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Preface

The genesis of this book began on the sunny shores of southern France in
September 1993. For five days in the delightful Mediterranean coastal town
of La Londe Les Maures, a gathering occurred of a group of scientists interested
in furthering both the understanding and use of thermal infrared (TIR) remote
sensing data for analysis of land surface processes. Here the workshop on
Thermal Remote Sensing of the Energy and Water Balance Over Vegetation
in Conjunction with Other Sensors took place with the intent of assessing
what the state-of-the-art of TIR remote sensing data was, and discussing
how TIR data could be more widely used in research related to the analysis
and modeling of land surface energy fluxes and land surface processes by the
larger scientific community. Those in attendance at this workshop (including
the editors of this book) were all of the same opinion that TIR data offered a
tremendous amount of information on surface energy flux characteristics
and dynamics, yet these data were vastly underutilized in land surface processes
research. As noted in the Executive Summary and Overview of the La Londe
workshop:

The problem in demonstrating the value of thermal remote sensing
lies in (a) the difficulty of calibration and correction of the
measured radiance to consistent physical qualities, (b) the limited
ability to estimate accurately the surface energy fluxes over
complex terrain, which might consist of a mixture of vegetation
(including forests), sloping surfaces, water bodies, bare soil and
urban landscapes, and (c) the detection and removal of the effect
of clouds. Nevertheless, despite reservations on the utility of
thermal infrared measurements, many scientists think that a
multispectral approach to remote sensing, including thermal
infrared temperature measurements, will prove to be essential.

(La Londe Workshop 1993)

Since the convening of the La Londe Workshop, there has been a substantial
increase in both the amount and availability of TIR remote sensing data,
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particularly from satellites. This is particularly true with the advent of the
National Aeronautics and Space Administration’s (NASA) Terra Earth
Observing System that has a number of TIR sensors associated with it,
such as the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), Enhanced Thematic Mapper Plus (ETM+), and
Moderate-Resolution Imaging Spectroradiometer (MODIS) specifically
designed for Earth observation and analysis (see the NASA Terra website
at http://terra.nasa.gov and the Landsat 7 website at http://
landsat.gsfc.nasa.gov for more information on these sensors). Despite the
increased availability of TIR, however, we see where the wide application
of these data to land surface processes has been limited for five fundamental
reasons:

1 What examples exist of the application of TIR data for analysis of land
surface processes are fragmented across the literature (e.g. forestry,
geology, geography, meteorology, climatology) and, thus, there is an
absence of a strong or concerted focus for using TIR data specifically in
land surface processes research.

2 Because of this fragmentation of references, TIR data are little understood
from a theoretical and applications perspective across the Earth science
research community.

3 The theory of TIR remote sensing is perceived as being recondite and
difficult to understand, which severely limits the application of these
data to only those who have the desire, background, and need to work
through the basics of thermal theory.

4 The perceived difficulties in calibration and correction of TIR data to
obtain consistent physical measurements of land surface properties.

5 Despite the increased availability of TIR data from satellites, there is still
the perception that TIR data are inaccessible or difficult to obtain.

It is our purpose here to assist in overcoming these misconceptions on the
uses and applications of TIR data for land surface processes research. By
doing so, we hope to promote wider use of TIR data for analysis of land
surface processes for more robustly examining landscape and landatmosphere
dynamics in Earth system science studies. It is our intent through the material
presented in this volume to:

1 Present studies where TIR data have been applied to deriving quantitative
measurements of the fluxes and redistribution of surface thermal energy
balance characteristics for developing a better understanding of land
surface process and land-atmosphere interactions.

2 To promote the wider usage of TIR data in research and modeling to
further our understanding of the role of thermal energy balance and
surface energy fluxes in driving land processes.
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3 To elucidate both the prospects and problems of using TIR data in land
processes research that will be useful to those wishing to employ these
data as a major component in Earth system science research.

4 To illustrate the virtues and importance of TIR data in remote sensing
research of the land surface to facilitate the development of new and
improved satellite and airborne TIR remote sensing systems in the future.

Thus, it is our overall intent in preparing this book to fill a significant void in
the remote sensing literature and also to develop a more well defined niche
for furthering the use of TIR data in future research on land surface processes.
Above all, it was our purpose to make this a “how to” book as much as
possible—one that illustrates how TIR data have been used in, or applied to,
land surface processes research and to assess the utility of new TIR sensors
for analysis of surface energy flux parameters and characteristics—rather
than being a volume that just discusses the prospects and problems of using
TIR data. We trust with the chapters included in this volume that we have
“hit our mark” and that readers will find this book an informative and useful
reference in exploring the utility of TIR data in their own research applications
and initiatives.

We wish to thank the NASA George C.Marshall Space Flight Center
(NASA/MSFC) in Huntsville, Alabama, for the support given to us throughout
the development of this book. NASA/MSFC has both permitted, and
encouraged us, to pursue the editing of this volume as part of our day-today
work activities—which we sincerely appreciate. Additionally, we are indebted
to the NASA Earth Science Enterprise as a whole for providing us with project
funding for various TIR research endeavors that have spurred us on to produce
a book of this type as a resource for the entire Earth science community.
Moreover, we are most grateful for the diligence, patience, and contributions
provided by the authors of the chapters that are included in this book. Without
their interest and support, this book would never have come to fruition. We
must, too, extend our heart-felt thanks to our families for what they have
had to endure throughout the organization and compilation of this book.
Our absences away from them for activities related to the development of
this book, such as for meetings or conferences, has been definitely noted—
but accepted—by our respective families. We cannot adequately express our
appreciation to them for their forbearance and for their continued love and
support throughout this endeavor. For this, we wish to dedicate this book
to them.

We must also give our humblest and deepest thanks to the “unsung heros”
of this book—the reviewers—for their thoughtful and insightful comments
on each of the chapters. Their review comments and suggestions on content,
theory, and overall structure of each chapter are extremely appreciated by
both ourselves and the chapter authors, in helping to make this a technically
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Introduction

The Earth science research community and even the general public are widely
familiar with thermal infrared (TIR) remote sensing data, but the virtue and
applicability of these data still remain in many ways an enigma. The research
community is aware of TIR data from scientific publications and presentations
that have described the analyses and results from working with TIR data for
Earth science-related research; for example, in providing measurements of
surface thermal properties of geologic materials or of land surface thermal
energy fluxes for forest, agricultural, or other landscape attributes. The public
is aware of TIR data from television broadcasts that show these data as part
of weather forecasts and even from night-time thermal images showing heat
loss from their homes. Still, the utility of TIR remote sensing data has not
been fully realized by the larger scientific community because of a number of
perceptions—or misconceptions—that have prevented the broader usage of
TIR data for research on Earth processes, particularly those related to land
surface processes. With the launch of the NASA Terra suite of Earth remote
sensing instruments in 1999, a number of which have thermal IR sensors,
TIR data are becoming much more readily available than in the past. With
the increasing availability of these data, it appears that TIR data are poised
to become a major source of quantitative and qualitative information on
land surface processes and for their characterization, analysis, and modeling.

Land surfaces processes may be loosely defined as those attributes,
exchanges, and relationships that contribute to the overall functioning of
the concomitant physical, biophysical, and hydrologic interactions that come
together to form “the landscape.” These include the processes that occur
across (or even just below) the land surface as well as between the land
surface and the atmosphere. Using this definition as a foundation or a baseline,
there are two fundamental reasons why TIR data contribute to an improved
understanding of land surfaces processes: (a) through measurement of surface
temperatures as related to specific landscape and biophysical components;
and (b) through relating surface temperatures with energy fluxes for specific
landscape phenomena or processes (Quattrochi and Luvall 1999). The
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magnitude and distribution of longwave thermal energy emitted from surfaces
across the landscape are primary components that can be measured using
TIR data. Measurement of surface temperature or thermal energy provides
quantitative (and qualitative or descriptive) information on one of the basic
inputs to the overall energy budget of land surface processes. Given the role
of thermal energy responses as part of the overall input and output of land
surface and land-atmosphere interactions, understanding how thermal energy
is partitioned across a landscape and determining the magnitude or variability
in surface temperatures emanating from various landscape elements (e.g.
forest, crops, water, pasture, urban) is essential to defining the mechanisms
that govern land surface processes (Quattrochi and Luvall 1999). The
energetic dynamics that drive these land surface and landatmosphere
interactions may be defined as: (a) the coupling of extant energy balances
with the environment; (b) the level of energy inputs (and subsequent outputs);
(c) the kinds of energy transformations that occur, especially those that are
biologically controlled; and (d) the mix of energy outputs that can be regarded
as yields from an ecosystems perspective (Quattrochi and Luvall 1999).
Variability in the magnitude of surface thermal energy for specific land
surfaces or processes often affect the density, dynamics, and importance of
other energy fluxes linked to specific landscape characteristics (e.g.
evapotranspiration, nutrient cycling) (Miller 1981; Quattrochi and Luvall
1999).

We have provided in an earlier reference (see Quattrochi and Luvall 1999)
the results from past research that has either directly or indirectly
demonstrated the potential application of TIR remote sensing data to land
surface processes research, particularly as related to the discipline of landscape
ecology. Here we identified six general thematic areas where TIR remote
sensing data have been applied to the analysis of landscape attributes or
land surface processes: (a) landscape characterization; (b) thermal inertia
and landscape analysis; (c) estimation of energy fluxes; (d) evaporation/
evapotranspiration/soil moisture; (e) quantification of energy balance or
energy flux; and (f) forest energy exchange. In this book, we wish to build
upon this earlier reference and provide explicit examples of how TIR remote
sensing data can further elucidate the analysis of land surface processes within
the general purview of these six thematic areas. By doing so, we wish to
provide further quantitative and descriptive evidence on how TIR data have
and will continue to be of fundamental importance to the analysis and
modeling of land surface processes. Additionally, we wish to provide more
credence for the development and launching of satellite TIR remote sensing
systems that are better calibrated, collect data at higher spatial resolutions
(e.g. ≤20m), and have the capability to measure temporal dynamics of surface
energy fluxes (e.g. diurnal) than what is presently available from satellite
platforms, to enable more robust quantitative analysis and modeling of land
surface processes. Although current TIR satellite systems onboard or



Introduction 3

associated with the NASA Terra platform, such as the Landsat ETM+, ASTER,
and MODIS, provide better spectral, and to some extent spatial, resolutions
than could be obtained in the past, there is still a dire need to have satellite-
based TIR systems that combine multispectral thermal radiometric
characteristics with landscape-scale spatial resolutions; that is, spatial
resolutions that are able to discern and quantify land processes that operate
at multiple spatial scales from very fine (e.g. ≤1 m) to local (e.g. ~10–20m)
and regional (~30–100m) (Quattrochi and Goel 1994). Moreover, the TIR
data available from satellites today only capture “snapshots” of the surface
thermal energy regime at a particular instant in time. What is critically needed
are satellite-based TIR sensors that are able to collect data on surface thermal
energy dynamics on a short-term (e.g. diurnal) or even a continuous basis
(e.g. hourly) to provide inputs for modeling the temporal variability of thermal
energy dynamics. This then is the premise for this book: to illustrate the
critical importance of TIR remote sensing data in the analysis and modeling
of land surface processes, and to stimulate the development of new TIR
satellite and airborne remote sensing systems that are needed to advance
research in examining the inter-relationships of thermal energy responses
within the overall foci of Earth system science research.

A brief sojourn though the contents

The contributors to this book have done an excellent job in building upon,
and advancing, the basic tenets defined at the La Londe workshop as noted
in the Preface (La Londe 1993) by providing updated overviews of the
prospects—and challenges—of utilizing TIR data for analysis of land surface
processes. More importantly, the contributors have presented case studies
that directly show the great applicability of TIR data for the quantification
and analysis of surface energy balance characteristics that exist as the driving
force in land surface and land-atmosphere energy exchanges. Within this
perspective, the contributions to this volume have been organized into three
overarching categories: (a) TIR Data for Assessment and Quantification of
Surface Energy Fluxes and Soil Moisture; (b) TIR Data for Assessment of
Ecosystem Health; and (c) TIR Instruments and Calibration.

Kevin Czajkowski and his colleagues (Chapter 1) lead off the first group
of seven chapters embodied within Part I on Thermal-Infrared Data for
Assessment and Quantification of Surface Energy Fluxes and Soil Moisture.
Here, they report on the advances in using satellite TIR remote sensing data
to derive environmental variables, specifically surface temperature, near-
surface air temperature, and near-surface water vapor. Thermal data from
the US National Oceanic and Atmospheric Administration’s (NOAA),
Advanced Very High Resolution Radiometer (AVHRR) series of satellites
constitute the basis for their overview and analyses. They discuss the rudiments
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of interpreting TIR signals, derivation of radiometric surface temperature
(Ts), air temperature (Ta), and near-surface water vapor from AVHRR data,
as well as illuminating the challenges associated with deriving these variables
from AVHRR data. Additionally, Czajkowski et al. discuss the applications
of TIR methods to sensors onboard the NASA Terra system of Earth remote
sensing instruments, such as the ASTER and MODIS sensors.

Chapter 2 in Part I is a comprehensive assessment by Yann Kerr and his
other co-authors from France on land surface temperature retrieval techniques
and applications using data from the NOAA AVHRR satellite. They provide
an excellent overview of the theoretical background associated with
temperature retrieval and the problems encountered with using these methods.
They then present a review of existing land surface temperature retrieval
algorithms and discuss the theoretical and practical considerations that must
be considered in applying each of these algorithms. These authors go on to
examine one of the real “challenges” in analyzing TIR data—that of deriving
emissivity values. Here, they review a number of methods that have been
used for emissivity retrieval from AVHRR data and discuss the uncertainties
or errors that are associated with these methods. Atmospheric water vapor
retrieval is an important component in algorithms that are used to derive
temperatures from AVHRR data, as well as being an important component
in correcting for the effects of the atmosphere in accurately measuring land
surface temperatures from these and other TIR satellite remote sensing data.
Kerr et al. present an overview of the existing methods used for assessing
water vapor retrieval and the subsequent errors associated with these
algorithms. These authors also present the results from an inter-comparison
of the algorithms discussed in their chapter and examine the errors and related
issues in using these techniques. Finally, Kerr and his colleagues discuss the
potential applications of land surface temperature retrieval methods from
AVHRR and other satellite TIR data.

Chapter 3 in Part I by Karen Humes, Ray Hardy, William Kustas, John
Prueger, and Patrick Starks illustrates the utility of TIR data for mapping
spatially distributed information on a number of key land surface
characteristics and state variables that control the surface energy balance.
They provide results from an investigation that used data from the Landsat
Thematic Mapper in conjunction with a relatively simple “snapshot” model,
to compute spatially distributed values of net radiation, soil heat flux, sensible
heat flux, and latent heat flux over the Little Washita Experimental Watershed
located in south-central Oklahoma, USA. The key information provided by
remotely sensed data in the model included surface temperature, land cover
type, and estimates of vegetation density. Thus, remotely sensed data were
important for quantifying the components of the surface energy balance at a
landscape-scale to better understand the exchange of heat and moisture
between the land surface and the lower atmosphere.
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Charles Laymon and Dale Quattrochi (Chapter 4) demonstrate a method
for using Landsat Thematic Mapper data to estimate instantaneous
regionalscale energy fluxes over an arid valley in eastern Nevada, USA. Here,
pointbased models of surface energy and water balance fluxes were applied
to individual pixels of a Landsat Thematic Mapper scene over the study
area. Although the method used to estimate these instantaneous fluxes requires
certain assumptions be made about the spatial distribution of several physical
parameters, the results from this analysis and modeling suggest that it is
possible to scale from point measurements of environmental state variables
(i.e. net radiation flux, surface heat flux, sensible heat flux, and latent heat
flux) to regional estimates of energy exchange to obtain an understanding of
the spatial relationship between these fluxes and landscape variables.

Chapter 5 by Robert Gillies and Bekele Temesgen also focuses on the
derivation of biophysical variables from thermal and multispectral remote
sensing data. This chapter focuses on the use of Soil-VegetationAtmosphere-
Transfer (SVAT) models as coupled with remote sensing data, so that
biophysical variables are derived via an inverse method. Gillies and Temesgen
focus on the application of an SVAT technique that employs the “triangle
method” to derive estimates of vegetation cover and surface radiant
temperature. The triangle method is by definition a multispectral remote
sensing method that combines measurements of surface radiant temperature
(To) and reflectance in the red and near-infrared portions of the
electromagnetic spectrum. The reflectance measurements are used to calculate
the Normalized Difference Vegetation Index (NDVI). NDVI is then plotted
as a function of To to evaluate the relationship between these two variables,
as well as providing an overlaying index of moisture availability to establish
a “warm edge” and “cold edge” index. The triangle method within the overall
scheme of an SVAT model, therefore, presents itself as a technique for inversely
deriving biophysical variables relating to fractional vegetation cover, moisture
availability, evapotranspiration, and sensible heat flux. Gillies and Temesgen
offer a unique application of this technique to the mapping of environmental
risk factors related to the prevalence of filariasis (a disfiguring and disabling
disease caused by a parasite that is carried by mosquitoes) in the Nile Delta
of Egypt.

In Chapter 6, Toby Carlson, David Ripley, and Thomas Schmugge examine
rapid soil drying and its implications for derivation of quantitative estimates
of soil moisture and surface energy fluxes from remote sensing data. The
problems related with associating a correct level or depth for a soil moisture
estimate are particularly acute when comparing estimates made via in situ
measurements and those derived through analysis of remote sensing data.
Carlson and his co-authors discuss methods for quantifying soil water content
and surface radiant temperature using both in situ and remote sensing data,
as well as the inter-relationships between vegetation (as an additional source
of uncertainty for determining soil water content) and surface energy fluxes.
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To elucidate the salient points of their chapter, they present the significant
results from a soil experiment that was designed to study the soil drying
process in relation to surface radiant temperature.

Chapter 7 by William Kustas, John Norman, Thomas Schmugge, and
Martha Anderson concludes the overall theme of Part I of surface temperature
and energy flux derivation from remote sensing data. Here the authors
describe the use of a detailed Plant-Environment (PE) model (referred to as
Cupid) to investigate the aerodynamic-radiometric temperature relationship
for high and low wind speeds, stressed and unstressed vegetation, and for
wet and dry soil moisture over a range of fractional vegetation cover
conditions. The predicted radiometric temperature from Cupid is used as
input to a Simplified Two-Source (STS) model that can be used operationally
with either single or multiple directional radiometric surface temperature
observations. Using the Cupid simulations, the capability of the STS model
to predict energy flux partitioning between soil and vegetation under more
extreme conditions is evaluated. Kustas et al. provide an example of energy
flux maps over a heterogeneous landscape as generated by the STS model,
and discuss the robustness of the STS model for predicting surface heat flux
estimations at regional scales using satellite remote sensing data.

Chapter 8 by Susan Moran is one of two chapters in Part II dealing with
the use of thermal IR data for assessment of ecosystem health. The term
“ecosystem health” has generally been used to indicate the proper functioning
of a complex ecosystem. A healthy system is one where the biophysical
processes are operating adequately to maintain the ecosystem’s structure,
organization, and optimal activity over time. Moran focuses her discussion
on the determination of plant transpiration and plant photosynthetic rates,
which are key indicators of cropland and rangeland health. Transpiration
has such an important role in plant health that even a slight reduction in
plant water content can impact both growth and other physiological functions
such as photosynthesis and respiration. It is the importance of these key
indicators that has led to extensive efforts in using TIR measurements to
evaluate the spatial and temporal distribution of plant transpiration. The
direct link between the process of transpiration and plant thermal response
offers significant potential for the use of TIR data for monitoring and
managing plant ecosystem health. Moran provides a history of the physics
and technology that have led to development of TIR spectral indices of plant
ecosystem health. She then presents descriptions of several TIR indices and
offers algorithms that can be implemented to measure plant ecosystem health
using these indices, along with a discussion of the robustness of these
algorithms in assessing the health of these ecosystems.

Chapter 9 in Part II by Roydon Fraser and James Kay greatly expands
upon Chapter 8 by providing a detailed description of ecosystem
thermodynamics as an indicator of ecosystem health. In particular, this chapter
examines the theoretical foundations of energy quality, which measures the
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capacity of energy, in its various forms, to do useful work. As Fraser and
Kay note, the study of energy quality has the potential to provide a
quantitative method for characterizing the status, maturity, or stage of
development of ecosystems, and to provide fundamental physical
explanations, at least in part, on survival strategies and structures employed
within ecosystems as they evolve. Inherent to the measurement of ecosystem
health as described in this chapter is the concept of exergy, which recognizes
energy quality—not energy magnitude—as the appropriate criteria for
assessing the most effective use of an energy source. Fraser and Kay consider
this concept of exergy within the overall role of surface temperature and
thermal remote sensing as an indicator of ecosystem maturity and health.

Part III focuses on TIR instruments and calibration. To achieve accurate
measurements of surface temperature using TIR data, it is essential that TIR
sensors be properly calibrated. Calibration of TIR sensors, therefore, is critical
to both the acquisition and analyses of TIR data to avoid spurious or
erroneous results in interpreting and quantifying these data. Additionally,
one of the key objectives of this book is to hopefully provide impetus to spur
the development and implementation of new sensors to advance research in
TIR data utilization and analysis. The two chapters in Part III focus on these
issues of sensor calibration and new instrumentation.

In Chapter 10, John Schott, Scott Brown, and Julia Barsi examine
radiometric calibration of TIR sensors from an end-to-end systems
perspective. This chapter provides information as a basis for calibration of
laboratory, field, and flight TIR instruments and to describe the radiometric
and spectral standards that need to be achieved to provide accurate
temperature measurements from TIR data. Additionally, they present an in-
depth discussion of the errors that can result from incorrectly calibrating
TIR data.

Chapter 11 focuses on a discussion of the information derived from a
demonstration mission of a proposed satellite TIR imaging system. Here,
Alain Vidal, Philippe Duthil, Catherine Ottlé, Vicente Caselles, Antonio Yagüe,
and John Murtagh present the results from a study using a prototype of the
MediUm Scale surface Temperature (MUST) sensor. The objective of the
MUST study was to define and demonstrate the utility and applicability of a
large-swath, medium-resolution thermal IR sensor dedicated to the assessment
of the environment and agriculture. As they relate, the specific objectives of
this investigation were: (a) to demonstrate the relevance and efficiency of
prospective MUST mission products to their relevant areas of application
and to evaluate the economical benefits of such a mission; (b) to further
develop methodologies for retrieving thermal and water related surface
parameters from the sensor data; (c) to produce the design of a medium-
resolution, large-swath thermal imager that is compact and affordable; and
(d) to analyze the operational implementation of the ground segment needed
to support such a mission. Vidal and his colleagues conclude that from the
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results of the study presented in their chapter, the MUST sensor appears to
have wide potential applicability for obtaining new and useful TIR data to
support the improved analyses of a number of environmental and agricultural
surface energy characteristics.

Penultimate comments

We hope this introduction has given some insight on both the breadth of the
topics covered in this book, as well as providing a “roadmap” of the book’s
contents. We encourage readers to map out their own “itinerary” for
navigating through the chapters and to choose their “sojourn” in whichever
way will best help them better understand the capabilities and utility that
TIR remote sensing can provide as related to their own interests. The Epilogue
that appears at the end of this volume provides more reflection on the overall
impetus for this book project, along with some final thoughts on the need
for continued and robust research using TIR remote sensing data for analysis
of land surface processes.
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Chapter 1

Estimating environmental
variables using thermal
remote sensing

Kevin P.Czajkowski, Samuel N.Goward,
Theresa Mulhern, Scott J.Goetz, Anita
Walz, David Shirey, Stephen Stadler,
Stephen D.Prince and Ralph O.Dubayah

1.1 Introduction

There have been considerable advances in the estimation of land surface
environmental conditions from satellite observations, particularly from
thermal infrared remote sensing data (Running and Nemani 1988; Carlson
et al. 1994; Norman et al. 1995; Prince and Goward 1995; Sun and Mahrt
1995; Andersen 1996; Susskind et al. 1997). Near-surface temperature and
water vapor are of critical importance to the study of terrestrial hydrology
(Dubayah et al. 2000), biospheric processes (Prince and Goward 1995), and
other Earth System Science processes (Ehrlich et al. 1994).

Traditionally, ground-based meteorological observations have been used
in biospheric and hydrologic modeling. Satellites provide higher spatial
resolution data over the entire Earth and is especially important over isolated
locations where meteorological observations are sparse. Goetz et al. (2000)
incorporated thermal remote sensing of surface temperature, air temperature,
and atmospheric water vapor into the Global Production Efficiency Model
(Glo-PEM) to estimate global net primary production (NPP). They used
Advanced Very High Resolution Radiometer (AVHRR) data from 1982 to
1990 to monitor interannual variability plant growth and carbon uptake
worldwide. Their results showed a global decrease in NPP with an increase
in Northern Hemisphere, high-latitude regions.

Hydrologic modeling can also benefit from satellite-derived surface and
lower atmosphere conditions. Determining the energy and water balances
for hydrologic modeling is dependent upon both the difference in temperature
between the surface and some level in the atmosphere and the amount of
water vapor in the atmosphere. Dubayah et al. (2000) used AVHRR estimates
of air temperature and water vapor to drive the Land Surface Process Model,
VIC-2L, for the Mississippi River Watershed. O’Donnell et al. (2000) applied
similar techniques to the Ohio River watershed and found runoff estimates
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to be very similar between satellite-derived and ground-based input data.
Lakshmi and Susskind (2001) used surface temperature derived from TIROS
Operational Vertical Sounder (TOVS) to adjust soil moisture in a Land Surface
Process Model.

In this chapter, we will report on advances in using thermal infrared
remotely sensed satellite observations to derive environmental variables,
specifically surface temperature, air temperature, and water vapor.
Throughout this chapter, we will use the AVHRR as an example. We will
discuss the limits of the data and the pitfalls that need to be avoided. Finally,
we will discuss the way to use other thermal sensors such as Landsat 7,
Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), and the Moderate Resolution Imaging Spectrometer (MODIS).

1.2 Interpreting thermal infrared signals

The radiant energy detected by thermal sensors is a composite of energy
emitted by the land surface that is transmitted through the atmosphere (not
absorbed) and energy that is emitted by the atmosphere. This landatmosphere
coupling complicates interpretation of the remotely sensed signal. However,
this complication allows the estimation of a number of environmental
variables of interest in Earth System Science modeling (Czajkowski et al.
2000).

Thermal bands on remote sensing instruments observe the wavelengths in
the atmospheric window region of the electromagnetic spectrum,
approximately between 8 and 14µm. Figure 1.1 shows the relationship
between the two thermal bands on AVHRR and the thermal window region

Figure 1.1 Relationship between AVHRR channels 4 and 5 (dashed lines) and the
atmospheric window in the thermal infrared part of the spectrum (solid line).
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in the atmosphere. The radiance (L) observed by the thermal channels can
be expressed by

(1.1)

where Bλ is the wavelength-dependent black body radiation that would be
emitted from the surface at temperature Ts, while ελ and τλ represent the
wavelength-dependent emissivity of the surface and transmission of energy
through the atmosphere. The first term in equation (1.1) represents the portion
of the observed radiance that is not attenuated by the atmosphere before it
reaches the satellite. The second term represents emission by the atmosphere
at its effective temperature, Ta. Atmospheric water vapor content and the
effective temperature of the atmospheric layer that contains the water vapor
are the two primary atmospheric factors contributing to the thermal signals.
The majority of electromagnetic radiance observed by AVHRR channels 4
and 5 originates from the surface, while the remainder of the signal originates
from the atmosphere below 2 km. The water vapor profile and the air
temperature profile both influence the observed thermal radiance (equation
(1.1). Therefore, it should be possible to estimate surface temperature,
atmospheric water vapor content, and the effective temperature of the
atmospheric layer that contains the water vapor from the two thermal infrared
AVHRR observations.

1.3 Radiometric surface temperature (Ts)

1.3.1 Ts algorithms

Approximately 80% of the energy thermal sensors receive in the 10.5–12.5
µm wavelength region is emitted by the land surface, making surface
temperature the easiest variable to extract from the thermal infrared signal.
Extensive work has gone into the development of algorithms to estimate
land surface temperature from AVHRR channels 4 and 5 (Price 1984; Becker
and Li 1990). The primary approach is the so-called “split window” technique
that uses the difference in brightness temperature between AVHRR channels
4 and 5 to correct for atmospheric effects on sea surface and land surface
temperatures. The split window technique works independent of other data
sources and takes advantage of the differential effect of the atmosphere on
the radiometric signal across the atmospheric window region. The basic form
of the split window equation for AVHRR channels 4 (T4) and 5 (T5) is

(1.2)

where a and b are constants that can be estimated from model simulations
(Becker and Li 1990) or correlation with ground observations (Prata 1993).
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Channel 5 is more sensitive to atmospheric water vapor than channel 4, so
the difference between T4 and T5 is larger for humid atmospheric conditions
than for dry conditions.

Five split window equations including McClain et al. (1983), Price (1984),
Prata and Platt (1991), Sobrino et al. (1993), and Ulivieri et al. (1994) are
given in Table 1.1. Each of these equations takes on the form of equation
(1.2) if emissivity in all wavelengths is assumed to be 1.0. The equations are
much more complicated if emissivity is allowed to vary. We have found that
assuming an emissivity of unity is realistic in heavily vegetated areas that we
are most concerned with. Differences in emissivity need to be addressed to
estimate Ts in areas with sparse vegetation such as semiarid or desert regions.
Sobrino et al. (1993) is different from the others in that it is a second-order
equation that tries to account for the non-linear changes in the difference
between T4 and T5. It is best to use a second-order equation whenever possible
because it increases the accuracy of Ts somewhat.

One main difference between each of the split window equations in Table
1.1 that is often forgotten is that they were derived for different AVHRR
sensors. For instance, the Price (1984) algorithm was derived from AVHRR
data from the NOAA-7 satellite, Becker and Li (1990) equation was derived
using NOAA-9 AVHRR data, and Sobrino et al. (1993) equation was derived
using NOAA-11 AVHRR data. Prata (1993) developed regression coefficients
for both NOAA-11 and -12. It is important to derive a new Ts equation for
each new sensor that is used because of variations in filter functions (relative
spectral response) between sensors (Czajkowski et al. 1998). No two satellite
sensors are made exactly alike (Figure 1.2). These changes in spectral band
width and sensitivity create different T4 and T5 values for different sensors.
For example, if we use the Becker and Li (1990) technique, which was derived
for use with NOAA-9 data, with data from another NOAA satellite errors
larger than 2 K are possible (Figure 1.3). Czajkowski et al. (1998) derived
split window equations for AVHRR data from NOAA satellites 7, 9, 11, 12,

Table 1.1 Split window equations used to estimate land surface
temperature
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and 14 using MODTRAN3 (Berk et al. 1989) simulations for a variety of
atmospheric air temperature and water vapor profiles and surface temperature
conditions (Table 1.2).

1.3.2 Ts validation

Testing of the split window concept has produced mixed results. Figure 1.4
shows comparison of ground infrared radiative thermometer (IRT)

Figure 1.2 AVHRR normalized relative response functions for AVHRR channel 4 from
NOAA satellites 7, 9, 11, 12, and 14 (data from Kidwell 1997).

Figure 1.3 Difference in T
s 
due to use of the Becker and Li (1990) split window equation

with data from an AVHRR instrument not on NOAA-9.
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observations with Ts derived from AVHRR observations from FIFE,
HapexSahel, and BOREAS (Goetz et al. 1995; Czajkowski et al. 1997; Prince
et al. 1998). For all three of these cases, the Becker and Li (1990) split window
equation was employed even though some of the data were from NOAA11
and the Becker and Li (1990) equation was derived for NOAA-9. The results
from BOREAS produced errors of about ±3 K with some errors as large as
±8 K. The satellite algorithm had a warm bias for FIFE of 6.75 K and BOREAS
of 2.34 K and a cool bias for Hapex-Sahel of –3.67K. The source of estimation
errors stems from (a) assumptions used to derive the split window equations,
(b) unknown variations in spectral emissivity, changes in spectral response
functions between satellites, and (c) mismatches between ground observations
and the satellite field of view (Table 1.3).

The assumption of linearity on which many split window equations are
based limits Ts estimations because the relationship between the brightness
temperatures of AVHRR channels 4 and 5 is non-linear. Figure 1.5 shows

Table 1.2 Sensor-specific coefficients for
the split window equation: T

s
=

a+T
4
+b(T

4
—T

5
) (Czajkowski

et al. 1998)

Figure 1.4 Comparison of ground-based surface temperature measurements from IRTs with
surface temperature estimated using the split window technique of Becker and
Li (1990).
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the relationship between AVHRR channels 4 and 5 derived from
MODTRAN3 simulations for a range of surface temperature and atmospheric
water vapor conditions. These simulations were compared to the relationship
of linear channels 4 and 5 used in the Becker and Li (1990) split window
equation. The Becker and Li (1990) equation performs well for dry
atmospheric conditions. Errors introduced by non-linearity increase, however,
with increasing water vapor in the atmosphere. The second-order algorithm
proposed by Sobrino et al. (1993) is better at accounting for these non-
linearities. We conclude that the non-linear relationship between channels 4
and 5 is an area that needs more research.

Table 1.3 Application of temperature/vegetation index (Tvx) to EOS satellite sensors

Figure 1.5 Relation of surface temperature within channel 4 and channel 5 space. The
dashed lines indicate the surface temperature that would be calculated using the
linear relationship of the Becker and Li (1990) split window equation while the
sold lines indicate the surface temperature found using MODTRAN3 simulations.
Each line represents a different surface temperature.
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Errors on the order of 1–2 K may result in the estimation of Ts due to
emissivity (Coll et al. 1994; Becker and Li 1995; Caselles et al. 1995; Wan
and Dozier 1996). Emissivity varies significantly, particularly when silicate
minerals are present (Bowman 1996). In contrast, emissivity in the 10.5–
12.5 µm region is generally much less variable.

The errors discussed above may account of some for the error in our
validation, however, the comparison in Figure 1.4 and results from other
studies suggest that the validation of Ts with ground observations from large
field studies is difficult (Prince et al. 1998; Schmugge and Schmidt 1998). A
significant portion of the comparison errors, as indicated by the clustering
of each field studies’ points in Figure 1.4, appears to be due to fundamental
differences in resolution scales between the satellite and ground-based IRTs;
the satellite field of view is typically much larger than the area observed by
the tower mounted IRTs. The ground measurements are, therefore, not
representative of the complex landscape that is observed by the satellite sensor.
This was especially apparent for the FIFE site where the IRTs viewed an
ungrazed, fenced-in area surrounding each tower while the majority of the
satellite footprint included grazed land (Goetz et al. 1995; Steyn-Ross et al.
1997; Schmugge and Schmidt 1998). Therefore, the Split Window Techniques
may be more accurate than reported.

1.4 Air temperature (Ta)

Estimation of air temperature from the thermal signal is very complex due to
atmospheric emission. Specifically, interpretation of AVHRR thermal
observations is an under-determined problem because there are just two
AVHRR thermal channels with many unknowns including Ts, ε, and Ta and
water vapor profiles. There are more unknowns than thermal channels, thus
an exact solution cannot be found.

1.4.1 Temperature/vegetation index

To overcome the indeterminacy of thermal remote sensing, a contextual array
of contiguous pixels can be used to increase the number of observations
available for each calculation (Goward et al. 1994). To estimate nearsurface
air temperature, the normalized difference vegetation index (NDVI) is merged
with thermal infrared measurements of surface temperature over a 9×9
contextual array (Tucker 1979). This TVX has been used successfully to
estimate near-surface air temperature from AVHRR data (Goward et al. 1994;
Czajkowski et al. 1997; Prihodko and Goward 1997; Prince et al. 1998).
The TVX approach was developed from the empirical observation that when
Ts and NDVI measurements are compared, they generally display a linear
and mostly negative correlation (Figure 1.6) (Hope et al. 1987; Nemani and
Running 1989; Carlson et al. 1990; Goward et al. 1994).
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Where NDVI measurements are high, indicating extensive vegetation cover,
the surface temperature is relatively low, and appears to closely estimate
the near-surface air temperature. The temperature of vegetation canopies
rarely deviates from ambient air temperature by more that ±2.0K, whether
or not the vegetation is actively transpiring (Geiger 1965). In contrast,
specific studies have found that individual leaves (or needles) of vegetation
can be as much as ±5–10 K different from air temperature (Hatfield 1979;
Jackson et al. 1981; Williams 1989). Assemblages of canopies with a
multitude of leaves, some shadowed, in 1 km or larger AVHRR pixels are
expected to exhibit surface temperatures comparable to the surrounding
air temperature.

The TVX technique is generally applied to images using a 9×9 moving
window although the appropriate window size to use may depend on the
topography and ecosystem heterogeneity. By fitting a linear regression to the
Ts/NDVI relationship for each 9×9 array and extending the regression to a
full canopy, the surface temperature at the NDVI of the full canopy can be
used to approximate air temperature:

(1.3)

where S and I are the slope and intercept from the least-squares regression of
the 9×9 array of pixels, and NDVIfull is the NDVI of a full canopy, 0.9 for

Figure 1.6 The “classic” TVX plot. Bare surfaces have lower NDVI and tend to be warmer
than vegetated surfaces.
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atmospherically corrected images and 0.7 for uncorrected images (Czajkowski
et al. 1997).

Figure 1.7 shows the TVX slope for four separate 9×9 arrays of pixels
from a single AVHRR image from BOREAS that includes agriculture and the
nearby boreal forest. Note that for a given NDVI, the Ts of agriculture is
warmer than the nearby forest. Agriculture then appears to produce a more
negative slope than the forest. This is most likely due to differences in canopy
structure, evapotranspiration, and energy exchange (Nemani and Running
1989; Carlson et al. 1990; Goetz 1997).

1.4.2 Ta validation

Air temperature recovery with the TVX technique was tested and showed
consistent accuracy across a range of field studies (Figure 1.8): FIFE
(Prihodko and Goward 1997), Hapex-Sahel, BOREAS (Czajkowski et al.
1997; Prince et al. 1998), and the Oklahoma Mesonet (Czajkowski et al.
2000). Results show that air temperature can be estimated with an rmse of
3.9 K. Errors in Ts may contribute significantly to the errors in the TVX
technique. For example, the satellite estimation of Ts showed a warm bias
of 2.34 K for the BOREAS study and the satellite estimation of Ta had a
warm bias of 3.2K.

Figure 1.7 TVX relationships for agricultural sites, Rosetown and Saskatoon, and forested
sites, Southern Study Area-Old Aspen (SSA-OA) and Northern Study Area-Old
Jack Pine (NSA-OJP), for July 24, 1994 during BOREAS. Lines represent the
least-squares regression through each station’s 9×9 contextual array.
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Cloud contamination is a significant problem with the TVX air temperature
technique. Figure 1.9 shows the TVX Ts/NDVI relation for a site in Oklahoma.
The positive slope, shown by the dashed line, is caused by subpixel cloud
contamination that was not detected during cloud screening. Pixels with

Figure 1.8 Comparison of TVX estimated air temperature with shelter height air temperature
for FIFE, Hapex-Sahel, and BOREAS and from the Oklahoma Mesonet.

Figure 1.9 An example of cloud contamination within the 9×9 TVX contextual array from
a site in Oklahoma. The open diamonds represent pixels with subpixel clouds
that were not masked using typical cloud detection techniques. The dotted line
is the TVX regression with cloud contaminated pixels included, and the solid
line is the regression after those clouds have been removed.
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subpixel clouds generally have lower NDVI and lower Ts than the land surface
if an atmospheric inversion is not present. Czajkowski et al. (1997) used
iterative TVX slope calculations to perform additional cloud screening to
remove subpixel clouds. Basically, once a TVX slope has been identified as
having pixels with subpixel cloud contamination (i.e. a positive slope with a
large scatter around the regression line), pixels in which the NDVI or Ts fall
below the first standard deviation are masked and the slope is computed
again. This is done iteratively until the slope of the TVX relation shows no
sign of cloud contamination or the number of available pixels becomes small,
that is, 40 pixels. For Figure 1.9, correcting for subpixel cloud contamination,
only 5 pixels will lower the TVX air temperature estimate by 7K.

1.5 Near-surface water vapor

Water vapor has the least direct impact on the thermal infrared signal observed
by satellites. It is thus the hardest of the three environmental variables (Ts,
Ta, and water vapor) to estimate. In the literature, several techniques have
been proposed to estimate atmospheric water vapor (Jedlovec 1990; Kleespies
and McMillin 1990; Justice et al. 1991; Eck and Holben 1994; Goward et
al. 1994; Prince and Goward 1995; Andersen 1996). in particular total column
water vapor, the integration of water vapor from the surface to the top of
the atmosphere. For hydrologic and biospheric modeling applications, we
are most concerned with near-surface water vapor, that is, within the boundary
layer. We have developed a technique to estimate nearsurface water vapor
because most modeling applications need near-surface water vapor.
Radiosonde profiles from BOREAS under clear-sky conditions shows that
water vapor falls off rapidly above the boundary layer, 2 km on average at
BOREAS (Figure 1.2). Chesters et al. (1983) showed similar results, that is,
80% of atmospheric water vapor is within 2 km of the ground under clear-
sky conditions. Given that the AVHRR thermal channels are positioned in
an atmospheric window region of the water vapor absorption continuum,
they are well suited to estimate the amount of water vapor in the lower layer
of the atmosphere (Prabhakara et al. 1974). In contrast, channels from satellite
sounders such as VISSR Atmospheric Sounder (VAS) and TOVS are sensitive
to water vapor mostly in the upper part of the troposphere (Chesters et al.
1983; Smith 1991).

1.5.1 Look-up table approach

Dalu (1986) suggested that an alternative approach to estimate water vapor
would use radiative transfer model output to produce a look-up table of
radiometric signals observed in the two thermal channels under a variety of
atmospheric and surface conditions. A radiative transfer model is able to
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capture the non-linear response of channels 4 and 5 to atmospheric water
vapor. Prince and Goward (1995) and Andersen (1996) used output from
the radiative transfer model, Lowtran7, to derive regression equations for
an arbitrary set of atmospheric and surface conditions. Andersen (1996)
recognized that knowledge of the actual surface temperature is needed to
estimate water vapor accurately. For this study, we used MODTRAN3
simulation output to develop a look-up table that uses channels 4 and 5,
surface temperature, and near-surface air temperature to derive near-surface
water vapor (Figure 1.10).

Czajkowski et al. (2002) generated a look-up table for a large number of
atmospheric conditions similar to those used by Prince and Goward (1995)
and Andersen (1996). MODTRAN3 calculates the surface emitted radiance
and radiometric transmittance and emitted flux of energy through and by
the atmosphere at specific wave numbers using the specified surface and
atmospheric conditions. An average mid-latitude summer atmospheric profile
was used as a base for the simulations. The profile was varied to simulate a
variety of atmospheric temperature and moisture conditions. The atmospheric
temperature profile was varied such that the shelter height air temperature
ranged from 270 to 320 K by an increment of 2 K. Vapor pressure was
varied only in the lowest 2 km of the atmosphere, approximately the boundary

Figure 1.10 Average atmospheric profiles with standard deviations produced from 63
radiosondes from Saskatoon and The Pas, Saskatchewan from the BOREAS study
1994: (a) dew point temperature; (b) near-surface absolute humidity; (c) the
cumulative percentage of water vapor; and (d) the influence of the water vapor
profile on AVHRR channels 4 and 5 derived from MODTRAN3 simulations.
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layer, from dry, 0.25 mb, to nearly saturated conditions at increments of 0.25
mb. Each layer of the profile was checked to ensure that saturation did not
occur anywhere within the profile. Surface temperature was varied from 10
K less than the air temperature to 20 K more than the air temperature at
increments of 0.1 K accounting for a total of several hundred thousand
simulations. For each surface temperature, air temperature, and water vapor
profile, top of the atmosphere radiances in AVHRR channels 4 and 5 were
calculated. The radiances were converted to brightness temperature by
combining the monochromatic radiance output from MODTRAN3 with
the spectral response function of AVHRR channels 4 and 5. A table with five
columns containing the brightness temperatures in AVHRR channels 4 and
5, input surface temperature, input near-surface air temperature, and input
near-surface water vapor was constructed. Each MODTRAN3 simulation
represents one line in the look-up table. We have found that knowledge of Ts

and Ta are needed to successfully search the look-up table and find a unique
solution. If only satellite imagery is available to search for the near-surface
water vapor value, the Split Window Technique can be used to estimate
surface temperature and the TVX approach can be used to estimate air
temperature.

1.5.2 Near-surface water vapor validation

Czajkowski et al. (2002) used ground observations from BOREAS and the
Oklahoma Mesonet to validate the look-up table approach. Some 359
BOREAS and 222 Oklahoma Mesonet comparisons were made between
satellite estimations and ground observations (Figure 1.11). The comparisons
produced an r2 of 0.36 for the Oklahoma Mesonet and 0.26 for the BOREAS
study site. The atmospheric profiles used in the MODTRAN3 simulations
to construct the look-up table were all based on an average profile for the
mid-latitude summer. Use of an actual profile or a more realistic one would,
therefore, be an improvement.

Errors in both surface temperature and air temperature will influence the
water vapor estimation. Errors in Ts are compounded because they propagate
through both the TVX Ta estimation and water vapor estimation. If we
substitute ground station Ta into the look-up table approach, we are able to
improve the results to r2 of 0.48 for the Oklahoma Mesonet and 0.5 for
BOREAS.

1.6 Combined retrieval

It is through the solution of both the surface and atmospheric contributions
to the satellite observations that the complete thermal signal can be
understood. We have shown above that all of the biospheric variables that
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contribute to the thermal signal can be derived, although sufficient accuracy
with surface water vapor retrievals has yet to be realized. The various
processing routines needed to acquire environmental variables from the
thermal signal are summarized in Figure 1.12. Cloud and water screening
play a very important part in deriving accurate Ts, Ta, and water vapor
estimations. AVHRR channels 1 and 2 are used to derive NDVI while channels
4 and 5 are used in a sensor-specific Split Window model to derive Ts. Finally,
atmospheric water vapor is solved using T4, T5, Ts, and Ta. Figure 1.13 shows
how the variables relate to one another for a clear day, August 16, 1994, in
Oklahoma. Ts and Ta are highly correlated, however, Ts varies over a larger
range of temperatures. Satellite estimates of both Ta and water vapor match
the spatial patterns of the Mesonet station data. They show a typical
summertime pattern in Oklahoma where the eastern part of the state is warm
and moist while the western part of the state is hot and dry. On this day, the
synoptic conditions showed a high pressure area centered over the northeast
corner of Oklahoma (NOAA 1994). Under such conditions, the pressure
gradient was small in the eastern half of the state producing light or no
winds. On the western part of the state, both the satellite estimates and
ground data show a dry area.

Figure 1.11 Comparison of atmospheric water vapor (absolute humidity) estimated from
AVHRR data using the look-up table approach with ground measurements from
the Oklahoma Mesonet and BOREAS meteorological stations.
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1.7 Applications of TIR methods to other
space-based sensors

Within NASA’s Earth Science Enterprise there is a major initiative to observe
the Earth on a global scale. This initiative, the Earth Observing System, is
implementing a 15-year effort to study the physical, chemical, biological,
and social processes that influence global climate (NASA 1996). Among the
first new sensors to be launched as part of this effort were Landsat 7 and
ASTER and MODIS on the Terra satellite. Each satellite has channels with
wavebands similar to those of the AVHRR instrument. The differences in
spatial resolution between the sensors holds the potential to improve new
land surface studies.

For MODIS, NDVI can be derived using channels 1 and 2 (King et al.
1992) and surface temperature can be derived with a split window equation
from channels 31 and 32 (Table 1.3). Channel 29 in the 8.5-µm region has
the potential to be used to detect ice crystals and may also be used in surface
temperature estimation (Wan and Dozier 1996). The atmospheric profile

Figure 1.12 Schematic of steps taken to recover surface temperature (Ts), air temperature (Ta),
and water vapor from the TIR signal.
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products available from channels 27, 28, 30, and 33–36 may help determine
the temperature and moisture characteristics of the atmosphere (Menzel and
Gumley 1996).

ASTER’s five channels in the thermal region of the spectrum should provide
accurate surface temperature estimations using the (TES) technique (Kahle
and Alley 1992). ASTER will also have the capability to estimate Ta and

Figure 1.13a Images over Oklahoma for August 16, 1994 of (a) surface temperature, (b) air
temperature comparison, (c) water vapor comparison, and (d) Mesonet station
sites. The Mesonet values for air temperature and water vapor have been
contoured with an inverse distance interpolation. Dark blotchy areas in the air
temperature and water vapor images are cloud or water contaminated.
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water vapor, but its 16-day revisit interval and an “on demand” collection
mode suggest it may not be useful for routine environmental monitoring
over large areas. The benefit of ASTER is the 90-m thermal resolution, and
the fact that it shares the platform with MODIS. Observations from ASTER
can be used to address the subgrid scale heterogeneity in the MODIS signal,
thus bridging the gap between the MODIS scale and ground observations. It
will be possible to test whether vegetation processes acting at spatial scales
less than 1 km affect the performance of the TVX technique. This has not
been possible in the past because the high-resolution Thematic Mapper and
coarse resolution AVHRR sensors have been on different satellites and had
different overpass times.

The Landsat-7 Enhanced Thematic Mapper Plus (ETM+) has capabilities
comparable to ASTER due to its high spectral resolution visible and

Figure 1.13b (Continued).
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nearinfrared channels (30 m) and one thermal channel (60 m). Spectral
vegetation indices can be derived from channels 3 and 4; however, Landsat-
7 is limited in thermal remote sensing because it has only one thermal infrared
channel. Also, its one thermal channel has lower precision, about 0.2 K,
than the other sensors. Atmospheric correction typically with radiative
transfer codes and radiosonde soundings is needed to get an accurate estimate
of the surface temperature.

As with air temperature, the techniques to estimate near surface water
vapor can be applied to MODIS and ASTER data. The five thermal channels
of ASTER can be used to develop more accurate water vapor retrievals. In
addition, the contextual techniques may prove more fruitful with ASTER’s
higher quality measurements and resolution.

The potential of thermal remote sensing in Earth System Science is increased
number of thermal sensors available. It is apparent that there is a great deal
of research to be done, and a great deal of critical information on land surface
processes to be gained.
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Chapter 2

Land surface temperature
retrieval techniques and
applications
Case of the AVHRR

Yann H.Kerr, Jean Pierre Lagouarde,
Françoise Nerry and Catherine Ottlé

2.1 Introduction

Except for solar irradiance components, most of the fluxes at the surface/
atmosphere interface can only be parameterized through the use of surface
temperature. Land surface temperature (LST) can play either a direct role,
such as when estimating long wave fluxes, or indirectly as when estimating
latent and sensible heat fluxes. Moreover, many other applications rely on
the knowledge of LST (geology, hydrology, vegetation monitoring, global
circulation models—GCM). Consequently, for many studies, it is crucial to
have access to reliable estimates of surface temperature over large spatial
and temporal scales.

As it is practically impossible to obtain such information from groundbased
measurements, the use of satellite measurements in the thermal infrared
appears to be very attractive since they can give access to global and uniform
(i.e. with the same sensor and measurement characteristics) estimates of
surface temperature. As a matter of fact, satellite thermal infrared sensors
measure a radiance, which can be translated into top-ofthe-atmosphere
brightness temperature. If the sensor is designed to work in a part of the
spectrum where the atmosphere is almost transparent (e.g. 10.5–12.5 µm),
access to surface temperature would seem to be an easy task. It is not generally
the case however, due to the fact that the atmosphere, even though almost
transparent, still has a non-negligible effect. Moreover, the surface emissivity
is almost always unknown when land surfaces are not black or even grey
bodies (i.e. the emissivity is not unity and may also be frequency dependent).

In summary, with satellites, we have a means of deriving spatial and
temporal values of surface temperature, provided we can perform accurate
atmospheric corrections and account for the surface emissivity.

Since thermal infrared data have been available, several approaches have
been developed to infer surface temperature. The first problem to be solved
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is to translate the satellite radiance into surface brightness temperature. After
calibration and conversion of radiance into temperature using inverse Planck’s
law, it is necessary to account for the atmospheric contribution. It is then
necessary to transform surface brightness temperature into surface
temperature, and thus to take into account emissivity, and directional effects.
Actually, the problem is slightly more complicated as atmospheric, emissivity,
and directional effects are coupled and these modulating factors cannot be
approached independently. The rationale here is to establish which are the
most relevant factors.

The goal of this chapter is to give an overview of existing methods to
retrieve surface temperature. Based on the existing space system we will
assume that we have access to two thermal infrared channels around 11 and
12 µm. The practical aspects will be done with data from the Advanced Very
High Resolution Radiometer (AVHRR) on board the National Oceanic and
Atmospheric Administration (NOAA) polar orbiting satellites. The different
issues and possible solutions will then be presented. Finally, several examples
of uses of surface temperatures will be briefly delineated.

In the following, we will not consider data calibration issues and assume
that we have access to accurately calibrated top-of-the-atmosphere brightness
temperatures.

In the second part, we will consider potential and/or proven applications
of LST with associated problems.

2.1.1 Theoretical background

Without unnecessary details, we will now give the very basic concepts
necessary to define the problem.

Role of the atmosphere

The energy going through an elementary solid angle per unit time and unit
wavelength can be written as (Chandrasekhar 1960):

(2.1)

where Iλ is the intensity of radiation at wavelength λ passing through an
absorbing and emitting layer, s is the path length, Bλ is the blackbody emission
of the layer given by the Planck function, and τλ is the optical depth.

After integrating equation (2.1) along the complete path between the
surface and the top of the atmosphere, we have:
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with

(2.2)

where τλ, (θ) is the total directional transmission defined by

 

and a is the absorption coefficient for water vapor and e the water vapor
concentration.

The first term of equation (2.2) is related to the surface contribution, the
second to the atmospheric contribution along the upward path, and the third
to the atmospheric contribution along the downward path, reflected by the
surface and attenuated along the upward path.

Equation (2.2) indicates that it is necessary to take into account the
atmospheric effects and advantage to make measurements in a spectral region
where the atmospheric contribution is as small as possible. In most cases the
satellite-borne sensors are designed to work in one of the thermal region
“atmospheric windows” (10.5–12.5 µm in this chapter). When this condition
is met, the first term of equation (2.2) will be least affected, while the relative
importance of the second term will be very variable depending upon
meteorological conditions (thin cirrus will have a significant influence, for
instance). The role of the third term is related to the surface characteristics:
the larger the emissivity, the smaller the contribution.

In this section, we neglect scattering in the atmosphere, this effect being
small when visibility is higher than 5 km (McClatchey et al. 1971). We also
neglect the influences of carbon dioxide (CO2) and ozone (O3), as they are
much smaller than the effect of water vapor. However, the simulations take
these effects into account (MODTRAN). Finally, we assume that the
characteristics of the sensor (normalized response function, calibration) are
well known and perfectly taken into account during the data calibration. It
is worthwhile to note, however, that usually the modulation transfer function
(MTF) of the sensor is not perfectly taken into account and that future systems
would greatly benefit from an improved MTF.

Radiance temperature relationship

This section is again basic, but allows defining the terms given in some of the
presented algorithms. Digital counts recorded by the radiometer are first
converted into radiances and subsequently into brightness temperature values.
For this, calibration is performed, giving the radiance in channel i: Ii.
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The radiance Ii is related to the brightness temperature TB,i through the
integration over the channel bandwidth [λ1, λ2] of Planck’s black-body
function for the temperature TB,i weighted by the sensor’s normalized response:

(2.3)

where h is Planck’s constant, c is the velocity of light, and κ is Boltzman’s
constant.

Consequently, the brightness temperature TB,i can be retrieved from
equation (2.3) either through a look-up table relating radiances to brightness
temperatures, or by defining a central wavelength λi for each channel:

It should be noted that the central wavelength λi is temperature dependent
and is usually defined by the temperature range.

This section presented the main concepts necessary to compute a surface
brightness temperature provided the sensor characteristics, the atmosphere,
and the surface emissivity are all perfectly known. We subsequently will
detail the evaluation of atmospheric and emissivity effects.

2.1.2 The AVHRR data

The NOAA meteorological polar orbitors are sun synchronous satellites
whose altitude is nominally 825 km. They carry a scanning radiometer: the
AVHRR. We will consider hereafter the case of the AVHRR/2 onboard the
NOAA satellites, since only this version of the AVHRR has two different
thermal infrared channels. The AVHRR/2 has five channels in the short wave
(red and near-infrared), mid-infrared, and thermal infrared. The AVHRR/2
field of view is of±55º, which enables the system to view almost any point of
the Earth’s surface twice a day (ascending and descending orbits). Nominally
(i.e. without considering the drift of the satellite), the overpass time is around
2 pm local solar time. Even though a given point of the surface is viewed
every day, it must be noted that it will be viewed at different viewing angles
on subsequent days, with the viewing conditions being approximately
repeated only every 9 days. It is worth mentioning that a second satellite
operates simultaneously, but on a different orbit (overpass time around 7
am local solar time).

The AVHRR/2 spectral bands are: 0.58–0.68, 0.725–1.1, 3.55-3.93,
10.30–11.30, and 11.50–12.50 µm. Nadir resolution is of the order of 1.1km.
Algorithms using the 3.7-µm channel will not be discussed here, since they
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can only be efficiently used at night due to the reflected solar signal (the
directional reflectance in channel 3 is not well known) and since this channel
can be saturated during daytime over some areas.

The first two bands are in the short-wave part of the spectrum and are
widely used to derive the Normalized Difference Vegetation Index (NDVI),
which is the ratio of the difference to the sum of the reflectances ρ1 and ρ2:

(2.4)

It has been shown (e.g. Tucker and Sellers 1986) that this ratio can be used to
monitor biophysical properties of vegetation such as the Leaf Area Index
(LAI)—which is the total area of the leaves per unit area—and photosynthetic
capacity. However, the NDVI can only be used to quantify the vegetation
LAI when the LAI does not exceed 3–5 due to a saturation effect. Another
use of the short-wave channels is in estimating the vegetation fractional cover
by using another index, the Modified Soil Adjusted Vegetation Index (MSAVI)
(Chehbouni et al. 1994; Qiet al. 1994), which is insensitive to soil reflectances,
but has to be computed from surface reflectances (hence requiring atmospheric
corrections):

(2.5)

with

 

and where λ is the bare soil slope (λ=1.06).
We will tentatively use either the NDVI or the MSAVI to quantify the

vegetation cover (i.e. the ratio between bare soil and vegetation).
Finally, another vegetation index the Global Environment Monitoring

Index (GEMI) (Pinty and Verstraete 1992) is:

(2.6)

with

 

This index is rather insensitive to the atmosphere (Leprieur et al. 1996), but
very sensitive to surface reflectances. Hence, we propose to use it as a surrogate
for finer cloud discrimination. Actually, partial cloud cover might not be
readily visible using conventional methods (especially due to partial cloud
cover and to cirrus clouds) when, according to our experience gained from
HAPEX-SAHEL (Prince et al. 1995), the GEMI has a tendency to show
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partially covered pixels. However the method will require some sort of
thresholding which is delicate to implement on an operational scheme. Other
indices do exist and it might be interesting to check whether some of them
would not prove more interesting.

Thermal band calibration is rather straightforward. The sensor views
thermistances and deep space that gives the calibration curve (Kidwell 1986).
Non-linearities can be taken into account (Brown 1985). The procedure is
simple and reliable even though some questions were recently raised
concerning the “hot target” blackbodies. Consequently, deriving brightness
temperatures at the top of the atmosphere is relatively simple and reliable.
The problem we will study now is the atmospheric correction procedure.
The errors induced by the atmospheric contribution will be especially large
for hot surfaces with humid atmospheres.

2.1.3 Practical satellite-based methods

Problem I: atmospheric prof ile method

A primary method to perform atmospheric corrections is to use a radiative
transfer model coupled with a characterization of atmospheric structure.
The characterization can be made from “standard values” such as
climatological means, but this characterization is bound to introduce large
errors due to the spatial and temporal variability of the atmosphere. It has
also been suggested to use indirect methods, such as the use of a reference
target (typically a large water body) of known and uniform temperatures
(which is another challenge), to assess atmospheric contribution, assuming
that the atmosphere characteristics will not change spatially, which, obviously,
is not the general case. Moreover, this method relies on only one measurement,
which is a “cold” reference in the case of a water body, when at least two are
necessary (hot and cold as the lower levels of the atmosphere are affected by
surface temperature).

It is thus necessary to use more accurate characterizations of the
atmosphere. Several methods have been used to assess the pressure,
temperature, and humidity (PTU) profiles of the atmosphere. The most evident
being to use radiosoundings. The PTU profile can then be used as an input
to a radiative transfer code such as the “4A” (Scott and Chedin 1981),
LOWTRAN (Kneizys et al. 1983 and subsequent updates), MODTRAN, or
even WINDOW (Price 1983). This approach can give very satisfactory results,
provided the radiosoundings are synchronous and collocated with the satellite
measurement. Otherwise, large errors can be introduced (up to 10 K as shown
by Cooper and Asrar 1989). Moreover, the use of radiosoundings is hampered
by the insufficient density of the network in some areas (3, for example, for
the whole Sudanian Sahel), by the timing (usually 12:00 UT and, in some
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cases, for 00:00 UT), which is not the satellite overpass time, by the poor
representativity in some cases (e.g. near the coast in arid areas), and by the
difficulty to access the data in a timely fashion or in digital form. Generally,
ground-based radiosoundings do not really fit our needs. In this study, we,
nevertheless, relied heavily on atmospheric profiles and RT codes for assessing
the different methods.

An alternative to radiosoundings is to use atmospheric profiles derived
from satellite measurements (Susskind et al. 1984; Chedin et al. 1985), but
in this case the inversion algorithms are time consuming and very complex.
Moreover, the existing sounders do not have the capacity to accurately retrieve
profiles near the surface face, where most of the atmospheric water vapor is
located. Large errors may result from the resolution (30 km) and related
surface emissivity variability within the pixel as shown by Ottlé and Stoll
(1993). Such methods are thus not yet relevant, but they will need to be
investigated further when we enter the Earth Observing System (EOS) era
since the NASA and ESA polar platform will carry more sophisticated
sounding instruments (AIRS, Atmospheric InfraRed Sounder; IASI,
Interféromètre Atmosphérique de Sondage dans l’Infra-rouge). The
simultaneous use of such a sensor coupled with (MODIS) MODerate
resolution Imaging Spectroradiometer or (MERIS) MEdium Resolution
Imaging Spectrometer should allow us to derive accurate surface brightness
temperatures.

Another possibility is to use the output of meteorological forecasting
models. Actually this is the most appropriate method for the time being. The
reanalyses are global and available one a roughly 1×1º grid every 6 h. Crude
interpolation might be sufficient to derive accurate enough estimates of the
integrated water content to be used with differential absorption methods.
For a radiative code correction however, the reanalyses will not be accurate
enough, and more importantly, they are available only at UT times (usually
0, 6, 12, 18) posing temporal interpolation issues.

Consequently, based on existing systems and ancillary data, we will focus
here on alternative methods, which, even though less accurate theoretically,
have the advantage of being suitable for global applications and can be run
“operationally,” without sophisticated ancillary data. We have mainly
investigated the differential absorption method (the so called Split Window
Techniques, SWT).

The differential absorption method: background

When two channels, or more, corresponding to different atmospheric
transmissions, are available, it is possible to use the differential absorption
to estimate the atmospheric contribution to the signal. This method was first
suggested by Anding and Kauth (1970) and put in its now “classical” form



40 Yann H.Kerr et al.

by Prabhakara et al. (1974). It has been since adapted and tested successfully
with AVHRR data, mainly over sea surfaces (Njoku 1985). Its general name
is the SWT. The SWT has been tested mainly for Sea Surface Temperature
(SST) retrievals, Some comparisons over land surfaces have also been done,
but with varying degrees of success (Price 1984; Lagouarde and Kerr 1985;
Cooper and Asrar 1989).

The SWT relies on the different absorption characteristics of the
atmosphere within two different but close wavelengths. The algorithm consists
simply of a linear combination of the thermal channels, which gives a surface
temperature pseudo-corrected for the atmospheric contribution. For the
AVHRR/2 the equation is of the type:

(2.7)

with

(2.8)

where T10.8 and T11.9 are the brightness temperatures at the top of the
atmosphere in the two infrared bands. The ai coefficients are estimated using
various methods depending on the authors. The SWT is now used
operationally over oceans with a claimed accuracy of 0.7K (McClain et al.
1985: AVHRR data).

We note that an alternative method, consisting in using different view angles
can be used. It can rely on measurements made by two different satellites (Becker
1982; Chedin et al. 1982), or the same satellite provided it can view along track
with two different angles. The Along Track Scanning Radiometer (ATSR) on
board ERS-1 satisfies this dual viewing angle and differential absorption technique
simultaneously (Eccles et al. 1989; ESA 1989; Prata et al. 1990).

Even though the SWT works satisfactorily over sea surfaces, when used
directly as developed for SST over land surfaces, the errors can reach 6K
(Lagouarde and Kerr 1985). This is mainly due to the fact that the assumptions
made for the SWT over sea surfaces are not applicable for land surfaces. We
are now going to study the SWT assumptions and describe why this is so.
We will then describe the main methods currently proposed for land surface
temperature estimation.

PROBLEM 2: ROLE OF THE EMISSIVITY

The SWT has been developed for sea surfaces. It is a simplified way to take
into account atmospheric effects, and thus relies on a number of assumptions
such as (see Becker 1987 for a more detailed analysis):

1 the surface is lambertian;
2 the surface temperature is close to the temperature in the lower layers of

the atmosphere, the latter varying slowly (Planck’s law linearization);
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3 the surface temperature does not exceed 305 K;
4 absorption in the atmosphere is small and occurs essentially in the lower

layers;
5 the surface emissivity is very stable spatially and close to unity;
6 the emissivities ε10.8 and ε11.9 are almost identical and ε10.8>ε11.9.

It is obvious that these conditions are not usually met over land surfaces,
hence the problems encountered when using the SST-SWT over land surfaces.
Nevertheless, provided we accept a somewhat reduced accuracy, the SWT
could be adapted to land surface temperature retrieval.

In the specific case of the AVHRR, several limitations linked to the
instrument itself are to be considered:

1 the sensor saturates for temperatures higher than 320K;
2 the ascending node time may drift;
3 due to its large scanning angle, the sensor views simultaneously points

whose local solar time are quite different (almost 2 h from one end of
the scan to the other);

4 for two successive overpasses, the sensor views a given point at different
angles and at a different solar time. Thus, over heterogeneous areas,
angular effects are bound to exist between subsequent acquisitions.

The perturbing effects on the SWT when used over land surfaces are mainly
the following:

1 the surface spectral emissivity is a priori unknown and different from unity;
2 spatial variability of the emissivity can be high;
3 surface temperature may have high spatial variability at scales smaller

than the resolution of the AVHRR;
4 a strong difference between air and surface temperature may exist.

We are now going to analyze the influence of the emissivity on the split
window algorithms.

EMISSIVITY INDUCED ERRORS

Land surface emissivity has two characteristics whose effects are negative in
terms of retrieval accuracy:

1 The spectral emissivity in the band 10.3–12.5 µm is not equal to 0.99
but presents such a spectral variability (Buettner and Kern 1965; Fuchs
and Tanner 1966; Fuchs et al. 1967; Salisbury and D’Aria 1992, 1994)
that integrated values over the AVHRR thermal channels might range
from 0.92 to 1.
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2 The spectral emissivity is generally constant over the two AVHRR
channels. It has been shown by Becker (1987) that if we assumed that
the spectral emissivities ε10.8 and ε11.9 were equal to 1 when they are
actually different from one another and different from one, the error ∆T
induced by such an assumption on the retrieved surface temperature
using the SWT could be written (Becker 1987):

(2.9)

where

(2.10)

The difference ∆ε, when positive, reduces the errors since the second term
compensates the first in equation (2.9). This case occurs for water and
vegetation. Moreover, the closer to 1 is ε the smaller will be the errors on the
retrieved surface temperature Ts. In conclusion, the classical SWT will give
good results over water, slightly less over fully vegetated areas, and poor
results on dry bare soil.

It is thus necessary to know the two spectral emissivities to accurately
derive surface temperature, which gives us a system of two measurements
for three unknowns. The problem is thus a priori not solvable. Several authors
thus proposed local SWT with coefficients ai being functions of the surface,
atmosphere and view angles, and derived from either exact knowledge of
the emissivity or empirically.

2.2 Review of existing algorithms

2.2.1 Algorithms that do not satisfy either accuracy or
global applicability requirements

We assume here that the surface temperature algorithm has to be applicable
nearly globally and limit ourselves to AVHRR-type data. We have not
considered algorithms requiring both night and day data, since it not practical
in many areas (the probability of having regularly successive night and day
cloud free acquisitions proving to be very small) and algorithms using
variance/covariance methods to infer atmospheric variations (Ottlé et al.
1998) as there is still some controversy on the global efficiency of such
methods. The accuracy goal is 1.5 K.

Empirical methods

The first way to approach atmospheric corrections is to use methods qualified
here as “empirical.” Using bodies of known temperature (oceans, water
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bodies, ice caps, etc.) a relation is established between the surface temperature
and the top of atmosphere temperature. This relationship is then applied to
the neighboring pixels over land. This method is, of course, not applicable
globally and is highly subject to errors. The errors are linked: (a) to the
accuracy with which the “known” temperatures are established and, more
important, (b) to the variations of emissivity between the “calibrating” targets
and neighboring pixels, and finally (c) to the variations in atmospheric
characteristics over water or ice and land surfaces.

Another method uses estimates of low-level atmospheric temperature and
humidity to establish the atmospheric corrections. Here again the problem is
the validity of the relationships and the availability of global fields of air
temperature or humidity.

Similarly, empirical methods using the difference between temperatures
at the top of the atmosphere in bands 4 and 5 of the AVHRR have been
developed to infer atmospheric water content. The accuracy of such
approaches is highly linked to having minimal emissivity differences between
channels 4 and 5 (Choudhury et al. 1995). As such, they are bound to fail
when applied globally.

All the empirical methods, even though they might in some cases deliver
very good results over a specific test site and at a given time, are, a priori, not
applicable globally and over long periods of time. Consequently, they will
not be considered as applicable to our problem.

Radiative transfer approaches

The methods using radiative transfer approaches to infer atmospheric
contributions are by essence exact, provided the radiative transfer model is
correct (and, thus, all the line contributions well described) and the surface
and atmospheric characteristics are very well known. Several such radiative
transfer codes exist, of which the most used are LOWTRAN7 and
MODTRAN. A simplified method developed by Price (WINDOW 1983)
also gives satisfactory results. The main problems in using such codes are the
following:

1 They are rather complex and require significant computing resources.
This problem is, however, not drastic, as a look-up table approach can
be developed.

2 They require a good knowledge of surface spectral emissivity that is not
globally available.

3 They require an accurate description of the atmosphere. To have this
description, several approaches have been considered namely: use of
radiosoundings, satellite sounders, or reanalyses. As described in section
“Problem 1: atmospheric profile methods” none of these are fully
satisfactory.
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Consequently, the methods relying on radiative transfer approaches do not
seem to be applicable to our present problem, even though they can be used
quite efficiently for validating other methods or establishing the coefficients
for a parameterized approach.

2.2.2 Split window techniques

For the problem under consideration, we are thus left with the differential
absorption methods, which we will now review, by categories.

It has been noted that between channels 4 and 5 of the AVHRR, the main
difference between the top of atmosphere temperatures was directly linked
to the difference in water vapor absorption, assuming the surface emissivities
in the two channels are really identical. If this assumption is correct, extracting
surface temperature is rather straightforward. The problem is usually much
more complicated as land surface characteristics are often not the same in
the two bands.

The SWT can be summarized with the following formula, similar to
equation (2.7) but now employing three channels:

(2.11)

where the subscript in T denotes the AVHRR channel. The use of band 3 is
subject to some care. At nighttime it can be used as is but for daytime data,
the reflective component must be taken into account. Moreover, bidirectional
reflectances in channels around 3.7 µm are not known which can significantly
increase errors.

The SWT has been used for some time now over ocean surfaces with
very good results (see section on “The differential absorption method:
background”). Numerous authors developed new schemes to retrieve
surface temperature over land using “improved” or “adapted” SWT for
land surfaces. The general conclusion is that even though the accuracies
achieved for ocean surfaces will not be feasible with such approaches, with
our current knowledge of surface spectral emissivity, accuracies of 1–2 K
are attainable. Consequently, we tested mainly SWT methods. They can be
sorted out in the categories:

1 purely empirical;
2 depending on the spectral emissivities;
3 depending upon water vapor content;
4 depending upon view angle;
5 depending on any combination of the above methods.

We will now briefly describe these categories.
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Empirical and semi-empirical SWT

From existing data sets an empirical set of coefficients is established. The set
of coefficients is not globally applicable. Sometimes the empirical coefficients
are coupled with physically based expressions. The global validity, however,
is not assured.

Empirical approaches are not global in nature, we have tested only one
such algorithm for the sake of comparison. It is from May et al. (1992),
from NESDIS (National Environmental Satellites, Data, and Information
Service) and is only dependent on the view angle. Several similar algorithms
of the type were developed in the 1980s and early 1990s. We investigated
only this one because of its NESDIS background and because it is
representative of similar algorithms with almost constant coefficients but
having an “angle correction” adjustment in the constant term (a0).

The May et al. algorithm gives a surface temperatures Tm given by

(2.12)

Where Sv is the secant of the view angle, T4 and T5 are, respectively, the
brightness temperatures measured in channels 4 and 5 of the AVHRR.

Emissivity-dependent algorithms

In these algorithms, the coefficients are functions of spectral emissivity. The
Kerr et al. (1992) algorithm was the first attempt to take the emissivity into
account (very coarsely) when no fields of surface emissivity are currently
available. Strictly speaking, this algorithm should classified in the section on
“Empirical and semi-empirical SWT.” To account for the varying emissivities
of vegetation and soil, two temperatures are computed, one for typical bare
soil emissivities Tbs, the other for vegetation Tve, and the two are added with
a weighting proportional to the vegetation cover derived from the NDVI or
MSAVI (see Section 2.1.2) resulting in Tk given by

(2.13)

C being the canopy fraction.
However, if the spectral emissivities are known, it is possible to infer

“exact” coefficients as derived by Becker and Li (1990b).



46 Yann H.Kerr et al.

THEORETICAL DEVELOPMENT

Becker and Li (1990b) propose, after a linearization of the radiative transfer
equations, a method to derive the coefficients ai of the SWT. This method is
only valid locally, since emissivities have a high spatial variability.
Consequently, as was suggested by Kerr and Lagouarde (1989), for land
surfaces, an SWT can only work locally and has to be tailored to local surface
characteristics. Becker and Li (1990b) give an expression for the SWT, where
the coefficients ai are derived from the actual emissivity values. For the specific
case of the AVHRR/2 on board the NOAA-9 satellite, they obtain the
analytical expression of the coefficients ai given by

(2.14)

where ε=(ε10.8+ε11.9)/2 and ∆ε=ε10.8-ε11.9.
This method has been tested in the framework of HAPEX MOBILHY

(André et al. 1988) over one location in the South West of France, where the
spectral emissivities had been estimated (Becker and Li 1990b). The results
were reasonable, but the method is yet to be validated over other types of
surfaces. The main results from that study were that the coefficients ai are
independent of the atmosphere and can be derived directly from the
knowledge of the spectral emissivities. Actually, this did not prove to be
accurate, as we will see later, and the impact of atmospheric effects on the ai

also needed to be ascertained. Values of surface emissivities can be found in
the literature, even though they are scarce (Buettner and Kern 1965; Fuchs
and Tanner 1966; Fuchs et al. 1967; Elvidge 1988; Takashima and Matsuda
1988; Eastes 1989), but we do not have access yet to global data sets of
emissivity at sufficient spatial resolution. A large database is nevertheless
now available and was used here establish the ranges of emissivity values
and variations. To apply such a method routinely, global atlases of emissivities
are required, or a method to infer emissivities needs to be developed. This
last point will also been investigated here.

OTHER METHODS USING EMISSIVITY

A number of algorithms have been developed and proposed in the literature.
They are somewhat similar in formulation and several are directly inspired
by Becker and Li’s formulation. Otherwise they are empirically derived
from ground data. A good example of the empirical approach is given in
Prata and Platt (1991). Several authors have developed modified algorithms,
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notably Sobrino et al. (1994). In summary, we have a large number of
algorithms that are described below:

With the following definitions:

(2.15)

(2.16)

(2.17)

(2.18)

we have the following formulations, each retrieve temperature T having a
subscript recalling the author’s initials:

Becker and Li(1990):

(2.19)

Becker and Li 1990 (modified by Sobrino et al. 1994):

(2.20)

Prata and Platt (1991):

2.21)

Prata and Platt (1991) (modified by Caselles et al. 1997):

(2.22)

Prata and Platt (1991) (modified by Sobrino et al. 1994):

(2.23)
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Price (1984):

(2.24)

Price (1984) (modified by Sobrino et al. 1994):

(2.25)

Ulivieri and Cannizzaro (1985):

(2.26)

Ulivieri et al. (1992):

(2.27)

Ulivieri et al. (1992) (modified by Sobrino et al. 1994):

(2.28)

Vidal (1991):

(2.29)

Coll et al. (1997):

(2.30)

Sobrino et al. (1993):

(2.31)

Methods using both emissivity and water vapor

We have identified only one such method, developed by Sobrino et al. (1991).
This method poses some problems as it uses the opacity of the atmosphere in
AVHRR bands 4 and 5, and thus requires a good knowledge of the
atmosphere and a radiative transfer code. It is a bit too complex to be detailed
in this work.
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Methods using both emissivity and view angle

Again, in this section, we have identified only one method, developed by
François and Ottlé (1996) and called QUAD (noted Tquad). This method was
developed for the Along Track Scanning Radiometer (ATSR) and thus only
established for the two ATSR view angles. We have tested it as is, but strictly
speaking, one should recompute the coefficients for the AVHRR and for
various angles, as angular interpolation is very risky with such approaches:

(2.32)

The coefficients Cij for equation (2.32) are tabulated (LUT) and available in
their paper. Of note is that the expression is not linear in T.

Methods using emissivity, atmosphere, and view angle

These are the most sophisticated methods and were all developed fairly
recently. We have tested four of them.

1 The first one developed was by Ottlé and Vidal Madjar in 1992 (Tovm). It
was developed with the use of Radiative Transfer (RT) code for a variety
of conditions. Three coefficients are extracted according to water vapor
content, emissivity values and view angle. We have compiled a set of
values for different surface conditions [emissivity and angles (LUT)],
and different types of atmosphere (tropical, temperate, and polar).

2 Sobrino et al. (1994) proposed a method based on the use of the
atmospheric opacities in AVHRR bands 4 and 5 and their ratio (Tsob2).
This requires knowledge of the atmosphere and use of the RT code. For
this study, we have used coarse values for the water vapor derived t, as it
will be more representative of real-world application where accurate
knowledge of water vapor is missing.

3 Becker and Li (1995) proposed a method inspired by their 1990
formulation (Tgrtr), but including angle and water vapor contribution in
the coefficients.

4 Finally, François and Ottlé (1996) proposed an algorithm (Twvd) with
coefficients that are quadratic functions of water vapor.

2.2.3 Conclusion

An overview of the existing algorithms in the literature shows that there are
many different algorithms, even though the general approaches can be
classified in a few categories. The methods proposed vary considerably in
complexity and ancillary data requirements. A primary question is whether
accuracy is related to increased complexity, and thus when increasing
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complexity is of no additional benefits. The following sections are devoted to
analyzing the main perturbing factors and then evaluating the most efficient
algorithm.

2.3 Emissivity retrieval

2.3.1 Introduction

Current emissivity databases (Salisbury and D’Aria 1992, 1994) have only
consisted of laboratory measurements and do not represent the emissivity at
the scale of the NOAA/AVHRR pixel (1×1 km2). The emissivity parameters,
necessary to tune or compute Split Window coefficients, need to be retrieved
directly from satellite data and preferably simultaneously with temperature
determination to take into account changes of the state of the surface due to
humidity, vegetation growth and others temporal changes. Methods have
been developed using multispectral data (Schmugge et al. 1998) and maybe
applicable to newer multispectral systems such as ASTER (Advanced
Spaceborne Thermal Emission and Reflection radiometer). They are not thus
considered here, but are worth mentioning, as they should enable the
derivation of global spectral surface emissivities.

2.3.2 Review of existing methods

Two main methods exist to assess emissivity from space:

1 The methods that establish an empirical relationship between shortwave
(0.58–0.68 and 0.725–1.1 µm) channel measurements and the emissivity
(Van de Griend and Owe 1993; Valor and Caselles 1996).

2 The second method aims at deriving the emissivity by solving the
radiometric equation at the surface in the thermal infrared (Becker and
Li 1990b; Kealy and Hook 1993; Li and Becker 1993).

Method 1: Van de Griend and Owe (1993)

This method links emissivity to NDVI using an empirical relationship
established from ground measurements.

(2.33)

This method has the drawback that the coefficients a and b have been
determined only for the 8–14 µm band and are surface dependant.

Method 2: “vegetation cover” (Valor and Caselles 1996)

Emissivity is written as a function of bare soil and vegetation emissivities
weighted with the vegetation cover fraction. A term due to cavity effect
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is added:

(2.34)

with

(2.35)

or, on a simplified form:

(2.36)

where Pv is the vegetation cover fraction, Ps is the soil cover fraction, εv is the
vegetation canopy emissivity, εs is the bare soil emissivity, and F, G, F’ are
shape factors.

The vegetation cover fraction is estimated through the NDVI:

(2.37)

where NDVI is the pixel’s NDVI, NDVIv is the vegetation NDVI, NDVIs is
the soil NDVI, and di is the error related to the approximation, which gives
for the emissivity:

(2.38)

This approach requires a preliminary knowledge of (a) the vegetation and
bare soil NDVI; (b) the vegetation and bare soil emissivities; (c) the shape
factors. Also, expression (2.34) is only valid for an isothermal media, that is,
when soil and vegetation temperatures are close to each other, which is not
necessarily the case especially around noon over a dry and hot area.

Method 3: “alpha residuals” (Kealy and Hook 1993)

This method utilizes Wien’s approximation of the Planck function:

(2.39)

Emissivity in channel j is then written as:

(2.40)
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with

 

The X parameter is estimated from the alpha variance: X=c , with
the coefficients c and M retrieved from laboratory measurements.

This approach is applicable to ground radiances. Consequently,
atmospheric corrections need first to be performed; the X parameter is
dependent on the spectral response of the surface. More importantly, this
method depends on the number of spectral channels used and their central
wavelengths. The method is thus essentially multispectral and not really
applicable to AVHRR-type sensors with only two channels in the thermal
infrared. This approach also relies on homogeneous pixels (ASTER type),
which is not generally the case for the AVHRR resolution.

Method 4: “TISI” (Becker and Li 1990a; Li and Becker 1993)

In AVHRR channel 3, the daytime radiance is a combination of the emitted
radiance by the surface and a reflected radiance due to sun illumination.
Day-night image pairs are used to estimate emitted radiance and thus the
reflected contribution. Reflectivity is retrieved and emissivity is deduced using
a Lambertian assumption. The emissivities in the three AVHRR channels are
given by the following formulae:

(2.41)

(2.42)

(2.43)

where  is the daytime radiance in channel i, the nighttime radiance in
channel i, Rsun is the solar irradiance in channel 3, and ni is defined by Ri =
ai.

This methodology is also applicable only to surface radiances, so
atmospheric corrections need to be performed first. It is also necessary to
have access to day and night acquisitions sufficiently close in time so that the
surface conditions have not changed (moisture/vegetation). There are some
concerns about the lambertian behavior expected in the 3.7-µm channel,
which is probably not generally the case.
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The “TISI” method is given here for information as it is an interesting
approach. However, the issues linked with the possibility to acquire
contiguous day-night acquisitions and the uncertainties associated with
nonlambertian behavior of the 3.7-µm channel makes it non-applicable in a
routine scheme.

2.3.3 Choice of a suitable method and related
uncertainties (errors)

Method 1 is valid only locally where the coefficients a and b have been
determined, and so can only be applied locally. Method 3 appears to be
adequate for multispectral sensors such as ASTER. The fourth method is not
applicable for sensors not having a 3.7-µm channel and when day-night pairs
are not always available, significantly reducing the potential uses. It must be
stressed that the 3.7-µm channel has to be well designed, as problems linked
to noise or saturation effects (as encountered with the AVHRR) are prohibitive.
Method 2 requires the knowledge of the emissivity and the NDVI of the pixels.
This simplistic method has the advantage of being easy to implement, and
thus will be analyzed further below and related errors estimated.

The error related to the determination of the emissivity using the
“vegetation cover” depends on how accurate is the a priori knowledge of
the emissivity of the pure (i.e. homogeneous) pixels (∆εv∆εs), the estimation
of the vegetation cover (∆Pv), and the knowledge of the shape factors A (dε).

The error of ε(∆ε) is given by

We note the following points:

1 ∆εv: the emissivity of vegetation can be assumed to be well known in the
thermal infrared, with a flat spectral response and a high value.
εv=0.985±0.005 may be considered as a good approximation.

2 ∆εs: the bare soil emissivity is more variable with a spectral variability
depending on the wavelength. An emissivity database can give information
on the range of emissivity values. Using the database described by Salisbury
and D’Aria (1992) and integrating over the spectral responses of channels
4 and 5 of the AVHRR, mean values with associated statistical errors can
be determined. We obtained  =0.95±0.02 and  =0.97±0.01.

3 ∆Pv: the vegetation cover fraction is determined using NDVI. The
accuracy obtainable for this parameter depends on the error of NDVI,
and the type of soil and on atmospheric conditions. Leprieur et al. (1996)
show that the signal-to-noise ratio can vary from 2 to 50. For the purpose
of emissivity error estimation, we will vary ∆Pv/Pv from 0% to 20%.

(2.44)
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4 ∆(dε): (dε) depends on the vegetation structure. This term is not
measurable from space and only knowledge of the local vegetation
structure allows its determination. After Valor et al. (1996), this term
ranges from 0–0.025. We will assume here (dε)=0.01±0.005.

Figure 2.1 (a) shows emissivities in channels 4 and 5 of AVHRR as a function
of the vegetation cover fraction. Emissivities are estimated using equation
(2.34) and the configuration described above (i.e .  =0.95 and =0.97,
εv=0.985, and (dε)=0.01).

The relative error on channel 4 emissivity (respectively, channel 5) is
presented as a function of the vegetation cover fraction in Figure 2.1(b)
(respectively (2.1(c)). ∆Pv/Pv takes values of 0%, 10%, and 20%.

Figure 2.1 Emissivity in channels 4 and 5 and relative errors associated with the vegetation
cover method.
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Three error configurations are considered:

1 .= 0.00 and = 0.00: soil emissivity is known exactly; it is the ideal

case;
2 = 0.01 and = 0.005: we have a rather good a priori knowledge of

soil emissivity (e.g. when field measurements of emissivity are available);
it is the most favorable case;

3 = 0.02 and = 0.010: no a priori knowledge is available; it is the

general case.

Curves 2.1(b) and (c) show that the error on emissivity decreases with the
vegetation cover fraction. The error is driven mostly by the uncertainty on
the soil emissivity. For non-vegetated areas, errors will be a maximum,
whereas for vegetated areas pixel errors will be a minimum. The error induced
by uncertainty on the cover fraction is negligible compared to the error on
soil emissivity. When the emissivities are unknown, errors in channel 4
emissivities range from 1% to 2% and in channel 5 it is around 1%.

2.3.4 Special cases

Until now we have only considered average landscapes apart from the obvious
case of ocean surfaces. However, the data collected may correspond to a
snow-covered area, especially in the high-latitude or high-elevation area. In
this case, the emissivity will be significantly different from unity and must be
taken into account. Unfortunately, snow and ice emissivity values found in
the literature (Table 2.1) are not reliable as the emissivity of snow and ice
varies significantly over time (fresh or old; wet or dry).

To illustrate the importance of taking into account snow/ice in a retrieval
algorithm (if only to mask the area), Figure 2.2 shows the results obtained
with a set of AVHRR temperatures in bands 4 and 5, using Ulivieri’s algorithm
with emissivity values corresponding to snow, ice (rough and smooth) from
Table 2.1, and typical soil.

Figure 2.2 depicts the difference of behavior for the different algorithm
outputs. Tu, Tuir, Tuis, Tus standing for Uliveri’s algorithm output for values of

Table 2.1 Emissivity values retained (from Salisbury and
D’Aria 94)
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emissivity corresponding, respectively, to standard soil, rough ice, smooth
ice, and snow. A difference of 45–47 K is encountered. Such large errors
justify taking great care in identifying snow/ice covered areas in global surface
temperature retrieval schemes.

2.3.5 Conclusion

Various methods exist to retrieve emissivity from satellite data. Their
usefulness depends on the a priori knowledge of surface spectral emissivities
in the spectral channels of the sensor, as well as the nature of the data available
(temporal composites, day night couples, atmospheric corrections, etc).

The vegetation cover method, due to its simple formulation, is easily
applicable and seems rather robust. The drawback of this simplicity is that
the method relies on an a priori knowledge of emissivity. Thus, good a priori
knowledge is necessary to obtain a correct accuracy. Actually, the error budget
analysis shows that a relative uncertainty in the soil emissivity of n% will
induce, in the case of low vegetated area, an error of n% on the emissivity
estimation of the pixel.

If a possibility exists in the near future to access a global data set of
emissivity values, representative of the pixel (cf. ASTER or MODIS LST
projects), the vegetation cover method should allow a viable estimation of
the emissivity. Otherwise, the method is inefficient and taking an average
value for the emissivity could prove just as reliable, provided snow- and ice-
covered regions can be identified and proper emissivity values estimated.

Figure 2.2 Different results obtained with emissivities of bare soil (red), or emissivities given
in Table 2.1 (dotted lines). The x-axis represents the ground data number (arbitrary),
the y-axis is the temperature in K (see Colour Plate 1).
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2.4 Water vapor retrieval

2.4.1 Introduction: existing sources

In the 10–12 µm spectral region, water vapor is the most important
atmospheric variable influencing atmospheric corrections. Since it is explicit
in some algorithms, it is necessary to review methods for its estimation and
their corresponding accuracy.

The methods may be separated in two classes: those based on satellite
measurements and those relying on external data (forecast models or
meteorological networks). Only methods that may be applied over land are
presented here.

2.4.2 Existing methods, applicability, and errors

Satellite estimates

The only method that can be applied to data of AVHRR channels 4 and 5
and does not require ancillary data is called the differential absorption
technique (introduced in the section on “The differential absorption method:
background”).

As explained above, the brightness temperature difference measured in
channels 4 and 5 is related to total atmospheric water vapor amount (Wv).
Different authors have tried to directly correlate this difference to Wv, fitting
radiosounding water vapor amounts to satellite data, but obtained very poor
correlation. The reason is that the radiance difference is also dependent on
surface emissivity and thus any relationship found is surface dependent, and
thus local (as shown by Choudhury et al. 1995).

Other methods to retrieve Wv have been proposed, which are based on
statistical analysis of the images. If we consider the case of a cloudless region
where the atmosphere is homogeneous, when the radiative transfer equation
is written for two neighboring pixels whose surface temperatures are different,
Kleespies and McMillin (1990) have shown that the ratio of the brightness
temperature difference at the two wavelengths R11,12 is equal to the ratio of
the transmittances balanced by the respective surface emissivities in the two
channels, that is:

(2.45)

The subscripts 11 and 12 refer to the split window channels, and i and j refer
to two neighboring pixels for which the surface temperature changes
measurably and have the same surface emissivity. Over land, these conditions
are rarely satisfied and the varying surface emissivities must be accounted
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for. Sobrino et al. (1993) obtained the following equation for this evaluation:

(2.46)

with

(2.47)

and

(2.48)

where Bλ(Ts) is the Planck function,δBλ (Ts)/ δT its derivative, and  is

the downwelling atmospheric radiation.
In the case where the surface emissivity differences between pixels may

be neglected, equation (2.45) is recovered. Sobrino et al. (1993) discussed
the order of magnitude of the ∆ε term in the case of adjacent surfaces with
different emissivities and the error introduced when the difference is
neglected. Their results show that the mean error increases with the
difference ∆ε and that for extreme cases (sand and sea over adjacent pixels),
it varies between 3% and 13% (depending on the surface temperature
difference), and being maximum for low-temperature differences between
pixels. Then, the mean value of R12,11 may be calculated over a zone where
the atmosphere is assumed to be homogeneous. By least-squares analysis,
the ratio may be written as

(2.49)

where the numerator and the denominator represent, respectively, the
covariance and variance of the brightness temperatures measured in the split
window channels and where T11j and T12j are two reference temperatures
that can be the mean temperature of the pixels considered.

As shown by Jedlovec (1990), Kleespies and McMillin (1990), Harris and
Mason (1992), and Sobrino et al. (1993), R12,11 (which is the ratio of the
transmittances in these two channels) is related to the water vapor (Wv) in
the atmospheric column by an inverse relationship, provided the total
transmittance due to the other atmospheric gases is assumed constant:

(2.50)
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where K1 and K2 are constants related to the absorption coefficients of the
atmospheric constituents. These authors have assessed this relationship
through regression between rawinsonde measurements and computed
transmittances ratios using radiative transfer models. Their results, however,
do not show a good agreement with rawisonde values, with differences on
the estimated water vapor greater than 50%.

Ottlé et al. (1998) also investigated this methodology, taking advantage
of two different AVHRR and ATSR databases containing coincident water
vapor measurements. They show that this method may be applied over land
with some precautions, in particular, the application of an accurate cloud
mask to eliminate all the cloud-contaminated pixels. In this case, the accuracy
obtained is less than 0.4g/cm-2. Since this technique is based on the calculation
of radiance variances around the pixel under study, it cannot be applied on
composite images.

Atmospheric water vapor may be also estimated from atmospheric
sounders like TOVS (HIRS-MSU-SSU) on NOAA satellites but because of
the poor accuracy of these retrievals near the surface and the poor spatial
resolution, the water profiles derived with these instruments are not accurate
enough and cannot be used to correct AVHRR channels (Ottlé and Stoll
1993).

In situ estimations

The atmospheric water vapor content is measured in the stations of the
worldwide meteorological network by radiosoundings, two times per day at
0 and 12UT. The accuracy generally attributed to relative humidity as given
by the radiosoundings is±2%. But in specific conditions, close to the saturation
(RH>90%), or for very dry atmospheres (RH<20%), this uncertainty may
locally reach±5% to±10% (Westwater et al. 1990). Such measurements are
local and, generally, are not simultaneous with the satellite pass. Consequently,
they cannot be used to correct most satellite images.

Meteorological models can also provide users with global maps of all the
atmospheric fields. The European Centre for Medium-range Weather
Forecasts (ECMWF) have archived global analysis and model-predicted fields
for about 20years at the grid scale of their model, which is about 1°×1° at
the equator. The nearest (in time and space) atmospheric water vapor profile
corresponding to the satellite measurement may be obtained from these data
and used for the atmospheric correction. The accuracy of such analysis/model
fields has been investigated by different authors. Phalippou (1996) noted
that the typical standard deviation of the first-guess relative humidity profiles
(comparison between forecasts and observations) is around 7%. Nerry et al.
(1998), using AVISO data archive provided by MeteoFrance, found slightly
larger errors of about 0.3 g cm-2, when comparing total atmospheric water
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content predicted to radiosounding measurements for seven Spanish
meteorological stations and ten different days (personal communication).
Since the analyses are available at 6-h intervals and at UT times, the time lag
with the satellite measurement may introduce an error. Nevertheless, we
conclude that meteorological models can provide the atmospheric water vapor
content needed with an accuracy better than 10%.

2.4.3 Conclusions

In conclusion, in most cases, the only possibility to obtain the total
atmospheric water vapor content necessary to apply the water vapor
dependent Split Window algorithms is to use the global fields provided by
forecasting models like those archived at ECMWF.

2.5 Intercomparison of algorithms’ accuracy and
efficiency

Based on material presented in Chapters 2, 3, and 4, an intercomparison of
the 21 algorithms was performed. This was done using two approaches. The
first one consisted in using RT code simulations with realistic and exhaustive
atmospheric profiles and surface conditions. The second method was
performed using ground and satellite actual data. This part was performed
using AVHRR data, as we wanted to show a practical example.

2.5.1 Simulations

In order to compare and test the different Split Window algorithms published
in the literature, a large database containing different atmospheric, surface
and viewing conditions associated with Brightness Temperatures (BT) at the
top of the atmosphere has been compiled. Here, only 20 algorithms were
compared as the 21st (Sobrino et al. 1994) is probably too complicated to
implement for this study.

Since it is not possible to find coincident LST and BT measurements for a
large range of situations, this database has been built by simulations of the
radiative transfer of the emitted surface and atmospheric radiances along
the path (surface-satellite) using a large set of radiosonde profiles: the TOVS
Initial Guess Retrieval (TIGR) database (Chédin et al. 1985). This data set
was compiled by the Laboratoire de Météorologie Dynamique (LMD) and
represents a worldwide set of atmospheric situations (1,761 radiosoundings)
from polar to tropical atmospheres, with varying water vapor amounts
ranging from 0.1 to 8 g cm-2.
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The TIGR database was used together with the MODTRAN3 radiative
transfer model to simulate the BT measured in the spectral channels 4 and 5
of the AVHRR radiometer on board NOAA-11 satellite for different
conditions. The varying conditions are:

1 different values of LST ranging around the air temperature measured at
the first level of the radiosounding, between Tlow-layer–5 K and Tlow-layer+10
K in steps of 5 K;

2 different values of AVHRR viewing angles: 0°, 20º, 40º, and 55º;
3 different values of the spectral surface emissivity: between 0.95 and 1

for channel 4. As a first step, a spectral difference of 1 % between channels
4 and 5 was implemented.

Comparison of the different available algorithms

The 20 algorithms selected have been compared using this database, called
TIGRMOD henceforth. The statistical results (biases, standard deviations,
correlation coefficients, linear regression slopes) on the whole database are
summarized in Table 2.2 and illustrated on Figures 2.3 and 2.4 They show
that three algorithms give better results than the others: they are Ulivieri et
al. 1992 (U94), Becker and Li 1995 (GRTR), and Sobrino et al. 1993 (So93),
and give the lowest standard deviations together with the lowest biases. They
all account for spectral emissivities and only one of them, the GRTR, accounts
for water vapor, as well as viewing angle. (For color schemes for Figures 2.3,
2.4, 2.6–2.12, see Appendix.)

A detailed analysis of the results by class of emissivity and class of viewing
angle yields the following observations:

1 The performance of all the algorithms degrades with increasing water
vapor amount.

2 The mean errors between LST retrievals and TIGR are generally greater
at high viewing angles than at the nadir, especially for high water vapor
amounts associated with increasing scatter.

3 A maximum error is observed between 0 and 1 g cm-2 for U94 and So93
is probably related to the method for deriving the empirical coefficients
(the influence of minor gases like CO2, where contributions is not
negligible for very low water vapor amounts, may not have been
accounted for in the radiative transfer simulations).

4 The performances of U94 degrades when the water vapor amount exceeds
4 g cm-2, leading to errors sometimes greater than 5 K.

5 So93 does not have a stable behavior and can give large errors greater
than 5 K in some atmospheric situations, especially for low surface
emissivities.
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6 In contrast, GRTR seems to have a very stable behavior, less accurate
than U94 at high viewing angles and high water content with maximum
errors never exceeding 5K whatever the value of the surface emissivity.
It also provides the best overall agreement with the TIGR data set for
the whole range of water vapor amounts and emissivity values.

The sensitivity of these algorithms to atmospheric water vapor content and
to surface emissivity has been investigated for estimating the order of
magnitude of the errors that may result from poor knowledge of these two
variables, when they are needed for the LST retrieval.

Notes
Data points: 140,880.
LST: algorithm retrieval.
TS: LST from TIGR.
1,761 atmospheres (TIGR).
Tlow-layer-5°<TS<Tlow-layer+10°.
0°<q <55°.
0.955<e<0.995 [e=(e4+e5)/2].

Table 2.2 LST comparisons (TIGR/retrievals)—statistics
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Sensitivity analysis to surface emissivity

We investigated first the sensitivity of the different models to surface emissivity,
which is the most influential parameter. For this purpose, we have introduced
in our simulations a linear dependence of the emissivity spectral difference
between channels 4 and 5, with channel 4 emissivity. According to analyses

Figure 2.3 LST retrievals comparison with TIGR global statistics (see Colour Plate II).
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of Salisbury’s surface emissivity databases, we assumed a difference ranging
from 3% (for ε4=0.95) to 0 when ε4=0.99 (Figure 2.5), as given by the
following equation:

(2.51)

Figure 2.4 LST retrievals comparison with TIGR global statistics (see Colour Plate III).
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Lower values of emissivities have not been used because too few few
observations were available (three samples) and no relation appeared between
ε4 and ε5.

The uncertainty on the estimation of surface emissivity has been first
evaluated. The GRTR experience allowed us to assume that the maximum
error on the emissivity is of the order of±2.5% for bare soils (which means
for emissivities lower than 0.97).

According to the spectral dependence applied to the surface emissivities
in channels 4 and 5, this maximum error finally ranges from±2.5% (for
0.95= ε=0.97) to±1.7% for ε=0.99, with the condition that the emissivity
never exceeds unity. This error may be understood as the uncertainty on the
surface emissivity (input value in the algorithm) but also as the variability of
this parameter inside the pixel.

The 20 algorithms have been tested and compared in terms of absolute
errors on the LST retrievals resulting from the given uncertainties on surface
emissivity. As expected, the error due to a poor knowledge of surface emissivity
is large, around 2 K, for dry atmospheres but does not vary according to the
humidity of the atmosphere in the same way for all the models. The error is
generally larger for the algorithms that account for the spectral value of the
emissivity (ε4≠ε5). For these simulations, we took a constant value for the
vegetation fractional cover (equal to 0.5) but, ideally, a variation of the
vegetation cover amount should have been performed.

The results indicate that the GRTR and WVD model behave as expected
theoretically, with an error decreasing when atmospheric water vapor content
increases. It can be noted that WVD model gives lower errors than GRTR.
The other algorithms show an opposite behavior for large water vapor
amounts, which has not yet been explained.

Figure 2.5 Emissivity difference between AVHRR channels 5 and 4 against channel 4
emissivity calculated from Salisbury’s emissivity database.
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If we compare GRTR, So93, and U94, we can note that GRTR is more
sensitive to an error of the surface emissivity, that So93 has a large dispersion,
and that U94 gives the lowest errors for water vapor amounts lower than 4
g cm-2 which is the range of variation of most atmospheres.

Sensitivity analysis to water vapor content

Finally, we analyzed the sensitivity of the algorithms to this parameter. The
sensitivity to water vapor amount is the sum of two terms: the error on the
input value of this variable for water vapor dependent algorithms (GRTR,
WVD, and Sobrino et al. 1991 noted So91), plus the error due to the
variability of this parameter inside the pixel. According to the previous
analysis (part 4), this error is at least equal to±5%.

Consequently, we calculated the absolute error on LST retrieval resulting
from a±5% error on the total water vapor amount Wv. This was achieved by
building a second database of simulated MODTRAN’s brightness
temperatures associated with LSTs.

As expected, the absolute error on LST retrieval related to water vapor
uncertainties is lower than the one linked to surface emissivity errors. The
errors are about twice as low on average. The best results are obtained for
the WVD algorithm, with errors lower than 0.5 K for water vapor lower
than 5g cm-2, but up to 1.5 K for very high water vapor amount, nadir
viewing, and low surface emissivity. This algorithm has a high standard
deviation of error when used on the whole TIGR database. Also, the WVD
algorithm has been fitted for the ATSR radiometer, which may explain part
of the deviation.

For the GRTR algorithm, the errors are always lower than 1.1 K whatever
the emissivity. The last water vapor dependent algorithm (Sobrino et al. 1991)
also shows low errors, smaller than 0.5 K, but with singular values around 4
g cm-2(up to 3 K).

Consequently, these water vapor dependent algorithms are sensitive to
the accuracy of the input value of Wv, and, in particular, the GRTR algorithm.

Conclusions

The total absolute error on LST, due to both water vapor amount and surface
emissivity errors (5% on Wv; varying on ε, depending on the emissivity value,
as explained in the section on “Sensitivity analysis to surface emissivity”),
has been estimated for the 20 algorithms. This error is defined by the following
equation:

(2.52)
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The results are presented in Figures 2.6–2.9. These figures show results for
each algorithm referred by a number (see Table 2.2):

1 The mean absolute error on LST by class of water vapor amount in 1 g
cm-2 steps for a surface emissivity (average of channels 4 and 5) of
0.9650 and 0.9837, and for two selected viewing angles: 0° and 55º.

2 The mean standard deviations associated with these errors.

These results allow us to draw a conclusion and identify the most suitable
algorithm for retrieving surface temperature. They show that the maximum
errors for U94 and So93 are obtained for high water vapor content and low
emissivities and are around 2 K (at the nadir) and 2.5 K (at 55º). They are a
little lower for GRTR. For dry atmospheres (Wv lower than 1 g cm-2) the
error is larger for GRTR (about 1.5 K in average) and decrease with Wv

becoming lower than 0.5 K for Wv greater than 3 g cm-2. On the contrary,
U94 and So93 show lower errors for Wv lower than 3 g cm-2(between 0.5
and 1.2 K for U94 and between 0.5 and 1.5 K for So93) and larger errors for
high values of Wv (even with a larger scatter for So93) as mentioned earlier.

In conclusion, the GRTR algorithm seems to give the best performances
but it is very sensitive to surface emissivity and to water vapor. Since these
parameters are known with uncertainties that are minimally of the order of
the values assumed in this study, algorithms independent of surface emissivity
and water vapor will perform better (smaller errors) than GRTR when these
parameters are not well known (usual case). Consequently, if the accuracy
on ε and Wv cannot be improved, it is better to use U94 or So93. Considering
the unstable behavior of So93, and the fact that it is more sensitive to
radiometric noise because of its quadratic term, we have a preference for
U94. The good performances of simple algorithms (Kerr et al. 1992) can
also be noted.

2.5.2 Intercomparison with actual data

In order to perform the intercomparison, we relied on existing data sets. As
far as ground data are concerned we have used all the Australian data sets,
and the Hapex-Sahel data set. We have collected a few others, but in most
cases they lack some of the inputs necessary to test all the algorithms. Even
the Prata data set was not complete for our specific purpose.

The quality of the results is much poorer that that given in Section 2.5.1.
This is, however, not a surprise as we are now dealing with actual data.
The pixels are not pure and the ground data representativity may be
questioned. This led us to scrutinize a bit more the ground data and we
found some noticeable caveats. First of all, as seen in Figure 2.10, some of
the results are systematically off whatever the algorithm, indicating a
problem more linked with the inputs than the method. It could be attributed



Figure 2.6 For the 20 algorithms, for θ=0 and an emissivity of 0.9650 absolute errors on LST
retrievals (mean values per water vapor category) resulting from an error on water
vapor and emissivity (see text) (see Colour Plate IV).



Figure 2.7 For the 20 algorithms, for θ=55 and an emissivity of 0.9650 absolute errors on LST
retrievals (mean values per water vapor category) resulting from an error on water
vapor and emissivity (see text) (see Colour Plate V).
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to either representativity of the measurements, a flaw in the measurements
or in the AVHRR data. The latter point was sorted out when validating the
algorithm. We found then that most of the errors were due to time
differences between ground and satellite data acquisitions. When editing
the data set by rejecting such points, the results improved slightly.

Figure 2.8 For the 20 algorithms, for θ=0 and an emissivity of 0.9775 absolute errors on LST
retrievals (mean values per water vapor category) resulting from an error on water
vapor and emissivity (see text) (see Colour Plate VI).
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The two previous analyses were performed using all the data available. If
we limit ourselves to data taken by the noon overpass we do not notice
drastic changes. This seems to show the robustness of the algorithms.

One of the big problems with such intercomparison is the actual time of
overpass, as with the high view angles, the time could be different.

Figure 2.9 For the 20 algorithms, for θ=55 and an emissivity of 0.9775 absolute errors on
LST retrievals (mean values per water vapor category) resulting from an error on
water vapor and emissivity (see text) (see Colour Plate VII).



Figure 2.10 Histograms (10-day composites) of view angles for different decades: (a)
latitudinal band 75–90ºN; (b) 65–75ºN; (c) 55–65ºN (see Colour Plate VIIIa-c).



Figure 2.10 (d) Latitudinal band 45–55ºN; (e) 3–45ºN; (f) 15–30ºN (see Colour Plate VIIId-f).



Figure 2.10 (g) Latitudinal band 15ºS-15ºN; (h) 55-l5ºS; (i) 90–55ºS (see Colour Plate
VIIIg-i).
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Globally all the algorithms give satisfactory results except maybe Tquad, Tppc,
and Tsob2. The results are summarised in Table 2.3.

These results require some comments. The quality of the retrievals is not
necessarily commensurate with the complexity of the approach. However,
some results have to be compared with care, as they are not necessarily
representative:

1 Several of the algorithms were “tuned” using the Australian data set:
thus, they should give better results in these tests than globally (they are
marked with an *).

2 Some algorithms were not tested fully due to a lack of necessary data
and/or due to their design. This applies especially to QUAD and WVD
(ATSR), and Sobrino 91 (τ was not always available). For Kerr et al.
(1992) we did not have the reflective channels, and thus the canopy
fraction was kept constant for each sub-dataset, probably inducing errors.

3 There are problems with the time difference between acquisition and
actual local solar time (not the case in Prata’s data set).

Table 2.3 Results obtained with the whole data set and the 21 tested algorithms
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2.5.3 Identif ied problems

Angular effects

Not including time of acquisition problem, two other types of angular effects
can affect the measurements:

1 Angular effects linked to the atmosphere (see Section 2.1.1).
2 Angular effects linked to the surface. For vegetation, angular effects due

to shadowing can be quite significant (Kimes and Kirchner 1983;
Lagouarde et al. 1995). As for the AVHRR, between acquisitions, the
viewing and solar angles can be significantly different; it may thus be
necessary to consider this effect. Without any tractable analytical model
for the angular effects available, several authors have used empirical or
simplified models (see Prata and Platt 1991).

Angular effects/models are generally established using ground measurements.
The validity of these ground-based models for heterogeneous surfaces and
AVHRR-type pixels is as yet unclear. Most probably, due to averaging effects
of the heterogeneous signals over the pixel, angular effects will be significantly
reduced, making such corrections more or less necessary, depending on the
surface type.

In order to show the amplitude of the angular variations; Figure 2.11
shows the range of view angles of AVHRR data. The data set used there is
the 1 km global AVHRR data set produced by the Eros Data Center (Sioux
Falls N Dakota) in the framework of the International Geosphere Biosphere
Program (IGBP) initiative. The data consist of 10-day maximum value
composites.

Figure 2.11 shows, for different latitudinal bands, the histogram of the
view angle. Each curve corresponds to a different decade and month. The
graphs are in the order of the latitudinal bands, that is 90–75ºN; 75–65ºN;
65–55ºN; 55–45ºN; 45–30ºN; 30–15ºN; 15ºN–15ºS; 15–55°S; 55–90ºS.

Several viewing directions tend to be dominant, varying with latitude and
season. For instance, for the first band (90–75ºN) the view angles are mainly
over –40º in July 92, while they are almost the opposite in September (+30°).
This implies that the actual solar time on the imaged pixel varies by about
150min in relation to the almost 70° change in viewing angle. Another point
worth mentioning is the regular spikes on many of the histograms. This
implies that there are features most probably linked to the compositing
scheme, done on a 10-day basis, close to the satellite repeat cycle. We finally
note that there are systematic differences between July 1992 and 1993.



Figure 2.11 Histograms (10-day composites) of the local solar time for different decades. x-
Axis is Local Solar Time: (a) latitudinal band 75–90ºN; (b) 65–75ºN; (c) 55–65ºN
(see Colour Plate IXa-c).



Figure 2.11 (d) Latitudinal band 45–55ºN; (e) 30–45ºN; (f) 15–30ºN (see Colour Plate IXd-f).



Figure 2.11 (g) Latitudinal band 15ºS-15ºN; (h) 55–15ºS; (i) 90–55ºS (see Colour Plate IXg-i).
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To depict the local solar time effect, Figure 2.12 shows for the same data
set the histogram of the local solar time of acquisition in identical format to
Figure 2.11. The most striking feature of this set of figures is the evidence of
the drift of the orbit, which amounts to about 1 h over 1 year. Other factors
might contribute to this apparent effect and exaggerate it. The actual time of
acquisition varies according to the orbit and view angle selected by the
compositing algorithm. In the worst case, one can acquire pixels with a local
solar time difference of up to 100 min.

Fractional vegetation cover

Vegetation cover is usually defined as the proportion of surface completely
covered by vegetation. In the infrared, the important considerations are first
the proportion of bare soil seen by the sensor and, within this, the proportion
of shaded and sunlit surfaces. There are consequently angular effects that
are also linked to the vegetation height and structure and depend on the

Figure 2.12 (A) Transects at longitude 70ºW for different decades: (a) July 1992 (red),
September 1992 (green), October 1992 (blue); (b) December 1992 (red), April
1993 (green), July 1993 (blue) (see Colour Plate XA).
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spatial distribution of vegetation, as the same fractional cover can give way
to very different behaviors.

Validation of satellite-retrieved surface temperatures

Validation of satellite sensors having a coarse resolution in thermal bands
presents several challenging problems. The problem of validation can be
summarized as follows:

1 The pixel size, even at nadir view, covers an area of about several square
kilometres (1.2 km2, for the AVHRR). It is thus almost impossible to
make measurements over such an area accounting for all the spatial
variability of the landscape. To overcome this problem, several initiatives
have been taken. The most obvious is to choose a validation site that is
several kilometers wide (at least 3×3 km), very uniform and perfectly
flat. Such an area does not exist, and additionally one would want to
have at least two such sites, one bare soil and one fully vegetated.
However, several approximations of such targets have been used, one in

Figure 2.12 (B) Transects at longitude 20ºE for different decades: (a) July 1992(red), Septem-
ber 1992 (green), October 1992 (blue); (b) December 1992 (red), April 1993
(green) July 1993 (blue) (see Colour Plate XB).
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Australia (see Prata 1993 and 1994), one in Southeast France (see Kerr
et al. 1992), and one in the United States (FIFE 1987, 1989). Another
approach, less reliable, consists in measuring the temperature over the
different elements constituting the observed area and weighting them by
the fractional area that they cover to have an estimate of a pixel’s
temperature. This approach was performed by Prince et al. (1995) and
Kerr et al. (1996) for HAPEX SAHEL. Such validation sites, to be
effective, should provide data not only on surface temperature but also
on emissivities and atmospheric composition, and thus require coincident
ground data acquisition.

2 The second and most difficult validation problem is related to temporal
sampling. LST is characterized by a very high temporal frequency. In
seconds, the surface skin temperature may change by several degrees
(wind, shadow, etc.). To overcome this problem ground radiometers often
integrate the temperature over several minutes. The satellite acquisition,
however, is done in a fraction of a second. In some cases the spatial
aggregation compensates the temporal variability, but this is not always
the case. Moreover, due to the integration times, which often vary between
10 and 60 minutes during field experiments, the ground measurements
cannot always be related to a single satellite overpass.

3 Finally, one could think of large targets of uniform characteristics to
perform validation. But they generally consist in either water bodies,
snow packs, or ice sheets, which display the emissivity problems and
very often specific atmospheric conditions.

In summary, an accurate validation is very unlikely for large-pixel sensors.
An improvement will be available once high-resolution sensors such as ASTER
provide high-resolution measurements compatible with ground data. The
next issue being then to upscale these high-resolution measurements.

Other issues

Some sensors (such as the AVHRR) may have saturation effects for high
radiances. This is particularly true for the AVHRR in the 3.7-µm band, as
well as in channels 4 and 5. We will not deal specifically with this problem,
as the new generation of sensors overcomes this limitation. Worth mentioning
are problems linked to the modulation transfer function of both the sensor
and the atmosphere. This problem, leading to somewhat “blurred images”
is not always fully assessed, especially as far as the atmospheric contribution
is concerned.

The last problem linked to the sensor characteristics is due to the scanning
acquisition mode. Apart from the local solar time problem mentioned above,
it also has an obvious effect on spatial resolution (hence the size and thus
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components of an observed target varies with time over heterogeneous areas),
as well as the emissivity (which is prone to show directional effects). These
two problems are not yet fully quantified and in many cases may not have a
significant effect on the retrieval.

Finally, with medium-resolution sensors, the problems of mixed pixels
complicate further interpretation of measured brightness temperatures. The
problem worsens with the cloud cover issue, and in many cases, the pixel
will be partially filled with clouds, leading to temperature retrieval colder
than that at ground level and not always easily detected. This is particularly
true for some cirrus-type clouds. With current sensors, the solution is to
apply sophisticated filtering methods using all the sensor channels. The next
generation of sensors should have spectral channels designed to account for
partially cloud-filled pixels.

To illustrate this point LST are plotted for two long transects in Figure
2.13. Even with the use of composited data (10-day composites), cloud cover
is not completely filtered out, requiring the use of more sophisticated cloud
identification algorithms.

These different points induce problems not only with compositing and
potential uses of the LST, but also with validation of retrieval algorithms.

Figure 2.13 Difference between algorithm output and ground measurements for the complete
data set used (see Colour Plate XI).
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2.5.4 Conclusion

Figures 2.14 and 2.15 depict the global results that support the conclusions
of Sections 2.5.1 and 2.5.2. The analysis performed with ground data does
not give, however, a clear-cut answer. So, to isolate the most efficient retrieval
algorithms, a two-step approach was thus performed. The first step consisted
in rejecting all the algorithms that did not satisfy a set of arbitrary criteria.
This step is designed to reject any algorithm having a flaw even if they provide
good overall statistics. The second step consisted in “classifying” the
remaining algorithms according to their accuracy.

The set of arbitrary criteria to reject algorithms is as follows:

1 The mean temperature difference should be less than 1 K. As some of
the algorithms tuned using Prata’s data set and ground measurements
are not always fully representative, this criteria seemed appropriate.

2 The standard deviation of error should be less than 1.75K (same
arguments).

3 The correlation coefficient should be better than 0.99.
4 The range (i.e. the maximum difference between ground measurements

and retrievals) should be less than 12 K. This last item was selected
rather arbitrarily to reduce the number of algorithms to five in the eight
left from the three previous criteria.

We are then left with five algorithms (numbers 1, 6, 10, 14, 15) that can be
sorted as follows by decreasing order of merit:

1 Mean Error 10, 1, 14, 6, 15
2 STD of error 6, 10, 15, 1, 14
3 Correlation coefficient 6, all the others equivalent
4 Range 10, 6, 1, 14, 15

We thus isolate Becker & Li (1990b) according to Sobrino, Kerr (1992),
Ulivieri (1992) and GRTR (1995). Taking into account the results from
Section 2.5.1, it is straightforward to recommend Ulivieri’s algorithm. A

Figure 2.14 Correlation coefficient between ground and AVHRR-derived LST for the 21 tested
algorithms. The statistics correspond to the data set taken between noon and 16 h
and after removing dubious data points.
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study by Vasquez et al. (1997) using a Spanish data set, and comparing five
algorithms, gives similar results, supporting our analysis. They found,
however, an interesting fact, algorithms 6 and 15 are statistically
indistinguishable. As they have different approaches, and 15 does not require
emissivity data, algorithm 15 is probably the most robust available.

2.6 Applications of land surface temperature

2.6.1 Introduction

It is thus possible to obtain daily values of land surface temperatures with an
accuracy of 2 K or better, depending on the knowledge of surface emissivity
and eventually atmospheric contribution. This statement applies to large
field-of-view/low-resolution sensors having suitable channels. With higher
spatial resolution sensors, having more thermal bands (such as the ASTER
instrument), one may expect to get a much improved retrieval accuracy.
However, spatial resolution is currently to the detriment of temporal sampling.
For many applications, low temporal sampling reduces the number of
observations and thus limits the application to the monitoring of phenomena
slowly changing or unchanging with time. Consequently, for many
applications daily coverage implies low-resolution sensors. We note that
several satellite missions consider the possibility of merging high spatial
resolution and temporal sampling, at the cost of a non-global coverage unless
a constellation of satellites is used. One such example is SEXTET (Lagouarde
1997). Another approach proposes satellites with a low inclination orbit
(i.e. Bird or Focus for instance).

Figure 2.15 Comparison between the different algorithms in terms of maximum differences
encountered and range of differences between ground and AVHRR retrieved with
all the algorithms tested and for data taken between 12 and 16 h.
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Considering the currently available data sets, we will concentrate our
discussion on AVHRR-type sensors.

Despite the feasibility of retrieving surface temperature, not many
applications are operational at this time due to several reasons, which we
will enumerate below.

2.6.2 Issues

Frequency of acquisition

Land surface temperature is a very highly variable quantity. Ideally, for many
applications (fluxes, hydrology, etc.) it is necessary to capture the diurnal
cycle or at least a sufficient number of measurements to characterize it.
Geostationary satellites (GOES, METEOSAT) allow such monitoring, but
until fairly recently the thermal channels were not adapted to an accurate
temperature retrieval (spectral bands and calibration). Moreover, the spatial
resolution was of the order of 5 km. The new generation of meteorological
satellites is much better suited and should stem the development of
applications. Work by Anderson et al. (1997) and Mecikalski et al. (1999)
show how GOES data can be efficiently put to use to take advantage of the
high frequency of acquisition merged with AVHRR data.

Polar orbiting satellites (NOAA/AVHRR, ERS/ATSR) do not allow to track
well enough the diurnal cycle as their acquisition time are not necessarily
optimal.

Cloud cover

When the sky is overcast, surface measurements are impossible. Consequently,
the user will only access cloud-free measurements, implying that the data set
will be biased. This is a serious issue, which can be worsened by the use of
composited data (as depicted in 2.7.1). To address this problem several
approaches have been identified:

1 The simplest remedy is to apply an empirical correction factor. This is
obviously bound to fail in many instances and cannot be considered as a
proper approach.

2 A more realistic approach consists in merging geostationary satellite data
to be able to monitor the diurnal cycle and thus interpolate missing
data. This method, however, requires large amount of data processing,
and a good knowledge of the cloud radiative characteristics so as to be
able to compute the energy budget at the surface (Anderson et al. 1997;
Mecikalski et al. 1999).

3 A third method relies on the use of passive microwave data such as the
19-GHz SSM/I (Special scanning microwave/imager) channel. As passive
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microwaves are much less sensitive to atmospheric conditions, including
cloud cover, they allow all-weather monitoring of the surface. However,
the retrieval accuracy in the microwave is generally inferior to the thermal
infrared. This is due to the effect of surface characteristics (roughness,
moisture), which have a large influence on the emissivity. Moreover, the
microwave signal probes the soil over a thickness linked to the wavelength
used and vegetation is not totally opaque. Consequently, the temperatures
retrieved in the microwaves and in the infrared are not directly
comparable. To overcome these problems a “calibration” of the passive
microwave signal is performed when thermal infrared is available to
adjust for changes in microwave surface emissivity and vegetation cover.

4 The most promising approach is based on the so-called “data assimilation
techniques” similar to what is done in meteorological models. A model
is run continuously, with the surface temperature as an output, and
whenever satellite data are available, the retrieved and computed values
are compared and any discrepancy corrected by modifying the related
variables/parameters. Such an approach, if based on sound models,
enables a continuous and reliable monitoring of surface temperature,
thus addressing frequency of acquisition in spite of cloud cover (Cayrol
et al. 2000).

What is surface temperature

The most important issue when dealing with satellite surface temperature is
to know what the radiometric temperature measurements correspond to the
aerodynamic temperature used in flux computation for instance. In other
words, how the two temperatures relate. Several authors have addressed the
problem of the definition of the surface temperature (Norman et al. 1994).
The “aerodynamic” surface temperature is the one appearing in the bulk
transfer equations and is imposed by the equilibrium of the different energy
exchanges at the surface at any moment. It may differ by several degrees
from the “radiative” temperature as measured in the thermal infrared by
satellite (Chehbouni et al. 1997b). This largely depends on the structure of
the canopy, and on the vertical distribution of temperature inside it.
Consequently, when using thermal infrared data for assessing fluxes, one
has to take into account the extra resistance linked to heat transfer in
aerodynamically rough surfaces (Norman and Becker 1995). A correction
factor the so-called kB-1 has thus to be applied (see the workshop on thermal
remote sensing proceedings—1993, for more details) but the distinction
should be made between the real aerodynamic kB-1 (Norman and Becker
1995) and the empirical one used to correct for view angle and other situation
dependent effects.
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Scale effects

Finally, surface temperature and related fluxes are not linearly related. When
comparing ground data and satellite data, or when using satellite data in
models, this factor has to be taken into account (Chehbouni et al. 1995).
This problem has been addressed (see Stewart et al. 1996), but clear-cut
answers are not yet available and more work is still required.

2.6.3 Potential applications

In this section, we will give a quick outlook of several applications, either
proven or in the definition stages as the main ones are covered in the other
chapters.

Geology

Several authors have investigated the potential use of thermal infrared for
applications in geology and in particular looking at the thermal inertia of
surfaces. They showed that in geology several applications are possible,
provided multispectral data are acquired. This led to the ASTER concept.

Several other applications emerged, such as the monitoring of volcanoes
(Bonneville et al. 1985, 1987). In this case, the thermal anomalies on the
slopes of a volcano are detected as forerunners of eruptions. The approach is
certainly interesting but requires frequent monitoring with a high spatial
resolution.

Evapotranspiration, sensible heat f luxes

Several authors concentrated on the derivation of evapotranspiration and or
rainfall monitoring using a simplified approach (Kerr et al. 1989; Seguin et
al. 1989). It was found that these methods had several inherent limitations
due to the influence of surface roughness and wind speed, as well as problems
linked to the cloud cover. More sophisticated methods are now being
investigated (Seguin et al. 1994; Chehbouni et al. 1997a).

Spring frosts

Spring frosts occur when radiative cooling is high (i.e. no clouds).
Consequently, there are no clouds and provided the nocturnal temperature
decrease can be estimated (one or two measurements between sunset and
before sunrise) the areas prone to freezing can be identified and the
information relayed to the field owners so that they can take the necessary
steps to protect their crops in a timely manner and only as necessary (Kerr et
al. 1983; Kerdiles et al. 1996). Similar methods have been used to estimate
the damage during abnormally cold events (Choisnel et al. 1987). Recently,
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François et al. (1999) have proposed a methodology to link the AVHRR
radiative temperature measured at 2 am to minimum air temperature and
frost risks over the Bolivian Altiplano. This method is based on empirical
relationships between series of AVHRR data and meteorological station data
coupled wirth a classification of the area.

Fires

It is well known that when a 3.7-µm band is available, active fires can be
detected. This capability is now widely used (see the ATSR fire atlas for
instance). Authors have also investigated the possibility of early warning of
fire risks, essentially in the Mediterranean area. The concept here is to build
a water stress indicator based on the difference between air and surface
temperature and couple it to meteorological forecasts (wind mainly). From
this information, it is possible to derive maps of areas where risks are high.
It is also possible to analyze the surroundings of burning area to estimate in
which direction the fire is most likely to propagate and estimate its speed.

Regional hydrology and “drought indices”

It was found that by cumulating the difference between surface temperature
and air temperature a climatic index could be retrieved. This information is
useful to estimate drought extent or to analyze climatic trends at a regional
level (Courault et al. 1994; Savane et al. 1994).

Novel approaches

Recently, with the availability of the directional measurements of the ATSR,
several authors investigated several new applications. One of them relies on
the use of the directional measurements to assess both surface and canopy
temperatures (François et al. 1997). The theoretical aspects have been
demonstrated but practical use is still under investigation. Applications in
crop yield prediction are also currently being investigated.

2.6.4 Conclusion

Research work carried out in approximately 15 years have shown that many
applications of thermal infrared data are possible. Due to the problems
associated with LST retrievals, very few are in operational use now. However,
with the emergence of a new generation of satellite sensors and of dedicated
space missions, and advances in the understanding of physical phenomena,
in a very near future many new applications may emerge on an operational
basis.



90 Yann H.Kerr et al.

2.7 Impact of compositing on relevance of
surface temperature

2.7.1 Simulation of LST composites

Most work performed in the domain of the thermal infrared has been done
using instantaneous values of surface temperature measured in the early
afternoon, around 14.00 UT. So as to overcome cloudy conditions, the
maximum value composite method has been developed. It consists of selecting
over a given period of time (typically 10-days), on a pixel-per-pixel basis, the
data corresponding to the highest vegetation index value. However, the use
of a composite LST first requires evaluating the physical meaning of such
data for various applications (estimation of actual evapotranspiration,
monitoring of water stress, etc.). In the following, we will analyze the impact
of using such composites for typical applications of thermal infrared.

We based a study on simulations performed with an agrometeorological
model, MAGRET, a soil-plant-atmosphere transfer model. A description of
the model can be found in Brunet et al. (1996). It runs with standard input
meteorological data (either at daily scale with a statistical reconstruction of
hourly data, or directly with hourly data provided by automated stations). It
predicts surface fluxes and surface temperatures on an hourly time step.
This model couples the classical equations of the turbulent transfers in the
atmosphere with a simplified soil water budget based on a two-reservoir
system. The surface temperature is computed as the solution of the non-
linear energy budget equation.

We present results obtained from simulations performed with INRA
meteorological hourly data recorded at Bordeaux for the years 1993–6. The
surface considered is a “standard” grass (as in meteorological stations) with
constant roughness (2cm) and LAI (3).

The criteria for extracting the composite LST here consists of the selection
of the Ts value corresponding to the maximum of sunshine fraction along
the 10-day period considered. The sunshine fraction is defined as the ratio
between the global solar radiation measured on the weather station and the
theoretical value corresponding to a clear day (the latter being estimated
statistically with a sunshine fraction equal to unity). This criterion obviously
differs from the one based on the maximum NDVI value. Nevertheless, it
seems reasonable to assume they are equivalent, the maximum NDVI
generally being obtained for the most clear atmospheric conditions.

For some particular meteorological conditions or for some regions
(northern countries, equatorial zone, etc.) significant cloud cover may result
in missing composite data. The number of missing data will obviously depend
on the nature of the criteria imposed for selecting the composite LST. As an
example, we have computed for Bordeaux the percentage of days displaying
a sunshine fraction greater than a given threshold at different times.
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The results at 14.00 UT are given in Table 2.4. They have been established
using 17 years of meteorological data, only 4 years being hourly data (for
the other years, hourly data have been statistically rebuilt). They must,
therefore, be considered with care. Nevertheless, it can be seen that summer
months offer the greatest probability of clear conditions (90% of days with
a sunshine fraction higher than 0.80 in July and August, for instance), whilst
in winter data are sometimes missing.

Another composite product easy to derive consists in the maximum LST
over 10-day periods. Its potential will also be very briefly analyzed here.

2.7.2 Temporal evolution of composite LST

In order to describe the significance of the different “temperatures” with
regards to the maximum vegetation index 10-day composite, Figure 2.16(a)
displays the evolution throughout the years 1993–6 of:

1 The composite LST retrieved at 14.00 UT ( ), which is a good
approximation of the AVHRR composite retrieval.

2 The mean surface temperature over the 10-day period ( ), which could
be related to the “average” temperature over the 10-day period.

3 The absolute maximum Ts over the same period ( ).

We notice that  most of the time strongly differs from the two other LSTs,
the difference being approximately 3K (absolute value), with important
fluctuations reaching up to 10 K (Figure 2.16(b)).

Table 2.4 Frequency of days with a sunshine fraction higher than a given value for the different
months for a 14.00 UT acquisition time (Bordeaux data, 1980–6)
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2.7.3 Potential applications to the estimation of actual
evapotranspiration using semi-empirical models

One of the applications of surface temperature is the derivation of actual
daily evapotranspiration. The semi-empirical methods (Lagouarde 1991;
Lagouarde and McAneney 1992; Lagouarde et al. 1996a,b) based on the



Figure 2.17 Relationships between AETd—Rnd (in equivalent mm of water evaporated) and Ts—Ta.
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use of statistical relationships relating the difference AETd—Rnd (between
daily actual evapotranspiration and net radiation) to the instantaneous value
of Ts—Ta (difference between surface and air temperatures in the early
afternoon, at 14.00 UT) provide a reasonable accuracy when used at a 10-
day scale (or more) basis with mean values of LST and air temperature (Figure
2.17(a)). They require daily observations, their use however, is limited by
the lack of LST satellite data for cloudy conditions. Despite the filtering of
clouds it can perform; the composite LST does not seem suitable to flux
estimation directly: as a matter of fact, it can be seen in Figure 2.17(b) and
(c) that the scatter on the relationships strongly increases when  is
combined with an air reference temperature that can be either the air
temperature simultaneous with the composite  (but this practically
requires using the date of the composite) or the mean air temperature at
14.00 UT over the 10-day period, . Thus, a quantitative assessment of
actual evapotranspiration at a 10-day scale seems prone to be too large an
error. The possibility of reducing the scatter by performing integration over
longer periods (typically the month scale) is still to be explored.

2.7.4 Application to climatic conditions monitoring

Use of cumulated differences between air and
surface temperature

The cumulated differences Ts—Ta over periods ranging from a few months to
1 year have been extensively used for a global characterization of water
conditions at the regional scale (Seguin et al. 1991). Figure 2.18 displays
classical results: the comparison for the four studied years between the
cumulated evaporation (ΣAETd, Figure 2.18(a)) or sensible heat flux (ΣRnd—
ΣAETd, Figure 2.18(b)) and the cumulated mean Ts—Ta at 14.00 UT, —

(Figure 2.18(c)) on a 7-month period (March-September) clearly
illustrates the fact that the “driest” years correspond to both low ΣAETd and
high Σ( — ). This is not surprising, being in fact another representation
of the plot in Figure 2.17(a).

The classification 1995–1993–1996–1994 of decreasing drought status
does not appear as clear when using composite LST, the “hierarchy” between
curves changing (Figures 2.19–2.22). For Figures 2.19–2.21, mean values
over 10-day periods are considered for the reference air temperature. These
have the advantage of being easily available from meteorological data. One
may think that the advantage of the mean air temperature  (average value
of 10 mean daily air temperatures) is to display less spatial variability than
the mean air temperature at 14.00 UT ( ) or the mean maximum value
( ). This is important for practical applications, as the air temperature is
available only at the 1° square grid. In Figure 2.22, the instantaneous value
of air temperature, , at the time of the composite Ts has been considered.
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It appears that the difference between 1995 and 1996 is always clearly
characterized. The use of  (Figure 2.21) seems best suited for characterizing
years 1994 and 1996, which are quite comparable (see Figure 2.18). The
difference appearing between these two years when using 

Figure 2.18 Comparison of cumulated f luxes and Σ( ) for 1993–6.
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and can be explained by inter-annual variations in meteorological conditions
influencing the compositing process: Figure 2.23 displays the time-evolution
of the sunshine fraction corresponding to the dates of extraction of , and
illustrates the fact that in 1996 (characterized by lower fraction values), most
of data are likely to be affected by atmospheric cloudiness or haze.

Figure 2.19 Evolution of Σ( ) over the period March-September for 1993–6.

Figure2.20 Evolution of Σ( ) over the period March-September for 1993–6.
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Another possibility for the differences could also lie in the relative dates of
composite Ts and rainfall events: important differences on —for the same
10-day rainfall and evapotranspiration—might result from the fact that 
would be acquired more often in the beginning (before rain) or at the end
(after rain) of the period. The dates of composite Ts and of rains have been

Figure 2.21 Evolution of Σ( ) over the period March-September for 1993–6.

Figure 2.22 Evolution of Σ(  ) over the period March-September for 1993–6.
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compared in the present case and no systematic effect has been noted (Figures
2.24 and 2.25). The effect of wind speed, which could influence the transfer
coefficient and consequently the difference Ts—Ta for the same values of
surface fluxes, could also be invoked: Figure 2.26 displaying the temporal
evolution of mean wind speed for years 1994 and 1996 led us to eliminate
this explanation.

In the particular case studied, the use of the air temperature acquired
simultaneously to the composite LST seems less interesting, the hierarchy
between the four years 1993–6 being strongly affected (Figure 2.22).

The interest of the maximum LST, which is another composite product
easy to build, has not yet been evaluated in detail. We only present here the
evolution of the cumulated —  (Figure 2.27): confusion appears between
years 1993 and 1996, despite their different water budget status. On the
other hand, the characterization of the three other years seems reasonable.
Further work is necessary to evaluate the potential of .

These observations are very preliminary. They have to be checked on other
sites and for a large range of meteorological conditions and surface conditions
(particularly roughness length). Moreover, possible methods for correcting
and normalizing the cumulated values of Ts—Ta from errors (such as inter-
annual variations of meteorological conditions) need to be defined.

Use of cumulated LST

Despite the differences, Ts—Ta are best suited for monitoring the water status
of surfaces and it is interesting to analyze the potential of cumulated LST.

Figure 2.23 Comparison of sunshine fraction at 14.00 UT (time of LST composite) for 1994
and 1996.
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Figures 2.28 and 2.29 display the cumulated and , respectively. Here
again some features of the evolution of surface fluxes can be found. In both
cases, the “driest” year, 1995, displays high values of STs from the period 13
and can easily be distinguished from other years (the evolution of fluxes shows
a drought beginning around period 8, see Figure 2.18). For 1993, drought

Figure 2.24 Dates of composite LST and rainfall for 1994.

Figure 2.25 Dates of composite LST and rainfall for 1996.
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occurs later around period 16, which can also be noticed on Σ  and Σ .
But some differences remain between Σ  and Σ  at the end of the season
for 1994 and 1996, which does not correspond to differences of fluxes.

Figure 2.26 Comparison of windspeed from March to September for 1994 and 1996.

Figure 2.27 Evolution of Σ( ) over the period March to September for 1993–6.
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2.7.5 Concluding remarks and further work

These preliminary results indicate that the composite LSTs cannot directly
replace instantaneous values of surface temperature in the methods previously
developed for monitoring water conditions. Nevertheless, the simulations
performed (over Bordeaux) on a limited data set (1993–6) show that composite

Figure 2.28 Evolution of Σ  over the period March to September for 1993–6.

Figure 2.29 Evolution of Σ  over the period March to September for 1993–6.
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Ts (derived on a criteria of maximum sunshine fraction, assumed to be
comparable to the one based on NDVI maximum) combined with mean values
of air temperature (mean Ta, or mean , or mean  can provide information
on the water status of the surface in some conditions. In some cases, however,
the composite LST cannot be used directly and appears unable to characterize
some years satisfactorily. Additional work is necessary to understand the
reasons of such problems (cloud cover, temporal repartition of rains, effect of
wind speed, etc.), and methods will have to be developed in the future to
correct, if possible, these effects.

In the future, simulations should be generalized to other locations. They
should seek to perform not only inter-annual comparisons as it has been
done here for Bordeaux, but also to evaluate the potential of composite LST
(maximum NDVI derived as well as maximum LST) for characterizing the
spatial variability in surface water status.

2.8 Conclusions and perspectives

The results presented in this chapter show that retrieving surface temperature
from space is not a straightforward operation, and issues and caveats have
to be dealt with. It seems that we now have fairly good algorithms, and that
in the near future, with the new generation of sensors, even better retrievals
can be expected. The main issues are linked to a better knowledge of surface
spectral emissivities and improved methods to take into account cloud cover
and mixed pixels/aggregation issues.

Future improvements are thus closely linked with the availability of
accurate and global fields of surface emissivity, a better modeling of scaling
effects, and the use of assimilation models or improved and adapted
compositing methods.

More challenging is the fact that apparently the MVC does not give
necessarily cloud-free pixels and that cases of clouds are not always detected.
Future improvement will rely on the use of:

1 a more sophisticated compositing method;
2 better identification of cirrus and scattered clouds;
3 additionally, the separation cloud/snow/ice with added dedicated

wavelengths would greatly improve the products.

Validation of retrieved surface temperature may also be an issue for large
pixels. The development of new ground techniques such as the scintillometry
(Lagouarde et al. 1996) might provide the community with an improved tool.

Once these different steps are done it can be expected that thermal infrared
will prove to be a most efficient tool for a wealth of applications in various
domains. The added capabilities of the next generation of sensors (angular
measurements, multispectral aspects, etc.) will provide added opportunities.
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Appendix

Color scheme for figures: 2.3, 2.4, 2.6–2.12.

Algorithms #:

1 GRTR (1995)
2 Becker and Li (1990b)
3 Prata and Platt (1991)
4 Price (1984)
5 Ulivieri and Cannizzaro (1985)
6 Ulivieri et al. (1992)
7 Sobrino et al. (1993)
8 Sobrino et al. (1991)
9 NESDIS(1992)

10 Becker and Li, acc. to Sobrino (1990)
11 Prata and Platt, acc. to Caselles
12 Prata and Platt, acc. to Sobrino
13 Price, acc. to Sobrino
14 Ulivieri et al. acc. to Sobrino
15 Kerr et al. (1992)
16 Vidal (1991)
17 Coll et al. (1997)
18 Ottlé and Vidal-Madjar (1992)
19 WVD (1996)
20 QUAD (1996)
21 Sobrmo et al. (1994).

Color scheme

0 <W
v

<1 pink
1 <Wv <2 blue
2 <W

v
<3 green

3 <Wv <4 yellow
4 <Wv <5 red
5 <Wv <6 black (solid)
6 <Wv <8 black (dashed).
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Chapter 3

High spatial resolution mapping
of surface energy balance
components with remotely
sensed data

Karen Humes, Ray Hardy, William P.Kustas,
John Prueger and Patrick Starks

3.1 Introduction

3.1.1 Background

In order to better understand the exchange of heat and moisture between the
land surface and lower atmosphere, it is important to quantify the components
of the surface energy balance in a distributed fashion at the landscape scale.
Remotely sensed data can provide spatially distributed information on a
number of key land surface characteristics and state variables that control
the surface energy balance. When combined with near-surface meteorological
measurements and a relatively simple model, satellite and aircraft-based
remotely sensed data can be used to create “maps” of spatially distributed
surface energy balance components over a watershed. Assuming no advection
of energy into an area, the simplest form of the surface energy balance is
given by

(3.1)

where Rnet refers to the net radiation balance, G refers to the soil heat flux
(i.e. the energy used to warm the near-surface soil layers), H refers to the
sensible heat flux (the energy used to transfer heat from the surface to the
atmosphere), and LE refers to the latent heat flux (the energy used to transfer
water vapor from the surface to the atmosphere).

The influence of the land surface energy fluxes on regional and global
atmospheric processes has become well recognized in the climate and
meteorological modeling communities (e.g. Avissar and Pielke 1989; Chen
and Avissar 1994; Betts et al. 1996). This has given rise to the development
of quite a number of more sophisticated parameterizations for simulating
land surface processes within mesoscale and global atmospheric models
(Dickinson et al. 1986; Sellers et al. 1986; Entehkhabi and Eagleson 1989;
Noilhan and Planton 1989; Avissar and Verstraete 1990; Xue et al. 1991).
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The use of these schemes within atmospheric models has helped to improve
the performance of both regional and mesoscale atmospheric models.
However, most of these models, referred to as soil-vegetation-atmosphere
transfer (SVAT) models, require a priori knowledge of a considerable number
of surface parameters and detailed information for initialization. They also
require pertinent ground data and substantial human effort for model
calibration. Additionally, when complex point-scale models are run within
the context of mesoscale or global atmospheric models, the grid cell resolution
is generally on the order of hundreds to thousands of meters in size. Many of
the key parameters and variables in the complex physically based models
would be expected to vary considerably within grid cells of that size.

3.1.2 Objectives of this study

The primary objective of this study is to demonstrate the feasibility of using
high spatial resolution remotely sensed data, combined with driving
meteorological data from a ground network and a relatively simple model,
to compute spatially distributed values of surface energy balance components.
The model employed here is a relatively simple “snapshot” model. That is, it
does not simulate any of the processes as a function of time; rather, it uses
satellite and ground data to estimate the fluxes at the time of the satellite
overpass. Almost all the model parameters and variables used by the model
(such as surface temperature, land cover type, and vegetation density) are
estimated from remotely sensed data. The meteorological inputs required by
the model were derived from a ground network. This approach has the
advantage of being very “data driven” and the model does not need to be
calibrated or “tuned” for a particular site. Thus, the fluxes estimated from
this approach can be useful for validation or assimilation into more complex
simulation models.

The model was applied on a pixel-by-pixel basin across a watershed in
a sub-humid climate zone. Although surface fluxes have been previously
mapped using these types of approaches (Moran et al. 1990; Holwill and
Stewart 1992; Humes et al. 1997), this study represents the application of
a more complex (two-layer) model over more heterogeneous land cover
types than these previous efforts. Additionally, the watershed studied here
has a special instrumentation network that makes possible more detailed
spatial analysis of the factors influencing the surface fluxes. The motivation
for applying this model at relatively high spatial resolution over the
watershed is twofold: (a) at higher spatial resolution the approach is more
easily validated using ground-based point measurements and (b) mapping
the fluxes at high spatial resolution allows an evaluation of the relative
importance of various surface face and atmospheric variables in determining
the surface face fluxes.
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3.2 Study area

The USDA/Agricultural Research Service (ARS) Little Washita Watershed
(LWW), operated by the ARS Grazinglands Research Station, is located in
central Oklahoma. The land cover types present in the watershed include a
mixture of cultivated areas (primarily winter wheat, soybeans, alfalfa, and
corn), pastures with native grasslands and non-native species, varied
management practices, and (depending considerably on climatological variables
that vary considerably from east to west) wooded areas. The LWW has also
been the site of several special experimental campaigns involving the
simultaneous acquisition of ground and remotely sensed data. The watershed
was a US Supersite for the SIR-C (Shuttle Imaging Radar) Experiments in
1992 and 1994. The SIR-C experiments became the focal point for one field
campaign in 1992 and three field campaigns in 1994 which included many
different ground measurements, as well the acquisition of many types of
remotely sensed data from ground, aircraft, and satellite-based sensors (Jackson
and Scheibe 1993; Starks and Humes 1996). Remotely sensed data sets included
passive microwave, active microwave, and optical sensors.

Among the many special ground observations acquired during these
campaigns were the measurement of surface energy fluxes by Bowen ratio
and eddy correlation techniques (Prueger 1996; Kustas et al. 1999). These
ground-based measurements were used for validation of the surface energy
fluxes produced by this modeling effort. Observations also included
groundbased radiometric measurements of surface reflectance and
temperature. These were acquired with a backpack-type apparatus that
facilitated the acquisition of ground data over a large, relatively uniform
target area at the time of the Landsat satellite overpass. These data were
used to validate the atmospherically corrected radiometric surface
temperatures derived from satellite data. Additionally, the ARS operates the
Micronet network in the LWW, which consists of 42 monitoring stations on
a 5-km grid. These stations record meteorological variables such as incoming
solar radiation and near-surface (1.8 m) air temperature and relative humidity.
These measurements were used for meteorological input to the model.

The data sets used in this analysis were from the August 1994 field
campaign on the CWW. A false color composite image from Landsat 5
Thematic Mapper (TM) data acquired on August 18, 1994, is shown in
Figure 3.1. In this image, the data from the TM band 4 (near-infrared) are
displayed as red, data from the TM band 3 (red) are displayed as green, and
data from the TM band 2 (green) are displayed as blue. In August, the winter
wheat fields are typically bare and thus appear bluish green on the false
color composite image. It can be observed from the image that these areas
are most extensive in the western portion of the watershed. The bright red
areas of the image correspond to riparian vegetation along drainage areas,
the relatively small watershed area corresponding to cultivated crops that
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are green at this time of year (such as corn and alfalfa), and, to a lesser
degree, the spatially extensive pastures of various density and species
composition.

In the early morning hours of August 18, a relatively intense thunderstorm
moved through the watershed. The cumulus clouds that can be seen in Figure
3.1, and the cirrus cloud contamination over a portion of the watershed
evident in the thermal band, were remnants from that storm. The system
moved out of the watershed region approximately 1 h before the image was
acquired.

3.3 Model description and implementation

3.3.1 Model description

The model utilized here is described in detail in Norman et al. (1995). It is a
two-source model, meaning that separate energy balance computations are
done for the soil and vegetation layers of the surface. It was run on a pixelby-
pixel basis to compute spatially distributed energy fluxes over the LWW
during the time of the Landsat TM overpass during the August 1994 field
campaign. A diagram of model inputs and outputs is shown in Figure 3.2.
The conceptual model formulation is summarized here.

The four components of net radiation are quantified as follows: (a)
incoming solar radiation is a model input typically provided by ground

Figure 3.1 False color composite image from the Landsat TM sensor for the LWW from
August 18, 1994 (see Colour Plate XII).
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measurements; (b) outgoing solar radiation is computing using incoming solar
radiation and assumed values of surface albedo f or dif ferent land cover
types; (c) incoming longwave radiation is estimated using ground-based
measurements of air temperature and relative humidity and an empirical
expression for clear sky conditions (Idso 1981); (d) outgoing longwave
radiation is computed using the surface temperature from the satellite data
and an assumed emissivity of 0.98. It should be noted that for some
“snapshot”type models for estimating fluxes, surface albedo is calculated
using empirical functions that relate surface hemispherical albedo to
reflectance in the finite wavebands of the Landsat TM sensor. This approach
was not utilized in this application because of uncertainty in the atmospheric
correction of the satellite data to absolute surface reflectance.

The net radiation at the surface is partitioned between the soil and
vegetation layers using a typical “Beers law” formulation. The exponent in
this relationship is controlled by an estimate of the fractional vegetation
cover (which is estimated from remotely sensed data in the manner described
in more detail below), and an assumption of spherical leaf inclination angle
distribution. Soil heat flux is assumed to be a constant fraction (0.35) of the
net radiation reaching the soil.

The total sensible and latent heat fluxes are simply taken to be the sum of
the vegetation and soil contributions. Those contributions are determined

Figure 3.2 Conceptual diagram of the input and output quantities used for the application of
the Norman et al. (1995) model to data from the August 18, 1994, Landsat scene
over the LWW.
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by doing a separate surface energy balance on the soil and vegetation layers
and assuming that the flux of heat from the soil and vegetation layers act in
parallel. This gives rise to a simpler resistance formulation than some multi-
layer models (e.g. Shuttleworth and Wallace 1985; Xue et al. 1991), but
several studies have shown that for low to moderate vegetation cover, the
various levels of complexity in resistance networks are indistinguishable
because air temperature gradients are small in the upper canopy (Norman
and Campbell 1983). The key to estimating both contributions to the sensible
heat flux is in the decomposition of the radiometric surface temperature
(Trad), derived from satellite observations, into soil and vegetation components
using

(3.2)

where Tc is the vegetation canopy temperature, Ts is the soil surface
temperature, n is the power of the temperature and approximates the
blackbody function when considered over the entire wavelength of the sensor,
θ is the view angle of the sensor, f(θ) is the fraction of the field of view of the
radiometer occupied by canopy and is given by

(3.3)

where F is the leaf area index.
At the value of θ=0:

(3.4)

where fc is the fractional vegetation cover.
The component surface temperatures and the turbulent flux components

for the soil and vegetation layers are derived using a series of steps that
sometimes require iteration. In the following equations, the symbols Rnet,c,
Hc, and LEc refer to the canopy portion of the net radiation, sensible, and
latent heat fluxes, respectively, and the symbols Rnet,s, Hs, and LEs refer to the
soil contribution to the net radiation, sensible, and latent heat fluxes. First,
an approximation for the canopy portion of the latent heat flux is estimated
using a Priestly and Taylor (1972) type formulation with the canopy portion
of the net radiation:

(3.5)

where fg is the fraction of the vegetation cover which is green, s is the slope
of the saturation vapor pressure versus temperature curve, γ is the
psychrometric constant (0.66 kPa C-1).



116 Humes et al.

The sensible heat flux of the canopy layer is then computed as the residual
in the energy balance for the canopy layer:

(3.6)

The canopy temperature is then estimated by inverting the equation for a
simple resistance formulation for sensible heat flux from the canopy:

(3.7)

where Tc is the surface temperature of the canopy, Tair is the near-surface air
temperature and rah is the aerodynamic resistance. The formulation for the
aerodynamic resistance is derived from the diabatically corrected log
temperature profile equations (Brutsaert 1982). The roughness lengths used
in the calculation of aerodynamic resistance were set according to the land
cover type as shown in Table 3.1.

Using this approximation for Tc and the satellite measurement of Trad,
equation (3.2) is used to solve for Ts, the soil temperature. This value of Ts is
used to calculate the soil contribution to sensible heat flux using a bulk
resistance formulation for the soil layer, given by

(3.8)

where rs is the soil-surface resistance as derived in Norman et al. (1995). The
soil component of latent heat flux is then computed as the residual in the soil
energy balance:

(3.9)

If the soil evaporation which results from this calculation is less than zero,
then LEs is set equal to zero and Hs is recomputed using equation (3.9), Ts is

Table 3.1 Roughness length (Z
0
), canopy height (h), and albedo

for each land cover type
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recomputed using equation (3.8), new values of Tc and Hc are computed
using equations (3.2) and (3.7), respectively, and a new value of LEc is
computed using equation (3.6).

One advantage of this model formulation over other resistance-based
formulations and more complicated SVAT schemes is that it does not require
an estimate of the canopy surface resistance to evaporation. Since this quantity
is highly spatially variable, very dynamic in time, and not readily obtained
from remotely sensed data, a formulation that can reliably estimate surface
fluxes without the use of this parameter can be more readily applied to new
areas and larger spatial scales.

3.3.2 Inputs derived from ground data

As discussed above, the meteorological inputs required for the data include:
incoming solar radiation, near-surface air temperature, relative humidity,
and windspeed. Spatially distributed values for the near-surface air
temperature (1.8 m above the surface) and incoming solar radiation are shown
in Figures 3.3 and 3.4, respectively. These maps were derived using point
data from the USDA/ARS Micronet network of 42 stations located across
the watershed, shown on the maps. The point data correspond to the data
from the 5-min averaging interval closest in time to the satellite overpass

Figure 3.3 Gridded field of air temperature 2 m above the surface interpolated from
measurements at Micronet stations (see Colour Plate XIII).
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time of approximately 1640 UTC. A universal kriging algorithm was used
for spatial interpolation between the point measurements.

The Micronet does not include measurements of windspeed, which are
required for model calculations of aerodynamic resistance. To obtain a
reasonable watershed-wide average value of windspeed, data from four
Oklahoma Mesonet stations were used. The Oklahoma Mesonetwork is a
state-wide monitoring network consisting of 112 stations that provide
measurements of meteorological and surface variables at 5-min intervals.
Four of the Mesonet stations are located just outside the boundaries of the
watershed. Values of the windspeed (at 9 m above the surface) and relative
humidity from these four stations were averaged to compute a watershedwide
average for these variables for the 5-min interval closest to the satellite
overpass time.

3.3.3 Inputs derived from remotely sensed data

Radiometric surface temperature

One of the key inputs to the model is the radiometric surface temperature, in
this case derived from TM Band 6 (bandpass 10.9–12.3 µm). Data from the
Landsat thermal band were corrected for atmospheric effects by running the

Figure 3.4 Gridded field of incoming solar radiation measurements interpolated from
measurements at Micronet stations (see Colour Plate XIV).
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radiative transfer code Lowtran 7 (Kniezys et al. 1988). Atmospheric
temperature and water vapor profiles from on-site radiosonde data acquired
by a team from the National Severe Storms Lab at the time of the satellite
overpass was used as input to the radiative transfer model. The resulting
corrections were applied on a pixel-by-pixel basis across the scene. The
radiometric temperature of a large ground target area was measured at the
time of the satellite overpass with instruments mounted on two backpack
type apparatuses. The satellite pixels that most closely corresponded to this
large target area were extracted from the scene and compared with the ground-
based temperature measurement. The TM-derived temperature was slightly
higher than the ground-based temperature (approximately 1.5ºC). The ground
radiometric measurements and radiosonde measurements were made just
adjacent to one another at a site near the center of the watershed.

The map of surface temperature for the watershed is shown in Figure 3.5.
The cool areas in the east-central portion of the image correspond to
contamination by cirrus clouds, and the cool spots in the far southern and
western portions of the watershed correspond to cumulus clouds and
shadows.

Figure 3.5 Atmospherically corrected radiometric surface temperature derived from a
Landsat 5 TM scene acquired over the Little Washita Watershed on August 18,
1994. The dark areas in the east-central portion of the image corresponds to
contamination by cirrus clouds.and the dark spots in the far southern and western
edges of the watershed correspond to contamination by cumulus clouds (see
Colour Plate XV).
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Land cover type

Information on land cover type across the watershed was derived from an
unsupervised classification run on the six solar reflectance bands of the
Landsat scene. The classes were identified and merged based on approximately
15 sites for which vegetation characteristics and density were known. A
separate set of 197 points of known land cover type were used to assess the
accuracy of this classification, and 81 % of these points were accurately
classified. The land cover map was derived at the original 30-m pixel
resolution for the TM reflective bands, then aggregated to 120-m resolution
to match the resolution of the thermal band data. The aggregation procedure
assigned the land cover type that occupied the majority of the area of the
120-m pixels. The resulting map is shown in Figure 3.6. This land cover map
was used to assign a number of surface characteristics for individual pixels,
namely the albedo, canopy height, and surface roughness. The values of
these parameters used in this analysis are given in Table 3.1.

Vegetation cover

The data from Landsat TM Band 3 (0.63–0.69 µm) and Band 4 (0.76–0.90
µm) were converted to exoatmospheric reflectance using the calibration

Figure 3.6 Land cover map derived from the unsupervised classification of data from six of
the Landsat TM bands from the August 18, 1994, image (see Colour Plate XVI).
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coefficients and solar irradiance data given by Markham and Barker (1986)
and aggregated (via a simple average) to 120-m spatial resolution. These
values were used to compute the Normalized Difference Vegetation Index
(NDVI) for each pixel. The resulting map is shown in Figure 3.7. These
NDVI values were used to estimate fractional cover for each pixel using the
method of Carlson and Ripley (1997). They suggest using a “normalized”
NDVI value, N*, given by

(3.10)

where NDVIi is the value of NDVI for a given pixel, and NVDImin and NDVImax

are the values of NDVI observed in the TM scene for pixels over bare soil
and full vegetation cover, respectively. These values were selected by
examination of the histogram of NDVI values for the watershed and set to
be 0.04 and 0.60, respectively. The bands of TM data used to compute N*
were not corrected for atmospheric effects. However, Carlson and Ripley
(1997) showed, through simulations with an atmospheric radiative transfer
mode, that N* is insensitive to atmospheric effects. The NDVI was used to
compute fc, the fractional vegetation cover parameter needed by the model,
using the relationship obtained independently by both Choudhury et al.
(1994) and Gillies and Carlson (1995):

(3.11)

Figure 3.7 NDVI derived from the August 18, 1994, TM image (see Colour Plate XVII).
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The value of leaf area index, F (also used by the model), was calculated using
these values of fc and equation (3.4).

3.4 Results and discussion

3.4.1 Validation of model flux estimates

As mentioned before, during the August 1994 Little Washita campaign, there
were ground measurements of surface energy balance components at four
sites across the watershed with Bowen ratio and eddy correlation
instrumentation (Prueger 1996; Kustas et al. 1999). Three of the four sites
were located on pastures of various species composition and vegetation
density; one of the sites (#4) was located in a bare soil field. The model input
quantities for these sites were extracted from the input data sets in order
that the model estimates of surface energy balance components could be
computed and compared with these measured values. The results of that
comparison are shown in Table 3.2.

Data were acquired at the ground flux sites over an averaging interval of
30min, so the measured values shown in Table 3.2 represent the values of
the energy balance components for the 30-min period bracketing the satellite
overpass time. The model estimates are essentially an “instantaneous”
estimate of the fluxes at the overpass time. Because of the storm system that
moved through the area earlier in the morning, atmospheric conditions were
rather dynamic in the time period just before the satellite overpass. These
differences in integration time for the measured and modeled flux estimates
should be taken into consideration in evaluating the results shown in Table
3.2. The site that has the poorest comparison between measured and modeled
fluxes is the bare soil field (#4). It appears that the model overestimated the
soil heat flux rather substantially, and since the soil component of LE (which
is the only component of LE for this site) is computed as the residual in the

Table 3.2 The values of modeled surface fluxes and observed values at ground stations
for the four components of the surface energy balance. The four components
shown are Rnet (net radiation), G (soil heat flux), H (sensible heat flux), and LE
(latent heat flux). The observed values at ground stations are noted as (obs)
and modeled values are noted as (mod). All values are in W m-2



High spatial resolution mapping 123

energy balance for the soil, all the errors in the other three components affect
the model value of LE. Given that the measurements of the soil heat flux and
turbulent fluxes would be expected to have an uncertainty of at least 30W
m-2, the agreement between the measured and modeled fluxes at the other
sites appears to be very reasonable.

3.4.2 Spatially distributed fluxes

The maps of spatially distributed values for the net radiation (Rnet), soil heat
flux (G), sensible heat flux (H), and latent heat flux (LE) components of the
energy balance are shown in Figures 3.8, 3.9, 3.10, and 3.11, respectively.
The areas of contamination by cumulus and cirrus clouds are displayed in
black and were not included in the calculations of median flux values and
correlations described below.

In interpreting the spatial patterns observed in the fluxes, it is important
to keep in mind the surface and meteorological conditions over the watershed
at the time of overpass. Specifically, the image was acquired very shortly
after a significant precipitation event. The precipitation totals over the
watershed for approximately 9 h preceeding the satellite overpass are shown
in Figure 3.12. There were no substantial precipitation events over the
watershed for many days prior to this event. The isohyets shown in Figure
3.12 were derived from the precipitation measurements at the 42 Micronet

Figure 3.8 Map of net radiation (Rnet) over the watershed computed with the Norman et al.
(1995) model and Landsat TM data (see Colour Plate XVIII).



Figure 3.9 Map of soil heat flux (G) over the watershed computed with the Norman et al.
(1995) model and Landsat TM data (see Colour Plate XIX).

Figure 3.10 Map of sensible heat flux (H) over the watershed computed with the Norman et
al. (1995) model and Landsat TM data (see Colour Plate XX).



Figure 3.11 Map of latent heat flux (LE) over the watershed computed with the Norman et al.
(1995) model and Landsat TM data (see Colour Plate XXI).

Figure 3.12 Isohyet map showing values of total precipitation from storm that occurred just
prior to the acquisition of the Landsat TM image. Isohyets were derived from
measurements at Micronet stations.
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stations across the watershed. The rainfall totals were highest in the eastern
third and extreme western edge of the watershed.

The texture classes for the surface soils over the watershed, as derived
from the STATSGO database are shown in Figure 3.13. The precipitation
and soils data shown in Figures 3.12 and 3.13 were not used in the calculation
of the fluxes; they are provided here to aid in the interpretation of the flux
maps.

To further assist in the interpretation of the flux maps, the median flux
values observed within each land cover type are shown in Figure 3.14. The
numerical data corresponding to these plotted medians, together with the
standard deviation among all the pixels belonging to a particluar land cover
type, are summarized in Table 3.3.

Both the flux maps and the data shown in Figure 3.14 indicate that, overall,
there were not major variations in the fluxes across the watershed during the
time of the image acquisition. This is most likely due to the fact that the
image was acquired immediately after a substantial rainfall event. The
saturated conditions across the watershed, combined with minimal radiation
loading that occurred the morning before the satellite data were acquired,
would tend to minimize spatial variation among the factors controlling the
energy balance. For example, the surface temperature map shown in Figure
3.5 does not show a discernible difference between the bare soil fields that
dominate the western portions of the watershed and the vegetated surfaces

Figure 3.13 Map of surface soil texture from STATSGO database (see Colour Plate XXII).
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in other parts of the watershed, or major differences arising from the different
precipitation totals observed across the watershed.

The map of sensible heat and latent heat flux appear to show a slight
pattern of higher sensible heat flux (and therefore lower latent heat flux) in
the portion of the watershed that received the greatest precipitation. This
trend appears to be contrary to the expectation that higher precipitation
values would yield lower sensible heat flux values as observed by Humes et
al. (1997) for a more sparsely vegetated watershed. However, the turbulent
heat fluxes are influenced by atmospheric factors as well as surface factors,
particularly during the time period immediately after a precipitation event.
The conditions under which this satellite image was acquired were very
unusual, in that some of the factors controlling energy balance were more
spatially variable in the near-surface atmosphere than they were on the land
surface.

The dynamic and spatially variable atmospheric conditions that existed
at the time of the overpass are manifested in the map of near-surface air
temperature shown in Figure 3.3. The data shown in this figure indicate that
there was a difference in air temperature over the watershed of more than
2ºC, with the northeastern portion of the watershed (the portion that received
more precipitation) being cooler than the southwestern portion of the
watershed. Comparison of the air temperature map and the surface
temperature map shows that the conditions at the time of the experiment
were very unusual in that there was more variation in air temperature across
the watershed than there was in surface temperture. The cooler air
temperatures in the northeastern portion of the watershed account for one
of the only clearly discernible spatial patterns in the sensible heat flux, which
tended to be higher in the northeastern portion of the watershed (due to a

Table 3.3 Standard deviation (STD) and median of flux values by land cover type observed
within each land cover classification. The four components of the surface energy
balance shown are Rnet (net radiation), G (soil heat flux), H (sensible heat flux),
and LE (latent heat flux). All values are in units of W m-2
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slightly larger Ts - Tair values). The latent heat flux was conversely slightly
lower in the northeastern portion of the watershed.

Correlation coefficients were computed between the four flux components
and each of the data layers that served as input into the model, plus the
precipitation totals (which were not used as input to the model). The results
are shown in Table 3.4. None of these correlation coefficients are very large,
which is likely due to the fact that there is not much spatial variation in the
fluxes for this particular overpass time. However, the relative values of the
coefficients bears out the qualitative observation above which air temperature
values appear to have a dominant effect on the sensible heat flux, followed
by a dependence on the NDVI, from which the fractional cover estimates are
derived.

The consideration of the spatially variable near-surface meteorological
conditions is important for accurate mapping of the flux components. A more
preliminary version of these maps (Humes et al. 2000) were derived with the
same model, but using areal average values of meteorological data (and several
differences in the way the fractional vegetation cover parameter was estimated).
The correlation of the turbulent fluxes with precipitation and land cover type
appeared to be stronger in that case than is currently indicated.

The density of the Micronet observations makes it possible to observe
this spatial variability in the meteorological data. Since it is rare to have this
density in observations of meteorological quantities, these types of conditions
may occur more frequently than is known, particularly in the period shortly
after precipitation events. These results underscore the need for as much
density as possible in the ground networks that provide near-surface
meteorological inputs to these and other types of models.

3.5 Summary

A relatively simple, “snapshot”-type model for computing components of
the surface energy balance data was run on a pixel-by-pixel basis for the
LWW in central Oklahoma. The model uses ground and remotely sensed

Table 3.4 Correlation coefficients for each input model grid and output flux map
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data to calculate a separate energy balance for the vegetation and soil layers.
The remotely sensed data, in this case Landsat TM data, were used to compute
surface characteristics that affect the energy balance (such as surface
temperature, land cover type (which was used to assign albedo and surface
roughness parameters), and NDVI (which was used to estimate fractional
vegetation cover). The model also requires near-surface meteorological inputs,
which were derived from a very dense network of such observations at the
LWW. Model estimates of surface fluxes were in good agreement with ground-
based measurements, except that the model overestimated the soil heat flux
rather substantially for the case of bare soil. This gave rise to a substantial
error in the latent heat flux for bare soil.

For the particular date studied, the satellite data were acquired shortly
(approximately 5 h) after a significant precipitation event occurred in the
area. The saturated conditions across the watershed, combined with minimal
radiation loading that occurred that morning before the satellite data were
acquired, had the effect of minimizing the spatial variability in some of the
surface state variables that control surface fluxes, such as surface temperature.
It also gave rise to the rather unusual situation in which there was more
variation in near-surface air temperature than in surface temperature. Thus,
the spatial variability in the surface energy balance components was rather
minimal, but did show some slight spatial patterns related to near-surface
meteorologic conditions, precipitation totals in the hours prior to the satellite
data acquisition, and land cover type.

Though the spatial variability in surface fluxes for the time period studied
was relatively minimal, the work presented here demonstrates the utility of
this type of modeling approach, which is primarily “data driven” and does
not require special calibration for application to other areas. These results
also underscore the need for as much density as possible in the ground
networks that provide near-surface meteorological inputs to these and other
types of models. Future work in this area will include the application of this
type of model to satellite data with more coarse spatial resolution but finer
temporal resolution.

Acknowledgments

The authors wish to thank Tom Jackson (USDA/ARS Hydrology Lab), Frank
Scheibe (formerly USDA/ARS US Agricultural Water Quality Lab), and Ted
Engman (NASA/GSFC) for their efforts in organizing the 1994 Little Washita
field experiments; Conrad Ziegler and Les Shoal (National Severe Storms
Laboratory), and Christa Peters-Lidard (Georgia Tech) for the radiosonde
data used in this study; and especially Gary Heathman (USDA/ARS
Grazinglands Research Center) and his staff at the Little Washita field office
for their outstanding support during the experimental operations.



High spatial resolution mapping 131

References

Avissar, R. and R.Pielke (1989) A parameterization of heterogeneous land surfaces
for atmospheric numerical models and its impact on regional meteorology. Mon.
Weather Rev. 117: 2113–36.

Avissar, R. and M.M.Verstraete (1990) The representation of continental surface
processes in atmospheric models. Rev. Geophys. 28: 35–52.

Betts, A.K., J.H.Ball, A.C.M.Beljaars, M.J.Miller, and P.A.Viterbo (1996) The land
surface-atmosphere interacton: a review based on observation and global
modeling perspectives. J. Geophys. Res. 101 (D3): 7209–25.

Brutsaert, W. (1982) Evaporation into the Atmosphere. D.Reidel, Dordrecht.
Carlson, T.N. and D.A.Ripley (1997) On the relation between NDVI, fractional

vegetation cover, and leaf area index. Remote Sens. Environ. 62: 241–52.
Chen, F. and R.Avissar (1994) The impact of land-surface wetness on mesoscale heat

fluxes. J. Appl. Meteorol. 33: 1324–40.
Choudhury, B.J., N.U.Ahmed, S.B.Idso, R.J.Reginato, and C.S.T.Daughtry (1994)

Relations between evaporation coefficients and vegetation indices studied by
model simulations. Remote Sens. Environ. 50: 1–17.

Dickinson, R.E., A.Henderson-Sellers, P.J.Kennedy, and M.F.Wilson (1986) Biosphere-
atmosphere transfer scheme (BATS) for NCAR Community Climate Model.
Technical Note, NCAR/TN-275+STR, National Center for Atmospheric
Research, Boulder, Colorado.

Entekhabi, D. and P.S.Eagleson (1989) Land surface hydrology parameterization for
atmospheric general circulation models including sub-grid scale variability. J.
Appl. Meteorol. 2: 817–31.

Gillies, R.R. and T.N.Carlson (1995) Thermal remote sensing of surface soil water
content with partial vegetation cover for incorporation into climate models. J.
Appl. Meteorol. 34: 745–56.

Holwill, C.J. and J.B.Stewart (1992) Spatial variability of evaporation over FIFE area
derived from aircraft and ground-based data. J. Geop. Res. 97 (D17): 18673–
80.

Humes, K.S., W.P.Kustas, and D.C.Goodrich (1997) Spatially distributed sen sible
heat flux over a semiarid watershed. Part I: use of radiometric surface temperature
& a spatially uniform resistance. J. Appl. Meteorol. 36:281–92.

Humes, K.S., R.Hardy, and W.P.Kustas (2000) Spatial patterns in surface energy
balance components derived from remotely sensed data. Prof. Geogr. 52 (2):
272–88.

Idso, S.B. (1981) A set of equations for the full spectrum and 8 to 14µm and 10.5–
12.5 µm thermal radiation from cloudless skies. Water Res. Res. 17: 295–304.

Jackson, T.J. and F.Scheibe (eds) (1993) Data Report for Washita ‘92 Field Campaign.
USDA/ARS National Agricultural Water Quality Laboratory, Durant, Oklahoma.

Kniezys, F.X., E.P.Shettle, L.W.Abreu, J.H.Chetwynd, and G.P.Anderson (1988) User
Guide to Lowtran 7. Air Force Geophysical Laboratory Report No. AFGLTR-
88–0177, Hanscom AFB, MA 01731.

Kustas, W.P., J.R.Prueger, K.S.Humes, and P.J.Starks (1999) Surface heat fluxes at
field scale using surface layer versus mixed-layer atmospheric variables with
radiometric temperature observations. J. Appl. Meteorol. 38:224–38.

Markham, B.L. and J.L.Barker (1986) EOSAT Landsat Technical Notes, #1, August,
Eosat Corp., Lanham, MD.

Moran, M.S., R.D.Jackson, L.H.Raymond, L.W.Gay, and P.N.Slater (1990) Mapping
surface energy balance components by combining Landsat Thematic mapper
and ground-based meteorological data. Remote Sens. Environ. 30: 77–87.



132 Humes et al.

Noilhan, J. and S.Planton (1989) A simple parameterization of land surface processes
for meteorological models. Mon. Weather Rev. 117: 536–49.

Norman, J.M. and G.S.Campbell (1983) Application of a plant-environment model
to problems in irrigation. In D.J.Hillel (ed.) Advances in Irrigation. Academic
Press, New York, pp. 155–88.

Norman, J.M., W.P.Kustas, and K.S.Humes (1995) A two-source approach for
estimating soil and vegetation energy fluxes from observations of directional
radiometric surface temperature. Agric. For. Meteorol. 77: 263–93.

Priestley, C.H.B. and R.J.Taylor (1972) On the assessment of surface heat flux and
evaporation using large scale parameters. Mon. Weather Rev. 100: 81–92.

Prueger, J. (1996) Surface flux measurements, Chapter XIV. In P.Starks and K.S.Humes
(eds) WASHITA 1994 Multidisciplinary Field Campaigns Data Report. USDA/
NAWQL Report.

Sellers, P.J., Y.Mintz, Y.C.Sud, and A.Dalcher (1986) A simple biosphere model (SiB)
for use within general circulation models. J. Atmos. Sci. 43(6): 505–31.

Shuttleworth, W.J. and J.S.Wallace (1985) Evaporation from sparse canopies—an
energy combination theory. Q. J. R. Meteorol. Soc. 111: 839–55.

Starks, P.J. and K.S.Humes (eds) (1996) Data report for 1994 remote sensing field
campaigns over the Little Washita Experimental Watershed. USDA/ARS Grazing
Lands Research Laboratory, El Reno, Oklahoma.

Xue, Y., P.J.Sellers, J.L.Kinter, and J.Shukla (1991) A simplified biosphere model for
global climate studies. J. Clim. 4: 346–64.



Chapter 4

Estimating spatially distributed
surface fluxes in a semi-arid
Great Basin desert using
Landsat TM thermal data

Charles A.Laymon and Dale A.Quattrochi

4.1 Introduction

Ground-based measurements of hydrologic and micrometeorologic processes
are now available for many parts of the world, especially for the United
States and Europe, on a nearly routine basis. These measurements, however,
are only representative of a very small area around the sensors, and, therefore,
provide little information about regional hydrology. The variability of the
land surface precludes using these measurements to make inferences about
processes that occur over an area of a hectare, much less the size of an entire
valley. Recent developments have demonstrated an increasing capability to
estimate the spatial distribution of hydrologic surface fluxes for very large
areas with remote sensing techniques. A number of studies have focused on
the use of remote sensing to measure surface water and energy variables in
attempts to derive latent heat flux or evapotranspiration (ET) over semiarid
regions (e.g. Kustas et al. 1989a,b, 1990, 1994a,b,d, 1995; Humes et al.
1994, 1995; Moran et al. 1994; Ottlé and Vidal-madjar 1994; Tueller 1994).
All of these investigations have used aircraft-based instruments and were
limited to small areas. In only a few investigations has satellite-based remote
sensing data been used to estimate ET. The synoptic and real-time attributes
of remote sensing data from satellites offer the potential for measuring
landscape, hydrometeorological, and surface energy flux characteristics that
can be used in both monitoring and modeling the state and dynamics of
semi-arid regions. Choudhury (1991) reviewed the current state of progress
in utilizing satellite-based remote sensing data to estimate various surface
energy balance parameters. Kustas et al. (1994c) used Advanced Very High
Resolution Radiometer (AVHRR) data to extrapolate ET estimates from
one location containing near-surface meteorological data to other areas in a
semi-arid basin in Arizona. Moran et al. (1989) and Moran and Jackson
(1991) used Landsat Thematic Mapper (TM) data to estimate ET over a
small agricultural area. In this paper, we present a method for scaling from
point to spatial estimates of instantaneous surface fluxes for a Great Basin
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desert valley using Landsat TM data and for characterizing the partitioning of
fluxes among the different soil and landcover types found in the study area.

A field study was conducted from May 1993 through October 1994 to
improve our understanding of the processes that govern the local energy and
water fluxes in a Great Basin desert ecosystem. A survey of soils and vegetation
was conducted for the study area. Six surface water and energy balance flux
stations were deployed in major plant ecosystems. These stations operated
nearly continuously throughout the study period, except for several of the
winter months. Field work was conducted during special observing periods
at the peak “green-up” in the early summer of 1993 and 1994 and at “dry-
down” during late summer of 1993. These periods included deployment of
several eddy correlation systems, soil moisture measurements using the
neutron probe and time domain reflectometry techniques, and radiosonde
observations of the lower atmosphere. This research program provided an
infrastructure to further study the use of remote sensing to measure surface
properties and processes.

4.2 Setting

The study was conducted in Goshute Valley of northeastern Nevada, a faulted
graben valley of the Basin and Range Province of the western United States
about 50 km west of the Great Salt Lake Desert (Figure 4.1). Although the
entire valley is about 75km long and 16km wide, our study was restricted to

Figure 4.l Map showing the location of Goshute Valley (40º44’N, 114º26' W) in
northeastern Nevada in relation to state boundaries and Great Salt Lake Desert,
Utah.
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a 40 km long central section (Figure 4.2). The valley floor, with an elevation
of about 1700m asl, is nearly flat with slopes of less than a few degrees. The
valley is bordered by alluvial fans emanating from the mountains. A pluvial
lake occupied the valley during the Late Pleistocene leaving strand lines and
terraces on the alluvial fans and allowing for lacustrine silt and clay to
accumulate in the valley. Because outflow drainage was limited, dissolved
weathering products from the surrounding mountains became concentrated
in the lake producing significant amounts of soluble salts and carbonates in
the lacustrine sediments. As a result, salt content and pH of the lacustrine
soils in the central reaches of Goshute Valley are high. Vegetation of the
valley is dominated by shrubs with some understory forbs and grasses. Land
within the valley has not been heavily grazed or developed, although small
portions of the valley have been chained for grazing and are easily identified
by the regular geometric patterns in Figure 4.2.

Figure 4.2 Landsat-5 TM image of the Goshute Valley, Nevada, study area showing the
types and location of surface water and energy balance flux stations (BR=bowen
ratio, EC=eddy correlation). The box defines the area over which energy
balance components were derived and cooresponds to the area shown in
Figure 4.9(a)–(d).
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4.3 Methods

4.3.1 Approach

The general surface energy balance can be summarized as:

(4.1)

where Rn is net radiation absorbed at the surface, G the flux of heat into the
soil, and H and LE are the sensible and latent heat fluxes into the atmosphere.
We use the sign convention that all the radiative fluxes directed toward the
surface are positive, while other (non-radiative) energy fluxes directed away
from the surface are positive and vice versa. LE, a product of the rate of
evaporation E and the latent heat of vaporization L, is the rate of energy
utilization in ET and is often treated as a proxy for ET. Rn, G, and H can be
estimated from micrometeorological measurements, or in some cases, using
remote sensing techniques exclusively (Jackson et al. 1985; Clothier et al.
1986). The remote sensing techniques, however, usually require assumptions
about surface conditions that are best measured on the ground. Remote
sensing reflectance and emittance data used in conjunction with surface
meteorological data can be used to estimate parameters needed to characterize
Rn, G, and H, leaving LE to be defined mathematically.

Our approach is to establish a one-to-one relationship between surface
radiation and energy fluxes measured at points on the ground to
corresponding reflectance and emittance values of a geolocated remote sensing
image. The empirical relationships are then used to extrapolate from the
point measurements to spatial estimates of surface fluxes. Our procedure is
based on a Landsat-5 TM image of June 19, 1994. This date closely follows
field observations that occurred between June 7 and June 14, 1994.

Five surface energy balance flux stations were installed in Goshute Valley
in May, 1993, and a sixth station was added in June, 1994 (Figure 4.2). The
most northerly and southerly stations were separated by 35 km. The stations
were installed in different assemblages of dominant vegetation types present
within the valley or in assemblages of vegetation with different plant density.
Each station contained the same instrument configuration (Figure 4.3 and
Table 4.1), with the exception that infrared thermometers were located at
only four stations. Measurements were made every 5 s and then output as
20-min averages. Malek et al. (1997) and Malek and Bingham (1997) have
discussed the annual radiation and energy balance from these stations.

The Bowen ratio method used to measure the surface energy balance in
this experiment requires fetch. On the basis of instrument height and the
wind speed measured during the hour that the TM scene was acquired, we
assume that flux measurements are representative of an area within a 100 m
radius of each Bowen ratio station. The image was geometrically corrected



Figure 4.3 Photo of a surface water and energy balance flux station deployed in Goshute
Valley during the experiment. The letters correspond to the instrument
descriptions in Table 4.1.

Table 4.1 Instrument configuration at the surface energy balance stations

Note
a Letters correspond to the letters in Figure 4.3.
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to within one pixel of the true location. Thus, the station data were related to
the mean remote sensing reflectivity values of an area corresponding to 7×7
pixels (~200 m×~200 m) centered over each station.

4.3.2 Geometric correction

A full Landsat-5 TM scene covering the Goshute Valley was obtained from
the Earth Observation Satellite (EOSAT) Corp. for June 19, 1994 (09:39 h
local standard time). The image was a system-corrected, orbit-oriented
product (type “P” data). Using 16 ground control points defined with Global
Positioning System (GPS) instruments, the image was more precisely rectified
with a first-order Affine transformation with no resampling yielding a
standard error of 4.6 m. Visual inspection of the control points in relation to
the image revealed they were all within one pixel (<28.5 m) of the correct
location. The data were not topographically corrected as the valley floor is
essentially flat.

4.3.3 Radiometric correction of the reflected bands

Before remote sensors can measure components of the surface energy budget,
the recorded digital values must be converted to measures of at-satellite
radiance and then to surface reflectivity. Digital values in each band are
converted to at-satellite spectral radiance (Chevez 1989) and then to apparent
at-satellite reflectance after normalizing for the effects of variations in incident
solar irradiation (Nicodemus et al. 1977; Markham and Barker 1986,
1987a,b; Hill and Sturm 1991; Markham et al. 1992; Gilabert et al. 1994).
After accounting for viewing geometry, atmospheric scattering, and
transmission losses, surface reflectance ρ(λ) (unitless) is defined as

(4.2)

where L0(λ) is the apparent at-satellite spectral radiance in band λ, and Lp(λ)
is the atmospheric path radiance resulting from scattering, d is the Earth-
Sun distance (Sturm 1981), T(λ) ↑ is the direct beam transmittance of the
atmosphere in the upward direction, Eg(λ) is the global solar irradiance at
the surface, and θ0 is the solar zenith angle. Thus, surface reflectance can be
determined with estimates of Lp(λ), T(λ) ↑, and Eg(λ).

Atmospheric path radiance is the sum of Rayleigh and aerosol (Mie)
scattering (Gordon 1978):

(4.3)

The Rayleigh scattering contribution, Lr(λ), is all but constant in the
atmosphere, as it is based on the solar zenith and sensor view angles, and



Estimating spatially distributed surface fluxes 139

thus, can be determined from image header information (Saunders 1990).
Gilabert et al. (1994) developed a procedure that integrates the dark object
subtraction and atmospheric transmission modeling techniques to estimate
the aerosol scattering contribution to path radiance, La(λ), on observed surface
reflectances. The method consists of an inversion algorithm based on a
simplified radiative transfer model in which characteristics of atmospheric
aerosols are estimated from the observed radiance in TM bands 1 and 3.
This is in contrast to many other procedures in which the characteristics of
aerosols are measured or estimated a priori. The technique has the advantage
over other methods in that it is based entirely on information derived from
the image. The path radiance in TM bands 1 and 3 determined from dark
objects in the image are used to define the aerosol spectral properties at the
time the image was acquired. With this model, the parameters necessary to
solve equation (4.2) can be determined from any Landsat-5 TM image that
contains some dark pixels. The only information needed to apply this model
is the mean elevation of the imaged terrain, the day of year the image was
acquired, the solar zenith angle, and the dark object digital values for TM
bands 1 and 3. The sun elevation reported in the header of each Landsat-5
TM image is used to determine the solar zenith angle at the time of image
acquisition. The definition of digital values for dark pixels in the image is the
most critical step in the entire procedure and should be done with great care.
Dark object digital values were defined for spectral minima associated with
water and shadows within the scene, but outside the study area.

4.3.4 Estimation of energy balance components

Net radiation

The net radiation flux in equation (4.1) can be written as

(4.4)

where α is the surface albedo, Rs↓ is incoming shortwave radiation or
irradiance, R1↓ is incoming longwave radiation, εs is surface emissivity, σ is
the Stefan-Boltzmann constant, and Ts is the surface temperature. The actual
amount of insolation received at the ground may be considerably smaller
than at the top of the atmosphere because of scattering, absorption, and
turbidity of the atmosphere. It is, therefore, usually measured in the field
and assumed to be spatially invariant over the study domain. R1↓ emanates
largely from the atmosphere and is spatially homogeneous relative to the
land surface. Although R1↓ has been estimated using measurements of
nearsurface air temperature and relative humidity (Brutsaert 1975; Humes
et al. 1994), direct observations from the flux stations were used in this
study. Thus, net radiation was determined with field measurements of the
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downwelling radiation fluxes, Rs↓, and R1↓, and remote sensing measurements
of a, εs, and Ts.

Albedo

Albedo is the ratio of upwelling shortwave radiation to solar irradiance. For
our purpose, solar irradiance at the land surface can be estimated satisfactorily
using a radiative transfer model with parameters derived from atmospheric
soundings. Solar irradiance at the surface in Goshute Valley was modeled
for the day of the satellite overpass using the SPECTRL radiative transfer
model (Justus and Paris 1985, 1987) and sounding data obtained from the
National Weather Service at Ely, Nevada (0Z, June 20, 1994 = 17:00 h PST,
June 19, 1994), about 140 km to the south-southwest.

Shortwave radiometers on today’s satellites detect radiation in discrete
bandwidths, not over the total solar spectrum (~0.3–4.0 µm). These narrow
band samples of the solar spectrum must be extrapolated over the entire
spectrum to estimate broadband albedo. The technique used here follows
that of Brest and Goward (1987) and Starks et al. (1991) in which broadband
albedo is the reflectance in multiple bands integrated over the total solar
spectrum. Each band is weighted according to the ratio of radiance sampled
to the total radiance for an extended bandwidth associated with each band.
Thus, broadband albedo, aBB, is (Starks et al. 1991)

(4.5)

where ρ(λ) is the reflectance in TM band λ, and W(λ), the weighting
coefficient, is

(4.6)

where E(λ) is the solar irradiance in band λ and U(λ) and L(λ) are the upper
and lower wavelengths of each TM bandpass, respectively. An assumption
that the surface responds as a Lambertian reflector is necessary because the
remote sensing instrument is nadir viewing. Generalized reflectance curves
were developed for vegetation, soil, bedrock, and water using data from the
National Aeronautics and Space Administration (NASA). These curves were
used in conjunction with the modeled solar irradiance curve to define the
extended bandwidths for each reflected TM band based on inflection points.
Thus, spatially distributed broadband albedo was computed for the study
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area by

Emissivity

Emissivity was measured in the field at two sites (BR1, EC1; Figure 4.2) just
before dawn using the procedure described by Hipps (1989). The
measurements included apparent temperature with an infrared thermometer,
temperature of the target covered by an aluminum cone, and apparent and
actual temperatures of an aluminum plate of known emissivity. Emissivity
was determined for bare soil (0.92–0.93), and the dominant vegetation species:
greasewood (0.94–0.95), shadscale (0.95), and sagebrush (0.98). The
percentage of ground surface covered by vegetation at each flux station and
the proportion of total vegetation represented by different species was
determined using the point quadrat method (Groeneveld 1997). Based on
these data, the area-weighted mean emissivity was determined for each flux
station. Because emissivity was generally higher for vegetation than bare
soil, spatially distributed emissivity was estimated from the Normalized
Difference Vegetation Index (NDVI). There was insufficient variability in
emissivity among flux sites to define the nature of the relationship until
emissivity at endpoint NDVI values of 0.1 and 1.0 for bare soil and complete
vegetation coverage, respectively, were included. The resulting linear
relationship is defined by

(4.8)

As this relationship is based on the observed emissivity for specific plant species,
it is appropriate only for the study site and similar settings. More observations
of emissivity over a broader range of NDVI values are required to more precisely
define the εs to NDVI relationship (cf. Labed and Stoll 1991).

Surface temperature

Longwave radiation is emitted from the surface in proportion to its
temperature as described by Planck’s law. Using pre-launch calibration
constants for Landsat-5 TM band 6, surface temperature Ts(λ) is determined
by (Markham and Barker 1986)

(4.9)

where C1 and C2 are the calibration constants equal to 60.776 m W cm-2 ster-

1 µm–1 and 1260.56 K, respectively (see also Goodin 1995). Surface radiation,

(4.7)
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Ls(λ), can be expressed in terms of the observed radiation, L0(λ), as (Schott
and Volchok 1985)

(4.10)

where L0(λ) is the apparent at-satellite spectral radiance in band λ, Ld(λ) is
the downwelling longwave radiation reaching the surface, Lp(λ) is the
atmospheric path radiance, εs is the surface emissivity, and t is the atmospheric
transmissivity.

For sensors with more than one thermal channel, various split-window
algorithms have been developed for atmospheric correction. Only one thermal
channel on the TM sensor prevents use of these algorithms. Instead, various
alternative methods have been developed that use sounding data and radiative
transfer models to characterize the atmosphere (cf. Vidal et al. 1994).
Atmospheric transmissivity and downwelling and path radiance at the TM
thermal waveband were calculated using the radiative transfer model
SPECTRL and atmospheric sounding data from Ely, Nevada (described
previously). The model was run for the TM-6 bandwidth with no surface
reflectance to determine path radiance, and again, with surface reflectance
(albedo) consistent with field measurements to determine downwelling
radiance and atmospheric transmissivity. These values were assumed to be
constant in space throughout the study area and were applied to calculate
surface temperature for each image pixel.

Soil heat f lux

The surface temperature at a given location is controlled by the surface energy
balance, which, in turn, depends on the radiation balance and vegetation
cover among other factors. Thus, the soil heat conduction flux can be
estimated as a fraction of the net radiation (Clothier et al. 1986). Based on
this theory, several investigations have attempted to define soil heat flux as a
function of net radiation and reflectivity in the red and near-infrared wave
bands (Reginato et al. 1985; Clothier et al. 1986; Jackson et al. 1987; Kustas
and Daughtry 1990). Soil heat flux at a depth of 8cm (G8cm) was measured
directly at each of the surface energy flux stations (Malek et al. 1997). G8cm

was converted to surface heat flux (Gsfc) (Hanks and Ashcroft 1980; Oke
1987; Malek 1994) using the following relationship (Malek et al. 1997)
(n=518, r=0.96):

(4.11)

This is an obvious soil-specific realtionship and its validity here without
modification is unknown. Because of the strong relationship between soil
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heat flux, net radiation, and vegetation cover, Gsfc can be defined on the basis
of reflectivity in the red and near-infrared wavebands via a regression
relationship as

(4.12)

where ρ(NIR) and ρ(Red) are the reflectances in TM bands 4 and 3,
respectively, and Rn is remotely sensed.

Sensible and latent heat f lux

The sensible heat flux can be defined using the surface-air temperature
difference in a bulk resistance approach analogous to Ohm’s Law (Monteith
1973)

(4.13)

where ρ is the density of air at 1700 m, Cp the specific heat of air (ρCp is the
volumetric heat capacity), Ts the remotely sensed surface temperature, and
Ta is the air temperature at height z above the surface. The bulk resistance to
heat transfer across a single surface-atmosphere layer, rah, or aerodynamic
resistance, is determined by Monin-Obukhov surface layer similarity
theory as

(4.14)

where d0m, z0m, d0h, and z0h are the zero-plane displacement heights and
roughness lengths for momentum and heat, respectively, k is von Karman’s
constant (~0.4), and u is the wind speed measured at the reference height, z.
ψm and ψh are the stability correction functions for wind and temperature,
respectively.

There is little experimental evidence to suggest that d0m and d0h differ
significantly (Kustas 1990) and were, therefore, treated with the same value
defined hereafter as simply d0. Reasonable estimates of z0m and d0 have been
obtained for vegetation on flat uniformly covered surfaces with several
empirical relationships based on vegetation height. After Monteith (1973),
displacement was defined as d0=2/3h. In contrast to displacement, theoretical
and experimental evidence exists for significant differences in the values of
scalar versus momentum roughnesses due mainly to differences in transfer
processes near the soil and vegetation surfaces (see Thom 1972).
Consequently, an added resistance to heat transfer results in z0h<z0m and
suggests that z0h can be taken as a fraction of z0m. Studies reported in Kustas
et al. (1989b) suggest z0h is 1/10 to 1/5 of z0m. Chamberlain (1968) expressed
the relationship between z0h and z0m in the form
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(4.15)

Experimental data and physical models of vegetated surfaces suggest a
constant kB-1 ≈ 2 (see Garratt and Hicks 1973), but analytical data show it
to be sensitive to plant structure (Massman 1987). Brutsaert (1982) suggests
that kB–1 can vary from 2 to 10. Little data have been collected for sparsely
vegetated surfaces as in Goshute Valley. With exception, Kustas et al. (1989a)
suggests kB-1 ≈ 2 or 3 is reasonable for sparse canopy in the arid southwest.
In addition, Kustas et al. (1989a) found that analysis over sparse canopy
cover required that kB-1 be a function of the thermometric surface temperature
observed from a nadir-viewing, thermal infrared sensor to obtain satisfactory
results, and gave the following relationship:

(4.16)

Historically, the stability functions have been determined by the
MoninObukhov similarity theory, which holds that the diffusion coefficients
for momentum and heat are equivalent (e.g. Paulson 1970). The assumptions
in the basic aerodynamic approach of neutral stability and similarity of all
coefficients are restrictive. Its applicability, however, can be extended by
incorporating adjustments that depend upon stability and that include
empirical terms to account for non-similarity of the diffusion coefficients.
The Richardson number is a convenient way of categorizing atmospheric
stability in the surface layer (Panofsky and Dutton 1984; Oke 1987). The
Richardson number, Ri, is given by

(4.17)

where Rib is the bulk Richardson number is given by

(4.18)

where g is the acceleration due to gravity, ∆T/∆z is the temperature gradient,
γd is the dry adiabatic lapse rate, and U is the mean wind speed from the flux
stations. The value of s in equation (4.17) is given by

(419)

where φm and ψm are the shear and profile functions, respectively, and are
given in terms of the dimensionless height, z/L. Högström (1988) suggests
that the Businger–Dyer formulations (Businger et al. 1971; Dyer 1974) give
satisfactory results for shear and profile functions for stable and unstable
conditions.
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Stable (0≤Ri≤0.2):

(4.20)

(4.21)

(4.22)

Unstable (Ri<0):

(4.23)

(4.24)

(4.25)

(4.26)

where

(4.27)

Spatially distributed values of H are estimated based on spatially distributed
values of Ts and mean vegetation height based on a classification (discussed
below). In this study, z0m and z0h could not be defined on the basis of the
wind and temperature profiles because these parameters were only measured
at two heights. Thus, a fundamental weakness of this method is the need to
assume that aerodynamic resistance parameters were spatially invariant. With
kB–1 and z0m unknown, z0h was determined for five of the flux station sites by
an iterative method using equations (4.17)–(4.27), and observed wind and
temperature until the calculated H was in agreement with the observed value.
In this way, z0m and z0h were defined as 0.17 and 0.035, respectively. These
values are comparable with values for other semi-arid regions reported by
Stewart et al. (1994).

The calculation of spatially distributed H then proceeded with two nested
iterations beginning with a neutral profile (φ=1, ψ=0), and initial estimates of
H and LE from surface energy balance flux stations. Calculation of Ri was
used to define whether to use the stable or the unstable case. The Richardson
number was calculated using equations (4.17)–(4.19), then either (4.20)-
(4.22) or (4.23)–(4.26), depending on Ri. The process was completed with a
solution for equations (4.14) and (4.13) and a new value of LE was computed
from a rewritten form of equation (4.1). Calculation of Ri was repeated
with the new values of φm and ψm, and the rest of the process was repeated
with new values of LE and H. Iteration on H continues until additional
changes in Ri are negligible (<0.02).
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4.3.5 Vegetation classification

The three major shrubs that dominate the valley landscape are big sagebrush
(Artemesia tridentata wyomingensis), black greasewood (Sarcobatus
vermiculatus), and shadscale (Atriplex convertifolia) (Boettenger, pers. comm.)
(Figure 4.4). Other minor shrubs, forbs, and perennial and annual grasses,
including Gardner’s saltbush (Atriplex gardneri), gray molly (Kochia
americana), winter fat (Ceratoides lanata), halogeton (Halogeton glomerata),
squirrel tail (Elymus elymoides), Indian rice grass (Oryzopsis hymenoides),
and cheat grass (Bromus tectorum), occur in varying amounts depending on
soil type and disturbance history (Boettenger, pers. comm.).

False color images of Goshute Valley were used in the field during the
June 1994 observing period to identify the types of vegetation present in the
valley and to locate classification training sites. Both supervised and
unsupervised classifications utilizing different combinations of bands were
attempted with mixed success. Difficulties arose because of the low contrast
in reflectivity among the red and near-infrared bands and because of the
presence of a microphytic crust on the ground surface of generally low
reflectivity. These initial tests were used to define the number of classes that

Figure 4.4 Photograph of the shrub vegetation (greasewood, saltbush, shadscale) typical of the
Goshute Valley lake plain. The cracking results from desiccation and the darkening
of the soil surface is due to the presence of microphytic crust. Both phenomena
decrease albedo.
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could be satisfactorily discriminated. A successful vegetation classification
was produced using unsupervised, competitive training with bands 2, 3, 4,
5, and 7, yielding seven classes (Figure 4.5). These classes represent
assemblages of the dominant vegetation types as well as differences in plant
density.

4.4 Results and discussion

Broadband albedo derived from remote sensing using the six reflected TM
bands is in good agreement with values measured at the flux stations with

Figure 4.5 Classification of land cover types in Goshute valley. Many desert plant species coexist
in assemblages. Most vegetation classes reflect changes in assemblage members or
differences in plant density due to changes in soil salinity and moisture availability.
Similarities in plant structure and large plant spacing relative to image resolution
make classification of desert vegetation extremely difficult (see Colour Plate XXIII).
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hemispherical pyranometers (Malek et al. 1997) (Figure 4.6). The remotely
sensed values of aBB are within 1–15% of the pyranometer measurements.
This technique of using all six reflected TM bands gives much better agreement
with surface measurements than the two-band method (cf. Brest and Goward
1987). The two-band method yielded results consistently about 25% lower
than the six-band method used in this study. This difference is, in part, because
of the low contrast in reflectivity between the red and near-infrared bands
for the sparsely vegetated surface of this semi-arid region. Soils of arid regions
generally have a very high albedo. In addition, the presence of microphytic
crust, which is fairly extensive throughout the valley, has an effect on aBB
independent of vegetation cover because of its dark color. Use of the additional
bands incorporates more spectral information about the surface composition
not available in the two-band method.

Measurements of surface temperature with Infrared Thermometers (IRT)
were only available at four of the six flux stations. In each case, the remotely
sensed Ts was 2-7ºC lower than the observed values (Figure 4.7). These results
contradict several other investigations in which Landsat 5-derived
temperatures systematically overestimated coincident surface measurements
or remotely sensed measurements from other satellite instruments by several
degrees (Schott and Volchok 1985; Wukelic et al. 1989; Sugita and Brutsaert
1993; Goetz et al. 1995). Other investigations have noted that temperatures
observed by IRTs are sensitive to the viewing angle and wind speed (Lhomme

Figure 4.6 Comparison of broadband albedo derived from pyranometer measurements at
the flux stations, a remote sensing method using all six reflected Landsat TM bands
(this study), and the two-band method of Brest and Goward (1987).
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et al. 1988; Vining and Blad 1992; Kohsiek et al. 1993; Stewart et al. 1994).
Without further information, no correction was made for these effects in
this study. Such difficulties associated with retrieval of surface fluxes have
been discussed by Hall et al. (1992).

Figure 4.8 shows the spatial distribution of Rn, Gsfc, H, and LE based on
the Landsat TM data. The relationship among geomorphology, soil, and
vegetation is readily apparent on these maps and is summarized in Figure
4.9. Table 4.2 gives the mean flux values for each vegetation class. Remotely
sensed estimates of net radiation involve using all seven Landsat TM bands
through the derivation of estimates of aBB, εs, and Ts. The values of Rs ↓ and
R1 ↓ among the flux stations vary by no more than 5% because of their
spatial homogeneity, therefore, it is reasonable to use a mean value for each.
Although the correlation between observed and remotely sensed Rn is good,
remotely sensed Rn is biased high by about 8% (Figure 4.10). This results
largely because the remotely sensed estimates of Ts underestimate values of
Ts measured at the flux stations. Although remotely sensed Ts may be slightly
underestimated, the error is systematic and the apparent spatial structure of
Rn is not affected. Rn is in the range of 350–520 Wm-2 where vegetation is
least dense on the playa and lake plain, and where vegetation cover is
continuous but short as in the chained pasture and extensive areas of
saltbush and winterfat on the middle part of the fans (Figure 4.8(a)). Rn is
greater than 500 Wm-2 in areas of dense greasewood on the lower part of
the fans and in areas covered with sagebrush on the highest reaches of the
alluvial fans.

Figure 4.7 Comparison of surface temperatures measured at the flux stations using a tower-
mounted infrared thermometer and those obtained with remote sensing.



Figure 4.8 Maps showing the spatial distribution of instantaneous surface energy fluxes derived
from assimilation of surface meteorological and remote sensing data. See text for
discussion (see Colour Plate XXIV).



Figure 4.9 Generalized cross-sectional profile from the playa in the central part of the
valley to the adjacent mountains, clarifying the terminology used in the text and
the relationship between the geomorphology, soils, vegetation, and mean fluxes
of Goshute Valley. Fluxes are balanced at the pixel scale and not necessarily for
area means shown here.

Table 4.2 Mean flux values for vegetation classes comprised of single vegetation types and
assemblages of plants
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The spatial distribution of surface heat flux, Gsfc, is shown in Figure 4.8(b)
with its obvious relationship to the distribution of vegetation density. As
with Rn, the remotely sensed estimates of Gsfc overestimate the values measured
at the flux stations by about 8 %. This deviation may be largely inherited
from the overestimate of Rn. On the lake plain, surface heat flux averages
about –130 W m-2 whereas on the higher slopes of the fans, where sagebrush
is dominant, values range from about –130 to –110Wm-2. Surface heat fluxes
are smallest, less than 100 Wm-2, on the middle to lower reaches of the fans.

The sensible heat flux component of the surface energy balance, H, is the
most difficult to ascertain using remote sensing data and is consequently the
largest source of error in estimating ET. Errors in H are introduced in the
estimation of Ts, aerodynamic resistance parameters, and through use of
area-mean Ta because information is lacking about the spatial variability of
Ta. Accurate calculation of energy and water fluxes requires that errors in
estimate of surface temperature to be small compared to the differences in
surface-air temperatures. The larger the difference in surface-air temperature,
the more insensitive the method is to errors in remotely sensed estimates of
Ts. Fortunately, in this study, the difference in the surfaceair temperature at
the flux stations using a spatially distributed Ts and the mean Ta is large
(mean difference=11ºC). Typically, this difference is on the order of less than
2ºC. Kustas et al. (1994a) described several methods of estimating roughness
parameters, but these techniques require additional measurements of the
wind profile and vertical velocity not available in this study. Alternatively,
z0m and z0h were defined through an iterative process using mean values from

Figure 4.10 Comparison of net radiation measured directly at the flux stations and net
radiation derived from remote sensing estimates of emissivity, surface
temperature, and albedo. For visual reference, the line depicts the 1:1
relationship. See text for discussion.
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the flux stations and constraints imposed by the literature. Although many
solutions for z0m and z0h exist at any one location, very few solutions exist
that can universally satisfy a solution for H at all pixels within the area of
interest. Once the roughness parameters were defined, the process was
inverted to solve for H at each pixel using remote sensing estimates of aBB, es,
Ts, Rn, and Gsfc (Figure 4.8(c)). The lowest values of H, ranging from about
50 to 350 Wm-2 (mean = 245 Wm-2) occur in the playa and lake plain. Higher
values occur on the alluvial fans, ranging from about 350 to 600 Wm-2, with
the highest being in the middle reaches of the fans. Because of the difficulties
noted above, these values may be in error by as much as±40%, but the
spatial structure of the sensible heat flux field and its relationship to the
geomorphology, soils, and vegetation of the valley is at least qualitatively
correct.

The latent heat flux represents the energy that is exchanged between the
land and the atmosphere in vapor form during the processes of evaporation
and transpiration. LE is calculated as a residual of the energy balance and as
such, errors in the estimation of Rn, Gsfc, and H are compounded in the
estimation of LE. In this case, errors in LE can be on the order of one or even
two orders of magnitude. For example, the mean LE measured at the flux
stations is about 10 Wm-2, whereas the mean remotely sensed estimate of LE
is about 100 Wm-2. In general, however, the sign of the flux vector remains
true, and maps of LE are believed to represent the relative magnitude of
spatial variations in LE. Although it is computationally possible to obtain
negative values for LE, theoretically this is not reasonable for mid-morning
in the desert; values less than zero should be treated as small fluxes.

In general, LE is low throughout the study area (Figure 4.8(d)). Even though
Figure 4.8(d) only depicts instantaneous values of LE, the remotely sensed
estimates of LE are consistent with measures of the annual cycle of actual ET
derived from the flux stations, which indicate very low to negligible values of
actual ET at the time of year corresponding to acquisition of the remote
sensing data (Malek et al. 1997). LE is lowest (negligible) on the middle part
of the fans. These areas are covered predominantly with small shrubs
(shadscale), forbs (winterfat), and grasses. In this reach of the fan, the depth
of the water table depth is greatest (Figure 4.9). This combination of small
plants and deep water table results in low ET. In June 1994, when the TM
image was acquired, the grasses were well into senescence having already
browned-out. Intermediate values of LE occur on the upper and lower reaches
of the fans and in the outer areas of the lake plain where the larger shrubs
(greasewood and sagebrush) occur in higher density. Presumably, the water
table is within reach of these deep-rooting plant species. LE is greatest in the
central part of the lake plain, particularly in the playa. This LE is dominated
by evaporation because these areas have the lowest vegetation density.
Investigation of the soil in the playa revealed significant moisture just below
the surface. The fine-grained soil is conducive to capillary rise and recharge
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of water from below in response to water potential gradients imposed by
surface evaporation. Rangeland scientists refer to this as the “inverse texture
principle”; although fine-grained soils can hold more water, they also wick
more water compared to sandier soils.

4.5 Summary and conclusions

Making ground-based measurements of hydrologic and micrometeorologic
processes is nearly routine today. These measurements, however, provide
little information about regional hydrology because the measurements are
only representative of a very small area around the sensors. The variability
of the land surface precludes using these measurements to make inferences
about processes that occur over an area of a hectare, much less the size of an
entire valley. Recent developments have demonstrated an increasing capability
to estimate the spatial distribution of hydrologic surface fluxes for very large
areas utilizing remote sensing data. The Goshute Valley research program
provided the necessary instrumentation to further study the use of remote
sensing for measuring surface properties and processes, and to relate these
processes to the geomorphological setting of the Great Basin.

The distribution of Rn is consistent with the spatial distribution of
vegetation type and density. Generally, Rn is lowest in the playa, the central
part of the lake plain, and in the middle reaches of the alluvial fans where
vegetation density is lowest. In contrast, Rn is highest on the lower and upper
reaches of the fans where vegetation density is highest and dominated by
shrubs. Gsfc is lowest on the alluvial fans and highest in the lake plain. Because
the emissivity of bare soil is lower than that of vegetation, areas of lower
vegetation density have a cooler surface temperature and, therefore, a lower
H. Thus, H is lowest in the playa and increases gradually in the lake plain
outward from the playa to the surrounding fans. Somewhat surprisingly, H is
highest in the middle reaches of the fans. Conversely, LE is lowest in the middle
reaches of the fans where plants are small presumably because the water table
is deep, resulting in low evaporation and transpiration. Highest ET occurs in
the center of the valley, particularly in the playa, where little to no vegetation
occurs. We infer that in the playa evaporation is relatively high because of a
shallow water table and the presence of silty clay soil capable of large capillary
water movement. In contrast, intermediate values of LE associated with large
shrubs are presumably dominated by transpiration.

This investigation was an experimental attempt to estimate instantaneous
regional-scale ET using Landsat TM data. Well-developed pointbased models
of surface energy and water balance fluxes were applied to individual pixels
of the remotely sensed image. The method requires certain assumptions be
made about the spatial distribution of several physical parameters. In some
instances, remotely sensed proxies were used; in others, spatial averages were
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assumed. For example, (a) we assumed that downwelling short- and longwave
radiation and one or more aerodynamic resistance parameters are invariant
over the study area, (b) that for nadirviewing instruments the land surface
behaves as a Lambertian reflector, and (c) that the emissivity-NDVI
relationship is indeed linear.

Although the current state of the technique is imprecise, the results herein
and in other studies suggest that it is possible to utilize remote sensing to
scale from point measurements of environmental state variables to regional
estimates of energy exchange to obtain an understanding of the spatial
relationship between these fluxes and landscape variables. The newest
generation of thermal remote sensing instruments [i.e. Enhanced Thematic
Mapper Plus (ETM+), Moderate-resolution Imaging Spectroradiometer
(MODIS), Advanced Spaceborne Thermal Emission and Reflection (ASTER)
Radiometer, Multispectral Thermal Imager (MTI)] offer much potential for
improving this technique. Some of these instruments possess more than one
thermal channel, which facilitiates using a split window technique for
atmospheric correction. Shorter revisit time for surface energy studies is
another advantage provided by some instruments. ETM+, ASTER, and MTI
are all higher-resolution thermal sensors than TM band 6. In addition to
improvements in sensor characteristics, new techniques are also being
developed to address spatial heterogeneity of surface properties at the subpixel
scale. The combination of these factors should lead to improved surface
energy balance estimation.
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Chapter 5

Coupling thermal infrared and
visible satellite measurements
to infer biophysical variables
at the land surface

Robert R.Gillies and Bekele Temesgen

5.1 Introduction

The measurements of surface soil moisture, net radiation, sensible heat flux,
and latent heat flux have many applications in different disciplines such as
hydrology, agriculture, meteorology, and forestry. These important
biophysical variables are either measured or estimated using the different
methods available. For example, surface fluxes can be measured using
lysimeters, Bowen ratio and, eddy correlation systems, water balance methods,
gas exchange chambers, and micrometeorological methods (Dugas et al.
1991). The soil moisture can be measured using gravimetric methods, neutron
probes, tensiometers, and hygrometric methods (Schmugge et al. 1980).
However, point measurements produce reliable results only for the site at
which the measurements were taken and are not spatially representative at
larger regional scales. Furthermore, the use of point measurements as a typical
value for a larger area is likely to introduce significant errors because of the
heterogeneity of most land surfaces. Striking differences in these variables
occur over short distances even within the same field. For example, Davenport
and Hudson (1967) measured evaporation rates from open-water, using
evaporimeter dishes, and found a decrease of about 30% in latent heat flux
with in a 60 m distance of the upwind edge of a cotton field. Other researchers
(Burman et al. 1975; Holmes 1970) report similar results.

Remote sensing of certain surface parameters, such as surface radiant
temperature and surface reflectance, has enabled researchers to obtain
estimates of soil moisture, net radiation, sensible heat flux, and latent heat
flux at larger spatial scales. Remote sensing methods produce spatial averages
of surface parameters. Therefore, the error that is introduced as a result of
this averaging depends on the spatial resolution of the sensors. However,
even for the coarser resolutions, spatial averaging of parameters is less likely
to result in significant errors compared to taking point measurements as a
representative value.

Remote sensing methods also have limitations. Remotely sensed data, for
example, are instantaneous and therefore do not account for temporal
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variations. However, under stable atmospheric conditions, the instantaneous
measurements can be extrapolated to daily values with a reasonable degree
of confidence (Jackson et al. 1983; Kustas et al. 1989). The other obvious
problem with remote sensing methods is the difficulty of deriving biophysical
variables from the remotely sensed parameters. Although there are many
reported methods for deriving biophysical variables from the remotely sensed
data, none has yet been accepted as a standard.

This chapter focuses on the use of Soil-Vegetation-Atmosphere-Transfer
(SVAT) models in deriving biophysical variables. SVAT models are usually
coupled with remotely sensed data so that the biophysical variables are derived
using what is referred to as an inverse technique. The inverse technique is a
method in which a measured variable is fitted to a simulated (modeled) one
such that their equivalence defines a solution (Gillies et al. 1997). There are
many SVAT models that are used for these purposes. The emphasis in this
chapter is on the methods and application of a SVAT model that was
developed over many years, at The Pennsylvania State University (Carlson
and Boland 1978; Taconet et al. 1986; Gillies 1994). From now onwards in
this chapter, this model is referred to as the ABL-SVAT, or simply the SVAT
model, ABL representing the fact that the SVAT included a dynamic mixing
layer as part of the atmospheric boundary layer.

One of the more important applications of the ABL-SVAT model is the
derivation of surface soil moisture at a regional scale. The surface soil
moisture, in turn, has many uses and applications. In this chapter, we present
the methods used to derive the surface soil moisture and the use of the derived
surface soil moisture as an index to assess the prevalence of certain diseases,
such as malaria and filariasis. The surface soil moisture was used as an index
because the mosquito vectors that carry the parasite need standing water for
breeding (Crombie et al. 1999). Standing water implies higher values of
surface soil moisture. Details are presented using results of a recent study
that was conducted along the Nile delta in Egypt.

5.2 Theory and background

5.2.1 Surface energy balance

In the determination of biophysical variables of land surfaces, boundary
layer models have to be coupled with the remotely sensed measurements. In
this process, the most critical step is the determination of the actual radiant
energy available at the surface. This is calculated in the SVAT model by
summing the various streams of radiation to and from the surface as
represented in equation (5.1):

(5.1)

where αs is the reflectivity of the surface to solar radiation, called albedo,
Rsolar is the incident solar radiation (direct and diffuse) at the land surface,
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Ratmosphere is the infrared emission from the atmosphere toward the surface,
and Rsurface is the infrared emission from the surface. The sum of these radiation
streams represents the amount of energy available (Rnet—the net radiation)
to do work at the land surface. In other words, this energy will be used to
power the various processes that drive the land surface processes that
ultimately drive the climate system. The question arises, for what processes
is this energy used? Ignoring smaller energy components such as friction,
electrochemical interactions, and photosynthesis, the main processes are the
evaporation of water (directly from the surface as well as from the interior
of plants—a process termed transpiration—together these constitute the
combined process of evapotranspiration), the flux of sensible heat between
the land surface and the atmosphere, and the storage of heat in land and
water masses. Therefore, the net radiation can be approximated using
equation (5.2):

(5.2)

where ET is the evapotranspiration from the surface, H the sensible heat, and
G is the soil heat flux into the underlying surface (units are typically Wm-2).

The energy flux components of equation (5.2) are related to the surface
conditions; specifically, how wet or dry the surface is, to what extent a
particular area is vegetated, as well as the properties of the soil. For most
natural systems, ET is the largest component where the land surface is wet
and/or covered with well-watered plants. The operative word here is wet,
because it indicates that soil moisture is a control in the system. This soil
moisture content directly affects ET through evaporation from the soil surface
and indirectly through the plants that transpire. The ET over any vegetated
surface will therefore be a function of (a) the amount of bare surface and its
degree of wetness and (b) the extent to which any area is vegetated, as well as
on vegetation type and characteristics. Such combined surface characteristics
will govern into which processes the radiative energy will be transformed.

5.2.2 Link to remote sensing

Since both equations (5.1) and (5.2) are expressions for Rnet, it is evident
then that the association between the radiation streams, noted in equation
(5.1), are closely linked to the energy flux terms, as given in equation (5.2),
which in turn are linked to the surface characteristics of the land.

Our interest is in determining the surface energy fluxes (right-hand side
of equation 5.2) at the regional scale. Passive remote sensing provides
distributed values of most of the radiation streams given in equation (5.1).
The question then is, how to utilize these values in order to obtain estimates
of surface energy fluxes? This is achieved by coupling a ABL-SVAT model
with the remotely sensed data. The coupling is necessary because the radiation
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streams, the components of which can be remotely sensed, drive the surface
energy fluxes.

In terms of the radiation streams given in equation (5.1), Rsolar lies in the
solar-reflective spectral range where the energy supplied at the surface by the
sun exceeds that emitted by the earth. Ratmosphere and Rsurface are emitted thermal
radiation from the atmosphere and the earth, respectively. These radiation
sources define surface properties of reflectance and temperature.

As stated in Section 5.2.1, to first approximation, the amount of vegetation
cover and wetness of the surface are two of the most important factors in
estimating the surface fluxes. The issue, now is how to use the reflected
component of Rsolar and the emitted component (Rsurface) to determine the
extent to which an area is vegetated and the degree of wetness of the soil.
The reflective properties of a surface and the relative contribution of specific
wavebands of radiation are used to detect the presence of vegetation. Such
modulation ratios, generally referred to as vegetation indexes, are commonly
used to exploit the spectral signatures of vegetation. The “Normalized
Difference Vegetation Index” (NDVI) is just such an index:

(5.3)

where ρ1 and ρ2 are the measured surface reflectances in the visible red and
near-infrared spectral regions, respectively. (Wavelength ranges are typically
ρ1=ρred=ρ0.6–0.7µm, ρ2=ρNIR=ρ0.7-l.1µm.) Clearly, –1≤NDVI≤1, with highly vegetated
surfaces characterized by values of NDVI ˜ 0.8; this is because, for healthy
vegetation, ρNIR is large and ρred is small, and NDVI ̃  0.1 for bare soil surfaces.
NDVI, though, is not an intrinsic physical quantity and there is often
confusion when trying to relate NDVI to physical or biophysical variables,
such as Leaf Area Index (LAI) or the fractional vegetation cover (Fr). Likewise,
there is similar confusion as to what constitutes a fully vegetated surface. To
clarify such definitions and relationships, the reader is directed to the
discussion in Carlson and Ripley (1997). NDVI, as defined in equation (5.3)
(as measured at the surface), is often referred to as the “true” NDVI as
compared to what is actually measured from space, where differential
attenuation between the red and near-infrared wavelengths occurs due to
radiative interaction with atmospheric aerosols. While the definition of NDVI
is undoubtedly important (Liu and Huete 1995; Leprieur et al. 1996), Carlson
and Ripley (1997) show that the relationship between NDVI and Fr holds
equally well whether NDVI is corrected for atmospheric attenuation or not.
The practical significance of this will become apparent.

The emitted component of the earth (Rsurface) defines the surface property
of temperature, more correctly defined as the surface radiant temperature
(To). Radiant temperature over a non-vegetated surface exhibits sensitivity
with soil water content (Idso et al. 1975); this is due to the greater amount of
energy required to change the water from a liquid to a vapor state. For any
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increase in water content, a greater amount of evaporation will take place
that will be manifest as a lower radiant temperature. However, what is meant
by what has been loosely described as soil water content? Obviously, any
definition of soil water content should be tied closely to evaporation. A
familiar term that does this and is extensively used in the literature is the soil
moisture availability (Mo). Treatment of this very important variable goes
beyond the scope of this chapter but an outline is given in Appendix 5.A1.
The soil moisture availability then links the evaporation at the surface to the
surface radiant temperature and, through the radiation laws, to Rsurface.

In summary, the argument posed is that certain biophysical variables cannot
be directly remotely sensed and have to be interpreted through alternate
means. The crux of the argument is simply relating the radiation streams to
the fluxes with the land surface properties: starting from remotely sensed
measurements of reflectivity and emission one can calculate NDVI and To,
from which Mo and Fr are inferred through coupling the remotely sensed
surface parameters to a ABL-SVAT model, while, at the same time, the scheme
can also output H and ET. In the literature, Rsolar and Rsurface are referred to as
primary remotely sensed variables, whereas NDVI and To are considered
secondary remotely sensed variables. The groupings (Fr, Mo, H, and ET) are
customarily referred to as biophysical variables.

Finally, it is important to realize that an inherent complexity exists in
using a radiant temperature (Norman and Becker 1995) over a heterogeneous
surface comprising vegetation and bare soil. While the temperature of the
bare soil will vary with the soil water content, the temperature of healthy,
well-watered vegetation will not change by much. Consequently, as fractional
vegetation cover increases in any spatial domain, the radiant temperature
measurement from the vegetation increasingly modulates the overall radiant
temperature, and thereby becomes rather insensitive to the actual soil surface
moisture conditions. Therefore, in any scheme that uses radiant temperature
as a prognostic variable, such circumstances will have to be considered.

5.3 Determination of biophysical variables using the triangle
method

5.3.1 Satellite data depiction and theoretical interpretation

As is the case for the derivation of biophysical fields, an intermediate physical
model (iABL-SVAT) is generally applied in the interpretation of the secondary
remotely sensed fields. This has the potential to introduce uncertainty in the
derived products: the triangle technique reduces such uncertainties as it
identifies physical limits found in the secondary remotely sensed data that
are subsequently used to constrain the model solution for obtaining the
biophysical variables. The generated biophysical fields are surface moisture
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availability (Mo), fractional vegetation cover (Fr), sensible heat flux (H), and
evapotranspiration (ET).

The triangle method is by definition, a multispectral method that combines
measurements of surface radiant temperature, To, and reflectance (red and
near infrared). The reflectance measurements are used to calculate the NDVI.
NDVI is subsequently plotted as a function of To and the observed association
between the two variables is illustrated in Figure 5.1.

The physical limits that constrain the solution for the biophysical variables
are defined from the scatterplot, shown at high resolution in Figure 5.1. It
relies theoretically upon observing the complete spectrum of Fr and Mo at
the ground surface. By definition then, the observations must be bounded by
their physical limits and will manifest themselves as boundaries—visually
characterized in the observations by “distinct” edges.

Such edges for Fr are straightforward, where a low NDVI extreme and a
narrow vertex at the high NDVI extreme represent zero (bare soil) to 100%
(complete canopy) vegetation cover, respectively. (The relationship between
NDVI and Fr is non-linear and is described in a later section.) The edges
associated with the limits of Mo are somewhat more difficult to visualize and

Figure 5.1 NS001-Thematic Mapper Simulator derived To-NDVI scatterplot (gray spectral
scaling) at a 5-m spatial resolution for a 7×3 km2 area of the Mahantango
Watershed, Pennsylvania, July 18, 1990, 11:45 h LST. To is in Kelvin. Isopleths
representing moisture availability index Mo are overlaid with the legend, o=0.0
(“warm” edge), ◊=0.2, �=0.4, ∆=0.6,
∆0.8, and×=1.0 (“cold” edge). A relatively few number of observations at
temperatures higher than the warm edge and lower than the cold edge exist
due to terrain effects (slope and aspect) which are not considered in the analysis
that follows. The consequence of terrain on the NDVI/To relationship is detailed
in Temesgen (2001).
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describe. This is due to (a) the nature of the spectral plot, as shown in Figure
5.1, which makes it difficult to isolate relatively few extraneous pixels that
mask the edge, and (b) the physics specifying the temperature soil water
content (Mo) relationship. Careful observation (with the aid of the model
output of Mo as overlaid) helps delineate (a). For (b), the work of Idso et al.
(1975), who describes the physics, is translated by Goward et al. (1985),
Price (1990), and Carlson et al. (1994), who apply the theory to NDVI/To
space. The relevant point that emerges from their interpretation of the physics
is that the warmest pixels, despite variations in Fr, correspond to the driest
surfaces and define an edge—the so-called “warm edge” that represents a
minimum limit of Mo. At the other extreme, the opposite applies where a
“cold edge” represents a maximum limit of Mo.

From theoretical considerations alone, within the domain of the scatterplot
there must exist all possible permutations of Fr and Mo. The issue, then, is to
map the domain appropriately. This is where the remote observations are
coupled to a physically based algorithm (usually a model) and the conceptual
interpretation (biophysical variables) the result. A review and categorization
of various techniques (for determining evapotranspiration) is given by Kustas
and Norman (1996).

5.3.2 Exploiting the NDWI/T
o
 relationship with

the triangle method

A first step in the process is to establish the relationship between Fr and
NDVI. First NDVI is scaled between its fully vegetated (maximum NDVI)
and bare soil (minimum NDVI) values creating a re-scaled NDVI or N*
where

(5.4)

in which NDVIs and NDVIo are, respectively, the maximum and minimum
values of NDVI. N* varies from 0 to 1.

Fr is established from a transform between N* and Fr. This relationship
was obtained by fitting the ABL-SVAT model output to satellite data along
the “warm edge” with Mo set to zero for two conditions: 100% vegetative
cover with the maximum NDVI (known a priori) and bare soil conditions
knowing the minimum NDVI (Gillies and Carlson 1995; Gillies et al. 1997).
The procedure involved using ancillary data (including a morning sounding,
vegetation and soil type information); whereupon, the model was tuned until
the modeled and measured To closely matched for both cases. The model
was subsequently run in increments of fractional vegetation cover so that
To=f(Fr). By representing the warm edge as a regression of N* against To,
To=f(Fr), the two relationships were used to associate N* with Fr. Applying
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this method to satellite data from the Mahantango Creek watershed, PA,
Konza Prairie, KS, and Newcastle-on-Tyne, United Kingdom, a simple
relationship (Gillies et al. 1997) was derived, where

(5.5)

This is similar to a relationship by Choudhury et al. (1994) where they related
the LAI to NDVI. Other independent support (radiation transfer calculations)
for this simple square root relationship is to be found in Carlson and Ripley
(1997). Of further significance, their work suggests that this scaling eliminates
errors in the reflectance data attributed to sensor calibration and atmospheric
correction. With the Fr/N* relationship, it is a simple matter to transform
the remote observations from NDVI/To space to Fr/To space.

The second step is to derive Mo. The same iteration scheme as described
earlier for Mo set to zero is adopted, with the exception that Mo is now also
cycled over its theoretical range (i.e. 0–1). The output of this process is a
matrix of data that assigns the modeled biophysical variable (Mo) to the
remote measurements (To), but most importantly, the biophysical variable is
constrained by the physical limits implied by the remote observations as
evidenced by the Mo overlay in Figure 5.1. This matrix can be expanded to
include model derived sensible heat (H) and ET, which are model output
variables. The only step left in the process is to mathematically derive the
coefficients necessary to fit the data, for example, ET=f(Fr, Mo). The logistics
for generating relationships for Mo, ET, and H are given in Appendix 5.A2.

An alternate modification to the triangle method negates the requirement
of iterating over Mo as previously described. A temperature normalization
procedure (Owen et al. 1998) uses a scaled temperature for both the model
and remotely sensed values of To.

Similar to N*, this scaled temperature, T̂ , is expressed as

(5.6)

so that the temperature, like NDVI, is scaled between its maximum and
minimum values. This is done between the maximum value for bare soil and
the minimum value for a wet vegetated surface. The reader will notice that
knowledge of the vegetation fraction is crucial to the method. Unlike the
case for the NDVI, this scaling reduces but does not eliminate calibration
and correction issues. The advantage of normalization, for example, is that
it permits the application of a so-called nomogram for a satellite scene for
which the necessary data to initialize the SVAT model was not available—
reference to this is made in Section 5.4.
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One final point to be made in all of this, is that because of errors inherent
in calculating To, and because the triangle narrows along the temperature
axis, the usable area of the triangle domain is below 80% Fr (Gillies and
Carlson 1995).

5.3.3 Further explanation and information about
the biophysical variables

Fractional vegetation cover (Fr)

The derivation of Fr is described in the previous section. Though Fr is
exclusively a function of NDVI, the extremes of NDVI used to calculate N*
require information taken from the scatterplot. In the event that a scatterplot
is not complete, a value for NDVIo can be extracted from neighboring urban
or bare soil pixels. In cases where the NDVI is not expected to represent
100% vegetation in a given scene, the value of NDVIs can be approximated
by extrapolating a polynomial representation of the “warm edge” in To/
NDVI space into a To commensurate with the air temperature. A working
value of NDVIs can then be estimated.

Moisture availability index (Mo)

The surface moisture availability is also related to the surface soil water
content. For bare soil, Mo is based on a ratio of the surface soil water content
to its value at field capacity above which the soil water evaporates at the
potential rate. This parameter is also referred to in the literature as b. For a
vegetation canopy, Mo continues to refer to the soil below the canopy. Soil
water through the vegetation itself is extracted from the lower of the ABL-
SVAT’s two soil layers. Validation of the triangle method as conducted by
Gillies et al. (1997) found good agreement between the gravimetric
measurements and NS001 derived estimates obtained from FIFE (First ISLSCP
(International Satellite Land Surface Climatology Project) Field Experiment)
and Walnut Gulch, AZ. However, linking tangible estimates of soil water
content from satellite data has been shown to be problematic due to the high
spatial variability of the surface soil moisture, especially under drying
conditions (Capehart and Carlson 1997). At such coarse resolution as is
indicative of NOAA AVHRR satellite data (1.1 km at Nadir), thermally
derived Mo may have little physical meaning beyond that of an index.

Evapotranspiration (ET)

Unlike soil moisture availability, evapotranspiration is an output from the
model as is To. Isopleths of ET are presented in Figure 5.2. Though one
would at first anticipate these isopleths to be similar to Mo in their position
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in the triangle, the contribution of the vegetation component of transpiration
does not cause this to happen. As the deeper rooting zone below the soil is
typically not subject to the high temporal and spatial variability in the soil
water profile, the vegetation canopy has a moderating effect on ET and the
triangle’s structure. This is seen in the narrow vertex (high NDVI or Fr end)
of the triangle representing a small range in surface radiant temperature
whose minimum value is close to the air temperature. ET estimates, like the
soil moisture, verified well against in situ observations at FIFE and Walnut
Gulch.

Sensible heat f lux (H)

A third output variable from the ABL-SVAT used in the remote sensing method
is the sensible heat flux. It should be noted here that the To output from the
model is not the skin temperature used in sensible heat flux estimate. Also,
while the net radiation, ET, and ground fluxes are calculated explicitly within
the model, the sensible heat flux is calculated both explicitly and residually
to maintain the surface energy balance. Validations for H in the Gillies et al.
(1997) study were satisfactory, but did not correlate as well with in situ
observations as did the soil moisture and latent heat flux.

5.4 The triangle method—algorithmic
development and application

5.4.1 Data preparation and algorithms

Given that many users purchase level 1 satellite data for cost reasons, they
must first perform corrections and calibrations as needed for their application

Figure 5.2 Isopleths of 24 h evapotranspiration (Wm-2) for the July 18, 1990, Mahantango
NS001 image overlaid on the triangle domain in T̂/Fr space.
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(e.g. Markam and Barker 1986) before performing reliable data analysis.
Ancillary geometric and radiometric calibration data are used to map the
data to a suitable projection as radiance. Atmospheric calibration techniques
are then necessary to correct the imagery for atmospheric effects to obtain
physical units of reflectance and surface radiant temperature. At this point
the user may follow steps 1 through 3 and use the custom algorithm (Appendix
5.A2, model operation) that constitutes the triangle method. If the ancillary
data needed to perform a SVAT run are not available, temperature
normalization is performed as a means to generate values of Mo. The
alternative sequence of steps (4 and 5) are laid out in Table 5.1.

5.4.2 Example application—filariasis in the Nile delta

Numerous studies have demonstrated the usefulness of remote sensing data
in mapping environmental risk factors such as diurnal temperature variations
and land use practices that control, in part, the distribution of tropical diseases,
including schistosomiasis, trypanosomiasis, malaria, and filariasis (Rodgers
and Randolph 1991; Beck et al. 1994; Malone et al. 1994). As an example
of the application of remote sensing, a case study citing the prevalence of
filariasis in the Nile delta of Egypt is highlighted (Crombie et al. 1999).
Filariasis is a disfiguring and disabling disease caused by a parasite that is
carried by mosquitoes. The full effect of the disease is realized when one

Table 5.1 Systematic processing steps for the triangle method for multispectral imagery



Biophysical variables at the land surface 171

considers that over 120 million people worldwide are affected (Ottesen and
Ramachandran 1995).

In a prior remote sensing study on filariasis, Thompson et al. (1996) used
Advanced Very High Resolution Radiometer (AVHRR) satellite data to map
the diurnal temperature fluctuations (dT) of the Nile delta as a proxy for soil
water content. Statistical comparison of filariasis prevalence and diurnal
temperature variation showed a good correlation between the median dT
values of 10 km2 areas and three filariasis prevalence level groupings (5, 15,
and 25%). Their study, however, used bulk surface radiant temperature
measurements that, by definition, can only proxy soil moisture content in a
very crude way because such measurements do not implicitly account for the
effect of vegetation. The triangle method, however, differentiates the
vegetation radiant temperature from the soil radiant temperature and should
in theory be able to resolve a more representative soil water content, and so,
improve upon the singular approach of Thompson et al. (1996).

The example that follows illustrates how Landsat TM data (August 1990)
were used to map the surface moisture availability (Mo) in the southern Nile
delta of Egypt (Figure 5.3), a region where filariasis is focally endemic and
re-emergent (Harb 1993). The data were subsequently related to filariasis

Figure 5.3 Sketch map of the Nile delta, with the southern Nile delta study area identified
within the box. The lagoons at the north of the delta (i.e. Bahra el Manzals,
Burullus, and Idku) are easily identifiable.
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prevalence data collected by the Egyptian Ministry of Health over the period
1985–1991 for 173 villages located in the study area in the southern Nile
delta (Crombie et al. 1999).

(5.7)

Table 5.2 Polynomial coefficients for polynomial expression
for Mo

Figure 5.4 Map and subsets of regional surface soil moisture availability (Mo) for the Nile
delta study area. Dark colors indicate high soil moisture and light colors indicate
low surface soil moisture availability (see Colour Plate XXV).
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The temperature normalization triangle method was applied by Crombie
et al. (1999), for the southern Nile delta (as identified in Figure 5.3), to
analyze the region in terms of Mo. The steps followed were those as outlined
in Table 5.1. A polynomial (equation 5.7 and Table 5.2), typical of eastern
US summertime conditions was used to map Mo for the region. The end
result of the process is shown in Figure 5.4. The insets defined as B and C
are, respectively, full resolution maps of surface soil moisture availability
near the village El-Kashish, which had high soil moisture availability and
high filariasis infection rate and, the village El-Aysha, which is surrounded
by areas of low surface soil moisture availability and had low filariasis
infection rate. The correlation of filariasis infection rate with Mo was not as
clearly delineated. The linear correlation coefficient (R2) between filariasis
prevalence in the population and Mo was 0.37. A partial linear correlation
with the effects of different villages removed was still about 0.37. The
conclusion reached was that there was only a threshold effect in which Mo

below 0.2 keeps infections way down.

5.5 Concluding remarks

This chapter presents an analysis method (the triangle method) that uses
remote measurements in the infrared and the visible bands to estimate
biophysical variables of evapotranspiration (ET), surface soil moisture (Mo),
and sensible heat flux (H). The technique is one of information generation
to produce spatially representative values of these land surface parameters.
The satellite data, as plotted in the NDVI and To domain, are used to impose
limits on a solution to the surface conditions as prescribed by an ABL-SVAT
model. Two approaches to generating the biophysical variables are detailed.
The regular approach is direct convolution with a SVAT model to generate
the fields. The alternate (temperature scaling) is used when initial conditions
are difficult to prescribe or obtain. In this context, it may be possible to use
a single polynomial for Mo, ET, or H to represent a wide range of surface
climate conditions that compose different land surface types.

The implications for this technique are wide and varied and have direct
application in the fields of hydrology, agriculture, meteorology, and forestry.
The application of remotely generated data to resolving health issues is,
however, a very recent innovation. The triangle method permits reliable
assessments of temporal variability in surface moisture as well as across very
large areas. The epidemiological significance lies in exploiting such modeling
of satellite data that have statistical correlates in the field (e.g. schistosomiasis,
Malone et al. 1994). The further example cited here is where Mo (defined
more rigorously and at higher spatial resolution) is used as a surrogate to
identify high-risk situations for contracting the disease filariasis.
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Appendix A

5.AI Concept of soil moisture availability

The soil moisture availability (Ms) is defined here as a fraction of “field
capacity.” It refers to a surface layer of some depth (subscript s) measured
from the surface; the subscript o refers to a skin surface layer. In terms of
remote sensing and its measurement using thermal infrared radiation, the
relevant layer is a skin surface layer. Others may define moisture availability
differently, for example, as the fraction of “extractable” soil water content,
where some residual amount of soil water is considered to be un-extractable
by plants.

In terms of how soil water content is used in the ABL-SVAT model, let us
consider soil water content expressed as the volumetric water content (w),
where this term represents the volume of soil water content per unit volume
of soil. A related expression to w is the atmospheric moisture availability
Ma. To explain what is meant by this expression consider equation (5.A1),
which is simply a variation of the resistance law but for water vapor flux:

(5.A1)

where LeE is the latent heat flux (W m-2), ρ is the density of water (kg m-3), Le

the latent heat of vaporization (Jkg–1), ∆q is the vertical time averaged specific
humidity difference between two layers, and Rv is the resistance (sm-1)
pertaining to the same vertical interval as ∆q.

For a flux within the atmospheric surface layer—the layer of “constant”
flux—we can write the specific humidity difference as that between the surface
and the top of the surface layer (or any other pair of levels in that surface
layer), so long as the resistance in the formula pertains to that same vertical
interval. It is quite feasible to measure the specific humidity at any level
above the surface. The problem, however, is to specify (let alone measure)
the specific humidity at the bottom of an imaginary column, that is, at the
ground surface, which is hypothetically in the air directly touching the surface.
A compromise is to try to calculate the flux of water vapor by specifying
specific humidity q at two ends of an elevated vertical column, that is, at two
levels above the ground. There are computational problems in doing so.
First, though, we want to tie the flux of moisture at the surface to the amount
of substrate water and the specific humidity at the ground surface which is
at the level in the atmosphere most closely tied to the soil water content.
Second, were we to choose one level slightly above the surface and one at the
surface, we would be faced with the problem that the bottom layer of the
column is indeterminate and there is no equivalent surface specific humidity
corresponding to the surface radiant temperature, which can be more easily
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measured than specific humidity at the surface. If we did choose to measure
the specific humidity at the bottom of the column at a level just above the
surface, we would still need to relate the specific humidity at that level to
that at the soil surface. Such a system would be difficult to close
mathematically.

Having chosen a trial value of qo (specific humidity at the earth’s surface)
for the bottom of the layer (equation 5.A2) and qa, that at the top of the
surface layer (subscript a) for the upper value, we are still faced with the
problem of determining qo. To do this, one can resort to an artifact, which is
as follows: let us define a “saturation” specific humidity qs at the surface
radiant temperature (To). The fractional relative humidity at the surface ho is
thus approximately (noting that relative humidity is strictly defined in terms
of vapor pressure) equal to qo/(qs. To) which results in equation (5.A3). This
type of formulation, although used by some modelers, still leaves a highly
variable and difficult to prescribe unknown parameter, that of ho:

(5.A2)

(5.A3)

The problem of linking qo or ho to the substrate water content has not yet
been rigorously solved, although some expedients for circumventing the whole
issue exist. For now, though, let us proceed by defining a “potential”
evaporation LeEpot There are various ways of defining this quantity. For the
purposes here, it is simply that evaporation occurring over a saturated surface
of radiant temperature To, using equation (5.A3), for 100% relative humidity
at the surface ho = 1. This is equation (5.A4). We can now define the quantity,
Ma, the atmospheric moisture availability, which is simply the ratio of actual
evaporation to potential evaporation. Thus, we can write equation (5.A1) as
(5.A5). Intuitively, Mo should be related to soil water content, so, to proceed,
we set Ma equal to Mo, where Mo is the soil water content as a fraction of
field capacity in the soil surface layer. Because there is very little else one can
do, this equivalence between Ma and Mo has been adopted by many modelers.
There is some justification for such an assumption based on field
measurements, but the exact form of the relationship between Ma and Mo

undoubtedly varies with soil type, among other things. It is merely a first-
order approximation, necessary to make the calculations feasible.
Nevertheless, the evaporation will vary from zero for Ma = 0 (perfectly dry
soil) to potential evaporation for perfectly wet soil. All that can be said for
these two somewhat related variables is that both vary between 0 and 1.0,
probably in some non-linear fashion with each other. When the soil is
absolutely dry, both variables will have the value zero. When at field capacity,
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both Ma and Mo will equal one. Simply equating one to the other may not be
exactly correct, but the differences can never be great because both are
constrained to vary in more or less the same way between the same limits.

(5.A4)

(5.A5)

Equation (5.A5) ties evaporation closely to the soil water content. When Ma

= 0 the evaporation is totally suppressed. For Mo not equal to zero, however,
a decrease in Ma, while certainly causing a decrease in evaporation, also
corresponds to an increase in the sensible heat flux, and therefore, a rise in
surface radiant temperature. However, a rise in surface radiant temperature
corresponds to an increase in the saturation specific humidity at the surface
qs(To) and so, to an increase in the vertical gradient in q and therefore to
potential evaporation. Thus, a compensation (negative feedback) exists that
attempts to brake the decrease in evaporation caused by the decrease in the
soil water content. The result is that a 10% decrease in Ma may correspond
in some instances to far less than a 10% decrease in evaporation. Clearly,
since a 100% change in Ma causes a 100% change in evaporation, there
must be ranges of Ma in which evaporation changes less rapidly with changing
Ma and ranges where evaporation changes more rapidly than at an equivalent
change in Ma.

5.A2 Generic SVAT model inversion

Introduction

SVAT models vary depending on how they parameterize the soil, atmosphere,
and vegetation components. For example, some SVAT models parameterize
numerous soil layers while others specify fewer layers, that is, a thin surface
layer and a deeper layer. Similarly, for some models, the atmospheric boundary
conditions are prescribed, implying no dynamic interaction between the
surface and mixing layers, whereas for others there is a dynamic interaction
between the surface fluxes and the atmosphere (Gottschalck et al. 2001).
The differences are even more pronounced when it comes to the
parameterization of vegetation in that some use a simple Deardorff s model
whereas others use the Ball-Berry method to estimate stomatal resistances.
Despite these differences, the end result tends to be the same, that is, the
simulation of surface energy fluxes, surface temperature, surface soil
moisture, etc.
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In the context of the inversion algorithms, we propose a one-dimensional
ABL-SVAT model (i.e. one that includes mixing layer physics) to be the best
application. Such models require an initial set of conditions that include
information on time (year, month, day), location (latitude, longitude, time
zone), soils, vegetation, and most importantly, a localized atmospheric
sounding. These initial sets of conditions are subsequently used to calculate
surface energy fluxes (net radiation, sensible heat, and latent heat) and surface
temperature, which are in turn used to estimate the profiles of temperature
(subsurface, surface, and air), humidity, and wind speed for the next time
step. The process continues over 24 h, or until the time of the satellite overpass/
aircraft over-flight, as needed. The outputs from the SVAT model are coupled
with remotely sensed data and correlations developed between the different
parameters of the model output. These correlations are then used to map
such variables as surface temperature, surface soil moisture availability (Mo),
and surface energy fluxes (net radiation, sensible heat, and latent heat fluxes)
and, in some models, thermal inertia.

Model framework

During the daytime, generic ABL-SVAT models of the type proposed in this
chapter have a total of four layers: a mixing layer (whose depth varies
throughout the day), a surface layer (about 50m high from the surface), a
thin transitional layer, and a soil layer (about 1.5 m deep). During the
nighttime, the mixed layer collapses and becomes a residual layer, whereas
the lower part of the mixed layer (usually about 200 m) will become a stable
boundary layer. The surface layer is a region where turbulent fluxes are nearly
constant and therefore similarity theory is applied. The transitional layer is the
layer in which molecular diffusivity is significant. The soil layer has two moisture
layers: a thin slab of surface layer (about 10 cm) and the bottom layer (root
zone layer) and five temperature layers. The bottom layer supplies moisture
to plants and also recharges the surface layer during evaporation loss.

Input data

As mentioned before, input parameters vary for most SVAT models. The
SVAT models of the types proposed here generally require data on: time and
location, soil and vegetation parameters, and atmospheric sounding. Although
the type and accuracy of the input data used in the SVAT model can have a
significant effect on the accuracy of the estimated parameters, we believe it
is the methodology that is used to derive the parameters that is more
important. In the following section, we demonstrate the specifics of one such
method, known as the “triangle method,” for mapping surface energy fluxes
and surface soil moisture.
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Model operation

Operating the SVAT model involves many steps. This section demonstrates
those used by the ABL-SVAT model. However, it is stressed that any user
with similar models and output parameters can adopt these steps. The steps
are:

1 Obtain fractional vegetation cover (Fr) versus surface radiant temperature
(To) plot from the remotely sensed data. If observations contain a complete
spectrum of vegetation amount and surface soil water content, the
distribution of the data points resembles a triangle, with its vertex at
higher Fr, for biophysical reasons.

2 Couple the model with remotely sensed data. The first model run is
made for dry, bare soil conditions. The resulting surface temperature is
compared against the corresponding value from the remotely sensed data.
If there are significant differences, some of the input parameters are
refined until agreement is reached. This process is known as tuning the
input data and is necessitated by the uncertainties in the true values of
the input parameters. Once an agreement is reached, the model run is
repeated for increments of Fr (until Fr = 1.0 is achieved) to define the
warm edge. The same procedure is again repeated for wet surfaces (Mo =
1) to define the cold edge.

3 Convolute the model. Once the coupling process is complete, the model
has to be convoluted over possible ranges in values of Fr (0–100%) and
the soil moisture availability (0–1). The results (including surface soil
moisture, fractional vegetation cover, surface radiant temperature, and
surface energy fluxes) from each model run are written to an output file
for the time of the remotely sensed data acquisition. Table 5.A1
demonstrates an example of such an output for the Upper Sheep Creek
subbasin at the Reynolds Creek watershed in Southwestern Idaho. The
airborne data for the study site was collected on August 18, 1993, at
11:04h MST.

4 Develop relationships between biophysical variables and surface
parameters using data from the model output. One of the most important
objectives of coupling the SVAT model with remotely sensed data is the
development of relationships between the biophysical variables and
surface parameters using the model output. These relationships are then
used to derive surface energy fluxes and surface soil moisture from the
remotely sensed Fr and To. The following example demonstrates how
these relationships are developed from the model outputs of the type
shown in Table 7.A1. This particular example is presented to show how
Mo is derived from Fr and To. Similar methods are used to derive surface
energy fluxes from Mo and Fr. Gillies and Carlson (1995) proposed the



Table 5.AI An example of an output file
from the SVAT model for the
Reynolds Creek watershed in
Idaho. The output was made for
a time that corresponds to the
remotely sensed data
acquisition, that is, 11:00 h MST
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following regression equation for Mo:

(5.A6)

where apq is the matrix of coefficients of the polynomial regression.
Equation (5.A6) is expanded as:

(5.A7)

Equation (5.A7) is used to derive the coefficients a00–a33 using the
convoluted Fr and Mo values and the calculated To values from Table

Table 5.A2 Data points in Table 5.A1 expanded to obtain each of the terms in equation (5.A2).
The numbers next to the variables indicate powers
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5.A1. Table 5.A2 shows a partial view of the expanded form of Table
5.A1.

Multiple linear regression is then used to derive the polynomial
coefficients by entering column A (Mo) as a dependent variable and
columns B through P as independent variables. The regression output is
shown at the bottom of Table 5.A3 for the example used. The use of
these correlation coefficients results in the following equation with some
terms omitted.

(5.A8)

Table 5.A3 Regression coefficients derived from Table 5.A2 using multiple linear regression

Note
i ABL-SVAT:Atmospheric Boundary Layer-Soil Vegetation AtmosphereTransfer Model. Carlson and Boland
(1978), Taconet et al. (1986) and Lynn and Carlson (1990).
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5 Use the relationship to map surface energy fluxes and soil moisture.
Equation (5.A8) is used to map Mo using such tools as the ERDAS
Imagine® modeler. Similar equations are developed for net radiation,
sensible heat, and latent heat fluxes. For the fluxes, one only needs to
replace the To column by Mo and use the same methods to correlate
surface energy fluxes to Fr and Mo.
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Chapter 6

Rapid soil drying and its
implications for remote
sensing of soil moisture and
the surface energy fluxes

Toby N.Carlson, David A.J.Ripley
and Thomas J.Schmugge

6.1 The problem

Soil drying under the influence of sunlight is often detectable by an increase
in surface radiant temperature. While this is true in the general sense, all
other factors being equal, a problem arises in trying to determine a correct
value of soil water content for a given application, such as for atmospheric
prediction, hydrology, or agriculture.

Affixing a correct level or depth for a soil moisture estimate is necessary,
not only for practical applications, but also for making comparisons with
and for assessing the value of soil water content derived by differing
techniques, such as from in situ or microwave measurements. Uncertainty
arises from lack of agreement between measurements made by differing
techniques and from the abstract notion of soil moisture as used in land
surface models. This uncertainty has led to an unfortunate disparagement of
the surface radiant temperature as a means for deriving either the surface
turbulent energy fluxes or the soil water content and it has tended to obscure
serious investigations relating surface energy fluxes and substrate hydrology.
A question that is seldom asked, however, is: which soil water content does
one wish to obtain and for what purpose? Indeed, one can speak of surface
soil water content and root zone soil water content without being very specific
as to the fact that evaporation and transpiration draw water from different
layers in the soil in a way that is uniquely related to the soil type, vegetation
type and amount, rooting depth, and the current vertical profile of soil water
content.

Simply stated, the problem as posed above does not resolve itself by
determining which method yields the most accurate results but of knowing
what each measurement means and how it can be used. An indirect soil
water estimate, consisting of an entire vertical profile or vertically integrated
soil water content, cannot be obtained with any known remote sensing
technique, as each method has its limitations and each pertains to a different
facet of the soil water profile. Indeed, a point to be made in this chapter is
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that differing indirect techniques may reveal only parts of the whole, and,
therefore, a particular estimate of soil water content, however, accurate within
its own context, may be inappropriate for some applications and useful for
others. We will illustrate the problem with some measurements of soil water
content and soil temperatures, including the surface radiant temperatures.

6.2 Measurements of soil water content and
surface radiant temperature

6.2.1 Evidence of rapid surface drying

At the heart of the problem lies the fact that temperature and soil water
content vary somewhat independently with depth. The problem is most
pronounced in space (horizontal and vertical) and time variability at the
soil-air interface. Even with in situ methods, the matter of determining the
soil water content profile accurately within the top several centimeters of the
surface is difficult, as most soil moisture sensors are incapable of resolving
soil water content in layers less than 1 or 2 cm in depth. With care, gravimetric
methods can be used to achieve such resolution, although such measurements
in the top 0.5 or 1 cm are fairly rare.

Jackson (1973) provides some detailed and highly resolved vertical
measurements of soil water content near the surface of a common agricultural
soil (Adelanto loam). Using gravimetric sampling, he showed the time
variation of soil water content in the top 0.5 cm layer and at 1-cm intervals
below that level to 5 cm, and thereafter at 2-cm intervals down to 9 cm. He
also showed the profile of vertical water flux and the surface evaporation.
What Jackson found was that the vertical gradient of soil water content was
largest just below the surface and that the soil water content in the top 0.5
cm decreased very rapidly with time to values less than 0.05 by volume
within a few days following irrigation.

Importantly, the largest vertical gradients in soil water content occurred
not when the soil was initially very wet (about 0.35 by volume) or later
when it had dried to the extent that the soil water content at 9 cm had
decreased to 0.15 by volume, but during an intermediate period when the
values between 5 and 9 cm were between 0.20 and 0.25 by volume. Jackson
(1973) identified these three stages of drying, pointing out that the soil water
content during the middle phase of drying, in which the soil was neither very
dry nor very wet, depends on the soil’s ability to conduct water to the surface
and not on atmospheric conditions. Jackson also showed that the vertical
fluxes of soil water were also much smaller below 5 cm than in the top 2 cm,
which is an indication that evaporation removes a proportionately larger
amount of water from the top 2 cm than from deeper layers. Similarly, the
top 2 cm dries out the most rapidly because the water from below is unable
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to resupply the surface at a fast enough rate. Similar results were obtained by
Ek and Cuenca (1994).

Equally evident is the fact that the implied water flux divergence from the
surface layer cannot continue indefinitely. Ultimately, the surface layer
desiccates, leaving a surface crust that may cap an underlying wet layer.
Because hydraulic conductivity is so sensitively dependent upon soil water
content, a decrease in the latter from 0.35 to 0.05 by volume causes a decrease
of the hydraulic conductivity by orders of magnitude (Capehart and Carlson
1997). Consequently, rapid drying impedes the re-supply of liquid water
from deeper layers, so that the evaporation flux decreases rapidly with time
until the surface layer is almost completely desiccated. Jackson’s measurements
showed that, despite surface desiccation, the soil water content at 9 cm
remained above the wilting point even after 34 days following irrigation!

Capehart and Carlson (1997), using a surface hydrology model, illustrated
differential drying between the surface and substrate, as shown in Figure
6.1. They showed that the drying rates at 5–10 cm below the surface were
almost identical and slowly decreasing under strong sunlight, but that the
drying rate at 0.5 cm rapidly increased after the first three days and then
decreased to zero as the soil entered the dry phase as referred to by Jackson
(1973). They called this phenomenon “decoupling” because the soil water
content near the surface was no longer a predictor of the soil water content
at 5-cm depth and below. Their simulations showed that soil water content
at 5- and 10-cm depths remained almost constant at about 30% of saturation
(about 0.14 by volume) during the decoupling and desiccating stages in the
surface layers. A purpose of this chapter is to illustrate decoupling and how
it affects the interpretation of remote measurements.

Figure 6.1 Normalized soil water content expressed as a fraction of saturation (Se) and soil
drying rate; the right-hand axis is expressed as a % change per day of the fraction
of saturation and the lower axis is time. Graphs pertain to 0.5, 1.0, 5.0, and
10.0 cm depths. The drying rate is omitted for the 1.0-cm level. These simulations
were made with a hydrological model for idealized sunlit conditions (from
Capehart and Carlson 1997).
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Studies by Ek and Cuenca (1994) and Capehart and Carlson (1997) showed
that soil water content estimates determined from surface radiant temperatures
can be poorly correlated with those measured over deeper layers, which tend
to possess larger values. Perry and Carlson (1988) and Carlson et al. (1995)
present examples showing a large scatter of points plotted on graphs of soil
water content derived from microwave measurements, which sample a depth
typically about 3–5 cm (Schmugge and Jackson 1994; Jackson et al. 1997),
and from thermal-infrared measurements. Essentially no significant correlation
was found between the two types of measurements in these studies, except
by Perry and Carlson when the thermal data were heavily smoothed. This
lack of correlation between thermal and microwave estimates of soil water
content is not only due to the large vertical gradients, but also due to the
enormous spatial variability of surface temperature and surface soil water
content, which depend much more on the microscale variability of the soil
type, texture, exposure, and surface debris content than does the deeper layer
soil water content. Large variability in surface soil water content, however, is
captured by the surface temperatures, which nevertheless can be
unrepresentative of the deeper layer soil water content while relating very
closely to the surface fluxes of heat and moisture.

Gillies et al. (1997) note that high-resolution imagery from aircraft (5m
resolution) consistently show a full range of surface radiant temperatures
over drying soil and, therefore, a full range of soil water content from dry to
moist. Such local variations in soil water content is an indication that the
heterogeneity of natural soils—and especially of the hydraulic conductivity
in the surfaces layers—is as large within a particular (classical) soil type as
that between differing soil types.

6.2.2 Radiometry at infrared and microwave frequencies

Measurement of the thermally emitted radiation from the earth’s surface at
various wavelengths can yield useful information about parameters, such as
surface temperature and surface soil water content. To estimate surface
temperatures, radiation at wavelengths around 10µm is used because the
peak intensity of thermally emitted radiation, as described by the Planck
equation, occurs at these wavelengths for terrestrial temperatures (≈ 300 K)
and the atmosphere is relatively transparent. Therefore, variations in the
observed intensity of infrared radiation are mainly related to surface
temperature variations. Nevertheless, it is not possible to obtain accuracy
much better than about plus or minus 1–1.5°C in surface temperature when
the information is derived from the thermal channels of satellites.

In contrast to microwave measurements, emitted thermal radiation from
the soil originates within the top few tenths of centimeters of soil. Moreover,
over vegetation, thermal radiances emitted are more apt to contain a blend
of energy originating over vegetation and bare soil than microwave radiances.
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Over dense vegetation, infrared surface temperatures tend to be very close to
that of the leaves, although shadowing may result in a temperature somewhat
below that of a given sunlit leaf. In general, the radiometric temperature of a
dense vegetation canopy is typically only one or two degrees higher than
that of the air just above the canopy.

At microwave frequencies, the most striking feature of the emission from
the earth’s surface is the large contrast between water and mineral material.
This emissivity contrast is due to the large difference between the dielectric
constant of water (≈80) and that of dry soils (≈5). Thus, a mixture of water
and dry soil had a dielectric constant between these two extremes, affording
a mechanism for the remote sensing of soil moisture at microwave frequencies.
This variation in the soil’s dielectric constant produces a range of emissivities
from 0.95 for dry soils to less than 0.6 for wet soils, which is easily observable
with a microwave radiometer

6.2.3 Vegetation and surface energy fluxes

Vegetation constitutes an additional source of uncertainty in using surface
radiant temperatures to determine soil water content. Until the mid-1980s,
remote methods for determining soil water content using surface radiant
temperatures (as measured by satellite) made no distinction between soil
surface and vegetation surface radiant temperatures. It became possible to
distinguish one type of surface from the other with an increased knowledge
of vegetation, particularly the vegetation amount, which can be inferred from
indices based on multi-spectral measurements in the visible and nearinfrared.

In order to determine unique temperatures for both the vegetated and
bare soil fractions of a pixel (Figure 6.2), we make a series of simple but
reasonable assumptions (Gillies and Carlson 1995): (a) the radiant
temperature pertains to a surface consisting of sunlit leaves and sunlit bare
soil; (b) the normalized difference vegetation index (NDVI) is closely related
to fractional vegetation cover, such that the surface is 100% covered by
vegetation where NDVI is large (e.g. ˜0.6) and bare where NDVI is small
(e.g. zero); (c) the temperature of the vegetation is a constant over an image
or field of view. The latter assumption is based on extensive observations
with satellite imagery, which show little spatial variability in the surface
radiant temperature over dense vegetation, at least for images with pixels
sizes of several meters or more.

While individual sunlit leaf temperatures may increase well above air
temperature, we also find from inspection of many thermal images that
vegetation canopies, which consist of a large ensemble of leaves, exhibit
little elevation in temperatures above the ambient air temperature.
Simulations that we have made of crop canopy temperature support this
observation, showing a very slow increase in surface radiant temperature
with decreasing soil water content until the latter reaches values approaching
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the so-called “wilting point” in the root zone. Indeed, even when the soil
water content is reduced to values below the wilting point, plant canopies
react to water stress, not so much by increasing the ensemble leaf temperature,
but by undergoing a change in leaf orientation and shape, such that more
solar radiation reaches the soil and less solar radiation is intercepted by the
leaves. In the extreme case, the leaves may simply drop off. Transient
elevations in leaf temperature due to water stress occur for a short time
during the middle part of the day when the plant is subject to a period of
water depletion (Lynn and Carlson 1990; Olioso et al. 1996). For the most
part, however, increased radiometric temperatures of vegetation canopies
during dry conditions depend on an increased fraction of bare soil visible to
the radiometer, rather than a substantial rise in leaf temperature.

We wish, therefore, to emphasize that variations in surface soil temperature
and the fraction of surface covered by vegetation, and not the leaf temperature,
produce most of the spatial variability in surface radiant temperature during
periods of soil drying. Partial plant canopies modify the temperature of a
sunlit surface and impose patterns of surface radiant temperature that depend
partly upon vegetation cover as well as upon soil surface wetness. Of course,
the vegetation behaves differently from bare soil. Vegetation extracts soil
water from deep in the root zone, so that soil drying in the presence of
vegetation may produce a greater decrease in root zone water content than
in the absence of plants and possibly more than at the surface, as the latter
would remain shaded by the leaves. Unlike rapid surface drying, water loss
at deeper layers would be undetectable in the surface radiant temperatures.

Figure 6.2 Sensitivity of latent heat flux (vertical axis labeled Le; W m-2) to soil moisture
availability (M0) and fractional vegetation cover (Fr; %), as simulated with a soil/
vegetation/atmosphere transfer model.



Remote sensing of soil moisture 191

In contrast with soil water content, the surface turbulent energy fluxes are
rather sensitively dependent on surface radiant temperature (see Chapter 7).
Indeed, fluxes can be determined without any explicit knowledge of the soil
water content, given the surface radiant temperature and some supporting
data, such as air temperature (Gillies and Carlson 1995). Because the surface
turbulent energy fluxes depend directly on the surface radiant temperature,
they can be determined with less uncertainty than the soil water content. It is
fair to say that current methods for estimating these fluxes from surface
radiant temperatures can achieve an accuracy of ± 20–40 W m-2 for both
types of fluxes and ± 10–30% of their maximum values, with latent heat
flux errors corresponding more to the lower part of these ranges and sensible
heat fluxes more to the higher end.

The two most important factors governing the partition of net radiation
into sensible and latent energy are found to be the fractional vegetation cover
and the soil surface wetness (moisture availability—defined here as the ratio
of soil water content to that at field capacity in a surface layer). Figure 6.2 is
based on simulations with a land surface model (Gillies and Carlson 1995),
which uses a “force-restore” method similar to that of Deardorff (1978) to
calculate the vertical transfer of water in the soil. The three soil layers consist
of a surface layer (set at 10cm), a transition layer, and a root zone layer (set
at 50cm). Transpired water is drawn from the root zone and surface
evaporation originates in the surface layer. Water can move from one layer
to another depending on the vertical gradient of water content, but the
hydraulic conductivity does not vary with soil water content.

As shown in Figure 6.2, sensitivity of evapotranspiration to these
parameters is not uniformly distributed over the range of moisture availability
and fractional vegetation cover. Rather, significant sensitivity of the fluxes
to surface moisture availability and vegetation cover occur only when these
two factors are both less than 0.5 (expressed as 50% in Figure 6.2), and they
become quite large when the surface moisture availability is less than 0.1. It
is worth repeating that the root zone soil water content, which was held
constant in the simulations used to produce Figure 6.2, is not a major factor
in the surface flux balance for bare soil, except insofar as it is able to slowly
re-supply the surface layer with water. Figure 6.2 remains unaffected in these
simulations when the root zone soil water content is varied over a wide
range of values. The importance of the surface becomes increasingly obvious
as the surface layer in the model is reduced in thickness.

6.2.4 A soil experiment

In order to study the drying process in relation to the surface radiant
temperature, we conducted a simple field experiment. Each of four wooden
boxes, approximately 55 cm deep by 60 × 60 cm2 of top surface area, was
filled with locally obtained soils. The boxes were situated on the roof of
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Walker Building at Penn State University, about 20 m above ground level,
and were exposed to normal insolation and wetting by precipitation. Holes
were drilled in the bottom of the boxes to allow infiltrating rainwater to
seep downward and exit. The soil surface was made flush with the top of the
boxes so as to eliminate shadowing by the raised sides of the boxes. Each
box of soil was divided into two sections of approximately 25 × 50 cm2 by a
wooden partition. The soils used are called Murrill Channery silt loam (box
1), Hagerstown silt loam, A horizon (box 2), Hagerstown silt loam, B horizon
(box 3) and Buchanan Channery loam, B horizon (box 4). Their arrangement
is shown in Figure 6.3.

Two types of soil water probes along with copper-constantan
thermocouples were implanted at soil depths of 1, 2, 5, 10, and 20 cm on
both sides of the partition of each box. One soil probe was a commercial
product, gypsum blocks made by Delmhorst™; the other was a grid mesh
construction of our own design. This latter instrument closely resembles the
one described by Amer et al. (1994). Delmhorst blocks are wine cork-sized
plugs made of gypsum enclosed around a wire mesh through which an induced
current is passed from a proprietary meter made by Delmhorst with which
electrical conductance of the soil block is measured. The meshes consist of
thin perforated wafers of non-conducting ceramic (“perfboard”) material
about 2 × 2cm2 on a side and about 1.5-mm thick, to which stainless steel
wire meshes are attached by nylon strands on either side of the wafer. Soil

Figure 6.3 Photograph of the four soil boxes on the roof of Walker Building, Penn State
University.
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surrounds and fills the holes, allowing an electrical current to pass across the
mesh. All probes were installed a week or two prior to making the outdoor
measurements.

Before beginning the outdoor measurement program, calibrations were
performed indoors for both the gypsum blocks and the grid meshes. Both
meshes and gypsum blocks were calibrated in separate soil pots
(approximately 15cm in diameter and 15cm deep). Each pot was filled with
soils identical to those in the boxes and implanted with similar probes. Soil
pots were wetted to field capacity (drainage ceases) and allowed to dry
naturally or in a drying oven in stages. Pot and soil were periodically weighed
with an electrical balance and the temperature of the soil measured. Electrical
resistance measurements were made for both probes at each stage of drying.
The Delmhorst meter was used to calibrate the gypsum blocks for all soil
types. Meshes were also calibrated with the Delmhorst meter as if they were
gypsum blocks.

Measurements were carried out during three summers, approximately June
through August of 1995, 1996, and 1997. Except for the gypsum blocks,
which were not placed at the 1-cm level because of their size, measurements
were taken for all five levels for each type of probe on each side of the four
partitioned boxes every day near noon, with the exception being weekends
and during rainy periods. Meter readings were converted into soil water
content via a set of polynomials that were developed to fit the calibration
data. Soil temperatures were calculated directly from measured current using
a standard ammeter; surface radiant temperatures were measured with an
Everest™(Model 100) portable radiometer. Air temperature was also
measured with the radiometer by sighting a shaded surface near the boxes.
Precipitation was measured routinely by Penn State Weather Station personnel
in the Walker building. Weather and the visual appearance of the soil surfaces
were noted at the experiment site.

Calibration curves obtained for the sensors are similar to those published
by Amer et al. (1994) (their Figure 3a), except that a temperature correction
was made to both block and mesh data, as it was found that soil resistance
varied significantly with both soil water content and temperature. The
sensitivity of the mesh data to soil water content was highly non-linear and
apparently not very stable. Amer et al. (1994) showed the largest variation
in resistance as a function of soil water content occurred over a narrow
range of soil water content (0.1–0.2 by volume) with very small variations in
resistance for large changes in soil water content outside this range. This
response of the soil water content made accurate calibration of the meshes
very difficult, ultimately requiring us to change calibration strategies for the
grid meshes.

Because the first year of operations was extremely dry and the second
year unusually wet, only data from 1997 are presented. During this third
summer, soil water content fluctuated between moderately dry and wet values.
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It was found that the soil water content values for the meshes appeared
unrealistically low. Yet it was clear that the meshes were able to capture, at
least in a relative sense, the large variations in soil water content that occur
in the top 2 cm. Initial calibrations for the meshes were, therefore, discarded
in favor of a method that tied the soil water content values to those obtained
with the aid of the gypsum blocks. In order to assign reasonable soil water
content to the mesh data, we scaled the raw meter readings by setting the
highest values equal to the soil water content measured by the gypsum blocks
in the deeper layers of the soil and during the wettest periods and we set the
lowest meter readings equal to zero. This was done individually for boxes 1,
3, and 4. Box 2 appeared to need no such adjustment and no scaling was
made for that soil. Our impression is that this scaling produced similar mesh
and block values, except in the mid-range where the former tended to exceed
the latter.

6.3 Results of the soil experiments

We now present significant results from the field measurements. The purpose
here is to illustrate that decoupling does occur under conditions of rapid
drying and strong sunlight. Figure 6.4 consists of an eight-panel series of soil
water content and temperature profiles in box 1 during 1997. Each data
point corresponds to an average of two measurements, one on each side of
the partition. The horizontal scale represents both volumetric soil water
content (%) and temperature (ºC). Solid curves with shaded circles pertain
to the grid meshes (Wg), the dashed curves with small triangles to the gypsum
blocks (Wb), and the heavy solid curve with blackened squares to the
temperature of the soil or soil surface. Arrows at the top denote the air
temperature at the time of measurement. Except for July 21, all measurements
shown in Figure 6.4 were made under strong, direct sunshine.

Drying and warming in the top 5-cm layer is clearly evident after June 19,
the day after a rain event, which deposited more than 2.5 cm of precipitation.
Except for some very light rain showers during the next three weeks, no
significant precipitation occurred again until July 9. During this drying period,
the soil temperatures increased with time, so that by June 28 a shallow
desiccated surface layer is evident in the top 5 cm. After two more light
precipitation events during the next two weeks about 4.0 cm of rain fell
during several days just after July 21, so that overcast and wet conditions
are again in evidence on July 25.

A comparison between measurements made on different days and in
different boxes is shown in Figures 6.4 and 6.5. Soil water content profiles
in boxes 2–4 exhibit no remarkable differences from box 1 and henceforth
will not be shown in detail except for June 28 and July 21 (Figure 6.5(a)
and (b)). Regardless of whether differences between boxes shown in these
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figures are intrinsic to the soil or are simply due to random spatial
heterogeneity in the soil and to measurement inaccuracy, the emergence of a
shallow surface drying layer (decoupling) is evident for all soils, which
desiccate noticeably above 5 cm but show less change in soil water content
below 5 cm.

The effect of decoupling on temperature is illustrated in Figure 6.6.
Temperature profiles show maximum vertical gradients near the surface on
warm, dry days and small vertical gradients on the wetter day (June 19);
larger differences between soils occur on the dryer day (July 21).

Figure 6.4(a) Vertical profiles of volumetric soil water content for the gypsum blocks (Wb;
triangles) and grid meshes (Wg; circles) and temperature (ºC; squares) as a
function of depth (cm) for 8 days in 1997. The heavy solid arrow on top
denotes the air temperature.
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It is possible to estimate from these data the effect of decoupling on the
surface sensible heat flux. A useful indicator of sensible heat flux is the
difference between the surface radiant temperature and the surface-air
temperature, a large difference implying a large surface sensible heat flux
and small evaporative flux. The proportionality factor between the surface
minus air temperature differences and the surface sensible heat flux is not
unique, of course, as the relationship depends on environmental factors such
as wind speed. Nevertheless, one might look for some relationship between
the surface minus air temperature difference and the surface sensible heat
flux and an inverse relationship with soil water content. However, Figure

Figure 6.4(a) (Continued)
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6.7(a) and (b) shows that the sensitivity of the surface-air temperature
difference increases with decreasing soil water content only when the former
exceeds some threshold. Moreover, the relationship between surface minus
air temperature and soil water content is weaker at 5 cm than at 2 cm and

Figure 6.5 Vertical profiles of volumetric soil water content (Wv) as a function of depth (cm)
on June 28 (a) and July 21, 1997 (b) for different soil boxes. Soil water content
values derived from grid mesh are on the left and those derived from the gypsum
blocks are on the right.
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the surface minus air temperature threshold is higher at 5 cm (Figure 6.7b)
than at 2 cm, respectively, about 6 and 12ºC.

The virtual absence of sensitivity of surface-air temperature difference to
soil water content below some threshold in surface minus air temperature
difference suggests that surface heat flux may not always be closely related
to soil water content except at the very soil surface. This is due to the
differences in the propagation rates for the thermal and drying fronts in the
soil. Clearly, the drying front had not yet penetrated to 2 cm in Figure 6.7(a)
or to 5 cm in Figure 6.7(b) when the surface minus air temperature differences
were below threshold. Once the drying front had reached these two levels,
the temperature differences between surface and air increased with decreasing
soil water content.

Figure 6.8 shows that the profile of temperature change within the ground
is especially sensitive to soil water content near the surface. The various line
profiles refer to simulations made with the soil/vegetation/atmosphere transfer
model, referred to with regard to Figure 6.2; the other symbols refer to

Figure 6.6 Soil temperature profiles (°C) as a function of depth (cm) for different soil boxes
on June 19 and July 21, 1997. Arrows at the top denote air temperatures. The
measurement at zero depth is the surface radiant temperature; all others were
obtained from thermocouple readings at 1, 2, 5, 10, and 20 cm depths.
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measurements made in this soil experiment on a day in July 1995. Several
days of soil drying had taken place prior to these measurements so that the
soil surface was visually quite dry, in conformity with the soil water content
measurements (not shown). Temperatures close to the surface vary over a

Figure 6.7 Surface radiant temperature minus air temperature (Tir—Ta; ºC) differences versus
volumetric soil water content (Wv; %) measured by the grid meshes and gypsum
blocks at (a) 1 or 2 cm depth and (b) 5 cm depth for all measurements made in
1997.
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range of nearly 10ºC for a surface soil water content variation from 0.003 to
0.04 by volume. A close fit between simulated and measured temperatures
in the soil is thus achieved with only a slight adjustment of the surface soil
water content. What the figure shows is that small differences in the soil
water content in the surface desiccation layer greatly affect the surface radiant
temperature, even though such changes in soil water content are not
measurable by current techniques.

More to the point, while a wide range of elevated surface radiant
temperatures correspond to near desiccation in the surface layer, the water
content of that drying layer however accurately measured, is of very little
use as a predictor of soil water content at any depth below the top few
centimeters. As we have indicated, however, the implied fluxes are highly
sensitive to the temperature and water content of this shallow surface layer
leading to the paradoxical conclusion that the surface radiometric
temperatures may be useful for estimating the surface energy balance but
not the total soil water content.

6.4 Interpretation of thermal and microwave
measurements

Let us now consider some ambiguities implied in the estimation of soil water
content using surface radiant temperature. The schematic in Figure 6.9 shows

Figure 6.8 Measured soil and surface radiometric temperatures (circles and triangles for boxes
1 and 2) and simulated (continuous curves) soil and surface radiometric
temperatures for different soil water content at approximately mid-day for a case
with strong sun and dry soil in mid-July 1995.
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typical profiles of soil water content (left-hand curves) and temperature (right-
hand curve) as a function of depth. Let us imagine that the schematic situation
depicted here pertains to strong sunlight with partial vegetation cover and
that soil drying has occurred for at least a couple of days. Soil surfaces below
the vegetation are shaded; the remaining bare soil patches are sunlit. Surface
radiometric temperatures are obtained corresponding to three temperatures
marked by the letters (g)—sunlit bare soil between vegetation patches, (f)—
an ensemble of bare soil and vegetation, and (e)—the temperature of leaves

Figure 6.9 Schematic illustration showing volumetric soil water content (Wv; dot dash and solid
curves) and temperature (ºC; dashed curve) as a function of depth (cm) for a case
of strong sunlight and drying soil. The dot-dashed curve pertains to sunlit bare soil,
the solid soil water profile to bare soil shaded by sunlit vegetation and the dotted
curve to the temperature of sunlit bare soil. Letters (a-c) on top denote soil water
content values obtained indirectly from the surface radiant temperature, respectively:
(a) estimated from the surface radiant temperature over sunlit bare soil (marked
g); (b) estimated from a microwave radiometer capable of sampling the top 5 cm
in the sunlit bare soil areas (dotted segment); (c) same as (b) but in an area of
vegetation with an underlying shaded surface (dashed segment). Letters d, e, f,
and g, respectively, denote: (d) the air temperature; (e) the radiometric temperature
of sunlit vegetation; (f) the radiometric temperature of a mix of sunlit vegetation
and bare soil, and (g) the radiometric temperature of the sunlit bare soil. The
arrow along the bottom axis denotes the column average soil water content between
the surface and 20 cm.
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in the areas of dense, sunlit vegetation. Air temperature is denoted by the
letter (d).

Now, consider the soil water content associated with these temperatures.
The value of soil moisture corresponding to the temperature of the sunlit
bare soil (g) is marked by the letter “a”. This temperature applies to the
surface of a shallow desiccation layer, whose soil water content is about
0.06 by volume (the short bold-faced arrow below the point labeled a).
Suppose we were to measure a surface radiant temperature “f” over a partial
vegetation canopy in which the range of surface radiant temperature might
vary from “e” to “g”. We might infer from this large variation in radiant
surface temperature that the soil water content is varying greatly in space.
Yet, the soil water content may not be changing and the surface radiant
temperature is simply a function of vegetation amount. Clearly the measured
temperature “f” is not an appropriate temperature for determining the correct
profile of soil water content, although it might actually yield a reasonable
estimate of the surface turbulent energy fluxes.

Vegetation itself introduces a spurious component in the derived soil water
content using surface radiant temperatures. It is evident from Figure 6.9 that
the average 5-cm values correlate poorly with the column average soil water
content (the vertical arrow at the bottom of the graph) and with the soil
water content closer to the surface. Differing vertical profiles of soil water
content between sunlit bare patches (dot-dashed curve labeled b) and
vegetation clumps (solid curve labeled c), shown in Figure 6.9, have differing
average values over the top 5 cm, as shown, respectively, by the dotted and
dashed segments suspended from the top axis. Shaded by plants, the profile
exhibits no distinct surface drying layer, while the root zone, which supplies
most of the transpiration, dries faster than comparable levels in the sunlit
areas.

Interpretation of the radiometric signals for thermal and microwave
radiometers differs over partial vegetation cover, as the microwave signal
can penetrate through moderately dense vegetation (Wang et al. 1989). With
its characteristically larger footprint, microwave measurements yield a spatial
average of the two surface regimes, vegetated and bare. Typically, a microwave
radiometer is capable of sensing the average soil water content over the top
few centimeters with a horizontal resolution of tens of meters. If the sampling
depth is, say, 5 cm, the vertical average of soil water content for such a signal
would fall between points b and c, or between 0.14 and 0.17 depending on
the amount of vegetation cover. By comparison, the actual soil water content
averaged over the column from 0 to 20 cm is 0.19 by volume, as indicated
by the short arrow at the bottom of Figure 6.9. The soil water content at the
surface is, as previously stated, 0.06 by volume.

Finally, one can imagine that the surface desiccation layer would persist
for a time after an onset of cloudy weather, although the soil temperature
and especially the surface radiant temperature would fail to show the
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characteristic surface minus air temperature differences of Figure 6.7. One
would expect that such conditions would foster the diffusion of water to the
surface at a rate which would be faster than the surface evaporation, leading
to a gradual removal of the desiccation layer. On the other hand, a persistent
cloudy period, more precisely sky conditions that would favor reduced surface
evaporations, would not give rise at all to a surface desiccation layer even as
the whole soil column dries out.

6.5 Conclusions

Rapid soil drying in the presence of strong sunlight produces a shallow drying
layer whose radiometric temperature can become quite elevated despite
moderately wet soil conditions at 5cm and below. This behavior, called
decoupling by Capehart and Carlson (1997), can render soil water content
values obtained with the aid of the surface radiant temperature inappropriate
as estimates of the soil water content in a deep column, such as over the top
5cm, yet useful within its own context and more appropriate than a column
average for determining the surface turbulent energy fluxes.

In the absence of a complete soil water content profile, estimates of surface
energy fluxes are of limited use by themselves, as they represent only one
measurement of a rapidly changing quantity. The same might be said for
surface soil water content. A more useful parameter would be one that is
slowly varying in time and intrinsic to the surface. Such a parameter would
be more appropriate for inclusion as a land surface parameter in an
atmospheric model and would provide a more representative measure of the
surface turbulent energy fluxes and the net daily water loss. The Bowen
Ratio might constitute one such parameter in that it avoids specifying the
soil water content or vegetation cover, yet it is appropriate for calculating
useful flux estimates. This ratio would stand on its own as a valid
representation of a heterogeneous landscape, though requiring frequent
updates due to varying rainfall and vegetation amount. Ideally, however, a
combination of multiwavelength microwave measurements and surface
radiant temperature might yield a more complete soil water content profile
and serve a greater range of purposes than any single sensor.
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Chapter 7

Mapping surface energy fluxes
with radiometric temperature

William P.Kustas, John M.Norman, Thomas
J.Schmugge and Martha C.Anderson

7.1 Introduction

Directional radiometric surface temperature, TR(φ), from a zenith view angle
φ has been used to estimate surface sensible heat flux with varying degrees of
success (Kustas and Norman 1996). The use of TR(φ) frequently involves the
controversial assumption that it is equivalent to the so-called “aerodynamic
temperature,” T0, of the surface. T0 is the temperature that satisfies the bulk
transport expression having the form

(7.1)

where H is the sensible heat flux (Wm-2), ρCp is the volumetric heat capacity
of air (J m-3 K-1), TA is the air temperature at some reference height above the
surface (K), REX is an excess resistance associated with heat transport, and
RA is the aerodynamic resistance (s m–1), which has the following form in the
surface layer (Brutsaert 1982):

(7.2)

In this equation, dO is the displacement height, u is the wind speed measured
at height zU, k is von Karman’s constant (»0.4), zT is the height of the TA

measurement, ψM and ψH are the Monin-Obukhov stability functions for
momentum and heat, respectively, zOM is the roughness length for momentum
transport. The excess resistance is often related to a roughness length for
heat so that REX = [ln(zOM/zOH)]/[ku*], where zOH is the roughness length for
heat transport and u* is the friction velocity; u* = u k/[ln(zU – dO)/zOM – ψM].
T0 cannot be measured, so it is often replaced with an observation of TR(φ) in
equation (7.1). However, for sparse canopies differences between T0 and TR(φ)
can be > 10°. This has forced many users of this bulk transport or single-
source approach to adjust zOH or the ratio In(zOM/zOH) = kB-1 = ku*REX (Garratt
and Hicks 1973) to obtain good agreement with measured H. Most
approaches have been empirical (e.g. Kustas et al. 1989; Stewart et al. 1994;
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Kubota and Sugita 1994) and therefore difficult to apply a priori to different
surface types. Indeed, the testing of various formulations for zOH or the kB-1

parameter in single-source models with experimental data indicates that this
is not a viable approach for partial canopy covered surfaces (Sun and Mahrt
1995; Kustas et al. 1996; Verhoef et al. 1997; Troufleau et al 1997). Blyth
and Dolman (1995), using a two-source modeling approach, show the
dependence of zOH on surface conditions, including fractional vegetation cover
and soil and vegetation resistances, as well as the available energy or net
radiation less soil heat flux (i.e. RN – G), and humidity deficit. A similar
result was obtained by Lhomme et al. (1997) using the two-source model
originally developed by Shuttleworth and Wallace (1985). For this reason,
others have tried to account for the difference between T0 and TR using
twosource models to account for the effect of soil and vegetation temperatures
and resistances on both T0 and TR (e.g. Lhomme et al. 1994; Chebhouni et
al. 1996).

Vining and Blad (1992) showed that the viewing angle of the sensor,φ, can
significantly affect the computation of H when TR(φ) replaces T0 in equation
(7.1). Other theoretical and observational studies suggest that TR(φ)
observations at multiple viewing angles may have the potential to account
for the variability of zOH (Brutsaert and Sugita 1995; Sugita and Brutsaert
1996). Using a detailed multilayer model, Matsuhima and Kondo (1997)
find that optimum viewing angle for single-source approaches is between 50
and 70° from nadir.

A recent review of two-source models by Zhan et al. (1996) suggests that
the Simplified Two-Source (STS) model proposed by Norman et al. (1995)
can yield satisfactory estimates of sensible and latent heat flux, LE, over
different surfaces and is relatively insensitive to the expected errors associated
with estimating many of its input parameters and variables, except for TR(φ)
and TA. Because the STS model was designed to use input data primarily
from satellite observations, several simplifying assumptions about energy
partitioning between the soil and vegetation reduce both computational time
and input data required to characterize surface properties. While the model
has been shown to satisfactorily predict surface fluxes when compared to
field observations, it is not known how well the model realistically simulates
the separate contributions from the soil-surface and vegetation.

This can be evaluated reliably using a comprehensive Plant-Environment
(PE) model such as Cupid (Norman and Campbell 1983; Norman and
Arkebauer 1991), which simulates radiation exchange, turbulent fluxes, and
TR(N) for plant canopies. Cupid accommodates all the generalities inherent
in a comprehensive PE model by using parameterizations of important
processes at the leaf level (cm) and integrating mechanistic equations to the
canopy level (10–100m). Cupid is applied to field data collected from a
semiarid rangeland containing partial vegetation cover randomly distributed
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over the landscape. The simulated TR(φ) values computed from Cupid are
used as input to the STS model for computing the energy balance of the soil
and vegetation. These flux estimates are compared to Cupid output.

The simplified parameterizations of energy partitioning between the soil
and vegetation with the STS model are evaluated and implications of their
utility for application to different surfaces is discussed. Issues of how to
estimate model parameters and key input variables related to vegetation
properties on a regional basis are also discussed. An example of running the
STS model for computing large-scale spatially distributed fluxes with remotely
sensed surface temperature images of the semiarid rangeland landscape is
presented.

For regional scale applications using satellite data, the STS model may be
operational because its input requirements can be obtained primarily from
the satellite data; information for all input parameters required by detailed
PE models such as Cupid would not be available. This means many of the
parameters in PE models would need to be specified from educated guesses,
and if the parameter specification is unreliable, the overall model performance
of the PE model deteriorates. As stated by Giorgi and Avissar (1997) discussing
soil-vegetation-atmosphere transfer schemes (SVATS)

…increased physical complexity and realism of SVATS may actually
result in poorer model performance. Availability of observed data may
in fact provide useful insights concerning the optimal level of complexity
in SVATS in terms of the comprehensiveness of biophysical and
hydrological representation on the one hand and model performance
and verificability on the other.

Another issue in the application of satellite data for large area mapping of
fluxes is the effect of heterogeneity of surface conditions at the subpixel
scale and its impact on the fluxes. Methods for dealing with heterogeneity
effects are being addressed in the hydrologic and atmospheric modeling
communities. Giorgi and Avissar (1997) provide a detailed review of
methodologies for dealing with subgrid scale heterogeneity. Interestingly,
observational work on the effects of surface heterogeneity on surface flux
aggregation using remote sensing with SVATS suggest that using simple
averaging rules to define surface parameters for length scales on the order of
1–10 km causes relatively small errors for land surfaces where heterogeneity
exists at length scales <10km. The simulations from Cupid under the various
surface conditions will be used for testing the effect of heterogeneity in surface
wetness, vegetation stress, and roughness. These preliminary results will
consider more extreme cases of landscape variability and thus provide an
upper bound to potential errors caused by subpixel heterogeneity.
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7.2 Cupid model description

Cupid is a detailed PE model that simulates a wide variety of physiological
and environmental processes simultaneously. The vegetation is a central
emphasis in Cupid so that above-ground processes are formulated around
plant-atmosphere interactions and below-ground processes are described by
plant-soil interactions. Thus, the central emphasis of Cupid is the transport
of energy, mass, and momentum between plants and their environment. For
above-ground processes, the transfers between individual leaves and their
local environment are described (Norman 1979); then the collective effect of
all the leaves is integrated to obtain the response of the entire vegetative
canopy. The canopy is divided into horizontal layers and leaves in each layer
are arranged with appropriate position and orientation distributions. Transfer
of energy, mass, and momentum is assumed to occur only in the vertical
dimension, and this transport is described by turbulent diffusion with leaves
in each layer acting as sources or sinks of various quantities (Norman and
Campbell 1983). The below-ground transport of heat and mass provides a
description of the soil environment that surrounds the roots and incorporates
the exchanges between these roots and the soil system.

The interface between the above- and below-ground regions, namely the
soil-surface, represents one of the most difficult parts of the system to simulate.
Many processes occur at the soil/canopy interface; for example, absorption
of radiation and momentum by the soil-surface, convective transport of heat
and water to the atmosphere, conduction of heat, water, and CO2 from lower
in the soil to the surface, uptake of water by roots near the soil-surface, and
infiltration of rainfall, irrigation water, or water that drips from the canopy
as a result of interception or dew. All these processes are simulated in Cupid.

Characterization of the dependence of leaf physiological properties
(photosynthetic rate, respiration rate, and stomatal conductance) on
environmental factors (light, temperature, humidity, and soil water status) is
essential to simulating leaf energy and mass exchanges. The leaf model
combines the response of photosynthetic rate and stomatal conductance
(Collatz et al. 1991,1992) to solve the leaf energy budgets and is described
in Norman and Polley (1989). Canopy exchange rates are estimated by
combining equations that describe leaf exchange rates with a characterization
of canopy architecture, with boundary measurements of ambient environment
above the canopy and below the root zone, and with equations that describe
convective, conductive, and radiative exchange processes throughout the soil-
plantatmosphere system. A description of canopy architecture includes the
vertical distribution of stem and leaf areas, leaf angle distribution, canopy
height, and some information about the horizontal distribution of leaf area
such as random or clumped. Ambient atmospheric conditions may be obtained
at every time step in the model from measurements of air temperature,
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humidity, wind speed, solar radiation, and precipitation some meters above
the canopy. Ambient soil boundary conditions consist of temperature and
moisture content near the bottom of the root zone (0.5–2 m depth).

The influence of vertical gradients throughout the soil-plant-atmosphere
system is included by using an iterative-solution technique that simultaneously
solves the leaf energy budget for all leaves and the vertical flux-gradient
equations. Such a solution requires conductances throughout the soil and
atmospheric system; including aerodynamic conductances above and within
the canopy (Goudriaan 1977), convective transfer coefficients at the soil
surface (Sauer et al. 1995), leaf boundary-layer conductances, and soil thermal
and hydraulic conductances (Campbell 1985).

The Cupid model has been used for numerous applications: (a) predicting
canopy photosynthesis and light-use-efficiency from leaf characteristics in
corn (Norman and Arkebauer 1991); (b) simulating evapotranspiration and
CO2 flux from cranberry (Bland et al. 1996) and a native prairie (Norman
and Polley 1989; Norman et al. 1992); (c) predicting the evapotranspiration,
drainage, and soil moisture changes of chisel-plow corn, no-till corn, and a
replanted prairie (Brye et al. 2000); (d) estimating bidirectional reflectance
factors for plant canopies (Norman et al. 1985); (e) characterizing the water
budget of irrigated crops (Norman and Campbell 1983; Thompson et al.
1993); (f) quantifying the pest-microenvironment interaction for spider mites
on corn (Toole et al. 1984); (g) characterizing light penetration in corn
(Norman 1980, 1988), predicting leaf wetness duration from dew fall, and
distillation in snap beans (Weiss et al. 1989); and (h) evaluating various
definitions for “surface” temperature (Norman et al. 1990; Norman and
Becker 1995).

Cupid provides a useful platform for studying the relationship between
aerodynamic temperature, which is related to the sensible heat flux from a
canopy (cf. equation 7.1) and cannot be measured directly, and the radiometric
temperature, which can be measured with thermal radiometers or infrared
thermometers. The aerodynamic temperature of a surface is that temperature,
which when combined with the air temperature and a resistance calculated
from the log-profile theory, provides an estimate of the surface sensible heat
flux (Norman and Becker 1995). The radiometric temperature is based on
the infrared radiance emanating from a canopy. The directional radiometric
temperature is calculated from the radiance measured by a narrow-fieldof-
view infrared radiometer, and is actually referred to as the “ensemble
directional radiometric surface temperature” (Norman and Becker 1995).
The equations used in Cupid are outlined in Appendix A along with a
comparison of model versus measured brightness temperatures supporting
Cupid algorithms (Figure 7.A1). Numerous surface temperatures can be
defined (Norman and Becker 1995). Converting the raw, calibrated infrared
thermometer measurement of brightness temperature to a directional
radiometric temperature requires a directional emissivity. Unfortunately, two
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directional emissivities can be defined: a directional r-emissivity and a
directional e-emissivity (Norman and Becker 1995). The directional r-
emissivity is one minus the hemispherical-directional reflectance, which can
be computed by various reflectance models (Verhoef 1984; Norman et al.
1985). This directional r-emissivity is based on the assumption that the
canopy/soil system is isothermal; a condition that frequently does not occur,
especially in sparse canopies such as those described in this chapter. The
directional e-emissivity is the ratio of the spectral radiance of a particular
canopy to the spectral radiance of the same canopy with the same temperature
distribution but with each element being a black body. Both the directional
r-emissivity and e-emissivity can be computed with the Cupid model.

A quantitative description of the relationship between convective and
radiative fluxes can begin with energy budgets of all the individual vegetative
and soil elements of the plant/soil system. The dominant vegetative component
is usually the leaf, so the leaf energy budget must be evaluated for all layers
and leaf angle classes (Norman 1979; Campbell and Norman 1997); including
radiation and wind penetration into the vegetation (Goudriaan 1977), and
physiological controls over stomatal conductance (Collatz et al. 1991, 1992).
The dependence of leaf-boundary-layer conductance on leaf size, shape, and
local wind speed must be known and is the source of some uncertainty (Grace
1981). The emissivity of individual leaves must also be known and a value
of 0.97 appears suitable for most leaves.

The partitioning of the radiation absorbed at the soil-surface between
conduction into the soil and convection into the canopy space is critical to
the relation between aerodynamic and radiative temperatures; especially in
sparse canopies. This occurs because a hot soil surface tends to contribute
more to a radiometric temperature than an aerodynamic temperature.
Although conduction of heat and water in the soil can be simulated reasonably
using variations on the approach of Campbell (1985), convective exchange
at the soil-surface beneath a canopy has proven troublesome. Recently, based
on the work of Sauer et al. (1995), Kustas and Norman (1999a,b) suggested
the following relation for the boundary layer conductance of the soil-surface
beneath a canopy (cf. equation 7.B19):

(7.3)

where gS is in mm s–1, TS is the soil surface temperature (ºC), TAC is the mean
air temperature (°C) in the canopy space (often approximated by the mean
canopy temperature), and uS (m s-1) is the wind speed above the soil at a
height where the drag from the soil roughness is negligible (typically a few
centimeters to a few tens of centimeters). Although gS is expected to depend
on surface roughness (Sauer et al. 1995), the above equation works well
because beneath most canopies soil-surfaces are relatively smooth and wind
speeds are relatively low. Soilsurface emissivities are more variable than leaf
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emissivities (Salisbury and D’Aria 1992). Although some ground-based
brightness temperature measurements are made with infrared thermometers
sensitive to the 8–12 µm wavelength band, most aircraft and satellite
brightness temperature measurements are made in the 10–12µm band where
a soil emissivity of 0.96 is reasonable.

In Cupid, aerodynamic temperature is computed by several methods, but
the most widely accepted method is described by equations (24) and (26) in
Norman and Becker (1995), which uses an excess resistance for heat that is
added to the aerodynamic resistance for momentum (cf. equation 7.1). The
calculation of sensible heat flux in Cupid, which is necessary to calculate
aerodynamic surface temperature, is described by Norman and Campbell
(1983).

7.3 Cupid model validation

Predictions of various quantities with the Cupid model can be compared
with measurements from the Lucky Hills site (Site 1) of the Monsoon 90
experiment (Kustas and Goodrich 1994); in particular, the energy balance
components, the component temperatures of the vegetation and soil, the
canopy/soil emissivity, and the soil-surface evaporation. Soil, canopy, and
weather inputs for the Cupid model were obtained from published
measurements for the Monsoon 90 experiment, and Table 7.1 contains a list
of parameter values. One modification was made in the Ball et al. (1987)
equation for stomatal conductance that is used in Cupid; namely the index
given by A*hS/Cs was replaced by A*φ(hS)/Cs where

(7.4)

and A* is the leaf assimilation rate (µmol m-2 s-1), hS is the relative humidity
at the leaf surface, and Cs is the CO2 concentration at the leaf surface. The
influence of leaf-surface relative humidity on stomatal conductance becomes
negligible at hS,MIN. This generalization of the Ball et al. (1987) approach
provides for the possibility that leaf-surface humidity may be non-linearly
related to stomatal conductance, and alleviates the well-known failure of
the model at very low surface humidity; humidity that is likely in the Monsoon
90 experiment. By setting hS,MIN = 0, the modified form of the Ball et al.
(1987) index becomes identical to the original.

7.3.1 Energy balance components

The primary energy balance flux components are net radiation, soil heat
conduction, latent heat, and sensible heat. Figure 7.1(a)-(d) contains
comparisons of the flux components and the results indicate that model and
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micro-meteorological measurements described by Stannard et al. (1994) are
in reasonable agreement. Root mean square difference (RMSD) values
(Willmott 1982) are 20, 25, 30, and 40 W m-2 for RN, G, H, and LE,
respectively. The largest difference occurs with the latent heat when the soil-
surface is wet and the Cupid model tends to predict greater evaporation
fluxes from the surface than the eddy covariance measurements indicate.
Using the original form of the equation relating stomatal conductance to
other factors (Ball et al. 1987) results in predictions of transpiration being
about 20% less than the results shown in Figure 7.1(c).

7.3.2 Component temperatures of vegetation and soil

The individual temperatures of the vegetated canopy and soil-surface were
measured for several time periods in the Monsoon 90 experiment using
infrared thermometers directed toward the appropriate surfaces (Norman et

Table 7.1 Parameter values used in the Cupid model for simulations with Lucky Hills
observations
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al. 1995). Figure 7.2 contains a comparison of predicted component
temperatures from Cupid with field measurements. Although some scatter is
apparent, the agreement appears to be reasonable. The large temperature
differences between the vegetation and soil (> 20°C) surface are typical of
sparse vegetation with dry soil surfaces.

7.3.3 Canopy/soil emissivity

The measured soil emissivity of 0.96 (Humes et al. 1994) was used as an
input in the Cupid model. Assuming the leaf emissivity to be 0.97, an estimate

Figure 7.1 Comparison of (a) net radiation and (b) soil heat flux measurements with predictions
from the Cupid model for the Lucky Hills site. Comparison of eddy covariance
measurements of (c) latent heat and (d) sensible heat fluxes with predictions from
the Cupid model for the Lucky Hills site.
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of the emissivity of the vegetation/soil system from Cupid can be compared
with measurements from Humes et al. (1994). The emissivity estimate from
Cupid is 0.97. Humes et al. (1994) estimated composite emissivity values by
two methods and got 0.97 and 0.98. This agreement within 0.01 is probably
within the accuracy of the measurement method.

7.3.4 Soil and canopy evaporative fluxes

During Monsoon 90, chamber measurements of soil and vegetation
evaporative fluxes were made using a device and procedure described by
Stannard (1988). By combining these chamber measurements with the eddy

Figure 7.1 (Continued).
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covariance latent heat flux measurements above the canopy, Stannard (1999)
was able to separate the soil-surface evaporation from the vegetative-canopy
transpiration. Figure 7.3 shows a preliminary comparison and indicates
reasonable agreement between the Cupid model and measurements, although
there is a tendency for the model to predict lower transpiration than the

Figure 7.2 Comparison of predicted soil-surface and vegetation canopy temperatures from
Cupid with measurements for the Lucky Hills site.

Figure 7.3 Comparison of soil-surface evaporation and canopy transpiration from Cupid
with measurements from the Lucky Hills site.
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measurements. This discrepancy between modeled and measured transpiration
is under further investigation.

7.4 Evaluation of radiometric versus aerodynamic
temperature using cupidΩ

The brightness temperature (related to the radiometric temperature) can be
measured directly with infrared radiometers; relating this measurement to
vegetation/soil sensible heat flux is exceedingly valuable because such infrared
measurements are routinely made on the ground, from aircraft and from
satellites. Relating radiometric and aerodynamic surface temperatures to each
other offers the possibility of translating maps of surface brightness
temperature into maps of surface fluxes.

Using the validated Cupid model (with the same parameterizations as
used in the validation), brightness, radiometric, and aerodynamic
temperatures were simulated for 36 cases: two radiometer view angles (φ =
0° or nadir and 55º), two wind speeds (1 and 5 m s–1), LAI = 0.5 (a clumping
factor, Ω = 0.7, a green fraction, fG = 0.8, zOM = 0.08 m), LAI = 1.5 (Ω = 0.7,
fG = 0.8, zOM = 0.05 m), LAI = 3.0(Ω = 1, fG = 1, zOM = 0.05 m), unstressed
vegetation with a dry soil surface, unstressed vegetation with a moist soil
surface, and stressed vegetation with a dry soil surface. In addition, there
was an unstressed vegetation case with LAI = 3.0, hC = 5 m, Ω = 1, fG = 1, zOM

= 0.5 m and leaf width = 0.05 m, which are typical values for the riparian
vegetation. The weather data at Site 1 from Day Of Year (DOY) 209 was
used (except for the wind speed); the solar radiation, S, varied from 120 to
990 Wm-2, the vapor pressure varied from 0.85 to 1.25 kPa, and the air
temperature, TA, varied from approximately 28.4 to 31.5ºC. Values of the
aerodynamic temperature, T0, were estimated using equations (7.1) and (7.2)
with zOM = zOH because of the numerous uncertainties associated with
parameterization of zOH (Verhoef et al. 1997).

In Figure 7.4(a), the relation between TR(φ) – T0 and TS – TC for the 18
cases with a nadir viewing angle are illustrated, and in Figure 7.4(b) the
results for the 18 cases with = 55º off nadir are shown. The difference between
radiometric and aerodynamic temperatures is highly variable and clearly
indicates the challenge associated with any simple scheme to relate remotely
sensed temperature to surface heat fluxes. Also note the negative values of
TR(φ) – T0, which are predominately from wet soil conditions; this has been
observed in experimental data (Sun and Mahrt 1995). For many of the partial
canopy cover cases with LAI < 3 there is a strong linear relationship between
TR(φ) – T0 and TS – TC; however, the slope varies with stress and moisture
condition supporting the simulations of Blyth and Dolman (1995). Moreover,
comparing Figure 7.4(a) and (b), the slopes change with radiometer viewing
angle. For the higher vegetation cover, LAI = 3, there appears to be little
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Figure 7.4 Radiometric-aerodynamic temperature differences (TR(ϕ) – T0) plotted against soil
surface-canopy temperature differences (TS–TC) for various Cupid model runs (L =
LAI, us = unstressed, s = stressed, dry = dry surface moisture, wet = wet surface
moisture). Each symbol type contains a range of solar radiation values and two
wind speeds (u = 1 and 5 m s-1). The aerodynamic temperature calculation is based
on zOH = zOM (cf.equation 7.2). The view angle for radiometric temperature is (a)
nadir (ϕ = 0°) and (b) 55º from nadir (ϕ = 55º).
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dependency of TR(φ) – T0 on TS – TC, with TR(φ) – T0 values generally within
± 2 K. Small differences between TR(φ) and T0 under these conditions indicate
that they may be highly correlated, which has been observed experimentally
for dense grassland cover (Sun 1999; Kustas et al. 2001).

7.5 Two-source models accommodating
differences between T0 and TR(φ)

In regional applications with remote sensing data, a model such as Cupid
has input parameters that are not routinely available. This has lead to the
development of the STS model requiring a minimum number of parameters
that can be obtained from remote sensing. This model, however,
accommodates differences between TR(φ) and T0 and, therefore, can consider
factors affecting their relationship illustrated in Figure 7.4.

Several versions/forms of the STS model have been developed, which take
advantage of the type of TR(φ) observations available. These include having
TR(φ) data at several viewing angles and multiple TR(φ) observations over
the day. Although the different versions of the STS model have been evaluated
with flux observations, the Cupid simulations used in generating Figure 7.4
gives us an opportunity to evaluate the limitations of the various forms of
the model under more extreme environmental conditions.

7.5.1 Simplif ied two-source model

A detail description of the original STS model using a single TR(φ) observation
(1ANGLE_PT) can be found in Norman et al. (1995)—hereafter referred to
as N95. A brief description of the model formulations is given in Appendix
B, and includes modifications to several of the original N95 formulations to
account for temporal variations in net radiation divergence through the
canopy layer and in the soil heat flux-soil net radiation ratio (Kustas et al.
1998). ln addition, experience has revealed that the exponential extinction
of net radiation (i.e. equations (7.B8) and (7.B9)) is only appropriate for
canopies of nearly full cover and contains significant systematic errors for
sparse canopies with relatively hot soil surfaces. These errors occur because
the contribution of soil thermal radiation to net radiation depends on soil
surface temperature, which can be more than 20º C above vegetation or air
temperature; hence, exponential equations such as equation (7.B8) or (7.B9)
do not account for such surface conditions. For a sparse canopy having a
leaf area index (LAI) ~0.5, with differences in soil and vegetation temperatures
on the order of 20º C, net radiation absorbed by the soil surface and canopy
calculated from equations (7.B8) and (7.B9) can be in error by over 50 W m-

2 resulting in relative errors of ~15 and ~40% for the soil and canopy,
respectively.
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In the present analysis, a more physically based algorithm for estimating
the divergence of RN was constructed requiring incident solar radiation
observations and formulations for the transmission of direct and diffuse
shortwave radiation and for the transmission of long-wave radiation through
the canopy (Campbell and Norman 1997). Since the reflection and absorption
of radiation in the visible and near-infrared wavelengths is markedly different
for vegetation and soils, the visible and near-infrared reflectances of the soil
and vegetation were evaluated separately before combining to give an overall
shortwave albedo. The equations for estimating the transmission and
reflection of direct and diffuse shortwave radiation are described in Chapter
15 of Campbell and Norman (1997); hence, the net shortwave radiation
balance for the soil (SN,S) and canopy (SN,C) are computed separately from
the net long-wave radiation balance for the soil (LN,S) and canopy (LN,C). The
long-wave balance for the soil-vegetation-atmosphere system is derived by
calculating diffuse radiation transmission through the canopy (Ross 1975).
A simpler formulation of the net long-wave radiation balance than that
described in Ross (1975) was derived where a single exponential equation is
used for estimating the transmission for both the soil and canopy,

(7.5a)

(7.5b)

where the extinction coefficient for diffuse radiation depends on LAI, and if
LAI = 0.5, κL = 0.95 (Campbell and Norman 1997); LC, LS and Lsky are the
long-wave emissions from the canopy, soil, and sky, respectively. LC, LS, and
Lsky are computed from the Stefan-Boltzmann equation using canopy
temperature, soil temperature, and shelter level air temperature and vapor
pressure (Brutsaert 1982). Thus, equations (7.B8) and (7.B9) are replaced
by visible and near-infrared radiation penetration equations from Chapter
15 of Campbell and Norman (1997) combined with equations (7.5a) and
(7.5b) (i.e. RN,S = SN,S + LN,S and RN,C = SN,C + LN,C).

The radiative exchange algorithms used in the model apply to vegetative
canopies with leaves randomly distributed over the surface. When the leaves
are not randomly distributed over the surface but clumped as in the case of
row crops, they may only intercept 70–80% of the radiation in comparison
to the same crop randomly distributed over the surface (Campbell and
Norman 1997). Models to estimate radiation extinction for clumped
vegetation have been developed (e.g. Gijzen and Goudriaan 1989 for a row
crop), but are rather complex and require additional information about the
surface that will not be available operationally. An alternative is to use the
same formulations described above, but with LAI multiplied by a clumping
factor Ω, namely ΩLAI, (Chen and Cihlar 1995). Campbell and Norman
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(1997) suggest for strongly clumped canopies, Ω is a function of the solar
zenith angle, θS, and can be estimated by the following expression:

(7.6)

where Ω(0) is the clumping factor when the canopy is viewed at nadir and D
is the ratio of vegetation height versus width. The value of Ω(0) can be
estimated with general knowledge of LAI and the fractional cover of the canopy.
For the shrub site used in this study, LAI = 0.5 and fractional cover, fC ≈ 0.28.
If the vegetation were randomly distributed and the leaf angle distribution
approximated a spherical distribution, the canopy gap fraction from the zenith
would be exp(–0.5 LAI) ≈ 0.78. In actuality, the vegetation is clumped so the
field-scale LAI of 0.5 corresponds to a local LAI (LAIL) within the vegetated
region of LAIL ≈ LAI/fC ≈ 1.80. If all the leaves contained within the vegetated
region are randomly distributed, then the transmission of this vegetated region
is fC exp(–0.5 LAIL + (1 – fC) ≈ 0.83; therefore, exp(–0.5ΩLAI) = 0.83 so that Ω
= 0.7. For canopies with low LAI, Ω is almost independent of angle until very
large zenith angles are reached. A more general approach to obtaining
clumping factors from canopy architecture is given by Kucharik et al. (1999).

7.5.2 Model formulations using dual-angle
radiometric observations

The model accounts in a simplified way for directional or view angle effects on
the radiometric temperature (cf. equations 7.B1 and 7.B2), so that one can use
TR(φ) observations at multiple viewing angles and avoid the need for the Priestley-
Taylor parameterization used for estimating canopy transpiration in the original
model; otherwise by using the Priestley-Taylor parameterization the revised model
does not require a measurement of TA (Kustas and Norman 1997).

Use of the Priestley-Taylor assumption and the need for an estimate of fG,
which is difficult to estimate from remote sensing, can be avoided by having
TR(φ) estimated from two view angles because TC and TS can be obtained
from the simultaneous solution of two equations and two unknowns. For
example, with two view angles φ1 = 0° and φ2 = 55º, TS can be solved via
equation (7.B1) as follows:

(7.7)

which permits TC to be computed by the expression

(7.8)
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This approach is similar to the method described by Kimes (1983) to
separate canopy and soil-surface temperatures. Thus, HC and HS can be
computed directly from equations (7.B12)–(7.B13) or (7.B14)– (7.B15). With
an estimate of HS, LES can be computed as the residual in equation (7.B20)
and similarly LEC can be computed as a residual, namely LEC = RN,C – HC.

The Along-Track Scanning Radiometer (ATSR) is capable of making two
nearly simultaneous measurements of brightness temperature from two
different view angles, at nadir (0°) and 55º along the satellite path, so that
this version of the model, 2ANGLE, may have practical applications for
estimating surface energy fluxes. A land surface temperature algorithm
developed by Prata (1993) and tested with in situ field data indicates RMSD
values within ±1.5K can be achieved (Prata 1994). The ±1.5K uncertainty
using ATSR data was verified independently by Ottle and Francois (1994).
With the appropriate ground measurements of the meteorological variables
u and TA, basic information concerning vegetation type and cover, and
brightness temperature from two view angles, H can be estimated without
requiring empirically determined “adjustment” factors for RAH or the
assumptions used in estimating LEC via equation (7.B21).

The 2ANGLE model accounts for the difference between T0 and TR(N),
avoids using the Priestley-Taylor assumption for the vegetation, and obviates
the need for estimating fG. A major difficulty with the STS model, and
many other models driven by the TR(φ) – TA difference, is the requirement
for a TA observation. TA is not measured in many regions and where it is
measured, it only represents local conditions near the site of the
measurement and not at each satellite pixel. With most current satellite
observations of TR(φ) at the 1 km pixel scale, significant variations in near-
surface meteorological conditions may exist depending on surface
conditions. Methods using satellite data indicate at least a ≈ 3 K uncertainty
in the estimate of TA when compared to standard weather station
observations (Goward et al. 1994; Prince et al. 1998). Zhan et al (1996)
and Anderson et al. (1997) showed that two-source models are generally
more sensitive to errors in TR(φ) – TA than to most other model parameters,
thus it is a major advantage for a model not to require a measurement of
TA. This is one of the main advantages of the Two-Source-Time-Integrated
(TSTI) model described below (Anderson et al. 1997).

If the Priestley-Taylor approach for partitioning RN,C between HC and
LEC via equations (7.B7) and (7.B21) and two view angles of TR(φ) are used,
then a measurement of TA is not required. With the “parallel” resistance
network, this is derived by substituting the expression for HC from equation
(7.B13) and LEc from equation (7.B21) into the energy budget equation for
the vegetation, equation (7.B7), and by using TC computed via equation
(7.8); thus equation (7.B13) can be rewritten to yield an estimate of TA, TA,E,
namely,
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(7.9)

This estimate of the air temperature can be used to calculate HS in equation
(7.B12), which then yields an estimate of the total sensible heat flux, H.
Finally, LES can be calculated using equation (7.B20) while LEC is computed
directly from equation (7.B21). This version of the model, 2ANGLE_PT, has
potential for operational applications because air temperature is not required.
The model requires only a nominal estimate of wind speed. With the series
resistance network, the temperature in the canopy air space, TAC, is estimated
instead of TA (Kustas and Norman 1997).

The results of the comparison between modeled and observed heat fluxes
and the sensitivity analysis to model input variables and parameters indicates
that by using the semi-empirical Priestley-Taylor parameterization and
computing TA the 2ANGLE_PT model satisfactorily predicted the heat fluxes.
Furthermore, predictions are essentially unaffected by the 1–2 K error in
estimating TR(N) from satellites and errors in extrapolating TA from a sparse
network of meteorological observations to each satellite pixel, a very
unreliable approach (Goward et al. 1994).

The semi-empirical Priestley-Taylor parameterization is based on results
of the model of Ball et al. (1987), which relates assimilation and stomatal
conductance. It supports the hypothesis embodied in this approach; however,
the Priestley-Taylor constant αPT of ~1.3 may vary with vegetation type and
environmental condition (Kustas and Norman 1999a,b). To better understand
the variability and limitations in the Priestley-Taylor parameterization, the
output of Cupid described above is used with data from a semiarid shrub
dominated semiarid rangeland site during Monsoon 90. These data have
already been used to evaluate the STS model (Norman et al. 1995). The
Cupid-simulated heat fluxes from the canopy and soil as well as TR(φ) values
are used to evaluate the effect on STS model flux predictions. The results
provide a guide to assess the validity of parameterizations in the STS model,
with special attention to the Priestley-Taylor approach and the potential
variability of the Priestley-Taylor constant αPT.

7.5.3 Two-source-time-integrated model formulation

The TSTI model of Anderson et al. (1997) (presently called AtmosphereLand-
EXchange-Inverse, ALEXI, Mecikalski et al. 1999) provides a practical
algorithm for using a combination of satellite data, synoptic weather data,
and ancillary information to map surface energy flux components on a
continental scale (Mecikalski et al. 1999). The ALEXI approach builds on
the earlier work with the STS model (Norman et al. 1995; Kustas and Norman
1996) by using remote brightness temperature observations at two times in
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the morning hours and considering planetary boundary layer processes. The
methodology removes the need for a measurement of near-surface air
temperature and is relatively insensitive to uncertainties in surface thermal
emissivity and atmospheric corrections on the GOES brightness temperature
measurements. Anderson et al. (1997) and Mecikalski et al. (1999) have
shown that surface fluxes retrieved from the ALEXI approach compare well
with measurements. The ALEXI approach is a practical means to operational
estimates of surface fluxes over continental scales with 5–10 km pixel
resolution.

7.6 Comparison of three versions of the STS
model (I ANGLE_PT, 2ANGLE, and
2ANGLE_PT) flux predictions versus cupid

In the comparisons that follow between STS and Cupid model predictions of
the fluxes, the output for the 1030 local time will be used. This is the
approximate time of coverage of the Landsat-7 and the EOS-Terra satellite
supporting the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) instrument, which will be used for surface flux
monitoring (Schmugge et al. 1998; French et al. 2002). The comparisons are
for all the various conditions outlined in Section 7.4. This yields 22 values of
the energy balance components for a given time. The ALEXI model could
not be evaluated using the Cupid simulations since atmospheric boundary-
layer data are not available.

Based on preliminary results with the Cupid simulations and results from
Kustas and Norman (1999a,b) in the application of the STS model with
radiometric temperature observations over a sparse cover of irrigated cotton
crop, there were some additional modifications made to several of the model
algorithms. The first has to do with the fact that the simple formulation for
soil heat flux (equation 7.B10) had to be modified in order to account for
very low wind speeds near the soil surface. Under these conditions, Cupid
predicts a value of G/RN,S > 0.5 (see Figure 7.5). Therefore, an additional
modification to the value of cG was made by adjusting the wind speed near
the soil surface uS when it was less than 0.25 m s-1 with the empirical curve
fit to the data in Figure 7.5.

The second modification was to create a new algorithm for adjusting the
aPT parameter. This is based in part on the results obtained by Kustas and
Norman (1999a,b) for an irrigated cotton canopy with an LAI ~ 0.4. With
TC and TS observations over the cotton field, Kustas (1990) applied a two-
source modeling scheme to derive canopy and soil heat fluxes. The model
indicated that heat was being advected towards the canopy from the
surrounding hot bare soil surface yielding HC ~ –100W m-2. To obtain this
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result for the canopy and physically realistic values of the other components,
particularly LES, a value of αPT ~ 2 had to be adopted. For natural vegetated
surfaces the effect of advection from the surrounding bare soil surface is not
likely to be as extreme, and therefore αPT < 2. Therefore, an algorithm was
incorporated so that the model would initially assume αPT = 2, but in cases
where TR(φ) was high due to dry soil and elevated canopy temperatures (e.g.
when TC > TA), the value of αPT would be allowed to decrease by 0.1 increments
until a reasonable solution is obtained. From experience we have found that
when TR(φ) – TA is significant (i.e. nominally �15 K with LAI 0.5) a high
value for �TS 60ºC is estimated such that RNS – HS = LES < 0; this is not a
physically realistic solution under daytime conditions. This new procedure
would allow for a variable αPT value, which would implicitly consider variations
in canopy resistance of vegetation types (McNaughton and Jarvis 1991).

7.6.1 Results using 1ANGLE_PT

The STS model output of the component fluxes for RN, H, and LE using
the 1ANGLE_PT version compared to Cupid is illustrated in Figure 7.6. In
general, closer agreement between Cupid and the STS flux predictions was
obtained using the “series” versus “parallel” resistance network described
in Appendix B (see also Norman et al. 1995). Therefore, only the results
using the series approach are described. The simulated fluxes for stressed
and unstressed vegetation conditions are denoted with different symbols

Figure 7.5 Comparison of G/RN,S from Cupid versus uS from the STS model. The curve is an
empirical fit to the data.
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in order to show that other factors (wind speed and amount of cover or LAI)
contribute to the wide range in simulated heat fluxes from Cupid. In general,
the component fluxes predicted by STS is in fair agreement with the Cupid
simulated values. The RMSD values for the component fluxes are listed in
Table 7.2 and the indicated discrepancies are ~50W m–2. The combined canopy
and soil net radiation, soil heat flux, and sensible and latent heat fluxes
along with the RMSD values are illustrated in Figure 7.7. The RMSD values

Figure 7.6 Comparison of component (canopy and soil) net radiation, sensible, and latent
heat fluxes from Cupid versus values from the 1ANGLE_PT version of the STS
model. The open square symbol represents unstressed vegetation and the solid
diamond symbol represents stressed vegetation conditions.
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Table 7.2 Statistical results comparing Cupid flux
output of the component heat fluxes with
the STS model using the 1ANGLE_PT
version under the various vegetation,
surface of soil moisture, and wind speed
condition described in Section 7.4a

Figure 7.7 Comparison of net radiation, soil, sensible, and latent heat fluxes from Cupid
versus values from the 1ANGLE_PT version of the STS model. The open square
symbol represents unstressed vegetation and the solid diamond symbol
represents stressed vegetation conditions.

Note
a The following constant meteorological conditions existed

for the comparisons with Cupid: solar radiation (S)= 882
W m-2, TA = 28.4ºC, and relative humidity (RH)= 33%.
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for H and LE are higher at 60 and 70 W m-2 than what is generally obtained
when comparing to observations (i.e. ~50 Wm-2). However, the r2 values for
H and LE are 0.85 and 0.90, indicating that the STS model is accounting for
a significant amount of the variation in the heat fluxes.

7.6.2 Results using 2ANGLE_PT & 2ANGLE model versions

In contrast to the results using the 1ANGLE_PT version, generally closer
agreement between Cupid and the STS flux predictions was obtained using
the “parallel” versus “series” resistance approach with the 2ANGLE and
2ANGLE_PT versions. This was also the result obtained by Kustas and
Norman (1997) using TR(φ) observations and comparing with flux
measurements over a heterogeneous grassland.

As one might expect, given the assumptions that go into the 2ANGLE_PT
model version, it cannot compute reliable heat fluxes under stressed conditions
(Figure 7.8). However, under non-stressed conditions the values of TR(φ)

Figure 7.8 Comparison of net radiation, soil, sensible, and latent heat fluxes from Cupid versus
values from the 2ANGLE_PT version of the STS model. The open sqaure symbol
represents unstressed vegetation and the solid diamond symbol represents stressed
vegetation conditions.
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from Cupid for φ= 0 and 55º indicated reasonable results can be obtained
even when the cover is high (i.e. LAI = 3). RMSD values for H and LE for the
unstressed cases are 40 and 75 Wm-2, respectively. This is comparable to
what was obtained with the 1ANGLE_PT version.

With the 2ANGLE version of the STS model, the results are generally
better than 2ANGLE_PT, and the 2ANGLE can predict more realistic heat
fluxes under the stressed vegetation case (Figure 7.9). However, the results
are not very encouraging since the scatter between Cupid and the 2ANGLE
estimates of the heat fluxes is significantly larger than the 1ANGLE_PT
version with RMSD ~ 100 W m-2 for H and LE.

These results are similar to what was obtained using TR(φ) observations
from prairie grassland sites containing a range of cover, stress, and wind
conditions (Kustas and Norman 1997). In that study they found

Figure 7.9 Comparison of net radiation, soil, sensible, and latent heat fluxes from Cupid versus
values from the 2ANGLE version of the STS model. The open square symbol
represents unstressed vegetation and the solid diamond symbol represents stressed
vegetation conditions.
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discrepancies between predicted and observed H and LE were on the order
of 70–80 W m-2.

7.6.3 Summary of Cupid versus STS flux predictions

The results above suggest that the original version of the STS model, namely
the 1ANGLE_PT version, yields the most reliable predictions of the heat
fluxes over a wide range of conditions. It appears that using two sensor view
angles for TR(φ) can give reliable results under unstressed conditions using
the 2ANGLE_PT approach; however, this version is not suitable for stressed
conditions. Although the 2ANGLE approach does not require the Priestley-
Taylor assumption, it will be difficult to extract reliable canopy and soil
temperatures in order for this approach to yield reliable values of H and LE;
the uncertainty of this approach is on the order of 100 W m-2, which is
obviously unacceptable.

7.7 Evaluating the effects of subpixel
heterogeneity on pixel-derived fluxes

The pixel resolution of present and future satellite radiometers providing
TR(φ) images ranges from ~100m (e.g. Landsat TM) to ~5km (GOES);
therefore, pixels will contain a mixture of vegetation and soil. In many cases
riparian areas are only tens to hundreds of meters wide so that satellite TR(φ)
observations will commonly contain a mixture of riparian vegetation and
the surrounding area, which for semiarid areas is typically sparsely vegetated.
Kustas and Norman (2000) ran Cupid under the present set of environmental
conditions and found that one of the greatest contrasts in energy flux
partitioning and in the magnitude of TR(φ) comes from the simulations using
stressed shrub vegetation under low cover and dry soil versus unstressed
riparian vegetation with wet surface soil moisture conditions. The output
from 1ANGLE_PT for these two surfaces is listed in Table 7.3 for the solar
radiation, air temperature, and relative humidity existing at 1030 Mountain
Standard Time (MST) on DOY 209 for both the 1 and 5ms-1 wind speed
conditions. These flux predictions from 1ANGLE_PT are similar to the Cupid-
simulated output (Kustas and Norman 2000).

Subpixel heterogeneity from mixtures of riparian trees and stressed shrubs
will cause an error in the calculated flux because the relationship between
TR(φ) and the heat fluxes is non-linear. However, energy balance models
using remote sensing observations over heterogeneous surfaces have found
the effects of subgrid or subpixel variability to be relatively minor (Sellers et
al. 1995; Kustas and Humes 1996; Friedl 1997). These results may have
been obtained under conditions where the variability of surface characteristics
was not great enough to cause significant errors. The set of conditions
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simulated by Cupid provide an extreme case that might exist naturally in a
semiarid environment, or be imposed via agricultural practices (e.g. an
irrigated pecan orchard). With the data from Lucky Hills used for validating
Cupid, the shrub site was defined as having a fractional vegetation cover, fC

~ 0.3 with an LAI ~ 0.5 and a canopy height, hC ~ 0.5 m (see Table 7.1). The
riparian area was assumed to have fC ~ 0.8 with LAI ~ 3 and hC ~ 5 m
(Kustas and Norman 2000).

One case considered 50% of a pixel comprising of the stressed shrub
while the other half had unstressed riparian vegetation. The composite value
of TR(φ) TCOM, for the mixed pixel was estimated as

(7.10)

where TRIP is the radiometric temperature of the riparian surface with
corresponding fractional area of the pixel fRJP and TSS is the radiometric
temperature of the stressed shrub vegetation with corresponding fractional
area of the pixel fSS such that fSS + fRIP = 1. The LAI for the composite scene,
LAICOM, was calculated by first computing the average fractional cover, which
is simply fC,COM = fRIP * fC,RIP + fSS * fC,SS. With fC,COM ≈ 0.55, LAICOM was estimated
from equation (7.17) using ß = 0.5; this yields LAICOM ≈ 1.6. The value of hC

for the composite or mixed pixel, hC,COM, was computed the same way as
fC,COM, by simply weighting hC of the shrub and riparian vegetation, which
yielded hC,COM ≈ 2.8 m. With LAICOM ≈ 1.6 and hC,COM ≈ 2.8 m the equations
of Raupach (1994) yielded zOM ≈ 0.3 and dO ≈ 1.9.

The 1ANGLE_PT version was run using the meteorological data listed in
Table 7.3 and the value of TCOM computed from equation (7.10) with u = 1

Table 7.3 1ANGLE_PT output of the surface fluxes for stressed shrub (SS) and riparian
vegetation (RIP) under meteorological conditions at 1030 MST on DOY 209 (S =
882 W m-2, TA = 28.4ºC, and RH = 33%) with u = 1 and 5 m s-1
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and 5 m s-1. The output of the composited fluxes predicted by the STS model
is compared to the “true” flux average, which is computed simply as

(7.11)

where FLUX represents the energy balance components RN, G, H, and LE.
The results are listed in Table 7.4. For the light wind case where u = 1 m s-1,
there is significant differences between FLUXAVG and FLUXCOM, especially
between the turbulent fluxes H and LE where differences >100W m–2.
However, for the high wind case where u = 5 m s–1, the differences are
significantly reduced, especially in H. This suggests that although subpixel
variability can cause a significant departure of the composite fluxes estimated
with TCOM compared to the “true” average values, the discrepancies between
FLUXAVG and FLUXCOM can be significantly reduced by higher wind speeds
(i.e. u � 5 m s–1). Wind speeds significantly greater than 1 m s–1 were
commonly observed during Monsoon 90 where hourly averaged winds
around 1030 MST were between 3 and 5 m s-1 suggesting that subpixel
variability for this region may not cause large discrepancies between FLUXAVG

and FLUXCOM.
A more likely scenario using larger pixel data such as from GOES or

NOAA-AVHRR is for only ~10% of the pixel being comprised of riparian
vegetation. With fRIP = 0.1 and fSS = 0.9, this yields as input an LAICOM ≈ 0.8,
a hC,COM ≈ 1m and a TCOM derived from equation (7.10) listed in Table 7.5.
Comparison of FLUXAVG and FLUXCOM values (see Table 7.5) indicates that
differences of less than 50 W m-2 are observed for both wind speed conditions.
For H and LE less than a 50 Wm-2 discrepancy is within the typical uncertainty
in micro-meteorological measurements and model predictions. For this case,
wind speed did not alter the results.

Table 7.4 1ANGLE_PT output of the surface fluxes for a mixed pixel of 50% stressed shrub
(SS) and 50% riparian vegetation (RIP) under meteorological conditions at 1030
MST on DOY 209 (S = 882 W m-2, TA = 28.4ºC, and RH = 33%) with u = 1 and 5
m s-1
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This preliminary analysis of the error introduced by subpixel variability
on composite flux estimates suggests that under a relatively extreme case
with fSS = 0.5 (50% of the surface containing stressed shrub vegetation with
low cover and canopy height) and fRIP = 0.5 (50% having unstressed riparian
vegetation with high cover and canopy height) the difference between
FLUXAVG and FLUXCOM can be significant. Yet, even under this extreme case,
a higher wind speed condition can reduce the differences between FLUXAVG

and FLUXCOM, although the discrepancies may still be relatively large. The
same effect of higher wind speeds was not evident for the case where fSS = 0.9
and fRIP = 0.1. However, in this case the differences between FLUXAVG and
FLUXCOM were relatively small. A broader range of mixed-pixel conditions
analyzed by Kustas and Norman (2000) suggests that, in general, errors on
the order of 50 W m-2 or smaller are expected in mixed-pixel cases having
less than 20% of an extreme surface condition, such as a riparian wetland.
However, it will be difficult to define conditions a priori where the subpixel
heterogeneity may cause a significant error in flux calculations using TCOM.

7.8 Evaluating the effect of surface heterogeneity on STS
model surface flux predictions for an actual TR(φ) image
over a semiarid rangeland watershed

7.8.1 Experimental data

The data set for running the STS model over a region was collected during
the Monsoon 90 field experiment conducted in the Walnut Gulch
Experimental Watershed (31.5ºN 110ºW) maintained by the Southwest

Table 7.5 1ANGLE_PT output of the surface fluxes for a mixed pixel of 90% stressed shrub
(SS) and 10% riparian vegetation (RIP) under meteorological conditions at 1030
MST on DOY 209 (S = 882 W m-2, TA = 28.4ºC and RH = 33%) with u = 1 and 45
m s-1
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Watershed Research Center in Tucson, AZ. Details of the experiment,
conducted during a 2-week period in the summer rainy season, are given in
Kustas and Goodrich (1994). This semiarid rangeland environment supports
desert steppe and grassland communities, both of which are contained in the
watershed. The vegetation cover is highly variable ranging from 25 to 60%.
The elevation in the watershed ranges from about 1300m at the west end
and outlet to 1800 m at the northeast corner. The terrain is mildly hilly with
ridge to valley heights on the order of 10m for the west and central portion
of the watershed, and reaching 15–20m for the eastern half. Typical distances
between ridges is on the order of 500 m.

The aircraft data used in this analysis were acquired with the NS001 sensor
mounted in a NASA C-130 aircraft and are described by Humes et al. (1997).
Of the three days, DOY 213, 216, and 221 when images were processed,
DOY 221 contained the most significant variability in surface moisture
conditions as evidence from the TR(φ) observations and surface fluxes (Kustas
and Humes 1996; Schmugge et al. 1998). The surface soil moisture (0–5 cm)
was uniformly dry for DOY 213. By DOY 216, several recent rainfall events
resulted in relatively wet conditions in the study area; but by DOY 221,
some drying of the surface had occurred resulting in some significant
variability in moisture conditions.

Humes et al. (1997) evaluated the overall quality of radiometric
temperatures derived from the NS001 multispectral scanner data by correcting
for atmospheric effects using LOWTRAN-7 and comparing the resulting
temperature with simultaneously acquired, ground-based remote sensing
measurements over two large target areas. The results illustrated from Humes
et al. (1997) suggest that the aircraft-based radiometric temperatures generally
agree with the ground-based temperature measurements to within
approximately 1–2ºC. The original 6m pixel resolution of the NS001 image
was degraded to 90m by Schmugge et al. (1998), commensurate with the
resolution of the future ASTER instrument on the EOS Terra satellite.

Meteorological and energy flux (METFLUX) data were collected at eight
sites within the watershed. Comparisons between predicted and observed
heat fluxes from the METFLUX sites using the STS model with the
aircraftderived TR() data indicate the model provides satisfactory estimates
(Kustas and Humes 1996; Schmugge et al. 1998). The METFLUX sites
covered the main plant communities in the region (Weltz et al. 1994). A
Landsat-5 TM scene from September 1990 was used together with the
vegetation data (Weltz et al. 1994) to develop a land use map for the region
defining the five major land types (see Table 7.6).

An atmospheric boundary layer sounding was available near the time of
the NS001 overpass; this was used to define mixed-layer atmospheric variables
to be used with the STS model in a mosaic-type approach for estimating the
fluxes (Kustas and Humes 1996). This avoids the need for screen-level
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meteorological data, which can vary significantly over a region whereas mixed-
layer wind speed and air temperature are much more uniform.

7.8.2 Parameter estimation

The Landsat-5 TM radiance data were used to compute the normalized
difference vegetation index (NDVI) as follows:

(7.12)

where RED is the reflectance in the red wavelength and NIR is the reflectance
in the near-infrared. The fractional cover was estimated using a normalized
NDVI quantity, N*, as described by Gillies and Carlson (1995). This
normalized parameter N* is scaled between values of NDVI for the two
limits of bare soil, fc = 0, and full vegetation cover, fc = 1:

(7.13)

where NDVI0 ~ 0.2 is typical for bare soil surfaces and NDVIm ~ 0.7 is
typical for the full canopy cover (Carlson and Ripley 1997). However,
both upper and lower values are vegetation and soil moisture dependent.
Carlson and Ripley (1997) show that there is a simple relationship between
N* and fc,

(7.14)

A similar result was obtained by Choudhury et al. (1994) except their equation
has a more linear form, which is supported by a review of studies (Gutman
and Ignatov 1998)

Table 7.6 Surface parameters used in the 1ANGLE_PT version of the STS model for the
five land cover classifications with estimated fractional area fi of the scene
determined from Landsat TM data



Colour Plate I Different results obtained with emissivities of bare soil (red), or emissivities given
in Table 2.1 (dotted lines). The x-axis represents the ground data number
(arbitrary), the y-axis is the temperature in K (see Figure 2.2).

Colour Plate II LST retrievals comparison with TIGR global statistics (see Figure 2.3).



Colour Plate III LST retrievals comparison with TIGR global statistics (see Figure 2.4).



Colour Plate IV For the 20 algorithms, for q = 0 and an emissivity of 0.9650 absolute errors on
LST retrievals (mean values per water vapor category) resulting from an error
on water vapor and emissivity (see text) (see Figure 2.6).



Colour Plate V For the 20 algorithms, for q = 55 and an emissivity of 0.9650 absolute errors on
LST retrievals (mean values per water vapor category) resulting from an error
on water vapor and emissivity (see text) (see Figure 2.7).



Colour Plate VI For the 20 algorithms, for q = 0 and an emissivity of 0.9775 absolute errors on
LST retrievals (mean values per water vapor category) resulting from an error
on water vapor and emissivity (see text) (see Figure 2.8).



Colour Plate VII For the 20 algorithms, for q = 55 and an emissivity of 0.9775 absolute errors
on LST retrievals (mean values per water vapor category) resulting from an
error on water vapor and emissivity (see text) (see Figure 2.9).



Colour Plate VIII Histograms (10-day composites) of view angles for different decades: (a)
latitudinal band 75–90° N; (b) 65–75° N; (c) 55–65° N (see Figure 2.10a-c).



Colour Plate VIII (d) Latitudinal band 45–55°N; (e) 3–45°N; (f) 15–30°N (see Figure 2.10d-f).



Colour Plate VIII (g) Latitudinal band 15°S–I5°N; (h) 55-l5°S; (i) 90–55°S (see Figure 2.10g-i).



Colour Plate IX Histograms (10-day composites) of the local solar time for different decades. x-
Axis is Local Solar Time: (a) latitudinal band 75–90°N; (b) 65–75°N;(c) 55–
65°N (see Figure 2.11a-c).



Colour Plate IX (d) Latitudinal band 45–55°N; (e) 3–45°N; (f) 15–30°N (see Figure 2.11d-f).



Colour Plate IX (g) Latitudinal band 15°S-15°N; (h) 55–15°S; (i) 90–55°S (see Figure 2.11g-i).



Colour Plate X (A) Transects at longitude 70°W for different decades: (a) July 1992 (red),
September 1992 (green), October 1992 (blue); (b) December 1992 (red), April
1993 (green) July 1993 (blue) (see Figure 2.12A).

Colour Plate X (B) Transects at longitude 20°E for different decades: (a) July 1992 (red),
September 1992 (green), October 1992 (blue); (b) December 1992 (red), April
1993 (green) July 1993 (blue) (see Figure 2.12B).



Colour Plate XI Difference between algorithm output and ground measurements for the
complete data set used (see Figure 2.13).



Colour Plate XII False color composite image from the Landsat TM sensor for the LWW from
August 18, 1994 (see Figure 3.1).

Colour Plate XIII Gridded field of air temperature 2 m above the surface interpolated from
measurements at Micronet stations (see Figure 3.3).

Colour Plate XIV Gridded field of incoming solar radiation measurements interpolated from
measurements at Micronet stations (see Figure 3.4).



Colour Plate XV Atmospherically corrected radiometric surface temperature derived from a
Landsat 5 TM scene acquired over the Little Washita Watershed on August 18,
1994. The dark areas in the east-central portion of the image corresponds to
contamination by cirrus clouds, and the dark spots in the far southern and
western edges of the watershed correspond to contamination by cumulus clouds
(see Figure 3.5).

Colour Plate XVI Land cover map derived from the unsupervised classification of data from six
of the Landsat TM bands from the August 18, 1994, image (see Figure 3.6).

Colour Plate XVII NDVI derived from the August 18, 1994, TM image (see Figure 3.7).



Colour Plate XVIII Map of net radiation (Rnet) over the watershed computed with the Norman
et al. (1995) model and Landsat TM data (see Figure 3.8).

Colour Plate XIX Map of soil heat flux (G) over the watershed computed with the Norman et
al. (1995) model and Landsat TM data (see Figure 3.9).

Colour Plate XX Map of sensible heat flux (H) over the watershed computed with the Norman
et al. (1995) model and Landsat TM data (see Figure 3.10).



Colour Plate XXI Map of latent heat flux (LE) over the watershed computed with the Norman
et al. (1995) model and Landsat TM data (see Figure 3.11).

Colour Plate XXII Map of surface soil texture from STATSGO database (see Figure 3.13).



Colour Plate XXIII Classification of land cover types in Goshute valley. Many desert plant
species coexist in assemblages. Most vegetation classes reflect changes in
assemblage members or differences in plant density due to changes in soil
salinity and moisture availability. Similarities in plant structure and large plant
spacing relative to image resolution make classification of desert vegetation
extremely difficult (see Figure 4.5).



Colour Plate XXIV Maps showing the spatial distribution of instantaneous surface energy fluxes
derived from assimilation of surface meteorological and remote sensing data.
See text for discussion (see Figure 4.8).



Colour Plate XXV Map and subsets of regional surface soil moisture availability (Mo) for the Nile
delta study area. Dark colors indicate high soil moisture and light colors indicate
low surface soil moisture availability (see Figure 5.4).

Colour Plate XXVI Output of surface fluxes using the 1ANGLE_PT version of the STS model
with radiometric surface temperature imagery at 90 m resolution from Monsoon
90. Boundary of the Walnut Gulch Experimental Watershed is delineated in
black (see Figure 7.10).



Colour Plate XXVII Diagrammatic representation of the SEHEM showing the inputs of surface
and meteorological information, the SEHEM calibration procedure based on
satellite spectral data, and the potential outputs of plant growth, soil water
content, and energy fluxes. The images represent the USDA ARS Walnut Gulch
Experimental Watershed (WGEW) in Southeast Arizona (see Figure 8.5).

Colour Plate XXVIII SEHEM simulations of annual net primary production over a 10-year period
for grassland regions with the Walnut Gulch Experimental Watershed. Output
validation was presented by Nouvellon et al. (2000a) (see Figure 8.6).



Colour Plate XXIX SEHEM simulations of hourly latent heat flux density for grassland regions
within the Walnut Gulch Experimental Watershed. Output validation was
presented by Nouvellon et al. (2000a) (see Figure 8.7).

Colour Plate XXX Daily evapotranspiration map obtained from MUST-simulated thermal data
using equation (1 1.4) (Orthez—France) (see Figure 11.2).



Colour Plate XXXII Classiflcation of fire damaged areas using different bands of a Landsat TM
image. Respectively, red, NIR, SWIR (on the left), and thermal infrared, NIR
and SWIR (on the right). The latter provides a higher accuracy (see Figure
11.5).

Colour Plate XXXI Daily and weekly fire risk index on the right part are the results of subsampling
a full scale risk index obtained from MUST-simulated thermal data (on the left),
useful for the establishment of 1/50,000 long-term risk maps (see Figure 11.4).
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(7.15)

with

(7.16)

and p ranges from 0.5 to 0.7 for dark and bright soils, respectively. Using a
simple radiative transfer model Carlson and Ripley (1997) also show that
these relations are applicable for an NDVI image uncorrected for atmospheric
attenuation. With the NDVI values computed from the Landsat-5 TM data
and a summary of the ground surveys of vegetation cover of METFLUX
sites in the watershed (Daughtry et al 1991; Weltz et al. 1994), NDVIo =
0.15 and NDVIm = 0.6 were used in equations (7.13) and (7.16). For relatively
homogeneous canopies there is an exponential relationship between fC and
LAI (Choudhury 1987):

(7.17)

where ß is a function of the leaf angle distribution (e.g. ß = 0.5 for randomly
distributed leaves). Choudhury et al. (1994) estimated a mean ß = 0.67 from
ß values for 18 crops presented by Ross (1975).

The land cover map from the Landsat-5 TM image together with analyses
of Kustas et al. (1994) and Menenti and Ritchie (1994) help to define
momentum roughness parameters. The vegetation characterization by Weltz
et al. (1994) provided the vegetation parameters, including leaf width, lw,
and mean vegetation height, hc, for the STS model (see Table 7.6). The original
30-m Landsat-5 TM data were degraded to the 90-m resolution of the TR(φ)
data.

The flux output of the model using 90-m pixel resolution image is shown
in Figure 7.10. The areas with lower sensible heat fluxes and higher latent
heat fluxes are in the regions, which received more recent precipitation.
The sensible heat fluxes varied from ~ – 175 to 255 W m-2 and the latent
heat fluxes ranged from ~85 to 670 W m-2. The area-average and standard
deviation of the four flux component values over the whole image, namely
FLUXAVG and FLUXSTD, are listed in Table 7.7. The remotely sensed NDVI
and TR(φ) were also aggregated up to the whole image producing a single
value of NDVI and TR() for the image (i.e. NDVICOM and TCOM). These
values were used in the STS model for computing area-average FLUXCOM

values. The model parameters for the whole image were specified by simply
weighting by the fractional area, fi, comprised the five land cover types.
The composite roughness parameters (dO,COM and zOM,COM) for the whole
image were derived by using the following weighting scheme (Shuttleworth
et al. 1997):
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(7.18)

where dO,i and zOM,i are for the different land cover types in Table 7.6, and zB

is the “blending height” (Wieringa 1986) where meteorological variables

Figure 7.10 Output of surface fluxes using the 1ANGLE_PT version of the STS model with
radiometric surface temperature imagery at 90 m resolution from Monsoon
90. Boundary of the Walnut Gulch Experimental Watershed is delineated in
black (see Colour Plate XXVI).
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can be treated as uniform over the grid or pixel. Sounding data suggested
that zB ~ 20 m but the model is relatively insensitive to a range of zB values
from 20 to 150 m (Kustas and Humes 1996). The resulting model parameters
defined for the whole image were hC= 0.4 m, LAI = 0.65, dO,COM = 0.2 m, and
zOM,COM = 0.03 m.

The comparison of FLUXAVG and FLUXCOM values in Table 7.7 suggest
that the use of very coarse resolution data for this site had minimal effect on
the model-derived area-averaged fluxes. This result may have been due, in
part, to the fact that there was a relatively small spatial variation of TR(φ),
probably due, in part, to very few pixels classified as riparian (Table 7.6).
Although there were a few pixels with TR(φ) ≈ 26ºC and others reaching ≈
40°C, the average TR(φ) was ≈ 33°C with a standard deviation of only ± 2°C.

7.9 Summary and conclusions

A detailed PE model (Cupid) was first validated with experimental data from
a semiarid rangeland environment and then used to investigate the
aerodynamic-radiometric temperature relationship for a wide range of
environmental conditions and fractional canopy covers. The results indicate
that the aerodynamic-radiometric relationship cannot be described adequately
using single-source approaches that rely on using a roughness length for
heat, because the relationship depends strongly on the soil-canopy
temperature differences. A simple STS model was evaluated using output
from the Cupid model. Performance of the STS model, which used a single
radiometric temperature (1ANGLE_PT version), in predicting energy flux
partitioning between soil and vegetation under a wide range of conditions
was satisfactory; although under certain conditions differences with Cupid
were significant. Discrepancies in the flux predictions were significantly larger
when the STS model was modified to make use of two radiometric
temperatures at nadir and 55º from nadir (2ANGLE_PT and 2ANGLE
versions) for deriving canopy and soil temperatures. The differences were in
H and LE were on the order of 100 W m-2, which is clearly unsatisfactory.

Table 7.7 FLUXAVG values and the corresponding standard deviations (FLUXSTD) derived
from TR(φ) image at 90m resolution from DOY 221 (see Figure 7.10). In addition,
the values of FLUXCOM computed with TCOM averaged for the whole image (see
text)
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The 1ANGLE_PT version of the STS model was used to evaluate errors
caused by subpixel variability in surface properties. An extreme case was
evaluated by assuming that 50% of the area was stressed shrub vegetation
under low cover and 50% unstressed riparian vegetation. Differences in the
aggregated heat fluxes from these two surfaces versus the composite fluxes
computed using an effective surface temperature were significant (i.e. >100 W
m–2) at the low wind speed case of 1 m s-1. However, the results were improved
when the model was applied under the higher wind speed case of 5 m s–1,
where differences were on the order of 50 W m-2. A less extreme case was also
tested where the riparian zone comprised only 10% of the pixel. In this case
the discrepancies were significantly smaller, namely less than 35 W m-2 for
both wind speed conditions. These preliminary findings are supported by a
more thorough analysis of errors caused by mixed-pixel variations where errors
on the order of 50 W m-2 or smaller were obtained for mixed-pixel cases having
less than 20% of an extreme surface condition (Kustas and Norman 2000).

An example of energy flux maps generated by the STS model with TR()
images over a heterogeneous semiarid landscape was presented. In this
particular case the resolution of the remotely sensed data was degraded from
90 m to ~10 km or the whole image. Although the area covered by the image
had a wide range of computed heat fluxes, the difference in average fluxes
for the entire image was minor, indicating that degree of variability in surface
temperature and surface conditions was not significant enough to cause
problems in using very coarse resolution data.

A review of the literature indicates that the application of radiometric
temperature for surface flux estimation has yielded inconsistent results (Kustas
and Norman 1996). Hall et al. (1992) concluded that schemes employing
radiometric temperature will yield unreliable heat flux predictions due to
significant discrepancies between aerodynamic and radiometric temperatures.
Results from this chapter indicate that approaches such as the one used in
Hall et al. (1992), which do not consider factors causing differences between
TR(φ) and T0, support their result. However, it is shown here that the STS
model adequately addresses most of these factors and provides a practical
solution that can be used operationally with satellite data.

With satellite observations, atmospheric effects and emissivity variations
are likely to cause a 1–2K error in TR(φ). Compounding this error is the
spatial variability of atmospheric forcing variables, particularly air
temperature, TA. This uncertainty in screen level air temperature increases
the errors in TR(φ) - TA over a satellite image. Using a ±3K error in TR(φ) - TA,
Kustas and Norman (1997) find that this can lead to errors on the order of
50% in H and LE using the STS model. The TSTI/ALEXI scheme is essentially
insensitive to errors in TR(φ) since it uses a timedifferencing in TR(φ) coupled
to atmospheric boundary-layer dynamics. Thus, TA is actually simulated by
the model so observations are not required. The 2ANGLE_PT version of the
STS scheme is also essentially insensitive to errors in TR(φ) - TA; however, it
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can only be applied under non-stressed vegetation conditions. A relatively
simple time differencing scheme using regional weather station data (referred
to as the Dual-Temperature-Difference, DTD, approach) and employing the
STS modeling framework was recently developed and tested by Norman et
al. (2000). It is shown to be considerably less sensitive to errors in TR(φ) and
TA, and can compute regional fluxes using satellite data that are comparable
to ALEXI.

Although the GOES is capable of providing multiple TR(φ) observations
used by ALEXI and the DTD approach, the pixels are relatively course (~5 ×
5 km). At this scale, results from this chapter indicate subpixel variability
under certain landscape conditions may cause significant error in heat flux
predictions using pixel-average input data. Higher-resolution TR(φ) data from
the EOS Terra platform (i.e. ASTER) could be used for investigating the
effects of subpixel variability on heat flux predictions at the coarser resolutions
with aggregation techniques described in this chapter.

In summary, it appears that reliable heat flux predictions at regional scales
with satellite TR(φ) observations are possible with models that (a) consider
the main factors affecting the non-unique relationship between TR(φ) and
T0, and (b) are relatively insensitive to errors in TR(φ) - TA. Methods for
addressing the impact of subpixel variability on pixel-average heat flux
predictions should be an area of active research.

Appendix A: radiometric temperature
calculation in Cupid

The calculation of brightness temperature and ensemble directional
radiometric temperature requires first calculating thermal radiance.
Technically, thermal radiance should be based on integrations of the
radiometer response over the blackbody spectrum between the wavelengths
of sensitivity. Fortunately, using absolute temperature to a power n (typically
n = 4 is adequate) usually provides a close approximation to the blackbody
integral (Becker and Li 1990) and is simpler to do. If a power other than
four is used, then s must be replaced with a constant that is appropriately
adjusted. The equation that describes the thermal radiance of a vegetative
canopy is analogous to equation (7.15) in Norman et al. (1985), which
describes the shortwave radiance for a canopy. The following equations use
the same symbolism and definitions as Norman et al. (1985), so the reader is
referred to that paper for more details. The radiance [Rc(θvφ,v)] from a canopy
in a particular viewing direction (θvφ,v) can be approximated as follows if
each layer in the canopy is of equal incremental leaf area index:

(7.A1)
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where
g(α, ß) fraction of leaf area inclined at angle a and oriented at

azimuth angle ß
Cj fraction of leaf area in layer j that is sunlit
ε leaf emissivity
σ Stefan-Boltzman constant - 5.67 × 10–8 W m–2 K–4

Tj,sun (α, ß) thermodynamic temperature of a sunlit leaf at
inclination angle α and azimuth angle ß

Tj,shade thermodynamic temperature of shade leaf
Ej(α) reflected diffuse irradiance from leaf inclined at angle a

and in layer j
|fv| fraction of leaf area projected into the direction of view,

which depends on the inclination (α) and azimuth (ß)
angles of the leaf and view zenith (θv) and azimuth (φv)
angles—see equation (9) in Norman et al. (1985)

Wj factor that weights the contribution of various layers to
the view from a particular direction—see Norman
et al (1985)

The contribution of the soil layer is given by the following:

(7.A2)

where εs is the soil thermal emissivity in the appropriate wavelength band, ρs

is the soil thermal reflectivity (εs = 1 - ρs), D1 is the downward thermal flux
density just above the soil, W0 is the fraction of the radiometer view occupied
by the soil, and

(7.A3)

Profiles of thermal radiant flux density and leaf temperature distributions
are obtained from the simultaneous solution of radiative, convective, and
conductive equations in Cupid (Norman and Campbell 1983).

If εs and ε are set to unity to represent a blackbody (RB(θv,φ v)) and
downward thermal diffuse flux density from the sky is zero (DN = 0) for the
calculation of Ej(α), then

(7.A4)

The radiometric temperature of the soil/canopy system is given by

(7.A5)
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and the brightness temperature, or apparent infrared temperature
senseddirectly by an accurate infrared thermometer, is given by

(7.A6)

Figure 7.A1 Comparison of Cupid brightness temperature estimates (line with dots) with
measurements (squares) from FIFE by B.L Blad (University of Nebraska, Lincoln,
NE) using the Barnes Modular Multiband Radiometer at Site 11 on DOY 156 in
1987 at several times: (a) 1045, (b) 1145, (c) 1215 CST. Hand-held infrared
thermometer measurements were also made at the same time and are shown
in the figures. The LAI was approximately 1.5.
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Although the directional emissivity depends on view angle, the dependence is
slight for canopies of even moderate cover (LAI greater than 0.5) so that the
directional and hemispherical emissivities are not significantly different. The
ensemble directional radiometric temperature can depend strongly on view
angle because of temperature differences between the soil and vegetation.
Comparison of Cupid brightness temperature estimates with measurements
from FIFE (Figure 7. Al) indicate that the formulations used in Cupid provide
reliable directional temperature values.

Appendix B: overview of the N95 model

With the use of a single emissivity to represent the combined soil and
vegetation, the ensemble directional radiometric temperature, TR(φ), is related
to the fraction of the radiometer view occupied by soil versus vegetation
expressed as

(7.B1)

where TC and TS are the thermodynamic temperatures of the vegetation
canopy and soil surface, respectively, and are assumed to represent spatially
weighted averages of the sunlit and shaded portions of the canopy and soil,
respectively, and n ~ 4 (Becker and Li 1990). The fraction of the field of view
of the infrared radiometer occupied by canopy, f(φ), depends upon the view
zenith angle, φ, canopy type, and fraction of vegetative cover, fC. For many
vegetated surfaces, assuming a random canopy with a spherical leaf angle
distribution is reasonable so that,

(7.B2)

The use of TR(φ) in a convective heat flux equation frequently involves the
controversial assumption that TR(φ) is equivalent to the so-called
“aerodynamic temperature,” T0, of the surface. T0 is the temperature that
satisfies the bulk transport expression having the form

(7.B3)

where H is the sensible heat flux (W m-2), ρCp is the volumetric heat capacity
of air (J m-3 K-1), TA is the air temperature at some reference height above the
surface (K), and RAH is the aerodynamic resistance to heat transport (s m-1),
which has the following form in the surface layer (Brutsaert 1982):
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(7.B4)

In this equation, dO is the displacement height (m), u is the wind speed (m s-

1) measured at height zU (m), k is von Karman’s constant (≈ 0.4), zT is the
height (m) of the TA measurement, ψM and ψH are the Monin-Obukhov
stability functions for momentum and heat, respectively, and are functions
of (z – dO)/L (see Brutsaert 1982) where L = -/[k(g/TA)(Hv/ρCp)] is the Monin-
Obukhov length (m), u* is the friction velocity (m s-1), g is the acceleration of
gravity (m s-2), Hv = (H + 0.61TACpE) is the virtual sensible heat flux (W m-2),
and E is the rate of surface evaporation (kg m-2 s-1). The roughness parameter
zOM is the local roughness length (m) for momentum transport and zOH is the
local roughness length (m) for heat transport. T0 cannot be measured, so it is
often replaced with an observation of TR(φ) in equation (7.B3).

The net energy balance of the soil-canopy system is given by (neglecting
photosynthesis)

(7.B5)

The system of equations for computing fluxes from the soil and canopy
components, denoted by subscripts S and C, respectively, are listed below
and will be used by all versions of the model. The energy budgets for the soil
and vegetation are given by

(7.B6)

(7.B7)

with RN = RN,S + RN,C· Similar to equation (7.B1) for estimating the
contribution of soil and canopy temperatures to the observed radiometric
temperature, equations (7.B8) and (7.B9) are used for partitioning net
radiation, RN, between the soil and vegetation in order to properly weight
the contributions of sensible, H, and latent heat flux, LE, from the soil and
vegetation, and estimate the soil heat flux, G:

(7.B8)

(7.B9)

Equations (7.B8) and (7.B9) are modifications from the original N95
formulations (where = 1 and k = 0.45) proposed by Anderson et
al. (1997) based on simulations with a detailed soil-plant-atmosphere model,
Cupid (Norman and Campbell 1983), where the net radiation divergence is
found to be a function of the solar zenith angle θS. The value of K = 0.6 is
used so that at low solar zenith angles (i.e. θS < 30º) the quantity K/
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will have a value of 0.45 which is midway between its likely limits
of 0.3 to 0.6 (Ross 1981).

Equations (7.B8) and (7.B9) are known to have large biases for low
vegetation cover when soil surfaces are much hotter than vegetation. Thus,
the STS model now uses equations (7.5a) and (7.5b) for attenuation of thermal
radiation and the model of Goudriaan (1977) as described in Campbell and
Norman (1997) for shortwave fluxes.

For computing G, the original formulation from N95 was simply

(7.B10)

where the value of cG = 0.35 (Choudhury et al. 1987). However, cG is constant
only for several hours around solar noon (Kustas and Daughtry 1990). Friedl
(1996) included the effects of a temporally varying cG by multiplying equation
(7.B10) by cos(θS). Another approach developed by Kustas et al. (1998) is
based on time differences with the local solar noon quantified by the following
non-dimensional time parameter, tN:

(7.B11)

where ti is the time nominally ≈5 h of the local time of solar noon, tSN, and
the | | represents the absolute value of the difference. Using experimental
data to compute G/RN,S or cG as a function of time ti, an empirical function
was fit to the relationship between G/RN,S and tN· The results indicated that
a constant G/RN,S could be used for tN < 0.3 (i.e. several hours around solar
noon) and linear least-squares regression equation between G/RN,S and tN

was needed for tN > 0.3. Neither equation (7.B11) nor the approach suggested
by Friedl (1996), however, considers the fact that G and RN are not in phase,
and hence the temporal change in the ratio G/RN,S will not be the same between
the morning and afternoon. In addition, these approaches also do not account
for possible variations in cG due to soil moisture conditions (e.g. Friedl 1996)
or the effect of low wind speeds near the soil surface, uS (see equation 7.B17).
From the Cupid simulations, G/RN,S > 0.5 when uS < 0.25; hence, an empirical
equation was used to account for this effect (see text in main body of the
chapter for details).

With H = HS + HC and with the soil and vegetation taken in “parallel”
(i.e. the resistance network provides for no interaction between the soil and
vegetation), the heat fluxes from the soil and vegetation are computed by

(7.B12)

(7.B13)
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With HC and HS taken in “series” (i.e. the resistance network allows for
interaction between the soil and vegetation) yields:

(7.B14)

(7.B15)

where TAC is related to T0 in equation (7.1), namely,

(7.B16)

See Figures 1 and 11 in N95 illustrating the “parallel” and “series” resistance
networks.

RS is the resistance to heat flow in the boundary layer immediately above
the soil surface and is estimated from an empirical expression developed by
Sauer et al. (1995) from extensive studies of this soil-surface resistance in a
wind tunnel and beneath a corn canopy. RX is the total boundarylayer
resistance of the complete canopy of leaves (see Appendix A in N95) estimated
with the wind speed in the canopy air space computed from the equations of
Goudriaan (1977). RAH is estimated via equation (7.B4); dO and zOM have
been estimated simply as a fraction of canopy height, hC (i.e. dO ≈ 0.65hC;
zOM ≈ 0.13hC; see Brutsaert 1982). Raupach’s (1994) generalized formulations
as a function of LAI has recently been adopted since these may provide more
accurate estimates over a wider range of cover conditions. For most
vegetation, zOH can be estimated as a fraction of zOM as postulated by Garratt
and Hicks (1973), namely zOH ≈ zOM/7 or kB-1 ≈ 2. RA is computed from
equation (7.B4) with zOH = zOM (cf. equation 7.2). TAC is the momentum
aerodynamic temperature and only approximates the temperature in the
canopy air space (see Appendix A in N95).

Although soil surface resistances depend on many factors, a reasonable,
simplified equation has been developed where

(7.B17)

In equation (7.B17), a 0.004 m �–1 is the free convective velocity “constant”,
b� 0.012, and uS is the wind speed at a height above the soil surface where
the effect of the soil surface roughness is minimal; typically 0.05–0.2 m. The
coefficients in equation (7.B17) depend on turbulent length scale in the canopy,
soil surface roughness and turbulence intensity in the canopy and are discussed
by Sauer et al. (1995). The numerical value for the coefficient a was taken
from data presented in Sauer (1993) as the mean intercept of plots of soil
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surface transfer coefficients versus wind speed in the canopy. For the smooth
aluminum plates used by Sauer (1993) the value of the parameter b was
measured to be 0.007. The value of 0.012 for b used in equation (7.B17)
was estimated from a combination of wind tunnel data for surfaces of various
roughnesses and the field data on smooth plates to represent the more typical
roughness that soil surfaces have.

From numerous experimental studies under free convective conditions,
the free convective velocity Ucv is related to ∆T (Kondo and Ishida 1997),

(7.B18)

where Kondo and Ishida’s (1997) experimental results indicate that c (m s-1

K–1/3) ranges from 0.0011 for an aerodynamically smooth surface to 0.0038
for an aerodynamically rough surface. The laboratory and field data from
Sauer (1993) indicate that UCV or a (cf. equation (7.B17)), 0.004, is applicable
to soil surfaces where ∆T ≈ 3–5 K. Substituting ∆T = 4 K and UCV = 0.004
into equation (7.B17) yields c ≈ 0.0025. This value of c may be more
appropriate for soil surfaces associated with cultivated crops. Since the model
derives both soil and canopy temperatures, as a first approximation, TC was
substituted for TA in equation (7.B18). Therefore, equation (7.B17) was
modified to the following form (cf. equation 7.3):

(7.B19)

with c = 0.0025 and b = 0.012. The effect on model output using c = 0.0038
in equation (7.5) will be discussed. Sauer and Norman (1995) indicate that
for rough soil surfaces or higher turbulent intensities in the canopy air space,
the magnitude of the coefficient b in equation (7.B17) for predicting RS would
be larger reaching an upper limit for b ≈ 0.024. There is no direct way to
estimate the change in b from routine observations. However, under the
extreme temperature differences between soil and canopy that typically exist
in open canopies under dry soil conditions where TS – TC ≈ 20ºC (see Figure
7.4), it is the free convective velocity UCV that generally dominates the heat
transfer from the soil surface.

Finally, for LE = LES + LEC the fluxes are estimated by the following
expressions:

(7.B20)

(7.B21)

The Priestley-Taylor parameter, αPT, is set equal to 1.26 (Priestley and Taylor
1972) for the green part of the canopy, ∆ is the slope of the saturation vapor
pressure-temperature curve at TC (PaK-1), and γ is the psychrometric constant
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(≈66Pa K-1). The fraction of LAI that is “green” or actively transpiring, fG,
may be obtained from knowledge of the phenology of the vegetation. If no
information is available for estimating fG, then it is assumed to equal unity.

Equation (7.B21) only provides an initial calculation of LEC, and it can
be overridden if the temperature difference between the soil-canopy system
and the atmosphere is large causing erroneous flux estimates, such as negative
LES or condensation during the daytime period. If the estimated radiometric
temperature from equation (7.B1) is less than the measured TR(), then the
Priestley-Taylor approximation in equation (7.B21) will tend to overestimate
the canopy transpiration rate because the water supply in the root zone is
inadequate. Therefore, in N95 an iteration procedure was devised such that
LEC values were computed below estimates given by equation (7.B21) until
values of TC and TS used in equation (7.B1) agree with the measured TR(N).

Recent experience with the STS model has revealed that a more general
procedure for evaluating αPT begins by assuming αPT = 2 instead of the
conventional value of 1.26. This method is described in more detail in the
main body of this chapter.
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Thermal infrared measurement
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M.Susan Moran

8.1 Introduction

The term ecosystem health has generally been used to indicate the proper
functioning of a complex ecosystem. A healthy system would be one in which
the biophysical processes are operating adequately to maintain the structure,
organization, and optimal activity of the system over time. As a result, the
healthy ecosystem would be capable of producing quality commodities and
satisfying the values desired by society. For example, a healthy rangeland
supplies such important economic goods as forage for livestock, wildlife
habitat, energy, recreational opportunities, and such intangible products as
natural beauty. A healthy cropland would allow us to grow copious, high-
quality food and fiber using less water and pesticides. Although most would
agree that healthy croplands and rangelands are desirable, there is less
consensus on how to evaluate and monitor plant ecosystem health.

For example, rangeland health has been defined as the degree to which
the integrity of the soil and the ecological processes of rangeland ecosystems
are sustained (National Research Council 1994). The National Research
Council suggested that determination of whether a rangeland is healthy, at
risk, or unhealthy should be based on the evaluation of three criteria: (a)
degree of soil stability and watershed function; (b) integrity of nutrient cycles
and energy flows; and (c) presence of functioning recovery mechanisms. They
proposed that these criteria could be measured by such indicators as soil
surface characteristics (erosion and infiltration), transpiration rate, or
photosynthetic period, and such plant community attributes as plant
distribution, vegetation cover, plant vigor, and plant age class distribution.

On the other hand, cropland health is commonly evaluated as a lack of
stress, where stress is defined as the downward deviation from the plant
potential photosynthetic and transpiration rates, and ultimately a decrease
in crop yield. For example, an indicator of cropland health, termed the Stress
Degree Index (SDI), was proposed by Hiler and Clark (1971). The SDI is
based on a measure of the degree and duration of plant water—and therefore
photosynthetic—stress, and the plant’s susceptibility to a given water stress,
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(8.1)

where SD is the stress day factor, CS is the crop susceptibility factor, and n
represents the number of growth periods (days) considered. SD is defined by
the plant transpiration rate (Γ) and the potential transpiration rate (Γp), where

(8.2)

CS represents the susceptibility of a crop to a given magnitude of SD and is
a function of the species and stage of growth of the crop (Hiler and Clark
1971).

These disparate definitions of cropland and rangeland health reflect the
differences in resource management. That is, in intensively managed
croplands, crop health can be augmented by increasing water or fertilizer
applications, modifying tillage or terracing practices, selecting hybrids,
managing plant population, and applying agricultural chemicals. Rangelands,
for the most part, do not receive such inputs and must depend on the
availability of nutrients, the dynamics of the plant community, the quality of
the soil profile, and management of the grazing pressure.

However, the definitions of cropland and rangeland health have two
indicators in common—plant transpiration rate and plant photosynthetic
rate. It is not coincidental that transpiration rate is also a primary indicator
of forest health and forest fire risk (Vidal and Devaux-Ros 1995).
Transpiration has such an important role in plant health that even a slight
reduction in plant water content can impact both growth and such
physiological functions as photosynthesis and respiration (Hatfield 1997). It
is this importance that has led to extensive efforts to use thermal infrared
(TIR) measurements to evaluate the spatial and temporal distribution of
plant transpiration. The direct link between the process of transpiration and
the plant thermal response (i.e. transpired water evaporates and cools the
leaves) offers potential for the use of TIR measurements for monitoring and
managing plant ecosystem health.

This chapter will include a history of developments in physics and
technology that have led to development of TIR spectral indices of plant
ecosystem health. Descriptions of several TIR indices will be provided with
sufficient detail that readers can implement the algorithm with minimal
reference to other publications. The chapter will conclude with a short
discussion of the pitfalls associated with TIR measurements and algorithm
implementation.
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8.2 History

Parallel lines of research in physics and technology converged to define the
current state of TIR measurement of thermal responses as an indicator of
plant ecosystem health. One line of research was focused on the basic physics
of evaporation and energy balance; another was focused on the measurements
of leaf and canopy temperatures. These lines crossed with the work of
Monteith and Szeicz (1962) in which canopy temperature was presented as
a function of energy balance components. The historical developments leading
to this pivotal work is the topic of this section.

Before continuing, a clarification of terms is in order. The term
evapotranspiration (EΓ) is used here to include the evaporation (E) of water
from soil and leaf surfaces and the transpiration (Γ) of water through leaf
stomata. Though in both cases water is “evaporating,” and though many
prefer to incorporate both evaporation and transpiration into the single term
evaporation, the distinction is made here when necessary for discussion and
presentation of theory. Furthermore, the distinction between the terms λEΓ

and EΓ must be clarified; λEΓ is evapotranspiration rate in energy flux density
units (W m-2) and EG is the same quantity converted to units of rate (mm h–

1 or mm day–1). In this discussion, λEΓ and EΓ are often used interchangeably.
It is also important to emphasize the differences between Tc, To, and Ts. Tc

is the canopy temperature, defined by Norman et al. (1995) as the TIR
temperature in which the “vegetation dominates the [measurement] field of
view minimizing the effect of soil.” To is the temperature of the soil surface.
Ts is the surface composite temperature, defined by Norman et al. (1995) as
the “aggregate temperature of all objects comprising the surface,” which
was shown by Kustas et al. (1990) to be a function of Tc and To, where

(8.3)

and fc represents the fractional cover of the vegetation. When the surface is
completely covered by vegetation, then Ts = Tc, and when the surface is bare
soil, then Ts = To. Throughout this discussion, all temperatures are assumed
to be kinetic values, that is, all radiometric temperature measurements have
been corrected for surface emissivity. The scientific and technical notation,
and selected acronyms included in this chapter are summarized in Table 8.1.

8.2.1 The physics of evaporation

Progress in understanding the physics of evaporation was slow until the
twentieth century when Bowen (1926) showed how the partitioning of
available energy between the fluxes of sensible and latent heat could be
determined from gradients of temperature and humidity,

(8.4)



Table 8.1 Summary of scientific and technical notation and selected acronyms
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where λET is the latent heat flux (W m-2), Rn is the net radiation flux at the
surface (W m-2), G is the sensible heat flux conducted to the soil (W m-2), and
ß is the Bowen ratio, the ratio of sensible heat flux density (H) to latent heat
flux density. In equation (8.4), fluxes away from the surface are positive and
those towards the surface are negative. The Bowen ratio can be derived from
temperature and humidity measurements,

(8.5)

where γ is the psychrometric constant (2.453 MJkg-1 at 20°C), Kh and Kv are
the eddy transfer coefficients for sensible and latent heat, respectively, and
∆T and ∆e are the differences in temperature in ºC and vapor pressure in kPa
over the same vertical separation (∆z) of the sensors.

Table 8.1 (Continued)
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Following the work of Bowen (1926), Penman (1948) combined the thermal
energy balance with certain aerodynamic aspects of evaporation and developed
an equation for estimating evaporation that was soon adopted by hydrologists
and irrigation specialists. The general form of the Penman combination
equation is

(8.6)

where ∆ is the slope of the saturation vapor pressure-temperature curve (kPa
ºC-1), Wf is a wind function (generally, a + b(u), where u is the wind speed in
m s-1), and VPD is Vapor Pressure Deficit (kPa).

The Penman formula was recast in terms of an aerodynamic resistance
and a surface resistance for application to single leaves (Penman 1953) and
vegetation canopies (Monteith 1965; Rijtema 1965). This result, now referred
to as the Penman-Monteith equation, is probably the most universally used
equation for calculating potential evaporation (Allen 1986),

(8.7)

where ρ is air density (kg m-3), Cp is specific heat at constant pressure (kJ kg-

1 ºC-1), and the aerodynamic resistance, ra(s m–1) is

(8.8)

and z is the height above the surface at which u is measured (m), do is the
displacement height (m), z0m and z0h are the roughness lengths for momentum
and heat (m), respectively, Φh and Φm are the stability corrections for heat
and momentum, respectively, and k is von Karman’s constant (≈0.4). The
integral stability functions were summarized by Beljaars and Holtslag (1991)
for stable and unstable conditions. The value of γ* (kPa ºC-1) in equation
(8.7) is a function of ra and the canopy resistance to vapor transport (rc, s m-

1), where

(8.9)

Priestley and Taylor (1972) proposed a simplified version of the Penman
combination equation for computation of potential evaporation heat flux
density (λEGp), for a surface which has minimal resistance to evaporation.
Under these conditions, the aerodynamic component was ignored and the
energy component was multiplied by a coefficient,

(8.10)

where α = 1.26 for regions with no or low advective conditions. For an
extensive history of evaporation research see the treatise by Monteith (1981)
and the book by Brutsaert (1982).
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During the four decades since Penman’s pioneering work, theoretical,
modeling, and experimental efforts have greatly expanded our knowledge
of evaporation. Theoretical and modeling developments are dependent on
experimental data for verification. Experimentally, the measurement of
evaporation can be made accurately with equipment that evaluates Bowen’s
ratio (Spittlehouse and Black 1980; Gay and Greenberg 1985), with eddy
correlation techniques (Kanemasu et al. 1979), with weighing lysimeters (van
Bavel and Myers 1962), and with portable assimilation chambers (Reicosky
1981). A limitation of these techniques is that they yield essentially point
values of evaporation, and therefore are applicable only to a homogeneous
area surrounding the equipment that is exposed to the same environmental
factors. This limitation has been the impetus for studies on the use of remotely
sensed data, obtained by either aircraft- or spacecraft-based sensors, to obtain
an estimate of the spatial distribution of evaporation.

8.2.2 The measurement of leaf and canopy temperatures

It has long been recognized that a direct measurement of some plant parameter
would be superior to measurement of water status of the soil for monitoring
the plant’s response to its atmospheric and edaphic environment. Jackson
(1982) reviewed the history of attempts to measure leaf and canopy
temperatures and to relate them to plant stress conditions. That history is
summarized here to give a perspective from which to understand the spectral
plant stress indices presented in the next section.

One of the first measurements of leaf temperature of crop plants under
natural field conditions was made by Miller and Saunders (1923) using a
clamping device which, when closed, would make contact between the leaf
and a thermocouple. This device required about 15s to make a single leaf
measurement, and was criticized because the clamp shaded the leaf (Curtis
1936). Nonetheless, Miller and Saunders were perhaps the first scientists to
show that leaf temperatures (in this case, alfalfa leaves) were cooler than air
temperature under field conditions. These results were corroborated by Eaton
and Belden (1929) who found that temperatures of cotton leaves in Arizona
were 2-4º C below that of the air. Wallace and Clum (1938) found similar
results for garden plants using thermocouples to record leaf and air
temperatures. They reported leaf temperatures as much as 7ºC below air
temperature. Again, Curtis (1938) rebutted these findings with a theoretical
proof that it would require impossibly high transpiration rates to lower the
temperature of a leaf below that of air when in direct sunlight.

However, empirical evidence continued to mount that leaf temperatures
could be cooler than air temperatures on clear, warm days (Waggoner and
Shaw 1952; Asari and Loomis 1959). A theoretical proof based on energy
balance was published by Gates (1964) stating that transpiration was indeed
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important in the energy budget of plants, and his calculations indicated that
shaded leaves could be cooler than air.

In the 1960s, empiricists began using crude infrared thermometers (IRT)
to remotely sense leaf temperatures (for discussion of basic IR radiation
thermometry, see Fuchs and Tanner 1966). Wiegand and Namken (1966)
thus observed that cotton-leaf temperatures increased linearly with increasing
insolation, and decreased linearly with increasing turgidity of the leaves.
Based on these observations, they suggested a measurement protocol that is
still in use today; that is, leaf temperature interpretation requires
simultaneously measured radiation data, and the early afternoon is a good
time of day for making leaf temperature measurements.

With the development of the IRT, research moved from studies of individual
leaves to investigations of entire crop canopies. The conclusion that emerged
from the early theoretical studies of leaf versus canopy temperatures was
that reradiation was the major mode of heat transfer for individual leaves,
but for canopies as a whole, transpiration was the dominant mechanism
(Idso and Baker 1967). Thus, for a canopy, transpirational cooling played a
major role in determining plant temperature. This conclusion supported the
concept that TIR measurements would be useful for such canopy-scale
management activities as irrigation scheduling and monitoring general plant
ecosystem health.

The link between studies of the physics of evaporation (previous
subsection) and the measurements of leaf temperatures (this subsection) was
made by Monteith and Szeicz (1962) through their use of IRTs to measure
plant canopy temperatures. Based on energy balance considerations, they
derived an expression relating the canopy-air temperature difference to net
radiation, wind speed, vapor pressure gradient, and the aerodynamic and
canopy resistances, where

(8.11)

Equation (8.11), given in a slightly different form by Monteith and Szeicz
(1962), was the basis for the theoretical development of a Crop Water Stress
Index (CWSI), which will be discussed in the next section. In the decade
following this landmark work, IR technology advanced rapidly (see other
chapters in this book), leading to the handheld, airborne and satellite-based
sensors, and scanners that are available today.

8.3 TIR indices, algorithms, and models

There has been a great deal of work directed at refining and validating
methods for using TIR measurements for estimation of crop transpiration
and soil evaporation (see review by Kustas and Norman 1996). A distinction
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is made here between estimates of absolute plant transpiration rate, and stress
indices, algorithms and models, which provide a relative measure of plant
ecosystem health by normalizing biophysical activity (e.g. transpiration rate
or enzyme function) to a known range of values, to a healthy system, or to
another standard. The goal of this section is to review several of the latter
approaches that have obtained scientific, and in some cases, commercial
acceptance, and provide the reader with instructions and references for such
algorithm implementation.

8.3.1 Stress degree day

The stress degree day (SDD) was defined by Idso et al. (1977) and Jackson et
al. (1977) as

(8.12)

where Tc is plant canopy temperature measured 1–1.5 h after solar noon, Ta

is the air temperature 1.5 m above the soil, and (Tc - Ta) is summed over n
days beginning at day i. Idso et al. (1977) showed that in the arid climate of
Phoenix, Arizona, wheat yields were reduced if the SDD became positive.
Jackson et al. (1977) postulated that the SDD was directly related to water
use and could be used to schedule crop irrigations and monitor periods of
grassland stress to provide an estimate of yield. In a later work, Jackson
(1982) acknowledged that the arbitrary division at SDD = 0 was not
appropriate for all environmental conditions, particularly regions with high
atmospheric humidity.

8.3.2 Canopy temperature variability

The canopy temperature variability (CTV) was defined by Clawson and Blad
(1982) as the range (maximum minus minimum) of all IRT sensed canopy
temperatures within a plot during a particular measurement period. They
found that as the temperature difference between a water-stressed plot and a
well-watered plot increased, so did CTV values until a critical stress level
was reached beyond which CTV values stabilized. They postulated that the
onset of plant stress could be signaled when CTV values exceeded 0.7ºC.
Like the SDD, the CTV did not account for differences in VPD; on the other
hand, the CTV did not require an estimate of Ta and could possibly be
implemented without atmospheric correction of Tc values acquired with an
airborne thermal sensor. With our increased knowledge of plant thermal
response and advances in TIR technology, this work deserves renewed
attention.
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8.3.3 Temperature stress day

Gardner et al. (1981a) attempted to account for the theoretical weaknesses
in the SDD and CTV by taking the difference in temperatures of a stressed
plot and well-watered plot, termed the temperature stress day (TSD). They
postulated that the use of a well-watered or “healthy” standard would
compensate for such environmental effects as Ta and VPD. As with the CTV
and SDD, a threshold could be determined to signal the need for irrigation
or the point of irreversible grassland degradation. In addition, Gardner et al.
(1981b) demonstrated that TSD could also be used to predict the phenologic
development stage of corn. A drawback to operational implementation of
TSD for monitoring system health is that meteorological conditions necessitate
that the TSD standard plot be in close proximity to the field or site in question.

In a re-examination of TSD, Clawson et al. (1989) reported that the TSD
was not an environmentally independent index of crop water stress, but was
limited by the same environmental dependencies as the SDD. They suggested a
refinement of TSD to account for environmental factors while maintaining the
measurement simplicity of the TSD. Their approach required estimates of Rn,
Ta, and ra in addition to the temperature measurements of the stressed and
well-watered plots, and was similar to the CWSI described in the next subsection.
This approach was recently validated in a study of the effects of stress on yield in
irrigated cotton, corn, and soybeans (Wanjura and Upchurch 1998).

8.3.4 Crop water stress index

An important contribution to the use of plant temperature to assess plant
ecosystem health was the creation of the Idso-Jackson CWSI (Idso et al.
1981; Jackson et al. 1981). Jackson et al (1981) derived the theoretical CWSI
(CWSIt) based largely on equation (8.7). Taking the ratio of actual (λEΓ for
any rc) to potential (λΕΓp for rc = rcp) latent heat flux density gives

(8.13)

where rcp is the canopy resistance at potential evapotranspiration. Jackson et
al. (1981) defined the CWSIt, ranging from 0 (ample water) to 1 (maximum
stress), as

(8.14)

To solve equation (8.14), a value of rc/ra is obtained by rearranging equation
(8.11) and assuming G is negligible for a full-cover canopy, where

(8.15)

and rc/ra is substituted into equation (8.14) to obtain the CWSIt.
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Another equivalent approach for solution of equation (8.14) is to compute
the theoretical upper and lower limits of Tc - Ta using equation (8.11) and
combine these with the measured Tc - Ta value to compute CWSIt as

(8.16)

where the subscripts m, x, and r refer to the minimum, maximum and
measured values, respectively. For full-cover, well-watered vegetation,

(8.17)

where rcm = rcp. For full-cover vegetation with no available water,

(8.18)

where rcx is the canopy resistance associated with nearly complete stomatal
closure (rcx → �). Monteith (1973) suggested the values of rcm and rcx could
be obtained from measurements of stomatal resistance (rs) and leaf area index
(LAI), where

(8.19)

where LAI > 0. Values of minimum and maximum stomatal resistance (rsm

and rsx, respectively) are published for many agricultural crops under a variety
of atmospheric conditions. If values are not available, reasonable values of
rsm = 25–100 s m-1 and rsx = 1,000–1,500 s m-1 will not result in appreciable
error in equations (8.17) and (8.18). That is, when rc is very large or very
small (relative to ra), its influence on the magnitude of (Tc - Ta) in equations
(8.17) and (8.18) is small.

Though Jackson et al. (1981) provided a thorough theoretical approach
for computation of CWSI, the concept is more universally applied using a
semi-empirical variation proposed by Idso et al. (1981) based on the
“nonwater-stressed baseline.” This baseline is defined by the relation between
(Tc - Ta) and VPD under non-limiting soil moisture conditions, that is, when
the plants in question are transpiring at the potential rate (Figure 8.1). Such
non-water-stressed baselines have been determined for many different crops,
including aquatic crops and grain crops for both pre-heading and post-
heading growth rates (Idso 1982).
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Using the baseline slope [f1 (ºCkPa-1)] and intercept [f0 (°C)] for a specific
crop, equation (8.16) can be written as

(8.20)

where (Tc – Ta)r refers to on-site measurements of canopy and air temperature,
VPDx = - ea,  is the saturated vapor pressure at (Ta + f0), and ea is the vapor

pressure of the air. VPD is defined by VPD = e* – ea and e* is the saturated
vapor pressure at (Tc + Ta)/2.

8.3.5 Water deficit index

Application of CWSI with satellite- or aircraft-based measurements of surface
temperature is restricted to full-canopy conditions so that the surface
temperature sensed is equal to canopy temperature. This limited the usefulness
of CWSI for partial crop conditions when irrigation management decisions
can be crucial. To deal with partial plant cover conditions, Moran et al.
(1994) developed a Water Deficit Index (WDI), which combined
measurements of reflectance (as expressed in equation (8.22)) with surface
temperature measurements (a composite of both the soil and plant

Figure 8.1 Canopy minus air temperature (Tc – Ta) versus VPD for well-watered and
maximally stressed alfalfa based on measurements at various sites across the
United States. The CWSIb is computed as the ratio of the distances CB and AB.
Data from Idso et al. (1981).
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temperatures), as expressed by

(8.21)

The WDI is operationally equivalent to the CWSI for full-cover canopies,
where measurement of Ts = Tc. Graphically, WDI is equal to the ratio of
distances AC/AB in the trapezoidal shape presented in Figure 8.2, where
WDI = 0 for well-watered conditions and WDI = 1 for maximum stress
conditions. That is, the left edge of the Vegetation Index/Temperature (VIT)
trapezoid corresponds to Ts – Ta values for surfaces evaporating at the
potential rate; the right edge corresponds to Ts – Ta values for surfaces in
which no evaporation is occurring.

The Soil-Adjusted Vegetation Index (SAVI) is defined as

(8.22)

where ρNIR and ρred are the near-infrared (NIR) and red reflectances,
respectively, and L is a unitless constant assumed to be 0.5 for a wide variety
of LAI values (Huete 1988). SAVI has been linearly related to fc for a variety
of crops; for example, for cotton fc = 0 when SAVI ~ 0.1 and fc = 1 when SAVI
~ 0.8.

Figure 8.2 The trapezoidal shape that would result from the relation between surface minus
air temperature (Ts – Ta) and the SAVI. With a measurement of Ts – Ta at point C,
the ratio of actual to potential evapotranspiration is equal to a ratio of the
distances CB and AB. Data from Moran et al. (1994).
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In practice, WDI utilizes the Penman-Monteith energy balance equation
to define the four vertices of the VIT trapezoid that encompasses all possible
combinations of SAVI and Ts – Ta for one crop type on one day (Figure 8.2).
That is, for full-cover, well-watered vegetation,

(8.23)

where rcp is the canopy resistance at potential evapotranspiration and the
subscript n of (Ts – Ta)n refers to the number of the vertex in Figure 8.2. For
full-cover vegetation with no available water, represented by vertex 2 in Figure
8.2,

(8.24)

where rcx is the canopy resistance associated with nearly complete stomatal
closure. For saturated bare soil, where rc = 0 (the case of a free water surface),

(8.25)

and for dry bare soil, where rc = 8 (analogous to complete stomatal closure),

(8.26)

For any value of SAVI, it is possible to compute the maximum and minimum
(Ts – Ta), by

(8.27)

and
(8.28)

where c0 and c1 are the offset (°C) and slope (°C) of the line connecting
points 2 and 4 in Figure 8.2; and d0 and d1 are the offset (°C) and slope (°C)
of the line connecting points 1 and 3 in Figure 8.2. Evaluation of equations
(8.27) and (8.28) using the VIT trapezoid provides an operational method
for computation of WDI equation (8.21) for fields ranging from bare soil to
fully vegetated.

The on-site measurements necessary to solve equations (8.23)-(8.26) and
compute WDI are Rn, VPD, Ta, and u. A value of G can be estimated as a
function of Rn and percent crop cover (or SAVI) (Clothier et al. 1986). It is
also necessary to know the crop type and such characteristics as
maximumpossible crop height, maximum-possible LAI, and maximum- and
minimumpossible stomatal resistances (rsx and rsp). In many cases, these inputs
are known or can be reasonably estimated. These inputs and the assumptions
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associated with them are discussed in detail by Moran et al. (1994) and will
not be addressed here.

8.3.6 Three-temperature method

Jackson’s theoretical CWSIt (equation (8.14)) and the WDI are difficult to
apply because they require a site-specific measure of aerodynamic resistance
(ra) which is challenging to derive for small fields of heterogeneous plant
cover. Idso’s baseline CWSIb, (equation (8.20)) has been more successful in
operational application because it does not require ra; instead, it requires an
estimate of the temperature of non-transpiring and non-water-stressed crops,
which changes not only with the plant type but also with season. In a recent
study, Qiu et al. (1996a) proposed a theoretically sound and practically simple
approach that would circumvent the need for both ra and the non-water-
stressed baseline.

Qiu et al. (1996a) proposed a three-temperature method for detecting
CWSI. Measurement of aerodynamic resistance was avoided by introducing
the temperature of an imitation leaf, where the imitation leaf was made from
green paper, cut in the shape of a plant leaf, and installed in the upper part of
the plant canopy to avoid shading by the canopy. According to Qiu et al.
(1996a), the temperature of the imitation leaf Tq was equivalent to the upper
limiting canopy temperature, Tcx. Therefore, the three-temperature CWSI
(termed here CWSIq) was expressed as

(8.29)

They developed a method to estimate ra by Tq as

(8.30)

where Rnq is the net radiation of the imitation leaf. Substituting equation (8.30)
into equation (8.11), assuming G = 0, and setting rc = 0 (plants acting as a free
water surface), the minimum canopy temperature (Tcm) was computed as

(8.31)

In natural conditions, where rcm ~ rcp, they suggested that

(8.32)

where

(8.33)

In equations (8.31)-(8.33), values of Rn and Rnq were estimated by using
measurements of temperature and solar radiation. The value of ∆ was
computed based on an approximation proposed by Jackson (1987), where
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(8.34)

and Tv = (Tc + Ta)/2(ºC).

Thus, CWSIq was determined from three temperatures (Tc, Tq, and Ta),
solar radiation, and VPD; the ra value was eliminated and the complexity of
application was reduced. Qiu et al. (1996b) demonstrated this approach in
studies of grain sorghum in which Tc, Tq, and Ta were measured with
thermocouples. They reported that the CWSIq agreed well with Jackson’s
CWSIt and both were correlated with the soil water status (Figure 8.3).

8.3.7 Thermal kinetic window

Quite distinct from the CWSI, Burke et al. (1988) developed a concept of
thermal stress in plants which linked the biochemical characteristics of a
plant with its optimal leaf temperature range. The thermal kinetic window
(TKW) is the range of temperatures within which the plant maintains optimal
metabolism. The TKW is the temperature range encompassing 200% of the
observed minimum apparent Michaelis constant (Km), and thus the optimal
enzyme function, for a plant species. Plant temperatures either above or below
the TKW result in stress that limits growth and yield. For example, the TKW
for cotton growth is 23.5–32ºC, with an optimum temperature of 28ºC, and
biomass production is directly related to the amount of time that canopy
temperatures are within the TKW (Figure 8.4), provided insolation, soil
moisture, and nutrients are non-limiting. Maintenance of plant temperatures
within the TKW is controlled primarily by transpirational cooling during

Figure 8.3 Comparison of CWSI estimated by the three-temperatures method (CWSIq)
and CWSIt estimated by Jackson’s (Jackson 1982) theoretical method for
sorghum. Data from Qiu et al. (1996b).
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the day, which is directly dependent upon the available soil water stored in
the soil volume.

The TKWs have been identified for several crop and forage species (see
references and temperature ranges in Table 8.2). Until recently, the TKW
was determined by a rather tedious laboratory process in which the Km values
were measured in multiple assays of glyoxylate reductase from crop leaves at
incremented temperatures (Burke et al. 1988). Burke (1990) and Fergusen
and Burke (1991) presented an alternative approach based on the temperature
dependence of reappearance of fluorescence following plant illumination.
The latter approach may offer a procedure for rapid identification of a plant’s
temperature optimum, and may greatly expand the usefulness of the TKW
approach.

Figure 8.4 Seasonal canopy temperatures of cotton, where the vertical lines represent the
temperature range that comprises the species-specific TKW as determined from
the changes in the apparent Km with temperature. Data from Burke et al. (1988).

Table 8.2 Summary of thermal kinetic windows and optimum canopy temperatures for a
variety of crops and garden plants
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In practice, the TKW provides a biological indicator of plant health that
could potentially be used for irrigation management. In a patent application
(SN 261510; filed June 17, 1994), the inventors, Drs Upchurch, Wanjura,
Burke, and Mahan, describe an irrigation method in which the canopy
temperature (Tc) of a target plant is repeatedly measured with an infrared
thermometer at a regular time interval (ti), and Tc is compared with the
optimum plant temperature (Tc’). If Tc ≤ Tc’ or if the VPD is restrictive to
plant cooling, then irrigation is not indicated. If both Tc > Tc’ and VPD is not
restrictive to plant cooling, then ti is added to a time register. When the
accumulated time in the time register exceeds the time threshold,
transpirational cooling to reach the optimum is feasible, and a signal to the
irrigation unit is generated.

8.3.8 Data fusion and model assimilation

This section would not be complete without some mention of the current
trend toward fusion of information from many spectral bands into a single
index and assimilation of TIR information into plant growth models. Though
an in-depth discussion is beyond the scope of this chapter, a general discussion
of the state-of-the-art is given here and references are provided for further
investigation.

All the indices described in previous subsections rely on ancillary
information to interpret the integrated soil-vegetation-atmosphere
information in the TIR measurement. Menenti and Choudhury (1993)
reviewed the correlations between surface temperature and other spectral
measurements, and presented the implications for land surface studies. They
suggested that zo could be measured using laser sensors (Menenti and Ritchie
1992); G can be derived as a function of Rn, canopy LAI, and soil moisture
using spectral reflectances and microwave observations (Clothier et al. 1986;
Choudhury 1991); and soil moisture content could be estimated using
microwave emissivity measurements (Schmugge 1985). In addition to these
suggestions, there is evidence that incoming solar radiation, photosynthetically
active radiation (PAR), and net shortwave radiation can be estimated from
spectral reflectance in the visible and NIR spectral bands (Jackson 1984;
Pinker and Ewing 1985; Frouin and Pinker 1995); fc, and possibly E, can be
measured with multi-frequency synthetic aperture radar (SAR) (Moran et
al. 1997); and fractional absorbed PAR (fAPAR) can be determined with
spectral vegetation indices (Pinter 1993). There is also potential that such
meteorological variables as rainfall, Ta, u, and VPD can be derived from
satellite spectral images (e.g. Petty 1995; Toth et al. 1996). These are only a
few of the studies that offer potential for spectral indices based on data
fusion, a term for which the multispectral approach of the WDI is a good
example.
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The coupling of remote sensing (RS) and plant production models is a
logical means for interpreting the above-mentioned information on
atmospheric conditions, soil moisture, and crop activity derived from
multispectral data. Plant production models provide a description of system
status and an integration of biophysical processes at a time step shorter than
the temporal frequency of RS information. Generally, such combined RS/
modeling approaches utilize TIR measurements to determine the water status
of plants and soils. For example, Moulin et al. (1998) suggested that TIR
measurements would be useful in modeling the common model parameter,
eh, which is the efficiency of conversion of energy into dry matter (total or
aboveground biomass). Maas et al. (1989) and Moran et al. (1995)
incorporated measurements of Ts and Ta into a simple crop growth/soil
moisture model to determine crop development and yield. Similarly, Guérif
et al. (1993) derived a stress index from the TIR channel of NOAA-AVHRR
satellite-based sensor to reduce daily carbon assimilation in a crop production
model. Moulin et al. (1998) summarized the trend in modeling by noting
that visible, NIR, and shortwave infrared information is generally used to
retrieve some plant characteristics, whereas TIR information has been used
to adjust some soil characteristics.

The state-of-the-art in RS/modeling approaches is exemplified by the
Spatially Explicit Hydro-Ecological Model (SEHEM) developed by Nouvellon

Figure 8.5 Diagrammatic representation of the SEHEM showing the inputs of surface and
meteorological information.the SEHEM calibration procedure based on satellite
spectral data, and the potential outputs of plant growth, soil water content, and
energy fluxes. The images represent the USDAARSWalnut Gulch Experimental
Watershed (WGEW) in Southeast Arizona (see Colour Plate XXVII).
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et al. (2000) for grassland ecosystems. SEHEM is composed of a daily time-
step plant growth model and an hourly time-step hydrological model,
combined with visible and thermal radiative transfer models (illustrated in
Figure 8.5). SEHEM requires inputs of spatially distributed information about
soils, elevation, and vegetation, and is driven by hourly meteorological and
precipitation data. By combining the plant growth, hydrological, and radiative
transfer models, SEHEM can simulate such outputs as latent and sensible
heat fluxes, soil water content, LAI, biomass of green and dead vegetation
and roots, leaf and soil temperatures, surface temperature (Ts), and spectral
reflectance (ρred and ρNIR). An iterative model calibration procedure is initiated
to minimize the difference between modelsimulated Ts, ρred, and ρNIR and
that measured by satellite-based sensors through adjustment of one-model
parameter (maximum energy conversion efficiency) and one-model initial
condition (root biomass). Once calibrated, the model becomes an accurate
and powerful tool that can leverage intermittent TIR images (reportedly
requiring only two to three images per year) to produce daily and hourly
images of plant ecosystem health indicators. Using a 10-year time series of
Landsat TM images over a semi-arid grassland watershed in Arizona, SEHEM
has successfully produced multi-year simulations of plant growth, water and
carbon budget (Figure 8.6), and hourly simulations of latent heat flux density
(Figure 8.7) (Nouvellon et al. 2001). These results are just one example of
the great potential of the RS/modeling approaches that are currently under
development for multiple vegetation types and geographic locations.

8.4 Concluding remarks

Section 8.3 presented descriptions of eight TIR spectral indices for evaluation
of plant ecosystem health. Three simple algorithms, SDD, CTV, and TSD,
were the inspiration for subsequent, more complex stress indices such as
CWSIt, CWSIb, and TKW, which are well documented and commercially
accepted. Two relatively new approaches, WDI and CWSIq, have potential
for operational application, though further study and validation are
warranted. One RS/modeling approach (SEHEM) was also described as an
example of the potential use of TIR measurements as a source of model
input, calibration, and validation.

Regardless of which index or model is chosen for application, the accuracy
of the approach will depend largely on the proper implementation of the
algorithms and the accurate measurement of the input variables. As noted
by Norman et al. (1995), the limited success associated with the use of TIR
remote sensing arises from the numerous variables exerting a strong effect
on the relation between thermal emittance and surface conditions. As shown
here, these variables include Rn, u, Ta, VPD, and the structure (leaf area,
height, texture, etc.) and properties (albedo, emissivity, rs, roughness, moisture)
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of the vegetation and soil. Indices based on measurements of Tc rather than
Ts require particular care with IR thermometry to avoid the complication of
the soil background. Furthermore, with the use of handheld, airborne, and
space-based IRTs, it is important to consider the sun/sensor/viewing geometry
(e.g. Lagouarde et al. 1995) and the effects of the intervening atmosphere on
temperature measurements (e.g. Perry and Moran 1994).

Despite these cautions, the future of IR thermometry as an indicator of
plant ecosystem health is promising. TIR information fills a niche that has
yet to be challenged with information from any other region in the spectrum.
That is, remote sensing in the thermal spectrum is a proven means of detecting
both early and late stages of plant water stress. Furthermore, plant

Figure 8.6 SEHEM simulations of annual net primary production over a 10-year period for
grassland regions with the Walnut Gulch Experimental Watershed. Output validation
was presented by Nouvellon et al. (2001) (see Colour Plate XXVIII).
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temperature has been linked directly with plant water stress; whereas, surface
reflectance and SAR backscatter have been associated with crop water stress
indirectly, and in most cases, empirically. Considering the unique role of TIR
and the importance of monitoring biosystem health, research and
development should be continued, and serious consideration should be given
to including high-resolution thermal sensors aboard upcoming satellites.
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Chapter 9

Exergy analysis of ecosystems
Establishing a role for thermal remote
sensing

Roydon A.Fraser and James J.Kay

9.1 Introduction

Ecosystems are complex thermodynamic systems that evolve in time.
Thermodynamics is the study of energy. Energy is characterized by magnitude,
form, and quality. While the concept of energy magnitude (e.g. calorie, joule,
watt, horsepower) and energy form (e.g. kinetic energy, potential energy,
chemical energy, heat transfer, work transfer) are introduced in elementary
or high school, few are familiar with the concept of energy quality, especially
its quantification. Energy quality measures the capacity of energy, in its various
forms, to do useful work. Interestingly, it is the quality of energy that provides
an explanation for the continued existence of life on earth (Edgerton 1982;
Kay 1984; Schneider and Kay 1994), and hence the existence of ecosystems.
That is, the quality aspect of energy makes it possible to obtain and maintain
organization in the form of life from a soup of disordered basic atomic
elements. Of more immediate interest, the study of energy quality has the
potential to provide a quantitative method to characterize the status, maturity,
or stage of development of ecosystems, and to provide fundamental physical
explanations, at least, in part, as to survival strategies and structures employed
within ecosystems as they evolve.

The objective of this chapter is to establish the theoretical foundations
required to quantitatively apply the energy quality concept to the study of
ecosystems. The pseudo-property1 of maximum useful2 to-the-dead-state3

work, commonly referred to by the specialized name exergy,4 will be the tool
employed to quantify the quality aspect of energy.5

In the process of establishing the foundations of the exergy concept, and
consistent with the thermal remote sensing theme of this book, a role for
ecosystem surface temperature measurements is identified (see section on “A
possible role for ecosystem surface temperature measurements” and Sections
9.4.2 and 9.5). Although surface temperatures are necessary for determining
the overall ecosystem exergy flows, they are not sufficient (see section on “A
First look at the role of surface temperature”). Hence, it is beyond the scope
of this chapter to provide complete calculation procedures for conducting
an ecosystem exergy analysis.
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As an introduction to the paradigm of energy quality, engineering
applications are used to provide insight (Section 9.2). That is, since the
application of an energy quality paradigm as applied to ecosystems is still in
its infancy, advantage can be taken of insights gained from more mature, or
at least less complex, applications, particularly in engineering. These
engineering applications will lead to the conclusion that exergy is a measure
of energy quality. Section 9.3 then formalizes the physics and mathematical
foundations for quantifying energy quality, thus providing the theory
necessary to admit quantification of an ecosystem’s exergy content and flows.
At this point, exergy destruction will be seen to be intimately linked with
entropy production through the Gouy–Stodola theorem.6 To strengthen the
link between ecosystems and the exergy concept attention will focus on the
dominant energy input to terrestrial ecosystems, solar energy (see section on
“A first look at the role of surface temperature” and Section 9.4). An outcome
of the solar exergy discussion is that surface temperature, and hence, remote
sensing thermal imaging, may play a key role in characterizing an ecosystem’s
status, maturity, or stage of development (Section 9.5). This potential ability
to characterize the state of an ecosystem will not be proven. It cannot at
present. More data and analysis are needed. However, it is currently possible
to establish the underlying physics of energy quality that may admit such
ecosystem characterization in the future.

In essence, this chapter provides a detailed introduction to the exergy
concept for those wishing to conduct exergy analyses of ecosystems, and in
the process identifies thermal remote sensing as a necessary exergy analysis
tool. This chapter does not provide a guide to performing a complete
ecosystem exergy analysis, such efforts are for future work.

Please note that in this chapter the authors explicitly identify for the first
time four new exergy classifications: intrinsic exergy, transport exergy,
restricted exergy, and accessible exergy. Clarity of communication is critical.
Distinguishing between these four classes of exergy will hopefully aid the
exergy analyst in appreciating implicit assumptions behind a given exergy
calculation.

9.2 The quality of energy paradigm

“The first law [of thermodynamics] deals with the quantity of energy in
terms of a conservation rule. The second law [of thermodynamics] deals
with the quality of energy. It is essentially a nonconservation rule” (Wark
1977). More precisely, the Second Law of Thermodynamics, in combination
with the First Law of Thermodynamics and the Conservation of Mass, provide
the rationale for defining, and the means for quantifying, energy quality. To
speak of the quality of energy is to recognize that some forms of energy are
more useful than others.
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Before formalizing the concept of energy quality in Section 9.3, two
outwardly simple, inwardly insightful, examples are given. These examples
exploit the paradigm that energy is characterized not only by quantity, but
also by quality. They are taken from the realm of engineering
thermodynamics where the study of energy quality is reasonably well
established and clear.

9.2.1 Engineering examples that use the quality of
energy paradigm

The intent of the following two examples is to provide an incentive to the
reader to learn more about the energy quality paradigm, to highlight the
importance of temperature in thermodynamic system characterization, and
to provide the foundations for the hypothesis that an ecosystem’s surface
temperature can provide a measure to quantitatively characterize an
ecosystem’s status, maturity, or stage of development.

Example 1: How good is the furnace in your home?

Consider the natural-gas furnace shown in Figure 9.1. The maximum
combustion temperature, at constant pressure, that natural gas can attain is
its adiabatic flame temperature (TH = TAdiabatic Flame = TCombustion ≈ 2,000°C)
(Glassman 1987). The room temperature, TR, is assumed to be constant at
20°C in this example while the outdoor environment temperature,7 T0, is
assumed to be constant at 0°C. Heat transfer from the combustion gases to
room air occurs across a heat exchanger, that is, Q

.
Combustion to Q

.
Room.8 This

Figure 9.1 Schematic of a natural-gas home furnace.
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heat exchanger is simply a sheet of metal that separates the combustion
gases from the room air. Finally, a furnace must exhaust its combustion
products (e.g. water, carbon dioxide, carbon monoxide); the energy lost to
the environment via these combustion products is accounted for by stack
losses, Q

.
Stack, which contribute to the furnace’s inefficiencies.

The performance of the home furnace shown in Figure 9.1 is quantified
by its efficiency, η, which is defined and quantified as follows:

(9.1)

An 85% efficient furnace is routinely referred to as a mid-efficiency furnace
(Carson et al. 2000). High efficiency furnaces can achieve efficiencies of
around 95%9 (Lennox 2000) through the ingenious use of an additional
heat exchanger in the stack that captures much of the stack losses.

Now imagine how you would respond to a salesperson who tried to sell
you a revolutionary type of furnace with a claimed efficiency of 120%. Would
you be suspicious? Hopefully yes given that a central expectation for an
efficiency is that it be restricted to be less than or equal to 100%. For example,
for the furnace system shown in Figure 9.1, conservation of energy10,11 tells
us that

(9.2)

or

(9.3)

hence, as expected, η has an upper bound of 100%, that is,

(9.4)

Notice that as far as the calculation of a home furnace’s efficiency is concerned
its internal workings are irrelevant. That is, the exact design of the heat
exchanger is of no concern. For example, is it a co-flow or a counter-flow
heat exchanger,12 or what is the heat exchanger’s geometry? Answer: it does
not matter. Only the energy flows across the furnace’s system boundaries are
needed to calculate its efficiency. This is not to say that the internal workings
of the furnace are not important, they are if, for example, one wished to
change the relative magnitudes of energy flows across system boundaries to
improve efficiency, or if one wished to find a better (e.g. cheaper, more reliable)
system that can maintain the same efficiency as a current system. The point
is, the internal workings of a thermodynamic system are irrelevant as far as
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calculating an efficiency is concerned, but not necessarily irrelevant with
respect to how to optimize that system.

Now consider the much more complicated, more expensive, less
conventional, exergy-conserving,13 furnace shown in Figure 9.2. Concluding
that the system shown in Figure 9.2 is still a furnace is based simply on its
function (i.e. benefit) of providing room heating. For the home furnace shown
in Figure 9.1, Q

.
0,Net = Q

.
0,Stack while for the exergy-conserving furnace shown

in Figure 9.2, 0,Net = Q
.
0,Exhaust – Q

.
0,IN.14

The heat engine and heat pump shown in Figure 9.2 are generic devices
that convert thermal energy into work, and use work energy to pump thermal
energy from cold to hot,15 respectively. For sake of visualization, imagine the
heat engine to be an internal combustion engine and the heat pump to be a
refrigerator.16 The internal combustion engine provides the work transfer,
that runs the refrigerator. In turn, the heat pump cools (i.e. refrigerates) the
environment while rejecting thermal energy to the room (just as the coils on
the back of a refrigerator do).

The advantage of the exergy-conserving furnace shown in Figure 9.2 can
be seen by answering the following question:

Question 1: For a fixed amount of fuel input (i.e. fixed Q
.
Combustion) to the

exergy-conserving furnace, what is the benefit received in the
form of room heating (i.e. Q

.
Room)?

First, the efficiency of a good diesel engine, ηDiesel, is greater than 40%
(Heywood 1988), hence,

(9.5)

Figure 9.2 Schematic of an exergy-conserving natural-gas home furnace.
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where WDiesel is the work output of the diesel engine and Q
.
Combustion is the diesel

fuel’s heat of combustion.
Second, the coefficient of performance of a good heat pump, COPHeat Pump,

operating between 0 and 20°C can be greater than three (Reynolds and Perkins
1977; ASHRAE 1996), hence,

(9.6)

Therefore, solving equations (9.5) and (9.6) for Q
.
Room in terms of Q

.
Combustion

yields

(9.7)

or

(9.8)

Answer 1: The exergy-conserving furnace (Figure 9.2) can provide over 20%
more room heating than a conventional furnace (Figure 9.1) for
a given fuel input, Q

.
Combustion.17

What happened? How is this possible?
It should not be possible to exceed an efficiency of 100% unless a

calculation mistake was made or our efficiency definition is flawed. A flawed
definition is, in fact, the case. The furnace efficiencies reported by the furnace
industry, though intuitive in nature, are flawed.18 Furthermore, what could
have possibly led anyone to consider the more complicated furnace shown
in Figure 9.2? The answer, as the caption to Figure 9.2 suggests: exergy
considerations!

FIRST AND SECOND LAW EFFICIENCIES

One possible furnace efficiency definition based on the exergy concept is

(9.9)

which is necessarily less than or equal to 100% by definition. Q
.
Room, Max is

calculated assuming advantage is taken of the useful work potential or exergy
of the energy input, Q

.
Combustion. The “II” subscript on ηII, Furnace emphasizes

that this efficiency invokes in Q
.
Room, Max a limit imposed by the Second Law of

Thermodynamics, and hence, is called a Second Law efficiency.
Correspondingly, the efficiency, Q

.
, given in equation (9.1) is referred to as a

First Law efficiency,19 and is characterized as simply a ratio of energies with
no consideration given to the limits imposed by the Second Law of



Exergy analysis of ecosystems 289

Thermodynamics. Virtually all efficiencies reported outside the engineering
literature, and even most within the engineering literature, are First Law
efficiencies and are generally intuition based. Unfortunately, as the 120%
efficiency result demonstrates, thermodynamic intuition (or common sense)
may not be so reliable. For clarity purposes a subscript “I” will henceforth
be added to all First Law efficiencies, i.e. η = ηI.

Is the First Law efficiency defined in equation (9.1) wrong? No.
Is the First Law efficiency of equation (9.1) flawed? Yes.
Equation (9.1) is not wrong provided one recognizes the implicit constraint

that it be restricted to use on “simple” furnaces; that is, those furnaces based
only on heat exchanger technologies. Not surprisingly, few are aware of this
implicit constraint and hence common acceptance of the flaw in equation
(9.1) exists. This implicit constraint severely restricts the paradigm under
which one operates. Second Law efficiencies, ηII, are not so constrained.

It has been shown, by example (not proof), that the energy paradigm,
based solely on the conservation of energy principle, is unnecessarily
restrictive in the energy conversion system options it suggests, and that
the exergy paradigm is much less restrictive. Since ecosystems are
composed of an array of specialized energy conversion systems, this
observation suggests that there may be value in investigating the
ecosystem/exergy link more closely.

An excellent example of the paradigm breaking ability of an exergy analysis
is given by Reistad (1980) who compares dominant US energy flows and
exergy flows. In brief, electricity (i.e. power generation) and transportation
First Law efficiencies are much less than residential, commercial,
institutional, and industrial heating efficiencies, but electricity and
transportation Second Law efficiencies, in stark contrast, are much higher
than residential, commercial, institutional, and industrial heating
efficiencies. Traditionally, to this day, national energy flows are reported
on a First Law basis (Canada 1996); however, it is the Second Law viewpoint
that correctly identifies those energy conversion technologies with the greatest
potential for improvement.

Question 2: For a fixed amount of fuel input (i.e. fixed Q
.
Combustion) to the

exergy-conserving furnace, what is the maximum benefit
possible in the form of room heating (i.e. Q

.
Room, Max)?

(9.10)
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Returning to the exergy-conserving furnace of Figure 9.2, Q
.
Room, Max can be

calculated using a reversible20 heat engine and a reversible heat pump. To do
so only requires knowledge of the Carnot efficiency21 for a heat engine which
is given by where TL is the temperature (K) of a low-temperature reservoir
(e.g. T0) and TH is the temperature of a high-temperature reservoir (e.g.
TCombustion). Demonstrating that the Carnot efficiency is the maximum efficiency
for a heat engine operating between two temperature reservoirs, and that it is
a function of temperature only as given in equation (9.10), is left for the
detailed presentations provided by virtually all first course in thermodynamics
texts (e.g. Wark 1977; Reynolds and Perkins 1977; Black and Hartley 1991;
Van Wylen et al. 1994; Cengel and Boles 1998).

Similarly, if one notes that a heat pump is simply a heat engine with all
energy flow directions reversed, and that by the definition of reversible, the
absolute magnitudes of these energy flows must be the same for a heat engine
or heat pump operating between the same two temperature reservoir
temperatures, then the reversible heat pump’s coefficient of performance
naturally follows to be

(9.11)

Consequently, for an exergy-conserving furnace operating reversibly, a First
Law efficiency based on equation (9.1) results as follows (see Appendix C):

(9.12)

or a Second Law efficiency based on equation (9.9) results as follows:

(9.13)

Answer 2: A reversible, exergy-conserving, furnace (Figure 9.2) can provide
for a given fuel input, Q

.
Combustion,22 about 1,200% more room

heating than the best (i.e. no stack losses) conventional furnace
(Figure 9.1).

As for the energy-conserving furnace shown in Figure 9.1, its First Law
efficiency is given by equation (9.1) as 85% while its corresponding Second
Law efficiency is only a mere 6.6%. The disparity between these two
efficiencies is a specific example of the observations of Reistad (1980)
discussed earlier in this section.
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The Second Law, or exergy, viewpoint recognizes energy quality, not energy
magnitude, considerations as the appropriate criteria for assessing the most
effective use of an energy resource. Such recognition directs, often in violation
of intuition, one’s analysis and efforts to those aspects of an energy conversion
system that provide strategies for energy utilization improvements. Lessons
learned from understanding the exergy viewpoint explain, for example, how
to improve upon the conventional furnace (as demonstrated above), or why
a combined cycle power plant23 is inherently more efficient than a standard
steam cycle power plant (Krenz 1984). These and other such exergy lessons
currently exist in engineering. Future ecosystem exergy studies should reveal
similar lessons.

Example 2: Believe it or not, it is easier to boil ice than water

While the home furnace example in section “Example 1: How good is the
furnace in your home?” introduced the exergy paradigm, this example, the
boiling of ice problem, aims to re-enforce the notion that the exergy paradigm
offers a formal framework to characterize a thermodynamic system’s
departure from equilibrium. Ecosystems are thermodynamic systems that
continually maintain out of equilibrium states; an ecosystem in
thermodynamic equilibrium is dead. Therefore, it is reasonable to search for
a thermodynamic parameter that measures a system’s departure from
equilibrium. In contrast, the conservation of energy paradigm (i.e. energy
magnitude) says nothing about a system’s departure from equilibrium.

Imagine that you have access to 1 kg of ice at – 20ºC or 1 kg of water a
60ºC, and that you have been contracted to provide 1 kg of boiling water at
night.24 Also imagine that water costs a million dollars per kilogram and
that the only fuel available to heat the water is natural gas at 20ºC and
valued at a million dollars a gram. In order to maximize your profits you
need to use as little natural gas as possible to boil either the water or the ice.
Fortunately, you do have access to any piece of equipment you would like
free of charge, including reversible heat engines and heat pumps. Let the
environment temperature be 20ºC thus positioning it 40ºC above the
temperature of the ice and 40ºC below the temperature of the water.

The Question: Ideally, does it take less natural gas to bring the 1 kg of ice at
-20°C, or 1 kg of water a 60ºC, to a 100ºC boil?

The Answer: It takes a factor of 3.0 less natural gas to bring the –20°C ice
to a boil! That is, it is theoretically possible to bring the -
20°C ice to 88ºC25 with no natural gas input. In fact, had the
ice been at –45ºC no natural gas would be needed!

The Answer is not surprising if one adopts an exergy perspective. Simply put,
the 1 kg of -20°C ice has more exergy than the 1 kg of 60ºC water. In effect,
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the –20ºC ice’s departure from equilibrium with its 20ºC environment is
greater than that of the 60ºC water; a fact reflected by the – 20°C ice’s potential
to reach 88ºC with no natural gas input. In words, the work potential of the
ice is first extracted as energy flows from the environment to the ice until the
ice warms to the environment temperature, all the while this work potential
is stored for later use. This stored work is then used to operate a device, that
is, heat pump, to transfer additional energy from the environment until the
water reaches 88ºC. Since, in this case, a temperature of 100ºC is not reached
using the stored work, natural gas is then required, less natural gas though
than would be needed by the 60ºC water.

Ideal heating systems for both the –20ºC ice and the 60ºC water are shown
in Figure 9.3. The major difference between the exergy-conserving systems
shown in Figure 9.3 and the exergy-conserving furnace system shown in
Figure 9.2 is that in Figure 9.3 the temperature of the system of interest does
not remain constant, that is, the temperature of the ice or water increases
while room temperature is constant in time. Appendix C details the exergy
calculations behind The Answer given above.

An intuitive concern about the result, that it can take less natural gas to
boil – 20ºC ice than 60ºC water, is that it appears to violate the First Law of
Thermodynamics. The First Law demands that more energy must go into
heating the ice than the water. There is, however, no conflict. The ice does
require more energy than the water to heat to 100ºC. Much of the energy
needed to heat the ice, however, comes from the environment which is a vast
resource of energy but not exergy. In effect, only the energy and exergy needed
to heat the ice the last 12ºC, from 88ºC to 100ºC, must come from the
natural gas.

This boiling of ice example dramatically demonstrates a key feature of
exergy, it is positive or non-zero no matter in which direction a system is out
of equilibrium with its environment.26 Correspondingly, the exergy of a system
in equilibrium with its environment is zero. If this were not so, it would be
possible to construct a car engine or furnace that requires no fuel, but only
requires the air that surrounds it to operate; if nothing else, experience tells
us that this is not possible. Therefore, we have the following two key
observations:

Any System out of equilibrium with its environment has the potential
to do useful work. In other words, the intrinsic exergy27 of any system
is either positive or zero, it is never negative (assuming the work output
from the system is defined as positive).

Corollary: Any system in equilibrium with its environment has NO
potential to do useful work, and therefore has zero exergy.

Intrinsic exergy provides a quantifiable measure for how far out of
equilibrium with the environment a system happens to be.



Figure 9.3 Exergy-conserving heating systems: together (a) and (b) bring the –20°C ice to
the maximum temperature, TMax (88ºC), possible without natural gas input (note
that the work transfer into the reversible work storage reservoir equals the work
transfer out), while (c) brings either the 60ºC water or the TMax water to a boil.
System (a) brings the –20°C ice to the environment temperature of 20°C, and
system (b) brings the 20°C water to its maximum temperature, TMax. Schematic
(d) shows a conventional, non-exergy conserving, heating system.
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A common feature of the exergy-conserving ice-boiling example given here,
and the residential home furnace example given in section “Example 1: How
good is the furnace in your home?” are that they make use of heat engines
and heat pumps. This is no accident. In fact, it is important to note that heat
engines and heat pumps are the only means for heat transfer to take place
reversibly between two thermal energy reservoirs at different temperatures
(Reynolds and Perkins 1977). In contrast, work transfer is inherently
reversible provided that there are no frictional losses and that the process
proceeds in a quasi-equilibrium28 fashion. In short, designing an
exergyconserving system is equivalent to designing a reversible system;
reversibility is key to preserving exergy.

Finally, it is important to note that it is not being hypothesized that
ecosystems strive to maximize the preservation of exergy. The authors do
not hypothesize, and even reject, the notion that exergy preservation strategies
alone direct ecosystem design and evolution. The authors do hypothesize,
however, that exergy transport and exergy destruction have key roles to play
in ecosystem characterization as discussed next.

A possible role for ecosystem surface temperature measurements

There are two key steps to appreciating the possible role to be played by
ecosystem surface temperature measurements, at least with regards to working
with the exergy paradigm. First, a possible role for exergy as a relevant
ecosystem parameter must be established. Second, surface temperature must
be established as a parameter for monitoring an ecosystem’s exergy flows.

It is hypothesized that ecosystems strive to utilize exergy29 to their best
advantage. Ecosystems develop in a way which systematically increases their
ability to degrade30 the incoming (usually solar) exergy (Kay 1984; Schneider
and Kay 1994).

EXERGY’S ROLE IN CHARACTERIZING ECOSYSTEMS

Fact 1: Today’s ecosystems are the result of an evolutionary process
that has seen ecosystems composed of simple organisms (e.g. bacterium,
algae) develop into ecosystems composed of complex, multicellular
organisms (e.g. trees, humans) (Wicken 1987).

Therefore, it makes sense to look for a measure of system complexity, or
order and organization, as one searches to discover how an ecosystem
functions. Thermodynamic entropy,31 an absolute measure of a system’s
thermodynamic disorder, is one such measure. Exergy is another possible
measure of order and organization. Neither entropy nor exergy are claimed
to measure complexity.
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Beyond entropy and exergy there are many other measures of order and
complexity proposed in the literature. Approaches adopted to quantify
complexity include hierarchical approaches, geometric approaches, and
algorithmic approaches (Cambel 1993). The quantification of complex
behavior is discussed in the volume edited by Mayer-Kress (1986). Many
scientists, coming from different fields, have offered tentative definitions of
complexity and complexity measures (Margalef 1984; Berlinski 1986; Nicolis
and Prigogine 1989; Gell-Mann 1994; Corbit and Garbary 1995; Kauffman
1995; Cillieres 1998; Ricard 1999). The volume by Peliti and Vulpiani (1988)
brings together many different measures of complexity. There remains,
however, no general theory of complexity (Hogan 1995). And, many
complexity measures that can be quantified suffer, when applied to
ecosystems, from practical measurement limitations making them effectively
non-quantifiable. Those few indicators of ecosystem complexity that can be
quantified (Odum 1995; Ulanowicz 1997) are beyond the scope of this
chapter.

Fact 2: The large exergy content of solar energy (see Section 9.4) provides
ecosystems32 with the high-quality energy input needed for an
ecosystem’s organized complexity to form from disorder (i.e. the raw
materials of carbon, water, etc.) (Morowitz 1968; Odum and Odum
1976; Kay 1984; Ulanowicz and Hannon 1987; Edgerton 1982;
Schneider and Kay 1994). For example, the phenomenon of a non-
equilibrium system evolving to an ordered state as a result of fluctuations
is referred to as “order through fluctuations” (Prigogine and Wiame
1946).

Ecosystems develop in a way which systematically increases their ability to
degrade the incoming (usually solar) exergy. If this is the case, then measures
of exergy degradation of an ecosystem can be used to characterize how well
they are functioning, in a thermodynamic sense, and by implication, their
degree of organization. This chapter focusses on exergy as a practical measure
of ecosystem organization33 and function, but not ecosystem complexity. At
the outset, it must be recognized that the arguments given in this section
represent facts and observations that appear to support the authors’
hypothesis. However, validation of this hypothesis is the subject of active
research (Allen 2000; Kay 2000a) and beyond the scope of this chapter.

Exergy analysis is favored for study because it is a well developed
engineering tool that has demonstrated itself to be of great practical utility
in the study of thermodynamic systems (Moran 1989; Li 1996; Bejan 1997).34

Furthermore, the local environment affects the exergy utilization strategies
pursued by organisms, and the authors hypothesize also by ecosystems. If an
organism is to survive it must be able to adapt to its local environment.
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Adaptation involves changing energy transfer approach(es), mechanism(s),
or mode(s). For example, when temperature drops the human body invokes
the mechanism of reducing blood flow to the skin and to the extremities. If
temperature drops sufficiently, another mode, that of shivering, is induced.
Temperature is a dominant parameter characterizing local environment;
weather forecasts make this clearly evident. Another dominant parameter is
the availability of water. Unlike entropy, exergy incorporates information
about the local environment. Therefore, if, in characterizing an ecosystem,
information about the local environment is desirable, then exergy, not
entropy,35 is favored as the thermodynamic parameter.

A FIRST LOOK AT THE ROLE OF SURFACE TEMPERATURE

Fact 3: The high-exergy content of solar radiation is necessary, but not
sufficient to support photosynthesis-dependent life36 on earth. For
example, the state of an organism’s local environment is known to
affect the ability of that organism to survive.

In its simplest form, a thermodynamic description of a system is in terms of
the amount of energy and exergy entering, exiting, and stored within the
system. For terrestrial ecosystems, such a model would naturally focus on
the incoming solar energy and exergy, its primary source of energy and exergy.
Therefore, parameters that characterize solar energy may be expected to
play an important role in ecosystem characterization. Blackbody radiation
is uniquely characterized by temperature alone (Incropera and DeWitt 1996).
Solar energy can be well approximated as blackbody radiation originating
from a thermal source at 5,762K (Weston 1992), while the earth’s thermal
radiation emissions can be well approximated as blackbody radiation
originating from a thermal source at about 250 K (Krenz 1984). This hints
at the importance of temperature in ecosystem characterization.

The fundamental importance of temperature reflected in equations (9.10)
and (9.11) with regards to evaluating the exergy in the home furnace and
boiling ice examples is a direct result of the fundamental role played by heat
transfer. Temperature gradients are the driving force behind heat transfer.

Consider the ecosystem energy flows shown in Figure 9.4 where ΦT, Solar37

is the solar radiation input (kJ s-1), ΦT, Surface Emissions is the thermal radiation
emissions from surfaces within the ecosystem that cross the ecosystem
boundary (kJ s-1), ΦT, Background is the atmospheric background thermal radiation
(kJ s-1), Q

.
Convection is the convection38 heat transfer (kJ s-1), and MINhIN and

MQUThOUT represent mass flow transported energy in and out of the
ecosystem (kJ kg–1 s-1), respectively. is the mass flow rate (kg s-1) and h is



Figure 9.4 A terrestrial ecosystem viewed as a thermodynamic system. Two possible boundaries
for this ecosystem are shown: (a) an atmospheric inclusive boundary, and (b) an
atmosphere excluding boundary Dominant energy flows are solar radiation ( ΦT,

Solar), terrestrial thermal radiation from ecosystem surfaces (ΦT, Surface Emissions),
atmospheric background radiation (ΦT, Background). and mass flow transported energy
(MINhIN and MOUThOUT). If the ecosystem boundary is selected adjacent to ecosystem
surfaces as in (b) then convection heat transfer (Q

.
Convection) can also be non-negligible.
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specific enthalpy39 (kJ kg-1). No shaft work40 transfer is indicted because it is
zero for a fixed ecosystem boundary. Depending on where the ecosystem
boundaries are located, there can be non-negligible flow work41 transfer
associated with transpiration and precipitation. Transpiration and
precipitation, however, are not problematic for the ecosystem represented in
Figure 9.4 since flow work is embedded within the mass flow energy-transfer
terms. Also, depending on ecosystem boundary location, convection heat
transfer can be negligible [e.g. Figure 9.4(a) given a system boundary that
includes the atmospheric boundary layer and a large portion of the
atmosphere, or given a system exposed to zero air velocity] or non-negligible
[e.g. Figure 9.4(b) given a reasonable non-zero air velocity].

A simple global solar balance quickly demonstrates that solar radiation
dominates other terrestrial energy inputs, including energy inputs from
geothermal, tidal, and fossil fuel consumption sources. For an energy balance
to exist there must be both inputs and outputs. It is surface and atmospheric
reflectances and radiation emissions outputs that globally balance the solar
radiation input, and dominantly contribute to the greenhouse effect that
keeps our planet at a comfortable average surface temperature of about 13ºC
(Krenz 1984).

Locally, the dominant energy inputs and outputs for a terrestrial ecosystem,
shown in Figure 9.4, are as follows: solar radiation, surface emissions (which
in Figure 9.4(a) includes atmospheric radiation emissions), background
radiation (e.g. atmospheric radiation from outside the system, or from other
surfaces such as mountains or buildings), mass flow related energy fluxes,
and possibly convection.

For the ecosystem shown in Figure 9.4(b), two of the three energy flux
outputs are directly controlled by surface temperature, TSurface. Specifically,
the rate of surface radiation emissions is controlled by TSurface according to
the Stefan-Boltzmann Law,42 while the rate of convection heat transfer is
controlled by the temperature gradient between the environment temperature,
T0, and TSurface according to Newton’s Law of Cooling.43 Only the mass flux
energy output is, in general, TSurface independent. The disconnect between
ecosystem mass flux energy outflow (e.g. transpiration, precipitation, river
flow) and surface temperature is the primary reason a quantification of overall
ecosystem exergy destruction remains beyond the scope of this chapter. A
secondary reason is a shortage of appropriate experimental measurements
from ecosystems.

Conclusion: Ecosystem surface temperature controls major ecosystem
energy flux outputs, and hence exergy flux outputs. That is, ecosystem surface
temperature is a central thermodynamic variable needed to be measured.
Determining ecosystem exergy fluxes is a precursor to determining exergy
destruction by ecosystems.
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FREE ENERGY AND EXERGY

Fact 4: The exergy, not the energy content, of a chemical determines
the minimum amount of energy needed to construct that chemical from
a soup of stable elements44 found in the environment.45

Edgerton (1982) describes the minimum energy required to produce a
biochemical product as the biological free energy. He then goes on to identify
exergy46 as a reasonable measure of this biological free energy. Therefore, if
the creation of chemicals is the name of the game for ecosystems to function,
then energy quality as measured by exergy, and not simply energy magnitude,
is a relevant thermodynamic parameter of interest (Jørgensen 1977; Jørgensen
and Mejer 1981; Jørgensen and Müller 2000).

An important caveat to discussions of exergy in ecological systems concerns
the relationship between exergy and Gibb’s free energy. Edgerton’s (1982)
reference to a biological free energy is no doubt due to an attempt to draw
an analogy with Gibbs free energy. Gibbs free energy is used extensively in
the analysis of biological processes. Edgerton, however, makes it clear that
one cannot simply use Gibbs free energy to describe the energies involved in
biological chemical reactions because, as he correctly observes, solar energy
is of high quality yet if approximated as blackbody radiation has a Gibbs
free energy of zero!47 It is the biological free energy of solar energy that
drives photosynthesis. A clear distinction between biological free energy and
Gibbs free energy is, therefore, needed because (a) Gibbs free energy is often
loosely referred to simply as free energy,48 thus leaving the door open for
confusion with biological free energy, and (b) chemical exergy is quantitatively
often well approximated by a chemical’s Gibbs free energy, thus confusion is
again possible if one begins thinking of Gibb’s free energy as simply another
term for chemical exergy (Krenz 1984).

9.3 Theoretical foundations for the exergy
paradigm

Having argued that an exergy analysis of ecosystems has the potential to
provide important insights into ecosystem organization and function, the
exergy concept is now developed in more detail.

This section formally introduces the reader to the definition of exergy as
the maximum useful to-the-dead-state work. Since this chapter is intended
to be an introduction to the exergy concept, with the purpose of establishing
a link between ecosystem exergy analysis and thermal remote sensing, a
minimum of mathematics is used by focussing on a non-reacting, control
mass,49 system. Nevertheless, the essential elements of the exergy concept
are captured by the non-reacting, control mass systems analyzed here. The
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reader is referred to Section 9.3.4 for a brief discussion on how the equations
derived here can be generalized.

In the course of writing this chapter the authors realized that a number of
refinements to the exergy concept, as it is currently used in engineering systems
analysis (Bejan 1997; Li 1996; Tsatsaronis 1999; Moran 1999), are necessary
for its application to ecological systems. This chapter introduces these
refinements to current exergy terminology including a clear distinction between
surroundings and environment (Section 9.3.1), a less restrictive concept of
dead state with subsequent identification of a stable-equilibrium dead state
(Section 9.3.2), and a less restrictive concept of maximum work (Section 9.3.2).
More significantly, this chapter also introduces the notion of different
classifications of exergy, and specifically the classifications of intrinsic exergy,
transport exergy, restricted exergy, and accessible exergy (Section 9.3.550).

9.3.1 Thermodynamic systems

The term system will be defined in a very broad sense. A system simply
identifies the subject of discussion or analysis. The system must be defined
by the analyst for the particular problem at hand. As stated by Reynolds and
Perkins (1977),

A system might be a particular collection of matter, such as the gas in a
bottle. Or it might be a region in space, such as the bottle and whatever
happens to be in it at the moment. Sometimes we include fields in our
definition of the system; for example, the gas in the bottle and the
electric field in the bottle might be defined as the system. At other
times fields are defined to be outside the system; thus the gas may be
the system, but the fields that occupy the same space are considered
external to the system. Another situation in which two systems share
the same space occurs in the analysis of ionized gases; the ions are
often treated as one system, and the electrons as another. Interacting
systems are often of quite different types; for example, in the study of
liquid droplets the liquid interior to the surface is sometimes treated as
one system, and the surface molecules as another. A system might be
very simple, such as a piece of matter, or very complex, such as a nuclear
power generation plant. Matter may flow through a system, such as a
jet engine, or the system may be completely devoid of matter, such as
the system of radiation in an enclosed volume.

In order to write down thermodynamic equations describing a system it is
necessary for that system to be well defined by the analyst. This leads to the
very important conclusion that a corresponding system diagram (or system
schematic) is required every time a thermodynamic equation is written!
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It is imperative51 that a System Diagram accompanies every First Law52

equation and every Second Law equation in order to establish the
assumed positive direction for mass transfers, work transfers, heat
transfers, and radiation transfers.53 It is not required that the assumed
transfer direction match the actual transfer direction except in the case
of radiation transfer.54 If the assumed direction for mass, work, or heat
transfer is incorrect a negative value simply results.

Remembering that exergy measures the work potential between a system
and its environment (Section “Example 2: Believe it or not, it is easier to boil
ice than water”), specification of the environment is as important as
specification of the system itself. Generally, everything that is not included in
the system is called the surroundings or the environment of the system
(Gyftopoulos and Beretta 1991; Bejan 1997; Wark and Richards 1999).
Dictionaries also identify surroundings and environment as synonyms.
Nevertheless, it is necessary for the purposes of clearly defining exergy that
a system’s surroundings and environment not be synonyms.

With reference to Figure 9.5, the authors offer the following terminology:
Surroundings continue to be defined as everything not included in the system.
As such, surroundings can be divided into two components: the immediate
surroundings55 is that portion of the surroundings affected by, or affecting,
system processes; and the non-immediate surroundings is that portion of the
surroundings unaffected by, and that do not affect, system processes. The
boundary between the immediate and non-immediate surroundings can,
therefore, be modeled as an isolated system boundary. In turn, the immediate
surroundings can be divided into two components: the immediate
environment is that portion of the immediate surroundings across which
property gradients exist driving heat transfer, work transfer, mass transfer,
and net radiation transfer processes that interact with the system; and the
non-immediate environment is that portion of the immediate surroundings
which is free of irreversibilities. By the definition of irreversibility this implies
that the entropy production, PS, within the non-immediate environment is
zero, that is, PS, Non-Immediate Environment = 0. Of special interest for exergy purposes
is the identification of the reference environment, or simply environment.56

The atmosphere is often modeled as a reference environment with fixed
temperature, pressure, and chemical composition (Ahrendts 1980; Szargut
et al. 1988; Moran 1999). In the case of a power plant, river or lake water
may be considered the reference environment (Moran and Shapiro 2000).
The exergy reference environment is that system in the nonimmediate
environment used to define the zero reference state, or dead state, for the
system. Section 9.3.2 discusses the dead state which in turn identifies the
selection criteria for the reference environment. Figure 9.5 provides a
schematic representation of the preceding definitions.
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9.3.2 Combining the First and Second laws: exergy

The exergy concept consists of the First and Second Laws of Thermodynamics
plus three additional concepts: useful work, maximum work, and dead state.
Useful work is that fraction of work that can go into lifting a weight in the
non-immediate surroundings. Pressure-volume work, also referred to as P
dV work, done on the environment (i.e. P0 dV) is not useful as it cannot be
used to lift a weight.57 Maximum work is literally the maximum work transfer
that can be obtained by a system. For the system shown in Figure 9.5, the

Figure 9.5 A control mass system diagram of a system is one that interacts with the environment
via work transfer and heat transfer, and that is capable of doing useful work. The
terms system, environment, immediate environment, non-immediate environment,
reference environment, immediate surroundings, isolated system boundary, and
non-immediate surroundings are also indicated. Entropy production is zero in the
non-immediate environment.
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maximum work is obtained if all processes are reversible, that is, if the entropy
production, in both the system and immediate environment, is zero ( PS,=PS,

System + PS,Immediate Environment = 0; PS,Non-Immediate Environment = 0 by definition).58 A system
is said to be in the dead state when it is in thermodynamic equilibrium with
its reference environment, where the reference environment is identified as
that non-immediate environment system that maximizes a system’s exergy
calculation.59 For example, if the atmosphere is selected as the reference
environment, then an ideal gas mixture is at the dead state when it is at the
temperature and pressure of the atmosphere (i.e. in thermal and mechanical
equilibrium), has no kinetic or potential energy relative to the atmosphere
(i.e. zero velocity and zero elevation above a reference level); does not react
with the atmosphere (i.e. chemically inert), and has no concentration gradients
with respect to the atmosphere (i.e. no net diffusion).

A system in thermodynamic equilibrium is macroscopically identifiable
by the absence of all force and thermodynamic property gradients.

Of particular interest is the stable-equilibrium reference environment used
to define the stable-equilibrium dead state. A stable-equilibrium environment
is a non-immediate environment system that may interact with the system,
whose intensive properties are unaffected by the system (e.g. temperature,
pressure, specific internal energy, chemical concentrations), whose extensive
properties may change (e.g. internal energy, volume, entropy, mass), and
which is in thermodynamic equilibrium. The atmosphere, river water, and
lake water are often modeled as stable-equilibrium environments. A
stableequilibrium reference environment is that stable-equilibrium
environment that maximizes a system’s exergy calculation. Therefore, a system
is at its stable-equilibrium dead state60 when it is in thermodynamic
equilibrium with a stable-equilibrium reference environment.

A special, but important, dead state is the thermal-mechanical
stableequilibrium dead state61 that exists when a system is only in thermal
and mechanical equilibrium with its environment. It is not necessarily in, for
example, chemical equilibrium with its environment. The dead state used in
most exergy analyses found in the engineering literature is, for practical
reasons, the thermal-mechanical stable-equilibrium dead state (e.g. Van Wylen
et al. 1994; Bejan 1997; Cengel and Boles 1998; Wark and Richards 1999).
One practical reason being that cost-effective mechanisms for extracting the
work potential, or exergy, from post-combustion chemical species gradients
do not, in general, exist. From an ecosystem perspective, a thermal-mechanical
stable-equilibrium dead state may prove useful when performing an exergy
analysis of a cold blooded animal, but determining such utility is beyond the
scope of this chapter.
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It is valuable to note that engineers define only one type of dead state, the
stable-equilibrium dead state. This is an implicit restriction that has served
the engineering profession well, but in considering ecosystems, the authors
have found it necessary to generalize the definition of dead state to include
the possibility that the reference environment’s intensive properties may
change as it interacts with the system. This would be the case when the
system is comparable in size to the reference environment. For example,
consider the case of the Amazonian rainforest (the system) and its local
atmosphere (the reference environment). The Amazonian rainforest is so
massive that it can control/change its local climate. That is, the Amazonian
rainforest system is so large that it is actually capable of changing the
thermodynamic state of its reference environment, a situation that led the
authors to identify the engineering concept of dead state as a special case,
that is, the special case of a stable-equilibrium dead state.

Engineers have not had the need to consider any dead state other than a
stable-equilibrium dead state because the engineering systems analyzed have
not approached the scale of a rainforest. This may change if, for example,
cities ever begin to be analyzed as complex energy-conversion systems.

Control mass exergy balance equation

For the non-reactive, control mass system shown in Figure 9.5, whose species
and phase concentrations equal that of the environment,62 the First and Second
Law equations for the system are as follows (neglecting kinetic and potential
energy):

First Law equation (or energy balance equation) for Figure 9.5 system:

(9.14)

Second Law equation (or entropy balance equation) for Figure 9.5 system:

(9.15)

where U is the system’s internal energy (kJ), W is the total work output of
the system (kJ), Q0 is the convection heat transfer to the environment (kJ),
T0 is the environment temperature (K), S is the system’s entropy (kJ K-1), and
is the entropy production in both the system and the immediate environment
(kJ K-1). The two different differential symbols, d and d, are used to distinguish
between exact and inexact differentials,63 respectively. An inexact differential
is one that is path or process dependent. Thermodynamic properties such as
entropy, internal energy, temperature, mass, etc., are state dependent, not
path dependent, and hence, are described by exact differentials.
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Equations (9.14) and (9.15) are combined by eliminating the convection
heat transfer to the environment term. The resulting combined equation is
then rearranged to isolate the work output from the system to yield

(9.16)

The work represented by dW is the actual work output from the system. The
useful work is determined by subtracting the pressure-volume work (P0 dV
work) done by the system on the environment. It will be noticed that the
negative sign in front of the T0 dPS term shows that entropy production results
in a loss in ability to do work since T0 and dPS can never be negative. Therefore,
to maximize useful work in this example is to minimize entropy production;
that is, to zero the entropy production in equation (9.16). Therefore, the
resulting maximum useful work equation is

(9.17)

where WUseful, Maximum is the maximum useful work (kJ), P0 is the environment
pressure (kPa), and V is the system’s volume (m3).

Finally, the system’s exergy can be calculated by integrating equation (9.17)
to the dead state. Therefore, the system’s exergy, X,64 is defined by

(9.18)

Equation (9.18) reveals why exergy is referred to in Section 9.1 as a system’s
maximum, useful, to-the-dead-state, work.

By convention, unless stated otherwise, it is understood that exergy is
defined by integrating to the stable-equilibrium dead state.

One may be inclined to claim that by the definition of dead state that T0, P0,
and environment species and phase compositions, must be constant; however,
recall that the environment is not defined as an external system whose
intensive properties are unaffected by the system, but as that external system
that maximizes a system’s exergy (Section 9.3.2). Furthermore, recall the
Amazonian rainforest discussion of Section 9.3.2 where the system is so
massive that it is actually capable of changing the state of the environment.
Therefore, the stable-equilibrium assumption is essential to recognizing exergy
as a pseudo-property; that is, the resulting calculated exergy will depend
only on the state of the system if T0 and P0 are fixed. Note, however, that
although T0 and P0 may be assumed constant for a specific calculation of
exergy, they need not be constant between exergy calculations. For example,
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the exergy of natural gas in summer is less than in winter. For those engineers
and scientists who are still inclined to always require T0 and P0 to be constant
(i.e. always require a stable-equilibrium dead state) for a given exergy
calculation, the authors must object. The exergy concept must be capable of
reflecting reality, and therefore must be capable of admitting the possibility
that ecosystems exist, such as the Amazonian rainforest, which can affect
the state of their reference environment.65

To obtain an expression for X is straightforward having assumed a
stableequilibrium dead state. With T0 and P0 constant, the exergy for the
control mass system shown in Figure 9.5 can be expressed as follows by
integrating equation (9.17) as per equation (9.18):

(9.19)

where XCM is the control mass (CM) exergy, U, V, and S are the initial internal
energy, volume, and entropy of the system, respectively, and U0, V0, and S0

are the internal energy, volume, and entropy of the system when it is in
equilibrium with the environment, respectively.

Just as internal energy cannot be quantified in an absolute sense until a
frame of reference is chosen, an absolute measure of exergy cannot be
established until a dead state is chosen as a reference frame. Nevertheless,
exergy is still only a pseudo-property because exergy does not adhere to the
stable-equilibrium state postulate66 (Gyftopoulos and Beretta 1991) for
thermodynamic properties. In particular, the dead state aspect of exergy’s
definition introduces information about the environment which is
independent of the state of the system.

Equation (9.19) is the classic control mass exergy67 expression as can be
found in almost any modern introductory thermodynamics text (Black and
Hartley 1991; Van Wylen et al. 1994; Cengel and Boles 1998; Wark and
Richards 1999; Moran and Shapiro 2000).68 Remember that work out of
the system has been defined in Figure 9.5 as positive, if it had been defined as
negative, the negative of equation (9.19) would result.

Do not forget the immediate environment

What is the implication of the zero entropy production assumption in the
section on “Control mass exergy balance equation”? Simply put, it implies
that all processes in the system and immediate environment must be reversible.
That is, simply making all processes inside the system reversible is not
necessarily sufficient to maximize the useful work!

Communication with the environment is a central component of the
exergy concept.
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The central point of this section is to identify the need to consider the
immediate environment in an exergy analysis, a viewpoint or paradigm not
readily apparent when a system-centric viewpoint is adopted. A systemcentric
viewpoint ignores thermodynamic entropy producing processes in the
surroundings.69 For example, it is very common for engineers to fail to see
how the reversible furnace given in Figure 9.2 can be improved, even when
you tell them it can be improved. Why is it so difficult to see the possible
improvement? The answer lies in the fact that the system-centric viewpoint
directs their thinking. How can one see the possible improvement? The answer
lies in the isolated-system viewpoint observation that there is always another
immediate environment to be considered. In the case of the exergy-conserving
furnace of Figure 9.2, one must consider the immediate environment of the
combustion system which includes the natural gas input. It is then discovered
that the combustion process from natural gas to reaction products is
irreversible. This, in turn, suggests looking for a reversible method of
extracting the chemical potential energy from the natural gas, which, in turn,
leads one to consider replacing the combustion chamber and heat engine
with a fuel cell; a change that indeed improves the furnace.

The distinction between a system-centric viewpoint and an isolated-system
viewpoint (see Appendix E) hints at the non-uniqueness of the system model
used to calculate exergy. Consider, for example, that although a Carnot cycle
engine can be used in Figures 9.3(a) or 9.El(b) to transfer thermal energy
reversibility between the system and the environment, a Stirling cycle engine
or an Ericsson cycle engine (Reynolds and Perkins 1977) could also have
been used since all three reversible engines have the same efficiency, namely
the Carnot efficiency as given in equation (9.10). The exergy of a system
does not depend on how the system and local environment are made
reversible, only that they are made reversible.

That is, even for an ideal, reversible, system there is no unique structure
to that system. An interesting implication of this observation is that it suggests
that “life is a tradeoff” (Kay 2000b), or that as ecosystem evolution has the
option to migrate to many different thermodynamically equivalent systems.
Since there is no unique reversible system for doing reversible work, then

one cannot expect a unique irreversible ecosystem to exist for a given
set of environment conditions; history70 must also play a role in
ecosystem development.

In conclusion, do not forget the immediate environment, and strive to
understand what assumptions, both implicit and explicit, have been made
for a selected immediate environment. In the language of Keenan
(Hatsopoulos and Keenan 1965), the father of the exergy concept, the
communication channels must be considered.
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The exergy transfer (balance) equation

The exergy transfer equation provides a means to quantify exergy destruction
and provides the means to trace exergy as it progresses through an ecosystem.
Recall the hypothesis that ecosystems strive to utilize exergy to their best
advantage (see section “A possible role for ecosystem surface temperature
measurements”). Specifically, ecosystems strive to control exergy destruction.
Hence, having a means to quantify exergy destruction is very important.

The control mass exergy equation, equation (9.19), developed in the section
on “Control mass exergy balance equation” establishes the maximum useful
work output for the system shown in Figure 9.5. Work output is shown
going to a useful work reservoir. The useful work reservoir can be thought
of simply as a system where all the work transfer goes into reversibly lifting
a weight. Once the system has lifted the weight in the useful work reservoir,
this stored gravitational energy can be used to lift another weight in a second
useful work reservoir. In fact, any energy stored in the useful work reservoir
is also the exergy of that useful work reservoir. With this understanding, the
exergy transferred, dXTransferred, into the useful work reservoir, for the system
shown in Figure 9.5, is as follows:

(9.20)

where WUseful is the actual useful work obtained from the system, XSystem is the
system’s exergy, and XDestroyed is the exergy destroyed during the work transfer
process where

(9.21)

Please observe that system exergy has been expressed as an exact differential
in equation (9.20). This is a subtle but very important observation. To use
an exact differential implies that exergy is path or process independent. Any
changes in a stable-equilibrium thermodynamic property (e.g. internal energy)
is path independent because a reversible path can always be found in property
state space to link any two states, and that thermodynamic property is
uniquely defined at each point along this reversible path. Maximum useful
work is not uniquely defined in state space, and hence remains path dependent,
because information about the environment is introduced, that is, information
that is independent of the state of the system. In particular, T0 and P0 remain
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free to vary, which leaves the maximum useful work free to vary depending
on the path followed by T0 and P0 during the integration of dWUseful, Maximum.
By imposing a dead state not only is the end state of the system fixed, but so
is the T0 and P0 path to that end state fixed. In particular, T0 and P0 are no
longer free to vary arbitrarily, and hence system exergy becomes a function
of state space only. In effect, by defining a dead state not only is the end state
for an exergy calculation fixed, but the integration path followed by equation
(9.18) is also constrained. Therefore, system exergy, XSystem, is a system
property for a given dead state, nevertheless, the dead state is itself still system
independent, thus we speak of XSystem as being a pseudo-property.

Equation (9.20) expresses the idea that exergy can be transferred from
system to system. Therefore, a general exergy balance equation can be written
as follows:

(9.22)

which yields the exergy transfer rate equation

(9.23)

where X ≡ dX/dt. Equation (9.23) does not refer to a specific system diagram
because it applies to any system.

9.3.3 Lost work and the Gouy-Stodola theorem

Observe that equations (9.22) and (9.23) subtract an exergy destruction term
instead of adding an exergy production term. This is because entropy
production leads to a loss in ability to do work, that is, exergy destruction.
This link between exergy destruction and entropy production will now be
formalized.

Lost work,71 WLost, is defined as

(9.24)

where WReversible is the work transfer from the system if all processes are
reversible, and W is the actual work output from the system. Consider the
system shown in Figure 9.5, if the work done on the environment is subtracted
from both WReversible and W in equation (9.24) then
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(9.25)

or, using equation (9.20), equation (9.25) becomes

(9.26)

which is known as the Gouy-Stodola theorem, “in memory of the first two
thermodynamicists who were at least partially successful in convincing their
contemporaries that (equation (9.26)) deserves attention” (Bejan 1997).
Remember that dPS is the entropy production in both the system and the
immediate environment (see section on “Control mass exergy balance
equation” and Appendix E). Finally, again using equation (9.20), one obtains

(9.27)

or

(9.28)

from which one can answer the question can exergy be produced? The answer
is no.

Exergy can only be destroyed, never produced.72

Three words of caution when using the Gouy-Stodola theorem to calculate
exergy destruction indirectly from a previous entropy production
calculation.

1 First, do not forget that PS includes entropy production in both the system
and the immediate environment. Recall the system-centric and isolated-
system viewpoints discussed in section “Do not forget the immediate
environment.” Chambadal’s power plant (Chambadal 1957; Bejan 1997)
is a classic example of the need to consider both the system and the
immediate environment when calculating entropy production.
Unfortunately, the authors have observed, in the ecological literature,
instances of PS being determined for only the system while PS in the
immediate environment is inappropriately ignored. Omitting the
immediate environment from consideration has lead to a
misunderstanding of the relationship between exergy, energy, and entropy.

2 Second, notice that, in general, when integrating equation (9.26) that T0

is not necessarily constant. For example, if the time frame for integration
spans winter and summer, then it would be reasonable to consider a
dead state whose temperature varies. This said, in the special case of a
stable-equilibrium dead state, T0 is constant, thus equation (9.26) can be
integrated to yield WLost = T0PS = XDestroyed.
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3 Third, if entropy production is calculated locally within the interior of
the system and immediate environment on the basis of identified entropy
production mechanisms, it is very easy to unintentionally miss a specific
mechanism. Adding to this difficulty is the problem of correctly modeling
the local entropy production in a complex system. Whether there is value
in identifying and quantifying local entropy production in ecosystems at
a mechanistic level is a matter for future research. It certainly has value
in engineering as exampled by the field of entropy production
minimization73 (Bejan 1995). Fortunately, a local understanding of
entropy production mechanisms is unnecessary to measure overall exergy
destruction. Measurement of ecosystem surface temperatures are one
component of the measurements needed to determine overall ecosystem
exergy destruction.

9.3.4 Exergy of a generalized system

The five most common generalizations to the system shown in Figure 9.5,
and equations (9.14) and (9.15) are (1) to add kinetic and potential energy,
(2) to add mass flows in and out of the system thus making the control mass
a control volume, (3) to add additional paths for heat transfer, (4) to add
chemical species considerations, and (5) to add radiation energy transfer.
Table 9.1 summarizes these five generalizations.

Given the importance to ecosystems of solar radiation energy transfer, it
is discussed in further detail in Section 9.4.

Although useful work, and hence exergy, is defined with respect to an
ability to lift a weight it must be recognized that

all reversible work modes are equivalent from an exergy perspective.

For example, when all processes are reversible, 100% of the work input into
electrostatic potential energy can be transferred into surface tension energy
storage, which in turn can be transferred into gravitational potential energy
in the lifting of a weight. Hence, the lifting of the weight simply serves as a
model to aid understanding, it does not limit the number of type of reversible
work modes that can operate, nor does it detract from the fact that work
transfer is 100% exergy transfer. Some have claimed that exergy refers only
to mechanical work; this is not true, exergy refers to all reversible work
modes.

When discussing generalizations to a model some limit to these
generalizations must be drawn. For example, quantum and relativistic
effects have been ignored, gradients in field forces that act interior to the
system have been excluded (e.g. gravitation), etc. However, there is one
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Table 9.1 Generalizations commonlya applied to thermodynamic systems

Note
a Common generalizations are based on those generalizations that tend to be dominant or relevant from

an energy magnitude perspective. For example, although the earth’s magnetic field may impact ecosystem
processes, it does not contribute significantly to energy magnitude considerations, and is therefore not
considered.
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additional generalization that should be mentioned that applies to all the
common generalizations presented in Table 9.1. This is the generalization
that thermodynamic properties can, in general, vary continuously with
location. Therefore, it sometimes becomes necessary to consider the integral
form of the terms presented in Table 9.1, and equations (9.14) and (9.15).
For example, the total energy can be expressed as

(9.29)

where m is the mass. Although it is straightforward to write the First and
Second Law equations in integral form, it is, in general, not convenient and
often distracts from the overall physics being presented. But, ignoring the
integral form also hides some of the physics. Consider again the integral
equation for the total energy given in equation (9.29), but this time in a little
more detail:

where mi is the mass of species i, and M is the total system mass. Looking at
equation (9.30) one discovers that the specific internal energy, velocity, and
elevation presented earlier in this chapter are actually mass ()m and species ()i

weighted averages. The mass weighted character of elevation should come
as no surprise since technically center of mass is a mass weighted quantity.
Nevertheless, it does often surprise. Just remember, there is always another
level of generalization that can be made.

9.3.5 Intrinsic, transport, restricted, and accessible exergy

A glance through almost any recent engineering thermodynamics text will
reveal that the control mass exergy, XCM, given in equation (9.19), is
commonly referred to as non-flow exergy (Bejan 1997; Cengel and Boles
1998). If kinetic and potential energies are not neglected in the system shown
in Figure 9.5, then the general non-flow exergy equation results as follows:

(9.31)

where  represents specific total non-flow exergy (kJ kg-1), e is the
specific total energy (kJ s-1), v is the specific volume (m3 kg-1), P is the pressure

(9.30)
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(kPa), T is the temperature (K), s is the specific entropy (kJ kg-1), and the
subscript 0 refers to reference environment properties. Engineering systems
admissible to a non-flow exergy analysis include automotive engines, heat
pumps, pressure vessels, and power plants.

When the system under study also includes mass flows the exergy of the
fluid streams entering or leaving the system are commonly referred to as a
flow exergy. If kinetic and potential energy are not neglected in the steady-
state steady-flow (SSSF) system shown in Figure 9.6, then the general flow
exergy equation results as follows (Bejan 1997; Cengel and Boles 1998):

(9.32)

Figure 9.6 System diagram used to calculate flow exergy. Assumes an SSSF, non-reacting, and
a fluid reservoir74 species composition equal to that of the environment.
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where  represents specific total flow exergy (kJ kg-1), and hº is the specific
total enthalpy (kJ kg-1). Engineering systems admissible to a flow exergy
analysis include jet engines, steam turbines, pumps, compressors, furnaces,
and power plants.

Besides the visual differences between equations (9.31) and (9.32), there
is a subtle but critical conceptual difference between non-flow and flow exergy.
Non-flow exergy measures the useful work potential of system content, it is
not concerned with the useful work potential that may exist in the surroundings.
In contrast, flow exergy measures the useful work potential of that portion of
the system’s surroundings that enters or exits the system; it is not concerned
with the useful work potential stored within the system itself.75

It is important to note that flow exergy, χFlow, is composed of two parts:
the specific non-flow exergy, χNon-Flow, of the inflow (or outflow), and the
flow work exergy,76 χFlow Work, associated with the inflow (or outflow). This
can be demonstrated by adding the specific non-flow exergy to the specific
flow work exergy as follows:

By noting that flow exergy includes flow work exergy, and by noting that
flow work exergy can be negative for pressures less than environment
pressures, one concludes that it is possible for flow exergy to be negative. In
effect, a net work input to the system shown in Figure 9.6 may be required in
order to maintain SSSF flow. Furthermore, because flow exergy can be
negative it cannot be used as a measure of departure from equilibrium with
the environment in the same way intrinsic exergy can, as discussed in section
“Example 2: Believe it or not, it is easier to boil ice than water.” Nevertheless,
flow exergy is still useful as an exergy analysis tool since it can be used to
determine the exergy destruction within a system (Wark and Richards 1999).
For example, exergy destruction can be calculated from the exergy balance
given in Figure 9.7.

Understanding that flow exergy and non-flow exergy are different at a
fundamental concept level led the authors to rethink the concept of exergy
and its interpretation. For example, the exergy of a can of gasoline from the
perspective of someone who has no access to engines, fuel cells, matches, or
other devices that can access the exergy content of the gasoline is inaccessible
exergy. As another example, wood can be burned or left to decompose. In
either case, access to the wood’s exergy exists, but the ability to utilize all the
exergy is restricted by the particular process that consumes the wood and

(9.33)
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leads to the idea of restricted exergy. These and other conceptual refinements
of the notion of exergy allowed the authors to suggest a resolution to the
controversy surrounding the calculation of solar exergy (Section 9.4). In the
end, the authors have classified exergy into seven types.

The authors identify four fundamental classes of exergy:

1 Intrinsic exergy, Xi (control mass or control volume exergy),
2 Transport exergy, Xt (SSSF energy in-flow exergy),
3 Restricted exergy, Xr,
4 Accessible exergy, Xa (Corollary: inaccessible energy Xia).

One exergy hybrid:

5 Restricted-access exergy, Xra.

One performance-based exergy:

6 Extracted exergy, Xex (actual useful work).

One theoretical limitation oriented exergy:

7 Hidden exergy, Xh.

Intrinsic exergy and transport exergy are introduced to differentiate between
a work potential calculation of system content, and that of the energy of the
surroundings that enter or exit the system, respectively. Restricted exergy77

Figure 9.7 Exergy destruction, χDestruction, as determined from a system’s shaft work output,
W, from a system’s heat transfer with the environment, Q0, from flow exergies,
χFIOW,OUT, and χFIOW,IN, and from a change in system exergy, χSystem.
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is introduced to address the finite time, finite size, and structural constraints
of ecosystems that unavoidably impose inherent irreversibilities. Accessible
exergy is introduced to address structural constraints that inherently limit
an ecosystems access to one or more modes of work potential and which
may or may not introduce inherent irreversibilities. The hybrid of
restrictedaccess exergy is introduced to characterize situations that
simultaneously involve both restricted exergy and accessible exergy
constraints. Extracted exergy is introduced as an exergy analogy to the First
Law based concept of actual work. Hidden exergy is introduced to remind
exergy users that an exergy calculation assumes all relevant78 reversible work
mode79 gradients and thermal gradients are known and have been considered.
Although developed for ecosystems, these seven exergy concepts can be
applied to any thermodynamic system.

The major characteristics of intrinsic exergy, transport exergy, restricted
exergy, accessible exergy, restricted-access exergy, extracted exergy, and hidden
exergy are summarized in Table 9.2 with examples. Establishing the relative
importance of these seven types of exergy on the development and function
of ecosystems is a subject for future research. The authors do speculate,
however, that in the future the concepts of restricted, accessible, and restricted-
access exergy will prove useful in the analysis of ecosystems.

It is left to the reader to compliment the examples of Table 9.3 with
additional engineering, biological, and ecosystem examples.

9.4 The exergy of solar energy

The sun is responsible for maintaining Earth’s ecosystems (Schrodinger 1944;
Kay 1984; Ulanowicz and Hannon 1987; Edgerton 1982; Schneider and
Kay 1994, 1995). Virtually all life on Earth depends on photosynthesis, either
directly or indirectly, for life-sustaining energy. Only in extremely rare
circumstances, such as found around deep ocean thermal vents (Lutz and
Kristof 2000; Stover 2000), may ecosystems exist in the absence of solar
energy inputs.

Experience as expressed by the Second Law of Thermodynamics and the
Spontaneous Equilibrium Principle80 reveals that the natural direction for
ecosystems to follow is towards a state of maximum disorder, that is, an
equilibrium state. Ecosystems, on the other hand, continue to maintain a
high degree of order and organization.81 One question arises, how is ecosystem
organization maintained? The answer, by utilizing the exergy content of solar
radiation. Please note that access to the non-zero exergy of solar radiation is
necessary, but not sufficient, to maintain an ecosystem. This important point
is simply a reflection of the fact that exergy content characterizes
thermodynamic order, it does not characterize organization, rather it is
hypothesized that exergy destruction characterizes organization.



Table 9.2 Seven types of exergy: intrinsic, transport, restricted, accessible, restrictedaccess,
extracted, and hiddena exergy



Table 9.3 Distinguishing feature and examples: intrinsic, transport, restricted, accessible,
restricted-access, and extracted exergy

(Continued)
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Table 9.3 (Continued)

(Continued)



Notes
a This statement assumes that the only relevant reversible work mode is pressure-volume (P dV) work.
b Each reversible work mode corresponds to a thermodynamic property gradient, e.g. P dV work

corresponds to a gradient in pressure. A non-reversible work mode is friction.
c Identifying the dead state implicitly identifies which work mode gradients are considered relevant. For

example, if the dead state’s reference environment is considered to be composed of specific percentages
of O2, N2, CO2, and H2O only, then, for an engine combustion system, the exergy analyst is either
implicitly identifying the exergy contribution from nitric oxides (NO and NO2) as non-relevant. Without
an explicit comment by the exergy analyst as to the reason for the implicity non-relevance of NO and
NO2, it is not clear if NO and NO2 are non-relevant because their exergy contribution is negligible,
because of practical limitations in knowledge, or because the analyst is unaware of their existence.
Whatever the reason, the exergy of the NO and NO2 is considered hidden exergy.

d For biological systems, where chemical reactions dominate, nuclear energy work modes are generally
considered non-relevant.

e The adjective ideal means minimum entropy production. The tool of entropy production minimization
(Bejan 1995) provides one means for determining a system’s ideal operating point.

f An example of a co-generation system is a natural gas turbine that produces electricity and whose
exhaust gases are used for space heating.

g In special cases a restricted exergy may also be an intrinsic or transport exergy. For example, this is the
case for non-flow and flow exergy in the special case when the system’s thermal-mechanical stable-
equilibrium dead-state composition equals that of the stable-equilibrium reference environment.

h Inaccessible exergy applies only to known relevant work modes to which access has been denied. In the
case of non-relevant work modes, or of unknown work modes, this inaccessible useful work potential is
referred to as hidden inaccessible exergy. For example, nuclear reactions are generally considered non-
relevant and consequently do not contribute to inaccessible exergy; rather, nuclear energy exergy is
generally considered hidden inaccessible exergy. For known work modes, it is context dependent as
regards to what is to be considered hidden inaccessible exergy.

i When there are multiple gradients of one type, for exmaple, multiple temperature differences creating
multiple thermal gradients, not all of these same type gradients need to be accessible. Accessible exergy
only requires access to at least one of the multiple, same type, gradients.

j Although a pine tree may partially, and indirectly, access the exergy made available by lighting, when a
lightening ignited fire initiates pine cone activity, this is not considered accessible exergy since it is not
directly accessed.

Table 9.3 (Continued)
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Without exergy an energy source cannot sustain the irreversible processes in
ecosystems. Therefore, the non-zero exergy content of solar radiation is
necessary for ecosystems to battle inherent irreversibilities that would
otherwise sentence that ecosystem to death by thermodynamic equilibrium
with its environment.

Ecosystems maintain order by utilizing the exergy content of solar
radiation that exists due to the sustained temperature gradient between
the sun and the ecosystem’s environment.

Corollary 1: Ecosystems control the method and rate of solar radiation
exergy destruction.

Corollary 2: An ecosystem can only exists in the presence of exergy
destruction.

In order to track exergy destruction through an ecosystem, and hence
characterize an ecosystem’s usage of solar exergy, it is necessary to know
how much exergy that ecosystem starts with, that is, it is necessary to
determine the exergy of solar radiation.

9.4.1 The solar exergy controversy

In the engineering and physics communities the exergy of solar radiation is
of great interest because it represents an upper limit to the useful work
producing ability of solar collectors. For example, the maximum theoretical
electrical output possible from a solar collector. This great interest is reflected
by the numerous publications concerned with the maximum work potential
of solar energy (Petela 1964; Spanner 1964; Castans 1976, 1983; Landsberg
and Mallinson 1976; Press 1976; De Vos and Pauwels 1981, 1986; Jeter
1981; Gribik and Osterle 1984; Haught 1984; Landsberg 1986; Bejan 1987;
Bošnjakovic and Knoche 1988; Kabelac 1991). However, even given all this
interest and work, a controversy still exists with regard to how to correctly
quantify solar exergy.

The first step to resolving this controversy is to recognize that the radiation
exergy literature may be divided into two groups, which differ by the initial
question posed. The first group considers a closed system while the second
group considers a SSSF open system (Kabelac 1991). The essence of the
difference is that the closed system group has been trying to calculate an
intrinsic exergy, while the open system group has been trying to calculate a
transport exergy. As identified in Section 9.3.5 by the authors, intrinsic and
transport exergy are fundamentally different, hence, any controversy between
groups that may have once existed is now resolved. Nevertheless, controversies
still exist within each group.

The group one controversy surrounding the exergy of closed system
blackbody radiation is thoroughly discussed by Bejan (1987, 1997).



324 Roydon A.Fraser and James J.Kay

Since ecosystems are open systems to solar radiation, this section focuses on
the group two controversy concerning solar exergy from the open system
perspective.

Kabelac (1991) discusses in some detail the three competing expressions
found in the literature for maximizing the work output from solar energy
for an open system. All three expressions are derived based on the model
shown in Figure 9.8. Each expression and their corresponding assumptions
are summarized in Table 9.4.

It is not the intent of this section, or this chapter, to resolve the controversy
over which solar exergy expression given in Table 9.4 is correct; such an
effort is a subject for future research. All three solar exergy expressions in
Table 9.4 are, however, discussed in turn in Section 9.4.2 where a bias towards
favoring equation (9.34) is proposed.

9.4.2 A role for surface temperature measurements

As identified in section “A first look at the role of surface temperature,” an
ecosystem’s surface temperature governs two major modes of energy transfer
from an ecosystem: thermal radiation surface emissions energy transfer and
convection heat transfer. These two energy transfer considerations alone are
sufficient to justify the need for ecosystem surface temperature measurements
for an ecosystem energy analysis.

Figure 9.8 A system that continuously converts blackbody solar radiation into work (adapted
from Kabelac (1991)).



Table 9.4 Competing expressions for the maximum work output from solar radiation. Based
on Figure 9.8 and Kabelac (1991)

(Continued)



Table 9.4 (Continued)

Notes
a Assumptions are discussed in more detail in Appendix F.
b Solar radiation is highly directional given the small solid angle (θsun = 6.8 × 10-5 steradians) intercepted

by the sun in the hemisphere of the sky. Ideally, solar energy can be concentrated using non-imaging
optics to increase the incident solar radiation intensity by a factor of 1/ sin2 θsun ≈ 46,000 while
maximizing the solid angle distribution of the incident solid angle to 2π steradians (Welford and Winston
1989).

c The blackbody assumption is introduced to simplify the equations governing radiation energy transfer.
Refer to Appendix F for an explanation of why radiation energy transfer is not to be considered heat
transfer, a fact lost on most engineers and scientists. The diffuse radiation assumption implies that both
incident and emitted radiation is distributed equally in all directions. Consequently, the assumption of
diffuse solar radiation implies use of an ideal solar concentrator (Bejan 1997).

d The zero entropy production assumption is not valid if the incoming radiation is converted to thermal
energy and if the absorbing surface is at a different temperature than that which produced the incoming
radiation.

e Non-zero entropy production exists at the absorbing surface since it is at a different temperature than
that which produced the incoming radiation, that is, Tsurface does not equal TSolar.

f Zero entropy production exists since the conversion to thermal energy at the absorbing surface can
take place reversibly when TSurface approaches TSolar.

g As Tsurface approaches TSolar, ΦT,Soiar and ΦT,Converter approach infinity. It is assumed, however, that ΦT,Solar –
ΦT,Converter remains constant at ΦT,Net.

Parameter definitions
Referring to Figure 9.8 and Kabelac (1991), the terms used above are as follows: WMaximum is the maximum
work and also the maximum useful work output for each model (kJ); ΦT, Solar is the incoming solar radiation
(kJ); T0 is the environment temperature (K); Tsurface is the effective blackbody temperature of the sun
(5762 K (Weston 1992)); TSurface is the system’s surface temperature (K); TOptimum is the optimum surface
temperature that maximizes work output (K); and ΦT,Net is the net radiation energy transfer to the system
and is equal to the incoming solar radiation energy minus the emitted converter surface radiation (kJ); σ
is the Stefan-Boltzmann constant (σ = 5.66961 × 10-8W m-2 (kJ);A is surface area, and ΦT is the radiation
energy per unit time emitted from a surface of area A at temperature T (kJ s-1).
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From an exergy analysis perspective surface temperature is also essential
in order to enable calculation of exergy destruction resulting from the finite-
temperature-difference convection heat transfer between the ecosystem
surface and the atmosphere (refer to Figure 9.4(b)). The purpose of this
section is to further demonstrate a possible need for ecosystem surface
temperature measurements if one wishes to perform an ecosystem exergy
analysis. This will be accomplished by considering, in turn, the applicability
of each of the three proposed solar exergy expressions given in Table 9.4.

It is informative to note that a solar exergy calculation also reveals the
maximum exergy destruction to be found in an SSSF solar energy balance.

Model 1: zero entropy production, f inite area
system, solar exergy

Petela (1964), Press (1976), and Landsberg and Mallinson (1976)
independently derived the solar exergy expression given by equation (9.34).

The surface temperature, Tsurface, does not explicitly appear in equation
(9.3) because it has been set equal to the environment or dead state
temperature, T0, which it necessarily equals in order to maximize the work
output from the system shown in Figure 9.8. Furthermore, since entropy
production is zero and no consideration has been given to system size, process
time, or system structure, equation (9.34) represents a measure of transport
exergy. By recognizing that in the derivation of equation (9.34) that Tsurface is
equal to T0, then equation (9.34) can be re-written as follows:

(9.38)

in which case the need for a surface temperature measurement becomes
explicitly clear.

If one objective for an ecosystem is to maximize the available exergy it
can do so by controlling its surface temperature. As shown in Table 9.5, a
lower surface temperature results in more available solar exergy. This is an
interesting observation because it is consistent with the surface temperature
measurements of Luvall and Holbo (1991) and Akbari (1995) who observe
that mature natural ecosystems (e.g. forests) are cooler than manmade
ecosystems (e.g. farmland, lawns), and therefore, offers support to the author’s
hypothesis (see section “Example 2: Believe it or not, it is easier to boil ice
than water”) that ecosystem development may entail an attempt by the
ecosystem to control exergy destruction.

It is valuable to keep in mind that all proposed solar exergy models given
in Table 9.4 assume use of an ideal solar concentrator (Explicit assumption
vi).
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In effect, background radiation from the atmosphere and deep space are
ignored. Background radiation effects on calculated solar exergy introduce
restricted exergy and accessible exergy considerations. Such considerations
remain a topic for future solar energy research. The primary point of Table
9.5 is to demonstrate that solar exergy increases with decreasing surface
temperature. Admittedly, the effect is not large, however, the authors suspect
that once background radiation effects are considered, the effect will be larger.

Model 2: non-zero entropy production, f inite area system,
solar exergy

Castans (1976), Haught (1984), De Vos and Pauwels (1981), and Bejan (1997)
favor the solar exergy expression given by equation (9.35).

The surface temperature, Tsurface, explicitly appears in equation (9.35) as
the optimum surface temperature, TOptimum. For a solar temperature of TSolar =
5,762K and an environment temperature of T0 = 300K, the optimum surface
temperature is TOptimum = 2,465 K, high even for a fossil fuel combustion
temperature (Glassman 1987). Consequently, TOptimum is an absurd surface
temperature for an ecosystem to attempt to attain. In contrast, it is not quite
so absurd for an engineer to consider designing a solar collector that conforms
to the constraints of Model 2 and therefore would be optimized in the limit
represented by equation (9.35). The finite area assumption of Model 2 places
a structural restriction on the system. Furthermore, the requirement that the
solar radiation must be converted to thermal energy is a second structural
constraint on the system. Therefore, equation (9.35) describes a measure of
restricted exergy. Given the non-zeroentropy production in Model 2, the
ratio of incoming solar exergy to incoming solar energy is less than that

Table 9.5 Solar exergies for selected surface temperatures (model 1)
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found for Model 1. For example, at an environment temperature of 300 K,
this ratio for the restricted-access exergy of Model 2 is 0.8489 kJSolar Exergy/
KJsolar Energy, while as seen in Table 9.5 for the transport exergy of Model 1 it is
0.9306 KJSolar Exergy/KJSolar Energy.

Since ecosystems have access to photosynthesis it is not true that incoming
solar radiation is necessarily converted to thermal energy before further
utilization, hence, the restricted exergy described by equation (9.35) cannot
be argued to apply to ecosystems because it is unnecessarily restrictive.
Therefore, the absurdly high surface temperature required by equation (9.35)
is of no concern to the analysis of solar exergy from the perspective of an
ecosystem.

Model 3: zero entropy production, inf inite area system,
solar exergy

Kabelac (1991) proposes the solar exergy expression given by equation (9.36).
Equation (9.36) is simply the Carnot efficiency for a heat engine operating
between two high- and low-temperature thermal energy reservoirs at TSolar

and T0, respectively. This is an appealing result as it would mean that the
exergy of radiation energy transfer is described in a similar fashion to the
exergy of conduction or convection heat transfer.

The surface temperature, Tsurface, is implicitly present in equation (9.37)
through FNet where TSurface appears explicitly in the definition of FNet as follows:

(9.39)

As with Model 2 (section “Model 2: non-zero entropy production, finite
area system, solar exergy”), Tsurface is absurdly large, being equal to the sun’s
effective blackbody surface temperature of 5,762 K. Furthermore, Tsurface

cannot be varied as it necessarily approaches TSolar.
Kabelac (1991) argues that the infinite area implication of Model 3 is

consistent with the infinite area implication of reversible conduction or
convection heat transfer for the Carnot engine, and therefore should not
present a conceptual problem.

A conceptual problem, however, does seem to exist. Three observations
concerning the infinite area requirement of Model 3 suggests equation (9.36)
is unacceptable as a measure of solar exergy. These three observations are as
follows: (a) The infinite area requirement for reversible heat transfer is not
an exact parallel to the infinite area limit imposed on radiation energy transfer.
For example, it is possible for a finite amount of reversible heat transfer to
take place in a finite amount of time over a finite area! This fact is poorly
understood even among engineers who routinely state that reversible heat
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transfer requires either infinite area or infinite time. The fact is, for conduction,
for example, an infinite thermal conductivity also works to provide finite
heat transfer rate across a finite area and an infinitesimally small temperature
difference. Given the common use and poor understanding in the
thermodynamic community of the infinite area conclusion for reversible heat
transfer, it is understandable why Kabelac (1991) endorsed the infinite area
parallel between radiation and heat transfer without considering the
differences. (b) Embedded in the exergy concept is the idea of terrestrial
usefulness and practicality. Therefore, a terrestrial-based solar collector cannot
be expected to have an infinite area that would extend the system outside its
immediate surroundings. Unfortunately, that physics of radiation energy
transfer demands that an infinite area solar collector necessarily82 extends
outside a system’s immediate environment. In contrast, it is possible for
conduction heat transfer to take place over an infinite area in a finite volume
of space if the surface is fractal in nature. And (c), an infinite area solar
collector requires an infinite amount of solar radiation to strike its surface at
any given instant, however, the sun is of finite area and hence can emit only
a finite amount of solar radiation at any given instant.

Therefore, there are serious concerns about the appropriateness of equation
(9.36) as a measure of solar exergy. Consequently, the authors take the
position that equation (9.36) is meaningless from an exergy perspective, a
conclusion consistent with Bejan’s (1997:476) statement that the infinite area
requirement is “totally unrealistic.”

The correct solar radiation exergy equation

The authors do not suggest that they have definitively concluded equation
(9.34) to be the correct measure of solar exergy, but the arguments presented
in earlier do suggest that equation (9.34) is currently the best expression for
calculating solar radiation exergy from an ecosystem’s perspective, and
therefore is cautiously accepted for the time being.

Although it need not have been so, it is nice to see that equation (9.34)
further justifies the need for surface temperature measurements.

9.4.3 Importance of air temperature

The authors implicitly argued in section “Model 1: zero entropy production,
finite area system solar exergy” using equation (9.34) that by controlling
surface temperature an ecosystem can control the solar exergy available for
destruction. The difficulty is that it is actually the dead state, or the
temperature of the reference environment, that determines the solar exergy
available for destruction. It just so happens in the derivation of equation
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(9.34) that TSurface approaches T0 in the exergy calculation limit. Therefore, in
section “Model 1: zero entropy production, finite area system, solar exergy,”
it is implicitly assumed that ecosystem surface temperature correlates with
T0, where T0 will often be appropriately taken as the local atmospheric air
temperature. The validity and implications of this assumption need to be
investigated in future work and therefore are beyond the scope of this chapter.
This assumption needs to be investigated in order to better understand how
ecosystems may control the solar exergy available for destruction, and the
recent ecosystem air temperature measurement work of Akbari (1995) may
assist in this investigation.

Recall that the authors hypothesized that ecosystems strive to utilize exergy,
and that this utilization includes controlling exergy destruction (section “A
possible role for ecosystem surface temperature measurements”). What has
been argued here is that the utilization of exergy may also include controlling
the amount of exergy available for destruction.

9.5 Linking thermal remote sensing to ecosystem
organization

9.5.1 Life as on exergy destroyer

Section “Exergy’s role in characterizing ecosystems” introduces the idea that
exergy provides one indicator of order and organization. Following this and
associated lines of reasoning has lead to the postulation of the exergy
destruction principle (Kay 2000b): The exergy destruction principle83 can be
stated as follows:

A system exposed to an inflow of exergy will be displaced from
equilibrium. The response of the system will be to organize itself so as
to destroy the exergy as thoroughly as circumstances permit, thus
limiting the degree to which the system has moved from thermodynamic
equilibrium. Furthermore, the further the system is moved from
equilibrium, the larger the number of organizational (i.e. dissipative)
opportunities which will become accessible to it, and consequently, the
more effective it will become at exergy destruction.

Schrödinger’s work (Schrödinger 1944) suggests84 it appropriate to consider
living systems as non-equilibrium dissipative systems (Schneider and Kay
1995). Given the exergy destruction principle and the right conditions, the
emergence of living systems should be expected as a means of furthering the
mandate of exergy destruction. In particular, the earth is an open
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thermodynamic system with a large exergy flow impressed upon it by the
sun. Consequently, physical and chemical processes will emerge to destroy
the incoming exergy. For example, energy shifts (conversion of shortwave
radiation to longer-wave infrared), absorption, and meteorological and
oceanographic circulation will degrade much of the incoming solar exergy.
And, as argued elsewhere (Kay 1984; Kay and Schneider 1992; Schneider
and Kay 1994), life is simply another means of destroying solar exergy.

The origin of prebiotic life is the development of yet another route for the
destruction of exergy. A stepwise progression of stages can be recognized in
the emergence of prebiotic organized structures: the formation of simple
molecules, the formation of biomonomers (amino acids, sugars), the
formation of bipolymers (polypeptides, nucleic acids), the aggregation of
bipolymers onto microspheres, and the emergence of protocells as functional
relationships develop among microspheres (Wicken 1987). Therefore, life
should be viewed as the sophisticated end in the continuum of development
of natural dissipative structures from physical, to chemical autocatalytic, to
living systems. Then, life, with its requisite ability to reproduce, insures that
these dissipative (exergy destroying) pathways continue, and has evolved
strategies to maintain these dissipative structures in the face of a fluctuating
physical environment.

Wicken (1987) notes that living systems are a unique example of dissipative
structures because they are self-creating, rather than a product of only
impressed forces. In conclusion, the origin of life should not be seen as an
isolated event but as a holistic process that represents the emergence of yet
another class of processes whose goal is the dissipation of thermodynamic
gradients through exergy destruction.

9.5.2 Ecosystems as exergy degraders

Following from Section 9.5.1, ecosystems can be viewed as the biotic, physical,
and chemical components of nature acting together as nonequilibrium
dissipative processes (Kay 2000b). As ecosystems develop or mature they
should therefore develop more complex structures and processes with greater
diversity, more cycling, and more hierarchical levels all to abet exergy
destruction (Kay 1984; Kay and Schneider 1992; Schneider and Kay 1994).

Surface temperature as a possible indicator of ecosystem
maturity

The energetics of terrestrial ecosystems provides an encouraging example of
the thesis that ecosystems will develop so as to destroy exergy more effectively.
The exergy destruction across an ecosystemis a function of the difference
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between incoming and outgoing exergy flows (see section “A first look at the
role of surface temperature”). Assuming that the exergy of incoming solar
energy and the exergy of outgoing surface radiation emissions dominate
ecosystem exergy flows, and assuming ecosystems are bathed by the same
amount of incoming solar energy, then the most mature ecosystem should
re-radiate its energy at the lowest exergy level, that is, the ecosystem should
have the lowest surface temperature.

As previously reported (Schneider and Kay 1994) and previously
documented (Luvall and Holbo 1991), the surface temperature of tropical
forest, mid-latitude varied, and semiarid terrestrial ecosystems were measured
using a Thermal Infrared Multispectral Scanner (TIMS). In keeping with the
assumptions of the previous paragraph measurements are made within
minutes of solar noon on a clear day. The one unmistakable trend is that the
more developed ecosystem is cooler. For example, a grassland is warmer
than an adjacent forest, or a young forest is warmer than an adjacent, more
mature, forest. This is an encouraging result consistent with the exergy
destruction principle.

A similar ecosystem surface temperature versus ecosystem maturity trend
is seen in the work of Akbari (1995) where a more tightly controlled set of
experiments than those of Luvall and Holbo (1991) were conducted. Control
included making the measurements at the same solar time of day in the same
area under no wind, clear sky, and consistent soil moisture conditions. A
lawn (single species of grass) had the warmest temperature, an undisturbed
hay field was cooler, and a field which has been naturally regenerating for
20 years was coldest. Also, another field that had been regenerating for 20
years was disturbed by mowing; after mowing, its surface temperature rose
significantly, but very quickly returned to its cooler pre-disturbance
temperature. These surface temperature observations are again consistent
with the exergy destruction principle.

In conclusion, ecosystem surface temperature appears to correlate with
ecosystem maturity as evidenced by some preliminary experiments, and thus
appears to support the exergy destruction principle. However, the ultimate
strength of this correlation, and the hypothesis that ecosystems develop in a
way which systematically increases their ability to destroy incoming exergy,
remains to be determined in future works.

9.6 Conclusions

A Second Law perspective in the engineering sciences has proven extremely
useful to understanding and designing energy efficient, effective, and
optimized thermodynamic systems. Fundamentally, ecosystems are complex
thermodynamic systems concerned with the transformation of mass and
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energy into usable forms, for example, work. As such, the Second Law of
Thermodynamics has an important role to play in understanding ecosystem
phenomena.

A central concept to a Second Law analysis is exergy, where exergy is
defined as the maximum useful to-the-dead-state work. Through the
GouyStodola theorem exergy destruction is seen to be a practical
manifestation of entropy production. Exergy destruction, however, is more
than simply a different way to represent entropy production because it
inherently incorporates additional information about the system’s
environment.

Lessons learned from the exergy viewpoint explain, for example, how to
greatly improve upon the conventional furnace, why a combined cycle power
plant or cogeneration facility is inherently more efficient than a standard
steam cycle power plant, or why an electric heat pump is superior to a radiant
electric heater. These and other such lessons exist in engineering. Future
ecosystem exergy studies should reveal similar lessons about how ecosystems
are structured. In effect, an exergy analysis of ecosystems provides a new
perspective from which to understand and characterize ecosystems,
correspondingly, the authors argue that exergy transport and exergy
destruction have key roles to play in ecosystem characterization.

In this chapter, it is demonstrated that ecosystem surface temperature
controls energy and exergy fluxes in and out of ecosystems. Measuring an
ecosystem’s surface temperature is fundamental to the quantification of both
energy and exergy fluxes. Therefore, thermal remote sensing has a major
role to play in quantitatively characterizing ecosystems.

A dynamic relationship exists between an ecosystem and its environment
that does not exist in engineering systems. By recognizing this, the authors
discovered that the engineer’s exergy concept is too restrictive or insufficient
to be entirely satisfactory when used to characterize a complex
thermodynamic system such as an ecosystem. This has lead the authors to
identify, for the first time, six new exergy classifications: intrinsic exergy,
transport exergy, restricted exergy, accessible exergy (corollary: inaccessible
exergy), restricted-access exergy, and extracted exergy. Intrinsic exergy
corresponds to the useful work potential of the energy stored within a system.
Intrinsic exergy provides a quantifiable measure for how far out of equilibrium
with the environment a system happens to be. Transport exergy corresponds
to the SSSF useful work potential of the energy that enters a system; there is
no exergy contribution from the energy stored within the system. Solar exergy
is an example of transport exergy. Restricted exergy considers a system’s
structure and operational restrictions, for example, the maximum theoretical
photosynthetic capacity of a plant restricts the exergy a plant can extract
from the wavelengths of solar energy it has access to. Accessible exergy
considers the system’s capability of coupling to an exergy source, for example,
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a plant can access solar exergy via photosynthesis whereas an animal does
not have the same access to solar exergy. A system’s reference environment
defines the relevant work mode gradients and thermal gradients; all other
gradients contribute to hidden exergy. The authors were pleased to discover
that by clearly separating out and identifying these six exergy classifications
they were apparently able to resolve a long standing controversy over the
correct relationship to use to quantify solar exergy.

As a foundation to these exergy classifications, the authors have also
extended the engineering concept of dead state and clarified the definition of
environment by introducing seven new or refined definitions: immediate
surroundings, non-immediate surroundings, immediateenvironment, non-
immediate environment, stable-equilibrium reference environment, stable-
equilibrium dead state, and thermal-mechanical stableequilibrium dead state.
This clarification makes it clear that communication with the environment
is a central component of the exergy concept. That is, do not forget exergy
destruction in the immediate environment. Unfortunately, the authors have
observed in the ecological literature instances where the immediate
environment has been inappropriately ignored, and consequently, the exergy
has been incorrectly defined.

Appendix A: exergy terminology conventions

Today, the term exergy, originally introduced in Europe in the 1950s, is being
favored globally over the term availability, a term made popular in the United
States by the MIT School of Engineering in the 1940s. It is being favored
globally partly because it is shorter, it rhymes with energy and entropy, and
it can be adapted without requiring translation (Cengel and Boles 1998).

The purpose of Tables 9.A1 and 9.A2 is to convey to the reader an
appreciation for the need to clearly define the exergy terminology one is
using. To assume a colleague implicitly defines a given exergy term in the
same fashion as oneself is unwise as evidenced by the terminology variations
identified in Tables 9.A1 and 9.A2. Table 9.A3 summarizes new, refined, or
clarified exergy terminology used in this chapter.
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Appendix B: nomenclature

a Blackbody radiation constant (7.565 × 10-16 J m–3 K-4)
c Speed of light (2.998 × 108 m s–1) or specific heat
d Exact differential
d Inexact differential
g Gravitational acceleration
h Plank’s constant (6.626 × 10-34 J s)
kB Boltzmann constant (1.380 × 10-23 JK–1)
m

i
Mass of species i (kg)

n System constituents (kmol)
v Velocity (m s–1)

Table 9.A3 New, refined, or clarified exergy terminology introduced in this chapter

Notes
a Also described in the section on “Control mass exergy balance equation.”
b Also described in the section on “Example 2: Believe it or not, it is easier to boil ice than water.”
c Also described in the section on “Do not forget the immediate environment.”
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z Elevation (m)
A Area (m2)
E, e Total energy, specific total energy (kJ, kJ kg–1)
H, h Enthalpy, specific enthalpy (kJ, kJ kg-1)
hº Total enthalpy (kJ)
I Total number of species
KE Kinetic energy (kJ)
M Total system mass (kg)
M Mass flow rate (kg s–1)
M Mass flow rate of species i (kg s-1)
N

i
Molar flow rate of species i (kmol s-1)

P Pressure (kPa)
p Any thermodynamic property
PE Potential energy (kJ)
Q Heat transfer (kJ)
Q Heat transfer rate (W)
Q

i
Heat transfer rate from non-immediate environment, non-reference
environment, system I (W)

S, s Entropy, specific entropy (kJ kg–1 K–1)
T Temperature (K)
Ti Temperature of non-immediate environment, non-reference

environment, system i (K)
TH High temperature (K)
TR Room temperature (K)
U Internal energy (kJ)
V, v Volume, specific volume (m3, m3 kg-1)
v Velocity (m s-1)
W Work transfer (kJ)
W Work transfer rate (W)
PS Entropy production (kJ K–1)
ß Relevant work mode parameters
η Efficiency
ηI First Law efficiency
ηII Second Law efficiency
µ

i
Molar chemical potential of species i (kJ kg-1)

µ
i

Mass chemical potential of species i (kmol kg-1)
σ Stefan-Boltzmann constant (5.667 × 10-8 W m-3 K-4)
ΦT Radiation energy transfer (kJ)
ψT Radiation entropy transfer (kJ K–1)
X, x Exergy, specific exergy (kJ, kJ kg–1)
X° Total exergy (kJ)
Xi Intrinsic exergy (kJ)
Xt Transport exergy (kJ)
Xr Restricted exergy (kJ)
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Xa Accessible exergy (kJ)
Xra Restricted-access exergy (kJ)
Xex Extracted exergy (kJ)
� �i Species-weighted average
� �m Mass-weighted average

Additional subscripts:
0 Reference environment
1 → 2 From state 1 to state 2
1,2,… State point
q Radiation source
r System surface
CM Control mass
IN Transport into a system
Max Maximum
OUT Transport out of a system
words Words in a subscript are self-explanatory

Appendix C: exergy-conserving calculations

9.C1 Exergy-conserving furnace

In section “First and second Law efficiencies” a calculation of Q
.
Room, Max is

needed. It is a two-step process to solve for Q
.
Room, Max. Referring to Figure 9.2

for the temperatures used, first, equation (9.10) is used to calculate WMax as
follows:

(9.C1)

Second, Room, Max is determined by equation (9.11) to be

(9.C2)

Observe that absolute temperatures must be used; do not use Celsius or
Fahrenheit.
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9.C2 Bringing ice to a boil

In section “Example 2: Believe it or not, it is easier to boil ice than water”, a
calculation of the maximum temperature, TMax, that –20°C ice can achieve
without the addition of the natural gas is needed and given below. Both ice
and liquid water are assumed incompressible with constant specific heats.
Referring to Figure 9.3(a), the differential work output from the reversible
(Carnot efficiency) heat engine, as the ice is heated from T1 = –20ºC to T2 =
0°C, is given by

(9.C3)

or by rearrangement and noting that dQ1 → 2 = dU = McIce dT by the First
Law of Thermodynamics

(9.C4)

where W1 → 2 is the work output from state 1 to state 2, T is the instantaneous
ice temperature, T1 is the temperature at state 1, T2 is the temperature at
state 2, T0 = 20º C is the environment temperature, Q0 is the heat transfer
from the environment, Q is the heat transfer to the ice, U is the internal
energy of the ice, M is the mass of ice, and cIce is the specific heat of ice.

At 0°C the ice undergoes a constant temperature phase change from ice
to liquid water. During this phase change the work output from the reversible
heat engine is given by

(9.C5)

where W2 → 3 is the work output from state 2 to state 3 and hFusion is the
specific heat of fusion.

Observe that the pressure-volume work associated with the decrease in
volume as the ice melts occurs at atmospheric pressure and hence is not
useful work. Any useful work potential associated with this change in volume
is accounted for through the enthalpy of fusion.
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The remaining useful work potential is obtained as the liquid water is
heated from 0°C to the environment temperature of 20°C, and is given by

(9.C6)

where W3→ 4 is the work output from state 3 to state 4, and cLiquid Water is the
specific heat of water. Equation (9.C6) is derived in the same fashion as
equation (9.C3).

The specific heat of ice is cIce = 2.0 KJ kg-1 K–1 and of water is cLiquid Water =
4.2 kJ kg–1 K–1 (Reynolds and Perkins 1977), and the specific heat of fusion
for water is hFusion = 334 kJ kg–1 (CRC 1978). Therefore, the total exergy85

content of the -20°C ice is

(9.C7)

Once the ice’s exergy has been extracted and stored, it can be used by the
reversible heat pump system shown in Figure 9.3(b) to heat the now 20°C
water to a maximum temperature of TMax. The equation governing TMax is
given by

(9-C8)

where W4→ 5 is the work output from state 4 to state 5, T is the instantaneous
water temperature, T4 = T0 is the temperature at state 4, T5 = TMax is the
temperature at state 5, Q is the heat transfer to the water. Furthermore, W4

→ 5 is also the exergy of the hot water. Therefore,

(9.C9)

Equation (9.C9) explains why equation (9.C8) can be and is written as a
work output calculation instead of a heat input calculation. That is, the
energy flow magnitudes in operating a reversible heat pump are equal the
energy flow magnitudes for a reversible heat engine except all flow directions
are reversed.

Iterating equations (9.C8) and (9.C9) for TMax yields a TMax of about 88ºC
or 361K.

It is instructive to note that in calculating TMax the mass, M, of the ice is
not needed. This is reflective of the pseudo-property character of exergy.
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Appendix D: Gibbs free energy of blackbody radiation

The internal energy, U, for a system consisting only of blackbody radiation
of temperature T occupying a volume V is given by

(9.D1)

where a = (8p5 / 15)(kB /h3c) = 7.565 × 10-16 J m-3 K-4, kB is Boltzmann’s
constant, h is Plank’s constant, and c is the speed of light in a vacuum.

The radiation pressure, P, corresponding to equation (9.D1) is given by

(9.D2)

and entropy, S, in volume, V, by

(9.D3)

Finally, Gibbs free energy, G, is defined by

(9.D4)

Therefore, substitution of equations (9.D1)-(9.D3) into equation (9.D4) yields

(9.D5)

Equations (9.D1)-(9.D3) were taken from Bejan (1997).

Appendix E: distinguishing between the system-centric
viewpoint and the isolated-system viewpoint

Figure 9.E1 schematically shows two approaches to making all processes
reversible. Figure 9.El(a) represents the system-centric viewpoint while Figure
9.El(b) represents the isolated-system viewpoint. The importance of the
isolated-system viewpoint is that it clearly reveals the need to consider the
environment. For those familiar with the dSi entropy production viewpoint86,87

of irreversible thermodynamics (Prigogine 1955), Figure 9.El(a) is the dSi

viewpoint (dSi = dPS = dPS,System; dPS,Immediate Environment = 0). Figure 9.El(b) is the
viewpoint that recognizes that something can possibly be done with energy
flows that exits a system, that is, dPS = dPS,System + dPS,Immediate Environment. For
example, the exiting energy may have the potential to lift a weight. Energy
magnitude is not the relevant factor for determining how high the weight can
be lifted, energy quality is the relevant factor. The isolated-system viewpoint
(Figure 9.Elb) represents an important paradigm shift from the system-centric
viewpoint (Figure 9.Ela).
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One way to think of the difference between the system-centric viewpoint
and the isolated-system viewpoint of exergy is as follows: the system-centric
viewpoint internalizes all entropy production or exergy destruction processes;
the isolated-system viewpoint maintains system boundaries. The isolated-
system viewpoint then proceeds to make processes in the local environment
reversible by the addition of a reversible heat engine.88

Figure 9.EI Two viewpoints for calculating system exergy: (a) the system-centric viewpoint;
and (b) the isolated-system viewpoint.
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Does one expect these two viewpoints to yield the same exergy for the
same initial system? Yes. Therefore, as stated in section “Do not forget the
immediate environment”, the exergy of a system does not depend on how
the system and local environment are made reversible, only that they are
made reversible.

The isolated-system viewpoint is the viewpoint adopted in this chapter.

Appendix F: solar exergy assumptions

The purpose of this section is to elaborate on the assumptions summarized
in Table 9.4.

The following assumption comments of Table 9.4 are directed to the reader
who wishes to be exposed to some of the finer details of exergy analysis in
the presence of radiation energy transfer, and in turn acquire a flavor for one
area of potential future research. Assumption and model numbering used
below are consistent with those used in Table 9.4.

iii To-the-dead-state work: The appropriate dead state for radiation energy
is not clear. Bejan (1987) managed to unify the various proposed
equations in the literature for calculating the exergy of enclosed radiation
by noting that any differences were the result of different initial states
and different dead states for the radiation. The question then arrises,
should the dead state for enclosed radiation be a volume of radiation at
the environment temperature, or should it be an empty enclosure with
no volume. There is as yet no consensus on the appropriate dead state
for enclosed radiation. As for solar radiation, not only does it also suffer
from an uncertainty on the correct dead state, there continues to be no
unifying theory for open system radiation energy.

v Steady-state, steady-flow: Over a limited period of time this may be a
good approximation, but the intensity (W m-2) of solar radiation varies
throughout the day and is zero at night. It would not be unexpected in
the future to have this assumption/restriction modified in an alternative
solar exergy calculation in order to account for the non-stationary nature
of solar radiation.

vi Ideally concentrated solar radiation: Notice that the solar energy
conversion system shown in Figure 9.8 does not include atmospheric
background radiation, and that the solar radiation input is over an
entire half-hemisphere solid angle even though the sun only subtends a
solid angle of 6.8 × 10-5 steradians in the sky. These observations reflect
an implicit maximization in the concentration of solar radiation.
Authors such as Haught (1984) have considered the work potential of
non-concentrated solar radiation, or diffuse solar radiation; however,
the work output from non-concentrated solar radiation systems is
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necessarily less than that for corresponding concentrated solar radiation
systems.

vii Diffuse blackbody radiation: From an ecosystem’s perspective the major
problem with this assumption is that even if the spectrum for solar
radiation striking the outer atmosphere is blackbody like, the spectrum
of the solar radiation that actually reaches the ground is distorted by
atmospheric gases such as water vapour (H2O) and carbon dioxide (CO2).
The necessity of a blackbody (or graybody) assumption is that it enables
one to conveniently express the entropy content of solar radiation as

 

(Planck 1966).89

viii Conduction or convection to the environment at temperature T0: This
assumption simply takes advantage of the accepted thermodynamic
notion of reversible heat transfer, for example, as assumed by a Carnot
engine (Reynold and Perkins 1977). Reversible energy transfer to the
environment is needed to maximize the work output from the system
shown in Figure 9.8. The difficulties with reversible radiation energy
transfer are discussed in assumptions (ix), (xi), and (xiii); it is these
concerns that lead to the controversy over which maximum work output
expression in Table 9.4 may be considered a correct expression for solar
radiation exergy. In short, this assumption is a convenience that attempts
to avoid additional controversy.

ix Zero entropy production ( = 0): Two objections to this assumption can
be made.

I One objection that may be raised concerning the expression in Model
1, if it is taken to represent solar exergy, is that it can be negative. In
truth this is not a problem just as negative flow exergy is not a
problem (Cengel and Boles 1998). Only intrinsic exergy is necessarily
greater than or equal to zero. Model 1, however, is a measure of
restricted exergy given the SSSF assumption (Assumption I), and
hence, is not restricted from negative values; it is possible for work
input to be required in order to maintain the SSSF operation.

II A second, much more serious objection, is that, in order for the
entropy production to be zero, the incoming radiation cannot be
absorbed reversibly by the system’s radiation emitting surface at
temperature TSurface unless TSurface equals TSolar, in which case the device’s
efficiency is zero for a finite area system (Tsurface equals TConverter in
Figure 9.8). It is well known that if the temperatures TSolar and Tsurface
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are not equal then thermal radiation energy transfer is inherently
irreversible (Wurfel 1982; De Vos and Pauwels 1983; Kabelac 1991).
The problem then becomes how is the work potential of the incoming
radiation to be extracted? In particular, the problem pertains to the
difficulty one has in conceiving of a sub-system located between the
incoming solar radiation and the outgoing surface radiation that
captures all the incoming radiation through a reversible direct energy
conversion phenomenon. The specific difficulty is that if all incoming
solar radiation is directly converted to a work mode, then this surface
must have an absorptivity of one. An absorptivity of one implies
an emissivity of one, and an emissivity of one implies the presence
of surface thermal emissions at TConverter. Unfortunately, the original
necessity of looking to a direct energy conversion device was to
bypass any irreversible conversion to thermal energy by the direct
energy conversion device. Photosynthesis and the photoelectric
effect are examples of irreversible direct energy conversion
phenomena. In short, the concern is that reversible radiation energy
transfer to a finite size surface not at TSolar may not be conceptually
achievable.

x Finite area: The implications of this assumption for Model 1 are
incorporated into the discussion of Assumption xiii. It is valuable to
note that the Model 3 maximum work output expression derivation
avoids the entropy production concerns of Assumption xiii by admitting
an infinite area collector. Admitting an infinite area collector, however,
simply substitutes one problem for another. For example, as noted by
Bejan (1997: p. 476), the infinite area case is “totally unrealistic.” The
finite area assumption in Model 2 is not a problem since non-zero entropy
production has been admitted through Assumption xi.

xi Solar radiation is converted to thermal energy: In Model 2, this
assumption is realistic as a model, but from an exergy perspective it a
priori admits defeat in the attempt to maximize the work output from
the device shown in Figure 9.8. Defeat in the sense that it is a priori
accepted that there must be non-zero entropy production due to the
inherent irreversibility of converting radiation to thermal energy, as
discussed in Assumption ix(II). Therefore, the maximum work output
determined under the assumptions of Model 2 is necessarily a form of
restricted exergy.

Unlike in Model 2, Assumption xi does not a priori admit defeat in
Model 3. In particular, Model 3 represents that special case where
radiation conversion to thermal energy is reversible, that is, when the
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temperature of the solar radiation and surface are equal (see Assumption
xii).

xii Tsurface approaches TSolar: This assumption is identical to the assumption
used to establish the special case situation when convection or conduction
heat transfer is reversible (Reynolds and Perkins 1977). That is,
convection or conduction heat transfer is only reversible when the
temperature difference across which heat transfer takes place approaches
zero. Given the acceptance of the concept of reversible heat transfer,90

the Tsurface approaches TSolar assumption is consistent with past practice,
and hence appears reasonable.

xiii Finite FNet: This assumption has an analogy in the requirement that a
finite amount of convection or conduction heat transfer must continue
to exist even as the temperature difference across which the heat transfer
takes place necessarily approaches zero for reversible heat transfer (see
Assumption xii). The assumption is not an identical requirement,
however, for two reasons:

First, when Assumptions xii and xiii are combined one concludes that
a finite amount of reversible thermal radiation energy transfer is only
possible if the collector area approaches infinity. In contrast, reversible
heat transfer is possible in two different limits, that of infinite area or of
infinite time. The infinite time limitation is not admissible for reversible
thermal radiation energy transfer because the rate of thermal energy
transfer to the system is not set by a temperature difference (which can
be made infinitely small in the case of heat transfer), but by the Stefan–
Boltzmann law (Incropera and DeWitt 1996) that governs blackbody
radiation emissions intensity.

Second, the infinite area limit implies the need for an infinite amount
of thermal radiation input within any given time interval. As the area
increases so does the magnitude of the incoming radiation intercepted
by this area. One may argue that this second implication justifies Bejan’s
(1997: p.476) conclusion that the infinite area limit is “totally unrealistic,”
even conceptually. In contrast, Kabelac (1991) argues that the infinite
area limit is conceptually acceptable. In short, the reversible radiation
energy transfer limit imposed in Model 3 may not be conceptually
realizable.

In closing this section it is informative to note that none of the three possible
solar radiation exergy models summarized in Table 9.4 consider the possibility
of a time lag between radiation energy input and radiation energy output. A
time lag, however, does exist for ecosystems which emit thermal radiation
day and night. This observation simply reflects the possibility that a more
appropriate model quantifying the exergy of solar radiation may still need
to be developed.
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Notes

1 The “pseudo-property” descriptor applies to the concept of useful work as defined
in Section 9.3. In brief, a true thermodynamic property is fixed by the
thermodynamic state of the system. Useful work, on the other hand, is also a
function of the environment. However, it behaves like a thermodynamic property
for a given reference environment, hence the adjective pseudo-property.

2 The adjective useful is used to indicate that work done on the environment is not
considered useful. For example, useful work can be used to turn the wheels of a
car while work done on the environment cannot.

3 Dead State is defined in Section 9.3.2.
4 It is extremely important to note that the opportunity for terminology confusion

abounds. For example, Wark (1977) and Van Wylen et al. (1994) refer to
maximum useful to-the-dead-state work as availability, not as exergy.
Furthermore, Wark (1977) refers to non-flow exergy as availability while Li
(1996) refers to flow exergy as availability; Van Wylen et al. (1994) refers to
flow exergy simply as exergy. Refer to Appendix A for a brief review of exergy
terminology found in the literature. Appendix A is extremely important to
understanding the need for clarity of communication. In this chapter, exergy will
refer to the idea of maximum useful to-the-dead-state work for any system. When
the exergy concept is necessarily applied in a more restricted sense a suitable
adjective will be added. For example, the exergy that can be delivered by a steady-
state, steady-flow, control volume system is termed flow exergy. In addition to
Appendix A, refer to Table 9.2 for a list of exergy adjectives used.

5 By definition, exergy is measured in the same units as work transfer, namely the
same units as used to measure energy magnitude.

6 It is easy to misinterpret results obtained using the Gouy-Stodola theorem because
it hides much of the underlying physics. Refer to Section 9.3.3 for a discussion of
the Gouy-Stodola theorem.

7 Symbol subscripts are summarized in Appendix B: Nomenclature. A subscript
“0” is always used to refer to the environment or surroundings.

8 A dot above a variable indicates a rate term. That is, Q has units of power, for
example, Joules/second or Watts.

9 This is an Annual Fuel Utilization Efficiency (AFUE). The US government’s
minimum AFUE rating for furnaces is 78%.

10 Steady-state is assumed in equation (9.2).
11 For clarity reasons a conservation of energy equation cannot be written without

a corresponding system diagram (e.g. Figure 9.1) indicating work transfer and
heat transfer energy flow directions. A negative work or heat transfer rate then
simply means that energy transfer takes place in a direction opposite to that
indicated in the system diagram.

12 A co-flow heat exchanger would have the room air and combustion gases flow
in the same direction on opposite sides of the heat exchanger. A counter-flow
system would have the room air and combustion gases flow in opposite directions
(Incropera and DeWitt 1996).

13 This furnace is exergy-conserving in its design philosophy. Similarly, the furnace
shown in Figure 9.1 is energy-conserving in its design philosophy since it attempts
to transport 100% of QCombustion to QRoom. The exergy-conserving nature of the
furnace shown in Figure 9.2 is established by noting that if all processes are
reversible there is no loss in ability to do work, or in particular, no loss in exergy.

14 As will be seen, Q0,Net = Q0, Exhaust – Q0,IN < 0. That is, on an energy quantity basis
there is a net transfer of energy from the environment to the furnace as reflected
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by the thicker arrow exiting the environment. Or put another way, the exergy-
conserving furnace of Figure 9.2 refrigerates the environment.

15 A heat pump provides a means to actively transport thermal energy in a direction
opposite to the natural heat transfer direction of hot to cold. However, the Second
Law of Thermodynamics requires that heat transfer must always take place from
hot to cold (Reynolds and Perkins 1977). The heat pump does not violate the
Second Law of Thermodynamics because it simply creates locally the appropriate
temperature gradient.

16 Conceptually, a heat pump is equivalent to a refrigerator in that they both pump
thermal energy from a lower temperature to a higher temperature. They differ
by purpose only; a heat pump utilizes the high-temperature thermal energy output
from the system to heat while a refrigerator utilizes the low-temperature thermal
energy input to the system to cool.

17 Had Question 1 asked what fuel savings would result for a given QRoom, then the
exergy-conserving furnace in the given example provides at least a 17% fuel
savings over a conventional furnace.

18 A flawed efficiency may still be useful. If all furnaces whose efficiencies are being
compared are similarly constructed, for example, conform to the system model
of Figure 9.1, then the flawed efficiency given by equation (9.1) can provide a
measure of the relative performance of the various furnaces.

19 First Law efficiencies are also referred to as thermal efficiencies (Wark and
Richards 1999).

20 A reversible process is defined as a process that can be reversed without leaving
any trace on the surroundings (Cengel and Boles 1998). That is, both the system
and the surroundings can be returned to their initial states at the end of the
reversible process.

21 A Carnot engine is not the only engine with a Carnot efficiency (Reynolds and
Perkins 1977). All reversible heat engines operating between two temperature
reservoirs possess the Carnot efficiency. For example, an ideal Stirling engine or
an ideal Ericsson engine. This implies that there are many different engine design
options available, even for maximum engine efficiency engines.

22 Had Question 2 asked what fuel savings or additional cost would result for a
given QRoom then the reversible exergy-conserving furnace provides about a
93% fuel savings over the conventional furnace.

23 A combined cycle power plant is simply a power plant that combines both a gas
turbine with a steam or Rankine cycle.

24 The “at night” constraint is given to emphasize that the only sources of energy
are (a) the liquid water at 60ºC, (b) the ice at –20°C, (c) the environment at
20°C, and (d) the natural gas at 20°C. For example, solar radiation energy is not
available in this example.

25 See Appendix C for the calculation of this 88ºC result.
26 Technically it is intrinsic exergy that is being discussed that is necessarily positive

or zero. The “intrinsic” adjective technicality is discussed in Section 9.3.5.
27 It is important to understand that this observation is not referring to the exergy,

or useful work potential, of material flowing through a system, but rather speaks
only of the exergy within the system itself. Intrinsic exergy is formally defined in
Section 9.3.5. In brief, it is the work potential of a system, not the work potential
of material flowing into or out of a system, and not the work potential of a
system constrained by size, time, and/or structure.

28 A quasi-equilibrium process, also referred to as quasi-static process, is an idealized
process during which a system is internally infinitesimally close to a state of
equilibrium at all times (Wark and Richardson 1999).
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29 To utilize exergy well includes the ability to destroy exergy thoroughly. It does
not mean that the only goal is to preserve exergy, that is, be efficient.

30 Energy degradation is distinctly different from energy dissipation. Energy
dissipation is the loss in ability to do work due to entropy production. It represents
only one of several methods to degrade energy. Energy degradation is a loss in
ability to do work from the perspective of the system utilizing the energy. It
represents a loss in ability to do work which may result due to dissipation, due
to energy changing to a useless form of energy, or due to exergy that moves
beyond the reach of the system. Energy degradation is also concerned with exergy
density and time. Elaborating on the authors concept of energy degradation is
beyond the scope of this chapter, but will be the subject of a future paper.

31 Entropy is a thermodynamic property just as temperature and pressure are
thermodynamic properties. Whereas temperature is a macroscopic measure of
random molecular kinetic energy and pressure is a macroscopic measure of the
force per unit area generated by molecular collisions, entropy is a measure of
molecular randomness or uncertainty (Reynolds and Perkins 1977).

32 Some ecosystems should possibly be excluded from this generalization. For
example, those ecosystems found around deep ocean thermal vents (Stover 2000;
Lutz and Kristof 2000).

33 For a discussion on the sometime subtle but important differences between system
order, organization, and complexity, see Corning and Stephen (1998a, 1998b),
Kay (1984, 2000b), and Schneider and Kay (1994).

34 Exergy analysis related engineering tools such as entropy generation minimization
(Bejan 1995) remain beyond the scope of this chapter.

35 Exergy destruction and entropy production are related in the sense that they
both correspond to a loss in ability to do work as evidence by the Gouy-Stodola
theorem presented in Section 9.3.3

36 Photosynthesis-dependent life includes not only organisms that can
photosynthesize, but also all those organisms dependent on photosynthesizing
organisms through the food chain. For example, cattle, humans, lions, and
butterflies.

37 Radiation energy transfer is distinctly different from convection heat transfer as
clearly demonstrated by the entropy flux associated with radiation being 4/3
larger than the entropy flux associated with convection (see Appendix F, item
vii) (Planck 1966). Consequently, the symbol ΦT is used to distinguish radiation
energy transfer from convection heat transfer, which is commonly represented
by the symbol Q

.
. The T subscript on ΦT indicates that radiation energy and

temperature are associated through Planck’s distribution.
38 By definition the authors consider conduction a special case of convection where

fluid flow (advection) is zero. Convection is composed of both advection and
thermal diffusion effects. Conduction is driven by thermal diffusion only.

39 Enthalpy (kJ) is a convenient thermodynamic property which by definition is
equal to the fundamental thermodynamic properties of internal energy plus
pressure times volume (Reynolds and Perkins 1977). Specific enthalpy is simply
the enthalpy scaled by mass (kJ kg–1).

40 Shaft work is all work transfer that crosses a system’s boundary except flow
work (Reynolds and Perkins 1977). Shaft work is represented by W, flow work
is not.

41 Work is associated with a force acting over a distance. Flow work is associated
with the pressure force acting over the distance traveled by the flow as it crosses
the system boundary (Reynolds and Perkins 1977; Moran and Shapiro 2000).

42 The Stefan-Boltzmann Law for blackbody radiation is given by  =



352 Roydon A.Fraser and James J.Kay

 is the radiation energy transfer rate, s is the
StefanBoltzmann constant (W m-2 K-4), and A is surface area. The spectral emissions
from α real surface are far more varied than provided for by the Stefan-Boltzmann
Law, however, for practical purposes, real surfaces are still governed by  a
dependence through the graybody assumption and the empirical measurement
of a surface specific emissivity, ε (Incropera and DeWitt 1996).

43 The expression q” = h(TSurface – T0) is known as Newton’s Law of Cooling where
q” is the convection heat flux (W m-2) and h is the convection heat transfer
coefficient (W m-2 K-1). h is frequently empirically determined (Incropera and
DeWitt 1966).

44 Stable elements include O2, N2, H2, and C. The stable form of an element is
simply the chemically stable form of that element at the environment temperature
and pressure. If an element exists in more than one stable form at the environment
temperature and pressure then one of the forms should be specified as the stable
form. For example, the stable form for carbon is assumed to be graphite, not
diamond. For purposes of tabulating a chemical’s ethalpy of formation, Gibb’s
free energy of formation, or exergy, a standard reference state for the environment
of 25ºC and 1 atm is generally selected (Rossini et al. 1952; Moran 1989; Cengel
and Boles 1998).

45 The stable elements that constitute the chemical composition of the environment
varies. One popular model for the composition of atmospheric air at 25ºC and 1
atm sets the mole fractions for N2 at 0.7567, O2 at 0.2035, H2O at 0.0303, CO2

at 0.0003, and other gases at 0.0092 (Moran 1989). This is clearly only a model
as the humidity is fixed.

46 Edgerton (1982) actually uses the term available energy in place of exergy; see
Table A1.

47 See Appendix D.
48 Helmholtz free energy is also often loosely referred to simply as free energy.
49 A control mass system is a thermodynamic system with no mass flow across its

boundary. In contrast, a control volume system is a system with mass flow across
its boundary. A control mass system should not be confused with a closed system,
nor a control volume system with an open system. A closed system has no energy
flow across its boundary (and therefore no mass flow too), while an open system
has energy flow across its boundary (which may or may not be associated with
mass flow).

50 The authors are currently preparing a more detailed work on these new exergy
classifications.

51 On this point the authors are adamant. Without an explicit system diagram
people must implicitly assume system diagrams, but if assumed diagrams differ,
confusion, misinterpretations, and errors result.

52 The First Law refers to the First Law of Thermodynamics; the Second Law refers
to the Second Law of Thermodynamics. The First Law equation is also called
the energy balance equation or Conservation of Energy equation; the Second
Law equation is also called the entropy balance equation.

53 Energy transferred by radiation is referred to as radiation energy transfer or
simply radiation transfer. It is not to be referred to as radiation heat transfer
because doing so is one major reason people do not recognize that radiation
transfer actually transfers a third more entropy with it than convection or
conduction heat transfer (see Appendix F). This recognition problem exists
because the vast majority of heat transfer texts deal only with First Law concepts.
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54 Fortunately, a priori determination of the direction of radiation transfer is not
difficult. The net radiation transfer to a surface is simply the sum of incoming
radiation absorbed by that surface minus the radiation emitted by that surface.
Therefore, all system diagram surfaces must be drawn indicating both incoming
and outgoing radiation transfer unless radiation transfer is considered negligible,
and hence not included in the system diagram.

55 A synonym for immediate surroundings is local environment. The term local
environment is not used in this chapter because it merely distracts from clearly
separating the idea of surroundings from the idea of environment. However, as a
matter of technical clarity, there is no problem in using the term local environment.

56 Care is necessary when using the term environment. In addition to it being used
to specifically refer to the exergy reference environment, it can also be used as a
synonym for the immediate surroundings. The distinction must be made based
on context.

57 Any additional P dV work (i.e. (P – P0) dV) can go into lifting a weight and is
therefore useful.

58 Please note that maximum work is not necessarily reversible work. Reversible
work is defined as the work transfer during a reversible process, that is, a zero
entropy production process ( Ps = 0). Maximum work may correspond to
minimum theoretical entropy production, not zero entropy production; see
Sections 9.3.5 and 9.4.1.

59 It is possible that there may be more than one system to choose from in the non-
immediate environment as the reference environment. For example, a choice
between atmospheric air and river water. A central concept of exergy is that it
maximizes the work potential, therefore there exists the requirement that the
appropriate non-immediate environment system to be selected to act as the
reference environment be one that maximizes the exergy calculation.

60 The term stable-equilibrium dead state introduced here by the authors reflects a
new refinement to the definition of dead state. The adjective “stableequilibrium”
is based on the stable-equilibrium state principle (Gyftopoulos and Beretta 1991).
In particular, the stable-equilibrium dead state yields an exergy expression in
which the calculated exergy becomes a pseudo-property, that is, it is dependent
only on the state of the system.

61 The thermal-mechanical stable-equilibrium dead state is actually referred to in
the engineering literature as the restricted dead state (Bejan 1997). This is
unfortunate given the need to introduce restricted exergy in Section 9.3.5,
unfortunate because the restriction placed on the dead state is concept imposed
while the restrictions placed on the exergy calculation in Section 9.3.5 are system
imposed. The adjective “thermal-mechanical” was chosen for clarity reasons as
it explicitly states the type of equilibrium to be reached. Therefore, in the exergy
terminology introduced in this chapter, restricted dead state is left undefined,
never to be used.

62 Without this assumption that species and phase concentrations be equal to that
of the environment, it would be impossible to bring the system into complete
thermodynamic equilibrium with its environment since, in this example, mass
transfer is defined to be zero. A system in thermal and mechanical equilibrium
with the environment, but not chemical equilibrium, is said to be in the
thermalmechanical equilibrium dead state.

6 3 Exact differentials are dependent only on the end states of the process. For
example, the change in a system’s internal energy as that system proceeds from
state 1
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to state 2 is given by

 

Inexact differentials are dependent on both the end states of the process and the
actual path or process followed. For example, one does not speak of the change
in work transfer between states 1 and 2, but rather one speaks of the work
transfer from states 1 to 2. Symbolically this is represented by

 

For convenience, the 1 → 2 subscript can be dropped if it does not create
confusion. For example, when the system only proceeds from state 1 to state 2;
it does not proceed onto a state 3. Of note, some practitioners use d(δW) (Nicolis
and Prigogine 1977) in place of dW. The authors discourage this as the δ does
not indicate as clearly as the 1 → 2 subscript that the quantity in question is path
dependent; however, it is recognized that the d notation is useful for perturbation
studies.

64 The Greek letter chi (X,χ ) will be used to represent exergy. X is total exergy in
kJ and χ is specific exergy in kJ kg–1. The letter chi is used since it resembles the
Roman letter x whose pronunciation is the first syllable in the word exergy. The
Roman letter x is not used due to its heavy use as a general mathematical variable.

65 A subtle extension of the non-constant T0 and P0 idea is the idea that the exergy
concept must also admit the possible need to switch between non-immediate
environment systems as the reference environment, even during a single exergy
calculation. The ultimate goal in an exergy calculation is to maximize work, not
to necessarily fix the reference environment.

66 The stable-equilibrium state postulate states that, “any property P can be written
as a function of the form

 

where the explicit dependencies of P on E, n, and ß are determined by the system,
that is the constituents, the internal forces, the external forces, and the constraints
(Gyftopoulos and Beretta 1991). E is energy, n is a constituent, ß is a relevant
parameter such as volume, r is the number of different constituents, and s is the
number of different relevant parameters.

67 Also known as non-flow exergy.
68 Many of these texts refer to exergy as availability.
69 While a system-centric viewpoint ignores entropy production processes in the

surroundings, an isolated-system viewpoint considers the entropy production in
the immediate surroundings. See Appendix E for further discussion on the
systemcentric and isolate-system viewpoints and their relation to the dSi viewpoint
of irreversible thermodynamics.

70 Darwin (1859) was among the first to introduce a role for history into science.
71 Some people have taken issue with the term lost work as they believe the term is

inaccurate or confusing since it may implicitly communicate to some that
something “lost” may also be “found.” The authors suggest those who dislike
the term lost work use the term permanently lost work.

72 By equation (9.27), the conclusion that exergy can never be produced is as strong
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and valid as the Second Law of Thermodynamics statement that entropy can
never be destroyed.

73 Also referred to as entropy generation minimization.
74 A fluid reservoir is characterized as a non-immediate environment system that

undergoes no shaft work or heat transfer, but can reversibly supply or accept a
mass flow with no change to its specific properties.

75 Consider the system shown in Figure 9.6 used to calculate flow exergy. In
calculating flow exergy the size of this system is irrelevant. That is, the stored
exergy content of the system is irrelevant, and the SSSF assumption is how
information about system content is removed from the calculation.

76 Flow work exergy is defined by χFlow Work = (P – P0)v where P is pressure (kPa), v
is the specific volume (m3 kg-1), and the subscript 0 refers to the reference
environment (Cengel and Boles 1998).

77 As discussed in Section 9.3.2, the concept of restricted exergy does not invoke
the concept of restricted dead state. For clarity of communication the terminology
of restricted dead state must never be used, rather one speaks of thermal-
mechanical stable-equilibrium dead state.

78 Relevant in relationship to what is important to the system in question. In the
context of exergy, identification of the dead state implicitly identifies which work
mode gradients are considered relevant. For example, if the dead state’s reference
environment is defined as the atmosphere composed of specific percentages of
oxygen, nitrogen, carbon dioxide, water, etc., then implicitly nuclear reactions
that could change the composition are neglected or considered non-relevant.

79 Each reversible work mode corresponds to a thermodynamic property gradient,
e.g. P dV work corresponds to a gradient in pressure. A non-reversible work
mode is friction.

80 The classical Second Law of Thermodynamics distinguishes between allowable
and impossible processes. In effect, it identifies which process directions are
possible and which are not. It does not, however, require that a system
spontaneously move towards a maximum entropy or equilibrium state. The
Spontaneous Equilibrium Principle is additionally required. The Spontaneous
Equilibrium Principle simply states that an isolated system naturally and
spontaneously proceeds to a state of equilibrium. This separation of concepts is
consistent with the Law of Stable Equilibrium presented by Hatsopoulos and
Keenan (1965) and Kestin (1968), which combines the two concepts into one
law.

81 Recall, order and organization are different (see section on “Exergy’s role in
characterizing ecosystems”) (Corning and Stephen 1998a,b).

82 The solar radiation energy flux striking the earth is proportional to the earth’s
projected area normal to the direction of solar radiation, that is, that of a circle,
and not the earth’s actual area, that is, that of a sphere. Therefore, even if the
earth’s surface was fractal in nature and of infinite area, the solar radiation energy
flux reaching the earth would be unchanged, remaining proportional to projected
area. Therefore, an infinite area solar collector must necessarily extend beyond
the earth into outer space.

83 In Kay (2000b), the exergy destruction principle was called the exergy degradation
principle. The change of name to exergy destruction principle is necessary for
the purpose of clarity since exergy destruction is clearly defined both in this
chapter and in the literature, while exergy degradation is not.

84 First, Schrödinger used the concept of negentropy to effectively describe living
systems as non-equilibrium dissipative systems. Second, and very importantly,
negentropy is not exergy destruction! Third, today, negentropy is a non-
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recommendable thermodynamic term. For example, negentropy has created
considerable confusion suggesting that information processes negate the Second
Law of Thermodynamics. The authors suspect that if Schrödinger were working
today he might use exergy destruction instead of negentropy to describe his
thoughts on life; unfortunately, the concept of exergy destruction had not yet
been developed in 1944.

85 This is an intrinsic exergy calculation to the thermal-mechanical stableequilibrium
dead state.

86 Specifically, dSi is used to represent entropy production internal to the system only.
Although the dSi viewpoint does lead to the important conclusion that entropy
production is greater than or equal to zero locally, it does not possess the practical,
or engineering, viewpoint incorporated into exergy. A classic engineering example
that demonstrates the linkage between system and environment entropy production
is Chambadal’s power plant (Chambadal 1957). In particular, if entropy production
in the immediate environment is ignored an incorrect optimum exhaust temperature
for the power plant can be obtained (Bejan 1995).

87 Technically dSi is an inexact differential, however, it is written as dSi instead of
dSi to be consistent with the irreversible thermodynamic literature.

88 A reversible heat engine, such as the Carnot heat engine, extracts the maximum
work output from a heat transfer process. Its use is also the only way to reversibly
transfer energy by heat transfer across a finite temperature difference, and hence,
its introduction is unavoidable for any reversible process involving heat transfer
across a finite temperature difference.

89 The  factor often comes as a surprise to most engineers who have studied
radiation heat transfer for years. This is because virtually all courses and texts
on radiation heat transfer, some quite voluminous (Siegel and Howell 1992),
tackle radiation heat transfer from a First Law of Thermodynamics perspective
only! That is, the entropy of solar radiation and the Second Law of
Thermodynamics is completely ignored. The Second Law or exergy perspective
of radiation energy transfer is still in its infancy, even in engineering where the
exergy concept is otherwise reasonably well developed.

90 Remember, heat transfer refers to convection or conduction heat transfer only, it
does not refer to radiation energy transfer. Radiation energy transfer has unique
considerations that differentiate it from convection or conduction heat transfer.
For example, the  factor discussed in Assumption vii.
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Chapter 10

Calibration of thermal
infrared sensors

John R.Schott, Scott D.Brown and Julia A.Barsi

10.1 Overview and scope

This chapter deals with the radiometric calibration of thermal infrared (TIR)
sensors from an end-to-end systems perspective. Our intention is to provide
the basis for calibration of laboratory, field, and flight instruments. This is
of obvious use to the operators of these instruments, but even if you are only
using TIR image data from a satellite, it will be important in understanding
how to convert that data to surface temperature values. Because of the
increasing availability and use of many band systems, we will include
manychannel sensors or spectrometers throughout our discussion; however,
the approach is also valid for single-band instruments.

Our initial goal in most TIR remote sensing studies can often be simply
stated as the need to identify the spectral emissivity and the kinetic temperature
of each object (pixel) in the scene. Achieving this goal involves careful
calibration of laboratory, field, and flight instrumentation, ongoing
procedures to monitor this instrumentation, and algorithms to convert sensed
data (i.e. digital counts) to the radiometric domain where we have established
our calibration references.

Regrettably, calibration to the sensor reaching radiance using onboard
blackbodies as illustrated in Figure 10.1(a) is only the first step in quantitative
image analysis. The other three fundamental steps are conceptually illustrated
in Figure 10.1(b)–(d). These steps consist of conversion of the sensorreaching
radiance to the surface-leaving radiance (Figure 10.1(b)), separation of the
surface-leaving radiance into an emitted and reflected component [calculation
of the background component (Figure 10.1(c))], and finally separation of
the emitted component into emissivity and temperature-driven components
[i.e. solving for temperature and emissivity (Figure 10.1(d))]. In most cases
these steps are not as easily separable as we have described them here, and
we shall resort to a number of tricks to achieve our goal of measuring the
temperature and spectral emission structure of the earth (cf. Gillespie et al.
1996). However, in all cases one common component prevails, that is the
need for good radiometric calibration of laboratory field and flight
instruments (cf. Guenther 1991).
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10.1.1 Radiometric terms

We begin with a discussion of temperature. The true or kinetic temperature
of an object is a result of the vibrational and translational motion of the
atoms and molecules that make up the object. The kinetic temperature can
be measured by direct contact with a chemical thermometer or electro-
mechanical detector such as a thermopile. This approach allows the
instrument to measure the temperature via conduction of the heat from the
contact surface of the object. However, theoretically there exists a temperature

Figure 10.1 Steps in end-to-end system calibration.
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gradient within the object that is a function of the material’s thermal
conductivity. (Figure 10.2).

We must, therefore, ask which temperature we wish to measure. Typically,
we are interested in the bulk or average temperature of the object. However,
for materials with lower thermal conductivities the temperature gradient
through the bulk will be greater, and the surface or the skin temperature will
not be indicative of the bulk temperature. This issue regarding the actual
temperature being measured will be very important in our discussions
pertaining to calibration standards and standard monitoring.

In addition to contact or conductive measurements, the temperature of
an object can also be remotely sensed by measuring the radiation emitted by
the object. Recall that the radiance from a perfect radiator or blackbody is
described by the Planck equation, and is expressed as

(10.1)

where Lλ is the spectral radiance (W m-2 µm-1 sr-1), h is Planck’s constant
(6.6256 × 10-34 Js), c is the speed of light (3 × 108 m s-1), λ. is wavelength (m,
nm, or µm), k is the Boltzmann gas constant (1.38 × 10–23 K-1), and T is the
surface temperature (K). However, the perfect radiator is an idealized concept,
and radiance measured from a material at a known temperature is usually
less than the blackbody radiance. This observation gives rise to the measured
radiance equation, which is expressed as

(10.2)

Figure 10.2 Temperature gradients with depth (d) exist within solids and liquids which vary
depending on thermodynamic properties. The surface or skin temperature (Tsurf)
may not reflect the temperature of the bulk (Ti).
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where LBBλ (T) is the Planckian radiance from a blackbody at the
temperatureT of the object observed. The spectral emissivity (ε(λ)) is a
materialdependent radiation property that indicates how efficiently the surface
emitscompared to an ideal radiator. Because the emissivity is a material-
dependentproperty, it is often more important than the temperature for
materialmapping and identification studies.

At this point, we can define another commonly used temperature metric
called the apparent temperature, brightness temperature, or radiometric
temperature. The apparent temperature of an object is the kinetic temperature
which a perfect radiator would be required to maintain, to generate the
radiometric signal measured from the object.

10.1.2 Justifying calibration

The basic goal of instrument calibration is to relate instrument measurements
to the instrument reaching radiance. If this can be accomplished to a high
degree of certainty, then other techniques can be applied to transform these
measurements to physical properties of the object being sensed (primarily,
temperature, and emissivity). We will achieve these goals by discussing the
use of lab (primary) and field (secondary) source standards to inject known
radiances into the instrument so that the corresponding measurements can
be calibrated. The calibration of these instruments can be broken down into
two processes: the radiometric calibration which verifies the instrument’s
ability to correctly measure the magnitude of incident radiation and the
spectral calibration, which verifies the ability to discern the spectral
distribution of the incident radiation. In operation, if we look regularly at a
pair of sources with known radiance and record the image level (digital count)
they produce, then we have an end-to-end system calibration (assuming
linearity). With these data, we can convert any digital count in an image to
an observed radiance level over that spectral channel (cf. Figure 10.1(a)).
The process can be repeated for each spectral channel. The spectral bandpass
must also be determined as discussed in Section 10.2.2.

10.2 Lab calibration

Calibration in the TIR relies almost exclusively on the use of radiational
source standards. In the visible and near-infrared (VNIR) spectral regions,
there is an ongoing migration in the standards community toward the use of
detector-based standards. This is driven by the inherent stability of modern
VNIR detectors. It is the lack of a similar temporal stability in thermal imaging
detectors that forces the use of source-based standards and also drives much
of our calibration strategy. Because all field and flight instruments rely on
the use of reference standards, we will begin our discussion with a treatment
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of calibration source standards. Finally, in closing this section, we should
point out that, while we will emphasize source standards, there is a growing
use of detector standards in the form of electrical substitution radiometers
for very precise work in standards laboratories (cf. Wolfe 1998).

10.2.1 Radiometric standards

The type of source we will be most concerned with in TIR calibration is the
blackbody. This is a source that approximates a perfect radiator (i.e. ε = 1)
and, as a result, the spectral radiance is described by the Planck function
(equation 10.1). In principle, our standardization process is simplified (at
least conceptually) to a temperature standard (i.e. if we know the temperature
of the blackbody, we know its spectral radiance). In fact, we can only
approximate a blackbody (and there are many ways to do so) and only
approximately know its surface kinetic temperature. The following
paragraphs discuss various blackbody designs (cf. Figure 10.3) and their
respective performance attributes for our applications.

For the most precise work done in the laboratory, melt-point blackbody
standards (Figure 10.3(a)) are used. These blackbodies are typically cylindrical
or conical cavities open at the end to allow observation into the cavity. The
cavity walls are made of low reflecting material (i.e. highly emissive) and
since no flux can leave the cavity without bouncing from the walls several
times the effective emissivity is very close to 1 (emissivities of 0.9999 are
common for National Institute of Standards and Technology (NIST) traceable
melt point blackbodies). The cavities are made of a thin-walled thermally
conductive cone surrounded by a very pure elemental material (e.g. cesium).
The standard material is maintained at its melting point by a separate set of
thermal controllers and thermal monitors. Because of the heat of fusion, this
is a very stable temperature location and our knowledge of the cavity
temperature is largely limited by the purity of the material used as the
transition material. The radiance from these sources can be known very
accurately, and they can be used as primary standards. They have several
limitations, three of which make them impractical for day to day use in most
laboratories. They are expensive, limited to one temperature (radiance level),
and have a small useable size (i.e. aperture), making them difficult to use
directly with large aperture, low resolution systems. They also tend to be
quite large, which limits their use in some applications.

In order to achieve a range of temperatures, multiple blackbodies are
required with the cavities controlled by the melting point or boiling point of
different materials. An alternative approach is to utilize a thermally controlled
blackbody that can be adjusted through a range of temperatures (Figure
10.3(b)). This can be done by controlling the boiling point with the pressure
of an inert gas over the fluid. The cavity will be very stable at the liquid to
gas transition temperature. By carefully monitoring and controlling the vapor
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pressure, the boiling point temperature can be controlled over a wide range
and still be known very accurately. Typically, the controlled temperature
cavities have emissivites of (0.999) and the temperature uncertainty is of the
order of 0.1 K or better. These sources still suffer the limitations of high cost,
large physical size, and small useful source size (e.g. 1–2 cm aperture).

A more cost-effective alternative for common use in the laboratory is the
liquid bath blackbody. These use a temperature controlled insulated bath
filled with a circulating fluid (usually oil, hence the common name oil bath

Figure 10.3 Illustration of common types of blackbodies.
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blackbody (Figure 10.3(c))). The fluid is in thermal contact with a thin walled
cone, the outside of which is coated with a highly emissive material (typically
a special paint). The bath temperature is carefully monitored with a bridgetype
thermometer immersed in the circulating liquid. This type of blackbody is
reasonably affordable, can have a larger surface area (although very large
sources are difficult to build because of thermal uniformity and space
logistics), and can cover the range of temperatures needed for most earth
observation work. They are still somewhat large and the fluid circulation
systems make them impractical for many field and most flight operations.
The instruments in daily use at the Rochester Institute of Technology (RIT)
have emissivities of about 0.995 and temperatures uncertainties of
approximately 0.05. They have the marked advantage of reasonable cost,
ease of use, and source sizes that are sufficiently large enough to eliminate
lengthy and costly alignment time during calibration setup. As a result, they
are commonly used for many day to day operations with the more exotic
sources only used periodically to update the oil baths.

In standards jargon, the melt point blackbodies are used as primary
standards and the oil baths as secondary standards. Rigorously speaking,
even the melt-point blackbodies are secondary standards since they are
typically calibrated to the primary melt-point blackbody at NIST.

For field or in-flight calibration of instruments, a thermo-electric flat plate
blackbody, is commonly used (Figure 10.3(d)). These standards utilize thermo-
electric heating/cooling devices to control the transfer of heat between a
high conductivity flat plate and a heat exchanger. The plate is typically coated
with a special paint to increase the emissivity. To increase further the effective
emissivity, the plate surface may be grooved (pyramidal) or covered with a
honeycomb (waffle). To monitor the surface temperature of the radiation
surface, thermistors or thermocouples are placed directly into and/or on the
surface. Flat plate blackbodies are widely used because they do not utilize
liquids that may be spilled in the rough environment of a field collection or
in an aircraft. Additionally, these devices can be made very compact and can
be oriented at various angles (which liquid-type blackbodies cannot) making
them more appropriate as internal calibration sources for field and flight
instruments.

The more impoverished reader may want to consider the poorman’s black-
body (Figure 10.3(e)). It consists of a simple thin walled metallic cone (we
make them out of shim stock) painted with a high emissivity paint submerged
in a water bath. If the water bath is well circulated, then the blackbody cone
should be at the temperature of the water. The limitations of this approach
are that in its simplest form, the blackbody can only be viewed vertically, the
temperature range is limited (though it is acceptable for most earth
observation) and the emissivity of the blackbody may deviate significantly
from one. An even simpler approach involves just using a well-mixed water
bath and taking advantage of the high spectrally flat emissivity of water



Figure 10.4 Plots showing the emissivity of natural water as a function of (a) wavelength, (b)
view angle, and (c) wind speed. The data in (a) are for normal viewing. The data
in (b) are for the 8–14 µm spectral range. The data in (c) are for 1 µm wide
bands.
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across most of the electromagnetic spectrum (cf. Figure 10.4). This approach
eliminates any decoupling of the skin temperature of the blackbody from the
water temperature. Clearly, the water bath approach is not very attractive
for flight instruments, but it can be very useful in the field, particularly as a
backup if other equipment fails. Figure 10.5 shows photographs of several
types of blackbodies.

Table 10.1 gives a quick summary of the expected errors in calibration of
various types of blackbody sources. The errors associated with the use of a
blackbody are very much a function of the environment in which the
measurements are taken. This is because the largest unknown or unaccounted
error is typically the reflected-radiance from the surround. Let us consider
several ways to calculate the “known” radiance from a blackbody. In the
simplest case, re-expressing equation (10.1), we would assume the blackbody
was truly black and the temperature was known. In this case, the spectral
radiance would be

(10.3)

The effective radiance in a particular bandpass would be

(10.4)

where  is the peak normalized spectral response over the bandpass of
interest (i.e. for the ith spectral band). Many times the effective spectral

Figure 10.5 Photos showing various types of blackbodies. Images courtesy of Rochester Institute
of Technology’s Digital Imaging and Remote Sensing Laboratory.
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radiance for a particular bandpass is more useful. It can be expressed as

(10.5)

For convenience, we will express most of our calibration equations in terms
of spectral radiance, but recognize that any radiometric expression can be
converted to effective radiance or effective spectral radiance by weighting by
the appropriate responsivity expression. Because most of our blackbodies
are not truly black, we need to modify equation (10.3) to account for
emissivity, that is, re-expressing equation (10.2),

(10.6)

Table 10.1 Errors associated with various blackbody sources and calibration equations.a All
radiance values are expressed in terms of apparent temperature (K)

a Assumptions: TBB = 320 K, ∆λ = 8–l4 µm, and background temperature TB = 300 ± 1 K or TB = 260 ± 1
K for the last column. All radiance errors are expressed as apparent temperature with ∆L/∆T computed
for a 300 K source.  , and are the uncertainties in emissivity, radiance due to uncertainty
on blackbody temperature, and radiance due to uncertainty in background temperature. The last two
columns incorporate the bias errors associated with using equation (10.3') to approximate equation
(10.7').
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Using equation (10.3), we would calculate too much radiance coming directly
from the blackbody. Using equation (10.6) is more complete, but it is also an
approximation in that it neglects the reflected radiance term. Thus, the most
appropriate expression for the spectral radiance from a calibration source
can be expressed as

(10.7)

where we have used Kirchoff s rule to express the reflectance of the black-
body as r(λ) = 1 – ε(λ) and we have assumed that the background radiance
can be approximated by the spectral radiance from a blackbody having the
temperature of the background (Tb). Simple examination of equation (10.7)
shows that if this is the more correct expression, then equation (10.6) will
always underestimate the radiance and equation (10.3) may over or under
the estimate radiance depending on the temperature of the blackbody relative
to the background. In fact, if the blackbody and the background are at the
same temperature, then equation (10.7) and (10.3) yield the same results.
The importance of these approximations is shown in Table 10.1. The first
column labeled radiance error describes the error in the knowledge of radiance
from the blackbody if equation (10.7) is used. It reflects errors due only to
uncertainties in the input parameters (T, Tb, and ε). The last two columns
include the bias errors due to the common practice of approximating the
radiance using equation (10.3) instead of rigorously using equation (10.7) (cf.
Moeller et al. 1996). Two cases, one with a background relatively close to the
blackbody temperature, and one with a background with quite a different
temperature, simulating a cold sky are presented. Because most of us cannot
think in radiance units, it is often more convenient to work in apparent
temperature. This is the temperature a perfect blackbody would have to be at
to generate the radiance observed. The errors in Table 10.1 are expressed for
convenience in units of apparent temperature or more rigorously the change
in temperature needed to generate the corresponding change in radiance. Since
the change in radiance per unit change in temperature varies with temperature,
we use changes relative to a 300 K source for these illustrations. It is clear
that “blacker” blackbodies and those with surround temperatures close to
the target temperature simplify the problem and reduce errors. It is also
clear that in many cases we need to use the full rigor of equation (10.7).

Finally, it is important to consider, as we proceed, what degree of calibration
is necessary for a particular task. The cost in terms of instrumentation,
manpower, and time increases significantly if very small temperature errors
are required. Most studies need to evaluate what temperature/emissivity
knowledge is required for the particular application. Then, an error
propagation study can predict the level of instrument calibration required
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and from there the laboratory and flight calibration errors that can be
tolerated.

10.2.2 Spectral standards

To this point, we have emphasized only radiance levels and the use of source
standards. We should point out that there is also a need to perform wavelength
calibration of most instruments. The spectral calibration consists of
characterizing the relative spectral response of each channel in the imaging
sensor as a function of wavelength. Typically, this is done by placing a
continuous source like a hot blackbody at the entrance aperture of a
monochrometer. The monochromatic energy exiting the monochrometer is
used to irradiate the sensor, usually through an optical collimator. By scanning
the monochromator through a range of wavelengths, the relative response of
the imager as a function of wavelength can be determined. This assumes that
the relative source radiance (i.e. source temperature) is known, along with the
relative throughput of the monochromater-collimator combination. In order
to verify the wavelength calibration of the monochromator, sources with a
well-known narrow line structure are required. One way to do this is to use a
line source (e.g. a CO2 laser). Another approach is to use a filter to selectively
pass or absorb only a narrow wavelength range from a broadband source.
Because of their narrow absorption features, transparent cells filled with a
gas with very well-defined spectral transmission can be used for this purpose.

10.2.3 Use of transfer standards to calibrate field
or flight blackbody sources

You will typically need to transfer information about your laboratory source
calibration to field or flight blackbodies for more operational use. Often,
size, space, weight, and electrical power requirements drive us toward some
form of flat plate thermo-electrically controlled blackbody for operational
instruments. In order to calibrate these field units, we will use our hopefully
well-characterized laboratory sources and a transfer radiometer to transfer
the calibration to the field unit. This is done using the procedures illustrated
in Figure 10.6. First, a radiometer is used to look at a standard blackbody at
two temperatures (Figure 10.6(a)). Ideally, to reduce temperature drift in the
radiometer, two standard blackbodies would be used. These blackbodies are
set at temperatures that are slightly above and below the temperature of the
field blackbody(s). Then the field blackbody is measured. The spectral or
bandpass radiance from the standard blackbodies can be calculated using
the procedures described in the previous section. The radiometer can then be
calibrated by assuming the relationship between radiance and counts is linear,
at least over the small range represented by the temperature difference in the
standard blackbodies. The radiance for the field instrument can then be
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interpolated using the two-point calibration and the observed signal from
the radiometer when observing the field blackbody (Figure 10.6(b)).

The field blackbody will also have a setting or readout usually proportional
to or approximately equal to its kinetic temperature. Ideally, this is the signal
from a thermistor in direct contact with the surface of the blackbody. If we
then plot the blackbody readout versus the interpolated radiance (often
expressed in apparent temperature for convenience), we have the first point
in our calibration curve. This entire procedure is repeated over the entire

Figure 10.6 Illustration of steps involved in initial calibration of reference blackbodies: (a) use
of blackbodies to calibrate a transfer radiometer; (b) use of the transfer radiometer
to calibrate a point in a field blackbody readout; and (c) combination of many
readout point using steps (a) and (b) to generate an overall calibration of a field
blackbody.
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operating range of the field blackbody (Figure 10.6(c)). It is important to
recognize that most infrared radiometers suffer from long-term drift so that
for accurate work, the localized piecewise linear recalibration of the
radiometer should be repeated for each measurement. If a spectral calibration
is required, then this procedure needs to be repeated at each wavelength
range of interest. However, because the main variable being monitored is the
radiometric temperature of the field blackbody, spectral interpolation should
not introduce significant error.

Based on the resulting calibration, we should be able to predict the radiance
from the field blackbody quite accurately assuming three critical assumptions
hold. First, that the field blackbody is stable (i.e. the radiance is always the
same for any given readout value). Second, that the readout sensor closely
tracks the surface kinetic temperature (a common flaw in blackbodies is a
sensor that is imbedded into or is partially insulated from the skin temperature
of the blackbody). Third, that the background radiance in the field is
comparable to the laboratory background. The stability can be easily checked
with repeated measurements, the readout tracking can be tested by running
the blackbody at a high or low temperature relative to ambient and then
circulating ambient air over the surface. The surface temperature may change
(depending on the temperature control circuit), but the readout and radiance
should still generate points on the calibration curve indicating that the
temperature probe is accurately tracking the skin temperature. The
background radiance may be significantly different in the field than in the
laboratory. To correct for this, we would need to know the effective emissivity
of the blackbody, as well as the effective background temperatures in the
field and during calibration. We could then use equation (10.7) and subtract
out the reflected laboratory background radiance and add in the reflected
field background radiance for each measurement. Clearly these corrections
may be unnecessary if the blackbody is sufficiently black, the backgrounds
have similar temperatures or our error tolerances are high compared to the
errors introduced by background effects (cf. Table 10.1). The emissivity of a
surface can be measured using specialized instrumentation as described by
Salisbury and D’Arian (1992) or using a simplified though less precise
approach described by Schott (1986).

10.2.4 Calibration of field sensors and in-flight calibration

The calibration of field and flight sensors would ideally be a simple extension
of the calibration of the laboratory transfer radiometer as described in the
previous section. For many field instruments and applications, this is indeed
the case. If the blackbody fully fills the entrance aperture of the field or flight
instrument, then we can easily perform a full up sensor calibration. In the
simplest case, the instrument observes two blackbodies (or, if necessary,
sequentially observes a single blackbody at different temperatures) at
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temperatures that approximately span the temperature range to be measured.
Note, that once an instrument is involved, we should always use the effective
radiance terms as described in equations (10.4) and (10.5). The output voltage
or digital count of the sensor is then plotted against blackbody radiance to
generate a two point calibration curve. This process can be repeated for each
channel in a multichannel instrument and each detector in an imager with
multiple detectors. It assumes that the response of the instrument is linear
with radiance over the temperature range of interest. This should be carefully
verified in the laboratory by generating a detailed plot of radiance versus
signal out for many blackbody temperature levels over the entire operating
range of interest. If the instrument response is found to be non-linear, several
options exist. The first is to treat the response as piecewise linear over several
sub-regions of the total operating range. This, of course, means that several
calibration points (i.e. several blackbody levels need to be measured in the
field each time an instrument is calibrated). For many flight instruments this
is impractical and more than two points may not be available. In this case,
the functional form of the non-linearity of the system response (or more
typically its deviation from linearity) can be calculated and the function forced
to fit through the two known calibration points.

Because of the inherent drift in many infrared instruments, it is often
necessary to regularly perform calibration in the field. On the other hand,
many instruments have some type of internal blackbody to which they
frequently normalize the response (i.e. perform a bias adjustment). This
process minimizes the effect of drift in the instrument and can reduce or
eliminate the need for regular recalibration in the field. However, the reader
should be cautioned that many instruments, even with internal references,
will have a change in their response if the ambient temperature changes.
Again, this should be carefully evaluated in the laboratory so that the need
for field calibration is known in advance.

Flight instruments can be calibrated using the same two-point approach
as field instruments if full aperture blackbodies can be located ahead of the
first optical element (or window). This is commonly done for line scanner
type instruments using the back scan time as shown in Figure 10.7. Each
revolution of the mirror generates one or more line(s) of image data and
allows the sensor to see the known radiance from two blackbodies. This
allows a full two-point recalibration of the instrument with each rotation of
the mirror. The radiance from each blackbody is known (or can be calculated,
if necessary, using equations (10.7) and (10.4)) and a count versus radiance
calibration can be performed for each detector in each band. Then, every
count in the line(s) associated with that rotation of the mirror can be converted
to radiance. The entire process is repeated for each rotation of the mirror.
This full aperture approach is very attractive because the black-bodies are
viewed through the entire optical system in exactly the same way the earth is
viewed, as a result, we get a complete end-to-end calibration on a regular
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basis so that any drift in the instrument response should be completely
removed.

Regrettably, this approach is often not possible with whisk or push broom
imagers or where the primary optic is large. Whisk broom scanners often do
not scan far enough off the image area to fully image a full aperture blackbody.
Push broom scanners have essentially no comparable dead time during an
acquisition to view the calibrator and the cost, weight, power, and non-
uniformity problems associated with large blackbodies make them impractical
for many large-aperture systems. An alternative approach used with some
systems is to use full-aperture calibrators only periodically during image
acquisition. For example, full-aperture blackbodies may be moved in front
of the imager before or after each image acquisition. A pair of images of the
blackbody at different temperatures can then be used to calibrate the entire
image assuming the system is stable over the period of image acquisition. In
many cases, the detectors will have been at least bias restored on a line by
line basis using a reference closer to the detectors (i.e. behind the telescope)
that is somehow chopped into the field of view of the detectors. This line by

Figure 10.7 Illustration of blackbodies used for calibration during the backscan of a TIR line
scanner.
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line restoration accounts for short-term drift with the full-aperture blackbodies
used to define an absolute end-to-end calibration and to account for long-
term drift.

Unfortunately, full-aperture calibration is often not available in many flight
systems. In these cases, the regular calibration is done using black-body
sources that are introduced somewhere along the optical train (usually after
the telescope). For example, in the case of the ETM+, a calibration wand is
flipped into the optical path during the dead time when the scan mirror is
turning around (cf. Figure 10.8). In the TM case, the wand consists of a high
emissivity background surface at constant temperature and a mirror that
reflects the radiance from a small blackbody into the optical path and onto
the detectors. The wand blocks any radiation coming through the telescope
and becomes the source for radiance reaching the detectors. As the wand
moves across the detector’s field of view, the background is used as a flat
plate blackbody whose temperature and, therefore, radiance is known. Then
the mirror fills the detector’s field of view and reflects a known blackbody
radiance onto the detectors (cf. Barker et al. 1985). Since this occurs with
every mirror oscillation, each line of data has a complete two-point linear
calibration update. In the simple linear case, we can write an expression for
each detector in each band of the form

(10.8)

Figure 10.8 Optical illustration showing how the calibration wand is introduced to calibrate the
latter stages of the Landsat Enhanced Thematic Mapper +.
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where DCij is the digital count in the ith band from the jth detector (e.g. on
TM 4 and 5 there are four thermal lines acquired per oscillation requiring
four detectors), LBBi(T) is the radiance from the blackbody in the ith band
due to its temperature T, and  and  are the detector linear gain and bias
terms for the ith band and the jth detector. If the detector exhibits non-linear
characteristics, they can be included as corrections to the linear fit using
preflight characterization data. The problem with equation (10.8) is that it
neglects the transmissive losses and additive radiance from the optical elements
ahead of where the calibrator is inserted. Because it is most convenient to
place the calibrators in a region where the optical beam is narrow, they are
usually behind at least the telescope and possibly some conditioning optics.
As a result, several mirrored surfaces are neglected, in the wand-type
calibration, which collectively have a significant transmissive loss. In addition,
all of these surfaces will have an emissivity equal to one minus their reflectance
and as a result, they are radiation sources. The structures that support the
mirrors also acts as radiation sources (e.g. the spider web that supports the
secondary mirror in the Thematic Mapper telescope) that contribute a
significant radiation load (bias level) that is also neglected by the wand.
These effects must be taken into account if we are to have an accurate
calibration of the instrument. In most cases, the bias correction and possibly
the gain associated with the forward optics will be a function of the
temperature of the optical elements and the telescope optical cavity. If these
surfaces change temperature in flight (which they commonly do unless the
cavity temperature is actively controlled) then the fore optics correction must
include adjustments based on the temperature of the optical surfaces and
background. This can be accomplished using radiometric models, empirical
fits, or, more typically, a combination of the two where a radiometric model
is adjusted to fit empirical observation.

The empirical fit is accomplished pre-flight using known radiance sources
ahead of all of the optical elements. This is essentially the procedure we
described for calibration of field instruments. In this case, a collimator may
be used with a small blackbody rather than a full-aperture blackbody to fill
the entrance aperture with a known radiance level. The instrument’s overall
linear calibration response can be expressed as

(10.9)

where Li is the entrance aperture radiance in band i and mij(To) and bij(To)
are the end-to-end instrument gain and bias. The functional dependence of
the gain and bias on the temperature(s) (To) of the forward optical elements
are explicitly noted. However, we should recognize that the form of this
functional dependency is usually a complex radiometric model including the
temperatures of the optical elements and their background, the emissivity of
the elements, and the geometric form factors for each element. As a result,
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the values of mij(To) and bij(To) will change with changes in the operating
condition of the instrument. Thus, we need to have a solution for all the
possible operating conditions of the instrument. To simplify this somewhat,
we can express the radiance relationship more explicitly in terms of the
dependence on the forward optics as

(10.10)

where LBBi is the radiance reaching the location of the internal calibrator (i.e.
where the blackbodies on the wand are located), Li is the radiance reaching
the sensor in the ith band, and gi(To) and ci(To) are the band dependent
multiplicative (gain) and additive (bias) effects due to the propagation of the
image radiance from the front of the sensor to the onboard calibrator.
Substituting equation (10.10) into equation (10.8) yields

(10.11)

By comparison with equation (10.9), we see that

(10.12)

and

(10.13)

This means that by running both an internal calibrator (equation 10.8) and
an end-to-end calibrator (equation 10.9), we can isolate the unknown effects
due to the forward optics (equations 10.12 and 10.13). By repeating this
evaluation over the range of operating conditions of the instrument (e.g.
heating and cooling the telescope or individual optical elements) the functional
dependency of the fore optics gain and bias on monitored surface temperatures
can be established. In flight, the internal calibrator is used in conjunction
with the fore optics gain and bias (obtained from lookup tables or models
based on the monitored temperature(s) of the telescope) to generate the overall
calibration coefficients (mij, bij) (cf. equations 10.12 and 10.13).

We should point out that this is just one of the many procedures that can
be used to attempt to account for the effects of optical components ahead of
an internal calibrator. Another approach might assume that the gain term
(gi) was a constant and the bias term alone varies with instrument conditions.
If we look to space (i.e. essentially zero radiance) just before an image
acquisition then the observed signal is equal to the overall system bias (bij)
and the effect of the forward optics can be computed using equation (10.13).
Regrettably, many imagers cannot regularly point to deep space and even if
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they could, the radiance levels may be so small that the bias level may be on
an extremely non-linear portion of the response curve or even below the
signal threshold for the instrument. Other options include closing a shutter
over the entrance aperture of the telescope and using the shutter as an end-
to-end calibrated radiance source. By changing the temperature of the shutter,
a full two-point end-to-end calibration assessment is available in space.
Clearly, this can only be done periodically and an internal calibrator would
still be necessary to remove short term variations in detector response.

10.2.5 Onboard calibrator monitoring

No matter what form of blackbody calibration is used, some additional form
of periodic end-to-end testing is highly desirable because of potential changes
in an instrument over its lifetime. This is particularly true of space-based
instruments with long lifetimes. Over time, the optical surfaces in the telescope
may change affecting the fore optics calibration. Without some periodic way
to do an end-to-end assessment, we would never know if changes took place
and might, for example, continue to use incorrect terms for the gain and bias
correction for the telescope. One way to assess the endto-end performance
of satellite systems is with ground truth or underflight assessments. These
approaches are discussed in Section 10.3.

One of the fundamental questions with any calibration procedures concerns
the long-term performance of the calibration reference itself. This is
particularly true of space programs where it is very difficult to do a detailed
periodic reassessment of the calibrator against other well-known reference
standards. As a result, most systems try to employ some form of onboard,
often redundant, monitoring. The first monitor for most systems is the
thermistor (thermocouple) imbedded or attached to the surface of each
blackbody. These, rather than any pre-calibrated control signal, are used to
estimate the true kinetic temperature and, therefore, the radiance from the
instrument. In many systems, multiple monitoring probes are used. This not
only provides a redundant check but also, on large blackbodies, can provide
a check of thermal uniformity. Regrettably, the temperature monitoring probes
are only of use if they are truly monitoring the skin temperature of the
blackbody, which is what is observed radiometrically. For cavity-type
radiators, this is typically not a problem (the surface is usually close to
radiational and convective equilibrium). However, for many flat plate
radiators used in full-aperture calibrators and even some internal calibrators,
the surface may not be close to a thermal equilibrium with the surroundings.
In these cases, the surface, temperature must be maintained by conducting
heat to or away from the surface. This inevitably generates gradients near
the surface, which can be difficult to measure. Imbedded thermistors may be
slightly below the surface or be slightly insulated from the surface by the
coating used to blacken the surface. Surface-mounted probes may change
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the local radiational field where the measurement is taken by forming a
radiational shield. Well-designed blackbodies attempt to reduce these effects
by using highly conductive materials that make it hard to maintain local
thermal gradients. However, the potential is always there and the user should
always check carefully for any decoupling of the radiometric and kinetic
temperatures. One way that has been proposed to do this in flight is to use a
simple radiometer to monitor the temperature of the blackbody. Very stable
broadband low-frequency bolometer-style detectors can be used for this
purpose. These detectors essentially use an internal thermal reference to
provide long-term stability. Their slow response times and low sensitivity
make them unacceptable for imaging purposes, but do not limit their utility
for radiometric monitoring of onboard calibrators. The radiometric
temperature can then be compared to the kinetic temperature measured by
the thermistor to see if any systematic thermal decoupling is taking place.

10.3 Post-launch verification

One of the most critical concerns after the launch of a new TIR satellite
imager is whether the pre-launch calibration is still valid. This same concern
also applies to new airborne systems (i.e. can we trust the onboard calibrator).
Indeed, for many satellite systems employing internal calibrators, there is a
periodic need (e.g. yearly) to verify the calibration of the instrument. In this
section, we will emphasize procedures for post-launch verification (or
recalibration) of satellite-based imagers but the approach could also be applied
to airborne sensors. There are two basic approaches to this process. The first
involves assuming that the onboard sensor is calibrated, inverting to surface
radiance or temperature, comparing the results with ground truth, and
determining whether any residual error is within the compounded errors of
the procedures used. If the error between inversion, and truth is larger than
the propagated error due to sensor calibration, atmospheric inversion, and
ground truth measurement, then the instrument calibration needs to be
updated. This ground truth based approach is discussed in Section 10.3.1.
An alternative, though similar, approach is to predict the radiance values an
imaging sensor should see and compare these values to observed values.
Only if the error between prediction and observation exceeds the propagated
errors associated with the prediction process is an updated calibration
required. This approach typically employs underflight measurements and is
discussed in Section 10.3.2.

10.3.1 Selection and use of ground truth targets

In order to evaluate or update the calibration of an imaging system, it is
critical that we have two or more known radiance values. Ideally, these would
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be two full-aperture blackbodies at different temperatures located in front of
the imaging system. We could then compare the blackbody radiance values
to the values measured by the imager. If the errors exceeded expectations,
then equation (10.9) could be used to perform an updated calibration of the
gain and bias values for each detector. Regrettably, we do not yet have a
blackbody calibration lab in space. As a result, this test of system performance
is most commonly done using radiance values from the imaging sensor
propagated to earth and compared to surface radiance values (cf. Schott and
Schimminger 1981; Schott 1993). This comparison could also be done by
propagating the surface radiance to space and comparing the measured and
predicted values at the spacecraft. However, because we most often want to
evaluate how well we can invert image values to surface radiance or
temperature, it is more common to measure errors in terms of surface radiance
or temperature. In either case, we have a critical need for surfaces whose
radiance is well known. If we express the surface-leaving radiance as

(10.14)

then it is clear that ground truth may consist of directly measured values of
surface radiance L(0) or well-known values of emissivity, surface temperature,
and downwelled radiance (Ld), which can be used to compute the surface
radiance. We would need these values for fully resolvable targets in each
spectral band of interest. Furthermore, to effectively evaluate the instrument
gain and bias, we would need to have at least two targets at significantly
different radiance levels (ideally covering the operating range of the imager).
Because of the dependence of radiance on temperature, emissivity, and
downwelled radiance, it is important to insure that these values will not
change between the measurement time and the imaging time. The emissivity
of most surfaces can be assumed constant for long periods of time (soiling,
moisture content, and phenological changes being some obvious exceptions)
and selecting stable air masses can reduce the temporal dependence on Ld.
The importance of Ld can also be significantly reduced by selecting high
emissivity (low reflectivity) targets. The time dependency of temperature
remains a critical problem. The diurnal heating and cooling cycle keeps the
temperature of most objects in at least a slow state of flux. This change is
minimized late at night. However, although temperatures are most stable,
the scene contrast is also often lowest late at night, making it difficult to
obtain the appropriate temperature ranges. To minimize errors due to thermal
changes with time, it is best to choose objects with high thermal inertia and,
if possible, times of slow change in diurnal temperature values. There is also
an issue of whether to directly measure radiance or to compute it from
measurements or estimates of temperature, emissivity, and downwelled
radiance. It is simplest to measure the radiance of two or more objects at the
time of the overflight. There are several practical problems with this approach
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that may often force us to choose the indirect solution. The first is the need to
match the spectral response of the surface face radiometer to the response of
the imaging sensor. The match is never identical, which means that we need
to work in some units other than raw radiance. If the spectral response of the
two sensors is nominally the same (e.g. 10–12 µm) then if we carefully convert
each sensor’s radiance to apparent temperature, we can do a comparison of
radiance values expressed as apparent temperature. If the target’s emissivity
values are approximately flat, this approach introduces only small errors (cf.
Section 10.4). If the sensor’s bandpass values differ significantly in bandwidth
or spectral shape, then we must go through a more involved process to predict
the radiance the imaging sensor should see (i.e. to predict truth). In this case,
we need to convert the radiance in one spectral band to the radiance we
would expect in another. Without spectral data, this can only be an
approximation. The errors in the process are minimized if the spectral response
functions are similar, the emissivities are approximately constant over the
whole spectral range, and downwelled radiance effects are minimized (i.e.
sky temperature or Ld when expressed as apparent temperature is
approximately constant with wavelength). The transfer process involves
estimating the unknown terms in equation (10.14) using the observed surface
radiance value and thus predicting what the groundleaving radiance would
be in the spacecraft bandpass. For example, if we measured the temperature
and estimated the emissivity from lab data or a lookup table based on material
type, we could solve for Ld and express it as the apparent temperature of the
sky (Tsky). Then the effective radiance in the sensor spectral bandpass could
be estimated as

(10.15)

where  (λ) is the spacecraft sensor’s peak normalized spectral response.
The errors in equation (10.15) are almost as large as if we just used indirect
measurements to begin with, so, in general, surface radiance measurements
are only useful if they are a close spectral match to the satellite system or the
target is very nearly a blackbody. Even under these conditions, the spectral
radiance measurements can pose a serious logistical problem. This is because
the measurements need to be made essentially simultaneously with the
overflight of two or more surfaces that may be very large. For example, the
ground sample sizes for Landsat 7, ASTER, Landsat 5, MODIS, and AVHRR
are approximately 60, 90, 120, 1,000, and 1,000 m, respectively. To account
for sampling error, we would need to characterize an area approximately
three times the ground sample size on each side. This can be a tall order if the
surface has any significant spatial variability. This drives us to seek large
targets with constant temperature and emissivity over areas spanning several
pixels. Any variability in radiance would need to be recorded so that we
could effectively predict the aggregate radiance observed from space. As a
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result of these restrictions, we may need one or more radiometers per sample
for low-resolution systems. On the other hand, when the resolution is of the
order of a meter (e.g. for airborne systems), then the logistics are far more
tractable and the use of a field radiometer becomes very attractive.

All of these constraints have pushed us towards the use of water as one of
the most convenient ground truth targets. It has a number of very useful
characteristics, not the least of which is its ubiquitous nature on the surface
of the planet. In addition, the high thermal inertia of water and the tendency
of fluids to mix leaves us with large surfaces that often have temporally and
spatially constant temperature. Also, if the water is well mixed, then a kinetic
measurement is very indicative of the skin temperature that will be
radiometrically observed. Finally, water as shown in Figure 10.4 has a very
high spectrally flat emissivity that does not vary appreciably for angles near
nadir. As a result, both kinetic and surface radiometric measurements of
water can be effectively used as ground truth. One important limitation
becomes important in the case of calm water, particularly during high solar
loading conditions (i.e. good remote sensing days). If the water is very calm
(i.e. unmixed pools, ponds, even lakes if there is little wind) then solar heating
(or radiational and evaporative cooling) can induce a sharp thermal gradient
in the surface water. This has two negative effects. First, it means that simple
kinetic measurements will not accurately reflect the skin temperature. Second,
it may set up a condition where there is substantial non-uniformity in the
surface temperature if there is a source of disturbance (e.g. boat wakes).

In order to utilize our ground truth measurements, we must first convert
the radiance measured with the overhead system to comparable values.
Typically, this involves solving for the surface-leaving radiance, apparent
surface temperature, or kinetic temperature of the ground truth target(s).
This requires correction for the influence of the atmosphere. In the simplest
case, effects of atmospheric transmission and path radiance can be
expressed as

(10.16)

where L(h) is the measured sensor-reaching radiance, L(0) is the surfaceleaving
radiance, and τ and Lu are the effective transmission and upwelled radiance
(path radiance), respectively. There are a number of methods to estimate τ
and Lu for each band (cf. Schott 1997). One of the most straightforward is
to use a radiative transfer code such as MODTRAN (cf. Berk et al. 1989).
The critical inputs to the MODTRAN code are the temperature and relative
humidity of the atmosphere as a function of altitude at the time of the
overflight and the spectral response of the sensor in each band. Ideally, the
atmospheric data would be obtained from a radiosonde balloon launched at
the time and location of the ground truth campaign. In practice, data from
regional airports must often be extrapolated in space and time to generate
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estimates of the atmospheric profile at the point of interest. Once L(0) values
are obtained, they can be directly compared to surface radiance values
(assuming common spectral response in the sensors). Often to minimize cross-
calibration errors, the comparisons are done using effective spectral radiance
values over the bandpass (cf. equation 10.5 or apparent temperature values).
If the truth consists of kinetic temperature values, then the image derived
surface radiance needs to be converted to temperature or vice versa using
equation (10.14) and a band-dependent radiance to temperature lookup table
(i.e. an inversion of the Planck equation).

At this point, we can compare the truth to predicted values and estimate
the residual error. If we are calibrating a newly launched sensor, we would
have performed a parallel study of the end-to-end error propagated to surface
radiance. This would include sensor noise, sensor calibration error, and errors
in whatever atmospheric correction was used (cf. Section 10.4). If the
measured errors are within the tolerance errors from the error propagation
model, we would assume the sensor calibration is still valid. If not, we could
update the sensor calibration by propagating the ground truth values to
sensor-reaching radiance values using equation (10.16). These become the
equivalent of the blackbody values used in equation (10.9) for laboratory
calibration of the instrument. Clearly this step of calibration update is not
done casually and is usually the result of repeated tests that show a consistent
pattern of error in the overall instrument calibration.

10.3.2 Use of ground truth for end-to-end sensor calibration

It is also possible at this point to perform a ground truth based calibration of
the imaging sensor. This would commonly be used for two purposes. The
first would be to perform an end-to-end calibration of the sensing system
incorporating atmospheric and sensor effects. In this case, the sensor need
not be calibrated (only stable) and no external atmospheric correction is
required. If the sensor response is linear, then we can combine equations
(10.9) and (10.16) to yield

(10.17)

where ai = miτi and Ci = miLui + bi are the end-to-end linear calibration
coefficients for the ith spectral channel which can be found by simple linear
regression of image counts versus ground truth radiance values. This approach
is applicable to both aerial and satellite systems and provides a complete
systems calibration and tends to reduce any systematic errors by minimizing
them simultaneously. Regrettably, the solution is only valid if the atmosphere
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and sensor response are constant. Thus, another portion of the same satellite
image 50 miles away may have a different atmosphere or another flight line
30 minutes later may have both a different atmosphere and different sensor
gain and bias. Because of this, the ground truth based calibration is usually
only used for research studies where the cost of a field campaign for calibration
of each image is warranted. Scarpace et al. (1974) demonstrated the
effectiveness of this approach using two small pools at different temperatures
for end-to-end system calibration of an aerial TIR sensor.

This brings us to the second use of ground truth for calibration. In this
case, we assume we have a well-calibrated sensor and wish to evaluate the
effects of the atmosphere (cf. Palluconi 1996). For example, we may be
comparing atmospheric correction techniques or attempting to assess the
error associated with using a particular technique (e.g. the MODTRAN
radiative transfer model described above). In this case, if we regress the ground
truth derived surface radiance (Li(0)) against the sensor-reaching radiance
(Li(h)), then the slope and intercept yield the atmospheric transmission (τi)
and the path radiance (Lui), respectively (cf. equation 10.16). These values
can then be compared to the corresponding values predicted by an
atmospheric correction technique.

10.3.3 Use of underflights for post-launch sensor calibration verification

The other common approach to verification of the calibration of a
satellitebased TIR imager is to use an underflight with a well-calibrated
airborne TIR imager. Because airborne systems can be well calibrated in a
laboratory immediately before a flight and often employ multiple full-aperture
blackbody calibrators, they can be quite well calibrated. To take advantage
of this, we fly the airborne system under the satellite, but above most of the
earth’s atmosphere. If we acquire data at essentially the same time as the
satellite, we can select uniform targets with a range of temperatures whose
groundleaving radiance can be assumed identical and whose radiance is
measured at aircraft and satellite altitudes. For these assumptions to be valid,
four things must hold true. First, the temperature of the targets must be
constant over the period between when the airborne and satellite data are
acquired. This can be optimized by selecting targets with high thermal inertia,
acquiring data near diurnal extremes, and minimizing the time difference
between the underflight and satellite acquisitions. Because we often have
little control over satellite acquisition time, it is even more critical that we
carefully select our targets and control acquisition times. The second thing
we must be certain of is that the airborne and satellite radiances are observed
from the same target. This is greatly facilitated by selecting large
radiometrically uniform targets where image registration and sampling issues
are minimized. Selection of sites can often be facilitated by using the higher
spatial resolution sensor (usually the airborne sensor) to select a region of
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uniform radiance that is substantially larger than the area sampled by the
pixel(s) used to characterize the target in the low-resolution sensor. The third
requirement or implicit assumption is that the emissivity of the targets relative
to the sensors be the same. Since the two sensors are often not along the
same line of site, we want to choose targets whose emissivity is approximately
Lambertian (i.e. constant) over the relevant angles. The fourth requirement
is that the airborne and satellite sensors have the same response. Since this is
never completely accomplished, we seek to minimize spectral response
differences by closely matching the sensor responses, choosing targets with
constant spectral emissivities over the bandpass and using spectral radiance
or apparent temperature values to perform any comparison.

In reviewing all these requirements, we find that large water bodies meet
many of the requirements needed to minimize differences between the aerial
and satellite radiances. The thermal inertia is very large. The emissivity is
well known, spectrally flat, and approximately constant over a range of
view angles and water conditions (cf. Figure 10.4). For a well mixed water
body, the temperature can be uniform over very large areas. One potential
limitation with water as the primary target is that only a limited radiance
range may be available. This limitation can often be overcome by selecting a
study site where different types of water bodies are available (e.g. open water
and bays, lakes and rivers, large river discharge into ocean, etc.).

If we were truly above all of the atmosphere, we could directly compare
the airborne and satellite radiance values and directly determine if there were
any calibration error in the satellite system. In fact, the airborne radiance
values must be corrected for the effects of the upper atmosphere (cf. Figure
10.9). This correction can be estimated using radiative transfer codes based
on radiosonde estimates of the temperature and water vapor in the upper
atmosphere. The expected satellite-reaching radiance can be predicted from
the observed aircraft radiance measurements according to

(10.18)

where Li(s) is the predicted radiance in the ith band at the satellite, Li(h) is
the observed radiance at aircraft altitude (h), and τi(s – h) and Lui(s – h) are,
respectively, the transmission and path radiance from altitude h to space.
The atmospheric transmission and path radiance are predicted for each
band by the radiative transfer process and are a potential source of error.
By flying over most of the atmosphere, we can minimize the magnitude
of the atmospheric correction. This means that we will only introduce
small errors in small terms resulting in small final errors in the predicted
sensor-reaching radiance. The final assessment involves comparing the
difference between the observed and predicted satellite-reaching radiance



390 Schott et al.

values relative to the expected errors in the two measurements. If the observed
differences exceed measurement errors, they can be used to update the satellite
sensor calibration using equation (10.9). This final step is essentially the
same approach as that of the ground truth method described in Section 10.3.1.
The only difference is that the errors in the predicted radiance can often be
substantially reduced by eliminating the errors associated with using the
radiative transfer codes through the lower atmosphere. In addition, the aerial
image data allows for a wide choice of potential targets to optimize the
radiance range and spatial uniformity. Schott and Schimminger (1981) and
Schott (1993) describe the use of this underflight approach to verify the
post-launch calibration of the Heat Capacity Mapping Radiometer and the
Landsat Thematic Mapper Thermal sensors.

Underflight techniques have also been used to evaluate how well satellite
sensors can predict surface-leaving radiance. By flying a calibrated airborne
sensor over the same targets at a series of altitudes, a radiance versus altitude
relationship can be established and extrapolated to zero altitude. If the lowest
flight altitudes are quite low (hundreds of feet over water is common) then
the aircraft imaging radiometer is essentially collecting ground truth (cf. Figure
10.10). These few extrapolated ground truth points are used with the
corresponding data at any flight altitude to compute the atmospheric

Figure 10.9 Illustration of how the observed radiance at the aircraft (Lh) can be propagated
through a thin atmospheric layer (s–h) to yield the radiance at the spacecraft, Ls.



Calibration of TIR sensors 391

parameters using equation (10.16). If this multialtitude profile technique is
used under a satellite overpass, then the atmospherically calibrated aircraft
data at altitude can be used to predict surface radiance values that can be
directly compared to the satellite estimates of surface radiance. This approach
has been used to evaluate various methods for atmospheric inversion of
calibrated satellite data (cf. Schott 1993).

10.4 Error sources and effects

In this section, we want to briefly look at some of the sources of error in
radiometric calibration and temperature measurement. This treatment is
intended to provide the reader with some insights into the relative magnitudes
of error sources for some simple cases. It is important to recognize that, for
any particular sensor, target set and atmospheric correction method, a
sensitivity and error propagation study should be undertaken. As a result,
the terms included in the error analysis presented here are more important
than the actual values that are often case specific or may have been selected
simply to illustrate a point. The reader is referred to Beers (1957) and
Rubenstein (1981) for a thorough treatment of error propagation.

We can begin by considering our calibration problem as comprising three
components. These three components are the surface radiance, the satellite

Figure 10.10 Illustration showing how underflight data can be used for comparison (ground
truth) with satellite estimates of surface-leaving radiance. L1(h) and L2(h) represent
the measured radiance at altitude for targets 1 and 2, respectively.
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radiance, and the atmospheric correction that relates one to the other. We
can look at the surface and satellite radiance measurements separately and
consider the sources of error that contribute to the total error in each
measurement. Then we can look at the error in the atmospheric correction
terms to see how they influence the error in propagating surface radiance to
space or more typically, space-based radiance to surface radiance.

10.4.1 Error in sensor-reaching radiance

Table 10.2 contains examples showing error sources associated with the
measurement of sensor-reaching radiance for two types of satellite sensors
and one airborne sensor. To be consistent, we are using 10.5–12.5 µm for
the spectral bandpass for all examples and we will express all radiometric
errors in terms of the equivalent temperature change in a 300 K blackbody
necessary to produce that change in radiance. In the case of the first sensor,
we are assuming it is a system similar to the Landsat TM shown in Figure
10.8. We have estimated the error in absolute radiance for the onboard
blackbodies to be 0.15 K in apparent temperature using the approach
described in the discussion of Table 10.1. The uncertainty introduced by the
fore optics radiance model generates an independent source of error also at
the 0.15 K level. The system noise for this sensor (detector, preamplifier,
conditioning electronics) when expressed as apparent temperature is 0.1K.
Finally, the uncertainty due to the quantization of the analog signal into
digital counts generates an additional uncertainty of 0.3 K for this example.
Since these error sources are independent, we can generate an overall estimate
of the error, in measurement of the radiance associated with a digital count
value, to be the square root of the sum of the squared values from the
individual sources. The errors are expressed in apparent temperature for
convenience. We see that in this case the overall error in measured radiance
would be about 0.4 K dominated by quantization noise. The second sensor
example is essentially the same as the first with a smaller quantization step
and, therefore, less uncertainty introduced by quantization which in this
case (i.e. because we were limited by quantization error) substantially

Table 10.2 Errors in measurement of sensor-reaching radiance due only to sensor effects.
All values expressed in terms of apparent temperature (K). Sensor 1 is similar
to Landsat TM, sensor 2 is similar to Landsat ETM+, and sensor 3 is indicative of
a range of airborne instruments
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improves overall performance. This is the reason the Landsat 7 thermal data
are available at two gain levels. The low gain level ensures no clipping of the
data will occur but limits the radiometric performance. The higher gain level
has smaller step sizes and, therefore, less quantization error. The third sensor
has characteristics we might expect from an airborne instrument. The absolute
radiance error due to the use of full aperture flat plate blackbodies is estimated
at 0.2 K (cf. Table 10.1). Since end-to-end calibration is used, there is no fore
optics error and in this example (assuming a 10-bit A–D) very low
quantization error. These errors represent the expected error in the sensor-
reaching radiance for three realistic sensor examples. Regrettably, these are
not the only errors in the calculation of apparent surface temperature or in
verification of in-flight sensor calibration.

10.4.2 Error in surface-leaving radiance

A second source of error in many cases is the error in surface-leaving radiance.
Table 10.3 shows several examples of error calculations associated with
surface-leaving radiance measurement or estimation. These errors represent
our uncertainty in “ground truth” measurements. The first two radiance
measurements assume the ground truth data are measured with a field
radiometer. The two temperature measurement lines assume we predict
radiance from knowledge of the temperature and emissivity. The final radiance
measurement assumes the ground truth is the result of extrapolated radiance
measurements from an aircraft using the method illustrated in Figure 10.10.
For the radiance measurements we have an initial error associated with the
field radiometer and usually dominated by the absolute accuracy of the
instrument calibration (cf. the error sources given in Table 10.1). Because
the radiance we observe from an airborne or satellite system covers a larger
area than the field radiometer and because there is some misregistration of
the image and field data, we have to recognize that the spatial variability in
radiance will introduce error in our estimate of the surface radiance that the
overhead imager will observe. There are three major sources for this variation.
They are the spatial variation in temperature [∆T(x,y)], the variation in
emissivity (due to spatial variations [∆ε(x, y)] and angular variations [∆ε(θ)]),
and variation in temperature with time [∆T(t)]. In our example, we assume
that the field radiance measurement(s) (usually an average of several samples
over a target site) attempts to characterize the surface radiance seen by one
or more pixels in the overhead imaging system. The spatial variation in
temperature adds uncertainty to this estimate. This uncertainty will be
minimized for regions of near constant temperature (e.g. water in our
example). The spatial variation in emissivity is a similar source of error. In
many cases, this error can be minimized by selecting uniform material surfaces
for ground truth. An additional source of error can be introduced if the
emissivity of the surface has any variation with view angle. For example, if



Table 10.3 Errors in surface-leaving radiance associated with ground truth measurements. All
radiance values are expressed as apparent temperature (K). Calculations are for a
300 K target with emissivities of 0.90 (land) and 0.986 (water). The effective
background temperature associated with the downwelled radiance is 243.15 K
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the ground truth radiance is measured vertically and the imager is 15° off
nadir, the surface radiance values will differ if there is any non-lambertian
behavior in the target emissivity. Finally, we need to recognize that the field
radiance and the overhead measurements are usually not exactly coincident
in time. Thus, we will have an additional error depending on the rate of
change in temperature with time and the time between the relevant
measurements. The radiance measurement rows in Table 10.3 reflect typical
errors in these terms propagated to an overall radiance error. The
contributions to overall error are grouped into uncertainties due to the target
temperature, the target emissivity, and the downwelled radiance. This example
demonstrates how we can take advantage of the spatial and temporal stability
of water to improve our estimates of surface radiance. Note that we have
assumed that the sky radiance (Ld) is nearly constant for all measurements
and, therefore, contributes very little to error to the radiance estimates. If
the surfaces are specular or the sky variable over the measurement time, we
would need to include the variation in downwelled radiance as an error
source.

If we are relying on temperature estimates to predict surface radiance, we
need to contend with some additional sources of error. The first error is in
the individual temperature measurement. The recording devices themselves
(usually thermistors) can be readily calibrated to 0.1 K or better. The problem
comes from getting the thermistor to effectively record the skin temperature
of the surface being measured. For solids this is a problem of getting the
thermistor in thermal contact with the surface (potentially changing the
surface by the measurement process) or imbedding the thermistor and dealing
with surface gradients. For water, we have the surface gradient issue if the
water is not well mixed. Snyder et al. (1997) point out a number of problems
associated with trying to use even very uniform land surface features for
ground truth. Their estimates of individual measurement errors, as well as
spatial and temporal variations in radiance over land, have influenced our
selection of reasonable error estimates for this sensitivity assessment. We
have somewhat optimistically set the land temperature error at 0.2, but
caution that errors much higher than this are common depending on target
and instrument placement. For reasonable well mixed water (Hudson River),
Schott (1979) sites examples where thermistor and surface radiometer values
have essentially the same error (within 0.1 K) when compared to calibrated
surface radiances derived from over flights. We have, therefore, chosen (0.1
K) as our temperature measurement error for water. The spatial variability
in temperature and emissivity, the angular variation in emissivity, and the
temporal variation in temperature all have the same impact whether we
measure radiance or temperature so these values are the same as for our
radiometric examples.

In the case of direct measurement of temperature, we must also estimate
the emissivity and the downwelled radiance in order to solve equation (10.14)
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for the surface-leaving radiance. We have assumed that emissivity is estimated
based on material type and tabulated laboratory measurements. These errors
could be reduced somewhat by making numerous measurements of emissivity
in the field for the target of interest. Again, because of the inherent variability
in land surface feature, these error sources are larger over land. Finally, we
need to estimate the downwelled radiance. One way to do this is to directly
measure the irradiance onto the target in the bandpass of interest. This will
yield a good estimate of Ld with small errors due to slight temporal variation
in Ld and instrument errors. However, if we are directly measuring
temperature, it is usually because we do not have a field radiometer and we
will need an alternative way to estimate the downwelled term. This can be
done using radiosonde data and a radiative transfer model such as
MODTRAN. The errors in this estimate can be rather large, but their effect
can be mitigated by choosing targets with high emissivity values to reduce
the reflected radiance contribution. In our examples, we see that water with
its high emissivity largely negates the error from Ld, while land surfaces with
emissivities typically around 0.9–0.95 will have a non-negligible error
associated with errors in Ld.

For the direct temperature measurement approach, we can attribute the
total surface-leaving radiance error to uncertainties in temperature, emissivity,
and downwelled radiance. For our example, we have estimated each of the
component errors and expressed them in terms of apparent temperature in
order to compare their relative importance to the overall error in the surface
radiance value (which is also expressed in terms of apparent temperature).
From this assessment, we clearly see that measuring radiance is more attractive
than using contact temperature methods. However, if 10s or 100s of readings
are required to characterize the spatial variability and the readings must be
near coincident in time to reduce temporal variations, then cost may drive us
to the thermistor approach. In addition, we see that water is a significantly
better target than land, if well-mixed water bodies are available as targets.
Finally, we see that by using an imaging radiometer located in an aircraft
over water, we can take dual advantage of water as a target, and a radiometer
as a sensor to minimize spatial variability effects by directly sampling and
averaging out most spatial variation. Figure 10.11 shows an example under
flight image and the size of Landsat 7 (60 m) pixels projected onto the “ground
truth image.” With careful target selection, the thermal uniformity within
the pixels can reduce sampling and spatial variability effects with this
approach to negligible levels compared to instrument errors.

It is important to note in comparing Tables 10.2 and 10.3 that in many
cases the error in radiance from a large sample as measured by the overhead
sensor may be smaller and in some cases much smaller than the error in the
estimate of the ground-leaving radiance for that same large sample. The
reason for this is due in part to the effects of sampling, but we should also
recognize that we have placed all the spatial and temporal registration errors
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on the ground truth. In fact, these errors can be assigned to either the overhead
measurement or the ground measurement or split between them. We also
need to recognize that the measured radiance values in Tables 10.2 and 10.3
are not directly comparable. Table 10.2 represents the error in sensor-reaching
radiance for a single pixel (i.e. the error in L(h) in e.g. equation 10.16). Table
10.3 represents the error associated with trying to measure (using ground
truth) the radiance leaving the ground over the often very large area
represented by that exact same pixel (i.e. the error in L(0) in e.g. equation
10.16). In the long run, our goal is to predict the value (and the error in the
value) of one of these measurements from the other. For example, we want
to operationally predict surface radiance values from image-derived
measurements of the sensor-reaching radiance. However, during calibration
experiments, we want to predict the sensor-reaching radiance (and error)
from surface radiance measurements. In both cases, we need to investigate
the errors associated with atmospheric correction using equation (10.16).

10.4.3 Atmospheric sources of error

Our purpose here is not to try to describe atmospheric correction or inversion
methods, but merely to illustrate the nature of error propagation and the

Figure 10.11 Thermal infrared image of a power plant cooling water discharge into Lake
Ontario. The overlaid boxes on this aerial image represent the approximate
size of 60 m pixels (e.g. Landsat ETM+) that might be ground truthed by this
underflight image. The values shown with each box are the mean and standard
deviation of the temperature associated with the 2-m pixels within the box.
The image is from one of the 70+channels of RIT’s Modular Imaging
Spectrometer Instrument.
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magnitudes associated with simple methods as they relate to instrument
calibration. The errors in this case are illustrated in Table 10.4. The only
sources of error are uncertainties in the atmospheric transmission (τ) and
upwelled radiance (Lu). However, in this case we have a new twist in that the

Table 10.4 Error due to uncertainties in atmospheric correction in the 10–12µm range.
Sensor-reaching and ground-leaving radiance errors are expressed in terms of
apparent temperature (K)
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values of τ and Lu are typically highly correlated (at least when they are
predicted by a radiative transfer code). This means that errors in one tend to
compensate in part for errors in the other. This is important because our
knowledge of the atmospheric parameters is not particularly good in most
operational cases. We have illustrated five cases. Four of them assume that
the atmospheric variables are estimated using radiative transfer models and
estimates of the atmospheric profile. Many alternative methods for
atmospheric compensation exist (cf. Schott 1993). However, the only method
available operationally for all sensors is the use of radiosonde data with
radiative transfer codes so we have emphasized it here. How well the radiative
transfer models work is very much a function of the accuracy of the
atmospheric profile data, the clarity of the atmosphere and the spectral region
being sensed. For these examples, we have consistently chosen a reasonable
clear atmosphere and the 10.5–12.5 µm spectral region that is reasonably
free of major atmospheric absorption features. As a result, we are looking at
some of the best conditions available for remote sensing. In two cases, we
use the radiative transfer model to propagate to space. In the first case, the
radiosonde is assumed to be launched over the ground truth site at the time
of overpass (i.e. a very well characterized atmosphere such as might be
available during an intensive calibration effort). In the second case, we assume
the atmospheric temperature and water vapor profile must be interpolated
over space and time from the nearest radiosonde release site (i.e. most major
airports in the world release balloons at 12:00 and 24:00 h GMT).

We are assuming that surface temperature and relative humidity data are
available to force the interpolation to actual values for the lowest atmospheric
layer. This greatly improves the radiometric calibration and can usually be
done operationally. In propagating the error for these cases, we have assumed
the surface radiance is known perfectly and estimated the error in sensor-
reaching radiance due only to the atmosphere. We have also inverted the
equation and computed the error in retrieved surface radiance due only to
error in the atmospheric correction (i.e. assuming no error in sensed radiance).
As we see the errors due to the atmosphere can be sizeable, particularly for
the operational situation if only radiative transfer models are used.

The third case shows the effect of using the multialtitude technique (cf.
Figure 10.10) to effectively collect ground truth and remove the atmosphere
by a linear fit to equation (10.16). This approach yields more satisfying
results but is only available for aircraft collections or in the rare case when
an aerial system is flown under a satellite as part of a calibration campaign.
The fourth and fifth cases are the same as the second except that we are only
propagating from the aircraft altitude to space. These cases represent the
cases used in underflight evaluation of a satellite sensor where we know the
radiance reaching the aircraft and want to estimate the error introduced by
the atmosphere in extrapolating to space (cf. Figure 10.9). These cases
dramatically illustrate the value of using the aircraft data to generate “truth”
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measurements above most of the atmosphere. Because the upper atmosphere
is so thin, it has a small effect on the final signal. In addition, the upper
atmosphere is less variable and, therefore, less error is introduced due to
uncertainties in the temperature, water vapor profile. The net result is that
the atmosphere introduces more tolerable errors. For all the cases studied,
we have included errors associated with two target temperatures. This is
because the compensating atmospheric errors tend to reduce errors in
measurement of targets with temperatures close to the surface air temperature
(i.e. about 290 K in this case). Thus, we see that the errors for the near
ambient target are less than the hot target. It is important that the user
carefully evaluate errors for the range of targets, atmospheric conditions,
spectral bands, etc., of interest for each study.

For evaluating or updating the calibration of a satellite system, we would
combine the ground truth errors computed using one of the approaches
illustrated in Table 10.3 with the atmospheric error from an approach
illustrated in Table 10.4 to generate the sensor-reaching radiance error. If the
difference between the observed and predicted values exceeds the combination
(root mean square) of the error from the estimation of sensor-reaching
radiance and the instrument error (Table 10.2), we should question the
calibration and perform an update using the best estimates of sensor-reaching
radiance as inputs to equation (10.9). If the sensor is determined to be in
calibration, we can predict the surface-leaving radiance using an atmospheric
correction method. The error can be approximated as the root mean square
of the sensor measurement error (Table 10.2) and the atmospheric correction
error (Table 10.4). However, as in all these cases, a full error propagation
should be performed to obtain precise estimates.

10.4.4 Errors due to spectral mismatch

If the ground truth sensors and the overflight sensor have the same bandpass
our analysis is complete at this point. In practice, this is rarely the case. The
ground truth or underflight radiometer will usually have bands that range
from a nominal match to being considerably different. If the bands are a
nominal match and both sensors avoid strong absorption features, then we
may introduce little error if we use spectral radiance or apparent temperature
values and assume the bands are identical. If the spectral mismatch is larger
or there is strong spectral structure, then significant error can be introduced
by spectral mismatch. This is a particularly significant problem in the 3–5
µm window where the steep slope of the Planck function introduces serious
problems when spectral mismatch occurs. For our example cases, we have
picked two degrees of spectral mismatch. Our space imaging sensor has a
bandpass of 10.5–12.5 µm (we used the actual response of Landsat 5). In
one case, we will look at using a ground truth radiometer with a bandpass of
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10.4–12.4 µm. It is shifted slightly and has small changes in the shape of the
spectral response such as we would expect from an instrument with different
detectors and filters. In the second case, the ground truth instrument is
substantially different with a spectral bandpass of 9.5–11.5 µm. For both
comparisons, we look at targets at two temperatures and with two different
spectral shapes. The temperature impacts the spectral shape of the Planck
function (though this effect is minimal for targets near 300 K at ≈10 µm).
For spectral shapes, we use water as one case, which is quite flat spectrally
(cf. Figure 10.4), and a target whose emissivity increases linearly with
wavelength at a rate of 0.02 emissivity units per micrometer starting at 0.88
at 8 µm. This target is characteristic of real objects exhibiting a moderate
spectral structure.

To approximate the errors introduced by spectral mismatch, we will
simulate the steps a smart user might apply to minimize mismatch artifacts.
First, we use a radiative transfer model to generate an estimate for the
atmospheric terms for one atmospheric condition, then we can solve for the
surface-leaving spectral radiance observed by the ground truth instrument
and the spectral radiance reaching the overhead instrument using the
following expressions

(10.19)

and

(10.20)

where L∆λ1(0) and L∆λ2(s) are the effective spectral radiance observed by the
ground truth and space instruments, respectively, and  (λ) and  (λ) are
the spectral response functions for each instrument. The smart user
recognizing a potential for spectral mismatch would take the effective surface
spectral radiance and convert it to an apparent temperature Tapp1(0) and
then propagate this apparent temperature to the expected spectral radiance
at the space instrument according to

(10.21)

The difference between L
,
∆λ2(s) and L∆λ2(s) represents the error due just to

spectral mismatch. This is expressed as an apparent temperature error for
the cases illustrated in Table 10.5. Consideration of Table 10.5 indicates that
when the spectral mismatch is small, targets are spectrally flat and we are in
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a benign spectral region, the spectral mismatch error will be very small.
However, even in the benign spectral region we are considering, the errors
can become significant if the targets have spectral structure and the spectral
mismatch is significant. In cases where significant error occurs due to spectral
mismatch, there may be a partial remedy. This is because much of the error
may be systematic and, therefore, predictable (this is especially true if it is
caused primarily by the Planck function). While the details are beyond the
scope of our treatment here, the conceptual approach is simple. We generate
an error function to systematically correct the predicted radiance values L

,
∆λ2

(s) for spectral mismatch induced error. We then compute the non-systematic
or random error using Monte Carlo methods. This random component is the
error we would associate with a systematically corrected spectrally mismatched
radiance estimate. This error must be combined with the error sources
illustrated in Table 10.4 to generate the overall error.

10.4.5 Summary

In closing this section on error assessment and this chapter on calibration
issues, the reader is reminded that accurate calibration of TIR systems is not
a trivial task. Further, the example error estimates are very case-specific and
should not be considered indicative of any particular instrument or scenario.
Thus, in order to achieve proper calibration, careful laboratory and field

Table 10.5 Effects of spectral mismatch when comparing to a spacecraft spectral band from
10.5–12.5 µm radiance band. The subscript I refers to the ground truth and aircraft
spectral band and 2 refers to the satellite spectral band
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measurements such as those suggested here should be followed. In parallel
with these procedures, a case-specific error assessment should be conducted
so that we know what confidence to place on any measurement.

Appendix: definition of symbols

LBBλ Spectral radiance from a blackbody [W m-2 sr-1 µm–1]
T Temperature (K)
h Planck’s constant (6.6256 × 10-34 J s)
c Speed of light (3 × 108 m s-1)
λ Wavelength (m)
k Boltzmann gas constant (1.38 × 10-23 K–1)

ε Emissivity
Lλ Spectral radiance (Wm-2 sr-1 µm–1)
R’ Peak normalized spectral response
r Reflectivity
m’,b’ Gain (counts/radiance unit) and bias (radiance units) obtained using

an internal onboard calibrator
m, b Instrument gain (counts/unit radiance) and bias (radiance units)
g,c The multiplicative gain (loss) and additive bias (radiance units) of the

forward optics
Ld Downwelled radiance from the sky onto the earth’s surface

(W m-2 sr-1)
τ Atmospheric transmission
Lu Path radiance along the target sensor line of sight (W m-2 sr-1)
a, C Linear gain (counts/unit radiance) and bias (radiance units)

incorporating instrument and atmospheric effects
h Aircraft altitude (km)
s Spacecraft altitude (km)
t Time (s)
i Subscript indicating bandpass number
b Subscript indicating background
j Subscript indicating detector number
o subscript indicating forward optical elements
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Chapter 11

MUST—a medium scale surface
temperature mission dedicated
to environment and agriculture

Alain Vidal, Philippe Duthil, Catherine Ottlé,
Vicente Caselles, Antonio Yagüe and
John Murtagh

11.1 Introduction

The Medium Scale Surface Temperature (MUST) study was carried out in
the framework of the European Commission (DG XII) fourth “Research
and Development Work Programme.” The objective of this study was the
definition and demonstration of interest of a large swath, medium resolution
thermal infrared imager mission, named MUST. More precisely speaking the
specific objectives were:

• to demonstrate the relevance and efficiency of the products of the MUST
mission in the relevant application fields and to assess the economical
benefits of the mission;

• to further develop methodologies for retrieving thermal- and waterrelated
surface parameters from the sensor data;

• to design a medium-resolution, large-swath thermal imager, that is,
compact and affordable;

• to analyze the operational implementation of the ground segment.

The study was co-ordinated by Matra Marconi Space (MMS) and their
partners Cemagref (France), CNRS/CETP (France), the Universitat de
Valencia (Spain), INFOCARTO (Spain), and the NRSCL (UK). It included
the whole Mission and System definition process, starting with the definition
of the user requirements, including the space and ground segments, the cost
estimates, and ending with the evaluation of the MUST mission benefits
versus costs and the final recommendations on the potential continuation of
the programme. A development and implementation of the MUST sensor
was then proposed in the framework of the European Space Agency Coastal
Zone Earth Watch mission.
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11.2 The MUST mission and related applications

11.2.1 Applications

The application of thermal infrared measurements from space are based on
the relation existing between surface temperature and the soil and vegetation
hydric state as introduced later. They can be classified into three main classes:
(a) the assessment of the vegetation hydric state, important for applications
such as agriculture (crop yield forecasts, potential stress due to drought,
illness, or other pests), irrigation management, and forest fires risks
assessment; (b) the assessment of surface (soil and vegetation)
evapotranspiration, and thereby the evaluation of water consumption, useful
for irrigation management and the evaluation of soil moisture that is helpful
in hydrology applications; (c) the assessment of surface temperature itself or
the air temperature as a by-product of surface temperature. The related
applications are mapping frosts on agricultural surfaces or heat islands on
urban surfaces. In addition, the MUST thermal infrared data are expected to
be useful for the global monitoring of the biosphere and as a contribution to
the Global Circulation Models providing data on the water fluxes at the
global scale. The different fields of operational applications for the thermal
infrared data are listed in Table 11.1.

11.2.2 The MUST information products

The MUST information products can be classified into three types, based on
equation (11.1):

(11.1)

where Ts is the surface temperature measured by MUST and Ta the air
temperature. This simple equation explains the double dependence of Ts on:
(a) the climatic conditions, expressed through Ta; (b) the energy balance of

Table 11.1 Main land applications identified for a thermal imager
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the considered surface, where equilibrium is the difference between surface
and air temperatures (Ts – Ta).

Product type 1: vegetation stress index product

Measured through Ts – Ta, this product mainly concerns crop yield estimation
in agriculture, irrigation monitoring, and risk assessment of forest fires. The
evaluation of vegetation stress is derived from the analysis of the surface
energy balance terms. The energy balance is usually expressed with the
following equation:

(11.2)

where Rn is the net radiation flux, G the soil heat flux, H the sensible heat
flux, and LE the latent heat flux or evapotranspiration. This partition depends
on the availability of water in soil (for soil evaporation) or in canopy (for
canopy transpiration). As shown by many authors (Perrier 1975; Jackson et
al. 1981), a reduction of soil/plant surface evapotranspiration results in an
increase of Ts – Ta, whereas an increase of evapotranspiration results in a
decrease of Ts – Ta.

Physically, Ts ranges from a maximum value of Ts max when
evapotranspiration is null (LE = 0) to a minimum value of Ts min when
evapotranspiration reaches its maximal (or potential) value LE = LEp (Moran
et al. 1994; Vidal et al. 1997). LEp depends on the atmospheric conditions
(air temperature and moisture) and on the plant characteristics (resistance
to heat exchange with air and resistance to evapotranspiration).

The ratio of actual LE to LEp (LE/LEp) provides a precise assessment of
the vegetation stress, which is minimal when LE/LEp = 1, and maximal when
LE/LEp = 0. Several indices have been developed to estimate this ratio, LE/
LEp, using remote sensing measurements. The more classical ones are based
on the CWSI (Crop Water stress Index) approach where (Jackson et al. 1981):

(11.3)

Product type 2: daily/weekly surface evapotranspiration product

Estimated also through Ts – Ta, this product mainly concerns irrigation
monitoring and water resources management. A generic expression has been
derived by many authors (Jackson et al. 1977; Seguin and Itier 1983; Vidal
and Perrier 1988) from the surface energy balance for estimating the daily
evapotranspiration from an instantaneous midday remote sensing
measurement of Ts – Ta:
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(11.4)

where LEd and Rnd are the daily evapotranspiration and net radiation, A and
B are constants depending on the canopy, and Ts – Ta is the instantaneous
difference between surface and air temperatures measured near midday.

Product type 3: interpolated air temperature, Ta

This is derived by correlating surface and air temperature, assuming air
temperature to be known at some meteorological station point. Some of the
primary applications include frosts prediction and detection of urban heat
islands. A strong correlation is found between surface and air temperatures,
when low air temperatures occur, which are the usual conditions when frosts
maps or urban heat island maps, are required.

11.2.3 Methodology followed for assessing the user requirements and
benefits

The User Requirements phase has been a major step in the definition of the
MUST Mission and System, as no structured user community exists. The
scientific community has not necessarily evaluated all the issues related to
end-user requirements for information products using land surface
temperature. The user requirements and benefit assessments have therefore
been established with three National user groups in United Kingdom, Spain,
and France (Table 11.2).

The user groups were involved in two main steps of the process. First,
they expressed their requirements in terms of products and services. Second,
after the products had been simulated, they indicated more precisely their
interest for the products. This provided an assessment of the benefits derived
from MUST products by the user community.

11.2.4 The information products’ requirements and simulations

The main applications in agriculture, water resources, and forest fires will
be presented henceforth. In all the cases, MUST surface temperatures were
simulated from Landsat TM thermal IR data (120-m resolution). Since 250-
m resolution was envisaged for MUST, Landsat thermal data were resampled
at 250-m resolution using bicubic convolution. The maps presented in this
chapter derived from such resampled thermal IR data.



MUST mission 409

MUST information products for agriculture

INPUTS TO YIELD PREDICTION MODELS

Users described that yield prediction models do not sufficiently take into
account the actual vegetation stress. In this field, remote sensing is already
used (e.g. by the EU MARS project), but it primarily involves the estimation
of biomass using reflected solar wavelengths. Following the present tendencies
in the use of EO data for yield prediction, it was suggested to use MUST
data as a direct input in “efficiency” models, for example, the Monteith
model (Monteith 1972), or the 3M “Modified Monteith Model” recently
developed by the MARS project with Cemagref (Laguette et al. 1995, 1997).
In these models, the dry matter (DM) is estimated as a cumulative product of
efficiencies and global radiation (Rg), then transformed into crop yield using
harvest indexes (HI). In this case, a MUST-derived water requirement
satisfaction index SI can be used in the expression of the conversion efficiency,
which is usually considered as a constant:

(11.5)

where NDVIn is the NDVI (normalized difference vegetation index)
normalized between its maximal and minimal values during the crop season,
NDVIn = (NDVI - NDVImin)/CNDVImax - NDVImin), SI is a linear function of
CWSI, εs is the climatic efficiency, εi0 is the interception efficiency for maximal
NDVI, and εc0 is the conversion efficiency for maximal SI. The product of Rg

Table 11.2 Composition of user groups in the three partner countries of the MUST project
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with efficiencies is integrated from the beginning of the cropping season to
the date of the cycle where yield is estimated/predicted. The aforementioned
authors have shown that, when the “3M model” is used with a continuous
series of NOAA-AVHRR images, the final yield of wheat can be retrieved
with a precision of 1.2 tons ha-1 instead of 2.4 tons ha-1 obtained when not
accounting for water stress effects on yield.

SIMULATED PRODUCTS

The 3M model was applied on maize fields in the Orthez region (South West
of France). Yield prediction figures obtained with remote sensing data have
been compared to actual yield figures derived from in situ measurements in
sample plots. The ideal process would have been to acquire remotely sensed
data along the whole crop season with a sampling interval of typically 10
days and integrate them. Unfortunately, this was not possible because Landsat
TM images were available in cloud-free conditions on a single date (20 July,
1996). Consequently, it was decided to compare this single date remote sensing
result (which is actually the DM accumulation derivative) with the in-situ
DM variation measurement averaged on the period around the available
date.

The results, sketched in Figure 11.1, are not conclusive on the capability
of IR-derived water stress information to improve the crop DM and yield
prediction. Since this result is not coherent with the aforementioned MARS
project research results, it is believed that it is a consequence of the single-
date available acquisition.

Figure 11.1 Comparison of the daily dry matter (DM) production estimated from onedate
MUST-simulated thermal IR data with the ground measured final DM production
on maize (Orthez—France).
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MUST information products for irrigation and water resources

The users involved in irrigation, from both agricultural and water management
points-of-view, identified three information products. In order of priority,
these are: the spatial distribution of water consumption (derived from the
evapotranspiration LE), maps of irrigated surfaces, and maps of crop water
stress for monitoring water application and irrigation scheduling.

The users involved in water quality management (the domestic water
distribution companies) were interested in soil moisture maps at the scale of
small to medium watershed area. This information provides the means for
identifying and assessing the importance of water contributing areas, as input
for water quality models. They were also considering the crop water
consumption (LE estimation) to derive infiltration/runoff as input for water
quality models.

SIMULATED PRODUCTS

The objective of the simulations was mostly to show the users spatially
distributed evapotranspiration information at 250-m resolution to
demonstrate its advantage in comparison to sampled information and to 1-
km resolution information. The simulated products are therefore daily
evapotranspiration maps on the sites of Orthez (France) (Figure 11.2), the

Figure 11.2 Daily evapotranspiration map obtained from MUST-simulated thermal data using
equation (11.4) (Orthez—France) (see Colour Plate XXX).
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Orgeval river basin (France, part of the Seine river basin), and of Barrax
(Albacete–La Mancha-Spain), using the approach in equation (11.4).

Forest f ires

Fire-fighting authorities have been using short-term fire risk indexes for a
long time. These indexes are usually based on actual and predicted
meteorological parameters, such as wind speed, air moisture, and temperature.
Vegetation stress is usually represented by a simple budget between rainfall
and potential evapotranspiration, which is difficult to transpose to forest
areas, mainly due to spatial variations in the terms of this budget, and on
how this budget is exploited by soil and tree root zones. It has recently been
shown that using surface temperature measurements to derive the vegetation
stress improved the fire risk prediction on both a short-term (daily forecast)
and mid-term (weekly-monthly) range (Vidal et al. 1994; Vidal and
DevauxRos 1995). Based on this rationale and on the operational way to
fight fires in Corsica, two types of requirements were expressed by the fire
fighting users:

• a real-time, daily-risk index integrating climatic and vegetation stress, at
the scale of large forested areas (typically larger that 50,000 ha) useful
for a better positioning of the fire fighting teams put in alert during
summer months;

• a weekly risk index at a more local scale, usually for areas ranging from
5,000 to 20,000 ha, needed in order to support decisions on concentrating
or moving means (staff and material) of fire watch patrols.

In addition, the forests officials were interested in two types of products:

• long-term risk maps on usually stressed areas to be used for the
establishment of risk prevention plans at a 1/50,000 scale;

• fire damage maps: the thermal infrared data to be used in combination
with visible, near-infrared (NIR), and short wave infrared (SWIR) data
are expected to significantly enhance the accuracy of the damage maps
established with visible, NIR, SWIR data only.

SIMULATED PRODUCTS

The different types of products have been simulated for Corsica (Figure 11.4)
and Spain (Figure 11.5), assuming that MUST would enable an observation
every day or 2–3 days. In the case of Corsica, an extension of CWSI (see
equation 11.3) to sparse vegetation, called Water Deficit Index (WDI), has
been used. This index, introduced by Moran et al. (1994) and applied to
forests by Vidal and Devaux-Ros (1995), is based on the representation
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of the soil-canopy continuum conditions in a fractional vegetation cover
versus the difference between surface and air temperature (Ts – Ta) diagram.
Actually, its position is theoretically comprised within a trapezoidal pattern:
Figure 11.3 presents such a pattern and the definition of its limits.

Figure 11.3 The theoretical trapezoidal shape showing the different biomass versus water stress
conditions of the canopy-soil continuum (from Moran et al. 1994). The WDI of
point C is given by AC/AB as shown in equation (11.6).

Figure 11.4 Daily and weekly fire risk index on the right part are the results of sub-sampling a
full scale risk index obtained from MUST-simulated thermal data (on the left),
useful for the establishment of 1/50,000 long-term risk maps (see Colour Plate
XXXI).
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These authors have proposed both a theoretical and a graphic simple
estimation of the soil-canopy evaporation for a given fractional vegetation
cover, knowing its potential evaporation LEp:

(11.6)

where Ts is the composite surface temperature of the soil-canopy continuum
as estimated from thermal infrared measurements, BC and AB are the
distances represented in Figure 11.3, and the wet and dry indices correspond
to the left and right limits of the trapezoid.

The main interest of this approach is the possibility of estimating both Ts

– Ta and fractional vegetation cover from remote sensing measurements. In
the WDI approach, both NDVI and Soil Adjusted Vegetation Index (SAVI)
have been used to estimate fractional vegetation cover:

(11.7)

(11.8)

where ρNIR and ρR are the reflectances in the sensor’s near-infrared and red
wavebands, and L is a unitless constant assumed to be 0.5 for a wide variety
of leaf area index values (Huete 1988).

11.2.5 System requirements derived from user requirements

From the above step of identification of MUST applications and information
products, a synthetic table (Table 11.3) was prepared and validated by users
during each user meeting and after national interviews.

Figure 11.5 Classification of fire damaged areas using different bands of a Landsat TM image.
Respectively, red, NIR, SWIR (on the left), and thermal infrared, NIR and SWIR
(on the right). The latter provides a higher accuracy (see Colour Plate XXXII).
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MUST frequency and overpass

A 1-day revisit was requested by most but actually only some applications
require a real daily revisit (frosts, heat islands, forest fires) and this can be
achieved quite easily since these applications concern atmospheric conditions
or areas where the cloud coverage is low to null. The overpass time might be
a critical issue. Most applications request data within 2 h before or after the
time of maximal surface temperature (between 12.30 and 13.00 local solar
time). This would be satisfied by a late morning overpass. However, frost
monitoring requires night-time acquisition, which should preferably
correspond to a late night overpass.

MUST spatial resolution

This critical issue was finally solved with 250-m resolution, thought to be
sufficient for most applications. However, 100-m resolution was
recommended only for irrigation. For this specific area, the expected
information products are compatible with 250-m resolution, but might be
perturbed by a succession of irrigated and non-irrigated fields.

MUST temperature precision

This issue was the most discussed. A simple look at bibliography and classical
figures issued from other thermal IR missions (Landsat TM, AVHRR, ASTER,
PRISM) actually showed that users required a 1 K precision whereas ground
calibration cannot achieve a precision better than 1 K. Therefore, to be as
user-oriented as possible, our assessment of user requirements on MUST

Table 11.3 Synthesis of user requirements
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temperature precision was based on the analysis of information products
precision, as it is easy to figure that the final temperature precision strongly
depends on the expected information product.

APPLICATIONS BASED ON VEGETATION STRESS ESTIMATION

For all these applications, the users require that data from instrument be
capable of discerning five stress classes for stress indexes ranging from 0 to
1. This means that a 10–20% precision on the stress index is fully acceptable,
which, as shown in equation (11.3), corresponds to a 10–20% precision on
the Ts min - Ts max range. The expected precision on the surface temperature
measurement depends on meteorological conditions and was simulated for

Figure 11.6 MUST requested precision for vegetation stress estimation on wheat
(ra = 40 s m-1).

Figure 11.7 MUST requested precision for vegetationstressestimationonforest(ra = 16 s m-1).
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wheat (Figure 11.6) and forest (Figure 11.7) as follows. The Ts min – Ts max

range mostly depends on canopy aerodynamic resistance ra, air temperature
Ta, global radiation Rg, and relative air moisture H%. To simplify the
simulation conditions, Ta was supposed to be related with Rg, and (Ta, Rg)
couples were combined with different values of H% to derive values of Ts

precisions corresponding to 20% of Tsmin–Tsmax.
These simulations show that for crop stress assessment a precision of 1–2

K is always acceptable, even in cold and humid conditions typical in northern
Europe. Furthermore, a precision of 2–3 K is still acceptable for conditions
with higher temperature and radiation values (e.g. for almost all irrigated
regions). For forests on the opposite, simulations show that a precision of
0.5–1 K may be required for certain conditions (lower temperature and
radiation values), which are rarely met during forest fire periods.

APPLICATIONS BASED ON SURFACE FLUX ESTIMATION

For these applications, two precision levels were requested. “Irrigation” users
requested a precision of better than 10% on the estimation of the daily
evapotranspiration, essentially to improve existing estimations. “Water
quality” users required a precision of about 50%, but insisted on having a
good description of the spatial distribution of such a typical three-class
information to improve their hydrological models. If we consider the most
constraining requirement and equation (11.4) with a maximal value of
parameter B of 0.6 mm K-1 (Brasa et al. 1996), the required precision on the
surface temperature can be estimated through: dLE(mm) » 0.6dTs, with an
expected dLE ranging from 0.3 (temperate regions) to 0.6 mm (Mediterranean
and tropical regions), which yields a dTs of 0.5–1.0 K for the worst case, that
is, a final precision of 0.5–1.5 K.

APPLICATIONS BASED ON AIR TEMPERATURE INTERPOLATION

For these applications, interpolation of air temperature restricts the
requirement to a relative error to be added to the precision obtained on Ta

ground-measurements, usually considered to be about 0.5 K. The best
precision was required for frost monitoring on orchards, as a difference of
0.5–1.0 K may be very important for certain fruit varieties.

11.3 The MUST system derived main characteristics

11.3.1 Main mission characteristics

The MUST instrument is to be accommodated on a low earth orbit space
platform. The most likely candidate is an Earth Watch satellite of the European
Space Agency to be launched around 2004 (Coastal Zone Earth Watch).
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The typical orbit of this satellite is sunsynchronous, with an altitude of 825
km and an overpass local time of 9.00 or 10.30 local solar time. An important
issue extensively discussed during the MUST study was the combination of
thermal IR data with visible and near-IR data, which is required by many of
the applications described above. To simplify the instrument and keep it
affordable, it was assumed that the candidate platform would provide
simultaneous data in these wavelenghts. Therefore, this issue is not discussed
here.

The main mission characteristics are provided in Table 11.4 and discussed
subsequently.

INSTRUMENT SWATH

Most of the MUST candidate applications require a frequent revisit at the
same location of a few days to 1 week, but considering cloud cover conditions,
a daily to 2-day “orbital” revisit time appears to be mandatory. Considering
a 820 km orbit, this requirement translates in a swath larger than 1500km
(±40°) to ensure 2-day revisit in identical conditions (daylight or eclipse).
For coherence with instrument design issues, the baseline for MUST is an
instrument with a ±38°, 1400 km on the Ground, ensuring 1–3 days of
revisit at latitudes around 40º as illustrated in Figure 11.8.

SPATIAL RESOLUTION

The drawback of the wide swath option is that it implies a medium spatial
resolution. A 250-m resolution has been elected as a compromise between
the user requirements and the different constraints for technological
implementation.

SELECTION OF THE SPECTRAL BANDS

The issues of the atmospheric and emissivity corrections required to retrieve
surface temperature from thermal infrared remote sensing measurements

Table 11.4 Main characteristics of the MUST mission
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have been largely addressed by many scientists. In the case of MUST, it was
decided to adopt the approach proposed by Valor and Caselles (1996). The
atmospheric correction is performed by the simultaneous use of two spectral
channels around 10.5 and 11.5 µm and the application of the split window
algorithm, with deduces the actual temperature from the measured
temperatures according to the following equation:

(11.9)

T1 and T2 are the equivalent blackbody temperatures measured by spectral
channels 1 and 2. ε is the mean emissivity of the land target in channels 1
and 2 (ε = ε1 + ε2/2), ∆ε = ε1 – ε2. The coefficients A, B, C, D, and E have been
calculated by a regression analysis based on a very large range of different
types of atmosphere. Depending on the data available, the emissivity figures
ε1 and ε2 can either be known or need to be estimated. In this last case, a
mean emissivity value is considered for vegetation (0.985) and soil (0.96).
Then the emissivity of the land covered by both vegetation and soil is derived
from their respective percentages of land cover and emissivity:

Figure 11.8 The MUST swath, 1400 km, with a ± 38° field of view on a 820 km orbit,
ensures a 1–3 days of revisit time at latitudes around 40°. This figure shows
orbit tracks and instrument swath on three successive orbits, from the right to
the left, each separated by the 100-min orbital period.
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(11.10)

This approach has a significant operational advantage over some other
methods in that it does not require a knowledge of the land characteristics
(such as emissivity), or the atmosphere conditions. It also does not require
several images (in day and night conditions).

OPERATIONS

The MUST sensor would operate continuously at 250-m resolution and the
resulting data will be continuously transmitted in L-band to local users
potentially present in the satellite transmission visibility circle. The advantage
of the local ground stations is the immediate reception of the data, which is
a significant advantage for these applications that only have a value if the
information obtained is very recent. This is the case for some applications of
MUST including, for instance, risk assessment of forest fires.

11.3.2 Overall system description

The overall system view is provided in Figure 11.9.

Figure 11.9 MUST overall system.
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Space segment main features

In order to be independent from the host satellite (Earth Watch or any other),
the MUST on-board data handling and communications (L-band) facilities
are stand-alone and independent from the host satellite payload.

The MUST sensor data are not on-board recorded (no recorder
accommodated on board). This is for cost-effectiveness and because it is
believed that there will be a rapid network of local stations covering all the
land areas, as such local stations can be procured at low cost and even through
the upgrading of existing NOAA HRPT stations.

11.3.3 MUST products definition

The MUST products definition is sketched in Table 11.5.

11.3.4 Application ground segment (GS)

The preliminary proposed definition of the Application GS is based on a
distributed architecture, where most of the value added products are generated
in local distributed facilities. It consists of:

Table 11.5 The different levels of MUST products
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• A Central Ground Segment Facility (CGSF) that ensures the minimal
required mission and sensor management, archives and sells data received
at the main Ground Station (acting like an LD), performs routinely low-
level processing of the MUST data up to level 1B, maintains an electronic
data distribution and cataloging system covering the whole earth, and
acts as a central point for commercial and technical information about
the MUST mission and sensor.

• Local Distributors (LD) and associated Application Centers (AC): formed
by L-band receiving antennas and associated processing facilities,
geographically distributed world-wide to cover systematically the land
areas, working under special favorable licensing and royalty agreements
of mutual co-operation with the CGSF to build a global coverage, produce
high-level value added products for their reception area and distribute
on-time raw data and derived information products to end users (EU).

• Local Stations (LS) and Application Centers (AC): these are receiving (L
band) and processing facilities freely distributed around the world,
licensed to process their own received raw data. They could perform the
basic processing of MUST data under the appropriate standard
commercial licensing contract and generate free value added products
for their own needs or local customers.

• Application Centers: free world-wide processing facilities without their
own L band reception antenna that receive raw commercially licensed
MUST data from either the central ground segment (CGSF) or an LD
station to generate their own free value added products (i.e. levels 2 and
3) based on MUST data and usually other local sources of ancillary
data.

• End Users: final users of MUST level 2 and 3 products distributed from
CGSF or any AC of the world.

11.3.5 The MUST payload description

Overall payload presentation

The instrument is a pushbroom concept made of three optical modules of
26º field (400 km swath) each. The lines of sight of the modules are biased
by ±26° in order to provide a total field of 78º and the swath width of 1400
km. A calibration system made of two blackbodies at about 250 and 350 K
is fixed in front of the optical modules. A calibration mechanism allows the
three modules to be fed successively by the blackbody. In rest position, the
cold blackbody faces the cold sky. Heaters on both blackbodies are used to
adjust the temperature. Electronic boxes are fixed on the opposite side of the
bracket supporting the optical modules (Figure 11.10).
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Optical modules

Each optical module consists of a four-lens dioptric system. A ZnSe entrance
window limits the flux entering the telescope and ensures a quiet environment
to the optics (Figures 11.11 and 11.12).

The microbolometer focal plane array

THE CHOICE OF MICROBOLOMETER TECHNOLOGY FOR THE MUST
INSTRUMENT

Thermal detection is a technology that has been around for several decades.
The amazing evolution of microelectronics, micro-machining, and thin films

Figure 11.10 Overall concept of MUST instrument in observation and calibration modes.

Figure 11.11 Optical module concept.
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technologies has allowed recently two-dimensional arrays of thermal detectors
to be built, at low cost, with better sensitivity and response speed for use in
staring cameras dedicated to commercial and military applications, such as
the 320 × 240 pixel thermal vision cameras. NEDT lower than 100 mK in
the 8–12 µm range have been reported by several suppliers of detectors.

Three main types of thermal detectors are available, according to the
physical parameter that senses the temperature change: the thermopile
(electromotive voltage generated by Seebeck effect at junction as in
thermocouples), the pyroelectric (polarization change by variation of the
dielectric constant), and the bolometer (carrier density and mobility change
that results in a resistance change). A trade-off analysis of these different
technologies has been carried out and the microbolometer is today considered
as the best candidate for the MUST instrument (performance, electronic chain
complexity, thermal constraints, space environment adaptation, technology
durability, potential evolution, and manufacturers availability.

THE MUST FOCAL PLANE ARCHITECTURE

The pixel size of 35 µm results from a compromise between the need to have
a small pixel for the optics and the noise performances and technological
constraint. In order to be compatible with standard CMOS, three elementary

Figure 11.12 MUST module optical concept.
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butted modules of 512 pixels (18mm) are considered for the MUST focal
plane. The two spectral channel separations needed for the temperature
retrieval is performed by an in-field separation with two linear arrays on a
common substrate, each with a dedicated bandpass filter in front of it (Figure
11.13).

The performances of microbolometers are closely related to the quality of
the thermal insulation of their detectors and heat exchanges by convection
have to be minimised. The internal volume of the detector package, sealed
by a ZnSe window, needs to be evacuated for on-ground operation and then
opened just before the launch. As thermal detectors behave as temperature
sensors, their absolute response is therefore sensitive to the thermal variations
of their environment. As usually done, the MUST focal plane will use thermo-
electrical heat pumps to regulate its temperature. In addition, masked
structures (blind pixels) will be used to compensate the residual temperature
variations.

Overview of the MUST payload performance and main
characteristics (Table 11.6)

Table 11.6 MUST instrument performances

Figure 11.13 The MUST focal plane architecture.
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11.3.6 Mission economic assessment

The present paper does not detail the different steps of the study leading to
the mission economic statement. The mission economic assessment results
from the price policy, assessment of addressable market and sales, and
estimated costs of the system. The mission is assumed to be viable if yearly
sales exceed yearly costs by at least 50% (commercial margins and return on
investment). The resulting business case is sketched in Table 11.7.

The profitability of the MUST System is clearly dependent on the size of
the areas in the world covered by the mission. Considering only a European
coverage, and here a European market, the MUST System cannot be
profitable. The System reaches to a slight profitability when the North
America and Near East areas are added. This situation will become more
and more applicable when the covered areas and relative markets increase.
The only condition for profitability of an additional LD station is that the
cost for this addition is lower than the additional sales provided by this
station. This is always true as it has been demonstrated for higher potentiality
markets (North America) and lower potentiality markets (Near East).

11.4 Conclusions

The MUST project has been conducted with a large emphasis on the
consideration of the user requirements and on the assessment of the benefits
to be retrieved from MUST information products. In this respect, the work
carried out with the user community is highly beneficial to both parties. It is
beneficial to the mission and system designers to understand the user
expectations and consequently design the system. It is beneficial to the users
to learn about the system capacities, have a frame of reference for their
reflection on potential applications, and accordingly imagine new applications
for it. The generation of simulated information products also proves to be

Table 11.7 MUST economic assessment by region
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very helpful for supporting the discussions on requirements and benefits and
to raise new applications for the information products. The design of the
MUST instrument is just sized to the user needs. This has been obtained
thanks to the close co-operation with the user community. The resulting
instrument is consequently light, uses well-adapted microbolometer
technology, and could be produced at a low cost.

Economically, the MUST mission appears to be potentially profitable,
once the areas covered by the satellite are wide enough. This could be the
case when Europe, North America, and Near East are covered. This will be
reinforced by additional coverage (South America, Asia, Australia, and
Africa).

This conclusion may also be influenced by considering some markets that
could be important, but which have not been considered in this study:

• Sea surface temperature-based products, mainly in coastal areas and
inland waters because this is an application for which a better resolution
than AVHRR is attractive. The concerned applications are pollution
monitoring and fisheries support.

• Urban area temperature monitoring applications that are believed to be
wider than the ones considered by the user groups: monitoring for the
purpose of planning transportation networks, monitoring for operational
“on line” control of the traffic induced pollution, etc.

• Scientific applications.

The MUST mission may then be recommended as a passenger payload on a
host spacecraft. Another possibility is, of course, the payload to be part of
an overall mission dealing with Land resources. This could be the case of the
envisaged ESA “Coastal Zone Earth Watch” mission.
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Epilogue

The raison d’etre for this book is predicated upon our belief that TIR remote
sensing data are of high utility for enhancing research in land surface processes.
Moreover, we see where TIR data have not been exploited to their full
advantage for land surface processes research by the science community,
principally because of some common misconceptions regarding their
availability, the methods and techniques used for information extraction and
analysis, and their interpretability for input into models. As noted in the
Preface, the development of this book stems from a workshop held in La
Londe, France, in 1993, where a group of scientists congregated to develop a
more cohesive framework for illustrating the merits of TIR data for identifying,
characterizing, and quantifying surface thermal energy fluxes as key drivers
to land surface processes. It became obvious as a result of this workshop that
TIR data had in many respects an “image problem” due to these data being
perceived as “recalcitrant” to work with by the broader Earth science research
community. It is our hope that this volume considerably mitigates this
misapprehension and helps TIR remote sensing to improve its “image” as an
extremely useful tool for use in analyzing, quantifying, and modeling a host
of land-surface energy flux-related characteristics.

As can be seen from the content of the various chapters of this book,
however, TIR data certainly cannot be viewed directly as a panacea for
resolving some of the more challenging questions related to the surface energy
budget within the whole purview of land surface processes research. Without
question, the utility and applicability of TIR data must be couched as a tool
in the overall compendium of research techniques and analysis methods that
can be used to address surface energy flux questions as part of land processes
investigations; that is, the overall value of TIR data increases multifold when
these data are integrated with other types of remote sensing data (e.g.
multispectral or hyperspectral data) and with data derived from in situ
instruments. TIR data, therefore, help to synergistically enhance land surface
processes research by providing information that adds knowledge, and
scientific value, to the whole exploratory experience.



430 Epilogue

Above all, we hope this treatise exists either directly or indirectly as a
“how to” book for using and analyzing TIR data for land surface processes
research. Throughout the chapters encompassed within the book, there are
theoretical presentations, techniques, algorithms, caveats, and in-depth
discussions that illustrate the “how to’s” and “how not’s” of collecting, preand
post-processing, interpreting, analyzing, quantifying, and modeling of TIR
remote sensing data, as well as elucidating the issues and concerns associated
with TIR sensor calibration. Hence, this book may be viewed in many ways
as an “instruction manual” on how to apply TIR remote sensing data in land
surface processes research. We invite readers to shed any uncertainty they
may have in dealing with TIR data, and take this book in hand as a guide for
utilizing TIR data in their own research. We anticipate that in doing so, readers
will allay their trepidation of working with TIR data and find that TIR remote
sensing really does provide information that is both new and exciting, as well
as inherently useful, to their research initiatives.

Lastly, one of the real concerns in putting this book together is that we see
where TIR remote sensing instruments are somewhat of a “threatened species”
in regard to their existence on future satellite platforms. For example, as of
this writing, the present design of the follow-on to the NASA Landsat ETM+
(Landsat 7) platform does not include a TIR sensor. The elimination of a
thermal spectral range will present a vacuum in the history of TIR data from
the Landsat Thematic Mapper series of satellites that dates back to the mid-
1980s. Moreover, there are no current plans for the design or launch of a
high spatial resolution (i.e. £20m) satellite-mounted TIR sensor. Although
moderate to coarse spatial resolution (i.e. 60m-lkm or more) TIR data are
presently available (e.g. from the NASA Terra system), there is a critical need
to obtain TIR data at spatial scales for quantifying surface energy fluxes of
discrete surfaces (i.e. surfaces that can be identified as individual components
of the overall heterogeneous landscape, such as pavements in cities, forest
tracts, or cropland characteristics). Without this kind of fine resolution TIR
data, we believe that land surface processes research will not be able to fully
capture the surface energy fluxes that ultimately define or drive thermal energy
dynamics across the landscape. We trust then, that this book will whet the
appetite of those individuals who have not employed TIR data actively in
their research and, therefore, precipitate the wider usage of TIR data. We
also hope this book will cause those who have exploited these data to their
research advantage to come together with us in voicing their opinion on the
strong need for the continued collection of these data, as well as for the
development of improved and enhanced satellite sensors and airborne that
will make TIR data a universal and essential aspect of land surface processes
research in the future.
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atmosphere/atmospheric: boundary
layer 161, 233; column 58–9;
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397, 400; models 110–11; profile
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bandpass 366, 371–2, 374, 385, 387,

389, 392, 396, 400–1, 403, 425;
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blackbody 363, 366–7, 371, 373,
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323, 343, 346, 352, 377, 384;
temperatures 419
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338–9, 343, 352, 365, 403
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34–6, 38–40, 45, 57–8, 60, 66,
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83, 86–8, 90, 102, 415, 418;
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clumping factor 212, 216, 219–20
coastal zone 405, 417, 427
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complexity 294–5, 351
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134–5, 160, 263

crop management 258, 268
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264, 266–9, 271–2, 276, 407,
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322, 329–30, 334–5, 345, 349;
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353, 355; stable equilibrium 300,
303–4, 306, 311, 335, 353; thermal
and mechanical stable equilibrium
319, 322, 335, 338, 353, 355–6;
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decoupling 187, 194–6, 203, 371, 383
degradation 266; exergy 295, 351, 355
Delmhorst blocks 192
diesel engine 287–8, 320
differential: absorption 39–40, 44, 57;
drying 187; exact 304–5, 308, 338,

353; inexact 304–5, 338, 354, 356
directional effects 34, 83
directional radiometric temperature

209, 239, 242
dissipation/dissipative 332, 351;
structures 332
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239
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294–5, 351; maturity 284–5, 332–3;
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331–2, 351, 355; surface
temperature 283–5, 296, 298,
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effective radiance 371–2, 377, 385;
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387, 401

efficiency 286–90, 307, 339, 346, 350
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324, 333, 347–8, 352, 363
emissivity 4, 13–14, 16–18, 33–6,
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128–30, 136–7, 139–45, 211;
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318–20, 322, 325–31, 334, 339,
343–4, 346, 351, 353–4, 356;
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production viewpoint 343; specific
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error analysis 391
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destruction mechanism 320;
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zero 323; paradigm 299–317;
performance based 316;
pseudo-property 305–6, 309, 342,
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fisheries 427
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flow work 298, 351; exergy 315, 319
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forest fires 406–8, 415, 420
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Gibbs free energy see free energy
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Global Production Efficiency Model
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322, 355; reversible work mode
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greenhouse effect 298
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318, 329, 341–2, 344, 350, 356

heat islands 406, 408, 415
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304–5, 312, 324, 327, 329, 351–2
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203, 227, 229, 238, 271, 430;
land cover 111
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methods 397
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410, 414; thermal data 133–59,
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136, 160
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leaf: assimilation rate 211; model 208;

temperature 189–90, 240, 263–4,
272, 275
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model: assimilation 274–6; flux 122;
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(MODTRAN) 14, 17, 23–4, 35,
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86, 168, 231, 275, 410, 421

NDVI see Normalized Difference
Vegetation Index
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non-equilibrium dissipative systems

331, 355
normalization 167, 170, 173
Normalized Difference Vegetation

Index (NDVI) 5, 18, 25, 37, 45, 50,
121, 141, 163–5, 189, 234, 409, 414
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organization 257, 283, 294–5, 299,
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347, 351
physically based model 111
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400–2
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radiation 4, 13, 34, 93, 110, 113–14;
atmospheric 58, 298; background
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299, 323, 325, 338, 343, 346, 348,
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radiative fluxes 136, 210
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268–9, 275–7, 298, 373, 380, 414
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regional hydrology 89, 133, 154
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166, 180–1, 244, 387, 419
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117–18, 137, 139, 175, 211, 226,
229, 386, 399
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133–4, 136, 138, 140, 147–9,
152–6, 160–2, 169–71, 174,
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212,226
roughness length 98, 116, 143, 205,

212, 237, 243, 261–2

satellite xxi, 2–4, 6–7, 11–18, 20, 22,
24–8, 33–43, 45–6, 50, 56–7, 59–61,
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130, 133, 138, 140; measurement
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SAVI see Soil Adjusted Vegetation Index
scale 3–7, 18, 28, 33, 41, 50, 59, 88,
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160–2, 166–7, 169–70, 194, 207,
221–3, 234, 239, 245, 264, 304,
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sea surface temperature 39, 427
Second Law of Thermodynamics 284,
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emissivity 16, 41–5, 363, 366;
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168, 171, 191; radiant temperature
(To) 175, 178, 186–94, 200, 202–3;
reflectance 37, 112, 114, 138–9,
142, 160, 163, 275, 277; roughness
88, 120, 130, 210, 245; soil
moisture 160–1, 168, 172–3,
176–8; temperature 1–4, 6–7,
11–19, 23–4, 26–7, 29

surroundings 89, 315, 307, 350, 354,
382; distinction from environment
300–1, 349; immediate 301–2, 314,
330, 338, 353–4; non-immediate
301–2, 314, 335, 338

SVAT see ABL-SVAT
system: closed 323, 352; control mass

299, 302, 304, 306, 352; control
volume 349, 352; diagram 300–2,
309, 314, 349, 352–3; exergy 308–9,
316, 344; infinite area 329–30;
isolated system boundary 302;
isolated system viewpoint 307,
310, 338, 343–5, 354; noise 392;
non-equilibrium dissipative 331,
355; open 323–4, 336, 345, 352

Tair see near-surface air temperature
telescope 378–82, 423; optical cavity

380
temperature: gradients 115, 144,

296, 298, 318, 323, 350, 364–5;
normalization 167, 170, 173

temperature stress day (TSD) 261, 266
temporal evolution 91–2, 98
Thematic Mapper (TM) 4–5, 28, 112–14,

118–21, 123–5, 130, 133, 136,

138–43, 147–9, 153–5, 165, 171,
229, 233–5, 276, 379–80, 390,
392, 408, 410, 413–15, 430

thermal conductivity 330, 365
thermal infrared (TIR) xix, 1, 3, 11–12,

102, 257–82, 363, 397; algorithms
258, 264–76; indices 6, 258,
264–76; sensors 364–404

Thermal Infrared Multispectral
Scanner (TIMS) 333

thermal kinetic window (TKW) 272–4
thermally controlled blackbody 367–8
thermistors 369, 382, 395
thermocouple 137, 192, 198, 263,

272, 368–9, 382, 424
thermodynamic disorder 294
thermodynamic systems 283, 285,

287, 300–2, 312, 333
thermo-electric flat plate blackbody

368–9
thermometer 364, 368–9; see also

infrared thermometers (IRT)
TIROS Operational Vertical Sounder

(TOVS) 12, 22, 59–60
TISI method 52–3
top of the atmosphere 22, 24, 34, 38,

40, 43, 60, 139
TOVS Initial Guess Retrieval (TIGR)

60
transmission 13, 35, 219–20, 374,

386, 388–9, 398, 403, 420, 425;
atmospheric 39, 138–9, 386,
388–9, 398, 403

transpiration 6, 153–4, 162, 169,
185, 202, 212, 215–16, 220, 247,
257–60, 263–5, 298, 407

transportation 289, 427
triangle domain see triangle method
triangle method 5, 164–73, 177
true temperature 364, 382; see also

kinetic temperature
turbulent flux 115, 123, 129, 177,

206, 231
two-source model 113–14, 206,

218–23

United States Department of
Agriculture (USDA) 112, 117,
130, 203, 236, 275

universal kriging algorithm 118
unsupervised classification 120, 146
urban pollution 427



440 Index

user requirements 405, 408, 414–15,
418,426

validation 15, 18, 20, 24, 81–3, 102,
111–12, 122, 168–9, 211, 216,
275–8, 295

Vapor Pressure Deficit (VPD) 260,
262, 268

vegetation 4–6, 14, 28–9, 37, 42, 45,
50–1, 54–5, 76, 80–1, 87, 111–15,
120, 122, 130, 134–6, 140–1, 146–7,
149, 151–5, 162, 166, 169, 171,
176–7, 185, 188–91, 198, 201–3,
206, 208, 210–39, 242–5, 247, 259,
262, 267, 270, 274–6, 406, 409,
412–13, 417, 419–20; cover 5–6,
37, 50–1, 53–4, 56, 65, 80, 87,
114–15, 120–2, 129–30, 141–6,
148–9, 163–9, 178, 191, 201–2,
206–7, 233–5, 244–5, 257, 261,
413–14; index 5, 17–20, 37, 51,
90–1, 121, 141, 163, 234, 269,
274, 407; monitoring 33, 37;
temperature 51, 206,218

Vegetation Index/Temperature (VIT)
269

view angle 40, 42, 44–5, 49, 71–2,
76, 80, 87, 115, 138, 205, 216–17,
220–1, 229, 241–2, 370, 389, 393

visibility 35, 420
visible and near-infrared (VNIR)

spectral regions 366
VISSR Atmospheric Sounder (VAS) 22
volumetric water content 174

Walnut Gulch 168–9, 232, 236, 275,
277–8

warm edge 165–6, 168, 178
water consumption 406,411
Water Deficit Index (WDI) 261,

268–70, 412, 421
water pollution 427
watershed 4, 11, 110–13, 117–26,

128–30, 165, 167, 178–9, 232–6,
257, 275–8, 411

water stress 89–90, 190, 258, 261,
265–6, 269, 277, 410–11, 413, 415;
see also Crop Water Stress Index

water vapor 13, 15, 23, 28, 57, 66;
atmospheric 13–14, 17, 22–3, 25,
39, 57, 59–60, 62, 65; near-surface
3–4, 22–4

wavebands 26, 114, 142–3, 163, 414
wavelength 12–15, 34, 36, 40, 52–3,

57, 87, 102, 115, 140, 163, 188,
203, 211, 219, 234, 239–40, 321,
334, 365, 370, 385, 401, 403,
409; calibration 374–6

whisk broom scanners 378
Wien’s approximation 51–2
windspeed 100, 117–18
work mode 321, 339, 347, 355;

gradients 321, 335; non-relevant
reversible 318; relevant reversible
318, 321; reversible 311, 317–21,
355

work transfer 283, 287, 293–4, 301–2,
311, 339, 349, 354; actual 301, 309;
actual useful 308, 337; lost 309–11,
354; maximum 302, 353; maximum
useful 305, 308–9, 326, 337;
maximum useful to-the-dead-state
283, 299, 305, 334, 337–8, 349;
permanently lost 354; shaft 351;
useful 283, 288, 292, 302, 305–6,
308, 315, 318, 320–6, 334, 337,
341–2, 344, 349–50; useful work
reservoir 308, 344

yield forecast 406, 415
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