956)]. Although Bohr succeeded in calculating the discrete 
energy levels of the hydrogen atom using this condition, he was unsuccessful in 
extending the calculation to two-electron systems, such as the helium atom, and 
a fortiori to higher electron systems. 

For large quantum numbers, nh represents a large quantity of angular 
momentum, in which case the total angular momentum is much larger than the 
separation h between adjacent quantized values. The discreteness of the angular 
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momentum values in nature can be ignored in such cases, and the quantity can be 
considered almost as if it were a continuous variable. In this limit, classical 
mechanics provides an adequate description of nature. This is a manifestation of 
what is called the correspondence principle, which states that in the limit of large 
quantum numbers (n -► oo), the quantum results become identical with the 
predictions of classical mechanics. Alternatively, it is sometimes said that the 
correspondence principle requires that quantum theory be consistent with classical 
physics in the limit of large quantum numbers. 

PROJECT 1.4 The Bohr Theory and Line Spectra 

Refer to the original papers written by Bohr to find precisely the wording he used to describe the two 
fundamental assumptions that he made to formulate his theory to explain experimental line spectra. 
Also determine exactly how he formulated what is today known as the Bohr theory of the hydrogen 
atom. [Hint: See van der Waerden (1967) for references to the original literature.] 

5.4 The Short Wavelength Limit 

From the de Broglie relation (1.91), we see that λ -► 0 as the momentum p 
becomes larger and larger. In the limit that λ -> 0, waves cease to be diffracted; 
instead, they follow a straight rectilinear path. A particle of very large 
momentum thus tends to obey the laws of classical mechanics. This constitutes 
the short wavelength limit of wave mechanics in the same way as geometrical 
optics constitutes the short wavelength limit of wave optics. The same result is 
obtained by considering h to approach zero, since λ = h/p again approaches 
zero. Because p = mv (nonrelativistic approximation), where m is the particle 
mass and v is the particle velocity, large mass particles (such as macroscopic 
bodies) and fast particles tend toward classical (i.e., nonquantum) behavior. 
Thus classical mechanics must be contained in quantum mechanics. That 
classical mechanics must be the limit obtained from the quantum formulation as 
h -+ 0 is one aspect of the correspondence principle. 

If we attempt to extend the de Broglie relation λ = h/p as discussed above for 
matter to the case of light, which also manifests wave-particle duality, we reach 
the conclusion that photons have a momentum p = h/λ associated with them. If 
this is true (and indeed it has been experimentally verified), then a classical 
electromagnetic wave consisting of many quanta can carry (or possess) a 
significant amount of momentum, even though the photon rest mass is zero. 
Since the photon energy δρ is simply Av, and λν = c, 

p = h/λ = hv/c = SJc (energy-momentum relation for photons). (1.97) 

Thus, for photons, Sv = cp. This relation also follows directly from special 
relativity. Particle energy $ is related to the rest mass energy $0 and the 
momentum p through S2 = S\ + p2c2, so that zero rest mass particles such as 
photons and neutrinos obey the relation S2 = p2c2, consistent with δ = pc. In 
collisions between particles and photons, it is found experimentally that both 
energy and momentum must be conserved. 
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6 Development of the Time-Dependent and Time-Independent Schrödinger 
Wave Equations 

6.1 The Wave Function for Free Particles 

As shown from diffraction experiments and discussed in the preceding 
section, it is remarkable that a monochromatic wave of wavelength λ = h/p is to 
be associated with a beam of electrons, neutrons, or other particles traveling 
with a definite momentum of magnitude p. Let us consider the waves to be 
represented mathematically by a function \j/(x,y,z, i)9 called the wave function. 
We postulate that the scalar φ is some measure of the presence of the particle. In 
order to have interference, we must allow both positive and negative values for 
φ. However, the probability that a particle can be found somewhere is always 
positive (or zero); it cannot be negative. Thus if we measure probability in terms 
of a probability density function, then this function must vary somehow as the 
magnitude of φ in order that it always be positive. In physical optics, interference 
patterns are produced by the superposition of waves E characterizing the electric 
field, but the intensity of the fringes is measured by the scalar product of 
E(x9 y, z, t) with itself, 

E E = £2 . (1.98) 

The same is true with the magnetic field H(x9y9z9 t): Superposition of the 
components of H gives rise to interference effects, but the intensity of the field 
varies as H2 = H · H. Similarly, the energy density of an electromagnetic field is 
a positive-definite quantity involving the sum of E2 and H2 contributions. 

In analogy to this situation, we assume that the positive quantity 

\ψ(χ,γ,ζ9ή\2 = ψ*(χ9γ,ζ,ήψ(χ9γ9ζ,ή 

(particle probability density) (1.99) 

measures the probability of finding a particle at x,y9z at time t. The absolute 
value allows for the possibility that φ may be complex. The complex conjugate 
Φ* of a function φ is obtained by replacing the quantity /, defined as (— 1)1/2, by 
the quantity —/. We choose φ to be a scalar quantity for the present work, 
although it must be replaced by a vectorlike quantity when the intrinsic spin 
angular momentum of the particles is also under consideration, in somewhat the 
same way as the electric and magnetic fields E and H are vector quantities. That 
is, spin corresponds to a polarization of the matter waves. 

We consider the scalar φ to be capable of representing in a statistical fashion 
the behavior of each particle in the beam; it will then likewise contain a 
description of the statistical effects of the superposition of a large number of 
particles of the same energy making up a particle beam. Let us consider a particle 
beam to be monoenergetic and of uniform intensity, and choose a coordinate 
system so that the beam is traveling in the x direction. If this beam is to be 
described by a plane wave (in analogy with electromagnetic wave propagation) 
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such that \φ(χ, i)\2 can be interpreted as a uniform density of electrons, then 

φ(χ9 t) = A βχρ{/[(2π/λ)Λ: - ωί]}. (1.100) 

We have no dependence on y and z since we assume the wavefront to be infinite 
in extent. Equation (1.12) states that k = 2π/λ; this can be used to replace the 
parameter λ by the parameter k if desired. The complex form (1.100) chosen for 
φ(χ, t) has the property that the spatial density of electrons \φ\2 = A2 is uniform; 
this would not be the case if we chose the real function φ(χ, t) = 
A cos[(2n/X)x — ωί], for example. 

We must now face the question of what to use for ω in (1.100). Equation (1.16) 
is not immediately applicable because c represents the velocity of light instead of 
a velocity characteristic of matter waves. In analogy with the properties of the 
light quantum (photon), we may postulate that the circular frequency ω of the 
wave is related to the energy $ of each particle in the beam by 

g = hv = na), (1.101) 
where again h is Planck's constant given by Eq. (1.2) and h = h/2n = 
1.054 x 10"3 4 J sec. This relationship between particle energy and frequency 
unites particle and wave concepts in much the same way as the de Broglie 
relation p = h/λ. Substituting λ = h/p and ω — S/h into Eq. (1.100) gives 

ψ(χ, t) = A exp[(i/n)(px - St)\ (1.102) 

6.2 Development of the Time-Dependent Schrödinger Wave Equation 

Suppose we differentiate φ with respect to t and x, 

δφ/οί= -(ί/ή)ίψ9 (1.103) 

δφ/δχ = (ΐ/Λ)ρψ ,-

θ2φ/δχ2= -(ρ2/ή2)ψ. 

Solving for/?2 and $ and substituting into the classical relationp2/2m 

h2 1 32φ _ h\ θφ 

2m φ dx2 i φ dt 

or equivalently, 
h2 δ2φ _ δφ 

~ 2m äx2" dt 

This is the one-dimensional time-dependent Schrödinger equation satisfied by a 
flux of free particles. 

Now if the particles were not free, but instead were moving in a region of 
varying potential such that the potential energy of the particles depends on 
position in the manner if = i^{x), then if $ is still considered to be the total 
energy of the particles, we have the usual classical relation 

(p2/2m) + r{x) = β. (1.108) 

(1.104) 

(1.105) 

= $ gives 

(1.106) 

(1.107) 
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Assuming that p2/2m is still represented by the left-hand side of Eq. (1.107) and 
the total energy S is still represented by the right-hand side of Eq. (1.107), we 
obtain 

h2 δ2φ δφ 

This important equation is known as the one-dimensional time-dependent 
Schrödinger equation. 

For regions in which the potential energy if is not a function of position or 
time, namely, if Φ if(x) and if Φ "Γ(ή so that if = const, direct substitution 
of the plane wave (1.102) into the Schrödinger equation (1.109) shows that any 
plane wave of this form is a solution. Because of linearity of the Schrödinger 
equation, any linear combination of waves of this form also represents a formal 
mathematical solution, assuming only that $ = (p2/2m) + ΊΓ for each (fand/? in 
question. The solution of the Schrödinger equation for cases in which if is 
position dependent, however, yields solutions which are not of the plane-wave 
form. 

Although it appears initially that the plane wave (1.102) formally satisfies the 
differential equation (1.109) and the energy-momentum relation (1.108) for 
particles even when if = if{x), the dependence of if on x with a fixed total 
energy $ requires/? to be position dependent, namely/? = p{x\ in which case Eq. 
(1.102) does not represent a plane wave and, more important, 

h2 d: î -HM^MGK 
This may cause us to question the merits of our deduction of this equation on the 
basis of plane waves. We do not concern ourselves with this matter; suffice it to 
state that experiment has shown this equation to have a far greater degree of 
validity than the above simple derivation might indicate. In general, all 
characteristic solutions are of the nature of a complete set of basis states from 
which a general solution must be constructed by linear superposition, so in this 
sense the type of basis state used is not of fundamental significance. This is 
similar to our discussion of Fourier series and Fourier integral solutions of the 
classical wave equation presented in §§ 3 and 4. 

Suppose now that we consider three dimensions instead of one dimension. 
The position x must be replaced by the position vector r = JCX + yy + zz, where 
x, y, and z are unit vectors in a Cartesian coordinate system, and the momentum 
p must be replaced by p = pxx + pyy + /?zz. The corresponding plane wave is of 
the form 

iKr, t) = A exp[/(k · r - ωί)], (1.110) 

where k is a vector of magnitude 2π/λ that points in the direction of propagation 
of the plane wave. (This is in accordance with the discussion in §4). Thus k is 
parallel to p. The de Broglie relation for the case in which p is considered to be a 
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vector quantity becomes λ = h/\p\. Thus 
λ = 2n/\k\ = A/|p|, (1.111) 

so 
|k| = 2π|ρ|/Α = ΙρΙ/Λ. (1.112) 

Combining this with the fact that k and p are parallel yields the important result 
p = #k. (1.113) 

Substituting this into φ(τ,ή, given by Eq. (1.110) together with the relation 
$ = ήω, gives 

^(r, t) = A exp[(//#)(p · r — $t)~] (wave function for free particles) 

(1.114) 
for the wave function. Since p · r = pxx + pyy + pzz, we can differentiate this 
wave function with respect to t, x, y, and z to obtain 

δψ/δί= -{ijK)i^, 

δφ/δχ = (ί/Λ)ρχφ, 

δ2φ/δχ2 = -(ρ2
χ/Λ

2)φ, 

δ2φ/δγ2 = -(ρ2/Λ2)φ, 

δ2φ/δζ2 = -(ρ2
ζ/ϋ

2)φ. 

(1.115) 
(1.116) 
(1.117) 
(1.118) 
(1.119) 

Solving for p2., p2, p2, and $ and substituting into the classical nonrelativistic 

2 + l i + l i ) = - 7 I T · d-121) 

relation 
{P2

x+P2
y+Pl)ßm = £ 0-120) 

gives 
h2 1 ίδ2φ δ2φ δ2φ\ _ h\ δφ 

~ 2m ~φ ydx2 ~df ~dz2) ~ ~ 7 φ ~dt 

Using the fact that the Laplacian operator V2 is simply d2/dx2 + d2/dy2 

+ d2/dz2, we obtain 
-(n2/2m) ν2φ = ih δψ/dt. (1.122) 

This is called the three-dimensional time-dependent Schrödinger equation for 
free particles. If we consider the particles as moving in a region of varying 
potential such that the potential energy is ^(x,y,z) = ^(r), then the total 
energy $ is given classically by 

g = ir(r) + L(p2
x + p2 + p2)/2ml (1.123) 

In the same way that we deduced Eq. (1.109) from Eqs. (1.107) and (1.108), we 
deduce Eq. (1.124) from Eqs. (1.122) and (1.123), 

-{Η2/2τή)ν2φ + -Τ(τ)φ = ih δφ/δί. (1-124) 
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This important result is known as the three-dimensional time-dependent 
Schrödinger equation. It is most remarkable that the solutions to this equation 
predict quite accurately the probability densities and energy levels of single-
particle systems. This equation is truly the "workhorse" of present-day quantum 
mechanics. 

EXERCISE Show that the function φ(χ,ί) = ^^A^e^'^dk satisfies the Schrödinger 
equation in which V{r) = 0. 

EXERCISE Write the Schrödinger equation for a particle of mass m in a uniform gravitational 
field g = gx. 

PROJECT 1.5 Schrödinger Equation with Applied Magnetic Field 

1. Deduce the total momentum for a charged particle in an electromagnetic field. 
2. Use this result to formulate the Schrödinger equation for situations involving magnetic fields. 

6.3 Solution by the Separation of Variables Technique 

In the above justification of the Schrödinger equation for free particles, we 
assumed a function ψ of the plane-wave form, formed the various first and 
second derivatives, and by substituting into the classical relation $ = 
(PI + Py + Pl)ßm w e obtained the famous Schrödinger equation. It is clear that 
given the Schrödinger equation for free particles [i.e., iT(r) = 0], we should be 
able to solve this partial differential equation to regain the function ψ(τ, i). The 
solution can be obtained easily if we employ the technique known as the 
separation of variables by which we assume a solution in the form of a product 
t/̂ (r, t) = X(x) Y(y)Z(z)9(t), in which X is a function only of x, YSL function only 
of y, Z a function only of z, and Θ a function only of t. To illustrate the procedure 
and to derive the important time-independent Schrödinger equation, we perform 
a partial separation of variables in the time-dependent Schrödinger equation for 
the case in which f ( r ) is an arbitrary function of position. Substituting the 
assumed product solution 

Μχ,γ,ζ, 0 = <Κχ,γ,ζ)θ(ί) = φ(τ)θ(ή (1.125) 

into the time-dependent Schrödinger equation (1.124) and dividing by the 
product φθ gives 

-(Λ2/2ηιφ)ν2φ + TT(r) = (ih/θ) άθ/dt. (1.126) 

The left-hand side does not involve t, so that the right-hand side cannot be a 
function of t. Since Θ is a function of t only, as assumed when we write the 
separated product φ(χ, y, z)9(t) for ψ, the right-hand side cannot be a function of 
x, y, or z. Since the right-hand side is not a function of x, y, z, or t, it can only be a 
constant which we can denote by a2. Then 

(in/θ) άθIdt = a2 (1.127) 
or 

dO/dt + (ι/ή)(χ2θ = 0. (1.128) 
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From our previous consideration of the plane-wave form of ψ(χ,γ,ζ,ή, we 
expect the time-dependence of 0(0 to be of the form 

0(0 = 0o e x p [ - (ι/Λ)Λ], (1.129) 

where θ0 is an arbitrary constant. We expect this to have the same functional 
form whether or not Y(y) is zero, since the right-hand side of the separated 
equation is independent of iT(r). Substituting 0(0 as a trial solution into the 
above equation shows that it indeed is a good solution provided we identify the 
separation constant a2 as the total energy $ of the particle in question, i.e., 
cc2 = S. Substituting this result for 0(0 into the separated form of the partial 
differential equation (1.126) and multiplying both sides by φ yields 

-(ή2/2ηι)ν2φ(τ) + ^(r)0(r) = βφ{χ). (1.130) 

This important equation is known as the three-dimensional time-independent 
Schrödinger equation; the solutions φ(χ) are called stationary-state solutions for 
the potential 1^(r) in question. It is clear that the time-dependent solution 
corresponding to any given stationary-state solution φ(τ) is the product of φ(γ) 
and the corresponding 0(0 = θ0 exp[ — {i/h)Sf]. Any linear combination of such 
time-dependent solutions is also a solution, since the time-dependent 
Schrödinger equation is linear. Therefore it is possible to superimpose these 
solutions to form wave packets, similar to the wave packets discussed in §4. Such 
wave packets for matter waves are found to change with time, in contrast to 
packets of electromagnetic waves propagating in free space. 

In the case of free particles, for which f ( r ) = 0, the separation process can be 
continued by assuming the trial form 

φ(τ) = X(x)Y(y)Z(z), (1.131) 

where X, 7, and Z have been defined previously. Symmetry tells us that X, F, 
and Z will be of the same functional form. Substitution of the above trial 
solution into the three-dimensional time-independent equation for free particles 
[Eq. (1.130) with ΤΤ(Γ) = 0] gives 

h2 (\ d2X \ d2Y l d2Z\ 

Setting 

(l/X) d2X/dx2 = - a * , (1.133) 

and similarly defining oc2 and a*, we have 

(n2/2m)(oi2
x + a2

y +<x2
z) = £. (1. 134) 

Clearly a*, oc2, and a2
z are constants; this is deduced by the same type of argument 

used to show that our previous separation constant a2 was a constant. 
The trial solution 

X(x) = X0 exp(zaxx) (1.135) 
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is a valid solution to the above differential equation; similar trial solutions will 
be valid for Y(y) and Z(z). The quantities X0, Y0, and Z0 are arbitrary constants. 
If we identify OLX aspx/fi, ocy aspy/n, and az as/?z/#, then the above relation between 
ocx, 0Ly, az, and $ satisfies the classical relation $ = (pi + p2

y + p2
z)ßm, and the 

product solution 
φ(χ9γ,ζ,ί) = Χ(χ)Υ(γ)Ζ(ζ)θ(ή (1.136) 

is nothing more than the plane wave 
ψ(τ, t) = A exp[(i/«)(p · r - gt)~\ (1.137) 

previously considered [cf. Eq. (1.114)], with A = ö0^o^o^o· If there is no 
restriction on the separation constant S, as in the case of free particles, then we 
have a continuous spectrum of energies available. In other cases, the imposition 
of boundary conditions arising from the requirement that the solution be 
physically meaningful for some particular problem puts restrictions on the 
possible values of <f, so that an unbounded continuum of energies is unaccept-
able for many physical problems. 

2 = r cos 0 

x = r s ind cos^ 

/ - - y = r %\τ\Β%\τ\ή> - V 
Fig. 1.26 Spherical polar coordinates r, 0, φ for locating a point in a three-dimensional space. 

(The coordinates x, y9 z of the corresponding point in rectangular Cartesian coordinates follow from 
elementary trigonometry, as indicated in the diagram.) 
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The technique of separation of variables can be used even if i^{x) Φ 0 
provided iT(r) itself is a function of only one independent variable in some 
orthogonal coordinate system. Spherical polar coordinates (Fig. 1.26) are ideal 
for central forces, for which τΓ is a function only of |r| and is independent of Θ 
and φ. The separated differential equations are still frequently difficult to solve 
for arbitrary potentials, so that a good knowledge of ordinary linear differential 
equations and their various solutions is required. The solutions to the better 
known potentials, such as the simple Coulomb potential and the harmonic 
oscillator potential, have been developed in detail and can be found in textbooks 
on quantum mechanics and modern physics such as those by Schiff (1968), 
Merzbacher (1970), Leighton (1959), Böhm (1951), Pauling and Wilson (1935), 
and others. 

6.4 Quantum Operators 

It is worthwhile to note that differentiation of the plane-wave solution (1.137) 
with respect to x, y, z, and t yields the product of important physical quantities 
with φ: 

δφ/δχ = (ί/ή)ρχφ, (1.138) 

δ2φ/δχ2 = -(ρ2
χ/ή

2)φ, (1.139) 

δφ/δ^ = (ί/ή)ργφ, (1.140) 

δ2φ/δγ
2 = -(ρ2/ή2)φ, (1.141) 

δφ/δζ = (ί/ή)ρζφ, (1.142) 

δ2φ/δζ2 = -(ρ2/Λ2)φ, (1.143) 

δφ/δί = -(ί/ή)£φ, (1.144) 

Therefore if we define the differential operators 
p°j>= -ίήδ/δχ, (1.145) 

P?= -ihd/dy, (1.146) 

p?=-md/dz, (1.147) 

£ορ = ίήδ/δί, (1.148) 

then we can say that the differential operator acts on the wave function φ to give 
the product of the value of the physical observable corresponding to the 
operator and φ: 

Ρ?Ψ=ρχψ, (1-149) 

p0W=Py*l>> (1150) 

Ρ?Φ=ρζφ, (1.151) 

£ορφ = <$φ. (1.152) 

We therefore say that the plane wave solution is an eigenfunction of operators 
for the x, y, and z components of the momentum and the energy. These 
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differential equations are known as the eigenvalue equations for the operators in 
question. Furthermore, Eqs. (1.138), (1.140), and (1.142) lead to the relation 

νψ = (ί/ϋ)νψ. (1.153) 
Thus 

p°p= -ih V (1.154) 

is the linear momentum operator, since 

pO IV= -ih νφ = ρφ. (1.155) 

From Eqs. (1.139), (1.141), and (1.143), we obtain the result 

~^(^ + ψ + ̂ )ψ = (Ρ1
χ+Ρ}+ΐθΨ=Ρ1*-9'νΨ (1-156) 

so that the p2 operator, (p2)op, can be considered to be given by 

i l i l I2 

\dx2 dy2 dz 
^γν = _h2[__+ + ) = _h2 V2_ ( 1 - 1 5 7 ) 

From the equations of vector analysis [see Wylie (1951)] and Eq. (1.155), 
however, 

pop · ρΟΙψ = -ih V · ( - ihV\\i) = -ihV- (pi/0 = - ih[_(V · p)iA + P · Fty] 

= - Λ[0 + p · (ϊ/Λ)ρ^] = ΡΡ»Α =ρ2ψ. (1.158) 
Therefore 

(p2yp = p°p . p°p. (1.159) 

Referring back to the time-independent Schrödinger equation (1.130), we see 
from Eqs. (1.157) and (1.159) that it can be written in the form 

[(l/2m)pop · pop + ^(r)]0(r) = £φ(χ\ (1.160) 

so that we can consider jf , defined as 

J f = (l/2m)pop · pop + f (r) = -(h2/2m) V2 + ΤΤ(Γ), (1.161) 

to be the energy operator $op. The operator Jf7 is called the Hamiltonian operator 
in quantum mechanics, and the result of operating on the stationary-state 
wavefunction φ(τ) with J f is to generate the product of {{_{p2

x + P* 
+ pDßm] + ΤΤ(Γ)} and 0(r). The quantity 

(Pi + />? + Pl)l2m + ^ W = * (1-162) 
is nothing more than the total energy of the particle, which is designated as the 
classical Hamiltonian Hc for the one-particle system in question. The total energy 
is called the "Hamiltonian" in classical mechanics, since it plays a central role in 
the formulation known as "Hamilton's equations of motion." The analogy 
between quantum mechanics and classical mechanics is perhaps best seen by 
means of Hamilton's equations [see, e.g., Ikenberry (1962)]. 
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Using Eq. (1.161), we can write the time-dependent Schrödinger equation as 

#ψ = ίήδψ/δί9 (1.163) 

and write the time-independent Schrödinger equation as 

^φ = £φ. (1.164) 

The Hamiltonian operator 

3tf = (l/2m)(pop · pop) + r(r) (1.165) 

can be considered to be obtained from the classical Hamiltonian HC9 

Hc = (l/2m)(p · p) + TT(r), (1.166) 
by replacing the classical momentum p by the momentum operator pop given by 
Eq. (1.154), which in turn corresponds to the replacement of the classical scalar 
quantity p2 = p · p by the operator — h2 V2. Since the position coordinate r 
remains unchanged in the transformation, we can say that r and rop are the same 
in the classical and operator forms of the Hamiltonian for the equations given 
above. That is, 

rop = r (position operator). (1.167) 

The operators given in this section are said to be those appropriate for the 
position representation. Because of the symmetry of the plane-wave function 
(1.137) in position r and momentum p, an alternate formulation (known as the 
momentum representation) is possible in which the momentum operator is a 
multiplicative factor and the position operator is a differential operator 
involving derivatives with respect to px,py, and/?z [see, e.g., Ikenberry (1962)]. 
The following prescription is therefore given for transforming the classical 
Hamiltonian into the operator form of the Hamiltonian needed to formulate the 
time-dependent and time-independent Schrödinger equations (1.163) and 
(1.164): Replace the momentum and position coordinates in the classical 
Hamiltonian by the operator equivalents. 

PROJECT 1.6 Angular Momentum Operators 

1. Using the definition 

I x y z 
L = r x p = JC y z 

| Px Py Pz 

= \(ypz - zpy) + y(zpx - xpz) + z(xpy - ypx) = xLx + yLy + zLz 

for the angular momentum L and its vector components Lx, Ly, Lz in classical mechanics, construct 
quantum mechanical operators Jafop, J^°p, i f °p, i f °p for these physical observables. (Hint: Use the 
prescription of substituting operator forms such as xop and p°x

p for the corresponding classical 
quantities Λ: and px.) 
2. Can you construct a quantum mechanical operator for the square of the total angular 
momentum, (ifop)2? (Hint: Classically, L2 = L2

X + L] + L2
Z.) 
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7 Wave-Packet Solutions and the Uncertainty Relation 

7.1 Linearity and Superposition 

In our treatment of the wave equation (1.3) for the propagation of 
electromagnetic waves in free space, we discussed the fact that an arbitrary 
superposition of solutions corresponding to waves of various frequencies and 
wavelengths also represents a solution because of the property of linearity of the 
wave equation. The Schrödinger equation is likewise linear, so that the 
superposition principle holds for this equation also. We know from experience in 
solving differential equations that we can expect to obtain complete sets of 
eigenfunctions as solutions to the time-independent Schrödinger equation in 
regions where iT(r) Φ const, in the same way in which the complete set of plane 
waves constitute solutions to the Schrödinger equation whenever τΓ Φ iT(r). 
Each of these eigenfunctions, when multiplied by the appropriate time factor 
exp[ — (ijti)it\ represents a perfectly valid solution ψ(τ, t) to the Schrödinger 
equation. Furthermore, each such solution will have a probability density ψ*φ 
which is time independent. As an alternative, we know from our earlier 
treatment of Fourier series and Fourier integrals (see §4) that any function 
satisfying the Dirichlet conditions can be expanded in a Fourier series or a 
Fourier integral, so we expect that linear combinations of plane waves can 
provide a representation of each of these solutions (or any linear combination of 
these solutions) at any given instant. Thus, in accordance with Eqs. (1.65) and 
(1.66) we can write at t = 0, 

*(r,0) = Q-J2 Jrtk)** "Λ, (1.168) 

*(k) = (^)3'V*(r'0) *"*"'*" (U69) 

7.2 Example of Plane-Wave Superposition and the Uncertainty Relation 

Let us consider the simple one-dimensional example sketched in Fig. 1.27 for 
which x(k), called the probability amplitude in k space, has values \_2{dk)~] ~1/2 

over the domain k0 — dk ^ k < k0 + ok and is zero outside this interval. The 
factor [2(<5&)]~1/2 is chosen to give normalization of x(k) over the chosen 
interval, as can be verified by direct integration of \χ\2 over this interval. The 
domain in k corresponds to a spread in wave vector of 2(Sk) and a corresponding 
spread (or uncertainty) in momentum of 2h(dk). Then using Eq. (1.56) we obtain 

Γοο rk0 + ok 

ψ(χ, 0) = (2π)"1/2
 x(k) eikx dk = [4π(<5&)] " 1 / 2 eikx dk 

J - oo J k0-ök 

= [4π(<5£)] " 1/2(ix)"' |>,(*0 + Sk)x - ei{k° ~ a ) x ] 

= IXÄfc)]"1'2*-1 eikoX sinKÄfc)*]. (1.170) 
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1 

x 
Sk = l 

Sk = 

k0-2 k0-l k0 k0+l k0+2 

Fig. 1.27 Wave packets as a function of wave vector k which can be represented by. step functions 
in wave-vector space and in momentum space p = hk. 

It is especially noteworthy that a specification of χ(&), constituting the extent of 
our statistical knowledge of the wavelength of the particle through the general 
wave relation k = 2π/λ, allows through the Fourier integral formulation a 
deduction οΐψ(χ, 0) containing our entire statistical knowledge of the position of 
the particle. Because the wavelength λ is intimately related to the momentum p 
through the de Broglie relation λ = h/p, we conclude that the complete 
specification of our knowledge of either the particle's momentum or the 
particle's position is entirely sufficient to enable us to obtain the unspecified 
complementary member of this pair of physical observables. 

The probability density corresponding to the wave function (1.170) is 
ψ(χ,0)*ψ(χ,0) = [πΟ^ΧΓ1*-2 sin2[(<5Ä;);c]. (1.171) 

Both the value of the constant factor for χ and the symmetrical form of the 
Fourier transform were chosen to effect proper normalization of x(k) and 
ψ(χ, 0): The probability of finding the particle somewhere in all of space with 
some zero or nonzero momentum value is unity. 

The probability density (1.171) in real space is plotted in Fig. 1.28 for the case 
in which ok = 1; it is plotted in Fig. 1.29 for the case in which ok = 2. It can be 
noted that the width of the central maximum in ψ(χ, 0) is roughly twice as large 
for ok = 1 as it is for ok = 2, but the central maximum is only one-half as high for 
the ok = 1 case. Furthermore, if we estimate the distance to half the peak value 
in Fig. 1.28 as approximately 2 units in distance, where bk = 1 in corresponding 
reciprocal distance units, then for this example we can say that δχ bk « 2. 
Essentially the same estimate holds for Fig. 1.29 because of the inverse 
relationship already noted above between bx and bk. This is the really 
remarkable thing to note, namely, that to narrow the distribution in bx we are 
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HO -8 -6 -4 -2 0 2 4 6 8 10 

Fig. 1.28 Wave packet in real space corresponding to the narrow high (ok = 1) step-function 
wave packet in wave-vector space illustrated in Fig. 1.27. [This result is obtained by direct numerical 
evaluation of Eq. (1.170).] 
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Fig. 1.29 Wave packet in real space corresponding to the broad low (ok = 2) step-function wave 
packet in wave-vector space illustrated in Fig. 1.27. [This result, which is likewise obtained by a 
direct numerical evaluation of Eq. (1.170), is to be compared with Fig. 1.28.] 

required to broaden the distribution in Sk, and vice versa. For this example, at 
least, it is conservative to conclude that 

öxök > 1, (1.172) 
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where δχ and ok represent the widths of the distributions in position and k value, 
respectively. Although Eq. (1.172) has been deduced for a particular distribution 
x(k), it is found to be generally true for all functional forms of x(k) which satisfy 
the Dirichlet conditions. Since the quantity Sk corresponds to a spread in 
momentum for the component waves of amount h ok on either side of the 
average value p0 = hk0 (corresponding to a spread or uncertainty Ap in our 
knowledge of the particle's momentum), and since δχ represents a spatial width 
of the packet (constituting an uncertainty Ax in our knowledge of the particle's 
position), then it can be concluded that 

Ax Ap = h Ax Ak>h, (1.173) 

which is the essence of the position-momentum form of the Heisenberg uncertainty 
relation. We have employed conventional notation from the standpoint that we 
have used the symbol A to express uncertainty. The symbol δ was employed to 
denote the spread in the values of x or k for the plane waves making up the 
packet. In summary, it can be concluded that an increased spread in momentum 
for the packet allows a greater spatial localization of the packet within the 
immediate neighborhood of the position of the maximum value of the 
wavepacket. Because \ψ(χ, 0)|2 represents the real-space probability density for 
the particle, the greater localization of the central maximum in the neigh-
borhood of the origin corresponds to an increase in the probability that the 
particle will be found near the point of the maximum. This of course is a 
qualitative statement of the content of the Heisenberg uncertainty relation 
(1.173), namely, that an increase in our knowledge of the position of the particle 
requires a corresponding decrease in our knowledge of the momentum of the 
particle, and vice versa. For an alternate form of the uncertainty relation and its 
development, see §7.8 of this chapter. Also given there are alternate develop-
ments of the two forms (viz, position-momentum and energy-time forms) of the 
uncertainty relation together with clear statements and examples of the 
operational meaning and use of the relations. 

PROJECT 1.7 The Uncertainty Relation: When Is It Important? 

Plot a family, of curves for objects of different mass (including electrons, protons, helium atoms, 
uranium atoms, baseballs, and elephants, among others); each curve being a log-log plot of the 
minimum uncertainty in position of the object versus the uncertainty in velocity of the object. Then 
translate this information into common-sense conclusions by comparing the uncertainties to typical 
sizes and speeds of these objects. 

7.3 Philosophical Implications of Quantum-Mechanical Indeterminism 

One may dislike the quantum mechanical approach for its lack of de-
terminism, but nevertheless it remains our most accurate description of the way 
in which particles act in the limit of extremely small mass. That we do not 
understand why particles should act in a wavelike fashion clouds our under-
standing; the cloudiness is enhanced because particles large enough to be 
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observed with our eyes have masses so large that quantum effects do not 
influence appreciably their location or future trajectories. This, in fact, is the 
critical impediment to our understanding, namely, that physical entities which 
have extremely small (but nonzero) masses do not always behave according to 
our mental definition and mental image of a particle, which is derived from our 
sense perception of the motion and interaction of large masses. The discipline of 
quantum mechanics does not appear to provide a complete description of nature 
because we do not like to admit that our ultimate knowledge concerning the 
position, momentum, and future trajectory of a given particle is only of a 
statistical nature, and therefore imcomplete insofar as the exact motion of any 
particular particle in question is concerned. For these reasons it is just as well to 
consider quantum mechanics to be merely an elegant and accurate com-
putational tool. It gives us excellent statistical information but does not provide 
us with a deterministic understanding of the universe. 

The nodes and oscillations (wiggles) in the probability function in real space 
illustrated in Figs. 1.28 and 1.29 may also be found to be intellectually 
bothersome, since we generally prefer to consider a particle as an entity. These 
oscillations are due to the sharp cutoff of the function of A: (cf. Fig. 1.27) which 
we happened to choose. Analogous oscillations are found in optical diffraction 
patterns, and indeed such oscillations represent the most characteristic feature 
of such patterns. An optical diffraction pattern is produced by passing a wave 
through an aperture which provides a sharp spatial cutoff of a portion of the 
beam wavefront, thereby producing spatial oscillations in the electric field 
intensity in the region behind the aperture. In the present case, we may eliminate 
the oscillations in the wave packet by considering a smoother function in k 
space; for example, the choice of a one-dimensional Gaussian function 
exp( - A2k2) of width A with an appropriate normalization factor leads to a 
Gaussian function in real space, so that there are no oscillations at all. The 
function looks something like the central maximum in Fig. 1.28. There are no 
nodes, but instead the function approaches zero rapidly in an asymptotic 
manner as x-> ±oo. Whether or not we have real-space oscillations will 
therefore depend upon the momentum (or k-vector) distribution for our 
physical system. 

7.4 Time Dependence of Wave Packets in a Homogeneous Medium 

If we now return to Eq. (1.168) and add the usual exp( — ίωή time dependence 
to each component wave in this general three-dimensional relation, and 
furthermore assume (perhaps naively) that each component wave propagates 
independently of the other component waves, we obtain 

*<'·'>=ΐέν" z ( k y ( k . r - w o j k (1.174) 

for the time-dependence of the linear combination of plane waves. We must, of 
course, be careful to use the ω value appropriate for each k vector in question, 
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since ω = co(k). Such linear superpositions of plane waves are called wave 
packets. The function φ(τ, t) is characterized by a degree of localization in space 
achieved at the expense of introducing components with a range (or spectrum) of 
k values; the packet given by Eq. (1.174) satisfies the time-dependent 
Schrödinger equation (1.122) for free particles, as can be seen by direct 
substitution. The phase velocity vp of any individual component of the packet is 
co/|k|, in accordance with Eq. (1.75) and our general discussion of plane waves in 
§2. For the case of free particles, with energy $ and momentum p, 

Λω = £ =p2/2m = n2k2/2m, (1.175) 

so that 

(D = hk2ßm. (1.176) 

This leads to 

vp = co/|k| = h\k\/2m (phase velocity for matter waves). (1.177) 

Therefore the phase velocity for the component waves depends on the k value, 
which results in some dispersion of the wave packet with time. That is, the 
probability density ψ*ψ for this superposition of plane waves will be time 
dependent. In addition, the frequencies of the component waves will differ from 
one another since ω = co(k), so in general the frequency of any given component 
cannot be exactly gjh if S is the total energy of the single particle under 
consideration. Thus we are forced to conclude that even though a superposition 
of plane waves can represent a general solution to the Schrödinger equation at 
any given instant, this wave packet will not be a stationary-state solution since its 
probability density will change in appearance as time progresses. This, of course, 
is different from the situation for the group of electromagnetic waves in free 
space which we treated in §2. The wave-packet description of matter waves is 
nevertheless found to be useful in many problems as long as we consider packets 
which do not spread (or disperse) appreciably over the time period under 
consideration. In this manner one can even treat the problem of a localized 
particle colliding with a potential barrier or a potential well [Messiah (1965)]. 

The relation vp = n\k\/2m leads to another interesting conclusion by consider-
ing the momentum p and velocity v, 

p = my = #k(peak), (1.178) 

so 

vv = n\k\/2m = lpl/2/w = £|v|. (1.179) 

Thus the phase velocity of the wave at the peak value in the packet associated 
with a particle moving with velocity v is only one-half the velocity of the particle. 
If the wave packet is to provide any representation of the motion of the particle 
whatsoever, in accordance with the correspondence principle, then the group 
velocity vg of the packet must be equal to the particle velocity v. We thus see that 
matter waves associated with free particles will have a phase velocity of the order 
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of one-half of the group velocity of the packet. This means that the individual 
waves move more slowly than the packet and therefore pass back through the 
packet as it advances. This is not an uncommon phenomenon in wave motion. 
For example, the individual wavelets on an ocean wave can be noted to move 
with a velocity different from that of the ocean wave itself. 

Because a packet includes plane waves with various ω and k values, each 
traveling with its characteristic phase velocity vp = w/\k\ = n\k\/2m, we must 
have some scheme for deducing the average velocity of the packet. This average 
velocity which we call the group velocity must correspond to the classical 
velocity of the free particle, as mentioned previously. (The velocity p/m = n\k\/m 
used above for the group velocity is of course perfectly acceptable if the packet 
consists of only a single plane wave of wave vector k and frequency ω, 
corresponding to the momentum p = hk and energy $ = hco.) 

Let us assume that we know the dispersion relation ω(Κ) for some particular 
one-dimensional case of wave motion, or else have measured the properties of 
the physical system in question sufficiently to be able to write the first terms in a 
Taylor series approximation for ω(&). Our treatment will not be restricted to 
particles, but will apply also, for example, to the case of electromagnetic waves 
propagating through a homogeneous dispersive or nondispersive medium. Let 
us assume, however, that the values of A: are restricted to a narrow band centered 
about k0, as in Fig. 1.27. Then we can make a Taylor series expansion for ω(&), 

*"**(τ1,»-«4(^-^··· 
(1.180) 

keeping only the lowest order terms. The validity of this approximation depends, 
as usual, upon the size of the higher order terms relative to the linear term in 
(k — k0), and the approximation improves with decreasing magnitude of 
(k — k0). The value of k at any point in the packet can be expressed as 

k = k0 + (k-k0), (1.181) 

and we restrict k — k0 to small values relative to k0. We do this out of necessity 
so that our Taylor series expansion will be valid. In practice, this does not restrict 
the limits on the integral in Eq. (1.182) since we choose x(k) to be large only in the 
region of k around k = k0. What is the physical meaning of expanding ω(&) 
about the point k0l We recognize that ω(&) may vary markedly over the 
complete domain — oo < k < oo such that values of ω(&) for k values far 
removed from k0 may be quite different from the value ω(&0); furthermore there 
are situations in which ω(&) can vary in peculiar ways in the neighborhood of 
particular k values. The rationale behind the Taylor series expansion is the 
assumption that the multiplicative factor x(k) in the integral of Eq. (1.174) will 
be small over most of the domain of k, such that the only values of ω(£) which 
affect the value of the integral appreciably are those corresponding to the limited 
domain oik where x(k) is relatively large. In cases where x(k) is appreciable only 
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over a very limited range of k values, there is a reasonable hope that a Taylor 
series can approximate co(k) satisfactorily over the domain of A: for which x(k) is 
relatively large. The use of a Taylor series approximation for ω(£) in the region 
around k0 also involves the assumption that co{k) is reasonably well behaved 
around k0, thus precluding regions of k near discontinuities, singularities, and 
other critical points where small changes in k lead to exceptionally large 
variations in ω(&). 

Substituting the first two terms of the relation (1.180) into the packet 

. 1 
\2π 

1/2 
^yikx-ωΐ) dk (1.182) 

gives 

/ 1 V / 2 

ψ(χ, t) ~ I — I exp{/[a/(A:o)£o - ω(&0)]ί} 

x x(k)exp<ik\ x - (——) t\>dk (wavepacket) (1.183) 

where a)'(k0) is merely an abbreviation for (dco/dk)k = v AW = 0 the integral is a 
relatively slowly varying function of x whenever k — k0 is restricted to small 
values (cf. Figs. 1.27-1.29). The exponential factor in front of the integral 
introduces rapid temporal modulations of the integral which, however, do not 
contribute in any way to the value of ψ*(χ, ήψ(χ, t). (For example, ew x e~ιθ = 1 
for any real value of 0, and in our example ω and k are real.) We assume that 
χ ^ 0, since χ represents the amplitudes of the various component waves in our 
wave packet. Considering the integral as a function of x, it will be peaked in the 
neighborhood of the point 

xp = (dco(k)/dk)k = kot = ω'(*0)ί, (1.184) 

because for this value the slowly oscillating exponential function of k in the 
integrand has a very long period in k so that the integral is essentially the value of 
the entire area under the. curve given by the positive function x(k). For other 
values of x, the oscillations of the real and imaginary parts of the exponential 
function in the integrand will introduce a partial cancellation so that the integral 
will be less than the area under the curve x(k). Considering the velocity of the 
wave packet to be governed by the velocity of the peak, then the time derivative 
of xp can be identified with the group velocity vg of the packet. Hence 

Vg = dxp/dt = (dam/Wk-k.. (1-185) 

As a check on the validity of the relation (1.185), let us apply it to particles in 
free space for which the dispersion relation is ω(Α:) = hk2/2m. We obtain 
immediately vg = hk0/m = /?0/m, which is the classical velocity of a particle with 
a definite momentum p0, in accord with our previous conclusions. As a second 
check, let us apply this relation to electromagnetic waves propagating in free 
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space, for which the dispersion relation is ω(&) = ck. We obtain immediately 
ug = c, which is in complete accord with our previous conclusions in §2 that a 
packet of electromagnetic waves moves with a group velocity equal to the 
universal phase velocity c. 

7.5 Group Velocity in Three Dimensions 

The above relation for the group velocity is quite generally valid for one-
dimensional systems; it is therefore worthwhile to extend it to the three-
dimensional case. The group velocity must in this case be a vector quantity vg, 
with components given by the derivative of co(k) with respect to kx, ky9 and fez, 
respectively. Thus 

vg = [Fk co(k)]k = ko (group velocity of a wave packet). (1.186) 
The relation $ = ήω between total energy and frequency is valid for any 
dispersion relation co(k), so an alternate expression for the group velocity is 

Vg = h~\Vk <W)k = ko (group velocity of a particle). (1.187) 

7.6 Effects of Successive Terms in the Taylor Series Expansion of a>(k) 

We should ask ourselves what effects are introduced if higher derivatives in 
the Taylor series expansion for ω(Α;) are important. For free particles, 
ω = hk2/2m, so that use of only the first two terms in the Taylor series 
approximation (1.180) results in the neglect of the second term 

(\/2\)(^/dk2)\k = ko(k - k0)
2 = h{k - k0)

2/2m (1.188) 

with respect to the first term 

(Ao/dk)\k = ko(k- k0) = hk0{k - k0)/m. (1.189) 
The ratio of the second term to the first term is (k — k0)/2k0, and thus it can be 
quite small if the spread in the values of A: over the packet is small relative to the 
value of k at the peak of x(k) for the packet, namely k0. By referring to the 
general expression (1.182) for the one-dimensional wave packet, we see that 
addition of this second term leads to the exponential factor 
exp[— ih(k — k0)

2t/2m] in the integrand. As time increases, this gives rise to a 
time-dependent broadening in the packet, which represents a type of dispersion 
of the wave packet as it travels through free space. Similar effects are found for 
electromagnetic waves traveling through solids or other dispersive media 
[Stratton (1941); Jackson (1962)] for which the refractive index n and therefore 
phase velocity c/n depend on the frequency. 

If a>{k) contains terms which are higher order in (k — k0), this can cause a 
change in shape of the packet of matter waves with time as it travels through the 
medium in question. Of course, for free particles, ω = nk2/2m, so the Taylor 
series expansion terminates with the second-order term. Our treatment starting 
with Eq. (1.180) has been quite general, since it is applicable for any dispersion 
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relation. We attempt to extend our understanding of wave packets at this point 
by returning to the specific case of particles in free space, since we have a simple 
exact dispersion relation for this case. If we successively keep terms through 
zero, first, and second order in the Taylor series expansion of w{k) = hk2ßm, we 
obtain the approximate free-particle dispersion relations, 

co(k)~hk2J2m, (1.190) 

w(k) ~ hklßm + (hk0/m)(k - k0\ (1.191) 

ω(&) ~ hkl/lm + (hk0/m)(k - k0) + (n/2m)(k - k0)
2. (1.192) 

This last approximation is in fact the exact free-particle dispersion relation 

co(k) = fik2ßm, (1.193) 

as can be seen readily by combining like terms. Let us examine the results of 
using each of these relations in the specific time-dependent wavepacket (1.174) 
illustrated in Figs. 1.27-1.29. We must be careful to choose a scale factor for χ to 
retain normalization of ψ(τ, t). For the one-dimensional case, with the choice χ 
independent of A: over k0 — ok ^ k^k0 + ok and zero outside this range, as in 
Fig. 1.27, 

/ 1 Y / 2 fko + Sk 

e^-^dk. (1.194) 
-ok 

Using the zeroth-order dispersion relation (1.190), we obtain 
/ i \ i/2 rk0+ök 

ψ(Χ, 0 = (— 1 x(k0)e-m°2t/2m eikx dk. (1.195) 
2 π / J k0-Sk 

Except for the modulating time-dependent phase factor exp( — ihkltßm), which 
contributes nothing to \ψ(χ, t)\2, we have the same expression as Eq. (1.170). 
Therefore the value of x(k0) can again be chosen to have the value \2{dk)~] ~1/2 

for proper normalization. The position of the maximum of this packet in real 
space, as for Figs. 1.28 and 1.29, occurs at x = 0 independent of the time t. In 
addition, \φ{χ, i)\2 is time independent. By ignoring terms higher than zero order 
in the Taylor series expansion for the dispersion relation, we have thus neglected 
motion of the wave packet as well as any broadening of the wave packet. 

Considering next the first-order dispersion relation (1.191), we obtain 
fko + Sk 

^kix-{hk0tim)-\ dk (1.196) ^'0 = l i ) 1 / 2^o )^°2 i / 2 m 
ko-Sk 

Again we have a rapidly modulating time-dependent exponential factor in front 
of the integral which does not contribute to \φ(χ, i)\2. In accordance with our 
previous discussion involving group velocity, we conclude that this packet will 
have a peak at the position xp which changes with time according to the relation 

xp = hk0t/m, (1.197) 
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so the velocity vg of the packet is 

vg = dxp/dt = hk0/m. (1.198) 
This is satisfying because it agrees with our previous conclusions (1.178) and 
(1.179) regarding the particle velocity, and it also agrees with the general relation 
(1.185) as applied to our specific case of free particles. Using vg = hk0/m in Eq. 
(1.196) for φ(χ, t) together with a comparison of the integral in Eq. (1.170) shows 
us that we have formally the same problem if we substitute x — vgt for x in Eq. 
(1.170). On this basis, our normalization factor x(k0) will again be [_2(SkJ] ~1/2, 
thus giving for this case 

ψ(χ, t) = {[π((5£)]1/2(χ - vgt)} ~' ^ο(χ-ν) sml(ök)(x - vgt)\ (1.199) 
where 

vp = hk0/2m (1.200) 

is the phase velocity given by Eq. (1.177) for this case. This leads to 

\φ(χ, t)\2 = sin2l(ök)(x - vgt)~]/ln(ök)(x - vgt)
2l (1.201) 

The packet moves with velocity vg, and it has the same functional dependence on 
x around the point xp = hk0t/m as the packets in Figs. 1.28 and 1.29 have around 
x = 0. Within the limits of this first-order approximation, then, the packet 
propagates but does not broaden or change its shape as time progresses. 

We now investigate the effects of going to our second-order Taylor series 
approximation (1.192) for the dispersion relation, which is in fact the exact 
dispersion relation (1.193) for free particles. We obtain 

ei[_kX-{hkhßm)-\ dk (1.202) 
\ / v k0 — 6k 

The argument of the exponential function is thus quadratic in k. Unfortunately 
the integration cannot be carried out immediately, so we are not able to examine 
an exact final result. It is intuitively clear that since each of the component waves 
over the interval k0 — Sk ^ k ^ k0 + ok has its individual phase velocity 
vp = hkßm, the group of waves will tend to disperse as time elapses. This 
dispersion increases the width of the wave packet in real space. If a numerical 
integration is performed on the above expression for specific values of the 
parameters and for various times t, a time-dependent broadening should indeed 
be found to take place. 

EXERCISE Carry out a numerical evaluation of the integral in Eq. (1.202) for a series of 
different times / in order to achieve an understanding of the time dependence of ψ(χ, t) and its 
magnitude. 

7.7 Gaussian Wave Packets 

One way to study the type of behavior expected with the exact dispersion 
relation is to replace the constant function x(k0) by a Gaussian function 

x(k)Kexpl-A2(k-k0)
2l (1.203) 

φ(χ, t) = 
2π 

l/Z 

tfko, 0 
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where the width of the Gaussian determined by A is of the order of the width of 
the constant function x(k0), and some constant preexponential factor is chosen 
to maintain normalization. This functional form permits the range of in-
tegration to be extended over the interval — oo ^ k ^ oo without any resulting 
divergences, since the Gaussian function falls rapidly to zero for \k — k0\ > A ~1. 
The argument of the resulting exponential function in the integrand can be 
expressed as a perfect square and a phase factor, with the result that we have a 
definite integral with the evaluation given in standard integral tables. We can 
thus obtain an explicit expression for \j/(x, t) for this case. It is found to be a 
Gaussian function in position, and it travels with the group velocity hkjm and 
undergoes a broadening with time. We do not pursue the solution in detail here, 
since Gaussian wave packets are treated at length in many textbooks, so much so 
that we are sometimes led to believe that there is something more fundamental 
about a Gaussian function in quantum mechanics than is actually warranted by 
either basic theoretical considerations or experimental evidence. Instead we 
leave the mathematical treatment of the Gaussian wave packet as an exercise for 
the reader. The merits of the Gaussian wave packet are its smooth functional 
form (no nodes), its good convergence properties for integration over an infinite 
domain, and the relative simplicity with which the resulting definite integral can 
be obtained. It also has the unique property that its Fourier transform is likewise 
a Gaussian function, as mentioned above. However, the major conclusion of the 
treatment of the Gaussian wavepacket which is pertinent for our present 
development is that the quadratic term in k2 (which is· present in the exact 
dispersion relation for free particles) does indeed result in a broadening of the 
wave packet with time. 

PROJECT 1.8 Gaussian Wave Packet 

Work out the mathematical details of the Gaussian wave packet. (Hint: Read the qualitative 
description given in §7.7 and then carry out the details in the same manner as the extended treatment 
given in §7.2 for the alternate wave packet. In particular, obtain expressions for the probability 
density as a function of position and probability density as a function of momentum. Plot these 
quantities after evaluating the probability densities for a range of x values and k values, using 
reasonable values for the fixed parameters and a programmable calculator. Evaluate the uncertainty 
product Ap Ax at / = 0 and for t > 0.) 

7.8 Energy-Time Form of the Uncertainty Relation and Alternative Approaches 

Now that we have discussed in some detail the width of wave packets in real 
space and the momentum spread due to the range of k values, the uncertainty 
relation Ax Ap > h given by Eq. (1.173) takes on added meaning. The particle 
has a high statistical probability of being found at any point where \\j/(x91)\2 is 
large, so the position of the particle is uncertain roughly to the extent of Ax. 
Similarly, the momentum of the particle is uncertain to the extent Ap. When we 
also include the fact that the wave packet is traveling with velocity vg9 the time at 
which the particle described by the packet goes past a given point in space is 
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uncertain by an amount At, where 

At~Ax/vg. (1.204) 

Since S = p2/2m for free particles, an uncertainty in momentum requires a 
corresponding uncertainty in energy, 

AS = A(p2/2m) ~ p(Ap)/m = vg(Ap). (1.205) 

Solving for Ax and Ap in these last two relations and substituting into Eq. (1.173) 
yields the energy-time form of the Heisenberg uncertainty relation, 

AS At>h. (1.206) 

Although we have deduced the relation (1.206) in only one way, there are in fact 
many other ways to obtain it. One of the most interesting approaches is to return 
to the basic consideration of waves and wave motion. To measure the temporal 
frequency v (or corresponding angular frequency ω = 2πν) of a sinusoidal wave 
we can perform an experiment with a fine stopwatch in which we count the 
number of intensity maxima which occur over a given time interval. Since the 
first maximum may occur just before, just after, or at some intermediate time 
point relative to the starting point (t = 0), and similarly for the last maximum 
relative to the stopping point (/ = ts), the number TV of maxima corresponding to 
the time interval ts will be (assuming the best possible measurement) equal to the 
number n which have been counted to within an uncertainty of 1 or 2 maxima. 
Thus the measured frequency vs = n/ts will constitute an accurate representation 
of the true frequency v = N/ts to within some corresponding uncertainty Av, 

v = N/ts = (n± \)lu = vs± ( I /O = vs + Av, where Av = l/ts. 

The uncertainty in measured frequency thus decreases with an increase in the 
measuring time ts. However, if we are to associate the probability of particle 
location with this particular wave, then the energy S of the particle is hv = ήω, 
and the time ts of the measurement corresponds to the time interval during which 
we attempt to observe the particle. Since the amplitude of a pure sinusoidal wave 
is time independent, the probability of observing the particle over any fixed time 
interval containing many periods (T = 1/v) is essentially independent of time 
over the interval (0,/s). Thus an uncertainty in time At exists for particle 
observation which is equal to the time interval /s chosen. Therefore Av ~ I/(At), 
or equivalently, Av At ~ 1. Recognizing that the uncertainty in frequency may 
indeed be somewhat greater than the minimum (e.g., suppose n has been 
miscounted), then we can write Av At > 1. Multiplying through by h gives once 
again an energy-time form of the Heisenberg uncertainty relation consistent with 
Eq. (1.206), AS At = (hAv)At > h. The time uncertainty can be given physical 
meaning by considering a measurement to determine the quantum state of a 
particle. If the average lifetime of the particle state is tx, for example, then the 
particle's energy (and thus frequency) measurement can be carried out over this 
time interval, at least from an averaged or statistical viewpoint. However, the 
particle may well undergo a transition to another state at any instant during this 
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time interval, thus corresponding to an uncertainty At ~ tx. If the energy of the 
state is S, there will be an uncertainty in energy AS in accordance with Eq. 
(1.206), where At can be replaced by the average lifetime tx of the state in 
question. 

A variation of the above-described counting approach can be used to deduce 
the position-momentum form of the uncertainty relation. If the wavelength λ is 
to be determined by counting the crests within a spatial interval L, then the 
experimental number n gives an experimental value 2exp, XQxp = L/n, which 
approximates the true wavelength λ to the extent to which n is a good measure of 
the number TV of wavelengths associated with the length L. It is readily seen from 
the argument previously used that n = N + 1, so that the momentum p = h/λ is 
measured (at best) to some limiting degree of precision, 

Axp = hßexp = h(n/L) = hl(N ± 1)/L] = (hß)± (h/L) = p ± Ap 

where Ap > h/L. However, the particle may have any position over the distance 
L, so that the uncertainty in position Ax is L, and we obtain Ax Ap > h, which is 
certainly consistent with the inequality (1.173). 

An alternate approach to the position-momentum form of the uncertainty 
relation can be deduced directly from our Fourier integral development. Let us 
consider a uniform amplitude wave y = A sin kx over the spatial interval L. 
Expansion of this truncated wave (i.e., it has zero amplitude outside of the 
interval in question) leads to a distribution of Fourier components, with the 
width of the distribution g(k) increasing proportionally to the reciprocal of the 
spatial interval L such that L Ak > 1. Assigning the wave the particular role of 
describing the probability amplitude of the particle then leads again to the 
uncertainty Ax in particle position being of the order of L. Employing the de 
Broglie relationp = h/λ = h(2n/k)~l = ßÄ; leads to JA: = Αρ/ή, so that the above 
relation is converted to the position-momentum form of the uncertainty 
relation, Ax Ap > h. Alternatively, a periodic function in time can be Fourier 
expanded over a finite time interval tM, and it is found that the width Αω of the 
frequency distribution #(ω) needed to represent the truncated wave is inversely 
related to the time interval tM such that tM Αω > 1. Associating this wave with a 
particle through ω = £>/ή, with At = tM representing an uncertainty in time at 
which the particle is observed, yields the energy-time form of the uncertainty 
relation AS At > h. It is left as exercises for the reader to carry out the indicated 
spatial and temporal Fourier integral developments required to complete these 
latter approaches to obtain the two forms of the uncertainty relation. 

Yet another approach to the uncertainty relation can be developed from the 
experimental viewpoint of a position measurement of the location of a point 
mass by means of a microscope using electromagnetic waves of wavelength >lphot 
and frequency vphot = c/Aphot. It is a fact that the resolution of a microscope is 
limited by the wavelength of the light used for the measurement such that the 
uncertainty Axmass of the position measurement will be of the order of (or greater 
than) the wavelength, Axmass > 2phot. However, photons have momentum 
p = h/λ, and the conservation of momentum when the measuring photon 



§7] WAVE-PACKET SOLUTIONS 69 

scatters off of the point mass will cause an uncertainty in the final momentum of 
the point mass of this order, namely Apmass « h/λ hot. Therefore we must 
conclude that, following the measurement, 

which once again is certainly consistent with the position-momentum form 
(1.173) of the Heisenberg uncertainty relation. 

A rigorous development of the uncertainty relation shows that the minimum 
value of Ax Ap or of AS zJiis of the order of \h, while there is no particular limit 
to the maximum value. One reason for this is that Ax (and thus At) usually 
increases with time as the packet undergoes dispersion. (In rigorous treatments 
of the Gaussian wave packet, the value of δχ is evaluated explicitly as a function 
of time. If our knowledge of/? is not considered to improve with time, then the 
product Ax Ap will certainly increase with time.) Because ^h therefore represents 
a minimum value for the uncertainty product, the uncertainty relation must 
always be considered to be an inequality. The factor of \ occurring in the 
minimum uncertainty value ^h allows Eqs. (1.173) and (1.206) to be restated in 
the more rigorous forms given in Eq. (1.207), 

AxAp^^h and ASAt^^h 

(rigorous forms of the Heisenberg uncertainty relations). (1.207) 

PROJECT 1.9 Uncertainty Relations 

Carry out spatial and temporal Fourier integral developments of the position-momentum and the 
energy-time uncertainty relations. 

7.9 Wave-Packet Physics and Philosophy 

The wave packet is one way of representing the wave function ψ(χ, t) for a 
given physical system. The interpretation of the wave function φ is given by 
Borrfs postulate: The probability of finding the particle described by a wave 
function ψ in a small (differential) region surrounding the position x is proportional 
to \φ\2 = ψ*ψ, the square of the magnitude of the wave function, evaluated at that 
position x. This postulate relating to particles is analogous to the situation in 
electromagnetic wave propagation wherein the probability of finding a photon 
in the neighborhood of a point in space is proportional to the square of the 
electromagnetic wave intensity at that point. (In addition, in classical elec-
tromagnetic theory the square of the electromagnetic wave intensity is 
interpreted as a measure of the electromagnetic energy density at the point in 
question.) 

Although the time dependence of the wave packet seems to indicate that it is a 
somewhat dubious theoretical tool for describing the location of a particle, it has 
the merit of furnishing us with a way to introduce at least some degree of 
localization into the infinitely extended plane-vvave solutions of the Schrödinger 
equation. The spreading of the packet with time merely reflects that there is some 



70 AN INTRODUCTION TO QUANTUM MECHANICS [Chap. 1 

uncertainty in initial momentum of the particle corresponding to the spread in k 
values, which, with progressing time, results in greater uncertainty in the 
position of the particle. The particle itself should not be considered to disperse 
with time; it is only our knowledge of its location which decreases with time. This 
is the intellectually frustrating aspect of quantum mechanics, namely, that our 
knowledge is restricted to that which is contained within the statistical function 
^(r, /). On the other hand, the intellectually satisfying aspect of quantum 
mechanics is that the predictions derived from the statistical function ^(r, /) are 
in accord with experiment. In this all-important respect, quantum mechanics is 
superior to classical mechanics. 

8 Expectation Values for Quantum-Mechanical Operators 

8.1 Significance and Use of Wave Functions for Computing Statistical Averages 

One of the important tenets used in our development of the Schrödinger 
equation in §6 was the assumption that the probability density for finding a 
particle at position r and at time t is given by |^(r, t)\2 = φ*(τ, ήφ(τ, t). The 
Fourier transform of φ(τ,0) given by Eq. (1.169) gives the corresponding k-
vector distribution for the particle, and therefore the momentum probability 
amplitude distribution, since p = ftk. In essence, the physical state of a particle at 
time t is described as completely as is possible within the formalism of quantum 
mechanics by the wave function φ(τ,1)! Moreover, the time development of this 
wave function is determined by the time-dependent Schrödinger equation 
(1.124); this equation can therefore be considered to be the fundamental 
equation of motion for the quantum-mechanical system [Mandl (1957)]. 

Let us presume that φ(χ, i) has been scaled by a constant factor of the proper 
magnitude for normalization. This means simply that the probability of finding 
the particle somewhere in space at any given time must be unity, 

i^*(r, t)il/(r, t) dx = 1 (normalization condition). (1.208) 
J ΩΤ 

If the integral in Eq. (1.208) has a value M that is not unity, then φ must generally 
be replaced by the corresponding normalized wave function given by 

ψ„ = (Μ)-ν2<*δψ(τ9ί), (1.209) 

where δ can be any arbitrary real number called the phase factor. Occasionally 
the wave function cannot be normalized over the infinity of all space. Such is the 
case for a completely nonlocalized wave function such as the plane wave 
exp[/'(k · r - ω/)]· In this situation, the wave function can still be normalized 
over a finite region of space, such as a bounded universe or a 1-cm3 block of 
metal. Henceforth we will consider that the wave function φ has been 
appropriately normalized. 
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Since φ*φ denotes the normalized particle probability density, the statistical 
average value {fir)} of a function fir) dependent upon the position r of the 
particle is given by 

<ΛΦ = ί Ψ*(τ, ήψ(τ, 0 / ( r ) dx = \ φ*(τ, ή/(τ)φ(τ, ή dr. (1.210) 

This quantity </(r)> is called in quantum mechanics the expectation value off. A 
particular application would be the choice fir) = r, in which case we would 
obtain the "expected" or "average" value for the position of the particle. 

Suppose that we attempt to construct a quantum-mechanical operator fop 

which is analogous to the classical function fir). We do this by the usual 
prescription of replacing r in/(r) by rop. According to Eq. (1.167), however, 
rop = r, so / o p = fir). The above equation (1.210) for the expectation value of fir) 
can thus be written in terms of the expectation value for a quantum-mechanical 
operator, 

</op> = ψ*(τ9ή/°>ψ(τ9ήΑ9 (1.211) 

where fop can be considered to operate on φ(τ, t). 
It would be very useful if this procedure could be extended to all operators, 

instead of being restricted to multiplicative operators involving position only. It 
is quite amazing that this particular form (1.211) has indeed been found to be 
generally valid for other quantum-mechanical operators Jop, namely, 

-i. <Jop> = iA*(r, 0^opiA(r, 0 dr. (1.212) 
J Q, 

Let us adopt the approach that Eq. (1.212) defines what we shall refer to as the 
quantum-mechanical expectation value of an operator, and then show that for 
various specific cases it leads to results which can be interpreted as average 
values. 

EXERCISE Substitute ψΝ into the normalization integral (1.208) to show the correctness of the 
normalization factor. 

8.2 Special Case Where the System Is in an Eigenstate of the Hamiltonian ^f 
and the Operator Jop 

First, consider the simple case in which i/̂ (r, t) happens to be an eigenfunction 
i/^(r, t) of a time-independent operator J o p corresponding to the eigenvalue qh as 
well as being an eigenfunction of J f corresponding to the eigenvalue St. Then, 
according to the discussion in §6, it follows that 

£°mr,t) = qai(r,t\ (1.213) 
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where qt is a constant. Substitution into the above equation (1.212) gives for this 
case 

<Jop> = I φ*(τ9 0<7i*Mr, /) A = qt\ ψ*(τ, ήφ^ t)dr = qh (1.214) 
J Ω, J Ω, 

where we have specifically employed the normalization condition (1.208). On 
intuitive grounds, this is the expected result. That is, if the system is in an 
eigenstate of l°v corresponding to the eigenvalue qh then the average value of the 
physical observable represented by Jop should be equal to the eigenvalue qt. In 
fact, it is possible to show that in such a case there is no statistical uncertainty in 
the value of Jop. A standard measure of the deviation from the mean value in 
statistics is the "mean square deviation," which for a continuous function/of 
position r takes the form Af2 = [Q(f — f)2 dx, where/is the mean value of/ In 
the present case this leads us to compute 

<(Jop _ < J o p > ) 2 > ° P M 2 \ = ^*{j2op · Jop - 2i2op<j2op> + <Jop>2}iMr 

J Ωτ 

Thus we say that there is no deviation from the value qt for the physical 
observable represented by lop when the system is in the eigenstate i/̂ . 

PROJECT 1.10 Mean Square Deviation of Quantum Operators Leading to the Uncertainty 
Relation 

Use the standard measure of the deviation from the mean in statistics, taking the position JC as an 
operator, to deduce the mean square deviation for the wave packet described in §7.2. Repeat for the 
Gaussian wave packet described in §7.7. {Hint: Your results should bear some resemblance to the 
Heisenberg uncertainty relations (1.207).] 

8.3 Case of a Superposition State with Jf and Jop Having a Complete Set 
of Simultaneous Eigenfunctions 

We next consider the more general case in which ^(r, t) is not itself an 
eigenfunction of Jop. The procedure is then to attempt to expand t/f(r, i) in a 
complete set of eigenfunctions of the Hamiltonian Jtf which are simultaneous 
eigenfunctions of Jop; an example specifically applicable for the momentum 
operator pop would be to express ^(r, t) as the superposition of a group of plane 
waves, each individual plane wave being an eigenfunction of pop as shown in §6. 
This particular expansion would be the Fourier integral wave packet treated 
previously in some detail. 

It might be asked at this point whether or not an arbitrary operator could be 
expected to possess a complete set of eigenfunctions. There is a basic tenet of 
quantum mechanics, called the fundamental expansion postulate, which states 
that every physical quantity can be represented by a Hermitian operator, which is 
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an operator with real eigenvalues so that it has real expectation values, and this 
Hermitian operator possesses normalized eigenfunctions gi (7=1 ,2 , . . . ) of 
sufficient number to represent an arbitrary state fybya linear superposition £ f b&i. 
Such a set of normalized functions gi is therefore said to be complete. However 
the complete set gt may or may not be the same as the complete set of functions φί 

which are eigenfunctions of the Hamiltonian operator Jf\ If we consider 
ψί(τ, i) = 0i(r) exp[ — (ijfi)Sit\ to represent the set of time-dependent eigenfunc-
tions of the Hamiltonian ^f, then φ(τ,ή can be expressed as a linear 
combination of such functions with weighting factors or probability amplitudes 

WM) = Zf l#»0. (1-215) 
i 

Sometimes this wavefunction φ(τ, t) is said to represent a superposition state, 
since the system is not in a specific eigenstate i/^(r, /) of the Hamiltonian 3tf. [The 
summation sign in Eq. (1.215) is designated to include an integration over any 
portion of the energy eigenvalue spectrum which is continuous (cf. §6.3) rather 
than discrete.] Operating on this equation with i>op, where we assume the at to be 
time independent, gives 

j2°Pi/,(r, t) = Jo p £ a^i = £ α^ψν (1.216) 
i i 

If we then assume that we have the very special case for which the complete set of 
eigenfunctions gt of £>op are identical with the complete set of eigenfunctions φ{ of 
Jf, then Eq. (1.216) becomes 

<ηκΜ)='Σ w*'· ( 1 · 2 1 7 ) 

i 

Substituting this result and Eq. (1.215) into Eq. (1.212) gives 

<J20P> (Z «tfjfil "Μψ) * = Σ Σ Wf* ί ΦΐΦι *· (1-218) 
' Ω, \ j / \ i / i j J Ω, 

Let us assume for the moment the theorem (which is proved in §8.6 of this 
chapter) that eigenfunctions belonging to different eigenvalues are orthogonal, 
namely, 

/» 
φ*φ,άτ = δφ (1.219) 

where δ^ is the Kronecker delta function which is unity for / = j but zero 
whenever i^j. Then we obtain from Eq. (1.218), 

< J o p > = Σ Σ « , ^ = Σ aiafqi = Σ Ν 2 9 | β ( L 2 2 0 ) 

The coefficients a{ are the weighting factors for the individual normalized 
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eigenfunctions ψ( constituting ψ(τ, 0, and |tff|2 gives the weighting factor for the 
contribution of any particular eigenstate φ( to the total probability. It is perhaps 
helpful to explain in greater detail the above statement that |α,·|2 represents, in 
some sense, a weighting factor for the contribution of the state φι to the 
probability density φ*(τ,ήφ(τ,ή. Substituting the linear combination (1.215) 
for φ into the normalization condition (1.208) yields 

1 = iA*(r, ήφ(τ, t)dr=\ \Y α}φΛ \Y αψλ dx 

= ΣΣαϊ«ι W * = ΣΣ«;«Α/ = Σ«ΐ*ι = Ik-I2· (1.221) 
j » ^ ΩΓ j . i i i 

We can therefore interpret this result in the following manner: each coefficient at 

leads to a contribution of amount \at\
2for state φ( to the total probability. Using the 

fact that \ai\2 gives the weighting factor for the contribution of the state φ( to the 
total probability, together with the knowledge that qt is the value of Jo p 

corresponding to this state, we can now interpret Eq. (1.220) above for < Jop> as 
the weighted average of q{ over all states φ{. The weighting factors |af|2 are 
determined by the relative admixture of the states in the total wave function 
φ{τ,ί). We thus conclude that the prescription given by Eq. (1.212) for 
evaluating the quantity defined as the "expectation value of the operator J2op " 
can be used, at least in the special cases examined above, to obtain an average 
value of the physical observable represented by the operator lop. 

PROJECT 1.11 Hubert Space 

Write a paper on the properties of the mathematical construct known as Hubert space. Include a 
discussion of the relevance of Hubert space to our formulation of quantum mechanics. 

PROJECT 1.12 Matrix Theory 

Prove that the eigenvalues of a Hermitian matrix are real, and that eigenvectors corresponding to 
different eigenvalues are orthogonal. 

8.4 More General Case for the Superposition State 

The expression (1.220) developed above and interpreted as the expectation 
value of an operator Jo p is time independent because Jo p had eigenvalues which 
were independent of time and we assumed that there exists a complete set of 
functions which are simultaneous eigenfunctions of J f and lop. Neither of these 
criteria need be met for an arbitrary Hermitian operator. It is therefore quite 
worthwhile to consider the somewhat more general case where the φ^τ, t) are 
eigenfunctions of J f but not necessarily eigenfunctions of Jop. Using the 
definition (1.212) for the quantum-mechanical expectation value of an operator 
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once again, we obtain for the present case 

<J°P> = ^*(r, ή£ορψ(χ, 0 dx 
J ΩΓ 

= ί { l aMr> θ}^ο ρ {Σ a'Ur, t)\ dt 

= Σ Σ «*«' ί **( ' . Ο ^ ι ί ' , 0 *■ (1-222) 
j I J Ω, 

Employing the stationary-state eigenfunctions 0,·(Γ), we can write i/^(r, t) = 
φι(χ) e x p [ - (ijK)$it\ Expression (1.222) then becomes 

<<2op> = ^ ^ β;β |βχρ[(//*)(^ - * ) / ] I φ*{τ)£»φίτ) A, (1.223) 

provided ^o p does not operate on the time factors. This is easily assured by 
requiring Jo p to be time independent. The integrals 

2» = φ*{χ)£°*φίχ) dx (1.224) 

are known as matrix elements of the operator Jop, and the quantities 

ωβ = (gj - gftti (1.225) 

represent angular frequencies. We note that the matrix elements are time 
independent if Jo p is time independent. With these abbreviations the above 
expression (1.223) becomes 

<j°p> = X X a+a&rfT*. (1.226) 
j i 

The expectation value for the operator is therefore generally time dependent. The 
terms for which j = I have ω^ = 0, so they are time independent if Jo p is time 
independent; these are called the diagonal terms. For j Φ /, the terms are time 
dependent even if Jo p is time independent; these are called the off-diagonal 
terms. 

PROJECT 1.13 Parseval's Formula, Bessel's Inequality, and Schwarz's Inequality 

State and prove the following: 1. Parseval's formula, 2. Bessel's inequality, 3. Schwarz's in-
equality. [Hint: See Ikenberry (1962) and Merzbacher (1970).] 

8.5 Operators for Physical Observables Which Are Constants of Motion for the System 

Whenever Jo p is itself time independent, the additional criterion which must 
be met in Eq. (1.226) if <Jop> is to be time independent is that the off-diagonal 
matrix elements must be zero. A sufficient condition for this to be true is the 
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criterion mentioned previously, namely, that the eigenfunctions </>t(r) of the 
Hamiltonian Jf be simultaneous eigenfunctions of the operator Jop. Then 

&» = φ*(τ)^<Κν) dx = f φ*(τ)ςΜτ) dx 

= «\φΤ (χ)φι(χ) dx = giöjh (1.227) 

where again we have assumed orthonormality of the eigenfunctions according to 
Eq. (1.219). The off-diagonal terms which give rise to the time dependence are 
indeed zero for this situation, and i>op has a time-independent expectation value. 

The importance of Hermitian operators which have time-independent expec-
tation values for a given physical system is that they can represent physical 
observables which are constants of motion for the system. Constants of motion are 
just as important in characterizing quantum-mechanical systems as they are in 
classical mechanics [see Goldstein (1956)]. 

8.6 Orthogonality Proof for Eigenfunctions Having Different Eigenvalues 

Let us now prove the important theorem which we used several times already 
that all eigenfunctions of a Hermitian operator corresponding to different 
eigenvalues are orthogonal. We do this for an arbitrary Hermitian operator Jop, 
so the results will be immediately applicable to the special case of the 
Hamiltonian operator #? with eigenfunctions φ{. The proof of the theorem is 
easily carried out by using the characteristic eigenvalue equation for two 
arbitrary eigenstates i and y, 

We multiply the first of these equations by gf and the second by gf and integrate 
over all space to give 

I g*&»gi dx = g*qigi dx = qt g*gt dx, (1.229) 
J Ω, J ßr J Ω, 

g*2°% dx = gfqjgj dt = qA gfgj dx. (1.230) 

If ^op is to represent a physical observable, its eigenvalues qt must be real, which 
condition is satisfied if Jo p is chosen to be Hermitian. 

One definition of a Hermitian operator, which is the one to be used in our 
proof, is that 

g?(£opgj) dx = (£or>gd*gj dx (definition of Hermitian operator) 
Ωτ J ß r 

(1.231) 

for arbitrary functions g{ and gy This definition (1.231) follows from the more 
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common definition, that Jo p is Hermitian if 

(5°y)* /* = f*(£°*f) dx (1.232) 

for arbitrary / , by choosing / to be gt + ygh where y is an arbitrary complex 
parameter. It is more clear from the latter definition (1.232) that there is a 
correlation between physical observables and the Hermitian property of 
operators. That is, whenever/s is an eigenfunction of Jo p corresponding to a real 
eigenvalue λ (so that λ* = λ&), as must be the case when Jo p represents a physical 
observable, then the relation (1.232) reduces to 

[ (W/. A = [ /.WJ * (1-233) 
J Ω, J Ω, 

which is obviously satisfied. 

EXERCISE Prove that the definition (1.231) for a Hermitian operator follows from the 
seemingly more restricted definition (1.232) of such. (Hint: Consider/to be a linear combination of 
gt and g} with complex coefficients.) 

To return to our proof, using the relation (1.231), Eq. (1.230) can be written 

I (^gd*gjd[ = gj\ gfgj dr. (1.234) 

Taking the complex conjugate of this relation gives 

(3opgi)gJdr = q* Giu* dr. (1.235) 

The order of the scalar factors in the products in the integrand is not important. 
As mentioned before, q^ is real. This equation can therefore be written 

gf&»gidr = qj 
J Ω, 

g*9i dr. 

Subtracting from Eq. (1.229) gives immediately 

0 = (qi - qj) gfgi dr. 

(1.236) 

(1.237) 

If gfi and gj correspond to different eigenvalues of ^op, namely, qt Φ qj9 then this 
relation tells us that 

ljgidr = 0 (i #7) , (1.238) 

which proves the theorem and thereby justifies Eq. (1.219). If gt is a different 
function from g} but qt = q}, which is the degenerate case, Eq. (1.237) then gives 
no information on the value of \Qx gjgt dr. This integral can still be zero if the 
functions gt and gj are chosen properly. Relating to this question, there is a 
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technique for constructing orthonormal functions, called the Gram-Schmidt 
process, so that we can in principle always assume that our complete set of 
eigenfunctions is orthogonal. Details are given in Ikenberry (1962). 

8.7 Alternative Treatment of the Time Dependence of Quantum-Mechanical 
Operators 

It is worthwhile at this point to examine the time dependence of quantum-
mechanical operators from a standpoint somewhat different from Eq. (1.226). 
We do this by differentiating the expectation value of the arbitrary operator Jo p 

with respect to time, using the Leibniz rule for differentiation of an integral, 

d d 

dr } dt 
φ*(τ9 ί)1

ορψ(τ, t) dr 

dt 
^ορψ dr + 

J Ω 
ψ*1ορ—άτ + 

dt 

d£op 

ψ* ψάτ. (1.239) 
, dt 

We use the Schrödinger equation (1.163) and its complex conjugate to replace 
di//*/dt and δφ/dt by (ί/Λ^ψ* and —{i/h)j^\jj, respectively, and note that the 
third integral in Eq. (1.239) is the expectation value of d£op/dt. Of course, 
(d£lop/dt} will be zero whenever <2°p is not an explicit function of time. (We have 
assumed throughout that the Hamiltonian J f is not explicitly time dependent; 
otherwise we would not have an energy-conserving system, since a classical 
Hamiltonian is time-dependent only when the total energy of the system is time 
dependent. Use of the stationary-state eigenfunctions φ^τ, t) = φί(τ) · 
exP[( — ilh)$if] always implies a time-independent Hamiltonian, because our 
separation-of-variables technique used in §6 to deduce the time-independent 
Schrödinger equation is based on this assumption.) Thus we have 

dt 
<i2op> -ίί. (34?ψ*)(£ορψ)ατ ψ*£ορ^ψ dr + 

ti2°p 

~δΤ 

(1.240) 

Since Jif is Hermitian, the first integral can be written |ΩΓ φ*(3^Ά°ρ)φ dr, so 

dt 
<i2op> = φ*{Άορπ - ^Άορ}φ dr+{ —— 

a, \ dt 

- <jo p^r - MTi2op> + (—— 
hi \ tit 

i\ 8Άορ 

(1.241) 

The symbol 

[J2op, j f ] = £op3tf - J f i o p (1.242) 
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is called the commutator of Ά°ν and Jf. The commutator is an operator, and it 
operates on the functions i/^(r, t). Equation (1.241) is a very important result. We 
examine in the next section the conditions for which the time derivative of <<2op> 
is zero. 

EXERCISE Show that [/?°p, xop] = - ihJop
y where Jop is the identity operator. {Hint: Operate 

on an arbitrary function of position f(x) with the commutator.) 

PROJECT 1.14 Commutator Algebra 

Prove the following identities for the arbitrary quantum-mechanical operators i?°p, £°2
P, and £°3

P: 
1. I2°p,2°p + J2°p] = [J2°P, J ° P ] + [J2°p, i2°p]. 
2. [J27,(J2°PJ2°P)] = [J2°P, J2°P]J2°P + J2°P[J2°P, J2°P]. 

PROJECT 1.15 Commutation Relations between Position and Linear Momentum Operators 

1. Prove that |>op,/7°p] = /#, [xop,/?;p] = 0 , . . . , or in general, IXP,/?JP] = MtJ (i = 1,2,3; 
y = 1,2,3), where xu x2, x3 represent the x, y, and z components of the position vector r, and Pi,p2, 
and p3 denote the x, y, and z components of the linear momentum vector p. The relations stated 
above are to be interpreted in the usual operator fashion, namely, the right-hand side is the scalar 
multiplicative factor obtained when the differential operator on the left-hand side acts on some 
arbitrary function J(r) of position r. The square brackets identify the commutator of two operators 
(such as xop and/?°p) in accordance with Eq. (1.242), namely, for operators J ° p and J°p , [J°p, J°p] = 
φ ο ρ φ ο ρ _ φ ο ρ φ ο ρ 
"^ 1 °^2 **̂ 2 °^ 1 * 

2. Prove the commutation relations [JC°P, *JP] = 0 (i = 1,2,3 ;j = 1,2,3) for all combinations of x°p 

and x?p. 
3. Prove the commutation relations [/>°p>/7°p] = 0 for all combinations of/?°p and/?Jp. 

PROJECT 1.16 Angular Momentum Commutation Relations 

1. Work out the commutation relation [J2^p, £")
y
p'] = ih£?op. {Hint: You may wish to refer to Project 

1.6 on angular momentum operators.) 
2. Evaluate all possible commutators [J^7P, J2^p], where i = 1,2, or 3 andy = 1,2, or 3, with &op, 
S£°2

P, and i f 3P denoting the x, y, and z components of the angular momentum operator. 
3. Show that [j£?°p,}>op] = ihzop. 
4. Evaluate all combinations [J27P,xJp], where i = 1,2, or 3 andy = 1,2, or 3, with xl9x2, and x3 

denoting the x, y, and z components of the position vector r. 
5. Show that [J^°p,/>°p] = - ihpop. 
6. Evaluate all combinations [<£7P,/?JP], where / = 1,2, or 3 andy = 1,2, or 3, vnxhpup2, and/?3 
denoting the x, y, and z components of the linear momentum p. 
7. Organize the above results 1-6 into a meaningful table, and summarize your conclusions. 
8. Evaluate [^°p , ( ifo p)2] , [J27P, (rop)2], and [J27P, (pop)2] for / = 1,2, and 3. 

8.8 Commuting Operators, Simultaneous Eigenfunctions, and Constants of Motion 

If 

[ J o p , ^ f ] ^ = 0, (1.243) 

we say that i>op and 3tf commute. Let us now prove two important theorems 
relating the concepts of commuting operators and simultaneous eigenfunctions. 

The first theorem is that commuting operators have a complete set of 
simultaneous eigenfunctions. The proof proceeds as follows. If ^f is one of the 
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eigenfunctions of ^ , then 

j f (<2°Ρ^) = £ορ^Φί = £ορ£ίΨί = <$ί(£ορΨύ. (1.244) 

In this case, we see that &ον\\ι{ is likewise an eigenfunction of J f corresponding to 
the same eigenvalue <?,·. If the functions \\t{ represent a complete set which is 
nondegenerate, then ψι is the only eigenfunction of Jf with the eigenvalue &u 

and we are forced to conclude that 

l^iocij/i. (1.245) 

If we denote the proportionality factor by qh then we have 

&*Ψι = ςιΨι9 (1.246) 

which tells us that i/̂ · is also an eigenfunction of Άον>. Because xjji is an arbitrary 
eigenfunction of ^f, we can apply the results to the complete set of eigenfunc-
tions of ^f. [A bit more detail is required (see Chap. 5, §2 on diagonalization) for 
the situation where some of the eigenfunctions of 3tf are degenerate; the theorem 
can still be shown to be valid, however.] To summarize, we can say that 
commuting operators have simultaneous eigenfunctions. 

Conversely, we can prove the theorem that operators which have a complete set 
of simultaneous eigenfunctions are commuting operators. The proof is easily 
developed. If φι is a simultaneous eigenfunction of Jo p and J f corresponding to 
the eigenvalues qt and $h respectively, then 

J2opJf xjji = 3Ρ*β$ι = Si^xj/i = *&ψί9 (1.247) 

jei°^i = Jifq^i = qtJTYi = qtSiij/i. (1.248) 

Subtracting these two relations gives 

(i2opJf - #&*)ψι = [J2op, J T M = 0 (1.249) 

or symbolically, 2°VJ^ = 3tif£°v. By hypothesis, this holds for any one of the 
complete set of eigenfunctions of Jf. Thus, the commutator gives zero when it 
operates on any one of the complete set of simultaneous eigenfunctions. If the 
commutator acts on any linear combination of the complete set of simultaneous 
eigenfunctions, it again will give a zero result. Thus the operators commute when 
acting on any arbitrary function / , provided only that the function / can be 
expanded as a linear combination of the complete set of eigenfunctions in 
question. The theorem is therefore proven. 

Commuting operators can be used to represent physical observables which 
can be measured simultaneously; thus they are very important in quantum 
systems. In the expression (1.241) for the time derivative of <Jop>, the 
expectation value of [Jop, 3tT\ involves 

[ <2op, jTHWr, 0 = Ĉ op> #1 Σ <#ifc 0, (1.250) 

so that the expectation value of the commutator will be zero if each function in 
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the complete set φι(τ, t) is also an eigenfunction of 2°p. Therefore, we conclude 
from Eq. (1.241) that the sufficient conditions for the time dependence of the 
expectation value, viz, (d/dt)(£lopy, to be zero, and hence for £lop to represent a 
constant of motion for the system, is that 2°p be explicitly time independent and 
that Άορ and J f possess a complete set of simultaneous eigenfunctions. Comparing 
this with the previous criteria we developed for < Jop> to be a constant of motion, 
we see that we have replaced the condition that the off-diagonal matrix elements 
be zero by the condition that the complete set ψι be simultaneous eigenfunctions 
of Jo p and J^. It is readily seen in Eq. (1.227) that whenever the complete set of 
functions ψι are also simultaneous eigenfunctions of £op, every off-diagonal 
matrix element is indeed zero, so the two conditions are consistent. 

Practical applications of commuting operators and constants of motion are 
prevalent throughout quantum mechanics, one particularly important example 
being that of angular momentum. However, operators are also important for the 
linear momentum, which is a more important quantity for understanding 
electron transport in solids since it is related directly to the electric current. 
Before treating electron transport, let us extend our understanding of matrix 
mechanics a bit, and formally introduce the Dirac notation. 

8.9 Matrix Formulation 

The term "matrix element" arises from the matrix formulation of quantum 
mechanics [see Heisenberg (1930)] where operators are represented by matrices. 
For example, if the complete set of functions </>,· satisfies the Schrödinger 
equation, Jf φι = &ιφι, then these functions can be used as the basis states for the 
function space in question, and the matrix elements Άί} of the arbitrary operator 
lop with respect to this basis are defined by Άί} = Jßr φ?(r)Jop0/r) dr. Because 
the set {φί} is complete, the operator Jo p is represented totally by the matrix 
made up of all of the matrix elements, namely, 

A l l J2i2 J2i3 
, o p = / Ä21 ^22 ^23 

I 53 i J232 ^33 

Without going into detail, it can be said that the diagonal elements are related to 
expectation values of physical observables and the off-diagonal elements are 
related to transition probabilities. Thus the matrix elements prove to be very 
useful. Dirac introduced a shorthand notation wherein the above integral for J 0 
is written simply ^ = </|i>op|y>. Dirac's notation lends itself to ready in-
terpretation in the language of linear algebra. The set of 0 / r ) can be said to 
constitute a set of functions spanning a linear vector space. These functions are 
denoted by the symbol |y > and are called ket vectors. The complex conjugate set 
φί(τ)* are, in general, different functions which bear a one-to-one cor-
respondence to the (/>/(r), so they can be said to be the basis vectors for a dual 
space. They are denoted by the symbol </| and are called bra vectors. The inner 
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product of φΐ(τ) and 0/r ) , analogous to the scalar product in ordinary vector 
space, is denoted by the bra-ket symbol </|y> and is defined by the integral </[/> 
= j ß r φ?(τ)φ£τ) dr. The operation of Jo p on φ^τ) produces by a linear mapping 
of the vector |y> some other vector £°νφ}{χ) = ßop\j} in the linear vector space. 
The matrix element J0· can then be interpreted as the inner product </|^op|y> of 
the vector Jop|y> (which is produced by this mapping) with the basis vector </|, 

J Ωτ 

<i\2»\f> = φ*(τ)2»φ/(ι)Α. 
J Ωτ 

It can be noted that the diagonal elements <7|Jop|/> represent the expectation 
values of Jo p whenever the system is in a specific eigenstate $f(r) of the 
Hamiltonian. 

Whenever the operator Jo p has a simultaneous (viz, common) set of 
eigenfunctions with the Hamiltonian Jf, such that £ορφ] = Q$j (ally), then the 
matrix elements of Jo p take the form </|Jop|y> = 0\Qj\J> = Qj0\j> = QAj, 
where we have presumed to have an orthonormal set 0f. The operator ^ο ρ is then 
said to constitute a diagonal operator, since its matrix representation is a 
diagonal matrix with respect to the basis functions in question, 

' j n 0 0 · · 
^op . 0 J>22 0 

1 0 0 J33 

When the operator Ά°ρ and the Hamiltonian have a simultaneous set of 
orthonormal eigenfunctions, then the expectation value of Jo p can be written 

j o p <J°p> = ( £ « ? # Σ a^j) = Σ Σ efe/'lJH./) = Σ Σ är°j<i\Qj\f> 

= Σ Σ ">jQj<i\J> = Σ Σ afajQAj = Σ flfe/ß/ = Σ kl2&· 
i J i J i * 

This result can be interpreted by means of a postulate on quantum measure-
ments due to John von Neumann: Any ideal measurement of the value of an 
observable for a physical system yields one of the eigenvalues of the operator 
representing the observable. Therefore the above result constitutes a weighted 
average of the result of many measurements on identical systems, with the 
weighting factors |0t|2 representing the probabilities for the system to be in the 
various eigenstates φ{. 

If the operator Jo p is not diagonal with respect to the representation (i.e., the 
basis set) defined by the eigenfunctions φι of the Hamiltonian, then to obtain the 
eigenvalues of Jo p we can proceed as follows. First of all, we know from the 
properties of Hermitian operators that a complete set of eigenfunctions exists for 
an arbitrary Hermitian operator Jop, so that we can confidently write 
^opQi = QiQi 0' = 1,2,3,...). Here the gt represent the complete set of functions 
and the Qx are constants. By the fundamental expansion postulate, we next write 
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a specific (though arbitrary) one of the functions gt as a linear combination of the 
set of eigenfunctions φΐ of the Hamiltonian, gt = Σιαί3φ} (i fixed), where the atj 

are the constant coefficients in the linear expansion. Substituting this expansion 
into the above eigenvalue equation for Jo p gives =2ορ£; αί}φ·3 = QiY^jCi^j 
(i fixed). To evaluate the coefficients aij9 take the inner product (i.e., the scalar 
product) of each side of the above equation with an arbitrary basis state φκ. This 
gives <<l>k\&»ZjatJ<!>J> = <^I&Z;M>;>> o r equivalent^, ^ail<k\&"\J>] = 
Σ j aijQi(k\jy. Assuming orthonormality of the functions φι leads to <&|/> = ökj, 
which when substituted into this equation gives Σ ^ ΐ / ^ — ÖA./) = 0 0 fixed; 
k = 1,2, 3 , . . . ) . This constitutes the standard matrix form for the characteristic 
eigenvalue problem. Recognizing this as a set of simultaneous linear homo-
geneous algebraic equations for the unknowns αη,αί2,αί3,..., we can (by 
employing Cramer's rule to attempt a solution) see that there exists no set of 
nonzero atj which satisfy this equation unless the determinant of the coefficients 
is zero, namely, det(Jfcj· — Qiokj) = 0 (/ fixed), or more explicitly, 

(^11 -Qi) &12 ^13 

5 2 1 (^22 " Qi) ^23 

^31 ^32 (^33 " Qi) 
= 0. 

This square array is referred to as the secular determinant, and expansion by 
minors leads in the usual way to an algebraic equation in the unknowns Qt. This 
algebraic equation, commonly referred to as the secular equation, is of a high 
degree. Specifically, its degree is the same as the number TV of orthonormal basis 
states φι. The solution of this algebraic equation then leads to TV values of Qh and 
each such value can be used to solve the set of simultaneous algebraic equations 
given above for the coefficients a^. These in principle give all of the 
eigenfunctions gh since g{ = £,· α13φ3, and the set of Q{ constitute the set of 
eigenvalues of the operator Jo p which can be interpreted in light of the von 
Neumann postulate stated above. The set of gt so obtained are referred to in 
matrix terminology as the eigenvectors of =Sop. Symbolically, the set of 
simultaneous linear equations given above can be written in matrix form 

(^11 -Qi) ä12 J2i3 

^21 0^22 " Qi) ^23 

^31 ^32 (^33 " Qi) 
= 0 

or equivalently, 

^11 Ä12 ^13 

^21 ^22 ^23 

^31 ^32 ^33 
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or symbolically, i?opa(l) = Qi&{i\ where a(0 is the ith eigenvector of Jop, 

a(0 = 

It can be noted that the eigenvector is a column matrix made up of the 
coefficients ai} appearing in the linear combination gt = £,· αί}φ^ of eigenstates 
of the Hamiltonian required for gt to be an eigenfunction of the operator 2°p 

corresponding to the eigenvalue Qt. This procedure is sometimes referred to as 
diagonalizing the operator J o p in the manifold spanned by the eigenfunctions of the 
Hamiltonian. 

8.10 Dirac Notation Summary 

The use of angular brackets in quantum mechanics can be attributed to Dirac 
(1962). An abstract vector in function space {Hubert space) is denoted by a ket 
vector symbol | >. Labels, such as eigenvalues, which distinguish this vector from 
similar ket vectors are written in as arguments of the ket vector. For example, \j > 
could denote the eigenfunction i/^(r, i) belonging to the energy eigenvalue Sj. 

The complex conjugate of a ket vector is denoted by a bra vector symbol < |, 
with the arguments being unchanged from the ket. Thus <y| could denote 
<A?(M). 

The scalar (or inner) product of a function with itself is denoted by the bra-(c)-
ket, 

■i J Ω, 

which is sometimes referred to as the square of the norm (absolute value) of the 
vector. 

The ccalar product of a function t/^(r, t) with a function i/^(r, t) is also denoted 
by a bra-(c)-ket, </|y > = j " ß r ψ*(τ, t)ij/j(r, t) dr. If φ^τ, t) and ^ / r , t) are orthog-
onal and normalized, then </[/> = Sij9 where ötj is the Kronecker delta function 
which equals unity when / = j but is zero otherwise. 

The expectation value of an operator Jo p with respect to a state i/^(r, t) is 
denoted in bra-(c)-ket notation by <y|^opL/> = f̂  ^ ( r , O ^ ^ / r , i) * . The 
matrix representation of the arbitrary operator ^o p with respect to a complete set 
of basis functions ^i,^2»^3>··· involves a square matrix of numbers, each 
number being one of the "matrix elements" 

%ij = «\£op\J> = ψ*(τ,ή&»ψ£9ήΑ. 
ΩΤ 

The bra and ket vectors correspond, respectively, to the row and column vectors 
of matrix algebra. 
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The principal merit of Dirac notation insofar as our work is concerned lies in 
the simplification of writing equations. There are few who would argue the point 
that 0 |y> is far easier to write than the integral form it represents. Moreover, 
writing quantum mechanics equations in Dirac notation is fun! 

PROJECT 1.17 Born's Proof of the General Uncertainty Relation 

1. Show that the Heisenberg uncertainty relations (1.207) are special cases of the basic theorem 
regarding all general quantum mechanical uncertainty relations: (zl^°p)2(zl^°p)2 ^ \(i{£°f, £°fY>2, 
where J°p and J°p are Hermitian operators, [J°p, ̂ °p] denotes the commutator J2°P£°2

P - J°PJ2°P in 
accordance with Eq. (1.242), the symbol < > denotes expectation value in accordance with Eq. 
(1.212), and (Δ£ορ)2 = <(^op - <^op»2> denotes the mean square deviation. 
2. Prove the general uncertainty relation stated above (part 1). {Hint: You may find it helpful to 
refer to Born (1957, p. 387) or to some standard reference such as Ikenberry (1962, pp. 74-75).] 

PROJECT 1.18 Fundamental Postulates of Quantum Mechanics 

Formulate a set of postulates upon which the discipline of quantum mechanics can be erected. {Hint: 
See Rojansky (1938).] 

9 Probability Current Density 

9.1 Equation of Continuity 

The probability density p = \φ(τ, t)\2 represents a convenient starting point for 
the consideration of particle and charge currents as computed quantum 
mechanically. If we consider this as a statistical quantity which is a continuous 
function of position, then the time derivative gives the rate of change of the 
particle density with time, 

dp d . d δφ δφ* 
-£ = - \φ(τ, 0I2 = T- l>*(r, OlKr, 0] = **-£ + -£-*· ί1·251) dt dt dt dt dt 

However, a time rate of change of the probability density at any given point in 
space requires a difference between the particle currents flowing into and out of 
the differential volume surrounding the point in question. The mathematical 
statement of this fact is the well-known microscopic equation of continuity, 

dp/dt= - F 7 · J, (1.252) 

where V · J is the divergence of the particle current density J at the point in 
question. 

9.2 Development of a General Expression for the Particle Current Density 

Equating the two expressions (1.251) and (1.252) for dp/dt gives the relation 

ν"'-(**Έ + ΊΓ*) ( 1 · 2 5 3 ) 
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which must be obeyed by the quantum-mechanical analog of the particle current 
density J. For further development of this expression, we employ the time-
dependent Schrödinger equation (1.124) and its complex conjugate, 

δψ h2 , 
« - £ - = - — ν2φ + Πτ)ψ9 (1.254) 

ct 2m 

δψ* h2
 Ί 

-in-f—= ν2φ* + -Τ(ι#*. (1.255) 
ct 2m 

In taking the complex conjugate, we have used the fact that r* = r, t* = t, and 
f ( r ) * = iT(r) due to the fact that we are concerned with real positions, real 
times, and real potentials. We multiply the Schrödinger equation by ψ* and its 
complex conjugate by ψ to give 

M h2 

m*— = ψ* V2il/ + il/*r(r)il/, (1.256) 
dt 2m 

- ίΛψ— = φ ν2ψ* + φ^(τ)ψ*. (1.257) 
dt 2m 

Subtracting the second equation from the first gives 

/ # # * \ h2 

ih U*-£ + φ^-\ = —(ψ ν2φ* - ψ* ν2ψ), (1.258) 

where in equating i/^*iT(r)^ with i/^T(r)i/f* we have used the fact that iT(r) is 
merely a multiplicative operator so that the factors in the product ^*iT(r)i^ 
commute. The right-hand side involves the Laplacian operator, so that it is 
reasonable to expect that it can be expressed as the divergence of some vector 
quantity. If we take the divergence of ψ* νψ, we obtain 

V · OA* νψ) = νψ* -νφ + ψ* ν2ψ, (1.259) 

whereas if we take the divergence of φ 7φ*9 we obtain 

V · (φ Ϋφ*) = νφ - νψ* + ψ ν2ψ*. (1.260) 

Recognizing that the dot product of two vectors such as νψ · νψ* is 
commutative, so that 7φ · Vx//* = Vxj/* · νψ, we can subtract the above two 
quantities (1.259) and (1.260) to give the relation 

V · (φ* νψ - φ νψ*) = ψ* ν2φ - φ ν2ψ*. (1.261) 

The right-hand side can be identified with the factor in the right-hand side of 
(1.258); we thereby obtain 

ίή(ψ* δφ/dt + ψ δψ*/δή = -(h2ßm) V - (ψ* νφ - ψ νψ*). (1.262) 

Substituting into Eq. (1.253) for V · J gives 

V · J = (h/2mi) ν·(ψ* νψ -ψ Vij/*). (1.263) 
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Within an arbitrary constant, then, 

J = (Λ/2ηιί)(φ* νψ-ψ νψ*). (1.264) 

The arbitrary constant is zero if J = 0 whenever φ = 0, as one would expect. 
Knowledge of the wave function φ therefore allows us to calculate the particle 
current density J quantum mechanically. For the case of electrons, the charge 
per particle is — e, so that the charge current density # follows immediately from 

ß = -eJ. (1.265) 

9.3 Specific Application to Free Particles 

It is illuminating to apply the above relation (1.264) to the specific case of 
plane waves, which have been shown to be eigenfunctions of the momentum 
operator pop = -ih V. Thus νφ = (ί/Λ)ρφ and 7φ* = (-ΐ/Λ)ρφ*9 so that 

J = (Λ/2τηϊ)ΙΨ*(ί/Λ)νψ ~Φ(- ι/*)ρ^*] = (ρ/2*η)ΙΨ*Ψ + φ*φ] = φ*φ\. 

(1.266) 
This is simply the product of the particle probability density φ*φ and the particle 
velocity v, which is readily interpreted as the particle current density on the basis 
of physical considerations. 

10 Energy Levels and Density of States 

10.1 Bound States of a Particle 

The plane-wave solutions of the Schrödinger equation for the motion of 
particles in free space were shown in §6 to be eigenfunctions of both the 
Hamiltonian operator and the momentum operator. The energy eigenvalue 
δ = hco and the momentum eigenvalue p = hk corresponding to a given plane 
wave^kexp[/(k · r — ωί)~] = Ak exp[(//Ä)(p · r — $t)~] are related by δ = p2/2m, 
and there is no restriction on the values of δ or p. Therefore we say that this 
represents a region of the energy spectrum which is a continuum. For negative 
energy eigenvalues, however, representing particles trapped in a potential f ( r ) , 
the boundary conditions effectively restrict the eigenvalues to discrete values. 
The allowed values of the energy in this discrete region of the energy spectrum 
are of interest in themselves. Moreover, a great many physical properties of the 
system depend on the number of such energy levels per unit energy range and the 
variation of this number with energy, which is termed the density of states as a 
function of energy. That is, the elemental number dN of states in an energy interval 
άδ at the energy δ is given by the product of the density of states g{$) and the 
energy interval d&, 

dN = g(£)d£, (1.267) 
or equivalently, 

g($) = dN/dS (density of states as a function of energy). (1.268) 
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We can define a density of states as a function of momentum &(p) in an analogous 
fashion, namely, 

dN = $(p)dp. (1.269) 

The purpose of the present section is to work out the allowed energy levels and 
the density of states for a simple one-dimensional problem in order to illustrate 
the general approach. 

10.2 Particle Trapped in a One-Dimensional Box 

Consider a particle trapped in a potential well extending from 
— \L ^ x ^ \L. We can assure this mathematically by choosing the potential 
i^{x) to be zero inside and infinite outside this region. The total energy $ of the 
particle will be entirely kinetic inside the potential well; for finite values of the 
kinetic energy inside the well, the particle would never be able to penetrate into 
the infinitely high potential barriers in the regions x< — \L and x > \L. 
Therefore we must choose φ(χ, t) to be zero in these forbidden regions, which 
gives us the boundary conditions φ{— \L,0 = 0 and ij/(^L, t) = 0. We must 
consider the allowable solutions of the Schrödinger equation inside the well. Let 
us consider stationary-state solutions φι(χ, t) = φι(χ) exp[( — ijfi)Sit\. Since 
i^(x) = 0, the time-independent Schrödinger equation (1.164) is simply 

h2 (Ρφι 

"ST I F " ' * o m 

Exponential plane-wave solutions satisfy this equation but do not individually 
satisfy the boundary conditions stated above. Linear combinations of plane 
waves can be used to generate sine and cosine functions which can satisfy the 
boundary conditions. If we attempt the trial solution 

φι(χ) = Αχ sin ktx + Btcos ktx9 (1.271) 

with A i and Bt being constants and kx representing allowed values of the wave 
vector, we find by direct substitution into the Schrödinger equation (1.270) that 
the condition for the validity of such a solution is 

h2k2/2m = Sl. (1.272) 

The boundary conditions require 

(/>,(- \L) = Ax s in ( - %L) + Bx cos ( - ±ktL) = 0, (1.273) 

<Mi^) = At s in (^L) + Bt cos (^L) = 0. (1.274) 

Since the sine function is zero whenever its argument is an even multiple of \π 
and the cosine function is zero whenever its argument is an odd multiple of \n, 
we can satisfy the above conditions in two different ways. First, we can choose 

2*, = 0, (1.275) 

\kxL = 21{\π) = ln (/ = 1,2,3,...) (1.276) 



L) 

(/= 1,2,3,...). 

(/= 1,2,3,...), 

(1.277) 

(1.278) 

(1.279) 

(1.280) 
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which leads to the odd-parity solutions 

φι(χ) = A i sin(2lnx/L) 

with 

gl = h2k2/2m = (fi2/2m)(2ln/L)2 

Second, we can choose 

Ai = 0, 

^ = (2/+1)(§π) = (/ + | )π 

which leads to the even-parity solutions 

φίχ) = Bt cos[(2/ + l)nx/L] (1.281) 
with 

gx = h2k2/2m = (n2/2m)l(2l + l)n/L·]2 (/ = 1,2,3,...). (1.282) 

We can combine the even and odd parity results by introducing the single integer 
n, where n represents 2/when even and (2/ + 1) when odd. The integer n is called 
the quantum number. Then 

kn = nn/L, (1.283) 
so that 

(An sin(nnx/L) (n even) 
^»(*) = i D / ,ΤΛ ( ΑΑΛ (1.284) 

[Bn cos(nnx/L) (n odd), 
Sn = (n2/2m)(nn/L)2 (w = 1,2,3,...)- (1-285) 

The corresponding time-dependent wave functions φη(χ, t) are given by 

ψη(χ,ή = φη(χ)β-^9 (1.286) 

so the probability densities are given by 

I«M*, 0I2 = *:(χ, 0Φη(χ, 0 = Φ:(χ)Φη(χ) = I^WI2· (l -287) 
Normalization of the wave functions for the present case requires 

fL/2 
\φη(χ,ΐ)\2 dx= 1. (1.288) 

-L/2 

This ensures that there is unit probability for finding the particle somewhere in 
the potential well whenever the state is occupied. Substitution of \An\

2 

sin2(nnx/L) and \Bn\
2 cos2(nnx/L) into this relation determines \An\ and \Bn\. The 

integration gives 

\An\ = \Bn\ = (2/L)1'2 (1.289) 

for all n. In addition, An aad Bn can be chosen to be real and positive with no loss 
in generality, in which case An = \An\ and Bn = \Bn\. 

I 
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J I I L 

-L/2 0 L/2 -L/2 0 L/2 

Fig. 130 Energy levels, stationary-state wave functions (solid curves) versus position, and 
probability densities (dashed curves) versus position for a particle trapped in a one-dimensional 
square-well potential extending from x = - L/2 to x = L/2. Even-parity solutions are represented 
on the left-hand side, and odd-parity solutions are represented on the right-hand side; higher energy 
solutions than the ones illustrated occur for larger integer values of the quantum number n. 

The quantum-mechanical solutions obtained above for the problem of a 
particle in a one-dimensional box are sketched in Fig. 1.30. The relative location 
of the two lowest even-parity solutions on an energy scale are shown in the left-
hand side of the figure, and the relative location of the two lowest odd-parity 
solutions on an energy scale are shown in the right-hand side of the figure. Also 
plotted are the stationary-state wave functions φη(χ) as a function of position x 
for each discrete energy eigenvalue; these are the solid curves. It can be seen that 
the even-parity solutions have an odd number of half-wavelengths within the 
potential well, and the odd-parity solutions have an even number of half-
wavelengths. This follows directly from the relation kn = 2π/λη given by Eq. 
(1.12) and the allowed values kn = ηπ/L given above in Eq. (1.283), namely, 

kn = 2nlXn = nnlL, (1.290) 

giving 

n&n) = L, (1.291) 

where n is an odd integer for even-parity solutions and an even integer for odd-
parity solutions. The dashed curves in Fig. 1.30 are the corresponding 
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probability densities \ψ(χ, i)\2 = \φ{χ)\2. It can be seen that the even- and odd-
parity solutions alternate with increasing energy, and the higher energy solutions 
have a greater number of nodes in the wave function. From Eq. (1.285) it is seen 
that the energies increase as n2, and are inversely proportional to the particle 
mass m and the square of the dimension L of the potential well. 

PROJECT 1.19 Particle in a Box 

Consider a one-dimensional potential well 4 Ä on an edge with infinitely high potential barriers 
bounding the potential well. Compute the following quantities: 
1. The ground-state energy of an electron in the well. 
2. The ground-state energy of a proton in the well. 
3. The first three excited states of an electron in the well. 
4. The first three excited states of a proton in the well. 
5. The wavelengths and frequencies of the electromagnetic radiation given off or absorbed in all 
electronic transitions between the ground state and the first three excited states, and among the first 
three excited states. 
6. The wavelengths and frequencies of the electromagnetic radiation given off or absorbed in all 
proton transitions between the ground state and the first three excited states, and among the first 
three excited states. 
7. Would you expect there to be any restrictions on the transitions considered above? If so, what 
would be the nature of such restrictions? 
8. Repeat the above calculations for particles in a three-dimensional potential well 4 Ä on an edge 
with infinitely high potential barriers bounding the well. What additional factors do you find relative 
to the one-dimensional case? 
9. Qualitatively explain what changes might occur in the energy eigenfunctions and eigenvalues as 
the heights of the potential walls at the boundaries are decreased from infinity toward lower and 
lower values. 

PROJECT 1.20 Matrix Representation of Operators 

1. Deduce the matrix representation of the position coordinate x in the representation given by the 
energy eigenfunctions for a particle of mass m in an infinite one-dimensional square-well potential. 
(Consider both periodic and fixed boundary condition eigenfunctions.) 
2. Deduce the matrix representation of the momentum operator in the energy representation for a 
particle in the infinite one-dimensional square-well potential. Attempt to extend your treatment to 
the three-dimensional infinite square-well potential. 
3. Prove that pjk = (i/h)m($) — Sk)xjk, where pjk is the jk matrix element of the x momentum 
operator, xjk is the jk element of the position operator, and m is the mass of the particle. The 
quantities S) and $k represent the energy eigenvalues for the states j and k, respectively. 

PROJECT 1.21 Particle in a Superposition State: Expansion of Wave Function in Terms 
of a Complete Set of Eigenstates and the Expectation Value of the Energy 

For the one-dimensional square-well potential with infinitely high barriers at the edges, consider a 
non-stationary-state wave function Φ(χ) = Ax(L — x), where A is the normalization factor and L is 
the width of the potential well. 
1. Determine A. 
2. Solve for the coefficients an in the expansion ψ(χ,ή = Σ„α„φη exp[( — i/h)Snf] of the wave 
function ψ(χ, t) in terms of a complete set of the eigenfunctions φ„(χ) of the Hamiltonian. 
3. Find the average (i.e., the expectation value) of the energy. 
4. Find the dispersion [i.e., the mean square deviation (as defined in §8.2)] of the energy. {Hint: See 
ter Haar (1975)]. 
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PROJECT 1.22 Momentum Probability Distribution 

For a particle in a one-dimensional square-well potential of width L with infinitely high potential-
energy barriers at the edges, determine the momentum probability density \x(k)\2 for the ground state 
and the first four excited states. 

10.3 Density of States 

To compute a density of states g($) as a function of energy S, we consider 
averages over regions of energy containing many discrete levels $n so that g($) 
can be considered to be a quasi-continuous function of S. This is a valid 
approach for those macroscopic systems for which the concept of a density of 
states happens to be useful (cf. Chap. 3). Thus, if we consider Sn as a continuous 
function of«, we can differentiate Sn with respect to n. Since for the present case 
$n = (fi2/2m)(nn/L)2, according to Eq. (1.285), we obtain 

dSJdn = 2(fi2/2m) nn2/L2. (1.292) 
We take the square root of both sides of Eq. (1.285) and solve for n, 

n = {Lln)(2mlh2yl2£lJ2. (1.293) 
Substituting into Eq. (1.292) for dSJdn gives 

dSJdn = (2n/L)(n2/2m)1/2S1J2. (1.294) 
Since we are considering Sn to be a continuous function of «, we can identify it 
with the continuous variable S. We can thus replace Sn by $ in this last 
expression if we wish, and due to the fact that Sn is a function of the single 
variable n, we can also take the reciprocal of each side of this expression. We thus 
obtain 

dn/dS = (2m/n2y/2(L/2n)<$-1/2. (1.295) 

For each different value of the integer quantum number n, we have a different 
quantum state, so the value οϊη gives the total number TV of quantum states with 
energy equal to or less than the energy of state n. Therefore dnjdS gives the 
change in the total number of energy states per unit increase in energy at any 
given energy S. Since dn/dS ~ An/AS can be interpreted as the number of states 
per unit energy range at any given energy, we can identify dn/dS as the density of 
states </(<f), 

g{S) = dn/dS = (2m/n2)1/2(L/2n)£-1/2. (1.296) 

We thus have derived the density of states for the problem of a particle trapped in 
a one-dimensional square-well potential. The usefulness of the density of states 
concept becomes quite evident in the free electron model for metals developed in 
Chap. 3. 

It is illustrative to derive this result using a slightly different approach. We 
note that the allowed k values for this problem are kn = ηπ/L with the 
corresponding allowed values of momentum pn = hkn = ηπή/L. Again the value 
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ofn tells us how many allowed states have k values less than or equal to kn and 
corresponding momentum values less than or equal to ηπή/L. Therefore the 
density of states w(k) = dn/dh as a function of allowed k value is given by 

w(k) = dn/dkn = (d/dkn)(knL/n) = L/n. (1.297) 

This represents a uniform distribution of allowed k values since it is independent 
of k. Because momentum is related linearly to k, we likewise have a uniform 
distribution of allowed momentum values for this problem. If the density of 
states as a function of momentum is denoted by &(p), then conservation of the 
number of allowed states in any momentum interval dp at any arbitrary value of 
the momentum p requires 

<S{p) dp = w(k) dk. (1.298) 

That is, the number of states in a given momentum interval must be equal to the 
number of states in the corresponding k interval. Sincep = hk and dp = ή dk, we 
obtain 

g(p) = w(k) dk/dp = h~lw(k) = L/πή (1.299) 

for this one-dimensional problem. To obtain the corresponding density of states 
as a function of energy, we again employ a relation requiring that the number of 
states in a given energy interval dS be equal to the number of states in the 
corresponding momentum interval dp, 

g(S)dS = <${p)dp, (1.300) 

where $ = p2/2m and dS = (p/m) dp. [This equation can also be obtained by 
equating dN in Eq. (1.267) with dN in Eq. (1.269).] Thus we obtain 

g(g) = <${p) dp/dS = (L/nn)(m/p) = (rnL/nh)(2m£)-1/2, (1.301) 

which agrees with our previous result (1.296). 
The corresponding three-dimensional problem can be solved in an analogous 

fashion; the results are highly useful in understanding the electronic properties 
of metals within the framework of the quantum-mechanical free-electron model. 
This model will be formulated and developed in Chap. 3. It is first necessary to 
understand how the energy levels of a system are statistically populated at 
various temperatures, since for electrons in condensed media, classical 
Boltzmann statistics can be used only in certain limiting cases. We will therefore 
develop the essentials of quantum statistics in Chap. 2. 

In the following section we shall develop another classical quantum-
mechanical problem which is quite different in character from the square-well 
potential problem developed in the present section, namely, we shall work out 
the mathematics which gives us the physical behavior of quantum particles in the 
neighborhood of potential-energy barriers of finite height. The importance of 
this problem can hardly be overestimated in view of the array of quantum tunnel 
current devices that have been recently developed and are currently under 
development (cf. Chap. 4, §§7.2-7.5). 
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EXERCISE Evaluate the one-dimensional density of states given by Eq. (1.296) for an electron 
system extending over a 1 cm length at an energy $ = 1 eV. 

EXERCISE Work out w(k), ̂ (p), and g(S) for the two-dimensional free-electron model. 

11 Reflection and Transmission Coefficients for a Particle Beam 
at a Potential-Energy Step Discontinuity and at a Rectangular 
Barrier 

11.1 Introduction 

Sudden changes in the potential energy can produce wavelike reflections of 
quantum particles which are quite unlike any phenomena which would be 
expected classically for point particles. These effects are not only intrinsically 
interesting as textbook quantum phenomena, but in addition the treatment leads 
us directly to the consideration of quantum mechanical tunneling which is 
currently of the greatest interest for solid state devices. 

11.2 The Step Potential 

Consider the so-called step potential illustrated in Fig. 1.31, for which the 
potential energy U(x) is zero for x < 0 (region I) and has the constant value U0 

for x > 0 (region II). To be specific, we choose an incident beam of particles 

φ.ηο = Α^χ~ωί) = Aem^x~m (1.302) 

traveling to the right in region I toward the step at x = 0. The incident beam 
consists of individual particles having a well-defined momentum pil) = hk in the 
x direction and a well defined kinetic energy <?£> = |j?(I)]2/2m equal to the total 
energy <?, since the potential energy is zero in region I. The particle density in the 
incident beam is given by 

ΨίοΨ*> = Α*Α. (1.303) 

The incident beam intensity /inc will be given by the product of the particle 
density ψ*ηοψιηο and the garticle velocity vil) = p(l)/m, 

4κ = ^ ^ ( Ι ) = A*A(fik/m)9 (1.304) 

where 

hk=pil) = {2mSy12. (1.305) 

The positive sign is to be chosen for the square root. 
From the standpoint of classical mechanics, the kinetic energy <f£!) = $ — U0 

is positive for $ > U0 so the particle would always traverse the step; however, 
the kinetic energy would be negative for & < U0, which represents an impossible 
situation from the standpoint of classical physics, since it would require an 
imaginary value for the momentum p{ll) = [2m(S> - £/0)]1/2. Thus the particle 
would reverse its direction (i.e., it would always be reflected) when incident on a 
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Fig. 131 Step potential defined by U(x) = 0 for JC < 0 and U(x) = U0 for x ^ 0, with the total 
energy per particle of the incident beam denoted by S. (a) $ > U0, in which case the kinetic energy 
remains positive as a particle from the incident beam in region I enters region II. (b) $ < C/0, in which 
case the kinetic energy becomes negative when a particle from the incident beam in region I enters 
region II. 

step potential for which £ < U0. It is interesting to compare these classical 
predictions with the quantum results deduced below. 

Even though we must eventually consider two situations, namely, the case in 
which £ < U0 and the case in which £ > U0, for the moment let us not make a 
specific choice but continue insofar as we are able with a treatment applicable to 
both situations. In either case, let us consider the possibility that a portion of the 
beam will be reflected. The wave function for the reflected component can be 
written 

<Aref=^l' (~k X~ 
cot) (1.306) 

since the reflected component will be traveling in the negative x direction with 
the same total energy £ = ήω and the same x-momentum value, with the 
exception of a reversal in the sign of the momentum. Thus the reflected particle 
intensity is given by 

φ*(φκ{ = Β*Β, (1.307) 

and the reflected beam intensity is given by 

4 f = ^rtf^refC- **/»«) = ~B*B(fik/m), 

where k is defined as previously stated above. 

(1.308) 
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The wave functions i//inc and φκΐ were written simply from our knowledge of 
traveling waves (see §6.1). It is easy to show, however, that both satisfy the time-
dependent Schrödinger equation for region I where U(x) = 0, namely, 

- (fi2/2m) ο2φ/δχ2 = ih δφ/dt. (1.309) 

Substituting φίηο into this equation gives 

- {h2ßm){ik)^mc = * ( - ίω)φϊηο (1.310) 

which is satisfied provided h2k2ßm = hco. This is equivalent to the free particle 
dispersion relation S = p2/2m which is indeed appropriate for region I. 
Alternately, the direct substitution of hk = p = (2mg)112 and ω = S/h into this 
equation yields $ = δ, thus verifying the applicability of the condition. 
Similarly, substituting φκΐ into the above time-dependent Schrödinger equation 
for region I gives 

-(h2ßm)(- ft)2^ = « ( - «*#„,, (1.311) 

which is satisfied since once again $ = ήω = h2k2ßm. The superposition wave 
function 

φλ = φ.ηο + φκ{ = A^kx~mt) + Bei{-k*-mt) = (Aeikx + Be-ikx)e~i(0t (1.312) 

likewise satisfies the above time-dependent Schrödinger equation for region I, as 
can be argued from the linearity of the Schrödinger equation and therefore the 
applicability of the principle of superposition. (The principle of superposition 
means that any linear combination of individual solutions will likewise be a 
solution.) Alternately, the direct substitution of φγ into the above Schrödinger 
equation for region I shows that it satisfies the equation. 

Let us now consider the Schrödinger equation appropriate for region II, and 
examine the form of possible solutions. The total energy $ of the particle is the 
same in region II as in region I because there are no external forces acting on the 
particle. The step potential does instantaneously accelerate the particle in the 
negative direction, which leads to an interchange of kinetic and potential 
energies for the conservative system. Since the potential energy is U0 in region II, 
the time-dependent Schrödinger equation which must be satisfied is 

-(h2ßm) ά2φΙάχ2 + ϋ0φ = ih δφ/δί. (1.313) 

It is now convenient to treat individually the cases $ > U0 and $ < U0. 

11.2.1 Case of $ > U0. If g > U0, the kinetic energy δ^ = £ - U0 will be 
positive in region II, so there should be a continuation of the beam into this 
region. It is reasonable to expect the momentum pill) for this region to be 
obtained in the usual manner, 

p{U) = [2m{£- £/0}]1/2, (1.314) 

where the positive square root is taken in order to give propagation in the 
positive x direction (see Fig. 1.31 a). A propagation vector κ can be defined in the 
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usual way from the momentum, 
ήκ=ρ(η) (1.315) 

so that K has the positive value 

K = h-l\_2m{£ - t/0}]1/2· (1.316) 

The wave function for this transmitted beam is therefore expected to be of the 
form 

^ r a n s = C ^ ( - - - > , (1 .317) 

where again ω = Sjh, the same as in region I. Direct substitution of this wave 
into the Schrödinger equation for region II gives 

-(ft2/2m)(/K)Vtra„s + ^ t r a n s = W- io>)*Uans, (1-318) 
which leads to 

-(n2/2m)(- 2m/h2)lS - t/0] + U0 = <f, (1.319) 

which indeed is true. Therefore t^trans does satisfy the Schrödinger equation. The 
transmitted beam intensity 7trans follows immediately, 

Arans = « / C n A a A a n s = C*C|>«»>/m] = C*C(*lc/lfl). (1 .320) 

The alternate form of a reverse-traveling wave in region II might also be 
expected to satisfy the Schrödinger equation, but this wave is not considered 
here because physically for our present problem there is no source of particles in 
region II and there are no additional barriers in region II to give reflection of the 
forward-propagating beam. Thus for the present problem, 

*n = tfw (1-321) 
The application of the two boundary conditions, 

Φι\χ=ο = Φη\χ=ο9 (1.322) 

( # i / ^ ) L = o = (#i , /^)l*=o, (1.323) 

provides two equations which determine the two constants B and C for the 
reflected and transmitted wave amplitudes in terms of the incident wave 
amplitude A. These two conditions are sufficient to ensure that the particle 
density and the probability current density [Eq. (1.264) of §9] are conserved 
across the step. More explicitly, at a position immediately inside the step the 
particle density is considered to be the same as immediately outside the step, and 
the sum of the transmitted and reflected particle beam intensities at the step are 
considered to be equal to the incident particle beam intensity. These are not 
unreasonable requirements for the physical problem at hand. Substituting \j/x 

and φη into the above-listed boundary conditions at the location of the step 
(x = 0) gives the following two relations, 

Ae~i(0t + Be~i(0t = Ce~i(a\ (1.324) 

ikAe~i(0t - ikBe-i(0t = iKCe~i(0\ (1.325) 
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or equivalently, 

A + B=C, 

A-B = (K/k)C. 

Adding the two equations gives 

2Λ = [1 + (K/*)]C, 

or equivalently, 

C = [2k/(k + κ)~]Α. 

On the other hand, subtraction gives 

25 = C[l - (φ)], 

or equivalently, 

C = [_2k/(k - «)]£. 

Equating the above two results for C gives 

[2k/(k + K)~]A = [_2k/(k - *)]£, 

or equivalently, 

B = [(k- K)/(k + K)~]A. 

(1.326) 

(1.327) 

(1.328) 

(1.329) 

(1.330) 

(1.331) 

(1.332) 

(1.333) 

Thus the transmitted and reflected wave amplitudes have been determined in 
terms of the incident wave amplitude and the physical parameters of the system 
such as particle energy S and potential barrier height U0. 

The reflection coefficient M is given by the magnitude of the ratio of the 
reflected beam intensity to the incident beam intensity, 

* = l̂ ef/And = I ~ B*B(hk/m)/A*A(nk/rn)\ = \B*B/A*A\. (1.334) 

Substituting from above gives 

f rC AC \ / K K \ IK K 

k + K) \k + K) \^ + K 

X{2mlh2)SV12 - [_{2mlh2){S - t/0}]1/2" 
l[_{2mlh2)£]112 + \_{2mlh2){i - C/0}]1/2J 

|2 ? l / 2 

P l /2 + 

-Uo)U2J 
- C/o)1/2J ' 

(1.335) 
The transmission coefficient &~ is given by the magnitude of the ratio of the 

transmitted beam intensity to the incident beam intensity, 

Γ = Krans/'iJ = \C*C(hK/m)/A*A(hk/m)\. (1.336) 
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Substituting from above gives 

*--K( 2k \*( 2k \ - 4kK 

~ k\k + K) \k + K) (k + K)2 

4l(2mlh2)gyl2[_(2mlh2){g - C/0}]1/2 _ Atll\S - U0)
1/2 

~ {Klm/hW2 + l(2m/h2){£ - U0}V12}2 " \$m + (Λ - £/0)1/2]2 ' 
(1.337) 

Therefore in the case of energies above the barrier height, some particles are 
transmitted and some are reflected. This conclusion reached on the basis of 
quantum mechanics is quite different from that which one would expect from the 
viewpoint of classical mechanics, since there would be no reason to expect to 
have reflection whenever $ > U0 on the basis of classical mechanics. 

The above results give 
gt + F = [(jfc - K)l(k + K)]2 + 4kK/(k + κ)2 (1.338) 

or equivalently, 
m + y = (k2 - 2kK + K2 + 4kk)/(k + κ)2 = 1. (1.339) 

It is generally true that 0t + F = 1, since this is equivalent to a statement of the 
conservation of beam intensity. 

It is very interesting to examine these results for certain limiting cases. If 
i/o = 0, we obtain immediately ^ = 0 and 9~ = 1, which is certainly reasonable. 
The same results are approximately true for $ » U0. On the other hand, 
whenever $ -► U0, then & -► 1 and &" -» 0, which is again very reasonable. In 
this latter case where the energy is not much greater than the step height, κ 
becomes relatively small, and the spatial wavelength of the transmitted beam is 
very long, corresponding to a particle with a small momentum and kinetic 
energy. 

EXERCISE Compute the reflection and transmission coefficients M and y as a function of 
S/UQ, using Eqs. (1.335), (1.337), and (1.356) for the step potential. Use any reasonable value (such 
as 0.1-10 eV) for the step height U0, and employ a programmable calculator to carry out the 
computations for a range of values of particle energy $ below and above U0. 

EXERCISE Plot the probability density ψ*ψ as a function of position for Λ: < 0 and x > 0 for 
the step potential chosen in the above exercise. 

11.2.2 Case of« < U0. If S < t/0, the kinetic energy <f £I} = £ - U0 would be 
negative in region II, as can be noted from Fig. 1.32, which would preclude any 

Fig. L32 Particle beam incident on a potential energy barrier greater than the total energy per 
particle in the beam. 
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particle penetration from a classical-mechanics viewpoint. The situation is not 
quite this simple in quantum mechanics, since solutions to the Schrödinger 
equation for region II can still be found. 

Because κ as previously defined becomes imaginary for g < U0, let us define 
the new positive real quantity y as follows, 

y = h-l\_2m{U0 - <f}]1/2, (1.340) 

where the positive sign is to be chosen for the square root. Direct substitution of 
the wave function 

\l/lx = De-yxe-i(0t (1.341) 

into the Schrödinger equation for region II gives 

( - fi2/2m)( - 7)Vn + U0ifrn = **( - ι α # „ , (1.342) 
or equivalently, 

-(U0-g) + υ0 = Λω, (1.343) 

which is satisfied when ω = g/h. The probability density φ*φ given by this wave 
function approaches zero as x -► oo. The alternate function eyx would likewise be 
expected to satisfy the equation, but this function would lead to a probability 
density which increases with x and diverges as x-+ oo, and thus it must be 
discarded on physical grounds for the present problem. The region I wave 
function is the same for g < U0 as it is for g >U0. Imposing the boundary 
conditions 

<ΑΙΙ*=Ο = */ΊΙΙ*=Ο, (1.344) 

(# iAfr)Uo = (#n /^ )U=o (1.345) 

leads in the present case to 
Ae-iot + Be-i<ot = De-i<ot (1.346) 

ikAe ~i<ot - ikBe ~io3t = - yDe "i0}t, (1.347) 
or equivalently, 

A + B = D9 (1.348) 

A-B= -(y/ik)D. (1.349) 

Adding the two equations gives 

2A = U -(y/ik)]D9 (1.350) 
or equivalently, 

2A _ 2[1 + (y/ik)]A _ 2[1 - i(y/k)]A 

l-(y/ik)~ \+(y2/k2) ~ l+(y/k)2 

Subtraction, on the other hand, gives 

IB = [1 + (y/ikJ]D, (1.352) 

D = , , ,.,,= L , , : " " = \ . ;"„_;: . O.35D 
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or equivalently, 

D = 
IB 2[1 - (y/ikfiB 2[1 + i(y/k)-]B 

1 + (y/ik) 1 + (y2/k2) 1 + (y/k)2 

Equating the two expressions for D thus obtained leads to 

2[1 + i{y/k)-]B 2[1 - i(y/k)-]A 

1 + (y/k)2 1 + (y/kf 

from which it follows that 

B U-Kylk)-
Li + Ky/k). 

A. 

(1.353) 

(1.354) 

(1.355) 

The reflection coefficient is given by 

B*B{hk/m) I I B*B 

_ Π - H fr/*) 
(y/k)] 

A*A(hk/m) 

1 - i(y/*) 

\A*A 

.1 + i(y/*). ■ 1 - Γ — 
(y/k) 

'(y/k). 

Ί - Ky/k) 
.1 + « 

]■ (1.356) 

Therefore all particles are reflected, so the transmission coefficient is zero. For 
the case of the step barrier, then, the reflection of the particle beam having an 
energy below the barrier height is the same as one would expect from the 
viewpoint of classical mechanics. 

It is now quite interesting to examine the quantum mechanical prediction that 
the particle density is nonzero in region II. This follows from 

Ψ&(χ)Ψη(χ) = D*De~2yx = 4A*A 
[!+%>/*)] 

.[1 + (y2/k2-
] Ί Γ [i - a 
)]JL[1+(T 

jy/ky]' 

(y2/k2)-]. 
-2γχ 

= *(Ψ*οΨ™) 1 4- (y2/k2) 
(1.357) 

Therefore the particle density decays exponentially in region II with a fall-off 
length / given by 

/ = \/2y = h/{2[2m(U0 
i l / 2 }· (1.358) 

As U0 -► oo, / -► 0, so the particle density immediately decays to zero in region II. 
On the other hand, as $ -+ U0, then / -► oo, and so in this limit the decay is very 
slow in region II. Likewise in this limit, y -► 0, and thus φηφιι -> 4ψιηοψιηο = 
4A*A. The reason for this can be found in the behavior of B, which can be noted 
to approach A for y « k. Then ^,(0) -> 2A and so i/^O)*^^) -► 4A*A, and the 
probability density is conserved across the step as expected from the first 
boundary condition. 
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Another way of considering the probability density in region II is to observe 
that the total probability density in region I at the step is 

ΦΚ0)φι(0) = (A + B)*(A + B) 

Ί - i(y/*)> -H-G^FH 
= A*A 

Γ1 + » 
1 + i(y/k) 

ϊγ/k) + 1 - i(7/k) 

1 + 

= A*A 

1 + i(y/k) 

4 
It 

\-i{ylk)\ 
l + Ky/k))l 

l + i(y/k) + l Ky/k)l 

1 + i(y/k) 

4 A* A 4ψ?η(.ψ 
[1 - i(y/*)][l + Ky/k)] 1 + (y2/k2) 1 + (y2/k2) 

(1.359) 
Therefore we obtain for region II the result 

ψ*(χ)φη(χ) = momone-2?*. (1.360) 
This means that whatever probability density exists in region I, immediately 
adjacent to the step, also exists in region II immediately adjacent to the step, and 
this probability density falls off exponentially in region II with the characteristic 
decay length /. Thus a measurement of the particle density in region II would 
yield a nonzero value, in contrast to what one might expect on the basis of purely 
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Fig. 1.33 Rectangular potential energy barrier in which the potential energy U(x) is zero for 
JC < 0 and for x > L, but has the constant value U0 over the region 0 ^ x ^ L. The total energy $ per 
electron is the same for all three regions; it is entirely kinetic in regions I and III. (a) $ > U0, in which 
case the kinetic energy $$ in region II is positive, (b) $ < U0, in which case the kinetic energy $ψ in 
region II is negative. 
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classical mechanics. This conclusion has great physical consequences when the 
step potential U0 extends over only a finite distance L (0 ^ x ^ L) (cf. Fig. 1.33) 
instead of extending an infinite distance (0 ^ x ^ oo), as now considered. The 
situation just described, for which U(x) = U0 (0 ^ x ^ L) and U(x) = 0 
otherwise, is termed the rectangular barrier problem; it is treated in detail in the 
following section. The quantum solution to the rectangular-barrier problem 
leads to the remarkable conclusion that some particles can be transmitted across 
the barrier even when the particle energy $ is less than the barrier height. This is 
the phenomenon of electron tunneling. The predictions of the theory are amply 
supported by the experimental results. This represents another area in which 
quantum mechanics provides a theoretical framework for describing phenom-
ena that cannot be described satisfactorily within the framework of classical 
mechanics. 

EXERCISE (a) For $ < £/0 in the step potential problem, show that the particle current density 
is zero. {Hint: Recall that J = {hßmi){\j/* 7ψ - φ νψ*)."] 

(b) Next, evaluate J for $ > U0. 

PROJECT 1.23 Reflection of Particles by a Step Potential 

1. Choose the step height U0 in the problem of a semi-infinite step potential (cf. Fig. 1.32) to be 
1,2,3,4,5, or 10 eV. Plot the transmission coefficient 3~ and the reflection coefficient 0t as a function 
of incident neutron energy $, scanning the range (0 < $ < 2t/0), assuming an incident beam of 1012 

particles/cm2 sec. 
2. Plot the particle density φ*ψΆί position JC = 1 Ä and at position JC = 5 Ä as a function of incident 
neutron energy S, again scanning the range (0 < $ < 2t/0), and assuming an incident beam of 1012 

neutrons/cm2 sec. 

11.3 The Rectangular Potential Energy Barrier 

Figure 1.34 illustrates the three regions defined by the potential energy 
function 

CO (x < 0) 
U(x) = )u0 (O^x^L) (1.361) 

[w (x>L). 
This functional form of the potential energy is termed a rectangular (or, at times, 
a square) barrier in the limit W -► 0. For our purposes, it is better to permit W to 

o * 
ΐτρ\ΛΛΛ/-

ek=e-w 
w 

Hw| 

Fig. 1.34 Modified rectangular potential barrier for which the potential energy U(x) is zero for 
x < 0, U(x) = U0 for 0 ^ x ^ L, and U(x) = Wforx > L. The total particle energy S is the same for 
all three regions; it is entirely kinetic in region I. 
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be arbitrary, so that it can take on negative as well as positive values. This yields 
results that are immediately applicable to the tunneling of electrons between 
metals separated by a thin insulator. We shall consider individually the several 
possible cases, and finally we shall consider the classical analog in order to 
highlight the different predictions of the two theories. 

113.1 Case of $ > U0 and $ > W. For £ > U0, we expect the wave 
functions to be of the plane-wave type, because the momentum is real and thus 
propagation of the particle is possible even in the classical sense. As in the case of 
the step barrier, we let the incident wave be given by 

φϊηο = Αβ^χ-ωί\ (1.362) 

where 

k = h-\2mgy12, (1.363) 

co = £lh. (1.364) 

The reflected wave will likewise have the same form as for the step potential, 
namely, 

^ = ^ ( - ^ - ω ί ) . (1.365) 

Then for region I, 
φι = φ^ + ^ref = (Aeikx + Be-ikx)e-i<ot. (1.366) 

The transmitted wave for the present situation is the propagating wave in region 
III. Let us, in analogy with the situation for the step potential, denote the 
transmitted wave by 

*tr*ns = Cei*x-»t\ (1.367) 

where 

K = h-^lmiS - W)V/2. (1.368) 

In the absence of sources and other variations in region III which could lead to a 
reflected wave in that region, we can then write 

Ψιη = Κ™ = ^κχ*-ίωί' (1-369) 
Region II is the additional factor in the currently considered rectangular barrier 
problem which was absent in the preceding problem of the step potential. Due to 
the finite thickness of the region (0 ^ x ^ L) and the discontinuity at x = L, it is 
possible to have a reverse traveling (reflected) wave in this region in addition to a 
forward propagating wave. Denoting the forward wave by ^βχ~ω^ and the 
reverse wave by Οβί(~βχ~ωΐ\ where 

β = h-\2m{S - U0)-]
112, (1.370) 

we can write 

φη = (Feißx + Ge-ißx)e-i0)t. (1.371) 



§11] REFLECTION AND TRANSMISSION COEFFICIENTS 105 

The boundary conditions at x = 0 of wave function continuity 

Φι(0) = φη(0) (1.372) 

and continuity of the first derivative of the wave function 

(# i / ^ )U=o = ( # n / ^ ) L = o (1-373) 

lead directly to the relations 

A + B = F+G9 (1.374) 

ikA - ikB = ißF - ißG. (1.375) 

Rewriting this pair of equations in the form 

A + B = F+G, (1.376) 

A-B = (ß/k){F-G} (1.377) 

makes it easy to obtain expressions for A and B in terms of Fand G. That is, by 
adding the two equations, we obtain 

A = i (F[ l + 08/*)] + G[l - OS/*)]), (1.378) 

and by subtracting the two equations, we obtain 

B = i (F[ l - (/?/*)] + G[l + (/?/*)]). (1.379) 

Let us next apply boundary conditions at the barrier discontinuity at x = L. 
Continuity of the wave function \j/\\{L) = ^m(L) and continuity of the first 
derivative of the wave function (d\l/nldx)\x=L = (dil/m/dx)x=L lead directly to the 
two additional relations 

FeißL + Ge~ißL = CeilcL, (1.380) 
ißFeißL _ ißGe-ißL = iKCeiKL. (1.381) 

Rewriting this pair of equations in the form 
FeißL + Qe-ißL = CeiKL^ ( 1 3 8 2 ) 

FeißL - Ge~ißL = (K/ß)CeiKL (1.383) 

leads to expressions for F and G in terms of C That is, by adding the two 
equations, we obtain 

F = \e-ißL\\ + (Klßy]CeiKL = | [ 1 + ( κ / j S ) ] ^ * - ^ , (1.384) 

and by subtracting the two equations, we obtain 

G = \eißLl\ - (K/ß)-]CeiKL = | [ 1 - (K/ß)]Cei{K+ß)L. (1.385) 

Next, we can substitute the two expressions just obtained for F and G into 
expressions (1.378) and (1.379) previously obtained for A and B. This gives A 
and B in terms of C With these results the transmission and reflection 
coefficients can be evaluated. The transmission coefficient F follows from the 
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ratio of the transmitted to incident beam intensities, 

ΟΓ 4ans # L A » n . ( * K / " 0 C * C , η x Φ n<lQC\ 
y — = = (K k) = . (1 .386) 

L· ttJ-Jfiklm) A*AKI l(A/Q*(A/Cü K } 

The reflection coefficient can be obtained from the ratio of the reflected to the 
incident beam intensities, 

4r B*B(-hk/m) 

A*A(fik/m) 

B\*fB\ 

EXERCISE Show that the wave function (1.367) and the value given for κ are consistent with 
the time-dependent Schrödinger equation for region HI. 

EXERCISE Complete the calculations in Eqs. (1.386) and (1.387) for 01 and F. Show that 
# + .?"= 1. 

EXERCISE Show that your results in the preceding exercise reduce to the usual textbook 
expressions in the limit W-*0 [Schiff (1968)]. In particular, show that 

8 

[6 + (ß/k)2 + (k/ßft + [2 - (ß/k)2 - (*/0)2] cos IßL 

EXERCISE Take the limit W-> U0 and show that the previously deduced step potential results 
for $ > U0 are thereby obtained. 

EXERCISE Consider the situation in which U0 < 0, and follow through the above derivation to 
see what differences (if any) are obtained in the mathematical results and the physical predictions. 
The various limits for Ware also of interest in this situation, as for example, W -► U0 in the negative 
potential energy domain. [Hint: See Böhm (1951).] 

11.3.2 Case ofW<$< U0. For g < U0, the wave function in region II 
cannot be of the plane-wave type, because the kinetic energy would be negative 
and the momentum would consequently be imaginary. It is easy to show that the 
wave function φη = (De~ax + Eeax)e~i(0t satisfies the Schrödinger equation 

- (h2/2m) (Ρφ/dx2 + ϋ0φ = in δφ/dt 

appropriate for this region, where a is obtained by substituting ψη into the 
equation. This leads to 

( - Ä2/2m)(a2^„) + ϋ0φιι = ιή(-ίω)φιΐ9 

which gives (— ή2/2ηήα2 = hco — U0, or since ήω = S, a = [(Im/h2) · 
{U0 — <^}]1/2· The positive sign is conventionally chosen for a; the choice of a 
negative sign would simply interchange the coefficients D and E. 

Since δ > W, the solution in region III is again of the propagating type, 

^m = ^ ^ = Cei^-^ = Cei^e-^ 

and the wave function φλ for region I is the same as before, 

φι = φϊηο + φτ6ΐ = (Aeikx + Be-ikx)e-iü3\ 

where the constants κ and k have their previously defined values, κ = 
h~\2m{ß - W0]1/2, k = h-\2mS)m. 
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The boundary conditions at x = 0 of continuity of the wave function 
1̂ ,(0) = i^n(0) and continuity of the first derivative of the wave function 
(dil/l/dx)\x=0 = (d\l/u/dx)\x=0 lead directly to the two relations 

A + B = D + E, ikA- ikB = - OLD + OLE. 

Rewriting this pair of equations in the form 
A + B = D + E, A- B = (- a/ft)[Z) - Ε] 

makes it easy to obtain expressions for A and B in terms of D and E. That is, by 
adding the two equations we obtain 

A = %D[l - (α/ft)] + Ell + (a/ft)]), 
and by subtracting the two equations we obtain 

B = i ( / )[ l + (α/ft)] + £[1 - (a/ft)]). 
Next, we apply boundary conditions at the barrier discontinuity at x = L. The 

condition of continuity of the wave function i^n(L) = ^m(L) and continuity of 
the first derivative of the wave function (d\l/u/dx)\x=L = (d\l/m/dx)\x=L lead 
directly to the two additional relations 

De~aL + EeaL = CeiKL, -aZ)^"a L + otEeaL = iKCeiKL. 

Rewriting this pair of equations in the form 

De~aL + EeaL = CeiKL, De~aL - EeaL = ( - iK/a)CeiKL 

leads to expressions for D and E in terms of C. That is, by adding the two 
equations we obtain 

D = ^ a L [ l + ( - iK/oL)]CefKL = £[1 - (//c/a)]Ce(iK+a)L, 

and by subtracting the two equations we obtain 

E = ^ " a L [ l + {iK/oi)]CeiKL = £[1 + (/κ/α)]0?(ίκ-α)ζ\ 

Next we can substitute the two expressions which we have just obtained for D 
and E into the expressions obtained above for A and B. This gives A and B in 
terms of C, so that the transmission and reflection coefficients can be evaluated 
for this case. The reflection coefficient 0t can be obtained from the ratio of the 
reflected to the incident beam intensities, 

4r 
inc 

B*B(-ltk/m) 

A*A{hklm) im 
_ [1 - (φ)Υ + [1 + (κ/«)2][1 + (oc/fr)2] sinh2aL 
~ [ 1 + (φ)-]2 + [1 + (κ/α)2][1 + (a/A:)2] sinh2 *L' 

The transmission coefficient 3Γ is readily evaluated from this expression for 
the reflection coefficient, 

40c/*) 
P = 1 

[1 + (φ)-]2 + [1 + (κ/α)2][1 + (α/*)2] sinh2aL' 
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In the limit W-+ 0, then κ -+k and the transmission coefficient reduces to 

<τ = . 9 4 + [1 + (k/oc)2 + (φ)2 + 1] sinh2 OLL 

1 +i [ (^ /a ) + (a//c)]2sinh2aL 
(rectangular barrier). 

This is the transmission coefficient for the situation illustrated in Fig. 1.33b. 
In the further limit in which ocL » 1, then sinh ccL ~ feaL, and we obtain the 

approximate form 

<r 
1 ! & ? ■ -2aL 

1 + m/o) + (a/A:)] V " 1 K*/«) + («/*)]' 

4(a//r) Ί 2 

.1 + (a/A:)2J 
-2aL 

Thus we have derived the remarkable quantum-mechanical result that 
particles can penetrate potential energy barriers which are even higher than the 
particle energy. This has important applicability in quantum electronic devices. 
It likewise explains the decay of radioactive nuclei by α-particle emission. 

A sample calculation spanning the domains for $ < U0 and $ > U0, with 
W = 0 for both cases, has been carried out. The value of the electronic mass is 
used, and the rectangular barrier is chosen to have a thickness of 10 Ä and a 
height of 10 eV. Figure 1.35 illustrates the variation of the transmission 
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Fig, 1.35 Transmission coefficient versus energy of a particle incident on a rectangular potential 
energy barrier 10 eV in height and 10 Ä in width. 
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coefficient with incident electron energy. The remarkable oscillatory behavior is 
due to the wavelike nature of the particle; the peaks coincide with certain 
relationships between the de Broglie wavelength and the barrier thickness (see 
corresponding exercise). 

EXERCISE Complete in detail the algebraic steps leading from the above evaluation of the 
coefficients D and E to the evaluation of the coefficients A and B in terms of C. Carry out the 
indicated substitutions to obtain the above expressions for the transmission and reflection 
coefficients. 

EXERCISE Compare the two cases W < 0 and W > 0, assuming that W < £ < U0. 

EXERCISE Take the limit W -► U0, where $ < U0, and show that the step potential results for 
$ <U0 are thereby obtained. 

EXERCISE Consider the situation in which U0 < 0 and 0 < $ < W. 

EXERCISE Consider the bound state situation in which U0 < 0, with U0 < $ < 0. Various 
limits for W can be chosen, such as W = 0, IV-+ oo, $ < W < 0, and W > 0. 

EXERCISE Deduce the specific wavelengths (in terms of barrier thickness L) at which the 
transmission coefficient has a value of unity, as illustrated in Fig. 1.35. 

11.3.3 Case ofS < U0 and $ < W. As a final consideration, let us examine 
the situation in which the particle energy δ is less than the potential energy in 
regions II and III. Since region III extends to x = oo, we expect a probability 
density in region III which approaches zero as x -> oo. The wave function for 
region III thus may be chosen to be 

φηι = He-yxe-i0>\ where y = h~l\_2m(W - £0)~]m. 

Matching the wave functions and the first derivations at x = 0 yields the same 
results given in §11.3.2 for the relationships between A, B, D, E, since the wave 
functions in regions I and II are the same as for the case W < $ < U0. However, 
the matching of the wave functions and their first derivations at x = L is 
different since φηι is now different. The result obtained from this matching is 

De~aL + EeaL = HeyL, - 0LDe~aL + (xEeaL = - yHe~yL. 

Writing this pair of equations in the form 

De~aL + EeaL = He~yL, De~aL - EeaL = (y/oc)He-yL 

facilitates the algebra. Adding the two equations leads to an evaluation of Z), and 
subtracting the two equations leads to an evaluation of E. Substituting these two 
expressions for D and isinto the previously derived expressions for A and B leads 
to an evaluation of the reflection coefficient for this case, 0t = (B/A)*(B/A). 
Substituting gives ^ = 1. This is the result to be expected on physical grounds 
for this situation. 

EXERCISE Carry out the algebraic details in the above derivation. 

PROJECT 1.24 Tunneling of Particles through a Rectangular Barrier 

1. Choose the barrier height U0 in the problem of a rectangular barrier (cf. Fig. 1.33) to be 1,2, 3,4, 
5, or 10 eV, and choose the barrier thickness L to be 1 Ä. Plot the transmission coefficient 3~ and the 
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reflection coefficient 0t as a function of incident electron energy S, scanning the range (0 < $ < 2U0) 
and assuming an incident beam of 1015 electrons/cm2 sec. 
2. Plot the charge density —εψ*φ at positions Χχ = — \ A, x2 = \ A, x3 = 1 A, xA = § Ä, and 
x5 = 2 A as a function of incident electron energy S, again scanning the range (0 < $ < 2U0) and 
assuming an incident beam of 1015 electrons/cm2 sec. 

PROJECT 1.25 Resonance Tunneling 

Consider two identical rectangular barriers of height V0 and width 2a separated by a distance b. (See 
also Problem 146, and especially the sketch of the two identical rectangular potential energy 
barriers.) 
1. Derive a general expression for the transmission coefficient for particles with energies less than 
Vo· 
2. For V0 = 25 eV, b = 2a = 3.07 A, and incident electrons with energies $ = 0.5,1,2,2.5, 3,4,5,6, 
6.5, 7, 8, 9, and 10 eV, compute the transmission coefficient ST and the reflection coefficient 01. Plot 
the results. 
3. Compare your results with those derived for a single barrier. Qualitatively explain the difference. 
4. Repeat Part 1 for energies greater than V0. What are the wavelength conditions for maximum and 
for minimum transmission? 
5. Repeat Part 4 for inverted barriers (i.e., two wells of depth V0 replacing the barriers). 

11.4 Classical-Mechanics Predictions 

Let us now focus our attention on the predictions of classical physics for this 
example. This sharpens our understanding of the problem and highlights the 
differences in the predictions of quantum mechanics and classical mechanics. 
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Fig. 1.36 Barrier U(x) with gently sloping sides (regions Γ and IF), as opposed to the 
discontinuous changes in potential energy manifested in the rectangular barrier. The force F(x) 
indicated in the lower part of the figure is nonzero only in regions F and IF; it is discontinuous, being 
given by the negative derivative of the potential energy U(x) in accordance with Eq. (1.389). 

Instead of an infinite slope at the barrier edges, however, let us consider a 
finite (but arbitrarily steep) slope, as indicated schematically in Fig. 1.36. Since 
the force F on a particle is given by the negative gradient of the potential energy, 

-VU, (1.388) 
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which is a quite generally valid physical relation, then for one dimension x the 
force is given by 

F= -dU(x)/dx. (1.389) 
Thus the force is constant and is negatively directed in the region labeled Γ in the 
figure; the force is likewise constant but is positively directed in the region 
labeled ΙΓ. The slope being zero in regions I, II, and III, the force is likewise zero 
in these regions. 

Consider now a charged particle of mass m incident on the barrier from the 
left. The force is zero and the kinetic energy is constant and equal to the total 
particle energy throughout region I. (This presumes that the constant energy 
beam has been experimentally produced in the region to the left of I, as, for 
example, by a hot filament and a series of accelerating grids, as illustrated in Fig. 
1.37.) As the charged particle enters region Γ it experiences a reverse force which 
slows it down. If the potential energy difference across region Γ is greater than 
the kinetic energy of the particle when it enters region I, the particle velocity will 
be reduced to zero before the particle has traversed region Γ. At that point, the 
force on the particle is still negatively directed and nonzero (see Fig. 1.37 
diagram), so the particle will be accelerated in the reverse direction. As the 
particle re-enters region I in this manner, it will have regained its initial kinetic 
energy: the particle momentum will be the same in magnitude but reversed in 
sign. This process is called "reflection," and insofar as classical physics is 
concerned, the reflection is total in the sense that it is predicted to occur for all 
particles having an initial kinetic energy less than the height of the potential 
energy barrier encountered. 

On the other hand, for a particle entering region Γ with a kinetic energy 
greater than the potential energy barrier, the particle will still have a nonzero and 
positively directed velocity when it reaches region II. The probability would 
therefore be 100% for the particle to enter region II, if classical physics could be 
believed. The particle would then travel through region II with its constant 
(though reduced) kinetic energy $£Ι} = $ — U0 until it reached region ΙΓ, which 
it would then enter, and undergo a continuous acceleration until it entered 
region III with the appropriate kinetic energy determined from & — W. The only 
difference between the currently considered barriers and those previously 
considered in the quantum derivation are the slopes, and there is no reason to 
refrain from taking the mathematical limit in which the slopes become infinite, 
even though this would correspond to an impossible experimental arrangement: 
The accelerating grids indicated in the figure would then be separated only 
infinitesimally while the accelerating voltages would remain fixed, thus cor-
responding to an immeasurably large electric field which would cause arcing and 
dielectric breakdown. 

We therefore find that the classical and quantum predictions are somewhat 
different. The classical-mechanics result is more straightforward in a sense, 
because the reflection or transmission, as the case may be, is total. The quantum 
mechanics result, on the other hand, is a bit more mysterious, there being cases of 
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partial transmission and partial reflection of a particle beam. It is the quantum-
mechanics prediction, however, that is found to agree with the experimental 
results. 

12 Bound-State Problems 

12.1 Introduction 

A particle may be confined to a certain region of space by potential energy 
barriers which surround the particle. In one dimension, for example, the sketch 
in Fig. 1.38 illustrates that at positions xl and x2 the potential energy U(x) is 
equal to the total energy $ of the particle. At these points, the kinetic energy S^ 
given by [$ — U{x)~] is necessarily zero. These points are called "classical turning 
points," since classically the particle would simply be reflected from the barrier 
at these points, with a reversal of the perpendicular momentum component 
similar to the elastic rebound of a rubber ball from a concrete wall. (See the 
discussion on the classical mechanics limit in the preceding section.) The motion 
of the particle would thus continue in the currently considered "potential well" 
delineated by the surrounding energy barriers. The total energy $ is conserved, 
with a continuous interchange of kinetic and potential energies. The time 
dependence of the motion therefore depends upon the exact functional form of 

Fig. 1.38 Arbitrary potential energy well wherein a particle with total energy $ is trapped, 
oscillating back and forth between the classical turning points JCX and x2 where the kinetic energy is 
zero. (At arbitrary position x', the total energy can be noted to be divided into potential energy U(x') 
and kinetic energy $K(x') portions.) 
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the potential energy U(x) with position x. The characteristic feature of bound-
state problems in quantum mechanics is that the application of realistic 
boundary conditions forces a restriction on the energy values, so that the 
eigenvalues for the total energy are confined to a discrete set. This characteristic 
feature is independent of the particular functional form of the potential energy, 
although the exact details of the energy level spectrum are dependent upon the 
form of U(x). 

12.2 The Square-Well Potential 

The most readily available example of a bound-state problem is that of a 
"particle in a box" which we considered in §10.2. The "box" is the region of 
space wherein the potential energy U(x) is zero, with the "walls" of the box being 
the infinitely high potential-energy barriers which reflect the particle and thus 
cause it to remain within the box. Discrete momentum and energy values, 

pn = hkn = nnh/L, (1.390) 

Sn = h2k2J2m = n2n2n2/2mL2 (n = 1,2,3, . . . , oo), (1.391) 

were found to be required in order to meet the boundary conditions of zero 
probability density ψ*ψ at the "walls" where the potential energy rises to 
infinity. The integer n is the quantum number for the problem. Such quantized 
values for the total energy are in marked contrast to the classical viewpoint 
where there is no condition on the values of the momentum and energy which a 
particle can assume within the box. Energy absorption by the particle in the box 
occurs when the particle is promoted from a quantum level n to a higher energy 
level «', with the characteristic energy Δ$(η -► ή) required for the absorption 
process being 

Δδ(η -► ri) = Sw -Sn = (ri2 - n2)n2h2ßmL2. (1.392) 

Similarly, energy emission occurs when the particle in the box drops from a 
quantum level ri to a lower energy level n, with the characteristic energy of 
emission being 

Δ£(ή -+n) = gn. -Sn = {ή2 - n2)n2h2ßml2. (1.393) 

It is interesting to note that the lowest energy state (i.e. the ground state) is 
given by n = 1. (For n = 0, φ = 0 so there is no particle state.) The ground-state 
energy is therefore nonzero. The potential energy of the particle is zero within the 
box, so the total energy represents kinetic energy. Thus the particle is in motion 
within the box even when it is in its lowest energy state. The lowest speed is given 
by 

^ = W (1.394) 
A L min v ' 

so that 
Vmia = Kh/mL, (1.395) 

where m is the mass of the particle and L is the length of the box. 
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The three-dimensional square-well potential is similar to, but more involved 
than, the one-dimensional problem thus far treated. The spectrum of energy 
levels involves three quantum numbers, as shown in Chap. 3. This represents 
perhaps the most important problem in developing the quantum mechanics for 
the free electron model of metals, and also it is quite important for our 
development of energy band theory in Chap. 7. 

PROJECT 1.26 Eigenfunctions for Particle in a Two-Dimensional Square-Well Potential 

1. Solve for the energy eigenfunctions for the Schrödinger equation for a particle trapped in a two-
dimensional square-well potential. 
2. Construct two-dimensional sketches (or plots) illustrating contours of equal probability density 
φ*ψ for the five lowest energy eigenstates. 
3. Interpret these sketches in terms of location of the particle in the two-dimensional box. 
4. Considering the time dependence 0,(i) of these eigenfunctions, attempt to arrive at some 
classically meaningful interpretation for the actual motion of the particle inside the box. 

PROJECT 1.27 Finite Square-Well Potential 

Deduce the quantum energy levels and wave functions for the finite-depth square-well potential 
problem. 

PROJECT 1.28 Ammonia Clock 

Consider the following symmetric one-dimensional square-well model of an ammonia molecule, 
with position representing the perpendicular distance of the nitrogen atom from the plane defined by 
the three hydrogen atoms: 

V(x)=V0 (-a^x^a), 

V(x) = 0 {a < x <a + b) and ( - a - b < x < -a), 

V(x) = oo (x ^ a + b) and (x ^ - a - b). 

(See also Problem 146, and especially the sketch of the symmetric double-well potential energy 
diagram.) 
1. Deduce the eigenvalues and eigenfunctions. 
2. Derive an expression for the energy eigenvalues. 
3. Qualitatively describe the dependence on the parameters V0, a, and b. 
4. Compute the time dependence of the wave function. 
5. Take the limit in which 2aV0 becomes a Dirac delta function. 

PROJECT 1.29 The Asymmetric Potential Well 

Consider a particle of mass m trapped in the asymmetric potential defined by 

U(x) = Ui (x< 0), U(x) = 0 (0 ^ x ^ L), U(x) = U2 (x > L). 

1. Solve the Schrödinger equation to obtain the energy eigenfunctions. 
2. Determine the energy eigenvalues. 
3. Take the limit U2 -* U^ and show that your results reduce appropriately to those for the finite 
square-well potential. 
4. Take the limit {7Ί -► oo, U2 -»· oo and show that your results reduce appropriately to those for the 
infinite square-well potential. 
5. Evaluate numerically the eigenvalues in Part 2 for reasonable parameter values, such as Ui = 
1-5 eV and U2 = 5-100 eV. 
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12.3 The Harmonic Oscillator Potential 

Another of the most important potential energy functions is the harmonic 
oscillator potential, 

U(x) = \Kx2, 

which is illustrated in Fig. 1.39. This potential is found applicable to a variety of 
problems in classical mechanics, such as that of a mass M attached to a spring 
having a stiffness constant K and displaced a distance x from its equilibrium 
position on an essentially frictionless horizontal plane (see Fig. 1.39). The force 
obtained by taking the negative gradient of U(x) is F = — VU(x) = — x dU(x)/dx 
= -(Kx)x. 

ν(χ) 

|—UÜÜÜÖ—\W\ i 

O 

Harmonic Oscillator Potential 

Fig, 139 Harmonic oscillator potential energy (left-hand side) and a typical harmonic oscillator 
(right-hand side). 

EXERCISE Apply Newton's second law and Hooke's law for the force exerted by a spring in 
tension or compression to deduce the classical harmonic oscillations of the back and forth motion of 
a mass affixed to one end of a spring and sliding on a frictionless horizontal plane. 

The Hamiltonian for the harmonic oscillator problem is 

3/e = -(h2ßm) d2/dx2 + \Kx2, 

and the time-independent Schrödinger equation for this problem is 

-(h2/2m) ά2φη(χ)/άχ2 + \Κχ2φη{χ) = £ηφη(χ). 

This is a troublesome differential equation to solve for the uninitiated, but the 
solutions have been worked out and studied in great detail [see, for example, 
Pauling and Wilson (1935) and Böhm (1951)]. The solutions involve Hermite 
polynomials. The complete time-dependent solutions φη(χ, t) are then given as 
usual by taking the product of the spatial functions with the corresponding time-
dependent function 9n(t) = exp[( — ijK)Snt\ 

ψΗ(χ, t) = φη(χ) exp[-( i /«) iV]. 
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The application of boundary conditions to the Hermite polynomials then yields 
the following discrete spectrum of energy eigenvalues: 

Sn = (n + %ha> = (n + i)Avosc (n = 0 ,1 ,2 , . . . , oo) 

(harmonic oscillator energy eigenvalues), 

where ω is an angular frequency, which for the well-known problem of the 
horizontal motion of a mass M attached to a spring having a force constant K is 
given by (K/M)1/2. The integer n is the quantum number. These energy levels are 
indicated as dashed lines in Fig. 1.39. An interesting feature of the quantum 
solution is the fact that the ground-state energy (n = 0) is nonzero. Lattice 
vibrations in a solid can be treated in terms of the harmonic oscillator potential. 
That the ground-state energy is nonzero means that even at 0°K there will be 
some vibrational motion of the lattice. 

Another interesting feature of the quantum solution is the dependence of the 
energy upon the frequency of oscillation. The increase in amplitude (see Fig. 
1.39) which accompanies larger values of the energy Sn seems almost incidental 
to the quantum solution, whereas in the classical solution the dependence of 
energy upon amplitude appears to be a central feature. In fact, the energy 
AS(n -* ri) required to excite an oscillator of frequency ω from a state of 
quantum number n to the state with quantum number ri is 

AS(n -► ri) = (ri + ±)ήω - (n + $)Λω = (ri - η)Λω. 

Thus energy absorption occurs in integer multiples of a basic unit of energy ήω 
which is characteristic of the oscillator frequency. Analogously, energy emission 
due to the deexcitation of an oscillator of frequency ω from a state of quantum 
number ri to the state with quantum number n is given by 

AS (ri -► w) = (ri + ^)Λω — (n + fyhio = (ri — η)ήω = (ri — ri)hv. 

If this energy is emitted in the form of a photon of energy Sphot = Avphot, then the 
frequency of the photon will be vphot = (ri — η)ω/2π = (ri — «)vosc, and the 
wavelength of the emitted photon will be 2phot = c/vphot = cj\(ri — n)vosc]. The 
allowed transitions are governed by selection rules involving off-diagonal matrix 
elements (see §12.5). 

EXERCISE Show that ψ = A exp[ — (mou/2h)x2] is a solution to the Schrödinger equation for a 
particle in a harmonic oscillator potential. 

EXERCISE Numerically evaluate the Schrödinger equation for the harmonic oscillator using a 
programmable calculator. [Hint: See Eisberg (1976).] 

PROJECT 1.30 Solution of the Schrödinger Equation for the Harmonic Oscillator 

Solve the Schrödinger equation analytically, obtaining the energy eigenvalues listed above and the 
energy eigenfunctions. {Hint: Good references for this problem are Böhm (1951) and Pauling and 
Wilson (1935).] 
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PROJECT 1.31 Eigenvalue Equations Satisfied by Harmonic Oscillator Eigenfunctions 

1. By direct substitution, show that the harmonic oscillator eigenfunctions satisfy the energy 
eigenvalue equation with the energy eigenvalues given above. 
2. Show whether or not the harmonic oscillator eigenfunctions satisfy the eigenvalue equation 
ρορφΐ = Ρΐφΐ for the linear momentum, and explain physically the result you obtain. 

PROJECT 1.32 Matrix Elements of Position Operator for the Harmonic Oscillator 

Deduce the matrix representation of the position coordinate x in the representation given by the 
harmonic oscillator wave functions. (Hint: These wave functions can be found tabulated in many 
standard reference texts in quantum mechanics.) 

12.4 The Coulomb Potential 

12.4.1 Energy Eigenvalues and Spectroscopic Lines. The Coulomb attraction 
between two point charges of opposite sign gives rise to a potential energy of the 
form (see §5.3), U(v) = #ι#2/4πε0Γ, where r = |r| is the separation distance 
between the two charges. This potential is sketched in Fig. 1.40. The classical 
solution to this problem, assuming qi to be a proton and q2 to be an electron, has 

U(r) 

0 

q 

Vacuum Level r 

-Jn=i 

^ r 

Fig, 1.40 Coulomb potential energy between two oppositely charged point charges as a function 
of separation r. 
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been worked out in detail in §5.3. The additional consideration of the de Broglie 
relation λ = h/p for the electron then leads to the Bohr theory of the hydrogen 
atom, which is also presented in that section. The Bohr theory, though semi-
classical in character, does give rise to the correct system of discrete energy levels. 
However, a more appropriate way to develop this problem is to use the 
Hamiltonian 

2tf = -(n2/2m) V2 + #ι#2/4πε0Γ 

to set up the appropriate time-independent Schrödinger equation ^φη{χ) = 
δ„φη(τ) for this problem. Due to the spherically symmetric potential-energy 
term, U(r) = U(r), the use of spherical polar coordinates (r, 0, φ) enables a 
separation-of-variables technique to be used. This gives rise to three separated 
equations for the factors R(r), (9(0), and Φ(φ) appearing in the product form of 
the spatial portion of the wave function φ(τ) = ΙΙ{ν)Θ{θ)Φ{φ). The solution of 
the three equations ranges from the almost trivial [for the Φ(φ)] to the almost 
horrendous [for the R(r)~], but the extensive development of the detailed 
solutions in the literature [see Pauling and Wilson (1935) and Böhm (1951)] 
saves the reader from an otherwise monumental mathematical task. Very nice 
illustrations of these functions are given in Leighton (1959). The application of 
appropriate boundary conditions of single valuedness and boundedness on the 
wave function leads to three quantum numbers,«, /, and m, which are referred to 
respectively as the principal quantum number, the orbital (or azimuthal) quantum 
number, and the magnetic quantum number. The origin of these quantum 
numbers is the topic of §12.4.2. In the absence of a magnetic field the quantized 
energy levels depend only upon the principal quantum number n, 

Sn= - mZ2e*/32n2n2n2s2
0 (n = 1,2,3,..., oo), 

where the charges are qx = Ze and q2 = — e for the one-electron atom, with Z = 
1 for the hydrogen atom. These levels agree with those deduced by means of the 
semiclassical Bohr theory presented in §5.3, as already mentioned. The spectrum 
of energy levels is indicated as dashed lines in Fig. 1.41. 

Energy absorption by the atom is required to promote an electron from a 
given quantum state n to a higher energy quantum state ή. The amount of energy 
Δ${η -* ή) required for this excitation is 

Δδ(η -+ri) = £n> -δη= -Z2hcRQ0(l/ri2 - \/n2), 

where R^ is known as the Rydberg constant. It has the value 
Rn = me4/64n3sln3c = 1.0967758 x 107 m"1. 

Similarly, the energy emission accompanying the transition of an electron from a 
quantum state ή to a lower energy quantum state n is 

Δ£(ή -»/!) = tn. -Sn= -Z2hcRn(l/ri2 - \/n2). 

If this energy is given off in the form of a photon of frequency v hot and energy 
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Fig. 1.41 Quantized energy levels and the associated series of spectral lines for the hydrogen 
atom. 
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<^Phot = Hi«*' t h e photon wavelength is lphot = c/vphot = hc/SphoV and the 
reciprocal wavelength is given by 

lMphot = Z'R^l/n2 - l/n'2). 

The spectroscopic lines (as observed photographically) involve energy absorp-
tion and emission processes. The wavelengths of the observed lines for hydrogen 
agree well with the above expression, once a small correction factor is introduced 
to take into account the finite nuclear mass. The choice of n = 2 with ri = 3,4,5, 
. . . gives rise to the sequence of observed lines known as the Balmer series, the 
choice n = 3 with ri = 4, 5, 6,... gives rise to the sequence of observed lines 
known as the Paschen series, etc. These various series are listed in Table 1.1 and 
are illustrated in Fig. 1.41. 

Table 1.1 

Hydrogen Atom Radiation Series'1 

n Series Designation Spectral Region 

1 Lyman Ultraviolet 
2 Balmer Near ultraviolet and visible 
3 Paschen Infrared 
4 Brackett Infrared 
5 Pfund Infrared 

a v = c/X = cRH[n-2-n'-2] («' = « + l , / i + 2,« + 3 , . . . ) , 
Rn = 1.0967758 x 107/m, c = 2.997925 x 108m/sec. 

The series of energy levels is modified in the presence of a magnetic field 
because of two factors, namely, the electron orbital motion around the nucleus 
and the intrinsic spin of the electron. A charged particle in orbit constitutes a 
circulating current, which in turn produces a magnetic moment. This so called 
orbital magnetic moment μ0Γΐ5 interacts with an applied magnetic field B to give an 
additional energy term 

^orb= - μ θ Γ ο · Β 

which must be added to the Hamiltonian. Likewise the intrinsic spin angular 
momentum of the electron with respect to an axis through its center of mass gives 
rise to a circulating current and thus to a spin magnetic moment μ8, due to the fact 
that the electronic charge has some spatial extent. Thus there is an energy term 

^ Ρ ί η = - μ δ · Β 

to consider also in the Hamiltonian. Other energy terms can also arise, such as 
the energy of interaction between two magnetic moments μοΛ and μδ, called the 
spin-orbit interaction energy. For further details and the expected modifications 
in the energy level spectrum, the reader is referred to the excellent treatise by 
Leighton (1959). 
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PROJECT 1.33 Solution of the Schrödinger Equation for the Hydrogen Atom 

1. Substitute the separated wave function into the Schrödinger equation with the potential energy 
being that of the Coulomb potential with corresponding Hamiltonian. Use spherical polar 
coordinates for the Laplacian. Carry out the standard separation of variables process, obtaining 
individual differential equations for R(r), (9(0), and Φ(φ). 
2. Solve the differential equation for Φ(φ), obtaining the φ dependence of \jj{r, 0, φ, t). 
3. Solve the differential equation for (9(0), obtaining the 0 dependence of \//(r, 0, φ, t). 
4. Solve the differential equation for R(r), obtaining the r dependence of \j/(r, 0, φ, t) and the energy 
eigenvalues given. [Hint: Good references for this problem are Pauling and Wilson (1935) and Böhm 
(1951).] 

12.4.2 Source of the Quantum Numbers in the Hydrogen Atom Solutions. It is 
interesting to examine the way in which the three quantum numbers arise in the 
hydrogen atom problem, and to understand how the electrons in the multielec-
tron atom can be characterized by the corresponding electronic states of the one-
electron atom. These states, together with the fourth quantum number of 
electron spin and the statistics of energy level occupation implied by the Pauli 
exclusion principle, enable us to understand in a rudimentary way the entire 
periodic table for the chemical elements. 

The key to the separation of variables in the hydrogen atom problem is the 
recognition that the Coulomb potential energy of interaction between the 
electron in question and the nucleus depends only upon separation r = |r| and is 
independent of the spatial orientation of the line of centers between electron and 
nucleus. Therefore in spherical polar coordinates (r, 0, φ) the Schrödinger 
equation can be separated (in the usual way of variables separation in partial 
differential equations) into three equations, each involving a function of one of 
these three variables, namely, 

<Kr, 0 = Ά(τ)θ(θ)Φ(φ) βχρ[-(//Λ)Λ], (1.396) 
where only the equation for R(r) contains the Coulomb potential energy of 
interaction between electron and nucleus. The separation constant in the 
equation for Φ(φ) is found to lead to a wave function ψ(τ, t) oc exp(/ra0) which is 
single valued whenever the angle φ is increased by multiples of In (thus 
reproducing r) if and only if m2 is equal to the square of an integer. (The single 
valuedness is necessary because the probability density φ*φ is a physical 
quantity which must have only one value at a given point in space.) Denoting the 
integer in question by the symbol m, we thereby obtain one quantum number 
characterizing the electronic state. It is thus conceivable that m has allowable 
values of 0, +1, ± 2 , . . . , although an upper bound on \m\ is dictated by another 
consideration to be discussed shortly. The resulting wave-function factor Φ(φ) is 
found to be an eigenfunction of the Hermitian operator <£z which represents the 
z component of the electron orbital angular momentum, with the eigenvalue 
being mh, 

&ΖΦ(Φ) = ™ΛΦ(φ) (m = 0, ± 1, ±2, . . . ) , (1.397) 
which in turn leads to 

JSP^r, 0 = "*#(r, 0 (m = 0, ± 1, ±2, . . . ) . (1.398) 
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These eigenvalues are illustrated in Fig. 1.42. The energy — μ · Β of interaction 
of the corresponding magnetic moment μ = — (ej2m)S£ (produced by the 
circulating electrical current due to electron orbital motion) with a magnetic 
field B = Bzi oriented along the z axis is mhBz. For this reason, the integer m is 
called the magnetic quantum number. 

Fig. 1.42 Eigenvalues mh for the z component of the orbital angular momentum vector and 
corresponding eigenvalues /(/ + \)h2 for the square of the total angular momentum, (a) s state. 
(b) p state, (c) d state. (The angular momentum vectors indicated by the arrows can be considered to 
precess about the z axis; in the terminology of quantum mechanics it is thus said under the 
circumstances that there are no good quantum numbers for the x and y components of the angular 
momentum. An alternate choice of basis states can lead instead to energy eigenfunctions which are 
simultaneous eigenfunctions of either the operator representing the x component of the orbital 
angular momentum or the operator representing the y component of the orbital angular momentum, 
but not both simultaneously.) 

The differential equation for Θ(θ) representing the Θ component of the wave 
function φ(τ, t) contains m2 (discussed above) as well as a second separation 
constant λ. Whenever m = 0, the equation can be cast in a form known as 
Legendre's differential equation. The solutions diverge unless λ = 1(1 + 1), where 
/ represents a nonnegative integer. Therefore physically meaningful probability 
densities are obtained only for this choice for the second separation constant. 
The solutions P^cos Θ) obtained are known as the Legendre polynomials. These 
solutions turn out to be eigenfunctions of the Hermitian operator ££2 

representing the square of the orbital angular momentum of the electron, with 
eigenvalues /(/ + 1)#2, 

jSP2e(fl) = /(/ + 1)ή2Θ(θ) (/ = 0, 1, 2, 3, . . .) (1.399) 
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which in turn leads to 

&2ψ(τ, 0 = /(/ + 1)«2Ά(Γ, 0 (/ = 0, 1, 2, 3, .. .)· (1.400) 

Therefore /is called the orbital angular momentum quantum number. The orbital 
angular momentum eigenvalues are illustrated in Fig. 1.42. 

Whenever m Φ 0, the cofresponding solutions to the Θ(θ) equation are the 
associated Legendre functions PJ^cos 0), where m2 *ζ I2. The restriction on m is 
thus a mathematical one, although it ties in very well with the corresponding 
physics since the square of the z component of the orbital angular momentum, 
namely, m2h2, cannot exceed the square of the total orbital angular momentum, 
namely, /(/ + \)h2, which in turn requires \m\ ^ /. 

The differential equation for R(r) representing the r component of the wave 
function ^(r, t) contains the quantum number / (discussed above) as well as a 
third separation constant. The solutions can be expressed in terms of the 
associated Laguerre polynomials. The requirement that the solutions not diverge 
in order to have a physically meaningful probability density ψ*φ places once 
again severe restrictions on the separation constant. This in turn requires an 
integer quantum number «, known as the principal quantum number, together 
with the condition n > I. This leads immediately to the quantized energy 
eigenvalues 

Sn = -±Z2e2/4ne0a0n
2 (n = 1,2,3,...), (1.401) 

where a0 is the parameter known as the Bohr radius, 

a0=4n80fi
2/me2; (1.402) 

that is, 

Jf<Kr, 0 = ^ ( r , 0 (n = 1,2,3,...), (1.403) 

where the φ(τ, t) depends upon the n value in question. 
Because i/̂ (r, t) is characteristic of the three quantum numbers («, /, m), it is 

appropriate to indicate this explicitly by writing 

φ(τ,ί) = φη1ηι(τ,ί). (1.404) 

To summarize, three integer quantum numbers (n, /, m) are required to 
characterize a given energy eigenfunction for the hydrogen atom, with the 
allowed values being 

n= 1,2, 3 . . . , (1.405) 

O^l^n- 1, (1.406) 

-l^m^l. (1.407) 

It can be seen from these results that for a given n value, there are n allowable / 
values, and for a given / value, there are (2/ + 1) possible m values. Since the 
energy eigenvalues Sn given above depend only on the value of n and are 
independent of the values of / and m, it can be seen that there are many 
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eigenfunctions for a given energy eigenvalue. The solutions for the hydrogen 
atom are therefore highly degenerate except for the ground state (n = 1, / = 0, 
m = 0). When the fourth quantum number ms, representing electron spin, is 
taken into account (ms = + ̂ ), corresponding to spin angular momentum values 
of + msfi, it is found that two electrons can be accommodated in the ground state 
without violating the Pauli exclusion principle, which requires only that no two 
electrons have the same set of quantum numbers. Table 1.2 illustrates some 
allowed sets of quantum numbers. 

Table 1.2 

Allowed Combinations of Quantum Numbers 

n 

1 

2 

2 
2 
2 

3 

3 
3 
3 

3 
3 
3 
3 
3 

/ 

0 

0 

1 
1 
1 

0 

1 
1 
1 

2 
2 
2 
2 
2 

mz 

0 

0 

0 
1 

- 1 

0 

0 
1 

- 1 

0 
1 
2 

- 1 
- 2 

ms 

±i 
±i 
±i 
±i 
±i 
±i 
±i 
±i 
±i 
±ϊ 
±i 
±i 
±i 
±i 

Is electrons 

2s electrons 

2p electrons 

3s electrons 

3p electrons 

3d electrons 

Figures 1.43 and 1.44 illustrate the results of the quantum treatment of the 
hydrogen atom for the specific cases of / = 0, / = 1, and / = 3. The case / = 0 is 

(a) 0 = 0 ( 1 s state) 

m = 0 

do 
(b) Q = 1(2 p state) 

m = ± 1 

Fig. 1.43 Angular probability density distributions for the Is and the 2p states of the electron in 
the hydrogen atom. 
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Q = 3 (4f state) 

m = 0 

Fig. 1.44 Angular probability density distribution for the 4f state of the electron in the hydrogen 
atom. 

interesting in that it constitutes a state of zero angular momentum. Classically 
this could happen only if the electron were oscillating along the line of centers 
between the electron and the nucleus. Examination of the eigenfunctions for this 
case [McGervey (1971)] shows that they are spherically symmetric and decay 
more or less exponentially with increasing distance from the origin. Sketches 
illustrating both the angular and the radial probability density distributions for 
the n = 1, / = 0 and the n = 2, / = 0 eigenfunctions (known respectively as the 1 s 
and 2s states) are shown in Fig. 1.4. 

PROJECT 1.34 Eigenvalue Equations Satisfied by Hydrogen Atom Wave Functions 

1. By direct substitution, show that the hydrogenic wave functions ij/nlm [see Böhm (1951); Pauling 
and Wilson (1935)] satisfy the energy eigenvalue equation (1.403) with energy eigenvalues given by 
Eq. (1.401). 
2. Show also that the ψη1ηι satisfy the eigenvalue equation (1.397) for the z component of the orbital 
angular momentum. 
3. Show that the \j/nlm likewise satisfy the eigenvalue equation (1.400) for the square of the total 
orbital angular momentum. 
4. Show that the functions \j/nlm do or do not satisfy the eigenvalue equation J5f op0f = L,^, for the 
total orbital angular momentum vector, and explain the physical consequences of your finding. 
5. What are the constants of motion in the hydrogen atom problem? 

12.4.3 Multielectron Atoms. First, it is important to recognize that the 
potential energy in a multielectron atom depends upon the electron-electron 
Coulomb energies as well as on the Coulomb energy of interaction of the 
electron in question with the nucleus. Although the electron-electron interaction 
can be viewed as a perturbation for purposes of very crude estimates (see Project 
5.2 for the helium atom), it is in fact much too large to be treated within the 
framework of perturbation theory. If only a few electrons are involved, as is the 
case for the lighter atoms, a variational treatment can be used to obtain 
approximate solutions to the many-electron Schrödinger equation [see Schiff 
(1968)]. However, for the heavier atoms where a larger number of electrons are 
involved (cf. Fig. 1.45), the starting point for most calculations is the 
approximation that the total potential energy of interaction of a given electron 
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Fig. 1.45 Classical picture of the multielectron atom in which the electrons interact among 
themselves and with the central oppositely charged nucleus. 

with the nucleus and the other electrons can be represented by a spherically 
symmetric potential V{r). This is referred to as the central-field approximation. In 
practice, then, one of the most difficult parts of the problem is to estimate or 
calculate the potential. The details are quite beyond the scope of our present 
treatment; however, the important results of such an approach are of interest to 
us, since they justify using one-electron eigenvalues and eigenfunctions as a 
semantic framework for describing the multielectron atom. Including spin, there 
is once again a set of four quantum numbers («, /, mh and ms) required to specify 
an electronic state. The wave function specified by a given set of quantum 
numbers is called an orbital, or more specifically, an atomic orbital, in analogy 
with the older Bohr theory in which electrons were considered to travel in 
planetary orbits in accordance with classical mechanics. The Pauli exclusion 
principle again requires that no two electrons have the same set of quantum 
numbers [viz., the principal quantum number n characteristic of the total energy of 
the electron, the angular momentum (azimuthal) quantum number /characteristic 
of the total orbital angular momentum of the electron, the magnetic quantum 
number mt characteristic of the orientation of the magnetic moment with respect 
to the z axis, and the spin quantum number ms characteristic of the orientation of 
the electron spin magnetic moment]. The orbital angular momentum and 
magnetic quantum numbers / and mx are the same as the quantum numbers / and 
m in the hydrogen atom since the separation of variables with the more general 
central potential V(f) proceeds in exactly the same way as for the single electron 
(or hydrogen atom) where U(r) = — Ze2/4n£0r, thus yielding the same equations 
for the Θ(θ) and Φ(φ) factors in the product wave function ^(r, t), 

φ(τ, t) = Α(Γ)©(Θ)Φ(0) exp[ - (ι/Λ)Λ]. (1.408) 

The electron spin quantum number ms= ±\ is likewise the same as in the 
hydrogen atom. The radial equation, containing as it does the generalized 
central potential V(r) instead of simply the electron-nucleus Coulomb potential, 
requires a generalized total quantum number n which is quite analogous to the 
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principal quantum number n for the hydrogen atom. One very important 
difference between the results for the general central potential problem in which 
the potential no longer varies as 1/r, and the hydrogen atom problem in which 
the potential varies strictly as 1/r, is the fact that electronic states characterized 
by different values of the orbital angular momentum quantum number /and the 
same total quantum number n generally correspond to different energy 

Table 1.3 

Electron Configurations of the Elements0 {in Gaseous Phase) 

Shell 

Number of 
Electrons 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

Element 

H 
He 
Li 
Be 
B 
C 
N 
O 
F 
Ne 
Na 
Mg 
Al 
Si 
P 

s 
Cl 
Ar 
K 
Ca 
Sc 
Ti 
V 
Cr 
Mn 
Fe 
Co 
Ni 
Cu 
Zn 
Ga 
Ge 
As 
Se 
Br 
Kr 

K 

Is 

1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2s 

1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

L 

2p 

1 
2 
3 
4 
5 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

3s 

1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

M 

3p 

1 
2 
3 
4 
5 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

3d 

1 
2 
3 
5 
5 
6 
7 
8 

10 
10 
10 
10 
10 
10 
10 
10 

4s 

1 
2 
2 
2 
2 
1 
2 
2 
2 
2 
1 
2 
2 
2 
2 
2 
2 
2 

TV 

4p 4d 

1 
2 
3 
4 
5 
6 

4f 

(continued) 
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Table 13 (continued) 

Shell K 

Number of _. 
_, x Element 
Electrons 

L M N 0 P Q 

4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 7s 

37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 

Rb 
Sr 
Y 
Zr 
Nb 
Mo 
Tc 
Ru 
Rh 
Pd 
Ag 
Cd 
In 
Sn 
Sb 
Te 
I 
Xe 
Cs 
Ba 
La 
Ce 
Pr 
Nd 
Pm 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 
Hf 
Ta 
W 
Re 
Os 
Ir 
Pt 
Au 
Hg 
Tl 
Pb 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 

18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
8 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

1 
2 
4 
5 

(5) 
7 
8 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

2 
3 
4 
5 
6 
7 
7 
8 
9 

10 
11 
13 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 

1 
2 
2 
2 
1 
1 

(2) 
1 
1 

1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
2 
3 
4 
5 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

1 

1 
2 
3 
4 
5 
6 
7 
9 

10 
10 
10 
10 

1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
1 
2 
2 1 
2 2 

(continued) 
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Table 1.3 (continued) 

Shell K L M N O P Q 

Element 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 7s 

83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 

Bi 
Po 
At 
Rn 
Fr 
Ra 
Ac 
Th 
Pa 
U 
Np 
Pu 
Am 
Cm 
Bk 
Cf 
Es 
Fm 
Md 
No 
Lw 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 

18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

2 
3 
5 
6 
7 
7 
8 
9 
10 
11 
12 
13 
14 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
(2 
(2 
(2 
(2 
(2 

3 
4 
5 
6 
6 
6 
6 

1 
2 

I 2 
6 2 2 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

I 2 
I 2 

2 
2 
2 

I 2 
I 2 
I 2 
I 2) 
I 2) 
I 2) 

2) 
I 2) 

a We note here the permeating influence of the Pauli exclusion principle in determining the ground 
state configurations of atoms in nature's beautiful array of chemical elements. For this reason, the 
exclusion principle is sometimes referred to as Pauli's aufbau (i.e., building up) principle for atomic 
structure. 

eigenvalues. In the hydrogen atom problem the energy eigenfunctions for a given 
n but different /values are degenerate. In the multielectron atom, states of lower / 
value consistent with a fixed n value lie at a lower energy. The combined values of 
/ and n for a given eigenfunction again determine its radial nodes, these being 
n — I — 1 in number. As in the hydrogen atom, n must be a positive integer, and 
the magnitude of the integer / cannot exceed n — 1. An atomic shell is specified 
by a given value for n, and an atomic subshell is specified by a given set of values 
for both n and /. Taking into account the two possible spin quantum numbers 
ms = + \ and the 2/ + 1 values for mx (m* = —I, — I + 1, . . . , 0, 1, . . . , /), one 
deduces the result that a given subshell contains 2(2/ + 1) degenerate electronic 
states. The series of shells are denoted (cf. Table 1.3) by K, L, M, N, etc., in 
standard spectroscopic notation. 

The ground state of a many-electron atom is the one in which a sufficient 
number of electrons populate the orbitals of lowest energy consistent with the 
Pauli exclusion principle to give a neutral entity. The ground-state configuration 
of the electrons in an atom is specified by the number of electrons in each shell 



Table 1.4 

Elements in the Periodic Table with the Corresponding Number of Electrons per Atom 

Li3 

Na1 
Be4 

Mg1 Al1 Si1 

N7 O8 

Cl1 

K1 Ca2 Sc2 Ti2 Cr2 Mn2 Fe2 Co2 Ni2 Cu2 Zn3 Ga3 Ge3 As3 Se3 Br3 

Rb3 Sr3 Zr4 Nb4 1 Mo4 Tc4 3 Ru4 Rh4 Pd46 Ag4 Cd48 In49 Sn5 Sb5 Te5 

Cs5 Ba5 La5 Hf7; Ta7 W7 Re7 Os7 Pt7 Au7 Hg8 Tl8 Pb8 2 Bi8 Po8 At8 

Fr8 Ra8 Ac8 

Lanthanide series 
Actinide series 

Ce58 

Th90 

pr59 

Pa91 

Nd60 

u92 
Pm61 

Np 9 3 

Sm62 

Pu94 

Eu63 

Am95 

Gd6 4 

Cm96 

T b 6 5 

Bk97 

Dy66 

Cf98 

Ho6 7 

Es99 

Er68 

F m ioo 
Tm69 

Md101 

Yb7 0 

No 1 0 2 

Lu71 

L w 1 0 3 

Be4 

Mg1 

Ca2 

Sr3 

Ba5 

Ra8 

N7 N7 N7 

N7 

N7 

N7 
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(Table 1.3). The chemical properties of the different atoms (or elements) are 
determined principally by the uppermost filled energy levels, since these higher 
energy electrons, being less tightly bound to the atomic core, most easily share 
themselves with adjacent atomic cores for the formation of chemical bonds in 
molecules and in solids. If the uppermost occupied shell is full, there is generally 
an appreciable difference in energy between the occupied and next higher 
unoccupied state, and the atom tends to be chemically inert. It is standard in 
spectroscopic notation to give the n value of a shell as a number and the /value as 
a lower case letter, with / = 0, 1, 2, 3, 4, ... being denoted respectively by the 
letters s, p, d, f, g, — The periodic filling of successive shells as Z increases 
explains the use of a periodic table (Table 1.4) for listing the chemical elements. 
The number of electrons in a given shell is generally denoted by a superscript. 
Table 1.3 shows that sodium has 2 electrons in the Is subshell, 2 electrons in the 
2s subshell, 6 electrons in the 2p subshell, and one electron in the 3s subshell. This 
ground state configuration for sodium (Z = 11) would be denoted by Na: 
ls22s22p63s. The rule that the maximum number of electrons in a shell be 
2(2/ + 1) with / ^ n — 1 can be consulted in conjunction with this configuration 
to illustrate that atomic sodium consists of two filled shells (or three filled 
subshells) containing the core electrons, and an outermost partly filled shell 
containing the single valence electron. 

This ends our discussion of typical bound-state problems. The next question 
which naturally arises is how the various bound state energy levels will be 
populated in a thermal equilibrium situation, since the system at temperatures 
above 0°K need not be in its ground state configuration. To answer this question 
requires a knowledge of quantum statistics, the subject of the following chapter. 

EXERCISE Substitute the product solution into the time-dependent Schrödinger equation 
using the Coulomb potential and carry out the separation of variables, employing the spherical polar 
coordinate system. 

PROJECT 1.35 The Periodic Table 

Using Table 1.4, locate the following series of elements: 
1. Those elements having a single s electron in the outer shell. 
2. Those elements having an incomplete d shell. 
3. Those elements having incomplete p shells. 
4. The magnetic metals iron, cobalt, and nickel. 
5. The alkali metals lithium, sodium, potassium, rubidium, and cesium. 
6. Hydrogen. (Is this an alkali metal? Give a sound reason for your answer.) 
7. Beryllium, magnesium, and calcium. (What do these elements have in common?) 
8. Chromium, molybdenum, and tungsten. (What do these three elements have in common?) 
9. Rhodium, palladium, and silver. (What do these elements have in common?) 
10. The noble metals copper, silver, and gold. (Why are these called noble? Do they have similar 
chemical properties? Do they have similar electronic structures?) 
11. The rare-earth metals. (How are the electronic structures of these elements similar?) 
12. The rare gases. (How are the electronic structures of these elements different?) 
13. Silicon and germanium. (Are these useful materials? Why?) 
14. Zinc, cadmium, and mercury. (How are the physical properties of these elements dissimilar?) 
15. The lanthanide series. (Why is it seemingly out of place?) 
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16. Uranium and plutonium. (What physical properties do these elements have in common? Why is 
the actinide series, of which they are members, seemingly displaced in the periodic table?) 
(Hint: A dictionary or chemistry textbook will be of aid. Also, Table 1.3 will prove helpful.) 

12.5 Selection Rules for Quantum Transitions 

Atomic spectral lines are due to radiative electronic transitions in which an 
electron in an atom in an excited state undergoes a transition to a lower energy 
state with the attendant emission of a photon of electromagnetic radiation 
having an energy equal to the energy difference between the two atomic states. 
Quantum electrodynamics gives us the result that the matrix element for a 
radiative transition in which a single spinless particle of charge e changes from a 
state φί to a state φ/9 emitting or absorbing a quantum of radiation of 
wavelength λ and momentum hk in the z direction with polarization vector in the 
x direction, is 

<f\ep?\i>= [ ^OOe/tf^Mr)*, 

where p°* = — ih(d/dx) is the x-momentum operator and the plus and minus 
signs denote, respectively, processes in which a photon is absorbed or created. 
Whenever the wavelength of the radiation is large relative to the size of the atom, 
it can be shown that the lowest-order contribution is proportional to the matrix 
element 

<f\ex\i> = φ}{τ)βχφι{τ) dr. 

This latter matrix element is said to be the electric dipole interaction matrix 
element, and the transition probability is in this case proportional to the square 
of the magnitude of this quantity. This provides us with selection rules for 
quantum transitions. (See also Chap. 5, §7.2.) 

PROBLEMS 

1. List two underlying causes of discrepancy between the experimental facts concerning microscopic 
phenomena and the predictions of classical mechanics. 
2. Summarize the experimental evidence (a) for wave-particle duality in both matter and radiation, 
(b) against wave-particle duality in both matter and radiation. 
3. What is the energy (in electron volts) of a photon of wavelength 5461 Ä? (Numerical values of the 
physical constants are given in the Appendix.) A. 0.374, B. 1.02, C. 2.27,· D. 7.93, E. 894. 
4. Compute the approximate energy (or range of energies) of photons of red, orange, green, yellow, 
and blue light. Tabulate your results with the respective frequencies (cycles per second and radians 
per second), wavelengths, and free space velocities. 
5. Find solutions to the classical wave equation (δ2ψ/δχ2) = (\/c2) d2\j//dt2, where ψ is the wave 
amplitude, c the wave velocity, x position, and / time. 
6. Write an expression for a transverse wave having a frequency of 200 Hz and an amplitude of 20 (in 
appropriate units) propagating at a phase velocity of 500 m/sec. 
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7. A piano wire 1 m in length has a mass of 1 g. Compute the numerical values of the allowed 
vibrational frequencies (in cycles per second) of this wire when it is stretched to a tension of 1 N with 
both ends anchored tightly. (Hint: Dimensional analysis will give you a needed equation.) 
8. Given the two waves y{ = 4 sin cot and y2 = 3 sin(coi + 60°), what is the amplitude and phase of 
the superposition wave γγ + y1

ct 
9. Show that energy flow depends upon φ2 in classical wave motion, where ψ is the amplitude. (This 
to a certain extent justifies the same assumption for the motion of quantum particles.) 
10. Prove that g(x, t) = λ coth[ln(cos{^^2 e^t2 ( - i sin lyßxt + cos lyßxt)})] is a valid solution of 
the classical wave equation. (The parameters A, y, and ß may be considered to be constants.) 
11. (a) Compute the energy of a photon of wavelength 6328 Ä corresponding to the red line of the 
helium neon laser, (b) Explain how a light source consisting of a stream of such photons could be 
used to separate a group of metals into two categories which could be classified as relatively high and 
relatively low work function metals. 
12. What is the maximum kinetic energy which can be observed for ejected electrons when incident 
electromagnetic radiation of wavelength 2460 Ä is incident on a nickel surface having a work 
function of 5 eV? 
13. If 4500 Ä photons strike a metal having a work function of 3 eV, determine whether one can 
reasonably expect electron ejection, and if so, compute the maximum velocity of the ejected 
electrons. 
14. Look up values for the work function of five different metals in a handbook, and compute the 
wavelengths and frequencies of the electromagnetic radiation required to eject photoelectrons from 
these metals. 
15. Compute the number of photons emitted in a laser pulse having a power of 106 W which lasts for 
10 ~4 sec, assuming a wavelength of 6328 Ä. 
16. A total of 38,000 J of energy is reflected perpendicularly from a mirror. Determine the 
momentum transferred to the mirror if the energy reflected is in each of the following forms: (a) 
photons, (b) electrons, (c) neutrons, (d) helium atoms. 
17. Repeat the above calculations of Problem 16, assuming an angle of incidence of 45°. 
18. Reconsider the above calculations in Problems 16 and 17 if the energy is absorbed by the mirror 
instead of being reflected from the mirror. 
19. Is it possible to observe an atomic nucleus having a diameter of 2 x 10~15 m with a light 
microscope? Justify your answer quantitatively. 
20. Research de Broglie waves in the library. Write a paper on your findings. 
21. Determine the wavelength (in meters) of a 1 -g sphere of iron traveling with a speed of 270 m/sec. 
A. 2.98 x 10~68, B. 8.56 x 10~51, C. 2.45 x 10~33, D. 7.04 x 10"16, E. 202. 
22. (a) What is the de Broglie wavelength and the frequency of an electron which has been 
accelerated through a potential difference of 3.1 V? (b) Repeat the calculation for a proton. 
23. (a) Compute the de Broglie wavelengths for an electron and for a neutron which are traveling at 
106 m/sec. (b) Repeat the calculation if the two particles each have energies of 1 eV. 
24. Estimate the wavelength of the de Broglie wave associated with a 1 -cm-radius lead sphere which 
has fallen from rest from a 10 story building. 
25. (a) What is the de Broglie wavelength of an electron traveling at a speed of 1 km/sec? (b) What 
range of the electromagnetic spectrum (e.g., x-ray, radio wave, light, microwave) has wavelengths of 
this order? (c) What frequency is associated with the above electron? (d) What does this correspond 
to in the electromagnetic spectrum? (e) Is the frequency correspondence the same as the above 
wavelength correspondence? 
26. (a) Compute the wavelength of a 1-eV photon, (b) Compute the wavelength of a 1-eV electron. 
(c) Compute the wavelength of a 1-eV neutron. 
27. (a) Compute the wavelength and frequency of a photon having the same energy as a 4-eV 
electron, (b) Compare the value of the momentum of the 4-eV electron with the 4-eV photon. 
28. If one wishes to probe the lattice spacings in crystals by means of diffraction techniques, it is 
generally necessary to use waves having wavelengths which are comparable to the dimensions of an 
atom (1-4Ä). Compute (or estimate) the particle energies (in electron volts) which yield such 
wavelengths for the following types of particle: (a) neutrons, (b) electrons, (c) x rays, (d) baseballs. 
29. Express the wavelength in terms of the total energy and potential energy of a particle. 
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30. For what wavelength (in angstroms) of incident light will photoelectrons ejected from silver 
(with a work function φ = 4.8 eV) have a maximum velocity of 106 m/sec? A. 988, B. 1622, C. 5460, 
D. 9420, E. 17,310. 
31. Consider a metal surface having a workfunction φ = 5 eV. (a) Compute the wavelength and 
frequency of the electromagnetic radiation at which photoemission just begins, (b) Could 
photoelectrons be produced from this surface by radiation of 2536 Ä emitted in electronic transitions 
from the first excited state to the ground state in vaporized mercury atoms? (Explain your 
conclusion.) (c) Calculate the wavelength and frequency of electromagnetic radiation required if 
photoelectrons emitted from this surface are to have maximum energies of 4 eV. 
32. Carefully describe the meaning of Bohr's complementarity principle. 
33. What is the correspondence principle? 
34. Work out the equations for describing the Compton effect. 
35. The limit of the resolving power (viz, the smallest distance separating two points in space which 
can be distinguished under optimum conditions) of a microscope is the wavelength of the light (in a 
light microscope) or the wavelength of the electrons (in an electron microscope), (a) Compute the 
minimum uncertainty in the position of a particle observed with 4-eV photons, (b) Compute the 
minimum uncertainty in the position of a particle observed with 4-eV electrons, (c) Following the 
position measurements in these two cases, what are the corresponding uncertainties in momentum? 
36. Derive the real and the complex Fourier series coefficients for the functions sketched in Fig. 1.46, 
considering / = 1 cm, d = 1 cm, h = 1 cm, and f0 = 1 cm. 

(a) 

_TL· 
h-i- -2 1-

(b) Λ^Λ^νΛ^λ 

(c) 

Fig. 1.46 Periodic functions for Fourier series expansion (see Problem 36). 

37. Derive the Fourier integral expressions for the portions of the functions sketched in the 
preceding problem (Problem 36) between the points Bt and B2 in the limit in which the functions 
become aperiodic. 
38. Write the Fourier series and evaluate the Fourier coefficients for the following: (a) periodic 
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time-dependent voltage V(i) with a period of 3 sec, 

f 1 volt (0 < t < 1 sec) 
V(t) = < 

(,0 volt ( 1 < ί < 3 sec); 

(b) spatial displacement g(x) having period of 4 m and a maximum value of gmSLX = 1 m, 

[Ax (0 < x < 2 m) 
g(x) = < where A is a constant. 

[0 (2 < JC < 4 m) 

39. A piano wire 1 m in length is deformed into a semicircle. Set up the Fourier integral for the 
position of the wire as a function of position along the axis across the diameter of the semicircle. 
40. (a) Consider a function Mix) which in three-dimensional space is constant over the region 
a < |r| ^ b (see Fig. 1.47) and is zero otherwise, where a and b are constant distances which may be 
chosen to be 1 and 2 m, respectively. The nonzero value of the function can be chosen as unity and it 
can have any units desired. Derive the Fourier integral expression for this function M(r). (b) 
Consider M(r) to be an electric field magnitude in free space. Considering the time-dependent wave 
equation derived from Maxwell's equations, can we say anything regarding the time-dependence of 
M(r)? (c) Derive the Fourier integral expression for subsequent propagation of a burst of light 
occurring at the origin of a coordinate system at / = 0. 

Fig, 1.47 Aperiodic function in three dimensions for expansion in a Fourier integral (see 
Problem 40). 

41. Let the square-integrable functions/(x) and F(u) be Fourier transforms of each other: (a) What 
is the transform of df(x)/dxl (b) What is the transform of xf(x)l 
42. Wave interference and diffraction are easily understood from algebraic approaches. [See 
Halliday and Resnick (1974), for example.] Assuming equal overall exposure, give formulas for the 
intensity I(y) as a function of position yon a photographic plate separated a distance L from a double 
slit array with the slits symmetrically located at y = ± \ d for the following physical situations: (a) 
both slits open for a given time Γ; (b) upper slit open and lower slit closed for a time T; (c) upper slit 
closed and lower slit open for a time Γ; (d) exposure (b) followed by exposure (c). Can you extend 
these considerations to multiple equally spaced slits? 
43. Choose one or more sets of values in Problem 42 for a, d, λ, and L, such as a = 0.010, 0.020, or 
0.050 mm, d = 0.10,0.20,0.50, or 1.00 mm, λ = 4800 or 5460 A, L = 50,100, or 200 cm. Numerically 
evaluate (by means of a calculator or computer) the patterns, and carefully plot them on graph paper 
(or use a computer-driven mechanical plotter). 
44. If a beam of particles having a momentum per particle of p = 2.3 x 10"2Okg m/sec is incident 
perpendicularly to a slit, what is the angle (relative to the beam axis) of the first and second 
diffraction maxima produced by the particles which pass through the slit? 
45. An x-ray beam having an energy of 3 keV incident on a crystal lattice at an angle of 45° is 
observed to undergo second-order diffraction. What is the spacing between the lattice planes? 
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46. When electrons having a kinetic energy of 6 e V are incident at an angle Θ on a set of crystal lattice 
planes having spacing of 5 A, first-order electron diffraction is observed to occur. Compute the angle 
Θ (in degrees). A. 13.2, B. 30.0, C. 41.7, D. 68.4, E. 72.5. 
47. Solve for the wavelength of the neutron beam which exhibits first-order diffraction when 
incident at an angle of 40° with respect to a set of crystal lattice planes having a 2.85 A spacing. What 
is the kinetic energy per neutron? 
48. (a) Compute the incident angle between a beam of 1-eV electrons and a set of crystal lattice 
planes having an interplanar spacing of 3.2 A, assuming that first-order (n = 1) diffraction is being 
observed, (b) Repeat the calculations if the diffraction is second order (« = 2). (c) Repeat the above 
calculations for a 1-eV beam of neutrons. 
49. A beam of electrons is diffracted by a single crystal of nickel when incident at an angle of 60° 
relative to a set of lattice planes having a spacing of 2.1 A. Compute the value (or set of values) of the 
momentum per particle exchanged with the nickel crystal in the diffraction process. 
50. (a) Compute the kinetic energy of x-ray photons which give first-order Bragg diffraction from 
NaCl lattice planes having a spacing of 2.82 A which are oriented at an angle of 30° with respect to 
the incident x-ray beam, (b) Compute the kinetic energy of neutrons in a beam which likewise give 
first-order Bragg diffraction from NaCl lattice planes having a spacing of 2.82 A which are oriented 
at an angle of 30° with respect to the incident neutron beam. 
51. (a) Consider the problem of Bragg diffraction by a set of parallel crystal planes. If the spacing 
between the two successive planes is 2.0 A, what is the minimum photon energy (in electron volts) in 
an x ray required to produce a diffraction line? (b) What are the minimum energies (also in electron 
volts) required to do so for a neutron and for an electron? 
52. Apply the semiclassical quantization rules to obtain the allowed orbits for a charged particle 
undergoing circular motion in a uniform magnetic field. 
53. In the hydrogen atom there is a photon emitted when an electron in the first excited state falls 
into the ground state. Compute the frequency (in cycles per second) of this photon. A. 3.29 x 1015, 
B. 2.47 x 1015, C. 1.85 x 1015, D. 1.39 x 1015, E. 1.04 x 1015. 
54. Find the wavelength (in meters) of the photon emitted when the electron in a hydrogen atom 
makes a transition from the n = 2 state to the n = 1 state. A. 1.22 x 10"7, B. 3.84 x 10"7, 
C. 5.46 x 10"7, D. 7.13 x 10"7, E. 9.46 x 10"7. 
55. From the standpoint of the correspondence principle and classical physics, an electron in an 
atomic state characterized by very large quantum numbers should emit electromagnetic radiation 
due to its centripetal acceleration. Is it possible to deduce a relation between electron orbital 
frequencies and the frequency of electromagnetic radiation emitted in a transition from one orbit to 
another, considering two adjacent Bohr orbits in the limit of large quantum number? What insight 
does this give into the correspondence principle? 
56. A free particle has the wave function 

with k = (5x + 7y + 10z) A" *, ω = 4.59 x 1013 rad/sec. What is the momentum of the free particle 
(in units of kilogram meters per second)? A. 1.39 x 10~23, B. 5.44 x 10"20, C. 1.88 x 10"17, 
D. 6.74 x 10"14, E. Cannot be determined. 
57. In Problem 56, what is the mass (in kilograms) of the free particle? A. 9.10 x 10"31, 
B. 1.67 x 10"27, C. 1.99 x 10"26, D. 1.602 x 10"19, E. Cannot be determined. 
58. A free particle has the wave function 

il,(r,t) = Aei(k'r-(0t) 

with k = (5x + 17y 4- 10z) A" 1, ω - 1.36 x 107 rad/sec. What is the momentum of the free particle 
(in units of kilogram meters per second)? A. 1.36 x 10"27, B. 2.15 x 10"23, C. 1.88 x 10"19, 
D. 8.65 x 10"15, E. 3.22 x 10"11. 
59. In Problem 58, what is the mass (in kilograms) of the free particle? A. 9.109 x 10"31, 
B. 1.673 x 10"27, C. 1.990 x 10"26, D. 1.602 x 10"19, E. 7.362 x 10"12. 
60. (a) Given a wave function ψ = 15 exp{/[27x — 13i]}, where the units are standard for the 
meter-kilogram-second (mks) system, compute the wavelength and the frequency of particles 
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described by this wave function, (b) Determine also the direction of propagation and the phase 
velocity. 
61. Write the wave function for a beam of 4-eV electrons traveling with a velocity of 105 m/sec in a 
direction making angles of 30° with respect to the x axis and 40° with respect to the z axis. 
62. Obtain solutions to the time-dependent Schrödinger wave equation for free particles. 
63. For the following cases, attempt to write the time-dependent and time-independent Schrödinger 
equations: (a) One-dimensional potential step, (b) One-dimensional potential barrier, (c) One-
dimensional square well with rigid walls, i.e., the potential goes to infinity at the boundaries. 
(d) Repeat (c) with finite walls, (e) Repeat (c) for three dimensions, (f) Repeat (d) in three 
dimensions, (g) Hydrogen atom, (h) Helium atom, (i) Oxygen atom, (j) Water molecule, (k) 1 mole of 
helium gas. (1) 1 cm3 of water, (m) 1 g of metallic silver. 
64. Suggest appropriate boundary conditions for each case in Problem 63. 
65. Construct electromagnetic wave analogs to (a)-(f) in Problem 63. 
66. (a) Apply the technique of separation of variables to the time-dependent Schrödinger equation 
for any arbitrary potential if which depends only on position r. Obtain thereby separate equations 
for the position dependence and the time dependence of \j/(r, t). (b) Solve the equation deduced in (a) 
for the time-dependent factor, (c) Can the separation in (a) be carried out when if = ΤΓ(Γ, ρ)? 
67. In the Schrödinger equation for free particles, attempt trial solutions having the following 
traveling-wave forms: A. ψ = Βι sin(kx — a)t), B. φ = Β2 cos(kx — cot), C. \\i = C cos(fc;c — cot + δ), 
Ό.ψ = Αγ cos(Ä:x - ωή + Α2 sin(kx - ωή. (a) Which of these trial solutions are good? (b) What 
requirements must be imposed upon the constants B1,B2, C, b,AuA2 for the valid solutions? (c) 
What can you conclude about the functional form of traveling wave solutions to the Schrödinger 
equation? [Hint: See Eisberg (1967).] 
68. Are all plane-wave solutions of the Schrödinger equation simultaneous eigenfunctions of the 
momentum and energy operators? 
69. Consider the functions A sin kx, B cos kx, C tan kx, where A,B,C, and k are constants. Which of 
these (if any) are eigenfunctions of the following operators: (a) linear momentum, (b) kinetic energy. 
70. (a) Solve the Schrödinger equation in a region of space where the potential energy V{x) has a 
constant (though nonzero) value, and interpret your results by comparing with those obtained for 
V(x) = 0. (b) Repeat for the three-dimensional case, namely, V(r) = const. 
71. Write the Schrödinger equation for the following physical situations: (a) particle of mass m in a 
gravitational field in which the acceleration g is uniform, (b) particle of mass m under the force of 
gravity of a far-distant and much larger mass M, (c) electron subject to the Coulomb force of a 
proton. 
72. Consider a change of reference frame for the Schrödinger equation, using a Galilean 
transformation. Is the equation invariant under such transformation? (Hint: Consider physically the 
individual variation of p,<f,/?2/2m,Av,A = h/p, etc., under such transformation.) 
73. (a) Develop the Schrödinger equation using the total energy as obtained from the relativistic 
expression $ = mc2 in the nonrelativistic limit, namely, $ ^ m0c

2 + V(r) + p2/2m0i where m0 is the 
rest mass and c the velocity of light, (b) What is the interpretation of the wave frequency v for this 
situation? (Specifically, does it depend upon the rest mass energy m0c

2l) 
74. Write down 10 functions of position JC [such as A tan(/to + 0), with A, ß, and Θ being constants], 
and test to see which of these are eigenfunctions of the linear momentum operator. 
75. (a) Show that the superposition of any two eigenfunctions of the linear momentum operator 
corresponding to different wavelength particle beams does not constitute a momentum eigenfunc-
tion. (b) Can the superposition of wave functions for two particle beams having different kinetic 
energy per particle be a momentum eigenfunction? (c) Can the superposition described in (b) be an 
energy eigenfunction? 
76. Consider the superposition of two waves ψχ and ψ2, where 

ψι = Ai cos(kiX — ω^) (i =1 ,2 ) 

with Ai = 30, A2 = 40, kl = 4, k2 = 5, ω^ = 12, and ω2 = 15. Deduce all information which you 
possibly can about the packet ψ = ψι + φ2 made up by linear superposition of the two waves ψι and 
ψ2 in question. 
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77. In the example illustrated in Figs. 1.27-1.29, show mathematically that ψ(χ, ή is normalized 
whenever x(k) is normalized. 
78. Given the particular spatial wave function φ(χ) = ψ0 (ψ0 = const) from Λ: = χγ to x = JC2, and 
\j/{x) = 0 otherwise, deduce the corresponding momentum function x(k). 
79. Given the wave function stated in Problem 78, deduce the expectation values for the position, the 
linear momentum, and the kinetic energy. (Choose the specific values χγ = 10 Ä and x2 = 20 Ä if 
you wish.) 
80. If an oxygen molecule is trapped somewhere within a region of space 1 cm in length, what is the 
minimum uncertainty in the value of its speed in units of meters per second? The mass of the oxygen 
molecule is approximately 32 amu, where 1 amu = 1.6604 x 10"2 7 kg. A. 9.51 x 10"4, 
B. 1.98 x 10"7, C. 4.14 x 10"11, D. 8.65 x 10"15, E. 1.80 x 10"18. 
81. If a molecule of mass 4 x 10 ~26 kg is ascertained to be somewhere within a region 0.25 cm in 
length, what is the minimum uncertainty in the velocity of the molecule? 
82. A 200-kg meteorite enters the earth's atmosphere with a velocity (known to an accuracy of 
0.01%) of 2000 m/sec. What is the limit of precision with which the position of the meteorite can be 
located? How does this compare with a reasonable estimate of the size of the meteorite? 
83. (a) The kinetic energies of a traveling jet plane and a traveling electron are each measured over 
time intervals of 10" 3 sec. Compute the minimum uncertainties in energy for each, (b) In each case, 
compute the ratio of the energy uncertainty to a reasonable estimate of the total energy. 
84. (a) An electron is known to have a speed of 300 m/sec to an accuracy of 1 %. What is its minimum 
uncertainty in position? (b) What is the minimum uncertainty in the time it would take this electron 
to travel 1 km? 
85. (a) Compute the minimum uncertainty in the speed of a 1-eV electron which has its position 
determined to within an uncertainty of 1 Ä. (b) Compare this uncertainty in speed with the speed 
itself, (c) Compute the minimum uncertainty in the speed of a 1-eV neutron assuming its position 
known to within an uncertainty of 1 Ä, and compare this uncertainty with the speed itself. 
86. If a neutron is confined to a region of the order of 10"1 5 m in extent, such as the nucleus of an 
atom, what is its minimum uncertainty in momentum? 
87. (a) Suppose one wished to set up some experiment to "follow" an electron in its Bohr "orbit" 
about the proton in a hydrogen atom, assuming the hydrogen atom to be in its ground state. A 
satisfactory mapping of the electron trajectory might require, for example, 100 or more position 
measurements of the electron on the orbit. Analyze this problem in detail, keeping in mind such 
uncertainties as momentum exchange of the photons (or particles) used for the position 
measurement with the electron whose position is being measured, (b) Extend your considerations to 
the various excited states of the hydrogen atom. 
88. The Fourier transform pair relating momentum and position probability distributions differs 
from the standard form of the Fourier series involving the wave vector and position only slightly, 
since p = ftk. Write the Fourier transform pair relating frequency and time, and deduce the 
appropriate Fourier transform pair relating energy and time, using $ = hco. Tell how the various 
forms of the uncertainty relation have the same origin. 
89. Consider an electronic state having a lifetime of 10"1 5 sec. (a) Estimate the minimum 
uncertainty in the energy of an electron populating such a state, (b) Can you draw some conclusions 
regarding the finite width of spectral lines? 
90. The energy emitted when electronic transitions between stationary states occur in atoms is not 
quite monochromatic in frequency. Estimate the wavelength spread (in angstroms) for light given off 
at a central wavelength of 5461 Ä whenever the lifetime of the excited state is of the order of 10"1 0 

sec. A. 1.58 x 10"2, B. 0.995, C. 631, D. 7140, E. 8.91 x 1010. 
91. Assuming that π+ mesons have a lifetime of 2.54 x 10"8 sec, estimate the maximum precision 
possible for a measurement of the energy of a π+ meson. 
92. Obtain a measure of the momentum uncertainty Ap = h Ak for a particle restrained to a length L 
by assuming a sinusoidal wave function over the length and expanding this wave function in a 
Fourier integral. Deduce in this way the position-momentum form of the uncertainty relation. 
93. (a) Obtain a measure of the energy uncertainty AS = h Αω for a particle observed sometime over 
the time interval (0, t0) with uniform probability over this interval. Use the procedure of expanding a 
uniform sinusoidal or plane-wave function over this time interval in a Fourier integral having 
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frequency ω = Sjh as the dummy variable, (b) Deduce the width of g(to) for values of t0 of 
1,2,10,100, and 1000 sec. (You should be able to deduce the time-energy form of the uncertainty 
relation in this manner.) 
94. A quantized particle is made to pass through an opening of diameter d equipped with a shutter 
which opens for a time τ. Show that the particle necessarily exchanges with this device (diaphragm 
plus shutter) a momentum of the order of h/d and an energy of the order of h/x. 
95. Consider as a packet the plane wave ψ(τ, t) = Ap exp{(//ft)[p · r — $t~]}. (a) Solve for χ(ρ). 
(b) Use the χ(ρ) derived in part (a) to compute ^(r, 0). Add the time dependence to regain ψ(χ, t) 
stated above, thus showing self-consistency in your mathematics. 
96. Consider an initial wave packet, ψ(χ,0) = C e x p [ - {x2/4(Ax)2} + ikxx], where kx is a mean 
wave number, (a) Calculate the corresponding kx distribution and |^(JC, 012· (b) Does it violate the 
Heisenberg uncertainty relations? (c) Does the wave packet advance according to classical laws? 
(d) Does the packet spread in time? (If so, at what rate?) (e) Apply the results to calculate effects in 
some typical microscopic and macroscopic experiments. 
97. Extend Problem 96 to three dimensions. 
98. (a) Compute the variance in position and the variance in momentum for the Gaussian wave 
packet, and take the product of the two. Relate this result to the Heisenberg uncertainty principle. 
(b) Evaluate the dispersion of the packet as a function of time. 
99. (a) Extend the general wave packet development to three dimensions, (b) Deduce the 
appropriate vector expression for the group velocity. 
100. Give a good definition of completeness as it relates to a linear vector space. 
101. Show that all eigenfunctions of Hermitean operators correspond to real eigenvalues. (Hint: 
Use the general definition of a Hermitian operator.) 
102. Prove that the expectation value lop of any Hermitian operator &°v is real. (Hint: If £op is real, 
then <<2op>* = <Jop>.) 
103. Suppose that an arbitrary function ψ is represented by a linear combination of a complete 
orthonormal set of basis vectors φ^ which are eigenfunctions of the Hermitian operator A 
corresponding to a discrete spectrum of eigenvalues, (a) What is <^4>? (b) What is the probability 
that the corresponding physical observable will have the particular eigenvalue a} when measured? 
(c) If/04) is an arbitrary function of A, what is </(Λ)>? (d) How would if (A)} be modified if the 
eigenvalue spectrum had in addition a continuous portion? 
104. Prove the theorem: "The physical quantity associated with the Hermitian operator A possesses 
with certainty a well-defined value if and only if the dynamical state of the physical system is 
represented by an eigenfunction ψαοΐΑ, and the value assumed by this quantity is the eigenvalue a 
associated with that function." 
105. (a) How would one go about determining experimentally the maximum information about a 
quantum system? (In other words, how does one experimentally determine the complete dynamical 
state of the system?) (b) How would you define complementary and compatible variables for such a 
system? (c) Prove that a necessary condition for two observables to be simultaneously measurable is 
that the corresponding operators commute. 
106. A beam of free electrons is described by the wave function 

ψ = 109e ( k ' Γ " ω ° (electrons/m3)1/2. 

Compute the charge current density J in A/m2, given that k = - [27x + 19y + 24z] m _ 1 , and 
ω = 9.64 x 10"2 sec"1. A. 9 x 10~18, B. 7 x 10"15, C. 5 x 10"12, D. 3 x 10"9, E. 1 x 10"6. 
107. Consider two beams of electrons with wave functions ψχ = Ae^h^PiX~^1^ and 
φ2 = Be(i/f,)iP2X ~ ^2']. (a) Compute the net current J^ + J2. (b) Compute the total probability density 
from ψί + ψ2. (c) Estimate the total probability (i.e., the integrated probability density) over an 
interval of space L, assuming L » ft/pi, L » ft/p2. 
108. Evaluate the quantum mechanical electric current density # for the Bloch functions, defined 
as i^k(r, t) = uk(r)e'(k'Γ ~ ωί\ where k = p/h and ω = S/h. The time and position are represented by / 
and r, respectively. The function wk(r) is time independent. 
109. The Bloch functions defined in Problem 108 are appropriate for conduction electrons in a 
crystalline substance such as a metal (cf. Chap. 7). The function uk(r) is a periodic function having the 
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lattice periodicity, and the allowed values of k are determined by applying periodic boundary 
conditions with respect to the dimensions of the metal itself. Determine the allowed values of k, 
assuming a rectangular parallelepiped block of metal having dimensions Lx, Ly, and Lz in the x, y, 
and z directions, respectively. 
110. Substitute the Bloch function given in Problem 108 into the Schrödinger equation for a periodic 
potential to obtain an appropriate equation for obtaining the functions wk(r). A periodic potential 
can be represented by V(r) = V(r + Rn), where Rn is defined by xnxdx + ynydy + znzdz, with nx, ny, nz 

representing arbitrary integers and dx, dy, dz representing the atomic lattice periodicities in the x, y, z 
directions, respectively. 
111. For an infinite potential well of width L extending from x = — | L to χ = | L , what is the 
probability that an electron in its lowest energy state will be in the center half (namely, 
- \L < x < \L) of the well? A. 0.818, B. 0.655, C. 0.491, D. 0.327, E. 0.164. 
112. Consider an electron trapped in a one-dimensional square-well potential with the length of the 
potential well being 5.6 Ä and the heights of the potential barriers bounding the potential well being 
infinitely high. Solve for the ground state energy (in electron volts) of the electron, assuming that the 
potential energy is chosen to be zero within the potential well. (Assume fixed boundary conditions, 
for which the electron wave function is zero at the edges of the potential well.) A. 0.000, B. 0.487, 
C. 1.20, D. 36.8, E. 56.0. 
113. What is the speed (in meters per second) of an electron in the//rsi excited state within a one-
dimensional square-well potential of length 3.8 A, assuming zero potential energy within the 
potential well, infinitely high potential energy barriers at the boundaries, and fixed boundary 
conditions? (Note that this well is a different length from that in the preceding problem.) A. 51.3, 
B. 713, C. 9.91 x 103, D. 1.38 x 105, E. 1.91 x 106. 
114. An electron is trapped in a one-dimensional square-well potential. It is in its ground state, and 
the ground-state energy is 15 eV. With what frequency (in cycles per second) does the electron 
oscillate back and forth in the box? (One complete cycle requires a return of the electron to its 
starting position.) A. 1.88 x 1017, B. 1.50 x 1016, C. 1.11 x 1016, D. 7.25 x 1015, E. 3.39 x 1015. 
115. Repeat Problem 114 for a ground state energy of 7 eV. A. 3.39 x 1015, B. 7.25 x 1015, 
C. 1.11 x 1016, D. 1.50 x 1016, E. 1.88 x 1017. 
116. An organic molecule weighing 10 " 6 g is placed in a one-dimensional box 1 mm on edge. What is 
the minimum energy (in joules) of this molecule? A. 7.96 x 10"67, B. 5.49 x 10"53, C. 
3.78 x 10"39, D. 2.61 x 10"25, E. 1.80 x 10"1 1. 
117. What is the smallest speed (in meters per second) for the organic molecule in the box in Problem 
116? (Suggestion: Use the quantized momentum for this calculation to avoid propagating any errors 
you might have made in the last problem.) A. 3.99.x 10"29, B. 3.31 x 10"22, C. 2.75 x 10"15, 
D. 2.28 x 10~8, E. 0.190. 
118. What would be the approximate quantum number n if the organic molecule in the box in 
Problem 116 has a velocity of approximately 30 m/sec? A. 3, B. 17, C. 1700, D. 6.0 x 1010, 
E. 9.06 x 1022. 
119. What would be the approximate increase in velocity (in units of meters per second) if the 
organic molecule in Problem 118 were promoted from level n to the next higher level (n + 1) by 
absorption of energy? A. 1.15 x 10 - 4 8 , B. 1.95 x 10 - 3 5 , C. 3.31 x 10 - 2 2 , D. 5.63 x 10 - 9 , 
E. 95,600. 
120. (a) What is the quantum number of a 500-eV electron in a one-dimensional square-well 
potential having length of 1 cm ? (b) What is the quantum number of a 1 -mg particle with an energy of 
500 eV in this same potential well? 
121. (a) What is the separation in energy between the ground state and the first excited state for an 
electron confined to a linear molecule 48 Ä in length, assuming that the linear molecule can be 
represented by a one-dimensional square-well potential? (b) Compute the wavelength of the 
electromagnetic radiation emitted when this electron undergoes a transition from the second excited 
state to the ground state. 
122. A proton is confined to a one-dimensional box 10,000 Ä in length, (a) Compute the momentum 
for the ground state, assuming periodic boundary conditions, (b) Repeat the calculation for fixed 
boundary conditions, (c) Explain what physically is happening to the motion of the proton with 
time. 
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123. Light having a wavelength of 5000 Ä promotes a particle in a one-dimensional box 20,000 Ä in 
length from the ground state to the second excited state. What is the mass of the particle? 
124. (a) If a 1-kg mass is confined to a one-dimensional square-well potential 1 m in length, compute 
the velocity of the mass in the ground state, (b) Is this result in accordance with the requirements of 
the Heisenberg uncertainty principle? (c) Repeat the above calculation if an electron replaces the 
1-kg mass. 
125. A neutron having a momentum of 2 x 10~10 kg m/sec is said to be trapped in a one-
dimensional square-well potential of length 1.6 cm. Is this possible? If so, what is the approximate 
quantum number? 
126. Compute the minimum value of Ap A x for the ground state and the first three excited states for 
a neutron in a one-dimensional square-well potential of length L. How do these results compare with 
the predictions of the Heisenberg uncertainty relations? 
127. Show that the density of states functions g{$) and ^(p) derived for the one-dimensional 
potential well problem using periodic boundary conditions (which are appropriate for traveling-
wave solutions to the Schrödinger equation) are the same as those functions derived utilizing fixed 
boundary conditions (which are appropriate for the standing-wave solutions). 
128. Derive the density of states functions g{$) and ^(p) for a two-dimensional quantum system, 
assuming a square-well potential having lengths Lx and Ly and having walls which are infinitely 
high. 
129. Consider a one-dimensional square-well potential V(x) = 0 over the domain 
- (L - δ) < x < δ and V(x) = oo otherwise, (a) Deduce the allowed wave vectors kn and the 
corresponding values of AJBn for the stationary-state eigenfunctions φ„ = An cos knx + Bn sin knx. 
(b) Choosing <5/L = 0.1, compute the values of An and Bn for the five lowest normalized 
eigenfunctions. (c) Repeat (b) with δ/L = 0.2. (d) Show numerically that the boundary conditions 
are met in (b) and (c). (e) Assuming that (a) was carried out using an analytical technique, show how 
you could deduce the same results graphically, (f) Quantitatively compare your results in (a) through 
(c) for an electron trapped in a box of length L = 1 cm with the results for an electron trapped in a 
box of length L = 10 A. 
130. (a) Fourier-analyze the wave function for the lowest allowable state for an electron in a one-
dimensional box of length 4 Ä (with infinitely high walls) into a sequence of plane waves. Plot x(k) 
versus k. (b) Repeat for the second allowable state, (c) Compute the product of the variances in 
position and momentum, (d) What happens if you double the length of the box? (e) Relate your 
findings to the Heisenberg uncertainty principle. 
131. A simple model used to describe the interaction between the neutron and the proton that make 
up a deuteron is a square-well potential with d = 2.0 x 10 " 1 3 cm. What is the minimum depth of the 
potential well? In experimental studies of the spectrum of the deuteron, no excited states have been 
found. What does this imply? 
132. An electron beam is incident from the left on a semi-infinite step potential exactly 3 eV in height 
(cf. Fig. 1.31a). The electrons have zero potential energy and individual kinetic energies of 3.01 eV to 
the left of the step (i.e., before reaching the step potential). What is the relative probability that any 
given electron will be reflected by the step? A. 0.000, B. 0.287, C. 0.528, D. 0.794, E. 1.000. 
133. If the incident electrons in Problem 132 had energies of only 2.99 eV (cf. Fig. 1.32), compute the 
electron density 15 Ä past the edge of the 3-eV step, assuming unit electron density in the region 
immediately to the left of the step. A. 0.000, B. 0.215, C. 0.500, D. 0.785, E. 1.000. 
134. An electron beam is incident from the left on a semi-infinite step potential exactly 3 eV in 
height. Suppose the electrons have individual kinetic energies of 3.05 eV to the left of the step (i.e., 
before reaching the step potential). What is the relative probability that any given electron will be 
reflected by the step? A. 0.012, B. 0.267, C. 0.598, D. 0.724, E. 0.998. 
135. If the incident electrons in Problem 134 had energies of only 2.95 eV, compute the electron 
density 5 Ä past the edge of the 3-eV step, assuming unit electron density in the region immediately to 
the left of the step. A. 0.164, B. 0.318, C. 0.522, D. 0.792, E. 0.947. 
136. (a) Compute the transmission and reflection coefficients for a semi-infinite step potential 
5.00 eV in height, assuming incident electrons with kinetic energies of 4.95 eV. (b) Compute the 
relative probability density distribution as a function of position within the barrier, (c) Repeat the 
calculation for incident electrons with kinetic energies of 5.05 eV. 
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137. A horsefly weighing 0.025 g has a velocity of 120 m/sec directed perpendicular to a thin 
transparent cellophane sheet. Assume that the cellophane barrier can be modeled by a one-
dimensional square barrier of height U0 joules with a width of 2 A. What is the maximum value of U0 

which the fly could cross from the standpoint of classical mechanics? A. 0.180, B. 0.720, C. 2.88, 
D. 11.5, E. 46.0. 
138. In Problem 137, what is the quantum-mechanical probability that the fly would cross a barrier 
2 x 1018 eV in height with a width of 10- 3 0 m? A. 5.16 x 10"6,B. 5.33 x 1 0 " 1 0 , α 5.51 x 10"14, 
D. 5.69 x 10"18, E. 5.89 x 10~22. 
139. (a) Compute the transmission and reflection coefficients for a rectangular barrier 5.00 eV in 
height and 5 Ä in thickness, assuming incident electrons with kinetic energies of 4.95 eV. (b) Repeat 
the calculation for incident electrons with kinetic energies of 5.05 eV. (c) Replace the electrons by 
neutrons and carry out the corresponding calculations. 
140. (a) A 10-eV electron tunnels through a 10-A-thick square-barrier potential with a transmission 
coefficient of 10"10. What is the height of the potential barrier? (b) Repeat the calculation for a 
neutron, (c) Repeat the calculation for an argon atom. 
141. An elementary-particle physicist postulates that a strange particle exists which has a rest mass 
which is j that of the electron and a charge which is § that of the electron. If such a particle were 
incident perpendicularly on a rectangular potential energy barrier 5 eV in height and 6.25 Ä in width 
while traveling at a speed of 1.50 x 106 m/sec, what would be the probability that this particle would 
penetrate the barrier? A. 1.64 x 10"9, B. 3.18 x 10"7, C. 5.85 x 10"5, D. 7.42 x 10"3, E. 0.921. 
142. A beam of electrons having speeds of 106 m/sec in free space is incident perpendicularly upon a 
step barrier 3 eV in height which begins at x = 0 and continues to Λ: = oo. The electron probability 
density \j/*\j/ is given as 100 electrons/cm3 in the incident beam. Compute the electron probability 
density (in electrons per cubic centimeter) at x = 10 Ä within the barrier. A. 6.51, B. 1.73, 
C. 4.60 x 10"3, D. 1.22 x 10"5, E. 3.24 x 10"8. 
143. In Problem 142 above, compute the total probability of finding an electron in the region 
100 A ^ x^ oo. A. 4.21 x 10"3 1, B. 2.09 x 10~25, C. 1.04 x 10"1 7, D. 5.18 x 10"1 2, E. 2.58 x 10"6. 
144. Repeat Problem 142 for ψ*ψ = 10,000 electrons/cm3 in the incident beam. A. 3.24 x 10"8, 
B. 1.22 x 10"5, C. 4.60 x 10"3, D. 1.73, E. 651. 
145. Repeat Problem 143 for ψ*ψ = 10,000 electrons/cm3 in the incident beam and consider the 
interval 100 A ^ x ^ 200 A. A. 2.58 x 10~6, B. 5.18 x 10~12, C. 1.04 x 10"1 7, D. 2.09 x 10~23, 
E. 4.21 x 10"29. 
146. Deduce the momentum conditions for minimum and maximum transmission of a particle 
across one-dimensional potential wells and barriers. In particular, consider the barriers illustrated in 
Figs. 1.48 and 1.49 which are appropriate for Projects 1.25 and 1.28, respectively. 
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|- 2a 1 b 1 2a j 

Fig. 1.48 Particle incident on two identical rectangular potential energy barriers. (See Problem 
146 and Project 1.25.) 

147. Set up and solve the harmonic oscillator problem classically and compare results with the 
quantum-mechanical solution. 
148. A mass of 10 g is attached to a spring having a force constant K = 3 J/m2, and the mass is set 
into simple harmonic motion on the surface of a frictionless laboratory bench. Compute the ground 
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Fig. 149 Symmetric double well potential energy diagram. (See Problem 146 and Project 1.28.) 

state energy of the system in joules. A. 0.939, B. 9.13 x 10"3 4, C. 3.42 x 10~29, D. 1.31 x 10"9, 
E. 15.1. 
149. In Problem 148, an incident photon is absorbed by the system, and as a consequence the system 
is promoted into the first excited state. What is the frequency (in cycles per second) of this photon? 
A. 4.12 x 1013, B. 4.14 x 10"6, C. 2.76, D. 242, E. 6.37 x 1015. 
150. Set up and solve as far as you can the quantum-mechanical problem of the hydrogen atom, 
obtaining the energy levels, eigenfunctions, etc. 
151. (a) What are the quantized energy levels for the singly ionized helium atom (viz., He+)? (b) 
What are the quantized energy levels for the doubly ionized lithium atom (viz., Li2 +)? 
152. Find the frequency (in cycles per second) of the electromagnetic radiation which will promote 
an electron in the hydrogen atom from the ground state to the second excited state (i.e., the state for 
which the quantum number n = 3). A. 6.22 x 1013, B. 2.48 x 1014, C. 2.92 x 1015, D. 7.29 x 1016, 
E. 8.42 x 1017. 
153. Find the energy in joules given off when an electron with zero kinetic energy falls from the 
vacuum level (i.e., n = oo) to the first excited state (n = 2) in the hydrogen atom. A. 1.60 x 10"19, 
B. 5.45 x 10"19, C. 2.18 x 10"18, D. 7.61 x 10"1 8, E. 6.27 x 10"1 7 

154. (a) Compute the wavelength of the photon which would be required to excite an electron from 
the ground state of the hydrogen atom to the vacuum level, (b) What is the frequency of this 
photon? 
155. Calculate the wavelength of the electromagnetic radiation emitted when a hydrogen atom 
undergoes a transition from the first excited state to the ground state. 
156. Compute the value of the static dielectric constant ε0 in F/m, given that the quantized energy 
levels Sn of the hydrogen atom found by solving the Schrödinger equation are given by 
Sn = - me*ßelh2n2, with all symbols having their usual meaning. A. 0.204, B. 4.15 x 10"2, 
C. 1.73 x 10"3, D. 2.98 x 10"6, E. 8.85 x 10"12· 
157. Compare the energy difference between the ground state and the first excited state of the 
electron in the hydrogen atom with the energy difference between the ground state and the first 
excited state of an electron trapped in a one-dimensional square-well potential with its dimension 
equal to twice the Bohr radius. 
158. A helium atom (Z = 2) is stripped of one electron, leaving it as a one-electron quantum system. 
Compute the values for the five lowest quantized energy levels. 
159. (a) What is the separation in energy between the first and second excited states of the hydrogen 
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atom? (b) What is the separation in energy between the first and second excited states of the singly 
ionized helium atom? 
160. (a) An experimental measurement of the Rydberg constant R is carried out by measuring the 
frequency of light emitted when electrons in ionized helium atoms drop from the second excited state 
to the ground state. What value is obtained if the frequency is measured to be 2.9258 x 1015 Hz? 
(b) Calculate the theoretical value of the Rydberg constant and compare it with the value obtained 
from the measurements, (c) What comment(s) can you make? 
161. Construct operators for the angular momentum components. 
162. What is your idea of a "good" quantum number? 
163. If the components of the angular momentum of a particle are given by Lx, Ly, Lz, what is 
lLx,L,y 
164. As a very crude model of an atom, consider the electrons to be trapped in a one-dimensional 
square-well potential 5 A in width. What would be the frequency v (in cycles per second) of the light 
wave which would be strongly absorbed in promoting an electron from its lowest energy state (i.e., 
the ground state) to the next higher energy state (i.e., to the first excited state)? A. 5.75 x 1011, 
B. 1.09 x 1015, C. 2.07 x 1018, D. 3.93 x 1021, E. 7.46 x 1024. 
165. (a) Write the Schrödinger equation for the helium atom, (b) What simplification results 
whenever the Coulomb potential energy of interaction between the two electrons in the helium atom 
can be neglected? (c) Use the ground-state wave function of the hydrogen atom to deduce the 
ground-state wave function of the helium atom in the limit in which the electron-electron interaction 
energy is neglected in the helium atom. 
166. Compare the results for the problem of a harmonic oscillator, of electron motion in the 
hydrogen atom, and of the motion of a particle in a box. Give the relevant Schrödinger equations, 
and point out similarities and differences. From the similarities, and with the aid of insight into 
expected properties of quantum-mechanical solutions gained from other problems, deduce as many 
general properties of quantum-mechanical bound-state systems as you can. 

ANSWERS TO MULTIPLE CHOICE PROBLEMS 

3.C, 21. C, 30. B, 46. B, 53. B, 54. A, 56. A, 57. C, 58. B, 59. D, 80. B, 90. A, 
106. A, 111. A, 112. C, 113. E, 114. D, 115. A, 116. B, 117. B, 118. E, 119. C, 
132. D, 133. B, 134. C, 135. B, 137. A, 138. E, 141. D, 142. A, 143. B, 144. E, 
145. D, 148. B, 149. C, 152. C, 153. B, 156. E, 164. B. 



PART II 

Quantum Statistics of Many-Particle Systems; 
Formulation of the Free-Electron Model for Metals 

CHAPTER 2 

MANY-PARTICLE SYSTEMS AND QUANTUM 
STATISTICS 

A satisfactory theory ought, of course, to count two observationally indistinguishable 
states as the same state and to deny that any transition does occur when two similar 
particles exchange places. P. A. M. Dirac (1930) 

1 Wave Functions for a Many-Particle System 

Consider a system consisting of a large number of identical quantum-
mechanical constituents that interact very weakly or not at all with one another. 
Assume that energy is being slowly transferred between these constituents in 
such a way that an equilibrium condition exists, so the number of elements 
having a given energy is not changing systematically with time. For purposes of 
classification, let us consider three model systems: 

(1) systems composed of identical but distinguishable particles (or other 
elements), 

(2) systems composed of identical indistinguishable particles of half-integral 
spin, 

(3) systems composed of identical indistinguishable particles of integral 
spin. 

The treatment of distinguishable particles for the first model system represents 
the classical limit which leads to Maxwell-Boltzmann statistics, whereas the 
treatments of the two types of indistinguishable particles in the second and third 
model systems yield respectively the Fermi-Dirac and Bose-Einstein distribution 
functions. [In the category of distinguishable particles we can include other 
elements, such as degrees of freedom of a system, which are not actually particles 
and which may even be identical in their physical behavior, but yet are 
distinguishable by means of their spatial location or orientation. Examples 
would be the normal modes of atom vibration (phonons) in a crystalline solid 
and spin waves in a magnetically ordered material.] 

146 



[§1] WAVE FUNCTIONS FOR A MANY-PARTICLE SYSTEM 147 

Let us first consider the quantum mechanics of a system composed of a large 
number N of identical particles that do not interact with one another. Assume 
that all of the particles are moving under the influence of the same potential 
function i^(r), so that when the particles are treated quantum mechanically on 
an individual basis, as prescribed in §6 of Chap. 1, there are deduced a number of 
stationary states φ{ of energy gi ( /= 0 ,1 ,2 , . . . ) which are available for 
occupation by the particles. For example, if the particles are all subjected to 
forces due only to the nucleus of a given atom, the wave functions and energy 
levels would be those of a one-electron atom. Similarly, if the particles are all 
confined as a gas inside a given container, the wave functions and energy levels 
are those of a particle in a potential well. 

The actual quantum state of an TV-particle system will be somewhat different 
in general from that constructed from a superposition of N single-particle states, 
due to the potential energy of interaction between the particles. For example, 
weak gravitational forces between the particles exist, and there is frequently 
present the stronger electron-electron Coulomb interaction. We neglect these 
fluctuating perturbing effects on the potential in the present section for reasons 
of simplicity, and as a consequence, we derive the statistics that yield the 
occupation probability for energy levels of a system of N noninteracting particles 
in the presence of some average potential f (r). Furthermore we assume, again 
for simplicity, that the single-particle energy levels are nondegenerate. By 
definition, nondegeneracy implies that each different single-particle wave 
function corresponds to a different energy of the particle, so that there is a 
unique correspondence between energy levels and wave functions [< ·̂ <-►</>; 
(/ = 0 ,1 ,2 , . . . ) ] . Nondegeneracy of wave functions means, for example, that we 
cannot have S2 = <f3, in which case φ2 and φ3 would both correspond to the 
same energy Sv Nondegenerate single-particle energy levels can therefore be 
listed in the order of increasing energy. Cases involving degenerate levels can be 
approximated by regarding such levels to be very closely spaced, but not 
absolutely identical, in energy. Alternatively, degenerate levels may be included 
by assigning to these levels a statistical weighting factor determined by the 
degree of degeneracy. 

1.1 Systems of Distinguishable Particles 

Let us now consider the functional form of the total wave function for the TV-
particle system of distinguishable particles. One possible wave function for the 
total system of N particles is the product of the single-particle eigenfunctions: 

Φίιί2...ί„ = φ,(1)φίρ)--·φί„(Ν). (2.1) 

This function satisfies the Schrödinger equation (1.164) appropriate to each 
individual particle, as can be seen by direct substitution. The subscript il is the 
index for the first particle, which by hypothesis can be distinguished from all 
other particles. The index i1 can have the values 1,2,..., r , . . . , corresponding 
respectively to the possible single-particle wave functions φί9 φ2,..., φγ,... and 
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energy levels δί9 δ2,..., $r,... . The index i2 is the index for the second particle, 
/3 is the index for the third particle, etc. Thus φι would indicate that the y'th 
particle is in the eigenstate represented by <j>k, where k is the specific value of the 
index /.. Since the single-particle stationary-state wave functions are functions of 
the spatial position r, this functional dependence should be denoted in some 
way, as for example φ(τ). The Hamiltonian operator in quantum mechanics is 
obtained from the classical Hamiltonian representing the total energy of the 
system, as discussed in Chap. 1, §6, and this classical Hamiltonian contains the 
vectors r1? r 2 , . . . , rn which specify the classical location of each of the TV particles 
at time / relative to a common origin; in addition the classical Hamiltonian 
contains the time derivatives of these position vectors. Thus particle 1, which is 
located at rx and has velocity ίχ = ckjdt at time t in the classical limit, has r1 as 
the argument in its quantum-mechanical wave function. Likewise, the y'th 
particle has r. as the argument of its wave function, so the symbol </>,. has 
argument ly Thus φ( = φ^τ^), which indicates that the jth particle is in the 
eigenstate represented by </>fc(r.), where k is the value of the index ir For 
simplicity, we denote the argument r,. by j , so φί (ι^) is written simply </>,(/). 
Likewise, the spin coordinate can be considered to be included in the symbol j . 

To generalize to an TV-particle wave function, Φ1111Π... x would correspond to 
the quantum state 01(1)01(2) · · · φγ(Ν) of the TV-particle system in which each 
of the individual particles is in the single-particle state φχ with energy δν The 
total energy of the TV-particle system for this state is Νδν Similarly, Φ2ιιιιι ··· i 
corresponds to the state φ2(\)φ1(2)φί(3) · · · φ^Ν) in which the first particle is 
in the state φ2 and all of the other TV — 1 particles are in the state φν The total 
energy corresponding to this wave function is δ2 + (TV— 1)δν Likewise, Φ12111... { 

corresponds to the state in which the first particle is in the state φί9 the second 
particle is in the state φ2, and all the remaining particles are in the state φν The 
total energy is again δ2 + (Ν — \)δν Thus the quantum states of the system 
correspond to the various particles occupying certain of the eigenstates available 
to a single particle. Although the TV-particle wave functions Φ2ηι..., and Φ1211..., 
are degenerate in energy, they do represent entirely different physical states of 
the system. This is true since, by the hypothesis underlying the development in 
this section, we can distinguish particle 1 from particle 2, and can therefore tell 
whether it is particle 1 or particle 2 that we observe to be in a certain eigenstate at 
some given time. 

Note that our TV-particle wave function discussed above is a function of many 
variables r1 5r2 , . . .,rN, and thus it can be considered to be a function in a 
hyperspace, which is a space having more than three dimensions. This is an 
interesting result which proceeds from converting the classical Hamiltonian to 
the quantum operator form by means of our usual prescription (see §6 of Chap. 
1). The wave function given by Eq. (2.1) consists only of product factors of the 
form φι,(TJ), with no "off-diagonal" factors φ^τ^ with k Φ j . The reason is that, 
by hypothesis, we can distinguish the particles one from the other, so we know 
that it is the y'th particle that is located at r,. in a distinguishable-particle 
description, and definitely it is not the &th particle that is located at ly 
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Thus the function φ( (rj), meaning an evaluation of the eigenstate of the kth 
particle at the position coordinate of they'th particle, would not be physically 
meaningful for the situation in question where by hypothesis the particles are 
completely distinguishable. Since the particles are admittedly identical, dis-
tinguishability in practice requires spatial separation, and this can be achieved in 
a quantum-mechanical description only in the limit of completely nonover-
lapping wave functions. This by definition means that φί, the eigenstate of the 
yth particle, must have a zero value at rk, which represents the location of the kth 
particle in the classical Hamiltonian. (Consider, for example, the case of one 
electron traveling in an oscilloscope tube located in Los Angeles, California, and 
a second electron bombarding a single-crystal metal surface in a research 
apparatus located in Ithaca, New York. Clearly the wave functions for these two 
electrons do not overlap appreciably, so that the two electrons are essentially 
distinguishable because of their spatial separation.) 

EXERCISE Show that the wave function given by Eq. (2.1) satisfies each single-particle 
Schrödinger wave equation Jif^s(j) = $s4>s(j). Show that it likewise satisfies, in the limit of no 
interaction between particles, the many-particle Schrödinger wave equation J f $ = $Φ, where for 
the presently considered case of noninteracting particles, 

N N 

1.2 Systems of Indistinguishable Particles 

Suppose that we now look at an entirely different physical system that differs 
from the above one only insofar as the particles are indistinguishable instead of 
being distinguishable. Identical particles become indistinguishable in a quantum 
description whenever the overlap of the wave functions for the individual 
particles is nonzero. (That is, the wave functions of they th and the kth particles 
are both nonzero over some common spatial domain, as illustrated in Fig. 2.1, so 
that a physical observation which detects a particle in this region could not 
distinguish whether theyth or the kth particle was observed.) Since overlap of 
wave functions is a property that is dependent on a probability density 
description for particle location, the property of indistinguishability of identical 
particles is characteristic of the quantum nature of particles. (In classical 
mechanics, the exact trajectory of individual particles is describable as a function 
of time so that even identical particles can be considered to be distinguishable.) 
Thus for the case of indistinguishable particles, whenever we observe a particle 
at some time t we generally cannot in any way tell for certain which particle it 
happens to be relative to some earlier observation. If we could indeed tell which 
particle it is relative to an earlier observation, then we would have a system of 
distinguishable particles, in contrast to a system of indistinguishable particles. 
Our wave function for the TV-particle system must in some manner represent the 
fact that the particles are indistinguishable; that is, we must have a wave 
function that is invariant to any permutation of the particles. However, the 
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permutation l - > 2 - > 3 - > 4 - > · · · ->7V->1 transforms the distinguishable-
particle wave function 

0,(1)0,(2) · · · φίΝ(Ν) (2.2) 

to the new (and generally different) function 

0,(2)0,(3) · · · φ,β) (2.3) 

of the independent coordinates r l 5 r 2 , . . . ,rN. In a classical description, this 
permutation means that we place particle 1 at position r2, while simultaneously 
placing particle 2 at position r 3 , . . . , while simultaneously placing particle N at 
position Γχ. 

Wave Function Overlap 

Fig, 2.1 Overlapping wave functions ψί and ψ2. (A particle found within the region of overlap 
may be either particle 1 or particle 2.) 

But suppose we had a gigantic function of the independent variables 
r1? r 2 , . . . , rN made up of a sum of the above two functions (2.2) and (2.3) plus 
similar terms sufficient to cover all possible permutations of the TV particles over 
all classical position vectors r,. Then any permutation would leave this colossal 
function invariant; this function would therefore constitute an appropriate total 
wave function for the system of TV noninteracting indistinguishable particles. 
That is, 

**,«.-«, * ^,(1)^(2)^,(3) · · · 4>UN~ D^W 
+ φ,(2)φί2(1)φ,,(3) ■ ■ ■ φ^(Ν- 1)φίκ(Ν) +■■■ 

+ ^ , (2)^(3)^,(4) · · · </ν,(Λ0<Α/Ν(1) + · · · 

+ (sum of all other possible permutations). (2.4) 

We then choose the proportionality factor to effect normalization of Φ ,„ . . . ijv. 
For a given set of N different eigenstates {iu i2,..., /#}> there are TV! different 
permutations of the vectors ru r 2 , . . . , rN, so that there are a maximum of N\ 
terms in the above sum. If some of the particles are in the same eigenstate, we 
have fewer than N\ distinct terms. For example, the indistinguishable-particle 
wave function analogous to the distinguishable-particle wave function Φιη...ι 
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would likewise contain only the one term ΦΠ1...„ while that analogous to 
Φ2111 · · ■ i w o u l d contain N terms 

{*2in-i + * i2 i i - i + *ii2i. . . i+ " * + φ ι ι ι ι · · · 2 } (2-5) 
corresponding to the permutation of the N vectors r1? r 2 , . . . , rN in the argument 
of the single-particle eigenstate φ2(τ). 

It should be kept in mind that the order of factors in a product of single-
particle eigenstates has no particular physical significance when the particles are 
indistinguishable. For example, 

Φ1111---1 = W i f r i W i O r ^ i r a ) ■ · ■ φχ{τΝ)} (2.6) 

may be equally well represented by the product 

{ΦΜΦΜΦΙ^Φ&Α) '' ' ΦΙ(*Ν)}- (2.7) 
Likewise the term 

Φ2111...1 = {Φ2(*ι)Φι(*2)Φι(τ*)Φι(*Λ · · · ΨΙ( 'Ν)} (2-8) 
is the same as the term 

{ ^ ( Γ , Μ Α Μ ι ί ^ ι Ο - * ) · · · Φι(**)}· (2-9) 
On the other hand, this is not the same as the term 

*1211 - 1 = {Φΐ(*ΐ)Φ2(*ΛΦΐ(*3)Φΐ(*4) ' ' ' Φΐ(*Ν)}' ^ΛΟ) 

The term Φ2ιιι ■ · · 1 denotes a possible state with particles 2 ,3 ,4 , . . . , N in state φ{ 

but particle 1 in state φ2, whereas the term Φηη ...χ denotes a possible state with 
particles 1,3,4, ...9N in state φχ but particle 2 in state φ2. The linear 
combination of such terms then takes care of the indistinguishabiUty of the 
particles as regards a macroscopic quantum state of the system. 

The possible energy levels for the complete TV-particle system will remain the 
same as before the symmetrizing process, namely, 

* „ . . . , =St +£t + · · · +Si9 (2.11) 
Ί ' 2 ιΝ Ί '2 lN ' 

since φ{ has the energy St associated with it regardless of the particular position 
coordinate which may happen to be its argument. Therefore we now have one 
possibility for a wave function that describes the system of N particles. Let us 
study the properties required of such a wave function from a more general 
standpoint in the following section. 

1.3 Symmetry under Particle Exchange 

That the particles of the system are physically indistinguishable places certain 
restrictions on the mathematical form of the total wave function for the system. 
The restrictions are based on the invariance of the Hamiltonian operator under 
all possible interchanges of identical particles in the system. The classical 
Hamiltonian function for the system is of the form 

H= {\ßm)(p\ +ρ2
2+·- +ρ2

Ν) + r-(f19f29...9TN)9 (2.12) 



152 QUANTUM STATISTICS [Chap. 2 

where m is the particle mass and p. is the momentum of the zth particle. (In 
classical mechanics, we say that pf is canonically conjugate to η.) The 
Hamiltonian operator 3tf for the system of TV particles as obtained by the usual 
prescription given in Chap. 1 §6 for converting the classical Hamiltonian 
function to the corresponding quantum operator is thus 

•T = - (h2/2m)(Vi + V\ + · · · + VI) + r(tvt2,...,rN). (2.13) 

The wave function Ψ for the system will in general depend upon all coordinates rf 
and the time t9 

Ψ=Ψ(τ19τ2,...9τΝ9ή, (2.14) 
where the time dependence is introduced by adding the individual time factors 
exp[ — (ijK)$ f\ to each of the individual stationary-state single-particle eigen-
functions φ. making up the stationary-state many-particle eigenfunction 
Φ(Γ1? r2, . . . , rN). If particles 1 and 2 are interchanged, the Hamiltonian operator 
will be 

JT = - (fi2/2m)(V2
2 + V\ + · · · + VI) + r(T29T19T39r49...9TN). (2.15) 

Clearly the kinetic energy contribution to the Hamiltonian operator is 
unchanged. Since the particles behave entirely identically, the potential energy 
must also be the same as before. Therefore, 

^ = ^f. (2.16) 
This is called exchange invariance. We can define an exchange operator 0>jk 

which interchanges the coordinates of any pair of particlesy, k in any function of 
these coordinates. Let/(r1? r2, . . . , tj9..., rfc,...) be an arbitrary function of the 
independent vector variables r1? r2, . . . , r ; , . . . , rk,..., with 

&jJ(Ti>T2>.. ·,ri5...,rk,...) =7(ri,r2 , . . . ,rk , . . . ,r j 9 . . .) . (2.17) 

For shorthand notation, let the original function be represented by the symbol 
Fjk and let Fjk with r,· and rk interchanged be denoted as Fkj. Then the above 
equation becomes &jkFjk = Fkj. It follows from the definition of 0>jk that 
<Viy = Fjv so that 

&jk(&jkFjk) = &%Fjk = Fjk. (2.18) 

That is, any arbitrary function/is an eigenfunction of the operator 0>2
k9 with the 

eigenvalue being unity. 
Next, we will show that the permutation operator &.k commutes with the 

Hamiltonian. Consider the quantity ^jk(J^T), where J>fc is the Hamiltonian 
operator 

3τ = JV(T19T2, . . . , Tj9. . . , rfc, . . . ) , 

including the dependence upon the gradient operators V19 V29 . . . , Vj9 . . . , 
Vk,... ; Jf can be denoted in shorthand as Hjk. Then from the definition of <Pjk it 
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follows that 
0>ik^J) Ξ &jk(HjkFJk) = (HkjFkj). 

Alternatively, let us consider the quantity Jf (£PjkJ), which can be written in the 
form 

JT&jJ) = Hjk(0>JkFjk) = Hjk(Fkj). 

Subtracting the two equations gives 
9£#7) - JT&jJ) = HkJFkj - HjkFkj, 

or equivalently, 
(9jk,^f={Hkj-Hjk)Fkj. 

Thus the condition required for the permutation operator to commute with the 
Hamiltonian is that Hkj = Hjk. This is satisfied for any system of Af noninteract-
ing particles, since in this case the Hamiltonian for the system is the sum of the 
Hamiltonians for the individual particles, 

st//? <*/£> _ i_ <*Jf i . . . I f/£> _ i_ . . . _ i_ <U/? _ i_ . . . 
<JC — Jt Λ T" Jt 2 ' ' ^ i ' ' ^ k ' 

(The two right-hand sides are equal because the order of the terms is 
unimportant, thus giving Hjk = Hkj.) 

One consequence of the fact that the Hamiltonian commutes with the 
permutation operator is that we can use the theorem proven in Chap. 1 §8 that 
commuting Hermitian operators possess a complete set of simultaneous 
eigenfunctions. (We will prove shortly that the permutation operator is indeed 
Hermitian.) Thus we can choose the eigenfunctions Φι for the system of N 
particles in such a way that the eigenvalue equation 

a y p . - y W * , (2.19) 
is satisfied, where y\ik) is the appropriate eigenvalue. Operating on this equation 
with 0>jk gives 

However, it has been shown above that the eigenvalue of &jk is always unity, so 
that we conclude that {y\jk)}2 = 1, which leads to the result y\jk) = ± 1. Thus the 
only possible eigenvalues of the permutation operator are + 1 and — 1. For the 
+1 eigenvalue, 

0>.lpl = <pt (symmetric Φ,), (2.20) 
which requires that the wave function be symmetric under exchange of any two 
particles in the system of N particles. For the — 1 eigenvalue, 

^>^Φι = — Φι (antisymmetric Φ,), (2.21) 
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which requires that the wave function be antisymmetric under exchange of any 
two particles in the system of TV particles. 

Let us now suppose that two of the particles (namely, j and k) are in the same 
single-particle eigenstate, such that φ{. = φ^ This leads to the relation 
£Ρ^Φι = Φι, using only the definition of the permutation operator and the 
equality ij = ik. This relation causes no difficulty if the many-particle wave 
function Φι is symmetric. If Φχ is antisymmetric, however, this new relation 
together with the above antisymmetry relation (2.21) leads to the requirement 
Φι = — Φι. This equation can be satisfied only for the situation in which Φι = 0, 
in which case there can be no particles. The conclusion, then, is that the 
antisymmetric wave function is zero unless every particle in the system of TV 
noninteracting particles is in a different single-particle eigenstate. Particles that 
have such many-particle wave functions are said to obey the Pauli exclusion 
principle, which postulates that no two half-odd-integer spin particles in a system 
can have the same set of quantum numbers. In terms of wave functions, the Pauli 
exclusion principle can be stated thus: The wave function for a system of half-odd-
integer spin particles must always be totally antisymmetric. This is noted to be a 
rather remarkable situation when we consider that the TV particles in the system 
are completely noninteracting. Particles such as these are known as Fermi 
particles, and the statistical distribution function which we derive for occupation 
of the energy levels of a system by such particles is known as the Fermi-Dirac 
distribution function. 

The symmetric wave function has no such restriction on the occupation of the 
various quantum states, so there can be any number of the TV particles in a given 
single-particle eigenstate. Particles such as these are known as Boseparticles, and 
the statistical distribution function which we derive for occupation of the energy 
levels of a system by such particles is known as the Bose-Einstein distribution 
function. 

There remains one question to clarify, namely, is the permutation operator ^tj 

a Hermitian operator? Let us consider two arbitrary functions / a n d g of the 
coordinates rl9 r2, r 3 , . . . , r , · , . . . , rfe,..., and denote the functional dependences 
on Yj and rk explicitly by writing J{xj9 rk) and g(rj9 rk), but only carry along the 
functional dependences on the other coordinates implicitly. Then let us consider 
separately the two integrals involved in the general definition (1.231) of a 
Hermitian operator. (We extend the general definition to include all independent 
variables of the system.) Using simultaneously the definition of the permutation 
operator 0>u leads to 

g*(Tj9TUl&jJ(Tj9TkJ]drjdrk = g*(Tj9Tk)T(Tk9Tj)Ajdrk9 

l&jiS(Tj9Tk)]*RTj,*k)<kjdrk = g*(Tk,rj)f(rJ9Tk)dTjdrk. 

In this latter expression let us interchange the dummy variables rk and r,· in the 
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integral on the right-hand side, which leads to the result 

IPjdKTp rk)] */( i> rk) Aj dxk = g*(rj9 r k ) / ( r k , r,) dxk dxy 

However, the right-hand side of this result has the same value as the right-hand 
side of the first equation in the present paragraph, so that the corresponding left-
hand sides must be equal, 

/% 

Since g(rp rk) and/ir, . , rk) are arbitrary functions of r,. and rk as well as any other 
independent variables which are included as parameters in the functions, this 
proves, through the general definition (1.231) of a Hermitian operator (as 
extended to several independent variables), that the permutation operator ^ . . is 
Hermitian. 

Why does nature require the wave function to be symmetric or anti-
symmetric? This follows from a thought experiment in which two identical 
particles are interchanged surreptitiously while an observer looks away from the 
system. Upon looking at the system once again, the observer could in no way tell 
that the system had been modified. This requires that \Φ\2 remain invariant 
under any exchange of particles if the particles are truly indistinguishable. This 
in itself imposes special conditions on the functional form of the wave function. 
However, \Φ\2 is automatically invariant under particle exchange if we require 
that the entire wave function be either totally symmetric or totally anti-
symmetric, where a symmetric function corresponds to the eigenvalue + 1 of^.k 

and an antisymmetric function corresponds to the eigenvalue — 1. (The minus 
sign brought about by the particle exchange in the above thought experiment 
causes no difficulty because it is only the probability density which is physically 
meaningful. Only \Φ\2 is physically meaningful; — Φ is thus physically 
equivalent to Φ.) That in the absence of other compensating factors the system 
wave function must be totally symmetric or totally antisymmetric in order to 
maintain the same value for \Φ\2 under exchange follows directly from the fact 
that any arbitrary function can be written as a sum of functions which are, 
respectively, symmetric and antisymmetric in exchange; an exchange then yields 
the transformation 

φ + φ . _> φ — φ (2ΎΣ\ 
sym ' antisym sym antisym' \**.**+*j 

so in general \Φ\2 would not be preserved. Thus we limit our choice of wave 
function for a system containing identical particles to functions which have the 
proper symmetry. 

EXERCISE Prove the above statement that any arbitrary function can be written as the sum of 
functions which are respectively symmetric and antisymmetric in exchange. You may restrict your 
considerations to a function involving the coordinates of two particles only. (Hint: Consider an 
arbitrary function Φ involving the coordinates of two particles which is neither symmetric nor 
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antisymmetric under the two-particle exchange. Let us designate as Φ' the function obtained from 
the particle coordinate exchange in Φ. New functions can easily be constructed which are respectively 
symmetric and antisymmetric under the two-particle exchange in question. Namely, 

* s y m = i ( * + * ' ) . *.nti*m = * ( * - * ' ) · 
Adding these new functions together then gives 

Φ = Φ 4- Φ .. 
^sym ' antisym 

It remains only for you to demonstrate that Φ as constructed above is indeed symmetric under the 
two-particle exchange, and that #antjsym is indeed antisymmetric under the two-particle exchange.) 

It is found experimentally that all eigenfunctions for a given type of particle 
show the same exchange symmetry. The exchange symmetry is found to be 
related to the intrinsic angular momentum of the type of particle in question 
according to the following exchange-symmetry rules: 

(1) A system of identical particles, each of which has an integral quantum 
number for the intrinsic spin, can be described only by wave functions which are 
symmetric with respect to an interchange of the space and spin coordinates of 
any two such identical particles: 

<P(l,2,...,i,...,j,...,N) = <P(\,2,...,j,...,i,...,N). (2.23) 

Such particles are called Bose particles, or bosons. Equation (2.23) imposes no 
restriction as to the number of bosons in a given single-particle eigenstate. 

(2) A system of identical particles, each of which has a half-integral quantum 
number for the intrinsic spin, can be described only by wave functions which are 
antisymmetric with respect to an interchange of the space and spin coordinates of 
any two such identical particles: 

Φ ( 1 , 2 , . . . , / , . . . , ; , . . . , Α') = -<P(\,2,...,j,...,i,...,N). (2.24) 

Such particles are called Fermi particles, orfermions. Equation (2.24) leads to the 
result that the system wave function is zero if any two particles are in the same 
single-particle eigenstate. It can thus be said that no two half-odd-integer spin 
particles (Fermi particles) in a system can have the same set of quantum numbers, 
or equivalently, the wave function for a system of half-odd-integer spin particles 
must be totally antisymmetric. These constitute equivalent statements of the 
extremely important Pauli exclusion principle. 

The statistics appropriate for bosons are referred to as Bose-Einstein statistics. 
Some examples of Bose particles are photons (spin 1), neutral helium atoms in 
the ground state (spin 0), and alpha particles (spin 0). Relative to the case of 
distinguishable particles, Bose particles (as we show later) exhibit a quantum-
mechanical "attraction" for one another and thus tend to be found spatially near 
one another. Bose particles tend to occupy the same low-energy quantum states. 
This is not prohibited for these particles since they do not obey the Pauli 
exclusion principle. 

The statistics appropriate for fermions are referred to as Fermi-Dirac 
statistics. Examples of Fermi particles are plentiful; for instance, electrons, 
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protons, neutrons, and μ mesons all have spin \ and are consequently fermions. 
Relative to the case of distinguishable particles, Fermi particles exhibit a 
quantum-mechanical "repulsion" for one another, and thus do not tend to be 
found spatially near one another. This "repulsion" can be attributed to the fact 
that Fermi particles cannot occupy the same quantum state because of the Pauli 
exclusion principle. 

From these statements we can conclude that at a given temperature, the 
internal energy and the pressure in a spatially confined system of Bose particles 
are both less than the corresponding internal energy and pressure of a system of 
equivalent but distinguishable particles, whereas the internal energy and the 
pressure in a spatially confined system of Fermi particles are both greater than 
the corresponding quantities in a similar distinguishable-particle system. 

Before demonstrating some of the above-mentioned properties of Bose and 
Fermi particles for a simple two-particle system, it is worthwhile to note that the 
TV! possible terms in the appropriately antisymmetrized or symmetrized wave 
function Φ, as obtained by adding all terms generated by the N\ permutations of 
r15 r 2 , . . . , rN in the function 

Φι,^Φ,,ί^) ■ ■ ■ <W> (2-25) 
can be grouped in an orderly fashion by writing the following determinant, 

U. ,0) 4>,.(2) φβ) · · · φ^Ν)\ 
Ιψ,(1) <*>,(2) 4>,(3) · · · φί2(Ν)\ ( 2 2 6 ) 

1^(1) φ,β) φ,ρ) ■■■ φίκ(Ν)\ 

This is sometimes referred to as a Slater determinant. Each term in the expansion 
of the determinant represents one term of the sum. The signs of the terms as 
obtained by ordinary expansion of a determinant alternate, but if we change all 
signs to be positive (or negative), then the resulting set of TV! terms is a symmetric 
function of the r,., and this gives us an appropriate wave function for a system of 
Bose particles (bosons). Alternatively, if we do not change the sign of any of the 
terms in the expanded Slater determinant, we have an antisymmetric function of 
the r. which thus represents an appropriate wave function for a system of Fermi 
particles (fermions). 

The existence of the property of antisymmetry for the Slater determinant can 
be justified by noting that permutation of the coordinates of any two particles / 
andy in the system has the effect on the determinant of interchanging columns / 
and j . It is proven in the theory of determinants that such an interchange of 
columns (or rows) results in an overall change in the sign of the determinant. 

EXERCISE Show that the Slater determinant for a two-particle system changes sign upon 
interchange of rows or columns. 

Finally, let us ask what happens to the Slater determinant if any two particles i 
and j happen to be in the same eigenstate. It can be seen that this causes rows / 
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and j in the determinant to be identical, and it is proven in the theory of 
determinants that whenever any two rows (or columns) are equal, then the 
determinant has the value zero. This corresponds to no wave function at all. 
Thus there can be no antisymmetric wave function for the system which allows any 
two particles to be in the same eigenstate. This is equivalent to our former 
statement of the important Pauli exclusion principle. 

Thus it can be said that in a system of Fermi particles, which is characterized 
by an antisymmetric wave function, the particles must occupy the allowable 
eigenstates in accordance with the Pauli exclusion principle. On the other hand, 
it can be said that in a system of Bose particles, which is characterized by a 
symmetric wave function, there is no restriction to the occupation of the 
allowable eigenstates, and the Pauli exclusion principle is therefore inapplicable 
to such particles. 

For systems containing a great many particles, the number of terms in the 
symmetric or the antisymmetric wave function becomes enormous. It seems 
evident that such complexity will preclude making significant progress in 
extended calculations; thus a shorthand method of writing wave functions is 
desirable. The salient information is that there is a system of TV particles which 
must be treated alike, with a resulting wave function which is symmetrized for 
bosons or antisymmetrized for fermions. The occupation number representation 
takes this redundant information for granted, and uses the notation 

11,1,1,0,0, . . . ) , 

for example, to indicate simply that the first three single-particle eigenstates 
φί(τ),φ2(τ), and </>3(r) are occupied by a single electron, with the remaining 
single-particle eigenstates (/>4(r), φ5(τ),... of the system being unoccupied. A 
wave function Φ for any number of particles can be specified in this notation, 

0 = \nl9n29n3,...y = \{nj}>9 

where {w.} is the set of occupation numbers n19n2, n3,... for the single-particle 
eigenstates. For fermions, the n. have only two possible values (0 and 1) 
consistent with the Pauli exclusion principle. For bosons, the n} can take on the 
value of any positive integer number, consistent only with conservation of the 
total number TV of particles in the system, N = £7- ny 

It can be proved that distinct Φ$> corresponding to the same N particles are 
orthogonal. Likewise Φ$ corresponding to different values of N are orthogonal. 
In general, the 0s form a complete set in the space of any number of particles. 
Many particle operators can be defined in terms of creation and annihilation 
operators which increase or decrease the number of particles in a given single-
particle eigenstate. Further details can be found in standard references, such as 
Taylor (1970) and Callaway (1976). 

EXERCISE Show that the Slater determinant for a two-particle system is zero when the rows or 
columns are identical. 



§1] WAVE FUNCTIONS FOR A MANY-PARTICLE SYSTEM 159 

PROJECT 2.1 Wave Functions for a Noninteracting Many-Particle System 
Suppose that the electrons in a many-electron atom could be considered as completely 

noninteracting in the sense of completely negligible Coulomb interactions between electrons, (a) 
Write the wave function Φ(Γ15Γ2) for the helium atom in this limit, (b) Write the wave function 
Φ(Γ15 r2, r3) for the lithium atom in this limit, (c) Write the wave function Φ(Γ1} r2, . . .) for any other 
atom in this limit. 

1.4 A Simple Two-Particle System 

1.4.1 Wave Functions. Now we treat a simple model, namely, a system 
composed of two identical particles which are both acted upon by the same 
outside force, but which, in the first approximation, do not interact with one 
another. The Hamiltonian of particle 1 when treated separately is 

H, = (pl/lm) + r(l)9 (2.27) 
and the Hamiltonian of particle 2 when treated separately is 

H2 = (p2
2/2m) + r(2). (2.28) 

Using the correspondence /?-► — ihV, developed in §6 of Chap. 1, the total 
Hamiltonian operator Jf for the system is the sum of Jf 1 and Jf 2, with 

Jfx = - {h2ßm)V\ + r(l), (2.29) 
Jf 2 = - (n2/2m)V2 + r(2). (2.30) 

The V2 is the Laplacian with respect to the coordinates ri of particle / (/ = 1,2), 
and 

r(f) = r(ri9aj 0 = 1,2), (2.31) 
where azi is the z component of the spin angular momentum of particle /. We 
allow for a functional dependence on ozi in order to include effects due to particle 
spin. Because the Hamiltonian operator is a sum of two parts, 

3/e = Jf! + JT2, (2.32) 
where #? γ and 2tf 2 are the Hamiltonian operators for the two separate particles, 
the energy eigenfunctions for the entire system can be expressed as some type of 
product of eigenfunctions for the individual particles, 

Φ(1,2) = Φ(1)Φ(2). (2.33) 

Since the particles are identical, the forces of the system must act similarly on 
each, so the potential functions i^{\) and °T(2) must have the same analytic form 
for each particle. Thus the possible wave functions for the individual particles 
are the same for the two particles. Let φη(ι) denote one of the normalized energy 
eigenfunctions for the /th particle alone, where n stands for the complete set of 
quantum numbers needed to describe a given state. With this notation, a 
normalized wave function for the system may be written 

Φ'(1,2) = φα(1)^(2). (2.34) 
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This wave function describes a state in which particle 1 is in the state a and 
particle 2 is in the state b. This wave function, however, is not necessarily of the 
correct form for identical particles, since there is no assurance that 
Φ'(1,2) = + Φ'(2,1), as required by exchange symmetry for indistinguishable 
particles. This can be remedied by writing instead the Slater determinant 

*(1,2) = WO 4>aV)\ (2.35) 

Upon expansion of the determinant, we change all signs to be positive to 
describe a Bose system, or leave the signs alone to describe a Fermi system. Thus 
we obtain 

Φ(1,2) = 2-^Ιφα(1)φ„(2) ± φα(2)φ„(1)-], (2.36) 

which does satisfy the requirements of exchange symmetry. The plus sign is used 
for Bose particles, and the minus sign is used for Fermi particles. The factor 
2~1 / 2 normalizes the total wave function to unity, assuming φα to be different 
from φύ. The wave function (2.36) describes a state of the system in which one 
particle is in state a and one particle is in state ft, such that either of the two 
particles is equally likely to be found in either state. It corresponds to an energy 
Sa + Sh for the system. If both particles are in the same state, the minus sign 
characteristic of Fermi particles causes Φ(1,2) to be zero. [This is not the case for 
Bose particles; however, the normalization factor must be changed (from 2" 1 / 2 

to 2~*).] Therefore we again see that two noninteracting Fermi particles cannot 
be in the same energy eigenstate. Equivalently, we may say that two noninteract-
ing Fermi particles cannot both be in states described by the same set of quantum 
numbers, in accordance with the Pauli exclusion principle. Note from Eq. (2.36) 
that even if φα is different from φ^ Φ(1,2) is zero for Fermi particles whenever 
Γι = r2 ' corresponding to both particles being simultaneously at a given position 
in space. This is not the case for Bose particles. 

1.4.2 Electron Spin. It is worthwhile to examine in an elementary manner 
how spin enters into the formalism, and how it can affect the symmetry of the 
wave function. Recall that in Chap. 1, §6 we mentioned that spin for a particle is 
analogous to polarization for an electromagnetic wave. In both cases we must 
have some coordinates and a technique for including the physical property in the 
formulation. The spin function x(at) in terms of spin coordinates at provides a 
convenient way of doing this for particles; there are analogous ways for adding a 
description of polarization to a scalar function describing an electromagnetic 
wave, although the more widely known method is simply to formulate electric 
and magnetic fields as vector quantities. We restrict our consideration of 
quantum spin to cases for which the total wave function for the system can be 
written as the product of a function of the space coordinates (e.g., a Slater 
determinant) and a function of the spin coordinates, 

Φ = (XrMvd* (2.37) 
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where at represents the spin coordinates of the system. The functions Gfo) and 
χ(σι) in Eq. (2.37) are each either symmetric or antisymmetric in order that Φ be 
completely symmetric or completely antisymmetric, 

Gird = 2" 1/2["α(1Κ(2) ± w„(2K(l)], (2.38) 

jtfo) = 2" mlsc(l)sd(2) ± sc(2)sd(l)l (2.39) 

where u and s are the individually normalized spatial and spin wave functions. 
The signs in G(rf) and χ(σ() must now be correlated to obtain the required 
exchange symmetry for the total wave function: For Bose particles the signs 
must be the same, but for Fermi particles they must be opposite. For 
convenience, we replace the factor of + 1 in G(rf) by Si and replace the factor of 
+ 1 in χ(σΟ by δ2. Then δχ and δ2 are both equal to + 1 or else both are equal to 
— 1 for a boson system, while δ1 and δ2 are equal respectively to + 1 and — 1, or 
else — 1 and + 1, for a fermion system. Multiplying out the factors G(rf) and 
χ(σ,) then gives 

2Φ = ua(l)ub(2)sc(l)sd(2) + o2ua(l)ub(2)sc(2)sd(l) 

+ 5l W e(2K(lMl)jd(2) + 5^2^(2)^(1)^(2)^(1). (2.40) 

Now under the transformation 1 -► 2 and 2 -► 1, 

24*™> - ua(2)ub(l)sc(2)sd(\) + ö2ua(2)ub(\)sc(\)sd(2) 

+ ö,ua{\)ub(2)sc(2)sd{\) + 5^2^(1)11,(2)^(1)^(2). (2.41) 

By comparing the first term of Φ with the fourth term of #(trans), and vice versa, 
and by comparing the second term of Φ with the third term of (p(trans), and vice 
versa, it is seen immediately that Φ in this form does have even parity for boson 
systems and odd parity for fermion systems. 

1.4.3 Quantum Exchange Forces. As an illustration of the physical con-
sequences of the symmetry character of wave functions, we evaluate the average 
value of the square of the distance between the two particles. For simplicity, let 
us neglect the spin factor (2.39) in the wave function, and consider only the 
spatial factor given by Eq. (2.38), or equivalently, Eq. (2.36). Using Eq. (1.211) 
to compute the expectation value of the square of the distance (r2 — i^) between 
the two particles, we obtain by integrating over the coordinates of both particles, 

<(r2 - rt)
2> = \ f ί ίφ*(\)φ*(2) ± φ:(2)φ*(1)-] 

x {τ\ + τ\- Γ 2 · Γ Ι - Γ Ι ·τ2)\_φα(1)φ„(2) ± φβ(2)06(1)] A , dr2. 

(2.42) 
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This can be expanded to give 

< ( r 2 - r 1 ) 2 > = ^ | 

± 

J Ωη J Ωτ2 

f dr1 φ*(1)φα(1) f άτ2φ*(2)Γΐφ„(2) 
J Ωη J ΩΤ2 

± [ dtl φ:(1)φ„(1) f άτ2φ*{2)Γ\φα{2) 
J Ω,, J Ω,2 

+ f ίΛ-! 0*(l)0b(l) Γ άτ2φ*α{2)κ\φα{2) 
J Ω„ J Ω,2 J 

+ [^(similar terms in rj)] — Q(similar terms in r2 · r j ] 
— [^(similar terms in rx · r2)]. (2.43) 

We have averaged over both sets of coordinates in order to allow for every 
possible value of rx and every possible value of r2. Employing the relation (1.238) 
expressing that eigenfunctions belonging to different eigenvalues are orthogo-
nal, we see that two of the integrals over ΩΤι explicitly given in Eq. (2.43) are zero, 
yielding a zero value for the second and third terms involving r\. Assuming 
normalization of the individual wave functions, we see that the remaining two 
integrals over ΩΧι explicitly given in Eq. (2.43) are unity. Letting <r2>„ denote 
ί^Φη^Φη^ί, we see the nonzero r\ terms in Eq. (2.43) are simply 

il<r2yb + <r2>„]. (2.44) 

By symmetry, we see we will duplicate these with the r\ terms, to yield a total of 

<r2}b + <r2\. (2.45) 
(We must of course keep in mind that rx and r2 are simply dummy variables in 
their respective integrals over. ΩΤι and ΩΤ2.) 

Now we look at a cross term Γχ · r2. Writing the terms in the same order as 
those explicitly written out in Eq. (2.43), we obtain for the first term 

dtl f ck2 Φ:(1)φ*(2)Ί · r2&(l)&(2). (2.46) 

Because integration and the vector dot product are linear operations, this can be 
written in the form, 

) ] Τ ί *2#(2)Γ2&(2)], * i « ( Ι Μ Λ Ι ) | · | | άτ2φ*(2)ν2φ„(2) 

which in turn can be written in shorthand notation 

-i<r>.-<r>6. 

(2.47) 

(2.48) 
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From symmetry, the r2 · ΙΊ terms will yield a corresponding contribution 
— ^<r>b*<r>a. Since the dot product commutes, we then obtain a total 
contribution 

- <r>. · <r>„. (2.49) 

The fourth cross term is very similar to the first cross term which we have just 
evaluated, since it is equivalent to the first term with an interchange of φα and (f)b. 
Since the result (2.49) is symmetrical in φα and φ^ and the dot product is 
commutative, we conclude that the contribution of the fourth cross term is also 
given by Eq. (2.49). We add the two contributions together to obtain a total 
contribution 

- 2<r>e · <r>b. (2.50) 

Now we look at the third cross term in rx · r2 (or equivalently in r2 · rx since 
1*2 ' r i = r i * r2)> which can be written 

- ( + ); 
1 

ατ2φ*(2)τ2φα(2) * i #T( l ) r iMl) 
ftl 

In the abbreviated Dirac notation (Chap. 1, §8.10) this can be written 

+ ±<%l«> · {a\r\b\ 

which is the same as 

+ ϋ<«ΙΦ>|2. 

(2.51) 

(2.52) 

(2.53) 

Adding the equivalent results for the rt · r2 and r2 · r t terms then gives a total 
contribution of 

+ Κ«ΙΦ>Ι2· (2.54) 

Finally the second cross term will also yield the same result; this represents the 
third term with ΓΧ and r2 interchanged, which introduces no change in the result 
(2.54). Thus the tptal contribution of the second and third cross terms is 

+ 2Ka\r\b}\2. (2.55) 

Adding all contributions (2.45), (2.50), and (2.55) together, we finally obtain 

<(r2 - r02> = <r2}a + <r2>b - 2<r>fl · <r>„ + 2|<a|r|6>|2. (2.56) 

It is informative to compare this with the corresponding result for distinguish-
able particles, for which the wave function would be simply 

<Mi)<M2). (2.57) 
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In this case, the expectation value of (r2 — ΙΊ)2 is given by 

<(r2 - rx)2> = * i * 2 « ( l ) « ( 2 ) ( r 2 " Χ,)2φα(\)φ,{2) 
Ωη J ΩΓ2 

* ι «(Ι)Φ-(Ι) 
Ωη 

άχ2φ*{2Υ2φ,{2) 

+ * ι Φί(1>·ΪΦβ(1) 

* ι Φβ*(1)'ιΦ-(1) 

ατ2φ*(2)φ„(2) 

L·J Ωη 

■ J Ω 
Α2φ*(2)Γ2φ»(2) 

L ·/ ßr2 J L J ßrl 

= <r2>» + <'2>a - 2<r>„ · <r>t. 

Γ ί άτ2φ*(2)τ2φ>(2) 

* ι Φ?(1)Γιφ.(1) 

(2.58) 
Thus in the quantum-mechanical case of indistinguishable particles, we have an 
additional term over and above the distinguishable particle terms. This 
additional term is called the exchange term, 

T2Ka\r\b}\2 (2.59) 
This term arises specifically from the requirement that Φ(1,2) have the 
symmetric or antisymmetric form, and the sign of the term is opposite for the 
two cases. The sign is negative for Bose particles and positive for Fermi particles, 
corresponding to the quantity <(r2 — ΙΊ)2> being algebraically smaller if the 
wave functions are symmetric (therefore representing an "attraction"), whereas 
it is algebraically larger if the wave functions are antisymmetric (therefore 
representing a repulsion). The latter gives us some insight into the physical 
consequences of the Pauli exclusion principle. Although these attractions and 
repulsions (called exchange forces) are physically just as real as if they were the 
result of a classical force appearing in the Hamiltonian function, they are of 
course nonclassical effects. 

1.4.4 Joint Probability Density. In treating physical systems that contain two 
or more indistinguishable particles, one often wishes to know how the particles 
are distributed in space. That more than one set of coordinates is involved in the 
wave function, and hence in the probability density p = |i/ |̂2, can be initially 
quite confusing. Thus it is worthwhile to look briefly at this problem for the 
simple two-particle system. Although the coordinates of the particles appear 
distinct from one another in the Hamiltonian function, the particles themselves 
move in the same three-dimensional space, and one cannot distinguish which of 
the particles has been found in a given volume element (dx dy dz) symbolized by 
dr. What we wish to know is the probability that one of the particles is in a given 
volume element dx regardless of where the other particle may be. The joint 
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probability-density distribution for the two particles is 

Φ*Φ = \ΙΦ:(\)Φ*(2) ± Φ!(2)φ*(1)Χφα(1)φ„(2) ± φα(2)φ„(1)1 (2.60) 

If we integrate Φ*Φ over all space ΩΓι we get 

1 1 Φ*Φώχ = 
2 

*1 ΙΦ*α(1)ΦΪ(2)Φα(1)Φ>(2) ± φ:(\)φ*(2)Φα(2)φ„(1) 

± φ:(2)φ*(1)φα(1)φ„(2) + φ:(2)φ*(1)φα(2)φι>(\)-] 

= ΐίΦΪ(2)Φ„(2) + 0 + 0 + φ*α{2)φα{2)-\ 

= ΐ[Ι<Μ2)|2 + Ι<«2)|2]. (2.61) 

A second integration, this time over Ωΐ2, gives 

ί ί Φ*ΦΛ1άτ2 = \ \ [|</>6(2)|2 + |</»a(2)|2]i/r2 = i [ l + l] = l. 

(2.62) 
Thus the total wave function is normalized such that there is unit probability of 
finding both particles somewhere in the domain of space considered. 

The first integral over Qr given by Eq. (2.61) represents the probability density 
for finding particle 2 at a given point r2 in space independent of where particle 1 
may be. Due to symmetry, the probability density for finding particle 1 in dx2, 
independent of where particle 2 may be, must also be given by the same quantity. 
Thus the total probability density of finding one of the two particles at a position 
r is 

2{Kl^|2 + |</>a|2]} = \Φ„\2 + \Φα\2- (2.63) 
This is the physical probability density, and the product of this quantity and a 
volume element <h is the probability that either of the particles is in the given 
volume element, independent of where the other particle may be. Note that the 
physically measurable probability distribution is therefore just the sum of the 
single-particle distributions for the states φα and φδ. This particular result is 
independent of the symmetry character of the spatial wave function and is the 
same as for distinguishable particles. 

PROJECT 2.2 Understanding Two-Particle Wave Functions 

1. Construct an antisymmetric two-particle wave function from the two lowest single-particle 
eigenstates obtained in solving the one-dimensional infinite square-well potential problem. 
2. Construct a symmetric two-particle wave function from the two lowest single-particle eigenstates 
obtained in solving the one-dimensional infinite square-well potential problem. 
3. Compute the expectation value of the square of the separation distance between the two particles 
for the two wave functions given in Parts 1 and 2. 
4. Compare results obtained in Part 3 with those obtained using an unsymmetrized wave function 
(viz., use the two-particle wave function appropriate for two identical but distinguishable particles). 
5. What are your qualitative conclusions? 
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6. Integrate the two-particle wave functions Φ} of Parts 1 and 2 over the coordinate of one of the 
particles, and plot the magnitude of the result versus the coordinate of the second particle. (If you 
wish, you may choose a definite width such as 4 Ä for the potential well, or you may choose to work 
in terms of a normalized position x/L.) 
7. Repeat the calculation in Part 6 by first integrating over the coordinate of the second particle and 
plotting the magnitude of this result versus the coordinate of the first particle. 
8. Repeat Parts 6 and 7 for the distinguishable-particle wave function. 
9. Repeat Parts 1-8 with the exception that the first and the third single-particle eigenstates are to be 
used instead of the first and the second. 
10. Compute the expectation value of the Hamiltonian for the wave functions obtained in Parts 1 
and 2. Repeat for the wave functions obtained in Part 9. Compare the results to corresponding 
results deduced using distinguishable-particle wave functions. 

2 Statistics for a Many-Particle System 

We now seek to obtain expressions, somewhat analogous to the Boltzmann 
distribution law of classical statistical mechanics, which describe the statistically 
probable distribution of TV Fermi or Bose particles among the various states φ. of 
a one-particle quantum system. Assume that the system is in statistical 
equilibrium with total energy of the N particles equal to ST, with a small but 
finite uncertainty 5ST. We then study the various ways in which the particles 
might be distributed among the various energy levels S. available to them, and in 
so doing, find out what is the statistically most probable such distribution. We 
divide the entire energy range into adjoining energy "cells" (cf. Fig. 2.2) 
AS1,AS2,AS3,...,ASS,..., such that each cell is very narrow in comparison 
with the error SST we are likely to make in measuring the total energy ST, but 
large enough to contain a large number of energy levels. We denote the number 
of energy levels in the sih cell by gs. Let us not restrict ourselves to nondegenerate 
levels. For degenerate levels, we consider each to contribute to gs, as outlined at 
the beginning of the chapter. In statistical equilibrium, let ns denote the number 
of particles with energies in the range Ss to Ss + ASS of the sth cell. The possible 
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Fig. 2.2 A division of the energy range into adjoining energy cells, each containing a large 
number of available energy levels. 
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values of ns must satisfy the conditions of conservation of the total number of 
particles and conservation of the total energy of the system of particles, 

00 

Σ ». = N, (2.64) 
s = l 

00 

Σ " A = *r· (2-65) 
s = l 

Since the nt particles in the cell ASX do not all have energies exactly equal to <?., 
but instead have energies in the range <?. + A${, the above equation (2.65) for 
conservation of the total energy is accurate to within δ$Ί, provided we choose 
the various cells A8>x small enough. 

If particles are indistinguishable and are of half integral spin, then the Pauli 
exclusion principle (cf. §1) must be considered to hold for the distribution. In this 
case no level can contain more than one particle, assuming that each level is 
characterized by a complete set of quantum numbers. 

There are many ways in which the N particles can be distributed among the 
cells, and many ways in which the ns particles in a given cell can be distributed 
among the various energy levels of that cell. A given distribution of cell 
populations ns (s = 1,2,...) is called a macroscopic (or coarse-grained) distri-
bution, while a given detailed distribution of the particles among the various 
energy levels of the cells is called a microscopic (or fine-grained) distribution. We 
must deduce the probability for the occurrence of a given macroscopic 
distribution of particles, and find for what distribution ns(8s) this probability is a 
maximum. This distribution will then be our best estimate of the actual 
condition of the system. Insofar as the statistical properties of the system of 
particles are concerned, the microscopic distribution of the ns particles in a given 
cell among the gs energy levels of that cell is unimportant. Therefore we are 
interested in predicting statistically the coarse-grained distribution only. 
However, to predict the coarse-grained distribution properly, we must carefully 
consider all possible fine-grained distributions. 

We introduce the following postulate relating to the probability of a given 
microscopic distribution of the N particles: Every physically distinct microscopic 
distribution of the N particles among the various energy levels S>

i which satisfies 
both the condition that the total energy be the quantity 8Ί ± δ$Ί and likewise 
satisfies the requirements of the exclusion principle, if it applies, is equally likely to 
occur. By & physically distinct distribution we mean one that has a wave function 
which is different from that of any other distribution. Thus even degenerate 
wave functions are considered to represent physically distinct distributions. 

Thus we may conclude that the relative likelihood of occurrence of any given 
macroscopic distribution ns(8s) of the N particles among the various cells is 
proportional to the number of distinguishable ways in which such a distribution can 
be constructed. Let us denote the number of ways in which a given macroscopic 
distribution can be constructed by P(n19 n2,...,ns,...), which we can simply call 
P. We must compute P for each type of particle considered. Then if we maximize 
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this quantity with respect to each ns, subject to the auxiliary conditions of 
conservation of total number of par tides and total energy of the system of par tides, 
we will have deduced the statistically most probable distribution. 

2.1 Identical but Distinguishable Particles 

In the case of distinguishable particles, P is equal to the product of the number 
of different ways of selecting the groups of particles to be put into each cell with 
the number of ways in which the particles can be arranged within the cells. We 
first consider the number of different ways of selecting the groups of particles, 
and only then do we turn our attention to counting the number of ways in which 
the particles can be arranged within each cell. We label all particles 
consecutively: 

1 2 3 4 5 6 7 8 9 10 11 · · · . (2.66) 

Let us suppose that we take nx of these and put them in cell 1, take n2 of the 
remaining ones and put them in cell 2, take n3 of the remaining ones and put 
them in cell 3, etc., subject to the restrictions imposed by Eqs. (2.64) and (2.65). 
For the fixed set of numbers nun2, n3, « 4 , . . . , we first ask ourselves how many 
distinguishable arrangements are possible, irrespective of the many other fine-
grained distributions (obtained by arranging the particles within each cell) which 
are compatible with this coarse-grained arrangement. 

From the N particles, we can select any one to put in cell 1 as the first of the «x. 
There are N — 1 remaining particles from which to select the second particle of 
the ni9 etc. Hence there are 

N(N - l)(N - 2) · · · (N - nx + 1) (2.67) 

ways of choosing the first n1 particles. Call this P'v Thus 

P\ =N\/(N-n1)\. (2.68) 

In this expression we have counted as a different arrangement each separate 
sequence in which the first ηγ particles could have been selected. However, we 
need only to know which particles are in the quota nu but not in what sequence 
they appear. (For example, selecting particle 20 first and particle 24 second is 
equivalent to selecting particle 24 first and particle 20 second. We consider the 
distribution of the particles among the gx levels later.) We therefore divide the 
above number by the number of different sequences in which ηγ objects can be 
arranged. This is readily seen to be nx\. This result follows from elementary 
counting: There are n^ possible choices for the first particle, nx — 1 possible 
choices for the second particle once the first particle has been chosen, ηγ — 2 
possible choices for the third particle once the first and second particles have 
been chosen, and so on until there remains only a single choice for the last of the 
nl particles. Considering that for each of the n± possible choices for the first 
particle we have the nx — 1 possible choices for the second particle, we have a 
total number of choices of nx added to itself nx — 1 times, or equivalently, 



§2] STATISTICS FOR A MANY-PARTICLE SYSTEM 169 

n1(nl — 1) independent choices for the first two particles. For each of these, we 
have the nl — 2 independent choices for the third particle, thus giving n1(n1 - 1) 
added to itself«! — 2 times to give a total number of n1(n1 — l)(nl — 2) choices 
for the first three particles. Continuing this procedure down to the last of the nl 

particles yields a total of n1! independent sequences for the nx particles. That is, 
the individual arrangements in (2.67) can be placed into groups, each group 
containing ni! microscopic arrangements of the same set of particles. Hence the 
number of different ways of choosing the first n1 particles out of the total N 
particles leading to different sets of nx particles is 

P, = P'JnJ = Nl/ln^N - njll (2.69) 
The second quota n2 is formed in the same manner, the only difference being that 
there are only (N — n^) particles left to choose from. Thus 

Pi = L(N - «i)!]/[«2!(^V - n, - *2)!]. (2.70) 
Similarly, 

P3 = l(N -n,- n2)\yin3\(N - nx - n2 - /i3)!], (2.71) 
etc. 

Remembering that all of the above numbers Pv P2, P3, etc., are independent, 
we thus have for the number of ways of distributing the N particles among the 
various cells the product P1P2P3 · · · Ps · · · . This product can be deduced from 
elementary counting in the manner now to be described. 

Consider first that the number of cell 1 groups is Pl9 independent of all other 
cells. For any given cell 2 group, we have the Pt cell 1 groups, for a second of the 
cell 2 groups, we again have Px cell 1 groups to give Px + P1 possibilities, for a 
third of the cell 2 groups we again have Px cell 1 groups to give Px + Px + Px 

possibilities, and so on until we have the sum of Px with itself P2 times, namely, 
one time for each of the P2 groupings. This number of possibilities is therefore 
PlP2, each requiring a different distinguishable-particle wave function. 

Now let us consider cell 3. For any given cell 3 group, we have the PXP2 

combined total number of cell 1 and cell 2 distinctly different groups, for a 
second of the cell 3 groups, we again have P1P2 combined cell 1 and cell 2 groups 
to give PXP2 + P^P2 possibilities, for a third of the cell 3 groups, we again have 
P1P2 cell 1 and cell 2 groups to give PtP2 + ^1^2 + ^1^2 possibilities, and so 
on until we have the sum of PlP2 with itself P3 times, namely, one time for each 
of the P3 groupings. This number of possibilities is therefore PXP2P3, each 
requiring a different distinguishable-particle wave function. 

Now let us consider cell 4. For any given cell 4 group, we have the PlP2P3 

combined total number of cell 1, cell 2, and cell 3 distinctly different groups, and 
thus and so for each of the P4 different cell 4 groupings. Therefore the number of 
possibilities is P1P2P3 added to itself PA times to give the number PXP2P3P4, 
each requiring a different distinguishable-particle wave function. 

It is easy to continue the counting in this fashion, and we find PXP2P3P4P5 as 
the number of possibilities when we include consideration of cell 5, 
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P1P2P3P4P5P6 as the number of possibilities when we also consider cell 6, 
\\l= x Ps possibilities when we also consider cell 7, \\ ®= x Ps possibilities when we 
also consider cell 8, and in general Πί=ι ?s possibilities when we consider all 
possible cells in the energy range extending from zero to infinity. 

Substituting Eqs. (2.69), (2.70), (2.71),... into this product then gives 

PiPiPy-P.'-

NliN-nMN-ri! -n2)\" -{N-nx -n2- · · -ns- · · ) !" · 

~ [ Λ Ι ! / Ι 2 ! Λ 3 ! · · -ns\" • ] [ (^- W l ) ! (^V-« 1 -« 2 ) ! · · .(Ν-ηγ-η2- ■ · ■ -ns- . · ) ! · · · ] 

" Λ ι ! ϋ 2 ! π 3 ! · · · * . ! · · · = n r= i« . t = ^ 1 v ■ (2,72) 

This is in essence the number of ways in which N distinguishable objects can be 
put into an ordered array of boxes with prescribed numbers nun2,...,ns... in 
each box. 

We must now calculate the number of ways in which the ns particles in each 
cell can be arranged in the gs energy levels included in that cell. Each such 
arrangement constitutes a different fine-grained arrangement. Since the ex-
clusion principle does not apply to distinguishable particles, there is no limit on 
the number of particles in each energy state. Each of the ns particles is equally 
likely to be in any one of the gs states. Thus there are gs ways in which the first 
particle can be put into the sth cell, and for each of these there are also gs ways for 
the second particle, and so on. Remembering that we are presently considering 
distinguishable particles, the total number of distinct distributions of the ns 

particles among the gs levels of the sth cell is therefore just gn
s
s. Each of these 

distinct distributions gives rise to a different microscopic distribution for the 
total system, and we have all of these possibilities for each cell. Therefore we 
must have the product of all of the gn

s
s with the previously deduced quantity 

P1P2P3 ''' Ps''' if w e are to have a number representing the total number of 
distinct microscopic distributions. 

Again this result can be deduced by elementary counting. For each coarse-
grained distribution, we have a different fine-grained distribution for each of the 
g"1 distinct distributions of the n± particles among the gl levels in cell 1. This gives 
(PlP2P3 · · · Ps '' ')gnx distinct arrangements, each requiring a different wave 
function whenever the particles are considered to be distinguishable. Fixing 
upon a given distribution in cell 1, then we have gn

2
2 distinct distributions of the n2 

particles among the g2 levels in cell 2, so the total number of arrangements 
(ignoring for the moment the possibility of different distributions in cells 
3,4,5,6,...) is (P1P2P3 · · · Ps · · · )g"1 added to itself gn

2
2 times, or equivalently, 

(PlP2P3, . . . , Ps, .. .)0?0? different wave functions whenever the particles are 
considered to be distinguishable. Fixing upon given distributions for cells 1 and 
2, then we have g"3 distinct distributions of the n3 particles among the g3 levels in 
cell 3, so the total number of arrangements (ignoring for the moment the 
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possibility of different distributions in cells 4 ,5 ,6 , . . . ) is {ΡγΡ2Ρ^ · · · Ps ''') 
g "xgn

2
2 added to itself g"3 times, or equiva lent ly ,^ /^ ^3 '" Ps'" )0?022033·Itis 

an evident extension to reach the conclusion that the g\x distinct distributions of 
the «4 particles among the #4 levels in cell 4 leads to a total number of 
arrangements (ignoring for the moment the possibility of different distributions 
in cells 5,6,7,. . .) equal to (PlP2P3 '" Ps" ·)0?0?0?οΐ4· Continuing this 
process in order to include cells 5 ,6 , . . . in sequence finally leads to 

P = (P1P2P3 "Ps"Wtätä&tätä 

Employing Eq. (2.72) then leads to the result P = y[™=l(Psg
n
s>) = N\ x 

T[T=i(gnss/(nsty> a s shown in greater detail in Eq. (2.73). 
We therefore have for the number of distinct microscopic distributions: 

'-'n(nii)
w*-*-)-J"(niifXni*) 

V/i1!«2!«3! ns\ ) 

00 Qns 

= N\ Π — (distinguishable particles). (2.73) 
s = l ns-

2.2 Identical Indistinguishable Particles of Half-Integral Spin 

For the case of indistinguishable particles, the indistinguishability prevents us 
from knowing which of the TV particles have been placed in each cell. From a 
slightly different viewpoint, it can be said that the symmetrizing (or anti-
symmetrizing) process places each occupied single-particle eigenstate into every 
subspace r,· of the hyperspace rl5 r 2 , . . . , rN constituting the field of the TV-particle 
wave function. Thus we cannot have the factor ΡχΡ2 ''' Ps

m'' deduced above 
for the case of distinguishable particles. The only distinguishing feature of a 
given microscopic distribution is which of the gs levels of a given cell are occupied 
by the ns particles. The exclusion principle applicable for the present case 
requires that not more than one particle occupy a given energy level. 

The number of distinguishable arrangements of the ns particles among the gs 

energy levels of the sih cell may be found as follows. If we first imagine the 
particles to be distinguishable, we see that the "first" particle can be put in any 
one of the gs levels, and for each one of these choices the "second" particle can be 
put in any one of the gs — 1 remaining levels, etc. (Clearly it is necessary that 
gs ^ ns.) Thus the number of sequences in which the ns particles can be put into 
the gs levels is 

gs(gs ~ l)(flfs " 2) · ' · (gs - ns + 1) = gs\/(gs - ns)\. (2.74) 
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However, the indistinguishability of the particles now requires that we shall not 
count as distinct distributions the various possible permutations of the particles 
among themselves, so that we must divide the above number by the number of 
possible permutations of the ns particles, which is ns(ns — l)(ns — 2) · · = ns\. 
Thus we deduce that the number of distinct distributions for each cell is 

GM[ns\{gs -ns)\l (2.75) 

Finally, we have for the total number of microscopic distributions that can lead 
to the given macroscopic distribution the product of these various independent 
arrangements, 

00 a ! 
P = ff (Fermi particles). (2.76) 

s=1ns\(gs-ns)l 

2.3 Identical Indistinguishable Particles of Integral Spin 

The indistinguishability of the particles again prevents us from knowing 
which of the N particles have been placed in each cell. The exclusion principle 
does not act in this case to limit the population of a given energy level. The 
number of distinct arrangements of the ns particles among the gs energy levels 
may be found by the following device [cf. Leighton (1959)]. Consider the cell 
ASS to consist of a linear array of black and white pegs, the black pegs 
representing partitions and the white pegs representing particles. There must be 
ns white pegs for the ns particles, and gs — 1 black pegs for partitions which 
separate the gs energy levels in ASS. Consider now the various distinguishable 
permutations of the ns white pegs and the gs — 1 black pegs among the various 
holes, the number of holes being just sufficient to accommodate all of the pegs. 
(Note that the gs — 1 partitions separate the entire cell into gs intervals, and that 
the ns remaining holes, which are separated into groups by these partitions, then 
represent the distribution of the particles among the various energy levels.) The 
number of distinct permutations of the black and white pegs among the holes is 
equal to the number of distinct arrangements of the ns indistinguishable particles 
among the gs energy levels. 

From a slightly different viewpoint, consider the black pegs as partitions 
separating the discrete energy levels <fs, with the number of white pegs between 
any two adjacent partitions giving the particle occupation number for that 
energy level. Considering the set of energy levels {<f J as being ordered, there is a 
corresponding set of occupation numbers {ms}, each number ms representing the 
number of particles in the corresponding energy level Ss. It is then clear that 
interchange of any white peg with any black peg effects some change in the set of 
occupation numbers {ms} and thus is equivalent to a distinguishable rearrange-
ment of the ns particles among the gs energy levels in cell s. 

Now, the number of permutations of ns + gs — 1 distinguishable objects is just 
(ns + 9s ~ 1)·· This, combined with the fact that in these various sequences a 
permutation of the particles among themselves or a permutation of the 
partitions among themselves does not lead to a distinguishably different 
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arrangement, tells us that the number of distinct arrangements for a given cell is 

l{na + ga-l)t]/lnal(ga-l)\]. (2.77) 

Taking the product of these numbers for the various cells gives the total number 
of microscopic distributions consistent with the given macroscopic distribution, 

* (n + n - i)i 
P = ΓΓ !u—»± L (Rose particles). (2.78) 

s=i na\(gs-l)l 

2.4 Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein Distribution Laws 

2.4.1 The Approach. With the above three expressions for the number of 
distinct microscopic states leading to a given macroscopic distribution, we are 
prepared to determine for what coarse-grained distribution the number of 
microscopic states is a maximum. This will be different for each of the three 
cases. For each case, our problem is to determine ns($s) so that 

P = a maximum (2.79) 

subject to the auxiliary conditions (2.64) and (2.65). Let us consider statistical 
systems containing large numbers of particles (N ~ 1023) with large numbers of 
energy levels in a single cell (gs ~ 108), so that we may regard the various 
expressions as being continuous functions of continuous variables. (Avogadro's 
number, for example, giving the number of molecules in a mole, is 6.02 x 1023. 
The density of states given by Eq. (1.296) for a one-dimensional square-well 
potential is 8.15 x 108 levels per electron volt at an energy $ = 1 eV for a length 
L = 1 m.) For convenience, we now change the problem of obtaining the 
maximum of P to the equivalent one of maximizing the logarithm of P. (A 
maximum in P also gives rise to a maximum in In P because the logarithm is a 
monotonic function of its argument.) From Eqs. (2.73), (2.76), and (2.78), we 
obtain 

(a) Classical particles: 
00 00 00 

In P = ln(7V!) + £ nslngs - £ ln(ns!) = ln(M) + £ {nslngs 
s = l s = l s=1 

(b) Fermi particles: 
00 

In /» = Σ {In(ff,!) - ln(«s!) - ln[_(gs - «s)!]}. (2.81) 

(c) Bose particles: 

In P = £ {ln[(«s + gs- 1)!] - In(/if!) - ln[(gs - 1)!]}. (2.82) 
s = 1 

We must now maximize the value of In P with respect to all small variations of 
the various cell populations, while still satisfying the auxiliary conditions (2.64) 

- 1η(»,!)}. 

(2.80) 
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and (2.65) for N and < T̂. That is, if each ns changes by a small amount öns, we 
must have 

(5(ln P) = 0 (2.83) 

for any small values of dns that satisfy 
00 

ON = £ 5/is = 0, (2.84) 
s = l 

00 

δ£Ί = Σ <$s δη8 = 0. (2.85) 
s = l 

This problem can be solved with the use of Lagrange's method of undetermined 
multipliers [Houston (1948)], as illustrated below. We first introduce two fixed 
parameters, a and ß, called undetermined multipliers, and form the following 
equation from Eqs. (2.83)-(2.85), 

<5(ln P) - a ON - βδ£Ύ = 0. (2.86) 

This equation certainly holds if the conditions (2.83)-(2.85) are satisfied. 
We have a problem with considering variations in In P, since differentials of 

factorials are frequently unknown to students who have had only elementary 
calculus. However, the values of ns and gs in our problem are very large, so that 
we can use Stirling's approximation to eliminate the factorials. 

Stirling's formula for large n [see Burington (1956)] is 

(2nn)l,2(n/e)n < «! < (2/ιπ)1/2(Λ/έ?)"[1 + (12« - l ) " 1 ] . (2.87) 

Taking the logarithm gives 

^ \n{2nn) + n\n n — n\n e < \n(n!) 

< \ ln(2w0 + « l n « - « l n ^ + ln[l + (12« - l ) " 1 ] . (2.88) 

Suppose n ^ 108. Then (12« - l ) " 1 - 10~9 and ln[l + (12« - l ) " 1 ] - In 1 
~ 0 relative to «. Also, In « = 8 In 10 ~ 18 « «. The above approximation (2.88) 
becomes 

« In « — « < ln(«!) < « In « - «, (2.89) 

or equivalently, 

ln(«!) ~ « In « — « (Stirling's approximation). (2.90) 

Using Stirling's approximation (2.90) for «J and gs\ in Eqs. (2.80)-(2.82) gives 

(a) Distinguishable particles: 
OO 

In P ~ 1η(ΛΠ) + X («, In gs - ns In ns + it,). (2.91) 
s = l 
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(b) Fermi particles: 
00 

In P ~ Σ [gs In gs-gs- ns In n8 + n8 - (gs - n8) ln(g8 - n8) + (gs - /is)]. 
s = l 

(2.92) 
(c) Bose particles: 

00 

In P * Σ [("- + 9s ~ l)ln(/ia + flf, - 1) - (*, + flf. - 1) 
s = l 

- n8 In /ιβ + Λ, - (gs ~ l)ln(ff, - 1) + (flf, - 1)]. (2.93) 

2.^.2 Distinguishable Particles. We now concentrate our attention on case (a) 
for distinguishable particles. We consider variations in In P brought about by 
variations in ns for fixed gs. With In P given by Eq. (2.91), we obtain 

00 

«5 In P ~ 0 + £ [(<5ws) Ings - (δη,) In ns - ns{önjns) + <5nJ. (2.94) 
s = l 

Thus 
00 

M n P ~ ^(In gs-In ns)dns. (2.95) 

In addition, 

<χδΝ=(*δΣηΞ = (χΣ δη*> (2·96) 
s = l 

βδ£Ί = βδ £ ^ Λ = ]8 X Ss δη8. (2.97) 
s = l s = l 

Equation (2.86) thus becomes 
00 

0 = δ In P - α δΝ - β δ&Ί = £ (In #s - In ns - a - jftf,) δ/ιβ. (2.98) 
s = l 

The two auxiliary conditions (2.64) and (2.65) may be considered to constrain 
only two of the parameters δη8 in any variation, so this allows all except two 
values of the δη8 to be chosen arbitrarily. Suppose, to be specific, that δη± and δη2 

are the two dependent quantities and that all the others are independent. We 
then see that if we assign values to a and ß such that the coefficients of δηγ and 
δη2 vanish, then the coefficient of every δη8 must vanish, considering the 
independence of the remaining quantities δη8. The introduction of the unde-
termined multipliers has the effect of replacing conditions (2.64) and (2.65) by 
the multipliers, thus allowing each δη8 to be treated as independent so that its 
coefficient can be set equal to zero. That is, 

a1 δηι + α2 δη2+ · · · + ar δητ = 0 (2.99) 
implies that each aua2,.. .,ar must vanish if the δη8 are all independent. 
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Thus, from Eq. (2.98) the maximum value of In P is given by the distribution 
ns($s), a, and ß which satisfies the relations 

In gs - In ns - a - ßSs = 0 (2.100) 

for all values of s. This gives In ns = In gs — a — ßSs, or equivalently, 

ns = </sexp(- a - ßSs) = 0s/[exp(a + ßSJ] 

(distinguishable-particle distribution function). (2.101) 

We note from Eq. (2.101) that the number of particles in the sth cell is directly 
proportional to gs, the number of energy states in that cell. In general, gs will be a 
function of the system in question. However, the direct proportionality between 
ns and gs does allow us to interpret the ratio njgs as an occupation probability 
which is a function of the energy but which is independent of the detailed 
properties of the system. Furthermore we can consider 

P^s) = njgs (2.102) 

to be a quasi-continuous function of the energy Ss. Employing the result (2.101), 
we thus obtain for distinguishable particles, 

p(£) = exp( - a - ßS). (2.103) 

The occupation probability p(S) is simply the average number of particles per 
energy level at the energy S. 

Since in the classical Hamiltonian we consider particles to be spatially 
separated and hence distinguishable, Eq. (2.103) is most applicable for the 
"classical" limit and should therefore be in accord with the predictions of 
classical statistical mechanics. This theoretical result for the case of distinguish-
able particles can thus be compared with the experimentally observed variation 
of the classical occupation probability with energy, namely 

p(£) oc exp(- S/k^T). (2.104) 
This latter expression is the Boltzmann occupation probability, which con-
stitutes the basis of a Boltzmann distribution for occupied energy levels. A 
comparison of Eq. (2.104) with Eq. (2.103) serves to evaluate one of the 
undetermined multipliers, thus yielding 

ß=\/kBT. (2.105) 
Instead of invoking Eq. (2.104) directly, however, there is an alternative way 

to evaluate ß. This is to employ the auxiliary relations (2.64) and (2.65) directly 
for the system under consideration, with ns given by Eq. (2.101). We can convert 
the sums in Eqs. (2.64) and (2.65) to integrals since ns can be considered to be a 
quasi-continuous function of energy. That is, if n{$) is the number of particles 
per unit energy range at energy <f, and giß) is the number of energy levels per unit 
energy range at energy S, then the continuum forms of Eqs. (2.102), (2.64), and 



§2] STATISTICS FOR A MANY-PARTICLE SYSTEM 177 

(2.65) are respectively 

n(S) = g(S)p{£), 

N = 
• 

0 j = 

"oo r 

η(δ) dS = 
o J 

''oo 

δη(δ) dS = 

00 

g{S)p{S)dS, 
0 

poo 
Sg{S)p(S) dS. 

(2.106) 

(2.107) 

(2.108) 

Using Eq. (2.103) for piß) then gives for the latter two relations the expressions 

N = §(β)έ—-™ dS = e~" 

S■g(*)J—n dS = e~ 

g{S)e~ßi dS, (2.109) 

(2.110) 

Taking the ratio of the second to the first yields the average energy per particle of 
the system, 

ΡΤ/ΛΤ = f 
J 0 

(2.111) 

We see that this involves only /?, and is independent of a. Equation (2.111) 
provides us with a general expression for evaluating ß. We expect from 
thermodynamics that the average energy per particle of a system in thermody-
namic equilibrium will be determined by the temperature of the system; hence 
we expect ß to be related in some manner to the temperature. 

Consider now the special case of a system with a uniform density of states as a 
function of energy. [This particular functional form for the density of states is 
found, for example, in a two-dimensional treatment of electrons in the free-
electron model (see Project 3.2). The derivation is quite analogous to the one-
dimensional treatment presented in Chap. 1, § 10.] With g($) independent of <f, 
we can denote this constant quantity by g0. The above relation of δτ/Ν then is 
readily evaluated, 

*τ/Ν=1/β. (2.112) 

We know from classical thermodynamics, however, that the average energy per 
particle for such a system is kBT. (This follows from the fact that a two-
dimensional system has two degrees of freedom, each degree of freedom having 
an energy \kBT.) We thus deduce that ß = l/kBT, in agreement with our previous 
conclusion. 

Using β = 1/Α:ΒΓίη the above expression (2.109) for N yields an evaluation 
for a, 

a = _ in TV + in g{S)e -*/kBT t (2.113) 
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We see from this relation that a depends upon the number of particles N, the 
temperature T, and the properties of the system through the density of states 
g{$). Thus it is noted that a does not have such a universal character as the 
multiplier ß; nevertheless, it can be evaluated for any given system and hence our 
statistical function (2.103) is completely determined. 

For the special case of a uniform density of states, g{$) = g0, then a is readily 
determined from Eq. (2.113) to have the value a = ln(g0kBT/N). In this case, we 
find the following energy distribution for the system of distinguishable particles, 

n{g) = (N/kBT) exp( - S/kBT). (2.114) 
EXERCISE Apply the above results to the special case of a one-dimensional system. [Hint: In 

Chap. 1, §10, the expression for the one-dimensional density of states is derived; from Eq. (1.296), 
g(S) = {2mlh2yi2{Lßn)S~1/2. Substituting this expression into Eq. (2.111) enables one to evaluate 
Sj/N readily by a parts integration of either the numerator or the denominator. The result is (Iß)'1. 
The average energy per particle for a one-dimensional classical system is ̂ kBT. Equating, it is found 
that ß = (kBT)~l. Equation (2.113) can be used to evaluate a for this hypothetical case. Using the 
fact that the definite integral J^ η~ιΙ2β~ηάη has the value π1/2, one finds that a = 
\nl(kBTm/2nh2yl2L/N], or equivalently, exp(-a) = (N/L)(2nh2/kBTm)l/2. The factor N/L is 
simply the number of particles per unit length for the one-dimensional system. The point illustrated 
by this example is the fact that the evaluation of β for this particular system again gives (kBT)~ *, and 
a is again found to depend upon the number of particles in the system, as well as upon A:B7and the 
system parameters m and L. It is shown later in this chapter that use of the presently deduced 
distribution function (2.101) is valid only in the restricted domain of high temperatures and low 
particle densities.] 

2.4.3 Fermions. Let us now derive the corresponding statistical function for 
the case of Fermi particles. Using Eq. (2.92) for In P, we obtain 

00 

δ In P ~ £ {0 + 0 - In ns - ns(l/ns) + 1 
s = l 

- (9s ~ »S)C- 1/(0. - nj] - ( - 1) Into, - «.) - 1}&», 
00 

^ l i [ ( i , - » > J ^ (2·115) 
s = l 

Substituting this result together with Eqs. (2.96) and (2.97) into Eq. (2.86) gives 
00 

0 = δ In P - a δΝ - β δ&Ί = £ {ln[(0s - nj/nj - a - ßSs) Öns. (2.116) 
s = l 

Following the same argument relating to the undetermined multipliers used 
previously, we set each coefficient of dns equal to zero. This gives 

ln[fof - ns)/nj = a + /»„ (2.117) 
or equivalently, 

(9s ~ " > s = exp(« + R ) . (2.118) 
Solving for the ratio gjns, we obtain 

gjn, = 1 + exp(a + ßS), (2.119) 
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so that 
p(£) = njgs = [exp(a + ßS) + l ] " 1 . (2.120) 

Again a and ß must be determined either from experiment or else from the 
conditions (2.64) and (2.65) requiring conservation of the number of particles 
and conservation of the energy of the system. Before evaluating a and ß in Eq. 
(2.120), let us derive the analogous intermediate result for Bose particles. 
2.4.4 Bosons. Using Eq. (2.93) for In P, we obtain 

00 

δ In P = Σ {(», + gs- l)(ns + gs - l )"1 + ln(ns + gs - 1) 
s = l 

- 1 - ws(l/«s) - In ws + 1} dns 

00 

= Σ ln[(», + gs - 1)/«J Sns. (2.121) 
s = l 

Substituting this result together with Eqs. (2.96) and (2.97) into Eq. (2.86) gives 
00 

0 = δ In P - a ON - β δ£Ί = £ {ln[(/is + #s - l)//ij - a - /J^} 5ws. 

(2.122) 
Setting each coefficient equal to zero in accordance with the same argument used 
previously, we obtain 

ln[(/i, + gs - 1)/«J = a + ßSs, (2.123) 
or equivalently 

(«, + ff,-l)/», = exp(a + /S<TS). (2.124) 
Since unity can be neglected with respect to gs, we obtain 

0> s ^exp(a + K s ) - l . (2.125) 
Thus for Bose particles 

P($) = njgs =* [exp(a + ßS) - 1] " l . (2.126) 

2.^.5 Determination of the Lagrange Multipliers for the Fermion and Boson 
Cases. We can summarize our results for the three types of particle as follows: 

p{£) = [exp(ax + ßxS) + δχΥ\ (2.127) 
where ax and βχ are the coefficients for the particle type in question and δχ is a 
constant which is zero for distinguishable particles, + 1 for Fermi particles and 
— 1 for Bose particles. We thus suspect that a and β have much the same 
meaning for the two indistinguishable particle systems as they have for the 
Boltzmann system. We determined for the Boltzmann system that ß = l/kBT, 
and subsequently deduced a by the auxiliary condition equivalent to Eq. (2.64). 
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Indeed, ß can be shown to have a universal character associated with the 
thermodynamic property of temperature, independent of the particular particle 
type being considered. To show this, consider a system which consists of a 
mixture of two different kinds.of identical particles of the above types, either 
distinguishable particles plus Fermi particles or distinguishable particles plus 
Bose particles. In either case we divide the energy range into cells ASS for the first 
kind of particle (as distinguished by the variable index s) and into cells ASt for 
the second kind of particle (as distinguished by the variable index /), and then 
maximize the joint relative probability 

P(ns,ni) = P{ns)P{n^ (2.128) 

subject to the auxiliary conditions 
00 

Σ » , = *ι. (2·129) 
s = l 

00 

Σ", = Nn (2-13°) 

00 00 

Σ " Α + Σ " / ; = ^τ· (2-131) 
s=l 1=1 

The quantities P(ns) and P(nt) are the number of distinct microscopic distri-
butions giving rise to the macroscopic distributions ns($s) and η^&^ for the two 
kinds of particle, Nx and N2 give the number of each of the two kinds of particle 
present in the mixture, and S'j is the total energy of the system. An application of 
the method of undetermined multipliers to this new problem requires three 
undetermined multipliers, which can be called αχ, a2, and β. This procedure leads 
to distributions for the two kinds of particle that are similar in form to those 
obtained previously, where each distribution involves a different a but the same 
parameter ß. Such an analysis shows that β has a universal character 
independent of the nature of the particles or the system, being l/&Brfor all three 
systems. 

We proceed to carry out the derivation just outlined for the specific case of a 
mixture of classical particles and Fermi particles. A consideration of variations 
in the cell populations and cell energies subject to the constraints imposed by 
Eqs. (2.129), (2.130), and (2.131) leads to the following relations: 

00 

0 = (ΧιδΝί= £ αχ Öns, (2.132) 
s = l 

00 

0 = (χ2δΝ2= £ α2 δη19 (2.133) 
1=1 

00 00 

0 = β δ£τ = Σ β*, <Κ + Σ ß*i *"ν (2-134) 
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The variation in the joint relative probability (2.128) must be zero in order that it 
be a maximum, 

0 = ÖP(ns,«,) = P(ns)löP(n^ + [δΡ^Ρ^,). (2.135) 

Since P(ns) and P(n^) are independent, then each independently must have zero 
variation in order that Eq. (2.135) be satisfied, 

5Ρ(Λί) = 0, (2.136) 

ÖP(ns) = 0. (2.137) 

If we consider s to denote the classical particles and / to denote the Fermi 
particles, then we have from Eqs. (2.95) and (2.115), 

00 

δ In P(ns) Ä X (In gs - In ns) dns, (2.138) 

δ In />(«,) ~ X ln[(0, - «,)/«,] δην (2.139) 

The relations (2.132)-(2.139) can be combined to give 

0 = - β δ£Ύ + δ In P(ns) + δ In Ρ(«,) - «x ^ - α2 <5JV2 

= Σ θ η ^ - ΐ η » . - « ! - ^ , ) ^ . 
s = l 

♦IK*?)—-"'' &i, = 0. (2.140) 

Now the set {«J is independent of the set {«J. Hence the coefficients of Sns must 
be zero and the coefficients of önt must be zero. Setting the coefficients of öns 

equal to zero gives 

In gs - In ns - ax - j3<fs = 0. (2.141) 
This leads to 

gjns = exp(ai + ßSs\ (2.142) 

or equivalently, 

W = njgs = exp( - a, - /tfs). (2.143) 

This result for the set of distinguishable particles is identical to the result (2.103) 
previously derived. Furthermore, ß = l/kBT for this set of distinguishable 
particles according to our previous derivation. 

Setting the coefficients of dnt in Eq. (2.140) equal to zero gives 

ln[(0, - /!,)/*,] - α2 - βδι = 0. (2.144) 

This leads to 

to, - ",)/*! = exp(a2 + ^ ) , (2.145) 
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or equivalently, 

gxlnx = 1 + exp(a2 + ßS{). (2.146) 

Thus 

/ W = nj9l = 1/[1 + exp(a2 + /**,)] = l/[exp(a2 + ß*t) + 1]. (2.147) 

Since ß is the same quantity in Eq. (2.147) as in Eq. (2.143), it has the value l/kBT. 
A comparison of Eq. (2.147) with our previous result (2.126) shows them to have 
the identical functional form, so we are forced to conclude that ß has the same 
value for all types of particle. Thus Eq. (2.127) can be written 

p(£) = {exp[ax + (*/*ΒΓ)] + δχ}" \ (2.148) 

where ocx depends on the system in question and δχ has the value 0, + l,and 
— 1, respectively, for classical, Fermi, and Bose particles. It is now convenient to 
replace the constant OLX by an equivalent constant which we call - &xjkBT, thus 
converting Eq. (2.148) to the form 

p{£) = {exp[(<f - *x)/kBT] + δχΓ\ (2.149) 

This change of variable for the constant has no physical consequences because 
the constant must be evaluated for any system by employing the relation (2.64), 
or equivalently Eq. (2.107), for the conservation of the total number of particles 
in the system. 

EXERCISE Considering a mixture of a particles (spin 0), neutrons (spin %), and classions 
(fictitious "classical" particles), carry out a derivation analogous to that outlined in Eqs. 
(2.128)-(2.147) for a system containing fermions and classions in order to show that the 
undetermined Lagrange multiplier ß has the same universal character involving the thermodynamic 
temperature for all three types of particle. 

2.4.6 Summary and Correlation of Results. To distinguish between the 
distribution functions (2.149) and the appropriate constants for the three types 
of particle, it is convenient to introduce different notation for the occupation 
probability functions/>(<?) in each of the three cases. We denotep{$) for classical 
particles by w(<f), for Fermi particles by/(<?), and for Bose particles by &{$), 
and denote exp(— a) for these cases by vv0, exp(— S¥/kBT) and exp(— &BjkBT), 
respectively. We call w(<£) the Boltzmann occupation probability, J{$) the 
Fermi-Dirac distribution function, and &($) the Bose-Einstein distribution 
function, and designate the statistics denoted by each of these functions as 
Maxwell-Boltzmann statistics, Fermi-Dirac statistics, and Bose-Einstein statis-
tics. Thus we have derived the following results. 

(a) Classical (distinguishable) particles occupy the energy levels of a system 
with a probability given by the Boltzmann occupation probability w($), 

w(<f) = w0e-*/k»T (Maxwell-Boltzmann statistics). (2.150) 

A typical plot of this function is shown in Fig. 2.3. 
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t 
W(e)| 

Fig. 2.3 Typical plot of the Boltzmann occupation probability w{$). 

(b) Nonclassical (indistinguishable) particles of half-integral spin, which 
obey the Pauli exclusion principle, occupy the energy levels of a system with a 
probability given by the Fermi-Dirac distribution function J(£\ 

= {£* - *F)/kBT + i ) i (Fermi-Dirac statistics). (2.151) 

A typical plot of this function is shown in Fig. 2.4. 

€f=5eV 

V 

£(eV) 

Fig. 2.4 Typical plots of the Fermi-Dirac distribution function J{S). 

(c) Nonclassical (indistinguishable) particles of integral spin, which do not 
obey the Pauli exclusion principle, occupy the energy levels of a system with a 
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probability given by the Bose-Einstein distribution function J*(<f), 
gUg) = {e

{S~*»)/k»T -l)'1 (Bose-Einstein statistics). (2.152) 
A typical plot of this function is shown in Fig. 2.5. 

€(eV) 

Fig. 2.5 Typical plots of the Bose-Einstein distribution function $($). 

It remains for us to show the conditions for which Fermi-Dirac and Bose-
Einstein statistics can be approximated by Maxwell-Boltzmann statistics. If we 
compare the intermediate result (2.118) for Fermi particles 

nJ(gs-ns) = exp(-OL-ß£s) (2.153) 
with the corresponding intermediate result (2.101) for classical particles 

« A = e x p ( - a - / ^ s ) , (2.154) 
we see that Fermi-Dirac statistics will reduce to Maxwell-Boltzmann statistics 
whenever 

ns«gs, (2.155) 
namely, whenever the energy levels at a given energy are very sparsely populated. 
The corresponding intermediate result (2.124) for Bose particles 

nj{gs + ns - 1) = exp(- a - ßSs) (2.156) 
is seen to reduce to the corresponding intermediate result (2.101) for classical 
particles under the same conditions. If we refer to Figs. 2.4 and 2.5 we see that the 
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occupation probability falls to values much less than unity at higher values of the 
energy. In particular, for the Fermi-Dirac distribution function illustrated in 
Fig. 2.4, this requires energies greater than the Fermi energy S¥ for the system in 
question. A glance at Eq. (2.151) shows that for 

exp[(<? - £F)/kBT] » 1, (2.157) 
which is met whenever 

(£-£¥)/kBT»l9 (2.158) 
the Fermi-Dirac distribution function reduces to the functional form (2.150) for 
the Boltzmann occupation probability. Likewise, Eq. (2.152) reduces to the 
Boltzmann functional form (2.150) whenever 

(£-£J/kBT»l. (2.159) 
Our conclusion, then, is that indistinguishable particles appear to obey classical 
statistics whenever the energy levels of the system are sparsely populated, and 
this depends on the energy level spectrum for the system in question as well as the 
temperature. 

In the following chapter we examine in detail the physical consequences of 
quantum statistics (so painstakingly derived above!) for a system of electrons. 
This is done within the framework of the three-dimensional free-electron model 
for metals. 

PROJECT 2.3 Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein Statistics 

Using a programmable calculator and employing reasonable values for the fixed parameters, 
compute and plot a series of curves (with temperature as a parametric variable) for the following 
statistical occupation probabilities as a function of energy: 

(a) Maxwell-Boltzmann Statistics: w(£) vs S. {Hint: See Eq. (2.150).] 
(b) Fermi-Dirac Statistics:/(<f) vs S. \Hint\ See Eq. (2.151).] 
(c) Bose-Einstein Statistics: 0${£) vs S. [Hint: See Eq. (2.152).] 

PROBLEMS 

1. The difference between distinguishable identical particles and indistinguishable identical particles 
lies in the degree of wave function overlap. Estimate the relative overlap at the midpoint between two 
Gaussian wave packets separated by distances of 1 Ä, 10 Ä, 100 Ä, 1 cm, 1 m, and 1 km, choosing the 
width of the Gaussian packet as 5 Ä. [See Eq. (1.203) in Chap. 1, §7.] Express the relative overlap in 
terms of probability amplitude at the midpoint relative to probability amplitude at the peak. 
2. Three electrons are confined to a one-dimensional box 3 Ä in length. Considering the particles to 
be noninteracting, compute the ground-state energy of the system. 
3. For a system of three noninteracting neutrons in a one-dimensional square-well potential with 
infinitely high potential energy barriers, write the normalized wave function and compute the 
expectation value of the energy. (Carry out this problem separately for single-particle wave functions 
satisfying fixed and periodic boundary conditions.) Next, compute the expectation values of the 
momentum operator in both cases and interpret your results from the viewpoint of classical 
mechanics. 
4. Compute the expectation values <(r2 — r^2), <(r3 — ΓΧ)2>, and <(r3 — r2)2> for a three-particle 
quantum system for the cases of distinguishable particles, Fermi particles, and Bose particles. 
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5. Outline the basic logic underlying the development of quantum statistics. [Begin with the reasons 
underlying the need for consideration of wave functions for many-particle systems. Describe the 
criterion (or postulate) used for finding the most probable distribution.] List all major con-
siderations in the development. 
6. In the classical Hamiltonian the vectors rx and r2 represent the specific locations of point masses 
with reference to some given coordinate system. These vectors are of course time-dependent: 
ri = ri(0>i"2 = r2(/). At some given instant of time t0 these vectors have the values r ^ ) , r2(i0). 
Quantum mechanically, we have only a probability-density description, so usually we consider only 
expectation values <rx(0>, <r2(/)>, which at time t0 must be <r1(r0)>, <r2(/0)>. These quantities give 
the most likely positions of the point masses. It thus appears that ( r ^ ) ) and <r2(/0)> are in many 
respects the nearest quantum-mechanical analogs of the classical quantities r ^ ) and r2(r0). Since t0 

is arbitrary, we further can say that ( r ^ ) ) and <r2(r)> are the quantum-mechanical analogs of the 
classical quantities Γχ(ί) and r2(i). (a) What, then, are the classical analogs of the two quantum-
mechanical operators rx and r2 ? (b) The expectation values of r1 and r2 are obtained by permitting rt 

and r2 to take on all possible values and using the probability density ψ*ψ as a weighting factor to 
obtain an average value. In this sense, rt and r2 are only dummy variables in the respective integrals 
for the expectation values. How can this be compatible with the model used in setting up the classical 
Hamiltonian of two point particles located at specific positions r1 and r2? (c) In view of (a) and (b) 
above, can one reasonably justify the usual operation of generating a quantum-mechanical 
Hamiltonian operator Jf from the classical Hamiltonian ΗΊ 

7. (a) Prove that a product of TV single-particle eigenfunctions satisfies the Schrödinger equation for 
an TV-particle system of noninteracting particles, (b) Is this product wave function, then, a valid wave 
function for all such N-particle systems? Explain the reasons for your answer, (c) Suppose in part (a) 
that the N particles occupy energy levels in a physical system which has a total of M energy levels, 
where N < M ^ oo. How do you select the TV single-particle eigenfunctions from the M possible 
ones? What does this tell you with regard to forming the most general wave function for a system of 
indistinguishable particles? 
8. (a) Slater determinants are useful for describing the wave functions for systems of particles 
because of their antisymmetry and because they automatically satisfy the condition imposed by the 
Pauli exclusion principle. Prove that the permutation of the coordinates of any two particles i andy in 
the system gives an overall change in the sign of the Slater determinant. (Do not invoke any theorems 
from the theory of determinants.) (b) Prove that the Slater determinant is zero if any two particles / 
andy'in the system are in the same single-particle eigenstate. (Again do not invoke any theorems from 
the theory of determinants.) 
9. (a) Give a fairly detailed proof (which can be found outlined in most elementary treatments of the 
theory of determinants) that an interchange of any two columns or any two rows in the determinant 
gives an overall change in the sign of the determinant, (b) Prove that a determinant is zero if any two 
columns or any two rows are identical, (c) Show that the conclusion reached in Part (b) is no longer 
valid when the negative signs conventionally introduced in expanding the determinant are made 
positive, (d) State the implications of Part (a) for wave functions of many-particle systems, (e) State 
the implications of Parts (b) and (c) for wave functions of many-particle systems. 
10. (a) Construct and plot several of the lowest energy two-particle antisymmetrical wave functions 
for a two-dimensional square-well potential. The dimensions of the square well can be considered to 
be Lx and Ly in the two directions, and the walls can be considered to be infinitely high, (b) Compute 
<(r2 - rt)

2> for these wave functions. 
11. The quantity gn

s* gives the total number of distinct distributions of ns distinguishable particles 
among gs levels of the 5th cell. Of course, this number would be too large (perhaps by ns\) if the 
particles were indistinguishable. Attempt to construct P for bosons using this alternate counting 
approach. Compare your result with Eq. (2.78) and point out the reasons for any discrepancy in the 
two results. (Clearly the two results must agree if both counting procedures are correct; if the results 
do not agree, it stands to reason that one of the counting procedures must be faulty.) 
12. Attempt to use the counting method for the number of microscopic distributions of Bose 
particles for a given energy level configuration for the case of distinguishable particles. If you run 
into difficulty, point out explicitly the nature of the difficulty and where one must modify the 
procedure. If you do not run into difficulty, do you get the same result as obtained for the 
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distinguishable-particle method? (Need one add that if you do not obtain the same result, then 
obviously there is an error! Such an error could be in logic, in procedure, or in the mathematics. 
What can you conclude?) 
13. Try to modify the counting method used for Fermi particles so that it is applicable to Bose 
particles. 
14. Try to modify the counting method used for Bose particles so that it is applicable to Fermi 
particles. 
15. Consider a mixture of fermions, bosons, and distinguishable particles. Carry through the 
evaluation of the Lagrange multiplier ßx (assuming ß = l/kBTior distinguishable particles) for the 
fermions and the bosons. 
16. Electrons obey Fermi-Dirac statistics, with the occupation probability of an energy level at 
energy $ having a temperature dependence given by the Fermi-Dirac distribution function J($), 
J($) = [exp(^ — S¥)/kBT + 1]~ l . Temperature is denoted by T, Boltzmann's constant is denoted 
by kB, and $¥ is a constant which has units of energy and a value which depends upon electron 
density. Consider 1022 fermions distributed over energy levels in a system with a uniform density of 
states g{£) = g0 = 4 x 1023 energy levels/eV. Evaluate the Fermi energy S¥. Compute a parametric 
set of curves iovJ{£) versus S for temperatures of 2000,1000, 500, 300,150, 75,20,4, and 0°K. Your 
computed points should be sufficiently close together to be able to see the functional form of the 
curve without drawing a line through the points, and should extend over energies from zero to 2S¥ 

for each curve. 
17. Repeat Problem 16 if the particles are bosons instead of fermions. Employ the form ${$) = 
[exp(^ — SB)/kBT— l ] " 1 for the Bose-Einstein distribution function and evaluate SB. 
18. Repeat Problem 16 if the particles are distinguishable particles instead of fermions or bosons. 
19. Explain the fundamental importance of quantum statistics in physics, and tell how it underlies 
the entire realm of quantum device applications. 



CHAPTER 3 

FREE-ELECTRON MODEL AND THE BOLTZMANN 
EQUATION 

. . . [The] Einstein-Bohr frequency condition (which is valid in all cases)... represents 
such a complete departure from classical mechanics, or rather (using the viewpoint of wave 
theory) from the kinematics underlying this mechanics, that even for the simplest 
quantum-theoretical problems the validity of classical mechanics simply cannot be 
maintained. In this situation it seems sensible to discard all hope of observing hitherto 
unobservable quantities, such as the position and period of the electron,.... 
W. Heisenberg (1925) 

1 Free-Electron Gas in Three Dimensions 

1.1 Conduction Electrons in a Metal 

The most weakly bound electrons of the atoms constituting a metal move 
about freely through the entire volume of the metal. These electrons are the 
valence (or outer-shell) electrons in the free atoms; they become the conductors 
of electricity in the metal, and thus are called the conduction electrons. In the 
free-electron model, all calculations are performed as if the conduction electrons 
were free to move everywhere within the specimen. The total energy is the kinetic 
energy; the potential energy is neglected. The forces between the conduction 
electrons and the ion cores are neglected. Likewise the Coulomb forces between 
the conduction electrons themselves are neglected. 

1.2 Electrical Forces in a Metal 

The drastic approximations involved in the free-electron model relative to the 
true state of affairs in a metal become quite clear when order-of-magnitude 
estimates are made. For example, the neglect of the electron-electron interaction 
between conduction electrons separated by an atomic spacing of 4 Ä is of the 
order of 3.6 eV. This is evidently a large effect when one considers that for an 
electron to have this amount of kinetic energy in free space it would have to be 
traveling at a speed of 1.1 x 106 m/sec, which is within a factor of 300 of the 

188 
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speed of light. (See Appendix for values of physical constants.) Similarly, the 
neglect of the Coulomb interaction energy of the conduction electrons with the 
positively charged ion cores is of the same order of approximation. 

1.3 Atomistic Nature of a Metal 

From a slightly different viewpoint, if one considers the ion cores to be of the 
nature of rigid spheres which exclude part of the volume of the metal from being 
accessible to the conduction electrons, the neglect of the ion cores is again seen to 
be quite a drastic approximation. Consider sodium atoms, for example, with the 
atomic configuration ls22s22p63s (cf. Table 1.3). The outermost shell which 
contains the valence electron is not closed. The atoms condense to form a metal. 
The atomic cores are Na+ ions containing 10 electrons. In the simplest model 
these core electrons can be considered to have the configuration ls22s22p6, 
essentially the same as in the free ion. The ions are immersed in a sea of 
conduction electrons which can be considered to be derived from the 3s valence 
electrons of the free atoms. In an alkali metal (Li, Na, K, Cs, Rb), the atomic 
cores typically occupy about 10% of the total volume of the crystal, as illustrated 
schematically in Fig. 3.1. For example, the radius of the free Na+ ion is 0.98 Ä, 
whereas one half of the nearest-neighbor distance in sodium metal is 1.85 Ä. In a 
noble metal (Cu, Ag, Au), the atomic cores are relatively larger and may be in 
contact with one another. These two groups of metals are the simplest, 
exhibiting properties which are more nearly free-electron-like than other metals. 
Even in the alkali group, however, the neglect of 10% of the metal volume which 

Fig, 3.1 Schematic of ion cores and intervening volume occupied by the conduction electrons in a 
metal such as sodium. 
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is inaccessible to the conduction electrons constitutes a drastic assumption. The 
free electron model, wherein the presence of the ion cores is entirely ignored, is 
therefore a very approximate model. 

EXERCISE In sodium, the distance between nearest-neighbor atoms is 1.85 Ä. Assuming an 
effective radius of 0.98 Ä for the sodium ion Na + , compute the percentage of the volume occupied by 
the ion cores and the percentage remaining for the conduction electrons. {Hint: See Chap. 6, §4.) 

EXERCISE If the ion cores in metallic silver are in contact with one another but are still roughly 
equivalent to undeformed hard spheres, determine the fraction of the volume of the metal which can 
be considered as reserved for the ion cores and the fraction remaining which is available as essentially 
open space for motion of the conduction electrons. 

1.4 Periodic Aspects of a Metal 

The fact that the electrons are not actually free to travel right through the large 
closed-shell ions arranged in a periodic array (i.e., the lattice) in the solid causes 
marked departures from our deductions based on the purely free electron model 
outlined above. This interaction of the conduction electrons with the periodic 
lattice gives rise to electron energy bands, which we discuss first in Chap. 5 and 
characterize in detail in Chap. 7. 

The actual spatial charge distribution of the conduction electrons in a metal 
does in fact reflect the strong electrostatic potential of the ion cores. The ions 
exert Coulomb forces on the conduction electrons, giving rise to a periodic 
potential, namely, a potential energy function which oscillates periodically in 
space from lattice site to lattice site. One approach which can be used to obtain 
some intuitive understanding of the effects to be expected is to treat the periodic 
potential as a perturbation on the otherwise free-electron motion. This is the 
approach taken in Chap. 5, §13. Sometimes this approach is referred to as the 
"nearly-free-electron model" [Sachs (1963)]. The purely-free-electron model, 
however, considers the periodic potential to have a very minimal effect on 
electronic motion; in fact, the choice 

TT(r) = const (3.1) 

is made, where the constant is for convenience taken to be zero inside the metal. 
The remarkable success of such a naive model is due primarily to the fact that it 
incorporates many of the essential quantum properties of the electrons. 

1.5 Wavelike Behavior of Conduction Electrons 

Because the electronic mass is small, electrons have pronounced wavelike 
properties, in contrast to particlelike properties normally associated with bulk 
masses. This follows from the de Broglie relation λ = h/p = h/rnv, which shows 
that the de Broglie wavelength of an electron is greater than an atom spacing of 
4 Ä for speeds less than 1.8 x 106 m/sec. This means that a given electron cannot 
be considered to have a definitely known position in space; instead, it must be 
considered to have & probability density p(r) = ψ*ψ in space determined by the 
electronic wave function φ, as discussed in some detail in Chap 1, §6 [also see 
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Bloch (1976)]. This means that p(r) gives the relative probability of finding the 
electron at position r. Let us assume that the wave function φ is appropriately 
normalized over the region accessible to the electron, so that 

f p ( r ) * = l . (3.2) 

We thus can consider the distribution of conduction electrons to be "smeared 
out" in space (i.e., much as a continuous "sea" of negative charge density), 
instead of conceiving of the conduction electrons as a large group of point 
particles which zip rapidly from place to place. The quantum description of 
electrons is rather analogous to that appropriate for the classical problem of a 
swarm of insects for which we construct a function which gives the probability of 
finding an insect at a given position in the swarm. We note that the quantum 
description does not necessarily imply that each particle is spread out unduly 
(namely, over several atoms) throughout space, but merely that our knowledge 
is only that which is of the nature of a probability. 

1.6 Successes and Failures of the Classical Mechanical Approach 

Before the advent of quantum mechanics, there was formulated a classical 
free-electron theory. There is in this case no restriction on electron energies, 
which contrasts markedly with the discrete quantized energy levels which we 
deduce for the quantum free-electron model. In the classical free-electron model 
the continuum of allowable energies can be considered to represent a continuum 
of electronic states, and classically these states are considered to be populated or 
unpopulated with electrons in a statistical way in accordance with Boltzmann 
statistics (cf. Chap. 2). The primary successes of this classical approach were the 
prediction of Ohm's law and the prediction of the experimentally measured ratio 
of electrical to thermal conductivity [McKelvey (1966)]. Among the many 
failures of this classical approach were erroneous predictions for both the 
specific heat and the paramagnetic susceptibility contributions from the 
conduction electrons, and failure to explain extremely long electronic mean free 
paths which can be observed experimentally. As regards the latter, experiments 
show that conduction electrons in a metal can move freely in a straight path over 
many atomic distances, undeflected by collisions with other conduction 
electrons and undeflected by collisions with the atom cores. In a very pure 
specimen at low temperatures the mean free path may be as long as 108 or 109 

interatomic spacings, thus exceeding a centimeter [Kittel (1971)]. This is vastly 
longer than we would predict if the collision probability were proportional to the 
relative cross-sectional area of the atomic cores in the metal. In this respect, we 
can say that the conduction electrons act much like a gas of noninteracting 
particles which are traveling through a very transparent medium. To look ahead 
a bit, there are actually two factors involved in the quantum-mechanical answer 
to the question of why solids are so transparent to conduction electrons. First, a 
conduction electron is not deflected by ion cores arranged in a perfectly periodic 
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manner because matter waves can propagate freely in a periodic structure 
[Brillouin (1953)]. Second, a conduction electron is deflected only infrequently 
by other conduction electrons due to Fermi-Dirac statistics based on the Pauli 
exclusion principle which maintains that it is impossible for an electron to be 
scattered into a state which is already occupied by another electron. These two 
factors cause the number of possible scattering events to be reduced enormously. 

We must conclude therefore that quantum effects are important for many 
solid state properties, and these quantum effects are responsible for the failure of 
the classical free-electron model. This is the reason we must be familiar with the 
quantum-mechanical free-electron theory. This theory consists of the properties 
of a free-electron Fermi gas, which is defined to be a gas of free and 
noninteracting electrons which are subject to the Pauli exclusion principle (see 
Chap. 2). 

1.7 Three-Dimensional Potential Well Problem 
Consider an electron of mass m confined to a macroscopic metal in the shape 

of a rectangular parallelepiped or a cube. Imagine the electrons therein to be 
contained due to infinite potential energy barriers at the faces of the parallelepi-
ped. This is referred to as a "square-well potential" because the potential energy 
rises so sharply, (namely, with infinite slope) at the boundaries of the 
parallelepiped. The stationary-state wave functions 

<K(r, 0 =■ <Mr) exp[ - (i/hW] (3.3) 

of the electron must satisfy the time-independent Schrödinger equation 
Jfcj) = ίφ. (3.4) 

With neglect of the potential energy, we have Jf = — (n2/2m)V2, so that the 
free-particle Schrödinger equation in three dimensions is 

h2 ( d2 d2 d2 \ 

Considering the electrons to be confined by infinitely large potential energy 
barriers to a region of space delineated by a rectangular parallelepiped with 
edges of length Lx, Ly, and Lz in the x, y, and z directions, respectively, one form 
of the analog to the one-dimensional normalized standing wave function given 
by Eq. (1.271) in §10 of Chap. 1 is 

φη(τ) = (8/F)1/2 sin(nxnx/Lx) sm(nyny/Ly) sm(nznz/Lz), (3.6) 

where nx, ny, and nz are a triplet of positive integers represented by the symbol n. 
Only the positive integers are chosen since the corresponding negative values 
yield the same wave function to within a factor of — 1, which for all practical 
quantum-mechanical calculation purposes represents exactly the same state. 
(For example, the particle probability density ψ*ψ would be the same.) Linearly 



§1] FREE-ELECTRON GAS IN THREE DIMENSIONS 193 

dependent eigenfunctions are therefore redundant, whereas linearly inde-
pendent eigenfunctions (even if degenerate) are not redundant since they can 
represent different physical properties such as the probability density distri-
bution. The above product of sine functions represents standing waves which by 
direct substitution can be shown to be perfectly good solutions to the three-
dimensional Schrödinger equation, though such a solution does not represent a 
state having a definite momentum value. The product of sine functions given by 
Eq. (3.6) satisfies the fixed boundary conditions that the wave function vanishes 
on six faces of a rectangular parallelepiped located at x = 0, y = 0, z = 0, 
x = Lx, y = Ly, and z = Lz. 

Suppose, however, that we choose the alternative of exponential solutions to 
the Schrödinger equation, 

(Mr) = (VV)m exppk · r]. (3.7) 

These spatial functions, when combined with the time factor exp[— (i/fi)&kf\9 

represent running waves. The k values can be chosen so that the functions satisfy 
the following boundary conditions (cf. Chap. 1, §3), 

φ(χ + Lx, y, z) = φ(χ, y, z), φ(χ, y + Ly, z) = φ(χ, y9 z), ^ 

</>(x,y9z + Lz) = <f>(x9y9z)9 

which are known as periodic boundary conditions. Direct substitution of Eq. (3.7) 
into Eq. (3.8) shows that these conditions are met if 

exp(ikxLx) = 1, Qxp(ikyLy) = 1, exp(/A;zLz) = 1, (3.9) 

which in turn requires kxLX9 kyLy, and kzLz to be integral multiples of In. Hence 

kx = 2mxn/Lx (mx = ± 1, + 2 , . . . ) , 

ky = 2myn/Ly (my = ± 1, + 2 , . . . ) , (3.10) 

kz = 2mzn/Lz (mz = ± 1, + 2 , . . . ) . 

Both positive and negative integers are allowable, and moreover must be 
included, since the exponential function with a negative argument is linearly 
independent of the corresponding exponential function with a positive 
argument. 

Substitution of the exponential functions given by Eq. (3.7) into the time-
independent Schrödinger equation (3.5) yields 

g k = (h2/2m)(k2
x + k2

y + k2
z) = h2k2j2m. (3.11) 

This represents a condition that the functions (3.7) be eigenfunctions of the 
Hamiltonian operator Jf7 with eigenvalues < k̂. Therefore the energy eigenvalues 
$k are required by Eqs. (3.10) and (3.11) to be quantized, 

<Tm = (n2n2/2m)l(2mx/Lx)
2 + (2my/Ly)

2 + (2mz/Lz)2], (3.12) 

where m stands for the triplet of integers (mx, my, mz). 
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A corresponding substitution of the standing wave eigenfunctions (3.6) into 
the time-independent Schrödinger equation (3.5) yields a very similar result Sn 

for the energy eigenvalues, except that the positive or negative integers 2mx, 2my, 
and 2mz in Eq. (3.12) are replaced by the positive integers nx,ny,nz. Although 
only half of the energy levels turn out to have the same corresponding values in 
the two cases, the number of levels contained in any finite energy interval which 
is broad relative to the spacing between levels is the same. That is, there is first of 
all a one-to-one correspondence between positive even integer quantum 
numbers in the two cases (viz., the even integers 2mx and the even integer subset 
of the nx). Then for each odd positive value of nx, ny, or nz there is one 
corresponding negative even integer 2mx, 2my, or 2mz differing in magnitude by 
only one from the corresponding nx value. The energy levels for the odd values of 
nx, ny, or nz are interspersed between those for the even values of nx, ny, or nZ9 

whereas the energy levels for the negative values of 2mx, 2my, or 2mz are 

Fig. 3.2 Quantized values of the k vector for a particle in a box in terms of the x, y, and z 
components kx, ky, and kz. (a) Deduced by applying fixed boundary conditions to the energy 
eigenfunctions. (b) Deduced by applying periodic boundary conditions to the energy eigenfunctions. 
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degenerate with those for the corresponding positive values of 2mx, 2my, 2mz. 
These results are illustrated in the diagram in Fig. 3.2. To summarize, we can say 
that the allowed values of k are more closely spaced for the standing wave 
solutions but must be restricted to the one quadrant in which kx, ky, kz are all 
positive, whereas the allowed values of k are less closely spaced for the traveling 
wave solutions but this is compensated for precisely by the fact that they can 
have negative as well as positive values for kx, ky, and kz. 

The density of states g($) derived by using either set of energy levels will be the 
same. Thus one should not be too concerned about the fact that the energy levels 
do not occur at the same energies in the two cases. The type of boundary 
condition chosen, rather than the type of eigenfunction, is responsible for the 
slight difference in the energy values for the various levels. This becomes clear if 
we apply periodic boundary conditions to sine and cosine standing waves instead 
of using the more common fixed boundary conditions for these functions. Both 
sine and cosine functions are then allowable since neither type is eliminated by 
the fixed boundary condition requirement that the eigenfunctions be zero at the 
boundaries. The allowable quantum numbers for these two functions are found 
to be degenerate in energy; there is a one-to-one correspondence between sine 
and cosine functions having the same number of wavelengths along each of the 
three major directions in the solid. The negative integers are eliminated because 
of the requirement that the different basis states be linearly independent, so that 
the density of states at a given energy comes out to be the same for the two types 
of boundary conditions, independent of the functional form of the wave 
functions. 

As pointed out previously, the traveling wave eigenfunctions of the 
Hamiltonian having the form exp[(//^)(p · r — $t)~] are simultaneous eigenfunc-
tions of the linear momentum operator pop = — ihV, whereas the standing-wave 
functions given by Eq. (3.6) are not momentum eigenfunctions, as one can easily 
prove using the linear momentum operator. Direct substitution of the exponen-
tial form gives 

P°p<Ak(r) = - ihV · {(\/V)112 exp[/k · r]} = ( - ih)[V · (/k · r)]^k(r) 

= h[y # (kxx + kyy + fczz)]^k(r) = n\_\kx + yky + zfcz]^k(r) 

= Äk^k(r). (3.13) 

Thus the momentum eigenvalues pk consistent with periodic boundary con-
ditions are 

pk = nk = 2nn[x(mx/Lx) + y(my/Ly) + z(wz/Lz)]. (3.14) 

PROJECT 3.1 Spherical Potential Well 

1. Deduce the energy^eigenvalues for a spherical three-dimensional potential well. 
2. Interpret your results graphically and pictorially. 
3. What well depth is necessary in order to have a bound state? Discuss this in terms of a real metal. 
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1.8 Density of States 
The density of states w(k) as a function of wave vector k for our three-

dimensional system is now readily obtained. (The domain of the set of k vectors 
is referred to as k space, or wave vector space; it is described more fully in Chap. 
7.) Since the spacings between adjacent allowed values of kx, ky, and kz are 2n/Lx, 
2n/Ly, and 2n/Lz, respectively, the volume of k space per allowed value of the k 
vector is 

(2n/Lx)(2n/Ly)(2n/Lz) = 8π3/Κ, (3.15) 
where V is the actual volume of our metal. That is, the tip of each allowed k 
vector can be considered to constitute the corner for eight adjacent elemental 
rectangular parallelepipeds with dimensions 2n/Lx, 2n/Ly, and 2n/Lz in k space 
(cf. Fig. 3.3), and since there are eight corners required for a parallelepiped, there 
is one allowed wave vector per elementary parallelepiped on the average. The 
reciprocal of the volume 87c3/Kper parallelepiped thus gives the density of states 
w(k) in k space, 

w(k) = V/Sn3 (density of states versus wave vector 
for each electron spin direction), (3.16) 

since it represents the number of allowed k vectors per unit volume of k space. 

Fig. 3.3 The k vectors which satisfy periodic boundary conditions map out a rectangular lattice 
of points in k space which can be viewed as the corners of a contiguous stacked array of tiny 
parallelepipeds having sides of length 2n/Lx, 2n/Ly, and 2n/Lz, where LXi Ly, and Lz are the lengths of 
the three-dimensional box in real space representing the metal block confining the conduction 
electrons which is utilized for periodic boundary conditions. 
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Note from this result that w(k) for our three-dimensional free electron model is 
independent of both magnitude and direction of the wave vector k. 
Furthermore, since pk = #k, the volume element dk = dkx dky dkz in k space 
corresponds to the volume element 

φ = dpx dpy dpz = (h dkx)(h dky){h dkz) = h3dk (3.17) 

in momentum space. Since the density of states ^(p) in momentum space and the 
density of states w(k) in k space are related by 

#(p) dp = w(k) Λ , (3.18) 

we thus deduce that 

^(p) = /r3w(k) = V/(2nh)3 (density of states versus momentum 
for each electron spin direction). (3.19) 

For unit volume of metal, there are therefore \/{2nh)3 = \jh3 allowed momen-
tum states, so that each allowed momentum state requires a volume of h3 in 
momentum space for such a metal crystal. 

The constant energy surfaces in k space are spheres, according to Eq. (3.11). 
Thus the number of allowed states in an energy interval d8 at energy 
8 = h2k2j2m is equal to the number of allowed states in k space lying between 
the surface of the sphere with radius k and the surface of the larger sphere of 
radius k + dk. The differential dk represents a change in the magnitude of k, 
namely, dk = d\k\9 and the states lying in an energy interval d8 at energy 8 are 
those in the corresponding differential volume 4nk2 dk in k space. Considering 
that each state requires a volume 8π3/Κ, we thus find for the number of states in 
the energy interval d8 the value 

dn = 4nk2 dk/(Sn3/V) = (V/2n2)k2 dk. (3.20) 

However, 8 = h2k2ßm, so that 

d8 = (h2k/m)dk. (3.21) 

The density of states g{8) = dn/d8 as a function of energy is therefore 

dn (V/2n2)k2dk 
SW =-^= i / w , = (mV/2n2n2)k 

d8 (fiLkjm) dk 

= (rnV/2n2fi2)(2m/fi2)1/28112 = (V/4n2)(2rn/fi2)3/28l/2 

(density of states versus energy for each electron spin direction). 

(3.22) 

The total density of electronic states is a factor of two larger than this result, since 
there are two possible orientations of the electron spin, each of which 
corresponds to a different spin quantum number (cf. Chap. 1, §6) insofar as the 
Pauli exclusion principle is concerned. 
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It is well to remember the square root dependence of the density of states on 
energy, since it is frequently encountered in the theory of metals. To emphasize 
this result, let us derive it using a slightly different approach. For an arbitrary 
energy $ = n2k2/2m, all electronic states with energies below this value lie within 
a sphere of radius k in wave vector space, and all electronic states with energies 
above this value lie outside the sphere. Considering that the volume of the sphere 
is \nk3 and each allowed wave vector requires an elemental volume 8π3/ V, we see 
that the number of electronic states n with energies equal to or less than $ is given 
by 

n = fnk3/(Sn3/V) = (V/6n2)k3. (3.23) 

However, the density of states g($) is simply 

g(g) = dn/dS = (dn/dk) dk/dS. (3.24) 

It follows from g = h2k2/2m that dS/dk = h2k/m. Furthermore, dn/dk = 
(V/2n2)k2 from the above relation. Thus 

§(g) = [(V/2n2)k2][m/n2k] = (mV/2n2h2)k = (V/4n2)(2m/h2)3/2g1/2, (3.25) 

which is the same result derived just above. 

PROJECT 3.2 Density of States for a Two-Dimensional Free-Electron System 

Consider a two-dimensional free electron system with momentum of the electrons given by 
p = \px + ypy. Assume the conduction electrons to be confined to a spatial region of length Lx in the 
x direction and Ly in the y direction. Solve the Schrödinger equation and apply periodic boundary 
conditions to obtain the energy eigenfunctions, energy eigenvalues, and momentum eigenvalues for 
the system. Derive the associated density of states versus momentum and the density of states versus 
energy for this system. 

1.9 Fermi Surface and Conduction Electron Degeneracy 

If we fill these quantum states deduced for a three-dimensional square-well 
potential with electrons, using both spin directions, then the maximum number 
of electrons which can be accommodated for energies less than or equal to $ is 

2n = (V/3n2)k\ (3.26) 

in accordance with Eq. (3.23). Thus N conduction electrons in a metal crystal 
filling the lowest energy states will require a sphere in k space of radius kF given 
by 

N=(V/3n2)k3
F. (3.27) 

The quantity kF is designated the Fermi wave vector, and it can be seen to depend 
only on the average electron density N/V in the crystal, 

kF = (3n2N/V)1/3. (3.28) 

The sphere in k space with this radius (cf. Fig. 3.4) is called the Fermi surface. (A 
spherical shape for the Fermi surface is characteristic of the free-electron model 
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Fig. 3.4 Spherical Fermi surface which is characteristic of the free-electron model for metals. 
(The n lowest energy states per spin direction delineated by the allowed set of k vectors determined 
from periodic boundary conditions lie within the indicated spherical "Fermi" surface; higher energy 
states lie outside of the sphere.) 

for metals.) The energy SF corresponding to wave vector kF is called the Fermi 
energy, 

SF = h2k\ßm = (n2/2m)(3n2N/V) 2/3 (3.29) 

hkF is called the Fermi and the corresponding magnitude of the momentum pF 

momentum. The magnitude of the electron velocity at the Fermi surface is given 
by vF = pF/m = hkF/m. For example, an electron density of 2.5 x 1022/cm3 as in 
sodium metal gives values of SF = 3.1 eV and vF = 1.0 x 108 cm/sec. The 
electron density in silver is more than a factor of 2 higher. The Fermi energy and 
the electron velocity increase accordingly, since these quantities vary as the § and 
the j power of the electron density, in accordance with Eq. (3.29) and the velocity 
vF = {2mSF)112 obtained from it. The values of SF and vF for silver are 5.5 eV and 
1.4 x 108 cm/sec. 

EXERCISE Compute values of <fF, vF, XF = 2n/kF, and r F = SF/k^ for several metals, using a 
calculator. 

The physical significance of the parameter SF is that it delineates the point in 
energy separating those electronic states ($ < SF) having an occupation 
probability exceeding \ from those (ß > SF) with occupation probability less 
than ^. This follows directly from the Fermi-Dirac distribution function (2.151) 
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derived in Chap. 2. The initially surprising feature is the prediction of high 
velocities for some of the electrons even when the electrons are in the lowest 
energy states that are consistent with Fermi-Dirac statistics (cf. Chap. 2). 

The exact manner in which the energy levels in the free-electron model are 
populated in the thermal equilibrium state is determined by the Fermi-Dirac 
distribution function which we derived in Chap. 2. The free-electron model 
neglects the interactions of the conduction electrons with the lattice, so the 
properties of a metal computed on the basis of this model are in fact the 
properties of a dense electron plasma. If the temperature of any electron plasma is 
high enough that the Fermi-Dirac distribution function is well approximated by 
the Maxwell-Boltzmann distribution (cf. Chap. 2), the system is said to be 
nondegenerate. This would require a temperature far in excess of the vapori-
zation temperature for metals, however, so that the majority of the electrons in a 
metal must be considered to be degenerate. (Only those relatively few electrons 
in a metal occupying the higher sparsely populated energy levels, such as those 
involved in the thermal emission process to be treated in §4, can be considered to 
be nondegenerate.) Thus the statistical properties of a metal deduced from the 
free electron model can be considered to be equivalent to the statistical 
properties of a highly degenerate electron plasma. One of the statistical 
properties of the free-electron model which is very important, as well as being 
quite illustrative, is the low temperature specific heat. This topic is treated 
thoroughly in the following section. 

2 Electronic Specific Heat 

2.1 Classical Mechanics (Kinetic Theory) Picture 

The specific heat of any macroscopic system is the increase in energy of the 
system per degree increase in temperature of the system under equilibrium 
conditions. For a dilute gas of atoms in a container, for example, classical kinetic 
theory coupled with the ideal gas law gives the result that each atom is in rapid 
translational motion with an average kinetic energy of <fatom = 3kBT/2, where kB 

is Boltzmann's constant and T is the absolute temperature [Halliday and 
Resnick (1974)]. The energy $Ί for TV atoms is thus 

ST = \NkBT. (3.30) 

The increase Α$Ί in this energy for an increase AT in the temperature is 
ΔδΊ = A(3NkBT/2) = (3NkB/2)AT The specific heat Cgiven by A£T/ATis thus 
predicted to be 3NkB/2, which can be seen to be temperature independent. More 
generally, the specific heat is written as the temperature derivative of the energy, 
so that in this example 

C = dSj/dT = %NkB (classical gas of noninteracting particles). (3.31) 

The classical approach to a free-electron model would be to consider the 
conduction electrons in the metal to be just such a system of free particles; as a 



§2] ELECTRONIC SPECIFIC HEAT 201 

consequence, the specific heat would be predicted on the basis of such a classical 
model to be §M;B. That such a model fails catastrophically for metals is 
manifested by the fact that this prediction is larger than the experimentally 
measured electronic specific heat by a factor of the order of 10,000, and 
furthermore the experimental measurements show that the electronic specific 
heat varies linearly with the temperature instead of being temperature inde-
pendent as predicted by Eq. (3.31). Thus we are strongly motivated to turn our 
attention to a better model, namely, the quantum-mechanical free-electron 
model. 

2.2 Quantum Statistics Approach 

The number of occupied states per unit energy range at any particular energy 
$ for our quantum system of free electrons in thermal equilibrium at a given 
temperature Tis 

n{£) = 2j{£)g{£). (3.32) 

The factor of 2 takes into account the fact that there are two allowed directions 
for electron spin, g($) is the density of states per spin direction as given by Eq. 
(3.22), andTi^5) is the Fermi-Dirac distribution function given by Eq. (2.151). 
Figure 3.5 illustrates Eq. (3.32). The temperature dependence of the occupation 
probability is confined primarily to energies within several kBT of the Fermi 
energy. For lower energies than this, the states remain occupied for the most part 
as the temperature is increased. Likewise, states lying several kBT above S¥ 

remain unoccupied for the most part as the temperature is increased. The effect 
of the temperature is thus to adjust the population of the energy levels in the 
neighborhood of $Y, and the change in total energy of the free-electron gas with 
increasing temperature should be due primarily to this population adjustment. 
This differs markedly from the classical picture in which a temperature increase 
of the system results in a gain in thermal energy of each particle in the system. 

η(ε) 

ε εΡ 
Fig. 3.5 Number n{$) of occupied states per unit energy range versus energy S. (This number is 

given by the product of the density of states g{0) with the occupation probability J{&); the factor of 2 
is due to the two allowed values of the electron spin quantum number.) 
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Since an increase in the temperature apparently does not change the energy of 
most of the lower energy electrons on the basis of our quantum picture, the 
quantum-mechanical electronic specific heat can be expected to be much less 
than the classical value, in accordance with experiment. The discrepancy of a 
factor of 104 or so between the classical value and the experimental value for a 
metal like sodium, together with the failure of the classical model to predict the 
experimental result that the electronic specific heat is a linear function of 
temperature, are both resolved by the quantum derivation. The quantum-
mechanical free-electron model thus lends valuable insight into the low 
temperature specific heat of metals. 

2.3 Formulation in Terms of Total Energy of Conduction Electrons 
A quantitative derivation should be based on an integral involving Eq. (3.32) 

to give the total energy $T of the electron system, 

2g{S)J{S)S dS9 (3.33) 
o 

with g($) given by Eq. (3.22). The electronic specific heat is then given by 

UÖ x 

c = - — 
Cel dT 

dj 
o dT 

Since the Fermi energy <?F is to a first approximation independent of 
temperature, as will subsequently be justified in §6, 

*L = ±r^ - sm.r . n -1 Ä [(*-*F)/M*]exp[(*-*F)/*Br| 
dT dT1 {exp[(^-(fF)/^Br] + l } 2 

However, 
(3.35) 

dj = ~ ( l / W e x p l K ~ *y)/kBn 
d<S {exp[(<f - ίΡ)/ΛΒΓ] + l}2 (3.36) 

so that 

dJjdT = [(<f F - g)lT\ dJjdS. (3.37) 

Substituting this result into the integral in Eq. (3.34) gives 

h - S\ dj 
Q = (3.38) 

A glance at the plot of J{$) versus $ given in Fig. 2.4 is sufficient to convince 
oneself tha t /^ ) has approximately zero slope everywhere except in the energy 
interval of width several kBT surrounding Sf. A plot of the derivative dJ{S)/dS is 
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shown in Fig. 3.6. Therefore almost the entire contribution to the above integral 
for Cel comes from this region of integration involving energies within several 
multiples of kBT. This is in accord with the above qualitative discussion of the 
change in the total energy of the system with an increase in temperature. Various 
approximations to the above integral can be based on this fact. First, g($) is 
almost the same as g{$¥) over the energy range in which dj/dS is significantly 
different from zero. This greatly simplifies the task of evaluating some of the 
integrals for statistical quantities involving g($) and /(<?). Second, series 
expansions which converge rapidly over this energy range could prove very 
useful. A general approximation technique for evaluating integrals containing 
the Fermi-Dirac distribution function J{$) is carefully developed in §5, and its 
usefulness is demonstrated by evaluating the temperature dependence of the 
Fermi energy and the electronic specific heat in §6. 

df(e) 
de 

A 
ε eF 

Fig. 3.6 Negative derivative of the Fermi-Dirac function J(ß) with respect to energy S. (The 
value is nearly zero except for energies within kBT or so of the Fermi energy S¥.) 

2.4 Alternate Formulation for Total Energy 

Before going into the matter of general approximation techniques for 
integrals containing the derivative of the Fermi function, let us first use a 
different technique [cf. Kittel (1971)] involving physical intuition to evaluate the 
electronic specific heat. This technique is based on the difference in the total 
energy of the electron system at a finite temperature T and the corresponding 
total energy at 0°K. Let us assume that the Fermi energy $Έ does not vary 
markedly with temperature, which is a valid approximation for our present 
purposes as we shall later show in §6. Then the change Δ$Ύ in total energy in 
heating the electron system from 0°K to T can be arbitrarily but conveniently 
divided into two parts, the energy needed to excite an electron to an energy SY 

plus the energy needed to excite the same electron to an energy level above $F. 
That is, consider the fact that at 0°K all levels below S¥ are filled and all levels 
above $ F are empty; then the additional kinetic energy of the electron system at 
temperature T is due entirely to thermal excitation of some of the electrons 
below S¥ to states above Sv. The occupation probability is /(<f), so the 
probability that a state at energy £ below Sv is empty at temperature 



204 QUANTUM FREE-ELECTRON MODEL [Chap. 3 

Tis 1 -]{$). Hence the energy to excite all the electrons leaving states below δF 
to the energy $F is given by 

W ) [ l -KS)~]{SF - S) dS. (3.39) 

Similarly, the energy to further excite these electrons to the states above iT is 
given by 

2g(£)f{g){g -S¥)dS. (3.40) 

The sum of the two contributions (3.39) and (3.40) is the total energy change Δ$Ί 

resulting from an increase in system temperature from 0°K to T, 

- \ : 
- g) dS + 

2g(g)J(g){£ - S¥) dS 

— S¥) 

On the other hand, the total energy at 0°K is 

J 0 

(3.41) 

(3.42) 

Thus the total energy $Ί at temperature Tis the sum of Eqs. (3.41) and (3.42), 

+ . 
( V F 

+ S¥)dS. (3.43) 

A comparison of this result with our previous expression (3.33) for the total 
energy leads to the disturbing conclusion that they appear to be different. At 
least it is certainly not obvious that they are the same. Nevertheless, the two 
forms are shown below to be equivalent. Equation (3.43) is found to be a more 
useful form for our present purposes of deducing the specific heat. 

Let us now digress a bit to show that the above two expressions [(3.33) and 
(3.43)] for $Ί are the same for the free-electron model wherein the total number 
of electrons in the system is conserved. Let ΝΜον/ denote the total number of 
empty electronic states below the Fermi energy, 

b̂eiow = Po W ) [ l - Ml <U. (3.44) 

Let Nabove denote the number of filled electronic states above the Fermi energy, 

N = 
above 

2g{S)J{S) dS. (3.45) 

To the extent that the shift in SF with temperature can be neglected (see §6), any 
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filled states above $F must be accompanied by an equal number of empty states 
below $F. This follows from the conservation of the total number of electrons 
and the fact that at 0°K all electronic states above S¥ are empty and all those 
below S¥ are filled. Thus 

JVabove = A U w (3-46) 

Multiplying both sides by $F leads to a relation 

^ b e l o w " <Wbove = 0, (3 .47) 

and substituting into the integrals (3.44) and (3.45) gives 

i: 2g{S)[\-J{Sy]S¥dS-

or equivalently, 

= 0, (3.48) 

2g(S)£¥ dS - 2g{£)J{£)£¥ dS = 0. (3.49) 
o Jo 

Adding this null expression to our initial expression (3.33) for $Ί gives 

fT=\ 2§{£)Κ£)[_$-£¥-\ά£ + 2g{£)£¥ d£, (3.50) 

which is identical to our second result (3.43) obtained from δψ and Δ£Ί. 
Although the results for $Ί are equivalent, the transformation effected in the 
integral makes a good approximate evaluation of the specific heat far easier. 
This we now proceed to do. 

PROJECT 3.3 Pressure Exerted on Walls of a Container by Trapped Particles 

Assume a particle is trapped in a three-dimensional square-well potential having edges of length L 
with infinitely high potential energy barriers at the edges (i.e., at the walls). Calculate the average 
force exerted on each wall and thereby determine the pressure within the container. {Hint: For the 
analogous one-dimensional problem, see ter Haar (1975).] 

2.5 Specific Heat Evaluation 

Considering S¥ to be temperature independent, which is shown in §6 to be a 
reasonably good approximation, we obtain by differentiating Eq. (3.43) for $Ύ 

the result 

' " " dT-)0 

ce, = : ^ = l 2g{i)^{S-<Sf)dS. (3.51) 

Substituting expression (3.35) for dfjdT, we obtain 

2g{£)i{£ - £F)2/kBT2]exp[(£ - SF)/kBT] 
Ca = {exp[(<f - SF)/kBT] + l } 2 (3.52) 
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Let us recall our previous discussion of the narrow range of energy over which 
djjdi is appreciably different from zero and the fact that dJjdT oc dj/di, so that 
the slowly varying function g($) can be replaced by g($¥) in the above integral. 
In addition, let us make the following change of variables in the integral, 

n = (S - <$¥)/kBT, dn = (kjj1)-1 dS. (3.53) 

The lower limit becomes — <fF/A:Brand the upper limit is again infinity. Thus 

Cel = 2k\Tg{ß¥)I, (3.54) 
where 

Too 26η 

H - W Ö ^ * < 3 · 5 5 > 

The integral / is temperature dependent, but this is not a large effect. The 
integrand takes on values greater than 0.1 for positive η, but for negative values 
of η in the range of — S¥jk^T ~ — 40 it has extremely small values of the order 
of n2en. Thus the range of integration can be extended to — oo without 
appreciable error, in which case / becomes a definite integral which has the value 
π2/3. Therefore 

Cel ~ ^n2k\g{S¥)T (electronic specific heat for both spin directions), 

(3.56) 

with g($F) denoting the density of states per direction of spin given by Eq. (3.22), 
assuming unit volume for the system. Writing this result as 

CA = 7e,r, (3.57) 
where 

Vd = !*2*i0(*F) (3-58) 
is a temperature-independent quantity, serves to emphasize the linear de-
pendence of the specific heat on temperature predicted by the quantum-
mechanical free-electron model. This contrasts with the temperature-independent 
result given by Eq. (3.31) which was deduced from the classical free-electron 
model. 

Evaluating Eq. (3.22) at $ = S¥ and substituting Eq. (3.29) gives 

g(g¥) = (V/4n2)(2m/n2)3/2^J2 

= (V/4n2)(2m/n2y/2l(n2/2m)1/2(3n2N/V)i/3^ 

= (V/4n2)(2m/n2)(3n2N/V)1/3. (3.59) 

Substituting this result into Eq. (3.58) gives 

7d = (mV/3n2)(3n2N/Vyl3k2
B. (3.60) 

EXERCISE Compute the electronic specific heat coefficient yel using Eq. (3.60) for several 
metals of your choice. 
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EXERCISE Compare your calculated values of the electronic specific heat to published 
experimental values, and attempt to draw some conclusions. 

In the limit of unit volume, V = 1, the parameter yel is designated the electronic 
specific heat coefficient. If V φ 1, then Cel = yelris the total heat capacity of the 
system of electrons. It can be seen that yel involves the electron density iV/Fand 
thus is predicted to differ from metal to metal. The other quantities such as m, h, 
and kB are physical constants which might be expected to be the same for 
different metals. 

Typical values of the electronic specific heat coefficient for metals such as 
sodium, copper, and aluminum are in the range 0.6-1.4 mJ/mole deg2. The 
agreement between experiment and the expression derived above using the 
quantum-mechanical free-electron model (FEM) is rather good, especially in 
view of the poor agreement of the classical result (3.31) with experiment. If we 
use the definition 

yftf = (rn*hV/3h2)(3n2N/V)1/3k2
B, (3.61) 

where the parameter m*h is labeled the thermal effective mass, then the ratio 

y(expl)/y(FEM) = < / m { 3 6 2 ) 

provides a measure of the agreement of experiment with the quantum free-
electron model. This ratio is found to be in the range 1.2-1.5 for the alkali metals, 
so it can be seen that the free-electron model is quite successful for this group of 
metals. The lack of perfect agreement is somewhat to be expected, considering 
that in the free-electron model the interactions of the conduction electrons with 
the lattice potential and with the thermal vibrations of the ions of the lattice are 
neglected. Likewise, the interactions of the conduction electrons among 
themselves have been neglected. 

It should be pointed out explicitly that the electronic component of the 
specific heat deduced above is relatively important primarily at temperatures in 
the neighborhood of liquid helium temperatures (~4°K). At considerably 
higher temperatures, the specific heat of most solids is dominated by the lattice 
contribution. Quantized lattice vibrations mathematically analogous to the 
quantum results for the harmonic oscillator (cf. Chap. 1, §12.3) account for 
absorption of energy by the creation of "energy quanta" of lattice vibrational 
energy known as phonons. The reason that one can observe the conduction 
electron contribution at very low temperatures follows from the more rapid 
falloff of the lattice contribution (which varies as Γ3) relative to the conduction 
electron contribution (which varies as T). [See, for example, R. A. Smith 
(1963).] 

EXERCISE Numerically evaluate Eq. (3.55) for several temperatures and a typical set of 
parameter values to deduce the temperature dependence. (Note that this represents the departure of 
the specific heat from a strict linear dependence on temperature.) 
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PROJECT 3.4 Electronic Specific Heat for a Two-Dimensional Free-Electron System 

Derive an expression for the electronic specific heat for a two-dimensional free-electron system. 
[Hint: Use the density of states derived in Project 3.2 (Chap. 3, §1.8) for the two-dimensional free-
electron system.) 

PROJECT 3.5 Sodium as a Free-Electron Metal 

1. A macroscopic crystal of one mole of sodium occupies what volume? 
2. Compute a numerical value for the density of states w(k) versus wave vector k for this metal 
crystal. 
3. Compute a value for the density of states ^(p) versus momentum for this metal crystal. 
4. Compute a value for the density of states g(S) versus energy $ for this metal crystal. 
5. Calculate the value of the Fermi energy at 0°K. 
6. Calculate the Fermi momentum pF at 0°K. 
7. Calculate the Fermi wave vector kF at 0°K. 
8. Calculate the Fermi wavelength XF at 0°K. 
9. Calculate the difference between the Fermi energy at 300°K and the Fermi energy at 0°K. 
10. Calculate the change in the Fermi momentum pF between 0°K and 300°K. 
11. Calculate the change in the Fermi wave vector kF between 0°K and 300°K. 
12. Calculate the change in the Fermi wavelength XF between 0°K and 300°K. 
13. Calculate the numerical value of the electronic specific heat coefficient yd. 

PROJECT 3.6 Free-Electron Model Computations 

Choose any five real metals, and assume an appropriate valence for each in order to estimate the 
number of conduction electrons per atom. Compute values using the three-dimensional FEM for the 
Fermi energy SF, Fermi velocity uF, Fermi momentum pF, Fermi wave vector kF, Fermi wavelength 
AF, Fermi temperature TF, and electronic specific heat coefficient yel. Organize your final results in 
the form of a table so that conclusions may be inferred for the different metals. (Note: As an 
alternative procedure to using the valence, you may obtain the density of conduction electrons from 
appropriate literature data, such as Hall coefficient measurements.) 

2.6 Ratio of Quantum to Classical Specific Heats 

An informative ratio of the quantum and classical specific heats can be readily 
obtained which illustrates the large difference in the two predictions. Multiply-
ing expression (3.59) for g($F) by the ratio 

£F/kBTF = (n2/2m)(3n2N/V)2/3/kBTF, (3.63) 

this ratio being unity by definition TF = SFjkB of the Fermi temperature, gives 

g{SF) = 3N/4kBTF. (3.64) 

Substituting this expression into Eq. (3.58) for yel gives 

7ei = I n2klg(^F) = Nn2kJ2TF. (3.65) 

The corresponding classical result (3.31) is C*fass) = 3NkB/2, so the ratio of the 
quantum free-electron and the classical results is 

C<FEM)/CSU-) = yelT/(3NkB/2) = fr2(T/TF). (3.66) 

Considering that at room temperature the value of kBTis of the order of 1/40 eV, 
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whereas the Fermi energy S¥ = kBTF was deduced (see §1) to have values in the 
range 3-5 eV, the ratio thus is seen to have values of the order of 0.02 at room 
temperature. Correspondingly lower values are predicted at lower temperatures 
(< 4°K) at which the experiments are performed. At ΓΚ, for example, the ratio 
given by Eq. (3.66) is of the order of 0.5 x 10"4. This factor of T/TF for the ratio 
of the quantum to the classical specific heats is in agreement with the qualitative 
discussion given in the early part of this section. This successful application of 
the quantum free-electron model represents one of its greatest triumphs and 
indeed, it represents one of the greatest triumphs of quantum mechanics in 
general, since there is apparently no way whatsoever to derive analogous results 
by means of a realistic classical model. 

EXERCISE Compute the ratio of the quantum to the classical electronic specific heats at 1,2,3, 
and 4°K for several metals of your choice. 

PROJECT 3.7 Density of States for Lattice Vibrational Modes 

A density of states 0)(ω) for lattice vibrational modes as a function of frequency ω can be deduced 
for simple harmonic oscillator models of coupled ions by employing periodic boundary conditions, 
somewhat analogously to the derivation of the electronic density of states g{$) for the three-
dimensional free-electron model. Carry through such a derivation, and point out the similarities and 
differences between the derivations for 0){ω) and g{$). [Hint: First refer to a literature derivation of 
the lattice specific heat based on the Debye model, and then extend your considerations to deduce a 
more general result for 0){ω). See, for example, Kittel (1971).] 

PROJECT 3.8 Lattice Specific Heat 

Apply the Bose-Einstein distribution function [Eq. (2.152)] together with the concept of a single 
lattice vibrational mode to deduce the lattice vibrational contribution to the specific heat of a solid. 
{Hint: The vibrational mode can be considered to absorb energies ηήω analogous to the harmonic 
oscillator (cf. Chap. 1, §12.3), this energy being due to population by individual quanta of energy hco. 
These energy quanta can be treated somewhat like elemental particles (called phonons) which satisfy 
the same statistics as bosons. You may wish to refer to the Einstein model, which can be found in 
some standard solid state text, such as R. A. Smith (1963).] 

3 Electrical Conductivity and the Derivation of Ohm's Law 

3.1 Electrical Forces and Acceleration 

The force F on an electron produced by an electric field E is — eE. This force 
gives rise to a time dependence dp/dt of the linear momentum p = fik of the 
electron according to Newton's second law, 

- eE = F - dp/dt = h dk/dt. (3.67) 

Each filled electronic state k will thus be changed by an amount 

ok = - (e/n)E St (3.68) 

by an applied electric field in a time increment St. Since the amount ok is 
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Fig. 3.7 Shift of the Fermi sphere in momentum space under the action of an externally applied 
electric field E = - \EX. (The allowed momentum states consistent with periodic boundary 
conditions are indicated by the small circles; the darkened areas represent those states which are 
occupied at 0°K in zero electric field. Note that the boundary (large dashed sphere) separating the 
occupied and unoccupied states in zero field is shifted to the right (large solid sphere) as the electrons 
are accelerated to the right by an applied electric field. Since p = #k, a shift of the Fermi sphere in 
momentum space by <5p is equivalent to a shift of the Fermi sphere in k space by <5k = <5p/Ä.) 

independent of the state k, the entire Fermi sphere in k space is uniformly 
displaced by the field, as illustrated in Fig. 3.7. 

Prior to the application of the field, the net momentum of the electrons is zero. 
This is true because at that point the Fermi sphere is symmetrical around the 
origin in k space (see Fig. 3.4); for every occupied state k there is an occupied 
state at — k, with the net momentum [#k + h{ — k)] of the pair of states being 
zero. 

3.2 Collisions and the Relaxation Time Approximation 

The acceleration of the electrons by the applied electric field results in an 
increased electron velocity antiparallel to the electric field direction. Such an 
increase in velocity in a specific direction gives rise to a net electric current in the 
solid. However, collisions of the electrons with impurities and defects and 
interaction with the vibrations of the lattice oppose this current by scattering the 
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electrons into more or less random directions. The greater the electron velocity 
in a specific direction, the more frequently collisions occur which oppose this 
velocity. A steady state is achieved whenever the accelerating effects of the 
applied electric field are precisely compensated for (on the average) by the 
increased electron scattering, in which case the electron momentum reaches 
some constant average value. This is equivalent to saying that the displaced 
Fermi sphere will be maintained in some given position in k space consistent with 
the applied field and the collision processes. The net momentum will then be 
nonzero since the displaced sphere will not be symmetrical with respect to the 
origin of k space. 

Suppose the electric field is removed after the Fermi sphere has reached its new 
steady-state position. Then the collisions which the electrons continuously 
undergo tend to relax the distribution back to the equilibrium state which existed 
before the field was applied. One simple model is based on the assumption that 
there is some characteristic collision time τ for scattering of the electrons by the 
imperfections of the lattice. The center of the displaced Fermi sphere can then be 
considered to return to the origin in k space in a time of the order of τ after the 
electric field is removed. The net momentum is reduced to zero by the effect of 
collisions in redistributing the occupied states to those bounded by a constant 
energy surface in k space, namely, a sphere centered at the origin. 

Although elastic scattering alone is sufficient to reduce the net momentum to 
zero by redistributing the occupied states over constant energy surfaces, the fact 
that elastic scattering is characterized by no exchange of energy in the scattering 
event means that the electrons will still be in excited states after scattering. 
Inelastic phonon processes are therefore needed also to return the distribution to 
the ground state. 

The characteristic relaxation time τ is important from the standpoint of 
estimating the displacement of the Fermi sphere with a given electric field. Since 
scattering randomizes the momentum within a time of the order of τ after each 
collision, the field can accelerate the electrons only over a time of the order of τ, 
on the average. Identifying τ with δί in Eq. (3.68) thus gives 

3k, = - (β/ή)Ετ. (3.69) 

The average increase is half this value. In the steady state, every electron is given 
(on the average) an additional incremental momentum δρτ = \h <5kT by the field, 
with a corresponding incremental velocity change of 

δ\τ = öpjrn = - \{exjrn)E. (3.70) 

3.3 Current Density and Electrical Resistivity 

If there are n electrons of charge q = — e per unit volume, the electric current 
density # is 

/ = nq δ\τ = %ne2T/m)E. (3.71) 
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This has the form of Ohm's law 

/ = *E (3.72) 

for an isotropic medium. The electrical conductivity σ just derived on the basis of 
the free-electron model is thus the scalar quantity 

a = ne2x/2m. (3.73) 

The resistivity p is then 

p = \ja = 2m/ne2z. (3.74) 

Qualitatively the conductivity is given by the product of three factors: the 
charge density - ne, the ratio — e/m, and the time τ. The factor — e/m 
determines the acceleration of the electron in a given electric field, and τ is the 
free time during which the field accelerates the carrier. It is quite significant that 
all of the conduction electrons participate in electrical transport, whereas 
statistically only a fraction of the conduction electrons participate in the specific 
heat (cf. §2). 

3.4 Mean Free Path of Conduction Electrons 

The use of an experimental value for the conductivity σ allows one to compute 
the relaxation time τ for a given metal for which the conduction electron density 
n is known. For copper at room temperature, τ as obtained by means of Eq. 
(3.74) is of the order of 10"1 4 sec. The Fermi velocity vF for copper, as obtained 
by means of Eq. (3.29) and the nonrelativistic energy-momentum relation 
$Έ = \mv\, is of the order of 108 cm/sec. Thus the mean free path /e = ν¥τ 
between scattering events is of the order of 10 ~6 cm, which represents 20 or 30 
lattice spacings. At low temperatures, σ can be orders of magnitude larger if the 
metal is a very pure single crystal with few imperfections, and τ increases 
correspondingly. Since the Fermi velocity vF does not change appreciably with 
temperature, the mean free path /e = ν¥τ at low temperatures thus can be 
enormous. Such long mean free paths cannot be explained by a classical model in 
which the ion cores must be considered effective in scattering. These long mean 
free paths, however, are readily understood on the basis of a quantum model, 
since in this model the periodic array of ion cores does not scatter the electrons 
randomly, on the average, and Fermi-Dirac statistics prevent all defect-related 
scattering events requiring the transfer of an electron into a momentum and spin 
state which is already occupied. 

PROJECT 3.9 Dispersion Relation for Electromagnetic Wave Propagation in Metals 

1. Write the general form of Maxwell's equations. 
2. Reduce these equations to a simpler form, assuming Ohmic conduction currents and pointwise 
charge neutrality. 
3. Solve for the H field in terms of the E field, assuming solutions of the plane wave form, namely, 
E = E0 exp[/(k · r - ωί)]· 
4. Derive the dispersion relation. 
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5. Identify the portion of the dispersion relation due to displacement currents and the portion due to 
conduction currents. 
6. Discuss the linearity of Maxwell's equations and the superposition of solutions corresponding to 
the simultaneous propagation of waves differing from one another in frequency and wavelength. 
7. Consider the wave vector k to be given by (a + iß)n, and solve for a and ß. 
8. Approximate a and ß for the case of a good (but not perfect) dielectric material, and write down 
the resulting approximate expression for a + iß. 
9. Approximate a and ß for the case of a good (but not perfect) metal, and write the resulting 
approximate expression for a + iß. 
10. Prove that the phase velocity for propagation in a material with nonzero conductivity is ω/α 
instead of ω/k as it is in a perfect dielectric. 
11. Solve for the phase velocity in a good (but not perfect) dielectric. 
12. Solve for the phase velocity in a good (but not perfect) metal. 

4 Thermal Electron Emission from Metals 

4.1 Work Function Barrier 

The potential energy barriers at the interfaces separating a metal from the 
surrounding region of empty space are not infinitely high for electrons, as 
assumed in §1 to simplify the problem of computing wave functions for the free-
electron model. The barrier height is only of the order of several electron-volts 
for most metals. This barrier, which constrains the electrons to remain within the 
metal, is known as the work function φ of the metal. This is illustrated in Fig. 3.8. 
The energy eigenfunctions which we deduced by assuming φ to be infinitely large 
do not differ very much from those which are deduced by using more realistic 
values for φ. [For a treatment of the finite square-well potential, see 
R. A. Smith (1963).] 

Metal / A 
/ / / / /I 

Vacuum 

Fig. 3.8 Electron energy-level diagram illustrating the nearly filled states (crosshatched) in a 
metal; the quantum states are nearly empty over an energy region φ from the top of the nearly filled 
states to the vacuum energy. 
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4.2 Thermal Emission Picture 

The Fermi-Dirac distribution function determines the statistical distribution 
of electrons as a function of energy. At nonzero temperatures, there is a finite 
(though small) probability that some of the energy levels in the metal above 
$¥ + φ will be occupied. These levels correspond to unbound electronic states, 
which means that the classical energy barrier is insufficiently high to confine 
such electrons within the metal. These electrons can cross the barrier with a finite 
kinetic energy and thereby escape from the metal. Such electrons are said to be 
thermally emitted. Because the occupation probability of the higher energy levels 
increases with increasing temperature, the thermal emission current increases 
accordingly. Let us now attempt to compute this emission current on the basis of 
the quantum free-electron model for metals. 

4.3 Quantitative Details 

In §1 the density of states ^(p) in momentum space per direction of spin was 
found to be 

3(p) = V/(2nfi)3 = V/h\ (3.75) 

where V is the volume of the metal specimen. For unit volume (V = 1) the 
density of electronic states for both spin directions becomes 2/A3. The 
Fermi-Dirac distribution function/(<f) determines the occupation probability as 
a function of energy, and since $ = $(p), it also gives the occupation probability 
for a given momentum p. Hence (2/A3)/((f) dp gives the number of electrons per 
unit volume of metal which have a momentum in the elemental volume 
dpxdpydpz located at p in momentum space. These electrons have an x 
component of momentum between px and px + dpX9 with a corresponding 
velocity between vx and vx + dvx. The number of electrons [(2/Α3)/(<?)ίή>] 
multiplied by vx gives the number of electrons with momentum p striking unit 
area of a plane oriented perpendicular to the x direction per unit time. If these 
electrons have an x component of momentum large enough so that 

p2J2m ><fF + 0, (3.76) 

we presume they leave the metal, whereas electrons with a lesser momentum in 
the x direction will be presumed to be reflected from the metal surface which is 
perpendicular to the x direction. The total emission current is obtained by 
summing all of the various contributions. This requires integrating over all x-
momentum values satisfying the inequality (3.76) and over all possible values of 
the y and z components of momentum. The electron particle current density Je 

emitted from the metal interface perpendicular to the x direction is therefore 
given by 

Γαο Λαο foo 

Λ = dp, dPy (2/h3)n*)vx dpx, (3.77) 
J - oo J - oo J ρχ 
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where 

/?fee) = [2m(<fF + </>)]1/2. (3.78) 

In the free-electron model, the total energy $ is all kinetic energy, 

* = (P2
X+P2,+Pl)ßm, (3-79) 

since the potential energy is zero. In terms of the dimensionless variable η defined 
by 

KTn = lipl + p) + Pl)ßrn] -Sf = g-gf, (3.80) 

the Fermi-Dirac distribution function 

/(<?) = {exp[(«? - *F)/kBT] + 1}"x (3.81) 

becomes 

7 ( i ) = [ ^ + l ] " 1 . (3.82) 

The dummy variable in the first integral in Eq. (3.77) is/?x, and the integration is 
carried out under conditions of constant py and constant pz. If the variable of 
integration is changed from px to η in this first integral, then 

kBT άη = (px/m) dpx = vx dpx. (3.83) 

The lower limit pfee) is replaced by 

η^ = (kBT)~ ι[φ + (pi + pDßrn]. (3.84) 

Hence 

Since 

Λοο Λοο Λοο 

= dpz\ dpy (2//*3)[/ΓΒΓ dnHf» + 1)]. (3.85) 
J - oo J - oo J /ree> 

\j{f + i) = le-"/(e-' + 1)] = -(<//*/) In (iT* + 1), (3.86) 

the first integration can be carried out immediately to give 

[<*//(*" + 1)] = ln{l + e x p [ - >/(free)]}. (3.87) 
J „(free ) 

Since φ is of the order of 3 eV and kBTat room temperature is of the order of ^ 
eV, it follows that φ/k^T » 1. Also (p* + pl)ßm has some positive value, so that 
Eq. (3.84) yields the inequality ŷ(free) » 1. Denoting by δ the small exponential 
quantity involving 7/(free), 

<5 = exp[ - f / f r e e ) ]« 1, (3.88) 

the logarithm can be approximated by the first term in a series expansion, 

ln[l + (5] ~ δ, (3.89) 
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to give 
ln{l + e x p [ - >y(free)]} ~ e x p [ - >/(free)] 

= exp( - (/>/£B7>xp( -p2
y/2mkBT)exp( -p2/2mkBT). 

(3.90) 
It should be pointed out that this approximation in some way is equivalent to 
replacing Fermi-Dirac (quantum) statistics by Boltzmann (classical) statistics 
for those electrons which have sufficient thermal energy to surmount the work 
function barrier. The particle current (3.85) thereby takes the form 

7e = (2^Τ/Η3)β-φ/^τ -p2J2mkBT dpz 
e-pll2mW dpy ( 3 9 1 ) 

The remaining integrals can be cast in terms of the definite integral J, 

J= dC (3.92) 

Let us change the variable py in the first integral in Eq. (3.91) to ζ = 
py/(2mkBT)i/2, with 

Then 

i: 
άζ = dpy/(2mkBT)m. 

e-P;/2n,kBT αρ^ = (2mkBT)ll2J. 

Similarly, for the second integral let 

C^pJilm^T)1'2 

to obtain 

Γ e-P;/2n,kBT φ ζ = (2mkBT)mJ. 

(3.93) 

(3.94) 

(3.95) 

(3.96) 

Then Eq. (3.91) takes the form 

Je = {Amk\T2lhi)J2e-^kBT. (3.97) 

The value of J can be found in tables of definite integrals, or it can be 
evaluated by the following technique. Consider the quantity J2, 

J2 = e x' dx dx dy e -(x2+y2) (3.98) 

A conversion from rectangular to polar coordinates can be effected by letting 
x = r cos Θ and y = r sin 0, in which case the elemental area dstf is given by 
(rd9)dr. Thus J2 becomes 

J2 = 
o J 

e~rr dr d6 = 2ne rV dr. (3.99) 
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Changing variables again by setting r2 equal to the new dummy variable p gives 

J1 = ne~p dp = n. (3.100) 
J o 

The particle current (3.97) is therefore 

Je = {AnmklT^lh^e-^7, (3.101) 

and the corresponding charge current given by fQ = — eJe is 

fe = AT2e-^T, (3.102) 
with 

A = -4nmek2Jh\ (3.103) 

The minus sign means simply that the current is due to an electron flux. The 
result (3.102) is known as the Richardson-Dushman equation. The theoretical 
value of A deduced above in terms of the fundamental constants m, e, kB, and h is 
120 A/cm2 deg2. Experimentally, A has been found to have values extending 
from 32 for platinum (φ ~ 5.3 eV) to 160 for cesium (0 ~ 1.8 eV), with tungsten 
(φ ~ 4.5 eV) having an intermediate value of 75. This type of agreement between 
theory and experiment is remarkably good, considering the simplicity of the 
free-electron model and the experimental techniques frequently used in the past 
in making the measurements. 

PROJECT 3.10 One-Dimensional Free-Electron System 

Consider a one-dimensional free-electron model in which conduction electrons are confined to a 
line of length L. (It may aid your thinking to consider a very thin metal wire or a polymer chain.) 
1. Solve the Schrödinger equation. 
2. Apply periodic boundary conditions. 
3. Obtain energy eigenfunctions. 
4. Obtain energy eigenvalues. 
5. Solve the momentum eigenvalue equation to find the momentum eigenfunctions. 
6. Deduce the momentum eigenvalues. 
7. Derive the density of states versus wave vector. 
8. Derive the density of states versus momentum. 
9. Derive the density of states versus energy. 
10. Derive the electronic specific heat. 
11. Derive the electrical conductivity. 
12. Derive the thermal electron emission current. 
{Hint: see Chap. 1, §10.) 

5 General Method for Evaluating Statistical Quantities Involving Fermi-Dirac 
Statistics 

The purpose of this section is to introduce a more general technique for 
dealing with integrals containing the Fermi-Dirac distribution function. Such 
integrals appear frequently in expressions for the statistical properties of a metal, 
such as the specific heat treated in §2. The idea behind the general approach is to 
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convert the integral to a form containing the derivative of the Fermi function so 
that use can be made of the delta-function characteristics of this derivative. As a 
byproduct of the development, we deduce the temperature dependence of the 
Fermi energy S¥ and show that it is relatively small, as we assumed in our 
previous development of the electronic specific heat. 

Consider the integral 

z{g)K*)M, (3.104) z\ 

where z{0) is some smooth slowly varying function of S. An integration by parts 
with u = J{0) and dv = z{0) dS gives 

j = }(0)Z{£)\» - 2{g)\d}{g)ldgT\ dg, (3.105) 

where 

i: = I z(0)dS. (3.106) 

At the upper \\m\tj{£) = / (oo) = 0, while &(δ) might well diverge to oo. At the 
lower limit, J{0) ~ 1 and 2S{0) = UT(0) = 0. Thus, while there is no question 
about the zero value of the product J($)££($) at the lower limit, some additional 
examination of the value of the product at the upper limit is necessary before it 
can be judged to be zero. The easiest approach is to recognize that / (^) oc e~slk*T 

as $ -► oo, since the Fermi-Dirac distribution function in this limit is well 
approximated by the Boltzmann distribution function (cf. Chap. 2, §2.4.6). The 
integral 2£{0) typically varies as Spl2, where/? is some finite integer. The product 
J{0)3£{0) in such cases approaches zero as S -> oo in accordance with rHopital's 
rule [see Wylie (1951)] involving successive differentiation of numerator and 
denominator. Therefore Eq. (3.105) reduces to 

J = - \ %($)\d}{$)ld$~\ dS. (3.107) 

This integral has the nice feature that it involves the derivative of the Fermi 
function. The derivative differs appreciably from zero only over the energy range 
within several kBT of <fF, as can be noted in Fig. 3.6. By hypothesis, z($) is a 
slowly varying smooth function of S\ it follows that ^(S) will likewise have 
these features. An approximation for 2£(ß) valid over a region within several 
kBT of S¥ can therefore be obtained by making a Taylor series expansion [see 
Wylie (1951)] of 2(0) about <JF, 

1 d2%{0)\ 
(£-£¥)+ ' 2{0) = Χ(β¥) + 2! dS2 {0 - s¥y 

1 dn 

+ · · ·+ — — n\ 
(S - i F ) " + · · · . (3.108) 
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Abbreviating the constants (dn2£(ß)jdSn)\s = Sf by d"2£{gF)ldgn and substituting 
into Eq. (3.107) for J gives 

f00 <//(<?) , d2£(gY) f» dj{$) 
Jo dS dS Jo d* 

1 i/2^(«f F) f °° , „ „ ^ / W + 2 ^ ^ l ( ' " * ) '—*+" 
1 dn2£(g¥) f °° έ//(<ί) 

+ - ^ (g-g)*J±lde+ ·■·. (3.109) 
Λ! d»" Jo dS y ' 

The first integral on the right-hand side yields /(oo) — J(0) ~ — 1. The 
remaining integrals have the characteristic form 

jtr. = (<f - g^\dj{g)ld&\ dS 0 = 1 , 2 , . . . , « , . . . ) . (3.110) 

Furthermore, by definition of Jf(<i), 

3T(iF) = z(g)dg. (3.111) 
o 

Since in addition 
= z{S\ (3.112) 

the derivatives of 2£{$) appearing in «/ have the characteristic form, 

dJ3T(SF) dj~lz{S)\ v F ' (3.113) 

Thus 

Jo 

*-/F ^ " ! 

,,fF 1 i/z(<rF) 1 i/"_1z(^F) 
v ' v F ; ' 2 </<? 2 n\ dg"'1 

P" " 1 d"z(gF) 
= | f w <«· - z{gv)je, - Σ ^ — j j j ■*■+1 - ^ · ( 3 · ! 14> 

At this point the reader must wonder whether any simplification at all has 
been achieved, since the integral J has been expressed as an infinite series of new 
integrals. We now show that the new integrals can be expressed in terms of 
tabulated functions, and the series converges so rapidly in practice that only the 
first several terms of the sum make any appreciable contribution. 

Differentiation of 

}{g) = {exp[(<f - gF)/kBr\ + 1} -» (3.115) 
gives 

gfr>--(MV -Μ-'*κη (3,16) 
dg K B ; {expl(g - gF)/kBr\ + \}2 
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Substituting this derivative into the integral in Eq. (3.110) for J f j and making 
the variable change 

η = (£ - <$F)/kBT, άη = (k^y1 M9 (3.117) 
gives 

*i = " ( W 
η3βη 

άη. (3.118) 

For values of η less than — $F/kBT, which is of the order of - 100 at room 
temperature, the integrand is negligibly small relative to its value when η is of the 
order of unity. Thus the dependence of the value of J^j on the lower limit is 
small, and it is a good approximation to replace the lower limit by — oo. In 
addition, multiplying numerator and denominator of the integrand by e~n gives 

rf dr\ 
, ( £?"+ l ) ( e - "+ l )* 

which shows that the integrand is an odd function of 77 whenever j is odd and an 
even function of η whenever j is even. Thus 

■0 C/odd) 

^ - ( £ B r y P ° ίη | 'U\ t 1Λ, (3.119) 
J - c 

2(kBT)J 
r\> dr\ (3.120) 

0 even), o (t* + \){e-" + 1) 

so that only half of the terms contribute to the value of the series for J given in 
Eq. (3.114). 

The definite integral in Eq. (3.120) fory = 2 has the value π2/6, so that 

JT2 = - (n2ß)(kBT)2. (3.121) 

Since Jf ι ~ Jf3 Ä 0, J given by Eq. (3.114) can be approximated through 
terms of order d2z(SF)/d£2 by 

Γ Ρ π2 , άζ{βΛ 
J * \ z{£) dS + - (kBT)2 - ^ . (3.122) 

It is informative to compare this result with the original definition for J, namely, 

z(g)J(g)dg. (3.123) 

We have thus obtained an approximation to an integral over all energies in terms 
of an integral over energies below the Fermi energy and a correction term which is 
quadratic in the temperature. 

The power and beauty of this approximation technique reside in its versatility, 
due to the fact that ζ(β) can be chosen to be nearly any function which is 
physically meaningful, and thus the technique is applicable to the study of a wide 
range of statistical properties of metals. As one example of the application of this 
technique, let us now compute the temperature dependence of the Fermi energy. 
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6 The Temperature Dependence of the Fermi Energy and Other Applications 
of the General Approximation Technique 

6.1 Fermi Energy 

The technique of evaluating integrals involving the Fermi-Dirac distribution 
function which was developed in the preceding section can be employed to 
determine the temperature dependence of the Fermi energy S¥. Let us choose 
z($) to be the density of states 2g{$), so that the integral«/ as defined by Eq. 
(3.123) and approximated by Eq. (3.122) becomes the total number N of 
electrons in the system, 

f °° C*F n 2 da($ ) 
N=\ 2g{S)J{S) dS ^ \ 2g(^)d^ + -(kBT)2^^. (3.124) 

At absolute zero, J{S) = 0 above <fF(0) and J{S) = 1 below <fF(0), so that 
another expression for N is 

(VF(0) 

2g(£)d£. (3.125) N = 
o 

Conservation of the total number of particles in the system is the condition 
which determines the temperature-dependent quantity S¥. Subtracting the 
second expression (3.125) from the first expression (3.124) and dividing through 
by 2 gives 

ΐ g{S) dS 
o 

/VF(0) ,2dg{S¥) + - 7 - ( W 2 ^ y ^ - 0 , (3.126) 

or equivalently, 

- -—(kBT)2^-^-. (3.127) 
1 «MO) 

For a density of states which increases with increasing energy, as in the three-
dimensional free-electron model expression (3.22) for which g($) oc <i1/2, the 
right-hand side of Eq. (3.127) is negative. Thus for such cases the left-hand side 
of Eq. (3.127) shows that S¥ < <fF(0). That is, the Fermi energy decreases as the 
temperature is increased. (The variation of S¥ with $ would of course be in the 
opposite direction for the one-dimensional free-electron model, for which Eq. 
(1.296) gives g(S) oc S~112 so that dg{S)/dS < 0.) 

If we approximate the integral in Eq. (3.127) by considering g{$) ~ #(<iF(0)) 
over the range between $F(0) and <fF, then we obtain 

π2 , dg{S¥) 
0 [ * Ρ ( Ο ) ] [ * Ρ - * F ( 0 ) ] =* " y ( * Β Ό 2 - ^ · (3.128) 

If we further assume that dg($)/d$ evaluated at S¥ is approximately equal to this 
same derivative evaluated at <f F(0), then we obtain the following result from Eq. 
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(3.128) for the temperature dependence of $¥, 

£¥ ^ *F(0) - ^ W ) 2 {-^[ln £(*)]} . (3.129) 

Thus $¥{T) is predicted to vary with temperature as Γ2, namely, in a quadratic 
manner. 

It is of interest to ascertain the magnitude of the quadratic term with respect to 
the constant term δF(0). Using Eq. (3.25) for the three-dimensional density of 
states gives 

In g(£) = ln[(V/4n2)(2m/n2)3/2li + \ In g9 (3.130) 
so that 

{{dldi)\\n g{Sy]}i=sm = l/[2/F(0)]. (3.131) 
Substituting into expression (3.129) for S¥ gives our final result for the 
temperature dependence of the Fermi energy, 

<fF - *F(0)[1 - (π2/12){*Βϊ7/Ρ(0)}2]. (3.132) 
Recalling that kBT/£¥(0) is of the order of 0.01 at room temperature but even 

smaller at lower temperatures, one sees immediately that the quadratic 
temperature term is only of the order of 10"4 of the temperature independent 
term. Thus our assumption that the temperature dependence of the Fermi 
energy S¥ could be neglected insofar as our previous electronic specific heat 
derivation is concerned seems to be reasonably good. Approximations such as 
these are frequently tricky, however, as will be illustrated shortly. 

EXERCISE Compute and plot £¥(T) versus Tfor several metals. 

EXERCISE Evaluate the next higher order term beyond the quadratic term T2 in S¥( T) and 
estimate its magnitude relative to that of the quadratic term given by Eq. (3.132). 

6.2 Chemical Potential 

The matter of notation deserves a comment at this point. Our temperature-
dependent Fermi energy S¥ is called the chemical potential ζ by some authors, so 
everywhere we have used <fF, one could substitute ζ. This is simple enough; the 
only confusing point is that the quantity ζ(0) = $¥{ϋ) is sometimes written (cf. 
Ziman [1964], for example) as simply &¥, in which case S¥ denotes the same 
quantity as our parameter $F only in the limit of zero temperature. The terms 
chemical potential and Fermi level are generally considered to be synonyms, 
whereas the term Fermi energy is sometimes reserved for the constant quantity 
ζ(0) = <fF(0). In actual usage, however, difficulty seldom arises. This is due to the 
fact that the temperature dependence of the chemical potential is so very small. 

6.3 Electronic Specific Heat 

Let us now deduce the temperature dependence of the electronic specific heat 
using our new approximation technique, and compare the results with those 
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obtained in §2. We thus choose £(<f) to be the product of the energy $ and twice 
the density of states 2g{$), where g($) is the density of states per spin direction. 
The integral J then becomes the total energy $T of the electron system, 

$Ύ ^ [\sg{S) dS + ^ ( Λ Β Γ ) 2 | ^ [ / β ( / ) ] } · (3.133) 

The electronic heat capacity Cel is given by 
Ce] = d£T/dT. (3.134) 

If we again neglect the temperature dependence of $F, we obtain 

2n2k\T { d ) 
C e l ^ — - 5 - \ — [_£g{$)]\ · (3.135) 

·* I a ® )s = <?F(0) 

This certainly has the linear temperature dependence. Since 

{dl<tö)\ßg(g)\ = g(£) + 8\dg{S)jd&\ (3.136) 
we further obtain 

Q ~ {ln2k\ß)g{Sf{0))T + (2π24/3ΚΡ(0) φ [ ^ ° ) ] Γ (3.137) 

as an approximate value for the heat capacity. A comparison with Eq. (3.56), 
however, shows agreement only if we neglect the second term. The additional 
approximation of neglecting the second term is unacceptable, since the ratio of 
the second term to the first is 

*F(0){(<//<tf)[ln $(*)]}, .*F(o) = i (3-138) 
for the three-dimensional free-electron model. We thus obtain a specific heat 
coefficient that is apparently 50% too large. 

To illustrate that the approximation technique can nevertheless yield a result 
more in conformity with our previous derivation, let us consider the contri-
bution of the term 

/ V F 

2Sg{S)dS (3.139) 
d 

~df 

neglected above in dST/dT. Only the upper limit is temperature dependent. To 
differentiate a definite integral, we can use the Leibniz rule: 

If 
fb(x) 

φ{χ) = f(t,x)dt, (3.140) 
a(x) 

where a(x) and b(x) are differentiable functions of x, and/( i , x) and df(t, x)/dx 
are continuous functions of both x and t, then 

άφ _ p< 
dx J at 

x)df(t,x) db(x) da{x) 
dt + /[6(x), x] — fla(x), *] —1—. (3.141) 

x) dx dx dx 
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f(x,t) 

a(x+Ax) 

Fig. 3.9 Diagram representing the three contributions represented in the Leibniz rule for 
differentiation of an integral. [The area φ(χ) given by φ(χ) = ß£j/(jc, i) dt under the curve/(JC, /) 
vs / will change when x is increased by an amount Ax because of (i) the change Αφχ introduced by 
shifting the curve/(x, /) to the new curve f(x + Ax, t), (ii) the change Αφ2 introduced by shifting the 
upper limit from b(x) to b(x + Ax), and (iii) the change Αφ3 introduced by shifting the lower limit 
from a(x) to a(x + Ax).] 

The contribution of each of the three terms on the right-hand side is indicated 
schematically in Fig. 3.9. 

In our case, the lower limit in Eq. (3.139) is zero and the integrand is not a 
function of T, so that 

d 

Using expression (3.129) 
dT 

~6 ,F _ *F(0) - '- (kBT)2i — [In g{Sy\ 
S = S?((S) 

gives 
dSf - π2!ζ2τϊ 1 dm~ 
dT~ 3 B U(S) dS \ t . t m 

(3.142) 

(3.143) 

(3.144) 

Substituting this result into Eq. (3.142) and assuming g($¥)/g($F(0)) Ä 1 and 
<TF ̂  <TF(0) gives 

f*F daXS (0Y\ 
2Sg{S) dS^ - \v.2k\TS^) yL fy U . (3.145) 

d 
dT 

This contribution is equal in magnitude but opposite in sign to the second term 
in Eq. (3.137) for Cd, so that it cannot be neglected if the approximation is to be 
valid. Thus we are left with only the first term which agrees exactly with our 
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earlier derivation. This perhaps is not too surprising when we remember that 
both terms in (3.133) involve the temperature dependence of the Fermi energy 
<fF, which effect was neglected entirely in the first derivation (§2). This does serve 
to give us some confidence that our derived specific heat is accurate through 
terms quadratic in the temperature. 

EXERCISE Evaluate the Γ3 term in the electronic specific heat, and estimate its magnitude 
relative to the linear term. 

PROJECT 3.11 Free-Electron Metal with a Twist 

A hypothetical material, made up of long linear chains of silver atoms with a lattice constant 
a0 = 2.56 Ä, was used to construct a perfectly reflecting cubic cavity with walls one atomic layer in 
thickness. The separation between chains making up the walls was 3a0. The intrachain long-
wavelength acoustic group-velocity vu for the transverse waves was found to have the value 1590 
m/sec while the corresponding velocity vu for the longitudinal wave had the value 3600 m/sec. On the 
other hand, the interchain group velocities were found to be very nearly zero. Experimental 
measurements at the reststrahl frequency v0 of Csl (molecular weight = 259.83) showed the ratio 0t 
of the total lattice vibrational energy density at v0 in the walls of the cavity to the total radiant energy 
density at v0 in the cavity to be 1.182 x 109. The interatomic force constants in Csl can be considered 
as a first approximation to be the same as those in CsCl (molecular weight = 168.37), which has an 
experimentally measured absorption maximum at 102.0 microns. The ratio of the molecular weights 
of I2 and Cl2 is 3.58. 

The cavity was then filled with a mole of lithium atoms, which condensed into a simple cubic free-
electron metal occupying the entire cavity, each atom donating a single electron to the conduction 
band. A previous series of photoemission experiments showed the bottom of the conduction band to 
lie 7.03 eV below the vacuum level. An electric field of 106 volts/cm was maintained while extracting 
electrons from the metal at a temperature near 0°K. Assuming the electron tunnel current to be 
f(E0) = I(E0)3~, where I(E0) is initially 120 A/cm2 sec at E0 = 106 V/cm, and 9~ is the transmission 
coefficient, deduce the numerical value of the time t' necessary to deplete the metal of 30% of its 
electrons, assuming that an immobile negative charge replaces each conduction electron extracted 
from the metal. 

Next, compute numerical values for the total electronic specific heat for this metal at 160°C and 
the corresponding change in the Fermi energy from its 0°K value. [Hint: See R. A. Smith (1963).] 

7 The Boltzmann Equation 

7.1 Derivation for Quantum Electron System 

The simple approach used in §3.3 to derive Ohm's law and the electrical 
conductivity was remarkably successful. A more sophisticated approach to 
transport phenomena in general and electrical transport in particular is the 
Boltzmann equation. Since this equation is used widely in the literature and has 
great utility for many different applications, it is worthwhile for us to develop an 
understanding of it. 

Let / (k , r, t) be the probability at time t of occupation of the state 
corresponding to the wave vector k at a point in the crystal given by the position 
vector r. When we consider the variation of/with r we are concerned only with 
variations which are very small over distances of the order of a lattice spacing. 
Wave functions corresponding to a definite momentum p and a definite value of 
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k = p/Ä may then be specified locally in the crystal. The spatial variation allows 
for inhomogeneities in the crystal (such as impurity gradients) and also for 
temperature variations across the sample. Since the occupation probability 
7(k, r, t) considered herein is a more general quantity than the Fermi-Dirac 
function J($) derived in Chap. 2 for a spatially uniform system of electrons in 
thermal equilibrium, / (k , r, t) will be referred to generally as the distribution 
function. Under conditions of thermal equilibrium (where there will be zero 
current), the distribution function will be written as/0(k, r, i). It is well to keep in 
mind that for a spatially uniform system in thermal equilibrium, the occupation 
probability must be given by the Fermi-Dirac function J(S) = 
{exp[(<f - S¥)/k^T\ - 1}" ί derived in Chap. 2, so that/(k, r, 0 ->/(<f) in this 
limit. The dependence upon k reduces to a dependence on & in this case, in 
accordance with the free particle energy-momentum relation $ = p2/2m = 
h2k2ßm. 

In thermal equilibrium, the probability J($) = J(h2k2ßm) that a state with 
wave vector k is occupied is the same as that of a state with wave vector — k, so 
that no transport takes place. In order to have transport of charge (electrical 
conduction) or transport of energy (thermal conduction) the distribution must 
be modified to a nonequilibrium value by electric or magnetic fields or 
temperature gradients. We will see how this is done shortly. 

The equation 

F = dp/dt = h dk/dt = hi (3.146) 

was used in §3 in the derivation of Ohm's law; it tells us the effects produced on 
the k vector of a conduction electron by an externally applied force F. An 
electron which at time t has the position r and momentum p = m\ will at the time 
t — dt have had the position r — dr = r — \dt and the momentum p — dp = 
hk — F dt, and similarly at the time t + dt it will have the position r + dr = 
r + \dt and the momentum p + dp = hk + F dt. Let us focus our attention upon 
the occupation of the energy levels in an element dQphase space = dr dp = 
(dxdydz)(dpxdpydpz) of phase space. Using our assumption of slowly varying 
spatial variations in composition or temperature, we can conclude that the 
density of states, the Fermi energy and the equilibrium occupation probability/0 
will vary insignificantly over the differential distances dx, dy, and dz in question. 
The time dependence of the occupation probability / (k , r, t) can therefore be 
deduced directly from the time dependence of the electron density in the element 
^phase space· An equation of continuity can be invoked for the 6-dimensional phase 
space as readily as for the flow of particles and the buildup of particle densities in 
real space (Chap. 1, §9). The time rate of change of the occupation probability 
within the element Ä2phaseSpace at a given position r, p of phase space is given by the 
difference between the inflow and the outflow of particles into this element. 
Consider first of all a particle density n{x) which varies spatially in some manner, 
such as illustrated in Fig. 3.10. 

We speak of particle densities because this is easier to visualize than 
occupation probabilities, but such a view is strictly correct only if all particles 
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n(x) 

3n(x) ^ n 

• Bx 

< 0 

dx 

/Ϊ0. 3.70 Particle density variation with position x. 

have the same velocity, i.e., a velocity corresponding to a given value of k. In the 
more general case of a density of particles having a range of velocity vectors, the 
quantity n(x) must therefore represent a particle density per unit volume per unit 
k-vector range at a specific k vector and at a specific position r. Thus we could 
write n(x) = /(k, r)#(k, r) dk, where g is the density of states at a specific k vector 
for the system at the spatial position r. We then implicitly make the assumption 
that g(k, r) is at most a slowly varying function of k and r on a microscopic scale 
so that its variation can be neglected in setting up the equation for local particle 
balance. If dn/dx < 0, as indicated by the solid curve in Fig. 3.10, then for 
positive velocity vx there will be more particles entering the region dx during a 
time increment dt than are leaving the region. This is due to the fact that there are 
more particles at distance vx dt to the left of the position x than at position x, so 
that in time dt more particles move into the region dx than move out of this 
region. Thus the time dependence of n(x) due to the particle velocity vx is 

«̂WLproduced = - P ^ ] dx=- p ^ J vx dt, (3.147a) 

since the particles move a distance dx = vx dt during the time increment dt. The 
negative sign assures us that dn(x)/dt is positive when vx is positive and dn(x)/dx 
is negative. On the other hand, if dn(x)/dx > 0, as indicated by the dashed curve 
in Fig. 3.10, then for positive velocity vx there will be fewer particles entering the 
region dx during a time increment dt than leaving the region, corresponding to a 
negative value of dn(x). Therefore the above expression (3.147a) is also 
applicable to this case. Similarly, a reversal in sign of vx in Eq. (3.147a) reverses 
the sign of dn{x), in agreement with what one expects physically. These 
considerations are independent of the specific choice of x, holding equally well 
for negative values of x as for positive values of x. This is evident mathematically 
from Eq. (3.147a) which involves the coordinate x only in the derivative [i.e., in 
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the slope dn(x)/dx']. If we now consider the variation of the electron density in the 
y direction or the z direction also, we must substitute n(r) = n(x9 y, z) for n(x). It 
is evident that, aside from replacement of the coordinate x by the appropriate 
variable y or z, the same general results follow in the same straightforward way. 
Thus we can write a generalization of (3.147a), 

A(r)|. v produced 
dn(r) 

dx 
dx 

dn(r) , dn(r) , 
y-dy- —^- dz= - |T/i(r)] · dx dy dz 

= - [F/i(r)] · v dt = - v · [F/i(r)] A, (3.147b) 

where V = x d/dx + y d/dy + z 3/δζ is the gradient operator and dr = x dx + 
y dy + z dz is the incremental vector distance. 

Because the occupation probability changes directly as the electron density, as 
argued above, we can write analogously 

d?(Kr,t)l produced - U / (k , r, 0] ' v dt = - v · [|7/(k, r, *)] dt. (3.147c) 

In a somewhat analogous way, the number of electrons in dQphase space having 
momentum in the range p to p + rfp is changing with time because of applied 
forces F. Figure 3.11 constitutes a sketch of the number of electrons per unit 
volume per unit momentum range as a function of momentum px in the x 
direction, assuming fixed values for py and pz. The sketch for positive px looks 
much like the plot of the Fermi-Dirac function (see Fig. 2.4) because ^(p) = l/h3 

which is independent of px, and the thermal equilibrium distribution function/0 
varies as & = (p2

x + p2
y + p2)/2m in the free-electron model. The negative px 

domain is a reflection of the positive domain since ${ — px) = $(px). At a 
particular value of px such as indicated in Fig. 3.11, note that the slope of 
2^(p)7(/?x) is negative. A force Fx that tends to increase px in the positive 
direction takes the particles at momentum px to a new momentum value 

Fig. 3.11 Variation of the number of electrons «(p) per unit volume with x momentum px, 
assuming fixed values for the y and z momentum components. (The electron density «(p) is given by a 
product of the density of states 2^(p) with the occupation probability 7(<f); the factor of 2 is due to 
the two allowed values of the electron spin quantum number.) 
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Px + dpx = px + Fx dt in a time dt, thus depleting the region dpx at/?x. However, 
the force simultaneously brings even more particles into the region dx, since Fig. 
3.11 shows the density at px — dpx to be greater than the density at px. Thus 

[ dn(px) 

L dPx ] 
dpx= - \ — ^ - \FX dt. (3.148a) 

Considering the other momentum components/^ and/?z analogously, we arrive 
at the conclusion that 

A(P)I: F produced Έ^'-m^-m^ L dpx J 

= ~ U P K P ) ] · F A = - F · [ΓρΛ(ρ)] A. (3.148b) 

The symbol Fp denotes the operation x d/dpx + y d/dpy + z 3/<9/?z, and since 
p = nk, we can also write Vp = n~1Vk, where Vk = x d/dfcx + y d/d&y + z ö/ö^z. 
The occupation probability varies directly as the electron density because ^(p) is 
uniform, so that we can write 

dJ(K r, 0IFeduced = " [*_' VJQL9Γ, 03 · F dt = - F · [*"1 VJQL,r, /)] dt. 

(3.148c) 

In addition to the forces and velocities considered explicitly above, there are 
collisions of the electrons with point defects, lattice vibrations, and other similar 
deviations from perfect lattice periodicity, and such collisions tend to bring any 
given nonequilibrium occupation probability / (k , r, t) towards its thermal 
equilibrium value which we denote as 7o(k, r> 0· ^n t n e absence of either an 
applied force F or a spatial gradient r/(such as could be produced by an electric 
field or a temperature gradient, respectively), the collisions will eventually return 
the electron system to its thermal equilibrium state. In addition, a nonzero F 
and/or a nonzero P/can be counterbalanced continuously by the collisions such 
that macroscopically there will be no discernible time dependence of/. This latter 
situation is denoted as the steady state. In any case, a contribution d/(k, r, OLn 
must be included when writing the total variation of/(k, r,/) over a time 
increment dt. 

The total time rate of change of the distribution function can therefore be 
written as the sum of the various contributions discussed above, 

<//(k,r,0/A = dRKr,t)/dt\con - ή-'F · Vj(k9r,t) ^ ν · P/(k,r,0 

(the Boltzmann equation), (3.149) 

where we have used Eqs. (3.147c) and (3.148c) and the collision term. This result, 
known as Boltzmann 's transport equation, is the fundamental equation govern-
ing all transport phenomena. 
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7.2 Limiting Cases 

In the steady-state limit there is no observable time dependence of/, in which 
case djjdt = 0 and we obtain 

(<3//<30Li = h~l?-Vj+yVj (steady-state limit). (3.150) 

If the external fields, temperature gradients, and similar spatial inhomo-
geneities are removed from the sample, the distribution will relax back to 
thermal equilibrium. The rate of relaxation will depend upon the efficiency of the 
collision mechanisms in bringing about an equipartition of kinetic energy of 
motion in the three spatial directions. As a simple case, we could assume that the 
rate of relaxation is directly proportional to the deviation from equilibrium, 

(^Ocon = - ( 7 - / o ) A , (3.151) 

corresponding to a time dependence given b y / = / 0 + [(7initial
 — 7o)]exp( — t/τ) 

in the absence of forces. In this expression,/0 represents/at thermal equilibrium, 
and τ is some characteristic relaxation time. This approximation has some 
validity if the departure from thermal equilibrium is not too great. (In real 
nonisotropic crystals, however, there is little justification for assuming τ to be a 
scalar quantity.) 

Under the approximation (3.151), the steady-state Boltzmann equation 
(3.150) becomes 

- (7 -7o)A = * - x F · Vj+ v · Vj (3.152) 

or equivalently 
7 = 7 o - ^ - 1 T F - | 7 k 7 - T v P 7 . (3.153) 

For a homogeneous crystal at constant temperature, 7is independent of r, in 
which case 

7 = 7o — ή~1τ¥ · Pk7 (homogeneous medium). (3.154) 

Fo r /nea r enough to/o? we can approximate Eq. (3.154) by replacing FV7by 
rjo, 

? = ?o-fi-1TF-Vj0. (3.155) 

However, 7o is a function of $ = S{kx, ky, kz), so 

dkX dky dkz 

kJ0 dS\dkJ ' dS\dky) dg\dkj \dS) 

The dispersion relation <f (k) for the free-electron model follows from $ = 
p2/2m = h2k2/2m, 

S = (fi2/2m)(k2
x + k2 + k2), (3.157) 
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in which case 

Vv$ = n2k/m = hp/m = *v, (3.158) 

where v is the electron velocity for a filled state characterized by the wave vector 
k. Thus 

Vjo = {dj0/d£)hy, (3.159) 

and substituting this result into the above expression (3.155) for/gives 

T*fo-x{dJ0ldg)Y-y. (3.160) 

The Boltzmann equation thus has led us to an approximate expression for the 
occupation probability for a system of particles which obey a free electron 
dispersion relation and which are acted on by an applied force F. 

7.3 Electrical Conductivity 

As a specific example, consider the force F to be due to an applied electric field 
in the x direction, E = Exx. Then F = — eExx gives the force acting upon each 
electron, and F · v = - eExvx. Substituting into the above expression (3.160) for 
7 gives 

J^J0 + xeExvxdJ0/d£. (3.161) 

Considering the quantum free-electron model, the density of states w(k) in 
momentum space per direction of spin per unit volume of the metal is 1/8π3 [Eq. 
(3.16)]. The particle current density Jx in the x direction is 

/ , = \2w{k)Jvxdk, (3.162) 

where the factor of 2 takes into account the two spin directions per allowed k 
vector. That is, 2n^(k)/gives the density of occupied electronic states at k, and 
2w(k)Jdk gives the number of electrons in the element of volume dk in wave 
vector space. The product of this number and the corresponding velocity 
vx = pjm = hkjm in the x direction gives the x component of the current 
density contribution due to this group of electrons, which when integrated over 
all of k space yields the total current density Jx in the x direction. Substituting 
our expression (3.161) for/into this integral and using the value 1/4π3 for 2w(k) 
gives 

Jx = (4π3) 3 \ - l vx(To + τβΕχυχ dJ0/dS) dk. (3.163) 

For the free-electron parabolic dispersion relation ^(k) = h2k2ßm, we have 
<f(k) = $( — k). This follows from Eq. (3.11). For every allowed state k, there is a 
degenerate state with wave vector — k. (See Fig. 3.12.) The thermal equilibrium 
distribution function/0 for electrons in a homogeneous metal is the Fermi-Dirac 
distribution function, which gives the same occupation probability for states 
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e(k) 

l l l l l l l l l l l l lH l l l l l lH l lHHlUl l l l l l l l l l l l l l l l l I k 
0 

Fig. 3.12 Energy eigenvalues < (̂k) as a function of wave vector k for the free-electron model. 
[The, discrete values of k follow from the application of periodic boundary conditions to the three-
dimensional solid; the energy eigenvalues then follow from Eq. (3.11), namely, $ = h2k2ßm.~] 

with the same energy. Thus vxJ0 = (h/m)f0kx is an odd function of kx, and this 
portion of the integrand gives no contribution to the value of the above integral. 
Hence 

Λ = (4π3)-χ xeExv
2
x{dJ0/di) dk. (3.164) 

The factor eEx is independent of k, but the relaxation time τ in general will 
depend on k. For an isotropic crystal, this will reduce to a dependence on |k|, 
which in the free-electron model is equivalent to an energy dependence τ = τ(<ί), 
since $ = h2k2ßm for this model. 

The triple integral over dk in Eq. (3.164) can be simplified to a single integral 
over d\k\ by expressing dk in spherical polar coordinates and performing the 
integrations over the Θ and φ coordinates. That is, dk = k2 sin Θ dk d6 άφ, where 
k indicates |k|. This, however, is easily converted to an integral over the energy by 
using S = h2k2/2m. 

Thus k2 = ImS/h2, so that 

dS = (fi2k/m) dk, (3.165) 

dk = dlfi-\2m£y/2] = h-^ilmSy112 dS. (3.166) 

This leads to 

dk = k2 sin Θ dk άθ άφ = {IrnS/h2) sin Θ (rn/h)(2m£) ~γι1ά$άβάφ 

= (m/ß3)(2m<f)1/2sin0 J0#</<i. (3.167) 

The velocity vx = px/m = hkjm can likewise be obtained by resolving k into 
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spherical polar coordinates, 

vx = (h/m)kx = (h/m)k sin Θ cos φ = m~1(2mS')1/2sin Θ cos φ. 

Substituting Eqs. (3.167) and (3.168) into Eq. (3.164) for Jx gives 

(3.168) 

djo 
{S sin20 cos20)(<T/2 sin Θ dS άθ άφ) 

\2mß2Yl2eEx 

4n3m 

(2mß2)3l2eEx 

3n2m 

x{£)g*l2{-^A d$ \ sin30</0 cos2</># 

(3.169) 

The integrations over φ and Θ in Eq. (3.169) were carried out to obtain factors of 
π and f, respectively. We note from Eq. (3.169) that the current density Jx is 
linearly related to the electric field Ex, so that the deduced dependence is in 
accordance with Ohm's law. Defining the conductivity σ by fx = — eJx = σΕχ, 
we thus obtain from Eq. (3.169) the following result for the electrical 
conductivity, 

σ = 
-(2m)3/2e2 

3n2mn3 i>w(i> (3.170) 

This expression can be simplified for metals by recalling that the energy 
derivative of the Fermi-Dirac distribution function is almost zero everywhere 
except within the narrow band of energies within several multiples of kBTof the 
Fermi energy S¥. Since τ{$) and $3/2 do not vary sharply over such a small 
energy range, the product -r(<f)<f3/2 can be replaced by x(ß^)Sf in Eq. (3.170) 
without modifying the value of the integral significantly. The product τ{β^ψ 
can then be removed from the integral. Since in addition 

Π: djo = 7 o ( a > ) - 7 o ( 0 ) * 0 - l = - l , (3.171) 

we thus obtain 
σ * l(2m)3/2e2T(^F)^2/3n2mn3l (3.172) 

This result becomes more and more exact at lower temperatures, since dJ0/dS 
approaches the negative of the Dirac delta function 
ture approaches zero. 

S¥) as the tempera-

PROJECT 3.12 Boltzmann Equation with a Magnetic Field 

1. Apply the Boltzmann equation to the case of a homogeneous solid at a uniform temperature in 
the presence of stationary electric and magnetic fields. In particular, deduce the current for the 
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situation in which the magnetic field is along the z direction and the electric field is in the xy plane, 
and from this result derive the Hall coefficient. 
2. Derive the magnetoconductivity tensor. 

PROJECT 3.13 Boltzmann Equation with a Temperature Gradient 

Apply the Boltzmann equation to the following situations: 
1. Electrical transport in a spatially homogeneous metal at a uniform temperature. 
2. Electrical and thermal transport in a spatially homogeneous metal with a uniform temperature 
gradient. 
3. In Part 2, solve for the electronic contribution to the thermal conductivity for the case of blocking 
electrodes. 
4. Solve for the Lorentz ratio, the Lorentz number, and justify the Wiedemann-Franz law. 
5. Deduce expressions for the Thomson coefficient and the absolute thermoelectric power. 
6. Give descriptions of the Ettingshausen, Nernst, and Righi-Leduc effects. 
[Hint: See Smith (1963).] 

7.4 Mean Free Path 

The conductivity as derived above is not exactly the same expression which 
was previously obtained [Eq. (3.73)] using the simpler approach; however it can 
be converted to a closely analogous form. The electron density n = N/V is 
related to the Fermi energy Sv by Eq. (3.29), which gives 

Sf = (Λ2/2ηιγ/23π2η. (3.173) 

Substituting this evaluation of $ψ into expression (3.172) for σ gives 

σ = ne2T(£F)/m, (3.174) 

which is identical to Eq. (3.73) with the exception that the relaxation time at the 
Fermi surface replaces the average (or effective) relaxation time introduced in 
the simpler approach. This shows that it is actually the relaxation time at the 
Fermi surface which is important in limiting the conductivity. The electrons 
deeper within the Fermi sphere have no adjacent empty states into which they 
can be scattered. The mean free path /e between scattering events thus will be 
determined by τ(&F) in accordance with 

/e = i;FT(iF), (3.175) 

where vF is the magnitude of the velocity at the Fermi surface. 
This special example of the use of the Boltzmann transport equation is 

sufficient to illustrate the approach. It is a powerful and general technique which 
can be used for semiconductors as well as metals. It can be used to treat heat 
conduction as well as electrical conduction, and the effects of externally applied 
magnetic fields on thermal and electrical transport can be included. The 
Boltzmann transport equation is not restricted to the free-electron model, since 
it can be applied readily to a solid with an energy band structure. 
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PROBLEMS 

1. Write a short essay on the quantum-mechanical free-electron model for metals. Describe the 
model, discuss the approximations involved relative to a real metal and list the successes of the model 
relative to classical theory. 

2. A particle is confined to a three-dimensional cubic potential-energy well 1 m on a side with 
infinitely high barriers. Compute its ground-state energy and the energy of the first five excited 
states. (Choose a coordinate system in which the box lies inside the first quadrant, with the origin of 
the coordinate system at one corner of the box.) 

3. In Problem 2, estimate the probability in each of the states that the particle is within a 1-cm3 

element of volume centered at position r = 0.25x + 0.25y + 0.25z in units of meters. 
4. Determine the degeneracy of the five lowest energy levels for a particle in a three-dimensional 

cubic potential well with infinitely high walls. 
5. Determine the energy expectation values for a particle in a three-dimensional well of infinite 

depth for the free-electron model. 
6. (a) Determine the momentum expectation values for a particle in a three-dimensional potential 

well of infinite depth for the free-electron model, (b) Also determine <p2>. 
7. Red light having λ = 6300 A is found to be of the correct energy to promote an electron in a box 

(viz., infinite square-well potential) from the ground state to the first excited state. What is the largest 
dimension of the box? 
8. (a) Give the differences between electron-electron collisions as predicted classically and 

quantum mechanically, (b) State and justify the reasons for these differences. 
9. Explain how the Fermi-Dirac distribution function in quantum statistics leads directly to the 

prediction of electron speeds in metals within one or two orders of magnitude of the speed of light. 
10. Compute the Fermi energy $¥ for Cu, Ag, Au, Na, Li, K, Cs. 
11. Compute the Fermi wavelength λ¥ for Problem 10 above and compare with the lattice spacing d. 
12. Show that the average energy per electron at 0°K is <<̂ > = f<^F(0), where <fF(0) is the Fermi 
energy at 0°K. 
13. Find the density of states per unit energy range at the Fermi energy for sodium. Assume that the 
free-electron model holds. 
14. How many electrons per unit volume occupy energy states within 0.5 eV of the Fermi energy in 
sodium at 0°K? 
15. Determine the electronic specific heat of copper at T = 300°K. (Assume one carrier per atom.) 
16. Calculate the specific heat for an electron gas with Fermi energy 7 eV, and compare it with the 
specific heat for a corresponding system of particles obeying classical statistics. 
17. What is the room temperature heat capacity of an electron cloud containing 6 x 1022 electrons 
which has an effective Fermi temperature of 37,000°K? 
18. (a) Assume lithium follows the FEM closely. Calculate the Fermi energy of lithium at 27°C. Also 
calculate the Fermi velocity, (b) Calculate the electronic specific heat for lithium at 300°K. (c) 
Assuming the Fermi energy calculated in Part (a) for lithium is correct at absolute zero, obtain the 
Fermi energy at 300°K and 6000°K using the equation derived using the approximation technique. 
19. Calculate τ(^ρ), the relaxation time at the Fermi surface, for (a) copper, (b) gold, and (c) zinc. 
20. Use the relaxation time approximation to find the conductivity of «-type silicon doped with 
1 x 1018 donor atoms/cm'3. Assume τ„ = 10"1 0 sec. 
21. In the free-electron model how would you expect the resistance of a metal to change with respect 
to temperature? Why? 
22. A filament in a vacuum tube is made of thoriated tungsten. In operation the filament reaches a 
temperature of 1600°K. Assume the electron emission is not space-charge limited and that no 
reflection occurs at the metal-vacuum interface. If the filament is 2 cm long and has a diameter of 
0.02 cm, what electron emission current leaves the filament? 
23. Deduce the thermionic current for tungsten wire with 0.1 cm2 surface area at 1727°C. 
24. The cathode of a diode has an area of 0.1 cm2 and is operated at 1140°C. If a current of 1 A is 
emitted, what is the work function? 
25. A certain metal when heated to 1000°K produces a current of 3.2 x 10~ 2 A/cm2. Determine its 
electronic work function. 



2 3 6 QUANTUM FREE-ELECTRON MODEL [Chap. 3] 

26. Evaluate the following integrals using the general approximation technique: 

/ = z(g)J{£) d$, 
J o 

where J{£) is the Fermi probability function, and (a) z(S) = ASV1 with A = const, (b) 
z{£) = Ae~S,k*T with A = const. 
27. (a) Does the Fermi energy increase or decrease with a temperature increase in the three-
dimensional free-electron model? (b) What is the approximate fractional change of $¥ as the 
temperature goes from 0°K to room temperature? 
28. Assume the function G(x) = (l/5n2)(2m/n2)3l2(kBTx + <fF)5/2. (a) Show that the integral 
obtained by substituting dG{S)/dS for z{$) in Problem 26 gives a representation of <^>. (b) Compute 
<<̂ > in series form through two nonzero terms, (c) Compute the electronic specific heat Cel for 
Γ > 0 ο Κ . 
29. How would one proceed to calculate the approximate energy necessary to raise the temperature 
of a neutron star by an order of magnitude? (Assume we know its mass and its very high density.) 
30. For a one-dimensional FEM, do the following: (a) Set up the Hamiltonian. (b) Write the 
Schrödinger equation, (c) Solve for the eigenfunctions. (d) Solve for the eigenvalues, assuming 
periodic boundary conditions, (e) Compute the density of states w(k) as a function of wave vector 
and the density of states ^(p) as a function of momentum, (f) Compute the density of states g{ß) as a 
function of energy, (g) Compute the Fermi energy $¥ as a function of electron density n. (h) Compute 
the electronic specific heat, (i) Compute the electrical conductivity, (j) Compute the thermal emission 
current. 
31. Repeat Problem 30 above for the two-dimensional free-electron model. Consider unequal 
lengths Lx, Ly for the potential well in the Λ: and y directions. 
32. (a) Compare the derived results for the one- and two-dimensional free-electron models obtained 
in Problems 30 and 31. (b) Tabulate results for the one-, two-, and three-dimensional free-electron 
models, noting especially the differences in the functional dependence of the density of states g(£) on 
energy S. 
33. (a) Derive the average energy per electron for a nondegenerate free-electron gas at a finite 
temperature, (b) Derive the formula for the energy per unit volume for electromagnetic radiation in a 
cavity as a function of frequency and temperature. 
34. (a) List the two primary contributions to the specific heat in a metal, (b) What is the 
experimentally observed temperature dependence of each component? 
35. (a) Derive the screened Coulomb potential appropriate for a test charge immersed in a metal, (b) 
Define: (i) Screening length, (ii) Bare Coulomb potential, (iii) Screened (or "dressed") Coulomb 
potential, (iv) Friedel oscillations. 
36. (a) Show, starting with the Boltzmann transport equation and using the relaxation time 
approximation, that the electrical conductivity of a homogeneous semiconductor, viewed as a 
Boltzmann gas of free electrons and holes, can be written as σ = β{ημη + ρμρ). The parameters μ„, μρ 

are the "mobilities," which represent the average drift velocity per unit applied electric field for 
electrons and holes, (b) Evaluate μη and μρ in terms of the relaxation times τ„ and τρ. 
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Approximation Techniques for the Schrödinger 
Equation 

C H A P T E R 4 

THE WKB APPROXIMATION AND ELECTRON 
TUNNELING 

Once an electron is represented by the wave function, it penetrates into a classically 
forbidden region, andean tunnel through a reasonably thin potential barrier without any 
real "tunnel" L. Esaki (1967) 

1 Development of the WKB Approximation 

The Schrödinger equation is difficult to solve unless the potential energy U(x) 
has some particularly simple form, so approximation techniques are frequently 
useful. Perturbation techniques, variational techniques, and the WKB approxi-
mation are all well-known tools in quantum mechanics. This section is 
concerned with the development of the Wentzel-Kramers-Brillouin (WKB) 
technique. 

Consider the one-dimensional time-independent Schrödinger equation as 
obtained from Eq. (1.130), 

ά2φ/άχ2 + (2rnlh2){£ - ϋ)φ = 0, (4.1) 

where U = U(x) is the potential energy and $ is the total energy of the particle in 
question. Let 

k{x) = [_(2mlh2){£ - *7)]1/2. (4.2) 

Whenever S < U, k is imaginary; in such cases we can replace k by ίη(χ), where 
η(χ) is real. Regions for which k(x) is real are called classically allowed regions, 
while regions for which k(x) is imaginary are called classically forbidden regions. 
The following mathematical development is valid for both cases. 

Whenever U is a constant the eigenfunctions are of the form φ(χ) = 
A exp( + ikx), with A equal to a constant, as can be verified immediately by 
substitution into the Schrödinger equation. Suppose U is not a constant, but 
instead varies slowly with x. Then the eigenfunctions should be nearly plane 
waves. Instead of the form exp(±/fejc), let us choose exp[/w(x)], where w(x) 

237 
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approaches ±kx in the limit where U is a constant. If 

φ(χ) = A exp[/w(ji)], (4.3) 
then 

άφ/dx = ίφ dw/dx, (4.4) 

ά2φ/άχ2 = iW(dw/dx)2 + φ d2w/dx2). (4.5) 

By substituting into the Schrödinger equation, 

ά2φ!άχ2 + Ρφ = 0, (4.6) 
we obtain 

- φ{ά\ν/άχ)2 + ϊφ d2w/dx2 + Κ2φ = 0. (4.7) 

Dividing through by φ then gives us the following equation 

i d2w/dx2 - (dw/dx)2 + lk(x)Y = 0. (4.8) 

This alternate to the Schrödinger equation is nonlinear and therefore generally 
difficult to solve exactly; however, it provides a good basis for an approxi-
mation. In the limit in which U is a constant, w = ± kx, with k independent of x. 
Then dw/dx = ±k9 and d2w/dx2 = 0. Therefore in cases for which U(x) varies 
slowly with x, d2w/dx2 can be expected to be relatively small, though not zero. 
Equation (4.8) can then be approximated by 

(dw/dx)2 - [k(x)]2. (4.9) 
Thus 

dw/dx ~ ±k(x\ (4.10) 

d2w/dx2 ~ ±k'(x\ (4.11) 

which must therefore be small. (The prime denotes differentiation with respect to 
x.) Integration of the above expression for dw/dx gives 

ί w - ± k(x)dx+ r0, (4.12) 

where Y0 is a constant of integration. Let this approximate value of w be 
designated by w0, 

H>o = ± k(x)dx+Y0, (4.13) 

which represents the first in a sequence of successive approximations to w. 
Rearranging Eq. (4.8) in the form 

(dw/dx)2 = [&(JC)]2 + / d2w/dx2 (4.14) 

leads to 

dw/dx = ± {lk(x)Y + i d2w/dx2}112, (4.15) 
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so that 
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W(x) = ± {lk(x)Y + i d2w/dx2}1/2 dx + Γ, (4.16) 

where Y is an appropriate constant of integration to be determined from 
normalization of the wave function. Using w0 as the first approximation to w 
leads to 

WI(JC) = ± {[k{x)~\2 + i d2w0/dx2}112 dx + Yx. 

This in turn can be used to obtain 

w2(x) = ± {[_k{xy]2 + i d^Jdx2}112 dx + Y2. 

This can be continued as far as necessary; in general we can write 

wn+l(x)= ± {[_k(x)-]2 + iw:(x)y2dx+Yn+u 

where the prime means differentiation with respect to x. 
Since 

W0 = ±k{x\ 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

WQ = ±k'(x), so that 

Wl(x) = + {[^(JC)]2 ± ik'(x)}112 dx + rle (4.21) 

Convergence requires that each successive approximation must not deviate too 
markedly from the preceding approximation. From a comparison of w0(x) and 
Wi(*), we see that this requires 

| + A: ' (x) |«P(x)]2 | . (4.22) 

Thus, the binomial expansion can be used to approximate the square root in the 
integral in the following form of w^x), 

wi(x) = ± 
k'(x) ) 1 / 2 

(4.23) 

Since (1 ± δ)1/2 ~ 1 + \δ whenever δ « 1, we obtain 

wax) ~ ± k(x) dx -f 
*k'(x) 

dx+ Yi 

+ I - ] 1ο&[*(χ)] ± 

k(x) 

k(x)dx+ Yx. (4.24) 



240 WKB APPROXIMATION; ELECTRON TUNNELING [Chap. 4 

This expression is referred to as the WKB approximation. The stationary-state 
eigenfunction is given by 

φ = A exp[/w(x)] ~ A βχρ[/ΗΊ(χ)], (4.25) 

so that 

φ ~ A exp(i¥i)<exp ± ik(x) dx M exp<|/(^)loge[A:(x)] 

Ä k(x)'U2 exp + / k(x) dx Π' (4.26) 

where A is determined from normalization of φ. The wave function ψ(χ, t) is 
given by the product of φ(χ) and the usual time factor exp( — ίωί) resulting from 
a separation of variables in the time-dependent Schrödinger equation. Thus 

φ(χ, t) ~ Ak(x) m exp ±i k{x) dx - icot (WKB wave function), 

(4.27) 

where ω = S/h. When k(x) is real, the position dependence of this function is 
oscillatory; whenever k(x) = ίη(χ) is imaginary, the position dependence of this 
function is exponential. It is worthwhile to note that the exponential portion 
represents the lowest order approximation to the wave function, whereas the 
pre-exponential factor k(x)~1/2 is the first-order correction which involves the 
power series expansion of the square root in Eq. (4.23). 

Consider the condition \k'(x)\ « \k(x)\2 stated above for the validity of this 
approximation. For the case where k(x) is real, the momentum of the particle is 

p = hk = ή(2π/λ) = h/λ. (4.28) 

Then k\x) is (d/dx)(p/n) and k(x)2 is (ρ/Λ)(2π/λ), and the condition can thus be 
written in the form 

\dp/dx\ « \ρ(2π/λ)\, (4.29) 
or equivalently, 

μ dp/dx\ « \2πρ\. (4.30) 

However, dp/dx represents in this case the change in momentum with x, so when 
multiplied by λ, the change in momentum over a wavelength is obtained. 
Therefore we can say that the change in momentum of the particle over a 
wavelength must be much less than the momentum itself in order for the 
approximation to be valid. Clearly p changes rapidly in regions where \dU/dx\ is 
large, so that the WKB approximation cannot be expected to hold at points 
where U(x) varies rapidly. Analogous considerations for the case where k is 
imaginary lead to a similar conclusion. 

Let us now consider the case of classical turning points, defined as points in 
space where U = $ so that k = 0 and therefore/? = hk = 0. Clearly if/7 ^ 0, the 
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above inequality cannot be satisfied even for very small changes of potential with 
position, so the above approximation does not hold. Therefore even for cases in 
which the WKB approximation is valid on both sides of a classical turning point, 
it is necessary in general to employ some method to extend the wave function 
through the classical turning point. This becomes rather involved from a 
mathematical standpoint, and will not be treated here. Our primary application 
of the WKB technique is to the phenomenon of barrier penetration, for which 
connection formulas are not needed in the simplest approximation. More exact 
treatments of barrier penetration [cf. Merzbacher (1970)] do make use of 
connection formulas, and they are necessary in order to apply the WKB method 
to the problem of finding the bound energy levels for an arbitrary potential well. 

PROJECT 4.1 Mathematics of the WKB Method 

1. Work out and present all mathematical details of the following article on the WKB method: 
"Two Notes on Phase-Integral Methods" by W. H. Furry, Phys. Rev. 71, 360 (1947). 
2. Work out and present all mathematical details of the following article on the WKB method: "On 
the Connection Formulas and the Solutions of the Wave Equation" by R. E. Langer, Phys. Rev. 51, 
669 (1937). 

2 Application of the WKB Technique to Barrier Penetration 

Consider a case in which the wave function is strongly attenuated in a 
classically forbidden region extending from x = xx to x = x2. The ratio 
ψ(χ2)/ψ(χι) evaluated according to the above WKB approximation for φ is 

A'k(x2y
1/2 exp ι 

l_ *) 

k(x) dx — icot 

A'kixJ-112 exp k(x) dx — icot 

Γ*(*ι)" 
U(*2). 

1/2 

exp k(x) dx J"L*d exp — η(χ) dx 

where 

n{x) = {{2mlh2)lU(x)-Syi
112. 

(4.31) 

(4.32) 

The corresponding transmission coefficient given by \ψ(χ2)Ι\Ιι(χι)\2{ν2Ινί), 
where v2 and ι^ are the velocities, is thus approximately 

J = exp[-2_[' η(χ) dx (4.33) 

This shows that the critical factor in tunneling is the barrier segment at energies 
above the particle energy S. 
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U(x) 

w - -

ε -

X, X2 

(a) 

U(x) 

Fig. 4.1 (a) One-dimensional square energy barrier W impeding the motion of a particle of 
kinetic energy $ in the x direction, (b) Trapezoidal energy barrier. (Such a barrier can result from the 
application of a uniform applied field in the forward direction to the square barrier.) 

Incident + Reflected Wave 
Transmitted Wave 

Fig. 4.2 Incident, reflected, and transmitted wave function components for a particle having 
kinetic energy $ incident from Region I on a potential barrier (Region II) of height W and width L. 
(The transmission coefficient & in this case of zero of potential energy in Region III is determined 
from & = |Ι/ΊΗ/Ι/Ί|2, where ψηι is the transmitted wave and ψι is the incident wave.) 



§2] BARRIER PENETRATION 243 

Barr ier Width (A) 

Fig. 4.3 Transmission coefficient versus barrier width for the rectangular energy barrier of Fig. 
4.2. [The dashed curves illustrate results using the WKB approximation (4.34), the upper curve 
(triangles) representing an energy barrier exceeding the kinetic energy of the incident electron by 2 eV 
and the lower curve (circles) representing an energy barrier exceeding the kinetic energy of the 
incident electron by 3 eV. The corresponding solid curves were computed from the exact result 
deduced in Chap. 1, §11.3.2, using an incident electron kinetic energy of 1 eV.] 

Consider now the limiting case of a rectangular ("square") barrier [U(x) = W 
for xx ^ x ^ x2; U(x) = 0 for x < xx and for x > x2]> a s sketched in Fig. 4.1a. 
We designate the corresponding transmission coefficient <^Sq. Since η is 
independent of x over the region xi ^ x ^ x2, we immediately deduce the result 

^Sq ~ exp{-2l(2m/h2)(W- ^)]1 /2(x2 - x,)}. (4.34) 

This result is illustrated in Figs. 4.2 and 4.3. 
Consider now the case of a trapezoidal barrier [U(x) = 0 for x<xi; 

U(x) = W — y(x — x^ for xx ^ x ^ x2, where y is a constant; U(x) = 0 for 
x > x2]> as sketched in Fig. 4.1 b. We consider the case in which the entire region 
Xi < x ^ x2 is classically forbidden, and designate the corresponding trans-
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mission coefficient <T. trap' 

• t̂rap = exp n: {(2mß2)lW - γ(χ - Xl) 1/2 

[Chap. 4 

dx. (4.35) 

If we designate the integrand as ζ(χ)112, so that over the barrier region 

ζ(χ) = (2m/Ä2)[ W-yix-Χχ)- S\ (4.36) 

then 

άζ= - (2my/h2) dx, (4.37) 

& 
r fffe) 

= exp - 2 Cll2(-h2/2my)dC 
L J <;(*,) 

= cxp{(2h2Pmy)\_C(x2)
3'2 - ζ(Χι)

3Ι21} 

4(2m)1/2 

= exp 3γή 
[_(W - if12 - \W ■ 7 ( x 2 - x 0 ] 3 / 2 ] -(4-38) 

If y is considered to be very small, then the binomial expansion can be used, 

IW - t - γ{χ2 - Xl)]3/2 = {W _ ^3/2^ _ Ύ(^Ι^Υ 

3 y(x2 - xi) 
(W-Sfl2[\ -

2 (W-g) 

3\f\\y2(x2-xi)2 

2J\2J\2) {W-g)2 + (4.39) 

3/2 - ^ y f e - xi)(w 

or equivalently, 

\_w-g-7(x2-xl)yi2^(w-K>J -2 

+ b2(x2-Xi)2/(W 

Therefore we obtain for this limit of small y, 

W* 

vl/2 + 

^ t r a p - e X P [-
4(2m) 

3/Γ 
1/2 

H*2 - xi)(w - <$)112-
3 yfe - xx)

2 

8 ( ^ - < Τ ) 1 / 2 

(4.40) 

(4.41) 

In the limit in which y -► 0, this reduces to the result (4.34) previously obtained 
for the square barrier, as expected. For y Φ 0, we see that the transmission 
probability increases exponentially with y. A positive y can represent a forward 
electric field bias for current transport; this leads to exponential increases in the 
current with electric field, in agreement with experimental measurements on 
electron tunneling. 

Finally, we consider the other extreme limiting case, namely, that in which y is 
so large that y(x2 — Xi) is equal toW—S. The barrier is triangular in this limit. 
Both xx and x2 are classical turning points, so the WKB approximation is not 
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actually justified. The exponential form of ^t rap still turns out to give a 
meaningful indication of the transmission probability for this triangular barrier. 
Thus we obtain from Eq. (4.38) the result 

^tn - exp[- 4(2m)1/2(W - Sfllßyh\ (4.42) 
In this limit of large y, the transmission probability again increases with 
increasing y, but the functional dependence is somewhat different from that in 
the previously considered small y limit. This latter form is useful in the study of 
field emission of electrons from metals, in which case W — $ is the metal work 
function in units of energy per electron, and y is the product \eE0\, where e is the 
magnitude of the electronic charge and E0 is the electric field which aids the 
emission of electrons. The current produced in this limit is referred to as 
"Fowler-Nordheim tunneling." 

The electrical current is given by the product of the incident electron flux and 
the transmission coefficient. An integration over the various filled states is 
generally required, as indicated in the next section. 

PROJECT 4.2 Alpha-Particle Tunneling 

An alpha particle, once it is formed inside a nucleus, cannot escape unless it penetrates or 
surmounts the surrounding Coulomb barrier. Kelvin originally suggested that the particles emitted 
by a radioactive element are "evaporated" by the nuclei from within a potential crater. Rutherford's 
scattering experiments together with this classical explanation led to a paradox involving the law of 
conservation of energy. This paradox is completely resolved by quantum mechanics, which includes 
the possibility of tunneling through classically disallowed regions. This leads to what is known as the 
Gamow factor. On the basis of this information, formulate a simple theory of alphy decay. 

Even long before the advent of quantum mechanics, Geiger and Nuttall formulated an empirical 
rule between the half-lives of alpha-particle emitters and the corresponding velocities of the emitted 
alpha particles. What qualitative prediction for this relationship is given by your theory? State other 
qualitative features of alpha decay which you can deduce from analogy with our treatment of 
electron tunneling through potential barriers. 

PROJECT 4.3 Ramsauer Effect 

A strong electric field is capable of removing electrons from individual atoms (or ions) in a gas (or 
plasma). This phenomenon can be easily explained in terms of the potential energy of an electron in 
the atom in the presence of an external electric field. Give two qualitative theories for this effect, one 
based solely on classical mechanics and the other including the modifications and additions 
introduced by quantum mechanics. Be sure to give the relevant fundamental equations for each of 
the theories. [Hint: See Merzbacher (1970).] 

PROJECT 4.4 Triangular Barrier 

Consider a triangular energy barrier extending from x = 0 to x = L, with the potential energy 
given as follows: 

Region I: U(x) = 0 ( - o o < x < 0 ) 
Region II: U(x) = ax (0 < x < L) 

Region III: U{x) = U0 (L < x < 00) 

where a is a positive constant given by a = Umax/L and U0 is a constant energy less than the energy 
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1. Solve for the transmission and reflection coefficients, using the WKB approximation. (Assume 
* < Umax.) 
2. Attempt to evaluate the transmission coefficient exactly by solving the Schrödinger equation for 
the potential energy function given above. 
3. Compare the exact results with the results obtained using the WKB approximation. [Hint: For 
literature references to the triangular barrier, see C. B. Duke (1969).] 

PROJECT 4.5 Fowler-Nordheim Tunneling 

Choose the maximum energy Umax in the problem of a triangular barrier to be 1,2,3,4,5, or 10 eV, 
and choose the barrier thickness L to be 1 A. Plot the WKB transmission coefficient 9~ and the 
corresponding reflection coefficient $ = 1 — 9~ as a function of incident particle energy &, scanning 
the range 0 < $ < 2W. Assume the particle density in the incident beam to be 1018 particles/cm3. 

3 Tunneling in Metal-Insulator-Metal Structures 

3.1 Formulation of Tunnel Current Expression 

A diagram of a typical metal-insulator-metal structure is shown in Fig. 4.4. 
With an applied electric field, this energy level diagram is modified to that of Fig. 
4.5. Of importance are the electronic density of states g{£) in the two metals, the 
Fermi-Dirac distribution functions for the metals, and the potential energy 
barrier for electrons in the layer of insulator separating the two metals. The 
insulator layer may be quite thin so that electron tunneling can be a major 
current transport mechanism when an external voltage is applied between the 
two metals. 

The analysis for current through the layer as a function of applied voltage 
proceeds by considering the electron fluxes incident at the interfaces and the 
quantum mechanical transmission coefficient. Consider x to be the distance in 
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Fig. 4.4 Electron energy-level diagram for two metals with the filled electronic energy levels 
(crosshatched portion) of the two metals separated by an energy barrier of thickness L due to an 
insulating oxide. 
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Fig. 4.5 Electron energy-level diagram for a metal-oxide-metal (MOM) configuration with a 
uniform applied electric field leading to a voltage difference V across the insulating oxide. 

the insulator perpendicular to one of the parallel metal electrode interfaces. As a 
standard convention, we will usually measure all energies with respect to the 
bottom of the conduction band in metal 1. The final results are independent of 
choice of this reference point for the zero of energy. Let us consider the density of 
states g($) to be resolved into a spectrum g{$, px) characterized by the value of 
the x component of the momentum, such that 

g(S9 px) dpx (4.43) 

Then 2g{S,px) dpx dS represents the number of electronic states with total energy 
in the range $ to $ + dS but restricted to have the x component of momentum in 
the range px topx + dpx. (The factor of 2 takes care of spin degeneracy.) Since the 
occupation probability is given by the Fermi-Dirac function J($), the cor-
responding number of occupied states is 2j($)g($, px) dpx dS. The product of 
this number and the x component of the velocity vx = px/m gives the flux of 
electrons incident on the barrier with x component of momentum between px 

and px + dpx, 

Flux = 2(pJm)g(S9 px)K*) dpx dS. (4.44) 
The probability that an incident electron will penetrate the barrier will vary 

with the x component of the momentum. The y and z components of momentum 
cannot be expected to contribute directly to overcoming or penetrating an 
energy barrier U(x) for motion along the x direction. Thus for the present 
problem Eq. (4.32) takes the form 

η(χ) = ((2m/*2)[C/(x) - ( / ^ ) ] ) 1 ' 2 , (4.45) 
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where η(χ) determines the WKB transmission coefficient ΖΓ according to Eq. 
(4.33). Thus 

P = P{px\ (4.46) 

and the maximum number of electrons per unit time which could cross the 
insulator in the energy and momentum ranges considered is 

(F lux)^ ( /g = 2{pjm)<r{px)g(g, Px)R*) dpx dS. (4.47) 

An electron can cross the insulator, however, only if there is a corresponding 
unfilled allowable state in the opposite metal electrode. To obtain the current, 
then, we must weigh the above expression with the probability si of finding such 
an empty state. If conservation of transverse momentum is required and the free 
electron model is used for the quasi-continuum of electronic states in the two 
metals, then it is reasonable to assume that there will be one electronic state in the 
conduction band of the second metal corresponding to each tunneling electron 
proceeding from the first metal. The occupation probability of the final state will 
be given by the Fermi-Dirac function, so that si will simply be equal to 1 - J(S) 
for the metal in question. On the basis of this approximation, then si = si($) 
only. 

We could raise the question as to whether or not the y and z components of 
momentum are conserved in this transition of the electron from a given state in 
one metal to a corresponding state in the other metal, as would be necessary if 
there were no possibility of elastic scattering processes accompanying the 
transition. Since the interfaces of actual metals are not atomically smooth, there 
is the possibility of elastic scattering processes both as the electron enters and as 
it leaves the insulator. Such transitions are neglected in the present simple 
treatment, however. 

Likewise there is the possibility of transitions which may involve inelastic 
scattering processes, such as those involving electron-phonon scattering and 
electron-impurity scattering. Although such inelastic processes can give impor-
tant physical information about the system [Duke (1969)], the contribution to 
the overall tunnel current is found to be relatively minor. A comprehensive 
treatment must of course include all such possible "channels" for the current 
through the insulator; it is not in the interest of simplicity, however, to attempt 
such a treatment here. 

If we let J{$, px) dpx dS denote the partial electron-particle current due to 
electrons which are in the momentum range px to px + dpx and in the energy 
range $ to $ + dS in one metal electrode which penetrate the barrier and enter 
the opposite metal electrode, then 

Jtf, Px) dpx dS = 2{pxlm)3r(px)g(£, Px)J{S)si{S) dpx dg. (4.48) 

There is the possibility of a reverse current also, so the net partial current will be 
determined by the difference between the two. If the metal on the left in Fig. 4.4 is 
denoted by 1 and the metal on the right is denoted by 2, then the net partial 
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current between metals 1 and 2 is 

. / ( n e V, px) dPx dS = 2(px/m)^(Px)i9i^, ρχ)7ι{δ)**ι{*) 

- 02(Λ, PxtfiiWiW] dPx d$, (4.49) 

where for our simple calculation 

^,{S)=\-US\ (4.50) 

stf2{£)=\-U$y (4.51) 
It is helpful to recall our stated convention of measuring energies with respect to 
the bottom of the conduction band of metal 1. The Fermi-Dirac functions Ji($) 
and/2(<^) evaluated at a given energy $ then differ because the Fermi energies S¥x 

and <fp2 for the two metals are different with respect to the zero of energy, as can 
be seen from Fig. 4.5. The transmission coefficient έΓ(ρχ) depends principally 
upon U(x) — {p2J2m), as can be seen from Eqs. (4.33) and (4.45). It is therefore 
essentially the same for forward and reverse penetration; this fact has been used 
explicitly in formulating the expression (4.49). The total electron particle current 
7["f} is obtained by integrating y(net)(<f, px) dpx dS over all possible values of px 

and g, 

/(net) -L /< n e V, Px) dpx dS. (4.52) 

3.2 Appropriate Density of States 

Let us now calculate the quantity Q{$, px) on the basis of the free-electron 
model for use in the above expression. This quantity is defined to be the subset of 
those states of energy in the range $ to $ + dS which have momentum in the 
range px to px + dpx. Suppose that we take the density of states 

^(ρ) = (2πΑ)"3 (4.53) 

in momentum space [Eq. (3.19)] per direction of spin for unit volume of metal 
and multiply it by the volume of momentum space f up3 containing states with 
energy equal to or less than some arbitrary value S. This gives 

n(g) = (2nny3(fnp3) = (2πή)~3 [f n{2mS)312^ (4.54) 

allowed levels, and a differentiation with respect to energy gives the density g($) 
of levels per direction of spin per unit range at this energy [Eq. (3.22)]. Our 
problem is somewhat different since we wish only the subset of these levels 
corresponding to a momentum in the x direction in the range px to px + dpx. 
Thus instead of using the entire spherical volume of momentum space 
containing states with energy equal to or less than $ in our derivation, we must 
use only the volume of the constant energy sphere which lies between two planes 
located at/?x and/?x + dpx which are perpendicular to the/?x axis. (See Fig. 4.6.) 
Thus we must consider the constant energy sphere to be divided into elemental 
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Fig. 4.6 Segment of the Fermi sphere containing electronic states having momentum between px 

and px + dpx and having energy between $ and $ + dS. (This diagram is useful for deriving the 
density of states versus energy for a specific x-momentum value.) 

slices of width dpX9 the slices being bounded by planes perpendicular to the px 

axis. The radius of an elemental slice bounded by a plane at/?x is (2mS — p2.)112, 
with a corresponding area of n{2mS — pi). The volume of the elemental slice 
bounded by the planes at/?* and/?. 
number n(ß, px) dp 

+ dpx is n(2mS — p2
x) dpx, and the elemental 

of states contained within the slice is 
n{ß, px) dpx = (2πΛ)~ 3n{2mS - p2

x) dpx. (4.55) 
It is clear that this elemental slice contains all allowed states with energy equal to 
or less than $ and with momentum values in the range px to px + dpx. The 
number η{β, ρχ) dpx can be looked upon as the product of a density and an 
interval dpx. A differentiation of n{$,px) with respect to energy yields the density 
of such states per unit energy range at energy S, which is the required quantity 

dn($, px) 2nm 2nm 
>Px) = - (2πή)3 h3 (4.56) 

The fact that this quantity is independent of both $ and/?x is both interesting and 
helpful. 

A similar way of obtaining the quantity n(S,px) is to consider an integration of 
the density of states in momentum space over all values of/^ and/?z subject to the 
conditions that the energy {p2

x + p1 + p2)/2m be equal to or less than £ and the x 
component of momentum be px. Thus 

n{S, px) -Γ- (2πή) 3 dpy dpz. (4.57) 
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Since the maximum values oipy and/?z for a fixed px value are determined from 
g = (pi + pj + p2)/2m9 the value of the double integral above is simply the 
product of (2πΛ)~3 and the area of a circle of radius (2mg — p2

x)
112· Thus 

n(g, px) = (2nfiy3n(2m£ - p% (4.58) 
as previously deduced. Multiplying this area by the elemental quantity dpx 

would give the elemental volume of the slice of the constant energy surface 
bounded by planes perpendicular to px at px and px + dpx. An integration of 
these elemental volumes from/?x = — (2mg)1/2 to (2mg)1/2 would give the total 
number n(g) of states contained in the constant energy sphere, 

η(β, px) dpx = (2nn)~3n(2mg —pi) dpx 
-{ImSy12 J -{ImSY12 

= π(2πή)~3 2(2m)3/2 g3/2[l - f] , (4.59) 
which is equal to the value previously given [Eq. (4.54)]. Thus we have 
confidence that the quantity n(g, ρχ) is the proper one to have used in deducing 

*> Px). 

nig) = 

3.3 Integration of Tunnel Current Expression 

Substituting Eqs. (4.50), (4.51), and (4.56) into Eq. (4.49) yields 

J**\g9 Px) dpx dg = (2π2ή3)~ *\Jx(g) -Τ2(*ϊ]Γ(Ρχ)ρχ dPx dg, (4.60) 
which in turn can be used in Eq. (4.52) to obtain the total current. In carrying out 
the integration over energy before integrating over the x component of 
momentum, we must be careful to add only the contributions from energies 
greater than p2J2m, since energies less than this would require imaginary 
momentum components in either the y or z directions. Thus the lower limit on 
the energy integral will be p2J2m, and Eq. (4.52) gives 

f(Px)Px dPx lUS) -J2{Sy\ dS. (4.61) 
0 J pl/2m 

The Fermi-Dirac function (2.151) is easy to integrate if the numerator and 
denominator are first multiplied by exp[ — (g — gF)/kBT], 

f00 > f00 e x p [ - (g - gF)/kBT\ dg 
J=\ J(g)dg=\ HL v FJ/ B J . (4.62) 

hjj J aim 1 + exp[ -(g- gF)/kBT] 

Changing variables as follows 
ζ = {£ - gF)/kBT, dC = (kBT)-1 dS, (4.63) 

ygf > = (InW) 2 * 3 \ - l 

we obtain 

where 

_ f°°exF 

ζ0 = l(p2J2m) - SF-]/kBT. (4.65) 

J=\ ——^-? - , (4.64) 
Co l + e x p ( - 0 
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Integration gives 

. / = * Β Γ 1 η [ 1 + β χ ρ ( - ζ ο ) ] . (4-66) 
Thus Eq. (4.61) takes the form 

tot B Jo ^ Ll+exp{[*F a-(pi /2if i ) ] / fcBr}J 

(4.67) 
This expression is quite fundamental in tunneling theory as applied to 
metal-oxide-metal thin film structures. 

The Fermi-Dirac functions in Eq. (4.61) vary with ($ — S¥)/k^Tior the metal 
in question according to Eq. (2.151). Different metals will have different Fermi 
energies, and in addition any externally applied voltage Fext will also adjust the 
relative positions of the Fermi levels of the two metals. For different metals and 
zero applied voltage, there will occur a tunneling of electrons until at equilibrium 
the two Fermi levels will be aligned with a resultant potential difference 
developed across the insulating layer. 

Because the development of conduction bands and the meaning of energy 
gaps in insulators is not presented in detail until Chap. 7, it is worthwhile as a 
preliminary to expound upon these concepts a bit and show how they are 
intimately involved in the phenomenon of tunneling in metal-insulator-metal 
structures. 

3.4 Metal-Insulator-Metal Energy Diagrams 

The Fermi energy S¥ for a metal relative to the bottom of the conduction band 
is determined to large extent by the conduction electron density (see Chap. 3, 
§1.9), and this varies from metal to metal. The depth S¥ + φ of the "square-well 
potential" in the free electron approximation, constituting as it does some 
measure of the energy required to abstract a conduction electron from the lowest 
energy level in the conduction band of a metal at zero potential and remove it to 
infinity, is also characteristic of the metal in question. The electrostatic potential 
of the metal relative to some reference potential must likewise be considered. 
Thus two different metals, labeled 1 and 2, may have potential energy diagrams 
as illustrated in Fig. 4.7a with zero voltage between the metals, but will have the 
energy for each electron shifted by an amount eV for a difference in potential 
V = V2 — V\ between the two metals, as illustrated in Fig. 4.7b. (The parameter 
e is the electronic charge magnitude.) It can be noted from the diagrams in Fig. 
4.7 that the difference in electron energies Δδ^ between the bottoms of the 
conduction bands for the case of zero applied voltage is 

where the quantities δΈ and S¥ are the Fermi energies as computed in the usual 
manner considering the electron densities in the metals, and the quantities φχ 

and φ2 are the vacuum work functions for the metals. Likewise it can be seen 
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METAL I METAL 2 

(a) 

eV 

(b) 

Fig. 4.7 Energy-level diagram for two metals separated in free space, (a) Zero potential 
difference between the metals, (b) Applied voltage difference V between the two metals. (The dark 
areas denote the filled portions of the conduction bands.) 

V(L) 

Fig. 4.8 The electric field produced by a negative surface charge at x = 0 and an equal but 
positive surface charge at x = L is negative, thus yielding a positive electrostatic potential difference 
in accordance with the relation V{x) = - föE(x) dx. The voltage is often taken to be the magnitude 
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' Fig. 4.9 Energy-level diagram for an insulator, (a) Zero applied voltage, (b) Applied voltage V. 
(The dark area denotes the completely filled valence band of the insulator, and the energy gap S% is 
the difference in energy between the top of the filled valence band and the bottom of the empty 
conduction band.) 

from Fig. 4.7 that the difference in electron energies Δδ^ between the bottoms 
of the conduction bands for the case of an applied voltage V between the two 
metals is 

A£%> = A*™ + eV, 
where a positive voltage constitutes the case of excess negative charge on metal 1, 
relative to metal 2, which represents the forward bias condition for electrons in 
the sense of electron transfer from metal 1 to metal 2. 



§3] METAL-INSULATOR-METAL STRUCTURES 2 5 5 

The voltage sign convention follows from basic electrostatic theory, where the 
electrostatic potential difference between positions rl and r2 is defined as the 
negative line integral of the electric field vector along an arbitrary path extending 
from Γι to r2, AV = V2 - V, = - ft£(r)-rfr. The sign of the electric field 
follows from the application of Gauss's law. For metal 1 to the left and metal 2 to 
the right, with the net charge on metal 2 being equal in magnitude but opposite in 
sign to that on metal 1 (Fig. 4.8), the sign of the field is the same as the sign of the 
net charge on metal 1. The potential energy of a positive charge is thus lowered as 
it travels from position rx to position r2 in the direction of a positive field. The 
change in the electrostatic energy U(r) of a charge q in moving from rx to r2 is 
given by AU(t) = qAV=q(V2- V{). 

Let us now consider separating metal 1 from metal 2 in Fig. 4.7 by an insulator 
having a band gap <f g, as shown in Fig. 4.9. The conduction levels in the insulator 
lie in the energy region below the vacuum level but above the forbidden gap £ 

T 

, 4 Ί 

y 

H T 
1 

a 1 -

y 

1 1 
ϊί 

Fig. 4.10 Energy-level diagram for a combined metal-insulator-metal system such as a practical 
tunnel current device, (a) Zero voltage, (b) Applied voltage V. (Note how this figure is a combination 
of Figs. 4.7 and 4.9.) 



256 WKB APPROXIMATION; ELECTRON TUNNELING [Chap. 4 

No conduction is possible for electrons in the entirely filled band illustrated as 
the crosshatched area below the energy gap region <fg, due to the essential 
restrictions enunciated in the Pauli exclusion principle. 

If metals 1 and 2 are placed on either side of, and very near to, the insulator, 
the electron potential energy diagram has the appearance of that illustrated in 
Fig. 4.10. It can be noted from Fig. 4.10 that an electron at the Fermi level of 
metal 1 need only surmount a barrier of height χγ before entering metal 2 for the 
case of two metals separated by a solid state insulator, whereas the barrier height 
would be φΧ for the same two metals separated by a vacuum region. Analogous 
to the terminology "metal-vacuum work functions" for φ1 and φ2, we use the 
terminology "metal-dielectric work functions" for χχ and χ2, and in cases for 
which the dielectric is an oxide formed by chemical reaction of one of the metals 
with ambient oxygen, the term "metal-oxide work function" is used for χ. It can 
be noted from Fig. 4.10 that φ2 — φ\ = χ2 — χι, so that we can also write 

A£f = {$¥2-£¥) + {l2-Xl\ 

with a nonzero voltage again yielding 

for the energy difference between the bottoms of the conduction bands in the two 
metals. 

The situation in which a semiconductor replaces the dielectric between the two 
metals is quite similar, although the energy gap S% is then relatively small. 
Typically the energy gap in an intrinsic semiconductor is of the order of a few 
multiples of the thermal energy (kBT ~ 0.025 eV at T= 300°K), instead of 
having values exceeding an electron volt or so as is the case for good electrical 
insulators. 

PROJECT 4.6 Electron Tunneling Data 

Examine carefully the literature data for single-particle tunneling. Can you conclude un-
ambiguously that the quantum phenomenon of electron tunneling has indeed been observed in 
solids? Summarize the extent to which there is essential agreement between present theory and 
experiment, and the extent to which there is a lack of agreement. What critical experiments may yet 
be needed to test the theory? [Hint: Keep in mind the possibility of experimental error, the existence 
of alternate transport mechanisms, and the extent to which one should trust the predictions of a 
highly simplified idealistic model of any real physical system. See Gundlach and Simmons (1969).] 

PROJECT 4.7 Electron Tunneling Theory 

Work out the mathematical details of a theoretical development of tunneling through space 
charge regions. [Hint: See Conley et al. (1966).] 

4 Tunnel Current at 0°K between Two Metals Separated by a Rectangular 
Barrier 

It is worthwhile to evaluate Eq. (4.67) for the specific situation of a 
rectangular ("square") barrier and very low temperatures. Consider the case in 
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which the Fermi energy of metal 1 is higher than the Fermi energy of metal 2, 
with the metals separated by a square barrier of thickness L and of height W 
relative to the bottom of the conduction band of metal 1. (See the energy level 
diagram in Fig. 4.4 for the definition of the microsopic parameters.) By dividing 
the range of integration of Eq. (4.67) into segments I, II, and III corresponding 
to the momentum intervals (0, ^/2mS¥i), {j2mS¥i, ^/2mS¥), (<j2mS¥i, GO) 
and making use of the WKB result (4.34) for the transmission probability, we 
obtain 

where 

kBT 
λ~2πΨ 

F2 In 

Λ* = Ji + Jn + Jm, (4.68) 

~l+ap{l*F-(pl/2mJ]/kBT}-

. l +exp{ [ i F a - ( p i / 2w) ] / f c B r} . 

x exp{ - {2L/h)\_2mW - p2^l2}px dpx, (4.69) 

with the expressions for Ju and Jm being the same except for the limits of 
integration. 

The exponentials involving the Fermi energies approach either zero or infinity 
as the temperature approaches zero. In momentum region I, p2J2m is less than 
S¥i and less than S¥i, so the exponentials diverge as Γ-> 0°Κ. The logarithmic 
factor thus has the limiting value ($¥i — $F2)/kBT, so that 

Jl(0
oK) = (2n2h3)'1(SF -ΛΈ) Vlexv{-{2Llh)i2rnW-p2

x-]V2}Px dpx. 

(4.70) 

In momentum region II, p2J2m is less than S¥i but greater than &¥i, so that the 
exponential in the denominator of Eq. (4.69) approaches zero and the 
exponential in the numerator diverges as T-> 0°K. The logarithmic factor thus 
has the limiting value [<^Fi — (p2J2rri)]lkBT, so that 

fv2m^P 

/„(0°K) = (InVy1 · exp{ - (2L/fi)[2mW-p2Jm} 
^2mS¥ 

x [*Fl - (P2J2my]px dpx. (4.71) 

In momentum region Ill,pl/2m is greater than S¥i and greater than S¥i, so that 
the exponentials in the numerator and in the denominator of Eq. (4.69) 
approach zero as T -> 0°K. The logarithmic factor thus has the limiting value of 
zero, so that 

/ΠΙ(0°Κ) = 0. (4.72) 

Needless to say, Jm is not zero at higher temperatures, since Jm contains the 
entire thermionic emission current (Chap. 3, §4), as well as the tunnel current 
from filled states above S¥ . 
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Let us change variables in Eqs. (4.70) and (4.71) by defining the dimensionless 
quantity 

ζ = (2L/h)(2mW- p2
x)

1/2, (4.73) 
consistent with 

p2
x = 2mW- (/z2/4L2)C2, (4.74) 

Pxdpx= -(h2/4L2)CdC. (4.75) 

Equation (4.70) and (4.71) thus become 

y,(0°K) = CnVy^ - XoW/4L2) e'^dC, (4.76) 

Λ(0°Κ) = (2n2h3y l(h2/4L2) e-t &(n2/SmL2)C2 - χ0] άζ9 (4.77) 
J <x0L 

with 

Xo=W-gFi, (4.78) 

l^W-S^, (4.79) 

ZL - Zo = *F. - ^ (4.80) 
aw = {2lh){2mW)m, (4.81) 

a0 = (2/«)[2w(PF - <fFi)]1/2 = (2//i)(2mZo)1/2, (4.82) 
aL EE (2/Ä)[2IM( ̂  - «fF2)]1/2 = (2/n)(2mXLy2. (4.83) 

The quantities χ0 and #L can be noted from Fig. 4.4 to be the work functions of 
metals 1 and 2 with respect to the barrier material. From standard integral 
tables, 

[ ηβ'ΐ άη= -(η + \)e~\ (4.84) 

η3ε-η άη= - (η3 + 3η2 + 6η + 6)e~\ (4.85) 

so that evaluation of Eqs. (4.76) and (4.77) can be carried out immediately to 
give 

/,(0°K) = (An2mh2,y\h2IAL2)2{oiL2 - <x2L2) 

x {e-*LL(aLL + 1) - <r"wL(awL + 1)}, (4.86) 

/„(0°K) = (4n2mh3y1(h2/4L2)2{e-'"'L[_2a2L2 + 6a0L + 6] 

-e-" L L [ (4L 3 + 3a2
LL2 + 6aLL + 6) - (a2aLL3 + a2L2)]}. (4.87) 

Combining Eqs. (4.72), (4.86), and (4.87) according to Eq. (4.68) gives 

7tot(0°K) = {4n2mPy\h2l4L2)2[_e-™L{<xlL2 - a2L2)(l + awL) 

+ 2e-°t°L(a2L2 + 3a0L + 3) - 2e-^\^L2 + 3aLL + 3)]. (4.88) 
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Approximations can be made which reduce this equation to a simpler form. If 
the ratio of the effective electron mass m to the free-electron mass me is 
designated as i, 

i = m/me, (4.89) 

and energies are expressed in units of electron volts, then in units of reciprocal 
angstoms aw ~ 1.025 y/iW A - 1 , a0 ^ 1.025 ̂ /ϊχο A - 1 , and aL ~ 1.025 ^/vfa 
A" *. For L > 10 A, we thus expect the dimensionless quantities awL, a0L, and 
ccLL to have values of the order of or greater than 10, since W, χ0> and xL will 
ordinarily be in the range 1-5 eV and ι should ordinarily have values in the range 
0.1-1. For these values, the quadratic term a^L2 predominates over 3(x0L and 3, 
and likewise v\L2 predominates over 3aLL and 3. In addition, it is often the case 
that Wis a factor of 2 or so larger than either χ0 or #L, in which case the terms in 
exp( —awL) can be neglected. Thus we obtain the approximate expression 

ytot(0°K) ~ 2(4n2mtfy\h2l4L2)XalL2e-««L - a 2 L V a L L ] . (4.90) 

Substituting the definitions (4.82) and (4.83) for a0 and aL gives 

ytot(0°K) ~ (4^ÄL2)-1{Zoexp[-(2L/Ä)(2mZo)1/2] 
- X L exp[-(2L//J)(2mXL)1/2]}. (4.91) 

Whenever xL is very large, the current depends essentially on χ0, with the term in 
XL being unimportant. The electrons then travel almost exclusively from metal 1 
to metal 2, with very few going in the reverse direction. It is useful to view the two 
terms in this equation semantically as constituting "forward" and "reverse" 
currents. Except for the sign associated with the direction of travel, the 
expression for the current can be noted to be symmetrical in χ0 and xL. 

The derivation for the alternant case in which the Fermi level of metal 2 is 
higher than the Fermi level of metal 1 proceeds in the same manner as the 
derivation given above. In fact, the physical situation is exactly the same from 
the viewpoint of metal 2 as it was from that of metal 1 in the above derivation, 
with the exception that the direction of travel is reversed. Thus an interchange of 
the subscripts 1 and 2 and a replacement of/tot(0°K) by —/tot(0°K) converts the 
above result to one appropriate for metal 2. It can be seen that the equation 
obtained by such a conversion is identical to the equation before conversion, so 
the above expressions are valid for either case. 

It can be seen from Eq. (4.88) that Jtot is zero whenever a0 = aL, corresponding 
to χ0 = xL. This is in accord with the physical picture of a symmetrical structure 
with the energies <fFi and S¥i aligned on the energy level diagram in Fig. 4.4. In 
such a case there is no reason to expect a net electron tunnel current. 

The decrease in current with the thickness L of the barrier is exponential; this 
can be seen from Eq. (4.90). Since the values of the parameters a0 and aL in Eq. 
(4.90) have been shown to be of the order of one reciprocal angstrom, the current 
falls by a factor of approximately 1/2.7183 with each angstrom increase in 
thickness, corresponding to a decrease in the current by a factor of 4.54 x 10"5 

for each 10 A increase in thickness. The only reason that there can be an 
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appreciable current for barriers a few monolayers or more in thickness is the fact 
that the pre-exponential factor in the tunnel current expressions is quite large. 
For example, the factor x0/(4n2fiL2) in Eq. (4.91) has a value of approximately 
3.85 x 1027 electrons/cm2 sec whenever L = 10Äandx0 = 1 eV, corresponding 
to 6.17 x 108 A/cm2. The electron tunnel current for these values of the 
parameters would therefore be of the order of (6.17 x 108)(4.54 x 10"5) = 
2.80 x 104 A/cm2, which is very large. An increase in thickness to 20 Ä would 
decrease this by an additional factor of ^(4.54 x 10~5) to give 0.318 A/cm2. 

PROJECT 4.8 Tunnel Current Development 

Instead of using the WKB approximation for the transmission coefficient ΖΓ in the integrals for the 
forward and reverse tunnel currents through a rectangular barrier, carry out (analytically or 
numerically) an analogous development using the exact result for the transmission coefficient for a 
rectangular barrier. Delineate specifically the physical differences between the two results, and 
compare (numerically) the results of the two approaches for a realistic set of parameter values. 

PROJECT 4.9 Voltage Dependence of the Electron Tunnel Current 

Choose a realistic set of numerical values for the relevant parameters, and compute the voltage 
dependence of the electron tunnel current from Eq. (4.88). Then compute the voltage dependence of 
the tunnel current from the approximate expression (4.91), and plot the results of both computations 
on the same graph (semilogarithmic plot). Draw logical conclusions from your comparison. \Hint\ 
See §3.4.] 

5 Tunnel Current at 0°K for Barriers of Arbitrary Shape 

5.1 Taylor Series Expansion Technique 

An approximate WKB expression for the transmission coefficient for a 
trapezoidal barrier such as that in Fig. 4.1b is given by Eq. (4.41). The parameter 
y is a measure of the slope of the upper portion of the barrier, which can depend, 
for example, on the value of an applied electric field. For y = 0, Eq. (4.41) 
reduces to the transmission coefficient (4.34) for a square barrier. It can be seen 
from Eq. (4.41) that the lowest term in y involves — fy(x2 - X\)2i(W — $)1/2 a s 

the argument of the exponential function, which becomes for tunneling in the x 
direction — ̂ yL2/\_W — (pl/2rn)~]1/2 in the present notation. The 0°K tunnel 
current expressions analogous to Eq. (4.70) for Jx and the corresponding 
expressions for Ju and Jm have the additional factor 

Qxp{(m/2n2)i/2yL2/lW - (p2J2m)Y/2}. 

In terms of the dimensionless quantity ζ defined by Eq. (4.73), this additional 
factor is exp(2rayL3/#20> which of course will appear in the expressions for 
/i(0°K) and Jn(0°K) analogous to Eqs. (4.76) and (4.77). The integrals then 
become more difficult to evaluate, and the subsequent development becomes 
more involved than that for a square barrier. An excellent development is given 
by Good and Müller (1956) for the trapezoidal barrier as modified by the 
electron image potential in the metal electrode. 
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Fig. 4.11 Representation of an arbitrary potential energy barrier separating two metals. (Such a 
barrier could be derived, for example, from a rectangular barrier such as that illustrated in Fig. 4.10 
by adding the effects of the electron image potentials in the two metals.) 

For purposes of approximation and insight it is useful to have available 
simpler expressions for obtaining the tunnel current through a barrier of 
arbitrary shape. (See Fig. 4.11, for example.) The only difficulty in evaluating the 
current for the limiting case of 0°K is due to the integral of the transmission 
coefficient. The development leading to Eqs. (4.70) and (4.71) shows that 

/i(0°K) - ( 2 π 2 ί 3 ) - 1 ( ^ Ρ ι - βΈ) 
V-2m$?2 

F{px)px dpx (4.92) 

/ΙΙ(0°Κ) = (2π2^3)-1 

Jm(0°K) = 0, 

(V 2miYl 

[ i F l - ip2J2m)^(px)px dpx, (4.93) 
J-2m$Y2 

(4.94) 

where &~(px) is the appropriate transmission coefficient for the arbitrary barrier 
under consideration. The key to evaluating Jtot = Ji + Ju + Jm for a barrier of 
arbitrary shape is the development of a good approximate expression for 3~(px). 
One method [cf. Stratton (1962)] is to assume that In ^~(px) can be obtained by 
an exact solution of the Schrödinger equation (4.1) or by an approximate 
technique such as the WKB approximation (§1) and then carry out a Taylor 
series expansion of In ̂ (px) about the Fermi energy of the metal with the higher 
Fermi energy, since the primary contribution to the tunnel current comes from 
this energy region. This is due to the fact that very few states are populated above 
this energy, while the rapid decrease of the transmission coefficient with 
decreasing energy causes severe attenuation of the current from filled states at 
lower energies. The Taylor series for In ̂ ~(px) around a given energy S0 will be a 
power series in p\, 

In 3T{px) ~<?0 + 0>X(WX - S0) + \0>2(WX - So)2 + (4.95) 
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where 
Wx=p2J2m, (4.96) 

Po = OaP(px)-\Wx.t,, (4.97) 
~d In 2T(pS', 

' (4.98) 
</W* j ^ 

d2 In , Τ ^ ) , 

etc., are constants which are barrier-shape dependent. Substituting Eq. (4.95) 
into Eqs. (4.92) and (4.93) and changing variables according to Eq. (4.96) gives 

J wx = gQ 

1 
7ι(0°Κ) = (2π2/ί3Γ V F , - SFt)m exp[^ 0 + 9JW* ~ *o) 

o 

+ \»i(Wx ~ A ) 2 + * * ·] dWX9 (4.100) 

/„(0°K) = (2π2Α3)"1/ιι ( i F i - ^ x ) e x p [ ^ 0 + ^ i ( ^ * - <̂ o) 
J«fF2 

+ i ^ 2 ( ^ - ^ o ) 2 + • ■ • ] r f ^ · (4.101) 
The terms involving gP0 and ^ will provide a suitable approximation if 

l K ^ 2 / ^ i ) ( ^ x - A ) l « l . (4.102) 
Whenever this is the case and the expansion is with respect to the Fermi energy of 
metal 1, S0 = <fFi, Eqs. (4.100) and (4.101) lead to the following approximate 
result: 
ytot(o°K) = Λ Γ Κ ) + j„(o°K) 

(4.103) 
Let us evaluate the parameters in Eq. (4.103) for square and trapezoidal 

barriers. Using the expression 
In P(px) = -(2L/ti)[2m(W- Wx)~]112 (4.104) 

obtained from Eq. (4.34) as applied to penetration of a square barrier in the x 
direction, together with the definitions (4.97)-(4.99) with $0 = <fFi, gives 

&0 = - (2L/n)l2m(W - <fFi)]1/2, (4.105) 

»i = (2mL/n)[2m(W - <fFi)]~1/2, (4.106) 

0>2 = (2m2L/n)l2m(W- ^ F i ) ] _ 3 / 2 . (4.107) 

The condition (4.102) required for the validity of Eq. (4.103) is 

\(Wx-£¥)\«4\{W-£¥)\. (4.108) 
Since the result (4.103) for 0°K contains a zero contribution for Wx > <fFi, the 
inequality (4.108) is required to hold only for Wx ^ £Fr The left-hand side has 
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its largest value for Wx = 0, so the inequality will be met whenever the Fermi 
energy in metal 1 is much less than the barrier height W. (In fact, the 
contribution to the current from states considerably lower in energy than S¥i is 
negligible due to the sharp decrease in the transmission coefficient with 
increasing barrier height, so the current will not be affected very much even if Eq. 
(4.108) is not well met for values of Wx near zero.) The definitions (4.78)-(4.80) 
can be used to convert Eq. (4.103) to a form involving χ0 and xL instead of $Fi 
and (fF2. 

Using the expression 

In *T(px) = -(2/n)(2m)l/2lL(W- Wx)
1/2 - {yL2(W- Wx)~

m] (4.109) 

obtained from approximating Eq. (4.41) as applied to penetration of a 
trapezoidal barrier in the x direction (with y representing a small slope in the top 
of the barrier), together with the definitions (4.97) and (4.98), gives 

0>o = -2L(2m/h2)1/2(W- S¥)
ll2[_\ -^L{W-S¥y

1^ (4.110) 

9γ = L(2m/n2)1/2(W - S¥y
l,2{\ + \yL(W - S¥)~^. (4.111) 

For the case of electron tunneling with the trapezoidal barrier produced by the 
application of a small uniform electric field E0 to a square barrier, 

y= -eE0. (4.112) 

Thus 0>o and 0>γ contain terms linear in the electric field, so that the current given 
by Eq. (4.103) contains exponential terms with arguments linear in the electric 
field. The electrostatic potential —E0L associated with E0 will also shift the 
relative positions of the Fermi levels S¥i and S¥i of the two metals by \eE0L\. If xL 

is the usual parameter associated with the barrier in zero field, as illustrated in 
Fig. 4.4, then with a field E0 applied, 

*F2=W-(xL-eE0L). (4.113) 

Equation (4.78) is unmodified by the field, 

S¥i=W-l0, (4.114) 
so we obtain 

S¥-S¥2 = {W-Io)-[_W- (XL - eE0Ly\ = (xL - χ0) - eE0L. (4.115) 

The electron energy barrier is lowered by a negative field, so that {S¥i — S¥) is 
greater than xL — χ0 for a negative applied field. The electron tunnel current will 
of course be increased by a field with this polarity. Equations (4.110)-(4.115) can 
be substituted into Eq. (4.103) to give 7tot(0°K) as a function of applied field. The 
resulting expression is restricted to the small field limit since this was the 
assumption made in deriving ^~trap in Eq. (4.41) utilized in the present 
development. 

For the large field limit, the expression 
In F{px) = - [4(2mYl2ßyfi\{W - Wx)

3/2 (4.116) 
obtained from Eq. (4.42) as applied to penetration of a triangular barrier in the x 
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direction, together with the definitions (4.97) and (4.98) with 
^ 0 = - \A(2myl2ßyh-\{W- <fFi)3/2, (4.117) 
^ ! = [_2{2myi2lyfi]{W-S¥y

12. (4.118) 
Substitution of Eqs. (4.112)-(4.115) and Eqs. (4.117)-(4.118) into Eq. (4.103) 
then gives Jtot(0°K) as a function of applied field in the large field limit. Note that 
Eq. (4.103) will contain exponentials with arguments varying as y~l oc EQ1. The 
electron current for this limit in which the field dependence is of the form 
exp(-E0/E0) with E0 being the homogeneous electric field and E'0 being a 
constant parameter, is referred to as field emission, cold cathode emission, or 
Fowler-Nordheim tunneling. 

It is often useful to write the electric field E0 in a tunnel current device as 

Eo = £applied + £bui,t-in, (4.H9) 
where £built_in is the electric field in the absence of an applied field which is 
established by spontaneous tunneling between the two metal electrodes to 
achieve equilibrium. That is, when two electrodes are placed near enough 
together so that the transmission coefficient is not prohibitively small, tunneling 
will occur until the metal Fermi levels are aligned. According to Eq. (4.115), this 
will give 

b̂uiit-in = ~Ehuut,nL = e~\l0 - XL). (4.120) 
Thus 

EbM,in=-e-l(Xo-XU/L·, (4.121) 
so that 

^o = £ . „1«+ ^ _ 1 CtL-Zo) / i . (4.122) 
This transformation can be made throughout the equations of the present 
section whenever the tunnel current is required as a function of the applied 
electric field instead of in terms of the net electric field. More detailed predictions 
of the tunnel current as a function of applied electric field for the various field 
regions can be found in the literature [cf. Good and Müller (1956), Stratton 
(1962)]. 

5.2 Equivalent Square Barrier Technique 
There is another useful approximation technique for obtaining the tunnel 

current through arbitrary barriers (such as illustrated in Fig. 4.11) which yields 
simpler equations than those just derived. This technique [cf. Simmons 
(1963a,b)] involves the determination of an equivalent square (or rectangular) 
barrier for the arbitrary barrier in question with subsequent utilization of 
expressions for the currents such as those given by Eqs. (4.88), (4.90), and (4.91) 
which are derived explicitly for a square (or rectangular) barrier. The equivalent 
square barrier (U(x)} corresponding to an rbitrary barrier U(x) over the region 
Xi ^ x ^ x2 is defined to be the average value of U(x) over this region, 

<£/(*)> = (x2 - x i ) " 1 2 U(x) dx. (4.123) 
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As a specific example, consider the trapezoidal barrier U(x) = W — yx for 
0 ^ x ^ L, 

(U(x)) = L-1\ {W-yx)dx=W-\yL. (4.124) 

Substituting y = —eE0 as given by Eq. (4.112) gives <t/(x)> = W + {e£0£ = 
W — ^eV(L)9 where F(L) is the electrostatic potential across the barrier. In an 
analogous fashion, the barrier heights χ0 and xL as viewed from the forward and 
reverse directions, respectively, are replaced by 

<χ0 + eE0x} = χ0 + ±eE0L = χ0 - \eV{L\ (4.125) 
< Z L - eE0(L - x)> = XL- $eE0L = Xh + \eV(L\ (4.126) 

respectively. Substituting these two expressions for χ0 and xL into Eq. (4.91), for 
example, gives 

/tot(0°K) ~ (8π2Α^)-1{(2χ0 + eE0L) exp[ -2m 1 / 2 ^ - 1 L(2 Z o + . ^o^) 1 / 2 ] 
- (2XL - eE0L) e x p [ - 2m1/2/T1L(2ZL - e i W 2 ] } . (4.127) 

The accuracy of results obtained by the equivalent square barrier technique 
relative to corresponding results obtained by the Taylor series expansion 
technique has been the subject of a numerical evaluation by Hartman (1964). 
The two techniques generally give consistent results, although the accuracy of 
one or the other may be somewhat better over a limited range of electric fields for 
any given set of values of the microscopic parameters. The simplicity of the 
equivalent square barrier technique is very appealing, and the equations derived 
by this method turn out to give a surprisingly good measure of the exact electron 
tunnel current. 

PROJECT 4.10 Transmission Coefficient for Penetration of a Parabolic Potential Barrier 

1. Use the WKB approximation to derive the transmission coefficient & for the parabolic potential 
energy barrier defined by 

UoV-(x/Lft (-L^x^L), 

0 (x < - L;x > L). 

[Hint: Use Eqs. (4.32) and (4.33).] 
2. Numerically evaluate your result in Part 1 as a function of incident energy S for some realistic 
choice of numerical values for the parameters, such as the electronic mass for m, 0.1-5 eV for U0, and 
1-20 Ä for L. 
3. Use the equivalent square barrier technique (cf. §5.2) to obtain an alternate numerical evaluation 
for ST for each of the computations in Part 2. 
4. Use the Taylor series expansion technique (cf. §5.1) to obtain yet another alternate numerical 
evaluation for 5" for each of the computations in Part 2. 
5. Plot the corresponding results for Parts 1, 2, 3 in a single graph for 9~ vs $, and attempt to draw 
conclusions from your results. 

6 Temperature Dependence of the Electron Tunnel Current 

At elevated temperatures the Fermi-Dirac distribution functions are not 
discontinuous at the Fermi energy. The temperature dependence of the 

U(X): 
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logarithmic function in Eq. (4.67) then gives rise to a modest temperature 
variation of the tunnel current. 

Making the change of variables Wx = p2
xßm in Eq. (4.67) and introducing the 

Taylor series approximation (4.95) for In &~(px) with respect to the energy S¥x 

gives 

JJT) = (kBT/2n2h3)rne^-^ e^w* In 
o 

\+expl(£Fi-Wx)/kBr] 

l+expl(£F-Wx)/kBT] 
dWx. 

(4.128) 

It is true that the Taylor series approximation is not valid for Wx > W, but the 
contribution to the integral will be small at such energies due to the fact that the 
states will be unpopulated. Thus the upper limit of oo does not lead to any 
appreciable error if indeed the temperature is not so high as to cause the 
thermionic emission current (Chap. 3, §4) to become significant with respect to 
the electron tunnel current. 

The assumption made in using the Taylor series approximation (4.95) is that 
S¥i > $Fi, with the primary contribution to the tunnel current arising from filled 
states in metal 1 in the region Wx ~ <fFi. The quantity {S¥i — Wx)/kBT will be 
negative and very large in magnitude for Wx~£Fi, so that exp[(^F 2- Wx)/kBT] 
can be neglected with respect to unity in the denominator of the logarithmic 
factor in Eq. (4.128). If desired, the lower limit in the integral in Eq. (4.128) can 
be extended to — oo without modifying the value of Jtot(T) since the integrand is 
essentially zero over this domain. Making these approximations, and employing 
the additional variables change exp[-(<fF — Wx)/kBT] = ζ leads to 

JJT) = Lm(kBT)2/(2n2n")^ f * i * B 7 - - l l n ( 1 + £ - l ) r f £ s (4 > 1 29) 

where Clower = exp( — S¥JkBT). Let us now integrate by parts, letting u = 
Ι η Ο + Γ 1 ) and dv =lf*k*T- χάζ. Since du = - [ ζ ( ζ + \)Υιάζ and v = 
(0>

1kBTy1C^lkBT, the product uv is an indeterminant at the upper limit, which 
can be readily shown to have the value zero provided 0>\kBT < 1. The product 
evaluated at the lower limit yields the approximate value 

-SFJlPi(kBme-*'\ (4.130) 

assuming that exp(^F/A:Br) is much greater than unity. The integral resulting 
from the parts integration is 

ί v du = B 

Clower 

^τ)-\ζ + \γιζ^*τ-'άζ 

J o C + i Jo C + i J' (4'131) 

Assuming 0 < ^ikBT < 1, the definite integral can be found in standard integral 
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tables, 
• Ο Ο ^ Β Γ - Ι ^ 

- = . (4.132) 
o C + 1 s i n ^ T r ^ r ) v ' 

It is a good approximation over the region of integration to replace ζ + 1 by 
unity in the denominator of the second integral, so that 

r: ζ*ΜΤ-\ % 
C + l 

= (^i*BD"1C*,*B7'lSkM" = (^ ιΛ , Ϊ Ι " 1 «" '* ' . (4.133) 
Substituting these evaluations into Eq. (4.129) thus gives 

JJT) = lrn(kBT)2/(2n2n*n<f°{l- * F I / ^ I ( * B O 2 > - * I / F ' 

+ ψ^ΤΥ\π csci^.n^T) - (P1kBT)-1e-**Fq}. (4.134) 
If the denominator of the logarithmic factor in Eq. (4.128) is not considered to be 
approximately unity, its contribution can be evaluated in exactly the same way 
as the contribution from the numerator. The result will have a negative sign 
attached and will have δ¥ι replaced by δ¥ι, so that ê ° will be replaced by 
exp(^0 — &Ίδ¥ι + &\δΈ). This contribution will therefore be a factor of 
exp[— &ι(δ¥ι — δ¥)~] lower than the contribution above, and therefore can be 
neglected whenever &\{δΈχ — δ¥) » 1. An examination of £PX given by Eq. 
(4.106) for the case of a square barrier shows that it has values of the order of 5 
(eV)~1 whenever W — δ¥t ~ 1 eV, so that the approximation is valid whenever 
δ¥χ — δ¥ι > 1 eV. The quantity &\kBT ~ % at room temperature for this value of 
2PU so that the condition 0 < &>ikBT < 1 used in the above derivation is 
satisfied. Typical values of ^i%kBT will be of the order of f, so that 
π csc(g?inkBT) will generally be of the order of or greater than unity. Since £Ρ\δ¥χ 

will be of the order of 10, the terms involving e~9xiv* will be a factor of 100 or so 
smaller than the term involving csc(£PxnkBT) and thus can be neglected. 
Therefore we obtain 

^ ^ » T O . T / · ·
 (4,35) 

In the limit T -> 0, the sine function can be expanded to give 

7tot(0°K) ~ (m/2n20>2n3) <?\ (4.136) 
Taking a ratio gives 

ΛΟ1( Wot(0°K) = (0>,nkBT^m{0>xnkBT\ (4.137) 

For small values of ^χπΑ:ΒΓ, the first two terms in the sine expansion lead to the 
approximation 

Λοί( Wot(0°K) * [1 - ^,nkBT)2T1 ^ 1 + ^ π ^ Γ ) 2 , (4.138) 



268 WKB APPROXIMATION; ELECTRON TUNNELING [Chap. 4 

in which case the lowest order temperature dependence will be quadratic. The 
coefficient of the temperature dependence is proportional to 0>\ and is therefore 
dependent upon the barrier shape. 

Comparing the 0°K result (4.136) to our former result (4.103) at 0°K shows 
agreement provided the terms in exp[ — 0>i(£'Fi — Sv)~] and exp( — ^\S¥) in Eq. 
(4.103) can be neglected. Since these approximations are of the same order as 
those made in deriving Eq. (4.136), the results of the two derivations are 
consistent, as expected. 

PROJECT 4.11 Temperature Dependence of the Electron Tunnel Current 

Choose a specific barrier shape and a realistic set of numerical values for the relevant parameters, 
and compute the temperature dependence of the electron tunnel current from Eq. (4.135). Then 
compute the temperature dependence of the tunnel current from the approximate expression (4.138), 
and plot the results of both computations on the same graph for comparison purposes. What 
conclusions can you draw? 

7 Applications of Electron Tunneling 

7.1 Solid State Research 

The theory of interband electron tunneling was first developed by Zener in 
1934. From an experimentalist's point of view, the field of electron tunneling 
dates from the discovery of the p-n tunnel diode by Esaki in 1957 and the 
discovery of tunneling through oxide layers by Fisher and Giaever in 1960. 
Tunneling has been observed between normal metals and also between 
superconducting metals, and exciting experiments have been carried out for 
each. 

The observation by Giaever in 1960 of electron tunneling through an oxide 
layer separating metal films in the superconducting state and the theoretical 
prediction and observation of coupled pairs of superconducting electrons 
{Cooper pairs) by Josephson and Powell in 1962 were major milestones in the 
field of superconducting tunneling. In fact, electron tunneling is one of the most 
sensitive probes of the superconducting state. It provides detailed information 
about the phonon density of states and electron-phonon interactions. 

The experiments using normal metals are affected by the nature of the tunnel 
barrier, which is frequently only a few atomic layers thick, and by the metal 
electrodes within a screening depth from the metal-oxide interfaces. Tunneling 
thus is a problem which involves much surface physics. 

The overall conductance versus voltage dependence is fairly well described by 
the single-particle tunneling theory, the rudiments of which are the subject of 
this chapter, although many-body effects [March, Young, and Sampanthar 
(1967)] are also considered to be important. Experimental zero-bias anomalies 
have captured the imagination of theorists, and there has been much con-
sideration of the interaction of the tunneling electron with the optical and 
acoustical phonon spectrums and with localized vibrational modes and energy 
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levels due to magnetic and nonmagnetic impurities within the oxide barrier. 
Experiments by Jaklevic and Lambe (1966) on tunneling between metals have 
revealed evidence of the vibrational excitation of molecular species in the 
barrier. Since the vibrational frequencies are characteristic of the source (such as 
molecular species, electrode surfaces, oxide barrier), electron tunneling can be 
considered to be a mode of spectroscopy. The interested reader who wishes to 
study electron tunneling in greater depth and learn in greater detail about some 
of the applications of tunneling spectroscopy is referred to the monograph by 
Duke (1969) and to the excellent compilation edited by Burstein and Lundqvist 
(1969). Tunneling in metal-oxide-semiconductor structures has been used to 
measure semiconductor band gaps and the effect of temperature and pressure on 
the gap. Tunneling also promises to be an important tool for the study of band 
structure and Fermi surfaces. 

7.2 The Esaki Diode 
As one practical example of a tunnel device, let us examine how a negative 

resistance arises in the Esaki tunnel diode. The tunnel diode is a semiconductor 
device discovered by Leo Esaki in 1957 while he was working as a physicist at the 
Sony research laboratory in Japan. Tunneling is the dominant mode of current 

p T y p e n T y p e 

Empty States 

Fi l led States 

Fig. 4.12 Semiconductor p-n junction. (The varying electrostatic potential due to space charge 
within the region of contact between the «-type material containing electron carriers and the p-type 
material containing electron hole carriers causes the gradual bending of the energy bands which one 
notes in the energy level diagram for the p-n junction. 
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transport in the device, and the device exhibits the phenomenon of "negative 
resistance" which causes it to be attractive for use in a wide variety of high 
frequency oscillators, amplifiers, and similar electronic equipment. 

The tunnel diode is basically a, p-n semiconductor junction, which for present 
purposes can be viewed simply as two electronically dissimilar substances (see 
§3.4) separated by a region sufficiently narrow for tunneling to take place. The 
allowed energy bands separated by energy gaps occur at different locations on 
the energy level diagram for the/?-type material and the «-type material (see Fig. 
4.12) because of band bending produced by the voltage due to space charge 
within the junction, so the conduction bands are not horizontally matched when 

Fig. 4.13 Energy-level diagrams for various bias voltages applied to the Esaki diode and the 
resulting current-voltage characteristic. (1. Zero bias voltage gives zero current. 2. An applied 
voltage sufficient to match the filled energy levels in the conduction band on the n side of the p-n 
junction with empty energy levels in the conduction band on the p side results in a large tunnel 
current through the intervening energy gap. 3. An increase in the voltage such that some of the filled 
energy levels in the conduction band on the n side of the p-n junction are raised to the level of the 
energy gap on the/? side results in a decrease in the tunnel current. 4. The tunnel current drops to a 
minimum value when there are no available states in the/? side at the energies of the filled states on the 
n side of the junction. 5. The current increases again when the voltage is increased sufficiently to 
allow thermal emission of electrons and electron holes across the junction.) 
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there is a zero applied voltage. At equilibrium there is no net current, but with an 
applied voltage the bands are shifted relative to each other on either side of the 
junction, and tunneling can occur from the higher filled levels through the 
energy gap threading the/?-« junction and into the empty levels on the opposite 
side. Thus an initial voltage results in a current. However, if the voltage V is 
increased sufficiently so that the uppermost filled levels are aligned with an 
energy gap in the material on the opposite side of the junction, then no tunneling 
can occur, and the voltage increment which initiates this situation is accom-
panied by a decrease in current /. Since dl/dVis negative for this situation, we say 
that we have a situation of negative resistance. If the voltage is increased still 
further, the filled levels on one side of the junction are raised further, and after 
continuous increases in the voltage the filled levels on the one side will be raised 
to the top region of the energy gap on the opposite side, in which case electrons 
can be thermally excited (see Chap. 3, §4) into the empty levels of the material on 
the opposite side, the current increases, and dl/dV is positive corresponding to a 
positive resistance. The sketches in Fig. 4.13 attempt to illustrate in a crude sort 
of way the current-voltage characteristic and the energy-level diagram which 
explains the observations. 

In an analogous way, it is possible by means of tunneling to establish the 
location of a semiconductor band edge relative to the Fermi level of a metal. In 
the following section, a description is given of the use of tunneling in determining 
energy barriers between metals and semiconductors. 

EXERCISE Qualitatively show how tunneling can lead to a determination of the energy for a 
semiconductor band edge relative to the Fermi level of a metal. (Hint: Draw an energy-level diagram 
analogous to that shown for the Esaki diode, and deduce the effects of increases in voltage on the 
current.) 

PROJECT 4.12 Semiconductor p-n Junction Theory 

Define and give background theory for the following: 
1. intrinsic semiconductor 2. extrinsic semiconductor 
3. w-type semiconductor 4. /?-type semiconductor 
5. p-n junction. 

7.3 Determination of Metal-Semiconductor Barrier Heights 

It is possible by means of tunneling to measure the height of the energy barrier 
between a metal and a semiconductor (or a dielectric material). A thin-film 
"sandwich" made up of two electrodes of a given metal separated by a very thin 
film of the semiconductor (or dielectric material) approximates a rectangular 
energy barrier for conduction electrons (cf. Fig. 4.14a), which under forward 
bias, assumes a trapezoidal shape. (See Fig. 4.1.) A tunnel current is produced by 
the forward bias if the barrier is sufficiently thin. The tunnel current increases 
with increasing bias voltage. At the critical voltage at which the trapezoidal 
barrier takes on a triangular shape at energies above the Fermi energy, the 
current-voltage curve undergoes a discontinuity in slope because subsequent 
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Fig. 4.14 Energy-level diagram for thin film "sandwich" consisting of two electrodes of the same 
metal separated by a very thin film of dielectric (or semiconducting) material, (a) Rectangular 
potential energy barrier under zero bias voltage, (b) Forward bias voltage sufficient to yield a 
triangular potential energy barrier which results in Fowler-Nordheim tunneling. 

eVbuilt-in + eVFN 

(a) (b) 

Fig. 4.15 Energy-level diagram for thin film "sandwich" consisting of two electrodes of different 
metal separated by a very thin film of dielectric material, (a) Tunneling occurs until equilibrium is 
established, which is achieved when the Fermi levels of the two metals are at the same energy. The 
charge transferred during tunneling sets up an electric field, thus resulting in a "built-in" voltage 
across the insulator under zero bias conditions, (b) With the addition of a forward bias, the 
triangular barrier needed for Fowler-Nordheim tunneling in the forward direction is achieved. 
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increases in voltage narrow the effective barrier seen by the electrons in addition 
to lowering it. This is clarified by the diagram in Fig. 4.14b. The forward bias 
voltage VFN at this critical point is the energy per electron of the original barrier 
(z = ^ F N X tr ius giving an experimental measurement of the barrier height χ. 
The measurement can be repeated under reverse bias conditions. The tunnel 
current produced under voltages large enough to yield triangular barriers is 
called Fowler-Nordheim tunneling (§5.1). 

If the two electrodes are of different metals, the work functions will be 
different, so the barriers χ1 and χ2 at the two interfaces of the thin film 
semiconductor (or dielectric material) will be different, corresponding to a 
difference in Fermi levels of the two metals. Tunneling will occur spontaneously 
until a sufficient voltage difference Kbuilt.in is established to equalize the Fermi 
levels. The resulting barrier will be trapezoidal, as illustrated in Fig. 4.15a. The 
application of an externally applied voltage V% constituting a forward bias 
sufficient to initiate Fowler-Nordheim tunneling then gives an experimental 
measurement of χ2, while the application of an externally applied voltage V^ 
constituting a reverse bias sufficient to initiate Fowler-Nordheim tunneling in 
the reverse direction gives an experimental measurement of χΧ. The difference 
PFN ~~ ^FN Siy e s Zi "~ X2> which in turn is equal to eKbuilt_in. Thus electron 
tunneling provides a powerful experimental technique for obtaining the 
microscopic physical parameters of solids. Such microscopic parameters are 
extremely important, for example, in determining the rate of oxide film growth 
on metals [Fromhold (1976)]. 

7.4 Tunneling between Superconductors 
The Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity provides 

a detailed microscopic theory for resistanceless currents based on the postulate 
that there exists a binding force between pairs of electrons which comes about in 
the following way. One electron, moving through the metal crystal, attracts the 
positively charged ion cores in the crystal lattice, with the consequence that the 
crystal lattice is temporarily distorted in such a way that it represents a wake of 
positive charge which in turn attracts a second electron. (See Fig. 4.16.) The 
resulting attractive force between the two electrons is quite weak; it binds pairs 
of electrons with equal but oppositely directed momenta and oppositely directed 
electronic spin with a binding energy which is characteristic of the metal in 
question. The pair binding corresponds to a forbidden energy gap spanning an 
energy range which is forbidden to unpaired electrons in the superconducting 
metal, the unpaired electrons resulting from thermal disruption of some of the 
electron pairs at temperatures above 0°K. A current-voltage measurement of the 
tunnel current between two superconductors separated by a thin insulating layer 
exhibits very little current until the applied voltage is equivalent to enough 
energy per electron to break up the superconducting electron pairs, at which 
point the current increases sharply. A schematic representation of such a 
current-voltage characteristic is shown in Fig. 4.17. Thus tunneling measure-
ments can yield values for the superconducting energy gap, which in turn can be 



2 7 4 WKB APPROXIMATION; ELECTRON TUNNELING [Chap. 4 

Fig. 4.16 An "electron pair" in a superconductor consists of two electrons having opposite 
momentum and spin which interact via the polarization of the charged lattice of ions. (The ionic 
polarization, which is equivalent to a "wake" of positive charge, results in a net reduction in energy 
for the correlated pair relative to a corresponding electron pair with uncorrelated momenta and spin; 
thus, the condensation of the ordinary conduction electrons in a normal metal into electron pairs in a 
superconductor results in a drop in energy (representing an "energy gap") of a few milli-electron-
volts.) 

I 

Fig. 4.17 Typical shape of the current-voltage characteristic for a tunnel current between two 
superconductors separated by a thin insulating layer. (The current remains very low until the applied 
voltage exceeds the superconductivity energy gap, but thereafter the current rises sharply because the 
applied voltage represents an energy sufficient to break the electron pairs and reduce them to normal 
conduction electrons.) 
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used to check some of the basic relationships appearing in the BCS theory. Such 
measurements were first carried out by Giaever (1960) at the General Electric 
Research Laboratory. 

7.5 Josephson Tunnel Junctions 

The BCS theory of superconductivity leads to the conclusion that the motions 
of all of the pairs of electrons are correlated, such that the pair centers-of-mass 
move with the same momentum when a superconducting current is flowing. A de 
Broglie wavelength can therefore be ascribed to the electron pairs. Thus the 
superconducting electrons behave as a macroscopic quantum fluid which has the 
property of phase coherence between the de Broglie waves for the electron pairs. 

The English physicist Brian Josephson predicted in 1962 that the phase 
coherence of electron pairs could extend through a sufficiently thin insulator 
separating two superconducting metals so that the insulator itself would behave 
as a weak superconductor. In this situation, an electrical current produced by 
electron pair tunneling could flow through the barrier even in the absence of a 
voltage across the barrier; it would only be necessary to start the current flowing 
in a particular direction through the barrier with a voltage, and thereafter the 
voltage could be reduced to zero (taking care only to maintain a closed 
superconducting loop for a complete circuit path). This prediction of a zero 
voltage current (the Josephson tunnel current) was verified experimentally by 
Rowell (1963). 

Another aspect of Josephson's work was a study of the effects of externally 
applied magnetic fields on the electron pair tunnel current. A magnetic field 
which threads the barrier will induce oppositely directed superconducting eddy 
currents in the superconducting electrodes in order to expel the magnetic field 

Fig. 4.18 A current through a "control line" over a thin film Josephson tunnel junction 
"sandwich" consisting of two superconducting electrodes separated by a few monolayers of oxide 
(or similar insulating material) produces curved magnetic lines of flux which thread the oxide and 
thereby set up oppositely directed eddy currents in the adjacent electrodes. 
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Magnetic Field = 0 Magnetic Field = H f l / 2 

Magnetic Field = H 0 Magnetic Field = 3 HQ / 2 

Fig. 4.19 Schematic representation of the change in phase of the wavefunction for two 
superconductors produced by magnetic flux threading the thin film insulator separating the metals. 
(Phase matching is a very important factor in determining the magnitude and direction of the current 
due to electron pair tunneling; thus, the electron pair tunnel current is position dependent along the 
junction because of the accumulated change in electron phase along the junction due to the magnetic 
flux.) (a) No magnetic field and no spatial dependence of the electron pair tunnel current; the net 
Josephson tunnel current through the device is a maximum under these conditions, (b) A magnetic 
field is impressed sufficient to yield an accumulated phase difference of π along the junction; the net 
electron pair tunnel current is decreased accordingly, (c) The magnetic field is doubled to give a phase 
difference of In along the junction; the net electron pair tunnel current is zero, since as much current 
flows in one direction in half of the junction as flows in the opposite direction in the other half of the 
junction, (d) The magnetic field is increased still further to give a phase difference of 3π along the 
junction; the electron pair tunnel current through one third of the junction cancels that due to a 
second third so the net Josephson tunnel current can be attributed to that current through the 
remaining third of the junction. 

(see Fig. 4.18), which in turn produce a phase difference (cf. Fig. 4.19) for the 
electron pairs along the Josephson junction. Because electron pairs tunnel 
through the barrier only when their phase matches the phase of the electron pairs 
in the superconductor on the opposite side, the magnetic field causes a 
modulation of the flow of electron pairs across the junction with respect to 
position along the junction. The larger the magnetic field, the more rapid the 
modulation. The effect is a net reduction in the Josephson tunnel current 
through the junction, as illustrated in Fig. 4.20. With certain values of the 
magnetic field, the Josephson tunnel current is zero, as illustrated in Fig. 4.21. 
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Fig. 4.20 Dependence of the maximum Josephson tunnel current on magnetic field in the 
junction. (The H0 in this plot corresponds to the H0 in Fig. 4.19.) 

OU 

< 
25 

20 

< 
E 
+- 15 
c 
ω 

δ io 

5 

1 
o 

o 

c 

-

-

[~ 

~T~ 

o 

o 

o 

o 

o 

o 

o c 

_ ± t f 

1 1 1 1 1 1 1 

-\ 

-\ 

oo0O°S J 

1 ? 1 <»\ V l°nO° l 'S .^H 
O 1 2 3 4 5 6 7 8 

Magnetic Field (G) 

Fig. 4.21 Representation of the Josephson tunnel current versus applied magnetic field 
[Langenberg et al. (1966)]. 

A current source set for a fixed current through the junction can thus drive 
current through the junction under two possible conditions, namely, either a 
zero voltage drop across the junction (whenever the current is the Josephson 
tunnel current) or else a finite voltage drop across the junction (whenever the 
current is due to single-particle tunneling). This is readily understood by 
visualizing a horizontal line to be drawn in Fig. 4.17. These two voltage states 
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provide the basis for memory and logic circuits which may someday supplant 
transistors in the highest performance computers. This would possibly mark the 
first major application of coherent matter waves in technology, analogous to the 
technical applications following the advent of lasers which are based on the use 
of coherent light waves. Giaever, Josephson, and Esaki received the 1973 Nobel 
Prize in physics for their research work on electron tunneling. 

PROJECT 4.13 Applications of the Josephson Effect 

1. Explain from your study of the literature how the Josephson effect and the concept of quantized 
magnetic flux has been used to obtain the most accurate available measurements to date of the ratio 
h/e (i.e., of Planck's constant to the electronic charge magnitude). 
2. Explain the physical principles underlying the SQUID magnetometer. 
3. Explain the operation of the SLUG voltmeter. 
{Hint: See Tinkham (1975).] 



CHAPTER 5 

PERTURBATION THEORY, DIFFRACTION OF VALENCE 
ELECTRONS, AND THE NEARLY-FREE-ELECTRON 
MODEL 

Light brings us the news of the Universe. Sir William Bragg (1931) 

1 Stationary-State Perturbation Theory 

1.1 Background 

In Chap. 4 we considered the approximation technique known as the WKB 
method for solving the time-independent Schrödinger equation [Eq. (1.130)]. 
There are in addition the possibilities of direct numerical integration [Eisberg 
(1967)] of the Schrödinger equation, variational methods [Schiff (1968)], and 
the currently considered perturbation techniques. In the present chapter we 
develop approximation techniques based on small potential energy per-
turbations for solving this important equation. 

Stationary-state perturbation theory is a technique for obtaining the modifi-
cations of the discrete energy eigenvalues and corresponding eigenfunctions 
when a relatively small change is made in the Hamiltonian of a time-independent 
Schrödinger equation for which an exact analytical solution is available. The 
Hamiltonian J4? is written as the sum of two parts, a large part J f 0 for which the 
Schrödinger equation can be solved exactly, and a small part "Γ denoting the 
difference between Jf and J f 0 · Both J f and Jf7

0 are considered to represent 
Hamiltonians for a physical system with real eigenvalues, so that Jf, ^ 0 > and Y 
will be Hermitian operators. We introduce a dimensionless parameter λ having 
values between 0 and 1 to order the terms in our perturbation series; the 
Hamiltonian 

j f = JTO + ATT (5.1) 

thus ranges from the completely unperturbed Hamiltonian J f 0 to the com-
pletely perturbed Hamiltonian J f 0 + ^ as λ is increased from zero to one. This 
can be considered to be a gradual "turning on" of the perturbation in which we 

279 



280 PERTURBATION THEORY [Chap. 5 

shift the energy eigenvalues and corresponding eigenfunctions from the initial to 
the final stationary-state values. It is assumed that the perturbation expansion 
does not diverge in the limit λ = 1. 

Let the symbols φ{°] and S(^ represent normalized eigenfunctions and 
eigenvalues respectively of the unperturbed Hamiltonian Jf 0, and let φη and Sn 

represent the perturbed eigenfunctions and eigenvalues. Thus we have the 
following equations, 

^οΦΐ0) = Κ°Ψη
0\ (5-2) 

^Φη = $ηΦη. (5.3) 

1.2 Nondegenerate Case 
We first treat the case in which the unperturbed eigenfunctions φ{°} are 

nondegenerate. We assume that both the eigenvalues Sn and the eigenfunctions 
φη of Jf can be expanded in powers of the perturbation parameter λ, and seek to 
determine coefficients occurring in the perturbation expansion, 

Sn = <f <°> + λδ^ + λ2£™ + · · ·, (5.4) 

φη = φ^ + λφ^ + λ2φ^+···. (5.5) 
We say that λ*δψ is they th-order correction to the energy eigenvalue, and λ]φ^ is 
theyth-order correction to the corresponding eigenfunction. Substituting these 
expansions into Eq. (5.3) yields 

(jfo + λ<ηι<ι>™ + λφ^ + λ2φ? + · · ·] 
= K<°> + W + λ2*?> + · · ·Μ°> + λφ™ + λ2φ™ + · · · ] . (5.6) 

This gives 

^οΦΤ + XOW? + ^ολ2Φ(
η
2) + ■■■ + λ^φ[0) + λ2^φ{

η
1} + Χ3ΤΦ™ +··■ 

+ Μ?ψ? + λ2#ϊψ? + λ3*η
ιψ» +■■■ 

+ λ2*?Ψ? + λ3^ψ„1) + λ^{2ψ2) +■■■. (5.7) 
The different orders of the perturbation approximation are given by the 
coefficients of the corresponding powers of X. Collecting terms in the same 
power of X, we obtain 

*ΌΦ™ + λΙΧοΦ™ + ^ C ' ] + A2[Jf0#2) + ^Φη^ 
+ λ3ντ0φ™ + -τφ?*] + ■■■ 

+ λ*\#ϊψ? + *ϊψ? + *ϊψ» + Κ3)Φ^ +■■■■ (5-8) 

Since this equation is supposedly valid for a continuous range of λ, we can equate 
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the coefficients of equal powers of λ on both sides to obtain a series of equations 
that represent successively higher orders of the perturbation. Thus we obtain 

*οΦ™ = *?Ψ?\ (5-9) 
ΧοΦ™ + ̂ φ^ = *»ψ» + *«ψ?\ (5.10) 
^οΦί2) + "TV? = *?ψ? + #*ψ» + *?ψ?\ (5.11) 

The solution to the first of these equations is already known to us according to 
our initial assumption. To solve the second of these equations, we expand φ[1] in 
terms of the complete set of unperturbed eigenfunctions φ\°\ 

Φί1) = Σ<*Φ\0)> (5·12) 

where the summation sign denotes a summation over the discrete set of 
eigenfunctions and an integration over the continuous set of eigenfunctions. 
Clearly the set of coefficients at will be dependent upon the index n characteriz-
ing the energy level in question, although we do not designate this explicitly by 
adding the additional index n to at. We substitute Eq. (5.12) into Eq. (5.10) to 
obtain 

*o Σ ««#0) + ^ΦΤ = < 0 ) Σ ««#0) + Ο Γ (5.13) 
I I 

However, the first term on the left can be replaced by ]Tj αι^\0)φ\0). We multiply 
by φ(

8
0)* and integrate over all space, making use of the orthonormality of the 

ΦΪ°\ 

Σ«,40)Ssl + rsn = ii0) Σ a,osl + #» öm, (5.14) 
I I 

where 

φ(0Η^φ(0) άχ ( 5 1 5 ) 

The quantity i^sn is the sn matrix element of the perturbation energy if in the 
representation in which the unperturbed Hamiltonian j f 0 is diagonal. (That is, 
the φ\0) have been chosen to be the set of orthogonal normalized basis states 
which are the eigenfunctions of J f 0·) The ösl reduce each of the above sums to a 
single term, so we obtain 

as^s
0) + rsn = asS^ + g™ dsn. (5.16) 

For s = n, this gives 

anS^ + r„„ = anS™ + *?, 

or equivalently 

#? = ^nn- (5.17) 
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The first-order correction to the energy thus is the expectation value of the 
perturbation operator V in the unperturbed state φ^; hence it depends only on 
the zero-order wave functions. No information is given regarding the coefficient 
an by this equation, but later this coefficient will be shown to be determined by 
the normalization condition. For s Φ n, the above equation (5.16) gives 

as^s
0) + rsn = as^n°\ 

or equivalently 
as = rj(£^-£^) (5φη). (5.18) 

The as determine the first-order corrections to the wave function. Note from the 
energy denominator that the coefficient as, which determines the degree to which 
the state φ[0) has been admixed into the wave function φη by the perturbation, is 
relatively larger for those states which are nearby in energy. If the matrix 
elements i^sn (s,n = 1,2,...) are considered to constitute a matrix, then we can 
see from the above results that the diagonal elements of the matrix give the first-
order corrections to the energy levels while the off-diagonal elements determine the 
first-order correction to the wave functions. We must still evaluate the remaining 
coefficient an. This coefficient is determined from the normalization of the wave 
function (5.5), as will now be shown. Integrating the product φ*φη over all space 
to terms linear in λ gives 

\φϊφηάτ=\+λ 

But we can use the expansion (5.12) for φ(
η
1] to give 

j # 0 ) * # 1 ) * = Σ « ι J V r ^ r dx = Σ a, δη1 = an. (5.20) 

Taking the complex conjugate of Eq. (5.20) gives 

a* = j W ' * ^ 0 ' dx. (5.21) 

Therefore we obtain from Eq. (5.19), 

\φ*ηφη dx = 1 +λ(αη + at), (5.22) 

so that as a requirement for normalization, 

a„ = - f l j . (5.23) 

Hence a„ is purely imaginary. Let a„ — iy„, where y„ is real. Thus to first order, 

φη = < > + λφΐ», (5.24) 
where 

Φ™ = ίν,Φ1? + Σ "a1?· (5·25) 
ΙΦη 

ΦΓ*Φ™ dx + Uii,*^0) dx (5.19) 
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Thus 

φη = φ[°\\ + Üyn) + λ Σ "ιΦ\°\ (5-26) 
ΙΦη 

with 
αχ = rj{S™ - <?\0)) (Ιφή). (5.27) 

But to first order in λ, 

1 + ίλγ„ ~ exp[/Ay„], (5.28) 
so the first term can be written exp '̂Ay,,)^0*. The choice of yn corresponds to a 
particular choice of phase factor of the unperturbed wave function 0J|

O). The 
specific value is unimportant because it does not affect the value of the 
probability density Φί,0)*Φί,0). Choosing the value to be zero, 

an = iyn = 0, (5.29) 
the first-order wave function becomes 

Φ. = €ί + ΐΣκ#/"*#ο>Φ?}- (5·3°) 

PROJECT 5.1 Stationary-State Perturbation of the Harmonic Oscillator 

1. Calculate the first-order perturbation theory corrections to the one-dimensional harmonic 
oscillator when a perturbation V(x) = Ax3 is applied, where A is a constant. (Hint: Look up the 
ground-state wave functions and relationships between these functions in standard reference works 
on quantum mechanics.) 
2. Calculate the first-order perturbation theory corrections to the one-dimensional harmonic 
oscillator when a perturbation V(x) = BxA is applied, where B is a constant. 

PROJECT 5.2 Stationary-State Perturbation due to Electron-Electron Interaction in the Helium 
Atom 

Use first-order perturbation theory to compute the ground-state energy correction due to the 
Coulomb interaction between the two electrons in the helium atom, using as a starting point the 
ground-state wave function 

</><°>(Γι, r2) = ( 8 « - » e x p [ - 2a0 V i + r2)] 

deduced by neglecting the electron-electron Coulomb energy. In the above wave function the 
symbols r2 and r2 denote the position vectors of the two electrons relative to the nucleus, and a0 is the 
Bohr radius of the hydrogen atom. {Hint: The corresponding ground-state energy is 
8(-^2/4πε0«ο)·] 

1.3 Degenerate Case 

We must now consider the case in which the unperturbed energy eigenvalue 
$i,0) is degenerate. In this case, <f|0) = <^0) for some Ιφη, and the denominator 
vanishes in the above expansion (5.30). We can avoid the difficulty raised by this 
situation if it is possible to arrange to have the yln to be zero whenever $\0) = 
${®\ That this is in fact a requirement for the validity of the treatment follows by 
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writing Eq. (5.16) in the form 
fls[(f(0)_^(0)]U(i)^ = f s n ( 5 e 3 1 ) 

and examining the situation in which ${
s
0) = ${®] for some s Φ n. Thus we can say 

that the perturbation treatment fails in first order if there is degeneracy of the 
unperturbed state in zero order -and the perturbation "connects" the degenerate 
states in first order. (The latter phrase involving the word "connect" means 
simply that i^sn Φ 0, so that in a certain sense the states φ(

8
0) and φ{°] are linked 

through the perturbation operator V.) 
Consider the case where the eigenvalue $J,0) is (/? + l)-fold degenerate, so that 

= < d = - - - = < C p · (5-32) 

The corresponding orthonormal eigenfunctions <//0), φ(°11?..., φ(^ρ of J f 0 can 
be considered to span a (p + l)-dimensional linear manifold or subspace. Since 
the (/>i0) (/ = 1 ,2 , . . . , « ,«+ 1 , . . . , « + / ? , « + p + 1,...) represent a complete set 
of functions, and the subset designated by indices n,n + 1 , . . . , « + / ? are the only 
ones corresponding to the eigenvalue S^\ then any eigenfunction of Jf0 
corresponding to the eigenvalue <^0) can be constructed from a linear 
superposition of the basis vectors (i.e., the basis functions) in this (p + 1)-
dimensional manifold. Let us designate this initial set of functions φ{^. (j = 0,1, 
2,...9p)byξj(j = 0, 1,2,.. . , p) to emphasize that these can be considered as a 
set of basis vectors for the manifold. Because the basis vectors of a manifold are 
not unique, it is possible to replace the set ξ] by any other orthonormal set η] 

(j = 0,1,2,. . . , /?) constructed from a linear superposition of the £,·. Each of the 
functions η^ being a linear combination of eigenfunctions of J f 0 corresponding 
to the eigenvalue £{°\ will also be an eigenfunction of J^0 corresponding to this 
same eigenvalue. Thus, the set of Y\J can be substituted for the ξ] in the set φ^^ 
(y = o , i , 2 , . . . ) . 

Suppose now that there exists a particular set wJ? the members of which are in 
addition orthonormal eigenfunctions of the perturbation operator τΓ, 

rij = uflj O = 0, 1,2, . . . , p). (5.33) 

Then the matrix elements 

η?^η] dx = nfvflj dx = vj iflj d* = Vj SiJ ( 5 · 3 4 ) 

are noted to satisfy the requirements imposed by Eq. (5.31) for validity of the 
perturbation expansion for the case of degeneracy. The act of constructing linear 
superpositions of the ξ] (j = 0,1,2,. . . , /?) which meet this criterion that the new 
orthonormal set n} 0 = 0, 1, 2, . . . , /?) be eigenfunctions of the operator Ψ* is 
called diagonalization of the operator τΓ in the (p + l)-dimensional manifold in 
question. With respect to his new basis set, the matrix yn+hn+k is a diagonal 
matrix. If both sets of basis functions are orthonormal, the transformation from 
the ξ) to the η] is said to be unitary. Therefore, following the diagonalization 
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process, we replace the ξ] by the r\>} for the set φ^\. (7 = 0,1,.. . , /?). The set r\} are 
referred to as a "good" set of zero-order wave functions corresponding to the 
degenerate eigenvalue $(®\ 

Since δ^ = ιΓ„„, the first-order corrections to the energy <^0) are simply 

fd) 
'n + j tf'Vrij dx = tfvflj dx = dj. (5.35) 

Hence to first order, 

*»+J = <0) + Itj U = 0, 1, 2 , . . . , p). (5.36) 

The eigenvalues v0, £1 ? . . . , vp of Ψ* in the {p + l)-dimensional manifold 
representing the degenerate zero-order eigenfunctions of #ί0 may be nonde-
generate, degenerate, or partially degenerate. Thus we can say that the 
perturbation splits the degeneracy into a maximum of (p + 1) levels. The first-
order eigenfunctions corresponding to each of these levels, whether degenerate 
or nondegenerate, follow immediately from our previous treatment if we set the 
undetermined coefficients of the degenerate zero-order wave functions in Eq. 
(5.12) to zero. 

The coefficients as for the degenerate set (i.e., s = n, n + 1, n + 2 , . . . , n + p) 
are left undetermined by Eq. (5.31), and only one undetermined parameter can 
be determined from the previously illustrated normalization procedure. The 
reason for including only one function r\k in each new eigenfunction φη+]ί and 
omitting the other functions Y\J is simply that a given value of Vj is associated with 
each perturbed energy Sn+j\ it would not do to admix functions η} (j # k) 
corresponding to different values of the energy level modifications v} into a given 
wave function, since then we would no longer have a wave function characteris-
tic of a, single energy level. This assumes of course that the perturbation splits the 
degeneracy; some additional flexibility is available in those cases having 
degenerate values for vj9 but even in those cases there can be no harm in choosing 
the undetermined coefficients to be zero and thereby avoid admixing the various 
degenerate basis states φ(°1Η (k = 1,2,...,/?) into each wave function which is 
constructed for the perturbed levels which remain degenerate. 

The eigenfunctions are then given by Eq. (5.30), where we specifically indicate 
by a prime on the sum that we omit any terms involving ΨΊη whenever 
^ 0 ) = < 0 ) , 

Φη + , = Ifc + λ Σ >)^V°> ^ (k = 0* h 2>'->P)' ( 5 · 3 7 ) 

The first-order eigenfunctions are modified relative to the zero-order eigenfunc-
tions even for cases where the degeneracy is not lifted by the perturbation. 
Whether or not the degeneracy will be lifted in any specific case depends on the 
symmetry of the eigenfunctions and the symmetry of the perturbation potential, 
a problem which can be approached fruitfully with the techniques of group 
theory. 
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PROJECT 5.3 Stationary-State Square-Well Perturbation Acting on Particle in a Box 

An otherwise free particle moving inside a three-dimensional infinite square-well potential with 
sides of length L experiences a small uniform potential energy Ui when it is within the central cubical 
region having dimensions equal to \L. Compute the perturbation corrections to the eigenfunctions 
and eigenvalues. (Hint: First work out the corresponding one-dimensional problem.) 

PROJECT 5.4 Stationary-State Gravitational Perturbation Acting on Particle in a Box 

An otherwise free particle moving inside a three-dimensional infinite square-well potential with 
sides of length L experiences a uniform vertical force — mg resulting in a position-dependent 
gravitational potential energy U = mgz within the box, where z represents the vertical distance. Use 
stationary-state perturbation theory to compute the gravitational modifications to the eigenfunc-
tions and energy eigenvalues. 

2 Elementary Treatment of Diagonalization 

It remains for us to present convincing arguments that the diagonalization of 
the perturbation operator 'V in the (p + l)-dimensional manifold containing the 
p + 1 degenerate eigenfunctions of Jf 0 corresponding to the eigenvalue <^0) can 
indeed be carried out. We first choose the special case of a twofold degeneracy 
(p = 1) as a specific example. It will be shown that it is not difficult to extend the 
procedure to larger manifolds. Let 

η] = αηξί+αι2ξ2 ( y = l , 2 ) , (5.38) 

with the üij representing constants to be determined. We require 

Tnt-m ( 7 = 1 , 2 ) , (5.39) 

where we must yet determine v1 and v2. Thus we have the equation 

ηαηξι + αηξ2) = vjiaj^ + α]2ξ2) (j = 1, 2). (5.40) 

Now either vx = v2 or vx Φ v2. If ϋγ = v2 = v, the two equations given byj = 1 , 2 
are 

^ ( f l n i i + Ö12&) = ifaiif i + α12ξ2), (5.41) 

'Τ(α21ξί + α22ξ2) = ν(α2ίξί + 022^). (5.42) 

Multiplying the first by l/a12 and the second by l/a22 gives 

*Ί!(*ιιΛΐΐ2)£ι + ί 2 ] = ϋΙ(α1ι/α12)ξ1 + ξ2] , (5.43) 

n ( * 2 l / * 2 2 ) £ l + ξΐΐ = 0[(*2ΐ/*22)£ΐ + ξΐΐ (5-44) 

Subtracting the two equations gives 

^ί(αιι/α12) - (α21/α22)^\ξί = νΚα^/α^) -(α2ί/α22)^ξί. (5.45) 

Either axljal2 = α21/α22 or else 

^ξι = Hi· (5.46) 
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The former cannot be true if η1 and r\2 are to represent linearly independent 
eigenfunctions, so the latter must be true, which means that ξί itself is an 
eigenfunction of τΓ. Clearly the analogous procedure of multiplying the first 
equation by \jax i and the second by l/a2i and subtracting gives the correspond-
ing result 

^ξ2 = ΰξ2. (5.47) 

Therefore we have no need to diagonalize further for this particular case. 
For ϋγΦ v2, we must devise a general procedure for diagonalization. 

Multiplying Eq. (5.40) by ξ% and integrating over all space gives 

ξ*-Τξ2 dx = vfln Skl + vjaj2 dk2, (5.48) an k f ^ f i dT + aj2 

where we have used the orthonormality of the ξ]. This equation can be written 
more compactly by adopting the matrix element notation 

ξ*"Τξι dx. (5.49) 

Equation (5.48) becomes 

M ^ f c i - sjhi) + <*j2(J(k2 ~ Vjök2) = 0 (j, k=l, 2). (5.50) 

For y = l , k = 1, 2 leads to the following pair of homogeneous algebraic 
equations 

«11(^11 " #i) + «12^12 = 0, 

allJt21 + a12(Ji22 - vi) = 0. 

A nontrivial solution exists only if the condition 

ϊχχ-νχ Μγ2 I 

Jt2\ ^ 2 2 - ^ l | 

is satisfied. For j = 2, k = 1, 2 leads to the corresponding pair of equations 

« 2 i ( ^ n - #2) + a22Ji12 = 0, (5.54) 

«21-^21 + a22{Ji22 - v2) = 0. (5.55) 

The existence of a nontrivial solution for α2ι and a22 then requires 

' 1 1 - 0 2 ^ 1 2 

(5.51) 

(5.52) 

(5.53) 

521 ί 22 l?2 

= 0. (5.56) 

The two determinants in Eqs. (5.53) and (5.56) give identical second-degree 
algebraic equations (called secular equations) for νλ and v2. Solving the secular 
equation then gives both roots; one root is arbitrarily designated vx and the 
other root, provided it is distinct from the first, is then designated v2. Using vl 

and v2 as obtained in this way, each pair of homogeneous equations [(5.51) and 
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(5.52); (5.54) and (5.55)] can then be individually solved for the ratio of the two 
unknown coefficients involved in Eq. (5.38). Normalization of each of the ηί 

then completes the determination of the atj except for an arbitrary phase factor 
(having no physical content) for each η^ (j= 1, 2). 

For the case now considered in which ϋγ Φ ΰ2, the eigenfunctions η1 and η2 

can be shown to be orthogonal, as follows. Multiply the first of the pair of 
equations 

^ ι = M i , (5.57) 

rn2 = ν2η2 (5.58) 

by Y\\ and the second by Y\\ and integrate over all space. This gives 

ηΙ'Τηχ dr = v1 η*ηλ dx, (5.59) 

U*rn2dr = v2 UXn2dx. (5.60) 

However, 

<ηι\^\ηι> = I nX^ni dx = I (^ι)*^ 2 dx U*rn2dr=\{ 

1 η2^ηι dx = {ηι^η,Υ, (5.61) 

since *V is a Hermitian operator [see Eq. (1.231)]. In addition, v2 = v^ since v2 is 
the eigenvalue of a Hermitian operator. Substituting this result into Eq. (5.60), 
taking the complex conjugate, and subtracting from Eq. (5.59) gives 

0 = (ν1-υ2)(η*η1(1τ. (5.62) 

Since by hypothesis v1 Φ v2 in this particular case, then 

η*ηχ dx = 0, (5.63) 

l· which proves the orthogonality of η1 and η2. This summarizes for our 
diagonalized perturbation operator the proof of one of the general theorems 
given in Chap. 1, §8, viz., that eigenfunctions of a Hermitian operator 
corresponding to different eigenvalues are orthogonal. Thus the new set of basis 
functions r\k which we construct is indeed an orthogonal set. 

If we had a manifold of three eigenfunctions ξί9 ξ2, ξ3 instead of only two, we 
would have nine coefficients atj. The determinantal equation would yield three 
values of uj. Each such value would yield ratios for a2ijax^ and α^/α^, which 
together with normalization would serve to determine one eigenfunction of τΓ 
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within an arbitrary phase factor. The procedure is readily generalized to even 
larger manifolds of functions as is now shown. 

Consider the general case of a (p + l)-dimensional manifold. First we 
separate out all those £k which are already eigenfunctions of τΓ, set them equal to 
an equivalent number of the r\p and construct the remaining η} from linear 
combinations of the remaining ξΗ. We assume that there are r remaining ξΗ, so 
that we must construct r additional r\y Thus 

1j = YaJk£k 0 ' = 1, 2 , . . . , r), 
k 

with 

^rjj = v^j (j= l , 2 , . . . , r ) . 

Combining Eq. (5.64) with Eq. (5.65) gives 

v Σ ask£k = vj Σ aJk£k U = h 2 , . . 
k k 

Multiplying by ξ? and integrating over all space gives 

r). 

Σ aikJtlk = Vj £ ajk ölk = vfiji (7, / = 1, 2 , . . . , r), 
k k 

or equivalently 

Σ ajk(^ik ~ VjSlk) = 0 (j, I = 1, 2 , . . . , r). 

(5.64) 

(5.65) 

(5.66) 

(5.67) 

(5.68) 

The determinantal equation is obtained from 

Jt2l 
J(31 

Jin — Vj 
Jt^i ^ 3 3 - Vj 

'lr 

dr 
hr = 0. (5.69) 

Thus we obtain values for vj9 each of which gives through the set of 
homogeneous equations the ratios aj2/aji, aj2tlajU..., ajrlan necessary to 
determine the corresponding eigenfunction within the requirements of normali-
zation and an arbitrary phase factor. 

PROJECT 5.5 Commuting Operators Have a Complete Set of Simultaneous Eigenfunctions Also 
in Cases of Degeneracy 

Considering the fact that an operator can be diagonalized within a manifold of functions, re-
examine the theorem "Commuting Operators have a complete set of simultaneous eigenfunctions" 
(which was proven in Chap. 1, §8.8 for nondegenerate eigenfunctions) for the case of degenerate 
eigenfunctions. Attempt to construct a rigorous proof of the theorem for this more general case. 
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3 Higher-Order Perturbations and Applications 

3.1 Second-Order Treatment for Nondegenerate Case 

We can now derive expressions for the higher-order perturbations. These are 
most useful when there is no first-order shift in the energy. Consider the 
expansions 

Φ[1) = Σα\1)Φ\°\ (5.70) 
I 

<#,2) = Σ«:2ν»ί0 ) · (5.71) 
I 

The sets of coefficients a\1] and a\2) will be characteristic of the index n, although 
this is not indicated explicitly by a subscript. The a\l) are in actuality the same 
coefficients at which we introduced in the first-order treatment. We substitute 
into Eq, (5.11) and obtain 

■*Ό Σ «!2,<#0) + ^ Σ αγΨ? 
ι ι 

= <0) Σ "ΐΨ? + *ϊ> Σ 0 ! ° ' + <2Ψη
0)- (5-72) 

The first sum is 

Jfo Σ «ί2,</»i0, = Σ «ί2,^ο<#0) = Σ « ^ ! 0 1 . (5-73) 
/ / / 

We substitute this into Eq. (5.72), multiply through by </>*0)* and integrate over 
all space making use of the orthonormality of the φ[0). Thus 

Σ « W ' ^ + Σ a\U^si = K0) Σ 42)*.i + < υ Σ «i1^- + <2)δ*η, (5.74) 
1 1 1 1 

which gives 

< W + Σ «!υ^< = < W + < W + <2) δ„ (5.75) 

or equivalently 
ö ( 2 ) ^ ( o , _ ^ « 0 ) ] = Σ d » r a _ ^α,αα, _ ^,2,^ ( 5 7 6 ) 

From our first-order treatment we have δ^ = i^nn according to Eq. (5.17), and 
for / Φ n, 

a\l) = T , „ / « 0 ) - <0 ) ) 
according to Eq. (5.18). Recall that a^ is determined by the normalization 
requirement on the first-order wave function, and we found that it could be 
chosen to be zero. This choice is also acceptable in the second-order treatment, 
since we have an additional coefficient a{2) which can provide normalization of 
the second-order wave function. 
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If s = n in the above equation (5.76) for the second-order treatment, we obtain 

I I 

= Σ «ί1^«/ = Σ IXintVOC' - *\oy)l- (5.77) 
ΙΦη ΙΦη 

The product ΨΊηΥη\ is equal to ν*{Κηι = \^m\2, or alternatively, to ^ / „ ^ * = 
\V*in\2; these relations follow from the fact that V is Hermitian [see Eq. (1.231)]. 

If s Φ n in Eq. (5.76), we obtain 

α ( 2 , [ ^ 0 , _ ^ , 0 , ] = Σ α ( 1 , ^ _ ^ , 1 , α ( 1 

= a{1)r + V nn (5 78) 

Therefore 

u
n

 y sn ' sn' nn ^ r si' In , x 

2 + 2- r «(0) _ / ( θ η Γ # ( θ ) _ ^(Oh ^ ^ « J . 
ΙΦη 

(5.79) 

The coefficient ÖJ,1* can be chosen to be zero, as previously discussed. The 
coefficient a{

n
2) is obtained from normalization of the second-order wave 

function. 
Therefore, to second order 

sn = <r<°> + λ&^ + λ2£[2) = < 0 ) + xrnn 

+ ^1 Σ [ l ^ l 2 / « 0 ) - <?\0))1 (5.80) 

^ C ' + W + W 

Φ^ + ΐΣ^^ΦΡ + ^Ψ? 

+ ^2Σ 
T ^ l m ^ m n ^ I n ^ „ 

L m ,„^n -«, j L ^ r - o [<0 , -^0 ) ]2 
</><°>. ( 5 . 8 1 ) 

EXERCISE Develop the equations needed to evaluate the third-order perturbation effects. 

3.2 Example Illustrating How to Apply Stationary-State Theory 

As an example of the use of stationary-state perturbation theory, let us refer 
back to §10 of Chap. 1 to the problem of the one-dimensional potential well 
having length L with infinitely high potential walls at the edges. Suppose that a 
uniform potential energy U0 is added as a perturbation over the length yL 
(0 ^ y ^ 1) in the central region of the potential well (see Fig. 5.1). We specify 
that U0 is much less than the ground-state energy &x = n2n2/2mL2 (assuming 
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Fig. 5.7 Perturbation on the square-well potential. [The perturbation energy U0 symmetrically 
spans a fraction of the potential well width L, as determined by the value of the parameter y 
( O ^ y ^ 1).] 

fixed boundary conditions) in order to assure the validity of our use of the 
perturbation treatment results. The eigenfunctions of the unperturbed 
Hamiltonian given by Eq. (1.284) are 

φη{χ) = 
An sin(nnx/L) (n even) 
Bn cos(nnx/L) (n odd), 

with \An\ = \Bn\ = (2/L)1/2 as given by Eq. (1.289). The corresponding unper-
turbed energy eigenvalues <^0) are nondegenerate, and are given by Eq. (1.285), 

^o) = (h2/2m)(nn/L)2. 

The perturbed energy levels Sn can be obtained from Eq. (5.4) (for the limit 
λ -> 1), with Eq. (5.17) used to compute the first-order correction δ^ and Eq. 
(5.77) used to compute the second-order correction i{2). We thus can write the 
first-order energy corrections as 

( i ) _ 

[An sm(nnx/LJ]*U0[An un{nnx/L)] dx (n even), 

[Bn cos(nnx/Ly]*U0[Bn cos(nnx/L)] dx (n odd). 
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The limits of the integrals have the values indicated because U(x) is zero outside 
of this domain, therefore rendering the integrands zero and thereby eliminating 
any contribution over the remainder of the potential well. The above first-order 
corrections readily reduce to 

sin2(nnx/L) dx •'-τυ' 
2UQ 

nn 

'±γηπ 2U κ 

ύχέη dr\ = {\η — % sin 2η) 
nn 

iynn 

= (U0/nn)[ynn - sin(ynn)] (n even), 
2 C^YL 

^)=_£/0 cos2 (nnx/L) dx 

2Up 

nn 
cos2?/ dr\ = (^η + \ sin 2η) 

= (U0/nn)[ynn + sin(y«7r)] (n odd). 

Note from these results that the energy level corrections reduce to zero in the 
limit y -» 0, as they must, since this eliminates the perturbation. Likewise, the 
energy-level perturbations reduce to zero as U0 -► 0, which is again to be 
expected. In the limit y->l, the perturbation energy U0 extends across the entire 
potential well, and the energy corrections have the single value U0 for all levels, 
which is correct from a physical standpoint. If y « 1, then for the lower-lying 
energy levels (n small), sin(ynn) ^ ynn and we obtain S{^] ^ 0 for n even and 
^α) ^ 2yU0 for n odd. This can be understood physically by noting that the even 
n solutions represent sine functions [see Eq. (1.284)], which have nodes at x = 0; 
the perturbation has little effect since for small y the perturbation potential 
energy is thus localized in the neighborhood of a very small probability density 
φ*φ. On the other hand, the oddn solutions represent cosine functions [see Eq. 
(1.284)], which have maxima at x = 0; the perturbation has a maximum effect 
since for small y the perturbation potential energy is thus localized in the 
neighborhood of a maximum in the probability density φ*φ. 

EXERCISE Evaluate the first-order corrections to the energy eigenfunctions for the above 
considered perturbed particle in a box. [Hint: See Eq. (5.30).] 

EXERCISE Evaluate the second-order corrections to the energy eigenvalues for the above 
considered perturbed particle in a box. [Hint: See Eq. (5.77).] 

EXERCISE Evaluate the second-order corrections to the energy eigenfunctions for the above 
considered perturbed particle in a box. [Hint: See Eq. (5.79).] 

EXERCISE Use reasonable numerical values for the parameters, such as L = 1-10 Ä, 
U0 = 0.01 eV, and y = 0.1, to evaluate the first-order corrections to the ground-state energy and the 
energies of the first four excited states produced by the perturbation considered above for the infinite 
one-dimensional square-well potential. 

EXERCISE Repeat the above problem with the exception that U0 extends from a to b, where a 
and b are two arbitrary points within the square-well potential. 
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4 Degenerate Case for Second-Order Treatment 

The above results are immediately applicable if the <//0) are nondegenerate. 
Some care is needed in the degenerate case because the energy denominator can 
be zero. Consider the case in which an eigenfunction φρ

0) is degenerate with φ{°\ 
so that Sp

0) = <f<0). The double sum in Eq. (5.81) contains the factors g™ - <f<0) 

and <^0) - $(°\ with / and m representing summation indices, so the energy 
denominator goes to zero whenever / = p or m = p. To avoid divergence to 
infinity, the product i^imi^mn appearing in the numerator must be chosen to be 
zero whenever / = p or m = p. For the case / = /?, we require ^ p m ^ m n = 0. For 
the case m = p, we require 1^ιρ^ρη = 0. Our previous diagonalization of 'V for 
the first-order treatment was performed in order that τΓρπ = 0 for any state φρ

0) 

which is degenerate with <//0), so the second of these requirements is equivalent to 
the requirement for the validity of the first-order treatment. The first require-
ment, however, is an additional stipulation characteristic of the second-order 
treatment; it demands that either V pm = 0 or i^mn = 0. (This requirement is 
sometimes expressed as follows: There can exist no state φ{®] which connects the 
degenerate states φρ

0) and φ^ through the perturbation.) To summarize, our 
second-order treatment is valid for the degenerate case if we arrange to have 
Ypn = 0 and Ymn = 0, or alternately, if we arrange to have Ypn = 0 and 
^pm = 0> where the index p represents any state φρ

0) which is degenerate with 
φ{°\ Therefore we should arrange to have all matrix elements Ymn = 0 (m = l, 
2 , . . . , /?, . . .) or else arrange to have all matrix elements i^pm = 0 (m = 1,2,. . . , 
« , . . . ) . We see that this may require a more comprehensive diagonalization of 
the perturbation operator than was necessary for the first-order treatment. It is 
sufficient to diagonalize the submatrix including all rows and columns labeled 
by the subscript m for which either i^pm or ymn is not zero. (Of course the 
eigenfunctions can be ordered in such a way that the row and columns in 
question are brought together.) This procedure is more complicated analytically 
than is necessary since in actuality it is only required that either i^mn = 0 or 
Ψ\m = 0, but not necessarily both, as stated above. An alternate procedure is to 
expand the exact eigenfunctions in powers of λ, as was done previously, but 
include both degenerate functions φ{®] and φρ

0) in zero order. This procedure is 
illustrated below. 

5 Removal of Degeneracy in Second Order 

Assume we have two degenerate states φ{°] and φ(
ρ°\ so that Sp

0) = ${®\ and let 
us consider the problem of finding an approximation for the exact eigenfunction 
φη correct to terms through second order. Let us try the expansions 

φη = αηφ^ + α ρ <> + λ Σ ' αγψ? + λ2 £ ' α?ψ?\ (5.82) 

φρ = Κφ^ + brff + λ Σ' *ΐψ? + λ2 Σ' ϋ?Φΐ\ (5-83) 
/ ι 

in = /(Ο) + xgw + x2gv\ (5.84) 
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where the prime associated with the summation symbol means in this case that 
the terms corresponding to the indices n and/? are specifically not to be included 
in the summations since these terms represent the degenerate eigenfunctions 
which are already included in zero order. Substituting the above expressions for 
φη and $n into the equation 

(JT0 + λ^)φη = $ηφη (5.85) 

and keeping only terms through second order in λ gives 

i V T o C + αΡ^οΦ?] + λ Σ αγ^οΦΐ' + λ2 £ ' α\2^0φ™ 
ι ι 

+ λα^φ^ + λα^φ^ + λ2 £ ' αρ-Τφ™ + Θ(λ3) 
ι 

= α^Ψ* + αΑ°Ψ? + λ Σ' «ίΧ0,<Αί0) + λ2 Σ' 42 W i 0 ) 

/ ι 
+ λαη$ϊψ? + λα^ψ^ + λ2 Σ <W<#0) + ®(λ3) 

ι 
+ λ2αη^

2ψη
0) + λ2αρ^

2ψρ
0) + Θ(λ3) + Θ(λ% (5.86) 

where the symbol Θ(λη) means we have neglected terms of order n in λ. We now 
substitute the relation 

JTO0(O) = ^ (0 )0 (0 ) ( 5 8 7 ) 

into the first four terms in the above expression. Using the fact that Sp
0) = &{^\ 

we then see that the first two terms on the left-hand side of the above equation 
reduce to the first two terms on the right-hand side, so these four terms can be 
eliminated. Multiplying the remaining terms by (//0)* and integrating over all 
space gives one equation; repeating except for use of the factor φρ

0)* instead of 
φ(0)* g j v e s a second equation. Taking into consideration the orthonormahty of 
the φ\°\ we obtain for the first equation 

λ Σ «W*«i + λ2 Σ "\2)K0)S«i + W„ + λανΨ~ηρ + λ2 Σ' a\»rnl 
I I I 

I I 

+ XaJ^ + X2 Σ' « W δη1 + X2anS
(2\ (5.88) 

or equivalently, since all terms involving bnl in the sums are zero due to the fact 
that / Φ n, 

Xanrnn + λαρ^ηρ + λ2 £ ' a^rnl = Xan$^ + λ2αη£[2\ (5.89) 

The second equation is 

λαη^ρη + Xaprpp + λ2 £ ' a\l)rpl = λαρ£[1) + λ2αρ^
2\ (5.90) 
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We can obtain a third equation in a similar manner. Instead of using the complex 
conjugate of one of the degenerate eigenfunctions <^0) and φρ°\ we multiply by 
an arbitrary zero-order eigenfunction φ^* (m Φ n, m Φ p) and again integrate 
over all space. The resulting equation is 

λ Σ' a\»s^dml + λ2 Σ ' «i2)^0)<5m, + xanrmn + iaprmp + λ2 Σ' d»r* 
1 1 I 

= λ Σ' «S1,<0,<5mi + λ2 Σ' « ! Χ 0 ) ^ + λ2 Σ « W ^ - i . (5·9ΐ) 
ι ι ι 

or equivalently 

λα«ψν + Α2<2><> + Xanrmn + Xaprmp + λ2 £ ' a^Yml 
I 

= ^ ! X 0 ) + Ί2"!Χ0 ) + ^«LX1'· (5-92) 
m n m n m n v / 

Since λ is a variable parameter, we separate the equations into first-order 
terms and second-order terms. We note that the first-order terms in λ in the first 
two equations give the pair of equations 

an\Tnn - g^y\ + aprnp = 0, (5.93) 

anrpn + ap\Tpp - ^ ] = 0. (5.94) 

The requirement for a nontrivial solution for the an and ap is 

\rnn-sil) rnn 
r pn ' PP 

0. (5.95) 

This determinant leads to a second-degree algebraic equation in S^\ One of the 
roots may be identified as δ^ and the other as Sp

l\ since the same determinantal 
equation must arise when the corresponding perturbation expansion is carried 
through for φρ. The corresponding two sets of coefficients for an, ap obtained 
when each of the roots is used in turn and the pair of homogeneous equations 
solved can likewise be identified with the two pairs of coefficients (an, ap) and 
(bn, bp). Although the homogeneous equations give only the ratios an/ap and 
bn/bp, normalization completes the determination of each coefficient to within 
an arbitrary phase factor for the eigenfunction. The first-order terms in λ in Eq. 
(5.92) yield an evaluation of d£\ 

βίϊ} = (anrmn + aprmp)/{#» - < 0 (m Φ n, p). (5.96) 

Since S^] Φ δ^ for any index m, due to the fact that the only zero-order 
eigenfunction degenerate with <//0) was assumed to be φρ°\ then a^ is well-
behaved. Thus we have avoided the difficulty of zero denominators by the 
present technique. 

If S{^ happens to be a double root then the perturbation fails to split the 
degeneracy in first order, in which case we find that it has been worthwhile to 
carry along the second-order terms. As we have shown previously, whenever the 
degeneracy remains in first order then φ(°] and φρ

0) must both be eigenfunctions 
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of the perturbation operator if with the common eigenvalue S{^\ so that 

rm = j V * ^ 0 ) dt = j V ^ 1 » ^ dx = t%\ (5.97) 

rpp = j V * f # 0 ) Λ = jV*rf«>#0> A = <»>, (5.98) 

^ΠΡ = J ΦΤ**~ΦΡ
0) dr = [ C * <1 )< ) Λ = 0, (5.99) 

rpn = J<>*ir^<» Λ = J V * ^ 0 » * = o. (5.100) 

Returning now to the contribution of the second-order terms in λ, Eqs. (5.89) 
and (5.90) yield the following results: 

β.̂ .2) = Σ'«ί1^-!. (5·101) 
ι 

<*P<2) = Σ' 41)^„. (5.102) 
I 

Equation (5.92) gives 
« Ι Μ ' - <0)1 = < W - Σ' « i ^ - (5-103) 

I 

Substituting the first-order coefficients (5.96) into the first two of these 
equations gives 

anS? = Σ ' V«l{a„rln + aprlp)l{S™ - S^y], (5.104) 
I 

«P< 2 ) = Σ ' ^„i\ianrln + avrlp)HßT - £?)Λ- (5· 105) 
I 

We can rewrite these in the form of two homogeneous algebraic equations for an 

and ap, 

·.Σ[ifät]+>.[Σ[££%]-i»]-o (Moo 
The determinant of the coefficients of the an and ap gives a secular equation 
which is of the second degree in S^. Either of the roots can be designated as $^\ 
with the alternate root constituting Sp

2). We thus have the possibility of 
removing the degeneracy in second order. The pairs of coefficients an, ap then 
resulting from solution of the homogeneous equations (5.106) and (5.107) with 
subsequent normalization for each of the values of <^2) are identified as am ap and 
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bn, bp respectively, and then used in the expansions (5.82) and (5.83) for φη and 
φρ. These serve to determine the proper linear combinations of the unperturbed 
degenerate functions φ{®] and φρ

0) to use as zero-order basis functions. 
The coefficients needed for the second-order corrections to φη and φρ are 

obtained from Eq. (5.103) following substitution of Eq. (5.96) for a\x\ 

(2) = y, (an^in + aP^iP)rml _ (anrmn + aPrmp)^ 
am L [ ( f (0) _ ^(0) ] [ ( f (0) _ ^(0)-| |^(0) _ ^ (0 ) ] 2 · ( · m> 

This completes our treatment of stationary-state perturbation theory. In the 
next section, we develop time-dependent perturbation theory. 

6 Time-Dependent Perturbation Theory 

Let us consider the case for which the perturbation Y is time dependent. The 
total Hamiltonian tf = Jf0 + ^ is then time dependent; there are no exact 
stationary states for the system, and the energy of the system is not conserved 
with time. A charged particle passing through a system of other charged particles 
is one example of this type of perturbation. A transient electromagnetic field 
applied to a system of particles is a second example. If we consider the initial 
state of the system to be some given eigenstate of Jf 0> then our problem can be 
considered to be that of determining the probabilities with which the system will 
be found in the various eigenstates of Jf 0 following the application of the 
perturbation. It is characteristic of many perturbations that the interaction with 
the system is limited in time. This is the case of an incoming charged particle 
being deflected by a fixed charged scattering center, such as a conduction 
electron in a metal being scattered by an ionized impurity in the lattice. 

Consider the unperturbed case, for which 

^οΦΤ = ^ΦΤ· (5-109) 
The corresponding time-dependent eigenfunctions are 

</Ί0) = ΦΤ exp[ - m)S^f] = φ™ exp( - ΐωηί), (5.110) 
where ωη = S^/h. If the arbitrary linear combination of the <//0) 

ΦΟ(Γ) = Σ c„C> (5.111) 
n 

represents the general solution to the unperturbed problem at time t = 0, then 

!P0(r, 0 = Σ <wft0) = Σ €Ηφ^β'^ (5.112) 
n n 

represents the general solution to the unperturbed problem as a function of time. 
Each term in this superposition oscillates with its characteristic frequency ω„, 
where 

ωη = S^/fi. (5.113) 
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If a perturbation Ψ' is now applied, the wave function can still be expanded in 
terms of the complete set of orthonormal eigenfunctions φ{°] of the unperturbed 
problem at any instant of time, but the coefficients will change with time because 
of the perturbation. If we allow for the time dependence of the coefficients by 
permitting cn to be cn(t), then 

!P(r, 0 = Σ'»(0#0)*-**' (5.H4) 
n 

represents a valid solution to the perturbed problem for which J^ = Jf 0 + ^ · 
Our problem thus reduces to the determination of the cn{t) for the perturbed 
problem, for which the equation of motion is 

^Ψ = (jf0 + ΉΨ = M δΨ/dt. (5.115) 
Substituting the above expansion for Ψ into this equation of motion gives 

Gtfo + ΉΣ c„(0#o ,e-w = « 4 Σ c&Wy-*». (5.116) 

Using the fact that 

*οΦ™ = *?Ψ? (5-117) 
and employing the usual rules for differentiation of a product, we obtain 

Σ *iO)C(0#O)e-w + Σ ^ C ( 0 # 0 , e - w 

n n 

= ih X φ)Φ?{-Ιωη)β-*»*' + ih X ^ φϊ»ε-'»·'. (5.118) 

The first sum on the right is equal to the first sum on the left because by definition 
<fj,0) = Λω„. Multiplying the remaining terms by the arbitrary term t/̂ .0)* = 
φγ]* exp( +icojt) and integrating over all space gives 

X cjfirts*»-«* = ih X ^ djne^-^', (5.119) 

where 

rjn = φγ^-Τφ^ dx (5.120) 

and we have used the orthonormality of the <//.0). (Recall that *V can be time 
dependent in this development.) The Kronecker delta function eliminates all 
terms but the one for which n =j on the right side, so we obtain 

ifdc^_ = ^ Crkf)r^-^ (j=h 29 3? } ( 5 1 2 1 ) 
at n 

Thus we have replaced the Schrödinger equation by a system of simultaneous 
linear homogeneous differential equations. As in the case of time-independent 
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perturbation theory, to develop a perturbation expansion we introduce the 
parameter λ such that 

^ = 34?0 + λ'Τ, (5.122) 

Cj(t) = cf\t) + kc\l\t) + X2cf\t) + · · ·. (5.123) 

The above equation becomes 

dc\0) dc^ ,dc\2) 

to—*- + ίήλ^- + M2-^- + · · · 
dt dt dt 

= λ Σ c ^ r ^ ~ ω-)ι + λ2Σ #> rjne^ ~ ω* + · · ·. (5.124) 
η η 

The three relations obtained by equating terms which are respectively of zero, 
first, and second order in λ are 

dc\0) 

in —/- = 0, (5.125) 
at 

dc{1) 

ih-j- = X c f r ^ - ^ , (5.126) 

dc{2) 

iti—j- = X c ^ ^ V ^ " ^ ' · (5.127) 
at n 

Higher-order terms can of course be obtained in the same manner. The 
procedure to solve this sequence of equations is that of successive integration, 
since the equation for the derivative of any given coefficient involves only the 
lower-order coefficients. The integration of Eq. (5.125) gives immediately, 

cf) = const. (5.128) 

Thus the c*.0) (j = 1,2,...) are the initial values of the problem which describe the 
state before application of the perturbation. 

EXERCISE Deduce the third-order time-dependent perturbation equation analogous to the 
zero-, first-, and second-order perturbation equations (5.125)—(5.127). 

For our further development we consider the state to be initially in the 
eigenstate 

^°> = 0<°>βχρ(-ιωβΟ· (5.129) 
Then 

cf = öjs, (5.130) 

where Sjs is unity only if/ = s and is zero otherwise. Then the first-order equation 
[i.e., (5.126)] becomes 

dcil) 

in -J- = £ öns -rjne
i{0)> ~ ω")ι = i r ^ ~ ω*>'. (5.131) 
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Therefore 

cj1>(0 = (i»)"1 r^-^dt <J*s). (5.132) 

We consider cs(t) to continue to have values which do not deviate too much from 
unity; otherwise, the perturbation approach begins to become inexact if we 
restrict ourselves to only the low-order approximations. Thus the limiting case is 
considered in which the wave function does not deviate too much from the 
unperturbed value, so the coefficients c} forj Φ s remain quite small relative to cs. 

PROJECT 5.6 Time-Dependent Perturbation of a Particle in a Box by the Application of a Uniform 
Electric Field 

Consider a particle of mass m and charge q which is initially in its ground state in a one-
dimensional potential well of length L with infinitely high potential energy barriers (Chap. 1, §10). At 
time t = 0, a uniform electric field E0 is switched on and maintained at a fixed value until time /' at 
which it is switched off. Compute the first-order perturbation coefficients ογ\ί') for the first five 
excited states following the perturbation. 

7 Example: Harmonic Perturbation 

7.1 Basic Equations 

Consider the specific case for which the perturbation is harmonic in time 
starting from t = 0, when it is initially switched on, and lasts for a time f, 

TT(r, 0 = 0 (*<0), (5.133) 

TT(r, t) = #(r) sin ωί (0 ^ ί < t'\ (5.134) 

TT(r, 0 = 0 (t>f). (5.135) 

Then during times t for which 0 < t < t' is satisfied, 

f-js = ^ . s sin ωί, (5.136) 
where 

%is = 0<°>*<#(r)#O) dr. (5.137) 

The corresponding integral expression (5.132) for ογ] becomes 

€γ> = (ih)~1 <%.s έ{ω>~ω°)ι sin ωί dt. (5.138) 

Using the Euler identity, sin y = (2i)~l(eiy — e~iy), we obtain 

cf) = - (2/0 " l Wjs [ei{a)j ~ω* + ω)ί - ei{0i> ~ω>- ω ) ' ] dt 

Oft . £ ' H - ω5 + ω)ί _ J q^ ei(ojj - a>s - ω)ί _ | 

+ ^ντ, · (5.139) 
2h /(CÜJ — ω5 + ω) 2ή ί(ω} — a>s — ω) 
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The factors exp[/(co/ — ω8± ω)] have magnitudes of unity; cj.1* has a resonance 
character because it takes on relatively large values whenever one or the other of 
the denominators approaches zero, which requires 

g(0) ~ g(0) ± h(D (5.140) 

The energy input of the perturbation can be considered positive for an energy 
absorption process and negative for an energy emission process, corresponding 
respectively to the source of the perturbation giving quanta of energy to the 
physical system or receiving such energy quanta from the physical system (Fig. 
1.5). Thus the effect of a harmonic perturbation is to change the total energy of 
the system, provided the matrix element for the transition is nonzero. 

Since the system is initially considered to be in state s, the population of statey 
requires energy absorption if E{

s
0) < Εγ} and energy emission if E{

s
0) > Ef\ 

As one nears resonance, the alternate term in the above expression will be 
relatively small and can be neglected since the factor (ω,- — ω3 ± ω) in that 
denominator will approach + 2ω. Application of l'Höpital's rule [Wylie (1951)] 
then gives the result that cj1} approaches ±(^js/2n)t. The assumption that the 
energy levels Sf] and <^0) are perfectly sharp is not a good one for real systems in 
the laboratory, because broadening mechanisms are always present. In addition, 
the uncertainty relation Δω At > 1 (Chap. 1, §7.8) applied to the harmonic 
perturbation requires some spread in ω due to the fact that the perturbation is 
switched on at t = 0. Thus we must examine the situation for values of ω 
somewhat off resonance. If we define 

δω = o)j — ω5 + ω, (5.141) 
where the sign is chosen so that δω -> 0 as ω passes through the resonance 
frequency, then the predominant term in c{^ can be written in the form 

<%js en*<*)t _ i ^ %.^δω)ι sin %δω)ί 

~ 2ή ί(δω) Λ(δω) 

so that the probability for finding the system in the state j at time t for a 
perturbation near the resonance frequency is 

Ic^WI2 =* U®js\2 sin2 %δώ)0/Λ2(δω)2. (5.143) 

This would seem to predict a periodic oscillation of the system into and out of the 
statey during application of the perturbation for long periods of time, but it must 
be remembered that the result is valid only in the limit in which the initial state is 
depleted only negligibly by the perturbation. Thus for a system involving only a 
single particle, we would be well advised to take the small time limit of Eq. 
(5.143). If \(δω)ί « 1, Eq. (5.143) reduces to the short time limiting expression 

|c</>(0l2 * (|^,|74/*2)/2. 

If the quadratic time dependence is bothersome to the reader, then he should 
skip ahead to §10 to find out how this anomaly is eliminated in the derivation of 
the Golden Rule. 
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7.2 Application to a Particle Trapped in a Square-Well Potential 
To apply our results to a specific problem, let us consider the application of a 

harmonic electric field (such as would be produced by an electromagnetic wave 
of light) to a particle of mass m and charge q initially in its ground state in a three-
dimensional square-well potential. Furthermore, let us consider the electric field 
to be polarized in the x direction and to have a wavelength λ which is long 
compared to the dimensions Lx, Ly, and Lz of the potential well. The potential 
well (i.e., the "box") can be considered to extend over the region (0, Lx), (0, Ly), 
and (0, Lz) in the x, y, and z directions, respectively. We consider the case of 
infinitely high potential walls at the edges of the box together with fixed 
boundary conditions. The unperturbed eigenfunctions thus given by Eq. (3.6) 
are 

</>n(r) = (8/F)1/2 sin(nxnx/Lx) sin(nyny/Ly) sin(nznz/Lz), 

with n representing any triplet (nx, ny, nz) of positive integers. The corresponding 
eigenvalues are 

Sn = (h2n2/2m)l(nx/Lx)
2 + (ny/Ly)

2 + (nz/Lz)
2l 

The potential energy is % = qV, where Vis the position-dependent electrostatic 
potential due to the electric field of the light wave. Since the wavelength λ of the 
light is considered to be much greater than the largest dimension of the box, the 
electric field E = xEx can for all practical purposes be considered to be uniform 
over the dimensions of the box. The field is in the x direction due to the choice of 
the polarization direction of the electromagnetic field. The electrostatic 
potential 

- r . K(r)= - I Ε ( Γ ' ) · Λ ' , 

obtained by taking the line integral of the electric field from the origin to the 
arbitrary position r, thus reduces to 

Cx 

V(x) = — Ex dx = — Exx, 
J o 

where Ex is independent of position x, y, and z over the box. The electric field Ex 

is, by hypothesis, a harmonic function of time with some specific frequency 
which can be labeled ω, so that we can write Ex = E0 sin ωί. The potential energy 
^ of interaction of the charge q with the harmonic light wave can thus be written 
<% = qV = —qxE0 sin cot. This is the time-dependent perturbation which acts on 
the system. 

Let us designate the states of the system in Dirac notation so that |n> = φη(τ) is 
the state corresponding to the energy eigenvalue Sn. The matrix elements needed 
for transitions from the ground state to the excited states are thus 

<l|*|n> = φι(τ)(— qxE0 sin ωί)φη(τ) dr. 
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Factoring out the constant factors, we obtain 

<l|«|n> = -(qE0 sin ωΟ<Φι(Φ#.(Γ)>. 

The triple integral can be written as the product of three integrals since the 
integrand is separable; due to orthogonality of the sine functions, the y and z 
integrals give zero unless the quantum numbers ny and nz are the same for the 
initial and final states, 

Jo V Ly ) V L, ) 
dy — iLvö„ „,, 

s 2 y nv, nv» 

nznz \ . / nnz . f 1 sin I I sin I ) dz = |LZ(5 Ι^ζ^η,,η," 

The matrix element thus reduces to 

<lr*|n> = (S/LxLyLz)(LyLz/4)l-qE0 sin cot] SUnöUn/h„x , 

where 

Λ--£'™η(!;) 
ηχπχ\ 1 sin | —:— ) dx. 

This latter integral is easily evaluated by using the Euler identities and a 
subsequent integration by parts. The result can be written in the form 

1 
l , «x 

1 — cos(«x — 1)π 
(nx - 1 ) V 

1 — cos(nx + 1)π 
(nx + 1 )V 

If nx is an odd integer, the right-hand side is zero; if nx is an even integer, we 
obtain 

'·-■ 2 x !_(«, - 1)2π2 (»x + 1)2π2 
- Φ ι ^ 

("2 - 02π 2^.2 * 

EXERCISE Verify this final result by direct integration of Jx using the Euler identities and 
integrating the resulting expression by parts. 

We therefore obtain 

<l|«|n> = 0 (nx odd), 

<inr|n> — i 2
 x * 

V(«2 - 1)2π2/ V^ 

= S ^ L , 
^ 2 - 1)2π2 

These results can be written in the form 

<1|Φ|η> = %x^ sin cot, 

1-qEo sin ωί]δχ„δχ„ 

δχ η δχ η sin cot (nx even). 
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where 

with zl£ven) defined to be unity if nx is an even integer but zero otherwise, namely, 

^ e v e n ) Ξ ί1 (** = e V e n ί Π ^ Γ ) 

"x [0 (nx Φ even integer). 

Several interesting features of the present result can be noted immediately. 
First of all, the transition probability is zero unless the quantum numbers in the 
initial and final states are the same for directions perpendicular to the electric 
field; the transition probability is similarly zero unless the quantum number of 
the final state is different from that of the ground state for the direction parallel 
to the field. Furthermore, the ground state has an odd integer quantum number 
(nx = 1), whereas the excited state must have an even integer quantum number nx 

in order to have a nonzero transition probability. Next, it can be noted that the 
matrix element is directly proportional to the electric field strength E0 and 
directly proportional to the "electric dipole" product qLx. Finally, it can be 
noted that for nx»l, the matrix element is nearly inversely proportional to « .̂ 

By substituting our result for the matrix element of the perturbation directly 
into Eq. (5.143), we can obtain the probability of finding the particle in the state 
|n> at time t when the frequency of the perturbing electromagnetic wave is very 
near the resonance frequency ω1ίΛ = {Sn — S\)lh corresponding to the energy 
difference between the states in question. In our example, δω = h~l(ßn — $t) 
- ω, and we obtain for the probability, 

|^>(0|2 * [*(ίω)]"2Ι*ι..Ι2 sin2[i(<Ma 

where the evaluation of Wi>n has been explicitly carried out above. The fact that 
we obtain selection rules, as evidenced by the delta functions which arise in the 
evaluation of the matrix elements, is especially to be noted. 

PROJECT 5.7 Time-Dependent Perturbation of a Harmonic Oscillator by Uniform and OsciUating 
Electric Fields 

For a harmonic oscillator of mass m, charge q, and frequency v0 = ω0/2π which is initially in its 
ground state, compute the effect of the following perturbations in exciting the oscillator to the nth 
excited state. 
1. A spatially uniform electric field which is turned on at / = 0, held at a constant value E0 over the 
time period (0 ^ / ^ T0), and turned off at t = T0. 
2. A spatially uniform but sinusoidally varying electric field E0 cos cot which is switched on at t = 0 
and off at t = T0. (Consider that in general ω Φ ω0.) 
3. For Part 2, plot and interpret your results for a range of values of ω above and below ω0, using 
reasonable values of ω0, q, T0, and E0 chosen such that the conditions for validity of the perturbation 
treatment are not violated. 
4. Physically interpret the results which you obtained in Part 3. 
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PROJECT 5.8 Time-Dependent Perturbation of the Hydrogen Atom 

Consider a beam of hydrogen atoms, each atom having momentum p with its electron being in the 
ground state; the atoms enter, pass through, and exit from a large but finite (length L) parallel plate 
capacitor, the beam axis being parallel to the plates. Assume there is an alternating electric field 
within the capacitor due to an applied sinusoidal voltage of frequency ω0, where hco0 > 
me4/32n2slh2. Compute the probability per unit time for each electron inside the capacitor to make a 
transition to a plane-wave state, thus ionizing the atom. What is the corresponding total probability 
per atom for the transition to occur? 

8 Example: Constant Perturbation in First Order 

Consider now the specific case where the perturbation 'V is a constant except 
for being switched on at a time which we again designate to be zero and switched 
off at time t', 

ir = 0 ( i < 0 ) , (5.144) 

r = %{x) ( 0 < f < O > (5.145) 
r = 0 {t>t'\ (5.146) 

Then the integral expression (5.132) for cj.1* for 0 ^ / ^ /' is 

% s [ ^ K _ W s ) / - 1] cJ1) = ( iÄ)-1«j a β^-ω^ώ = 
ϊι(ω} - cos) 

IM-
= - - *— έ*»>-«*>' sinEiK- " coa)i]. (5.147) 

n(cOj - ω5) 

The probability for finding the system in the state j at time t is given by 

,„ ^ 4|* / s | 2 sin2[±fo; - ω8)ί] 
\c{\t)\2 = J \ 2 , 2 \ 2 (0 < ^ 0 . (5.148) 

For t > /', c{y\i) and |^.υ(0Ι2 are simply time-independent constants given by 
c^Xt') and Ic^iOl2 because the integrand is zero for t > t'. 

It is of interest to repeat this calculation under the somewhat more general 
stipulation that the perturbation is applied gradually to the system over some 
time interval prior to t = 0 instead of the sudden switching at t = 0. Let us 
designate the positive quantity a as a switching parameter, and introduce the 
following perturbation, 

r = eat^(T) ( f<0) , (5.149) 

ΤΤ = Φ(Γ) (O^t^i'l (5.150) 

r = o (/>/')■ (5·1 5 1) 
As a -► oo, this reduces to the preceding case which is referred to as the sudden 
approximation. The integral for ογ} has the additional contribution δογ\ 

dc{P = (ιΑ)_1«ιβ e'K-"*-")' dt = J- - . (5.152) 
J - oo n(o>j -o)s- ict) 
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This contribution approaches zero as a -> oo, as expected. (This is shown more 
explicitly by multiplying numerator and denominator by the complex conjugate 
of the denominator before taking the limit a -► oo.) As a -► 0, corresponding to a 
very slow switching on of the perturbation, we obtain 

c?] + Sc?} -> ~ */» *{ωι ~ ^'fiicoj ~ ω,), (5.153) 
|C(D + δήΐγ _ \wj8\2/fi2(Q)j _ ω$)2 ( 5 1 5 4 ) 

This time-independent result seems peculiar until we remember that the 
perturbation has been applied effectively for an infinite time. This result is 
therefore not physically realistic for cases in which we must consider the effect of 
perturbations in inducing transitions between eigenstates, as for example, the 
scattering of a conduction electron in a metal by the Coulomb potential of a 
charged impurity. The quantity |cj1} + dc^2 given in Eq. (5.154) is equal to the 
corresponding value \dj\2 obtained from the coefficient a, which we derived in 
time-independent perturbation theory [Eq. (5.18)], so that it represents a result 
more closely related to the shift in stationary-state values by a time-independent 
perturbation than a result which is useful for predicting transition probabilities 
between stationary-state eigenstates. 

A more appropriate way to study the effects introduced by switching would 
perhaps be to maintain the integral of "Γ over the range — oo to t a constant while 
adjusting the sharpness of switching. We do not explore this matter further at the 
present time, although this should be done before applying formulas derived on 
the basis of the sudden approximation to an entirely different physical situation. 

EXERCISE Examine the problem of switching on a perturbation under the assumption of a 
constant energy output from the source for t < 0. (Hint: Energy is the time integral of the power.) 

PROJECT 5.9 Sudden Perturbation of Particle in a Box by Application of a Decaying Voltage 

A charged particle trapped in a one-dimensional square-well potential of length L with infinitely 
high potential barriers at the edges is initially in its ground state (Chap. 1, §10). At time / = 0, a 
voltage V0 is suddenly applied which subsequently decays exponentially with a time constant t'. 
Assuming that the voltage produces a spatially uniform field V/L over the potential well, compute 
the probabilities for excitation into the first, second, and third excited states after the passage of a 
very long time interval. 

PROJECT 5.10 Sudden Perturbation for Particle in a Box by Wall Motion 

Consider the case of a particle trapped in a one-dimensional square-well potential of width L 
having infinitely high potential energy barriers at the edges (Chap. 1, §10). Initially (i.e., for / < 0), 
the particle may be considered to be in the ground state. Suppose that suddenly (at / = 0) the 
infinitely high barrier at x = L is displaced to x = 4L. For time / > 0, calculate the probability that 
the energy of the particle is less than it was initially. 

9 Example: Constant Perturbation in Second Order 

Let us first extend the treatment to second order before examining the 
implications of the first-order result. Substituting the above result (5.147) for 
c{1\ 

cU) = - ^ . s [ e ' K - ^ _ 1]//ζ(ω; - ω5), (5.155) 
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obtained on the basis of the sudden approximation for / between zero and t' into 
Eq. (5.127) for οψ gives 

dc{-2) % ■ °U 
fa J = _ y ujnuns jyfo-φ.), _ j ] ^Η - ω„), 

dt n ή(ωη - ωΞ) 

= _ y Wjrßns ^ _ Ws)t _ ei(Wj _ ωη)ί^ ( 5 β j 5 6 ) 

n ή(ωη - ω5) 

Integration from zero to /, for / between zero and t\ yields 

„ η\ωη - ω8)(ω] - ω5) 

~ Σ Ρ7 ^ τ τ r [ « * * - * " 1]· (5.157) 
η η (ωη - a>s)((Dj - ωη) 

It is readily seen that the entire second sum would be missing if we had used Eq. 
(5.153) for c{p + dc{1) for the limit a - > 0 in the integral instead of εγ\ In 
addition, we would have to add on the contribution given by 

öcf = (in)'1 X [#> + öc^Wj^-™"-^ dt (5. 
n J - o o 

158) 

and evaluate it in the limit a -» 0, and this contribution simply subtracts the term 
associated with the — 1 in the brackets in the remaining expression for cA2), so 
that we obtain finally 

AD _ y * Λ ei{Wj _ ̂  ( 5 l 5 9 ) 

n
 h (ωη ~ ω5)(ω,· - cos) 

EXERCISE Calculate the third-order contribution to the time-dependent effect of a constant 
perturbation suddenly switched on at t = 0. 

10 Transition Probability and Fermi's Golden Rule 

The preceding results for a constant perturbation even in first order are 
seemingly not in accord with the concept of a transition probability P per unit 
time, because such a concept requires the total probability for a transition to be 
proportional to the time t during which the perturbation acts on the system. To 
obtain a transition probability P per unit time, we must consider transitions to a 
spectrum of final states which are closely spaced in energy and grouped around 
some state which we denote by m. This leads to a well-known result referred to as 
Fermi's Golden Rule of time-dependent perturbation theory. 

Consider the particular case of a macroscopic system for which periodic 
boundary conditions (Chap. 1, §3.4 and Chap. 3, §1.7) are applicable, so that we 
are dealing with discrete eigenfunctions closely spaced in energy which are 
normalized to the volume of the system. The density of states as a function of the 
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k vector (Chap. 3, §1.8) is denoted by w(k) and the density of states as a function 
of energy for the particular group of states in question is denoted by Θ{$). For 
example, the group of states in question might be bounded by two constant 
energy surfaces and some increment of solid angle du in k space. For a free 
electron metal, Θ{$) could be expressed in terms of the total density of states 
g(S\ viz. <9(<f) = g{S){dQ/An\ where g(g) is given by Eq. (3.25). We assume that 
Θ{β) is a relatively slowly varying function of $(k) in the neighborhood of the 
state signified by the subscript ra, so that Θ{$(^})) for the group of states in 
question denoted by wavevectors k, can be considered to be equal to <9(<^(kw)). 

Let us denote the transition probability per unit time from the initial state ks to 
a given final state k, by P(ks, k,·), so that the transition probability Pm per unit 
time for a transition to one or another of the group of final states j is 

Pm = X P(K kj). (5.160) 
j 

Since the states are closely spaced, this sum can be replaced by an integral 

Pm^!w(kj)P(Kkj)dkj (5.161) 

over the group of states in question. The transition probability P(ks, kj) per unit 
time can be considered in the limit of small time t to be the square of the 
magnitude of the first-order coefficient c^Xt) divided by the time t during which 
the perturbation has been applied, 

4 | ^ d 2 s in^co, · - cos)tl 
P(ks,kj) = \αγΥ/ί = J \ l2K \ s ) \ (5.162) J nz(a>j - cosyt 

where we have used the result (5.147) of the sudden approximation for εγ\ The 
matrix elements %js can be considered to be independent of j over the group of 
states in question as a first approximation, 

Wjs^Wms, (5.163) 

because the states k; are considered to be grouped in the neighborhood of km. 
The expression for P(ks, kj) is thus seen to depend on the energy difference 
n(a>j — cos) but not especially on the particular value of kj for the group of states 
in question. Thus 

f 4HU2 sin2[JK- - ω.)ί] 
Pm ^ 727 zrt w(kf) dkj, (5.164) 

where the integration is to be carried out over the states in question. Since 

w(kj) dkj = e(*(kj)) dS'ikj) A 6>(<f(km)) dS(kj), (5.165) 

we obtain 

P. * 4 | * - ' ' e W t · " f ^ ' - y -WM. (5.166) 
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where the integral is over energies which are appropriate for the group of states 
ky. Due to the nature of the integrand, the maximum contribution can be 
expected to arise from regions of ^(k,) for which ω, ~ cos. This represents 
essentially a selection rule requiring conservation of energy. If we agree to 
consider final states kj which meet this criterion, i.e., 

A U ^ ( U (5.167) 

and furthermore are able to consider tyjs and <9((f (k,)) to be approximately equal 
to Wms and <9(<i(km)) over a region in k space which corresponds to an energy 
width which is broad with respect to the energy width of the function 
constituting the integrand, then we can extend the limits of integration from 
— oo to + oo without appreciable modification in the results. Making the 
variable change 

y = %coj - ω8)ΐ = [<f(k;) - <f(ke)]i/2Ä, dy = (tßfi) d£(kj) (5.168) 

in the integral then gives 

n 4|^ms|26>(<nkm)) f00 sin2;; i f00 

J - c 
;{2hli)dy 

>h2(2y/t)2 

=* (2/fi)\®ms\
2 © W k J ) Γ y~2 sin2 ydy. (5.169) 

J — oo 

The definite integral has the value π, so we obtain 

Pm ~ (2n/n)\Wms\
2 6>(<f(km)). (5.170) 

This is called Fermi's Golden Rule of time-dependent perturbation theory. The 
transition probability thus obtained is, within the limits of validity of our 
treatment, independent of time. 

The matrix element ^lms can be expected to depend upon the vectors ks and km 
characterizing the initial and final states, even though <f(km) ~ <i(ks). For 
example, consider the case of a conduction electron initially in a plane-wave 
state characterized by ks to be scattered by the Coulomb potential of an ionized 
impurity into the plane-wave state characterized by km. It would not be 
physically realistic to expect isotropic scattering, so Pm would be expected to 
depend at the very least upon the angle between ks and km. In this respect, Pm 

represents a quantity more closely related to the differential scattering cross 
section (Chap. 5, §11) than to the total scattering cross section. To obtain the 
quantity Ptotal corresponding to the total scattering cross section, the quantity Pm 

must be integrated over all groups of final states which contribute to the process. 

PROJECT 5.11 Application of Fermi's Golden Rule to a Particle Trapped in a Square-Well 
Potential 

Carry through an analogous treatment to that of §7.2 for the particle trapped in the three-
dimensional square-well potential using Fermi's Golden Rule [Eq. (5.170)]. Explain the similarities 
and differences in the results obtained by the two methods. 
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11 Differential Cross Section for Scattering 

Consider the case of transitions from one plane-wave state characterized by an 
initial k vector ki 

Mr , t) = Aie
i(ki'T-°Jit) (5.171) 

and energy <f(kj) to another plane-wave state of the same energy characterized 
by a final k vector kf, 

φ{(τ, t) = Aie
i^'r-ü3<t\ (5.172) 

Let us normalize these plane-wave states to the volume V of our system, which 
for present purposes we consider to have linear dimensions L in each of the three 
orthogonal directions x, y, and z. Then ψ*ψ integrated from — L/2 to + L/2 in 
each of the three directions gives A2L3, which must be equal to unity. Therefore 
Ax = A{ = L~3/2 = V~1/2. Consider the case where the perturbation inducing 
the transitions is time independent, as for example, the case where the Coulomb 
potential of a charged scattering center induces transitions of conduction 
electrons in a metal from one plane-wave eigenstate to another plane-wave 
eigenstate. Let us use Fermi's Golden Rule (5.170) to obtain an expression for 
the transition probability per unit time in a given direction in k space defined by 
the differential solid angle dQ = sin Θ d0 άφ, 

Pm ~ (2π /* ) | *„ | 2 β [ /Λ) ] . (5.173) 

The quantity <9[<^(kf)] in this case is the density of states of the system at the 
energy <f(kf) corresponding to the element of volume k2 sin θ άθ άφ in momen-
tum space, where we consider only a single direction of spin. (We ignore the 
possibility of additional final states for multiple directions of electron spin.) The 
matrix element <%lVl is that of the scattering potential %{*) with respect to the 
initial and final states ki and kf. Since we are considering collisions for which the 
energy of the particle is conserved in the scattering process, 

^(kf) = <f(ki), (5.174) 

then cot = a>i, so 

* H = ^?#ÖWi dx = V'1 « ( r y ^ - ^ - ' r f r . (5.175) 

The integration is to be carried out over the volume L3 of the system. 
The density of states w(k) in k space is given by Eq. (3.16) for a free-electron 

metal, 

w(kf) = Κ/8π3, (5.176) 

which is independent of kf. Consider the vector kf to be given in spherical polar 
coordinates by k{9 0, φ. Then 

rfkf = k2 sin Θ dk{ dd άφ. (5.177) 
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If we assume spherical constant energy surfaces, then 

£(k() = fi2k2/2rn*, (5.178) 

d£(kf) = (n2kf/m*) dku (5.179) 

where m* is the "effective mass" of the particle undergoing the scattering. (The 
concept of effective mass arises in energy band theory (cf. Chap. 7). It includes 
the effect of the ion cores on the inertia of an electron in a periodic solid. For the 
moment, m* can be considered to be analogous to the ordinary mass of a 
particle.) The substitution of Eqs. (5.176), (5.177), and (5.179) into the general 
relation 

<9[(?(kf)] <tf(kf) = w(kf) dkf (5.180) 

gives the following expression for 6>[<?(kf)], 

<9[<f(kf)] = V(m*ßn3fi2)k{ sin θ άθ άφ. (5.181) 

By substituting the above results (5.175) and (5.181) for <#fi and <9[<T(kf)] into 
Pm given by Eq. (5.173), we obtain the following expression 

Pm ~ (m*/4n2fi3 V)k{ sin θ άθ άφ J-« ( r y f t - * > ■ ' * (5.182) 

The differential scattering cross section σ(0, </>), however, is defined as the 
transition probability per unit solid angle per unit incidence flux, 

a(e^) = PJ(CvdQ)9 (5.183) 

where v is the velocity fik/m* of the particles being scattered which have a 
concentration C, and dQ = sin Θ d9 άφ. The velocity of the particle in the initial 
and final states is the same in the approximation of spherical constant energy 
surfaces (i.e., $ oc k2), so v = hk{/m*. We have considered in the development of 
expression (5.182) for Pm the scattering of a single particle initially in state ki5 so 
that the concentration of the particles being scattered is simply C = l/V = 1/ZA 
Thus we obtain 

σ(0, φ) = Vrn*PJ(hk{ sin Θ d9 άφ). (5.184) 

Substituting our above result (5.182) for Pm, we obtain 

σ(θ, φ) = (m*/2nfi2y %(r)ei(ki-k{)r dx\ (5.185) 

This important result for arbitrary potentials will be used below for two specific 
problems: 

(a) the coherent scattering of electrons by the periodic lattice potential to 
yield electron diffraction and the energy band structure of periodic solids; and 

(b) the contribution to the electrical resistivity of a solid caused by the 
scattering of conduction electrons by randomly situated ionized impurities in the 
lattice. 
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12 Diffraction of Electrons by the Periodic Potential of a Crystal 

An electron-diffraction experiment consists basically of directing a mono-
energetic beam of electrons onto a crystal and searching with a detector for any 
orientations at which the outcoming electrons have intensity maxima. The 
crystal orientation and the energy per electron in the incident beam are the major 
experimental variables. The beam intensity must be sufficient for observation of 
the diffracted electrons, but otherwise is unimportant insofar as the physical 
phenomena are concerned. The question we ask is specifically what are the 
conditions necessary to produce a diffracted beam in a certain direction relative 
to the incident beam. Consider the incident beam to be directed along the +z 
direction, and consider the possibility of a scattered beam along the direction 
denoted by 0, φ in spherical polar coordinates. Expression (5.182) for the 
transition probability then tells us that the condition for diffraction in a given 
direction is that the matrix element 

#(ry(fc-kr)·' dr (5.i8 6) 

be nonzero. Furthermore we can conclude that a diffraction maximum requires 
that the value of this integral be an extremum. 

The potential ^(r) for this situation is the periodic lattice potential %0(r), 
which can be expressed in terms of a three-dimensional complex Fourier series, 

^o(r) = I ^ G e / G ' r . (5.187) 
G 

The vectors G are known as reciprocal lattice vectors; they are developed in 
detail in Chap. 6. Substituting Eq. (5.187) into °Un gives 

Vn= V'1 £ ^ G \ei(ki-k< + G)r dr. (5.188) 

Due to the oscillatory nature of each integrand, the integrals will be practically 
zero except for cases in which the condition 

k f - k j + G (5.189) 

is met for some reciprocal lattice vector G. When this occurs, the integral has the 
value V, and the corresponding value of %ix is $fG. The matrix element is in this 
case equal to the coefficient of the Fourier component of the periodic potential 
corresponding to the reciprocal lattice vector satisfying the above condition, so 
the transition probability will be proportional to the square of the magnitude of 
this coefficient. In general, we can state the result as 

^fi = Z ^ G < W k f · ( 5 1 9 ° ) 
G 

Equation (5.190) predicts that for a given incident beam denoted by kj we will 
have a number of diffracted beams in different directions kf because there are a 
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large number of reciprocal lattice vectors G available for satisfying the condition 
contained in the Kronecker delta function. If we confine our attention to a single 
final state kf instead of scanning over a solid angle of 4π, then Eq. (5.190) can be 
written as 

*fi = *G« G + kifkr- (5.191) 
Since other effects due to the nature of the atomic scattering centers 

constituting the periodic lattice are also important, we can only conclude at this 
point that the condition for diffraction which we have deduced above is required 
but not necessarily sufficient. Certain diffraction maxima predicted by the above 
condition are not found experimentally due to other mutual cancellation effects. 

The above requirement (5.189) that kf — kj ~ G for diffraction will now be 
shown to lead to the well-known Bragg condition (1.89), namely ηλ = 2d sin 0, 
where Θ is the angle which the incident beam makes with a set of lattice planes of 
spacing d, and n is an integer denoting the order of diffraction. For spherical 
energy bands, the energy conservation requirement <i(kf) = <f(ki) for elastic 
scattering means that kf and ki must be equal in magnitude; thus k{ = k{ = 2π/λ. 
Figure 5.2 illustrates the relationship between a set of lattice planes (viewed as 
being perpendicular to the surface of the diagram), the corresponding set of G 
vectors (equal in magnitude to 2nn/d ( « = 1 , 2 , . . . ) and perpendicular to the set 
of lattice planes at the point of incidence of the beam), the k vector k{ of the 
incident beam (viewed as lying in the surface of the page and making an angle Θ 
with the lattice planes), and the k vector kf of the diffracted beam. In analogy 
with electromagnetic radiation, the wave vector of the diffracted beam is 
assumed to lie in the plane of incidence (i.e., the plane defined by G and ki) at the 

Lattice Planes d 

d 

Fig. 5.2 Diffraction of waves with wave vector kj by a sequence of parallel equally spaced lattice 
planes characterized by the reciprocal lattice vector G. (The wave vector of the diffracted beam is 
given by kf = kj + G.) 
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Fig. 5.3 Schematic diagram of a triple-axis neutron spectrometer installed at the High Flux 
Isotope Reactor (HFIR) at Oak Ridge National Laboratory. (The initial neutron energy is 
determined by Bragg reflection from the monochromator; the final energy, after scattering by the 
specimen, is determined by Bragg reflection from the analyzing crystal. Knowledge of the initial and 
final energies and the scattering angle Φ allows the determination of the energy and momentum 
transfer. This instrument is used primarily for measurement of phonon and magnon dispersion 
curves. The photograph was provided through the courtesy of Dr. R. M. Moon and Dr. M. K. 
Wilkinson of the Solid State Division of Oak Ridge National Laboratory, which is operated by the 
Nuclear Division of Union Carbide Corporation.) 

same angle Θ with respect to the lattice planes. From the isosceles triangle in the 
diagram, we deduce that 

|G|/2 = |ki| sin 0 - |kf| sin Θ. (5.192) 
Substituting |G| = 2nn/d and |kf| = |kf| = 2π/λ gives immediately the Bragg 
condition (1.89), 

λ = (2α/η)ϊϊη Θ. (5.193) 
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Fig. 5.4 Phonon peaks observed in iodine at 78°K with the neutron diffraction apparatus 
illustrated in Fig. 5.3. (Each graph shows neutron intensity versus energy transfer at a constant 
momentum transfer. The position of each peak determines a point on the phonon dispersion curve. 
This photograph was provided by Dr. R. M. Moon and Dr. M. K. Wilkinson of the Oak Ridge 
National Laboratory.) 

The experimental observation of electron diffraction and its one-to-one 
correspondence with the results of x-ray diffraction seem to constitute 
irrefutable evidence for the wave nature of matter. Although electron diffraction 
and x-ray diffraction are found to be entirely alike in the general principles 
involved, experimental diffraction patterns reflect the fact that the lattice 
potential effective in the scattering of electrons differs from the corresponding 
lattice potential effective in the scattering of x rays. Neutron diffraction (Figs. 
5.3 and 5.4) again follows the same general theory, but neutron scattering is 
influenced more strongly by the location of the atomic nuclei in the solid than is 
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x-ray or electron diffraction, which depend to a large extent on the electron 
distribution within the solid. 

13 Diffraction of Conduction Electrons and the Nearly-Free-Electron Model 

13.1 Lattice Perturbation of States within the Brillouin Zone 

The conduction electrons at the Fermi surface in a metal have wavelengths 
comparable to the lattice spacing, so that diffraction effects by the periodic 
lattice potential should perturb the results which we derived in Chap. 3 on the 
basis of the quantum free-electron model. Considering the conduction electrons 
to replace the role of the incident beam of electrons in the diffraction experiment 
described in the preceding section, we can immediately use the conclusion that 
whenever the matrix element 

*fi = Z * G « W k r (5 ·1 9 4) 
G 

is nonzero, a conduction electron in the plane wave state kj will tend to be 
diffracted into the plane-wave state kf. The rate of occurrence of this transition is 
proportional to the square of \<%G\, where %Q is the particular coefficient of the 
complex Fourier component eiGr of the periodic potential ^ 0 ( r ) f ° r which 

G - k f - k i . (5.195) 

Therefore we can conclude that the periodic lattice potential induces conduction 
electron transitions from one plane-wave state to another plane-wave state 
differing in k vector by a reciprocal lattice vector. The perturbing periodic 
potential thus mixes plane-wave states differing by reciprocal lattice vectors. The 
free-electron states and energy levels can thus be considered to be perturbed by 
the lattice potential, and in the limit where the perturbation is small, the system 
can be said to be described by a nearly-free-electron (NFE) model. 

The perturbed energy through second order can be obtained by using our 
previously derived formulas (5.17) and (5.77) from time-independent per-
turbation theory 

<?\l) = rih (5.196) 

S^=Y L (M, (5.197) 

where the perturbed energy S{ is given by Eq. (5.4), 

Si ~ <f J0) + λ ^ + λ2$^\ (5.198) 

The unperturbed state corresponding to a plane wave with wave vector k} has an 
energy, according to Eq. (3.11) for the free-electron model, of 

#w = h2kf/2m, (5.199) 

where m is the electronic mass. According to the result (5.194) quoted above for 
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< f̂i, the diagonal matrix element corresponds to the reciprocal lattice vector 
G = 0; the matrix element Ψ"α in Eq. (5.196) therefore has the value ^0» a n d 
hence 

<Τ;.υ = Φ0. (5.200) 

Thus the first-order correction to the energy level is simply the uniform potential 
energy (i.e., infinite wavelength Fourier component) contribution introduced by 
the perturbation. Similarly, Eq. (5.194) shows us that the off-diagonal matrix 
elements in Eq. (5.197) are given by 

rn = ®GsG+khki = mG s G k i _ ki, (5.201) 

^ i i = ^G^ + khki = ^GSGki_ki. (5.202) 

The reason G Φ G' is that kt — kj is a different vector from k, — kx; in fact, it is 
the negative of kj - kh We perhaps may not say that iT* = ViU as we did in Eq. 
(5.77); the difference here is that we have written a real potential as a complex 
Fourier series with complex Fourier coefficients, and thus each term in the 
resulting matrix element is not real. The fact that the lattice potential must be 
real still proves useful to us in obtaining a compact result, as presently will be 
shown. 

For every vector G, there must be a vector — G in the Fourier expansion since 
the Fourier components exp(/G · r) and exp( — /G · r) are linearly independent. 
Hence if the selection rule (5.201) is met with G for kx — kh then the selection rule 
(5.202) is met with G' = - G for kt - kh Therefore Eq. (5.202) can be written 

rü = «_G <5_G,ki_k/ = %-G 6Gki_k. (5.203) 

Equations (5.201) and (5.203) yield 

rura = ^ G ^ - c O W k , ) 2 = ^ G ^ - G <5G,k(-ki· (5 ·2 0 4) 
Let us pause to examine the nature of the coefficients ^ G . The lattice potential 
^o(r) is real, so that 

Φ0(Γ) = «*(r). (5.205) 

Substituting the expansion (5.187) into (5.205) gives 

X %GeiGx = X W*e-iG'r. (5.206) 
G G 

For every G, there is a corresponding vector — G in the reciprocal lattice, as 
mentioned above and as shown explicitly in Chap. 6. Thus we can substitute — G 
for G in every term in the sum and reorder the terms, 

X W*e-iG'f = £ W*_GeiGr = X ^* GeiG\ (5.207) 
G - G G 

Substituting this result into Eq. (5.206) gives 

X WGeiGr = X <V*_Ge?G'\ (5.208) 
G G 
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or equivalently, 

X ( ^ G - ^ * G y G ' r = 0 · (5.209) 
G 

Since the Fourier components eiGr are linearly independent of one another, the 
coefficient <%G — °ll*_G must be zero, so that 

^ G = ^ * G, (5.210) 

or equivalently, 

^ = «_c. (5.211) 

Utilizing this result in Eq. (5.204) gives 

ruru = %G«ii-G sGki_ki = %<&% sGki_ki = \®G\2 s G k i _ k r (5.212) 
Substituting Eq. (5.212) into the expression (5.197), we thus obtain 

^ Σ 1 ^ ) ^ ' · (5-213) 

Denoting Sf] by g(kt) and g<0) by S%\ 

g™ = X ' ^ G | 2 ^ k ' - k · · . (5.214) 

As the sum over the index /is carried out, the factor SG k/ _ k. selects out only those 
terms for which kf = kt + G for any of the set of G vectors for the lattice; all 
other terms are zero. Since we have a quasi-continuum of final states in the free-
electron model, every G vector will give rise to some possible final state. We can 
restrict the sum in Eq. (5.214) to only those terms for which kf = kt + G, which 
reduces the sum in effect to the following sum over all vectors k( + G for the 
lattice in question, 

£\2)= Σ — 7Γ- (5 ·2 1 5) 
/ f t + G^/ikO <^(k0 - <$(ki + G ) 

Collecting the zero-, first-, and second-order contributions (5.199), (5.200), 
and (5.215), we thus obtain from Eq. (5.198) the expression 

, | = *£ + A*0 + A 2 Σ ™*ΓΛ ("16) 

for the NFE model energy levels. This result shows that in general the energy is 
no longer strictly a quadratic function of the wave vector k and the momentum hk: 
The constant energy surfaces in k space can be nonsphericall 

EXERCISE Deduce the perturbed energy eigenfunctions corresponding to the perturbed energy 
eigenvalues given by Eq. (5.216). Can you draw therefrom any conclusions pertinent to the effect of 
the periodic lattice potential on electron propagation in solids? 
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One major requirement for validity of the perturbation result (5.216) can be 
seen immediately to be that 

(5.217) 

(5.218) 

*(k,) Φ *(k, + G) 
for any nonzero ^G. This can be written 

h2kf/2m Φ h2(ki + G)2/2m, 
which requires 

|k,| Φ |k, + G|. (5.219) 
This condition means that kf cannot fall on the plane which bisects G and is 
perpendicular to it. (See diagram in Fig. 5.5.) We consider k, to be measured 
from the origin in k space (i.e., reciprocal space). The planes which bisect the 
vectors G as measured from the origin in reciprocal space are called Brillouin 
zone boundaries, and the volume of k space delimited by these boundaries is 
called a Brillouin zone. (For details, refer to Chap. 6, §8.) Therefore it can be said 
that the requirement for validity of the perturbation treatment is that the k vector 
of the state under consideration must not touch any of the Brillouin zone 
boundaries. This excludes those states for which Bragg diffraction (§12) takes 
place, as can be seen from Eq. (5.189) and the fact that |kf| = |kj| for elastic 
scattering. The perturbation treatment is therefore applicable only to those 
states inside the Brillouin zone; it breaks down for the electronic states on any 
portions of the Fermi surface which are in contact with the Brillouin zone 
boundaries. This is due to the fact that the energy is degenerate at the zone 
boundary, so that the correct set of zero-order basis states for a perturbation 
treatment must be properly chosen from suitable linear combinations of the 
individual plane-wave states corresponding to the zone boundaries. (The proper 
perturbation treatment of degenerate states has been discussed at length in §§ 1, 
2, and 4 of this chapter.) When the perturbation operator is properly 

Fig, 5,5 Initial conduction electron states labeled by wave vectors k, in reciprocal space. (If 
nondegenerate perturbation theory is to be used in evaluating the modifications in a given free-
electron energy eigenvalue ${ and plane-wave eigenfunction φί introduced by the periodic lattice 
potential, the corresponding wave vector kf cannot touch the Brillouin zone boundary indicated by 
the dashed lines. The Brillouin zone boundary in the figure is perpendicular to and bisects the 
reciprocal lattice vector G. When the incident wave vector kf touches a Brillouin zone boundary, the 
condition is met for diffraction of the incident beam, as illustrated in Fig. 5.2.) 
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diagonalized (as carried out explicitly in §13.2), it is found that the degeneracy is 
split, thereby opening up an energy gap in which there are no energies 
corresponding to allowed states for the conduction electrons! The energy range 
is thus divided into regions (or "bands") of allowed energies (called energy bands) 
over which there exists a quasi-continuum of electronic states meeting the 
condition of periodic boundary conditions, with these regions of allowed 
energies separated by regions of forbidden energies (called energy gaps) over 
which there exist no electronic states which satisfy periodic boundary con-
ditions. One of the principal effects of the lattice potential is therefore to create 
the energy gaps which play such a central role in our understanding of the 
difference between metals and insulators. (Further details are given in the next 
section and in the discussion in Chap. 7, §9.) 

13.2 Lattice Perturbation of States at Brillouin Zone Boundaries 

The energy gaps discussed in the preceding section have such important 
implications for understanding the conductivity properties of solids that this 
topic deserves a more careful quantitative examination, using the first-order 
degenerate perturbation theory developed in §2. The starting point is the 
consideration of two plane-wave states 

ξ± = V~1/2eiki'\ ξ2 = v-ll2e^i + G,)'\ 

where V is the volume of the metal crystal. These two states are degenerate 
whenever 

i<<» = (fi2/2m)kt · k, = (h2/2m)(ki + G') · (k, + G) 

for any one of the reciprocal lattice vectors G'. This constant energy condition 
can be written Ik l̂2 = |kf|2 + 2 k f G ' + |G'|2, or equivalent^, k, · G' = - f | G f . 
This vector equation maps out a plane in k space, somewhat analogous to the 
vector equation for a plane in real space. (Recall that the equation for a plane in 
real space can be written as K · r = const, where K is some fixed vector which is 
perpendicular to the plane in question, and r is a variable vector in real space.) 

Because kt · G' = |ki||G'| cos 0i9 where 0f is the angle between the vector k, and 
G', the above equation can be written |kt-| cos 0f = — ̂ |G'|. This result can be 
interpreted as follows: Whenever the projection of kf onto G' is exactly one-half 
the magnitude of G', and is oppositely directed to G', then the condition is 
satisfied for the above functions ζί and ξ2 to represent degenerate energies. For a 
given G', the vectors in k space which satisfy this condition are the subset of kt 
vectors which extend from the origin and touch the plane which bisects the G' 
vector in question. (If we look ahead to Chap. 6, §§ 6 and 8, we can see that this 
represents a Brillouin zone boundary.) 

To apply the theory developed in §2 to this situation, we need the matrix 
elements [cf. Eq. (5.49)] of the periodic lattice perturbation potential °U^j) with 
respect to the above plane-wave states ξχ and ξ2. Using the Fourier expansion 
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(5.187) for the periodic lattice potential, we obtain 

1 
~V 

%j = <i|*o(i-)ly> 
L G 

dt 

4Σ 
V G 

^ ^ - ^ + ^ - ' Λ - Σ Φ β ή k,,G + k, 

for plane-wave states represented by the vectors k, and k,. (The reduction of the 
integral to the Kronecker delta function follows from the oscillatory nature of 
the integrand and the assumption that each dimension of the solid is a multiple 
of that wavelength of the oscillations.) Substituting kf + G' for k, then gives ^r12, 
the matrix element of ^(r) with respect to states ξι and ξ2, 

'« =Σ £G ^ G + G' + k, 

Similarly, 

? 2 ΐ = Σ * ο ή k, + G,G + k, — «*G'9 

or with the aid of Eq. (5.211) and the above expression for ^ 1 2 , we obtain <^2i = 
qiQ, = %*_G, = ^*2 , where the asterisk denotes the complex conjugate. On the 
other hand, substituting k, for k,· gives the diagonal matrix element of ^(r) with 
respect to the state ξί9 

Similarly, the diagonal matrix element of <^(r) with respect to the state ξ2 is 

Σ 
G 

\ + G', G + G' + k,· = * o . 

Substituting these results for the matrix elements <%^ in place of Μν] in the 
secular determinant (5.53) [or (5.56)] and utilizing the symbol &\1] for the first-
order correction to the energy eigenvalue thus leads to the following de-
terminantal equation, 

W i f * · 

^o - W 
= 0. 

Expanding the determinant then leads to the secular eqution, (<%0 — £\1])2 = 
# C * G ' = l*cl2, which gives %0 - £γ] = ±\<%G>1 and thus leads to the two 
eigenvalues $\1] = °llo + ψΙΙ&\ for the diagonalized representation. The com-
ponent ^lG of the periodic lattice potential thus splits the degeneracy of the 
degenerate plane-wave eigenstates of the unperturbed free-electron 
Hamiltonian. (This exercise in technical jargon is not meant to discourage the 
reader; on the contrary, it is meant to "gird the loins" for future royal battles in 
coping with the literature!) The two eigenvalues thus deduced differ from %0, 
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the expectation value of a uniform (nonperiodic) potential. For definiteness, let 
us label the two roots S\\] and S\\\ 

*W = «o - ΙΦοΊ, &£ = ®o + l*cl · 

These constitute the first-order energy eigenvalue corrections produced by the 
periodic lattice potential. Note that the splitting introduced by the perturbation 
gives an energy separation AS (i.e., an energy gap Sg) between the states, 

S% = AS = S% - S^ = (W0 + |#G,|) - («r0 - l*cl) = 2 | ^ | . 

The energy gap is thus directly proportional to the relevant Fourier component of 
the periodic lattice potential. Figure 5.6 illustrates the introduction of the energy 
gap into the otherwise free-electron dispersion curve S eck2 characteristic of the 
free-electron model [see Eq. (3.11) and Fig. 3.12]. 

-G -1/2G t o 1/2G G 

Fig, 5.6 The set of k vectors obtained by applying periodic boundary conditions to the 
rectangular parallelepiped domain of a free-electron metal fall on the parabola $(k) = h2k2ßm, 
according to Eq. (3.11); the periodic lattice potential perturbs these closely spaced energies, 
especially in the neighborhood of the Brillouin zone boundaries where Bragg diffraction occurs, so 
that the various electronic states labeled by the k vectors (see dots) avoid certain ranges of energy (see 
^gap)· The energy range is thus separated into energy bands and energy gaps by the periodic lattice 
potential. (The magic effect of the Brillouin zone boundaries can be traced to the fact that for each k 
vector touching the boundary, there exists a k vector k + G of the same magnitude touching an 
opposite boundary, as can be visualized from Fig. 5.5; these two states have the same wavelength and 
the same energy $ = h2k2/2m. Moreover, along the direction of G each state has oppositely directed 
components of k of equal magnitude which correspond to some integral multiple of the de Broglie 
wavelength between lattice sites parallel to G, so Bragg reflection by the lattice potential can serve to 
populate each of these states from the other. Thus two linearly independent standing waves can be 
created from the two oppositely directed traveling wave components, each standing wave being 
nonpropagating in directions parallel to G. The location of the peaks in the standing-wave electron 
probability density, in relation to the lattice sites, determines the interaction energy of the electron in 
question with the ionic lattice potential, as illustrated in Fig. 5.7.) 
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Next, let us deduce the corresponding eigenfunctions, again using the theory 
developed in §2. From Eqs. (5.52), (5.54), and the above results we obtain 

*12 = «11 ^ 2 l / ( ^ } } ~ ^ 2 2 ) = " A l l «G'/I«G'I, 

a21 = a22V12/(fi$ - # n ) = a22W*,/\WG.\. 

The perturbed eigenfunctions given by Eq. (5.38) thus take the form 

ηι = « n i l + α12ξ2 = flniii - [ ^ G V I ^ G ' I ] ^ } , 

i/2 = 0 2 1 ^ + α22ξ2 = a22{[W*./\<VGW1 + ξ2}, 

where ξχ and £2 are the plane-wave states eiki'r and e
i(ki + G,)'T with which we 

started our treatment. To proceed, it is convenient to write the complex Fourier 
component °UQ> in polar form 

where δ is the phase angle and ψΙί^\ is the modulus of the complex number. Thus 
we can write 

*G'/I*G'I = Λ *S'/l*G'l = e~" 
in which case 

ffl = * l l ( £ l - * % ) , >?2 = ^ 2 2 ( ^ ^ 1 + £2), 

with ö n and a22 determined from the normalization conditions 

Ohfoi) = 1, <Jli\ni> = 1-
Substituting for ξχ and ξ2 gives 

^ = α η Κ" 1 / 2 [> ' ν Γ - ^V(ki + G ) * r ] 
= _ f l n ^ - l/2e/(k,··r)ei(iö)ei£G'·r)|^[i(G'·r + <5)] _ g-/[±(G'· r + <5)] j 

= -2ia11V-1,2eiki'reWG''T + ™ sinQ(G'-r + <5)], 

^2 = a22F"1/2 [^-'V^·' + ^ + G>r] 

= fl22K"1/2[^*,,r)e"i(iÄv(»G''rV'ß(G''r+i)] + e"/ß(G',r+i)]) 
= 2iz2 2F-1 /Vk i 'V["( G ' r -5 ) ] cos[^(G'-r + (3)]. 

The corresponding probability densities are thus given by 

η*ηι = IW^fV-1 sin2lj(G' -r + δ)1 

η*η2 = qa^fV-1 cos2Ü(G' -r + oft. 

The normalization factors follow readily by integrating η*ηχ and r\%Y\2 over 
the volume of the metal and setting the result to unity. Taking into account that 
sin2 a = \ — I cos 2a and cos2 a = \ + \ cos 2a, and also the fact that the 
oscillatory part integrates to zero over any integer multiple of the lattice spacing 
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(such as that corresponding to the length of the solid), we find 

l=2\ail\
2V-lV, \=2\a22\

2V-1V, 

or equivalently, 

laill = la22l = 2-v\ 

We note the following salient points regarding the perturbed energy 
eigenfunctions obtained by means of the above development: 

(a) The two eigenfunctions are in the form of products of free-electron-like 
plane-wave factors eiki'r and spatially periodic factors involving the sine and 
cosine of ^G' τ ; 

(b) The two eigenfunctions differ in phase by \π, with each being spatially 
periodic; 

(c) The associated electron probability densities are spatially periodic. 

If we are willing to look ahead to certain results proven in Chap. 7 which have 
already been referred to in §13.1, we can extend our understanding by noting the 
following additional facts: 

(d) For every state kt satisfying periodic boundary conditions, there exists a 
state kj + G, where G is an arbitrary reciprocal lattice vector. Therefore, for the 
specific case in which |k£ + G'| = |k£| is satisfied mathematically for some state 
ξι = V~ 1/2eikrT and some specific reciprocal lattice vector G', there indeed exists 
a free-electron state ξ2 = j/~1/ :V(ki + G) ' r. Thus our development has real 
physical content. 

(e) The vector G' represents in reciprocal space a Fourier component of the 
lattice potential in real space having wavelength λ' = 2n/\G'\, where ήλ' is equal 
to the lattice spacing d. The electron propagation vector kf also corresponds to 
some wavelength namely, Af = 2π/|^·|. The condition |kt- + G'| = |kj|, as stated in 
the form |k;| cos 0f = - y|G'| developed at the beginning of this section, thus leads 
to 

In 
COS Θ: 

λ, 
= 

1 
- - G ' 

2 
= 

1 In 

2 λ' 
z= 

1 2π\ 
--( 

2 \d/rij 
or equivalently, 

lAi/cos ΘΛ = 2λ' = 2d/n'. 

This in turn can be written in the form (Chap. 1, §4.4) 

« W ] = d, 
where the quantity λ\λ) = /If/cos 0f can be interpreted as the component of the 
wavelength λ{ = 2n/ki (corresponding to the electron propagation vector kt) as 
measured along the direction G' (which in turn is perpendicular to the Brillouin 
zone boundary). This result shows that the wavelength corresponding to the 
projection of kj onto the G' vector in question is some harmonic with respect to 
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twice the separation distance between spatial lattice points, or to put it 
alternatively, exactly an integral number of half wavelengths ^λ\λ) will fit into the 
lattice spacing along the G' direction. 

(f) The real space periodicity of the electron probability density can now be 
deduced. It can be noted that η\ηγ and Y\\Y\2 vary respectively as the square of the 
sine and cosine functions which contain the position-dependent argument 
^G' · r. This argument itself has a real space periodicity determined by \{2π/λ') 
with respect to the G' direction, which leads to the basic unit 2λ' for periodicity. 
However, the periodicity of the squared sine and squared cosine functions are 
exactly doubled over that of the sine and cosine functions, so that the basic unit 
of periodicity for the probability density along G' is λ'. Moreover, λ' = d/ri, so 
we reach the conclusion that there are ή maxima in the probability density for 
every lattice separation distance d along the G' direction. To look at this result 
somewhat more generally, it can be said that the probability density is invariant 
under lattice translation. These results are quite analogous to the properties of 
Block functions which are developed in Chap. 7. The particular eigenfunction 
corresponding to the lower bound-state energy is that which gives rise to a high 
probability density at the nucleus, as illustrated in Fig. 5.7a, since the attractive 
Coulomb potential between the positively charged ion core and the negatively 
charged electron is then a maximum. Conversely, the remaining eigenfunction, 

ΛΑ 

(a ) / 

Λλ n\ /fl\ yfTV 

<b) 
\ 

u U 

A\ yfTN 

u 
Fig. 5.7 Probability density distributions corresponding to standing-wave eigenfunctions. (a) 

Peaks in probability density occurring on lattice sites, thus allowing maximum interaction of the 
conduction electron with the positively charged ion cores, with a large attendant lowering in the 
electron potential energy, (b) Nodes in probability density occurring at lattice sites, thus minimizing 
the interaction of the conduction electrons with the positively charged ion cores, with a smaller 
attendant lowering in the electron potential energy. 



§14] PLANE WAVES AND A COULOMB POTENTIAL 327 

differing in phase by ̂ π, will have a node in the probability density at the nucleus 
as illustrated in Fig. 5.7b; the attractive Coulomb potential between nucleus and 
electron is in this case a minimum, so this particular eigenfunction corresponds 
to a higher-lying bound-state energy. 

(g) The pre-exponential factors can be re-examined in light of the relation 
|k;| cos 9i = — f|G'|. It can be noted that both ηχ and η2 contain the factor 
ei(ki + ̂ ) Γ . This factor reduces to unity when kt is parallel to — G', in which case 
0j = 0. In this case the wave functions have no free-electron propagation 
character at all; instead, they represent pure standing waves. Electrons 
occupying states described by wave vectors which touch the Brillouin zone 
boundaries are therefore nonpropagating along directions parallel to the 
reciprocal lattice vectors perpendicular to these boundaries. It was shown in §12 
that electrons satisfying the conditions of the present problem, but having 
θί Φ 0, undergo diffraction. Therefore such electrons propagate, but not 
rectilinearly in a direction parallel to G'. 

In the next section, we examine the effects of a. random perturbing potential on 
the propagation of conduction electrons in solids. The contrast between the 
results deduced for the above-considered perfectly periodic potential and the 
results deduced for the nonperiodic (or random) potential are quite noteworthy 
and of great importance. 

14 Differential Scattering Cross Section for Plane-Wave States and a Coulomb 
Potential 

Equation (5.185) for the differential scattering cross section developed in §11 
has been shown in §§ 12 and 13 to predict the diffraction of electrons by the 
periodic potential of a crystal. In addition to the periodic lattice potential, there 
are other potentials which modify the electron trajectory in a solid, and the effect 
of these potentials can also be considered with the aid of Eq. (5.185). As a specific 
example, let us consider the Coulomb potential of an ionized impurity atom. A 
free electron will be scattered by such a potential, and this often represents a 
major contribution to the resistivity of solids at low temperatures where there is 
very little lattice vibrational motion to produce conduction electron scattering. 

The Coulomb force on an electronic charge Zee exerted by an impurity of 
charge Zxe at a distance r is directed along the line joining the two particles and 
has a magnitude F (given in SI units) of 

The quantity ε is the appropriate dielectric constant. (In cgs units, the quantity 
4πε should be replaced by ε.) For electrons, Ze = — 1, while for electron holes, 
Ze = +1. If the electronic charge and the impurity charge are of opposite sign, 
the force is attractive. Since F = — V^l, in the present situation of a central force 
F = — d^/dr. Because °U{j) is the potential energy at position r with respect to 
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the vacuum level (i.e., at r = oo), we obtain 

\Z*e2 * * -2 

«(r) = F dr = - Γ ̂  
Joo 4i 4πεΓ2 

Ζ ^ 2 

4πεΓ 
(Coulomb potential). (5.221) 

This is the appropriate potential energy for our problem of scattering by ionized 
impurities. 

Equation (5.185) for the differential scattering cross section σ(0, φ) shows that 
we must now evaluate the triple integral 

( r y f t - k r ) · ' ^ (5.222) 

where ^(r) is the spherically symmetric Coulomb scattering potential given 
above. Since ^r(r') is spherically symmetric and the range of integration covers 
all space, the direction of the resultant vector ki — kf with respect to the 
coordinate system chosen for the dummy variable r' will not affect the value of 
the integral. The integration can thus be carried out in a coordinate system x', y', 
ΐ such that ϊ is parallel to kt — kf. In the corresponding spherical polar 
coordinate system r', θ\ φ' we will thus have 

dx' = r'2 sin Θ' dr' άθ' άφ\ (5.223) 

(^ - kf) · r' = |ki - kf\r' cos 0', (5.224) 

W(r') = Z{ZQe2IAmr\ (5.225) 

Hence 

ZjZee2 

4πε 

'2π Γπ Γ<χ> 

άφ' dff dr' exp[i|ki - kf\r' cos Θ'Υ sin ff. 
o Jo Jo 

(5.226) 

The integrand is independent of φ', so this integration can be performed 
immediately to yield a multiplicative factor of In. The integration over Θ' is easily 
performed by making the variable change 

η = cos 0', 

άη = — sin θ' άθ' 

(5.227) 

(5.228) 

to give 

= ( Ζ ^ \ 2 π Γ00 ^, Γ+ 1
 drjeU\K-MrW 

\ 4πε / Jo J - i 

dr'[e^ki ~ kf|r — e~'|ki ~ kf|r "I ZiZe^ 2π 
4πε / /|ki — kf 

ZiZee
2 f00 

= J \ A dr' sin[|ki - kf|r']. e|ki - kf | J o 
(5.229) 
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The scalar |ki — kf| can be denoted by /?, if desired, and the integral then has the 
form 

Jf = \ dr' sin ßr'. (5.230) 

It is apparent that the integrand is an undamped oscillatory function of r'. 
Convergence of such an integral is weak, so that it is convenient to consider j f to 
be the limiting value of a different integral, 

j f = lim jf', (5.231) 

where 

J T = e-«r' sin ßr' dr' = β/(κ2 + ß2). (5.232) 

Thus 
j f = JS-i = [ | k i - k f | ] - 1 (5.233) 

and we obtain 

Jf = Z{Zte
2lz% - kf|2. (5.234) 

Substituting this result into Eq. (5.185) for the differential scattering cross 
section yields 

[m*\2Y Z A * 2 -f Z2Zle*m*2 

[In cgs units we would need to multiply the right-hand side of this result by 
(4π)2.] 

The above expression can be converted to a form which involves the scattering 
angle between the vectors k{ and kf. Let us choose a coordinate system with kj 
parallel to the z axis and with kf at an angle Θ with respect to the z axis, so that Θ is 
both the polar angle and the scattering angle. The magnitude |kf — kf| can be 
obtained by analytical geometry: the distance d between two points located at 
(xuyu zi) and (x2, y2, z2) is 

d2 = (x, - x2)
2 + (yi ~ yi)2 + (zi - z2)

2, (5.236) 

so that 

|kj - kf|2 = (0 - k{ sin Θ cos φ)2 + (0 - kf sin Θ sin φ)2 + (k{ - kf cos Ö)2. 

(5.237) 

The quantities k{ and k{ are |ki| and |kf|, respectively, which are equal since we 
consider elastic scattering and spherical energy surfaces in k space. Thus 

|kj - kf|2 = kf [sin2 Θ cos2 φ + sin2 Θ sin2 φ + 1 - 2 cos Θ + cos2 0]. 

(5.238) 
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Using the relation sin2 a + cos2 a = 1 for arbitrary a first for φ and then for 0 
reduces this relation to 

|ki - kf|2 = 2k2(\ - cos Θ). (5.239) 

However, 

cos 0 = cos 2(^0) = cos2 (f 0) - sin2 (f 0) 

= [1 - sin2 (|0)] - sin2 (£0) = 1 - 2 sin2 (£0), (5.240) 

so that 

|ki - kf|2 = 4k2 sin2(£0) = 4&? csc"2 (^0). (5.241) 

Substituting this result into the above expression for σ(0, φ) yields 

σ(0, 0) = (ZfZle*m*2/64n2fi*e2k*) csc4(^0). (5.242) 

In terms of the electron energy δ = h2k2/2m*, this expression becomes 

σ(0, φ) = (Zfzy/256n2s2£2) csc4 (f0). (5.243) 

Note that Coulomb scattering is anisotropic, varying as the 4th power of half the 
scattering angle. Note further that the differential scattering cross section is 
energy dependent, decreasing quadratically with increasing energy. The square of 
the dielectric constant ε reflects the screening effect of the dielectric medium, and 
the product Z\Z\ reflects the effect of the charge magnitudes. Of course, Z2 can 
be considered to be unity for the scattering of electrons and electron holes. (In 
cgs units, the right-hand side of Eq. (5.243) should be multiplied by 16π2.) 

The total scattering cross section <xtot for Coulomb scattering given by 
integrating the above expression for σ(0, φ) over all solid angles diverges. The 
Coulomb force is a long-range force, and all scattering has been considered to 
contribute to atot irrespective of how small the scattering angle may be. This 
suggests choosing some minimum scattering angle 0min and disregarding all 
deflections smaller than this, in which case <rtot is finite. This is easily shown by 
using the results above, 

aiot= άφ άθ{ύηθ)σ{θ, φ) 
Jo J 0min 

= 2π(Ζ2Ζεν/256π2ε2^2) άθ sin 0 csc4 (\θ). (5.244) 

However, 

sin2(iö) 2 sin(|Ö)cos(|ö) 
sin Θ csc4 (f 0) άθ = . 4 t αθ = Γ^-Τ^Γ άθ 

sin4(^0) sin*(^0) 

= 4 sin" 3 (£0) d(sin §0), (5.245) 

which integrates to — 2 sin ~ 2 (i0). Inserting the upper and lower limits of π and 
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0min gives -2[1 - sin"2 (|0min)], so that 
σ,01 = (Zfzy/64ne2S2)lnn-2(fÖmin) - 1]. (5.246) 

Clearly if 0min is allowed to approach zero the quantity atoi will diverge. 
There is in addition another factor, namely, anisotropic scattering does not 

completely randomize the velocity, so that a factor of (1 — cos Θ) is necessary in 
the integral for computing an effective relaxation time from the collision rate. 
Such a factor is still not sufficient to give a convergent result, since 1 — cos Θ = 
2 sin2 (^0), and the product of this factor with 4 sin "3 (\θ) d(sin \θ) of the integral 
gives 8 sin " l (^θ) d(sin ̂ θ). This integrates to 8 ln(sin \θ) which diverges at Θ = 0. 
Again we see the need for restricting the small angle scattering if a finite value is 
to be obtained for the total scattering cross section for a Coulomb potential. This 
can be done in a physically realistic way for many randomly located scattering 
centers contributing to the resistivity of a solid by considering the maximum 
impact parameter for the electrons with respect to impurities to be given by half 
the mean distance between impurities. This is the procedure used [see R. A. 
Smith (1963), for example] in the derivation of the Conwell-Weisskopfformula 
for the mobility in a solid under conditions for which ionized impurity scattering 
predominates. 

A shorter-range scattering force is given by the screened Coulomb potential 
^(r)ocr"1 exp(-Ar), (5.247) 

where the redistribution of conduction electrons [cf. Kittel (1971)] effectively 
nullifies the Coulomb potential at distances much greater than λ'1. The matrix 
element of this potential is readily evaluated by modifying slightly the above 
procedure used for the ordinary Coulomb potential. The results for the screened 
Coulomb potential are useful for computing the relaxation time for conduction 
electrons in a metal, whereas the ordinary Coulomb potential is more 
appropriate for a low-conductivity semiconductor or an insulator. 

To summarize, the techniques of time-independent and time-dependent 
perturbation theory developed in this chapter have enabled us to study both the 
effects of periodic lattice potentials due to the orderly array of ion cores and the 
effects of randomly located charged impurity scattering centers on the motion of 
conduction electrons previously considered from the viewpoint of the free-
electron model (Chap. 3). The random scattering will of course produce 
attenuation of the conduction current commensurate with Fermi-Dirac statis-
tics ; the coherent scattering resulting from the perfectly periodic lattice potential 
was found to perturb the energy eigenvalues and to introduce a splitting of the 
energy levels for the subset of propagation vectors which map out certain planar 
surfaces (called Brillouin zone boundaries) in wave vector (or momentum) space. 
The energy level splitting at the Brillouin zone boundaries leads to the extremely 
important concept of energy gaps; these gaps alternate with energy bands that 
contain closely spaced energy eigenvalues associated with unattenuated con-
duction electron propagation in the solid. The introduction of Fermi-Dirac 
statistics (Chap. 2) or the Pauli exclusion principle to the energy band picture 
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then leads us to the remarkable conclusion that the electrons in a fully occupied 
(or "filled") band cannot be excited into adjacent unoccupied energy levels by an 
externally applied force. This in turn prohibits any displacement of the Fermi 
surface in wave vector (or momentum) space with the concomitant production 
of a conduction current previously deduced for the free-electron model (Chap. 3, 
§3). We therefore reach the conclusion that an externally applied force cannot 
produce a conduction current in the normal way if the electronic levels in the energy 
bands are completely filled or completely empty \ The quantum treatment of the 
periodic lattice potential thus enables us to understand the difference between 
solids which are good electrical conductors and solids which are electrical 
insulators. In the case of electrical conductors such as metals, which involve at 
least one energy band which is only partly filled, the resistivity is due entirely to 
deviations from the perfectly periodic potential. Such deviations can be produced 
for example, by thermal vibrations of the ion cores, or a random array of 
charged impurity scattering centers. 

The fundamentals of crystal lattices and the development of the associated 
reciprocal space for the Fourier expansion of functions having the lattice 
periodicity are necessary topics for developing a deeper understanding of energy 
bands. These topics are developed systematically in the next two chapters 
(Chaps. 6 and 7), culminating in the construction of Bloch functions which 
provide a complete set of basis states for theoretical treatments involving 
propagating electrons in crystalline solids. 

PROJECT 5.12 Conduction Electron Scattering by Screened Coulomb Potential of Charged 
Impurities 

Use the screened Coulomb potential for conduction electron scattering by charged impurities in a 
metal to derive an expression for the conduction electron relaxation time. [Hint: See Eq. (5.247).] 

PROJECT 5.13 Conwell-Weisskopf Formula for Mobility in a Semiconductor 

Derive the Conwell-Weisskopf formula for the electron mobility in a low-conductivity 
semiconductor under conditions for which the resistivity is dominated by ionized impurity 
scattering. 

PROJECT 5.14 Magnetoresistance 

Give a treatment of the magnetoresistance of a solid based on the Boltzmann transport equation. 
Explain your results in physical terms. 

PROBLEMS 

1. Consider an unperturbed Hamiltonian J f 0 based on an infinite one-dimensional square-well 
potential, 

fo (0 ^ x ^ L) 

(̂ oo (x < 0 and x > L). 

Find the first-order correction to the lowest energy level Si and the corresponding wave function for 
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the following perturbation, 

; v0 (ο^χ^ δ) 
r{x)-. 

\β (x < 0 and x > δ). 

In the above, V0 is a constant energy and δ is a constant distance. 
2. Consider an unperturbed Hamiltonian J*f 0 based on an infinite one-dimensional square-well 
potential, 

fo ( - | L ^ j t ^ L ) 
*(*) = < 

too (M>jL). 
Find the first-order corrections to the three lowest energy levels $u S2, and <f3 and the 
corresponding wave functions for perturbations V{x) of the type 

(a) TT(JC) = 

(b) r(x) = 

(c) f W = 

JF0 ( - O < X ^ 5 < ^ Z . ) 

(0 (W > 5); 

(V0[l + (x/<5)] ( - «5 < x =ζ <5 < ii.) 

to (W > «5); 
(V0(xl8) (-5^x^5<\L) 

(.0 (\χ\ > δ). 

In all these cases, V0 is a constant energy and δ is a constant distance. Be sure to interpret your results 
physically! 
3. In Problem 2, choose L = 4 Ä, δ = 1 Ä, and V0 = 0.1 eV. Evaluate the resulting shift in the lowest 
three energy levels, both in electron-volts and in relative percentages. 
4. In Problems 2 and 3, evaluate quantitatively the first-order changes in the wave functions for the 
three lowest energy levels. Plot the perturbed and unperturbed wave functions so as to illustrate the 
admixture of adjacent states produced by the perturbations. Can you observe any general trend in 
the effect of perturbations of various symmetry on the different wave functions? 
5. Attempt to formulate some general rules for the effect of perturbations of various symmetry on 
the energy levels and corresponding wave functions of even parity and odd parity, using as a tool the 
eigenstates of the one-dimensional infinite square-well potential problem. {Hint: Consider the effect 
of making a variable change (JC to — x) in the integrals for the matrix elements of the perturbation 
operator. Keep in mind that any number which is equal to its negative must be zero.] 
6. Develop the third-order stationary-state perturbation equations which lead to the corresponding 
perturbed stationary-state energies and corresponding perturbed eigenfunctions. 
7. The Schiff symbol S implies a summation over discrete states and an integration over continuum 
states. Carry through the evaluation of the coefficients in Eq. (5.12) for this general case. {Hint: The 
discrete set has weighting factors a} analogous to Fourier series coefficients for the harmonics. The 
continuum set has weighting factors x(k) analogous to Fourier integral distribution functions for the 
wavelength content of the superposition.] 
8. Deduce the third-order perturbation coefficients for the specific example of a constant 
perturbation turned on suddenly at / = 0, assuming the initial state of the system to be an arbitrary 
superposition stationary state of the system. 
9. Compute the third-order perturbation corrections to energy eigenvalues and energy eigenfunc-
tions for a harmonic perturbation turned on at t = 0. 
10. Use Fermi's Golden Rule to deduce as much information as you can for the physical situation in 
which a uniform time-dependent electric field is allowed to perturb a hydrogen atom which at time 
/ = 0 is in the ground state. In particular, what is the minimum frequency of the electric field required 
to ionize the atom (i.e., promote a transition from the ground state to an unbound state characterized 
by a plane-wave eigenfunction appropriate in free space)? (For an in-depth treatment of this 
problem, see (7.73) in ter Haar (1975).) 



PART IV 

Energy Bands in Crystals 

CHAPTER 6 

THE PERIODICITY OF CRYSTALLINE SOLIDS 

We shall regard the perfect solid as an aggregate of atoms arranged in unbroken lattice 
array. F. Seitz (1950) 

1 Generalities 

1.1 Prologue 

The apex of our application of the discipline of quantum mechanics to gain a 
basic insight into the fundamental nature of the electronic properties of solid-
state materials will be the development of Bloch functions and the proof of 
Bloch's theorem (Chap. 7). Before descending into the very bowels of solid-state 
theory, it is imperative to make sure that (a) we have a clear understanding of the 
essentials of crystal lattices, and (b) we understand how to make three-
dimensional Fourier-series expansions of periodic functions that have the 
symmetry of the crystal lattice. It is to these ends that the present concise chapter 
is devoted. 

1.2 Crystalline and Amorphous Solids 

Solids are most likely to be found in the crystalline state, although amorphous 
forms are not uncommon. Crystalline solids are characterized by a regular three-
dimensional pattern for the location of the atoms making up the solid; this three-
dimensional pattern is made by the continual repetition (or stacking) of a small 
basic arrangement of atoms (i.e., the unit cell) to fill a three-dimensional space. 
The perfect crystalline solid (viz., the single crystal or monocrystal) has the 
property known as translational invariance, as illustrated by Fig. 6.1. This means 
that translation of the atoms comprising the solid by certain elementary 
distances (related to the size of the unit cell) in certain directions leads to the 
same arrangement of atoms in space throughout the solid, except of course at the 
surfaces which separate the solid from surrounding free space. 

Figure 6.2 illustrates a typical arrangement of atoms in an amorphous 
material. The amorphous state is not completely without order; however, in 

334 
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Fig. 6.1 Translational invariance of a two-dimensional lattice of points in space. [Note that 
translation of all points through the vector distance dt or d2, or any integer multiple of such, 
unaffects the appearance of an array of such points extending to infinity in both directions. All points 
in the lattice can be mapped out by the set of vectors Rm = ra^ + m2d2 (ml9 m2 integers). The two 
parallelograms indicate two choices for the elemental unit celloi the lattice; there is an average of one 
lattice point per unit cell. The entire two-dimensional space can be filled by the contiguous stacking 
of any one type of unit cell. These concepts are readily extended to a three-dimensional lattice of 
points, the corresponding unit cell being a parallelepiped.] 

Fig. 6.2 Atom arrangement in an amorphous material lacks translational invariance, even 
though short-range ordering can be noted. 

contrast to the crystalline state, the amorphous state does not have the property 
of translational invariance. This can be due to the fact that the basic unit cells are 
arranged somewhat randomly with respect to each other instead of being 
stacked in a contiguous regular array. The energy of the solid is generally higher 
for the amorphous state, so there is a thermodynamic tendency for the 
amorphous solid to change to the crystalline state. However, the viscosity of the 
amorphous solid at room temperature is generally so large that for all practical 
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purposes this ordering process takes an infinitely long time. The amorphous 
form is thus frozen (or "quenched in") with respect to a laboratory time frame. 

Somewhat intermediate to cases of monocrystalline and amorphous solids is 
the case of polycrystalline materials. A polycrystal consists of a large number of 
randomly oriented monocrystals, with thin intervening regions called grain 
boundaries. The polycrystalline state differs from the amorphous state in that 
there exists translational invariance within the confines of the macroscopic 
monocrystals comprising the polycrystalline substance, whereas in the amor-
phous material there is no translational invariance to be found on a macroscopic 
scale. 

Examples of readily procured monocrystals are, for example, NaCl and LiF, 
and also pure copper and pure silver. The crystals must be prepared by means of 
an appropriate procedure from the melted material: Unless special care is given 
during formation of the sample, even these substances will be polycrystalline. 
For example, table salt and rolled copper sheets are polycrystalline. Examples of 
amorphous substances are various types of common glass, carbon when formed 
as a low-temperature decomposition product^ and some of the oxides formed on 
certain metals. 

The amorphous and crystalline forms of a solid often have quite different 
physical and electrical properties. One of the most spectacular examples is 
provided by carbon (cf. Table 1.4), which can vary in physical properties from 
those associated with powdery carbon black to those possessed by the hard 
brilliant diamond form of the same elemental material. 

Even a monocrystal can depart somewhat from the condition of strict 
translational invariance. At temperatures above absolute zero, the random 
oscillations of the atoms about their equilibrium positions due to the kinetic 
energy of thermal motion causes the configuration at any instant of time to have 
a small deviation from perfect periodicity, even though the time average of the 
instantaneous atom positions may be spatially periodic. In addition, a variety of 
point defects are found experimentally, such as impurity atoms, misplaced 
atoms, and vacant positions. There are also extended defects known as 
dislocations which represent microscopic atomic configurations made up of 
atoms which have been misplaced in some appropriately regular manner. For 
further details, see Kittel (1971). 

2 Unit Cells and Bravais Lattices 

It is important to develop the mathematical consequences of the periodicity 
(i.e., the translational invariance) of perfect single crystals. The smallest distance 
over which a crystal structure is repetitive in the major symmetry directions gives 
us an intuitive understanding of the size of the basic unit cell (or elemental 
building block) for the crystal under consideration. The repetition distance 
along three different symmetry directions can be used to define elementary 
translation vectors di9 d2, d3 in these directions. Each unit cell in the crystal can 
be considered to be a parallelepiped with edges defined by the elementary 
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Fig. 63 Elemental parallelepiped unit cell characterized by the elementary translation vectors 

di, d2, and d3 oriented at specific angles. [Translation of this unit cell through all distances 
Rm = ιπγ&γ + m2d2 + m3d3 (mu m2, m3 integers) maps out a three-dimensional space lattice.] 

translation vectors (cf. Fig. 6.3). The crystal can then be considered to be built up 
by the adjacent stacking of such parallelepipeds until the volume of the crystal is 
filled. The volume of each unit cell vc in the crystal is simply the parallelepiped 
volume 

i7c = |d1-(d2xd3) | . (6.1) 

EXERCISE Prove relation (6.1) for vc. 

A lattice is a set of periodic points in space with coordinates determined by all 
integral multiples of the elementary translation vectors d,·. For example, 

Rm = fMx + m2d2 + ra3d3, (6.2) 

where m = (wl5 ra2, m3) represents a triplet of arbitrary integers, can be 
considered to map out a lattice. Likewise, Rm + R', where R' is some fixed 
position vector in space, also maps out a lattice. (This second mapping is not so 
convenient because in this system of coordinates there is generally no lattice 
point at the origin.) Each unit cell with edges defined by dx, d2, d3 contains on the 
average a single lattice point; unit cells with this property are called primitive. 

EXERCISE Construct a primitive unit cell for copper. 

A lattice translation operator 7̂  can be defined which indicates a translation of 
the lattice by the vector y ' ^ +7*2^2 +73^3. This can be indicated by writing 

? W i d i +72*2+73*3. (6.3) 
The lattice is invariant under this operation, which means that after translation 
the lattice appears to be exactly the same as before translation, even to the extent 
that the same spatial positions are occupied by lattice points. 
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There are other symmetry operators such as rotations and reflections which 
also leave the lattice invariant. These are designated point operations. Point 
symmetry operations provide an important tool for the classification of crystal 
structures. For example, a lattice which transforms into itself when rotated 
around some axis by an angle (l/w)360° is said to have an n-fold rotation axis. 

It is evident that a single primitive unit cell can be translated repeatedly 
throughout all space. In this way the complete lattice can be generated. This is 
evident in the two-dimensional lattice shown in the sketch (Fig. 6.1). It can also 
be noted that there is some arbitrariness in the choice of a primitive unit cell. 

Fig. 6.4 Basis vectors a, locate atom positions within each unit cell. 

A basis is a set of vectors al5 a2,... (see Fig. 6.4) which locate the positions of 
the various atoms within each unit cell. The basis is of course the same for each 
unit cell in the crystal; otherwise, the cells considered would not be unit cells. The 
number of atoms in a unit cell of a crystal is equal to the number of atoms in the 
basis. 

Bravais first introduced the mathematical concept of the lattice in 1848. He 
showed that in three dimensions there exists fourteen types. The classification is 
based on the elementary translation vectors dl5 d2, d3 and the angles a, /?, y 

Fig. 6.5 Elementary translation vectors d1? d2, d3 and associated angles a12, a13, and a23 used in 
the classification of lattice types in Table 6.1, where α = α12, β = α23, and y = a13. 
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Table 6.1 

The Seven Crystal Systems Incorporating Fourteen Bravais Lattices 

Crystal 
system 

Characteristic 
symmetry 

Bravais 
lattice 

Unit cell 
parameters 

1. Triclinic 

2. Monoclinic 

3. Tetragonal 

None 

One 2-fold rotation axis 

Simple 

Simple 
Base centered 

One 4-fold rotation axis (or a 4-fold Simple 
rotation-inversion axis) Body centered 

4. Trigonal One 3-fold rotation axis 
(Rhombohedral) 

5. Hexagonal One 6-fold rotation axis 

Simple 

Simple 

6. Orthorhombic Three mutually perpendicular 2-fold Simple 
rotation axes Body centered 

Base centered 
Face centered 

7. Cubic Four 3-fold rotation axes 
(along cube diagonals) 

Simple 
Body centered 
Face centered 

άχΦά2Φ d3 

<χΦβΦγφ90° 

άγφά2Φ d3 

<x = β = 90° 
y Φ90° 

dl = d2 φ d3 

α = β = y = 90° 

d\ = d2 = d3 

a = β = y φ 90° 

d1 = d2 Φ d3 

a = β = 90° 
y = 120° 

ά,Φά2Φ d3 

a = β = y = 90° 

di= d2 = d3 

a = β = y = 90° 

between these vectors (cf. Table 6.1 and Fig. 6.5). If dx Φ d2 φ d3 (where 
dj = |d/|), and α Φ β Φ γ, the symmetry is triclinic. Whenever two of the angles 
are 90° but the third is not, with άγ φ d2 Φ d3, the symmetry is monoclinic. For 
all three angles equal to 90° with άγ Φ d2 φ d3, the symmetry is designated 
orthorhombic. 

If there are lattice points only at the corners of the parallelepiped cells, they are 
called simple. There may be in addition lattice points located at the center of the 
cell (body centered), or located at the centers of two opposite faces (base 
centered), or located at the centers of all six faces (face centered). This leads to a 
monoclinic base-centered lattice in addition to the monoclinic simple lattice; 
similarly, there exist orthorhombic simple, orthorhombic base-centered, or-
thorhombic body-centered, and orthorhombic face-centered lattices, as can be 
noted in Fig. 6.6. This gives a subtotal of seven Bravais lattices for which 
d\ φ d2 Φ d3. The apparently missing ones (e.g., monoclinic body centered) can 
be represented by one of the basic types listed (e.g., the simple triclinic). 

In addition to the subset of seven lattices thus far described, there exist seven 
others. The most complex of these is the hexagonal, which has one sixfold 
rotation axis. Consider a planar hexagon with the six edges, each having length 
a, with points at each of the six corners plus one point in the center; if one such 
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Fig. 6.6 The fourteen types of three-dimensional Bravais lattices. (Refer to Table 6.1 for specific 
relations with respect to the lengths of the elementary translation vectors and among the angles.) 

hexagon is placed above another, with the separation distance being c (with 
c Φ a), the resulting cell is a hexagonal structure which represents a compound 
cell for the hexagonal lattice. This cell can be considered to be defined by three 
equal coplanar axes of length a (which make angles of 120° with respect to each 
other) and a fourth axis of length c which is perpendicular to the other three. The 
division of each hexagon into three equal parts obtained by drawing three radial 



§3] MILLER INDICES AND CRYSTAL DIRECTIONS 3 4 1 

lines from the center point to the corners to form parallelograms then yields 
three primitive cells for this lattice. (See the hexagonal unit cell in Fig. 6.6.) 

The remaining Bravais lattices (see Fig. 6.6) have at least two equal values for 
the parameters dx, d2, d3. The tetragonal lattice has dx= ά2φ d3 and all three 
angles equal to 90°. (It differs from the orthorhombic lattice discussed above 
only insofar as it has two equal values for the dj.) The tetragonal lattice has the 
simple and the body-centered forms. The cubic lattice has dx= d2 = d3 and all 
angles equal to 90°; it can be considered to have the simple, the body-centered, 
and the face-centered forms. The last of fourteen Bravais lattices is the 
rhombohedral, for which dx = d2 = d3 and α = β = y φ 90°; it thus can be 
considered to be a cubic lattice skewed along the body diagonal. 

EXERCISE Sketch the fourteen above-listed Bravais lattices and circle the lattice points. (Hint: 
See Fig. 6.6.) 

EXERCISE Deduce the various «-fold rotation axes for the fourteen Bravais lattices. (Hint'. It 
sometimes helps if you stand on your head inside the lattice!) 

EXERCISE Make up your own table listing the pertinent information regarding relative angles, 
elementary lattice translation vector lengths, and the «-fold rotation axes for the Bravais lattices. 
(Hint: See Table 6.1.) 

EXERCISE Is the diamond structure included as one of the fourteen Bravais lattices? If not, 
show how it can be obtained by adding an appropriate basis to one of the Bravais lattices. Extend 
your considerations to the crystal structures of silicon and germanium. 

3 Miller Indices and Crystal Directions 

Suppose it is observed that a plane can be passed through a lattice such that it 
intercepts certain groups of points in the lattice. Two such planes are illustrated 
in Fig. 6.7. It is not difficult to visualize such a plane, given any specific lattice. 
The intercepted points make a periodic geometric pattern in the plane due to the 
periodicity of the points in the lattice. It is a matter of convenience in discussing 
crystals to have a system for defining the location of such planes. For example, if 
points of intersection of a plane with the x, y, and z axes of a Cartesian 
coordinate system are given, the location of the plane in space is defined. For a 
crystal, however, it makes more sense to choose a coordinate system having the 
three axes along the major symmetry directions of the crystal, even if these axes 
are not orthogonal. Also it is convenient to measure distances in units of the 
elementary translation vector lengths dx,d2,d3. The location of any given crystal 
plane can then be determined by giving the intercepts of the plane in such a 
coordinate system. The system designated as Miller indices is based on taking the 
reciprocal of the intercepts in this coordinate system and then reducing the result 
to the three lowest integers (hkl) having the same ratio. It is assumed that the 
origin of the coordinate system is chosen at one of the lattice sites. 

EXERCISE Deduce Miller indices for several major planes in the three cubic Bravais lattices. 

EXERCISE Show that parallel planes placed in equivalent positions in a crystal lattice can have 
the same set of Miller indices (hkl). 
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Fig, 6.7 A simple cubic array of lattice points. [The two shaded areas indicate two nonparallel 
planes which contain a high density of lattice points; in Miller index notation, the plane indicated by 
the rectangular area is called a (100) plane and the plane indicated by the triangular area is called a 
(111) plane. Each of these planes is a member of a set of parallel planes which contain all points of the 
lattice. Equivalent sets of parallel planes exist; for example, in the simple cubic lattice the (001) and 
the (100) planes are equivalent in the sense that each has the same density of lattice points and the 
same geometrical arrangement of such points.] 

If one of the integers A, k, I is negative, it is conventional to place the minus 
sign above (instead of in front of) the integer. Due to the symmetry of the lattice, 
it is often the case that planes which are equivalent from a symmetry standpoint 
may have somewhat different Miller indices. Planes equivalent by symmetry are 
denoted by {hkl}, or simply hkl 

EXERCISE Show that the (100) and the (001) planes in a cubic crystal are equivalent in the sense 
of having the same lattice point density and geometrical arrangement. 

The matter of defining crystal directions is much simpler than that of locating 
planes. Again it proves convenient to use a coordinate system with axes pointed 
along major crystal directions, with distances measured in units of the 
corresponding elementary translation vector lengths dud2,d3. Direction is then 
determined by the triplet of numbers \hkl~] which are needed to orient the vector 
hax + kd2 + /d3 along the direction in question. If the origin of the coordinate 
system is chosen to be at a lattice point, then lines passing along directions for 
which A, k, /are integers intercept a regular linear array of points in the lattice. In 
this way any specific line of lattice points (or atoms in a crystal) can be indicated. 
Note that no reciprocals have been introduced in characterizing the crystal 

file:///hkl~
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direction, in contrast to the Miller index system of locating crystal planes. A 
negative index for crystal direction is indicated by placing a bar over the integer. 

EXERCISE Show that the [hkl~\ direction is perpendicular to the (hkl) plane in a cubic lattice. 

4 Some Specific Crystal Structures 

It is interesting to list crystal structures of some commonly found substances. 
Copper, silver, and gold are face-centered cubic (fee) with lattice parameters of 
3.61, 4.08, and 4.07 Ä. [Note the positions of these elements in the Periodic 
Table (Table 1.4).] Magnesium has the hexagonal close-packed (hep) structure 
with a = 3.20 and c = 5.20 Ä. Iron is body-centered cubic (bcc) below 910°C 
with the lattice parameter being 2.86 Ä. Between 910 and 1400°C, iron is fee; 
above 1400°C, iron is bcc. Cobalt is hep at temperatures below 100°C but fee at 
higher temperatures. Tantalum has a bcc structure, with a lattice constant of 
3.30 Ä. Sodium metal is bcc with a lattice constant of 4.28 Ä. The compound 
NaCl consists in two interpenetrating face-centered cubic lattices, one for 
sodium ions and one for chlorine ions. The resulting arrangement of lattice sites 
including both ionic types is simple cubic (sc). The size of each fee unit cell is 5.63 
Ä. Cesium chloride has a different crystal structure from NaCl; it consists of a 
simple cubic lattice of cesium ions with a chlorine ion located in the center of 
each unit cell. The cesium chloride structure can be viewed as two interpenetrat-
ing simple cubic structures, each having a lattice constant of 4.11 Ä. 

5 Crystal Bonding 

Electrical forces are responsible for the bonding of atoms in a solid. The 
cohesive energy is the difference in the total energy of a collection of neutral free 
atoms which are both stationary and greatly separated and the total energy of 
the solid obtained by the condensation of this ensemble of atoms. The cohesive 
energy is defined as the magnitude of the free energy of formation of the crystal. 
In the condensed state, some of the electrons have acquired a translational 
kinetic energy in addition to having a modified potential energy. It is convenient 
to examine crystal binding on the basis of 

(a) the various types of electrical forces which can predominate in a solid 
(such as monopolar and dipolar forces); 

(b) the distribution of electrons with respect to the ions within the solid; and 
(c) the magnitude of the cohesive energy (which reflects the strength of the 

bonding). 

The electric forces in ionic crystals are primarily due to the Coulomb 
interaction between electrical monopoles, the monopoles being the negative and 
positive ions making up the crystal. Sodium chloride, for example, can as a first 
approximation be considered to be a collection of individual Na + and Cl" ions 
arranged in a periodic array. Ionic crystals have a relatively strong bond; they 
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are characterized by a relatively high melting point, a low coefficient of thermal 
expansion, and a high degree of hardness. 

The electrical forces in inert gas crystals, on the other hand, are primarily due 
to the Coulomb interaction between electrical dipoles. The dipoles are produced 
by the charge separation of the positive core (comprising nucleus plus inner shell 
electrons) from the negative outer shell electrons at any given time. Classically 
an outer shell electron can be viewed as a point negative charge traveling in a 
closed path around the inner positive core. This can be considered to be an 
electric dipole charge configuration which is continuously changing its spatial 
orientation. The force between such fluctuating electric dipoles is known as the 
Van der Waals interaction. This force decreases rapidly with increasing 
separation distance between atoms because the charge polarization itself 
depends upon the dipolar electric field of the adjacent polarized atom. 

Electrical dipolar fields fall off with distance as r"3, whereas the electrical 
monopolar fields fall off as r~2. The bonding in ionic crystals is therefore much 
stronger than that in an inert gas crystal, and the cohesive energy in the ionic 
crystal is correspondingly larger. For example, the experimental cohesive energy 
for argon is approximately 1.85 kcal/mole; he corresponding energy for NaCl is 
approximately 185 kcal/mole! The physical properties of a crystal (such as 
melting point, hardness, and tensile strength) likewise depend upon the nature of 
the electrical bond. For example, the melting point of argon is 84°K whereas that 
for NaCl is 1074°K. 

Implicitly we have assumed above that electrons are readily transferred from 
the metallic to the nonmetallic constituent in a ionic crystal such as NaCl (i.e., 
from Na to Cl), whereas we have assumed that a given outer shell electron is 
tightly held in its orbit around the parent core ion in rare gas crystals. Thus item 
(b) as well as items (a) and (c) in the above listing has been invoked in 
distinguishing ionic crystals from crystals made up of condensed rare gas atoms. 

Metallic bonding differs from the types mentioned above. In a metal the 
outermost electrons are nearly free from the parent ions, and these/ree electrons 
(Chap. 3) for the most part determine the physical properties. Metals have high 
electrical and thermal conductivities. 

Covalent bonds are characterized by the mutual sharing of a pair of electrons 
of opposite spin located in the region between two atomic constituents of a solid. 
The bond is highly directional, but apparently is not well characterized by any 
particular one of the ordinary physical properties such as hardness, melting 
point, or electrical conductivity. Examples of covalently bonded substances 
include the elemental solids C, Sn, Pb, Si, and Ge. [Refer to the Periodic Table 
(Table 1.4) to locate the positions of these elements. The electronic con-
figurations of the free atom can be obtained from Table 1.3.] 

6 The Reciprocal Lattice: Fourier Space for Arbitrary Functions That Have 
the Lattice Periodicity 

The above discussion of electronic bonding leads to a consideration of 
periodic electron densities in the solid. We now attack the general theoretical 
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problem of providing a suitable mathematical framework for describing 
arbitrary functions which have the lattice periodicity, such as indicated in Fig. 
6.8. What we need is a suitable generalization of the three-dimensional Fourier 
series for orthogonal coordinates using the development in §4 of Chap. 1. 

I—ft Ä . d i 
Fig. 6.8 Representation of a function which is periodic along two nonorthogonal directions 

denoted by d2 and d2. 

Let us first define vectors bl9 b2, b3 in terms of the elementary lattice 
translation vectors as follows, 

bi =v;x d2xd3, (6.4) 

b2 = v;1 d3xd1? (6.5) 

b3 = ^ ; 1 d 1 x d 2 , (6.6) 

where 

Dc"1 = l / (d1-d2xd3) . (6.7) 

Note that these vectors b,· (J = 1, 2, 3) satisfy the conditions 

bj'al = 6jl (I = 1 , 2 , 3), (6.8) 

where δβ = 1 if/ = / but is zero otherwise. These relations hold even if dl5 d2, d3 
are nonorthogonal. The reciprocal lattice is then mapped out by the reciprocal 
lattice vectors G, defined by 

G, = 2n{llbl + /2b2 + /3b3) (reciprocal lattice vectors), (6.9) 

where /represents any arbitrary triplet of integers lu /2, /3. Often G, will be found 
abbreviated simply as G. 

As in the case of the direct lattice, the reciprocal lattice is made up of 
contiguous primitive parallelepiped unit cells. Let us consider a coordinate 
system in reciprocal space with the origin located at one of the reciprocal lattice 
sites. (This is analogous to the coordinate system most frequently utilized for the 
direct lattice.) We then label the specific parallelepiped primitive unit cell within 
the first octant (i.e., all coordinates positive in sign) of reciprocal space and 
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having one corner at the origin as the initial parallelepiped reciprocal cell. The 
entire reciprocal lattice can then be reproduced by translating the initial 
parallelepiped reciprocal cell by means of the reciprocal lattice vectors defined 
by Eq. (6.9). 

EXERCISE Show that the reciprocal lattice of a fee lattice is bec, and vice versa. 

Let us now examine some of the properties of the vectors G7. If Rm represents 
some arbitrary vector between lattice points, then 

G7· Rm = 2π(/11>1 + /2b2 + /3b3) · (/w^i + rn2d2 + rn3a3) 

= 2n(l1m1 + l2m2 + l3m3). (6.10) 

Therefore 

exp(/G7-Rm)=l (6.11) 

for arbitrary integer triplets / and m. This also has significance from the 
standpoint of the lattice translation operator Tv since 

rjO'G/T) = /G,-(r + Rj) = iG,-r + /G 7 Rj , (6.12) 

which shows us that 

Ts exp(/G7 · r) = exp(zG7 · r + iG7 · Rj) = exp(/G7 · r). (6.13) 

That is, all functions exp(/G7T) are invariant under all possible lattice 
translations. The importance becomes apparent when one recognizes that this 
feature is in common with that in the complex basis states 

exp(/Kn · r) = QxplilnK^x/A,) + (n2y/A2) + (η3ζ/Λ3)]} (6.14) 

for a three-dimensional Fourier expansion of an arbitrary periodic function with 
a fundamental periodicity Ax in the x direction, A2 in the y direction, and A3 in 
the z direction. That is, for any set of integers nu n2, n3, an increase of x by Ax 

leads to no change in the value of the function, and similarly for an increase in y 
by A2 and an increase in z by A3. 

Let us now briefly consider the form of a three-dimensional Fourier series in 
an orthogonal coordinate system. In one dimension the complex Fourier series 
for an arbitrary periodic function/(x) with periodicity A1 is as follows [Chap. 1, 
§4.2, Eq. (1.40)], 

00 

f(x) = Σ Cn βχρ(/2π«Λ:/Λι), (6.15) 
n = — oo 

with 

Cn=— f(x)Qxp(-i2nnx/Ai)dx (n = 0, ± 1 , ±2 , . . . ) . (6.16) 

The distance x0 is arbitrary and so can be chosen to be zero. The basis functions 
expiilnnx/Ax) represent a complete set of orthogonal functions. For a function 
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fix) which is periodic in three dimensions, either of two approaches can be used. 
The Cn in the above expansion can be considered to be periodic functions of y 
and thus Fourier expanded in a similar manner, and this process then repeated 
with all coefficients considered to be periodic functions of z. A somewhat 
different approach can be based on the fact that the product function 
f\(x)fi(y)h(z) = f(T) is periodic in the x, y, and z directions if/i(x) is periodic in 
JC with periodicity Auf2(y) is periodic in y with periodicity Λ2, and/3(z) is 
periodic in z with periodicity A3. The resulting product Fourier series obtained 
simply by direct multiplication can then be written 

00 00 00 

/ ( Γ ) = Σ Σ Σ c«i«2ii3 βχρί/ΣπΚη^Μι) 
«i = — 00 /J2 = — 00 / J3= — 00 

+ (ηύ>/Λ2) + (η3ζ/Λ3)]}, (6.17) 

where 

C„,„2„3 = C„C„ C„3, (6.18) 

with 

fj(0 exp(-i2mijC/Aj) αζ 0 = 1 , 2 , 3 ) . (6.19) 
--j v 0 

An apparent simplification can be effected by using the vector notation 

Kn == InKnJAJx + (n2/A2)y + (η3/Λ3)ϊ]9 (6.20) 

since /(r) can then be written as 

/(r) = XC„exp( /K n T) , (6.21) 
n 

with 

C . s C ^ ^ i T 1 I / ( r )exp( - /K n . r ) r f i2 , (6.22) 
J cell 

where dQ is the volume element 

dQ = dx dy dz (6.23) 

and v is the volume ΑχΑ2Α3 of the cell representing the basic unit of periodicity 
for the function /(r). The functions exp(/Kn · r) can therefore be considered to 
represent a complete set of orthogonal basis functions for the three-dimensional 
Fourier series expansion of periodic functions in a Cartesian coordinate system. 

For rectangular coordinates, however, the definitions for bl 5 b2, and b3 yield 
bt = dl/di,b2 = a2/d2,a.ndb3 = d3/d3, where d,· represents a unit vector in the d, 
direction. For the special case of a rectangular lattice with c^ = xrfl9 d2 = yd2, 
and d3 = zd3, then 

G, = 2π[(/1Α/1)χ + (l2/d2)y + {l3/d3)z\ = K/? (6.24) 

Cn 
1 
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where du d2, and d3 are the periodicities Au A2, and Λ3 along the three 
orthogonal directions. Thus, in the special case of a rectangular lattice, the 
functions exp(/G, · r) provide a complete set of orthogonal basis states which can 
be used for Fourier series expansions of arbitrary functions which have the 
lattice periodicity. The role of the reciprocal lattice in providing a Fourier space 
for the expansion of functions within the lattice is therefore indicated, even 
though the use of the reciprocal lattice is rather superfluous for this case. It is in 
the more general case of nonorthogonal elementary lattice translation vectors 
that the reciprocal lattice becomes very powerful in its role in providing a 
Fourier space for functions having the lattice periodicity. 

How do we know (or prove) that the functions exp(/G7T) constitute a 
complete set of orthogonal basis states for the expansion of arbitrary functions 
which have the lattice periodicity? The requirements which must be satisfied are 
simply those which can be expected in any Fourier series representation. From 
the standpoint of a given lattice, we must require that 

(a) each of the functions appearing in such a Fourier representation must be 
invariant with respect to all lattice translations T}; 

(b) the fundamental Fourier components based on the lattice spacings in the 
three principal directions plus all possible shorter wavelength harmonics must be 
included within the basis set; and 

(c) the functions must be orthogonal in the sense that 

expO'G,· r) exp( - /Gm · r) dxx dx2 dx3 oc (5/m, (6.25) 
j J J 

where <5/m is unity if the triplet of integers (/l5 /2, /3) corresponds exactly to the set 
(mi, m2, w3), but is zero otherwise. (The proportionality is used instead of an 
equality since the normalization factor will depend upon the number of unit cells 
contained in the domain of integration and the volume per unit cell.) 

The requirement listed as (a) is to be expected on physical grounds since any 
other function would destroy the required periodicity. This requirement is 
indeed met, since we have already shown that 

η exp(G, · r) = exp(G7 · r) (6.26) 

for any j and any /. 
The requirement (b) is intuitive, since the omission of any harmonic would 

mean that a function with that particular periodicity could not be Fourier 
expanded in terms of the basis set. (For a more complete discussion of basis sets, 
see Chap. 1, §2.2 and Chap. 5, §1.3.) In addition, all possible harmonics are 
needed in a Fourier expansion in order for the various continuous wiggles and 
spikes which are present in the original function to be mirrored precisely by the 
Fourier representation. Is the requirement (b) met by the G,? It is met in the 
rectangular lattice, since we have already shown that the G, reduce to the set K7in 
this case, and the set exp(/K,· r) is certainly complete. In the more general case, 



§6] THE RECIPROCAL LATTICE 3 4 9 

suppose that we ask whether there exists a basis function for some arbitrary 
harmonic n for the dx direction represented within the set exp(/G,· r). If so, it 
meets the requirement that 

G, · (r + dO - G, · r = Inn (6.27) 

for some triplet /'. This in turn reduces to 

G, · dx = 2πη, (6.28) 

or 

2π(/'11>1 + /'2b2 + / '3b3)·!!! = Inn, (6.29) 

or 

/; = n. (6.30) 

Since n represents the «th harmonic, and is therefore an integer, the requirement 
is thus satisfied by every one of the subset of basis states exp(/Gn/2/3 · r), with 
arbitrary /2, /3. Similarly, the basis state representing the harmonic nx in the dx 
direction, n2 in the d2 direction, and n3 in the d3 direction is simply exp(/Gn · r), 
where n = (nl9 n2, n3). 

The requirement listed under (c) will now be examined, namely, the 
orthogonality of the various basis states exp(/G/T). Why is orthogonality 
necessary? Let us first consider an analogy. An ordinary vector in a three-
dimensional space can be resolved into components along three major axes, but 
the length of the vector will not be equal to the square root of the sum of the 
squares of the vector components along the three axes of a nonorthogonal 
coordinate system. (To visualize this, it may prove helpful to refer to Fig. 6.9.) 
In addition, the scalar product of two such vectors becomes quite complicated 
for nonorthogonal axes, and in general the component of an arbitrary vector 
along any given direction will not be equal to the ordinary scalar product of the 

Fig. 6.9 Vector components in orthogonal and nonorthogonai coordinate systems. [In a 
nonorthogonal system, a given component of a vector is obtained by drawing a line from the tip of 
the vector parallel to the coordinate axis in question to intersect the plane defined by the remaining 
two axes; the length of this line thus differs in general from the length of the perpendicular 
projection. Other details relating to covariant and contravariant components of nonorthogonal 
coordinate systems can be found in Stratton (1941).] 
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vector with a unit vector along this specific direction (Fig. 6.9). It may be recalled 
that the Fourier coefficients of the basis states in Fourier space are the abstract 
vector space (Chap. 1, §2.2) analogs of the vector components in real space, and 
the integral in Eq. (1.41) for obtaining a given Fourier coefficient Cn in the one-
dimensional Fourier series expansion [Eq. (1.40)] is the equivalent of taking the 
scalar product of the function with the basis state in question. Therefore the 
orthogonality of basis states is an important property which we will show allows 
an evaluation of the Fourier coefficients for an expansion in a lattice with 
nonorthogonal elementary translation vectors. The importance of orthogonal 
functions for use as basis states in series expansions can hardly be overem-
phasized. Let us therefore consider the integral of the product of one basis state 
with the complex conjugate of another, 

=\l exp(/G7· r) exp(— /Gm · r) dxx dx2 dx3, (6.31) 

where in units of du d2, and d3, 

r = Χχάχ + χ2ά2 + x3d3 (6.32) 

in the nonorthogonal system. If m = /, the integrand is unity and the integral 
immediately yields the value unity, assuming the domain of integration to be 
over one unit cell in the real lattice. If the integration domain is over the entire 
crystal, we obtain Nc, which is the number of unit cells in the crystal. If m Φ /, 
then the triple integral becomes 

-WV exp{/27r[(/! - raO*! + (/2 - m2)x2 + (/3 - m3)x3~\} dxl dx2 dx3, 

(6.33) 

which can in turn be separated into the product of three integrals of the form 

Sj = βχρ[ι2π(/,· - m^x'j] dx'y (6.34) 
J Xj 

Since m Φ /, at least one of the three integers m, differs from the corresponding 
integer /,. For such an integer, the integration yields 

J} = V2n(lj - mj)-] - * βχρ[ί2π(/, - mj):Q\% + ' = 0. (6.35) 

Combining the results for both cases, the orthonormality relation 

' S = ölm (6.36) 

is obtained. The basis functions expi/GjT) are therefore orthogonal. 
It is now easy to obtain the Fourier coefficients An for the Fourier series 

/(r) = X ^ n e x p ( / G n - r ) (6.37) 
n 

for the periodic function /(r) as expanded in terms of the nonorthogonal 
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elementary lattice translation vectors. [Equation (5.187) constitutes an appli-
cation of this series.] Multiplying the above relation (6.37) by exp( — /Gm · r) and 
integrating over one lattice constant in each direction in the lattice gives 

/(r) exp( — /Gm · r) dxx dx2 dx3 

= ΣΑη exp[/(Gn - Gm) · r] dx1 dx2 dx3 

= ΣΑη <5nm = Am, (6.38) 
n 

so that 

Λ . = /(r) e*P(- /Gm-r) dxl dx2 dx3. (6.39) 

Aside from its role in Fourier space, the reciprocal lattice has certain other 
valuable usages. It may be recalled that in a cubic system the vector denoted by 
[Afc/] is perpendicular to a set of planes denoted by the Miller indices (hkl); this 
is not the case for nonorthogonal elementary lattice translation vectors. It can be 
shown, however, that each vector of the reciprocal lattice is normal to a set of 
planes in the direct lattice. Furthermore, if the components of a given reciprocal 
lattice vector G have no common factor, then G can be shown to have a 
magnitude which is inversely proportional to the spacing of the lattice planes 
perpendicular to G. Other interesting properties are that the direct lattice is the 
reciprocal lattice to its own reciprocal lattice, and the volume of a unit cell in the 
reciprocal lattice is inversely proportional to the volume of a unit cell of the 
direct lattice. 

EXERCISE Prove that each vector of the reciprocal lattice is perpendicular to a set of planes in 
the direct lattice. 

EXERCISE (a) Prove that a reciprocal lattice vector Gm has a magnitude which is inversely 
proportional to the spacing of the lattice planes perpendicular to Gm provided the integers mi, m2, m3 
have no common factor. 

(b) What is the magnitude of Gm relative to the spacing of perpendicular lattice planes when mu 

m2, m3 possess a common factor? 

EXERCISE Prove that the volumes of unit cells in the direct and reciprocal lattices vary 
reciprocally. 

EXERCISE Prove that the direct lattice is reciprocal to its own reciprocal lattice. 

The reciprocal lattice is very important in treating diffraction phenomena and 
electron motion in crystals (Chap. 5, §§ 12 and 13). 

PROJECT 6.1 The Reciprocal Lattice 

Interpret the reciprocal lattice geometrically with respect to the direct lattice. {Hint: First of all, 
consider the geometry of the triplet of vectors b1? b2, b3 relative to the orientations and magnitudes of 
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the triplet of lattice translation vectors dl5 d2, d3. Recall that the vector (or cross) product of two 
vectors defines a third vector perpendicular to the original two vectors; the magnitude of the new 
vector is the product of the magnitudes of the two initial vectors and the sine of the angle between 
them. For a nonrectangular coordinate system, the new triplet b ^ b2, b3 will therefore be spatially 
rotated through some angles with respect to the initial triplet d1? d2, d3. Extend these considerations 
to the general reciprocal lattice itself, and then apply your results to several specific lattices including 
the face-centered cubic lattice and the hexagonal close-packed lattice.] 

7 Wigner-Seitz Cell 

It is not absolutely necessary that a primitive unit cell in a given lattice be 
chosen to be a parallelepiped, and in fact for some important theoretical 
developments it is much more useful to choose the unit cell to be of a different 
geometry. One alternate type, of especial interest, is the so-called Wigner-Seitz 
primitive cell. It is constructed by first drawing lines from a given lattice site to all 
nearby lattice sites, and then placing one plane at the midpoint and per-
pendicular to each line. The inner volume bounded by these planes is the desired 
cell. (See Fig. 6.10, for example.) Such cells can be stacked adjacent to one 
another to fill all space, as is evident from the method of construction. 
Furthermore, it is clear that each cell contains a single lattice point, so the cell is 
primitive. 

Fig. 6.10 The Wigner-Seitz primitive cell for the three-dimensional bcc lattice. 
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EXERCISE Construct the Wigner-Seitz cell for a two-dimensional rectangular lattice. {Hint: 
See Fig. 6.1 and also Ziman (1964).] 

8 First Brillouin Zone 

Consider an arbitrary direct lattice together with its corresponding reciprocal 
lattice. The Wigner-Seitz unit cell can of course be constructed for the direct 
lattice structure in the manner described in §7. In an analogous way, the 
Wigner-Seitz method of construction can be used to delineate a primitive unit cell 
in the reciprocal lattice ; this cell in the reciprocal lattice is called the Brillouin 
Zone of the direct lattice in question. The Brillouin zone for a square lattice is 
illustrated by the central region in Fig. 6.11. The Brillouin zone is an extremely 
important concept in the theory of solids, as the reader will come to appreciate 
more and more as he carefully works through the essentials of energy band 
theory (Chap. 7). 

Fig. 6.11 Brillouin zone structure for the two-dimensional square lattice. [The first, second, and 
third Brillouin zones are shown and labeled; the second and third zones can be noted to be 
segmented. The construction of Brillouin zones in three dimensions is carried out geometrically as 
follows: Map out the reciprocal lattice points determined by the reciprocal lattice vectors G, defined 
by Eq. (6.9), draw the reciprocal lattice vectors from the origin to all nearby reciprocal lattice points, 
and bisect these reciprocal lattice vectors with infinite planes. The innermost volume is the first 
Brillouin zone. Higher Brillouin zones, each having the same volume in reciprocal space as the first 
Brillouin zone, are obtained from a proper selection of adjacent volume segments. The two-
dimensional construction for the square lattice can be viewed in the same way as the three-
dimensional construction, but the conceptual difficulty is less because all G vectors then lie in the 
plane of the paper; the bisecting planes, being thus perpendicular to the plane of the paper, appear as 
lines, and the Brillouin zones appear as area segments instead of volume segments.] 

EXERCISE Construct the Brillouin zone for the two-dimensional rectangular lattice. (Hint: 
First study the construction in Fig. 6.11 for the square lattice.) 
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9 Higher Brillouin Zones 

The above-described construction giving rise to the "Brillouin zone" yields 
not only the inner central volume (usually referred to as the first Brillouin zone), 
but also an entire series of volume segments of various geometrical shape outside 
of the central volume. These are illustrated for the two-dimensional square 
lattice by Fig. 6.11. A detailed study shows that segments can be chosen from 
those directly in contact with the central zone which have a net volume which is 
exactly the same as the volume of the central zone, and moreover, these segments 
can be spatially rearranged so that they fit together like a three-dimensional 
puzzle to form a replica of the central zone. These segments are therefore 
referred to as the second Brillouin zone, and the central zone (which is the 
Wigner-Seitz cell for the reciprocal lattice) is then referred to as the first Brillouin 
zone. A third Brillouin zone likewise exists which is made up of volume segments 
adjacent to those making up the first and second Brillouin zones, and moreover, 
these volume segments can also be spatially rearranged so that they fit together 
like a three-dimensional puzzle to form a replica of the central zone. In fact, there 
is no limit to the number of Brillouin zones which can be delineated in this 
manner for any given direct lattice, and each zone can be spatially rearranged to 
form a replica of the first Brillouin zone. These constructs are quite useful for the 
visualization of Fermi surfaces of various real metals, since the energy gaps 
produced at the Brillouin zone boundaries by the periodic lattice potential 
(Chap. 5, §13.2) divide the volume of the occupied electronic states in k space (or 
momentum space) delimited at 0°K by the Fermi surface into zone segments 
which themselves rearrange into various geometrical shapes under the same 
spatial rearrangement of the Brillouin zone segments required to replicate the 
first Brillouin zone. 

EXERCISE Construct the first five Brillouin zones for the two-dimensional rectangular lattice. 

EXERCISE Show how the segments of the second, third, fourth, and fifth Brillouin zones of the 
two-dimensional rectangular lattice can be rearranged to form replicas of the first Brillouin zone. 
(Hint: Construct the Brillouin zones with pencil and ruler on two sheets of paper, number each 
segment, cut out the segments from one sheet, and attempt to rearrange them into the desired 
geometrical pattern.) 

EXERCISE Use modeling clay to construct the segments of the second Brillouin zone for the 
three-dimensional simple-cubic lattice. 

PROJECT 6.2 Brillouin Zones 

Use wooden blocks and a saw to construct actual models of the three-dimensional geometrical 
segments making up the first, second, and third Brillouin zones of the sc lattice, and show how the 
segments of the second and the third Brillouin zones fit together to replicate the first Brillouin zone. 
Repeat for the bcc and the fee lattices. 

PROBLEMS 

1. (a) Find the translation vectors for the primitive cell of the hexagonal space lattice. 
(b) Find the volume of the primitive cell in Part (a). 
(c) Find the volume of one hexagonal cell in zinc sulfide. 
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2. (a) Find the reciprocal lattice vectors for a tetragonal crystal having lattice parameters dx = 2.06 
Ä, d2 = 3.21 Ä, d3 = 4.06 A. 

(b) How many unit cells are there in a macroscopic crystal of this material having a volume of 
1 mm3? 

(c) If this macroscopic crystal has the same number of unit cell lengths in each of the three 
directions, what are the reciprocal crystal vectors? [Hint: See Eq. (7.8).] 
3. If di = ^a(\ + y), d2 = |tf(y + z), d3 = ^a(z + x), then determine the reciprocal lattice vectors. 
4. (a) How many lattice points are there in a fee unit cell? 

(b) Show that the fee lattice can be viewed in terms of trigonal unit cells. 
(c) What are the corresponding basis vectors? 
(d) What are the corresponding reciprocal lattice vectors? 

5. Lithium, which has a bec structure, has an atomic weight of 6.9 g/mole and a density of 0.53 
g/cm3. 

(a) Find the edge length a of the conventional unit cell. 
(b) Using the information from Part (a), find dx, d2, d3 for the primitive unit cell. Also find a! 2, ai 3, 

and a23. 
6. Show directly thatrRexp(/G,· rn) = exp[/G,· (rn + R)] for the special case where / = (1, 1, 1), 
n = (1, 1, 1), and R = ( -§ax + jay - ai). 
7. A series of identical pyramids are placed in a two-dimensional array on a horizontal surface. All 
edges of the base of each pyramid are in contact with the edges of bases of similar pyramids. 
Considering the array to extend from - oo to oo in both horizontal directions, expand the resulting 
top surface in a Fourier series representation. 
8. Repeat Problem 7 for a single pyramid, with the Fourier integral representation replacing the 
Fourier series. 
9. (a) Corresponding to the {/ m n) planes in a three-dimensional lattice, there are {/ m] planes 
(actually lines) in a two-dimensional lattice. Deduce and verify a general expression for the distance 
between adjacent parallel {/ m) planes in a simple two-dimensional square lattice. 

(b) Deduce the vector form of the Bragg condition for reflection from the {/ m} planes in a simple 
two-dimensional square lattice. 

(c) Describe elastic and inelastic neutron scattering by this lattice, and tell how such a lattice could 
be used as a neutron monochromator. 
10. Construct the Wigner-Seitz cell for a two-dimensional rectangular lattice. 
11. Construct the Brillouin zone for the two-dimensional rectangular lattice. 
12. Deduce Miller indices for several major planes in the three cubic Bravais lattices. 
13. Show that the (100) and the (001) planes in a cubic crystal are in some sense equivalent. 
14. What is the geometry of the points in the {111} plane of a sc lattice? Is the geometry modified for 
the same plane in bec and fee lattices? 
15. Show that parallel planes placed in equivalent positions in a crystal lattice can have the same set 
of Miller indices (hkl). 
16. Show that the [hkl~] direction is perpendicular to the {hkl) plane in a cubic lattice. 
17. Prove that each vector in the reciprocal lattice is perpendicular to a set of planes in the direct 
lattice. 
18. (a) Prove that a reciprocal lattice vector Gm has a magnitude which is inversely proportional to 
the spacing of the lattice planes perpendicular to Gm provided the integers mu m2, m3 have no 
common factor. 

(b) What is the magnitude of Gm relative to the spacing of perpendicular lattice planes when m1? 
m2, m3 possess a common factor? 
19. Explain the transformation needed to convert the fee lattice to the hexagonal close-packed 
lattice. 
20. Deduce the various «-fold rotation axes for the fourteen Bravais lattices. 
21. Is the diamond structure included as one of the fourteen Bravais lattices? If not, show how it can 
be obtained by adding an appropriate basis to one of the Bravais lattices. 
22. Explain the difference between the diamond, fluorite, and zincblende structures. [Hint: See R. 
A. Smith (1963).] 
23. Prove that the unit cell volume vc is given by vc = |d! · (d2 xd3)|. 
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24. Prove that the volumes of unit cells in the direct and reciprocal lattices vary reciprocally. 
25. Show that the reciprocal lattice of a fee lattice is bec and vice versa. 
26. Prove that the direct lattice is reciprocal to its own reciprocal lattice. 
27. Construct a primitive unit cell for copper. 
28. Prove that there are Κ/8π3 allowed k vectors per unit volume of reciprocal space, where Kis the 
volume of the crystal in real space. 
29. Deduce a vector equation for the planes delineating the Brillouin zones. 
30. Give one example where Brillouin zones are important. {Hint: See Chap. 5.) 
31. Consider a simple cubic lattice with lattice spacing a. 

(a) Write the direct lattice basis vectors. 
(b) Calculate the reciprocal lattice basis vectors. 
(c) Where are surfaces which enclose the first Brillouin zone? (Either write the equations for the 

planes or explain clearly with words.) 
32. How can one ascertain whether the Fermi surface overlaps a certain Brillouin zone in the free-
electron approximation? 
33. Consider a linear crystal made up of four equally spaced ions of equal mass, the masses being 
connected by springs with the end ones being fixed in position. Find the equations of motion, the 
frequencies, and the relative amplitudes for the two ions which are capable of motion. 



CHAPTER 7 

BLOCH'S THEOREM AND ENERGY BANDS FOR A 
PERIODIC POTENTIAL 

The present theories of metals seem enormously complicated, in contrast with the 
beautiful simplicity of Lorentz's theory. J. C. Slater (1934) 

1 Fourier Series Expansions for Arbitrary Functions of Position within 
the Crystal 

The reciprocal lattice was constructed in Chap. 6 to serve as a firm foundation 
for three-dimensional expansions having the lattice periodicity. That is, any 
arbitrary periodic function/(r) which is a continuous function of position r that 
is commensurate with the lattice periodicity may be expanded in the particular 
Fourier series, 

f(r) = YABexp(iGn-r), (7.1) 
n 

as shown in §6 of Chap. 6. The vectors Gn are the reciprocal lattice vectors 

Gn = 2π(/ι151 + n2b2 + w3b3), (7.2) 

where the b, are defined by Eqs. (6.4)-(6.7), and r is the position measured in 
units of the elemental translation vectors, 

r = χ1ά1 + x2d2 + x3d3. (7.3) 

The Fourier coefficients for this expansion were shown to be determined by 

A - = \ \ ) / ( ' ' ) e x P ( " / G - ' r ' ) dx'i dx2 dx'v ( 7 · 4 ) 

where the integration extends over any unit cell in the direct lattice. Since 
distance r is considered to be measured in units of the elemental translation 
vectors d1? d2, d3, the integrations extend from x} to Xj + 1 withy = 1, 2, 3. 

Let us now consider a crystal (Fig. 7.1) to be made up of Nc unit cells, with 
lengths Lxdu L2d2, and L3d3 in three major crystal directions. We specify on 

357 
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Fig. 7.1 Crystal consisting of Nc = LiL2L3 unit cells, each unit cell delineated by the lattice 
translation vectors dt, d2, d3. 

physical grounds that Lu L2, and L3 are integers; the resulting crystal contains 
Nc = LlL2L3 lattice points arranged in the same symmetry as the elemental unit 
cell defined by the elementary translation vectors dl5 d2, d3. The crystal volume 
Ω will be given by 

Ω = Ncvc, (7.5) 

where vc is the volume of the elemental unit cell. Thus, Ω = LlL1L7i (άχ · d2 x d3). 
Suppose that there exists some function g(r) which is commensurate with the 

periodicity of this bulk crystal consisting of Nc unit cells; g(t) does not 
necessarily possess the crystal lattice periodicity as defined by the individual unit 
cells. It is evident that a Fourier series can be constructed for this function g(r); 
however, the reciprocal lattice vectors Gn must be replaced by a different set of 
vectors (let us label them kn) which reflect the dimensions of the solid instead of 
the unit cell (or lattice) dimensions. The key point to recognize in determining 
the kn is the fact that the basic symmetry of the periodic function is unchanged; 
hence, we can expect the kn vectors to have the same spatial orientations as the Gn 
vectors, so that in practice only the magnitudes will differ. 

Recall that the reciprocal lattice (Chap. 6, §6) for the unit cell is based upon the 
vectors 

b^dfcXd^-dfcXd,) , (7.6) 

where (j, k, I) represents the triplets of integers (1,2, 3), (2, 3, 1), and (3, 1, 2). A 
"reciprocal space" based upon the periodicity of the solid can therefore be 
constructed in a similar manner from three vectors defined as follows: 

(Lfcdfc) x (Lidi) 
■ *> ^ (ΙΛΛ (τλΐ ΤΑΛ = h'IL' ij = l> 2> 3 ) · ( 7 · 7 ) 
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In terms of reciprocal crystal vectors k„ defined by 
k„ = 2π(«ι^ι + «2^2 + "3^3> = 2ji[(n1/L1)b1 + (n2/L2)b2 + («3/L3)b3], 

(7.8) 
the set of basis states for the crystalline solid will be exp(/kn · r). It is easily shown 
that each of these basis states has the periodicity of the solid. For example, a 
translation by L ^ gives 

exp(/kn · r) -► exp[/kn · (r + LidO] = exp(/kn · r) expO'Z^k« · dx) 
= exp(/kn · r) βχρ(ί>ΐι2π) = exp(/kn · r), (7.9) 

since ηγ is an integer. 
All harmonics having periodicity commensurate with the solid are contained 

within the set of vectors kn. For example, a wavelength equal to ^ the length of 
the solid in one particular direction d, is found in all of the vectors kn having 
rij = 3. The set is therefore complete. 

EXERCISE Show that there exists among the set of kn vectors given by Eq. (7.8) a harmonic 
which has wavelength (i.e., a periodicity) L2d2/5 along the d2 direction. 

The orthogonality of the functions exp(/kn · r) over the domain of the solid is 
readily established; this can be done in a manner analogous to that used to 
deduce the properties of the functions exp(/Gn · r) in Chap. 6, §6. That is, 

1 (e'k»')* (**-·') dx, dx2 dx3 = önmNc (7.10) 

whenever the domains of integration are chosen to be from xt to xx + Lu from 
x2 to x2 + L2, and from x3 to x3 + L3. The set of functions N~1/2 exp(/kn · r) are 
normalized with respect to the domain of the entire solid. 

EXERCISE Prove the result stated in Eq. (7.10). 

One Fourier series for a function g(r) having the periodicity of the bulk crystal 
is given by 

g(r) = X Ane
ik-'\ (7.11) 

with 
fXi + Lx r*x2 + L2 r*x3 + L3 

dx\ dx'2 dx'3g(r')e-ik-''. (7.12) 
J X2 J X3 Xl 

An alternate form is given by 

^(r) = ^ c " 1 / 2 I C nexp( /k n T) , (7.13) 
n 

with 

Cm = N;1/2 j j L(r') exp(- /km·r') dx\ dx'2 dx'3, (7.14) 
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where the integration is over the domain of the crystal in the three principal 
crystal directions, respectively. Yet a third form is given by 

0(r) = ^ ; 1 Z K e x p O ' k „ T ) (7.15) 
n 

where 
Vm = Nl'2Cm, (7.16) 

with Cm defined by Eq. (7.14). 
For all of the above forms of the Fourier series, 

kn = InKnJL^b, + (n2/L2)b2 + (/i3/L3)b3], (7.17) 
where nu n2, and n3 are integers; the above forms therefore differ only with 
respect to normalization of the basis functions (Chap. 1, §4). It is apparent from 
Eq. (7.17) that the points which are mapped out by the set of kn vectors are 
equally spaced along the directions of b1? b2, b3. Therefore it can be inferred 
geometrically (Fig. 7.2) that the sum of any two kn vectors represents yet a third 
k„ vector; this conclusion can be verified very simply by algebraically adding the 
components of the two vectors. 

k n + k ™ = k « 
n m p 

Fig. 7.2 The vector sum of any two k vectors (such as km and kn) yields a third vector (represented 
by kp) which is likewise a member of the set of k vectors. 

EXERCISE Show algebraically that kn + kn = kn where kn and kn< are two arbitrary 
reciprocal crystal vectors and kn< represents a third reciprocal crystal vector. What is the relationship 
among n, n', and n"? Given the triplets n and n' to be specifically (2, 7, 3) and (4, 6, 12), what is the 
triplet n"? 
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Any arbitrary function which satisfies the Dirichlet conditions (Chap. 1, §4) 
and which also has the periodicity of the solid can thus be represented by a linear 
combination of the complete set of functions exp(/kn · r). The functional 
dependence within a given period (such as the domain of the solid) can therefore, 
apart from certain constraints, be completely arbitrary. For all practical 
purposes, then, nearly any arbitrary function of position in the solid, whether or 
not it has any periodicity within the solid, can be represented over the domain of 
the solid by a Fourier series involving only linear combinations of the discrete set 
of basis states exp(/kn · r). It is true that such a linear combination will also have 
nonzero values outside of the solid, which in most cases will be physically 
meaningless for the problem at hand, but this does not negate the fact that the 
three-dimensional Fourier series can provide an exact representation of an 
arbitrary continuous function within the spatial region occupied by the solid. The 
behavior of the Fourier series outside of the solid, being nonphysical insofar as 
the description of the physical properties of the solid itself is concerned, can 
simply be ignored. The advantage of using the Fourier series representation 
instead of the corresponding Fourier integral representation (for which the 
linear combination can be chosen in such a way as to have a zero value outside of 
the solid), is simply that a smaller set of k vectors is required. In contrast to a 
discrete set of k vectors, a continuous set is required for a Fourier integral 
representation of an arbitrary function of position within the solid (refer to 
Chap. 1, §4.3). 

EXERCISE Set up the Fourier integral representation of aperiodic functions having the 
dimensions of the solid. {Hint: Refer to Chap. 1, §4.3.) 

Let us now turn our attention to the relationship between the k vectors and the 
G vectors. It can be seen that whenever the three integers in the triplet 
(mu ra2, ra3) in km 

km = 2;i[(m1/L1)b1 + (m2/L2)b2 + (m3/L3)b3] (7.18) 

are integral multiples of Ll9 L2, L3, respectively, such as m^jL^ = nu m2/L2 

= w2, w3/L3 = «3, then km becomes equal to one of the G vectors, namely, 

Gn = 2π(«11)1 + n2b2 + n3b3) (reciprocal lattice vectors). (7.19) 

Therefore we reach the following conclusion: The G vectors constitute a subset of 
the k vectors. It is thus evident that the k vectors are a discrete set of vectors in the 
reciprocal lattice containing the subset G which delineate the reciprocal lattice 
sites. This is illustrated in Fig. 7.3. 

A continuation of this examination of the properties of G vectors and k 
vectors leads to another result: Any k vector extending beyond one unit cell in the 
reciprocal lattice can be resolved into the sum of one of the G vectors andak vector 
which does not extend beyond one unit cell. (Later in this section we show that we 
can be even more specific than this in resolving the k vectors.) The above 
statement can be proved quite easily in two different ways, geometrically and 
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Fig. 7.3 The reciprocal crystal vectors km = 27i[(m1/L1)b1 + (m2/L2)b2 + (w3/L3)b3] -map out 
points denoted by the solid circles; the reciprocal lattice vectors Gn = ΙπΙη^! + n2b2 + «3^3] map 
out points denoted by the open circles. It can thus be seen that the G vectors constitute a subset of the 
k vectors. (The elemental parallelepiped unit cells in reciprocal space are indicated by the solid lines 
drawn between the reciprocal lattice points.) 

algebraically. The geometric proof is based on the above conclusion that the G 
vectors represent a subset of the k vectors. 

EXERCISE Prove geometrically the above statement regarding resolution of k vectors. (Hint: A 
k vector reaching to a point represented by any of the allowed k values within an arbitrary cell in the 
reciprocal lattice can be resolved into a G vector to a corner of the arbitrary cell plus a vector from the 
corner of the cell to the point in question within the cell. This can be noted from Fig. 7.4. The vector 
from the corner to the point in question within the cell is equivalent by symmetry to a vector from the 
origin to the corresponding point in a cell having one corner at the origin. This follows because of the 
symmetry of the reciprocal lattice, the fact that the points delineating the k values are uniformly 
spaced throughout the reciprocal lattice, and the convention that parallel vectors of equal length are 
equivalent.) 

The algebraic proof to be given now is perhaps easier to understand 
mathematically, though it lacks the intuitive value of the geometric proof. Let 

km = 27c[(m1/L1)b1 + (m2/L2)b2 + ^ 3 / ^ 3 ] (7.20) 

represent any vector extending from the origin of the reciprocal lattice to one of 
the possible points allowed by the requirement that mu ra2, m3 be integers, and 
assume that at least one of the three quantities m1/Ll, m2/L2, m3/L3 has a 
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Fig. 7.4 Any k vector km extending beyond the parallelepiped unit cells adjacent to the origin in 
reciprocal space can be represented by the vector sum of the G vector Gp extending to the nearest 
corner of the parallelepiped unit cell containing the point delineated by km and a k vector km' within 
one of the parallelepiped unit cells adjacent to the origin. (Thus the entire set of vectors km can be 
mapped into vectors in the set km' which do not extend beyond one parallelepiped unit cell in 
reciprocal space. Conversely, the restricted set of k vectors denoted by km- can be used to map out the 
entire set of k vectors km by suitable addition of km< vectors with vectors from the reciprocal lattice set 
GP.) 

magnitude exceeding unity so the km lies outside of the domain of the cells 
immediately at the origin. The ratio (or ratios) which exceed unit magnitude can 
be written as the sum of an integer plus a fraction with magnitude less than unity. 
Thus 

mJU =px +^1^), (7.21) 

m2/L2=p2 + (m'2/L2), (7.22) 

m3/L3 = p3 + (/W3/L3), (7 .23) 

where pl9 p2, p3 are integers (positive, negative, or zero), and m\, m'2, m'3 

represent integers which are less than the integers Ll5 L2, L3, respectively. There 
is no restriction on this transformation. Thus 

km = 2π{[/71 + K / L 1 ) ] b 1 + [p2 + K / L 2 ) ] b 2 + [p3 + {m'JL3)-]h3} 

= 2π[/?1ο1 +/?2b2 +p3b3-] + 27r[(m'1/L1)b1 + (m2/L2)b2 + (m'JLJb^ 

= Gp + km„ (7.24) 
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Fig. 7.5 The km' vectors can be mapped between adjacent parallelepiped unit cells which are in 
contact with the origin in reciprocal space by means of appropriate G vectors. 

The physical interpretation of this resolution of the k vectors is quite 
interesting, especially since it has far-reaching physical consequences: Because 
|k| = 2π/λ, the large magnitude k vectors (corresponding to small wavelengths λ) 
are resolved into the sum of a vector corresponding to some harmonic having the 
lattice periodicity and a vector having a λ value greater than the fundamental 
lattice periodicity (but less than the bulk crystal periodicity). 

Let us now consider a further resolution of the k vectors. It is now possible to 
show that by means of reciprocal lattice vectors all k vectors can be reduced to k 
vectors lying in any single unit cell at the origin in reciprocal space, such as the 
initial parallelepiped reciprocal cell. Thus far we have already shown that any k 
vector km reaching beyond one unit cell in the reciprocal lattice can be resolved 
into one of the G vectors Gp and a k vector km' which does not extend beyond one 
unit cell, 

km = km + Gp. (7.25) 

It is an evident extension of the geometrical proof, however, that any vector km' 
reaching to a point in any one of the unit cells in the reciprocal lattice which has 
the origin of the reciprocal lattice at one corner (Fig. 7.5) can be resolved into 
some k vector km lying in any one of the other adjacent cells plus a suitable G 
vector Gh 

km< = km + G,. (7.26) 
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Thus 
km = km, + Gp = km + G, + Gp, (7.27) 

where km lies in any cell desired. However, 
G,+ GP = GP, (7.28) 

where Gp> itself is a reciprocal lattice vector; therefore 

km = km~ + Gp, (7.29) 

where km- lies in the desired cell. The corresponding algebraic justification 
readily follows from the preceding algebraic proof by recognizing that all 
integers may be either positive or negative. Thus it is allowable for the reduced k 
vector km< to lie in a different octant of the coordinate system than the unreduced 
k vector km. The physical significance of this further reduction is that the reduced 
k vectors (i.e., the new k vectors obtained by resolving the original k vectors) 
may be chosen to lie in one unit cell in any chosen octant of reciprocal space. 

EXERCISE Prove Eqs. (7.26)-(7.29), both geometrically and algebraically. 

The arguments based on the geometry of the reciprocal lattice can be extended 
somewhat further. It has been shown that the km vectors are equally spaced 
throughout the reciprocal lattice in such a way that each km can be reduced to the 
sum of a reciprocal lattice vector and a corresponding km vector km' lying within 
an elemental parallelepiped unit cell at the origin. Once such a reduction has 
been effected, it is clear geometrically that all such reduced vectors km' can be 
translated to any arbitrary parallelepiped primitive cell in the reciprocal lattice 
by means of some specific reciprocal lattice vector. Therefore we could in effect 
"reduce" all km vectors into a single parallelepiped primitive cell lying anywhere 
in the reciprocal lattice, so the reduction need not be into a cell in contact with 
the origin. This fact is useful in examining the periodicity of electronic wave 
functions in a crystal with respect to momentum space. 

EXERCISE Carry out the indicated translation of the k vectors, choosing some specific Gp, and 
examine the range of wavelengths associated with the new set of k vectors. 

Likewise, the k vectors may all be reduced to the Wigner-Seitz cell (Chap. 6, 
§§ 7, 8) of the reciprocal lattice (i.e., to the first Brillouin zone). This can be seen 
in essence by means of the geometrical technique. 

EXERCISE Show geometrically that the k vectors can be reduced to the first Brillouin zone. 
[Hint: The Wigner-Seitz cell is made up of geometric portions of the parallelepiped cells immediately 
surrounding the origin; since it is also primitive, it has the same volume as a parallelepiped primitive 
cell. We have already seen that a k vector can be reduced to any given parallelepiped primitive cell in 
reciprocal space, including those with one corner at the origin. For parallelepiped primitive cells with 
one corner at the origin, portions immediately in the neighborhood of the origin are already 
contained within the corresponding Wigner-Seitz cell in reciprocal space. It follows geometrically 
that any k vector in these cells reaching a point outside of the Wigner-Seitz cell in reciprocal space can 
be reduced to a k vector within the Wigner-Seitz cell in reciprocal space simply by reducing it to an 
appropriate one of the adjacent primitive parallelepiped cells. This is further clarified by Figs. 7.6 
and 7.7.] 
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m* m p ' 

Fig. 7.6 Mapping of k vectors k„, from square unit cells in contact with the origin in reciprocal 
space into the first Brillouin zone for the case of the two-dimensional square lattice. (The three points 
marked x locate the tips of k vectors km< which lie within adjacent square unit cells in contact with 
the origin of reciprocal space but lie outside of the first Brillouin zone; these three points map into the 
single point denoted by the triangle which locates the tip of the k vector km" which lies both within an 
adjacent square unit cell in contact with the origin in reciprocal space and within the central square 
area delineating the first Brillouin zone.) 

Thus the following statement can be made: Any k vector extending beyond the 
first Brillouin zone (viz., the Wigner-Seitz primitive cell of the reciprocal lattice) 
can be resolved into the sum of some G vector and a k vector within the first 
Brillouin zone (Chap. 6, §8). The physical significance of the choice of the first 
Brillouin zone for k vector reduction is that the corresponding series of 
wavelengths λ = 2n/\k\ may be restricted to values equal to or greater than twice 
the lattice spacing. This choice includes k vectors directed in the negative as well 
as in the positive directions in reciprocal space. Since traveling waves are 
constructed by taking the product of a basis function exp(/kn · r) with the time 
factor exp(/a>0, where ω is an angular frequency and t is the time, this means that 
both forward and reverse traveling waves in the direct lattice are included. (For a 
review of traveling waves, see Chap. 1, §§ 2.2 and 4.4.) 

It may be recalled that there is a sequence of Brillouin zones; the one 
containing the origin of reciprocal space is designated as the first. Higher 
Brillouin zones were discussed in Chap. 6, §9. Since the Brillouin zone segments 
are contiguous in the reciprocal lattice, the points mapped out by the k vectors 
can be translated from one Brillouin zone to another by a G vector mapping 
procedure somewhat analogous to that described above for the primitive 
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Fig. 7.7 Mapping of k vectors km' from parallelepiped unit cells in contact with the origin in 
reciprocal space into the first Brillouin zone. (The two points marked x locate the tips of k vectors 
km. which lie within adjacent parallelepiped unit cells in contact with the origin of reciprocal space 
but lie outside of the first Brillouin zone; these points map respectively into the open circles which 
locate the tips of k vectors km" which lie both within an adjacent parallelepiped unit cell in contact 
with the origin in reciprocal space and within the central area delineating the first Brillouin zone. It is 
interesting that different G vectors are sometimes required for the mapping of two nearby points in 
the parallelepiped cell, which leads to a large separation between the points after mapping into the 
first Brillouin zone.) 

parallelepiped unit cells. Because the volumes of the various Brillouin zones in 
reciprocal space are equal, the mapping procedure can be used to translate entire 
sections of Brillouin zones into one another. 

EXERCISE Show how one can map the second and third Brillouin zones into the first Brillouin 
zone for the case of a rectangular lattice. Point out in particular the different G vectors which are 
required for the mapping, and tell how this differs from the mapping procedure for primitive 
parallelepiped unit cells. {Hint: See exercises in Chap. 6, §9. Also refer to Fig. 7.6.) 

In order to show the usefulness of the above mathematical reductions of the 
set of k vectors, let us refer to the Fourier series 

g(r) = £ Ame,k-' (7.30) 
m 

for any arbitrary function g(r) having the periodicity of the solid. This series can 
be formally written as a sum over the different zones (e.g., the elemental primitive 
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cells in the reciprocal lattice) wherein the k vectors are to be found, 

9(J) = Σ Σ ^eik-'. (7.31) 
zones m within 

a zone 

However, we have shown above that the elemental primitive cells of the 
reciprocal lattice can be translated into one another by the G vectors; the entire 
reciprocal lattice can be mapped with a single unit cell by using all possible G 
vectors for translation of this initial cell. Therefore all possible k vectors km 

km = km. + Gp (7.32) 
can be obtained from the subset of k vectors km' lying within a given primitive 
cell in the reciprocal lattice by vector sums using all possible reciprocal lattice 
vectors. Thus we can write 

0 « = ΣΣ4.·.Ρ*<(Ι* + <ν"» (7-33) 
p m' 

where the sum over m' represents a sum over all k vectors in a given primitive cell 
in the reciprocal lattice, and the sum over p constitutes a sum over all possible 
reciprocal lattice vectors Gp. The sum over reciprocal lattice vectors represents in 
essence a summation over all possible zones. (Unless stated otherwise, the 
domain of m' is often considered to be the first Brillouin zone.) 

Let us now attempt to interpret the meaning of this form of the Fourier series. 
The terms can be grouped in the following way, 

e(r) = x^,rZ^-'yCp"r· (7·34) 
m' p 

Since each basis state exp(/Gp · r) is translationally invariant, 
jyCp-r = £/Gp. V G p . r = ^ G , ^ ( ? 3 5 ) 

the sums 
HW(r) = Σ Am,pe

iG·' (7.36) 
P 

made up of linear combinations of these basis states are translationally 
invariant, 

7jHv(r) = Hw(r + Rj) = Σ Am.,pe
iG*'*>eiG'" = £ Am.^'f = *v(r). 

P P 

(7.37) 

Therefore any arbitrary function of position over the domain of the solid can be 
written 

g(r) = Σ " V ( r y - ', (7-38) 
m' 

where m' is restricted to either the k vectors within a single primitive 
parallelepiped cell in the reciprocal lattice, or to the k vectors within a single 
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Brillouin zone (commonly, the first Brillouin zone), and wm(r) is a function of 
position having the lattice periodicity. This represents a very important 
conclusion. The physical interpretation of this result is as follows: Any position-
dependent physical quantity in the solid can be represented by a linear combination 
of terms, each of which is the product of a coefficient consisting of some function 
having the lattice periodicity and a phase factor of unit modulus \ the phase factors 
represent some subset of the complete set of complex basis states exp(/k · x)for a 
Fourier series having the periodicity of the solid. The domain of m' can be any unit 
cell in the reciprocal lattice, as already mentioned. Whenever the domain is 
chosen to be one of the parallelepiped unit cells at the origin, the subset 
exp(/km' · r) have wave vectors km' corresponding to wavelengths in each 
principal direction in the crystal greater than the fundamental periodicity of the 
crystal lattice in that direction. Whenever the subset of k vectors are chosen to lie 
within the first Brillouin zone, the subset of k vectors correspond to wavelengths 
in each principal direction greater than twice the fundamental periodicity of the 
lattice in that direction. These results are quite surprising: it has been shown that 
a linear combination of terms, each representing the product of a factor having 
the lattice periodicity with a phase factor representing a wavelength greater than 
the fundamental lattice periodicity, can in fact represent an arbitrary function of 
position over the domain of the solid, even including functions with sharply 
varying nonperiodic (relative to the lattice) segments containing Fourier 
components with wavelengths much less than the fundamental lattice peri-
odicity. Therefore nothing definite can be said regarding the functional 
dependence of a linear combination of such terms from the standpoint of any 
restriction on the possible shape or sharpness of the functional variation relative 
to the lattice spacing. 

2 The Periodic Potential Characteristic of the Perfect Monocrystal 

A lattice has been defined in Chap. 6, §2 as a set of periodic points in space with 
coordinates determined by all integral multiples of the elementary translation 
vectors d7. If identical point charges were placed at every lattice site, the result 
would be a periodic Coulomb potential. This is illustrated in Fig. 7.8. Likewise, if 
a set of basis vectors al5 a 2 , . . . , (Fig. 6.4) was used to locate an array of charges 
of various magnitude (and sign) within each unit cell of the lattice, the result 
would again be a periodic Coulomb potential, although the functional 
dependence would be more complex than the case with charges located only at 
lattice sites. 

To develop our understanding further, consider also the fact that a Coulomb 
potential exists in the neighborhood of and within any isolated neutral atom, 
because any given atom is composed of a positively charged parent nucleus 
surrounded by a characteristic number of rapidly orbiting satellite electrons. 
The electron motion may indeed cause rapid temporal fluctuations in the 
Coulomb potential at any given spatial point, but the time-average of the 
potential can in principle be deduced by solving the Schrödinger equation [using 
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Fig. 7.8 An electron undergoes a periodic change in potential energy as it propagates through an 

array of charge arranged with a symmetry determined by the lattice. 

Eq. (2.13)] for the system comprised of the positively charged nucleus and the 
negatively charged electrons. With the exception of the hydrogen atom, which 
has a single electron, the solution requires a consideration of a number of 
indistinguishable electrons, and thus is a many-body problem which is generally 
difficult to solve exactly. An alternative approach is to consider the simul-
taneous solution of a number of Schrödinger equations, namely one for each 
electron in the atom. This set of Schrödinger equations must be solved self-
consistently, with the potential energy for a given electron being considered to be 
the Coulomb interaction energy of that electron with the positively charged 
nucleus and with all other electrons in the atom. This interaction with all other 
electrons in the atom is considered quantum mechanically in the sense that the 
Coulomb energy is that obtained from a point charge interaction of the electron 
with the "smeared-out" (time-averaged) charge of each of the other electrons 
obtained from the wave functions of the occupied quantum states. In addition, 
other quantum effects, such as the electron exchange interaction (Chap. 2, §1.4) 
must be included. The population of the various quantum energy levels must be 
considered to be in accordance with the Pauli exclusion principle (Chap. 2, §1.3), 
namely, each state represented by a complete set of quantum numbers (spin 
included) can contain at most one electron. Much research has been directed 
toward obtaining solutions to this difficult quantum-mechanical problem for 
various atoms. The greater the number of electrons in the atom, the greater is the 
difficulty in solving the problem. In general, numerical techniques and computer 
solutions are required, and even then a number of approximations are employed 
to make the problem tractable. 

As mentioned, the solutions obtained from such an approach are the 
stationary-state solutions which yield the time-averaged probability densities for 
the individual electrons. The charge density distribution resulting from super-
imposing the charge densities of all of the individual electrons then can be used 
tq calculate the Coulomb potential in the neighborhood of and within the 
atom. 
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Suppose now that one atom is placed at each site in some given lattice to form 
a solid, or even further, assume that a lattice with a basis is filled with identical 
groups of atoms, each group being composed of several atoms, some of which 
may be identical. The exact quantum-mechanical problem is then vastly more 
complex than that for a single atom, since in principle each electron interacts 
with every other electron and with every nucleus in the solid. The problem of 
computing electron energies and electronic wave functions in solids is a broad 
field in itself, and a variety of approaches has been used to obtain approximate 
solutions. Our present interest is directed toward the question of whether or not 
some general properties may be expected because of the lattice periodicity, 
irrespective of the type and arrangement of atoms in any one unit cell. In the 
limiting case in which wave functions of individual atoms filling the lattice (viz., 
the atomic wave functions) are not much perturbed by the interaction between 
atoms, as perhaps might be expected in a hypothetical solid having extremely 
large translation vectors relative to the atomic diameter, the repeating atomic 
Coulomb potential would theoretically constitute a periodic potential through-
out all space 

If the lattice translation vectors of this hypothetical solid are considered to 
decrease gradually in magnitude from some very large value towards smaller 
values more characteristic of the atomic diameter, which is the usual case for a 
real solid, there must then be an interaction between various neighboring atoms. 
This is due to the fact that the Coulomb energies of one of the charged particles 
in a given atom with the charged particles of an adjacent atom will then be 
significant with respect to the Coulomb energies between charged particles in a 
given atom. Although such interaction will most certainly lead to a modification 
in the atomic wave functions and energy levels, there is no obvious reason to 
expect such interaction to cause departures from periodicity in the Coulomb 
potential. Any foreign (or "test") electron which is injected into a hypothetically 
perfect crystal with a given velocity should sense a nearly periodic potential as it 
travels through the solid. The one-electron approach to determining energy 
levels and wave functions is based on this physical picture of a single electron 
traveling through a perfectly periodic potential. If the potential is considered to 
be due to an array of singly charged ions (Fig. 7.8) which are arranged regularly 
throughout a given lattice, as contrasted with a corresponding array of atoms, 
the wave functions and energy levels so deduced may be identified with those 
corresponding to the outermost shells of the atom, since these higher energy 
states are responsible for the mobile conduction electrons in the solid. If on the 
average there is one conduction electron per atom in the solid, then the one-
electron approach of solving the Schrödinger equation for a single electron in a 
periodic potential involves the assumption that the other conduction electrons 
themselves, each perhaps being in a state of rapid translational motion, 
constitute a periodic contribution to the overall lattice potential when tem-
porally averaged. The question which we wish to address ourselves to is 
therefore whether or not any general properties can be deduced for the electronic 
wave functions characteristic of such a one-electron picture of the solid. 
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3 The Hamiltonian for an Electron in a Periodic Potential 

The usual one-electron approach for deducing the quantum levels and wave 
functions for individual electrons in a solid is to write the time-independent 
Schrödinger equation (1.130), 

Μφ = βφ9 (7.39) 

where some spatially periodic function is chosen for the potential energy, and 
then solve this eigenvalue equation subject to physically reasonable boundary 
conditions to obtain the energy eigenfunctions and energy eigenvalues for the 
electron in the crystal. The time-dependent eigenfunction is then obtained by 
taking the product of the time-independent function φ{χ) with the usual time-
dependent function [Eq. (1.129)] which gives 

<A(r, 0 = φ{τ)β-** (7.40) 

with ω = δ/h. 

The periodic potential energy V(r) satisfies the condition 

V(r) = V(r + Rj) (7.41) 

for all lattice translation vectors 
Rj=7idi +7202+7303, (7.42) 

where (j\, j 2 , 73) represents arbitrary integer triplets and dl5 d2, d3 are the 
elemental lattice translation vectors in the three principal directions in the 
lattice. The potential energy operator "Γ(τ) in the position representation is 
simply the potential energy V(r); the corresponding kinetic energy operator is 
— (n2/2m)V2, with m denoting the electron mass and V2 denoting the Laplacian 
differential operator. (For a review of these fundamentals, see Chap. 1.) Thus the 
Schrödinger equation for an electron in a periodic potential is 

- (ή2/2ηι)ν2φ{$) + -T(r)(/>(s) = ^ψε\ (7.43) 

where the superscript (s) allows for the possibility that there may be a set of 
eigenfunctions (with corresponding eigenvalues) which satisfy this time-
independent Schrödinger equation. The solutions φ{8) to this equation then yield 
the time-dependent solutions 

iA(s)(r, 0 = 4>(s)(rK'w, (7.44) 

with 

ω8 = #*/ή, (7.45) 

to the time-dependent Schrödinger equation 

- (n2/2m)V2il/is) + ^ ( r )^ ( s ) = in d\jj{s)/dt. (7.46) 
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4 Fourier Series Derivation of Bloch's Theorem 

4.1 Expansion of the Energy Eigenfunctions in a Series of Momentum Eigenfunctions 

It was shown in §1 that any arbitrary function of position meeting the 
Dirichlet conditions can be represented over the domain of the solid by a Fourier 
series of the form (7.33). The requirement that the physical probability density 
be continuous requires continuity of the wave functions, so the solutions to the 
time-independent Schrödinger equation (7.43) must indeed be required to satisfy 
the Dirichlet conditions (Chap. 1, §4.1). Thus one approach to solving the 
Schrödinger equation for an electron in a solid is to use a Fourier series 
expansion for the energy eigenfunctions, 

</>(s) = Σ Σ 4?.i exp[i(k«< + G,) · r]. (7.47) 
/ m 

This wave function in the Fourier series representation is in effect a linear 
combination of momentum eigenfunctions. That is, each plane-wave basis state 
exp[/(km' + G,) · r] satisfies the eigenvalue equation for the momentum operator 
pop = -ihV = -in(x d/dx + y d/dy + z d/dz), 

pop exp[/(km, + G,) · r] = - ihV exp[/(km, + G,) · r] = pm,, exp[/(km, + G,) · r ] , 

(7.48) 

where the eigenvalues pm, t are the constant vectors 

P„,' , ,^n;(lw + G;)-r]. (7.49) 

EXERCISE (a) Show that for an orthogonal system of elemental translation vectors dl5 d2, d3, 
the right-hand side of Eq. (7.49) reduces to Äkm< + hGt. (b) Show that for a nonorthogonal system, 
the right-hand side of Eq. (7.49) reduces to 

2nÄ{[(m'1/L1) + l{\tdd\ + L(m'2/L2) + /2]d2/rfJ + [(m'3/L3) + « « V ^ } · 

These same basis states are likewise kinetic energy eigenfunctions; the kinetic 
energy operator ^~op is 

-(h2/2m)V2 = (2m)-\-ihV)-(- ihV) = (2m)-yp-p«*, (7.50) 

so that 

«r«* exp[/(km, + G7)-r] = (2m)-\-ihV) -(p^,, exp[/(km, + G7)-r]) 

= (2m)-1
 P < / - ( P ° p exp[/(km, + G7) · r]) 

= Qmy^y^j exp[/(km. + G7) · r ] . (7.51) 

Thus the constant kinetic energy eigenvalues 3Tm, t are given by 

e r m , / = ( 2 m ) - 1 p < / - p m - / , (7.52) 

with the constant vectors pm. t defined by Eq. (7.49). On the other hand, these 
plane-wave basis states are not generally eigenfunctions of the Hamiltonian 
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j f = ^~°P + iT(r), where f ( r ) is the potential energy operator corresponding to 
the periodic lattice potential V(r). That is, 

JT exp[/(km, + G,) · r] = {Γ^ + r{x)) exp[/(km, + G,) · r ] , (7.53) 

which represents an eigenvalue equation only in the special case in which V(r) is a 
constant; otherwise, the quantity [^m>/ + ^ ( r ) ] is position dependent and thus 
cannot be an eigenvalue. 

EXERCISE Prove that the plane-wave basis states individually are not in general energy 
eigenfunctions. 

Some linear combination of these basis states, such as Eq. (7.47), is therefore 
required to represent an energy eigenfunction (/>(s). The Fourier coefficients B$tl 

in Eq. (7.47) must be chosen so that the Schrödinger equation is satisfied for the 
particular periodic potential in question. A linear combination of the complete 
set of energy eigenfunctions φ{8) will then be needed to represent an arbitrary 
function, including that corresponding to the most general electron wave 
function Φ for the system. 

4.2 Generalized Solutions of the Schrödinger Equation for a Periodic Potential; Energy 
Bands 

It is convenient to use an arbitrary Fourier series expansion such as Eq. (7.1) 
for the periodic lattice potential for use in the Schrödinger equation. Thus we 
write 

V(r) = Σ Y«e'G·', (7.54) 
n 

where the Fourier coefficients Vn are characteristic of (and determined by) the 
particular functional form of the periodic potential V(r) in accordance with the 
general relation (7.4), 

Vn = V(r')e-IG·' dx\ dx'2 dx'3. (7.55) 

This is the same approach which was used in Chap. 5, §12. Substituting Eqs. 
(7.47) and (7.54) into the time-independent Schrödinger equation (7.43) then 
gives 

- r - Σ Σ #IP2 exp[i(k-· + G,) · r] 

+ Σ Σ Σ ^ » exp[«(k.. + G„ + G;) · r] 
/ m' n 

= Σ Σ ^s)^\i «PPOW + G,) · r]. (7.56) 
/ m 

However, each term in the first sum involving — (fi2/2m)V2 = 2T°V has already 
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been evaluated in Eq. (7.51), thus giving 

- ί - Σ Σ B®!2 exp[i(km· + G,) · r] 
( m 

= Σ Σ *i\if*.i exp['(kn,· + G) · r], (7.57) 

where the values of the constants ^~mJ are given by Eq. (7.52). The vector sum 
Gn + G, appears in the arguments of the second group of terms in Eq. (7.56); 
however, 

G. + G,= Gj, (7.58) 

where j = (Ju ji, h) is determined by j \ =ηγ+ lu j2 = n2 + l2, h = n3 + /3. 
Thus j = n + /, so we write 

Σ Σ Σ ^,'vn exp[i(km. + Gn + G;) · r] 
/ m' n 

= Σ Σ Σ *Μ -, expWW + G,) · r]. (7.59) 
/ m' j - / 

The integer triplet j — / = n takes on all possible values in the sum for each /; thus 
a replacement of the summation index j — / by the alternate summation index j , 
although representing a reordering of the terms in the sum, does not change the 
set of terms appearing in the sum. Since convergence is not a problem with 
Fourier series representations of continuous functions, the reordering of terms 
does not change the value of the sum. Reordering the terms in this manner 
converts Eq. (7.59) to 

Σ Σ Σ *i?.#r. exp[/(km, + Gn + G,) · r] 
/ m' n 

= Σ Σ Σ WM -, «p[i(k«. + Gj) · r]. (7.60) 
' m' j 

Substituting Eqs. (7.57) and (7.60) into Eq. (7.56) gives 

Σ Σ Σ * M - / exp[*0w + G,) · r] 
/ m j 

- Σ Σ 5</[^<s) - * V d «PP(k.- + G,) · r] = 0. (7.61) 
/ m' 

If the Kronecker delta function δ}1 = δη is introduced, where δμ = unity if/Ί = Ιγ, 
ji = h, and73 = /3 but is zero otherwise, the right-hand side can be written as a 
triple sum involving exp[/(km' + G J ) T ] , SO that Eq. (7.61) becomes 

0 = Σ Σ Σ *2A Vi _, exp[/(km. + G,) · r] 
/ m j 

- dvVS^ - * V J exp[/(km- + Gj) · r]}. (7.62) 

The order of the summations is unimportant for a convergent series of terms, so 
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this equation can be written in the form 

0 = Σ **- · ' [Σ e'G''' {Z WIW-I - h^ - *Vi>]} I · (7-63) 
It is now helpful to recall the fact that basis vectors elkm'r for the complex Fourier 
series representation of an arbitrary function over the domain of the solid are 
linearly independent functions, where km = 2n[(mi/Ll)b1 + (m2/L2)b2 + 
(w3/L3)b3]. This has been discussed in some detail in §1. Both the km' vectors and 
the Gj vectors represent subsets of the km vectors, the km' vectors being those 
which lie within some given primitive unit cell of the reciprocal lattice and the Gj 
vectors being those which map out the reciprocal lattice points. Therefore the set 
of functions exp[/km' · r ] , as well as the set of functions exp[/Gj · r ] , are linearly 
independent. From the definition of linear independence, each coefficient of 
exp[/km' · r] must be zero in order that the linear combination represented by 
Eq. (7.63) be zero. Therefore the Schrödinger equation in the form (7.63) can be 
satisfied only if 

Σ «*'" JE #Äi[rj-i - h^{s) ~ ̂ Vi)]} = 0 (7.64) 
for each allowable triplet m', the allowable triplets being those for which km' is 
confined to lie within some given primitive unit cell or Brillouin zone of the 
reciprocal lattice. The left-hand side of Eq. (7.64) itself represents a linear 
combination of the linearly independent functions exp[/Gj · r ] ; therefore, it can 
be zero only if 

E 5 < m ? , / [ ^ - / - ^ ( ^ < s , - ^ i ) ] = 0 {h,h,h arbitrary) (7.65) 

for each triplet j . [Every possible triplet 0Ί, 72,73) represents an allowable j . ] 
Next, Eq. (7.65), with j variable, can be recognized as a set of linear 
homogeneous algebraic equations for the quantities B$j. The domain of the 
triplet / is the same as that of the triplet j , namely, all possible integer triplet 
values. Nonzero values for the coefficients B$>/follow from the solution of these 
equations by means of Cramer's Rule [Wylie (1951)] only if the determinant of 
the coefficients αψ 

fly=^/-ifl[^-^,/l (7.66) 
is equal to zero: 

det(flj,) = 0. (7.67) 

The symbol det, meaning determinant, can be represented alternatively by 
double bars, in which case Eqs. (7.66) and (7.67) give 

\\V\-i- <5/j(<̂ (s) - ^"m',/)ll = 0 (secular equation). (7.68) 

The utility of a determinant of such a high order (jiJ2,J3, h,h* h each take on 
all possible integer values) may be questioned, so let us hasten to state that our 

file:////V/-i
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objective in this development is primarily to deduce some of the general 
properties of the eigenfunctions and eigenvalues of the Schrödinger equation for 
a periodic potential rather than develop a practical method to carry out actual 
numerical computations for various specific systems. In principle, at least, the 
above determinantal equation represents an algebraic equation which de-
termines the eigenvalues ${s). The determinant itself is .called the secular 
determinant, and the algebraic equation resulting from evaluating the de-
terminant and setting the result equal to zero is called the secular equation. The 
degree of this algebraic equation will be equal to the number of rows (or 
columns) in the determinant, which is designated the order of the determinant. 
Since j and / represent dummy indices in the determinantal equation which run 
over all possible triplets, it can be seen that the order of the determinant is very 
high. It is readily noted from the development that the number of rows and the 
number of columns are equal, since each number is derived from a one-to-one 
correspondence with the reciprocal lattice vectors. It is thus evident that the 
number of roots ^(s)(km) of the secular equation for a given km> is equal to the 
number of reciprocal lattice vectors, since the number of reciprocal lattice 
vectors defines the order of the secular determinant. Furthermore, each of the 
roots of the corresponding secular equation will involve all Fourier coefficients 
Vn= Kj _ / of the lattice potential and all reciprocal lattice vectors G, through the 
&~m,j quantities defined by Eq. (7.52). In addition, there will be an explicit 
dependence of each root on the vector km' which occurs explicitly in the ^~mj. 
For each different vector km', the determinantal equation will therefore be 
different, so the set of roots of the equation will be characteristic of the km' vector 
in question. For any specific km' the determinantal equation has multiple roots, 
the actual number being given by the order of the determinant, as mentioned 
already. The order of the determinant is equal to the number of reciprocal lattice 
vectors G,and so is in principle unlimited. Thus there are an unlimited number of 
solutions ${s) for a given km>, and the index s will serve to label the solution in 
question. The index s will be designated the band index. The explicit dependence 
of a given ${s) on the vector km' can be noted by adding km' as the argument of S(s) 

to give <f(s)(km'). The allowed values of km' are very closely spaced in the 
reciprocal lattice; the discrete set of energy levels ^(s)(km) for a fixed band index s 
with km' ranging over its domain of one unit cell in the reciprocal lattice is called 
an energy band. Since $ = ήω, the function ^(s)(km0 versus km> represents what is 
generally known as a dispersion relation in wave propagation. A schematic 
illustration of $ (s)(km0 versus |km| for a given direction k in k space is illustrated 
in Fig. 7.9 for three values of the band index s. The results illustrated in this 
figure are deduced by a reduction of the k vectors (and corresponding energy 
eigenvalues) of Fig. 5.6 for the perturbation treatment of a periodic lattice 
potential to the first Brillouin zone in accordance with the procedure described 
in§l . 

For a given km', each of the energies ^(s)(km) labeled by the band index s can be 
used in the set of linear homogeneous algebraic equations (7.65) to determine the 
Fourier coefficients i?^ , corresponding to all possible integer triplets /. It is well 
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Fig, 7.9 Energy eigenvalues for Bloch functions. [These discrete energies are obtained by solving 
the algebraic secular equation (7.68) obtained upon expansion of the secular determinant. It can be 
seen that for each given value of the crystal momentum nkm there are a number of energy eigenvalues 
<̂ (s)(km') labeled by the energy band index s. The quasi-continuum of discrete energies noted within a 
given band is broken by the energy gaps, namely, the regions of energy between bands containing no 
energy eigenvalues; these gaps occur for km< vectors which reach the boundaries of the Brillouin 
zone.] 

known that the solution of a set of TV independent simultaneous linear 
homogeneous algebraic equations in N unknowns yields N - 1 of the unknowns 
in terms of the remaining unknown, the remaining unknown being arbitrary. 
Later we see that this flexibility is useful for normalizing the resulting wave 
functions. The dependence of the Fourier coefficients upon the vector km> is 
explicitly denoted by the subscript m', and the dependence upon the band index 
is explicitly denoted by the superscript s. 
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For a given band index s, the linear combination given by Eq. (7.47) for φ{!!) 

involves all possible values of km'. However, as shown above, the energy values 
<^(s)(km') obtained from the secular equation depend in general upon the specific 
vector km'. Although there will undoubtedly be many degenerate states which 
occur in any particular solution consistent with the above approach, there is 
certainly no reason to believe that all energies ^(s)(km) for fixed s and variable km' 
will be degenerate. Therefore we are forced to restrict the linear combination 
(7.47) to those terms which when grouped together constitute an eigenfunction 
φ{8) corresponding to a specific eigenvalue; otherwise the time-independent 
Schrödinger eigenvalue equation (7.43) will not be satisfied. To ensure that we 
do have a grouping of terms corresponding to a single energy <f(s)(km»), each 
coefficient B$j in Eq. (7.47) can be set equal to zero for m' Φ m". Two points 
should be made regarding this procedure. First, we must show that the functions 
resulting from this modified procedure indeed constitute a complete set of 
energy eigenfunctions. Second, we must recognize that each resulting function 
will probably not represent the only possible eigenfunction corresponding to this 
particular energy, since there is most likely degeneracy for specific subsets of the 
different km states, especially for a three-dimensional system. 

4.3 Solutions to the Schrödinger Equation Characterized by a Wave Vector km; 
Bloch Functions 

Let us now address ourselves to the above question: Can energy eigenfunc-
tions φ{3) be constructed from individual subsets of the set of terms appearing in 
the general expansion (7.47), each subset corresponding to a single value of km' ? 
Our approach is to choose one of the km' vectors, km- for example, set all other 
coefficients B$j equal to zero, 

#?■ Ξ Σ Σ * - · . -·■ *!?./ exp[i(k.- + G,) · r] 
/ m 

= X ^ , / e x p [ / ( k m „ + G / )T] 
/ 

= exp[i(k... · r)] X B$tl exp(/G,· r), (7.69) 
/ 

and then ascertain whether the resulting linear combination can provide a 
solution to the Schrödinger equation (7.43) by substituting Eq. (7.69) into Eq. 
(7.43). Since the only difference in the new trial solution (7.69) and the previous 
trial solution (7.47) is the addition of the Kronecker delta function <5m'5 m as a 
factor multiplying every coefficient B{^ h the development is the same with this 
exception. For example, Eq. (7.56) is obtained with the modification that 2^?/is 
replaced everywhere by Sm't m"B$j; this can be noted to reduce the sums over m' 
to a single term involving m", if desired, although such a reduction is not 
mandatory. Likewise, Eq. (7.61) follows, but again with Sm>tm»B$tl replacing 
B$j everywhere. This then leads to the similarly modified form of Eq. (7.63), 
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namely, 

0 = Σ ^ " [ l e>Gi" {Z *-·.---WM-, - δ,μ(ί) - ^ , , ) ]} ] · (7.70) 

Using the Kronecker delta function property to reduce each sum over m' to a 
single term gives 

0 = el 'km * Γ Σ e'G'" { l ^,ιν,.,-δ,μ^ - r ^ (7.71) 

The factor exp(/km.. · r) is never zero; dividing Eq. (7.71) by this factor gives 

o = Σ e'Gi'r | Σ aSU^j - / - H<?is) - Γ,,Μ} ■ (7-72) 
This represents a linear combination of linearly independent functions 
exp(/Gj · r), and hence it can be zero only if the coefficient is zero for each 
triplet j , 

Σ ^Ä/ ITj - i " <W(S) " ^η,ν)] = 0 Vuh,h arbitrary). (7.73) 
/ 

This can be recognized as a set of linear homogeneous equations (j variable) for 
the quantities B$ h so nonzero values for each of these quantities requires that 
the determinant of the coefficients be zero, 

l l ^ - / - ^ ( s ) - ^ m » , , ) l l = 0. (7.74) 

A comparison of Eq. (7.74) with our former secular determinant (7.68) reveals 
that the secular equation for $(s) will be modified only by the substitution of the 
subscript m" for m', the subscript m" representing the specific vector km-. It is 
thus seen that each eigenvalue <f(s)(km ) presently determined by using the 
restricted expansion (7.69) must be identical to one of the eigenvalues ^(s)(km) 
previously determined by means of the general expansion (7.47), namely, it is 
equal to the one in which km' has the value km-. The set of energy eigenvalues 
<^(s)(km") (s denoting the root) obtained by solving the algebraic equation can 
then be used in the set of linear algebraic equations (7.73) to determine the 
coefficients B^j. It can be noted that the set of equations (7.73) is the same as the 
previous set (7.65) with the exception that m" appears in place of m'. Therefore 
the coefficients B$ ι are identical to a subset of the coefficients B$j previously 
determined by means of the general expansion (7.47). Specifically, this subset is 
delimited by km' having the specific value km-. It is clear that by choosing 
successively each of the various km' vectors in the first Brillouin zone in 
reciprocal space for km- in the restricted expansion (7.69), a set of energy 
eigenfunctions φ^,, can be generated. By considering all energies and all 
coefficients obtained in this way from these restricted expansions, a one-to-one 
correspondence is noted with the set of energy eigenvalues and Fourier 
coefficients previously deduced by means of the general expansion. Thus the 
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superposition of the complete set of restricted expansions yields the general 
expansion. Our conclusions are therefore the following: 

1. Each restricted expansion of the type (7.69) provides a solution to the 
Schrödinger equation corresponding to a single energy eigenvalue. 

2. The energy eigenvalues obtained from the restricted expansion (7.69) are 
identical to those obtained by means of the general Fourier series expansion. 

3. The coefficients obtained by means of all restricted expansions of the type 
(7.69), for km" within the first Brillouin zone, are identical to those obtained by 
means of the general Fourier series expansion (7.47). 

On the basis of the first conclusion, it is thus possible to find energy 
eigenfunctions for a periodic potential which have the form 

</>m"(f) = i^ ' toe*""' ' (Btoch functions), (7.75) 

with the energy eigenvalue <?(s)(km-) corresponding to the wave vector km- and 
the function w^l(r) defined to be the linear combination 

«S)»(r) = Z ^ i . i « P ( i G l T ) , (7.76) 

where the allowable energy eigenvalues and the corresponding coefficients B$,tl 
are determined by the Schrödinger equation in accordance with the procedure 
which we have developed above. It is readily seen that the functions w£l(r) have 
the lattice periodicity, 

«£>.(r + Rj) = Σ 3 ? , , exp[iG,· (r + R,)] 

= X B%\, expOG,· r) εχρΕ^π^Λ + lj2 + /3Λ)] 
/ 

= £ * A , e x p ( / G l - r ) = ««(r) . (7.77) 
/ 

Thus the energy eigenfunction (7.75) represents the product of a function u(r) 
which has the lattice periodicity and a phase factor elkT. Eigenfunctions of this 
form are generally known as Bloch functions. The phase factor corresponds to a 
sinusoidal spatial modulation of the real and imaginary parts of the wave 
function in accordance with the identity 

eik"'r = cos(km, · r) + i sin(km, · r). (7.78) 

The wavelength λη = 27i/|km'| of the modulation is greater than twice the lattice 
spacing provided we assume that we have chosen km to lie within the first 
Brillouin zone. These results are indicated in Fig. 7.10. 

On the basis of conclusions 2 and 3 above, we see that the set of functions 
$m"(r) °f ^ e tyPe (7-75) which are obtained by permitting m" to range over all 
values within the first Brillouin zone involve all km- values and all G7 values. The 
question is whether or not this new set of functions φ^-(Γ) l s complete. If this 
additional point can be demonstrated, then we will have proven quite generally 
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Fig. 7.10 Energy eigenfunctions for a periodic lattice potential as sketched in (a) can be chosen to 
have the Bloch form φ{$(τ) = w^(r) elkm \ where the functions u^(r) illustrated in (b) and 
distinguished by the band index s and the crystal momentum wave vector km' are spatially periodic 
with the lattice periodicity, and the real and imaginary parts of the factor elkn 'r lead to a modulation 
in the functions Μ^,(Γ) as indicated in (c) with a wavelength Xm = 2^|km| greater than twice the 
lattice translation distance d. 

that a complete set of energy eigenfunctions for a periodic potential can always be 
found which have the Bloch form (7.75). This in essence is Block's theorem. 

5 Properties of Bloch Functions 

5.1 Completeness of the Set 

The approach which we use to prove completeness of the set of Bloch 
functions φ^„(τ) given by Eq. (7.75), assuming that all km- in the first Brillouin 
zone and all roots s of the secular determinant are considered, is to demonstrate 
that any arbitrary function g(r) which can be represented by the complex Fourier 
series expansion (7.34) can also be represented by a linear combination of the 
Bloch functions. Considering any specific function g(x), then from Eqs. (7.11) 
and (7.12) as expressed in terms of Eqs. (7.32) and (7.34) we can write 

0(r) = £ e < k - - r £ ^ p e ' G ' r , (7.79) 
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with the coefficients Am> p determined by 

^m' , p — ™ 

'χι + Lt 

dx\ 
>x2 + L2 r*3 + £3 

dx'2 i/x'3^(r>-'(k»+G-)r'. (7.80) 
*3 

Let us attempt to represent g(x) in addition by a linear combination of all of the 
Bloch functions which we can generate, 

00·) = Σ Σ Wi2(r), (7.81) 
s m' 

where the Γ^, denote arbitrary expansion coefficients to be determined by 
requiring self-consistency between Eqs. (7.81) and (7.79). (The subscript m' is 
used instead of m" for simplicity; both represent arbitrary triplets corresponding 
to km vectors in the first Brillouin zone.) Substituting Eqs. (7.75) and (7.76) into 
Eq. (7.81) gives 

s m' p 

= Σ^"Σ^·,Σ/Αρ, <7·82) 
m' p s 

where p has been used for a dummy index in place of /and the rearrangement of 
the summations represents only a reordering of the terms. Equating the right-
hand sides of Eqs. (7.79) and (7.82) then requires 

o = I [^ ' ( r ) -^m>/ k" ' r ' (7·83) 
m' 

where 

^ ( Ϊ ) = Σ ^ · / " (7·84) 
P 

is the grouping of terms defined by Eq. (7.36) appearing in the complex Fourier 
series and 

^ - ■ ^ Σ ^ - ' . Ρ ^ " . (7·85) 
p 

with 

^ Ρ = Σ « , , (7-86) 
s 

is the grouping of terms appearing in the linear combination (7.82) of Bloch 
functions. Linear independence of the basis states exp(/km> · r) appearing in 
(7.83) requires that 

^m' = Hw(r) (all allowed triplets m) (7.87) 
for each allowed triplet m' in order for Eq. (7.83) to be satisfied. However, use of 
the definitions (7.84) and (7.85) in Eq. (7.87) then gives 

0 = YeiG>\<?m,p-Am,p). (7.88) 
p 
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Linear independence of the basis states exp(/Gp-r) appearing in Eq. (7.88) 
requires that 

i V p = 4 . ' .p (all triplets p) (7.89) 
for all triplets p. Substitution of the definition (7.86) into Eq. (7.89) then gives a 
set of nonhomogeneous algebraic equations 

Σ rmBm, p = An>, p (all triplets p; all allowed triplets m) (7.90) 
s '* 

for the expansion coefficients Γ$ in terms of the known coefficients Bfä, p and 
Am p. It has been shown that the number of roots of the secular determinant is 
equal to the number of reciprocal lattice vectors, since the number of reciprocal 
lattice vectors defines the order of the secular determinant. Thus for each given 
triplet m', the left-hand side of Eq. (7.90) involving the sum over the band index s 
contains exactly as many terms as there are independent equations obtained 
from Eq. (7.90) by varying p over all possible triplets. Thus, for each m', the set of 
linear nonhomogeneous algebraic equations (7.90) obtained by varying p can be 
written in matrix form 

ΒΓ = A. (7.91) 
In this matrix equation, B is a square matrix with elements /?£! , where s is the 
column index and p is the row index; Γ is a column matrix with elements Γ^!, 
where s is the row index, and A is a column matrix with p denoting the row index. 
This set of equations can in principle be solved by Cramer's Rule, or equivalently 
in the terminology of matrix theory, the equations can be solved by finding the 
inverse matrix B _ 1 for B, where by definition, 

B_ 1B = I, (7.92) 
with I representing the corresponding square matrix with the diagonal elements 
having value unity and the off-diagonal elements having value zero. Operating 
on Eq. (7.91) with B _ 1 gives 

Β 1 Β Γ = Β_ 1Α, (7.93) 
from which 

Γ = B_1A. (7.94) 

The coefficients Γ^ί appearing as the elements of Γ are thus in principle 
determined uniquely. This procedure is of course repeated for each triplet m'. In 
this way we find that there are exactly enough equations to determine all 
coefficients Γ^}, in the Bloch function expansion (7.81) representing the arbitrary 
function g(r). Therefore we have proved that the set of Bloch functions is 
complete. 

To summarize the results of our complete development based on Fourier 
series expansions, we have proven the following statement of Block's theorem: 
There exists a complete set of energy eigenjunctions for any periodic potential 
which has the property that any eigenfunction is the product of a function having the 
lattice periodicity and a phase factor having unit magnitude which represents a 
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modulation wavelength in each principal direction which can be chosen to be equal 
to or greater than twice the lattice periodicity in that direction. 

5.2 Alternatives to the Bloch Form 

Bloch's theorem is very important in the theory of crystalline solids. The 
question naturally arises as to whether or not all energy eigenfunctions are 
required to have the Bloch form. It is readily demonstrated that for the usual 
situation in three-dimensional systems wherein the energy eigenvalues ^(s)(km) 
are at least partially degenerate, alternate complete sets of energy eigenfunctions 
can be constructed which do not have the Bloch form. It is necessary simply to 
choose a linear combination of two degenerate Bloch functions having different 
vectors km<, 

η&) = *ιιφ${*) + *ιιφ%ί*\ (7.95) 
where a n and <x12 are arbitrary constants in the complex plane subject only to 
the possible requirement that ^ ( r ) be normalized. For cc1 ί Φ 0 and α12 ^ 0, Y\X(J) 

does not have the Bloch form (7.75). In principle, the band indices s and si could 
be the same or they could be different. One naturally occurring case of 
degeneracy for a given band index is found in the isotropic free-electron model 
system whenever |km| = |km»| with the directions of km' and km- being different. 
By the definition of degeneracy, S(s)(km,) = ^(s)(km^) for the two Bloch 
functions, so that 

jrm(r) = α1χΜΤφ^(τ) + *12*Φ{$(?) = ^(s)(km0^i(r). (7.96) 

That is, the new function ^ ( r ) is also an eigenfunction of the Hamiltonian 
corresponding to the same energy eigenvalue. Next, a second function η2(τ) is 
constructed, 

»fc(r) = α21#3(Γ) + α22φ^,{χ), (7.97) 

subject to the possible conditions that it be normalized and be orthogonal to 
ηλ{χ) over the domain of the solid. Note that η2(τ) does not in general have the 
Bloch form either. Nevertheless, it follows from the above development that 

JTf/2(r) = <f (s)(km0>72(r), (7.98) 

so that η2(τ) is also an eigenfunction of J f corresponding to the same degenerate 
manifold. Since it is evident that the functions ^ ( r ) and η2(τ) will generally be 
linearly independent whenever φ$(τ) and <^ ( r ) are linearly independent, it 
follows that these new functions represent equally valid energy eigenfunctions 
which can be used in place of the Bloch functions </>„!(r) a n d φ^Κτ) a s basis 
functions in the complete set of energy eigenfunctions. In this way we obtain an 
alternate complete set of energy eigenfunctions, only a portion of which have the 
Bloch form. Thus Bloch's theorem must not be interpreted as a requirement on 
the functional form of the energy eigenfunctions for a periodic potential; rather, 
it tells us that we can always choose the energy eigenfunctions for a periodic 
potential to have the Bloch form whenever this may be desirable. 
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5.3 Normalization of Bloch Functions 

One question which arises for complete sets of functions is whether or not the 
functions are orthonormal. That is, are the functions orthogonal ana normalized! 
First let us examine the normalization. The coefficients #„?/for a given m' and a 
given s and variable / occur in a given Bloch function φ^(τ), and all of these 
coefficients are determined by using a single root ^(s)(km) of the secular 
determinant in solving a set of linear homogeneous algebraic equations for these 
coefficients. The solution to a set of homogeneous equations yields all of the 
variables in terms of any specific one of them, and this specific one can be chosen 
arbitrarily. (This is readily seen to be the case since multiplication of each 
variable in a homogeneous algebraic equation by any constant factor results in 
the same equation. This of course is not the case for a nonhomogeneous 
algebraic equation.) Thus by choosing the single arbitrary coefficient in each 
Bloch function to have the appropriate magnitude, we effect normalization of 
each Bloch function, viz., 

1 = <m', .y|m', s} ■I Φ$(*)*Φ%<?) dxx dx2 dx3, (7.99) 

where the integrations are carried out over the lengths of the crystal in the three 
principal directions. 

5.4 Number of Bloch Functions in Each Energy Band 

It is easy to determine the number of Bloch functions in any given energy band 
when we recall the one-to-one correspondence between the Bloch functions and 
the set of km' vectors, as indicated by Eq. (7.75). In the first parallelepiped unit 
cell in reciprocal space, there are 

jrkm. = LXL2L3 = Ne (7.100) 
different values of km', as one can readily determine from Eqs. (7.20)-(7.23). 
Therefore, an energy band has the same number of Bloch functions as there are 
lattice sites in the crystal. 

Recalling that all points mapped out in reciprocal space by the km vectors are 
equally spaced, as also are the reciprocal lattice points determined by the Gp 
vectors, it can be concluded that the number Jf±m. of points mapped out by the 
km vectors is the same for any parallelepiped unit cell. This is likewise the number 
of points in the first Brillouin zone in reciprocal space, because the first Brillouin 
zone is a primitive unit cell which therefore must have the same volume as any 
other primitive cell in reciprocal space. All Brillouin zones have the same volume 
in k space, so that by once again using the property that the points mapped out 
by the km vectors are equally spaced, we can conclude that each Brillouin zone 
has associated with it a number JfVvsi, = L1L2L3 of Bloch functions equal to the 
number of lattice points in the solid. 

The number of Bloch functions, when applied to electrons in crystals to 
determine electronic states, can be considered to be doubled because of the two 
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allowable values of electron spin. The number of allowable values of the 
magnetic quantum number consistent with the orbital angular momentum of the 
electron state in question (Chap. 1, §12.4.2) is also an important factor for energy 
bands in real metals (§8). 

EXERCISE Show that there are LiL2 distinct values of km< in the first, second, and third 
Brillouin zones for the two-dimensional rectangular lattice. 

5.5 Linear Independence of Bloch Functions 

At this point let us examine the dimensionality of the complete manifold of 
Bloch functions and compare it with the dimensionality of the manifold of 
Fourier series basis states for the solid. The number JfBF of Bloch functions is 
equal to 

^ B F = ( ^ w ) ( ^ s ) , (7.101) 

which is the product of the number Jf^. of functions in each subset 
corresponding to a given band index s (viz., the number in a given band) with the 
number JVS of bands. The number Jf^m. in each band is equal to the number 
Nc = L^Ls of km' vectors in the first Brillouin zone, as argued in §5.4, and the 
number Jfs of bands is equal to the number JfQ of reciprocal lattice vectors, as 
shown in §4.2. From the geometry of the reciprocal lattice, it can also be seen that 
the product (Λ^η,'Χ^ο) is equal to the total number ^Vkm of allowed km vectors 
in the Fourier series basis set used in the expansion of arbitrary functions of 
position within the solid. There is a one-to-one correspondence between the 
complex Fourier series basis states exp(/km · r) and the km vectors, so Jikm is 
equal to the number J^FS of basis states in the Fourier series. Thus 

^ B F = ( ^ w ) P Q = ( ^ k m ) ( ^ G ) = ^ k m = ^ F S , (7.102) 
which shows us that the dimensionality JfB¥ of the set of Bloch functions is equal 
to the dimensionality of the complete set of linearly independent complex 
Fourier series basis states. When this fact is coupled with the fact that the set of 
Bloch functions is complete, as already proved, we can conclude quite rigorously 
that the Bloch functions must be linearly independent. 

Thus far we have proven that the Bloch functions can be normalized, that they 
constitute a complete set, and that they are linearly independent. We have not 
yet proved that the Bloch functions are orthogonal. 

5.6 Orthogonality of Bloch Functions over the Domain of the Crystal 

First of all let us consider two Bloch functions [φ^ and φ^)~\ corresponding 
to different wave vectors km and km lying within the first Brillouin zone, 

^ ) ( r ) = e ' k~ 'X^^>'G ' - r , (7.103) 
P' 

<töV) = eik-- Σ ^V G p "'■ (7·104) 
p " 
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The band indices Si and s2 may be the same or they may be different. The spatial 
domain Qc over which we wish to prove these functions orthogonal is simply the 
volume occupied by the crystal. The triple integral involved in the orthogonality 
relation will have limits for each of the three principal directions which reflect the 
boundaries of the crystal. The domains of integration can therefore be taken as 
Xx to Χχ + Ll9 x2 to x2 + L2, and x3 to x3 + L3. The integral can be written 

<m', ^Im", s2} = φ^Υφ^\χ)άχγάχ2άχ3 

Σ Σ Λ ^ Λ ^ exp{/[(km„ - km0 

+ (Gp» - GP0] τ } dxx dx2 dx3. 

In terms of the quantity Jm , m , p , p defined as 

(7.105) 

Φ 
17 m , m , p , p 

exp{/[(km» - km) + (Gp- - GP0] · r} dx1 dx2 dx3, 

the orthogonality integral takes the form 

<m', 5,1m", s2) = Σ Σ A^A^^fm..,m.,p..,t 

However, 

km + Gp = km,, 

km - + Gp- = kma, 

(7.106) 

(7.107) 

(7.108) 

(7.109) 

where kmi and km; are also members of the set of k vectors satisfying periodic 
boundary conditions for the crystalline solid. Thus 

.'"♦'-k m , ) r dXi dx2 dx3. 

In addition, 

k = k 

(7.110) 

(7.111) 

where km likewise is a member of the set of k vectors. Therefore the integrand is 
simply one of the functions exp(/km · r). Since these functions are periodic in each 
principal direction with the periodicity of the solid, the integral over the domain 
of the solid is zero unless m is equal to the triplet of integers (0, 0, 0). If m = 
(0, 0, 0), then it is readily seen that the triple integral has the value L^L^ = Nc, 
the number of unit cells in the crystal. Thus in terms of the Kronecker delta 
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function, we can write 

The further argument can be made that the two vectors kmi = km' + GP' and km2 
= km- + Gp- cannot be equal unless km< = km- and Gp> = Gp-. This follows 
from the fact that km' and km- lie within the first Brillouin zone in reciprocal 
space, whereas the reciprocal lattice vectors Gp> and Gp- must of necessity extend 
across at least one unit cell in reciprocal space. Thus the above delta function can 
be represented by the product of two delta functions, 

^ w ^ ^ A v . c , , (7-113) 
The delta functions on the right-hand side can be written also in terms of the 
triplets of integers m', m", p', and p". Thus 

Ökml,km2
 = <5m',m" <V,P"> (7.H4) 

and so 

An", m, p", p = #c<5m'.m" <V, p · (7 .115) 

The orthogonality integral therefore takes the form 

<m', ^m", s2} = Ν0ΣΣ ^ Α ^ 6m.,m.. <V,P- (7.116) 
P' P" 

The delta function Sp>f p- reduces the sum over p" to a single term, so that 

<m', Sl\m", s2) = Nc Sm.,m·· Σ < ^ [ # p , (7.117) 
p' 

Recalling that the triplet m' serves to distinguish between different Bloch 
functions within a given band, it can be seen that whenever si = s2 the derived 
result proves that all of the Bloch functions within a given energy band are 
mutually orthogonal. Since the result holds in addition for arbitrary band 
indices s1 and s2, the derived result also proves that members of the set of Bloch 
functions from different bands are also mutually orthogonal, provided only that 
m Φ m'. 

The remaining pairs of Bloch functions to be considered from the standpoint 
of orthogonality are restricted in number due to the requirements m' = m" and 
Sx Φ s2. These further subdivide into two parts, namely, the situation in which 
the members of a pair are nondegenerate and the situation in which the members 
of a pair are degenerate. For the nondegenerate case we can immediately invoke 
the well-known orthogonality theorem proven in §8 of Chap. 1 that eigenfunc-
tions belonging to different eigenvalues are orthogonal. Applying this theorem 
to the present situation, we can say that whenever pairs of Bloch functions φ^ 
and φ^ having the same wave vector km' but lying in different energy bands 
C?i Φ $2) correspond to energy eigenvalues <f(5l)(km<) and ^(j2)(km) which are 
different, then without a doubt the eigenfunctions must be orthogonal in 
accordance with the statement of the orthogonality theorem. The only situation 
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then remaining is the particular degenerate case in which km< = km-, i.e., 
<*(Sl)(km>) = $(S2)(km>) for some km' but with sl Φ s2. This would require an 
overlapping of the energy bands 5Ί and s2 in the same spatial direction (viz, 
parallel to km) . It would represent the situation of a multiple root of the secular 
equation for some given km', and thus any linear combination of the solutions 
would represent an energy eigenfunction having the Bloch form. The 
Gram-Schmidt orthogonalization process can then be invoked to construct an 
orthogonal set within this subspace of functions. The new Bloch functions thus 
obtained are then orthogonal to each other and to all remaining Bloch functions. 
Therefore we can state with confidence that we have proven the orthogonality of 
the Bloch functions over the domain of the crystal for all cases with the possible 
exception of the very specialized degenerate case ${Sl)(km>) = <f(*2)(km<), (si φ s2), 
and even for this case we have argued that it is possible to construct orthogonal 
Bloch functions. 

This completes our rather ambitious program of proving the properties of 
completeness and orthogonality and illustrating the feasibility of normalization 
for the set of Bloch functions. It can now be generally assumed without further 
ado that the Bloch functions represent a complete orthonormal set over the domain 
of the crystal. 

The questions to which we now address our attention are those of the meaning 
of the reduced zone solutions and the relationship between eigenfunctions and 
energy eigenvalues obtained when different reduced zones are utilized. Since the 
arbitrary zone chosen for our earlier development yielded a complete set of 
Bloch functions, it is intuitive that the solutions obtained using any other 
reduced zone will be either the same as or at least linearly dependent upon the 
solutions already obtained. To develop our understanding of this matter, let us 
consider the free-electron case. 

6 Correspondence with the Free-Electron Model 

6.1 Reduced Zone Scheme 

6.1.1 Mapping Energy Eigenvalues. Before proceeding further with our 
development, it is quite important that we first distinguish apparent changes due 
to the mathematical approach from actual physical consequences of a periodic 
lattice potential. This distinction can be made quite effectively by examining the 
results of §5 in the limiting case in which the periodic lattice potential reduces to 
zero. This represents the situation in which each of the Fourier coefficients Vn in 
Eq. (7.54) is zero. The reader will find it very instructive at this stage to review the 
perturbation treatments given in §§13.1 and 13.2 of Chap. 5, where it is shown 
that the Fourier components of the periodic lattice potential perturb the free 
electron energy eigenvalues and introduce energy gaps at the Brillouin zone 
boundaries. The free electron dispersion curve is thus modified from a pure 
parabolic form to the shape illustrated in Fig. 5.6. The energy gap at the zone 
boundary was shown to decrease linearly with decreasing value of the relevant 
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Fourier coefficient of the lattice potential. In the limit in which all Fourier 
components of the lattice potential are reduced to zero, the energy eigenfunc-
tions and energy eigenvalues for the conduction electrons in the crystal must 
necessarily reduce to those which we have already obtained by means of the free 
electron model of Chap. 3. This limit in the present development gives us insight 
into the meaning of a separation of wave vectors km into categories for which km 
lies either within the initial parallelepiped reciprocal cell or the first Brillouin 
zone (viz., km = km), or lies outside of these regions (i.e., km = km' + Gp). 

The energy eigenfunctions satisfying periodic boundary conditions in the 
three-dimensional free-electron model can be written in the form 

W ' ) = * c " 1 / 2 ^ (7·118) 
where Nc is the number of unit cells in the crystal. For a rectangular Cartesian 
coordinate system the components of the k vector are given by Eq. (3.10); for our 
presently considered general approach including nonorthogonal coordinate 
systems, 

km = 27r[(m1/L1)b1 + (m2/L2)b2 + (m3/L3)b3l (7.119) 
and the position vector is 

r = ^ d i + χ2ά2 + x3d3. (7.120) 
The corresponding energy eigenvalues are given by 

£(km) = (n2/2m)km-km. (7.121) 
A plot of <f(km) versus km = |km| in the direction of the vector km is shown in Fig. 
7.11. The curve is parabolic in shape, and it extends monotonically to arbitrarily 
large values of the total energy. There seems to be little reason on the basis of this 
diagram to restrict our consideration to the limited region encompassed by the 
initial reciprocal cell or the first Brillouin zone, and to be sure, the reduced zone 
scheme does not have a great deal of physical content whenever there is no 
perturbing potential having the lattice periodicity acting to alter the wave 
functions or energy eigenvalues. The results in this limit are therefore expected to 
be purely mathematical. From a mathematical standpoint, however, the reduced 
zone scheme still exists, provided only that a lattice of points is defined 
throughout the region of the solid. The reciprocal lattice, defined in terms of the 
usual reciprocal lattice vectors Gh remains the same. All km vectors can thus be 
mapped into the initial reciprocal cell or the first Brillouin zone in accordance 
with the prescription already given by Eq. (7.29), 

km = km, + G,. (7.122) 
(It may be recalled from §1 that this reduction could be justified rigorously by an 
algebraic proof and also by an equivalent geometrical proof.) As was already 
mentioned, any consequences of this mapping will be purely mathematical in 
nature, and thus more apparent than real, since the free-electron limit must 
indeed follow whenever the perturbing periodic potential is reduced to zero. 
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Fig. 7.11 Extended zone parabolic dispersion curve for energy ^(km) versus |kj for the free-
electron model, with the boundaries of the first Brillouin zone and those of the initial parallelepiped 
unit cell in reciprocal space indicated for a particular direction km in k space. [The discrete set of 
electron energy eigenvalues $(km) corresponding to the set of km values obtained by applying 
periodic boundary conditions to a crystal such as the one illustrated in Fig. 7.1 lie on the parabola; 
the periodic lattice potential is considered to be zero for the present case, so the energy gaps at the 
Brillouin zone boundary are zero, in contrast to the situation illustrated in Fig. 5.6.] 

That is, in the limit where the perturbing periodic potential is reduced to zero, the 
energy eigenvalues are of course entirely the same as those of the free-electron 
model, so that 

S{km) = (n2/2m)km · km = (/*2/2m)[(km, + G7) · (km, + G,)]. (7.123) 

These energy eigenvalues are generally not the same as those given by 

£(km,) = (h2/2m)km-km,. (7.124) 

The condition required for ^(km) to equal <f (km<) is 

|km> + GJ = |km,|, (7.125) 

which is a very special case. Figure 7.12 illustrates schematically the two possible 
situations to be considered, namely, that in which km' lies inside of the reduced 
zone and that in which km' touches the boundary of the reduced zone. It can be 
concluded from these diagrams that |km' + GJ = |km| if (and only if) the wave 
vector km touches the reduced zone boundary. This occurs for only a very small 
subset of the km vectors; the condition is not met for the great majority of 
electronic states. Thus, that two electronic states happen to be characterized by 
the same wave vector km' in the reduced zone does not imply that the energies of 
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Fig. 7.12 Illustration that |k{ + G| is not equal to |k,| unless k, is a member of the subset kj of wave 
vectors which touch the Brillouin zone boundary. 
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Fig. 7.13 Reduced zone scheme for labeling energy eigenvalues which are obtained from the 
extended zone parabolic dispersion curve <f (km) versus km illustrated in Fig. 7.11 for the free-electron 
model. (The various branches 1,2 ,3 , . . . , labeled by the band index s, are translated from the 
parabola into the first Brillouin zone by means of appropriate reciprocal lattice vectors Gp. The 
parabola in Fig. 7.11 is actually the cross section of a three-dimensional paraboloid of revolution, so 
the energy bands denoted by s = 1,2,3, . . . in the present figure represent cross-sectional lines 
obtained by cutting three-dimensional sheets which have been translated piecewise from the 
paraboloid of revolution into the first Brillouin zone by appropriate reciprocal lattice vectors.) 
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the two states are the same. On the contrary, the energies are generally different. 
We therefore adopt the rule that the free-electron energy eigenvalue is conserved 
when the km vectors are mapped into the reduced zone, so that there will appear 
many energy eigenvalues for each km' vector in the reduced zone. 

It is easily seen that all vectors km within any given primitive parallelepiped cell 
in reciprocal space will require the same specific reciprocal lattice vector G, for 
mapping into the initial parallelepiped reciprocal cell. 

EXERCISE Show explicitly that the situation is somewhat different for the mapping of the 
higher Brillouin zones into the first Brillouin zone. (Hint: Several G vectors are required for the 
mapping.) 

The set of closely spaced energy eigenvalues <?(km) constituting the portion of 
the energy dispersion surface contained within any given primitive parallelepiped 
cell in reciprocal space will thus map as one sheet of the dispersion surface within 
the reduced zone. An entirely similar type of mapping can be carried out for each 
primitive parallelepiped cell in reciprocal space so that in the end many sheets are 
mapped into the reduced zone. These energy sheets represent energy as a 
function of the three components of the k vector, and so are difficult to illustrate 
in textbook diagrams. Therefore what is generally illustrated is energy as a 
function of the magnitude of k for specific directions in k space. Diagrams of this 
type represent cross-sectional views of the energy sheets. It is convenient to label 
the individual branches in these diagrams by means of the previously introduced 
band index s. The resulting reduced zone picture illustrated in Fig. 7.13 contains 
the same information as the extended zone free electron dispersion curve shown 
in Fig. 7.11. 

6.1.2 Mapping Energy Eigenfunctions. Next, we develop further insight by 
examining the effect of the mapping process on the free-electron energy 
eigenfunctions. It is conventional to label Bloch states by the vector km' and the 
band index s, 

O O = e*---'«£:>(r), (7-126) 
where in general 

«£,-(r) = I^? . i«P( 'G /T) . (7-127) 
/ 

It is clear that free-electron eigenfunctions of the plane-wave form 

0 j r ) = N;1/2eik-'r = eik~'T[N;l/2eiG>'r] (7.128) 
fall into groups distinguished by whether or not km = km' + Gp lies inside of the 
initial parallelepiped reciprocal cell. If km does lie within the initial paral-
lelepiped reciprocal cell (i.e., Gp = 0), then km = km', and the lattice periodic 
portion of the corresponding Bloch function is simply a constant, 

i£,>(r) = N~1/2 (free-electron limit; s = 1). (7.129) 
If km lies outside of the initial parallelepiped reciprocal cell, then km = km' -I- Gp 
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with Gp Φ 0, so the lattice periodic portion of the corresponding Bloch function 
for this group is position dependent, 

i£)(r) = N;li2eiG>'r (free-electron limit; s Φ 1). (7.130) 
It is readily seen that the Bloch functions w^),(r)e/km r in both situations are 
entirely equivalent to the corresponding free-electron plane-wave form. Entirely 
similar considerations hold if the reduced zone is chosen to be the first Brillouin 
zone or any one of the primitive parallelepiped cells in reciprocal space. 

Note that in the free-electron limit, the lattice periodic portion of the Bloch 
function happens to be independent of the reduced wave vector km' over a given 
parallelepiped unit cell and over large regions of a given Brillouin zone. This is 
not generally the case for a nonzero lattice potential. However, in practice it is 
sometimes assumed to be a reasonable first approximation in constructing Bloch 
functions. 

It can also be noted above that the band index s is correlated uniquely (at least 
in the free-electron limit) with the vector Gp required in the mapping of the km 
vectors from any given primitive parallelepiped cell into the initial parallelepiped 
reciprocal cell. Thus a one-to-one correspondence exists between the band index 
s and the reciprocal lattice vectors Gp. That is, one (and only one) reciprocal 
lattice vector is required in constructing each complete sheet <?(s)(km) cor-
responding to any specific band index. (The situation is somewhat different 
when the reduced zone is chosen to be the first Brillouin zone, since more than 
one Gp is involved in mapping any given energy sheet.) 

EXERCISE Consider which G vectors are involved in mapping the energy eigenvalues from the 
second to the first Brillouin zone for the two- and three-dimensional rectangular lattices. 

Equation (7.128) leads to another very interesting and significant conclusion: 
The vector km' labeling the energy eigenfunction 0^(r) does not give directly the 
electron momentum eigenvalue pm, since in general pm # hkm>. This result, so 
easily seen in this limit of the free-electron correspondence where of necessity 

Pm = ftkm = n(km, + Gp), 
has far-reaching consequences for electrons propagating in nonzero lattice 
potentials. In this more complicated case, the lattice periodic portion wm!(r) of 
the Bloch function contains a mixture of many plane waves of different Gp value, 
and in some sense these contribute to the true momentum of the electron. Thus 
nkm> is referred to merely as the crystal momentum or the quasi-momentum of the 
electron. 

PROJECT 7.1 Energy Band Theory for a Linear Array of Uniformly Spaced Delta Function 
Potentials 

1. (a) Reduce the problem of the motion of an electron in a series of very narrow deep potential 
wells to one of periodic discontinuous boundary conditions. 

(b) Express these periodic discontinuous boundary conditions in matrix form, and obtain the 
dispersion relation. 
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2. (a) Deduce the effective mass m* for the first band from the dispersion relation derived above. 
Qualitatively describe the variation of m* with lattice parameter and energy of the bound level, and 
relate this to the qualitative dependence of the corresponding S versus k curve on these parameters. 

(b) Define the crystal momentum P and quantitatively relate it to the electron velocity, 
momentum, and effective mass, and also to the force experienced by an electron when an external 
electric field is applied to the crystal. 
3. (a) Give an analytical expression and a graphical representation for the eigenstate φΑ0 as deduced 
using the above approach. 

(b) Discuss the physical significance of the arbitrariness in k vector for a given band, and give your 
concept of "space harmonics." Discuss the physical significance of the multivaluedness in energy for 
a given k vector in the reduced zone scheme, and relate this to space harmonics. [Hint: See R. A. 
Smith (1963).] 

PROJECT 7.2 Energy Bands Deduced by Means of the Kronig-Penney Model 

Solve the Schrödinger equation for a particle of mass m under the influence of a one-dimensional 
periodic potential energy of the form 

U(x) = l/0 ( - D < x ^ 0), U(x) = 0 (O^x^L-D), U(x + L) = U(x) ( - oo < Λ: < oo). 

Numerically evaluate the relationship for the energy eigenvalues to obtain the energy ranges for 
which there exist a quasi-continuum of allowed energy values (i.e., the energy bands), and likewise 
delineate the energy ranges over which there exist no allowed energy values (i.e., the energy gaps). 
Use for your computations some reasonable set of numerical values for the parameters, such as the 
electronic mass, U0 = 1-5 eV, D = 0.1-1 Ä, and L = 2-5 Ä. 

PROJECT 7.3 Effective Masses of Electrons and Electron Holes 

1. What is the "effective mass" of an electron? 
2. Provide theoretical justification for the fact that the carriers in a nearly full band can be 
considered to be of positive sign. 
3. Justify the concept of an electron hole in terms of energy band theory. 

PROJECT 7.4 Effective Mass Approximation at Semiconductor Band Edges 

Justify the fact that the free-electron-like dispersion relation £ = h2k2/2m* can be applied to the 
valence and conduction bands for semiconductors. (That is, explain why the regions of the Brillouin 
zone constituting the top of the valence band and the bottom of the conduction band are the most 
important as far as the thermal production of carriers is concerned, and then explain how a Taylor 
series expansion of $(k) versus k about these extremum points yields results which can be described 
by a quadratic form in the k-vector components, very similar to the < (̂k) versus k dispersion relation 
for the free-electron model.) 

PROJECT 7.5 Carrier Statistics in Semiconductors 

Semiconductors are extremely important technologically because of the need for such components 
in sophisticated instrumentation. 
1. Formulate the statistics of the electron and electron-hole carriers in terms of the chemical 
potential and the gap energy. 
2. State and prove the law of mass action for this system, carefully delineating any necessary 
assumptions for the derivation, and obtain 

ne=nh = 2(kBT/2nh2Y'2(m*m*)^Qxp(-^gap/2kBT) 

for the electron and electron hole densities ne and nh as a function of the energy ^ g a p and temperature 
and the electron and electron hole effective masses m* and m*. 
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3. Design a useful electrical circuit (or similar device) in which a semiconducting material plays some 
clever role in the functional operation. 

PROJECT 7.6 Effective Mass 

Consider the application of an external force F to the conduction electrons in a solid having an 
energy band structure <f (k). Show that the force F produces a momentum change in each electron in 
accordance with Newton's second law F = ma, provided the electron is assumed to respond in the 
solid as if it had inertia properties which can be described by 

/ 1 \ 1 d2£(k) 

\meff Jij *2 dkidkj ' 

where the left-hand side represents the ijth component of a tensor quantity known as the inverse 
effective mass. 

6.2 Periodic Zone Scheme 

6.2.1 Mapping into All Primitive Parallelepiped Cells in Reciprocal Space. 
There exist mathematical transformations which lead to yet another zone 
scheme, namely, the periodic zone scheme. It is fundamental that the Bloch 
functions can be indexed with wave vectors from any of the various primitive 
parallelepipeds in reciprocal space, corresponding merely to different choices of 
the reduced zone for obtaining the general solution to the Schrödinger equation 
for a periodic potential. (It is thus evident that any additional solutions found for 
the Schrödinger equation will be redundant, since we already have obtained the 
most general possible solution with the Fourier series approach.) The reduction 
to an arbitrary primitive parallelepiped cell other than the initial parallelepiped 
reciprocal cell can be readily effected by adding to km> the appropriate reciprocal 
lattice vector Gp which is required for translation of any particular wave vector 
from the initial parallelepiped reciprocal cell to the new reduced zone, so that the 
usual Bloch functions 

0«(r) = e*--X2(r) (7.131) 

take the form 
0«(r) = e,(k» +G-)r[W^(r>-'G-'r] 

By designating the new reduced vectors as kp, where 
Kp' = Km' + Lrp, 

then the same Bloch function takes the new form 
<t>(*Xr) = eik>-ru$(r)9 (7.134) 

where 
wp

s?(r) = ^!(r>- , G- r . (7.135) 
(The subscript p' labels the state within the new reduced zone.) The function 
u{*)(r) also possesses the lattice periodicity, so the new form φ(*)(τ) likewise is of 

(7.132) 

(7.133) 
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the Bloch form. The corresponding energy eigenvalue cannot be changed by 
these essentially mathematical manipulations, but a new label such as <^(s)(kp<) is 
helpful in denoting that the energy sheets are for a new unit cell in reciprocal 
space. As with our earlier reduction to the initial parallelepiped reciprocal cell 
(or to the first Brillouin zone), the new reduction must likewise be carried out 
without a change in the energy eigenvalues. The easiest way to visualize the 
reduction to the new zone is first to consider all km vectors reduced to the initial 
parallelepiped cell in reciprocal space, with the resultant energy sheets then 
reduced simultaneously to the new zone. This is equivalent to a translation of the 
energy sheets in k space from the initial parallelepiped reciprocal cell to the new 
parallelepiped primitive cell in question. If we consider a sequence of such 
translations so that each and every primitive parallelepiped cell in reciprocal 
space is sequentially considered as the new reduced zone, then it is evident that 
every primitive parallelepiped cell in reciprocal space will consequently take on 
an appearance very similar to the original reduced zone. Thus all zones in 
reciprocal space become filled with energy sheets! [Evidently this is an 
overabundance; however, this scheme does provide a very useful framework in 
describing open and closed orbits of electrons on the Fermi surface in reciprocal 
space. See, for example, Ziman (1964).] 

6.2.2 Free-Electron Limit. Considering specifically the free-electron limit, 
the dispersion curves in the periodic zone scheme are illustrated for one spatial 
direction in Fig. 7.14. Note the periodicity of the dispersion curves in this 
diagram. (This periodicity remains a general characteristic of the dispersion 
curves even when the lattice potential is nonzero; it is thus the basis for the label 
"periodic zone scheme." The primary effects of a perturbing periodic potential is 
to separate the different branches of the dispersion sheets (i(s)(kp<) at the 
boundaries of the unit cells in reciprocal space with the introduction of energy 
gaps, as was proven by the perturbation treatment given in Chap. 5, §13.2.) The 
appearance of the curves in Fig. 7.14 over the domain of the first Brillouin zone is 
of interest, since this most often is the choice for the reduced zone. It is also 
interesting to compare the free-electron results deduced within the framework of 
the periodic zone scheme (Fig. 7.14) with the corresponding results expressed in 
terms of the extended zone scheme (Fig. 7.11). Since the physical content must be 
exactly the same, the apparent differences are in fact entirely mathematical in 
nature. 

EXERCISE The periodic zone scheme dispersion curves illustrated in Fig. 7.14 for the free-
electron model are modified by the perturbations due to the periodic lattice potential, as shown 
analytically in Chap. 5, §13.2. Sketch the dispersion curves in the periodic zone scheme for a nonzero 
lattice potential. [Hint: See Ziman (1964), and also refer to Figs. 7.15 and 7.16, which illustrate the 
corresponding results for the extended zone scheme and the reduced zone scheme.] 

The Fermi surface for free electrons is spherical, and in the periodic zone 
scheme it appears in each unit cell of reciprocal space, as indicated in Fig. 7.17. 
The periodic lattice potential perturbs the energy bands most in the neigh-
borhood of the Brillouin zone boundaries where the energy gap is introduced; 



§6] CORRESPONDENCE WITH FREE-ELECTRON MODEL 399 

e(k) 

Second First Second 

Zono Zoo· Zon· 

Fig. 7.14 Periodic (or "repeated") zone scheme for the energy dispersion curves ^(k) versus |k| 
for the free-electron model. (The sheets represented by the cross-sectional lines labeled 
s = 1,2,3,... in the reduced zone scheme illustrated by Fig. 7.13 have been translated into every unit 
cell in reciprocal space by means of the set of reciprocal lattice vectors Gp.) 

this has a marked effect on the shape of the Fermi surface if it is large enough to 
reach the boundary of the first Brillouin zone. In the periodic zone scheme, the 
Fermi surface for some metals is connected from zone to zone, as indicated in 
Fig. 7.18. This leads to what is known as "open orbits in k space" in addition to 
normally closed orbits [cf. Ziman (1964)]. 

The free-electron energy eigenfunctions in the periodic zone scheme are 
readily deduced from the usual plane-wave form. The specific reciprocal lattice 
vector required for translation to the zone in question can be expressed in the 
form 

Gp = Gp - G„ (7.136) 
where G, is the reciprocal lattice vector required to reduce the wave vector km to 
the initial parallelepiped reciprocal cell. Thus 

km = km + G „ (7.137) 

and Gp is the reciprocal lattice vector required to translate km from the initial 
parallelepiped reciprocal cell to the new reduced zone. The wave vector kp in the 
new reduced zone is thus 

kp = km, + Gp, (7.138) 
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' α " 0 "α α 

Fig. 7.15 The introduction of energy gaps due to the perturbing periodic lattice potential into the 
extended zone scheme for the energy dispersion curves <̂ (k) versus |k| for Bloch functions. 

and we obtain the result 

kp = (fe
m " G/) + G P = k - + G P 

Therefore the usual free-electron plane-wave eigenfunction 
<t>m(r) = N-v2eik"'r 

takes the following Bloch form, 
0W(r) = eik--'u£)(r), (7.141) 

with the requirement ^ ' ( r ) = </>m(r) yielding 
u(s)(r) = N- i / V * - - M · ' = N-ll2e-,c*-. (7.142) 

Although any given energy eigenfunction in the periodic zone scheme is the same 
as in the reduced zone scheme, the spatial dependence of the plane-wave factor 
eiK'T and the lattice periodic factor wp

s?(r) are thus noted to be individually 
different for the two schemes. Again we note that for the free electron model the 
lattice periodic factor u(*)(r) of the Bloch function is actually independent of the 
particular wave vector kp< within any specific zone, although u^)(r) does change 
from zone to zone. The description of the free electron energy eigenfunctions 
and eigenvalues in terms of the periodic zone scheme emphasizes the fact that the 
results as expressed in this scheme are quite redundant. The source of this 

(7.139) 

(7.140) 
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Fig. 7.16 The introduction of energy gaps due to the perturbing periodic lattice potential into the 
reduced zone scheme for the energy dispersion curves <̂ (k) versus |k| for Bloch functions. 

redundancy is actually in the mathematical approach where more than one 
reduced zone is considered; only one reduced zone is required for the general 
Fourier series solution developed previously for the Schrödinger equation. 
Therefore it is not surprising that we obtain a redundancy in the Bloch functions 
and energy eigenvalues in the periodic zone scheme. 

To a large extent the insight given by the free-electron correspondence enables 
us to understand the results to be expected whenever the periodic lattice 
potential is nonzero. For free electrons, the energy eigenvalues <f(km) are 
unbounded, with the larger values of |km| corresponding to higher electron 
kinetic energies. Furthermore, there is a high degree of degeneracy of the energy 
eigenvalues for free electrons. Degeneracy occurs in the free-electron case for 
different km vectors which have the same magnitude, corresponding to electrons 
traveling with a given speed but in different directions. In the case of nonzero 
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Fig. 7.17 Spherical Fermi surface which is characteristic of the free-electron model in the 
periodic zone scheme. 

Fig. 7.18 Nonspherical Fermi surface which touches the Brillouin zone boundary appears to be 
connected between adjacent zones in the periodic zone scheme. (The energy gap at the Brillouin zone 
boundary prevents an immediate filling of states in the second Brillouin zone even when enough 
electrons are added to the system to expand the Fermi surface sufficiently for it to touch the 
boundary of the first Brillouin zone; thus, states parallel to the Brillouin zone boundary are 
successively populated first until energies lying above the energy gap are reached, and only then do 
electrons begin to populate the second Brillouin zone, corresponding to population of the next 
higher energy band. This factor, together with the modifications in <f(k) versus k due to the lattice 
potential, accounts for the peculiar topology of the Fermi surface as indicated in the figure. It may 
also be noted that the cross-sectional area of the Fermi surface is a minimum at the "neck" located at 
the zone boundary; such "extremal" areas of the Fermi surface lead to quantum oscillatory effects in 
various physical properties such as the electrical conductivity, magnetic susceptibility, and 
ultrasonic absorption in the presence of applied magnetic fields.) 
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lattice potentials, these features are changed only by the fact that the magnitudes 
of km' vectors pointing in different directions (but corresponding to some given 
energy) can be different. This reflects the fact that the constant energy surfaces in 
k space can deviate from the spherical shape {^(k) = {fi2 ßni)\k2

x + k2 + k2']} 
characteristic of perfectly free electrons. The features of degeneracy and an 
infinity of energy eigenvalues are for the most part unchanged by the lattice 
potential. Whereas the extended zone scheme was found to provide a natural 
framework for the free electron approach, the reduced zone scheme was found to 
provide a more natural framework for interpreting the eigenvalues proceeding 
from the secular determinant as obtained by assuming a reduced zone Fourier 
series solution for the time-independent Schrödinger equation. The periodic 
zone scheme was found to be a natural result of the reduced zone Fourier series 
solution whenever all possible primitive parallelepiped cells in reciprocal space 
were sequentially chosen for the reduced zone. Whereas the reduced zone 
scheme provides exactly the same information as the extended zone scheme 
(only the format being different), the periodic zone scheme was shown to be 
highly redundant due to the fact that every zone in reciprocal space then contains 
exactly the same information as is contained in the single zone appearing in the 
reduced zone scheme. 

An additional question which we address in this section is whether it is 
meaningful to attempt to deduce a unique correspondence between the Fourier 
series reduced zone dispersion sheets for the case of a nonzero periodic potential 
and some specific extended zone solution. One of the easiest ways to approach 
this question is to examine the behavior of our general formalism in the limit in 
which the Fourier coefficients of the lattice potential approach zero. In this limit 
the coefficients V]_l in the secular determinant (7.68) go to zero, and all off-
diagonal terms are then zero. The secular equation then reduces to 

n ^ l s ) - ^ m - , J = 0 . (7.143) 

This yields n energy eigenvalues £{s) = $~mJ, where n represents a number equal 
to (2/1)(2/2)(2/3) in the limit where each of these integers approaches infinity. 
(Each of the integers lu /2, and /3 in the triplet /ranges from — oo to + oo.) Thus 
for each value of km and each value of G7 there exists a root 

${s\km) = 3Tm>l Ξ (h2/2m)l(k^ + G,) · (km,.+ G,)]. (7.144) 
These roots are readily identified as the energy eigenvalues for the free-electron 
model, as expressed in reduced zone notation. In this scheme, there are 
Nc = LiL2L3 independent values of km'; the dispersion surface ^(s)(km) for fixed 
G, and all possible values of km' represents a given energy band labeled by the 
index s. Each band contains Nc energy eigenvalues corresponding to the Nc 

independent values of km' which meet periodic boundary conditions for a crystal 
consisting of Nc unit cells. The order of the secular determinant is determined by 
the number of independent values of G7, so that there is one energy band for 
every G, vector. All n of these energy bands clutter the reduced zone used in 
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obtaining the general Fourier series solution. Any attempt to correlate the band 
index s with the Gp vectors for this reduced zone approach would be arbitrary. 
Since $(s)(km<) = ΖΓ^,ι f°r the limit of free electrons, the band index could be 
readily chosen as / if desired. Translation of each dispersion sheet labeled with 
the variable index / by the corresponding vector G, would then place it in the 
same parallelepiped unit cell as would be obtained by means of the extended 
zone scheme. It is to be anticipated, however, that the correlation between band 
index and reciprocal lattice vectors Gp will no longer be so straightforward in the 
more general case of a nonzero V(r). This is due to the fact that each Bloch 
function and each energy eigenvalue will depend upon a number of different 
reciprocal lattice vectors, so that the correspondence will be unique only in the 
limit where V(r) -► 0. 

Let us again consider the periodic zone scheme. From our previous arguments 
based on writing the same Bloch function in forms appropriate to various zones, 
we would expect the new secular equation to yield the same form for the 
dispersion curves in the new reduced zone as was obtained in the original 
reduced zone. To be a bit more quantitative, it can be noted that the addition of 
the factor elGp'r (Gp fixed) to the right-hand side of the general Fourier expansion 
(7.47) for the wave function does not change the wave function at all since the 
sum is over all possible reciprocal lattice vectors. Thus, considering km< + Gp = 
kP', where kp> is a wave vector in a new reduced zone, the index m' can be changed 
throughout in (7.47) to the index p'. The remainder of the development leading 
from Eq. (7.47) to the secular determinant (7.68) remains the same, so the results 
obtained pertain to the new reduced zone. The set of energy eigenvalues 
obtained is identical to the original set, however, since the net result is simply a 
permutation in the row and column indices. The band index should perhaps be 
relabeled because of the shift in the reduced zone, but otherwise no new 
information has been obtained. This provides some additional mathematical 
justification for the periodicity already deduced for the periodic zone scheme. 
This redundancy from zone to zone is not surprising in view of the fact that our 
solution of the Schrödinger equation assuming a single reduced zone is perfectly 
general and therefore should yield all possible energy eigenvalues as well as a 
complete set of linearly independent eigenfunctions. 

PROJECT 7.7 Electron-Electron Interactions 

Develop the theory of electron-electron interactions. Derive Lindhard's expression, and apply it 
to obtain worthwhile results for certain specific limiting cases. [Hint: See Ziman (1964).] 

PROJECT 7.8 Plasma Oscillations 

Develop the theory of plasma oscillations, using the approach of a frequency-dependent dielectric 
constant. [Hint: See Ziman (1964).] 

PROJECT 7.9 Cohesive Energy of a Metal 

Derive expressions for the cohesive energy and the interatomic spacing of an idealized metal. 
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PROJECT 7.10 Fermi Surface for a Two-Dimensional Square Lattice 

Construct the Fermi surface in the free-electron approximation for a two-dimensional square 
lattice having four valence electrons per atom, and reduce the Fermi surface obtained to the first 
Brillouin zone. [Hint: See Goldsmid (1968).] 

PROJECT 7.11 Fermi Surfaces: The Nearly-Free-Electron Approach and Experimental 
Measurements 

1. Tell how to construct Fermi surfaces using the NFE model. 
2. List five experimental methods for Fermi surface studies. 
3. Explain how cyclotron resonance is used to map out the Fermi surface of metals. 
4. Develop equations for the anomalous skin effect using the intuitive approach of Pippard. 
5. Explain how magnetoresistance can be used to study Fermi surfaces. 
6. Explain how ultrasonic attenuation is employed to study Fermi surfaces. 
7. What happens to a Fermi surface when the metal is subjected to a large hydrostatic pressure? 
{Hint: See Harrison (1970).] 

PROJECT 7.12 Quantum Oscillatory Effects 

Prove that extremal cross-sectional areas of the Fermi surface such as the "neck" orbit occurring 
at the Brillouin zone boundary in Fig. 7.18 give rise to oscillations in the density of states which are 
periodic in (1/2?), where B is the applied magnetic field. {Hint: See Harrison and Webb (I960).] 

7 Additional Properties of Bloch Functions 

7.1 Alternative Statements of Bloch's Theorem 

It follows from the functional form of the Bloch functions 

Φ» = 41(ryk- ·' (7.145) 
that translating by an arbitrary direct lattice vector 

Rj = ji&i + Λ * 2 +73<Ϊ3 (7.146) 

yields 

^ ^ ( r ) = 0 2 (r + Rj) = < (r + Κ , ) ^ · < ' + *> 

= <.(Γ)έ?*-"Vkm R< = A , R ^ ! ( r ) . (7.147) 

That is, the only effect of lattice translation on energy eigenfunctions having the 
Bloch form is to introduce a constant phase factor of unit modulus into the 
energy eigenfunction. Since we have already shown that energy eigenfunctions in 
a periodic potential can be chosen to have the Bloch form, it can be stated loosely 
that the only effect of lattice translation on the energy eigenfunctions in a crystal is 
to introduce a phase factor. This may be taken as an alternate (though 
nonrigorous) statement of Bloch's theorem. 

Alternatively, it can be stated (again nonrigorously) on the basis of Eq. (7.147) 
that Bloch's theorem means simply that the energy eigenfunctions in a perfect 
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crystal satisfy the mathematical condition that 

^ ( r + Rj) = e'k--R'^(r) (7.148) 

for some fixed vector km. Of course, from our detailed work above we are aware 
that km' represents one of the set of wave vectors which satisfy periodic boundary 
conditions for the crystal. 

7.2 Interpretation of the Fourier Series Solution Obtained in Reduced-Zone Notation 

The trial wave function (7.47) used to solve the time-independent Schrödinger 
equation was written in terms of reduced zone notation in the sense that all 
Fourier components eikm'T were replaced by corresponding components 
exp[/(km' + G/) · r]. All energy eigenvalues were found to be dependent upon the 
vectors km< + G7. Since in the reduced zone scheme we only consider the k vectors 
to span the range of the reduced zone in question, with the varying band index s 
giving all possible sheets of the dispersion surface, the energy eigenvalues and 
eigenfunctions thus obtained must be considered to be confined to the reduced 
zone. It is only by repeating the process of solution in a sequential manner, 
assuming a different reduced zone for each different solution, that the so-called 
repeated (or periodic) zone results discussed in §6.2 can be obtained. 

7.3 Time Dependence of Wave Functions Having the Bloch Form 

The time factor exp[— (///0<?(s)(km')i] can be added to the corresponding 
stationary-state Bloch function 0^.(r) to give the time-dependent energy 
eigenfunctions ψ^(τ, t) for a periodic potential, 

tt(f> 0 = Φ^)β~{ί/^){Κ)ί' (7·149) 
This particular form for the time factor is quite general, since it follows directly 
from a separation of variables in the time-dependent Schrödinger equation, as 
shown in §6 of Chap. 1. In this way we obtain 

ψ£(τ, 0 = exp{/[km. · r - Ä" ^«(k. · ) ' ] } Σ *ί?,ι «PO'Gr r) 

= w£>(r) exp{/[km, · r - tr ** «(k..)*]}· (7.150) 

It can be seen immediately that the electron probability density has the lattice 
periodicity, namely, 

tö£(r, ' ) ·$£( ' , 0 = " ! Ä r « ( r ) . (7.151) 

7.4 Bloch Functions and Charge Transport in Crystals 

The significance of the Bloch form for wave functions in a crystal is twofold. 
First of all, it is of interest to be able to compute the probability amplitude ψ*ψ 
of a given energy eigenstate, and second, it can be shown that electrons in Bloch 
states can propagate through the crystal. Propagation is of course the all 
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important factor when considering charge transport under the action of 
externally applied potential differences. The proof that electrons in Bloch states 
can propagate in crystals is rather involved [Jones and Zener (1934); R. A. 
Smith (1963)]. In essence it involves a computation of the current density for 
Bloch states in accordance with the prescription given by Eq. (1.264). It is found 
that the average velocity <v> over a unit cell for an electron moving in a perfectly 
periodic potential is given by the constant value 

( v ) ^ " 1 Fk*(k), (7.152) 
quite analogous to the group velocity of a wave packet as given by Eq. (1.187). 
Thus an electron in a Bloch state is not scattered and thereby slowed down by the 
atoms making up the periodic crystal lattice. The perfect lattice therefore offers 
zero electrical resistance to charge transport. From this standpoint the free-
electron model of a metal is a rather good approximation. (This quantum-
mechanical result of zero resistance due to the ions in the lattice is significantly 
different from the scattering which one might expect from the viewpoint of 
classical physics. Refer to the discussion in Chap. 3, §1.6.) That the electron 
velocity depends critically upon the dispersion relation ^(k), according to the 
above expression, provides justification for efforts to deduce the various energy 
bands for a periodic potential. 

One interesting point follows immediately from Eq. (7.152): At the Brillouin 
zone boundaries where Bragg reflection prevents electron propagation, such 
that the eigenfunctions become nonpropagating standing waves for which 
<v> = 0, the <f(k) relation has zero slope. This is markedly distinct from the 
parabolic dispersion relation ^(k) = h2k2ßm characteristic of free electrons. 

In addition to the importance of the energy band dispersion relation <f(k) for 
determining the electron velocity, it can also be shown that the inertial properties 
of the conduction electrons can be deduced from the electronic energy bands. 
The so-called "effective mass" m* is analogous to the free-electron mass m in 
limiting the acceleration a = F/ra which can be produced by an externally 
applied electrical force F. Its value is characteristic of the interaction of the 
electron with the periodic lattice potential, and it can be determined by taking 
appropriate derivatives of <f(k) [Project 7.6] with respect to the components 
ofk. 

PROJECT 7.13 Are Bloch Functions Momentum Eigenfunctions? 

Prove or disprove the following theorem: "Bloch functions are not necessarily momentum 
eigenfunctions." 

PROJECT 7.14 Charge Transport by Electrons in Bloch States 

Prove that electrons characterized by Bloch functions have a nonzero linear momentum. Deduce 
an expression for this momentum. 

PROJECT 7.15 Crystal Momentum 

Prove that the time rate of change of the crystal momentum of an electron in a solid is equal to the 
externally applied force. 
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PROJECT 7.16 Band Theory of Electron Acceleration 

Describe the acceleration of an electron through an energy band, including a discussion of its 
crystal momentum, velocity, and periods in time and position. 

PROJECT 7.17 Group Velocity as a Unit Cell Average of the Instantaneous Velocity 

Prove that the average of the instantaneous velocity of an electron over one unit cell of a one-
dimensional crystal is equal to the group velocity of the electron in the crystal. [Hint: See R. A. Smith 
(1963) and Ziman (1964).] 

PROJECT 7.18 Group Velocity of Electrons in Bloch States 

Prove that Bloch states represent electrons in translational motion in a crystal with group velocity 
\ = h~1 Pk#(k). 

PROJECT 7.19 Quasi-Classical Dynamics of Quantum Particles 

Develop the equations h dk/dt = - VU(r) and v = h~* Pk<^(k), where U(r) is the scalar potential 
which yields the externally applied forces F = - V U(r) acting on the particles in the solid, and ^(k) is 
the energy-band dispersion relation for the solid in the absence of the external forces. [Hint: See 
Ziman (1964).] 

8 Energy Bands from the Viewpoint of the One-Electron Atomic Levels 

The periodic lattice potential, being derived from an array of local one-
electron potentials (§2), includes the possibility of orbital motion as well as 
translational motion of the conduction electrons. From an alternate viewpoint 
[viz, the tight-binding approach, as described by Ziman (1964), for example], the 
energy bands can be deduced from the overlap of the atomic wave functions, in 
which case the bound electronic states of the one-electron atom give rise to the 
energy bands in the solid. The degeneracy of the atomic energy levels with 
respect to the electron spin and magnetic quantum numbers generally leads to 
overlapping bands for those states derived from atomic levels having the same 
principal and orbital quantum numbers, so that all electrons from the nl level 
form a band, n being the principal quantum number and / being the orbital 
angular momentum quantum number. (It may be helpful for the reader to refer 
back to Chap. 1, §12.4. The degeneracy of states with respect to the orbital 
quantum number found for the case of the one-electron atom is removed by the 
noncentral periodic potential.) Since the magnetic quantum number m ranges in 
value from — / to + / in unit increments, there are 2/ + 1 values, and so, 
considering also electron spin, there will be 2(2/ + 1) electron states per atom 
within the nl band. Thus for each atom in the solid any filled s band contains two 
electrons, any filled/? band contains six electrons, any filled dband contains 10 
electrons, etc., as indicated in Table 7.1 (refer also to Chap. 1, §12.4). Adjacent 
bands sometimes overlap in energy, in which case the electronic states take on 
the character of both atomic levels in question as well as the translational 
character of the Bloch functions. Band structure calculations in general are 
extremely complex, but with the advent of high speed digital computers and the 
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Table 7.1 

Energy Bands from the Viewpoint of Overlapping Atomic Levels 

Principal 
quantum 
number 

n = \ 

n = 2 

n = 3 

Orbital 
quantum 
number 

/ = 0 

1=1 
1 = 0 

1 = 2 
1= 1 
/ = 0 

Magnetic 
quantum 
number 

m = 0 

m= 1 , 0 , - 1 
m = 0 

m = 2 , 1 , 0 , - 1 , - 2 
m = l,0, - 1 
m = 0 

Spin 
quantum 
number 

ms= ± i 

ms= ±i 
ms = ± | 

™*= ±2 
™s = ±\ 
™*= ± 2 

Energy 
band 

\s 

2p 
2s 

3d 
lp 
3s 

Number of 
electrons 

2 

6 
2 

10 
6 
2 

use of experimentally measured parameters, such calculations have become 
feasible for a large number of real metals. 

PROJECT 7.20 Energy Band Computations 

Qualitatively describe the following methods for the computation of electronic energy bands: 
1. Cellular method. 
2. Augmented plane-wave (APW) method. 
3. Orthogonalized plane-wave (OPW) method. 
4. Green's function method. 
5. Perturbation method based on plane-wave expansions (NFE method). 
6. Wigner-Seitz method. 

PROJECT 7.21 Tight-Binding Approach to Energy Band Theory 

1. How is the electronic wave function constructed in the tight-binding approach to energy band 
theory? 
2. List the three-dimensional version of the following: (a) interaction integrals, (b) overlap integrals, 
(c) crystal field integrals. 
3. Develop the dispersion relation < (̂k) versus k in terms of the above-listed integrals and other 
necessary quantities. 
4. Use the above dispersion relation to set up as far as possible a computation of the lowest 
electronic energy bands for a square array of hydrogen atoms physically adsorbed on a chemically 
inert planar nonconducting surface. 
5. Develop the theory of energy bands in the tight-binding limit for the degenerate case (i.e., the case 
in which the noninteracting bands would cross). 
6. State qualitatively the variation in the character of the wave functions with crystal momentum. 

PROJECT 7.22 Wannier Functions 

Describe Wannier functions and their usefulness for representing electrons in crystals. Are they 
energy eigenfunctions? How are they similar and how do they differ from the complete set of Bloch 
functions? [Hint: See R. A. Smith (1963).] 

9 Energy Gaps and Energy Bands: Insulators, Semiconductors, and Metals 

As shown in §13 of Chap. 5, the periodic potential of the lattice modifies the 
plane-wave eigenfunctions characteristic of the free-electron model and perturbs 
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the corresponding eigenvalues. These perturbations were evaluated (Chap. 5, 
§13.1) to arrive at the nearly-free-electron model. It was found, however, that the 
perturbation treatment failed for states at the Brillouin zone boundary because 
of degeneracy. A proper perturbation treatment (Chap. 5, §13.2) required 
diagonalization of the perturbation operator (viz, in this case the periodic 
potential of the lattice) in the manifold of planewave eigenstates. As is 
commonly found in such cases (Chap. 5, §2), the perturbation split the 
degeneracy of the energy levels. In the case of the periodic potential of a metal, 
the free-electron dispersion curve (see Fig. 7.11) becomes drastically modified in 
the neighborhood of the Brillouin zone boundaries; the quasi-continuum of 
allowable quantized energies for the free-electron eigenstates is ruptured and a 
forbidden energy range is introduced at the zone boundaries equal to the 
splitting of the energy levels introduced by the perturbation. (See Fig. 7.15.) The 
dispersion curve (or in actuality, the contoured surface or sheet from the three-
dimensional viewpoint) becomes segmented, with the segments appearing in the 
different Brillouin zones being designated as energy bands. Thus in the presence 
of a periodic potential we have: (a) energy bands for which there exists a quasi-
continuum of allowed quantized energies for which the conduction electrons 
propagate without attenuation by the ion cores, and (b) energy gaps wherein 
there exist no allowed (quantized or unquantized) energies for conduction 
electrons. There are a countable number of states in the quasi-continuum in any 
given band, which in conjunction with the Pauli exclusion principle results in a 
limitation in the number of electrons which can be accommodated in any band. 
If a given band is full, then the electrons in that band have a net zero momentum 
because for every momentum state pk there is also an allowed (and filled) 
momentum state — pk. Therefore we arrive at the remarkable fact that a filled 
energy band carries no electrical current. This in fact is the "payoff" from our 
detailed (and at times laborious!) development of a solution to the Schrödinger 
equation for the case of a periodic potential. To elaborate on this point a bit, we 
have shown that the periodic potential leads to a situation in which a very large 
number of electrons (namely, the number required to fill an energy band) may 
give rise to absolutely no contribution to the electric current, whereas in the free-
electron model these same electrons could give rise to arbitrarily large currents. 
In this way we have developed a basis for understanding the phenomenal 
differences between metals, semiconductors, and insulators. These differences 
are not due to the relative differences between the concentrations of electrons in 
the materials, since electron concentrations may differ by less than a factor of 10 
in two materials for which the electrical conductivities differ by many orders of 
magnitude. 

To extend our discussion, suppose we consider a material in which all 
electrons are accommodated in filled energy bands, with all of the energy bands 
at higher energies being empty. This situation would in actuality occur only if the 
temperature were near 0°K because otherwise thermal excitation (Chap. 3, §4) 
could excite some of the electrons in the uppermost filled band into the next 
higher empty band. If we consider the band gap separating the uppermost filled 
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and next higher empty band to be quite large compared to kBT, however, then at 
room temperature the number of electrons excited into the empty band could be 
almost negligible. For example, the probability for excitation of an electron 
across a 1 eV gap at room temperature is of the order of exp( — 1.0/0.025), which 
is only of the order of 4.25 x 10"1 8. The application of an electric field to such a 
system imposes a potential energy difference across the substance, but even for 
electric fields as large as 105 V/cm, corresponding to 10,000 V placed across a 
1 -mm-long sample, the change in energy from atom to atom in the sample is only 
of the order of (4 x 10 ~8 cm) x (105 V/cm) x (1 electronic charge) = 0.004 eV, 
which is far less than the band gap so that an electron on one atom would not be 
transferred by the electric field into the next higher band while undergoing 
rectilinear and orbital motion in the neighborhood of a given atomic site. Thus 
the filled band would still give no contribution to the electric current, and we 
would have what is commonly known as an electrical insulator. On the other 
hand, if we had a substance with a band gap small enough so that a reasonable 
number of electrons could be excited across the gap thermally, we would have 
what is known as an intrinsic semiconductor. An intrinsic semiconductor would 
have zero conductivity at 0°K but would have an increasing conductivity with 
increasing temperature due to the increased thermal excitation of electrons from 
the filled to the empty band. Empty states in the quasi-continuum of the empty 
band are readily available for filling with electrons by electric field excitation, 
thus leading to conduction in the same way as in the free electron model. A 
substance with a partly filled band can generally be conceived of as a metal, since 
empty states are available to the uppermost electrons for electric field excitation, 
thereby allowing a shifting of the Fermi surface in momentum space which leads 
to conduction (cf. Chap. 3), even in the absence of any thermal excitation. Thus 
in its own splendid way, quantum mechanics provides a firm theoretical 
structure for explaining simultaneously the dichotomous properties of a perfect 
metallic conductor (as brilliantly evidenced in the free-electron model οΐ Chap. 3 
and the Bloch function extension of this property to the real lattice) and a perfect 
electrical insulator (as spectacularly provided by the concepts of energy bands 
created by the periodic lattice potential which can be completely filled with 
electrons congruent with Pauli's atom aufbau concept of the exclusion principle). 

PROBLEMS 

1. Derive the major perturbing effects of a small periodic potential V(x) = — eh2g(x)/2m on the 
free-electron dispersion curve, where ε is a constant which can be chosen to be as small as desired. 
Describe the role played by the various Fourier components of the periodic potential. (Hint: See 
Chap. 5.) 

2. Derive the energy-band dispersion relation <f(k) in the nearly-free-electron approximation. 
3. (a) Discuss the energy bands in a one-dimensional lattice with period d, where the potential 

energy is of the form V = V0 ( - b ^ x ^ 0); V = 0 (0 ^ x ^ d - b); V(x) = V(x + d). 
(b) Determine the energy values for the top of the first band and bottom of the second band at the 

zone boundary when V0 has a value 0.1 eV, d = 8, b = 3 atomic units. 
4. (a) Show that the free-electron wave functions in a one-dimensional periodic lattice of period d 

are degenerate for states at the Brillouin zone boundary. 
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(b) If a small perturbing potential is introduced at each atomic site, to first order in the 
perturbation show that the wave functions at the zone boundary are proportional to s\n(nnx/d) and 
cos(«7rjc/i/), where n is an integer. 

5. Consider the behavior of an electron in a solid to be described by the plane wave 
exp[/(k*r — ωί)]· Show that the quantity hk corresponds to the momentum. 

6. Prove that Bloch functions can represent electrons in translational motion in a crystal. 
7. Verify that the function below satisfies Bloch's theorem (i.e., it is a Bloch function), 

0B(r) = Xexp( /k j -R / ) ( / ) ( r -R / ) , 
/ 

where Rt is a direct lattice vector and φ(τ) is an atomic wave function. 
8. (a) Derive an expression for the electron effective mass in a one-dimensional lattice. You may 

use the relation v = (\/ή) dS/dk. 
(b) What could a negative effective mass possibly mean physically? 

9. If an external electric field is applied to a solid, show that the time rate of change of the 
conduction-electron momentum is such that the electron behaves as if it has an inverse effective mass 
which is a tensor quantity with components (1/W% = (1 /h2) d2$/dkidkr 

10. (a) Prove that the number of distinct allowed k vectors in each energy band is Nc, where Nc is the 
actual number of unit cells in the real crystal. 

(b) Considering that there are two allowable values for the electronic spin for each allowed k 
vector, how many electronic states are there in each energy band? 

(c) How is this number increased when we consider the fact that Bloch bands overlap for cases 
where the orbital angular momentum quantum number is unity or greater? 

(d) Resolve any conflict in the following two statements: 
(i) Each band of Bloch functions contains 2NC electronic states. 

(ii) The 3d band in copper can accommodate 10 electrons. 



A P P E N D I X 

PHYSICAL CONSTANTS: SYMBOLS, UNITS, 
AND VALUES 

Symbol 

h 
h 
e 
me 

mp 

mn 

G 
a 
^ o o 

Ry 
-^Avog 

kB 

εο 
ßo 
c 

Name 

Planck's constant 
h/2n 
electronic charge magnitude 
electron rest mass 
proton rest mass 
neutron rest mass 
gravitational constant 
Bohr radius (4ns0n

2/mee
2) 

Rydberg constant (mce
4/64n3i 

Rydberg energy (mee
A/32n2h2, 

Avogadro number 
Boltzmann constant 

^c) 

Φ 

electric permittivity of free space 
magnetic permeability of free 
velocity of light in free space 

space 

SI Unit 

joule-second 
joule-second 
coulomb 
kilogram 
kilogram 
kilogram 
newton-meter2/kilogram2 

meter 
meter"1 

joule 
number/mole 
joule/°K 
farad/meter 
henry/meter 
meter/second 

Value 

6.6262 
1.0546 
1.6022 
9.1096 
1.6726 
1.6749 
6.673 
5.2918 
1.097 
2.180 
6.0222 
1.3806 
8.854 
4π 
2.997925 

x 10- 3 4 

x 10~34 

x 10~19 

x 10"3 1 

x 10-2 7 

x 10-2 7 

x 10"1 1 

x 10"1 1 

x 107 

x 10~18 

x 1023 

x 10"2 3 

x 10-1 2 

x 10"7 

5 x 108 
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A 

Abstract vector space, 27, 84, 350 
ac circuits, 20 
Actinide series, 131 
Action integrals, 43 
Alkali metals, 207 
Alpha particle, 156,182 
Alpha-particle emission, 108 
Alpha-particle tunneling, 245 
Aluminum (Al), 207 
Ammonia clock, 115 
Amorphous solids, 334-336 
Angular momentum 

Bohr model, 41 
electron in hydrogen atom, 123 
operators, 54 
quantum numbers, 119,123-125,127 

Annihilation operator, 158 
Anomalous skin effect, 405 
Antisymmetry property of wave functions, 

157,158 
Approximation technique for integrals con-

taining Fermi-Dirac function, 217-225 
Argon (Ar), 344 
Asymmetric potential well, 115 
Atom, electron configurations, 128-130 
Atomic orbital, 127 
Average value of a physical observable, 74 
Avogadro number, 173,413 

Azimuthal quantum number, see Orbital quan-
tum number 

B 

Band bending, 270 
Band gap, semiconductor, 269 
Band index, 377-378, 395,403 
Bardeen- Cooper- Schrieffer theory of super-

conductivity, 273 
Barrier, see Energy barriers 
Barrier penetration, 241, see also Tunneling 
Basis, 338 
Basis functions 

completeness, 348 
complex, 18-19 
real, 22 
orthogonality, 348 

Basis states 
for function space, 81 
physical implications, 20 
Schrodinger equation, 47 

Basis vectors 
for function space, 81, 284 
for lattice, 338 

BCS theory of superconductivity, 273 
Besser s inequality, 75 
Binomial expansion, 239 
Bloch functions, 20, 326, 332, 379,381, 394, 

397,401,404,405,407 

417 
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charge transport, 406-407 
completeness, 382-384 
current density, 407 
linear independence, 387 
normalization, 386 
number in an energy band, 386 
orthogonality, 387-390 
probability density, 406 
scattering, 407 
time dependence, 406 

Bloch's theorem 
development, 357-411 
Fourier series derivation, 373-382 
statements, 382, 384-385,405-406 

Bohr complementarity principle, 10, 37- 38 
Bohr model of atom, 3, 38-43 
Bohr orbit, 139 
Bohr radius, 42, 124,413 
Boltzmann constant, 413 
Boltzmann equation, 225-234 

general form, 229 
with magnetic field, 233 
steady-state limit, 230 
with temperature gradient, 234 

Boltzmann occupation probability, 176,182, 
183 

Born postulate for interpreting wave function, 
69 

Born proof of general uncertainty relation, 
85 

Bose particles, 154,156,158 
Bose- Einstein distribution function, 184 
Bose-Einstein statistics, 146,154,156,182, 

184,185 
Bosons, 156,157, 158, 179 
Boundary conditions, 11,87,114 

Coulomb potential, 122-124 
fixed, 16,17,21,88,194 
harmonic oscillator potential energy, 117 
particle in a box, 88 
periodic, 21,193, 194 
rectangular barrier, 105,107 
step potential, 97 

Bound state problems, 113-133 
central potential, 127 
Coulomb potential, 118 
harmonic oscillator potential, 116 
square-well potential, 114 

Bra vector, 81,84 
Bragg condition, 32, 314 

alternate proof, 33 
Bragg reflection of electrons, 407 
Bravais lattices, 336, 339-340 

Brillouin zone, 320, 353, 365-367, 378, 392-
393 

first, 353 
higher, 354 
second, 354 
third, 354 
for two-dimensional square lattice, 353 

Brillouin zone boundary, 320, 321, 323, 390, 
398 

electron reflection, 407 
energy gaps, 331, 390, 392,400-402,409-

411 
energy level splitting, 331 

Broadening of wave packet, 63-65 
Brownian motion, 36 
Bubble chamber, 35 

C 

Canonically conjugate momentum, 43,152 
Carbon (C), 336, 344 
Central-field approximation for multielectron 

atoms, 127 
Central potential, 127 

general problem, 128 
Centripetal force, 39 
Cesium (Cs), 189,217 
Cesium chloride (CsCl), 343 
Charge current density, 87 
Chemical bonds, 132 
Chemical potential, 222 
Classical attributes, 10 
Classical Hamiltonian, 53-54 
Classical mechanics approach in theory of 

metals, successes and failures, 191 
Classical physics viewpoint, 1,6,11,40,44, 

70,99-100,110-111 
Classical turning points, 113,240 
Classical wave equation, 12,27 

alternate method of solution, 21 
Fourier integral solutions, 26- 30 
linearity, 13 
one-dimensional, 12 
propagating solutions, 13, 30 
standing wave solutions, 15-16 
three-dimensional, 27 
traveling wave solutions, 15 

Classical wave motion, 12-18 
dispersion relation, 30 
velocity of propagation, 30 

Classions, 182 
Cloud chamber, 35 
Cobalt (Co), 343 
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Coherent waves 
light, 278 
matter, 278 

Cohesive energy, 343, 344,404 
Cold cathode emission, see Field emission 
Collisions of electrons with impurities, de-

fects, and lattice vibrations, 210-212,229 
Collision time for electron scattering in lattice, 

211-212 
Commutation relations, 79 
Commutator, 78-79 
Commuting operators, 79-81 

and physical observables, 80 
and simultaneous eigenfunctions, 80 

Complementarity principle of Bohr, 10,37-38 
Completeness of set of exponential functions, 

359 
Complete sets of eigenfunctions, 55,72 -73,79 
Complex number usage in physical problems, 

19-20 
Compton effect, 2-3 
Conduction electrons in metals, 188 

degeneracy, 198 
interaction with lattice vibrations, 210-212 
mean free path, 212,234 
wavelike behavior, 190 

Connection formulas for WKB approximation, 
241 

Connection of degenerate states by perturba-
tion, 284,294 

Conservation 
of total energy, 167 
of total number of particles, 167 

Constant energy surfaces, see Energy surfaces 
in k space 

Constants of motion, 15-Id, 79-81 
Constructive interference of waves, 31 
Continuity equation, 85 
Continuous spectrum, 51, 87 
Control line for Josephson tunnel junction 

sandwich, 275 
Conwell- Weisskopf formula for mobility in a 

solid, 331 
Cooper pairs, 268, 274 

tunneling, 275-277 
Coordinate systems, nonorthogonal and or-

thogonal, 349 
Copper (Cu), 189,207,212, 343 
Core electrons, 132 
Correspondence principle, 44,137 
Coulomb force, 39, 327 
Coulomb potential, 328 

screened, 331 

Coulomb potential energy, 38,118 
picture, 118 

Cramer's rule, 83 
Creation operator, 158 
Crystal 

bonding, 343-344 
covalent, 344 
ionic, 343-344 
metallic, 344 
van der Waals, 344 

directions, 341 - 342 
lattices, 335, 337 

types, 339-340 
systems, 339 
volume, 358 

Crystal momentum, 378,395,407 
Crystalline solids, 334 
Cubic lattices, 339- 340 
Current density, see also Probability current 

density 
conduction, 211-212,231-233 
thermal emission, 214,217 

Current-voltage characteristic 
Esaki tunnel diode, 270 
tunneling between superconductors, 274 

Cyclotron resonance, 405 

D 
de Brogliehypothesis, 11,30-31, 33-34 
de Broglie relation, 34,46,190 
de Broglie waves, 41 

for electron pairs, 275 
Degeneracy of energy levels, 147 
Degenerate system of particles, 200 
Delta function, see Kronecker delta function 
Density of states, 87,1% 

for electron tunneling, 249- 250 
versus energy, 87,197-198 

for particle in one-dimensional square-
well potential, 92 

for particle in three-dimensional square-
well potential, 197 

versus k value, 93,1% 
for particle in one-dimensional square-

well potential, 93 
for particle in three-dimensional square-

well potential, 196 
versus momentum, 88,197,214 

for particle in one-dimensional square-
well potential, 93 

for particle in three-dimensional square-
well potential, 197 

versus wave vector, 196 
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Determinants, theory, 157,158 
order, 377 
secular, 377 

Diagonalization of operators, 284, 294 
elementary theory, 286 

Differential cross section for scattering, 311 
definition, 312 
plane-wave states and a Coulomb potential, 

329,330 
Diffraction 

any type of wave, 31, 33, 314 
conduction electrons, 317, see also NFE 

model for metals 
electrons by periodic crystal potential, 313, 

317 
required condition, 313, 314, 320 

light, 6-10 
particles, 34-36, 315-316 

Diffraction pattern 
double slit, 8-10 
particle, 35 
single slit, 8,10 

Dipolar fields, 344 
Dirac notation, 81-82,84,163 
Dirichlet conditions, 24 
Dirichlet theorem, 24 
Discreteness, 1, 3,11 
Dislocations, 336 
Dispersion of wave packet, 63,65 
Dispersion relation for wave propagation, 14, 

30,61,63,377,392,396,407 
classical, 30 
in dispersive media, 61 
electromagnetic waves in metals, 212-213 
electrons in metals, 377 
free electrons, 231 
free particles, 64,96 

Distinguishable particles, see Particles, distin-
guishable 

Distribution function 
Bose particles, 184 
distinguishable (classical) particles, 176 
electrons in solids, 226 
Fermi particles, 183 

Distributions of particles 
coarse-grained, 167 
distinct, 167 
fine-grained, 167 
macroscopic, 167 
microscopic, 167 

number for various systems of particles, 
173 

d state, 123,125 

Dual nature 
of light, 5 
of matter, 11,30-31 

Dual space, 81 
Dynamics of quantum particles, 408 

E 

Effective mass, 312, 397,407 
Eigenfunctions, 52, 55, 84 

energy, 373 
momentum, 373 
time-dependent, 50,73 
time-independent, 50 

Eigenvalue equations, 52-53 
Eigenvalue problem, 83 
Eigenvalues, 82, 84 

harmonic oscillator, 117 
hydrogen atom, 119 
particle in a box, 89 

Eigenvectors, 83-84 
Elastic scattering of conduction electrons, 211 
Electric dipole interaction matrix element, 133 
Electric field, 45 
Electric permittivity of free space, 413 
Electric potential, see Electrostatic potential 
Electrical conductivity, 209-212, 231 - 233, 

402,411 
Electrical conductors, 332 
Electrical force, 209 
Electrical resistance, 407 

negative, 270-271 
Electrical resistivity calculation, 209-212 
Electromagnetic waves 

absorption, 4 
emission, 4 
equation, 12 
photon interpretation, 69 
propagation, 20 
propagation direction, 28 
propagation in metals, 212-213 
properties, 1 
quantization, 2 
quantum, 5 
radiation, 4 
velocity, 12, see also Light, velocity in free 

space 
Electromagnetic wave velocity, see Light, 

velocity in free space 
Electron, 156 
Electron acceleration in solids, 408 
Electron charge magnitude, 413 
Electron diffraction, 31,35, 313, 317 



INDEX 421 

Electron-electron interactions, 207 
Electron emission, see Thermal electron emis-

sion from metals 
Electron energy barriers, see Energy barriers 
Electron energy diagrams, see Energy level 

diagrams 
Electronic configurations of elements, 128-

131 
Electronic energy band, see Energy band 
Electronic specific heat 

classical picture, 200 
coefficient, 206-207 
quantum approach, 202 

derived result, 206 
ratio of quantum to classical, 208 

Electronic states, 3-4 
Electronic transition, 4,120-121 

probability, 133 
Electron mass, 413 
Electron pairs, see Cooper pairs 
Electron particle tunnel current 

partial, 248 
total, 249 

Electron particle tunnel flux, 247 
Electron -phonon interactions, 268 
Electron plasma, 200 
Electron quasi-momentum, see Crystal 

momentum 
Electron scattering, 407 
Electron spin, 160 
Electron spin quantum number, 201,409 
Electron tunnel current 

with applied field, 265 
temperature dependence, 267 

Electron tunneling, 246, see also Tunneling 
applications, 268-278 
spectroscopy, 269 
between superconductors, 273-277 

Electron velocity at Fermi surface, 199 
Electrostatic potential, 253, 255 
Elements, 128-132 
Emission current from metals, 245, see also 

Field emission; Thermal electron emis-
sion from metals 

Energy band, 190,321,322,331 - 332,378,3%, 
409-411 

Energy band computations, 409 
Energy band development, 357-412 

atomic energy level approach, 408-409 
periodic potential approach, 374 
tight-binding approach, 409 

Energy band dispersion relation, 377, 392 
Energy band index, 377-378, 395,403 

Energy barriers 
rectangular, 243 
square, 242 
trapezoidal, 242,243 
triangular, 245 

Energy cells, 166 
Energy conservation, 4 
Energy dispersion curves, 399,410 
Energy dispersion sheets, 398,410 
Energy dispersion surface, 394,403 
Energy eigenfunctions 

free-electron model, 193, 391, 394,400 
mapping, 394-395 
for a periodic potential, 373,381 

Energy eigenvalues 
free-electron model, 193, 391 - 392 
for a periodic potential, 378 

Energy eigenvalue spectrum 
continuous, 73, 87 
discrete, 73,87, 89,114,117,119 
harmonic oscillator, 117 
hydrogen atom, 119,124 
particle in a box, 89,193 

Energy-frequency relation, 4, 33,46 
Energy gaps, 321, 323, 378, 3%, 400-402, 

409-411 
intrinsic semiconductor, 256 
superconductor, 274 

Energy levels, 4,87,120 
broadening, 302 
splitting, 410 

Energy level diagrams 
Esaki tunnel diode, 270 
insulator, 254 
metal, 213, 253 
metal- insulator- metal (MIM), 246- 247, 

252-256 
metal - oxide - metal (MOM), 247 

Energy-momentum relation, 44 
for free particles, 44 
for nonrelativistic free particles, 226 
for photons, 44 

Energy per particle at equilibrium, 177 
Energy sheets in k space, 398 
Energy surfaces in k space, 403 
Energy-time form of the uncertainty relation, 

66-69 
Energy-wavelength relation 

for particles, 44-47 
for photons, 33 

Equation of continuity, 85, 226 
Equation of motion for quantum system, 

48-49,70 
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Equipartition of energy, 230 
Equivalent square barrier, 264 

Simmons's technique, 264- 265 
Esaki tunnel diode, 269- 271 
Euler identity, 301 
Even function, 23 
Exchange force, 161,164 
Exchange invariance, 152 
Exchange operator, 152 
Exchange symmetry, 151,156 

rules, 156 
Expectation value, 71 - 75,84 
Extended zone scheme, 392, 398,403 

F 

FEM, see Free-electron model for metals 
Fermi-Dirac distribution function, 183,215 

derivative, 203 
high-temperature limit, 200 

Fermi-Dirac statistics, 146,154,156,182, 
183, 185 

effect on conduction electron scattering, 
192,212 

effect on number of occupied electronic 
states, 201 

evaluation of quantum-statistical integrals, 
217-220 

Fermi energy, 199 
temperature dependence, 202, 221-222 

Fermi gas, 192 
Fermi Golden Rule of time-dependent pertur-

bation theory, 308,310 
Fermi level, 222 
Fermi momentum, 199 
Fermi particles, 154, 156,158 
Fermi sphere, 210,250 

displacement by electric field with scatter-
ing, 211 

shift in momentum space, 210 
Fermi surface, 198-199,354, 398,402-403, 

405 
Fermi velocity, 199,212 
Fermi wave vector, 198 
Fermions, 156-158,178 
Field emission, 245,264 
Fields 

electromagnetic, 5 
radiation, 4 

Fixed boundary conditions, 16-17,194 
Flux, see Electron particle tunnel flux 
Force, 110-111 

Hooke'slaw, 116 
Fourier components, 22 

Fourier integral, 11,13,22,25 -28 
asymmetrical form, 25-26 
symmetrical form, 27 

Fourier integral representation, 361 
Fourier representation, 13,18,25 
Fourier series, 11,13,22-25 

complex, 24, 346 
convergence, 24 
differentiation, 24 
integration, 24 
real, 22 

Fourier series derivation of Bloch's theorem, 
373-382 

Fourier series expansions, 357, 361, 367, 373 
coefficients, 357 

Fourier series representation, 376 
Fourier space for crystals, 344- 351 
Fourier transform, 26 
Fowler- Nordheim tunneling, 245,246,264, 

273 
Free-electron limit, 398 
Free-electron model for metals, 188- 225,411 

classical versus quantum approach, 191 — 
192,200-201,206,208-209 

electronic specific heat, 201, 222 
expression, 206 

energy eigenfunctions for fixed boundary 
conditions, 192 

energy eigenfunctions for periodic boundary 
conditions, 193, 391 

energy eigenvalues for fixed boundary con-
ditions, 194 

energy eigenvalues for periodic boundary 
conditions, 193, 232 

Fermi energy, 199 
temperature dependence, 221 - 222 

Fermi surface, 198-199 
number of empty states below Fermi energy, 

204 
number of filled states above Fermi energy, 

204 
thermal electron emission, 213-217 
total energy, 202-205 
wave functions, 192-193 

Free energy of formation, 343 
Frequency 

allowed, 18 
angular, 14,75 
temporal, 14 

/state, 126 
Functions 

aperiodic, 25 
complete set, 23 
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even,23 
odd,23 
periodic, 24, 25 

Function space, see Hubert space 
Fundamental expansion postulate, 72-73 

G 

Gaussian wave packets, 65-66 
Gedankenexperiment, 36 
Generalized coordinates, 43 
Geometrical optics, 11, 32,44 
Germanium (Ge), 344 
Gold (Au), 189,343 
Grain boundaries, 336 
Gram- Schmidt orthogonalization process, 

78,390 
Gravitational constant, 413 
Ground state, 4 
Group velocity, 15-16,60-62,63 

ofBloch state, 408 
for particle, 63 
for wave packet, 63,407 

G vectors, see Reciprocal lattice, vectors 

H 

Hamiltonian 
classical, 53-54 
operator, 53-54 

for a many particle system, 148-149, 
153 

Hamilton's equations of motion, 53 
Harmonic oscillator, 20 

energy absorption, 117 
energy eigenvalues, 117 
energy emission, 117 
frequency, 117 

Hamiltonian, 116 
potential energy, 116 

picture, 116 
quantum numbers, 117 
Schrödinger equation, 116 

Heat capacity of a system of electrons, 207 
Heisenberg uncertainty relations, 55-58, 

66-69,72,85 
energy-time form, 66-69,140 
Fourier integral approach, 68 
microscope approach, 68 
position-momentum form, 58,68-69 
rigorous forms, 69 

Helium atoms, 156 
Hermite polynomials, 116 
Hermitian matrix, 74 

Hermitian operator, 72-73 
definition, 76 
representing constants of motion, 76 
representing physical observables, 72, 

76-77 
Hexagonal crystal system, 339- 340 
Hubert space, 74,84 
Hydrogen atom problem 

Bohr model, 38-44 
classical model, 39-40 
energy absorption, 119 
energy emission, 119 
Hamiltonian, 119 
quantized energy levels, 119-120,124 
quantum numbers 

allowed values, 124-125 
magnetic, 119,123-124 
orbital (azimuthal), 119,124 
principal, 119,124 
spin, 125 

radiation series 
Balmer, 120-121 
Brackett, 120-121 
Lyman, 120-121 
Paschen, 120-121 
Pfund, 121 

Schrödinger theory, 118-126 
separation of variables, 122 
spectral lines, 120-121 

Hyperspace, 148 

I 

Impact parameter, 331 
Impedance diagrams in ac circuits, 19 
Indeterminism, 37, see also Quantum-

mechanical indeterminism 
Indistinguishable particles, see Particles, in-

distinguishable 
Inelastic scattering of conduction electrons, 

211 
Inert gas crystals, 344 
Inner product, 81 - 84 
Insulators, 409-411 
Interband tunneling, see Zener tunneling 
Interference 

oflight, 6-11,31-33 
of particle waves, 36 

Internal energy 
system of Bose particles, 157 
system of distinguishable particles, 157 
system of Fermi particles, 157 

Invanance of Hamiltonian under identical par-
ticle exchange, 151 
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Ion cores, 189,212 
Iron (Fe), 343 

J 
Josephson tunnel current, 275 

effect of magnetic field, 277 
Josephson tunnel junctions, 275 

K 

Ket vector, 81, 84 
Kinetic energy eigenfunctions, 373 
Kinetic energy operator, 372- 373 
Kinetic theory, 200 

average energy per particle, 200 
k space, 28,196-197 

constant energy surfaces, 197 
k vectors, 28, see also Reciprocal crystal 

vectors 
components, 28 
fixed boundary conditions, 194-195 
periodic boundary conditions, 193-1% 

Kronecker delta function, 73,84, 375 

L 

Lagrange multipliers for fermions and bosons, 
179-182 

Lagrange's method of undetermined multi-
pliers, 174 

Laguerre polynomials, associated, 124 
Lanthanide series, 131 
Laplacian operator, 48 
Lasers, 278 
Lattice, 369 

definition, 337 
periodicity, 357, 369 
potential, 313, 323, 369-371, see also 

Periodic potential problem 
specific heat, 209 
translation, 405 
translation operator, 337 
types, 339-340 
vibrations, 117,146,207,209 

interaction with conduction electrons, 
210-212 

Law of mass action, 396 
Lead (Pb), 344 
Legendre functions, associated, 124 
Legendre polynomials, 123 
Legendre's differential equation, 123 
Leibniz rule for differentiation of an integral, 

223-224 

picture, 224 
statement, 223 

Light, 5 
velocity in free space, 413 

Lindhard's expression, 404 
Linear combination, 13,16 
Linear independence of sets of functions, 13 

exponential functions, 193 
Linear manifold, 284, 288-289 
Linear momentum operator, 53 
Linear superposition, see Superposition 
Linear vector space, 27, 81 
Linearity of the Schrodinger equation, 55 
Lithium (Li), 189,355 
Logic circuits, 278 

M 

Magnesium (Mg), 343 
Magnetic field, 45 

effect on energy in hydrogen atom, 121 
Magnetic moments 

orbital, 121 
spin, 121 

Magnetic permeability of free space, 413 
Magnetic quantum number, 119,123,127,409 
Magnetic susceptibility, 402 
Magnetoresistance, 332,405 
Manifold, see Linear manifold 
Many-body effects in electron tunneling, 268 
Many-particle systems, 146 
Mapping of reciprocal lattice, 368, 394, 397, 

see also Reciprocal crystal vectors 
Mass action law, 3% 
Matrix elements, 75, 81-82, 84 

diagonal, 75,81 
electric dipole, 133 
off-diagonal, 75, 81 

Matrix formulation of quantum mechanics, 
81-84 

Matrix representation of a quantum operator, 
81,84,91 

Matter, properties, 1,11,33 
Maxwell- Boltzmann distribution function, 

200 
Maxwell-Boltzmann statistics, 146,182, 

184-185 
Mean free path, 191,212,234 
Mean square deviation, 72 
Mechanical chopper, 34 
Memory circuits, 278 
Mesons, 157 

lifetime, 139 
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Metals, 188-190,332,411 
properties, 344 

Metal-dielectric work function, 256, see also 
Work function barrier for metals 

Metal-oxide-metal sandwich, 275 
Metal- semiconductor barrier heights, 271 
Metal- vacuum work function, 256, see also 

Work function barrier for metals 
Microscopic distributions, 167 

number for system of Bose particles, 173 
number for system of distinguishable parti-

cles, 171 
number for system of Fermi particles, 172 

Miller indices, 341 - 342 
Mobility of electrons and holes in solids, effect 

of ionized impurity scattering, 331 
Momentum eigenfunctions, 195, 373 
Momentum eigenvalues, 195 
Momentum operator, 195 

angular, 54 
linear, 53 

Momentum probability distribution, 92 
Momentum representation, 54 
Momentum space, 197 
Monocrystal, 334, 369 
Multielectron atoms, 126-132 

central-field approximation, 127 
quantum numbers, 127 

N 

Nearly-free-electron (NFE) model for metals, 
190,317,405,410 

constant energy surfaces, 319 
eigenfunctions, 324-326 
energies, 319 
first-order correction to energy levels, 318 
probability densities, 324, 326 
requirement for validity, 317, 320 
second-order correction to energy levels, 

319 
Neck orbit on Fermi surface, 405 
Negative resistance, 270-271 
Neutrino, 44 
Neutron, 157,182 

diffraction, 31, 35, 315-316 
mass, 413 
scattering, 316 
spectrometer, 315 

Noble metals, 189 
Nodes, 16 
Nondegeneracy of energy levels, 147 
Nondegenerate system of particles, 200 

Nonhomogeneous algebraic equations, set, 
384 

Norm of a vector, 84 
Normal modes, 146 
Normalization of wave function, 70, 378 

O 

Occupation number representation, 158 
Occupation probability of electronic state in 

solid, 225 
approximate expression, 231 
change with time due to applied force, 226, 

229 
change with time due to particle velocity, 

227-228 
effect of collisions, 229 
thermal equilibrium, 226, see also Fermi-

Dirac distribution function 
Odd function, 23 
Ohm's law 

elementary derivation, 211-212 
obtained by means of Boltzmann equation, 

233 
One-electron approach, 371 
Open orbits in k space, 399 
Operator, 48,52, see also Quantum operator 

annihilation, 158 
creation, 158 
kinetic energy, 372- 373 
many particle, 158 
potential energy, 372 

Optical diffraction pattern, 7-10, 59 
Orbit, 42 

electronic, 4 
elliptical, 43 
semiclassical, 42 

Orbital, see Atomic orbital 
Orbital angular momentum, 122-124 
Orbital magnetic moment, 121 
Orbital quantum number, 119,123 -124,127, 

409 
Orthogonality 

of basis functions, 348, 350 
of Bloch functions, 359 
of eigenfunctions, 73,76-77 

proof, 76-77 
theorem, 76 

of exponential functions, 359 
Orthonormal functions, construction of, 78, 

390 
Orthonormal set of Bloch functions, 390 
Orthorhombic crystal system, 339-340 
Oxide growth on metals, 273 
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Parity, even or odd, 89-90, see also Even 
function; Odd function 

Parseval's formula, 75 
Particle 

beam, 94-95 
incident, 94 
reflected, 95 
transmitted, 97 

concept, 11 
current density, 85-87 
distinguishable, 146-147 

arrangements, 171 
distribution function, 176 

identical, 149 
indistinguishable, 149 

number of arrangements for half-integral 
spin, 172 

number of arrangements for integral spin, 
173 

noninteracting, 147 
trajectory, 36 
trapped in a box, 88-91 

boundary conditions, 88 
energy absorption, 114 
energy eigenvalues, 89 
energy emission, 114 
energy values, 114 
ground state, 114 
momentum values, 114 
normalization, 89 
probability densities, 89-90 
quantum numbers, 114 

wave nature, 30-31, 33-38 
Particlelike properties, 1,2,5-6,10,35-37 
Pauli aufbau, 130 
Pauli exclusion principle, 154,156,158,167, 

192, 370,410 
role in electron conduction in solids, 410 
role in periodic table, 130 

Period, 14 
Periodic boundary conditions, 21,193-195 
Periodic functions, 24 
Periodic potential problem 

conduction electron transitions, 317 
effect of potential on conduction electrons, 

212 
electron energy, 370 
electron energy bands, 374, 377- 379 
electron energy gaps, 398,400-402,409-

411 

Fourier expansion of potential, 313,350,357 
free-electron correspondence, 390-401 
Hamiltonian, 372 
perturbation on free-electron model, 190, 

398 
results of quantum treatment, 332,410-411 
role of potential in creating energy gaps, 323, 

410 
Periodic table, 131-132 
Periodic zone scheme, 397-406 
Periodicity in crystals, 334, 371 

mathematical consequences, 336 
Permutation operator, 152 

Hermitian property, 154-155 
Perturbation coefficients, 281 - 283,290- 291 
Perturbation corrections, 280 

first-order result for energy, 281 - 282 
first-order result for wave functions, 283 
second-order result for energy, 291 
second-order result for wave functions, 291 

Perturbation matrix elements, 281 - 282 
Perturbation splitting of energy level degener-

acy, 285, 322,410 
Perturbation theory 

stationary-state, 279 
degenerate case in first order, 283 
degenerate case in second order, 294 
example of perturbed square-well poten-

tial, 292 
nondegenerate case in first order, 280 
nondegenerate case in second order, 290 

time-dependent, 298 
example of constant perturbation in first 

order, 306 
example of constant perturbation in sec-

ond order, 307 
example of particle in square-well poten-

tial, 303,310 
expansion, 300 
generalized harmonic perturbation, 301 
harmonic oscillator, 305 
hydrogen atom, 306 

Phase, 13,21,31 
Phase coherence 

de Brogue waves for electron pairs, 275 
Phase factor, 70 
Phase velocity, 14,16 

of matter waves, 60 
Phonon, 146,207 

density of states, 268 
Photoelectric effect, 2,5-6 
Photon, 2,4-10,68-69,156 
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emission, 133 
energy-momentum relation, 44 
interference, 10 
trajectory, 9 
wavelength, 33,121 

Physical constants with corresponding units 
and numerical values, 413 

Physical observables, 75-77 
correlation with Hermitian operators, 

76-77 
Planck's constant, 4,46,413 
Plane of incidence, 314 
Plane wave, 28,51 

energy eigenvalue, 87 
momentum eigenvalue, 87 

Plane wave superposition, 55,96 
Plasma oscillations, 404 
Platinum (Pt), 217 
Point defects, 336 
Point operations, 338 
Polycrystalline materials, 336 
Position-momentum form of the uncertainty 

relation, 58,68-69 
Position representation, 54 
Potassium (K), 189 
Potential energy barrier, 261, see also Energy 

barriers 
Potential energy operator, 372 
Pressure 

system of Bose particles, 157 
system of distinguishable particles, 157 
system of Fermi particles, 157 
system of trapped particles, 205 

Primitive parallelepiped cells in reciprocal 
space, 361 

Principal quantum number, 119,124,409 
Probability current density, 85-87 
Probability density, 3-4,45, 55-56,190 

two-particle, joint, 164-165 
Probability of a given particle distribution in 

energy, 167 
Probability of occupation, see Occupation 

probability of electronic state in solid 
Probability postulates for a many-particle sys-

tem, 167-168 
Propagation of electrons 

in crystal, 406-407 
in free space, 46,94 

Propagation vector, 96-97, see also k vectors 
Proton, 157 

mass, 413 
p state, 123,125 

Q 
Quantization, 1-3,40 

angular momentum in Bohr model of hydro-
gen atom, 41 

energy in Bohr model of hydrogen atom, 42 
semiclassical conditions, 43 

Quantized lattice vibration, see Phonon 
Quantum electrodynamics, 133 
Quantum free-electron model, see Free-

electron model for metals 
Quantum measurements postulate, 82 
Quantum-mechanical indeterminism, 58-59 
Quantum mechanics 

defined, 1 
equation of motion, 70 
fundamental postulates, 85 
nature of information, 59,99,111,113 
physical state of particle, 70 

Quantum numbers, 40, 89-90 
magnetic, 119,123,409 
necessity in hydrogen atom problem, 122 
orbital, 119,124,409 
principal, 119,124,409 
spin, 125,409 

Quantum of radiation, see Photon 
Quantum operators, 52- 54 

angular momentum, 54 
annihilation, 158 
commutator, 78 - 79 
creation, 158 
diagonal, 82 
diagonalization, 83 - 84 
expectation values, 71 

time dependence, 75,78 
Hamiltonian, 53 - 54 
kinetic energy, 372-373 
linear momentum, 53 
matrix elements, 75 
matrix representation, 81-84 
position, 54 
potential energy, 372 
representing constants of motion, 75-76 

Quantum oscillatory effects, 402,405 
Quantum transitions, selection rules, 133 
Quasi-momentum of electron, see Crystal 

momentum 

R 
Radiation, 4, see also Electromagnetic waves 
Radiative transitions, 133 
Ramsauer effect, 245 
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Rare gas crystals, 344 
Reciprocal crystal vectors, 359- 368, 391 

mapping, 363-364, 391 
reduction to a different zone, 361 - 366, 377, 

391,398 
algebraic proof, 362-363 
geometric proof, 362 

resolution, 364, 366 
Reciprocal lattice, 344- 345 

properties, 351 
vectors, 345, 357, 361, 362 

relationship to reciprocal crystal vectors, 
361 

Reciprocal space, 28, 320, 332, 362, 397 
Reciprocal vectors, 28, see also Reciprocal 

crystal vectors; Reciprocal lattice, vectors 
Rectangular barrier problem, 102-110 

boundary conditions, 105,107 
definition, 103 
incident wave, 104 
picture, 102,103,143-144 
reflected wave, 104 
reflection coefficient, 106-109 
transmission coefficient, 105-109 

plot of numerical calculation, 108 
transmitted wave, 104 

Reduced vectors, 365,397, see also Reciprocal 
crystal vectors 

Reduced zone scheme, 390, 393, 398,406 
Reflection coefficients, 94-109 

defined, 98 
rectangular barrier, 106-109 
step potential, 98,101 

Relaxation time of conduction electrons, 212 
Repeated zone scheme, see Periodic zone 

scheme 
Representations 

momentum, 54 
position, 54 

Resistance, see Electrical resistance 
Resistivity, see Electrical resistivity calcula-

tion 
Rhombohedral crystal system, 339 
Richardson-Dushman equation, 217 
Rotation axis, 338 
Rubidium (Rb), 189 
Rydberg constant, 413 
Rydberg energy, 413 

S 

Scalar product, 8 2 - 84 
Scattering cross section, 311, 327 

defined, 312 

Scattering of conduction electrons in metals 
anisotropic, 331 
by periodic lattice potential, 331 
by randomly located charged impurities, 331 
as source of electrical resistivity, 210-212 

Scattering processes in electron tunneling, 
elastic and inelastic, 248 

Schiff symbol, 333 
Schrodinger wave equation, 45-48 

alternative form, 238 
development, 45 
exponential solutions, 51,193 
free particle 

in one dimension, 46 
in three dimensions, 192 

harmonic oscillator, 116 
one-dimensional, 46-47, 237 
periodic potential, 372 
properties, linearity and superposition, 55 
three-dimensional, 48-50 
time-dependent, 46-49,54, 86 
time-independent, 50, 54,237 

Schwarz inequality, 75 
Screened Coulomb potential, 331 
Secular determinant, 83, 376- 378 
Secular equation, 83, 287, 376-378 
Selection rules for transitions, 117,133 

according to Fermi's golden rule, 310 
time-dependent perturbation theory, 305 

Semiconductor, 409- 411 
p - n junction, 269 

Separation of variables technique, 49-52,122 
Silicon (Si), 344 
Silver (Ag), 189,199,343 
Simmons's technique, see Equivalent square 

barrier 
Simultaneous eigenfunctions, 71 - 72 ,79 - 82 
Single crystals, 334 
Sinusoidal wave, 14 
Slater determinant, 157 
SLUG voltmeter, 278 
Sodium (Na), 189,199, 207-208, 343 
Sodium chloride (NaCl), 343- 344 
Sodium ion, 190 
Spatial oscillations, 14 
Specific heat of degenerate electron gas, 206, 

see also Free-electron model for metals 
Spectral lines, 118-121 

for hydrogen atom, 120-121 
Spectroscopic lines, see Spectral lines 
Spherical polar coordinates, 51 
Spherical potential well, 195 
Spin angular momentum, 45,121 -125,159 
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Spin magnetic moment, 121 
Spin-orbit interaction energy, 121 
Spin quantum number, 125,127,409 
Spin waves, 146 
Splitting of energy levels by perturbation, 285, 

322,410 
Square barrier, 242, see also Rectangular bar-

rier problem 
Square well potential, 192, see also Particle, 

trapped in a box 
SQUID magnetometer, 278 
s state, 123,125 
Standing waves, 192 
Standing-wave eigenfunctions, 192, 326 
Standing-wave modes, 11,16 
Stationary-state eigenfunctions, 50,78, 88,90, 

192 
Statistical averages in quantum mechanics, 

71 
Statistical nature of our knowledge, 56 
Statistics for a many-particle system, 166 
Steady state, 211, 229,230 
Step potential problem, 94-101 

boundary conditions, 97 
definition, 94 
incident wave, 94 
particle density, 94,95,101 -102 
picture, 95, 99 
reflected wave, 95 
reflection coefficient, 98,101,103 
transmission coefficient, 99,101 
transmitted wave, 97 

Stirling's approximation, 174 
Stirling's formula, 174 
Stratton's technique, see Taylor series expan-

sion technique 
Subspace, 284 
Superconducting electron pairs, see Cooper 

pairs 
Superconductor energy gap, see Energy gaps 
Superposition, 16, 55, 73, 96 
Superposition state, 72, 74-75, 91 

T 

Tantalum (Ta), 343 
Taylor series expansion, 61 
Taylor series expansion technique 

for statistical integrals, 218-219 
tunnel current, 260- 262 

Temperature dependence of electron tunnel 
current, 267 

Tetragonal crystal system, 339, 340 

Theorem on orthogonality of eigenfunctions, 
73,76-77 

proof, 76-77 
Theorems on commuting operators and simul-

taneous eigenfunctions, 79- 80 
proofs, 80 

Thermal electron emission from metals, 213-
217 

Richardson- Dushman equation, 217 
Thin-film sandwich devices, 271 - 272,275 

energy-level diagrams, 272 
Tight-binding approach to energy bands, 

408-409 
Time-dependent expectation value, 75 
Time-independent expectation value, 73,76 
Tin (Sn), 344 
Topology of Fermi surface, 402 
Total quantum number, 127 
Transition, see Electronic transition 
Transition probability, 310 
Translation 

operator, 337 
vector, 336-337 

Translational invariance, 334-336 
Transmission coefficient, 98,241 

defined, 98 
plot of numerical results, 108, 243 
rectangular (square) barrier, 105-109,243 
step potential, 99,101 
trapezoidal barrier, 244,260 
triangular barrier, 245 

Transmission probability, 245 
Transport equation, see Boltzmann equation 
Trapezoidal barrier, 242 
Traveling waves, 15 
Traveling wave solutions to Schrodinger equa-

tion, 193,195 
Trial solution, 21 
Triclinic crystal system, 339-340 
Trigonal crystal system, 339- 340 
Tungsten (W), 217 
Tunnel diode, 268, see also Esaki tunnel diode 
Tunneling, 104, 108-110, 241, 268 

in metal-insulator-metal structures, 246, 
251-252 

two metals separated by rectangular barrier, 
257-259 

U 

Ultrasonic absorption, 402 
Ultrasonic attenuation, 405 
Uncertainty relation, 302, see also Heisenberg 

uncertainty relations 
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Unitary transformations, 284 
Unit cells, 335-340 

base centered, 339- 340 
body centered, 339-340 
face centered, 339- 340 
primitive, 337 
simple, 339-340 

V 

Valence electron, 132 
van der Waals interaction, 344 
Variational treatment, 126 
Vector equation for a plane, 321 
Velocity 

group, 15-16,60-62,63 
phase, 14, 16, 60 

Velocity of light in free space, 413 
Vibrations of string, 16-17 
Vibrational modes 

lattice, 117,207,209 
localized, 268-269 

Voltage, 253, 255 
forward bias in thin-film sandwich devices, 2 

von Neumann postulate on quantum mea-
surements, 82 

W 

Wannier functions, 409 
Wave 

sinusoidal, 14 
standing, 16-17 
traveling, 15 

Wave concept, 11 
Wave equation, see Classical wave equation; 

Schrodinger equation 
propagating solutions, 13,16 
standing wave solutions, 15-17 

Wave function, 45 
antisymmetric, 153,155 
for free particles, 48 
incident, 242 
interpretation, 69 
many-particle system, 146-147,150,157 
N noninteracting distinguishable particles, 

147 
N noninteracting indistinguishable particles, 

150,157 
Bose particles, 157,158 
Fermi particles, 157,158 

normalization, 70,191 
two-particle system, 165 

overlap, 150 

phase in superconductor, 276 
reflected, 242 
stationary-state, 192 
symmetric, 153,155 
transmitted, 242 
two-particle system, 159-165 

Wavelength, 14 
electromagnetic wave, 38,44 
particle wave, 34, 38 

Wavelike behavior of conduction electrons, 
190-191 

Wavelike properties, 1, 5,10 
Wave nature of matter, 11, 31, 34- 37,94 

evidence, 316 
Wave number, 14 
Wave optics, 44 
Wave packet, 15, 50,59 -60,62 

dispersion, 63,65 
examples, 56-57 
Gaussian, 65-66 
philosophy, 69-70 
physics, 69-70 
solutions to the Schrodinger equation, 55 
time dependence, 59,62,65 

Wave-particle duality, 11, 30- 31, 34 
Wave predictions, 35-36 
Wave propagation, 22, 28-29 
Wave vector, 28-29 
Wave vector space, 1% 

volume per allowed k vector, 198 
Weighting factors for quantum states, 74 
Wentzel- Kramers- Brillouin approximation, 

237, 240 
condition for validity, 240 
wave function, 240 

Wigner-Seitz cell, 352 
of reciprocal lattice, 365 

WKB approximation, see Wentzel-
Kramers- Brillouin approximation 

Work function barrier for metals, 5-6,213 
metal - dielectric, 255 - 256 
metal-vacuum, 255-256 

X 

X-ray diffraction, 31-33, 317 

Z 

Zener tunneling, 268 
Zero bias anomalies, 268 
Zones,see Brillouin zone; Extended zone 

scheme; Periodic zone scheme; Reduced 
zone scheme 


