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What knowledge of mathematics do secondary school math teachers need to facilitate under-
standing, competency, and interest in mathematics for all of their students? This unique text
and resource bridges the gap between the mathematics learned in college and the mathematics
taught in secondary schools. Written in an informal, clear, and interactive learner-centered style,
it is designed to help pre-service and in-service teachers gain the deep mathematical insight they
need to engage their students in learning mathematics in a multifaceted way that is interesting,
developmental, connected, deep, understandable, and often, surprising and entertaining.

Launch questions at the beginning of each section capture interest and involve readers in the
learning of the mathematical concepts.

Student Learning Opportunities provide chances to practice problems associated with what has
been learned in the chapter, to complete proofs that are mentioned but not proved, and to apply
what has been learned to solving real-life problems.

Questions from the Classroom are featured in every chapter and in the Student Learning
Opportunities, such as the deep “why” conceptual questions that middle or secondary school
students are curious about, questions requiring analysis and correction of typical student errors
and misconceptions, questions focused on counterintuitive results, and questions that contain
activities and/or tasks suitable for use with secondary school students.

Highlighted themes throughout the chapters aid readers in becoming teachers who have great
“MATH-N-SIGHT”

Multiple Approaches/Representations
Applications to Real Life

Technology

History

Nature of Mathematics: Reasoning and Proof
Solving Problems

Interlinking Concepts: Connections

Grade Levels

Honing of Mathematical Understanding and Skills
Typical Errors
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This text is aligned with the recently released Common Core State Standards, and is ideally suited
for a capstone mathematics course in a secondary mathematics certification program. It is also
appropriate for any methods or mathematics course for pre- or in-service secondary mathematics
teachers, and is a valuable resource for classroom teachers.

Alan Sultan is Professor, Mathematics, Queens College of the City University of New York.

Alice E. Artzt is Professor, Secondary Mathematics Education, Queens College of the City
University of New York.
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PREFACE/INTRODUCTION

What knowledge of mathematics is needed for teaching secondary school math? This question
has been at the forefront of research for many years, and has yet to be fully answered. While it
is widely accepted that mathematics teachers require a depth of knowledge that extends beyond
what they teach, the specific details and nature of this knowledge need to be clearly delineated.
Despite the fact that the research literature on this issue is in its infancy, those who have worked as
mathematics teachers and as mathematics teacher educators and researchers know that excellence
in teaching requires an understanding of mathematics that is quite different than that of their
students. This different type of knowledge is often referred to as pedagogical content knowledge
(Shulman, 1986, 1987) or knowledge of mathematics for teaching (Ball, 1991; Ball, Thames, &
Phelps, 2008). The purpose of this book is to provide pre-service and/or in-service secondary
mathematics teachers with a resource that exposes them to multiple levels and types of mathe-
matical understanding that we believe will extend and deepen their insight into the mathematics
of the secondary school curriculum in ways that will enable them to facilitate their own students’
understanding, competency, and interest in mathematics.

To be more specific, mathematics teachers need to have knowledge of how to make math-
ematical understanding and skills accessible for all of their students. For example, experienced
teachers will tell you that year after year their students have trouble understanding certain specific
topics in the curriculum. In this book, we address these typical areas of difficulty and students’
common misconceptions. We examine why these difficulties exist and mathematical approaches
teachers can use in clarifying the concepts and procedures. In so doing, we emphasize the use of
multiple ways of representing and solving problems so that you will be able to meet the needs
of your students who will most definitely have diverse learning styles and abilities. The use of
technology is incorporated to add to the multiple ways problems can be represented. Additionally,
by its ability to dynamically represent concepts and simulate problems, technology can be used to
help students solve problems through discovery, pattern recognition, and inductive reasoning.
Throughout this book we examine the strengths and weaknesses of different technologies in
representing mathematical ideas, as well as provide references to multiple informational and
sometimes interactive websites that will be of use to you and your students.

In addition to raising students’ competency and understanding of mathematics, another
important part of a teacher’s job is to be able to interest their students in the subject matter. All
too often mathematics has been portrayed as a cold subject, devoid of human emotion. Nothing
could be further from the truth! Indeed, mathematics has a very rich history and the lives of many
mathematicians are quite fascinating. Although this book is not about the history of math, we
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have included the most interesting human stories underlying the development of mathematics
that will most assuredly capture your attention as well as that of your students.

Overview of the Book

A teacher’s mathematical knowledge needs to go well beyond skills and understanding of discrete
mathematical topics. It needs to be comprehensive, deep, meaningful, and connected. Let us
explain what we mean here by setting forth what this text contains. Throughout we try to bridge
the gap between the mathematics you have learned in college and that which you will be teaching
in secondary school by showing how many of the mathematical concepts you have learned in your
college courses are connected and woven together and how they relate to the secondary school
curriculum. This will give you a better idea of why colleges ask you to take all those advanced
courses that seem to have no connection to the secondary school curriculum, but which in fact,
have important connections to it.

Another unique feature of this book is that we often examine the content from an elementary
school-level perspective, trace its development to a college-level perspective, and highlight the
linkages between the higher-level courses you took and the courses you will most likely teach.
Of course, at the root of all of these interconnections lies the nature of mathematics and proof
and why proof is so important in mathematics. We believe this reflection on the big picture will
enhance both your understanding of the mathematical development of some of the topics, and
provide you with a unique perspective that you can offer your students.

In addition to making connections between different fields of mathematics and different grade
levels of mathematics, throughout the book we highlight applications of the mathematical content
to the real world. You and your students will surely be intrigued by how some of the most theo-
retical concepts are applied in real life. By interlinking and connecting these mathematical ideas
and applications as we have described, we hope to deepen your understanding and appreciation of
certain topics and help you to answer the age old question, often asked by school students “When
am [ ever gonna use this?”

The style and structure of this book are designed to support an instructional approach in which
you will become actively involved in building your new understandings.

“Launch” questions. Fach section opens with a motivational question, which we call a “launch,”
to capture interest and involve you in the learning of the mathematical concepts.

“Student Learning Opportunities.” At the end of each section an assortment of questions provide
opportunities for you to practice problems associated with what you have learned in the chapter,
complete proofs that were mentioned but not proved in the chapter, and apply what you have
learned to solving real-life problems.

“Questions from the Classroom.” Additionally, we have included questions that you might be
asked by your own students some day. These are indicated with a (C) in front of each such question.
Often, these are the deep “why” conceptual questions that middle or secondary school students
often ask their teachers. You will notice that some of the questions are so rich that they might be
used for student projects or in-class activities to use with your future secondary school students.
Other questions of this type are examples of typical student errors or misconceptions that you will
need to critique and correct.
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The following themes are woven throughout the content chapters so that you will be a teacher
who has great “MATH-N-SIGHT.”

M Multiple Approaches/Representations (Knowledge of the different ways problems can be
represented and solved)

A Applications to Real Life (Knowledge of the role of mathematics in real life)

T Technology (Knowledge of the role of technology in solving mathematical problems and
developing mathematical ideas)

H History (Knowledge of the human story behind the development of mathematical concepts)

N Nature of Mathematics: Reasoning and Proof (Knowledge of the role of reasoning,
definitions and proof)

S  Solving Problems (Knowledge of the different problem solving strategies, and ways of
generalizing, and extending the problems)

I  Interlinking Concepts: Connections (Knowledge of the linkages between and among
different branches of mathematics and areas outside of mathematics as well as connections
between secondary school and college-level mathematical concepts)

G Grade Levels (Knowledge of the grade levels in which the foundations of advanced concepts
appear)

H Honing of Mathematical Understanding and SKkills (Experience in revisiting mathematical
concepts, with opportunities for developing more mature perspectives and skills)

T  Typical Errors (Knowledge of the most common misconceptions students have that
contribute to the most typical errors they make when doing mathematics)

To help you understand how these themes can be applied to deepen your insight into math-
ematics for teaching, we will ask you to respond to some questions in relation to a most famous
mathematical theorem, the Pythagorean Theorem. But before we do this, we want to share the
story behind why we focus on this particular theorem. Years ago we asked a group of college
freshmen who were not mathematics majors to recall any theorem they remembered from their
study of school mathematics. They unanimously recalled the Pythagorean Theorem and were able
to state it as follows: a + b?> = ¢2. However, the most they could tell us about the theorem was that it
had something to do with a triangle. They were not even sure what the letters in the theorem stood
for. We asked ourselves why their knowledge of this historic formula was so devoid of meaning and
appreciation. We wondered how they were exposed to this theorem. Were they asked questions
about when the theorem could be used? Did they learn anything about the history of the theorem?
Did they learn about any ways the theorem could be applied? Did they do hundreds of problems
using the formula? The answer to the last question was no doubt, a resounding, “Yes.”

In light of this story, we want you to consider the following questions, in hopes that in the
future, your students will recall more about the Pythagorean Theorem than the ones we have
described. (You can consult the text to help you respond to some of the questions.)

Student Learning Opportunities

1 In what grades do students typically learn the Pythagorean Theorem? What is the prior
knowledge they need to have to fully understand the meaning of the theorem? What defini-
tions are associated with the Pythagorean Theorem? [Hint: check Principles and Standards for
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School Mathematics (NCTM, 2000) and the March 2005 New York State Learning Standard
for Mathematics at www.nysed.gov.]

2 What is the history of the theorem? When was it discovered? Who discovered it? Was it really
discovered by Pythagoras?

3 How do we know that the Pythagorean Theorem is true? Was it first created through intuition
or proof? Is there a proof of the theorem? If so, give one.

Why is the Pythagorean Theorem so famous? Why should we care about it?
What is surprising or mysterious about the Pythagorean Theorem? Be specific.

What different areas of mathematics are connected to the Pythagorean Theorem? Explain.

N & »n b

How can technology be incorporated to facilitate the learning or teaching of the Pythagorean
Theorem? Give several suggestions that go beyond the mere help with computation.

8 What are some interesting Internet sites regarding the Pythagorean Theorem? Give several
suggestions, including some sites that contain applets that support the geometric interpreta-
tion of the theorem.

9 What are some typical mistakes that students make when using the Pythagorean Theorem?
What are some typical misconceptions that students have regarding the Pythagorean
Theorem?

We believe that the book’s focus on multiple perspectives on mathematical knowledge for teaching
will hone your own mathematical understanding and skills and facilitate your ability to engage
your students in learning mathematics in a multifaceted way that is interesting, developmental,
connected, deep, clear, and often, surprising and entertaining. We hope and expect that this book
will be a valuable resource for you during your career as a teacher of mathematics.
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NOTES TO THE READER/PROFESSOR

This book has multiple uses, ranging from a very helpful resource, to a text that accompanies
any methods or mathematics course for pre- or in-service secondary mathematics teachers. It was
specifically written to accompany a culminating mathematics course for prospective secondary
mathematics teachers. The style and structure of the book is therefore designed to support a
student-centered instructional approach. Since, the method we envision and use with our own
classes is quite different from the lecture approach, we explain how the book is designed to support
such an interactive approach.

Before most sections there is a motivational question, which we call a “launch” that is meant
to create student interest and involvement in the lesson. These questions take different forms
depending on the section. For example, sometimes they are designed to create a need to learn the
new material, by pointing to a void in their knowledge. Other times the questions are designed
to create curiosity about why a particular relationship exists. The students can first work on this
“launch” individually so that they can give the problem some thought, arrive at some preliminary
ideas about the solution, and formulate questions about the solution process. After their individual
work, students can then be encouraged to work with a small group of their peers to try to agree
on a solution and arrive at questions for class discussion. After the students have worked in their
groups, the whole class discussion can then focus on the new concepts imbedded in the launch
question, which of course, is the topic of the lesson. Since in class, the development of the topics is
problem-based and discussion-driven the students may not get to see a structured development of
the topics, (characteristic of most lecture-style approaches) until they read the text. It is specifically
for this reason that the book is written in a style which we have tried to make extremely clear and
interesting for the reader. This explains the use of the informal language, humor, and historical
interludes in the text. Additionally, time is taken in the text to arouse the students’ appreciation
of the ingenious mathematical concepts they are learning about.

At the end of each section there is an assortment of questions or “Student Learning Opportu-
nities” which can be used for homework assignments or even class work. These questions include
opportunities for students to practice problems associated with what they have learned in the
chapter, complete proofs that were mentioned, but not proved in the chapter, and apply what they
have learned to solve real-life problems. One of the unique features of this book is that we have
also included questions that your students (future teachers) might be asked by their own secondary
school students some day. We refer to these questions as “Questions from the Classroom,” and we
indicate them with a (C) in front of each such question. Often, these are the deep “why” conceptual
questions that secondary school students are curious about. Some of these (C) questions require
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analysis and correction of typical student errors and misconceptions. Other (C) questions focus
on counter-intuitive results. Finally, some of the (C) questions contain activities and/or tasks that
are suitable for use with secondary school students. Therefore, this book should provide a valuable
resource for the pre-service teachers in their own future classes.

In the Preface we have outlined themes that are woven throughout the content chapters
which we have abbreviated as “MATH-N-SIGHT.” To help students reflect upon and organize their
learning, we believe it will be worthwhile if throughout their learning, you request that they
identify which theme is being addressed.

Finally, since the material in this book is more extensive than can be addressed in one course,
we include a short description of each of the chapters, so that you can select the ones which
you believe will be most suitable for your course. You will note that throughout the book we
incorporate the five content strands: Numbers and Operations, Algebra, Geometry, Measurement,
and Data Analysis and Probability, which are the underlying concepts of the secondary school
curriculum. The descriptions follow.

CHAPTER SUMMARIES

Chapter 1: Intuition and Proof

In this opening chapter we discuss a variety of problems where the solution seems clear but the
“obvious” solution is wrong. This leads to a discussion of why we need proof and some of the
different methods of proof. We include examples that relate to later chapters and the type of
proofs used in the secondary school curriculum.

Chapter 2: Basics of Number Theory

We begin this chapter with the basic definitions in Number Theory that relate to the secondary
school curriculum: even, odd, divisible by, and so on and then show that by using proper defini-
tions, one can prove elusive relationships very easily. We discuss the different tests for divisibility,
why they work, and the Euclidean Algorithm. We apply these divisibility results to UPC codes,
RSA encryption, prime numbers, computer design, recreational problems, different systems of
numeration, Diophantine Equations, and how these concepts and applications relate to topics
in the secondary school mathematics curriculum.

Chapter 3: Theory of Equations

As this is a major part of the secondary school curriculum, in this chapter we include a thorough
treatment of polynomials and issues related to their use. First we discuss relations between roots,
factors, rational and irrational numbers and show in a very understandable way why synthetic
division works. We provide applications to modeling, the Fundamental Theorem of Algebra, poly-
nomiography, and methods that calculators use to find square roots and maxima and minima. We
link these concepts to the solution of polynomial equations of higher order and carefully go back
and forth between the technological and theoretical issues. We emphasize why the technology is
an important adjunct to the mathematics, and conversely, why the mathematics is an important
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adjunct to the technology. This chapter, like most other chapters, is filled with historical vignettes
bringing the principals we discuss to life by sharing some of their more interesting stories.

Chapter 4: Measurement: Area and Volume

In this chapter we provide a thorough analysis of area and volume. We begin by deriving several
area formulas and then discuss the issues involved in defining area and volume. From a few basic
assumptions we quickly derive the Pythagorean Theorem and its converse. We turn to the circle
and then give Archimedes’ remarkable proof that the area of a circle is 7r2. We use the technology
and several simple theoretical arguments to show that the ratio of the circumference of a circle to
its diameter is constant, and indeed end up proving this quite by accident. This chapter is filled
with history and links between the theoretical concepts and technology. We then discuss some of
the volume issues from a higher (calculus) level with Cavalieri’s principle playing a central role.

Chapter 5: The Triangle: Its Study and Consequences

Many fascinating facts about triangles are discussed in this chapter. We begin by including basic
derivations of secondary school results, and then take the unusual approach of using the Law
of Sines and the Law of Cosines to corroborate the congruence and similarity theorems one
normally learns in secondary school. From these basic rules and laws about triangles we move
to circles and use our triangle laws to develop basic geometric results about circles, and present
some rather surprising proofs of the formulas for the sine of the sum and difference of angles.
We discuss Pythagorean triples, Pick’s theorem, Ceva’s theorem, Heron’s theorem, and Ptolemy’s
theorem. Along the way we find such interesting surprises as how to use some of these ideas
to corroborate that the square root of two is irrational! This chapter makes many important
connections, tying together the concepts of area, trigonometry, circles, number theory, and many
of the main theorems about them in ways that are not available in most secondary school texts.

Chapter 6: Building the Real Number System

This chapter develops the number system. Because of its length we have divided this summary into
two parts.

Part 1: We start with the basic commutative, associative, and distributive laws, discuss why
they are true, and then develop the rules for the real number system. For example, we address
such commonly asked questions as: Why is it true that a negative times a negative is a positive?
Why do we invert and multiply when we divide fractions? Why can’t we divide by zero? Why is
it true that the square root of the product is the product of the square roots? Why do the rules
of exponents hold even when the exponents are irrational? We then give a thorough discussion
of solutions of equations and the typical errors students make and ways to avoid them. Following
are discussions of inequalities in which we derive the rules needed to solve typical secondary
school problems, all the while including the use of technology as a way to corroborate important
issues. This first section ends with the topic of logarithmic and exponential equations and a most
fascinating discussion of how it was determined that the shroud of Turin (supposedly worn by
Jesus) was a fake and how one determines time of death as applications.
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Part 2: In this section, decimals and their representations are discussed in great depth. We
address such questions as: How many way are there of representing decimals? How can one
predict the size of the periodic part of a fraction? Why does the method of long division work
for finding the decimal expansion of a number? We end with the notions of countability and
uncountability and talk a little about the issues of algebraic and transcendental numbers, their
links to the other material discussed in this and prior chapters, and why they were studied. We
prepare the students for later discussions of surprising mathematical results including proving the
impossibility of trisecting an angle with compass and straightedge and other results in that genre.

Chapter 7: Building the Complex Numbers

Similar to how we developed the real numbers in chapter 6, in this chapter we develop the complex
numbers and show why the same rules that work for the real numbers work for the complex
numbers. We discuss the history of complex numbers, why they ultimately were studied, why
they originally were ignored, and some of the remarkable results that come from their study. We
address such realistic applications of complex numbers as how they can be used in the design of
shock absorbers, and how they can be used to solve a treasure hunt. We also give applications of
complex numbers that are quite powerful. Here the students discuss in detail some of the main
results involving complex numbers like DeMovire’s theorem, and Euler’s result. Connections are
highlighted between many of the concepts we discussed in the previous chapters as well as how
complex numbers relate to transformation geometry. We end by showing how fractals relate to the
previously discussed concepts.

Chapter 8: Induction, Recursion, and Fractal Dimension

This chapter focuses on the important concept of recursion and the related topic of induction. The
emphasis is on real applications as well as on modeling. Many non- routine examples as well as
routine examples of induction are given. We discuss interesting links between this material and
that of previous chapters. For example, we show fractals are formed by recursive routines. We also
investigate the dimension of a fractal and interesting issues involving their perimeter and area.
The Chaos game is presented, whose results are quite surprising to all. Links to arithmetic and
geometric sequences are also made.

Chapter 9: Functions and Modeling

In this chapter we discuss functions and modeling in great depth. We begin by carefully examining
what constitutes a function and then turn to modeling with functions, using only real or realistic
examples. We discuss curve of best fit, what it means, derive the formula for line of best fit
using simple calculus and solving simultaneous equations, and discuss some of the issues with
regression. We discuss how to decide which types of curves we should try to use to fit data and then
examine exact fits to certain types of data. Finally, we talk about ways of representing functions,
1-1 functions, their importance, inverse functions, and connect these concepts to transformations
which are discussed fully in the next chapter
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Chapter 10: Geometric Transformations

The notions of transformation geometry from both an elementary point of view and a matrix
point of view are discussed in this chapter. Here your students will get to see how the matrices
they study in college (and which are now studied in secondary school) are used in graphics
programs, and how the results of many different transformations lead to animation. We highlight
the many interesting relationships between reflections, rotations, translations, and so on, and
derive formulas for different kinds of transformations which explain many of the concepts they
will teach in secondary school. Using a very concrete approach we discuss the uses of composition
of functions and deal with issues of how transformations affect figures and their areas. Again,
we link many different areas of mathematics that they teach in a very cohesive way. We finish
by examining how fractals can be generated by combining the transformations discussed in this
chapter providing another perspective on this interesting topic. Finally we will show how certain
important laws of optics arise from the discussions we gave as well as how certain difficult to solve
(but easy to state) geometric problems were solved using the notions of geometric transformations

Chapter 11: Trigonometry

In this chapter we discuss the basic trigonometric functions. The applications of these simple
trigonometric concepts are plentiful and powerful. We highlight many of them right from the
start, by discussing the application of trigonometric functions to physics, astronomy, engineering,
problems from everyday life, and other areas of mathematics. Radian measure, referred to as a
"dimensionless" measure, is introduced and beyond its role in trigonometry, its value for scien-
tists and mathematicians is pointed out. As well, students are encouraged to integrate ideas of
transformation geometry to sketch the graphs of trigonometric curves. We emphasize the role
of technology pointing out the benefits and pitfalls of depending on the graphing calculator or
computer for graphing trigonometric functions. We discuss the trigonometric identities that are
part of the secondary school curriculum and highlight them as multiple forms of representation
which have uses in transformation geometry and our current technology. We even link the study
of trigonometry to the solution of polynomial equations, thereby connecting two very diverse
areas together. We end this chapter with a fascinating study of how geometric proofs can be done
using vectors. In fact, we point out how otherwise very difficult proofs can be made rather simple
with such an approach.

Chapter 12: Data Analysis and Probability

We begin this chapter with a discussion of the basic concepts of probability and the notion of
likelihood and follow these with a discussion of some of the issues with the definitions used in
probability. Once we establish the classical approach to probability, we discuss the basic laws of
probability and conditional probability and illustrate them with several examples. The counting
arguments we develop and their applications lead us naturally to the normal distribution. This
is followed by some exceptionally interesting counter- intuitive results in probability as well as a
discussion of common misconceptions, and fair and unfair games. Geometric probability follows
giving us a rather interesting way to view some probabilistic outcomes. After this we get into some
basic ideas of statistics that are used in the secondary schools such as organizing data through the
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use of histograms, stem and leaf plots, and box and whisker plots. We conclude with an interesting
section on how it is possible to be fooled by media that lie with statistics.

Chapter 13: Introduction to Non-Euclidean Geometry

In this chapter we discuss Euclidean and Non-Euclidean geometries, and their interesting origins.
We begin by discussing some fallacies that can arise in geometry through misleading diagrams or
flawed logic, allowing us to emphasize the importance of checking every step in a proof carefully
and critically examining what your visual intuition leads you to believe. We show how this
careful approach to proof and the assumption that the parallel postulate did not hold led to Non-
Euclidean geometry. The characters responsible for this whole development are introduced and
some interesting historical vignettes are given.

Chapter 14: Three Problems of Antiquity

In this chapter we provide a detailed discussion of geometric constructions and the famous
Three Problems of Antiquity: squaring the circle, doubling the cube, and trisecting an angle. The
solutions of these problems integrate many of the concepts developed in this text and are presented
in a clear manner which is accessible to the student. We highlight how problems which stumped
mathematicians for thousands of years and which seemed to have nothing to do with polynomials,
were solved using them. It is quite an interesting story!
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CHAPTER 1

INTUITION AND PROOF

1.1 Introduction

The history of mathematics is replete with examples where observation and intuition led mathe-
maticians to correct conclusions. However, there are just as many cases where it led to incorrect
conclusions. For example, for many years mathematicians believed that there was only one kind
of geometry-Euclidean. That proved to be false. They also believed that negative numbers had no
meaning. Yet you know from your studies that negative numbers are essential in real-life applications.

As a secondary school student, you were probably only given the correct final results, like a
negative number multiplied by a negative number is a positive number, and not made aware of
the bumpy path it took for results like this to be discovered. This most likely left you with the false
impression that mathematics evolved in a systematic way in which mathematicians created only
correct results. To get a true understanding of the work of mathematicians, and the need for proof,
it is important for you to experiment with your own intuitions, to see where they lead, and then to
experience the same failures and sense of accomplishment that mathematicians experienced when
they obtained the correct results. Through this, it should become clear that, when doing any level
of mathematics, the roads to correct solutions are rarely straight, can be quite different, and take
patience and persistence to explore.

We begin this process by exposing you to some of the instances in history where intuition
led mathematicians astray and give you a chance to test your own intuition on these problems.
Hopefully, by the end of this chapter, you will understand why proof is so important. These
types of situations are what account for the present-day rigor that is part of today’s mathematics
curriculum. In the second section of this chapter you will experience the variety of methods that
you can use to either prove that your own mathematical observations or intuitions are correct, or
possibly even incorrect!

1.2 Can Intuition Really Lead Us Astray?

LAUNCH

Evaluate the expression N2 + N + 41 for integer values of N from 1 through 5. Do you believe that
this expression represents a prime number for all positive integers, N? Justify your answer.
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Most people who see this problem for the first time easily verify that the expression is prime
for each of N=1, 2, 3, 4, 5. After checking N=6, 7,8, ..., 20 and seeing that we still get prime
answers, our intuition starts to kick in and tells us “Maybe this really is prime for all values of N.”
How can we be sure? How many cases must we take before we know with certainty? We will return
to this “launch” question later in the chapter to resolve our dilemma. But first we will turn to some
historical examples that exemplify the process of mathematical discovery.

As our first example we tell an interesting story about the famous mathematician Pierre Fermat
(1601-1665). Until the day he died, he believed that the numbers N = 2@ + 1 were prime for all
positive integers k. For example, if k is 1, we get N = 5 which is surely prime. You should test his
hypothesis out for the cases k = 2, 3, and 4 to see that it still holds. If you continue on and test it
for k=5, you will get N =4, 294, 967, 297. Is this a prime number? Fermat’s intuition was always
right on target and he had proved many illustrious and deep theorems. Who could doubt the great
Fermat? For approximately 100 years this number’s primality remained unresolved until Leonhard
Euler (1707-1783), who some said did mathematics as effortlessly as men breathed, proved, using
an ingenious argument, that

4, 294, 967, 297 = 641 x 6, 700, 417.

That is, Euler showed that Fermat was wrong. The value of N was not prime when k = 5. Things
got worse. The value of N obtained when k = 6 was also not prime, having a factor of 274, 177,
and it was subsequently shown that none of the values of N when k=7,8,9... 27 were prime.
Fermat couldn’t have been more wrong. Of course, if Fermat could make mistakes, how much
more suspicious should we be of our own mathematical beliefs?

Even Euler, who was considered one of the greatest mathematicians who ever lived and whose
original works comprise more than 70 volumes, most of which are considered seminal, made his
mistakes. For example, he conjectured that one cannot find four different positive integers a, b, c,
and d, which make

at+ b+t = dt

This statement was believed by many to be true for more than 245 years, yet no one could prove
it was true or prove it was false—until 1987. Then Noam Elkies of Harvard University discovered
that, if we leta =2, 682, 440, b =15, 365, 639, c =18, 796, 760, and d = 20, 615, 673, we have

2, 682, 440* + 15, 365, 639* + 18, 796, 760* = 20, 615, 673*

Not only that, he also showed that there were infinitely many sets of numbers that worked, all of
them huge—quite a surprising result indeed!
Now, join us in trying to find the sum, S, of the series

S=a+ar+ar’+....
We multiply both sides by r to get
rS=ar+ar’+ ...
and then subtract this equation from the previous to get

S—rS=a.
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We now factor out S to get
1-r)S=a

and we finally divide by 1 —r to get

a
S=
1-r
Is this correct? Check it out by applying it to the series 1+2+4+8.... Here a=1 and r = 2.
According to our “proof” the sum of the series is S = 1; = —1. Yet all the terms are positive!

Something is very wrong here. What is it? [Hint: Not all infinite series have finite sums. So when
you say “Let S equal the sum of an infinite series, ” you had better be sure that the series has a
finite sum. If it doesn’t, you have no business manipulating it as we did above.]

The next example is a good one to share with your future students who have learned the
Pythagorean Theorem. It is quite visual and concerns the staircase in Figure 1.1. Below, in
Figure 1.1(a) is shown a line AB.

A

©)) (b) © (d)
Figure 1.1

We begin by constructing in Figure 1.1(b), a staircase pattern. We then refine that staircase
pattern in Figure 1.1(c) and then refine it again in Figure 1.1(d). Our eyes tell us that the smaller the
vertical and horizontal segments are, the closer the length of the staircase comes to the length of
our line. (By length of the staircase, we mean the sum of the lengths of the vertical and horizontal
segments.) So we are led to conclude that, if we continue this, then the limit of the lengths of the
staircases constructed is the length of the line AB. Do you believe it?

Well, if you do, then you have to accept that the hypotenuse of any right triangle is the sum
of the lengths of the legs, and not believe the Pythagorean Theorem.

Let’s see why. Begin with the right triangle shown below in Figure 1.2 with legs 3 and 4 and
hypotenuse 5. Call the hypotenuse AB.

B

.

Figure 1.2
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Draw one of the staircases on the hypotenuse as shown. Move all the vertical segments on the
staircase to the right as shown and all the horizontal segments on the staircase down as shown in
Figure 1.2. Then it is clear that the sum of the lengths of the vertical segments is 4, the length of
the vertical leg. The sum of the lengths of the horizontal segments is 3, the length of the horizontal
leg. This same thing works regardless of which staircase pattern we use. Thus, the length of the
staircase, regardless of which staircase we take, is 7 and not 5, the length of the hypotenuse.

Our intuition really fooled us here. Our point is that our eyes deceived us. What they showed
us was false. We cannot trust what we see. We need proof that what we think we see is correct.

We know you’ll want to try this next example with your own students some day. Start by
drawing a circle and then pick two points on the circumference as shown in Figure 1.3(a). Draw
the chord connecting them. It divides the circle into two regions as indicated in Figure 1.3(a)
below. Next, draw another circle and put 3 points on the circumference and connect each
pair. What is the maximum number of regions into which the circle is divided? The picture in
Figure 1.3(b) below shows 4 regions.

(@ (b)
Figure 1.3

Now draw another circle and put 4 points on the circumference and connect each pair. What is
the maximum number of regions into which the circle can be cut? The answer is 8 as the picture in
Figure 1.3(c) above shows. Now, guess the answers to the maximum number of regions the circle
is divided into, with 5 points put on the circumference. Did you guess 16? Yes! And did you draw
it? Yes! And were you correct? Yes!

Now finish the following sentence: If we put n points on a circle and connect them, the
maximum number of regions the circle is broken into is .” We hope that you guessed 21,
Now go through the process one last time for 6 points. Be sure to check your answers by drawing a
picture. Did you get 2° regions? Well, if you did, then you didn’t draw the picture correctly. For,
when n=6, we get 31 regions as a maximum and that is not 2"~! since 26~ = 32. Our pattern
broke down.

These examples are just a few of many similar examples, and are meant to show us the danger
of accepting or making statements without proof.

Let us give one final example. This next one is easy. In Figure 1.4 below, which is longer, a
(the shorter base of the top trapezoid) or b (the longer base of the bottom trapezoid)?

a

Figure 1.4
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Did you say b? Well if you did, then you have good eyesight. What? You didn’t? Well, that is
just the point! Measure them with a ruler! b is a bit longer than a.

Are you beginning to distrust your intuition? your vision? your reasoning? If you said, “Yes, ”
then you are beginning to think like a mathematician!

Student Learning Opportunities

Many of the problems that follow are intended to get you to think more critically about situations.
Some of them are tricky and will be discussed further later on in the book. For now, see how you
fare on them.

1 Suppose you were offered the choice of buying an item at a 30% discount, and then
adding on 10% sales tax, or adding the sales tax first and then taking the 30% discount.
What does your intuition tell you is the better deal? Prove it. Was your intuition correct?

2 The cylindrical cup on the left in Figure 1.5 has a radius of 3 inches and a height of 5 inches.
The cylindrical glass on the right has a radius of 2 inches and height of 11.25 inches. You
are very thirsty and want to buy some lemonade at a state fair. Both cups are filled to the
brim with lemonade. The cup on the left sells for $2 and that on the right for $3. What
does your intuition tell you is the better buy? How can you tell if your intuition was correct?
Find out which is really the better buy. Was your intuition correct?

U

Figure 1.5

3 In the following Figure 1.6, which circle is bigger, the one in the center on the left, or
the one in the center on the right? Estimate how much bigger the radius of the larger one
is and then measure the radii to see how accurate you were. Was your estimate correct? In
this case, where do intuition and proof come into play?

Q?@ ge
O O

Figure 1.6
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(©) A student (Lucky Larry) says to you that “The fraction % is % You just cancel the

9’s.” Larry is right that the answer is % When you tell him that his method is wrong, he
says, “How much is $5?” You say, “1” to which he responds, “Yes!!! Cancel the 6's!” What
would you tell him and how would you convince him that he is using an incorrect method?
Explain how intuition and proof are involved in the above scenario.

There are only four fractions where the numerator and denominator consists of two digits,
and you can cancel as in Exercise 4 and get the right answer. See if you can find the other
two.

(©) Jack, a student of yours comes rushing up to you one day very excited and says: “I'll
finally be able to buy the car that I've always wanted.” You ask him if he suddenly came
into some money and he replies: “No, but I've been playing the lottery for the past 8 years
and I've lost every time. | know that | am now surely due for a win.” How do you respond
to Jack? Is he really due for a win? If the probability of Jack winning is 1/1000 and he plays
10,000 games or 100,000 or even 1,000,000 games, isn’t he guaranteed to win? How did
intuition play a role in Jack’s reasoning?

(C) Some students in your class come to you bewildered by some strange things one of
the tricksters in the math club told them. How do you respond to the following proofs they
were shown? Explain how intuition and proof came into play in both of these examples.

(a) A glass half empty is a glass half full. In symbols,
L lass empt _ lass full

Multiply both sides by 2 to get 1 glass empty = 1 glass full.
1 1
(b) y of a dollar = 25 cents. Taking the square root of both sides we get 5 dollar = 5 cents.

(C) Astudent is asked to solve the following equation: % = % The student smiles smugly
and says, “There is no solution. Cross multiply to get (x — 5)(x + 3) = (x — 5)(x + 1). Divide
both sides by x — 5 and | get x + 3 = x + 1. Subtracting x from both sides, | get 1 = 3, which
is impossible. So there is no solution.” Is he right? Explain the role of intuition and proof in

this situation.

(C) The math tricksters are at it again and have just shown your very bright student Maria
a very convincing proof that 1 = 2. Maria comes to you very disturbed that she can’t figure
out what the flaw is. Here is the proof they gave: Start with the statement a = b. Multiply
both sides by b to get ab = b%. Subtract a? from both sides to get ab — a? = b> — a?. Factor
the left and right sides of the equation to get a(b— a) = (b — a)(b+ a). Now divide both
sides by b — a to get a= b+ a. Finally, let a=b =1 in this final result to get the statement
that 1 = 2. How can you help Maria understand what the problem is with this proof?

(C) The tables have been turned and now Maria gets back at the math tricksters (see
previous problem) by bewildering them with the following proof that 2 > 3 : Begin with the
statement that JT > ‘g. Rewrite this as (0.5)? > (0.5)3. Take the logarithm of both sides to the
base 10 which we abbreviate as “log, ” to get log(0.5)? > log(0.5). Now use the property
of logarithms that allows you to pull out exponents. That leaves you with 21og(0.5) >
310g(0.5). Finally, divide by log(0.5) to get 2 > 3. How can you help the math tricksters
see the flaw in Maria’s proof? Explain the role of intuition and proof in this situation.
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(©) You asked your class to compute (—8)3 and much to your surprise they came up
with two different methods of doing it. The first: (—8)3 = &/—8 = —2. The second: (—8)} =
(—8)é = /(—8)2 = ¥/64 = 2. How would you help your students understand which of these
statements is wrong and why it is incorrect? Explain the role of intuition and proof in this
situation.

(C) Lucky Larry’s first cousin (see Student Learning Opportunity 4) solves the equation
—x2 + x + 6 = 4 by factoring first to get (3 — x)(x + 2) = 4. From this he concludes that either
(3 — x) =4 or (x + 2) = 4. He then solves each equation and gets x = —1 and x = 2 and both
solutions check. Is this a valid way to solve quadratics? If not, why not? Explain the role of
intuition and proof in this situation. An interesting question (which we are not asking you
to answer), is: When will this procedure give you the correct answers?

Consider the quadratic equation:

(x—1)(x—2)+(x—2)(x—3)

> > —(x=—Nx-3)=1.

You can check that x =1, 2, and x = 3 solve this equation. But a quadratic equation only
has at most two different solutions. What is wrong here? Explain the role of intuition and
proof in this situation.

(Q) A student, Hannah, sees the fraction "Z:gz and is asked to reduce it to lowest terms.

She says “Cancel the a on the bottom with the a? on the top, to get a on the top, and
cancel the b on the bottom with the b? on the top to get b on the top and finally, note
that when you divide two negatives (the one on the top between a? and b? and the one
on the bottom between a and b) we get a positive. So the answer is a + b.” Now, we know
the answer is g+ b but what was done is nonsense. Respond to the following questions,
and then describe how asking Hannah these questions would help her to see the flaws in
her procedures.

(a) Would the same thing work for ";:53 to get a? + b?? How can you check it?

(b) When can you “cancel” a term in the numerator and a term in the denominator? What
are you really doing when you are “cancelling?”
(c) Can you “cancel” zeros? That is, is % = 1?7 Explain.

A 17 foot ladder is leaning against a wall. The base of the ladder is 8 feet from the wall,
and the top of the ladder is 15 feet above the floor. The top of the ladder begins to slide
down the wall. The ladder is sliding down the wall at the rate of 1 foot per second. Is the
base of the ladder also sliding away from the wall at that rate? What does your intuition tell
you? Can you prove it?

(a) Let S be the infinite series
S=1-1+1-1.... 1.1
Multiply both sides by —1. This will give us

S=T1—-1+1-1... (1.2)
—S=—T+1—T1+1.... (1.3)



8

Intuition and Proof

Subtract equation (1.3) from equation (1.2) to get
25=1.
Hence,
1
S=-. 1.4
5 (1.4)
How can this be since all the terms are integers?

(b) Let us manipulate the series in part (a) differently. First write S=(=1+1)+(=1+1) ...
sothat S=0. Nowwrite S=1+(=1+1)+(=1+1)...sothatnow S =1. How could §
be both 0 and 1?7 This argument was once used to prove the existence of God. If we can
turn nothing (0 was considered as representing nothing) into something (namely 1),
then there is a God! What is the flaw in the reasoning?

(c) Explain the role of intuition and proof in this situation.

17 Consider the circle with center at (1, 0) and radius 1. Pick any point P on the circle, and
then pick a point Q on the y-axis such that OP = OQ. (See Figure 1.7 below.) Draw QP
and let it intersect the x-axis at R. As P approaches O it is clear that R moves to the right.
True or false: The point R approaches a finite number. If so, which number? Try verifying
your guess by hand or with some software. Try proving your guess is correct.

Y
Q P
X
o (1,0 (2,0) R
Figure 1.7

1.3 Some Fundamental Methods of Proof

LAUNCH

Make a convincing argument for or against the following statement: The sum of the squares of any
3 consecutive integers is divisible by 14. Does your argument constitute a proof? Why or why not?

After responding to the launch question, you are probably beginning to question whether or
not you really supplied a “proot” for your answer. In this section we will resolve your question
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by reviewing some of the different proof techniques that every mathematics student should be
familiar with and which relate in one form or another to the secondary school curriculum, not
to mention all of mathematics. The types of proofs we will describe are: direct proof; proof by
contradiction, and proof by counterexample. In each section we first describe the method of proof
and then follow it with several examples. (Please note that there is one more method of proof
that is extremely important in mathematics, and that is proof by induction. However, since that
method is a bit more abstract and not as prevalent in the secondary school curriculum, yet of
critical importance, we have relegated it to a later part of the book, Chapter 8.)

1.3.1 Direct Proof

The first type of proof we speak about is one that you have used throughout school and is called
direct proof. Here we prove something directly from known facts. We simply string the known
results together or perform correct mathematical manipulations to come out with our conclusion.
We give a few examples.

The first example of a direct proof is of a result that is used quite often in mathematics. In
fact, there is a famous legend that is related to this result, of a mathematical genius Karl Freidrich
Gauss who was asked by his elementary school teacher to sum the first 100 numbers to keep him
busy and out of trouble. Much to his teacher’s surprise, after only a few minutes he came up with
his solution. How could he possibly have done it so quickly? Essentially, he used the method used
to prove Theorem 1.1 below which is an illustration of a direct proof.

Theorem 1.1 The sum of the first n integers is w That is,

nn+1)

14243+ ...+n=
+2+3+...+n 5

Proof. We call the given sum, S. Thus,
S=1+2+3+...+n. (1.5)
Now rewrite the sum starting at the last term and going to the first. This yields
S=n+(n-1D)+n-2)+...+1. (1.6)
We now add the two series equation (1.5) and equation (1.6) for S term by term to get
2S=m+1)+(n+1)+ ...+ (n+1). 1.7)

In equation (1.7) we have n terms, all equal to n+1. So the sum on the right side of the
equation (1.7) is n(n+ 1). Thus,

28 =n(n+1) (1.8)

e qs . 1
and dividing equation (1.8) by 2, we get S = @ [ ]
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Thus, if we were asked, as little Gauss was, to find the sum of the integers from 1 to 100, the
sum would be w, or 5050. And that is how Gauss did it!

This method exemplifies a direct proof since we used what we knew about how to represent
the sum of n integers algebraically in several ways and then logically combined and manipulated
our representations in a way that resulted in our theorem.

Our next example of a direct proof involves a theorem from geometry that most secondary
school students learn. We need only recall one fact from geometry: If two sides of a triangle are

equal, then the angles opposite them are equal.

Theorem 1.2 An angle inscribed in a semicircle is a right angle.

Proof. Begin with angle ABC inscribed in the semicircle as shown in Figure 1.8 below. (Recall that
an inscribed angle is one whose vertex is on the circle.)

A o C
Figure 1.8

Now draw radius OB. Since all radii are equal, OB = OA = OC. Hence angle OAB = angle OBA
since triangle AOB has two equal sides. We call both these angles x. Similarly, angle OCB = angle
OBC since triangle OBC is isosceles, and we call these angles y as marked in the diagram. Now,
we know that the sum of the angles of a triangle is 180 degrees. So summing the angles of triangle
ABC, we get, A+B+C =180 or x+ (x+y)+y =180, which simplifies to 2x + 2y = 180. Dividing
both sides of this equation by two, we get that x + y =90. But x + y is angle B, and our goal was
to show that angle B, the inscribed angle, was 90 degrees. So we are done. B

This method exemplifies a direct proof since we used what we knew about the radii of a
circle, the sum of the angles of a triangle, and the angles of an isosceles triangle to create an
algebraic equation that represented the relationships of the angles. We then correctly manipulated
our equation to arrive at our result. Indeed, it is a thing of beauty!

1.3.2 Proof by Contradiction

The direct proofs are so elegant, you might be asking yourself why we need to learn different
methods of proof. This is certainly a valid question. Consider trying to prove, as Euclid did, that
V2 is irrational. In ancient times, the Greeks believed that all numbers were rational and the fact
that +/2 did not fit the criteria for a rational number was of great concern to them. But, how do
we prove it? A direct proof in this case is not obvious. Therefore, in the true spirit of problem
solving, when one method does not present itself easily, one must think of another approach,
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in this case, proof by contradiction! In a proof by contradiction, sometimes known as an
indirect proof, we are, as in all proofs, trying to prove that a statement is true. Given that we
know that a statement must either be true or false, we do a tricky thing and assume that what we
are trying to prove is false! We then show that this leads to a contradiction of something we know
is true. Since the assumption that the theorem was false led to a contradiction of something we
know is true, the original statement COULD NOT have been false. Thus, our original statement
must have been true. Got that? Observe how clever this method is!

Let us now examine Euclid’s most famous proof by contradiction that +/2 is irrational. It is a
masterpiece of simplicity. We present it here. We just recall that a rational number is one that is a
ratio of two integers which, of course, may be written in lowest terms. We assume that the reader
accepts the fact that if the square of an integer is even, the integer itself must be even. We discuss
these issues more in Chapter 2.

Theorem 1.3 /2 is irrational.

Proof. Suppose not. Then /2 is rational. That is,
V2 = g 1.9)

where p and g are integers and g is in lowest terms. What that means is that p and g have no
common factor.

Now since /2 = ‘3' we may square both sides of this equation to get 2 = g—i. Next we multiply
both sides by g2 to get

p? =2q>. (1.10)

This tells us that p?, being twice the number, g?, must be even, hence p is even.
Since every even number is twice some number, and p is even, we may write p =2k and
substitute into equation (1.10) to get 4k? = 2¢2. Divide both sides by 2 to get

2k? = q°. (1.11)

Since equation (1.11) says that g2 is twice some number, g? is even and hence q is even.

We have shown that both p and g were even. This contradicts that g was in lowest
terms.

Our assumption that +/2 was rational led to a contradiction of something we knew was true.
Thus, /2 is irrational. W

Isn’t this proof amazing?

Before continuing, let us say a few words about how to prove “If-then" statements by con-
tradiction. The statement “If A then B” is telling you to assume that A is true, and to show that
B follows from it. Now, either B follows from it, or it doesn’t. In a proof by contradiction, we
assume that B doesn’t follow and show this leads to a contradiction. So, if we want to prove the
statement “If n is odd, then n2 is odd” by contradiction, we assume that n is odd and n2 is not
odd and proceed from there to find a contradiction. If we wanted to prove the statement “If n is
divisible by 2, then »® is divisible by 8” by contradiction, we begin by assuming that n is divisible
by 2 and n? is not divisible by 8. Finally, if we are trying to prove that “If a+b < 6, then either
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a or b is less than 3.” We assume that a + b < 6 but it is false that a or b is less than 3." If it is false
that a or b is less than 3, then both a and b must be greater than or equal to 3. (For more on the
logic of this, see Student Learning Opportunity 9.) We are now ready to proceed with some other
proofs by contradiction.

Theorem 1.4 If a and b are real numbers and a+ b < 6, then either a or b is less than 3.

Proof. Suppose a+b < 6 and it is not true that either a or b is less than 3. Then both a and b
are greater than or equal to three. That is, a > 3 and b > 3. Adding these two inequalities yields
a+b > 6, and this contradicts what we were given, namely, that a+b < 6. Since our supposition
that it is not the case that either a or b was less than 3 led to a contradiction of something we
knew, that supposition must be wrong. So a or b must be less than 3. B

Theorem 1.5 If the coordinates of a quadrilateral are A: (0, 0), B: (1, 3), C: (-3, 5), and D: (-1, 2),
then ABCD is not a parallelogram.

Proof. Suppose ABCD is a parallelogram. Then AB must be parallel to CD. Thus, AB and CD
3-0 2-5 -3
must have the same slope. But the slope of AB is 1 0" 3 and the slope of CD = -3~

They are not the same. So ABCD cannot be a parallelogram. B

Although proof by contradiction seems strange at first, we all experience it first hand in the
courtrooms. Suppose that a lawyer is trying to prove that Mr. Smith didn’t kill his wife. A proof by
contradiction would proceed as follows: “Suppose that Mr. Smith did kill his wife. Then he had to
be there with her when she was killed. But he was at a party at that time (here is our contradiction)
and this was verified by 73 different guests. So Mr. Smith didn’t kill his wife.”

1.3.3 Proof by Counterexample

A conjecture is a statement of a relationship that one believes is true based on evidence or
intuition, or both, but not yet proven. In Section 1.2, we discussed Fermat’s conjecture that
the numbers N = 22 + 1 are prime for all positive integers k. Euler had a suspicion that Fermat's
conjecture was false. But how could he show that? Certainly, if he could find one example where
it did not work, then he would have shown that Fermat’s statement wasn’t true. An example
which shows that a statement is false is called a counterexample. Euler found that, when k =5,
we get N =4, 294, 967, 297, which is NOT a prime. So Euler found a counterexample to Fermat’s
conjecture.

Suppose we are given the statement “The square of any odd number is even” and we want
to disprove it. We need only produce one counterexample. In this case the odd number 3 is a
counterexample. The square of 3 is 9 and 9 is not even. Therefore, the statement that “The square
of any odd number is even,” is false.

So, when we believe that a conjecture is not true, we have a method to prove it is false. All we
have to do is find a counterexample.

In the launch in the beginning of the chapter we asked if N? + N + 41 is prime for all positive
integers N. After taking several examples, our intuition told us it might be! However, if we can
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find one counterexample to this, then we have our answer. Try N = 41 and you can then see that
(41)% + (41) + 41 is divisible by 41. So it is not true that N> + N + 41 is always prime.

1.3.4 The Finality of Proof

In mathematics when one produces a correct proof, one never has to question its truth again.
That is what mathematical proof is all about. It is about finality and knowing for sure that, for
eternity, something is true or not true. That is very different from proof in the sciences, where,
for the most part, theories are constructed based on evidence. In the sciences one rarely can prove
the theory, but one accepts it because it explains the physical phenomena. However, it is always
subject to change. If new evidence surfaces, the whole theory might change. In mathematics, it
is very different since theories are proven, and with a correct proof they are true forever!

Student Learning Opportunities

1 (a) Give a direct proof that the exterior angle of a triangle is the sum of the two remote
interior angles. That is, w = x + y. [Hint: The sum of the angles of a triangle is 180° as
is the sum of zand w. See Figure 1.9 below.]

X V4 w

Figure 1.9

(b) As a corollary of (a), deduce that the exterior angle of a triangle is greater than either
of the remote interior angles.

(c) As another corollary, prove by contradiction that, from a point outside a line, there
can only be one perpendicular drawn to that line.

2 Give a direct proof that the figure with coordinates (5, 0), (3, 3), (-5, 0), and (-3, — 3)
is a parallelogram.

3 Give a direct proof that 1+3+5...+(2n—1)=n? by showing that the sum is (1 +
2+ ...+2nN—2+4+6+....+2nN=0+2+ ...+2nN—-2(1+2+3+....+n) and then
using Theorem 1.1.

4 Using the facts from trigonometry that sin’6 +cos?6 =1, and that cos26 = cos?6 —
1+ cos 26

sin o, give a direct proof that cos26 =1 — 2sin?0, and hence that sin?6 = >

for any angle 6.

5 (C) Students are asked to expand the expression (a+ b)>. They do the computations
and get a® + 3a?b+ 3ab? + b*. How do they arrive at this expression? Is this a proof that
(a+b)® = a®+3a’b+ 3ab? + b3? If so, what kind of a proof is it? Why?
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6

10
11
12

1 —1 1 1 1
Giveadirectproofthatﬁ+ﬁ+...+(n_1).n=n [Hint:ﬁ=1—§,f3=
LI N N
2 3'3.4 3 477
Give a direct proof that, when nis even, 12 —-22+3%2 — +(=1)"(n—1)2+(=1)""'n? =

M. [Hint: Rewrite this as (12 — 22) + (32 — 42) + ...+ ((n — 1)?> — n?) and then factor

toget(1-2)(1+2)+B-49)B+4)+...+(n—=1-n(n—1+n).]

Here is an interesting pattern:
14[2]+1=[2]
142+[3]+2+1=[3]
T+2+3+[4]+3+2+1 =2

and so on. This pattern continues where the sum is always the middle number squared.
Using Theorem 1.1 see if you can explain the pattern. [Hint: The typical expression on the
left can be writtenas T+2+3+ ...+[n]+n—1+n—2+ ...+ 1]

(C) Students often have trouble with proofs by contradiction. They don‘t understand why
when you negate an “if-then” statement, you assume the “if” part and negate the “then”
part. Show, using logic tables, that the negation of (p — q) is equivalent to (pA ~ ).
Then explain how this equivalence is used as the basis for a proof by contradiction.

Give a proof by contradiction that, if 3n+ 5 is even, then n must be odd.
Give a proof by contradiction that, if x+ y < 12, then either x < 6 or y < 6.

Give a proof by contradiction to show that, if two lines /| and m are cut by a transversal, in
such a way that the alternate interior angles, x and y are equal, then the lines are parallel.
[Hint: If the lines aren’t parallel, then they meet at some point P as shown in the second
picture of Figure 1.10 below. Now use Student Learning Opportunity 1 part (b).]

Figure 1.10
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True or False: When you give a proof by contradiction, you must contradict something
that is given. Explain.

(C) A student asks if you can use the same method to prove +/3 is irrational as you used to
show /2 is irrational. How do you guide the student to see the differences and similarities
in the proofs?

Give a proof by contradiction that 4 + /3 is irrational. (You may need to use the fact that
the difference of rational numbers is rational.)

Give a proof by contradiction that there cannot be a quadrilateral whose consecutive
sides are AB=2, BC=3,CD=5, and DA =12. [Hint: Draw diagonal AC cutting the
quadrilateral into two triangles. Using the fact that the shortest distance between two
points is a straight line, show that the length of AC is less than 5. Now work with the
other triangle. The shortest distance from A to D should be 12.]

Prove or disprove the following statement: “3" > n+ 2 for each positive integer n.” Explain
what method you used.

What method of proof was used to disprove Euler’s conjecture that there are no positive
integers a, b, ¢, and d which make a* + b* + ¢* = d*?

Find a counterexample to the statement “The smallest natural number, n, such that the
sum of the first n natural numbers is greater than 1000 is n = 50.”

-1
=x+1. Are

. . . X
(C) Your students are convinced that the following statement is true:

they correct? Give a proof for why this is or is not correct. What type of proof did you give?

(C) Your students are convinced that the following statement is true: If a < b then a? < b
Are they correct? Give a proof for why this is or is not correct. What type of proof did you
give?

(C) Your students have proven that, when they add 2 consecutive integers, they always
get an odd number. Now they have begun to investigate what happens when then add
3 consecutive integers. Some have decided that the sum is always divisible by 3. Others
have decided that the sum is always divisible by 6. Prove or disprove each of your students’
conjectures. Which method or methods did you use?

Prove or disprove: If three consecutive integers are multiplied together, and the second,
in order of size, is added to the product, the result is always a perfect cube.

(C) Astudent asks, “ Since we can always use direct proof, why do we need to know proof
by contradiction and proof by counterexample.” What is your reply?

(C) A student asks, “What happens when you try to prove that +/4 is irrational in a manner
similar to the way we proved that +/2 was irrational? Won't that same proof show that
V4 is irrational?” How do you explain to your student that the same method won’t work?
Where does the proof break down?






CHAPTER 2

BASICS OF NUMBER THEORY

2.1 Introduction

Throughout the school curriculum, an emphasis is placed on numbers, their properties, and
relationships between and among them. In this chapter we present some of the basics of number
theory that middle school and secondary school teachers should be aware of. Those who took
courses in number theory will likely find much of this material familiar, but will enjoy revisiting
some of the important and elegant results which often even secondary school students can prove.
The results provide insight into what proof is all about and the important role of good definitions.
Throughout the chapter we also intersperse interesting applications that range from recreational
areas such as numerical curiosities and tricks, to such serious practical applications as the workings
of a computer and high-level security systems.

2.2 Odd, Even, and Divisibility Relationships

LAUNCH

Find five odd numbers whose sum is 100.

After exploring the launch question, you may be somewhat frustrated. Were you able to find any
sets of five odd numbers that met the conditions? How many sets of numbers did you try? You
might suspect that there are no such five integers. Did you notice any patterns in the sums that
you found? Were they all odd? It might have hit you that “Wait, the sum of five odd numbers
must be odd, so this sum cannot be 100.” Ahhhh! The light came on! The solution of the problem
depends on realizing that the sum of two odd numbers is always even and the sum of an even
number and an odd number is odd. But how do you know that the sum of two odd numbers is
always even? Just because you try sum after sum of two odd numbers and you get an even number
does not always mean the sum of ALL pairs of odd numbers is even. Is there a simple way to show
this? Sure! We will now see how.
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So then, what is an even number? We know numbers like, 2, 4, 6, and so on, are even. But
how can we define an even number so that, if we want to prove things about them, we can? Think
about it for a few minutes before proceeding and see what you come up with.

There are a few ways to proceed, but a particularly elegant and simple way is to realize that
every even number can be represented as twice another integer. For example, 2=2-1, 4=2-2,
and so on. That leads us to our definition of even number. An even number is any integer that can
be written as double an integer. That is, N is even if N = 2k for some integer k. It follows that, if
an even number is a number of the form 2k, then an odd number, being one more than an even
number, is also easy to define. That is, an integer N is odd if N = 2k + 1 for some integer k.

One of the first patterns that middle school children observe is that the sum of two even
numbers always results in an even number. Similarly, they notice that the sum of two odd numbers
is even. What about the product of even and odd numbers? Try multiplying a few pairs of integers.
What patterns do you observe? While middle school children can draw conclusions based on
these observations, they typically believe they have enough evidence to accept these relationships
as facts. It is the teacher’s responsibility to let students know that observations alone do not ensure
that the relationships will hold for all cases. Having a higher level of understanding of the concepts
and proofs that underlie the relationships is essential. Even if the proofs are too sophisticated for
middle or secondary school students, teachers can make them accessible to their students in a
more informal way, but only if they themselves have insights into the proofs. So, here we begin the
process with our first theorems interspersed with examples, tricks, and applications that involve
number concepts.

Theorem 2.1
(a) The sum of two even numbers is even.
(b) The sum of two odd numbers is even.
(¢) The product of two odd numbers is odd.
(d) If an even number is multiplied by any integer, the result is even.

Proof. We won't give the proof of all of these, as they are worthwhile tasks for you. But we will
give the proof of parts (a) and (c):

(a) Suppose M and N are even numbers. Then, by the definition of even number, each of these
is twice some integer. Thus M = 2k and N = 2/ for some integers k and /. We need to show that the
sum of these numbers is even, and that means that the sum must also be shown to be twice some
integer. We do that as follows:

M+ N =2k+2]
=2(k+1)
and we are done. We have shown that M + N equals twice the integer k + . How simple it was to
prove using the proper definitions!
(c) Suppose M and N are odd integers. Then by the definition of odd number, each of these is

one more than an even number. That is, M =2k+ 1 and N =2/ + 1 for some integers k and /. We
need to show that MN is odd. That is, it is of the form 2m+ 1 for some integer m. But

MN = (2k+1)(2I+1)
=4kl +21+2k+1
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=2Q2kl+1+k)+1

=2m+1

where m = 2kl + 1 + k. Thus the product of two odd numbers is odd. B

We can solve some surprisingly difficult problems by just considering when the numbers
involved are odd or even. Here are some on the secondary school level. The first came from a
secondary school contest. No calculators were allowed, and the students had about 2 minutes to
solve the problem. See if you can do it before looking at the solution.

Example 2.2 Of the following pairs (x, y), only one of them does not satisfy the equation
187x — 104y = 41. Which one is it?
Here are the pairs: (107, 192), (211, 379), (314, 565), (419, 753), (523, 940).

Solution. A quick solution would run as follows: 104y is even (Why?) Add 104y to both sides of
the equation 187x — 104y = 41 to get 187x = 104y + 41. The right side of this new equation, being
a sum of an even number and an odd number, is odd. Thus, the left side of this new equation,
187x, must be odd. This eliminates the pair whose x coordinate is 314 since 187 times 314 is even.
Thus, (314, 565) doesn’t work.

This next example shows how concepts of odd and even can be used to figure out tricks.

Example 2.3 Tell a friend to take a dime and nickel and put one coin in one hand and the other coin
in the other hand. You can turn your back while he does this. Tell him to multiply the value of the coin
in his right hand by 8 and the value of the coin in his left hand by 3 and tell you the sum. If he tells
you an even number, the dime is in his left hand. If he tells you an odd number, the dime is in his right
hand. Explain this trick.

Solution. The trick here is to realize that the dime has an even number of cents and that the
nickel has an odd number of cents. Let R be the value of the coin he has in his right hand in cents,
and L be the value of the coin he has in his left hand in cents. You are asking him to compute
8R+3L. Now 8R is always even and 3L will be odd or even depending on whether L is odd or
even. If L is even, that is, if the dime is in his left hand, the sum 8R + 3L will be even. If L is odd,
that is, if the coin in his left hand is the nickel, the sum will be odd.

Concepts of odd or even rest on the question of whether or not a number is divisible by 2. We
can now extend this notion to examine numbers that are divisible by numbers other than 2. For
example, one of the topics we emphasize in schools today is pattern recognition. So, for instance,
if we list the numbers 3, 6, 9, and so on, we see that each number is a multiple of 3, or put another
way, each number in the list is divisible by 3. What does it mean for a number to be divisible by 3?
What does it mean for a number to be divisible by 4, and so on? We are guided by the definition of
an even number. A number N is divisible by 3 if N = 3k for some integer k. A number, N, is divisible
by 4 if N =4k for some integer k, and so on. Thus, a number N is divisible by a, an integer, if
N = ak for some (unique) integer k.

There are several other ways of saying that N is divisible by a. One is that N has a factor of a.
(Recall that, when we write a number as a product, each number in the product is called a factor.)
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Another is that N is a multiple of g, or that a divides N, or that a is a divisor of N. Thus, if we
know that an integer N = 11k for some integer k, right away we know that N is divisible by 11 or,
said another way, N is a multiple of 11, or 11 is a factor of N, or 11 divides N, or 11 is a divisor of N.

Example 2.4 Show that, for any integer k, (2k +1)> — (2k — 1)? is divisible by 8.

Solution. If we square the expressions in parentheses and simplify, we get
(2k +1)? — (2k — 1)?
= (4k® + 4k + 1) — (4k* — 4k + 1)
= 8k.

Clearly, this result is divisible by 8.

Example 2.5 A man buys apples at 3 cents a piece and oranges at 6 cents a piece, and hands the
salesperson a S dollar bill. His change is $4.12. Did he receive the right change?

Solution. At first glance, this problem seems impossible to answer, but it can be answered. If the
man bought x apples and y oranges (both positive integers), his cost would be 3x + 6y cents. Since
he received change of $4.12 cents, his cost must have been 88 cents. That is, 3x + 6y = 88. But,
since one can factor out 3 from the left side of the equation, 3x + 6y is divisible by 3. But the right
side, 88, isn’t. This means that 3x + 6y can’t be 88, and hence he couldn’t have paid 88 cents for
the fruit. Thus, his change could not have been correct.

Isn’t it nice how the simple divisibility facts help us in solving this problem?

Let us give one last example from geometry.

Example 2.6 Recall that a regular polygon is one whose sides are equal and whose angles are equal.
Thus, an equilateral triangle is a regular polygon, as is a square. If we take 4 squares and arrange
them around a point, we can do it so that there is no space left between them. If we take 6 equilateral
triangles that are congruent, we can arrange them around a point so that no space is left between
them. (See Figure 2.1 below.)

90 | 90 60 | 60
60 60
90 | 90
60 | 60
Figure 2.1

Show that there are only three regular polygons for which we can do this.
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Solution. We need to recall a fact from geometry, namely, each interior angle of a regular polygon
180(n — 2

is % where n is the number of sides. If k of these polygons are put together so that there is

no space left over at the center, then the sum of the angles at the center must be 360 degrees. That

k-180(n—2 kn — 2k
is, # = 360. If we divide by 180, we get n

= 2. Multiplying both sides by n we get
kn—2k=2n

and subtracting 2n from both sides and adding 2k to both sides we get
kn —2n = 2k.

Finally, factoring out n from the left side and dividing by k — 2 we get

2k 4
Ll kS @

4
Since the left side of equation (2.1) is an integer, so is the right side. Thus, ) is an integer and
so k — 2 must divide 4. Since k — 2 divides 4, k — 2 must be 1, 2, or 4, and therefore k = 3, 4 or 6.
Substituting these values into equation (2.1) we get that n =6, 4, or 3, respectively. Thus, the only

regular polygons that will accomplish this are hexagons (n = 6), squares (n=4) and equilateral
triangles (n = 3).

Let’s move on to some other results involving concepts of divisibility that are interesting and
useful.

Theorem 2.7 If M and N are each divisible by a, then so are M + N and M — N. This generalizes:
The sum and/or difference of a collection of numbers, each divisible by a, is divisible by a.

The proof of each is almost identical to the proof of Theorem 2.1 (a) so we leave it to you as a
simple but instructive exercise.
Let us illustrate this theorem with a simple example.

Example 2.8 Show that the only positive integer n that divides both an integer a and a+ 1 is 1.

Solution. Most people don’t know where to start with this one. But, if n divides both aand a + 1,
then n divides their difference (a + 1) —a, or 1. But the only positive integer that divides 1 is 1.
Thus, n=1.

Theorem 2.9 If M is divisible by a, and N is any integer, then MN is divisible by a.

Proof. We need to show that MN = ak for some integer k. But, M is divisible by a, so for some
integer m,

M =am.
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This is what it means for M to be divisible by a. Multiplying both sides of this equation by N, we
get that

MN = amN.

Thus, MN = ak where k is mN and therefore MN is divisible by a. B

Most middle school students know the following rule: A number is even if the units digit of
the number is O, 2, 4, 6, or 8. There are rules to tell if a number is divisible by 3, 4, 5, 6, 7, 8, 9,
and 11, some of which are quite easy to remember. To develop the rules for divisibility and their
proofs, we need some notation. If a number has tens digit f and units digit u, then the value of the
number is 10f + u. Since the number 36 has tens digit 3 and units digit 6, the value of the number
is 10(3) + 6. Similarly, if a three digit number has hundreds digit h, tens digit f, and units digit u,
then the value of the number is 100/ + 10t + 1, and so on.

The following is a typical secondary school problem, which can be solved by trial and error
with some analysis, or by algebra. We take the algebraic approach.

Example 2.10 If the digits of a two digit number are reversed, the resulting number is 9 more than
the original number. The sum of the original number and the number with the digits reversed is 55.
Find the original number.

Solution. We let t be the tens digit and u be the units digit of the original number. Then the value
of the original number is 10t + u. When the digits are reversed, t becomes the units digit, and u
the tens digit. Thus, the new number will have value 10u + t. From the given information, when
we reverse the digits the resulting number is 9 more than the original number. That is, 10u +¢ =
9 + 10t + u. Subtracting 10f + u from both sides we have that 9u — 9t =9 and when dividing by 9
we get

u—t=1. 2.2)

From the information that the sum of the original number and the number with the digits
reversed is 55, we have 10f+u + 10u + t = 55 which simplifies to

11u+ 11t = 55. (2.3)

Dividing this by 11 we get that

u+t=>35. (2.4)
Adding equations (2.2) and (2.4) we get

2u =06,

hence u = 3. Substituting u = 3 into equation (2.4) and solving for t we get t = 2, and so the number
we are seeking is 23. And indeed, we can see that our answer works out. That is, 32 — 23 =9 and
32+23 =55!

Just as a note, it is always important to check back after doing a problem to see if your answer
works out. This is as much a part of the problem-solving process as solving the problem, since
it is possible that computational errors were made or the algebraic representation of the problem



Basics of Number Theory 23

was incorrect. Also, even if all the mathematical work was correct, it is possible that answers that
don't work were introduced. (See Chapter 6, Section 11 for more on this.) Teachers need to set the
example that good problem solving involves reflecting on one’s solutions.

Here is an even more interesting problem which is the basis of many number tricks. (See
Example 2.13 in the next section for one of them.)

Example 2.11 Show that, if we take any three digit number and scramble the digits, then subtract
the smaller of the two numbers from the larger one, the result will always be divisible by 9.

Solution. Just to understand what this is saying, let us take a few examples. Suppose the original
number is 921 and the scrambled number is 291. Then the difference is 921 — 291 = 630, which is
divisible by 9. If the scrambled number were 129 the difference would be 921 — 129 = 792, which
is also divisible by 9.

Now let us give the idea of the proof in general. We begin by assuming that the hundreds digit
of the number is h, the tens digit is ¢, and the units digit is u. Let us scramble the digits, making,
say, u, the hundreds digit, h, the tens digit, and t, the units digit. Then our original number
has value 1004 + 10t + u and the number with the digits scrambled is 100u + 10h + t. Let us assume
that the original number is the larger one. Then when we subtract, we get 100k + 10t + u — (100u +
10h +1t) =90h + 9t — 99u = 9(10h + t — 11u). Since this difference is 9k where k = 10h+t — 11u, we
see the difference of the numbers is divisible by 9. A similar proof works for any scrambling of the
digits. Since this works for all of the permutations of the digits, we are done!

Student Learning Opportunities

1 (a) Give a direct proof that the sum of two odd integers is even.
(b) Give a direct proof that the sum of any odd integer and any even integer is odd.
(c) Give a direct proof that multiplying any integer by an even integer gives an even integer.
(d) Give a proof by contradiction that if n? is odd, then nis odd.

2 (C) A student asks if 0 is odd, even, or neither. How do you respond? How do you explain
your answer?

3 (C) A student gives the following proof of Theorem 2.1 part (a): Suppose M and N are even
integers. Then by the definition of even number, each of these is twice some integer. Thus
M = 2k and N = 2k. We need to show that the sum of these numbers is even. But, that is
easy:

M+ N =2k + 2k
= 2(k + k)

so the sum is even.
Criticize this proof. Show how to do it correctly.

4 (a) Show that if a number is divisible by a, then it is divisible by any factor of a.
(b) Prove that If M and N are each divisible by a, then sois M+ N.
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(c) Prove that If M and N are each divisible by a, then sois M — N.
(d) Prove that If M and N are each divisible by a, then so is MP for any positive integer power
p. Is it true if p is a negative integer power? Explain.

Show that 3k? + 3k is always divisible by 6 for any integer .
Prove that the square of the product of 3 consecutive integers is always divisible by 12.

(©) Your students have been investigating the square roots of the following square numbers:
4,16, 36, 64, etc. and have come up with the conjecture that, if N2 is even, where N is an
integer, then so is N. Are they correct? How can they prove or disprove their hypothesis?
(Note that we used this property in the proof that +/2 was irrational in Chapter 1.)

Show that the sum of the cubes of 3 consecutive integers is divisible by 9. [Hint: The identity
(a+b)? = a3 +3a’b+ 3ab? + b> helps.]

(C) One of your curious students noted the following interesting relationship: When she
added 2 consecutive odd integers, the sum was divisible by 2. When she added 3 consecutive
odd integers, the sum was divisible by 3. She made the conjecture that the sum of n
consecutive odd numbers is always divisible by n. Is she correct? How would you help her
prove or disprove her conjecture?

The product of 66 integers is 1. Can their sum be zero? Explain.

Show that there are no positive integers such that ab(a — b) = 703345. [Hint: Consider the
cases when one of the numbers is even, when both are even, and when both are odd.]

If a+ 2 is divisible by 3, show that 8 + 7a is also.

(©) The integers 1 to 10 are written along a straight line. You dare your students to insert
“+" signs and “—" signs in between them so that their sum is zero. Will they be able to do it?
Why or why not?

In Example (2.11) we assumed that the larger number was 100/ + 10t + u. What if that were
the smaller number and (100u + 10h+t) were the larger. Would the conclusion that the
difference is divisible by 9 still hold? Explain.

Find all two digit numbers such that the sum of the digits added to the product of the digits
gives the number

(©) You ask your students to do the following: Select any three digit number. Form all possible
two digit numbers that can be formed from the digits of this three digit number. Sum these
two digit numbers and divide the result by the sum of the digits of the original number.
What do you get? Now start over with a different three digit number. What result do you get
now? Do you notice anything? Start again with another 3 digit number. Explain your results
algebraically.

(C) Here is an interesting mind reading trick that you can do with your students that is based
on place value representation of numbers. Have each of your students think of a card. An Ace
is worth 1 and deuce 2, and so on. A Jack is worth 11, a Queen 12, and aKing 13. Aclub is
worth 5, a Diamond 6, a Spade 7, and a Heart 8. Let each take the numerical value of his or
her card, (for example, Jack is numerically worth 11) and add the next consecutive number.
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(So, in the case of a Jack, the next consecutive number would be 12.) Then have everyone
multiply the sum by 5 and add the suit value. (Thus, if a student thought of a Club, his suit
value would be 5.) Ask one of your students to tell you the result he or she got. Subtract 5
from whatever the student tells you. The last digit of the remaining number is the suit value,
and the first digit (or the first two digits in the case of a 3 digit number) gives you the card
the student chose. Thus, if you end up with 127, the student chose the Queen of Spades.
Call on several other students and demonstrate repeatedly that you can “read their minds.”
Ask your students to figure out how you do it. Ask one of them to play the trick on the class
and then explain how it works. How does the trick work?

18 (C) Here is a mind-boggling trick you can play with your students. Ask a particular student
to think of the price of an item he recently bought that cost more than 10 dollars. Ask that
student to write this price in large numbers on an index card. Then while you turn your back
to the class and cover your eyes, ask that student to show the price written on the card to the
class without your seeing it. Then ask the class to do the following computations: Write down
the price without the decimal. (Thus 16.95 is written as 1695.) Take the first two digits of
the number (in this case 16) and add the next consecutive number (in this case 17). Take the
sum of these two numbers (in this case 33) and multiply by 5 (here, 165.) Tell the students
to place a zero to the right of the number to make a four digit number. (Here, 1650.) Now
use the particular student you are working with to pick any number between 10 and 99, and
have that student tell the class the number out loud. Have everyone in the class add it to the
last number they got. (So, if the original number was 35, they would now all have 1685.)
Finally, ask the students to add the number formed by the last two digits of the original
number they wrote down (in this case 95) to the number they now have (1685) and tell you
the result (1780). To find the student’s original number, subtract 50 plus the number he told
you (35). The number you get (in this case 1695) tells you the price the student paid for the
item. Ask your students to figure out what you did. Explain why this works.

2.3 The Divisibility Rules

LAUNCH

What is the smallest positive integer composed of only even digits that is divisible by 97 Justify your
answer.

Did you spend a great deal of time trying to come up with an answer to the launch question? How
many integers did you try? Did you use any divisibility rules to help you arrive at your solution?
What were they? If you have not solved this problem as yet, continue reading the chapter and
return to it later, after you have more “tools” to work with regarding divisibility.

Most middle school and secondary school students know the rule that, if a number is divisible
by 2, then its last digit is divisible by 2. The divisibility rules for other numbers are less well known
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to middle school students, and their proofs are not given. But, as a teacher, you should be aware of
the proofs so that they are not a mystery to you and you can make sense of them to your students.

There are several divisibility rules that we present here and, although we will prove these only
for three digit numbers, the proofs extend to numbers with any number of digits. Remember, we
are only giving the proofs for three digit numbers now.

1. Divisibility by 2: If the final digit of a number, N, is divisible by 2, then so is N divisible by 2.
Conversely, if the number, N, is divisible by 2, so is its final digit.

Proof of 1: (The first part.) Let N be a 3 digit number and suppose that its final digit is divisible by
2. Then N can be written as 100/ + 10t + u. Clearly, 100h + 10t is divisible by 2 since we can factor
out a 2. So we have

N =100k + 10t + u
~——— ——
divisible by 2 divisible by 2 by assumption

Now N is the sum of two numbers divisible by 2. So N must be divisible by 2 by Theorem 2.7.

To prove the converse, rewrite N = 100/ + 10t + u as N — (100h + 10t) = u. Now we are assuming
that N is divisible by 2 and, since 100/ + 10t is also clearly divisible by 2, their difference, u, is
divisible by 2 by Theorem 2.7 with a = 2.

2. Divisibility by 3: If the sum of the digits of a number, N, is divisible by 3, then the number, N, is
also divisible by 3. Conversely, if the number is divisible by 3, so is the sum of the digits.

To illustrate, let us investigate this property with the number 231. We sum the digits to get
2+3+1=6. Since 6 is divisible by 3, we know that 231 is as well. And we can verify this since
231/3 = 77. Conversely, if we take the number 69, which we know is divisible by 3, we see that
the sum of the digits, 6 +9 = 15 is also divisible by 3. So if we want to determine if a large number
such as 1235492 is divisible by 3, we just sum the digits: 1+2+3+5+4+9+ 2 =26. Since 26 is
not divisible by 3, the original number is not divisible by 3.

Proof of 2. Let the number be N = 100h+ 10t + u. We are going to show that, if the sum of the
digits, h+t+u, is divisible by 3, then the number N is. Rewrite N as N=99h+h+9t+t+u or
just as

N=099% +9t) + (h+t+u). (2.5)
~——— —
divisible by 3 divisible by 3 by assumption
The expression in the first parentheses of equation (2.5) is divisible by 3, since we can write it as
3(33h + 3t). Furthermore, we are assuming the expression in the second parentheses, the sum of
the digits, is also divisible by 3. So N, being the sum of two parenthetical expressions each divisible
by 3, is divisible by 3. (Theorem 2.7.)
To prove the converse we just rewrite N = (99h+91) + (h+ t + u) as

N — (99h+9t) =(h+t+u)
~— ——
assuming is divisible by 3 is divisible by 3

and then argue that, since we are assuming that N is divisible by 3, and since clearly (99h + 9%) is
divisible by 3, the difference, which is (h+ ¢+ u), is divisible by 3. Of course, h+t+u is the sum
of the digits. Thus, if N is divisible by 3, so is the sum of the digits.
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3. Divisibility by 4: A number, N, is divisible by 4 if the 2 digit number formed by the tens digit
and units digit is divisible by 4 and conversely.

Let us illustrate. To see if the number 1235492 is divisible by 4, you look at the number formed
by the last two digits, 92. Since 92 is divisible by 4, so is the number 1235492.

Proof of 3: We prove if the two digit number formed by the tens digit and units digit of a number
is divisible by 4, then so is the number. We prove this for a 4 digit number whose thousands digit
is a, whose hundreds digit is b, whose tens digit is ¢, and whose units digit is d. Then

N =1000a + 100b + 10c + d = (1000a + 100b) + (10c +d) .
—— ——— N—
divisible by 4 divisible by 4 by assumption

The number in the first parentheses is divisible by 4 automatically since we can factor out 4 from
it, and the number in the second parentheses is the number formed from the last two digits of
N which we are assuming is divisible by 4. We have written N as the sum of two parenthetical
phrases, each of which is divisible by 4. So N is also divisible by 4 by Theorem 2.7.

The converse is left as an exercise.

4. Divisibility by 5: A number, N, is divisible by 5 if the final digit is divisible by 5 and conversely.
The proof is similar to the proof of the rule for divisibility by 2 and we leave it to the reader.
5. Divisibility by 6: A number, N, is divisible by 6 if it is divisible by both 2 and 3.

Proof of 5: If the number is divisible by 2, then when we factor it, it has a factor of 2. Similarly,
since it is divisible by 3, when we factor, it will have a factor of 3. Thus, when we factor the
number, it will have a factor of 2 and a factor of 3. Thus N =2 -3 . k. This tells us N = 6k and N is
divisible by 6.

The test for divisibility by 7 is complicated and not used much, so we omit it.

6. Divisibility by 8: A number, N, is divisible by 8 if the number formed by the last 3 digits is
divisible by eight, and conversely.

Proof of 6: The proof is similar to the proof of divisibility by 4. We leave it as a Student Learning
Opportunity.

As an illustration, 12345678 is not divisible by 8 because the number formed by the last three
digits, 678 is not divisible by 8.

7. Divisibility by 9: A number is divisible by 9 if the sum of the digits is divisible by 9 and
conversely.

Proof: The proof is virtually identical to the proof of divisibility by 3 and your students will very
likely be curious about why this is true. It is left as a Student Learning Opportunity at the end of
this chapter.

8. Divisibility by 11: A number, N is divisible by 11 if the sum of the digits in the odd positions
minus the sum of the digits in the even positions is divisible by 11.

To illustrate, the number 12345674 is divisible by 11 since (1+3+5+7)—(2+4+6+4)=0
which is divisible by 11. So the original number is divisible by 11. Use your calculator and
check it!
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There are some fascinating examples based on divisibility by 9 which we will show now.

Example 2.12 A number, c, consists of N 1’s and only N 1's. What is the smallest number, c, like
that, that will be divisible by 9?

Solution. This is easier than you might think. To be divisible by 9, the sum of the digits must be
divisible by 9. Since N consists only of 1’s, we will need 9 ones. Thus our number is 111111111.

Example 2.13 Try this next trick with a friend or with your students. Tell them to do the following:
Take a number and scramble the digits. Subtract the smaller number from the larger number and
obtain the result. Now cross out any NONZERO digit in the result and sum the remaining digits. If
they tell you the sum of the digits they got, you will be able to tell them the digit they crossed out. For
example, if they told you the sum was 7, you could tell them the digit they crossed out was 2. If they
told you the sum of the digits was 12, you could tell them the digit they crossed out was 6. How do
you do it?

Solution. The solution is based on Example 2.11. In that example we said that, if you take any
3 digit number and scramble the digits, the difference between the larger and the smaller number
will be divisible by 9. Although we only showed it for a 3 digit number, it is true for any size
number and the proof is essentially the same. Knowing that the difference of the number and the
scrambled number is divisible by 9 means that the sum of the digits of the resulting number must
be divisible by 9. So if you crossed out a nonzero digit and the sum of the remaining digits is 12,
then what you crossed out has to be a 6, since the sum of all the digits in the remaining number
had to be a multiple of 9, and 18 is the next multiple of 9. Similarly, if the sum of the digits was
7, then since the next multiple of 9 closest to 7 is 9, you must have crossed out a 2. When you try
this on your friends, they will be amazed with your powers.

We have talked about divisibility, and while these results seem to just be theoretical, that is hardly
the case. We now talk about a practical application of some of the things we have been doing.
When you go to the supermarket, you notice that each item you buy has its own UPC label. A
typical label looks something like that in Figure 2.2.

0775700 03214‘ 9

Figure 2.2

This label identifies the item. The first 6 digits of this code represent the manufacturer and the
next 6 digits describe the item. Each manufacturer has its own code. The label is read by a scanner,
which then identifies the manufacturer and the item and then finds the price of the item. The
label we have shown here is the label from a small box of Dole Raisins. A typical UPC label has
12 digits as you see in the picture, counting the O in the beginning and the 9 at the end.

Now suppose that the scanner at the checkout counter scanned the label incorrectly and
reports that you bought a box of detergent instead of a box of raisins. So, rather than being charged
say 20 cents for the box, you are charged $2.50. This would not be a good thing. So, each UPC code
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has what is known as a check digit to alert us if it made a mistake so that the item should be re-
scanned. The check digit is always the last digit. In this case it is the last digit 9.

What the scanner does is add all the digits in the odd numbered placesto get0+5+0+0+2 +
4 = 11 and multiplies this sum by 3 to get 33. It adds to this all the numbers in the even numbered
positions, but ignores the check digit. That is, it adds to this 7+ 7 + 0+ 3 + 1 = 18. So, the total so
far is 33 + 18 = 51. The check digit is always chosen so that, when added to the total, the resulting
sum is divisible by 10. Of course, 51 + 9 = 60 and that is divisible by 10. If, when the machine adds
the check digit to its reading, it doesn’t come out with a multiple of 10, it alerts the checker that
the item needs to be re-scanned.

Sometimes a machine cannot scan a label and the checker has to key in by hand what he or
she sees as the UPC code. Of course, he or she can make a mistake. The most common mistakes are
keying in a wrong digit, or switching two adjacent digits, say by typing in 57 instead of say, 75.
This system will always catch a mistake if one digit is entered incorrectly, and will, in most cases,
find an error if two adjacent numbers are switched.

Why will this system catch an error if a single digit is keyed in wrong? Well, if an odd digit
is incorrect, say the 5 is keyed in as 8 (or read by the scanner as 8), then when it is multiplied by
3 the new sum (counting the check digit) differs from the correct sum by a multiple of 3 (in this
case 3 times 3). And no single digit multiple of 3 can bring us back up to the next multiple of 10.
Similarly, if the error is made in an even position, the new sum (including the check digit) differs
from the true sum by a single digit, and thus cannot be divisible by 10. So, in summary, this system
will allow us to detect many errors.

Unfortunately, this system will not allow us to correct all errors. For example, if the first two
digits in the UPC code were “16” instead of “05” and the digits were read as “61” instead, then we
would have an error and our check digit, 9, at the end would still work, giving us a multiple of
10, as you should verify. So, what we are saying is, you may actually be charged for detergent as
the machine may not detect the error. Our advice: (a) watch as your items are scanned, and (b) be
grateful that we have a mechanism that will correct many errors.

In a similar manner, zip codes have a built-in error detection scheme based on divisibility by
10, but postal money orders have a check digit scheme based on divisibility by 7. Even Avis Rent-
A-Car uses a divisibility by 7 scheme to identify rental cars. You can find out more about this on
the Internet.

As we have said, the methods that we have discussed for detecting errors in zip codes, UPC bar
codes, car rental codes, UPS codes, and so on, are not foolproof. There are much more sophisticated
methods used, depending on the application, that can not only detect errors, but correct errors.
Such technology is used in CD players in their anti-skip capability. Thus, the laser in the CD may
at first skip a note, but it is detected and immediately corrected

Student Learning Opportunities

1 Factor the following numbers completely by using the divisibility rules from this section.
Explain how you used the different rules.
(@ 111
(b) 297
(c) 255
(d) 18,144
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1
Without converting to decimals, what is the least positive integer x for which 540 - %y

given that y is a positive integer also.
(C) A student is curious about the test for divisibility by 9 and asks you to prove it for any
3 digit number. How do you do it?

(©) A student claims that if the final digit of any number N is divisible by 5, then so is N.
How can you prove this is so?

If the number 412 is added to 3b2 and the result is divisible by 9, tell what the value of b is.

(C) A student claims to have made a discovery that, if you take any two odd numbers, m and
n, then the difference of their squares is divisible by 8. She shows the example 92 — 52 = 56
which is divisible by 8 and claims it is always true. Is she correct? Prove or disprove this.

Investigate on the Internet the test for divisibility by 7. Explain what makes it complex.
Prove the test for divisibility by 8.
State a test for divisibility by 10. Prove it works.

What is the smallest positive integer composed of only even digits that is divisible by 97 Justify
your answer.

Show that, if a number, N, is divisible by a and b, and a and b have no common factor other
than 1, then N is divisible by ab.

Suppose that x and y are integers and that 2x + 3y is a multiple of 17. Show that 9x + 5y is
also a multiple of 17. [Hint: Start with 17x+17y.]

How many numbers less than 1000 are divisible by either 5 or 7? Justify your answer.

Are there single digit values for a and b that make the number 4324a5b4 divisible by both 4
and 97 If so, what are they? If not, why not?

The UPC codes for several items are given below. Find the check digits which have been
replaced by question marks.

(a) Wise Potato Chips 20 ounces size: 041262285637
(b) Wesson Canola Oil 48 ounce size: 027000690487
(c) Del Monte Fruit Cocktail in light syrup, 15 ounce size: 024000167077

In each of the following UPC codes, a digit is missing from the full UPC code and is replaced
by a question mark. As usual, the last digit is the check digit. Find the missing digit.

(a) Silk Soy Milk, Chocolate. 8.25 ounce size: 025297600850
(b) Diamond Crystal Salt 16 ounces size: 013670000100
(c) Bon Ami Cleanser 14 ounces size: 017500044151

(C) After playing around with her calculator, a student notices that the following numbers are
all divisible by 11: (a) 123,123; (b) 742,742; (c) 685,685. She is convinced that the number
abc, abc where a, b, c are single digit natural numbers will always be divisible by 11. Prove
or disprove her conjecture. (Here abc does not mean the product of a, b, and ¢, rather the
digits in the representation of the number.)
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18 Let a; =1001, a3 =1001001, as = 1001001001, and so on where the subscript of a repre-
sents the number of 1's. Show that every single a, is factorable if n is divisible by 3, orif nis
even. (In fact, regardless of what n is, a, is factorable, but this is harder to prove.)

2.4 Facts about Prime Numbers

LAUNCH

The number N = 49,725 represents the ages of a group of teenagers multiplied together. How many
teenagers are there and what are their ages? Explain how you got your answer.

We hope that you learned a lot about factoring integers as you engaged in trying to solve the
launch problem. How did you figure out the number of teenagers that were needed? Did your
result include any prime numbers? During your solution process, we hope you developed some
intuitive ideas about some properties of prime numbers that you are curious to learn more about.
We will explore some of these properties in this section.

Essential to this topic is the concept of prime. We say that an integer, N, greater than 1, is
prime, if the only way to factor N with positive factors is 1 - N. For example, since the only way
to factor 2 is 1-2, 2 is a prime. (We consider the factorization 2 -1, where the factors are the
same but the order is different to be the same factorization.) Similarly, 3 is a prime. Notice that a
prime number is a number greater than 1. The reason for this is somewhat technical. It makes the
statements and proofs of our theorems much simpler and avoids having to make many qualifying
statements.

An integer greater than one is called composite if it is not prime. What that means is that the
integer can be factored into two or more smaller primes. Thus 9 is composite because it can be
factored into 3 - 3. Similarly, 14 is composite because it can be factored into 2 - 7. In finding the
greatest common divisor of a set of numbers, we often have to factor the numbers completely down
to primes. We will talk more about this later in the chapter. For example, 36=4-9=2-2.3-3.
While it certainly seems obvious that every composite number can be factored into primes, we
really need to be sure. The next theorem tells us that is true and essentially follows the calculations
that we did above.

Theorem 2.14 Every composite number N can be factored into primes.

Proof. If N is composite, then it can be factored into two smaller numbers, a and b. If both are
prime, then we are done. If not, then each composite factor can be factored into smaller numbers.
If these smaller numbers are all primes, we are done. If not, each composite factor can be factored
turther into smaller numbers. The key word in this proof is “smaller.” We cannot continue to factor
indefinitely, since each time we factor we get smaller factors, and there are only a finite number of
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smaller whole numbers less than N. Thus the process must end, and when it does, it does so because
we can find no smaller factors. At that point, each remaining number in the factorization of N is
prime. W

Corollary 2.15 Every integer N > 1 is either prime, or can be factored into primes.

Proof. Either the number is prime, or it is composite. If it is prime, we are done. If it is composite,
it can be factored into primes by the theorem. W

This theorem seems pretty mundane. “So what?” you may think. But, it is the fact that every
number can be factored into primes, and that this can be a very difficult thing to do when the
number is large, that has major applications. In fact, it is this fact that is the basis of our national
security. Many of our country’s secrets are encrypted (as are your credit card numbers when you
order online) using a scheme that can only be broken if the prime factors of certain large numbers
are found. The problem is, these numbers are huge (consisting of several hundred digits) and
finding the prime factors, even with our super computers, can take decades. So, for now, or until
someone finds a fast way of factoring numbers into primes, we are safe. This encryption scheme
is an interesting application of prime numbers and we will have more to say about it later in the
chapter.

The next theorem is one we will also use.

Theorem 2.16 If a PRIME number p divides a product ab, then the prime number p must divide a or
b.

You might be thinking this result is obvious. We just factor a and b into primes, and if p divides
this product of primes, it must be one of them. The issue really is that there may be more than one
way to factor a number into primes, and one of these ways may not involve the prime p. This is a
subtle issue, and once we resolve it at the end of the section, we will give the proof of this theorem.

Notice the word “prime” in the theorem. The result is not true if the word “prime” is omitted.
For example, 18 can be factored into 2 -9, and the composite number 6 divides 2-9. But the
composite 6, does not divide either 2 or 9.

Theorem 2.16 is often used in proofs. So, for example, if we know that 3 divides some number
(p?> +1)(q — 2) and we know it does not divide the first number p? + 1, then it must divide the
second number, g — 2, since 3 is prime. We will use this idea later on in the book in the proof of
the rational root theorem and its applications. [See Chapter 3, Section 5.]

If we start listing the primes numbers in order, we have: 2, 3, 5, 7, 11, 13, 17, 19, and so on and
it appears that there are no particularly large gaps (differences) between consecutive primes. For
example, 2 and 3 differ by 1; 3 and S differ by two, as do 5 and 7; 7 and 11 differ by 4. It is natural
to ask the question, how large can the gap between consecutive primes get? Can there be a gap
of at least 10,000 between consecutive primes? Put another way, can we find 10,000 consecutive
integers which are composite, or must a prime occur somewhere in this list of 10,000 consecutive
numbers? The answer, is, surprisingly, that we CAN find 10,000 consecutive numbers which are
composite. In fact, we can even show them to you. They are (10,001)! + 2,(10,001)! + 3,(10,001)! +
4, ...,(10,001)! + 10,0001. (Recall that 10,001! is the product of all the integers from 1 to 10,001.)
The key to proving that these are all composite is that 10,001! is divisible by each of the numbers
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2,3,4, and so on up to 10,001. Thus, the first number, (10,001)! + 2, is the sum of two numbers each
of which is divisible by 2 hence is divisible by 2. The second number in the set, (10,001)!+ 3, is
the sum of two numbers, each of which is divisible by 3, and so it is divisible by three. Similarly,
the next number in the set is the sum of two numbers, each of which is divisible by 4. Hence it
is divisible by 4. Continuing in this manner, we see that each of the 10,000 numbers in this set is
composite. There is nothing special about 10,000 here. In fact, we have the following:

Theorem 2.17 If N is any positive integer, we can find a string of N consecutive composite numbers.

Proof. Consider the N numbers, (N+ 1)!+2, (N+1)!+3, (N+D!+4, ... (N+ D!+ (N+1). Realiz-
ing that (N + 1)! is divisible by all integers from 2 to N + 1 inclusive, and using the same kind of
argument as above, we see that each is composite. That is, the first is composite because it is the
sum of 2 numbers divisible by 2. The second is composite because it is the sum of two numbers
divisible by three, and so on. B

Thus, we can find a million, or a billion or even a trillion consecutive numbers in a row with
no primes in sight. This seems to indicate the primes may be becoming scarcer and scarcer, and
it might be that there are only a finite number of primes. And, even if there were infinitely many
primes, how on earth would one go about proving it? Well, there are infinitely many primes, as
we know, and Euclid proved it in the following way. This proof certainly counts as one of the most
efficient, ingenious, and elegant proofs in all of mathematics. We should all see it.

Theorem 2.18 There are infinitely many primes.

Proof. Using proof by contradiction, suppose it is not the case that there are infinitely many
primes. Then there would be a finite number of primes which we can call p,, p2, p3 ... pr where
p1 represents the last prime. Now, form the following number:

N=pips ... p, + 1. (2.6)

By corollary 2.15, this number N is either prime or can be factored into primes, and in this latter
case would have a prime factor, p. N can’t be prime because it is bigger than p; and p; was the
largest prime. So N must be factorable into primes and have a prime factor of p. But p must be one
of the primes occurring in the product p;p;, ... pr since this is supposedly the list of all primes.
Thus p1p» ... pr is divisible by p.

Now, since N is divisible by p and since p,p, ... pr is also divisible by p, their difference,
N —pi1p2 ... pr, is divisible by p. But their difference is 1, by equation (2.6). Thus 1 is divisible by
p. How can this be, since the prime p is bigger than 1?

Our assumption that there were finitely many primes led us to the contradiction that p must
divide 1. Thus our original assumption that there was a finite number of primes was false and there
must be infinitely many primes. B

Are you smiling? You should be. You have to admit, this is one beautiful proof!

We now return to a proof of Theorem 2.16 that we promised. But first we have to prove
something related. This is a “structural theorem.” Our goal is to show that, when we factor a
number into primes, the factorization is unique.
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Lemma 2.19 If there is a smallest number, N, that can be factored into primes in two different ways,
then any primes in one factorization of N will not occur in the other factorization of N.

Proof. We give a proof by contradiction. Remember that we are letting N represent the smallest
number that can be factored into primes in two different ways. Suppose that two different
ways we may factor N are N= p1p, ... p, and N=q1q» ... gk and suppose that these two fac-
torizations of N have a prime factor, say p; in common. Then we can rearrange the primes in
the factorizations of N so that p;, comes first. That is, we can assume that p; =¢q;. Thus, N =

pip2 ... pnand N = p1qs ... gx. Divide each of these equations by p;. This yields pﬂ =py ... ppand

1
N N .
p_ =¢qz ... gx. What these two equations say is that the number — can be factored in two different

1 1

ways, p2 ... pnpand qz ... gx. But this number is smaller than N, and this contradicts the fact that
N was the smallest number that could be factored in different ways. This contradiction which arose
from assuming there were two different factorizations of N with a common prime factor, shows
that, if there is a smallest number that can be factored into primes in two different ways, they

cannot have a common factor. W

Theorem 2.20 Any natural number greater than 1 can be factored into primes in only one way.

Proof. Again, using proof by contradiction, suppose it is not the case. Then there is some natural
number that cannot be factored in only one way. Hence, there must be a smallest natural number
that cannot be factored into primes in only one way. Call it N. Then by the previous lemma, N has
two different factorizations: N= p1p, ... p, and N = q1q> ... gx and none of the p’s and ¢’s are the
same. Thus p; #q1. Suppose p1 < ¢1. (If the reverse is true we do a similar argument.) Our plan is
to construct a number P smaller than N with two different factorizations, and this will contradict
the fact that N is the smallest such number. Here is our candidate for P :

P=(q—p1)q .. 9k (2.7)
We first observe that (g1 — p1) < g1. We now multiply both sides of this inequality by q; ... g, to get

@1 = p1)g2 - Gk < 192 - - - G- (2.8)
But the left side of inequality (2.8), is P and the right side is N. Thus

P < N.

We have shown that P < N. Now we will show that P has two different factorizations.

The first factorization of P is obtained from equation (2.7). The g’s are all primes and none of
them are p;, but q; — p; may not be prime and may have p; as a factor. Let us see what happens if
q1 — p1 has a factor of p;. If it does,

q1 — p1=kp1
for some k, and solving for gq; we get

q1 = kpl +p1= pl(k+ 1)



Basics of Number Theory 35

This says that g; is a multiple of the prime p;. But this cannot be since ¢; is a prime and has no
positive factors other than 1 and itself. Thus,

the factorization of P given in equation (2.7) does not containp;. (2.9)

Now we return to find another factorization of P that DOES contain a factor of p;. This coupled
with (2.9) will provide us with the two factorizations of P and will give us the contradiction we
seek. We start with equation (2.7):

P=(q—p1)g2 - 4k
=qiq2 ... gk — P192 - - Gk (Distributive Law)
=N-pi1q2 ... gk (Since q1g2 ... gk is one of the ways of factoring N)
=p1p2 .- Pn—P192 --- Gk (Since p1py ... pn is another way of factoring N)
=p1(p2 ... Pu—2qz .. ) (Factoring out py). (2.10)

This last factorization provides us with another factorization of P which DOES contain the factor
pr-

So, let us summarize. We took the smallest number N that did not have a unique factorization,
and produced a smaller number P that did not have a unique factorization. One factorization of P,
the one in equation (2.10) had a factor of p; in it, the other, the one in equation (2.7) didn’t as we
showed and highlighted in (2.9). This contradicted the fact that N was the smallest number that
did not have a unique factorization. This contradiction arose from assuming that there was some
number that didn’t have a unique factorization, and hence that there was a smallest one. Thus,
this assumption was wrong, and this tells us that all natural numbers greater than 1 have a unique
factorization into primes. W

We just want to make one last comment on this theorem. A prime, like 2 is already considered
“factored into primes.” Now let us give a rather unexpected consequence of this:

Example 2.21 Show that log, 3 is irrational.

Solution. We do this by contradiction. Suppose that log, 3 is rational and that log, 3 = £ where a
a

and b are positive integers. Then 2% = 3. (See Chapter 6 for a review of logarithms.) Now raise both
sides of the equation to the bth power to get 2¢ = 3. Call the common value of these two numbers,
N. Thus N = 2 = 3, Now what? Well, we are done! We have that the positive integer N has been
written in two different ways as a product of primes. In the first factorization it is a product of 2’s.
In the second it is a product of 3’s. This contradicts Theorem 2.20, so the assumption that log, 3
is rational cannot be true. Therefore, log, 3 is irrational.

Isn’t this neat? It is so logical!

We can now give the proof of Theorem 2.16 that “If a prime p divides a product ab, then either
p divides a or p divides b.”

Proof. If p divides ab, then pk = ab for some integer k by the definition of divisor of ab. Factor both
sides of this equation into primes. Since there is only one way to factor a number into primes, and
p occurs on the left side of the equation as a factor, p must also occur on the right side of the
equation as a factor. That is, p had to arise as a factor of either a or b. And we are done.
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When a and b are positive numbers that have no prime factors in common, we say that a and
b are relatively prime. Thus 8 = 23 and 27 = 33 are relatively prime, since they have no common
prime factor. The same is true of 18 and 35 since 18 = 2 - 32, and 35 = 5 - 7. When a rational number
% is in lowest terms, then a and b must be relatively prime.

One other useful result we will need is:

Theorem 2.22 If a and b are relatively prime, and if a divides kb for some some integer k, then a
must divide k.

Proof. If a divides kb, then all prime factors of a divide kb. But since a and b have no prime factors
in common, being relatively prime, all prime factors of a must divide k. And, if all the prime
factors of a divide k, then k contains all prime factors of a and hence is a multiple of a. That is, a
divides k. B

2.4.1 The Prime Number Theorem

Knowing that there are infinitely many primes, and that there can be very large gaps between a
prime and the next prime, led mathematicians to wonder about the distribution of primes. How
many primes roughly are there less than some number N? The mathematician Gauss, at the age of
14 (Yes, 14!ll) studied this problem, and came up with a conjecture about the number of primes.
He said, let 7 (N) be the number of primes less than or equal to N. (Here = (N) is a function of N, it
has nothing to do with the number n. But this is pretty standard notation for this.) Since there are
4 primes less than or equal to 7, and they are, 2, 3, 5, and 7, =(7) = 4. Similarly, 7(13) = 6, since
there are six primes less than or equal to 13 and these are: 2, 3, 5, 7, 11, 13.

What Gauss conjectured was that the ratio #, which represents the fraction of primes less
than or equal to N, is roughly ﬁ, when N is large, where In N is the natural logarithm of N. Yes,
ﬁ\,!!!! Your first reaction might be disbelief. How does a 14 year old come up with the estimate
ﬁ for LARGE N, when he doesn’t even have a computer, and more so, why should the natural
logarithm have anything to do with prime numbers? It is just amazing!

Let us examine the ratios of % and < for some specific values. The values were obtained

InN
by computer. When N is 1 million, Z{” is 0.0784 and 1 = 0.0723. When N is 10 million, *{™ =
0.0664 and ﬁ = 0.0620. (So, approximately 6% of the numbers less than or equal to 10 million

are prime.) When N is 100 million, ”TN) =0.0576 and ﬁ\] =0.0542, and so on. Gauss seemed
to be on the right track. But Gauss was a genius (as you might have guessed). Who among us
could have ever guessed that rule? Of course, for Gauss, this is just a conjecture. He did not prove
this conjecture was true. It took another 100 years for his conjecture to be proven and the proof
required some very sophisticated mathematics.

Student Learning Opportunities

1 What is the largest prime factor of 14,300,0007 Justify your answer.

2 (C) Astudent asks you to explain why the only even prime number is 2. Show how you could
prove it by contradiction.
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(C) A student asks whether 1 is prime or composite? How would you explain the answer to
this question?

The numbers 2 and 3 are consecutive integers, which are both prime. Show that no other
pair of consecutive integers is prime.

If n= 23, then there are only 4 factors of n and they are 2°, 21, 22, and 23. Similarly if n = 2334,
the factors are of the form 293 where 0 < a < 3 and 0 < b < 4. Thus there are 20 factors of
n. (Why?) Show that, if a number N is factored into primes, say N = p{" - pJ2 . ... . pi¥, then
the number of factors of Nis (ny + 1)(n2 +1) ... (g + 1).

(©) A student asks what is the best way to show if a number N is prime. What do you say?
At first, students think one has to try to divide N by all primes less than N and if none divide
N evenly, then N is prime. But, a better way is to show by contradiction that, if N = pg, then
one of p and g must be less than or equal to +/N. Thus, when trying to determine if a number
is prime, they need only check for prime divisors less than or equal to +/N. Show how you
would prove this result and help your students see how to use it to show that 143 is not
prime and that 569 is prime.

Suppose x and y are both integers. Find a solution of (2x + y)(5x +3y) = 7.

If 3¥-15¥+2 = 7711!, where the exponents are nonnegative integers, how do we know that
there are no solutions other than x=1 y=-2, z=0, and t = 0?

Apply your knowledge of prime numbers to answer the launch question: The number N =
49,725 represents the ages of a group of teenagers multiplied together. How many teenagers
are there and what are their ages? Explain.

How many distinct ordered pairs (x, y), where x and y are positive integers, are there that
make x*y* — 10x%y? + 9 = 0? Explain.

What is the largest prime factor of 29! +30!? Explain. [Hint: Factor out 29!.]
Find a number n such that n+2, ..., n+ 2007 is composite. Justify your answer.

Show that, if nis composite, then it is not possible for (n — 1)! + 1 to be divisible by n. [Hint:
By contradiction: If (n— 1)!+1 = kn, where n is composite, then (n — 1)! + 1 = kab, where a
and b are factors of n. Rewrite this as kab— (n— 1)! = 1. Since a and b are less than n, they
each divide (n — 1)!. Finish it.]

P

Here is another proof that +/2 is not rational: Write +/2 = P where ? is in lowest terms.

Then square and multiply both sides by g? to get 2g° = pz.?\low p? a?wd g? being squares,
have each of their prime factors raised to even powers. But the extra two on the left side
of 2g% = p? means that 2 occurs to an odd power on the left side. The fact that 2 appears
an odd number of times on the left and an even number of times on the right gives us our
contradiction. So, ~/2 is irrational.

(a) Give a similar proof to show that V3 is irrational. Then show that +/N is irrational when
N is an integer that is not a perfect square.

(b) If we tried to give a similar proof to show that V4 is irrational, where would the proof
break down?
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15 Show thatlog, 7 is irrational. Is log, a irrational if a and b are primes with a # b? What if a = b?

16 (C) A student asks if there is an integer N > 1 such that the square root, cube root, and fourth
root of N are all integers, and if so, what is the smallest one? How do you respond? Justify
your answer and show how you could help him find such a value for N.

17 If we tried to show, as in Example 2.21, that log, 8 is irrational (it isn’t!), where would the
proof break down? What is log, 8 equal to?

18 Find 7(10). Then compute @ and compare it to ﬁ using your calculator.

2.5 The Division Algorithm

LAUNCH

A magician is in possession of a piece of paper on which there is written an integer. He tells you that
this integer is being divided by the number 23 and, if you guess what the remainder is, you will
win a trip to Las Vegas! He allows you 10 guesses to figure out the remainder. Do you have a good
chance of winning the trip? Explain.

Chances are that, when you first read the launch problem, you thought maybe some information
was missing. Hopefully, after some exploration and examination of various integer divisions, you
began to get an inkling of some of the qualities of their quotients and remainders. Maybe you
have even developed some intuitive ideas about the relationship between divisors and remainders
in integer division. We will investigate this further now in our discussion of the division algorithm.

Suppose that we divide N = 28 by 4. It goes in 7 times, or put another way, the quotient is 7
and the remainder is 0. When 29 is divided by 4, the quotient is again 7, but the remainder is 1.
When 30 is divided by 4, the quotient is again 7 and the remainder is 2. When 31 is divided by 4,
the quotient is again 7 and the remainder is 3. Then everything begins to repeat. 32 divided by 4
gives a quotient of 8 and leaves a remainder of 0 and so on. As we increase N by 1 each time, the
quotients get bigger and the remainders cycle, 0, 1, 2, 3, 0, 1, 2, 3. When we divide an integer by
4, there are only 4 possible remainders, and they are, 0, 1, 2 or 3. In a similar manner, when we
divide a number by 5, there are 5 possible remainders, O, 1, 2, 3, and 4. In general, if a number is
divided by a positive integer b, there can only be b remainders, and they are 0,1, 2, ... b—1. We
learned this in elementary school: When a positive number N is divided by a positive number b,
there is a quotient g and a remainder of r. Furthermore, if we multiply the quotient by the divisor
and add the remainder, we get N. That is, N =bq +r. We can get an intuitive picture of why this
is true by looking on the real number line. There you see b, 2b, 3b, and so on. We can imagine
the space between O and b to represent a segment of length b, and the space between b and 2b
to represent a segment of length b and so on. (Each segment includes the left endpoint but not
the right endpoint.) These are back to back and cover the whole number line. It follows that any
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number N is either an endpoint of one of these segments or lies inside one of these segments.
What that is essentially saying is that every number N is either a multiple of b, or lies between two
multiples of b. If the left part of that segment is the largest multiple of b less than or equal to N,
that means that the difference between N and bq is some nonnegative integer, r, less than b. See
Figure 2.3 below.

|
[
-b 0 b 2b 3b 4b 5b ... bg N (g+1)b

Figure 2.3

From the picture, we can see that N = bq +r. Of course, this diagram alone is not a proof of
that fact but is probably convincing to most secondary school students. The real proof is not much
different from this intuitive explanation. In fact, the picture we drew and our observations drive
the proof. In it, we consider differences between N and multiples of b. Here is the real proof:

Theorem 2.23 (Division Algorithm) If an integer N is divided by a positive integer b, then there is
always some integer qo and some remainder r where O <r < b such that N = bqo +r. Furthermore, qo
and r are unique.

Proof. We give the proof of the case when N and b are both positive, as this makes things just a
bit simpler. The theorem is still true when N is negative and b is positive.

So, suppose that N and b are both positive. Consider the set, S, of numbers of the form N — bg,
where g =0, 1, 2, ... . This set clearly has nonnegative integers since, for example, N is in it. (Just
take g = 0.) Now every set of nonnegative integers has a smallest element. Let the smallest element
of this set, S, occur when g = go and call this element r. Thus

N —bgo=r. (2.17)

Since r is the smallest nonnegative integer in this set by choice, r > 0.

We will show that r must be less than b. We will do this by showing that, if r > b, then we
can find a smaller nonnegative member of S than that shown in equation 2.11, which will give us
our contradiction. Suppose then that r > b then r — b > 0. Consider N — (qo + 1)b, which is smaller
than N — qob. Here is the proof that N — (qo + 1)b is nonnegative

N—(q0+1)b
= (N - qob) — b
=r —b > 0. (Since we are assuming r > b.) (2.12)

Since N — (qo + 1)b is nonnegative, and hence a member of §, and since this number is smaller
than the smallest element, (N — qob), of S, as we have shown, we have our contradiction. Since
this contradiction arose from the assumption that r > b, it must follow thatr < b.

To prove the uniqueness of q and r, suppose that

N = bqO +7 (21 3)
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and that
N=bqi +r15. (2.14)

Our goal is to show that go=¢: and that ry =r,. Subtracting equation (2.13) from
equation (2.14), we get that 0 = b(q; — qo) + r2 — r1, which implies that

—b(q1 —qo) =12 —11. (2.15)

Taking the absolute values of both sides of equation (2.15) we get

bl(q1 —qgo)| =Ir2 —r1]. (2.16)

Now, the left side of equation (2.16) is a nonzero multiple of b, if qo # q1, and thus must be greater
than, or equal to, b. Since both r; and r, are between 0 and b, it follows that |r, —r1]| is less than
b, since this absolute value is the distance between the points. (See Figure 2.4 below.)

0 r F} b

Figure 2.4

So, the left side of equation (2.16) is greater than, or equal to, b if gy # q1 and the right side of
equation (2.16) is less than b. This is impossible. So qo = q1. Substituting this into equation (2.16),
it follows that [r, —r{| =0, or thatry =7r,. B

Notice how much was involved in writing the proof of something that geometrically, using
the number line, seemed obvious!

In elementary school, before students learn about rational numbers, they express all of their
solutions to division problems in terms of quotients and remainders. Thus, when 16 is divided by
3, the quotient is 5 and the remainder is 1. When they advance to the study of rational numbers
they suddenly relinquish all discussion of remainders and express the answer to a division problem,
like 16 divided by 3 as 5%. What this means in terms of the Division Algorithm is that, instead of
N = bq +r, they would write instead, % =q + 3. It is important that you as a teacher be aware of
this extension from the integers to the rationals.

Theorem 2.23 is a fundamental result about division of integers and has widespread use both
in and outside of mathematics. As just one example, when computers process data, every piece of
data is changed into strings of digits consisting of 0’s and 1’s. Numbers are stored using their binary
representation, which we will talk more about later. However, to get the binary representation
of numbers, we need to use the division algorithm. Thus, numerical computations done on
computers use the division algorithm in some implicit way! This is neat!

Let us illustrate this theorem.

Example 2.24 Suppose we divide each of the numbers N = 32 and M = —32 by b= 6. Find q and r
in each case.

Solution. If we divide N =32 by b=6, we get a quotient, ¢, of 5 and a remainder, r, of 2.
Notice that N =bg+r and that r is between 0 and 6, as the theorem says it should be. When
we divide M = —32 by 6, you may think that the quotient, ¢, is — 5. But if g were, in fact, -5, then
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the only way N =bq +r would be if r = -2, and that contradicts the fact that the remainder is
between 0 and b. So, instead, we take the quotient to be —6, and then r would be 4, and now
M = —-32 =6(—6) + 4 = bq +r where r is between 0 and 6. This is consistent with the proof we gave.
We always find the largest multiple of b less than or equal to N when using the formula N = bq +r,
and in the case when N = —32, that largest multiple of 6 less than or equal to —32 is 6(—6). This is
very surprising to students and, at first, seems quite strange.

Example 2.25 Suppose that N = 4q + 1. Can we say that the remainder when N is divided by 4 is 1?

Solution. Yes. According to the theorem, there is only one b and one r less than 4 that makes N =
bg +r. Since N = 4k + 1 says that b = 4and r = 1 “works” this must be our unique pair of numbers.
So, the remainder when N is divided by 4 must be 1.

Student Learning Opportunities

1

Find the quotient and remainder when each of the following numbers is divided by 5 :
(a) 17

(b) —17

(o) 33

(d) -33

(C) Suppose that you wished to find the quotient and remainder when 17, 589 is divided by
834. Typically, the calculators students use in secondary schools express non-integer division
results using decimals. Your students ask you how they could find the quotient and remainder
using such calculators. What do you say?

If a natural number a is divided by a natural number b, the quotient is c and the remainder is
d. When c is divided by b/, the quotient is ¢’ and the remainder is d’. What is the remainder
when a is divided by bb'?

Use the division algorithm to show that any number N can be written as either N = 3k,
N =3k+1,or N=3k+2. Use this to show that the product of any three consecutive integers
must be divisible by 3. (In fact, it must be divisible by 6. Why?)

(C) One of your very insightful students checks the squares of several integers and notices
that every time the square is divided by 3, it leaves a remainder of O or 1. Several other
students corroborate this with other examples. How can you use the results of the previous
Student Learning Opportunity to show that this is true? Is it true that, if the square of an
integer is divided by 4, the remainder can only be 0 or 1? How do you know?

(C) A student asks whether there could be any integers that are neither odd or even. How
would you prove to your student that every integer must either be odd or even? [Hint: When
we defined an even number, we said it was of the form 2m, and an odd number is of the
form 2m+ 1. It is theoretically possible with this definition that a number is neither odd nor
even. That is, there might be numbers that are not picked up by this definition. Using the
division algorithm with divisor 2, show that every integer must be odd or even. As a result
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of this, it follows that consecutive integers have “opposite parity.” That is, if one is odd, the
other is even.]

7 A pair of primes that differ by two is called a twin pair of primes. For example, the pair of
numbers 3, 5 is a twin pair.

(a) Find two more twin pairs of primes.

(b) It is unknown if there are infinitely many twin primes. (That is certainly a hard problem
to work with if you have the time and inclination.) Let us try a simpler problem. A set
of 3 primes, for example, 3, 5, 7 is a prime triple if the differences between the first
and second and the second and the third are both two. Using the following hint, show
that the set of prime triples is finite: Call the primes in the prime triple, p, p+2, and
p+4. When p is divided by 3 it leaves a remainder of 0, 1, or 2. Thatis, p =3k, 3k+1,
or 3k + 2. If p=3k, then p divisible by 3. Since the only prime divisible by 3 is 3, we get
the triple, 3, 5, 7. Now, show that, if p=3k+1, then p+2 is not prime, and that if
p=3k+2, p+4isnotprime. Thus there is only one prime triple.

(c) Using the same method as in part (a), show that the only prime number p such that p
and 8p? + 1 are prime is p = 3.

2.6 The Greatest Common Divisor (GCD) and the Euclidean Algorithm

LAUNCH

Find the greatest common divisor of 20 and 35. What method did you use to find the answer? Now
find the greatest common divisor of 16, 807 and 14, 406. If you were able to find it, did you use
the same method you used in the first problem? Why or why not?

We imagine that you probably had a lot of difficulty finding the greatest common divisor of the
large numbers presented in the launch question. You might have used a “factoring tree” quite
easily with the first pair of small numbers, but it is much more difficult to do with the pair of large
numbers. The purpose of this section is to introduce you to an algorithm that will help you find
the GCD rather easily and will give you other insights about numbers and their greatest common
divisors.

One of the fundamental topics stressed throughout the middle and secondary school curricu-
lum is the greatest common divisor or greatest common factor of two numbers a and b. We
denote this by gcd (a, b). This is the largest number that divides both a and b. So, for example,
gcd (6, 8) is 2 and ged (10, 15) = S.

The greatest common divisor is not only useful in mathematics. It has found uses in developing
secure codes that even the National Security agency can’t break, and hence is useful for our own
national security. It has been used in developing certain musical rhythms and also in neutron
accelerators as well as in computer design and so on. [An interesting article detailing some of this is
“The Euclidean Algorithm Generates Traditional Musical Rhythms”, by Godfried Toussaint (2005).]
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In the book Number Theory in Science and Communication, by M.R. Shroeder (1988), we find the
following: “An interesting and most surprising application of the greatest common divisor occurs
in human perception of pitch: the brain, when confronted with harmonically related frequencies,
will perceive the GCD [greatest common divisor] of these frequencies as the pitch.” (page 5)

When the greatest common divisor of two numbers a and b is 1, then a and b have no prime
factors in common and so they are relatively prime. Thus, another way to define the expression
“a and b are relatively prime” is to say that gcd (a, b) = 1. So, 8 and 15 are relatively prime since
gcd (8, 15) =1 as are the numbers 14 and 17 since gcd (14, 17) = 1. Of course, gcd (a, b) = ged (b, a).
We also observe that, if a is positive,

gcd(a, a) =a
gcd(a, 1) =1 and
gcd(a, 0) = a.

Make sure you can explain why each of these statements is true.

Finding the greatest common divisor of two numbers when the two numbers are factored into
primes is simple. For each common prime in the factorizations, we take the lowest power of the
prime we see and multiply the results. Thus, if we wanted to find the greatest common divisor of
the numbers M =2°.3%.7 and N =28.3%.11, we would notice that the common primes in the
factorizations are 2 and 3, and that the lowest power of 2 we see is 2°, while the lowest power of
3 we see is 3*. Thus, gcd (M, N) =26 3% We use this idea in algebra when we factor expressions.
Thus, if we have 3a3b? and 6ab® and we want to find the greatest common factor of these two
expressions (which is synonymous with greatest common divisor), we treat the a and b as if they
are primes. Thus, gcd (3a®b?, 6ab?) = 3ab?, where we have factored out the smallest power of each
common “prime.” We tell our students that, in any factoring problem, we always factor out the
greatest common divisor of the terms first. Thus, if we have to factor 3a®bh? + 6ab?, we factor out
3ab? and we get 3ab*(a? + 2b). In a similar manner, if we want to factor x* — 9x2, we factor out the
gcd first, which is x? and we get x?(x? — 9) = x?(x — 3)(x + 3).

Finding the gcd of numbers by factoring into primes is easy when the numbers are small or are
already in factored form. For example, if we wanted to find the gcd (24, 18) we get 6 very quickly.
Imagine though trying to find the gcd of 4562 and 2460 or numbers much larger than these.
Factoring would be cumbersome and time consuming. In practice, it is not done this way since in
practical applications the numbers are usually extremely large, making it inefficient and difficult to
factor even with the help of computers. Instead, there is a better method known as the Euclidean
Algorithm to find the gcd of two numbers. It shows us how to transform the gcd of two numbers
into the gcd of two numbers which are at best, smaller. Continued application of this yields the
gcd of the two numbers.

Theorem 2.26 (Version 1 of Euclidean Algorithm) If a and b are integers, then gcd(a, b) = gcd
(b, a-Db).

Proof. We will show that the set of divisors of a and b coincides with the set of divisors of b and
a — b. Thus, the largest number which divides a and b is also the largest number that divides b and
a —b. That is, gcd(a, b) = gcd (b, a — b). For example, gcd (15, 6) =ged (6, 9) = 3.
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Now let h be any divisor of a and b. Then, since h is a divisor of a and b, it divides a — b by
Theorem 2.7 . Thus any divisor of a and b is a divisor of b and a — b.

Now we show the reverse. Suppose that h is any divisor of b and a — b. Then h certainly divides
b, and by Theorem 2.7, h divides the sum (a — b) + b or just a. That is, any divisorof b and a—b
divides both a and b. Thus h is a divisor of a and b.

We have shown in the bold statements that each divisor, h, of a and b is a divisor of b and
a — b and conversely. Thus, the divisors of aand b and b and a — b are the same. So, the greatest
common divisor of a and b is the greatest common divisor of banda —b. R

This algorithm is very easy to program in a computer and is very quick and efficient. Here is
an algebraic example of how to use this theorem.

Example 2.27 Show that for any integer n, gcd (n+1, ny=1. (This is Example 2.8 redone
differently.)

Solution. gcd(n+1,n)=gcd(n,n+1 —n) =gcd (n, 1) = 1. Observe the factoring method is useless
here. In a similar manner we can show that gcd (2n+ 1, n) = 1 for any integer n.
Here is another version of the Euclidean Algorithm which one sees more frequently.

Theorem 2.28 (Euclidean Algorithm version 2). Suppose that a > b and that, when we divide a by
b, we get a remainder of r. Then gcd (a, b) = ged (b, r).

Proof. The proof is almost the same as the proof of Theorem 2.26. We know that a = bg +r for
some gq. Looking at the right side of this equation, we see that any divisor of b and r must divide
the left side, a (Theorem 2.7). Thus, the divisors of » and r are divisors of a (and b). From
the relationship a — bg = r, we observe by looking at the left side of this equation that any divisor
of a and b divides the right side, r and of course, b (again by Theorem 2.7). Thus, the divisors of
a and b are divisors of r and b. Two bolded statements together show us that the divisors of a
and b are the same as those of b and r.

We have shown that the divisors of a and b are the same as those of b and r. It follows that
gcd(a, b)y=ged (b, r). R

You might think of Theorem 2.28 as the “new and improved” version of Theorem 2.26.
This new Algorithm is very efficient, and computers always employ it when finding gcd (a, b) by
repeatedly applying this theorem. In fact, when books refer to “the” Euclidean Algorithm, they
mean repeated application of version 2 of the Euclidean Algorithm, and we will refer to it likewise.
Notice, we always find the greatest common divisor of the smaller number and the remainder
when the larger number is divided by the smaller number. We repeat this over and over until we
finally get to gcd (g, 0) at which point we know that g is the greatest common divisor of a and
b. A way to express this mathematically, calling the remainders at each stage, r1, r2, and so on
is, gcd(a, b)=gcd (b, r1) = gcd(rq, 12) = ... ged (g, 0) = g. To clarify how to use this version of the
Euclidean Algorithm, let us revisit some examples we mentioned earlier.

Example 2.29 Find (a) gcd (24, 18) and then find (b) gcd (4562, 2460).

Solution. (a) 24 and 18 are both easy to factor. 24 =23 .3 and 18 = 2 - 32, so by our factoring
method of taking the lowest power of each common factor and multiplying them together, we
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get gcd (24, 18) =2 - 3 = 6. Had we done this using version 2 of the Euclidean Algorithm, the steps
would have been gcd (24, 18) = gcd (18, 6) (since the remainder when we divide 24 by 18 is 6) and
gcd (18, 6) = ged (6, 0) since the remainder when 18 is divided by 6 is 0. But now we are done since
we know that gcd (6, 0) = 6.

Let us show, in Figure 2.5, how this would look by long division.

1
divisor ——»18 24
18

6 4«——— remainder

3

6 | 18 «———— previous divisor

-

previous

0
remainder \
when this is zero

we are done

Figure 2.5

In our first step, we divide the larger number 24 by the smaller number 18. We look only at
the remainder, 6. That becomes our new divisor, and we try to divide the most recent divisor, 18,
by the remainder 6. The method is always, “Divide the most recent divisor by the remainder until
you get a remainder of 0 in which case your latest divisor is the gcd.”

(b) This is more difficult to do by the factoring method. Let us do this by version 2 of
the Euclidean Algorithm: gcd (4562, 2460) = gcd (2460, 2102) = gcd(2102, 358) = ged (358, 312) =
gcd (312, 46) = ged (46, 36) = gcd (36, 10) = ged (10, 6) = gcd (6, 4) = ged (4, 2) = ged (2, 0) = 2.

There is a useful result that follows from Theorem 2.7, which is not obvious, and which we
will use later on when we study Diophantine equations. We will also use its corollary, which
gives us neater proofs of some theorems. They really are quite important in the study of number
theory.

Theorem 2.30 If g is the greatest common divisor of a and b, then § = ma + nb for some integers m
and n.

Proof. Consider the set of numbers of the form ma + nb where m and n are integers. Then this
set has some positive elements. (See if you can tell why.) Let P be the set consisting of positive
numbers of the form ma + nb. Suppose s is the smallest element of this set. We claim that s is the
gcd of a and b. Since s is in the set and must be of this form too,

S = mya + nob 2.17)

for some m, and n,. By Theorem 2.7, any divisor of a and b divides mpa + nb or just s. In particular,
g, the greatest common divisor, divides s. This implies that

g<s. (2.18)
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We will now show that s divides both a and b and, as a divisor of both a and b, it will be less than
or equal to g, the greatest common divisor of a and b. That is,

s<g. (2.19)

From (2.18) and (2.19) it will follow that s = ¢g. And, since s = mya + ngb, it will follow that g =
m,a + nob since s = g. Of course, this is what we wanted to show. So, now we proceed to show that
s divides a. A similar proof will show that s divides b.

Proof that s divides a: Suppose s doesn’t divide a. Then by the Division Algorithm,

a=sq+r (2.20)
for some g where r is positive and

r is less than s. (2.21)
But a = sq +r means a = (mya + npb)q +r by equation (2.17) or upon simplifying, that

r=a(l —mp) + (—npq)b. (2.22)

Thus, r, being positive, and having the right form (a multiple of a added to a multiple of b) is in
P, and r being less than s by (2.21), contradicts the fact that s was the smallest positive element in
the set.
Our contradiction arose from assuming that s didn’t divide a. Thus s divides a. Similarly, s
divides b and therefore being a divisor of both a and b, s < g, the greatest common divisor. B
The next result will be used when we study Diophantine Equations later in the chapter.

Corollary 2.31 If a and b are relatively prime, then there exist integers m and n such that ma + nb =
1.

Proof. Take g in Theorem 2.30tobe 1. B

To give an example, if a =6 and b= 13, we can write (—=2)6+1(13)=1. If a=23 and b= 35, we
have 2(23) — 9(5) = 1.

Not only is the greatest common divisor useful in algebra and elsewhere, but so is the least
common multiple (lcm). For example, students encounter this concept in elementary school when
they wish to add fractions with unlike denominators. By the least common multiple of two
positive integers N; and N, we mean the smallest positive integer that is a multiple of both N; and
N,. Thus, the least common multiple of 2 and 3 is 6 since 6 is the smallest positive integer which
is a multiple of both of these.

When N; and N, are factored into primes, finding the least common multiple, of N; and N,
is easy: We look at all primes that occur in the prime factorization of these numbers and take
the highest power of each of these primes we see. Then we multiply them. So if N; =22 -3 -7 and
N =32.5.11, the least common multiple of Ny and N, is 22-32.5.7-11. We denote the least
common multiple of N; and N; by lcm (N, Nz). Similarly, in algebra if we want to find the least
common multiple of two algebraic expressions, we factor each completely, and considering each
variable factor as a prime, we take the highest power of each “prime” we see. So, to find the lcm of
3a3b? and 4ab’c, we get 12a3bc.
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In algebra we use the least common multiple when finding the least common denominator.
Thus, if we want to add

4 N 7
3x5y2z  6xy3

we would get the least common denominator first which is 18x°y3z, and that is lem (3x°y?z, 6xy3).
Then we convert each fraction to an equivalent fraction with that denominator by multiplying the
numerator and denominator of each fraction by an appropriate quantity to build the denominator
to the lcm . Similarly, if we want to add

2x 4x —3
3 —1P(x+2)  dx—12x+2)7°

our common denominator would be 12 (x — 1)3(x + 2)%, which is the lcm of 3 (x — 1)3(x + 2) and
4(x — 1)2(x + 2)%.

As we have mentioned, factoring large numbers is difficult, so one might expect that finding
the Icm of two numbers requires a separate algorithm from the Euclidean Algorithm. Actually, that
is not true. Once we find the gcd of two numbers, it is easy to find the lcm of the two numbers.
We use this result:

Theorem 2.32 If Ny and N, are two natural numbers, then lcm (N7, N;) - gcd (N1, N2) = N1 N;.
Thus to find lcm (N1, Ny), we simply multiply N1 N, and divide by gcd (N1, N2), which we can find
by the Euclidean Algorithm.

We illustrate this by an example.

Example 2.33 Verify theorem (2.32) for (a) Ny = 24 and N, = 45 and (b) for the algebraic expression
N; = 3ab3 and N, = 4a®b?c.

Solution. (a) Ny =23-3 and N, =32.5. Now gcd (N, Nz) = 3 and Iem (N7, Np) = 23325, From this
we have

ged (N7, No) -lem (Np, Np) = 23335 = N|N,.

(b): We have gcd (N;, No) = ab® and lem (N7, Np) = 12a?b3c. Thus ged (Ni, Ny) - lem (Ny, Np) =
(ab®>)(12ab3c) = 12a®b°c = N1 N,

We leave the proof of Theorem (2.32) to you as it is an instructive Student Learning
Opportunity.

Student Learning Opportunities

1 Find gcd (24 - 56 - 7%, 2. 53 . 7).
2 Find gcd (3a%b, 6ab?).
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3 Find

(a) gcd (234, 342) and lcm (234, 342).
(b) gcd (6156, 7255) and Icm (6156, 7255).
(c) gcd (42650, 36540) and lcm (42650, 36540).

4 Find
(@) gcd (4ab?, 12a°bc) and lem (4ab?, 12a°bc).
(b) gcd (2x?y, 32) and lcm (2x%y, 32).
(©) ged (5(x +3)%(x — 1), 6(x + 2)(x — 1)*) and lem (5(x + 3)%(x — 1), 6(x + 2)(x — 1)*).

5 (©) Your student says the greatest common divisor of two positive integers is greater than
the least common multiple. Why do think the student is asking this question? How would
you respond?

6 Show that gcd(3n+ 1, n) =1 and, in fact, that gcd(an+ 1, n) = 1 when a is a positive integer.

7 Show that the greatest common divisor of 2n+13 and n+ 7 is 1. As a consequence of this,

n+7 . .
h+13 is always in lowest terms.

8 Use Theorem 2.30 to give a quick proof of Theorem 2.16. Here is the outline. Since p is
prime, its only divisors are p and 1. If p does not divide g, then gcd (a, p) = 1. Thus there are
integers m and n such that ma + np = 1. Multiplying by b we get that mab + npb = b. Use the
fact that p divides ab and this equation to show p divides b. We prefer the proof we gave in
this chapter, since it very directly addresses the issues connected to prime factorization, while
in our opinion Theorem 2.30 is somewhat of an indirect approach to the problem.

show that, for any positive integer, n,

9 Prove Theorem 2.32.

2.7 The Division Algorithm for Polynomials

LAUNCH

Using your graphing calculator, enter and graph the function f(x) = (4x? + 13x + 8)/(x — 3). Do you
see some type of a curve with an asymptote at x = 37 Now, zoom out several times until you see
what appears to be a line. Has our curve become a line? What do you think that line represents?

If you are bewildered by how zooming out on the calculator seemed to turn a curve into a straight
line, then you will be interested in reading this section. We will describe how the division algorithm
for polynomials can unravel the mystery of what you have seen on your calculator.

In secondary school, students learn how to divide polynomials. Given that algebra can be
thought of as a generalization of arithmetic, it is only natural to examine if, and how, the division
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algorithm for integers portrayed in the previous section can be extended to polynomials. We
proved in Theorem 2.23 that, for any integers a and b, there are integers g and r such thata = bg +r
and O <r < b. Put another way, when we divide a by b, we get a quotient q and a remainder r, and
the remainder that we get is strictly less than the divisor b. There is, in fact an analog of this for
polynomials.

If a(x) and b(x) are polynomials, then there exists a polynomial g(x) such that a(x) = b(x)q(x) +
r(x) and the DEGREE of r(x) < DEGREE of b(x). The proof is essentially the same as the method for
dividing polynomials that you learned in secondary school, but with a smattering of induction.
We review that method of dividing polynomials here.

Suppose that we wanted to divide the polynomial b(x) = 4x3 + 3x? + 7 by the polynomial a(x) =
x% + 3. We set this up as

x2+3 | 4x3+3x2+0x+7

Notice that we wrote Ox to leave a place for any x terms that may occur in the process. Our first

step is to divide the lead term 4x3 in b(x) (the dividend) by the lead term x? in a(x) (the divisor.)
3

Since X_Xz = 4x, we put a 4x on top, and then multiply the divisor, x? + 3, by what we just put on
top to get 4x3 + 12x. That goes on line 2 as shown below. We then subtract line 2 from line 1 to get
line 3. Now we start all over again. We divide the lead term in line 3, 3x?, by the lead term in the
divisor, x? to get 3. That goes on top. We multiply the divisor by what we just put on top, namely,

3. We get 3x? +9. That goes on line 4. We subtract line 4 from line 3 to get line 5. We are done,
since the degree of the polynomial on line 5 is less than the degree of the divisor.

4x +3
x> +3 | 4x3 +3x2 +0x  +7 (Line 1)
4x3 +12x (Line 2)
3x> —12x  +7 (Line 3)
3x? +9 (Line 4)
-12x -2 (Line 5)

Thus, when 4x3 + 3x? + 7 is divided by x? + 3 we get a quotient of g(x) = 4x + 3 and a remain-
der of r(x) = —12x — 2 and we can verify by multiplication that 4x3 +3x% +7 = (x> + 3)(4x + 3) +

(—12x — 2). That is, that a(x) = b(x)g(x) +r(x).

Another way of writing a(x) = b(x)q(x) +r(x) is % =q(x) + % as we see when we divide both
. ) ) . o 4x3+3x%2+47
sides of the equation by b(x). Thus in the previous example, we can write — i3 - 4x+ 3+
—12x -2
ﬁ. There is something to be noticed about this. As x gets larger and larger in absolute

—12x -2
————— gets smaller and smaller and has a limit of
x2+3
- - . , . Ax3+3x2+7
zero. What this is saying is that, when x is large in absolute value, the quotient 2.3 |
4x3 +3x* +7
x2+3
(that is, approaches) the line 4x + 3 when one moves far out to the right or left. We can see this by
graphing both curves on the same set of axes (Figure 2.6). Notice how the curve, plotted with dark

ink, gets closer and closer to the line y = 4x + 3 plotted in lighter ink.

value, the second fraction on the right,

approximately 4x + 3. Graphically, this means that the graph of is asymptotic to
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y 50T

257

Figure 2.6

We will study consequences of this division algorithm for polynomials in the next chapter.

Student Learning Opportunities
1 (C) A student asks, “When we divide 5x? — 6x + 8 by x + 1, is the quotient 5x — 11 or is it
5x—=11+19/(x +1)?” How do you respond?

2 Perform the following divisions:

3
(@)

x> —x2+3x-2

x—1

x3 -8

x2 —1

16x* —2x2 +3x—2
2x —1

X +x+1

X2 +x+3

(b)

©

(d)
2x2+7x+5
3 (©) You ask your students to perform the following division problem: % They put

their work on the board and you discover that some have done it by factoring and others
have used the division algorithm. They ask you which method is better. How do you respond?

4 In each of the following problems, find the line that the function is asymptotic to as the
absolute value of x goes to infinity. Graph both the function and its asymptote on the same
set of axes using your calculator.

3-3x+2
@ f(0="—5—"

3x% +5x
(b) f(X)=ﬁ

x*—3x2+3
fx)= 2> 72
(© fx) 34
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5 In each of the following, the given function is asymptotic to a curve when |x| is large. Find
the curve in each case and graph both the function and the curve on the same set of axes
using your calculator.

4x* +3x -1

@ fon=Pr2
B foy= 2]

6 What is the remainder when x'%° — 1 is divided by x? — 3x + 2? [Hint: The remainder is of the
form ax + b. Use the division algorithm, and take convenient values of x to find a and b.]

2.8 Different Base Number Systems

LAUNCH

Tanica, a very bright student, claims that she can show you that she can represent the number 35
by using only 1’s and 0’s and that it is really equal to 100011. Can you explain what Tanica is talking
about? [Hint: You know that 35 really means 3 x 10+5 x 1 or 3 x 10" + 5 x 10% in base 10.]

We hope that this problem got you thinking about how numbers can be represented in multiple
ways by using different bases. What you might not realize is that the ability to do this is at the root
of some of the most important advances in technology.

In this section we examine one of the most ground-breaking applications of the division
algorithm: the representation of numbers in different bases. The development of computers hinged
on the ability to represent numbers using only 1’s and 0’s (on and off switches). This was achieved
by representing numbers in base 2. (See later for definition.) Also, representing numbers in base
8 and 16 are critical in the design and working of any computer. Writing a number in base 2
is part of the reason that arithmetic can be done so quickly on a computer. When numbers are
represented in base two, the addition of the numbers is trivial and proceeds at lightning speed.
The applications of representing numbers in different bases are numerous, so for those who find
applications motivational, there is no shortage of examples. However, in addition, and just as
importantly, to really understand the base 10 concepts we use on a daily basis, yet rarely think
about, it is most informative to examine how numbers can be represented using other bases. Just
as it is helpful to study the grammar of a new language to better understand one’s first language, it
is helpful to study different base number systems to better understand base 10, our number system.

The number 3245 is a short way of representing the number 3 x 1000 +2 x 100 +4 x 10+5.
When this is written in exponential notation, we have 3245 =3 x 10° +2 x 10> +4 x 10+ 5 x 10°.
This is called the base 10 representation of the number 3245. And, of course, each digit in the
representation of that number is less than 10. If we were to replace each 10 by say, 5, we would get
a completely different number. That number 3 x 53 +2 x 52 +4 x 5+ 5 x 59 is really the number
450. That representation of the number 450 is called the base 5 representation of 450, since the
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base used is 5. This base 5 representation of 450 is denoted by (450)s. In general, when a positive
integer is written as a sum of powers of a positive integer b where the coefficients of each power
of b are less than b, we say that we have written the number in base b. Thus, the number a,(b)" +
a,_1(h)" 1+ ... +ay, where all the a;s are less than b, is the base b representation of some number
N. We will often write (a,a,-1 ... ao)» to abbreviate this. Notice that the exponent of b in the
beginning, 1", is one less than the number of digits in the representation of the number. To get a
sense of this, let us give some examples.

Example 2.34 What is the value of each of the following numbers? (a) (1222)3 (b) (345)s (¢)
(43, 216)g

Solution. In part (a) we are given the base 3 representation of a number. Our representation
has 4 digits, so we begin with a power of 3 one less than the number of digits. That is, with
33. Our number really is the number 1 x 33 +2 x 32+ 2 x 31 + 2 x 3% or just 53. So we could write
53 =(1222)3. In part (b) we are given the base 6 representation of a number. Since the represen-
tation given has 3 digits, our number begins with a power of 6, one less than the number of
digits. Thus (345)s =3 x 62 +4 x 6! +5 x 6° or just, 137. So 137 = (345)¢. In (c), we are given the
base eight representation of a number. The representation has 5 digits, so we begin with 8. Our
number (43, 216)s =4 x 8*+3 x 83 +2 x 8%2+1 x 81 +6 x 8° =18, 062.

We will now discuss how to convert a number from our ordinary system to base b. Let’s say we want
to convert a number N to base 3. Then we know it will look like @,,(3)" + @,_1(3)" ' + ... +a;(3") + ay
after the conversion. How do we find ay? Well, if we factor out a 3 from all but the last term, we
see that we can write a,(3)" + a,_1(3)" ' + ... +a1(3) + ag as

3p+ap where 0 <ap < 3.

(Here p = a,(3)" ' +a,_1(3)" 2+ ... +ay.) Said in terms that we are more familiar with, when we
divide the number N by 3, we get a quotient of p and a remainder of ay. So to find ay, we divide
the original number by 3 and ay is our remainder.

Now let us look at the quotient p. Since p = a,(3)" ' +a, 1(3)"2+ ...a(3) +a;, we see by
factoring out 3 from all but the last term, that it is of the form 3g+a;. (Here g = a,(3)" % +
a,_1(3)"3 + ... +ay.) Said in more familiar terms, when p is divided by 3, it leaves a quotient of
q and a remainder of a;. So, to find a;, we divide our original quotient, p, by 3. The remainder is
a;. Now we can see how the method works. To find a,, we divide g, our latest quotient by 3 and
our remainder is a,, and so on.

Thus, the algorithm (rule) that allows us to find the base b representation of a number N is to
divide N by b. Take the quotient and divide by b again. Take the resulting quotient and divide by b
again. At each stage, put the remainders on the side. The remainders we generate will be the digits
of the base b representation of the number, but from last to first. So we just reverse the order of the
remainders generated. Let us illustrate this by a numerical example.

Example 2.35 Find the base 3 representation of the number 53.




Basics of Number Theory 53

Solution. Here are the steps: we divide 53 by 3. The quotient is 17 the remainder 2. Put the two
on the side. Now divide our previous quotient, 17 by 3. We get a quotient of 5 and a remainder
of 2. Put the 2 on the side. Next, we divide our previous quotient, 5, by 3. The quotient is 1 and
the remainder 2. Put the two on the side. Finally, divide our last quotient 1 by 3. The quotient is
0 and the remainder is 1. When the quotient is 0, we stop. Put the remainder on the side. All the
work is shown in Figure 2.7 below which makes it clearer.

Remainder
3|53 2
3 |17 2
3 S 2
3 |1 1
0
Figure 2.7

We look at our remainders from the bottom up. We get 1222, which is the base 3 representation
of 53, which tells us that 53 is 1(3)3 + 2(3)% + 2(3)! + 2(3)°.

Example 2.36 Find the base 7 representation of the number 4362.

Solution. Here are the steps (Figure 2.8):

Remainder

N N N NN

Figure 2.8

Thus (15, 501); = 4362. We can check this. (15,501); =1 x 74+5x73+5x72+0x7+1 x
79 = 4362.

We said that one of the major applications of representing numbers in different bases, especially
base 2 is that computers use this to represent numbers and do arithmetic rapidly. In base 2
representation, also called binary representation, the only digits used are digits less than 2, that
is, 0 and 1. Why is base 2 representation the important one? The answer is simple. A computer’s
memory consists of a large number of electrical switches and switches can only take on two
positions, on and off. Thus, if we want these on-off switches to represent a number we seem to
have no choice except to use base 2. In this representation, a 1 means “switch on” and a zero
“switch off.” Since the number 8, in base 2 is (1000),, it can be represented by 4 switches, called
bits, where the first is on and the other three are off. This is an overly simplistic description of
what actually goes on inside the computer, but is the essence of it all. The on and off “switches”
are simply parts of the memory magnetized into positive and negative charges.
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We said that adding in base 2 is very fast. That is because all the digits are O and 1. The only
rules for addition are that 0+0=0,0+1=1,and 1+ 1 = 0, but we must “carry” a 1 over to the next
column. Thus to give a very simple application, if we want to add 8 + 9, we write both in binary.
8 = (1000);, 9 = (1001);,. Our addition is shown in Figure 2.9 below. Starting from right to left, we
have0+1=1,0+0=0,0+0=0, and then 1 + 1 = 0 but we carry a 1 to the next column and then
add it to what is there, which is nothing, giving us a 1.

8 ———» 1000

9 ——  » 1001
10001

Figure 2.9

Thus our sum is (10001);,, which you can check is 17.

There are some very sophisticated card tricks that are based on base 3 representation of
numbers, and other tricks that are based on base 2 representation of numbers. Here is one often
played on middle school and secondary school students.

Example 2.37 A student is asked to pick a number between 1 and 31 but not to tell you the number.
You then show the student the 5 cards shown in Figure 2.10 below.

16 17 18 19 8 910 11 4 5 6 7
20 21 22 23 12 13 14 15 12 13 14 15
24 25 26 27 24 25 26 27 20 21 22 23
28 29 30 31 28 29 30 31 28 29 30 31

Card 1 Card 2 Card 3
2 3 6 7 1 3 5 7
10 11 14 15 9 11 13 15

18 19 22 23 17 19 21 23
26 27 30 31 25 27 29 31
Card 4 Card 5

Figure 2.10

You ask the student to point to each card that has his number and you immediately tell him what
number he chose. So if he chose cards 1 and 2, you instantly tell him his number is 24. If he tells you
cards 1, 3, and 5, you instantly tell him his number is 21. How does this card trick work?

Solution. Each card is worth a certain amount (which you can write on the back of the card if
you wish). The first card is worth 16, the second 8 the third, 4, the fourth, 2, and the fifth, 1.
We keep a running total as we progress. Any time the first card is chosen, we add 16, and any time
the second card is chosen we add 8. When the third card is chosen, we add 4. When the fourth
card is chosen, we add 2 and, when the fifth card is chosen, we add 1. So, if a person picks cards 1
and 2, his number is 16 + 8 or 24. If he picks cards 1, 3, and 5, his number is 16 + 4 + 1 or 21.

This card trick is based on binary representation of numbers. Given a 5 digit binary num-
ber whose binary digits are a, b, ¢, d, ¢ working from left to right, the value of that number
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isax2t+bx23+cx2%+dx 2! +ex 2% That is, when you write one of these numbers from 1
to 31 in binary, you are decomposing the number of 16’s it has, and then how many additional 8's
it has and then how many additional 4’s it has, and so on. On card one, we have all the numbers
from 1 to 31 whose a digit is 1. All these numbers thus have one 2% or 16 in them, which is why
we write 16 on the back of the first card. On card, 2, we have all the numbers from 1 to 31 whose
b digit is 1. If their b digit is 1 then they have one additional 23 or 8 in them. That is why we write
an 8 on the back of that card. On card three, we have all the numbers from 1 to 31 that have an
additional 4 in them. That is, their c digit in the binary representation is 1. If the d digit is 1, they
have an additional 2 in them, and so on. So, if a person picks only cards 1 and 2, he is telling you
the binary representation of the number is 11000 or just 1 x 16+1 x 8 +0 x 4+0 x 2+ 0 x 1. That
is, his number is 24. If the person says his number is only on cards 1, 3 and 5, then he is telling
you the binary representation of his number is 10,101, and this is worth 1 x 16 +1 x 4+ 1 or 21.
The numbers on the backs of the cards are always added up to give you his number.

Here is a list of the binary representation of numbers from 1 to 31 to make this clearer. Check
that all the numbers that are on the first card have their a digit equal to 1, all the numbers on the
second card have their b digit equal to 1, and so on.

Number 1 2 3 4 5 6 7 8
Binary representation 1 10 11 100 101 110 111 1000
Number 9 10 11 12 13 14 15 16

Binary representation 1001 1010 1011 1100 1101 1110 1111 | 10,000

Number 17 18 19 20 21 22 23 24

Binary representation | 10,001 | 10,010 | 10,011 | 10,100 | 10,101 | 10,110 | 11,111 | 11,000

Number 25 26 27 28 29 30 31

Binary representation | 11,001 | 11,010 | 11,011 | 11,100 | 11,101 | 11,110 | 111,111

Student Learning Opportunities

1 Find the base 10 representation of the number (356); .

2 Find the base 7 representation of the number 456.

3 Find the base 8 representation of 223.

4 Find the binary (base 2) representation of 15.

5 (C) One of your students asks if it is possible to have a negative number for a base. Can you?

6 What is the minimum number of weights needed to weigh all integer quantities from 1 to
80 on a standard two pan balance where the weights may only be put on the left pan? What
does this problem have to do with base number systems?

7 In what base b will the number (111), = 731¢?
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2.9 Modular Arithmetic

LAUNCH

On Saturday, March 29th, a litter of puppies was born. | was told that | could not take one of the
puppies home with me until at least 56 complete days had passed. What is the very first day and
date that | could take the puppy home with me? Could | get it in time to give to my sister for her
birthday on June 6th? Explain how you figured out the answer.

Surely, you could have done this problem by looking at a calendar and counting off 56 days. If you
did it this way, it must have been quite tedious. If you found a short cut to doing this problem,
then you probably have some inkling into concepts of modular arithmetic. In fact, that is the
focus of this next section, which will extend the study of remainders by examining the basics of
modular arithmetic, whose applications are significant and effect us on a daily basis. We begin by
examining how modular arithmetic is applied in the security of data (like your credit card) when
you buy online. Security systems are fundamental to our country’s well being, and most are based
on modular arithmetic. We start with a typical middle school problem, which is recreational in
nature

Example 2.38 You give your students the following table:

A B C D E F G H
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 etc

and you ask them to determine the column in which the number 283 lies.

Solution. Students play with this and soon realize the pattern here. Each row has a group of
8 consecutive numbers in it. So, to find which column 283 lies in, you divide by 8, and your
remainder will tell you what column you are in. If your remainder is 1, you are in column A. If
your remainder is 2, you are in column B, and so on. When 283 is divided by 8, the remainder is 3.
Thus 283 lies in column C.

Example 2.39 On September 4th I bought an insurance policy. That was a Monday. The policy would
not be activated until 45 complete days had passed. I wanted to know what day and date that would
be. What is the answer?

Solution. We need only realize that every 7 days, we are at a Monday. So, if we divide 45 by 7, we
get a remainder of 3. Thus, the day the policy takes effect is 3 days from Monday, or on Thursday,
October 19th.
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Both Examples (2.38) and (2.39) make use of of modular or “clock” systems. In such a system, the
remainders are the important thing. They are called clock systems, since they model clocks. So, for
example, if it is 2 o’clock now and we want to know what time it will be 50 hours from now, we
simply realize that every 12 hours, we are at the same time (neglecting AM or PM). So, we simply
divide 50 by 12, to get 4 (groups of 12) and get a remainder of 2. The remainder tells us how many
hours after our start time it was. So, 50 hours from now, it will be 4 o’clock.

Now that we understand the concept, we get to the abstract mathematical analysis. Suppose
that a and b are integers and that m is positive. We say that a is congruent to » modm, if a
and b have the same remainder when divided by m. We write a = b mod m and read this as “a is
congruent to b mod m.” Thus, 12 = 19 mod 7, since both leave a remainder of 5 when divided by 7.
There is another way of telling if 2 numbers have the same remainder when divided by m without
performing the divisions. That result is useful and is given in this next theorem:

Theorem 2.40 a = b mod m if and only if a — b is divisible by m.

An “if and only it” proof is an argument that goes both ways. So, to prove this theorem, we have to
prove two things. (1) If a = b modm, then a — b is divisible by m and (2) If a — b is divisible by m,
then a = b mod m. The first statement is indicated by the arrow =, while the second is indicated
by the arrow <.

Proof. ( =) : We are assuming that a = b mod m and we want to show that a — b is divisible by
m. Since a = bmodm, a and b have the same remainder, r, when divided by m. That means, by
the division algorithm, that a = pm+r, and b = gqm+r. Clearly, if we subtract these two equations
and factor out m, we get a — b = (p — q)m. This says that a — b is divisible by m, which is what we
wanted to prove. B

Proof. (<) Now we are assuming that a — b is divisible by m and we want to show that a and b
have the same remainder when divided by m. Suppose that, when a and b are divided by m, they
leave remainders r; and ry, respectively. What this means, by the Division Algorithm, is that

a= pm+r;

and
b=qm+r;

where both r; and r; are less than m and nonnegative. If we compute a — b we get,
a—-b=(p—-—qm+ry, —r1.

Since we are given that a — b is divisible by m, a — b = km and this last equation can be written as
km=(p—qm+ry, —r1,

or
km—(p—qm=ry—r;.

The left side is a multiple of m since we can write it as

mk—(p—q)l=r2—r1. (2.23)
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But the right side of equation (2.23) is the difference of two nonnegative numbers less than m
and so must have absolute value less than m. So, the right side can’t be a multiple of m unless it is
zero. That is, r; must be equal to r, and we have shown that the remainder is the same when both
numbers, a and b, are divided by m. B

Thus, to see if 43 and 75 are congruent mod 6, we need only subtract them to get 32, and since
32 is not divisible by 6, they are not congruent mod 6. That is, they have different remainders
when divided by 6. Here are some relationships that are true when working with mods.

Theorem 2.41 If a = b mod m and c = dmod m, then
(a) a+c=b+dmod m.
(b)a—c=b—dmodm.
(¢c) ap = bp mod m for any integer p.
(d) ac = bd mod m.
(e) a” = b" mod m for any positive integer n.

Proof. We will prove some parts leaving the rest for you in the Student Learning Opportunities for
your own enjoyment and to get better at doing proofs.

(a) By Theorem 2.40 we only have to show that the difference (a + ¢) — (b + d) is divisible by m.
But, from the given facts that a = b mod m and ¢ = d mod m, we have, again using Theorem 2.40,
that a — b is divisible by m and ¢ — d divisible by m. So their sum, (a — b) + (¢ — d), must be divisible
by m. But this sum simplifies to (a +¢) — (b+d). So (a + c¢) — (b + d) must be divisible by m. We have
proved what we set out to prove. Part (b) is proved similarly.

(c) See Student Learning Opportunity 8.

(d) This result might seem a bit surprising at first. Since we are given that a = b mod m and
¢ =dmod m, we know that both a — b and ¢ — d are divisible by m. Thus c(a — b) + b(c — d) must
be divisible by m by theorems 2.7 and 2.9 But this last result simplifies to ac — bd. So ac — bd is
divisible by m and it follows from theorem 2.40 that ac = bd mod m.

(e) See Student Learning Opportunity 8. B

One important observation to make is that, if a number n is divisible by an integer k, then
n = 0modk. For example, 6 is divisible by 3 so 6 = 0mod 3.

Example 2.42 Show that, if n is an integer, then n? + 1 is never divisible by 3.

Solution. At first glance, this result seems rather surprising and difficult to prove, but observe how
clear it is using mods. When a number 7 is divided by 3, there are only 3 possible remainders,
0, 1, or 2. That is n=0, 1, or 2 mod 3. Suppose that n= 0 mod3. Then n*> =0 mod3 and
7 +1=1mod3. When n=1mod 3, n*>+1 =2 mod 3. Finally, when n= 2 mod 3, n*> = 22 mod 3
or equivalently n?> = 1 mod 3 again making n> + 1 = 2 mod 3. To summarize, n*> + 1 = 1 or 2 mod 3,
and this means it is never divisible by 3, since if a number is divisible by 3 it must be congruent to
0 mod 3.

Example 2.43 What are the last two digits of the number 325 when this number is expanded?
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Solution. The last two digits can be obtained by dividing the number by 100 and seeing what the
remainder is. (Thus, if we divide 1235 by 100, the remainder is 35, the last two digits.) That is, we
are interested in 3%° mod 100. We observe that 3* = 81 mod 100 and squaring both sides we get
that 3% = 812 mod 100 = 6561 mod 10 = 61 mod 100, and cubing both sides of this last congruence
we get 324 = 613 mod 100 = 226 981 mod 100 = 81 mod 100. Now multiply both sides of this by 3
to get 32% = 243 mod 100 = 43 mod 100. So, the last two digits of 32° are 43. Can you imagine the
work on this without mods? If you are thinking, well, “I could have done it on my calculator, ”
then we suggest you try it. The calculator will not be able to calculate this number since it is just
too large. The calculator will round the answer and lose some of the digits.

Certain rules for mods seem pretty obvious. For example, a+ b = b+ a mod m. But certain things
that, hold for real numbers do not hold for mods. As one example, we know that, if the product of
two real numbers is 0, then one of them must be 0. The analogous result for mods is not true. For
example 2 - 3 is 6, which is congruent to O mod 6. But neither 2 nor 3 is congruent to 0 mod 6.

2.9.1 Application: RSA Encryption

A rather sophisticated and very important application of modular arithmetic is RSA encryption.
Suppose that we want to send information to another party, but we want it to be safe from people
who might be interested in that information. (For example, when you use your credit card to
purchase something online from, say, the fictitious website mathiestuff.com, you need to make
sure that no outsiders can access it.) The way this is done is by RSA encryption. RSA stands for the
discoverers of this method, Ron Rivest, Adi Shamir, and Leon Adelman. This method is extremely
secure and was only recently discovered in 1977.

In RSA encryption each digit of the credit card number is changed or encrypted. So, the
number that we send looks nothing like the original number. When the encrypted message is
sent, the receiver has to have a “key” to decrypt the message you sent and get back your original
credit card number. The method is simple to implement, and almost impossible to compromise.
Discovering the key that decrypts the code requires the factoring of huge numbers, which even the
most sophisticated computers cannot do in real time.

In what follows, we summarize how this encryption and decryption method works. We will
not give the full details of why the method works, but describe how the ideas used in this section
can be used to accomplish the goals. Certainly, this is one place you can answer your students’
question, “Where do we ever use this stuff?” rather emphatically!

We will deal with the case of the company mathiestuff that uses RSA encryption software. We
would like to order some materials for our classroom using our credit card. How is it secured?

1 RSA software picks two primes p and g and a number e which is relatively prime to the
number ¢ = (p — 1)(q — 1). Usually p and q are taken to be huge primes though in our
illustrative example below, we will choose them small. The letter e is used to represent
“encryption exponent.”

2 The software finds a number d less than n = pq such that ed = 1 mod ¢. This can always be
done, and such a number can be found by the Euclidean Algorithm. d is the “decryption”
exponent.

3 The credit card number, ¢, is raised to the encryption power e. The result mod pq is sent. We
call this resulting message, s, for sent. To get the original credit card number c back, we raise
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the sent message, s to the decryption exponent, d, and take the result mod pq. We will get
back c. Let us illustrate this with some small numbers.

Example 2.44 Let us imagine that our credit card has only one number, 9. We want to encrypt it. So
we pick primes, say 5 and 7, and then pick a number e relatively prime to ¢ = (5 — 1)(7 — 1) or 24. Let
us choose e to be 5. Now we find a number d such that ed = 1 mod 24. (Notice that 24 is ¢.) Such a
number is d = 5, since ed = 25 = 1 mod 24. Now we take our original message, 9 and raise it to the e
power and compute the result mod 35. ( 35 is pq.) We know that 9% = 4 mod 35. So, 4 is the message
sent. Now to find the original message, we raise the sent message, 4 to the decryption exponent 5, and
compute the result mod 35. We get 4% which is = 9 mod 35. Thus our original message is recovered.

To break this code, we would need to be able to find p and g. That requires factoring pgq. If p and
q are large, say, with more than 200 digits each, then even with our supercomputers, factoring pq
is a gargantuan task, which is not easily done, and can take months to do. Of course, companies
that use RSA encryption keep changing the large primes p and g (some daily) to make it all but
impossible to crack the code.

All kinds of messages in the world are sent via RSA encryption. Messages with words are
transformed into numbers by using a different number to represent each different letter of the
alphabet as well as for periods, commas, and spaces. The message is sent as a number (which in
turn is turned into binary) and the result decrypted back into words. RSA encryption is quite an
amazing algorithm, and uses nothing more than modular arithmetic, which is often presented in
secondary schools.

There is a wonderful website where you can play with encrypting messages and decrypting
them. One of our Student Learning Opportunities will refer you to that website:

http://www.profactor.at/~wstoec/rsa.html.

The website makes the encryption and decryption computations painless and it is fun to play
with.

Student Learning Opportunities

1 (C) Your students claim that, if ab= 0mod m, then because of the zero property (if a and
b are real numbers and ab = 0, then either a=0 or b= 0 or both a and b =0), it stands to
reason that either a = 0 mod m or b= 0mod m. How do you respond?

2 Compute
(@) 73 mod 3
(b) 84°° mod 85
(©) 25" mod7

3 What are the last two digits of 7°9°?? Explain.
4 What are the last three digits of 103, Explain. What are the last 3 digits of 93°?

5 (©) Your students ask you why they can’t just use their calculator to find the last two or three
digits of numbers raised to large powers. What is it about the calculator that makes using it
ineffective in problems like this?
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Using mods, give a proof that, if 3 + a and 25 — b are divisible by 11, sois a+ b.
Is 232554 + 554232 4 5 divisible by 7? How do you know?

Prove parts (c) and (e) of Theorem 2.41.

O ® N &

Show by example that, if ab= acmod m, then it is NOT necessarily true that b = ¢ mod m.
Thus, while we can add, subtract and multiply with mods, division requires care.

10 Show that, if ab= acmod m and a and m are relatively prime, THEN it follows that b= ¢
mod m. (Compare with Student Learning Opportunity 9.)

11 Using mods, show that the square of any natural number can only be congruent to either 0
or 1 mod 3.

12 Using the previous exercise, show that the equation a?> — 6b? = 8 has no solutions if a and b
are integers.

13 Prove that, if p and p+ 2 are both odd primes, and p > 3, then p+ 1 is divisible by 6. [Hint:
What p can be congruent to mod 37]

14 Prove that, for any natural number, n, n° — n is congruent to 0 mod 10. [Hint: You need
to show that it is divisible by 2 and 5. Showing divisibility by 2 is the easier part. To show
divisibility by 5, ask yourself what n can be congruent to mod 5 and work from there.]

15 What are the only possible remainders when the square of an odd number is divided by 4?
Using your answer, show that the sum of the squares of 3 odd numbers cannot be a perfect
square.

16 If xand y are integers and neither of them is divisible by 5, show that x* + 4y* will be divisible
by 5. [Hint: Consider all that y can be congruent to, and for each y decide what possible values
the x’s can take on.]

17 Suppose that 2x + 3y is a multiple of 17. Using mods show that 9x + 5y is also a multiple of
17.

18 Using the website mentioned right before the Student Learning Opportunities, encrypt the
message “6” using primes 11 and 13. Then decrypt it and show it works. Afterwards, use
different primes and show that this method works with your new set of primes also.

2.10 Diophantine Analysis

LAUNCH

How many solutions are there to the linear equation, 3x + 6y = 4? Give three examples of ordered
pairs (x, y) that are solutions to this equation. Do any of your ordered pairs consist of x and y values
that are both integers? Can you find such a solution? Why or why not?
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If you decided that it was impossible to find an integer solution to the equation 3x + 6y = 4, you
might already have an idea about why this was the case. You might also be wondering if there
is a general method to immediately tell whether a linear equation has any integer solutions.
This next section, will indeed satisfy your curiosity as it will focus on an area of algebra,
solving linear equations that has an interesting relation to the number concepts developed in this
chapter.

An equation like 2x + 1 = 5 has only one solution, namely x = 2. An equation like x + y =11,
has infinitely many solutions, like x=2, y=9, x=3,y=8, x=4.2, y=6.8, and so on. All the
solutions of this equation can be pictured. They lie on the line which results when we graph
x +y = 11. That line is graphed in Figure 2.11 below.

y

= N W A 0O O N ®©® ©

0123 456 7 8 9
Figure 2.11

Consider the following problem.

Example 2.45 A man purchases 14 cents worth of stamps consisting of 4 cent stamps and 5 cent
stamps. How many of each did he buy?

Solution. It does not take a lot of thought to figure out that he had to buy one 4 cent stamp and
two 5 cent stamps. Yet if we wanted to, we could have set up an equation to model this situation
as follows: If x is the number of 4 cents stamps purchased, then the cost of these stamps is 4x
and, if y is the number of 5 cent stamps purchased, then the cost of these stamps is Sy. The total
expenditure on stamps is 4x + Sy and this must be 14. So

4x +5y = 14. (2.24)

Now, had we blindly written this equation, we could have said, “Oh, this equation has
infinitely many solutions, so there must be many ways of purchasing the stamps to make 14
cents.” But, at once we realize that this equation is different from the x + y = 11 equation above
in that this is a practical problem. The number of each type of stamp can only have nonnegative
values. Furthermore, they must be integers. In addition, once x exceeds 4, the cost of the stamps
is already more than 14. So this limits us further. The point is that x can only take on integer
values from O to 3 and y can only take on integer values from O to 2. Letting x=0, 1, 2, 3,
and solving for y in each case using equation (2.24) above, we see that the only value of x that
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makes y integral is x = 1, and in this case, y =2. So, there is only one solution to this practical
problem.

A Diophantine equation is an equation whose solutions we require to be integers. (This was
extensively studied by the mathematician Diophantus.) They need not be linear as eqution (2.24)
above. They can be quadratic, cubic, or anything else. Thus, x? = y® + 1 is a Diophantine equation
provided we require our solutions to be integers. Furthermore, we are not even requiring that
the solutions be positive integers. They can be any integers, although in a specific problem only
positive integers may make sense. Diophantine equations can have any number of solutions
from O to infinity. Let us consider a few of these. We will only consider linear Diophantine
equations.

Example 2.46 Find all integer values of x and y that satisfy

2x+4y=7.

Solution. On careful analysis, it is easy to see that there are no integral solutions to this equation;
for, if x and y are integers, then 2x is divisible by 2, 4y is divisible by 2, hence 2x + 4y is divisible
by 2. Thus their sum can never be 7 since 7 is not divisible by 2. So, this equation has no solution.
This example illustrates the general principle that, if the greatest common divisor of a and b does
not divide ¢, then the Diophantine equation ax + by = ¢ has no solution.

At the opposite extreme we have:

Example 2.47 Solve the Diophantine equation 3x + 4y = 7.

Solution. We must remember that, when we use the word Diophantine, we are requiring that our
solutions be integers. It almost jumps out at us that x =1 and y = 1 is one solution. But are there
more? Actually, in this case there are infinitely many integer solutions, and they are x = 1 + 4t and
y =1 — 3t for ANY integer t. (We will explain later where this came from.) We could try different
values of t and see that this works, but it is so much easier to substitute these into the original
equation and see that it works. Here are the steps.

3x+4y=3(1+4t)+4(1 - 31)
=3+12t+4 - 12t
=7.

Done!

The astute reader may have noticed that our general solution above x =1+ 4t and y =1 — 3t con-
sisted of two parts— our initial solution, x = 1, y = 1, and multiples of t that were the coefficients
of the equations but in reverse order. The solution for x involved the coefficient of y, and the
solution for y involved the coefficient of x in the original equation but with opposite sign. Is it
always true that, if we can find one integral solution to a linear Diophantine equation, that we can
find infinitely many integral solutions and that they are of this form? The answer is, “Yes.” Let’s
examine one other example before giving the general result.
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Example 2.48 Consider the equation 3x — 4y = 8. One integer solution is x = 4 and y = 1. Show that
this Diophantine equation has infinitely many integer solutions.

Solution. Guided by what we did above, we try x =4 — 4t and y = 1 — 3t where t is any integer.
We substitute into the equation and see that
3x —4y =3(4—4t) —4(1 - 31)
=12—-12t—4+12t
=8.
So it works. You should now be able to show that the solutions of any linear Diophantine equa-

tion are obtained in this way and you will be asked to do that in Student Learning Opportunity 1.
We state this as a theorem.

Theorem 2.49 If (xo, yo) is a solution of the Diophantine equation ax + by = ¢, where a, b and c are
integers, then x = xo + bt, y = yo — at are also integer solutions of this equation for any integer t.

Note: One can easily get insight into this theorem by remembering something that is taught in
secondary school. Students are taught to plot lines by first finding a point (xo, yo) on a line and
then using the slope to find another point. Slope is ﬁl—sfl Let us illustrate. If we want to graph a line
passing through the point A = (1, 2) with slope %, starting at A= (1, 2), we rise 3 and move over
5 to the right and we will get another point, B on the line. Now, from that point, we again rise
3 and move over 5 to the right and we will get another point, C, on the line. (See Figure 2.12
below.)

Figure 2.12

We can rise as many times as we want, say t times, as long as we run t times, and we will get
new points on the line. That is, points on the line are given by x = 1 + 5¢ (the original x plus t runs
of 5) and y = 2 + 3t (the original y plus f rises of 3). Now getting back to our Diophantine equation
ax + by = ¢, the slope is 5 . Starting at the point (xo, yo) on the line, we run f times a quantity b
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and rise —a times to yield a new point on the line. That new point is x = xo + bt and y = yy — at.
This is essentially why the theorem holds.

So, we know how to generate infinitely many integer solutions if we have one. But how do we
even know if we have one solution? After all, if we have no solutions, then we are wasting our time
looking. The following theorem gives us our answer.

Theorem 2.50 If a and b are relatively prime integers, then ax + by = ¢ where c is an integer, always
has integral solutions.

Proof. By Corollary 2.31, we can find integers xy and yy such that axg + byp = 1. If we multiply both
sides of this equation by ¢, we get that caxo + cbyy = ¢ or, put another way, that a(cxo) + b(cyp) = c.
Thus, the integers cxy and cyp both solve the given equation. B

If a and b are not relatively prime, then ax + by = ¢ will have a solution only if gcd(a, b)
divides c. We leave that as a Student Learning Opportunity. We now turn to the question of how
we find a particular solution of ax + by = c. There are two approaches to this, which are essentially
the same. One is with modular arithmetic. Let us give the mod free approach first.

Example 2.51 Find a particular integral solution of 6x + S5y = 13.

Solution. We begin by solving for y in terms of x. We get

13—-6x _3 1
=———=2—-—(12)x.
5 5 (g
We now separate off the integer part of each term on the right leading to

y=2+%—(1+l)x

S

3 1
y:2+§—x—§x or

3—x

=2- .
y X+ 5

Now x needs to be an integer. This implies that the term 2 — x, which occurs on the right of the
above equation, is an integer. This means that the only way y on the left will be an integer is if 32*
on the right is an integer. We can try different integer values for x (between 0 and 4) and see which
makes 35;" an integer, but it is obvious that x = 3 does the job. Substituting this into our original
equation, we see that y = —1 is a solution. So (3, — 1) is a solution. Now we can find infinitely
many other solutions as we did above by letting x = 3 + 5t and y = —1 — 6tf for any integer value
of t.

This method that we used above always works, but we can make it much shorter than we did above.
What we did above was just for illustration. Starting with y = 13%“, we divide the numerator by 5
and consider only the remainders. When 13 is divided by 5, a 3 is left over. When 6x is divided
by 5, there is 1x left over, but we keep the negative sign. Thus, the remaining expression is 3 — x.
This must be divisible by 5. And now we proceed as before.
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Let’s take another example.

Example 2.52 Solve
Sx—-3y=7 (2.25)

for integer values of x and y.

Solution. Solving for y we get

_Sx—7
y_ 3 .

Now, when 5x is divided by 3, 2x is left over. When 7 is divided by 3, 1 is left over, but we
keep the negative sign. So, the left over is 2x — 1, which must be divisible by 3. Trying x =0, 1, 2,
we see that x = 2 works. Substituting into equation (2.25), we see that y = 1. Now we can generate
infinitely many solutions: x =2 — 3tand y =1 — 5t.

Now let us present the mod approach to this same problem. We can work with either mod 3
or mod 5, since both of these are coefficients of the variables. Let us work with mod 3 since what
we did above was essentially working with divisibility by 3. We first observe that any multiple of
3 is = 0mod 3, thus 3y is congruent to O mod 3. Also, 5x = 2x mod 3. Thus, 5x —3y = (2x —0)
mod 3, or just 2x mod 3. Similarly, the right side of equation (2.25), 7, is = 1 mod 3. Thus, when
we "mod” both sides of equation (2.25) by 3, equation (2.25) becomes,

2x = 1mod 3. (2.26)

Now we can just substitute numbers in for x, say 0, 1, and 2, and we see right away that x = 2
solves the mod equation ( 2.26). Thus, one solution is x = 2, just as we got before. Now we just
substitute into equation (2.25) and get y = 1.

Let us do one last example.

Example 2.53 Find integer solutions to the equation 13x — 7y = 9.

Solution. In order to eliminate y, we “mod” out everything mod 7, realizing that 13x = 6x mod
7and 7y =to 0 mod 7 and 9 = 2 mod 7 and we get

6x =2mod?7.

Now we only have to use values of x from O to 6 to find a solution. We see that x = 5 works. So,
when we substitute this into our original equation, we get y = 8. Hence all solutions are x = 5 — 7t,
y=8—13t.

There is a fine point that we have left out. We said that, if we could find one solution of a
linear Diophantine equation, ax + by = ¢, then we could find infinitely many others, as we showed
above. But we never showed that the solutions we generated by the above method represent ALL
the integral solutions. We do that next.
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Theorem 2.54 If (xo, yo) is a solution of the Diophantine equation ax + by =c, where a and b are
relatively prime, and c is also an integer, then all solutions of this equation are of the form x = xo + bt,
y = yo — at where t takes on all integer values.

Proof. We will show that, if (x;, y1) is any integral solution of ax + by = ¢, then x; = xo + bt, y; =
yo — at for some t. That is, x and y are of the desired form. Now, since (x;, y1) satisfies ax + by =,

ax; + by =c. (2.27)
Also, since (xo, yo) is a solution of ax + by =,
axop +byy = c. (2.28)

Subtracting equation (2.28) from equation (2.27) we get a(x; — xo) + b(y, — o) = 0, which implies
that a(x; — x0) = —b(y, — )). This last equation can be rewritten as:

)_ b(yo — )’1)
_—a .

(x1 —Xo (2.29)
Now the left side of equation (2.29) is an integer being the difference of integers, so the right
side must also be an integer. Since a and b have no common factors, yp — y; must be divisible by
a, for the a’s to divide out and give us an integer. This means that (y, — y1) = at for some t. The
terms can be rearranged to y; = yp — at. Substituting this into equation (2.29) we get (x; — xp) =
g(yU — (Yo — at)) = bt which, when rearranged, gives us, x; = xo + bt which is what we wanted to
show. &

Student Learning Opportunities

1 Prove Theorem 2.49. Just remember that saying (xo, ¥o) is a solution of ax + by = ¢ means
that axo + by = c already. Is it true that x = xo — bt, y = yo + at will also be solutions? Explain.

2 In Example 2.47 let t = —1, then t = 2, then t = 3. Show that in each case we get a solution
of 3x+4y=7.

3 (C) When we solved 6x + 5y =13 in Example (2.51), we said that we need only try values
of x between 0 and 4 to see which make % an integer. Your students ask you the following

questions about this. How do you respond?

(a) Why should we consider only values of x between 0 and 4? Why not 5, 6, and so on?
(b) How come, if we are given the Diophantine equation, 3x +17y =29, it is better to mod
out by 3 than by 177

4 (C) Make up two different examples of linear Diophantine equations that you can give your
students that have no solutions. How did you create these equations?

5 (C) Make up two different examples of linear Diophantine equations that you can give your
students that have an infinite number of solutions. How did you create these questions?
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6

10

(C) You ask your students to model the following situation algebraically and then graph their
solution: “You roll two dice and the sum of the numbers on each die is 7.” Your students draw
the line x + y = 7, where x represents the roll on the first die and y the roll on the second die.
How do you respond?

Show that, if g, b, and ¢, are integers and if gcd (a, b) does not divide ¢, then ax + by = c has
no solutions.

Solve each of the following Diophantine equations. Be sure to first check that these have
solutions before you waste time trying to find them.

(@ 4x+5y=12

(b) 5x—10y=7

(© 3x—-7y=1

(d) 2x—6y=1

(e) 9x+7y=5

) 3x+6y=09.

Suppose that gcd (g, b) = d, and that d divides c. Assuming that the equation ax + by = ¢ has
one solution, (xo, o), find all other solutions.

You have an unlimited supply of 5 cent stamps and 7 cent stamps, and want to make a total
of 89 cents worth of postage.

(a) Set up a Diophantine equation that will help you to solve this.
(b) Solve the equation from part (a) and list all of the ways we can make 89 cents using only
3 cent and 5 cent stamps.



CHAPTER 3

THEORY OF EQUATIONS

3.1 Introduction

A great percentage of the middle and secondary school curriculum is centered on polynomials:
adding them, multiplying them, and most importantly, finding solutions (or roots) of polynomial
equations. In fact, the butt of many jokes aimed at pointing out the uselessness of learning
secondary school mathematics concerns the famous, or perhaps infamous, quadratic formula
used to find the roots of quadratic equations. If one looks under roots of polynomials on the
Internet, one is quite surprised to see the thousands of articles written on this topic, mostly in
applied journals. So, why the keen interest in roots of polynomials? For starters, polynomials are
in widespread use in modeling applications in real life, and finding roots of polynomials is the
source of important mathematical problems. In this chapter we will begin by reviewing methods of
finding roots of quadratic equations and then branch into the intriguing techniques and findings
involved in solving higher order equations. We concentrate only on polynomials, finding their
roots, and examining their many applications. They have been used in such areas as the study
of vibrations, electrical systems, genetics, chemical reactions, quantum mechanics, mechanical
stress, economics, geometry, statistics, and error correcting codes used in scanners, cd players, and
the like. In fact, we will use them later in the book to solve certain recurrence relations, which have
quite a few other significant practical applications. In the process we will see that the calculator
will not be able to do all that we want it to which is why we need the results of this chapter and
why there are so many articles written on this subject.

As usual, we start off simple, but quickly find ourselves discussing sophisticated concepts. As
we study roots of polynomials, we will get to meet some of the interesting characters responsible
for the development of this subject matter and get some sense of the relevant historical issues.
We will also see the mathematics behind how a calculator finds roots of polynomials and how it
computes functions like square roots. We will also show how the material from this chapter can be
used in the design of the calculator. We hope you enjoy the journey.
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3.2 Polynomials: Modeling, Basic Rules, and the Factor Theorem

LAUNCH

A container manufacturer has just received a large order for metal boxes that must be able to hold
50 cubic inches. He plans to make these boxes out of rectangular pieces of metal 8 inches by
10 inches by cutting out squares from the corners and folding up the sides. He needs to know what
size square he should cut out to achieve his goal. How would you use the given information to solve
this problem?

We are assuming that, in planning to solve this problem, you immediately employed the use of
your algebraic skills. Before we review this problem, we would like to point out that what you
have just engaged in is the process of mathematical modeling where you attempted to model
the essence of the problem by using mathematical concepts. In this case you most likely used
a polynomial to model the problem. In fact, it was a cubic polynomial. Mathematical modeling
is big business these days, and consultants are highly sought after to solve problems using such
techniques. The general approach is to begin by finding a simple model for the problem, using
polynomials if possible, since they are usually easy to work with. If the polynomial model does not
fit the situation, you try to use other functions. We will have more to say about this in Chapter 9.

Getting back to our launch problem, let us see how algebra can be used to model the situation.
To help us visualize the situation, we use the helpful problem-solving strategy of drawing a diagram
(see Figure 3.1 below). Of course, if you use this in your classroom, then cutting out the squares
from an 8" x 10" piece of paper would demonstrate this very clearly.

10 X 10 - 2x X

Cut squares
from corners

____________ 10 - 2x 8_2x

Our box

Fold up along the dotted lines
Figure 3.1

Notice that we have let x represent our unknown, the side of the square to be cut out in inches.
Then the dimensions of the box it forms have length: (10 — 2x), width: (8 — 2x), and height x.
The volume of the box will therefore be length times width times height, or (10 — 2x)(8 — 2x) x.
Since the manufacturer wants the volume of this box to be 50, we want to solve the equation
x(8 — 2x)(10 — 2x) = 50. We hope that this is the equation you arrived at as well. If we simplify
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the expression on the left, we get the equation 80x — 36x? + 4x3 = 50. We notice that the left side
of this equation is a polynomial. We are now interested in the solution. If we graph the curve
y =80x — 36x% + 4x3 and restrict ourselves to x between 0 and 4 which are the only values of x
which are physically possible in this problem situation, we get the following picture (Figure 3.2).

Y 100 T

75 +

50 +

251

0

(0] 1.25 2.5 3.75 5
X

Figure 3.2 The graph of y = 80x — 36x2 + 4x3 for x between 0 and 4

We can see that, if we want to make y = 50, we need to take x to be somewhere between 1.25
and 2. (Try to find the solutions using your calculator!)

Before getting into a deep discussion of finding roots of polynomials, we review the definition
of a polynomial. This is probably the most misunderstood word in secondary school mathematics.
A polynomial in x, denoted by p(x), consists of one or more terms of the form cx” where c is a
constant, and n is a nonnegative integer. For example p(x) = 7 is a polynomial, since this can be
written as 7x°. (It is also a monomial, but that doesn’t stop it from being a polynomial!) Each of the

1
following are also polynomials: p(x) = 3x + 2, p(x) = 7x* + mx — /2. But 3 x~1is not a polynomial
since it has a negative exponent and the exponents in polynomials must be nonnegative integers.

Also /x = x% is not a polynomial, since the exponent is fractional. When a value x = ¢ makes
p(x) = 0, we say that x = ¢ is a root or a zero of p(x). Thus, zeroes of the polynomial p(x) = x*> —
Sx+6 are x =2 and x = 3, since both p(2) =0 and p(3) = 0. We can talk about the roots of any
function, f(x), regardless of whether or not it is a polynomial. These are simply the numbers that
make f(x)=0.

In the previous chapter we discussed the division algorithm for polynomials which explained
that, if we had a polynomial, a(x), of degree n, and we divided it by a polynomial b(x) of smaller
degree, then there would be a quotient g(x) and a remainder r(x) such that a(x) = b(x)q(x) +r(x),
where the degree of r(x) is smaller than the degree of b(x). We gave some examples to illustrate the
method of long division that would be used to find g(x) and r(x).

In this section we concentrate on the specific case when the divisor is a polynomial of the form
x — c¢. As we shall soon see, this is a particularly important case to consider because it is related to
finding the roots of polynomials. Thus, in this case, a(x) = (x — ¢)q(x) + r(x). Since our divisor is of
degree one and our remainder must be of degree less than 1, it has to be of degree 0. Thus, it must
be a constant. So, in this case we will simply write a(x) = (x — ¢)q(x) + r. Our first theorem is based
on this idea and is a standard one in precalculus courses.

Theorem 3.1 When a polynomial p(x) is divided by x — c, the remainder, 1, that you get, is p(c).
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Note: It is important that the divisor be written in the form x — c.

Proof. When we divide p(x) by x — ¢, we get a quotient q(x) and a remainder r and p(x) = (x — ¢)
q(x) +r. Now replace x by c and we get that p(c) = (0)g(c) +r =r. That is, the remainder r, when we
divide p(x) by x — ¢, is p(c). &

Thus, if we divide the polynomial p(x) = x> — 3x> + 4x — 8 by x — ¢ = x — 1, the remainder will
be p(1) or —6 since here, c is 1. If we divided the same polynomial by x + 2, which can be written as
x — (—2), the remainder will be p(—2) or —36 since here, c = —2. Let us illustrate this second result
in long division form. (A review of long division occurs in Section 2.7.)

Example 3.2 Show, using long division that, when we divide p(x) = x> —3x> +4x — 8 by x + 2, we
get a remainder of —36.

Solution. Here is the long division:

x? —5x  +14
X+2 x> —3x* +4x -8 (Linea)
X3 +2x% (Line b)
—5x% +4x (Line ¢)
—5x2 —10x (Line d)

14x -8 (Linee)
14x  +28 (Linef)
-36

A corollary of Theorem 3.1, known as the Factor Theorem, is:

Corollary 3.3 If p(x) is a polynomial and if p(c) = O, then x — c is a factor of p(x).

Proof. Since p(c) is O, we have by the previous theorem, that the remainder when p(x) is divided
by x — ¢, that is, r, is zero. Thus, our division algorithm statement, p(x) = (x — ¢)g(x) + r, now reads
p(x) = (x — c)q(x). That is, x — ¢ is a factor of p(x). We are done. To find q(x), the other factor, we
simply divide p(x) by (x — ¢). After all, g(x) is the quotient! B

To illustrate, suppose that p(x) = x> — 4. Since p(2) =0, x — 2 is a factor of p(x). In a similar
manner, since p(—2) =0, (x — —2), that is, x + 2 is a factor of p(x).

Let us illustrate this with another example.

Example 3.4 Find the roots of the polynomials

(a) p(x) = x3—2x*>—5x+6
(b) g(x) = x> —2x> +6x+5

without the use of a calculator.
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Solution. (a) By inspection, we see that x =1 is a root of the first equation, since p(1) = 0. Thus,
x — 1 is a factor of p(x). Now divide p(x) by x — 1 using long division and you find that the other
factoris x> — x — 6. S0 p(x) = (x — 1)(x* — x — 6) = (x — 1)(x — 3)(x + 2). It follows that p(x) = 0 when
x=1,x=3,and x = —2.

(b) Again, x =1 makes g(x) =0, and again x — 1 is a factor of g (x). By long division we see
that the other factor of g(x) is x> — x — 5. S0 ¢ (x) = (x — 1)(x> — x — 5). Now ¢g(x) =0 when x =1 or
x? — x — 5 =0, and this latter is zero when x = % by the quadratic formula.

There are some interesting factoring results that can be obtained by Corollary 3.3. We illustrate
some of them.

Example 3.5 It is a common fact taught in secondary school that the expressions x" — b" are always
divisible by x — b. Show how this follows from our Corollary 3.3. More specifically, show that

X" —D"=(x —b)(X" + X" 2+ X" 3P + .+ xD"2 + DY)

Solution. Let p(x) = x" — b". Since p(b) = b" — b" =0, by the above Corollary 3.3, x — b is a fac-
tor of p(x). We can find the other factor by long division, or by synthetic division. (See the
next section for a relatively complete discussion of synthetic division.) In fact, the other factor
is (X1 +x"2b+ x"3h? + .. +xb"2+b""1) Thus, p(x) = (x — D)X 1+ x"2b+ X" 3% + ... xb"? +
b"-1), which is what we were trying to prove.

Let us show what this says in two special cases, n=3 and n=4. When n= 3, we have

x* —b* = (x — b) (x* + xb + b?) 3.1)
and, when n = 4, we have
x* —b* = (x — b)(x® + x®b + xb* + D). (3.2)

You should verify that, if you multiply the expressions on the right side of the equality in both
equations (3.1) and (3.2), we get the left sides of these equations, respectively.

Student Learning Opportunities

1 Find the remainder when 3x? — 4x + 1 is divided by x — 3.
2 Find the remainder when x** + 3x23 — 2 is divided by x + 1.

3 Find all roots of the following equations by first observing that, in each case, there is a simple
number, either 0, 1, or 2 that satisfies each equation.
@ x2—x+x>—-1=0.
(b) x> —8x+7=0.
(©) x> —5x>+6x=0.
(d) 2x3 —11x2+17x—6=0.
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4

10

11

12
13

14

15

16

The polynomial p(x) has the property that p(2) = p(3) = p(—1) = 0. Find two such polynomi-
als. Find a third such polynomial that also makes p(4) = 14.

Show that a3+ b® can be factored into (a+ b)(a® — ab+ b?). Show that (¢ + b°) = (a+ b)
(a* — a®*b+ a?b? — ab® + b*). Generalize to finding factors of a” + b” when n is a positive odd
integer.

Factor each of the following completely: You may need to use the results of the previous
problem.

@ x*—1
(b) y*+8
() a® —p°

(d) 8x3+27y3
(€) 16x5 — 81y

Find all real solutions of the polynomial equations below by factoring.
@ x*—2x3+3x2=0

(b) 2x3 —x2—18x+9=0

() x5 —2x3=-1

For which values of mis x — 1 a factor of x> + m*x? + 3mx +1?

(C) Show that the polynomial p(x) = x> + b> always has a root and use the root to factor p(x).

If two factors of the polynomial 2x> — hx + k=0 are x + 2 and x — 1, what are the values of
h and k?

Find 4 different factors all in terms of x and y, that when multiplied equal 8% — 272V,
[Hint: First write this as a?> — b?> and factor. Then each factor will be the sum or difference
of two cubes.]

What is the sum of the prime factors of 216 — 12

If the polynomial p;(x) = ax? + bx + ¢ has roots r and s, show that the polynomial that has

roots — and — is pa(x) = cx? + bx +a.
r s

(C) After doing the previous problem, one of your students asks if it is true that if we have a

11 1. .
cubic polynomial with roots r, s, and t, then a polynomial that has roots Y and n is just
the polynomial with the coefficients reversed? How do you respond? Justify your answer.

Model the following problem using polynomials: A grain silo consists of a main part which is
a cylinder, topped by a hemispherical roof. Suppose the height of the cylindrical portion is to
be 50 feet and the volume of the silo, including the hemisphere on top is 20, 000 cubic feet.
What is the radius of the cylindrical portion?(The volume of a cylinder is given by V = r?h
and the volume of a sphere is V = ‘—3‘nr3. For more information on volume, see Chapter 4.)

The United States Post Office will not accept a box whose girth (distance around) plus length
is more than 108 inches. Suppose that we want to build a container with a square base whose
volume is as large as possible and whose girth is precisely the maximum 108 inches. Model
this situation by letting x be the length of the side of the square base, and expressing the
volume in terms of x. Then use your calculator to estimate the dimensions of the box.
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p=1

17 If pis an odd number greater than 1, show that (p — 1)< 2 ) — 1 is divisible by p — 2. [Hint:

Let p=2n+1.]

18 Show that x —a s a factor of x?(a — b) + a®(b — x) + b>(x — a). [Hint: Call the given expression

p(x).]

19 Show that x — c is a factor of (x — b)> + (b — ©)* + (c — x)3.

20 When the polynomial p(x) = 2x3 + ax? + b is divided by x — 1, the remainder is 1, but when
it is divided by x + 1, the remainder is —1. If possible, find the values of a and b that will make
this true, or prove that it is impossible.

3.3 Synthetic Division

LAUNCH

Examine the following two displays. What does the first display tell you about what happens when
2x3 —3x% +4x — 1 is divided by x + 1. What is the quotient? What is the remainder? How is the
second display similar? Using the information in the first display, explain what the numbers in lines
1, 2, and 3 represent in the second display.

2x>  —5x 49
x+1|2x3 —-3x2 +4x -1 (Linea)
2x3 42x? (Line b)
—5x?  +4x (Line c)
—5x2  —5x (Line d)
9x =1 (Line e)
9x +9 (Line f)
-10

—1]2 -3 4 -1 (line1)

-2 5 -9 (Line2

2 -5 9 —10 (Line3)

After responding to the launch question and examining the two figures above, you might
be getting the idea that, at times, there is a short cut to the usual division algorithm used for
polynomials. Guess what? You are right!. When a polynomial is divided by x — ¢, the division can
be done very rapidly by a method known as synthetic division. The purpose of this section is to
provide you with a brief review and explanation of that method, which is usually shown in a

precalculus course.
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Let us go back to the long division x+2 ’ x3 —3x% +4x — 8 that we did in the last section.
There we found that the quotient was 1x> — 5x + 14 and the remainder was —36.

If we write the divisor x + 2 in the form x — ¢, we see that c = — 2. The following shortcut is
known as synthetic division, which we illustrate on this example. We begin by writing down the
coefficients of the dividend, writing down a coefficient of O for any power of x that is missing. On
the side, we write the number c. We have bolded ¢ = —2 so that you can see it emphasized, as we
will use it many times. Thus, we have

-211 -3 4 -8 (Linel)

Now we bring down the lead coefficient, 1, in the dividend, to line 3, as shown below. We then
multiply it by the ¢ = —2 we put aside. The product, —2, goes on line 2 under the —3 from the first
line as shown below.

-2|1 -3 4 -8 (Linel)
I -2 (Line 2)
1 (Line 3)

We now add the numbers in the second column, —3 and —2 to get —S and put this on line 3
to get:

-2|1 -3 4 -8 (Linel)
I -2 (Line 2)
1 -5 (Line 3)

We now multiply the —5 on line 3 by the —2 we put aside to get 10. We put that on line 2
under the 4 from line 1 and then add those two numbers to give us 14 which is put on line 3. That
yields:

2|1 -3 4 -8 (Linel)
, -2 10 (Line 2)
1 -5 14 (Line 3)

Finally, we multiply the 14 we just put on line 3 by the —2 to give us —28, put it below the —8
on line 1 and then add to give us:

-2|1 -3 4 -8 (Line 1)
J -2 10 -28 (Line?2)
1 -5 14 -36 (Line3)

The rule is “bring down the leading coefficient and then successively multiply the latest entry
you put on line 3 by —2, or, in the general case, ¢, and add the result to the next number on line 1
until you are done.” The coefficients of our quotient are given on line 3. The variable begins with
1 power less than the dividend. So, in this case, our quotient is 1x2 — 5x + 14 and the last number
on line 3, which is —36, is our remainder when we divide by x + 2. In this example we wrote down
every step. But we can do it all in one step very quickly. Let us give another example just to make
sure it is clear. In this example, some powers are missing in the dividend.
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Example 3.6 Divide x3 + 2x — 27 by x — 4 using synthetic division.

Solution. Our starting synthetic division tableau is

4|1 0 2 -27 (Linel)
(Line 2)
1 (Line 3)

Notice that, since the polynomial we started with was missing an x> term, we had to put a 0 in
for the missing term. Now we follow the algorithm. We multiply whatever new number we put on
line 3 by the bolded number, 4, in the corner, and add the result to the number on line one in the
next column and continue till we get to the end.

4|1 0 2 -27 (Linel)
4 16 72 (Line2)
1 4 18 45 (Line3)

Our quotient is 1x% + 4x + 18 and our remainder is 45. You can check the division is correct by
computing (x — 4)(1x2 + 4x + 18) + 45 and showing the result is x3 + 2x — 27.

The simplicity of the method of Synthetic Division is surely to be appreciated. But you must
be wondering why it works? We explain this with our first Example 3.2 above. Using long division,
we had,

x? —5x +14
x+2 | x> -3x* +4x -8 (Linea)
x> +2x? (Line b)
—5x%  +4x (Line ¢)
—5x2  +10x (Line d)

14x -8 (Linee)
14x  +28 (Linef)
-36

Notice the redundancy in the division above. Each time we subtract, we subtract the lead term
of the previous line. Thus, on line b we subtract x> from the x* on line a. On line d we subtract
—5x% from the same term on line ¢ and so on. Since the result of this subtraction is 0, we replace
all the lead terms in lines b, d, and f, by 0. This yields

x? —5x  +14
x+2 | x> -3x2 +4x -8 (Linea)
+2x2 (Line b)
—5x%  +4x (Line ¢)
—10x (Line d)
14x -8 (Line e)
+28 (Line f)

-36
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Furthermore, there really is no need to bring down the next term each time we subtract. We
realize that we are subtracting the —10x on line d from the 4x on line a. We are subtracting the
28 on line f, from the —8 on line a. So let’s not bring things from line 1 down as we go along, but
let us keep everything lined up. (That is, put x's under x's and x? ’s under x? ’s and so on.) Our
division now looks like:

x? —5x  +14
X+2 ’ 1x3 —3x* +4x -8 (Linea)
N +2x% (Line b)
—5x? (Line ¢)
AW —10x (Line d)
14x (Line e)
AW +28 (Line f)

S =36

Now observe the remaining coefficients of the terms left on lines b, d, and f. We see that each
is generated by multiplying the lead coefficient in the previous line (indicated in bold) by 2, the
constant term in the divisor. The arrows show us the flow. Thus, the 2 in line b (the coefficient
of x?) is the result of multiplying the lead coefficient, 1, in line a, by 2, the constant term in the
divisor. The —10 in line d is the lead coefficient, —S5, in line ¢, multiplied by 2, the constant term
in the divisor, and the remaining lead coefficient in line f, 28 is the lead coefficient, 14, in line
e, multiplied by 2, the constant term in the divisor. So, all terms are multiplied by the constant
term in the divisor before they are being subtracted. But subtraction is the same as addition of the
negative. Thus, another way of saying what we said above is that all these remaining terms on
lines, b, d, and f{, are being multiplied by —2, the opposite of the constant term in the divisor, and
then being added to the next term in the dividend! So, to remember this, we suppress the x in the
divisor and change the constant term in the divisor to —2, and then think of adding. Our result
now looks like:

x? —5x +14
-2 ‘ 1x3  —3x%2 +4x -8 (Line a)
—2X (Line b)
—5x2 (Line ¢)
(Line d)
14x (Line e)
=28 (Line f)
-36

Notice we have changed the signs of those terms we subtracted. Thus, the 2x? changed to —2x2,
the —10x changed to +10x, and so on. We have also boxed some terms. Since these will be added
to their “like term” partners in line a, we might as well put them right under their like term
partners in line b. The bolded terms are simply the result of the like term addition, so they
should go on line ¢ once we have moved the boxed terms to line b. That is, let’s just collapse
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the table above and bring the boxed terms up to line b and the bolded terms to line c. This

gives us

-2

1x> —-3x* +4x -8 (Linea)
—2x> +10x —28 (Lineb)

1x° —5%x° 14x —-36 (Linec)

Now we just suppress the x’s, and we have

2|1 -3 +4 -8 (Linea)

-2 10 -28 (Lineb)

1 -5 14 -36 (Linec)

And this, folks, is synthetic division!
We will give a second, and perhaps nicer, proof of synthetic division in the next section after
we discuss the Fundamental Theorem of Algebra.

Note: Although we have shown synthetic division when the divisor is x — ¢ where c is real, the
same works even if ¢ is a complex number. Since we are waiting until another chapter to discuss
the complex numbers, we will just accept this for now.

Student Learning Opportunities

1

Use synthetic division to find the quotient and remainder when x3 — 3x? + 2x — 3 is divided
by x — 1.

Use synthetic division to find the quotient and remainder when x* — 2 is divided by x — 2.

Use synthetic division to find the quotient and remainder when 2x3 — 7x + 3 is divided by
x—3.

(©) Your student complains that he finds the method of synthetic division very confusing and
difficult to remember. He requests that you allow him to do division of polynomials the way
he originally learned it, because that’s the way that makes the most sense to him. How do
you respond?

Use synthetic division to find the quotient and remainder when 4x3 — 2x + 4 is divided by
4x3 —2x+4  2x3 —x+2

2x — 3. [Hint: = .

x = 3. [Hint—"—3 x—3/2

What are the quotient and remainder when x> — mx + 2 is divided by x — 1?

When a polynomial p(x) with all odd powers is divided by x — 2, the remainder is 4. What is
the remainder when the polynomial is divided by x? — 4? [Hint: Do you know p(2)? How
about p(—2)? Now, by the division algorithm, p(x) = (x? — 4)q(x) + r(x) where r(x) is of
degree < 2. Thatis, r(x) = ax + b.] Take it from there.]

Use synthetic division to show that when x" — b" is divided by x — b where n is a positive
integer, then the other factor is X" + x"2b+ x" 3P + ...+ xb" 2 + b™ .
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3.4 The Fundamental Theorem of Algebra

LAUNCH

1. State the number of solutions in each of the following equations:
@ x?—3x+2=0
(b) x3 —5x>+6x=0
2. How many solutions do you think a 4th degree polynomial has? An nth degree polynomial?
3. Find the solutions of each of the following equations:
@ x> —-2x+1=0
(b) x*=4x -3
4. Did the number of solutions you found for 3(a) and 3(b) support your conjecture in
question 2? What seems to be the problem?

If, after having done the launch question, you are somewhat confused regarding the number of
solutions to an nth degree polynomial, then you will be interested in reading this next section.

Historically, there was great interest in knowing how to solve polynomial equations. This
led to the development of the quadratic formula and other formulas for calculating the roots
of cubic equations and fourth degree equations which we present later. A reference for some of
this background is: http://www.thalesandfriends.org/gr/images/marina/crimes/eng/Equations.doc.
Experience showed that linear equations, that is equations of the form ax + b = ¢, have only one
solution, namely, x = C;—b. Quadratic equations, that is equations of the form ax? + bx + ¢ = 0, have
two different solutions most of the time and they can be found by the quadratic formula. But, we
know that sometimes the quadratic formula leads to only one solution. For example, if one used
the quadratic formula on the equation x> — 2x + 1 = 0 one would find that only x = 1 is a solution.
If we tried to solve x> —2x+1 =0 by factoring, we would find that it factors into (x — 1)> = 0.
Although x =1 is the only solution to this last equation, we say that it has multiplicity 2 since the
exponent that the factor x — 1 is raised to is 2. So, if we count the multiplicity of a root, it appears
that every quadratic equation has 2 roots.

The polynomial p(x) = (x — 1)3(x + 2)%(x — 3) has 3 roots. They are 1, —2, and 3. Looking at
the exponents of the factors, we see that the root x =1 has multiplicity 3, the root x = —2 has
multiplicity 2, and the root x = 3 has multiplicity 1. Of course, if p(x) has such a factorization,
then p(x) has to be of degree 6 to begin with. If we sum the multiplicities of each root,
we get 3+2+1=6, the same as the degree of the equation. This is always the case, as we
shall see.

One of the questions that arose historically is, “Does every polynomial in x, say p(x), have
a root?” (Or, in other words, is there always a value of x that makes p(x) = 0?) Furthermore, if a
polynomial has degree n, how many roots does such a polynomial have? If we restricted ourselves
to just real numbers, then it is not true that every polynomial has a zero which is a real number. For
example, for the polynomial p(x) = x? + 1, there is no real value of x that makes p(x) equal to zero.
But, if we allow complex solutions, then this polynomial has two zeroes, i and —i. (See Chapter 8
for a complete discussion of complex numbers.) If we allowed complex solutions, then how many
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zeroes would a polynomial have, counting multiplicities? The mathematical genius Gauss, proved
the following theorem.

Theorem 3.7 (a) (Fundamental Theorem of Algebra) If one allows complex numbers as roots, then
every single polynomial of degree n > 0 has a zero (b) Furthermore, if c is a zero of p(x), then (x—c)
is a factor of the polynomial. Finally, (c) Every nonzero polynomial of degree n > 0 has n roots if one
counts multiplicities.

Part (a) of the theorem is one of the most remarkable results in mathematics and that is what is
called the Fundamental Theorem of Algebra. It says that, if we adjoin the complex numbers to our
system of real numbers, you have all you need to find roots of every single polynomial equation.
You might think that this is talking only about polynomials with coefficients that are real numbers.
It is not. It is true even if the coefficients are complex numbers! Parts (b) and (c) are consequences
of part (a) and again there is no restriction on ¢ being a real number.

Proof. (a) Since all proofs of this are extremely sophisticated and use the calculus of complex
valued functions, we are omitting it. However, given that it can be proven true, we will use it to
prove part (c). (One can find a proof in the book, Complex Variables and Applications by Churchill
and Brown (2004).)

Part (b) of the theorem says that each zero of a polynomial provides a factor of the polynomial.
That is, if p(c) =0, then x — ¢ is a factor of the polynomial. Again, ¢ can be complex. So, for the
polynomial p(x) = x*> + 1, since x =i is a root, we know that x — i is a factor. Indeed, p(x) = x> + 1 =
(x —i)(x +i). We can prove this theorem exactly the way we did in Section 2 using the Division
Algorithm, which is also true for polynomials even if the coefficients are complex numbers. We
outline another proof of this in the Student Learning Opportunities that does not use the division
algorithm at all and gives us some further insight into this.

The proof of part (c) of the theorem follows from part (a). By part (a), any polynomial p(x) has
a zero, x = c¢1. By part (b), x — ¢; is a factor of p(x). This means that p(x) = (x — c1)q(x) where q(x)
is a polynomial of degree one less than p(x). But, by part (a), g(x) also has a root, x = c2. So it too
can be factored into (x — ¢cz)r(x). But r(x) is also a polynomial and it too has a root x = ¢3 and can
be factored. So, we continue finding roots and factoring, each time getting a polynomial of one
degree smaller until we are left with a constant, ¢, which obviously has no zero. Here is how it can
be represented.

p) = (x —c1)g(x)

=X —c)x—c)r(x)

(x —c1)(x — c2)(x — c3)s(x)

cx—c)(x—c2) ...(x —cp).

Thus, every polynomial of degree n has n linear factors (and some factors may be repeated). W

It follows from this theorem that every nth degree polynomial has n roots counting multi-
plicity. So every 5th degree polynomial will have 5 roots counting multiplicity. Every 6th degree
polynomial will have 6 roots counting multiplicity, and so on.
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If you have seen this result before, you probably thought that it was true only for polynomials
with real coefficients. It is not. It is true for all polynomials of degree n. Thus, the polynomial
(2+i)x*> — (3 —i)x + 6, being of second degree, also has 2 roots. Notice, we can’t use the graphing
calculator to solve polynomials in general, since our graphs only provide us with real roots, and
polynomials may have complex solutions. Furthermore, and this may surprise you, imaginary
numbers have very real and important applications in the real world. Thus, complex roots of
polynomials are essential to study.

A relatively new field related to finding roots of polynomials, called polynomiography,
represents a beautiful fusion between mathematics and art. Very striking pictures are drawn
using approximate roots of polynomials. The designs are so pretty that some of them have been
used in Iranian carpets. Here is a picture of one done in black and white (Figure 3.3). [Special
thanks to Professor Kalantari of Rugers University for permission to use this image. You can also
visit:http://www.polynomiography.com, where you can find a great deal of information on this
topic and see these stunning pictures in color.]

Figure 3.3

There is an interesting result related to Theorem 3.7 and that is:

Theorem 3.8 If a polynomial, p(x) appears to be of degree n and takes on the value zero for n+1
different numbers, then the polynomial must be O for all numbers, and hence is p(x) = 0. Thus, this
polynomial really has degree 0.

What Theorem 3.8 is saying is that, if a polynomial which appears to be of second degree has
three roots, the polynomial must be identically 0. If a polynomial which appears to be of degree 3
has 4 roots, it must be identically 0, and so on.

Proof. We give a nice short proof by contradiction. If p(x) #0, then it has n roots by part (c) of
Theorem 3.7. But, we are given that the polynomial has n+ 1 roots. This contradicts what is given
in the statement of part (c) of the theorem. Since our contradiction arose from assuming that
p(x) #0, it must be that p(x)=0. &
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We can now resolve an exercise we gave in Chapter 1 :

Example 3.9 Consider the “quadratic” equation:

@-Dx-2) x-2)x-3)
2 2

x-1Dx-3)=1.

You can check that x = 1, 2, and x = 3 are solutions of this equation. But a quadratic equation
only has, at most, two different solutions. What is wrong here?

Solution. Since the polynomial

(x—l)(x—2)+(x—2)(x—3)_
2 2

px) = x-Dkx-3)-1 (3.3)
obtained by subtracting 1 from both sides of the equation, has 3 roots, x =1, 2, and 3, and the
p(x) appears to be quadratic, it must be that p(x) is identically 0. If you expand the left side of (3.3)
and simplify, you will see that, indeed, p(x) = 0.

A corollary of Theorem 3.8 is:

Corollary 3.10 If two polynomials of degree n take on the same values for n+ 1 different values of
x, then the two polynomials must be the same.

Proof. Suppose we have two polynomials p(x) and g(x) both of degree n. And suppose that

plc1) = q(c1),
p(c2) = q(c2),
P(Cn+1) = q(cn+1)-

Now form a new polynomial h(x) = p(x) — q(x). Since p(c1) = q (c1), we have that h(c1) = p(c1) —
q(c1) = 0. Since p(cz) = q(c2), we have that h(cz) = 0, and so on. It follows that the polynomial h(x)
takes on the value O for each of the n+ 1 numbers, ¢y, ¢z, ..., cuy1. Thus, by Theorem 3.8, h(x) = 0.
Saying h(x) = 0 means that p(x) = g(x) for all x. H

A special case of this is:

Corollary 3.11 If two polynomials are equal for all values of x, then they must be the same.

Thus, if you had that ax? + bx +c = 3x2 +4x + 5 for all x, then it must be thata=3, b=4, and ¢ = 5.
There is no other polynomial that has this property. This last corollary is the basis of the method
of equating coefficients when you find partial fractions in calculus, but can also be used to explain
the method of synthetic division as we will now see.

We will concentrate on a simple example, which generalizes to polynomials of any degree.
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Suppose that we wanted to divide the cubic polynomial

ax> +bx® +cx+d

by x — h. From the division algorithm, we know that there will be a quotient of degree 2, ex? + fx +
g, and a remainder of degree 0, r, which is a constant. So

ax> +bx* +cx+d=(ex* + fx+g)(x —h) +r
Our goal is to solve for e, f, g, and r. If we expand the right side of this last equation, we get
ax> +bx* +cx+d=ex® + (f — he)x* + (g — hf)x+r — hg

If we equate coefficients, we geta=¢, b= f —he,c=g — hf and d =r — hg. Solving for e, f, and
g, wegete=a, f=b+he, g=c+hfandr =d+ hg. If we put these equations in a table, we get the
table below, which is precisely the table we would get had we used synthetic division, and which
explains why the method of synthetic division works.

‘hla b ¢ d

he hf hg
efg‘r

Student Learning Opportunities

1 (C) A student says the equation p(x) = x> — 1 has only one root, x = 1, and proves it to you
by showing you the graph of x> — 1 on the calculator and pointing out to you that it crosses
the x— axis only once. So that is the only root. The student questions the Fundamental
Theorm of Algebra. What misconception does the student have here?

2 Find all roots of p(x) = x> — x.
3 Find all solutions, real and complex, of the equation x> — 8 = 0.

4 Suppose that we have the polynomial p(x) = ax? + bx + ¢ and that p(—1) = p(2) = p(3) = 0.
Finda+b+c.

5 (C) Astudent asks “If ax3 + bx? + cx + d = 3x3 + 4x? — 3x — 1 for all values of x, is it necessarily
truethata=3,b=4, c=-3and d = —1?” How do you respond and what explanation would
you give? The student continues, “What if the polynomials on the left and right side of the
equation only agree for 4 values of x. Is it still true that a=3, b=4, c=-3, and d=-1?"
Now what is your answer? Justify it.

6 (C) We know from the quadratic formula that the roots of x2+2x — 2, are r = —1 —+/3,
and s = —1 ++/3. Thus, we can factor x? + 2x — 2 into (x — r)(x — s). Show that, when you
multiply (x — r)(x — s) with these values of r and s, you actually do get x? + 2x — 2.

7 Here is a proof of part (b) of Theorem 3.7 that does not use the division algorithm. We will
take a specific case, the polynomial p(x) = x> + 3x2 + 2x + 1 and prove it for that. Suppose r
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is a zero of p(x). Then p(r) = 0 by definition of a zero. Now

p(x) = p(x) — p(r) (Since p(r) = 0)
=X +3x%2+2x+1 = (r3+3r2+2r+1) (and by regrouping terms here)

=3 =rH+3x%2 =r?)+2(x —r).
Now each of the terms on the right in parentheses has a factor of x — r, so we can write

p(x) =(x — DO +rx+r)+3xX—r)(x+r)+2(x—r)

=(x =X +rx+r2+3(x+r)+2].

Thus, we see that x — r is a factor of p(x) = 0. The proof for a general polynomial is essentially
the same and you should convince yourself by going through the steps that, if r is a zero
of p(x) = ax3 + bx? + cx + d, then x — r is a factor of this expression. This proof assumes that
x™ — r has a factor of x — r, which we know it has.

24x2+72
8 If =" 76 x+im (ax + b)? for all x, then find a, b, and m.

3.5 The Rational Root Theorem and Some Consequences

LAUNCH

State whether the following are rational or irrational and justify your answer.
1 V3+45
237
3 V11 -6V2+v11+6V2

How sure do you feel about your answers to the launch questions? After reading this section,
you will want to revisit your responses to see if you were indeed correct, or if in fact, anyone really
knows the answers.

As we alluded to earlier, the study of polynomial equations allows us to investigate some very
interesting mathematical questions. For example, we have seen in chapter 1 that +/2 is irrational.
A similar proof shows that +/3 is irrational and in fact, +/N is irrational when N is a positive integer
which is not a perfect square. What about numbers like V2 + ﬁ, or /7 or \/ 3-2J2+ \/ 3 +22?
Are these also irrational? You might think, “Sure. V2 +4/3 is irrational because the sum of two
irrational numbers is irrational.” Well, that is false, as the following example shows: 1+ +/2 is
irrational and so is 1 — +/2. Yet their sum is 2 which is rational. In fact, the third number we
presented, V3 =242 +/3+2y2, looks pretty irrational to most people, but in fact, it is rational!
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Certain numbers “look” like they should be irrational, like 27 and =™ but no one knows if these
are rational or not. Today’s best mathematicians, with all the computer technology available, have
not determined the nature of these numbers. And what about numbers like sin 1° or log,3? Are
these irrational?

The purpose of this section is to treat a large number of these expressions from a single and
rather elegant point of view which uses a theorem about the roots of polynomials: the Rational
Root Theorem. This is taught in many secondary school precalculus courses. Our goal in this
section is to present the theoretical background for some sharp mathematical observations that
have been used to solve some very difficult problems in mathematics and give us a powerful arsenal
of useful information as well.

Theorem 3.12 (Rational Root Theorem) If a polynomial with integer coefficients

p(x) = apx" + an—lxn_l + fln_zxn_z +....+do

a a, . .,
has a rational root — where — is in lowest terms, then the numerator a must divide the constant term
aop and the denominator b must divide the lead coefficient a,,.

Proof. We give the proof for the specific polynomial p(x) = 3x3 + 2x + 5 since it will make it easier
for you to follow. Afterwards, we give the general proof. Now, saying that a/b is a root of p(x)
means that p(a/b) = 0. Substituting x = a/b into p(x) = 0 yields

3(a/b)® +2(a/b)+5=0

or just

a® _a
3E+ZE+5=O.

Multiplying both sides by b* we get

3a® + 2ab* + 5b° = 0. (3.4)
Now, if we subtract 5b* from both sides of the equation we get

3a* + 2ab* = —5b*
or just

a(3a® +2b*) = —5b°. (3.5)

Thus a is a divisor of the left side of equation (3.5). So it must divide the right side of equation
(3.5) also. That is, it must divide —5b%. Now, a/b is in lowest terms. So, a and b have no common
factors. Therefore, since a divides —5b3, it must be that a divides 5, since it can’t divide b* by
Theorem 2.22 of Chapter 2. In summary, a divides the constant term, 5, of p(x).

Now we use a similar method to make the conclusion we want about b, namely, that it divides
3. We subtract from both sides all the terms of equation (3.4) that have b in them. This yields

3a® = —2ab® — 51°. (3.6)
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This shows that b is a divisor of the right side of equation (3.6) and hence must divide the left side
of equation (3.6, ) which is 3a3. Since b has no common factor with a, b must divide 3, which is
the lead coefficient of p(x). J

In summary, we have shown that any rational roots 2 of this polynomial p(x) =3x3+2x+5

have the property that a divides 5 and b divides 3. (Thus, the only possible rational roots of this

1
equation are +—, + 3 + — and ig, and in fact, —1 works.)

1’ 1
The general proof follows the same idea. If a/b is a root of p(x) = a,X" +a, 1 X" '+ ... +ay =0,
then

pa/b) = a,(a/b)" +a, ((a/b)" ' +a, ,(a/b)">+...+ay=0. (3.7)
Multiplying both sides of equation (3.7) by b" and simplifying, we get
a,d" +a,_1a" b+ ... +agh" = 0.

We subtract the last term apb” from both sides and we get

1

a,d" + a,_1a" " + ... +ara = —agb" (3.8)

and, since a can be factored out of the left side of equation (3.8), the left side is divisible by a. Thus
the right side, —apb" is also divisible by a. Since a and b have no common factor, the only way a
can divide the right side is if a divides 4y, the constant term. You can finish the proof mimicking
what we did earlier to show that b divides a,,. H

Let us now illustrate how this theorem can help us find the rational roots of a polynomial
equation.

Example 3.13 What are the possible rational roots of p(x) = 2x3 +3x — 5 and which, if any, are
actual roots of p(x)?

Solution. Any rational root a/b of p(x) has the property that a must divide the constant term
5 and that » must divide the lead coefficient, 2. Thus, a = &1, +5, and b = +1, +2. It follows that
a/b= i%, :I:%, :I:% and :I:%. If we compute p(1), we get zero, but the value of p at any of the other
possible rational roots is not zero. So the only rational root of p(x) is x = 1.

Now we give an example which is more in line with what we have set out to do, which is, to
discover whether certain numbers are rational or irrational.

Example 3.14 (a) Show that the only rational roots the equation p(x) = x> —2 =0 can have are
x = +1 and x = +2. (b) Show that none of these are roots. (c) Show that /2 is a root of this equation.
(d) Give another proof using (a), (b) and (c) that /2 is irrational.

Solution. (a) By the rational root theorem, if a/b is any root of the equation x> — 2 =0, then a
must divide 2 and so must be either £2 or +1. Also b must divide 1, meaning b must be +1. Thus,
a/b must be either £2 or +1.

(b) Substituting each of these values into p(x), we see that p(x) is not zero for any of these
values. Thus p(x) = 0 has no rational roots.

(c). It is clear that p(\/i) = 0. (d) Since there are no rational roots, /2, which is a root of p(x),
cannot be rational.



88 Theory of Equations

Can you see how powerful this technique is in proving that a number is irrational? Let us try
another example and show that /7 is irrational. Since +/7 satisfies the polynomial p(x) = x3 — 7 = 0,
and the only rational roots possible for this equation are +7 and +1, none of which work, /7 is
irrational. Similarly, we can show /15 is irrational, or even /A where A is an integer that is not
a perfect nth power. Even more elaborate numbers like v'1 ++/2 can be shown to be irrational in
a similar manner. For example, if we let x = v'1++/2, and cube both sides, we get x3 =1+ V2 and
subtracting 1 from both sides and squaring, we get that (x> — 1) = 2 or that x® — 2x> — 1 = 0. The
only rational roots of this are +1 by the rational root theorem and none of them work. So, this
equation has no rational roots. But v'1++/2 is a root of this equation, so it must be irrational.
What a nice tool the rational root theorem is!

We have just seen that several irrational numbers can be obtained as roots of polynomials.
For example, +/2 is a root of the polynomial p(x) = x> — 2, and v'1++/2 is a root of p(x) = x6 —
2x3 — 1. It is a natural question to ask if all irrational numbers are roots of polynomials with
integer coefficients. For a while, many people believed that. But, to allow for the possibility that
this was not true, mathematicians defined the term algebraic number.

An algebraic number is a number that is the root of a polynomial with integral coetficients.
Thus, v/2 and v'1 + +/2 and +/15 are algebraic as we saw in the last two paragraphs. A number which
is not algebraic is called transcendental. Thus, a transcendental number is a number that is not a
root of any polynomial with integral coefficients (though it can be a root of a polynomial whose
coefficients are not integers).

As we have pointed out, the prevailing thought was that all irrational numbers
were algebraic, and thus transcendental numbers did not exist! This was wrong. It
took many years for the discovery of the first transcendental number. One number
was discovered by the mathematician Louiseville in around 1851 and it is the number
0.1100010000000000000000010000000000000 . . . where the number 1 occurs in only the factorial
positions. That is, in the 1!, 2!, 3! and so on positions (in the 1st, 2nd, 6th, 24th, etc. position).
Proving that this number is transcendental is quite involved. We refer the reader to the Internet
for several variations on proofs of this or to the book, Numbers, Rational and Irrational (1961) by Ivan
Niven. It took until 1873 until the mathematician Hermite proved that the number e so prevalent
in the study of calculus, was transcendental, and then another 9 years before the mathematician
Lindemann proved that = was transcendental. Thus e and =z, though irrational, are not roots of
polynomials with integral coefficients. Historically, finding numbers that are transcendental was
slow. This might lead you to believe that very few exist. But in mathematics, things are not always
what they seem.

In 1887, George Cantor surprised the mathematical world when he proved that there were
infinitely many transcendental numbers, and in fact, there were more of them than rational
numbers! Indeed, “almost all” irrational numbers are transcendental. What a surprise! But even
though there are so many transcendental numbers, proving that a number is transcendental seems
to be extremely difficult. In fact, it took until 1999 just to prove that numbers like e™2 and ™3
and so on are transcendental. For more information about transcendental numbers, see Chapter 6
Page 304.

Defining and finding algebraic and transcendental numbers seemed to just be a game intel-
lectuals played. But it turned out that these notions held the key to problems that had baffled
mathematicians for thousands of years. Some of the problems that were solved by studying
algebraic numbers were the problem of squaring the circle, duplicating the cube, and trisecting
an angle, using only an unmarked ruler and compass. These problems of antiquity seem to be



Theory of Equations 89

irrelevant in today’s world. But they were puzzles that could not be solved by even the best minds
for over 2000 years. We discuss these problems in Chapter 14.

We have shown how the rational root theorem could be used to prove that certain numbers
are irrational. We can also use this theorem to show that cos n° is irrational for all rational values of
6 such that 0 < 6 < 90°, except for cos 60 degrees. Before showing this, we will state the following
result will be proven in Chapter 8. (See Example 8.24.) That result is, that for any rational angle 6
between 0 and 90 degrees, the quantity 2 cos6 satisfies an equation of the form

1

1IX"+a, 1 X"+ ... +ap=0 3.9

where the coefficients are integers. (See the corollary to Example 8.24.)
We now use this result.

Example 3.15 Show that cos 6° is irrational for all rational angles 6 where 0° < 6 < 90° except for
cos 60 degrees.

Solution. By the rational root theorem, any rational solution of equation (3.9) is of the form a/b,
where a divides ap and b divides 1. Of course, if b divides 1, b is either 1 or —1 and the fraction
a/b is an integer. Thus, the only rational roots of equation (3.9) are integers. Now, x = 2cos#é is a
root of equation (3.9). Thus, if x = 2 cos#é is rational, it must be an integer. Since 2 cos6 is strictly
between O and 2 (that is, O < 2cosf < 2) when 6 is strictly between 0 and 90 degrees, it follows
that the only integer x = 2 cos 6 can be is 1. And that happens when cosé = 1/2, which happens
when 6 = 60°. Thus, the only rational root of this equation occurs when 6 = 60°.

Student Learning Opportunities

1 Finish the proof of Theorem 3.12.

2 Set up a polynomial that each of the following numbers is a root of, and then use the rational
root theorem to show that each of these is irrational.

(@) V13
(b) 5++2
(c) V2
(d) J2+97
(e) V2++/3

3 Show that v/3 — 24/2++v/3+2+/2 is rational by observing that 3 — 2v/2 is the square of
(ﬁ — 1) and making a similar observation for 3 + +/2.

4 (C) A student asks you whether an irrational number raised to an irrational power can be
rational? Can it? Explain.

5 Use the rational root theorem to find all the roots of the following equations
(@ x3>—4x2+3=0
(b) 4x3 —x>+5=0
(© 2x3+6x2=8
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(d) 4x3 +4x2=x+1
(€) x’(4x+8)—11x=15
) x3—2x2=1-2x

2
6 (Q) Your students understand that, since the number 3 satisfies the equation 3x —2=0,

2
which has integral coefficients, 3 must be algebraic by definition of algebraic. But they have

the following questions and need help in answering and then proving their answers. How
would you explain the answers to these questions? Use variables in part (a).

(a) Are all rational numbers algebraic?
(b) Are all transcendental numbers irrational?

3.6 The Quadratic Formula

LAUNCH

1. Solve the following quadratic equations by hand and show all of your work.
@ 3x2—4x+1=0
(b)3x2+2x+1=0
2. What method did you use to solve 1(a)? 1(b)?
3. Where did the method you used for 1(b) come from? How do you know that it gives you the
correct results?
4. Could you have used the method you used for 1(b) to find the solutions for 1(a)? If so, do it
and check that you arrive at the correct solution.

After having done the launch question you are well aware that this next section concerns the
quadratic formula, which you are surely familiar with from your secondary school studies. We
hope that you appreciate the power of this formula and that, at the same time, if you don’t know
already, you are curious about where the formula comes from. You might also be wondering if we
have such formulas for solving all polynomial equations. How nice that would be! While we do
have formulas to find roots of cubic equations and fourth degree equations (some of which you
will see later), it was proved by the mathematicians Abel and Ruffini (see Theorem 3.23) that there
is no formula that will give us solutions to equations of 5th degree or higher. Some of the best
minds worked on this problem but with no success. The theorem was a triumph and the solution
was unexpected. It used group theory to prove the result.

In this section we concentrate on solving quadratic equations. We know from secondary school
that the equation y? = a is very easy to solve: y = +./a. Thus, if y? = 7, y = /7. If we can somehow
reduce a quadratic equation ax? + bx + ¢ = 0 to the form y? = g, then solving it would be easy. The
method that is often taught in secondary school is the method of completing the square. This
method has applications to many different areas in mathematics other than solving quadratics.



Theory of Equations 91

For example, it can be used to find the center and radius of circles that are not in the “right” form.
It can be used to find key information about ellipses, parabolas, and hyperbolas (some of which
find applications in astronomy). It can also be used to solve some rather complicated integrals in
calculus that occur in the sciences. So we spend some time on it now.

What does it mean to complete a square? What it means is that you start with an expression
of the form 1x2 + bx, and try to determine what must be added to this expression to make it the
square of a binomial. What we must add is (3)2. That is, we add the square of half the coefficient
of b. To see that this is correct, we simply check that 1x% + bx + (%)2 =(x+ %)2, and is therefore a
perfect square. Thus, if one asks what must be added to 1x? + 5x to make it a perfect square, the
answer is (3)? or 2. Now we can verify that 1x? + 5x + 2 is the square of (x + 5)2. To complete the
square of y?> — 6y, we add 9 (half of —6 all squared.) It is easy to check that y> — 6y +9 is (y — 3)2.
Let us now illustrate a typical secondary school problem where a quadratic equation is solved by
completing the square. Notice that this method requires that a, the coefficient of x?, be equal
to 1.

Example 3.16 Using the method of completing the square, solve the equation x> + 6x +1 = 0.

Solution. We subtract 1 from each side of the equation to get x? + 6x = —1. We complete the
square on the left side by adding 9. Of course, to keep the equation balanced, we need to do
the same to the right hand side. Our equation becomes: x?> + 6x +9 = —1 + 9. This is the same as
(x +3)? = 8. Thinking of (x + 3) as y, this tells us we have y? = 8 and hence y = ++/8. Replacing y by
x+3 we have, x +3 = £4/8. So x = —3 +4/8.

Example 3.17 Use the method of completing the square to solve the equation 3x*> +4x —2 =0

Solution. We add 2 to both sides to get
3x2+4x=2.

To use the method of completing the square, we need the coefficient of x> to be 1. So we divide
the equation by 3 to get

Ba oy
=3
We add [5(3)]* = & to both sides of the equation to get

2
X+ -x+
3

O

K]

O >

which just becomes
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From this we get that

X+2 . 10
3/ 9’

and so,

X__zi 10
-3 9

It is exactly in this way that we derive the quadratic formula. Here it is for completeness.

Example 3.18 Derive the quadratic formula.

Solution. We start with the equation ax? + bx + ¢ = 0 where a > 0. We then subtract ¢ from both
sides to get

ax? +bx = —c.

Since we need the coefficient of x? to be 1, we divide both sides by a to get

We complete the square on the left side by adding (% . Z)Z or just Z  We get

4aZ*
, b b c P
X=X+ — =
a

4(12 _E+4_a2 (310)

Now the left side of equation (3.10) is a perfect square, the square of (x + %). Thus, we have

x+b2— C+b2
2a) a 4a?

which can be rewritten as

x+b 2_ 4ac+b2
2a) = 4a? " 4a%’

Combining the two fractions on the right, we have

x+b 2_b2—4ac
T 4q2

x+b 4 b? — 4dac
2a) 4q2

and this can be rewritten as

< b)_i¢w—4m
= Z—a.
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Subtracting % from both sides we get

b n Vb? — dac _—b+ Vb? — 4ac
2a 2a - 2a

and we are done!

The quadratic formula holds even if the coefficients a, b, and ¢, are complex numbers, but, of
course, then quantities like +/b2 — 4ac would lead to taking square roots of imaginary numbers.
What on earth does this mean? We will talk about this later when we discuss complex numbers in
depth. Let us mention that, once we define what this means, the quadratic formula will hold for
all quadratic equations, even if the coefficients are complex.

Given the pressure of completing a crowded curriculum and preparing students and preparing
students for standardized exams, many teachers ponder the value of sharing this proof with
their students. However, there may be students who are curious about where the quadratic
formula came from and after having done several numerical examples with completing the squares
this proof should not be difficult for them to follow. We offer another proof of the quadratic
formula in the Student Learning Opportunities, which is much simpler. Although that proof is
simpler, the method of completing the square occurs in several places in the secondary school
curriculum, relating to conic sections and their transformations, which is why we addressed
it here.

Student Learning Opportunities

1 Here is another way to derive the quadratic formula without getting bogged down in a lot
of fractions. This might be more useful for a fraction-phobic classroom. Begin with ax? + bx +
¢ = 0 and multiply both sides of this equation by 4a to get 4a%x? + 4abx + 4ac = 0. Now,
subtract 4ac from both sides and add b? to both sides to get 4a®x? + 4abx + b?> = b?> — 4ac.
Observe that the left side is a perfect square. Take it from there.

2 (C) For the quadratic equation ax? + bx +c=0, where g, b, and c are integers, the quantity
b? — 4ac is called the discriminant. In secondary school the following rule is taught: If the
discriminant is 0, there is only one root of the quadratic equation ax? + bx +c=0. If the
discriminant is positive and a perfect square, then the two roots are real and rational and
unequal. If the discriminant is positive and not a perfect square, the roots of the quadratic
equation are irrational and unequal, and if the discriminant is negative, the roots are imagi-
nary. Describe how you would justify these rules to your students. What would you tell them
if they asked whether the rules were still true if b is irrational?

3 Solve the following quadratic equations by completing the square.
(@ x*2—6x=-8
(b) y»-7y+6=0
(©) z(z—=1)+1=0
(d) 322—-2z+1=0

4 (C) One of your students was asked to solve x?> —8x — 25 =0 by completing the square.
Her work appears below. She notices that neither of her solutions work and concludes this
quadratic equation has no answers. Comment on her work and on her conclusions. If she is
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5

6

7

8

92
10

11

12

13
14

not correct, how would you help her to modify her work so that she gets a correct answer?
x?—8x—-25=0
x? —8x=25
x> —8x+16=25
(x —4)? =25
X—4=1425
x=4+5 or x=4-5
x=9 orx=-1

Find the values of k for which the roots of w? — kw + 6 = 0 are equal. What are the roots for
this value of k?

Solve for x : v/2x2 — 5x +/8 = 0.
5
Vx+10

nn+1)

Find all solutions of v/ x+ 10 + =6.

Solve for ninterms of S: S =

Solve for r in terms of Aand h. A=nr?2+2nrh.

The length of a rectangle is 4 feet more than the width. The area is 22 square feet. Find the
width.
(C) Using the solutions from the quadratic formula, how would you explain to your students

why the sum of the roots of a quadratic equation ax? + bx +c =0 is ;—a and that the product

of the roots is g? Using this fact, how would you demonstrate how to find the sum and
product of the roots of 2x? — 3x — 1 = 0? Show how you would justify that this answer was
correct by finding the actual roots and adding them and multiplying them to check that the
answer is correct.

In the previous problem you showed that the sum of the roots for the quadratic ax? + bx + ¢ =
0is %b and that the product of the roots is g. We now wish to generalize this to cubic
equations. Suppose that you have the cubic equation ax3 + bx? + cx + d = 0. Dividing by a

c d . .
this becomes x> + —x? + —x + — = 0. Suppose the roots of this cubic are r, s, and t. Then

a a
by Theorem 3.8 this polynomial can be factored into (x — r)(x — s)(x — t) = 0. Expand this
product and equate coefficients (Corollary 3.11) to conclude that r + s + t, the sum of the

— .. cC
root is - and rs + st + rt, the sum of the roots taken two at a time is P and that the product
of the roots is ——.

a

Suppose that the two roots of the equation x? + px + g = 0 differ by 1. Show that p? — 4g =1.

Prove or disprove: If a, b, and ¢ are odd integers, the roots of ax? + bx + ¢ =0 cannot be
rational.
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3.7 Solving Higher Order Polynomials

LAUNCH

1 Solve the cubic equation x3+ 7x = —48.

2 How many real solutions are there? How can we find the remaining solutions?

3 Is there a formula, like the quadratic formula, that can be used to find the solutions of this
equation?

According to the Fundamental Theorem of Algebra we know that a cubic equation should have
3 solutions. If you are wondering if there is a formula for finding these solutions, similar to the
quadratic formula for quadratic equations, you will be interested in reading this section.

3.7.1 The Cubic Equation

The secondary school curriculum focuses primarily on solving linear and quadratic equations. The
history of solving polynomial equations of higher order is rich with surprises and contributions to
important mathematics. In this section we examine polynomial equations of higher degree. There
is more here than meets the eye. You will see how the ideas in this section brought about some
strange results, which led to the subsequent development and understanding of complex numbers.
You will learn in Chapter 7, that complex numbers have major applications in many fields. Some
of the equations that we encounter in this section are complicated. Bear with them, for they will
bear fruit.

One would think that, to be able to solve the equation x> + bx? + cx +d = 0, all one would have
to do is complete the cube in some way similar to the way we completed the square. Unfortunately,
when we cube something like (x + p), we get x>+ 3px? + 3p*x + p3, which tells us immediately
that the coefficient of the x? term is 3p and the coefficient of the x term is 3p?. So, if we have an
equation like x* + x% + 5x + 1, looking at the coefficient of the x> term and the x term, we get that
3p =1and 3p? = 5. The first equation tells us that p = 1/3. But, if this is substituted into the second
equation, 3p? = 5, we get an untrue statement. Thus, there seems to be no hope of completing the
cube. This was certainly noticed by the many people who tried, in vain, to solve the cubic equation.

The first progress in solving the cubic was made by the mathematician Scipione del Ferro
(1465-1526). He didn’t solve the general cubic but instead, solved what is called the “depressed
cubic”

x% + px = g where p and q are positive. (3.1

Depressed cubic simply meant the x? term was missing. Later we will show that this equation has
only one real solution.

What Ferro said is that this equation has only one real solution and it is of the form x =u+v
where

3uv+p=0 (3.12)
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and
w+vd=q. (3.13)

Furthermore, one can always find such a u and v. If you are wondering where Ferro got these
equations, you are not alone. Here lies his brilliance. Now Ferro was right, but how he figured
that out was anyone’s guess. The Polish mathematician Mark Kac, made a distinction between
the ordinary mathematical genius and the magician mathematician. He essentially said that the
ordinary genius is one whose mind is so much better than ours and one who can see things we
can’t. But once we are presented with what he sees, we can understand how his mind worked. In
contrast, the magician genius, which Ferro might be considered by some, is one whose mind works
in the dark. Even after we see what they have done, we have no clue how they ever thought of it.

To see that x = u + v solves the equation x3 + px = g under conditions of equations (3.12) and
(3.13), we substitute x = u + v into the left side of this equation to get

(u+v) + p(u+v). (3.14)

We will show this is equal to g, the right hand side of our equation (3.13), and thus, x = u + v solves
our equation. Now we know that (1 +v)? = 13 + v® + 3uv(u + v). (Just expand and check.) Thus when
expression (3.14) is expanded, we get

w+v)3+ pu+v)

= +v3) + 3uv(u + v) + p(u+ v), which by factoring out u + v yields

=@ +v®)+ W+v)Buv + p). Now using equations (3.13) and (3.12), respectively, we see this
=gq+0

=q.

So, we have shown that, if we can find u and v that satisfy equations (3.12) and (3.13), then we
have solved our cubic equation. Of course, there is the issue of how to find such u and v.

Ferro then set to the task of showing that we can always solve equations (3.12 ) and (3.13). Let
us assume that there are such u and v and try to find them. From equation (3.12) we get v = —£.
When this is substituted into equation (3.13), we get

3 P’
- = 1
u 27 q (3.15)

and when we multiply both sides of equation (3.15) by u?, we get u® — g—; = qu3. Getting all terms
over to one side, we get

6 3 P
— —=—==0. 3.16
w—qu = oo (3.76)
If we can solve this for u, then we can find v from v = —ﬁ, and then we can find x since x = u + v.
Equation (3.16) looks intimidating. But have nor fear, it looks worse than it is. If in equation (3.16)

we make the substitution z = u® then equation (3.16) becomes z*> — gz — %; = 0, which is a quadratic
in z! So, we can use the quadratic formula, to get

= qq—y (Verify this!)

- 2
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Since z = u3, we get from this that

_q:l:,/q2+32%3
=—

w3
hence that
3 :]: 2 + éﬁ
U= (](]—27 (3.17)

2

Now from equation (3.13), v = /g — u3 so substituting equation (3.17) in this we get, after finding
a common denominator and distributing the negative sign, that

3
1 aF P+

2

v= (3.18)
(Again, verify it!) Notice that the cube root in equation (3.17) has plus/minus, while that in
equation (3.18) has minus/plus. Thus, if we take the plus sign in one radical, we must take the
opposite sign in the other radical.
Finally, since x = u + v, we have

2 2

and we have solved our cubic equation!

Now it looks like we have two solutions for x, but it can be verified (and is an exercise in
algebraic manipulation) that the two solutions are really the same. Thus, our official (unique) real
solution to the cubic equation (3.11) is

3 3
j " q2+42p7 j R q2+42p7
X = 5 + 5 ) (3.20)

Since this formula is so complex, it is understandable that it is not included in the secondary
school curriculum. Let’s now see how we can solve a cubic equation.

Example 3.19 Let us apply formula (3.20) to solve the equation x3 + 6x = 20.

Solution. Here p = 6 and g = 20. Substituting into equation (3.20) we get

X_jzm,/zou%@:jzo— 202 4 46°

2 2

(3.21)

Now the program with which this chapter was written is capable of doing these kinds of compu-
tations, (as are your hand held calculators) and when we asked it to evaluate this numerically, the
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program gave us x = 2. Indeed, x = 2 does work as we see by substituting x = 2 into x3 + 6x — 20 = 0.
Neat! Of course, the solution in the form of equation (3.21) is intimidating, but it does the job.

We said earlier that a cubic equation has 3 solutions counting multiplicity. What are the other
two? Our equation is really x3 + 6x — 20 = 0. To find the other two solutions, we need only divide
x3+6x —20 by x — 2 to get the other factor, which is a quadratic and then solve the resulting
quadratic equation. We leave this to you to solve. You will discover that x =2 is the only real
solution.

We will have you practice more problems like this in the Student Learning Opportunities.
But, for now, we thought you would be interested in knowing that all equations x> + px = q or
equivalently x> + px — q = 0 where p and q are positive, have only one real solution and why that
is. We need to recall from calculus, the Intermediate Value Theorem:

Theorem 3.20 (Intermediate Value Theorem)) If f(x) is continuous on [a, b] and f(a) and f(b) have
opposite signs, then there is a value, c, strictly between a and b where f(c) = 0.

What this is saying is that, if the graph of f(x) is below the x-axis at one endpoint of [a, b] and
above the x-axis at the other endpoint of [a, b], (see Figure 3.4 below) then it must cross the x-axis
between a and b, which seems intuitively clear if the function is continuous.

Y

(%)

Figure 3.4

Now, let us apply this theorem to show that f(x) = x3 + px — q has a real root, and has only
one real root. We observe that f(0) = —q, which is negative since g was taken to be positive. Also,
if x = N, where N is a very large positive number, then x* + px will be a very large positive number
and will be bigger than q if N is large enough. So f(N) will be positive. Since f(0) < Oand f(N) > O,
f(x) must cross the x-axis somewhere between 0 and N. That is, f(x) has a real root.

Now, we show that f(x) has only one root. Recall from calculus that, if the derivative of f
is positive, then the function f must be increasing. Since f’(x) = 3x> + p and since 3x? is always
nonnegative, and p is positive, f’(x) is positive. Thus, our function is always increasing. What this
means is that, once it crosses the x-axis, it keeps going up. And so it can’t cross the x-axis again.
That is, it has no other real root.

The above proof that f(x) = x> + px — g has only one real root was straightforward. But when
you realize that Cartesian coordinates, functions, and calculus hadn’t yet been discovered when
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Ferro did his work, you can appreciate Ferro’s realization about this equation having only one
real root.

Since mathematicians of his time didn’t believe negative numbers had any meaning, which by
today’s standards, is almost incomprehensible, in his proof Ferro assumed p was nonnegative. But,
in fact, there is nothing wrong with assuming that p is negative in equation (3.11). Ferro’s formula
gives us a solution in this case (though in this case there may be more than one real solution.)

Once we have one real solution of the cubic, x =r, we can find the other two solutions by
dividing f(x) by x — r. This reduces the equation to a quadratic equation whose solutions we can
find by the quadratic formula. Let us illustrate by example.

Example 3.21 Suppose we have the equation
x3 —4x =15. (3.22)

Solve for x using Ferro’s formula.

Solution. Here p = —4 and g = 15. Substituting in Ferro’s formula, we get

{15+ /15244000 15 /152 4 447

X = 2 + 2 ’

and using a calculator or computer software to compute, we get that x = 3, which we can easily
verify by letting x = 3 in equation (3.22). Now, if we rewrite equation (3.22) as x> — 4x — 15 = 0 and
divide x> — 4x — 15 by x — 3, say, using synthetic division, we find that the other factor is x> + 3x + 5
and thus x3 — 4x — 15 = O factors into (x — 3)(x2 + 3x + 5) = 0. To find the other two roots, we need
only set the other factor x* + 3x + 5 to 0, and solve by the quadratic formula. The other solutions

are: —% + %i«/ﬁ .
While Ferro’s formula seemed to work well, there was something strange about the results that
will become evident in the next example and which led to the development of imaginary numbers.
Let us consider the equation, x> — 15x = 4, one of whose solutions is x = 4. Not only is one
solution 4, but, if we graph the equation f(x) = x> — 15x — 4, we get (Figure 3.5):

y

251

-5 25 N 2.5 5

-251

~501

Figure 3.5 The graph of fx=x3—-15x—4
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and clearly ALL 3 solutions of f(x) =0 are real, since the graph crosses the axis 3 times. If we use
Ferro’s formula, with p = —15 and g = 4 we get

J 44 /42 4 2C10 . j 4 /424 2C00

2 2

which simplifies to \7 fe/ A +\7 4-V484 1o0k! All the solutions are real, yet square roots of
negative numbers are appearing in the algebraic solution! It was this kind of mystery that made
mathematicians look much more carefully at square roots of negative numbers and develop the
set of complex numbers. Contrary to what students are taught, the imaginary number i was not
developed to solve the equation x? = —1; rather it was developed to explain the kind of situation
that was occurring here when square roots of negatives appeared in equations whose solutions
were obviously real! (See the chapter on imaginary numbers for more on this.)

It was the Italian mathematician Bombelli who discovered that, if we multiply the square roots
of negative numbers as we do with square roots of positive numbers, we could explain much of
what was happening. That is, if we treat the seemingly meaningless +/—484 as if it satisfied the
relationship +/—484 - /—484 = —484, much could be explained. Thus, he established that these
imaginary numbers should be given status as bonafide numbers. Alas, this was the “birth” of
complex numbers.

It will follow from work we do in Chapter 8 that C/ 4*@ +\7 4’*/2"@ reduces to the real
number 4.

There is much more to be said here about complex roots of polynomials, which we will be
in a better position to address in the chapter on imaginary numbers. For now, we continue to
investigate how to solve cubic equations.

3.7.2 Cardan’s Contribution

Girolamo Cardano (1501-1576), known as Cardan, made a key step in solving the general cubic
equation of the form.

2 +bx®>+cx+d=0. (3.23)

He came to the interesting realization that, if you make the substitution x =y — £ in equation

3
(3.23), you get
b\* b\* b
<y— §> +b<y— §) +c<y— 5) +d=0
which simplifies to
1 1 2
o+ (c - §b2> y=—d+ gbc - ﬁbS' (3.24)

(Do the algebra if you have the patience.) This equation is of the form y3 + py = ¢ where p = ¢ — %bz
and g = —d + %bc - 22—7193. And thus, we can solve this for y using Ferro’s formula, and then, since
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xX=y— %, we can find out what the original solution to x is in equation (3.23). Thus, we have
learned how to solve all cubic equations of the form of equation (3.23)!!!! Let us give one example
to illustrate how this works.

Example 3.22 Solve the equation x> — 15x%> + 81x — 175 =0.

Solution. We make the substitution x =y — % =y— @ =y + 35, but instead of substituting in
the original equation, which would yield an even more complex cubic equation, we make use of
the fact that the reduced equation will be of the form y* + py = ¢ where

p=c— %bz and (3.25)
1 2
=—d+—-bc— —b>. 2
q d+3 c 57 (3.26)

Using the values b= —15, ¢ =81, d = —175, and substituting into equations (3.25) and (3.26), we
get p=81—1(-15)2=6,q=—(—175)+ 1(~15)(81) — £ (—15)3 = 20, so our reduced equation is

y® + 6y =20.

We solved this earlier by Ferro’s formula to get y = 2 (see Example 3.19) and thus, x=y+5=7,
which we can verify solves our equation. We leave the task of finding the other two solutions to
you.

Cardan was a rather interesting character. Morris Kline in his book, Mathematics for the Non
Mathematician (1967), tells us that Cardan suffered from many illnesses which seemed to prompt
him to become a physician. In fact, he became quite a celebrated physician as well as a professor
of medicine. Yet, with all his fame, Kline tells us about Cardan, “He was aggressive, high tempered,
disagreeable and even vindictive as if anxious to make the world suffer for his early deprivations.
Because illness continued to harass him and prevented him from an enjoying life, he gambled
daily for many years. This experience undoubtedly helped him to write a now famous book, On
Games of Chance, which treats the probabilities in gambling. He even gives advice on how to cheat,
which was also gleaned from experience.” (p.119)

3.7.3 The Fourth Degree and Higher Equations

Once the solution of cubics was found, the quest continued to find solutions of 4th degree, 5th
degree, 6th degree polynomials, and so on. It was not long before the general 4th degree equation
ax* +bx3 + cx? +dx + e = 0 was solved. The formula is very complex and makes the formula for
the solution of cubic equations look like child’s play. Since the development of this formula is
so complicated, we will not discuss it here. The difficulty of the formula makes it too difficult
for secondary school students to learn, but their teachers are encouraged the visit the website
http://www.karlscalculus.org/quartic.html to learn some of the details of this method. As difficult
as this formula is, it is certainly usable in computer software programs that solve these 4th degree
equations.
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Mathematicians’ intellectual curiosity led them to see if they could find formulas that would
solve higher degree equations regardless of their complexity. Solving the 5th degree polynomial
turned out to be much harder than people expected. Different methods were tried, but no one
succeeded, because it turned out, as later proved by the mathematicians Abel and Ruffini, that
there are no formulas that will solve these equations. This was a big surprise. The theorem
follows.

Theorem 3.23 (Abel-Ruffini). One cannot find a formula similar to the formulas for solving
quadratic, cubic and quartic equations that will solve all Sth degree equations and higher. That is,
one cannot find a formula that will solve all of these equations by using radicals.

The proof of this theorem involved one of the first applications of group theory and
is a very sophisticated result. One can contact the website http://en.wikipedia.org/wiki/Abel-
Ruffini_theorem to learn more about this. This last theorem is not saying polynomials of higher
degree can’t be solved. They can be by a variety of methods, some of which we will discuss.
But there is no FORMULA, like the quadratic formula that can be used to solve these equations.
Thus, until the 20th century, when graphing calculators came on the scene, solving polynomials
of degree 5 or higher was difficult, and in many cases, impossible. Even with these calcula-
tors, the solutions are not always exact. There is however, one very good method for solving
these equations known as the Newton-Raphson method, which we discuss later on in this
chapter. Without a computer, however, the method can be all but impossible. In fact, technol-
ogy plays an important role in the solutions of equations, which we will discuss in the next
section.

Student Learning Opportunities

1 Show that the two solutions in equation (3.19) are the same.
2 Find the other two solutions in Example 3.19.

3 Use the rational root theorem to find the real solutions of the following equations. Then use
the formulas in this section to get the real solutions. Using your calculator show that the
solutions are the same.

@) x3+4x=5
(b) x3+2x=12
() x> —4x=3

4 Use Cardan’s idea and then synthetic division to reduce the following equations to depressed
cubics (when necessary). Then solve the equations using equation (3.20)
@ x*+6x2—9x—14=0
(b) x3 —4x>+7x=4
(© x(x*-2)=4
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3.8 The Role of the Graphing Calculator in Solving Equations

LAUNCH

1 Solve the following equations by entering them in your graphing calculator and finding where
they cross the x-axis:
@ y=x3—x>-2x
(b) y=x3+199.99x%> — 1.5 x 10°x + 1500
2 How many roots were you able to see in each case? How many roots should you see?
3 If there was a problem seeing the roots in equation 1(b), what do you think was the cause?

While it is wonderful that we now have graphing calculators to help us find solutions to higher
order equations, you can see from your experience doing the launch that technology must be used
with insight and skill. Let us begin by reviewing how to find real solutions using the graphing
calculator and what to do in cases where the roots are not visible in the window.

When we wish to find real solutions of equations, we simply put the equation in the form
f(x) =0, graph it, and find where it crosses the x-axis. Let us illustrate this for a cubic equation and
find its roots. The same idea works regardless of the degree of the equation.

Example 3.24 Solve the equation 2x* = 7x — 1 to 3 place decimal accuracy.

Solution. We write the equation as 2x3 — 7x+1 =0, and plot the function f(x)=2x3—7x+1.
Our goal is to find the zeroes or roots of f(x), which on the graph is where f(x) crosses the x-axis.
We see that, in this case, it crosses the x-axis in 3 places which are the solutions of f(x)=0. That
is, these crossings are the solutions of 2x> — 7x + 1 = 0. Here is the graph of f(x) (Figure 3.6):

Yy 200 -

100 A

-100 4

—200 4

Figure 3.6 The graph of f(x) =2x3 —7x+1

We can zoom in on the graph near the points where it crosses the x-axis to get a better idea
of the solutions, or we use the root solving capability that most graphing calculators have to
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find the zeroes of the function. We find that the three zeroes of f(x) are x ~ —-1.9385..., x~
0.14371... and x ~ 1.7948 ... . How easy it is today if we have an accurate graph of f(x)! The
only real difficulty occurs when the roots are very far from the origin or close to the origin, or
very close together, or very far apart, because when we zoom out or in, we just can’t see them.
This is exactly what happened in the second launch equation above. That is, when we wanted
to solve y = x3 +199.99x% — 1.5 x 10°x + 1500, we tried graphing it on a standard calculator used
in secondary school, in a standard window (x and y both go from —10 to 10), but we could see
very little. Zooming out we could still not see a root. In fact, we would have to zoom out three
times before we could see two of the roots, but then our picture would look like two vertical lines,
which we know is not correct. The third root is not within sight. Our polynomial happens to factor
into (x — 0.01)(x + 500)(x — 300) = 0, which is not obvious but which tells us the roots right away
namely, x =0.01, x = =500 and x = 300. (This factoring we did is not magic. We just made up the
problem beginning with the factors.) Here is the graph of our function using a more sophisticated
computer program (Figure 3.7). (The numbers on the y-axis are powers of 10. Thus, le + 9 means
1.0 x 10%))
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Figure 3.7

3.8.1 The Newton-Raphson Method

Thus far, we have talked about finding solutions of polynomial equations of the form f(x)=0
and some of their applications. Since any equation can be put in the form f(x) =0, as we shall
see, the methods we will present can be used to solve any equation that occurs in any field. So, if we
wanted to say solve sin x = cos4x — 2*, we simply bring all the terms to one side of the equation
and, instead, solve sin x — cos4x + 2* = 0. The solution of this equivalent equation will give us the
solution of our original equation. No wonder why finding roots of equations is so important!
It can be used everywhere for any kind of application! More importantly, what we will do in this
section generalizes and gives us a tool to solve complex systems of equations that occur in practice,
which makes it very practical even in very sophisticated applications. So let’s discuss this special
technique called the Newton-Raphson method.

In calculus we often were asked to find the equation of a tangent line to a curve at a point.
Amazingly, this equation be can be adapted and used to quickly find solutions to all equations and
thus, has many applications in the sciences. Let us now show how this method can be used to get
quick solutions of equations.
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We need to recall how to find the equation of a tangent line to a curve y = f(x) at a point (a, b)
on the curve. First, we compute f’(a), the derivative of f(x) evaluated at a, as this gives the slope
of the tangent to the curve f(x) at a. Then the equation of the tangent line is

y—b=f(a)(x —a). (3.27)

But since (g, b) is a point on the curve y = f(x), b= f(a). Thus, the above equation can be written
as

y— fla)=f(a)(x—a). (3.28)

Let us give a numerical example as a review.

Example 3.25 Find the equation of the tangent line to the curve f(x)=4x>—3x+ 1 at the point
(a, b) = (1, 2).

Solution. The slope of the curve at the point (1, 2) is f’(1). Since f'(x) =8x — 3, f'(1) =5 and the
equation of the tangent line is, by (3.27) y —2 =5(x - 1).

This brings us to the Newton-Raphson method. To understand it fully, we need to be able to
figure out where a tangent line to the curve hits the x-axis. This is simple. Using equation (3.28)
we can easily find where the tangent line hits the x-axis by setting y = 0. This yields

—f(@) = f(a)(x - a). (3.29)

Dividing both sides of (3.29) by f’(a) and then adding a to both sides of the resulting equation, we
get that the x coordinate of the point where the tangent line hits the x-axis is

 f@
@)

Now refer to Figure 3.8 below.

X=d

(3.30)

f(x)

(x5, f(x)

/ Xo X3 % %

Figure 3.8
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The goal is to find the zero of the function shown; that is, where the function f(x) crosses
the x-axis. This occurs at xo. We observe that if we draw the tangent line T at a nearby point with
coordinates (x;, f(x1)), the point, x,, where the tangent line T crosses the x-axis, is closer to xg
than x; is. (In the Student Learning Opportunities, we will show that this is not always true, but
for now it suffices.) Furthermore, by equation (3.30), using x; for a, we get

f(x1)
f(xa)

Now we draw the tangent line to the curve at (xz, f(x2)) and look at where it crosses the x-axis. We
see that it crosses at x3 which is even closer to xy than x; is. Furthermore,

_ f(x2)

f'(x2)
We continue generating x’s in this way and get closer and closer to our zeroes of [ (assuming we
don’t run into one of the problems described in the Student Learning Opportunities given later).
This series of calculations can be done quite easily on a calculator, as you will see from the next
numerical example.

X2 = X1 — (331)

X3 = Xp

Example 3.26 Beginning with the number x; = 1, find the zero of the function f(x)=2x> —7x+1
generated by the Newton—Raphson method.

Solution. We show how we can do this very quickly on the TI calculator by doing the following
steps. Begin by keying the function 2x3 — 7x + 1 in for Y;. Put its derivative, 6x*> — 7 in Y. Since we
are starting with x = 1, we begin by storing 1 in the variable X. We do that by typing

and then we press . Next, key in X — 288 X and keep pressing enter. This yields the
following values for X which we call x, x3, and so on.

Xy =—3

x3 = —2.3191489
x4 = —2.0139411
x5 = —1.9424509
X6 = —1.9385486
x; = —1.9385372
xg = —1.9385372
X9 = —1.9385372

We are at our solution. It rounds to what we got before, —1.9385 in Example 3.24.

What is nice about the Newton-Raphson method is that if it works, it works very fast. More
specifically, when x, has 3 digits of our solution correct, then x,,; will have approximately 6 digits
correct, and x,,, approximately 12 digits correct. Thus, we quickly zero in on an accurate solution.

We will use the Newton-Raphson method again later in the book (Chapter 8) when we discuss
fractals. That is yet another area where it is useful, only there we work with complex numbers.
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Years back, before the days of graphing calculators, a former student who had become an
electrical engineer called the first author of this book with a problem that came up in his job that
was baffling him. He had this difficult equation that he needed to solve, but didn’t have a clue
how to proceed. I asked him if he tried the Newton-Raphson method and his response, “The what
method?” told me I needed to explain it to him, which I did. He took out his scientific calculator
and began computing. The next day he called me all excited because he had found the solution. I
am sure he never forgot that.

In the article “Getting to Real Time Load Flow,” by Regina Llopsis-Rivas in Electric Perspectives (an
Internet journal) Jan-Feb 2003 issue, we see the following quote:

“But today non-linear equations solving algorithms based on the Newton-Raphson method
are used industry-wide to analyze the behavior of electrical power systems.”

So this method is important, very important!

(For the full article, see http://findarticles.com/p/articles/mi_qa3650/is_200301/ai_n9168698/)

We will end this section by surprising you with how some calculators use an algorithm based on
the Newton-Raphson method, to compute square roots very rapidly and accurately. We illustrate
this with the next example.

Example 3.27 Many calculators compute /N using the following scheme: It picks say x;, and
successively generates new terms according to the formula

1 N
Xn+1=§ Xn+X_n .

Show how this arises from the Newton—-Raphson method and discuss how efficient it is.

Solution. We apply the Newton-Raphson method to the function f(x) = x> — N starting with a
positive value of x; to find a zero of this function. Of course, the zero is +/N. Since f'(x) = 2x, the
Newton-Raphson method tells us that

_ f (%)

f "(Xn)
XN

2X,

~ 2x2 — (x2 — N)
- 2x,
_ X3+ N
T 2x,

_1(x2+N
—E( Xn >
1)

7 | Xn X,

and we are done.
This method is very fast and very accurate, even if the calculator starts far away from the square
root of the number and always converges to the square root if the initial guess is positive. For

Xn+1 = Xp

=Xy
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example, suppose that we wanted to compute +/10 and we start with our initial guess of x; = 100,
which is way off. Here is what the Newton-Raphson method gives us. Of course, all this is done
with lightning speed on the computer:

x; = 50.05

x3 = 25.1249001
x4 =12.76145582
X5 =6.772532736
xe = 4.124542607
x7 = 3.274526934
xg = 3.164201587
X9 = 3.16227766
X10 = 3.16227766

and then the subsequent values of x; are all the same as x;9. So we are done. If we take as our initial
guess N, things go faster, and we get our solution at xs.

The algorithm for the computation of a square root that we presented goes back long before
Newton, and was known to the ancient Greeks. Of course, how they got it is anyone’s guess!

3.8.2 The Bisection Method - Unraveling the Workings of the Calculator

Students today use calculators in their mathematics classes on a daily basis. How the calculator gets
its results is usually a mystery to them and their teachers. The purpose of this section is to reveal
what some calculators do when they find the zeros of an equation. Different calculators may have
different methods, but we concentrate on the widely used TI series calculator and what it does.
The calculator’s method is really not sophisticated at all. It uses a technique called the bisection
method.

We begin with an interval containing a solution of f(x) =0. This is an interval we can pick
and one where f(x) at the left endpoint of the interval and the right endpoint of the interval have
opposite signs. The bisection method keeps cutting the interval in half and generates a smaller
interval (one half the size) one of whose endpoints is now the latest midpoint and which contains
the root.

Here is the bisection method: (1) Begin with an interval [a, b] where f(a)- f(b) < 0. (This is
just another way of saying that f(a) and f(b) have opposite signs.) Let m be the midpoint of the
interval. If f(a)- f(m) < O, that is, f(a) and f(m) have opposite signs, then our new and smaller
interval containing a root is the interval [a, m]. If f(b) - f(m) < O, then our new interval containing
the root is [b, m]. What is important to realize is that the calculator is using the Intermediate Value
Theorem to find the smaller interval containing the root. Here we see yet another place where what we
study in school can be applied.

Let us illustrate how the bisection method works with a specific example.

Example 3.28 Solve f(x)=2x3 —7x+1=0.
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Solution. Every polynomial is continuous everywhere. A quick computation shows that f(—2) is
negative and that f(0) is positive. That is, f is negative at the left endpoint and positive at the
right endpoint. So, by the Intermediate Value Theorem, there is a root between —2 and 0. Let
us take the midpoint of this interval, —1. If we compute f(—1) we find that it is positive. Thus,
f(=2)f(=1) < 0. So the new interval containing our root is [-2, — 1]. If we look at f(x) at the
midpoint of the interval [-2, — 1] which is —1.5, we see that it is positive. Thus, f(-2) f(-1.5) < 0.
So, we can reduce our interval containing a root of our equation to [-2, — 1.5]. Again, we bisect the
interval [—1, — 1.5] to get —1.75 where f is positive. Since f(—2)f(—1.75) < 0, our new interval
containing a root is [-2, — 1.75]. The midpoint is —1.875 where f is still positive, so our new
interval containing the root is [-2, — 1.875]. The midpoint is —1.9375 where f is still positive.
So the new interval containing our solution is [-2, — 1.9375]. The midpoint of this new interval
is —1.96875 where the value of f(x) is NEGATIVE. So our new interval is not [-2, — 1.96875]
(since f is negative at both endpoints), but [-1.96875, — 1.9375] (where f at the two endpoints
has opposite signs). The midpoint of this interval is —1.953125 where f is negative. So our new
interval containing the solution is [-1.953125, — 1.9375], and so on.

Here is a table that summarizes the work. a will always stand for “left endpoint of the interval
containing the root, ” and b for “right endpoint of the interval containing the root, ” and m for
“midpoint of that interval.”

a b m f(a)- f(m) New interval containing root
-2 0 -1 negative [-2, —1]

-2 -1 -1.5 negative [-2, —1.5]

-2 -1.5 -1.75 negative [-2.1.75]

-2 -1.75 —1.875 negative [-2. —1.875]

-2 —1.875 -1.9375 negative [-2, —1.9375]

-2 —1.9375 —1.96875  positive [-1.96875, —1.9375]

—-1.96875 —1.9375 —1.953125 negative [-1.953125, —1.9375]

The calculator does these computations very rapidly leading to the solution x ~ —1.9384.
Although compared to the Newton-Raphson method, the bisection method is relatively slow, it
does work all the time for any continuous function on an interval containing a single root and so
is an excellent method for finding solutions.

Although we have used the Intermediate Value Theorem to explain the bisection method, it
has many theoretical consequences, one of which we will use later on in the book when we discuss
the theory behind radicals. That result is,

Theorem 3.29 Every positive number has a square root. Furthermore, there is only one positive square
root.

Proof. We give the proof for the number 7. The proof is similar for any other positive number we
choose. Form the function f(x) = x> — 7. Now f(0) is negative and f(10) is positive. Thus, there



110 Theory of Equations

is a root of f(x) between 0 and 10. That root satisfies x> — 7 =0 or just x* = 7. That is, there is a
number whose square is 7, and thus 7 has a square root.

To show that there is only one positive square root, suppose that there are at least two positive
square roots, and that x and y are two of them. Then by definition of square root of 7 (a number
whose square is 7,) x> = 7 and y? = 7. Thus x? = y2. Hence x*> — y? = 0 from which it follows that
(x — y)(x + ) = 0. This means that either x — y =0 or x + y = 0. Since x and y are both assumed to
be positive, x + y > 0. So the second equation, x + y =0, can’t hold. Thus, x — y = 0 and it follows
that x = y. We have shown that any two positive square roots of 7 must be the same. Thus, there is
only one positive square root of 7. The proof is similar for any positive number. B

For a continuation of the study of solutions of equations, the reader should go to Section 6.11,
where we discuss extraneous solutions and what types of operations on equations can get us into
trouble.

Student Learning Opportunities

1 Use your calculator to find all real roots of the following equations:
@ x3-3x2-5=0
(b) x2+1=—x
(©) sinx=(2/3)x
(d) 44 =2x+1
(e) log x=x—5.

2 Use the bisection method to find each of the zeroes of the function below in the indicated
interval.
@ f(x)=x*>+x—1on[-1,1]
(b) f(x)=2x>—-x—-30n]0, 2]
(©) f(x)=sinx—x/2 on][1, 3]
d) f(x)=2*-—x—-1o0on]0, 2].

3 Use the Newton-Raphson method and your calculator to find each root of the functions in
Question 2 (above) taking the right endpoint as your initial guess. Do you prefer doing this
by hand or using the root-finding capabilities of the calculator? (You need to recall that the
derivative of sin x is cos x and that the derivative of 2* is 2¥In 2.)

4 Suppose one used the Newton-Raphson method with the function f(x) = /x with initial
guess 1 to find the roots of f(x). Obviously, the only zero of f(x)is x = 0. Show that Newton'’s
method fails to converge when x =1, or any number not equal to 0.

5 (©) Your student tried to use the Newton-Raphson method to find the roots of the function
f(x) = 2x> — 6x% + 6x — 1 by beginning with an initial guess of 1 and was unsuccessful. Why?
What is special about the tangent line to f(x) at x =1 that causes this behavior? What can
you suggest to your student to help find the roots using this method?

6 (C) Your student tried to use the Newton—-Raphson method to find the roots of the function
f(x) = x> — 2x + 2 by beginning with an initial guess of 1. She was unsuccessful and asked
you for help. Why was she unsuccessful? Explain using tangent lines what is causing this
behavior. What can you suggest to her to help her find the roots of f(x)?
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7 (C) Your students are familiar with the algorithm for finding the square root of a number.

10

They ask you if there is a similar algorithm for finding the cube root of a number? The fourth
root of a number? The fifth root of a number? Modify example 3.27 to find such formulas.

Show that every positive number has a unique positive fourth root.
The torque in foot pounds of a certain engine is approximated by
T=08x>—-18x*+71x+112 for1<x<5

where x is the number of revolutions per minute. Using any method discussed in this section,
find the approximate values of x that make the torque 140 foot pounds.

A rectangular sheet of metal 8 inches by 15 inches is to be used to construct a box by cutting
out squares from the corners and folding up the sides. If the volume of the resulting box is 80
cubic inches, what size square must be cut out to accomplish this? Use a method presented
in this section.






CHAPTER 4

MEASUREMENT: AREA AND VOLUME

4.1 Introduction

Starting in elementary school, children learn about such important concepts in measurement as
area and volume. These are measures that are used in our lives on a daily basis. For example, we
buy carpeting according to square footage and this is a measure of area. We buy paint according
to the area of the surface that must be covered. We buy milk by the quart, which is a measure of
volume, and we build tanks to hold gallons of oil, another measure of volume. These are just a
few of many, many applications of area and volume that are used in various fields on a day-to-day
basis. In this chapter we take a closer look at these concepts by linking basic geometry, algebra,
trigonometry, probability, and the rudiments of calculus together with modern technology.

Since we want to stress some extremely interesting approaches and relationships involved in
area and volume, we will avoid a strict formal approach and we will assume that you accept certain
facts such as: congruent figures have congruent areas; parallel lines are everywhere equidistant; and
regular polygons with an increasing number of sides inscribed in a fixed circle of radius r have areas
approaching the area of a circle. Afterwards, we discuss some of the issues with this mostly informal
approach and the need for axiomatizing certain relationships.

4.2 Areas of Simple Figures and Some Surprising Consequences

LAUNCH

1 Show, using a picture, that the area of a rectangle with sides 2 inches wide and 3 inches long
has an area of 6 square units. [Hint: divide the rectangle into square inches.]

2 In a similar manner, show, using pictures, that the area of a rectangle with sides 15 of a unit
and 1 of a unitis ¢ of a square unit.

We imagine that the first launch question was quite simple for you, as you probably have done
similar problems in elementary school. But, did you ever wonder why we define area as we do?
Is the formula for finding the area of a rectangle a theorem or a definition? Have you ever seen a
proof of the formula, or do you believe that, by breaking up the rectangle as you have done that
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in actuality, you have just proven it? The second problem was probably much more challenging
and likely, less familiar to you. Do you think that using an area model is a helpful way to justify
how we multiply fractions? Would this method work if you were to use improper fractions as well?
We hope that your curiosity has been piqued by these questions, which will all be addressed in the
section that follows. Let us begin by examining how we measure area.

As you well know, we measure area in square units. But what is a square unit? A square unit is
exactly what is sounds like. It is a square, whose sides are all 1 unit, as shown in Figure 4.1 below.

1 unit

1 unit

Figure 4.1

Thus, a square foot, is a square 1 foot by 1 foot, and a square yard, is a square 1 yard by 1 yard.
Carpeting and flooring are often sold by the square foot or square yard, as are many other materials
used in construction.

If the length of a rectangle is 3 units and the width is 5 (of the same) units, then the area of the
rectangle is 15 square units, as is easy to see. We simply break the rectangle into 15 square units by
drawing horizontal lines 1 unit apart and vertical lines 1 unit apart as shown below.

5

We see that the area is 15 square units. Similarly, if one side of a rectangle is 4 units and the other,
8, then we can divide the rectangle into 32 square units. So, we see that the area of this 4 by 8
rectangle is 32 square units. It seems clear then that, to find the area of a rectangle whose length
and width are whole numbers, we just multiply the length by the width, and that counts the
number of square units.

This method of multiplying also works when the sides are fractional. For example, suppose
that the length of a rectangle is % of a unit and that the width is % of a unit. Figure 4.2 below
shows a unit square and a darkened rectangle with dimensions % of the unit and % of the unit. We
can see from the figure that the square unit is broken into 15 congruent rectangles, each of which
is 11—5 of the square unit. We see that our rectangle with dimensions % of a unit and % of a unit takes

up = of the square unit.

2/3 of a unit
p——

3/5 of a unit

1 unit

1 unit

Figure 4.2
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Thus, the area of a rectangle with dimensions % by % of a unit is % of a square unit; again,
length times width.

You may be thinking, “So what is the big deal? The area of a rectangle is length times width.
That is the formula for the area of a rectangle!” Would it surprise you to know that we cannot
prove that the area of a rectangle is length times width? It is a definition that arose from examples
like the one above.

To show that we need a definition, consider the following problem: What would the area be
of a rectangle whose width is /2 units long and whose length is +/3 units long? Both +/2 and +/3
are irrational. If we write out their decimal equivalents, they will go on forever (i.e. v/2 = 1.4142. ..
and v/3=1.7321...). How can we divide this rectangle with sides +/2 and +/3 into squares whose

1 1
sides are 1 unit, or even 3 of a unit, or 10 of a unit? Of course, the answer is, we can’t. So, how do

we know that the area is +/2 - +/3? The answer to why the area of a rectangle is DEFINED as length
times width, is so that it will be consistent with those examples where we can divide the rectangles
up into unit squares.

This business of defining area troubles many people. Area is the amount of space taken up by a
figure. How can we define what this is? It is no different from defining a foot and then measuring
length with a ruler that represents a foot. A measurement of 1 foot is an object created by human
minds. We could just as well have defined a measurement of length to be the distance from the
tip of your nose to your bellybutton, called that a “bod,” and then measured how many bods
there are in, say, a mile. The definitions we use for area, length, temperature, and so on, are totally
constructed by human beings. By establishing standard measures, we are able to make sense of
what we observe.

Having made the definition of the area of a rectangle as length times width, we can now easily
derive the formulas for areas of other figures. Yes, we did say derive. It is quite remarkable that we
can go from one figure to the next and find their areas, all from the area of a rectangle. What is
especially nice is that, in doing so, we will see a direct interplay between algebra and geometry.
The first few results are routine and will be gone through quickly, but soon some surprising results
will emerge.

Theorem 4.1 The area, A, of a right triangle with legs a and b, is given by A = %ab.

Proof. Start with right triangle ABD and observe that it is half of a rectangle ABCD with sides a
and b (Figure 4.3).

B C
a

A b D
Figure 4.3

Since the area of the rectangle is ab, the area of the triangle is lab. [ ]

Given a triangle, ABC, the custom is to denote the side opposite angle A by a, and the side
opposite angle B by b, and the side opposite side C by c. By an altitude of a triangle, we mean
a line drawn from a vertex, perpendicular to the opposite side, extended if necessary. Below, in
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Figure 4.4, we see a triangle ABC and notice that, to draw the altitude to side b, we need to
extend it.

Figure 4.4

In geometry, the term “corresponding” is frequently used, especially in congruence theorems.
In that context, corresponding parts are parts that match when one triangle is placed upon another
so that all parts fit exactly. In the following theorem, the term “corresponding” refers to the specific
base to which the height is drawn.

Theorem 4.2 The area of any triangle, one of whose bases is b and whose corresponding height is h,
i1
is 5bh.

Proof. We give the proof for a triangle whose altitude is inside the triangle. In the Student
Learning Opportunities, you will prove the formula for the case where the altitude falls outside
of the triangle. Suppose ABC is a triangle with altitude BD drawn to base AC = b, dividing AC into
segments x and y, as shown in Figure 4.5 below.

B

h
A X D Y C
Figure 4.5

This altitude divides the triangle into two right triangles, ADB and CDB. The area of ABD
is %xh, by the previous theorem, and similarly, the area of triangle DBC is {yh. The area of
triangle ABC is the sum of these areas. Thus, the area of triangle ABC is %xh+ % yh= %(x +yh=
ibh. ®

Note that any side of a triangle may be taken as the base, and the height is the altitude drawn
to that base. No matter which side is considered to be the base, b, if we draw h, the altitude to
that side, and compute %bh, we will get the area. Thus, we have three possible ways to get the area
depending on which base we use.

Theorem 4.3 The area of a parallelogram, with base b and height h, is bh.
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Proof. We begin with parallelogram ABCD and draw diagonal BD. This diagonal divides the
parallelogram into two congruent triangles ABD and CDB as shown in Figure 4.6 below.
(Why?)

B C
h
A E D
X
Figure 4.6

We draw the altitude BE of triangle ABD and call it h, while we call the base, AD, of the paral-
lelogram, x. Now, the area of triangle ABD is JAD - BE =1xh. Thus, the area of the parallelogram
being the sum of the areas of the two congruent triangles is %xh +%xh which, of course, is xh or
just base times height. W

Theorem 4.4 The area of a trapezoid is %h(bl + by), where by is the length of the shorter base and b,
is the length of the longer base.

Proof. Start with trapezoid ABCD and draw altitudes, BE and FD as shown in Figure 4.7 below, and
diagonal BD.

A E b, D
Figure 4.7

Then the area of triangle ABD is b, and the area of triangle CBD is b h. (Both triangles have
the same height because parallel lines are everywhere equidistant.) The area of the trapezoid is the
sum of the areas of these two triangles and thus, is 1b1h + 3byh = Jh(by +b,). R

Although we haven’t done much with areas, we are already in a position to get some impressive
results. Here is one—the well known Pythagorean Theorem.

Theorem 4.5 In a right triangle with legs a and b and hypotenuse ¢, a? + b* = ¢2.

Proof. We begin with right triangle ABC with right angle at C. Place a triangle BED congruent
to ABC (and with right angle at D) in such a way that CBD is a straight line. Then draw AE.
(See Figure 4.8 below.)



118 Measurement: Area and Volume

Figure 4.8

Since angles C and D are right angles, AC and DE are perpendicular to the same line CBD and,
hence, are parallel. That makes figure ACDE a trapezoid.

Furthermore, since angles 1 and 2 in triangle ABC add up to 90 degrees and angle CBD is 180
degrees, angle ABE is also a right angle. (Why?) Thus, we have three right triangles in the figure.

Now, by the previous theorem, the area of the trapezoid is one half the height times the sum of
the bases. The height of the trapezoid is CD or just (a + b). The parallel bases are AC and DE. Thus,

1 1
Area of trapezoid ACDE = ECD(AC +DE) = E(a +b)(a+Db). “.1)

Now, we know that the area of the trapezoid is the sum of the areas of the 3 right triangles,
ACB, EBD, and ABE, and by Theorem 4.1 we have that

1
Area of triangle ACB = zab 4.2)
. 1
Area of triangle EBD = Eab 4.3)
and
. 1,
Area of triangle ABE = zc . 4.4)

Since the area of the trapezoid is equal to the sum of the areas of the triangles, by using
equation (4.1)-equation (4.4) we have that

1 1 1 1

s@+ba+b) = Sab+zab+ zcz (4.5)
—_—

Area of Trapezoid ACDE  Sum of the areas of the triangles

Upon multiplying equation (4.5) by 2 we have
(@a+b)(a+b)=ab+ab+c?
which simplifies to

a’® +2ab + b* = 2ab + 2.
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Subtracting 2ab from each side we get
a’ +b* =c?

and we are done. How nice! W

In the Student Learning Opportunities we outline yet another proof of the Pythagorean
Theorem using areas. It is interesting and surprising that we can actually prove the Pythagorean
Theorem using areas of triangles and trapezoids. What is also interesting, from a historical point of
view, is that this proof just given was not done by a mathematician, rather, by the 20th president
of the United States, James Garfield!

We just proved the Pythagorean Theorem: In a right triangle with legs a and b and hypotenuse
¢, a> + b* = c%. The converse of this theorem is also true and its proof is rarely found in secondary
school textbooks. We now give a proof of this for your reference. What is unusual about this
proof is that it uses the Pythagorean Theorem to prove the converse of the Pythagorean Theorem.
Since it is uncommon in mathematics for a theorem to be used to prove its converse, this proof is
somewhat special.

Theorem 4.6 In a triangle ABC with sides a, b, and c, if a> + b* = ¢?, the triangle is a right triangle
and angle C is the right angle.

Proof. We begin with triangle ABC which we do not know is right. Starting at C, we draw a line
CD perpendicular to BC of length AC, and then draw BD. (See Figure 4.9 below. Notice the right
angle on the right side only.)

b C
Draw CD equal to b

Figure 4.9

Our goal is to show that triangles ABC and CBD are congruent, since their corresponding parts
will be congruent (That is, they will have the same measure.) It will follow that angle BCA is a right
angle, which is what we want to prove.

Now, by construction, AC = DC, and of course BC is common to both triangles. Thus, we have
two sides of one triangle equal to two sides of the other triangle. If we can show the third sides are
equal (that is, that ¢ = BD), then the two triangles will be congruent and we will be done. So, we
proceed to show that ¢ = BD.

By construction, triangle CBD is a right triangle, so we can apply the Pythagorean Theorem to
THAT triangle to get

(BC)? + (CD)? = (BD)?.



120 Measurement: Area and Volume

But BC = a and CD = b by construction, so the above equation becomes

a® + b* = (BD).

Now, using the fact that we were given a2 + b? = ¢? in triangle ABC, we substitute for a? + b? into
the above equation, to get

c? = (BD)?

and hence ¢ = BD and we are done.

The two triangles are now congruent since 3 sides of one triangle are congruent to three sides
of the other. Thus, angle BCA must be a right angle, because in congruent triangles corresponding
parts are congruent. With a few hints, this proof could be given to some astute secondary school
students. W

It is easy to go from the area of a triangle to the area of a regular polygon (one whose sides all
have the same length and whose angles all have the same measure) by breaking the polygon into
triangles and summing the areas of the triangles. We leave that for you in the Student Learning
Opportunities. But we need to first review the formula for the area of a polygon for reference.

It can be shown that every regular polygon can be inscribed in a circle. If we draw a perpen-
dicular line from the center of the circle to any side of the inscribed polygon, that line is called
an apothem. The figure below shows an apothem for a square and for a pentagon, both inscribed
in a circle of radius r. It is a fact, and you will prove this in the Student Learning Opportunities,
that the area of a regular polygon is %ap where a is the apothem and p is the perimeter of the
polygon. It is also a fact, and we will use this later, that as the number of sides of the inscribed
regular polygons increases, the lengths of the apothems of the polygons approach the radius of the
circle. (See Figure 4.10.)

Figure 4.10

Student Learning Opportunities

1 (C) A student asks you to justify, using pictures, that the area of a rectangle with sides % of
a unit and § of a unit is -5 of a square unit. Show the diagram and explain how you would
demonstrate it. Do the same for a rectangle with sides, % and 13

2 (C) A student asks how you can prove that the shortest straight line distance from a point
to a line is the perpendicular distance from that point to the line. How would you show this
using the Pythagorean Theorem?
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3 (C) Your students are familiar with how to prove the formula for the area of a triangle
when the altitude falls within the triangle. But they are curious how to prove this formula
when the altitude drawn to the base is outside the triangle. How would you help them
do it?

4 If the base of a triangle is increased by 10% and the altitude is decreased by 10%, by what
percentage is the area changed and is it increased or decreased? Explain.

5 Find the length and width of a rectangle if, when the length of a rectangle is increased by
2 and its width is decreased by 2, its area stays the same, while if the length is increased by
2 and the width is decreased by 1, we also get the same area.

6 One side of a triangle is 5 and the altitude to that side is 4. Another side of the triangle is 3.
Can you tell what the length of the altitude to that side of the triangle is? If not, why not? If
so, show what it is.

7 (C) Your students come across the following formula for the area of an equilateral triangle:

s2J/3

A= 4 where s is the length of the side. They ask you why it is true. How do you help

them derive the formula for themselves? [Hint: When you draw an altitude, it cuts the base
in half.]

8 Find the area enclosed by Figure 4.11 below.

B
60°
10 10
D
6 6
A C

Figure 4.11

1
9 Prove that the area of a regular polygon is AP, where a is the apothem and p is the
perimeter.

10 (C) One of your students asks if it is ever the case that the numerical area of a rectangle
with integer sides is equal to its numerical perimeter. How do you reply? How many such
rectangles are there?

11 Imagine that, on a fictitious planet of Zor, a strange sort of geometry exists. Make believe
that on this planet of Zor, the area of a rectangle is defined to be the length plus the
width. And suppose that, on Zor, they assume that congruent figures have the same area,
and that the rules for triangles being congruent are the same on Zor as in the Euclidean
plane.

(a) Find the area of a rectangle with length 3 and width 4 on Zor.
(b) Derive the formula for the area of a right triangle on Zor.
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12

13

14

15

(c) Show that one gets two different formulas for the area of a triangle on Zor, depending
on whether the altitude to the base is inside the triangle or outside.

(d) Show that, on Zor, parallelograms other than rectangles do not have well defined areas.
Do this by splitting the parallelogram into two triangles in two different ways as shown
in Figure 4.12 below and then by using part (c).

N

Figure 4.12

In Figure 4.13 below, line EF is parallel to line CB. Which triangle has greater area, triangle
CGB, or triangle CFB, or is it impossible to tell? Explain.

G

° o

E F D

& 0

C B
Figure 4.13

A rectangle has length 7 inches and width 9 inches. There is a border of J inch around the
rectangle. Guess what percentage the area of the border is to the entire rectangle plus the
border, and then check if your guess is right. Are you surprised?

In quadrilateral ABCD, AB=3, BC=4, CD=12, and DA=13. Angle B is a right angle. Find
the area of the quadrilateral.

(©) Your students have asked to see a proof of the Pythagorean Theorem that they could
easily understand. You decide to give them a visual, hands-on method of proving the
theorem. You begin by giving them cut-outs of four congruent right triangles with legs of
length a and b and ask them to arrange them so that they form a large square with sides
of length a+ b, as depicted in Figure 4.14 below. Answer the following that you will be
asking your own students, and show how the answers lead to a proof of the Pythagorean
Theorem.

B a H b A
a

b G

E b

a

C b F a D

Figure 4.14
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(a) Explain why EHGF must be a square.

(b) The area of the square ABCD is the area of the 4 triangles plus the area of the square
EHGF. Find all these areas and set up an equation expressing this relationship. What have
you found? How does this yield yet another proof of the Pythagorean Theorem?

16 (C) One of your astute students notices that the Pythagorean Theorem can be interpreted as
follows: If we draw squares on the three sides of a right triangle, the sum of the areas of the
squares on the legs of the triangle is the area of the square drawn on the hypotenuse. She
asks if a similar relationship holds if we draw regular pentagons or regular hexagons on all
three sides of the triangle. How do you respond to this student and how do you justify your
answer?

17 A ship is located at A, 10 miles south of a ship located at B. The ship at B is going to travel
east at a rate of 2 miles per hour while the ship at A can travel at 5 miles per hour. He wishes
to meet the ship traveling from B at some point C, only he needs to know where C is so that
he can set his course. (See Figure 4.15 below.)

B X C
10
A
Figure 4.15
. . . distance . .
Find the value of x by using the formula: time traveled = “rate for both ships and setting

the times equal to each other.

18 In 2005, the Pythagorean Theorem was a deciding factor in a case before the New York State
Court of Appeals. A man named Robbins was convicted of selling drugs within 1000 feet
of a school. In the appeal, his lawyers argued that the man wasn’t actually within the
required distance when caught and so should not get the stiffer penalty that school proximity
calls for. Here are the details from a “Math Trek” article by Ivars Peterson (mathland/
mathtrek_11_27_06.html):

“The arrest occurred on the corner of Eighth Avenue and 40th Street in Manhattan. The
nearest school, Holy Cross, is on 43rd Street between Eighth and Ninth Avenues. Law
enforcement officials applied the Pythagorean Theorem to calculate the straight-line distance
between the two points. They measured the distance up Eighth Avenue (764 feet) and the
distance to the church along 43rd Street (490 feet). Using the data to find the length of the
hypotenuse, (x) feet. Robbins’ lawyers contended that the school is more than 1000 feet away
from the arrest site, because the shortest (as the crow flies) route is blocked by buildings. They
said the distance should be measured as a person would walk the route. However, the seven-
member Court of Appeals unanimously upheld the conviction, asserting that the distance in
such cases should be measured ‘as the crow flies.””

Find the value of the hypotenuse x and explain why the lawyers argued the way they did.

19 In this section we defined the area of a rectangle to be length times width. From this, it
follows that the area of a square with side x is x? since every square is a rectangle. Suppose
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20

21

we decided to go the other way, namely, define only the area of a square with side x to be
x2. Using this formula, we can show that the area of a rectangle with length / and width w,
is /w. Finish the details of the following proof.

Begin with rectangle ABCD, where AB=w and BC=/. (See Figure 4.16.) Extend AB to E
so that BE=/, and extend BC to F so that CFis w, and draw the lines shown to form the
square AEG/ with side (/ + w) and area (I + w)?. Then note that the area of AEG/ is the sum of
the areas of square EBCH and square DCF/ and the two congruent rectangles ABCD and CFGH.
Take it from there.

H G
Eo o)
/ /
B / C w £
w w
Ao o/
D
Figure 4.16
In Figure 4.17 below, AE, BF, and CD are medians in triangle ABC.

A

Figure 4.17

(a) Show that triangles 1 and 2 have the same area.

(b) Ditto for triangles 3 and 4.

(c) Ditto for triangles 5 and 6.

(d) Also show that the sum of areas 1, 3, and 4 is the sum of areas 2, 5, and 6. Why does it
follow that the area of triangle AGB = the area of triangle BGC?

(e) Now, why does it follow that area of triangle 3 = area of triangle 67

(f) Show that all areas of all triangles 1 through 6 are the same.

(9) Then show that the ratio of BG to GF is 2:1. (This is one part of the famous result that

2
the medians meet at a point 3 of the way from any vertex.)

Begin with a square each of whose sides is 2s. Connect the midpoints of the sides. Show that
the resulting quadrilateral is a square and find its area in terms of s.
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22 Pick a point inside an equilateral triangle, and draw the lines representing the distances to
each side. Call these distances, hy, h, and hs. Prove, using areas of triangles, that hy + h, +
hs = h, where h is the altitude of the equilateral triangle.

23 In Figure 4.18 below

B E

A\/D
G
Figure 4.18

ABCD is a parallelogram. E is any point on BC. Show that the area of parallelogram ABCD is
the same as the area of EFGA. [Hint: Draw ED.]

4.3 The Circle

LAUNCH

1 The equatorial diameter of the earth is 7926 miles. Calculate the distance around the earth
at the equator, using 3.14 as an approximation of .

2 What formula did you use for your calculation?

Where did this formula come from? Is it a theorem or a definition?

4 Where does = come from? In terms of a circle, what does it represent? What is so extra-
ordinary about it?

w

We are sure that you had no difficulty figuring out the distance around the earth at the equator. The
formula you used to do it, that you learned many years ago, has been used by others since before
the third century BC. Since having tried to answer the launch questions, are you now wondering
where and how this formula originated? Are you now curious about the meaning of #? We hope so,
since the history is fascinating! The section that you are about to read will reveal many interesting
stories about circles and their features.

As you must be aware, the study of the circle is a major part of the middle and secondary
school curriculum. Therefore, as a future teacher, we're sure you will agree that it is important for
you to know and appreciate the history and meaning of all the formulas and amazing relationships
regarding the circle that you will be teaching your students. We will begin with a discussion of the
circumference of a circle and then examine its area.
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The circumference of a circle is 2zr. How do we know that? The answer may surprise you.
Several thousand years ago it was discovered that the ratio of the circumference, C, to the
diameter, d, of a circle, appeared to be the same no matter what the size of the circle. This ratio
was a bit over 3. This was a discovery verified repeatedly by experimentation. There was no formal
proof of it. Thus, this was an accepted fact about the nature of the circumference of a circle. It was
an axiom based on observation. This may disturb those of you who need to see proof. We will give
several corroborations of this relationship soon, in an attempt to convince you that this is true.

So, based on observation, we are accepting that the ratio of the circumference to the diameter
is always the same. Why not give this ratio a name? An English mathematician, William Oughtred,
in a book written in 1647, Clavis Mathematicae, felt it would be good to have a symbol to represent
the ratio of the periphery of a circle (the English word for circumference) to its diameter. And since
mathematicians are in the habit of using Greek letters to represent mathematical objects, he used
the letter 7. It stood to remind us of where it came from—periphery. So, = was defined as the ratio
of the circumference of a circle to its diameter, which was observed to be the same for each circle.
That is, 7 = % by definition. Thus, the statement C = ()d = (7)2r = 2nr, followed from a definition
based on observations. We now move to the area of a circle.

4.3.1 An Informal Proof of the Area of a Circle

To go from the area of a polygon to the area of a circle is a bit sophisticated, since polygons have
straight sides and circles have curvature. On the middle school level, once you have introduced
the area of a rectangle, the following “proof” convinces many that the area of a circle is 7r2. This
proof, originally done by the Greeks, is over 2000 years old. We begin with a circle, which we cut
into an even number of sectors. (See Figure 4.19 below.)

Figure 4.19
Next, we cut out the sectors and arrange them along a line as shown in Figure 4.20 below:

The length of the set of arcs is
the circumference 2zr of the circle.

VVVVVVVY

Figure 4.20
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Next, we cut this string of sectors in half and fit the bottom half of “teeth” into the top half
like the teeth in your mouth (well, if you are an alligator!). (See Figure 4.21.) We get the following
figure:

The length of the arcs on top is half the
circumference of the circle, or zr. The same is
true for the bottom.

Figure 4.21

The area of this figure is the area of the circle regardless of the number of sectors into which
we cut the circle. The more sectors, the narrower the sectors are, and the closer the above figure
approximates a rectangle with length nr and height r. Here is the picture we got by dividing the
circle into 18 sectors each with central angle 30 degrees (obtained by using a commercial graphics
program). One can already see that Figure 4.22 almost looks like a rectangle.

Figure 4.22

Since these figures approach a rectangle with length nr and height r, and the area of a rectangle
is base times height= (r) times r, the areas of these figures approach xr2. But all the areas are the
same, the area of a circle. Thus, the area of a circle must be 7r?!

4.3.2 Archimedes’ Proof of the Area of a Circle

We now take a journey through genius. Earlier, we gave a plausible argument that the area of a
circle was nr2. Actually, Archimedes is responsible for this formula. Archimedes had an amazing
mind, and many of his proofs were extremely clever. His proof that the area of a circle is 772 is no
different. Again, he used the observed fact that the circumference of a circle is 2xr.

Before we proceed, observe that, as we inscribe polygons of more and more sides in a circle, as
shown in Figure 4.23 below,

Figure 4.23
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the areas of the polygons approach the area of the circle. Archimedes relied on this observation in
his proof.
Here is Archimedes’ proof for the area of the circle. The proof astounds one for its simplicity.

Theorem 4.7 The area of a circle is wr?.

Proof. Begin with a circle of radius r and call its area A. Draw a right triangle, one of whose legs is
r and whose other leg is the circumference of the circle, namely 2xr. (See Figure 4.24 below.)

2pr
Figure 4.24

Call the area of the triangle Ar. We will show (actually, Archimedes will show!) that the area of
the circle is the same as the area of the triangle. Now, the area of the triangle is %(base)x(height) =
%(an)(r) = nrr2. So, if we can show that the area of the circle is equal to the area of the triangle, we
will have shown that the area of the circle is #r2. Remember now, A is the area of the circle, and
A7 the area of the triangle. Our proof will be a proof by contradiction. Suppose that A # Ar Then
there are two cases to consider.

Case 1. Suppose that A > Ar.

In this case we inscribe a many-sided regular polygon in the circle as shown below, making the
circumference of the circle larger than the perimeter of the polygon. Then the area of the polygon,
Ap, can be made to differ from the area of the circle by less than A — Ar. (See Figure 4.25 below and
realize that, since the areas of the polygons are approaching the area of the circle , the difference
between them can be made as small as we want. In particular, it can be made less than A — Ar.)

Figure 4.25

Then our polygon has the property that

A—AP <A—AT.
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Add —A to both sides to get
—Ap < —Ar
and then multiply both sides by —1 to get
Ap > Ar. (4.6)

But,
Ap

The area of the polygon

1

24 p (Where p is the perimeter of the polygon.)
1

< Ea -¢ (Where c is the circumference of the circle.)

1
§a~2nr

Ar  (The area of a triangle is 1/2 its base times height.)

Putting this string of equalities and inequalities together, we have

Ap < Ar. (4.7)

Comparing inequalities (4.6) and (4.7) we see we have a contradiction. So, this case can’t hold.

Case 2. Suppose that A < Ar.

In this case we circumscribe a many-sided polygon in the circle as shown below, making the
circumference of the circle smaller than the perimeter of the polygon. Then, since the areas of the
circumscribed polygons get close to the area of the circle, we can make the difference Ap — A as
small as we want by taking a polygon with a sufficiently large number of sides. (See Figure 4.26
below.) Thus, we can make Ap — A < Ay — A.

Polygon with n sides circumscribing circle

Figure 4.26

Since our polygon has the property that
Ap—A<Ar—A

we can add A to both sides to get

Ap < AT. (48)
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But,

Ap = The area of the polygon

%a - p (Where p is the perimeter of the polygon.)

1
> Ea -¢ (Where c is the circumference of the circle.)

1
§a~2nr

Ar  (The area of a triangle is 1/2 its base times height.)

Putting this string of inequalities together, we have
Ap > AT. (49)

Comparing inequalities (4.8) and (4.9) we have a contradiction. Thus, this case cannot hold.

Since the cases that A > Ar and A < Ar both led to contradictions, there is only one possibility
left, namely, A = Ar. Put another way, the area of a circle is zr?. B

How did Archimedes think of this? This is a stunning proof. His construction of a right triangle
with base 2nr seems to come out of nowhere. This is just one of the many, many things that
Archimedes did by using absolutely ingenious arguments.

You must still be mystified by how Archimedes thought of this proof, and rightly so. Of course,
we will never know, but here is a picture that gives us insight into what he might have thought.
(See Figure 4.27.) Imagine the circle being composed of lots of very thin circular strips. We show a
few below. Now cut each strip and straighten them out, and align them all to the left. They form a
right triangle whose height is r and whose base is 2xr. Was this what he was thinking?

outer strip length = 27z r

»
»
B — I

—

-

Figure 4.27

4.3.3 Limits And Areas of Circles

Here is an alternate “proof” of the fact that the area of a circle is 7r2. In some ways, it is more
natural than Archimedes’ proof.

Let P, be a regular polygon with #n sides inscribed in a circle. Let a,, be the apothem of P, , let p,
be its perimeter, and let A, be its area. The lower case “p” stands for perimeter. Figure 4.28 shows
polygons of increasing numbers of sides inscribed in a circle.

— 7 \\//

Figure 4.28
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In the first figure we show P4, a regular polygon with 4 sides inscribed in the circle. Its area is
A4 and its perimeter is ps. Next, we have Ps, then P, and then Pg with respective areas As, As, and
Ag and perimeters ps, ps, and ps.

Now, if you inscribe regular polygons with an increasing number of sides within a circle, the
perimeters of the polygons approach the circumference of the circle and the areas of the polygons
approach the area of the circle. The pictures tell us this and indeed this is what Archimedes believed
as well. Using calculus notation, we can write this as, ,}Lr(r)lo Pn =2nr and ’}Lrgo A, = A, where A is the
area of the circle. Also, as we see from the picture, the apothems of the polygons approach r, the
radius of the circle. In symbols, ’}erolo a, =r. Now the proof of the area of a circle is simple:

As you showed in a previous Student Learning Opportunity, the area of a regular polygon is

%ap, where a is the apothem of the polygon and p is the perimeter. Thus, A, = %an pn and the area

of the circle, A= lim A, = lim Ja,p, = 1 <lim an> . <1im pn) = 1 (r) (2nr) = wr?. Here we used the fact
n—oo n—oo n—o0 n—oo
that the limit of the product was the product of the limits. Calculus has given us an edge.
Although we are using the concept of limits, this is easy to present to secondary school students
without the word limit. Students have an intuitive feel for this concept from the picture, since they

can see the areas of the polygons approaching the areas of the circle.

4.3.4 Using Technology to Find the Area of a Circle

We are spending a lot of time on the circle because its study is so rich with connections. In both
proofs we gave for the area of the circle, we used the fact that the circumference of a circle is 2xr.
If you are anything like we are, then accepting the fact that the circumference of a circle is 2zr
or, put another way, that the ratio of the circumference of a circle to the diameter of a circle is
always the same, is difficult. We really would like to see this from another point of view. In this
section we give that point of view. Only we add two new ingredients to the mix—trigonometry
and technology. What we show now is a method which secondary school teachers can present to
their students.

We begin by inscribing in a circle a regular polygon of n sides which we call P,. We denote
its perimeter by p,. We divide the polygon into n congruent isosceles triangles as shown in the
diagram below. Let us focus on one triangle which is shown on the right of Figure 4.29.

3 3
Polygon with n sides 2 2

360
2n

equals )
360 Triangle removed from polygon
e where

nis the number
of sides of the polygon

Figure 4.29
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The central angle is %. Draw the altitude of that triangle (which is the apothem of the
polygon). This divides the triangle into two congruent triangles and the central angle of each

sub-triangle is 7 of 2%, or 3% as shown in the picture above. Now the side, s, of the polygon
N
s

2_2
r 2r

360y _ opposite  _

may be obtained from trigonometry. From the triangle on the right, sin(57) = 755t =

Multiplying both sides of this equation by 2r we get,

. (360)
s=2rsin| — ).
2n

Since there are n sides to the polygon, the perimeter of the polygon is p, = ns or just
n <2r sin <@))
2n
which we write as

=2r n sin 360
Pn= 2n )

Now as the number of sides of the polygons get greater, the perimeters of the polygons
approach the circumference, C of the circle. That is,

C = lim p,

n—oo

= lim 2r n sin (ﬁ)
n— 00 n

= 2r limnsin (zﬂ) . 4.10)

n— oo n

We will compute this limit in equation (4.10) soon, but we must stop to notice something
remarkable that results from equation (4.10). Since the length C of the circumference of the

circle is finite, and 2r is finite, the limit, lim n sin(%), from equation (4.10), must exist. Let
n—oo
k= lim n sin (%) Since the definition of k as a limit depends only on #n and not on the radius r

n—oo

of the circle, k must be the same regardless of what the radius of the circle is. Now equation (4.10) tells
us that C = 2r '}Lnolo n sin(%) = 2rk. Thus, we see that the circumference of a circle is a constant, K,
times the diameter, 2r, regardless of the size of the circle! It appears that, by using the concept of
limit, we have a proof of something that was always just accepted for thousands of years, namely,
the ratio of the circumference of a circle to its diameter is always the same, the number we called
k. However, our proof depends on our believing that the circumferences of the inscribed polygons
approach the circumference of the circle as the number of sides gets larger and larger. If this is
true, then we have indeed proved that the ratio of the circumference of a circle to the diameter is a
constant, provided we believe the circumference of a circle is finite. We need only show that k=x
and we will have established that the circumference of a circle is 2xr.

We are now ready to find k. That is where the technology comes in. Using your calculator,
compute 7 sin (322) for larger and larger values of . (Make sure your calculator is in degree mode.)

2n
We give a table here.

n ‘ nsin (322)
50 3.13952

500 3.14157...
5000 | 3.14159.
10000 | 3.14159....
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As we can see as n gets larger and larger, n sin (%) stabilizes around 3.14159, which is
approximately z. Thus, this table makes it plausible that ’}Lrgo n sin(%), or k, is 7, and therefore
the circumference of the circle is C = 2xr according to (4.10). Are you all aglow now?

One final note: There are several calculus proofs purporting to show that the area of a circle
is 7r2. All of them that we know of use the fact that the derivative of sin x is cos x in one form
or another. To prove we need to use the fact that if 6 is in radians, then gl_r)%% = 1. This fact,

however, uses the fact that the area of a sector of a circle is %rze), which in turn uses the fact that
the area of a circle is #r2. So our point is that all calculus proofs that we know of that prove that
the area of a circle is 7r? use (indirectly) the same fact that we are trying to prove, namely, that the
area of the circle is 772! Thus, all these proofs are circular! (No pun intended.) This is not to say
that the calculus proofs are bad. Hardly. They just corroborate what we know. It is always good to
see something from a different point of view.

4.3.5 Computation of =

Archimedes’ Computation of &

Archimedes did some magnificent mathematics. His mind was always churning. It is said that he
carried with him a tablet of sand on which he would draw diagrams whenever he got an idea
(his version of the modern day laptop!). One of the tasks he set for himself was an estimate of the
value of . He essentially did this by inscribing polygons with more and more sides in the circle of
radius 1, and found the perimeters of the resulting figures. As we have observed, their perimeters
will approach the circumference of the circle which is 27 (1) or just 2. So these perimeters will
provide us with an estimate of 27 and thus dividing by 2, we get an estimate of 7.
We begin by proving a theorem we will need to continue.

Theorem 4.8 If a regular polygon of n sides, inscribed in a circle with radius 1, has side s, and we
double the number of sides, the side of the new polygon has length t where t = /2 — /4 — s2.

As a special case of this theorem, below we see a picture of a 4-sided regular polygon (a square
ABCD) inscribed in circle of radius 1, together with an 8-sided regular polygon (an octagon). The
square in Figure 4.30 has sides all of length s, the octagon has sides all of length t. The theorem

relates the length of t to that of 5, namely, t = v2 — v4 — s2.

B A
1
t
N
c D
Figure 4.30

Now to the proof.
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Proof. The square roots seem to indicate that the Pythagorean Theorem might play a part and
indeed it does. Let us start with an n-sided regular polygon and suppose that s is the length of any
side of our n-sided polygon as shown in Figure 4.31 below where we show only one side, AD, of our
n-sided polygon.

Figure 4.31

We now draw in OD giving us Figure 4.32.

Figure 4.32

Now, since radii OA and OD are equal, triangle OAD is isosceles, and we can draw the altitude,
OP, to the base and extend it to B. Since the altitude of an isosceles triangle bisects the base (a well
known fact from geometry), our picture now looks like that in Figure 4.33.

s/2

Figure 4.33

Finally, we draw AB and BD, which are the sides of a 2n-sided regular polygon. Let AB =t. So
our figure now looks like Figure 4.34
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s/2

Figure 4.34

and it is starting to look complicated. So, let us just pull out of the picture what we need, namely,
triangles OAP and BAP and let us call OP = x and PB = y. This yields Figure 4.35.

Figure 4.35

Now, using the Pythagorean Theorem on triangle OAP we get,

x2+<%)2=1. (4.11)

Using the Pythagorean Theorem on triangle BAP we get
Pe3) =e (4.12)
5 .
and if we subtract equation (4.11) from equation (4.12) we get
v -x*=t*-1. (4.13)

We observe from the picture that x + y = OB, which is the radius of the circle which is 1. So, y =
1 — x. Substituting this into equation (4.13) we get

1-x?-x>=t>-1 (4.14)
which, upon squaring and simplifying, gives us

1-2x=t-1.
We solve for t to get

t=+v2-2x. (4.15)
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We are almost there. We need to do a little algebra. From equation (4.11) we get, when we solve

2 2 _s2
forx,thatx:/l—(%) =\/1—i =‘/44s or just

4 — 52
2

X =

Substituting this into equation (4.15) we get

t=2_2x=42—4_s2 (4.16)

and we are done. W

Corollary 4.9 If we start with a regular polygon of n sides inscribed in a circle of radius 1, then the
perimeter of the 2n-sided polygon is just 2nv/2 — ~/4 — s2, where s is the side of the n-sided polygon.

Proof: Since each side of the 2n-sided polygon has length +/2 — /4 — s2, the perimeter of that
polygon is

2m/ 2 — V4 —s2.

Now we tie it all together. The perimeters of the 2n-sided polygons, 2nv/2 — /4 — s2, approach
the circumference of our circle, which is 27 as the number of sides gets large. Let us begin with
a square (n = 4) inscribed in a circle of radius 1. Thus, the diameter of the circle is 2. Here is the
picture, Figure 4.36:

2

N s S

Figure 4.36

and using the Pythagorean Theorem we can see that the side s must be /2. (Verify!) Thus, by
equation (4.16), the side of the octagon, the polygon with twice the number of sides, must be

t=\/2—\/Q=\/Z—x/E=\/2—x/§.

And this is now our new value of the side, s, of the inscribed polygon. We now double the
number of sides again. We get a 16-sided polygon. Again, by equation (4.16), our new side, t, is

t=\/2—\/4—52=\/2—\/4—(\/2—\/§)2=\/Z—\/2+\/§.
We can again double the number of sides to get a 32-sided polygon with side =

\/2—\/2+\/2+\/§, and so on.
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Let us stop at this 32-sided polygon. Since the side of it has length \/ 2—-\2+V2+2,
its perimeter will be 32\/ 2 —/2++2++/2, which our calculator tells us is 6.273 1. But this is

approximately the circumference of the circle, which we know is 2. So our estimate for 7 now is
6.2731/2~3.1366 ~ 3.14.

Archimedes started with a hexagon, not a square, as we did. He then computed the perimeter of
a 12-, 24-, 48-, and 96-sided polygon. He stopped there. Now, given that there were no calculators,
and notations for decimal representation of numbers had not yet been invented, he had to
compute each of the monstrous square roots by hand. He might have very well used the algorithm
that we presented in Chapter 3 page 107, since it has been around for thousands of years. Also,
algebraic notation had not been invented in Archimedes’ time. So he had to do all these algebraic
manipulations in his head or with the aid of geometry. You can’t help but be astonished by what
he did.

The Monte Carlo Method for Estimating

A method that is often used in industrial problems as well as theoretical analyses is something
called the Monte Carlo Method. This is a statistically based method for determining certain
quantities that may otherwise be very difficult to compute. It is widely used and has numerous
applications. It also can be used to approximate n. That it gives you an accurate value of = from
just random data is mind boggling. Thus, this section links geometry and probability and in the
course of doing it, also uses some analytic geometry.

Suppose we want to compute 7. We know the area of the circle is 7?2, for we have proved it.
Thus, if we take a circle of radius 1, its area will be =. Now imagine a quarter of circle of radius 1
placed inside a square with side 1, shown in Figure 4.37 below.

1
Figure 4.37

Imagine throwing darts at the above figure. Now imagine that, although you are not a
particularly skilled dart thrower, at least you can hit a picture when you are close enough. If these
are truly random throws, then the probability that a dart ends up in the shaded portion is

w
Area of the quarter circle 4
Area of the square 1

T

7

To estimate this probability (or equivalently, to estimate 7), we throw darts randomly at the board
and compute

The number of darts that hit the shaded area (including the boundary)
The total number of darts hitting the square (including the boundary)

If we do this for a large number of throws, we should get an estimate of % and thus 7.
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Now, we need a large number of throws, and they must be random. So, we do what is called
a simulation. We have the computer generate pairs of numbers (x, y), where both x and y are
between 0 and 1. To generate these points, we use a random number generator. This generates
random points (more or less) and we can easily decide whether or not the points generated are in
the quarter of a circle or not by realizing that the equation of the circle is x?> + y? = 1. Thus, the
point is in (or on) the circle if x? + y? < 1.

Here is a summary of the procedure. We will be calling D the number of points we generate
that lie in the circle and T the total number of points that we have generated. (D stands for the
number of darts that lie in the quarter circle, and T for the total number of darts thrown.)

1 Generate points (x, y) randomly.
2 Determine if the point is in or on the circle. If it is, increase the count of D by 1.
D
3 Compute the ratio T This is our estimate of % To find the estimate of =z, just multiply
by 4.

Here is a program that was used to do this on the TI series calculator.

1:0-T:0—>D (Initialize the values of the total number of darts
thrown, and those that hit the circle.)

2: FOR (I, 1,1000) (We are about to generate 1000 sets of random numbers,
x, »).)

3:rand — x (Generate 1 random number for x.)

4:rand — y (Generate 1 random number for y.)

5:T+1—>T (Each time we throw a dart, we increase the count by of
Tbyl.)

6:Ifx>+y>?<1:D+1— D (If the dart is in the circle, increase the count of D by 1.)

7: END (This signals the end of the generation of our pairs of
numbers.)

8: “Our estimate for pi is” (We are telling the machine to write on the screen the

words, “Our estimate for pi is”.)

9: Display % (The machine displays our estimate of .)

We actually ran this program and got the following: = =~ 3.1. This is both good and bad. We
had to generate 1000 points to get to just 3.1. If we want a better estimate, we need to generate
many more points. But, with the speed of computers today, this is hardly an issue.

You can Key in the program and run it for several thousand more trials if you wish. (Just change
the number 1000 in step 2 to 100,000 for example.) See what you get. Also, bring a book along
with you while you are waiting. The program takes a long time to run on the TI calculator.

Although you may be getting the impression that the Monte Carlo Method is inefficient, with
the speed of modern computers, this happens to be a viable method. See, for example, the website:
http://polymer.bu.edu/java/java/montepi/montepiapplet.html, where you generate estimates of =
at high speed.

We have said that Monte Carlo Methods have many applications. Here are some which we
found on the Internet: (1) radiation transport, (2) operations research, (3) design of nuclear
reactors, (4) the study of molecular dynamics, (5) the study of long chain coiling polymers,
(6) global illumination computations which produce photorealistic images of virtual 3D models
with applications in video games, (7) architectural design, (8) computer generated films with
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applications to special effects in cinema, (9) business and economics, (10) the evaluation of some
very difficult integrals that occur in applications. The list goes on and on. In fact, there is a journal
called International Journal of Monte Carlo Methods which is devoted purely to applications of the
method.

4.3.6 Finding Areas of Irregular Shapes

Historically, while finding the areas of polygons was not that difficult, finding areas of irregularly
shaped figures was quite a challenge. It took over 1000 years to go from one to the other. What
follows are some methods that have been developed over many years.

One method of approximating the area of an irregular figure is by putting it on a grid and
counting the number of squares inside and on the boundary of the figure. For example, suppose
we wanted to estimate the area of Figure 4.38 below.

Figure 4.38

We can put in on a grid as shown in Figure 4.39 below,

Figure 4.39

and count the number of squares that are inside the figure or which cut the boundary of the
figure. The squares have to be in standard units. For example, if we are on a map, and we are
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measuring the area of New York state, a possible standard unit for the length of a square might be a
100 miles.

In the above figure we count 38. So we estimate the figure to have 38 square units (where
a square has some kind of standard measure). To get a finer approximation to the area, we can
subdivide the squares in the grid further and further into halves, quarters, and so on. This is tedious
but will give a better approximation to the area of the figure.

One of the many triumphs of the calculus is that we can find exact areas of certain irregular
objects. Of course, you learned how to do this in calculus. If the graph of f(x) was above the x-axis
as in Figure 4.40 below

Y=f(x)

a b
Figure 4.40

and you wanted to find the area under the curve from x = a to x = b (the shaded area), you simply
computed fab f(x)dx.

As you recall, fab f(x)dx is computed by finding an antiderivative F (x) of f(x) and evaluating
F (b) — F(a). This result is fundamental and, in fact, is called the Fundamental Theorem of Inte-
gral Calculus (FTIC). What a remarkable formula to find the area! So simple, and so unexpected!
What on earth, after all, do antiderivatives have to do with area? Of course, the notion of integral
goes far beyond areas under curves. No scientist can do his or her job today without calculus and
integrals. They are as fundamental to the scientist as having lights are to the everyday person.

We assume that the reader remembers the following basic formulas of integration. In what
follows, ¢ and p are constants.

/ cdx = cx + k where k is constant “4.17)

Cxp+1
/cxpdx = FFS| + k where k is constant and p # —1 (4.18)
/(f(x)+g(x))dx =/ f(x) dx+/g(x)dx 4.19)

7 6
Thus, the integral [5dx = 5x +k by equation (4.17). [ 7x%dx = % + k by equation (4.18) and

JBx+35)= % + 5x + k since equation (4.19) says that the integral of the sum is the sum of the
integrals.
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Example 4.10 Find the area under the curve f(x) =2x*+3 fromx=1tox = 2.

Solution. The graph of f(x) is shown below (Figure 4.41).

Y10+

5 25 0 25 5

Figure 4.41

Since the curve is above the x-axis, from x = 1 to x = 2, we have that the area under the curve
is [7(2x% +3dx = (& +3x)2 = 22 1 3(2) — (212 4+ 3(1)) or just 2.

Now that we have reviewed how to compute an integral, let’s talk a bit about what an integral is,
because we will need to use that when we get to volumes of certain solids.

When we find the area under the curve, we first approximate it by rectangles. To be more
specific, we begin by breaking the interval from a to b into n equal parts of length Ax (see
Figure 4.42 below) and labeling the division points as follows: call a = xy, and then the successive
division points are labeled x;, x;, and so on up to b which we call x,. Notice that x; is the right
endpoint of the first subinterval that [a, b] is broken into, x, is the right endpoint of the second
subinterval that [a, b] is broken into, and so on. We draw lines from the x-axis to the curve at
these points, and form rectangles as show in the diagram below. We have drawn only the first few
rectangles and have shaded the first.

Y

T
—NY=1(x)

f(x,)

(X,
AX | Ax|Ax|Ax | |Ax
X

a Ty

Xy X3 X3

Figure 4.42
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The height of the first rectangle is f(x;) and the width is Ax, so the area of the first rectangle
is f(x1)Ax. Similarly, the area of the second rectangle is f(x;)Ax. The sum of the areas of the
rectangles is

f(x)Ax+ f(x)Ax + f(x3)Ax + ...+ f(xy)Ax (4.20)

which we can write in more compact form as:
n
> Fxi)Ax. (4.21)
1

Keep in mind that this complicated looking expression in display (4.21) simply means “the
sum of the areas of the rectangles” and the letter n simply means the number of rectangles in the
picture.

Now, we observed in calculus that, as we increased the number, 7, of rectangles in the picture,
the sum of the areas of the rectangles more and more closely approximated the area under the
curve. (Actually, we are using our intuition again. That is why, when you look in calculus books,
you will see the area under a curve defined as the limit of the sum of the areas of the rectangles. It is
defined that way because it looks like it is true!) To get a good dynamic picture of how this works,
go to the applet at http://cs.jsu.edu/~leathrum/Mathlets/riemann.html.

Thus, the area under the curve is the limit of these sums of the areas of the rectangles as n — oo
or in symbols we say that the:

n
area under the curve from a to b = lim Z f(xi)Ax
n—oo 1

when the curve f(x) is above the x-axis. Since we know that this area can also be computed by
fab f(x)dx, we have

b n
/ fdx = lim > f(x)Ax. (4.22)
a n—00 1

Now, while we originally were motivated to study the right side of equation (4.22) to find the
area under a curve, equation (4.22) is telling us much more. It is saying, that if in an application we
can express a quantity as a limit of a sum like that on the right of equation (4.22), then we know
that the quantity we seek can be computed by doing an integral. To get the integral which the right
side of equation (4.22) represents, we simply replace the x; on the right side of equation (4.22) by
x and the Ax by dx. The quantities a and b are the left and right hand limits of the interval, which
is being partitioned by the points x;.

Example 4.11 In an application, the following computation needs to be done: lim,,_,», Y 1(x;)*>Ax
where the x;s partition [2, 3]. What is this limit equal to?

Solution. We notice immediately that this looks just like equation (4.22) where f(x;) = x2. So this

limit is nothing more than f; x2dx. We simply replace the x; in the summation by x and the Ax by

dx. We know how to evaluate this integral: [;x%dx = L3 = G2 2" - 19,
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Example 4.12 When computing the volume of a solid, a budding mathematician realizes that the
volume can be expressed as lim,_,o, Y | 27 X; (xi3 + 1)Ax where the x;s partition [1, 2], but is not sure
how to continue. What is the volume of the solid?

Solution. Once again, we notice that this looks just like equation (4.22) where f(x;) = 27X (%% + 1).
So, this limit is nothing more than flz 27 x(x3 + 1)dx obtained by replacing each x; by x and
Ax by dx. We, of course, can pull out the 27 to get flz 27x(x3 + 1)dx = 27 flz x(x3 +1)dx =
2m [? (x* + x) dx = 27 IL. (Verify!)

The key in using the integral in applications is to express some quantity we seek by something
that looks like the right side of equation (4.22) and then to quickly realize it is an integral. We will
soon use this meaning of integrals in the study of volumes.

Student Learning Opportunities
1 Circle 1 is circumscribed about a square of side 6 and circle 2 is inscribed in the square. What
is the ratio of the area of circle 1 to circle 2?

2 The diameter AB of a circle with center O is 6. C is a point on the circle such that angle BOC
is 60 degrees. Find the length of the chord AC.

3 Using ther}‘act that the length of an arc subtended by a central angle of n° in a circle of radius r
is 2mr - ——, solve the following: An arc of 60 degrees on a circle has the same length as an arc
of 45 degrees in another circle. What is the ratio of the areas of the circles, smaller to larger?

4 In the square below (Figure 4.43) with side 9 inches, one places a circle with radius 3 inches.
Find the shaded area. Notice the upper right corner of the picture is not shaded.

A

9

Figure 4.43

5 The odometer on a car measures the distance traveled by multiplying the circumference of
a tire by the number of revolutions. Thus, if you change the tire size, and no adjustment is
made in the odometer to account for the new tire size, then if you travel the same distance,
with smaller tires and larger tires, the odometer will read differently. Suppose that a 450
mile trip is made with 15” radius tires, and that the same trip is made a second time with
a different size tire and no adjustment in the odometer is made. If the odometer reads 440
miles the second time, determine if the radius of the new tire is smaller or larger than 15
inches, and then find the radius of the new tire.

6 (C) A student asks you to explain how we know that the apothem has the same length no
matter which side of the regular polygon we draw it to. How do you explain it?
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7 (C) A student is curious to know why when you inscribe a regular hexagon in a circle, the
length of each side of the hexagon is the same as the radius of the circle. How would you
show the student why this is true? [Hint: Divide the hexagon into 6 triangles by drawing
radii to the vertices of the hexagon.]

(C) Here is a great activity to do with your students that will intrigue them. You will need
lots of string, rulers, and several pairs of scissors. Give your students 4 equal strings of length
12 inches. Ask them to form the first string into a circle and find its circumference and area.
Ask them to cut the second string in half and form 2 circles from the resulting strings. Have
them find the total circumference and area of these two circles. Ask them to next cut the
third string into 3 equal parts and form 3 circles and again calculate the total circumference
and area. Finally, ask them to cut the fourth string into 4 equal parts and form 4 circles and
find the total circumference and area. Guide them in showing that, in each case, the sum
of the circumferences of the smaller circles is the same, but the sum of the areas of the small
circles differs drastically from one case to the next. Ask them if they think this makes sense
and to explain why. Without using string, what is your answer to this last question?

(C) (Continuation of previous problem.) After having done the string activity with your
students, their curiosity has been piqued and they ask you what would happen in a general
case, where you cut a string of length 12 into n equal parts and formed circles with them.
They ask if it is still true that the sum of the circumferences of the circles is the same and also
ask what proportion of the first circle the sum of the areas of the smaller circles is. How do
you respond? Justify your answer.

10 (C) This is a wonderful problem and calculator activity that will further convince you and

your students that the area of a circle is 7r?. We gave a proof that the area of a circle was
2 using the fact that the circumference of a circle was 2xr. But, if we agree to use the
calculator, then we need not even use the fact that C = 2zr. Here is how we can show that
the area is wr? with the calculator.

First, it is often shown in secondary school that the area, A, of a triangle with sides
a, b andc, is A= %ab sin C where a and b are the sides of the triangle, and C is the angle
between the sides g and b. Now consider a polygon of n sides inscribed in a circle. It can be
divided into n congruent isosceles triangles each with vertex angle 6 = % degrees and each
with area %rz sin 0. (See Figure 4.44 below where we have shown one of the triangles.)

Tr

Polygon with n sides

Angle
equals

% where

n is the number
of sides of the polygon

Figure 4.44



(a)

(b)
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Show the area, A, of the polygon with n sides is A, = n(3r?sin 2%%) = r2(3n sin 3%%).
To find the area of a polygon with 50 sides, we just substitute n=50 in the above
expression. To find the area with 500 sides we just substitute n=500 in the above
expression. Now, take out your calculator and make a table for %nsin 369 for larger and
larger values of n and show that this quantity approaches . Thus, the area of a circle is
mr?. This is pretty exciting to see and will easily convince your secondary school students
that the area of a circle is 7r?.

This question is appropriate for you and your calculus students. Use the expression
Ap= rz(%nsin %) obtained in part (a) to find the limit of A, as napproaches infinity. Only
this time, do it without a calculator. You will first need to write the previous expression
in radian form which yields A, = rz(%nsin 27”), and then you will have to use L'Hopital’s
rule since the limit you get is indeterminate. (In calculus, all the formulas for derivatives
assume radian measure.) This is yet another way of getting that the area of a circle

is wr2.

11 In Figure 4.45 below we have right triangle ABC inscribed in a circle with AC= 6, BC =8 and

AB = 10. We construct semicircles on AC and CB. Find the sum of the areas of regions X and
Y, the shaded crescents.

Figure 4.45

12 In your own words, describe the similarities and differences of the four proofs of the area of

the circle given in this section.

13 What is the area under the curve f(x) = x> and above the x-axis from x =1 to x = 3?

14 Find the area enclosed by the curves f(x) = x? and g(x) = 2x.
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4.4 Volume

LAUNCH

1 Take two pieces of 8” by 11” paper out of your notebook. Take one piece of paper and curl
it so that the 11" sides touch one another and it forms a tall, thin cylindrical shape. Take the
other piece of paper and curl it so that the 8” sides touch one another and it forms a shorter
and fatter cylindrical shape.

2 If you were to fill each of these cylinders with popcorn, which one do you think would hold
more popcorn? Or, do you think they would hold the same amount of popcorn?

3 What type of measurement would we have to use to figure out the answer to the above
question?

4 What is the formula you would use? Do you know where this formula came from? Is it a
definition or a theorem?

If you are now curious about which cylinder would hold more popcorn, and you are curious
about what formula to use and where the formula came from, then you will enjoy reading this
section of the text. It discusses how to find the volume of various three dimensional objects
and describes where the formulas come from. Starting in middle school, students learn some
elementary concepts about volume, and some even learn some of the formulas. But rarely do
they learn where these formulas come from and how they are related to other formulas for area
that they have already learned. As a future teacher, you will surely want to know more about how
you find the volumes of various solid shapes and how you can teach these formulas to your own
students by relating them to formulas about area that they already know. You might also want
to return to the launch question and figure out what the actual volumes are. You can verify your
results by actually pouring popcorn into each of your cylinders. In fact, this is a great activity you
can do with your own students one day!

4.4.1 Introduction to Volume

So now we will turn to the important topic of how to measure the volumes of solids. To benefit the
most from this reading, make sure you have read the last subsection, “Finding Areas of Irregular
Shapes” of the previous section.

Since we live in a three dimensional world, and deal with three dimensional figures all the
time, it is only fitting that the study of volume is a critical area of focus in the secondary school
curriculum. Our first goal is to derive a general formula for the volume of a solid with known cross-
sectional area. To accomplish this, all we need is the definition of volume for very simple kinds
of solids: A simple solid is a solid that is formed by a curve enclosing an area B, moved along a
line perpendicular to the curve a distance of h. h is called the height of the solid. (See Figure 4.46
below.) Notice that all cross sections parallel to the base are congruent and hence have the same
area.
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Figure 4.46

We define the volume of a simple solid to be Bh, where B is the area of the base and 4 is the
height of the solid. Thus, if we have a cube with side x, as shown in Figure 4.47,

X

Figure 4.47

the volume = (area of base) x height = x?>.x=x3. And, if we have a right circular cylinder
(a can, shaped as in Figure 4.48 below)

— s —

Figure 4.48

the volume of the cylinder = (Area of the base) x height = 7r? x h, the formula we usually teach in
middle school.
Now let us take a general solid whose picture is shown below in Figure 4.49.

Figure 4.49

Our goal is to find a formula for its volume. We place the solid above the x-axis and let it span
from x = a to x = b as shown in Figure 4.50.
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a X,

X axis

Figure 4.50

We first divide [a, b] into equal parts of length Ax as we did earlier in the plane. We then
imagine planes cutting the solid perpendicular to the x-axis at each of the points, x;, x2, x3, and so
on. (These planes are also parallel to the y-axis.) We have shown, in the picture above, one such
cross section resulting from cutting the solid at x; by a plane perpendicular to the x-axis. We call its
area A(x;). Of course, when such planes are close together, they divide the solid into thin slabs that
are approximately simple solids. We show one slab in Figure 4.51 below. Its volume is approximately
A(x;)Ax (the area of the base times the height).

A(X)

Y

X X, AX b

Figure 4.51
Note: The slab is not a simple solid, since the bases are not congruent, but this estimate is not far
off if the slab is very thin; that is, if Ax is small.

Suppose that the cross-sectional areas at x;, x2, x3, and so on, are given by A(x1), A(xz), A(x3),
and so on. Then the volume of the first slab is approximately equal to A(x;)Ax. The volume of

the second slab is approximately A(x;)Ax, and so on. The sum of the volumes of the slabs is
approximately.

Ax1)AX + A(X)Ax + ...+ A(xy) Ax

which can, of course, be written in shorthand as

Xn: A(x)Ax.

i=1



Measurement: Area and Volume 149

Now, as n, the number of slabs goes to infinity, the sum of the volumes of the slabs gets closer
and closer to the volume of the solid. That is, our approximations get better and better and we
finally have that

n

the volume of the solid = lim E A(x;)Ax.
n—oo
1

b
But this we recognize! This, by equation (4.22), is an integral! In fact, it is the integral f A(x)dx.
a

Thus, we have established the next theorem

Theorem 4.13 Suppose that S is a solid and that the cross-sectional area of S at a distance x from
the origin is given by A(x) where the cross section is perpendicular to the x-axis, and parallel to the
y-axis. Then the volume of S is fab A(x)dx.

Let us apply this.

Example 4.14 The base of a solid, S, is the region, R, under the curve f(x)=./x from x=1 to
x = 5. (a) Cross sections of S perpendicular to the x-axis (and parallel to the y-axis) at a distance x
away from the origin are all squares. Find the volume of the S. (b) Suppose instead that cross sections
perpendicular to the x-axis and parallel to the y-axis, are semicircles. Find the volume of S now.

Solution. (a) First we draw R (Figure 4.52)

Y
2

1.5

0 1.25 25 3.75 5

Figure 4.52 The graph of f(x) = /x

and then we attempt to draw S, the solid we are talking about. (See Figure 4.53 below.)

Figure 4.53
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The cross-sectional areas at a distance x away from the origin are squares. At a distance x from
the origin, the side, s, of the square is just the y coordinate of the curve, namely f(x) = .,/x. Thus,
the cross-sectional area A(x) of a typical such cross section at a distance x from the origin is given
by A(x) = s? = (f(x))?. Thus, by Theorem 4.13, the volume of the solid equals

5
/ A(x)dx
1
5
- /1 (F(x)* dx
5
- / (/X)2dx
1

5 XZ
= / xdx = 7|§ = 12 cubic units.
1

(b) Our solid now looks something like the following figure, Figure 4.54.

Figure 4.54

We see at once that a typical diameter, s, of our semicircular cross section is given by s = f(x).
Hence the radius, r, of a typical cross sectionisr = 5 = @ Since the area of a semicircle is %nrz,
we have, using Theorem 4.13, that the volume of our solid is:

/1 i A(x)dx

5 2
X X 3 . .
=/ rodx = ;= 57 cubic units,
1

4.4.2 A Special Case: Volumes of Solids of Revolution

Suppose that we have a region in the xy plane and spin the region about, say, the x-axis or the
y-axis. Such a solid is known as a solid of revolution. Below, in Figure 4.55, you see such a region
(the region bounded by f(x), the x-axis and the lines x = a and x = b) and the result of spinning it
around the x-axis.



Measurement: Area and Volume 151

y
X
Spin above region
y around x axis to get
r=1f(x)
’
I Ly
kijylly
Figure 4.55

When we spin such a region around the x-axis, we see that our cross sections are now
circular, and that the radius of a typical cross section is r = f(x). Using Theorem 4.13 we get the
following:

Theorem 4.15 If the region bounded by the curve y = f(x), x = a, x = b and the x-axis is spun around
the x-axis to get a solid of revolution, then the volume of the resulting solid of revolution is given by

b
V= n/ (f(x))*dx.

Proof. The cross-sectional areas are circular with areas nr? where r = f(x), as the above figure
shows. Thus, by Theorem 4.13, the volume of our solid is

V= /a bA(x)dx

b
= / xrldx
a

b
=fnwmfw.

Volume of a Cone

We can apply this theorem to find the volume of a cone with base radius r and height h, by
considering it as a solid of revolution. We simply revolve the triangle shown in Figure 4.56 below
about the x-axis.
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) r‘ )

h
Figure 4.56
to get Figure 4.57.
y axis
7
h .
X axis
Figure 4.57

Now, we only need to find the equation of the line segment, which is the hypotenuse
of the right triangle being spun around the x-axis. But the equation of a line is y = mx + b, where m
is the slope and b is the y intercept. In this case, b = O since the line crosses the y-axis at the origin.
The slope from the picture is the rise over the run, or % Thus, the equation of the line is y = f(x) =

%x. Now we apply Theorem 4.15 to get that the volume

h

b h h
2 2,2 2 2,3k
V=n/(f(X))2dX=n/ (%x) dx = n%dx:%/x%x: %%
a 0 0 0

_arth? B 7r2 03 _ 7rih
T3 m 3 3

Surely in the past you must have wondered where the % in the formula for the volume of a
cone came from. (We know we did.) Now you know, although you see it from a very sophisticated
point of view.

Volume of a Sphere

In a similar manner, if we wanted to find the volume of a sphere with radius R, we need only think
of the sphere as the result of spinning the semicircle whose equation is y = f(x) = v/ R%2 — x2 around
the x-axis. See Figure 4.58 below:
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N

R R

Figure 4.58 f(x) =,/(r?> — x?) spun around the x-axis

R 2
That yields that the volume, V=x / («/ (R2 — xz)) dx. We leave it to the reader to verify that
—-R

this is %nR?

Archimedes is usually credited with this formula for the volume of a sphere, although his
proof most unexpectedly used principles of mechanics! The reader can find his proof in The Works
of Archimedes with the Method of Archimedes (Heath, 1953), or one can visit the following website:

http://www.cut-the-knot.org/pythagoras/Archimedes.shtml.

Archimedes also established that the surface area of a sphere is 47r? by inscribing a sphere
inside a cylinder and arguing cleverly. He was so exceedingly proud of this proof that, on his
tombstone, is engraved a picture of a sphere inscribed in a cylinder.

Speaking of tombstones, we can’t leave Archimedes without talking a bit about his death.
Archimedes was intently studying diagrams he had drawn in the dirt when a Roman soldier from
the army that had conquered the city where Archimedes lived came upon him. The soldier ordered
Archimedes to get up and follow him to Marcellus the consul of Rome. Archimedes ignored
him, which enraged the soldier, who purportedly then messed up his diagrams. As it is written,
Archimedes protested and told the soldier that he needed to finish what he was working on. The
soldier was so furious by what he interpreted as insolence, that he drew his sword and stabbed
Archimedes to death.

It is hard to know what the real story is, since there are different accounts of this incident. But,
whatever the truth, his death was exceedingly tragic. It is also written that Marcellus was so upset
that Archimedes had been killed against his specific orders, that he commanded that this soldier
be killed as well. Those who thought the history of mathematics was devoid of human emotion
might reconsider their views after knowing this story.

4.4.3 Cavalieri’s Principle

In a lighter vein, let us now turn to another beautiful result about volume called Cavalieri’s
principle.

Cavalieri’s principle. If two solids of the same width are placed next to each other, say, on a
table, in such a way that, at the same distance x from the origin, the cross-sectional area of the
first solid is equal to the corresponding cross-sectional area of the second solid, even though they
may be shaped very differently, the volumes of the solids are the same. For example, examine
Figure 4.59 below.
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Figure 4.59

Cavalieri’s principle is saying that, if the shaded areas are the same for each x between a and b,
then the volume of the two solids shown are the same.

We have all we need to prove this, and it is done in only a few sentences. If we let A(x) be
the area of the cross section of the first solid at a distance x from the origin and let B (x) be the
corresponding area of the cross section for the second solid, then we know that A(x) = B(x) for
each x between a and b. So, of course, it follows that

b b

A(x)dx = | B(x)dx. (4.23)
[ acoie= |

a a

But the integral on the left side of equation (4.23) is the volume of the first solid and the
integral on the right side of equation (4.23) is the volume of the second solid, as we have seen in
the beginning of this section. Hence, the volumes of the two solids are the same.

Cavalieri’s principle is quite abstract, and so you might be wondering whether it has any
applications in real life. Well, we recently did an Internet search for Cavalieri’s principle and the
following articles came up unexpectedly “Volume estimation of multicellular colon carcinoma
spheroids using Cavalieri’s principle” by J. Bauer and others. The authors described how they use
Cavalieri’s principle in cancer studies. In a journal of pathology were the articles, “Application
of the Cavalieri principle and vertical sections method to the lung: estimation of volume and
pleural surface area,” and “Estimation of Breast Prosthesis Volume by the Cavalieri principle.”
This was followed by articles applying Cavalieri’s principle to MRI images, to dermatology, and
neuropharmacology. Who would have thought?

Similar to many other mathematicians who discovered abstract relationships, Cavalieri had no
idea if his principle would ever have any applications in real life. It is important to realize that
we don’t always know when and where the mathematical ideas will be applied. But if we aren’t
willing to wait for the application and concentrate on the development of these abstract concepts
and relationships, the applications may never happen.

4.4.4 Final Remarks

In the chapter on properties of numbers and theory of equations, we had certain definitions which
we used to prove our results. There was no question of the truth of the findings we got, since they
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followed from definitions only, and no other assumptions. Geometry is a very different kind of
field. There, we have diagrams and we have to use our eyes. But what we see, may not be correct.
In geometry, we really have to axiomatize what it is that we believe, and then the theorems we
prove will be true provided the assumptions we make are true. For example, our eyes told us that,
as we inscribed regular polygons with more and more sides in a circle, the areas of these polygons
approached the area of the circle. We accepted that. And then it followed from that, that the area
of the circle is 7r2. If someone finds an example where this is not true, then our theory has to be
redone, and it might not be that in all circles the area is 7r2. But we have lots of corroboration that
the area of a circle is 772, and so we believe that what our eyes were telling us was true.

In classical geometry, people believed that a figure could be moved in space and that its
physical properties would not change. Einstein has shown that this may not be true. And so,
new versions of geometry were developed, and relationships that were formerly proven by moving
figures in space, became axioms in many cases; that is, relationships we accepted without proof.
To deal with some of these issues, modern geometers now approach the topic of congruence from
a function point of view. But in geometry we always have to make certain assumptions that are
consistent with what we see.

People who are interested in applications don’t worry too much about these technicalities. For
them, geometry is a model of the real world, and if the results we prove “work” in the real world,
then that is enough to accept them. To be stubborn, and not accept them, when all indications are
that the model works well, would be foolish. We would miss all the applications.

Student Learning Opportunities

1 (C) Your students have accepted the formula for the volume of a simple solid. They are
now curious to know how you can show that if you have the following solid shown in
Figure 4.60

Figure 4.60

where each cross section has area B and height is h, the volume of the solid is Bh. How do
you show it?

2 Many times, strokes are caused by a buildup of plaque in the arteries. Imagine the plaque
buildup in an artery to be a region between two concentric circular cylinders of length L,
and assume that the inner radius is 0.3 c¢cm and the outer radius is 0.307 cm. Estimate the
volume of the artery blocked by plaque. (See Figure 4.61.)
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N L7

Figure 4.61

3 The French physiologist, Jean Poisseuille, discovered the law that the volume of blood flowing
through an artery per minute is given by V = kR* where k is a constant, and R is the
inner radius. When a person’s arteries are blocked, a procedure called angioplasty is done.
Here a balloon is inserted into the artery and the artery is expanded. Suppose that, under
angioplasty, an artery has its radius increased 5%. Estimate the change in the volume of
blood flow that results.

4 (C) A student asks why can’t you use equation (4.18) to find | x*dx. What is your answer?

5 Let R be the region bounded by y = x? , the x-axis, the lines x =1 and x = 5.

(a) Suppose S is a solid whose base is R and whose cross sections perpendicular to the x-axis
are semicircles. What is the volume of the solid, S?

(b) Suppose S is a solid whose base is R and whose cross sections perpendicular to the x-axis
are equilateral triangles. What is the volume of the solid, $?

6 (C) A student asks how you show that the volume of a sphere with radius R is %n R3. How
do you explain it by using integrals?

7 If a plane perpendicular to a diameter at a distance a from the center of a sphere chops the
sphere into two parts, the smaller part is called a spherical cap. Find the volume of a spherical
cap in terms of a and R where R is the radius of the sphere.

8 (C) A student asks you how to show that the volume of a pyramid with square base whose

1
areais B is gBh. Using Figure 4.62 and the hint below, fill in the details.

origin
o]

L
=y N

P R

Area of the|base is B

X-axis

Figure 4.62
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[Hint: Put the pyramid so that its apex is at the origin. We have also shown a typical cross
section at a distance x from the origin (the square with the letters S and Q). Observe that

S
triangles SOQ and POR are similar. Thus, P_(Ig = % But SQ is half the side of the square

containing SQ, and PR is half the side of the square containing PR. Thus, the sides of the
squares containing SQ and PR are double SQ and PR, and the ratio of the areas of the squares

25Q)? 5Q)?
EZP(%Z or just Epiiz. Recalling that the area of the square base is
A
B and calling the area of the cross section at distance x from the origin, A(x), we have %
_(5Q? _
(PR)Y?
B 2
show that A(x) = h_); This is true for any pyramid with vertical axis, regardless of the shape
of the base.]

containing these lines is

2 B x?2
(%) . Thus, A(x) = h_); Now finish it. The key step in the above proof was to






CHAPTER 5

THE TRIANGLE: ITS STUDY AND CONSEQUENCES

5.1 Introduction

If you ask adults what theorem they remember from their study of mathematics, they will most
probably say, the Pythagorean Theorem. Why should this theorem, usually studied in secondary
school, make such a lasting impression? As will be demonstrated in this chapter, this one theorem
concerning the relationship of the sides of a right triangle can be extended to the study of (a)
all types of triangles, (b) relationships concerning circles, (c) key trigonometric relationships, and
(d) concepts of area. It is really quite amazing!

To begin, we need only remember a few basic definitions: In a right triangle with acute angle, A4,

id ite A
sin A = Side opposite

hypotenuse
side adjacent to A
COSA=
hypotenuse
side opposite to A
tan A = . PPOSt

" side adjacent to A’

Also, we easily see that

We begin by discussing how the Pythagorean Theorem can be extended to generate the Law of
Cosines and then follow it with the study of the Law of Sines, similarity, and relationships within
a circle.

5.2 The Law of Cosines and Surprising Consequences

LAUNCH

Draw a large triangle on a clean sheet of paper. Then measure the length of each of the sides of the
triangle you have drawn. Using these same three lengths, try to draw another triangle that is NOT
congruent to the first one you drew. Could you do it? Why or why not?
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We hope that the launch question helped you to recall some of the work you did in secondary
school regarding congruent triangles. You probably remember the theorem that one of the ways
to prove that two triangles are congruent is to show that the three sides of one are congruent to
the three sides of another (often represented as SSS = SSS). But, if a student asked you if this was an
axiom or a theorem, would you know what to say? Don’t feel badly if you wouldn’t, since many
secondary school textbooks have listed it in different ways. It will probably surprise you to know
that it can indeed by proven, by applying the Law of Cosines. In this section, we will demonstrate
how this and other similar congruence results can be shown.

The Pythagorean Theorem tells us that, in a right triangle with legs a and b and hypotenuse
¢, a®> + b* = ¢2. What happens if the triangle is not a right triangle? The following theorem answers
this.

Theorem 5.1 (Law of Cosines): In any triangle ABC,

2 =a?+b* - 2abcosC.

Proof. Notice that “c? =a? +P?” is part of the theorem. How interesting! It seems very likely
that we will be using the Pythagorean Theorem in this proof. We begin with triangle ABC
shown below and draw altitude AD. We will prove the theorem in the case when the altitude
is inside the triangle, (that is when the triangle has all its angles less than 90°) (Figure 5.1). In
Student Learning Opportunity 4 you will prove it for the case when the altitude is outside of the
triangle.

¢ X D a—x B

Figure 5.1

Using the Pythagorean Theorem on triangle ABD we have that (@ — x)? + h? = ¢> which, when
expanded, gives us

a? — 2ax + x> + h* = 2. (5.1
Using the Pythagorean Theorem on triangle ACD we have

i = (5.2)
Substituting equation (5.2) in equation (5.1) we have

a’? — 2ax + b* =% (5.3)
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Now, from triangle ACD, cos C =7 from which it follows that x = bcos C. Substituting this in
equation (5.3) for x we get

a?> — 2abcos C +b* = ¢? (5.4
which can be rearranged to read
c?2=a?+b*> —2abcos C (5.5)

and we are done. B
There are two other versions of the law of cosines:
a’ =b*+c* —2bc cosA and (5.6)
b? = a® + ¢ — 2ac cos B (5.7)
and they are proved in exactly the same way, only we draw altitudes to the other sides of the

triangle. You will prove one of the versions in the Student Learning Opportunities.
Taking the theorems further, if we solve for cos C in equation (5.5) we get that

22 _ 2
cosc=%. (5.8)

Similarly, we can solve for cos A and cos B in equations (5.6) and (5.7), respectively, to get

Py —a?
Cos A = %Ca (5.9
and
2,02 _p2
cos B = % (5.10)

What equations (5.9), (5.10), and (5.8) tell us, respectively, is, if we know the lengths a, b, and ¢
of the three sides of a triangle ABC, then we immediately know cos 4, cos B, and cos C and hence
angles A, B, and C. This brings us to the topic of congruence.

5.2.1 Congruence

Recall that, in geometry, two triangles ABC and DEF are congruent if their sides and angles can be
matched precisely. That is, AB = DE, BC = EF, AC=DF, and £A= 4D, £B = LE, and £C = £F. (See
Figure 5.2 below.)

B E

A b C D e F

Figure 5.2
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When we write AB = DE, it will mean that the lengths of the sides AB and DE are the
same, and when we write £ A = £D it means that angles A and D have the same measure.
Under this correspondence, angles A and D are called corresponding angles, as are the angles B
and E, and C and F. Sides AB and DE are called corresponding sides, as are the sides BC and
EF, and the sides AC and DF. By definition of congruent triangles, corresponding parts have the
same measure, which means corresponding sides have the same length and corresponding angles
have the same degree measure. Notice that the order in which we write the letters tells us the
angle correspondence and side correspondence. Had we written that triangle ACB was congruent
to FDE, then it would mean that LA=«AF, £C = £D, and 4B = LE, and that AC=FD, CB = DE,
and BA = EF.

The first result we talk about is something we are all familiar with: If three sides of one triangle
have the same lengths as three sides of another triangle, then the triangles are congruent. That is,
all their corresponding parts match! This is quite remarkable since we have said nothing about the
angles of these triangles. Yet, this follows immediately from the Law of Cosines.

Theorem 5.2 (88§ = SSS) If the three sides of triangle ABC are equal to the three sides of triangle
DEEF, then the triangles ABC and DEF are congruent.

Proof. Let us assume that the sides that match are a and d, b and e, and ¢ and f. (Refer to
Figure 5.2.) Soa=d, b=¢, and c = f. From equation (5.8) we have that

22 2
cosC:% (5.11)

and using the same law in triangle DEF with the corresponding sides, we have

d>+e? — f?
F=—uo——. 5.12
cos e (5.12)
Sincea=d, b=¢, and c = f, we can substitute them in equation (5.11) to get
d>+e? — f?
C=——"— 5.13
cos >de ( )
and we see from equations (5.12) and (5.13) that
cosC =cosF. (5.14)

It follows that £C = £F.

In a similar manner, using the other versions of the Law of Cosines, equations (5.9) and (5.10),
we can show that LA = 4D and 4B = LE.

Thus, if three sides of one triangle are equal to three sides of another triangle, then the angles
match, and so the triangles are congruent. B

Note: In the proof of Theorem 5.2 (refer to equation (5.14)), we used the fact that, if cosC = cos F,
then £C = £F. While you may have accepted this, much more is involved in this statement than
meets the eye. For now, we will use this fact continually and ask you to accept it. But, we will
examine the reason behind it in a later section on technical issues. We now turn to a corollary of
our SSS congruence theorem.
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Corollary 5.3 (HL = HL) Two right triangles are congruent if the hypotenuse and leg of one triangle
are equal to the hypotenuse and leg of the other triangle.

Proof. Below, in Figure 5.3 we see two right triangles where the hypotenuse and leg of one have
the same length as the hypotenuse and leg of the other.

L L
Figure 5.3

By the Pythagorean Theorem,

a’>+1%=H? (5.15)
and

P +L?=H% (5.16)
From equations (5.15) and (5.16) we have

a+L* =P +1°
Subtracting L? from both sides, we get that

a?=b*

and therefore a = b. Thus, the lengths of three sides of one triangle are equal to the lengths of three
sides of the other triangle and the two triangles are congruent by SSS = SSS. B

Corollary 5.4 (SAS = SAS) If two sides and the included angle of one triangle are equal to two sides
and the included angle of another triangle, then the triangles are congruent.

Proof. Suppose we have triangles ABC and DEF and suppose that a=d, b=¢, and £C = LF. (See
Figure 5.4 below.)

A b C F e D
Figure 5.4
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Then, by the Law of Cosines, applied to triangle ABC,

c?=a®+b*> —2ab cos C. (5.17)
By the Law of Cosines, applied to triangle DEF,

f2=d*+e* —2de cos F. (5.18)

But we know that a=d, b=e¢, and £C = AF, and if we substitute these into equation (5.18)
we get

2 =a®+b* — 2ab cos C. (5.19)

Since the right hand sides of equations (5.17) and (5.19) are the same, so are the left sides.
That is,

= f2

From this, we get that c = f.

Thus, the three sides of the first triangle are equal to the three sides of the second triangle, and
so the triangles are congruent by Theorem 5.2. B

Suppose we have one triangle and we only know the measures of two of its angles and one
side. Would we be able to use the Law of Cosines to determine information about the other two
sides? Well, the answer is, “No.” Since the Law of Cosines requires us to know two sides and one
angle, we do not have enough information to use it. To find the missing information about the
triangle, we need another law which we will discuss in the next section: the Law of Sines.

Student Learning Opportunities

1 Given that the sides of a triangle are a =3, b=5, and c = 7, find all three angles.

2 [f the sides of a parallelogram are 3 and 4, and the angle between them is 30 degrees, how
long is each diagonal?

3 A surveyor needs to estimate the distance across a lake from point A to point B. Standing
at point C, 4.6 miles from A and 7.3 miles from B, he measures the angle shown below in
Figure 5.5 to be 80 degrees. Estimate the distance AB.

4.6 miles

4 80 73 miles

Figure 5.5
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4 We will point out in the chapter on trigonometry that cos(180° — x) = —cos x. Use this
fact to prove the Law of Cosines when the altitude AD in Figure 5.1 is outside of the
triangle.

5 (©) A student asks how you prove the other 2 versions of the Law of Cosines found in
equations (5.9) and (5.10). How do you do it?

6 Your students are intrigued by how the Pythagorean Theorem was used to prove the
Law of Cosines. They wonder, because of the similar structure of the theorems, if one
can go in reverse. That is, can one use the Law of Cosines to prove that, if ¢? = a® + b?
holds in a triangle, then the triangle is right? What is your answer and how do you
show it?

7 (C) Astudent asks how you can prove that, if two angles and any side of one triangle are equal
to two angles and the corresponding side of another triangle, the triangles are congruent
(i.e., AAS = AAS). How do you prove it?

5.3 The Law of Sines

LAUNCH

Give an example (draw it) where two angles and a side of one triangle are equal to two angles and
a side of another triangle, but the triangles are not congruent. [Hint: make sure the sides are not
corresponding.]

We hope that you were able to construct two different shaped triangles and that if you hadn’t
realized it before, you realize now, the importance of always specifying that corresponding parts
be congruent in congruence proofs. You most likely remember the theorem, which says that one
of the ways to prove that two triangles are congruent is to show that they have two angles and
a corresponding side that are congruent. What you probably did not know is why this is true. In
this section you will be surprised to see how instrumental the Law of Sines can be in verifying the
proof of this relationship.

Theorem 5.5 (Law of Sines): In any triangle ABC

a b <
sinA~ sinB  sinC’

Proof. We may use Figure 5.1 (from earlier in the chapter), which we copy here for convenience.
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c X D a—x B

Figure 5.1

In triangle ADB, sin B = 2. Hence,

h=csin B. (5.20)
In triangle ADC, sin C = %. Thus,

h=bsinC. (5.21)
Setting the two expressions equal for / in equations (5.20) and (5.21) we have,

csin B = bsinC, (5.22)

and dividing both sides of equation (5.22) by sin B sin C we get

c b

- - 5.23
sinC sinB ( )

That is the first half of our theorem. In the Student Learning Opportunities you will draw a

different altitude and show that

a c

= . 5.24
sinA sinC ( )

And the two relationships, equations (5.23) and (5.24) together tell us that

a b <
sinA~ sinB  sinC’

Since this law involves several angles, we can now find the missing parts of a triangle in which

we are given two angles and a side or two sides and an angle.

Corollary 5.6 (ASA = ASA) If two angles and the included side of one triangle are equal to two angles
and the included side of another triangle, the triangles are congruent.
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Proof. Suppose that we have two triangles ABC and DEF from Figure 5.2 earlier in the chapter,
which we copy here,

A b C D e F

Figure 5.2

and we are given that LA = 4D, {B=4«E, and c= f. Since LA = £D and £B = LE, we also have
£C = AF, because the sum of the angles of a triangle is 180 degrees. Using the Law of Sines in
triangle ABC, we get that

a c

= ) 5.25
sinA sinC ( )
Using the Law of Sines in triangle DEF, we have
d
r (5.26)

sinD ~ sinF’

Since LA = 4D, £C = LF, and ¢ = f, we can substitute these values into equation (5.25) to get

a f
= 5.27
sinD sinF ( )

and since the right sides of equations (5.26) and (5.27) are the same, we see that

a d

= . 5.28
sinD sinD ( )

Multiplying both sides of equation (5.28) by sin D, we get that a = d. Since we were given ¢ = f and
we showed that a = d and we were given that 4B = LF (see figure above), by Corollary 5.4. (SAS =
SAS) we have that the two triangles ABC and DEF are congruent. B

Student Learning Opportunities

1 (C) Your students tell you that they are confused about when they should use the Law of
Cosines and when they should use the Law of Sines, when trying to find missing parts of a
triangle. What do you tell them?

2 In triangle ABC, LA =37°, 4B = 64°, and c = 12. Find the lengths of all three sides.
3 In triangle ABC, AC= 56, AB=80, £C = 64°. Find 4B to the nearest degree.
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4 Find £ACD to the nearest degree in Figure 5.6 below.

C

10

A D B
Figure 5.6

5 A satellite orbiting the earth is being tracked. The observation stations are 300 miles apart
in two different towns A and B. When the satellite is visible from both towns, the angles of
elevation of the satellite are recorded and found to be 63 and 72 degrees, respectively, as
shown in Figure 5.7 below.

Satellite

63° 72°
A 300 miles B

Figure 5.7

How far is the satellite from station A? from station B?

6 (C) The proof of the Law of Sines we gave was for acute triangles only. A student is curious
to know how the proof would have to be modified to show that it is still true if h is outside
the triangle. How would you show it? [Hint: It is a fact that sin(180° — x) = sin x.]

7 The following interesting result also follows from the Law of Sines: If ABC is any triangle and

BD is the angle bisector of angle B, then 42 = 42, (The angle bisector divides the opposite
side into segments having the same ratio as the sides.) Prove this. You will need the fact that

sin(180 — p)° =sin p. [Hint: Use Figure 5.8 below.]

B

/>

A X D Y C
Figure 5.8
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8 In triangle BAC, AC is the shortest side. Angle bisector BD is drawn to AC, dividing it into
segments AD and BD. If AC = 14 and the ratio of the sides of the triangle is 2 : 3 : 4, how long
is the shorter of the segments AD and BD? Explain.

9 (C) Your students want to know if there is a way to find the area of a triangle without
knowing its altitude. Show them that there is, by proving that the area of a triangle ABC
< a®sin B sin C

1
SsnA [Hint: The area of a triangle is 5 base x height. Take the base to be a.]

5.4 Similarity

LAUNCH

1 Using a ruler, a pen, and a piece of paper, draw a triangle. Label the vertices, A, B, and C.
Starting at vertex A, extend side AB its own length to point D (side AD will now be twice as
long as side AB). Now, from vertex A, extend side AC its own length to point E. (Side AE will
now be twice as long as side AC.)

2 Measure the length of side BC. Based on what you have measured, what do you predict is the
length of side DE? Are you correct?

3 What can you say about the shapes of triangles ABC and AED? Why do you believe this is
true?

After having done the launch question, you are probably beginning to recall some of the basic
properties of similar triangles. Did you ever question how the similarity theorems you learned
in secondary school could be proven? In this section we will surprise you with how they can be
done.

We have used the Law of Sines and the Law of Cosines to derive all the congruence theorems
that are taught in geometry. But now let us turn to another set of results that are also critically
important, those that deal with similarity. Applications of similarity range from the mundane to
the surprising. For example, similarity is used on a daily basis by engineers who use scale drawings
to create a model of a building that is going to be constructed. When you take a picture of a person,
the picture you get is similar to the person. Similarity is also used (surprisingly) in radiation therapy
for cancer patients for accuracy in focusing the beam. To find out more about this, visit the website:
http://www.learner.org/resources/series167.html?pop=yes&vodid=533776&pid=1800# and watch
the video on similar triangles.

We will now show how the Law of Sines and the Law of Cosines can be used to develop the
main results about similarity. The versatility of these laws is quite remarkable. Recall that two
triangles, ABC and DEF are called similar if they have the same shape, but not necessarily the
same size. This means that one is a scaled version of the other. The formal definition of similarity
between triangles ABC and DEF is that the angles of triangle ABC are congruent to those of triangle
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DEF, and that the sides opposite the corresponding congruent angles are proportional. When one
writes that two triangles are similar, the order in which the letters are written reveals which angles
are congruent. Thus, when we write that triangle ABC is similar to triangle DEF, it follows that
LA~ LD, {B ~ LE, and £C ~ £F. Saying that the sides of the triangles are proportional means
that there is a number k such thata = kd, b = ke, and c = kf where a, b, ¢, and d, e, f, are respectively,
the corresponding sides of the triangles. See Figure 5.9 below.

E

Figure 5.9

Another way of expressing that the sides of two triangles ABC and DEF are proportional is to

writea—b—c—k
d e

Here is our first theorem on similarity.

Theorem 5.7 If the corresponding sides of two triangles are proportional, then the corresponding
angles of the triangle are equal. Hence, the two triangles are similar.

Proof. Suppose that our triangles are ABC and DEF, as in Figure 5.9, and suppose that we are given
that a = kd, b = ke, and ¢ = kf. Using equation (5.8) we have that, in triangle ABC
a? +b* —c?

COSC = T (529)

In triangle DEF we have the similar result that

d>+e? — f?

e (5.30)

cosF =

But we know that a = kd, b = ke, and ¢ = kf. Substituting these in equation (5.29) we have

(kd)* + (ke)* — (kf)?
2kdke
K2(d® +e? — [?)
- 2k2de
d>+e? — f?
- 2de
=cosF. [From equation (5.30) .]

cosC =

Since cosC =cosF,C=F.



The Triangle: Its Study and Consequences 171

In a similar manner we can show that the other angles are equal. Thus, since the corresponding
sides were in proportion and, as a result of this, we showed the corresponding angles were equal,
the triangles ABC and DEF are similar. B

Now we prove the converse.

Theorem 5.8 If the three angles of one triangle are equal to three angles of another triangle, then the
corresponding sides of the triangles are in proportion. Hence, the two triangles are similar.

Proof. Suppose that we have triangles ABC and DEF where angle L A= 4D, £{B = {E and £C = {F.
(See the figure from the previous theorem.) Then by the Law of Sines, applied to triangle ABC we
have

a b
sin A~ sin B

which can be written as

a sinA

Z= . 5.31

b sinB ( )
Using the Law of Sines in triangle DEF, we have in a similar manner that

d sinD

Z= 5.32

e sinE (5.32)

But since LA = 4D and 4B = £ E, we can substitute LA and 4B for <D and £E in equation (5.32)
and we get
d _sinA

e sinB’

(5.33)

Since the right sides of equations (5.31) and (5.33) are the same, the left sides are also, so we have
that

Y

4
b
Therefore, ae = bd by cross multiplying, and dividing both sides by de we get that

A

a
d

In the Student Learning Opportunities you will show in a similar manner that g = % So, with

your work and ours, we get

a b ¢
e

which says the sides are in proportion. B
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The following result is probably the most familiar to you.

Corollary 5.9 (AA = AA) If two angles of one triangle are equal to two angles of another triangle,
the triangles are similar.

Proof. The third angles of the triangles will also be equal, since the sum of the angles of a triangle
is 180°. The result now follows from Theorem 5.8. B

What Theorems (5.7) and (5.8) are saying is that to show that two triangles are similar, we need
to show that either the corresponding sides are in proportion or that the corresponding angles are
equal. One automatically implies the other.

There is one other result about similar triangles which is useful, but less well known.

Theorem 5.10 If two sides of one triangle are proportional to two sides of another triangle, and the
angle between the proportional sides of these triangles is the same, then the two triangles are similar.

Proof. We may suppose that the sides that are in proportion are b and ¢, and ¢ and f, and that
the angle A between sides b and c, is equal to the angle D that is between e and f. Saying that the
sides b, e, ¢, and [ are in proportion means that

b ¢

—=—_=k 5.34

e f ( )
To prove the triangles are similar, we will show that the third sides are also in proportion. That
. . a . . . .
is, we will show s also k. Once we have that all three sides are in proportion, we know by
Theorem 5.7 that the triangles are similar.

Now, using the Law of Cosines in triangle ABC we have that

a? = b? +c? — 2bc cos A. (5.35)

Using the Law of Cosines in triangle DEF we have

d* =e* + f?> — 2ef cos D. (5.36)
From equation (5.34) we have b = ke and c = kf, and we were given that LA = £D. Replacing b by
ke, c by kf, and A by D in equation (5.35) we get

a? = (ke)® + (kf)? — 2(ke)(kf) cos D

= k*(e® + f* — 2ef cos D)
=k*d*>.  [Using (5.36).]

a

This string of equalities shows that a? = k?d?. Hence, a = kd. It follows that y

equation (5.34), we see that

is also k and, using

b
b_c_,
¢ T

So, we have shown that all three sides are in proportion, and hence, by Theorem 5.7, triangles ABC
and DEF are similar. B

a
d
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Student Learning Opportunities

1

If triangle ABC is similar to triangle DEF, and the following facts about the sides are given, find
the remaining sides and angles to the nearest degree.

(@) AB=6, DE=18,EF=12, CA=8

(b) BC=12,EF=6, DF=18, DE=8

() A student wants to know if, in similar triangles, corresponding altitudes are in the same
ratio as corresponding sides. Are they? If so, how can you show it?

(©) A student wants to know if you are given two similar triangles, does it mean that any
pair of their corresponding medians are in the same proportion as the sides? How do you
respond? What is your explanation?

(©) A student wants to know if it is true that the ratio of areas of similar triangles is the same
as the ratio of the corresponding sides. Is it? If not, what is true about the ratio of the areas
of similar triangles and the ratio of corresponding sides and how can you show it? Take two
specific similar right triangles, like the 3-4-5 right triangle and the 6-8-10 right triangle, and
answer these questions before answering the general question.

Using Theorem 5.10, show that the length of the line segment connecting the midpoints of

two sides of a triangle is % the length of the third side.

(©) Your students notice that, when you draw the line segment connecting the midpoints of
two sides of a triangle, it appears to always be parallel to the third side. They want to know
if this is always true, and if it is, how can it be proven. How do you respond and how do you
prove it? [Hint: Show that you have a pair of corresponding angles equal.]

(©) You have encouraged your students to use some dynamic geometric software to make
some conjectures about the shape of the quadrilateral created by connecting the midpoints
of the adjacent sides of any quadrilateral. (See Figure 5.10 below.) They have been surprised
to see that, regardless of the size or shape of the exterior quadrilateral, it seems that the
interior quadrilateral they have created always looks like a parallelogram. They want to know
if it really is, and if it is, how it can be proven. How would you prove it? [Hint: Use the results
from Student Learning Opportunity 6 for your proof that the students are correct.]

D
Figure 5.10
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8 Finish the proof of Theorem 5.8 by proving g = Ef

9 (C) You have had your students use some dynamic geometric software to create a right
triangle and draw an altitude to the hypotenuse. After dragging the points of the right
triangle, they have noticed that the two smaller triangles that are formed within the larger
right triangle appear to always be similar to each other, and more surprisingly, seem to always
be similar to the big triangle. They want to know if this is always true, and if it is, how can it
be proven. How do you prove it?

10 Give another proof of the Pythagorean Theorem using similar triangles. [Hint: Refer to
Figure 5.11 below. Show that (AC)? = AB- AD and that (BC)? = AB- DB. Now add the equa-
tions. You might want to use the result of the previous Student Learning Opportunity.]

C
A D B
Figure 5.11

11 Find the value of x in Figure 5.12 if DE is parallel to AC.

B
X 8
D E
2x
X+3
A C
Figure 5.12

12 Two poles of heights 5 feet and 10 feet are separated by a distance of 20 feet. A wire is placed
tautly from the top of each pole to the bottom of the other pole and they overlap at a point
P shown in Figure 5.13 below.

D
A 10
P
5
B 3 C
| —

20
Figure 5.13
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(a) How high above the ground is P? [Hint: Triangles ABC and PEC are similar, as are triangles
BPE and BDC. Let BE = x, EC=20 — x, and PE = h. From the first set of similar triangles,
% = %. Find a similar relationship for the second pair of triangles and work from there.]

(b) Do the same problem as in (a), only now assume that the distance between the poles
is 100 feet instead of 20 feet. Show that the overlap of the wires is at the same height
above the ground as it was in part (a). Does this surprise you? Why or why not?

(c) Suppose the distance between the poles is d. Show that the distance h, that P is above
ground, does not depend on d.

(d) Generalize the solution. Suppose that the poles are at heights g and b and that the

distance between them is d. Show that

_ab
=
5.5 Sin(4 + B)
LAUNCH

1 Most students believe that sin (A + B) = sin (A) + sin (B).

a. Is this always true? If you said “Yes,” then justify why. If you said “No,” then support your
answer by giving a counterexample.

b. Is this ever true? If you said “Yes,” then give one example when it is true and state how
often you think it is true. If you said “No,” then justify why you believe it is never true.

After having responded to the launch question, you are now most likely curious about the
behaviors of the sine of the sum of two angles. You must be wondering if the trigonometric
relationships share the same distributive property that algebraic relationships have. Wouldn't it
be nice if they did. In this section we will pursue this question further to get the right relationships
in a manner that will most likely surprise you.

We have used the concept of area to prove the Pythagorean Theorem and applied that theorem
to prove the Law of Sines and the Law of Cosines, which gave us all the main theorems about
congruence and similarity. We now take the concept of area and use it to prove theorems in
trigonometry. It is hard not to appreciate how powerful this concept of area is.

It is a common misconception among secondary school students that sin(A+ B) = sin(A) +
sin(B). This is not true, which is easy to see by just taking the counterexample A = 30° and B = 60°.

1 3
Using a calculator, or the well-known values of sin 30° = > sin 60° = %_ and sin90° = 1, we see

3

1
that sin(A+ B) = 1 but, sinA+sinB = 5t ~ 1.366. They are quite far apart. However, it is

true that sin(A + B) =sin Acos B + cos B sin A, and you can verify it for the angles given above. Of
course, a proof of this relationship is needed, which we will give now using areas. Our proof is
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only valid for triangles with interior altitudes. But the theorem is true in general and will follow
from results we set forth in the trigonometry chapter. First, we need a preliminary result which is
commonly taught in secondary school.

Theorem 5.11 The area of a triangle is 3absin C, where a and b are two sides of a triangle and C is
the included angle.

Proof. Using Figure 5.14 below with altitude h and base b.

B

A D C
Figure 5.14

We have that the area of the triangle is
L bh (5.37)
5 bh. .

it h
But from right triangle BDC, sin C = _OPPOSTE —, so h=asin C. Substituting for hin (5.37) we
hypotenuse a

get that the area of a triangle is %ab sinC. &

Theorem 5.12 If o and B are angles, then sin(« + B) = sin« cos B + cos« sin B.

Proof. Place angles « and B next to each other, as shown in Figure 5.15 below, so that their
common side, BH, is vertical, and together they form a larger angle « + g, which we call B.

B

a|f

H
Figure 5.15

Mark off a point E at distance of 1 from B, along BH, and, through that point E, draw a line
perpendicular to BH intersecting the sides of the large angle B at A and C. (See Figure 5.16 below.)
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Figure 5.16

1
Now observe from the picture that, in right triangle AEB, cos « = 1B Cross multiplying and

solving for AB we get:

1

AB = . 5.38
cosa ( )
- N . 1
Similarly, in right triangle CEB, cos 8 = BC SO
1
C= . (5.39)
cos
Also, from triangle AEB, we have
AE
tanoa = T = AE. (5.40)
Similarly, from triangle CEB we have
EC
tan,B=T=EC. (541)
Now, we know that
the area of triangle ABC = the area of triangle AEB + the area of triangle CEB, (5.42)
and, from Theorem 5.11,
1
the area of triangle ABC = EAB -BC - sin(£ ABC). (5.43)

1
Also, the areas of right triangles AEB and CEB are each 5 base times height. Thus,

and

1
the area of triangle AEB = EAE -1

1
the area of triangle CEB = ZEC - 1. (5.44)
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Substituting equations (5.43) and (5.44) into equation (5.42), we get
1 . 1 1
ZAB -BC - sin(ZABC) = EAE- 1+ zEC~ 1. (5.45)

We have one final step. Using the relationships that AB= -1, BC= - AE =tana, and EC =

cosa’ cos B’

tan B from equations (5.38)—(5.41) and substituting into (5.45) we get

L ! ! sin( +/3)—1tan +1tanf3
2 cosa cospf « T2 * 2

which can be written as

1 1 1 . 1sinae 1sing
- ——  ——sin(e+8) == + =
2 cosa cCospf 2cosa 2cosp

(5.46)

since the tangent of an angle is the sine over the cosine. We now multiply both sides of equa-
tion (5.46) by 2 cos « cos 8 and simplify and we get

sin(a + B) = sinw cos B + cos « sin B. (Verify!) (5.47)

|

Notice how this theorem ties together algebraic concepts with the geometric concept of area,
and the trigonometric concepts of sines, cosines and tangents. What a nice interplay of concepts!
Later in this chapter, we will get this result in a different and quite unexpected manner. (See
Ptolemy’s theorem.)

Theorem 5.12 is attributed to the Persian mathematician and astronomer Abul Wafa and dates
back to the 10th century.

Student Learning Opportunities

1 (C) One of your very clever students asks: “If the two adjacent sides of a triangle are 6 and
8 and | vary the angle between them, | will get different triangles and their areas will be
different. What would the measure of the included angle have to be to make a triangle of
largest area?” How would you respond and does this same angle work regardless of the
lengths of the adjacent sides? [Hint: Use Theorem 5.11.]

2 Verify that sin(30° + 60°) = sin 30° cos 60° + cos 60° sin 30°, using the known values pre-
sented in this section.

3 Arectangle ABCD has sides 3 and 6. If diagonal AC is split into three equal parts by points £
and F, find the area of triangle BEF.

N N .
4 We have shown that the area of a triangle is zabsm C. We can also compute the area in two

1, 1 .
other ways: Ebcsm A and 5acsin B. Of course the area that we get is the same no matter
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which formula we use. Show that, from this observation, we can get another proof of the
Law of Sines.

5 (C) Despite learning the formula for sin(A + B) several of your students still maintain that
sin 260 =sin 6 + sin 6. How can you prove to them graphically that they are incorrect and how
would you prove to them that, in fact, sin 26 = 2sin6 cos6?

2
6 Using the fact that the exact values of sin45° and cos 45° are %, and that the exact values

1 3
of sin 30° and cos 30° are, respectively, 5 and %_, find the exact value of sin 75°.

5.6 The Circle Revisited

LAUNCH

In a circle, with center O draw two adjacent central angle of 120 degrees. Let the intersection of the
sides of these angles with the circle be A, B, and C as shown in Figure 5.17 below:

B

Figure 5.17

Connect Ato B, B to C, and C to A, and you should now have an equilateral triangle. Pick any point
P on the circle and draw line segments PA, PB, and PC. Do you notice any relationship between the
lengths of the two shorter segments and the length of the longer segment? What do you notice?
Pick another point P’ and do the same thing. Do you notice the same relationship? What is it? Do
you think this will always happen? Why or why not?

After having completed the launch, you are probably beginning to realize that the circle is a most
fascinating figure, especially when you begin to inscribe other geometric Figures within it. In this
section, you will learn more about the most interesting relationships that exist within a circle. You
will revisit the launch problem at the end of the section in the Student Learning Opportunities,
after you become familiar with Ptolemy’s theorem.
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5.6.1 Inscribed and Central Angles

We hope you have appreciated seeing how we have used the Law of Sines and the Law of Cosines to
develop all the congruence theorems, similarity theorems, and related laws of trigonometry that
are part of the secondary school curriculum. Recall that the Law of Cosines essentially depended
on the Pythagorean Theorem which, in turn, depended on the concept of area. Thus, it seems that
area is the driving concept in the secondary school curriculum. This is why our chapter on areas
preceded this one.

Let us now investigate the circle and see what relationships we can prove.

Other than congruence and similarity, the main theorems in a geometry course are those
concerning circles, their chords, their tangents, and their secants. We now prove some of the
main theorems about these, and guide you through many of the others in the Student Learning
Opportunities. These tasks will not only review the theorems, but show, yet again, how all the con-
cepts connect. After this, we will continue to investigate further applications of the Pythagorean
Theorem and the concept of area.

To begin, we need to recall a fact from geometry. A central angle is one whose vertex is at the

center of the circle. Thus, in the picture below, 6 is a central angle and arc AB (denoted by AAB) is
the arc subtended by the central angle. We define the measure of the arc subtended by a central
angle of 6, to be 6 also. That is, each central angle has the same measure as the arc subtended by it
and vice versa. This is a definition. (See Figure 5.18.)

A Degree measure of the arc
AB is the same as the central

Figure 5.18

When you think about this definition, it makes sense. We know that a complete rotation is
360 degrees. So, if we drew adjacent central angles each of 1 degree, we would need 360 of them
to fill the circle. But this divides the circle into 360 parts. Thus, the number of central angles of
1 degree and the number of parts of the circle are both 360. Therefore, it seems reasonable that
each arc associated with a 1 degree central angle should be called a 1 degree arc. It follows from
this that any arc will have the same number of degrees as its central angle.

Here is our first theorem. Recall that an inscribed angle is one whose vertex is on the circle
and whose sides are chords of the circle, as is shown in Figure 5.19 below.

A

Figure 5.19 Angle ABC is an inscribed angle
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1
Theorem 5.13 An angle inscribed in a circle is measured by 5 of its degree arc.

Proof. We give one half of the proof leaving the other half to you. We begin with the central
angle AOB. By definition, this has the same degree measure as AB. Pick a point P on the circle. We
suppose that our picture is as given below in Figure 5.20. (This simplifies the first part of the proof.
There is another picture as you will see.)

A
X
X 0/«
Y
B
Figure 5.20

Because the radii of a circle are equal, triangles AOP and BOP are isosceles, and their base angles
are equal, as indicated in the diagram above. Since the exterior angle of a triangle is the sum of the
remote interior angles (Chapter 1, Section 2, Student Learning Opportunity 1) we have that o = 2x
and in the same way, 8 = 2y. Thus, « + f = 2x + 2y . This means that

oa+p

. (5.48)

X+y=

But o+ g is the measure of arc AB and x+ y is the measure of the inscribed angle P. Thus
equation (5.48) says that

1
£P = ZKAOB. (5.49)

You might think the proof is complete. It isn’t. There is another possible picture (see Figure 5.21
below). In the Student Learning Opportunities, you will be asked to prove the theorem for this

AN

B

Figure 5.21
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Corollary 5.14 If an inscribed angle and a central angle intercept the same arc, the central angle is
twice the inscribed angle.

Proof. In the diagram above, £ P is measured by % AAB, while angle O is measured by AB. So, the
measure of the central angle is twice the measure of the inscribed angle. B
There is a very surprising corollary of Theorem 5.13—an extended version of the Law of Sines!

B b <
sinA~ sinB sinC

Corollary 5.15 Given any triangle ABC, =d, where d is the diameter of the

circumscribed circle.

Proof. According to the previous corollary, the central angle intercepting the same arc as an angle
of the triangle whose vertex lies on the circle will have twice the measure of the inscribed angle.
Look at Figure 5.22 below, which shows an acute triangle and its circumscribed circle.

C

‘ B
S
Figure 5.22

If the triangle is acute, then the center of the circle is always inside the triangle and we can
draw altitude DF to isosceles triangle ADB and it will bisect angle ADB as well as the base. Now, in

AF _AF d
triangle ADF, sino = —=a where d is the diameter of the circle. Inverting the 3 and
2AF AB
multiplying, we get that sin « = — = Rewriting this as
AB
—=d (5.50)
sina

and realizing that sin« = sin C and AB is side c¢ in triangle ABC, equation (5.50) becomes

c
sinC

(5.51)

That is, the ratio of ¢ to sinC is the diameter. Since, there was nothing special about angle C,

a b a b c
imil f sh h = = =
a similar proof shows that oA and SnB SnAd- snB - snc d and

this gives us not only the law of sines, but tells us exactly what the common ratios are, the
diameter of the circumscribed circle! W

are both equal to d. So,
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There is yet another corollary of this, which may seem obscure now, but will be put to good
use later in Section 5.6.3.

Corollary 5.16 In a circle with diameter 1, if we have an inscribed angle of measure «, intercepting
arc AB, then the length of the chord joining the points A and B has length sin «. That is, sin« = AB.

Proof. We simply let d=1 in equation (5.50) and the result follows immediately by cross
multiplying. B

5.6.2 Secants and Tangents

In this section we deal with some of the main theorems concerning tangents and secants. Recall
that a secant line to a circle is a line drawn from an external point which cuts through the circle
and stops at the other side. We have drawn a picture of a secant in Figure 5.23. AP is the secant.

Figure 5.23

Theorem 5.17 If two secants with lengths s; and s, are drawn to a circle from an external point, and
the parts of them which are external to the circle are e, and ey, then sie; = sze;.

Proof. Suppose that the secants hit the circle at points A, B, C and D as shown below in
Figure 5.24.

A B
P
D
C
Figure 5.24

We are calling AP =51, CP = s, BP = ¢1, and DP = ¢;. Draw CB and AD as shown in Figure 5.25
below.

Figure 5.25
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Then we have that £A = £C, since both angles A and C are inscribed angles and both are half
the degree measure of arc BD. Of course, angle P is common to both triangles ADP and CBP. Thus,
by Corollary 5.9 (AA = AA) triangles ADP and CBP are similar. It follows that the corresponding
sides are in proportion. Thus,

AP CP
DP ~ BP

Cross multiplying, we get
AP-BP=CP-DP
which says nothing more than

$1€1 = $2€32.

Theorem 5.18 If a tangent line with length t and a secant line with length s and external segment e
are both drawn to a circle from an external point, then t* = se.

Proof. Although we could give a purely geometric proof of this, we prefer instead to show you a
different approach, which ties together concepts you learned in calculus with geometry.

Imagine a group of additional secants with lengths s;, s, and so on being drawn to the circle,
and that these secants approach the tangent line. (See Figure 5.26 below.) The bold parts of the
diagram are the original secant line with length s and external segment of length e, and the original
tangent whose length is t.

Figure 5.26

Now we know from the previous theorem that se = sje; = sze€2, and so on. This says that the
sequence of numbers, {s,e,} is constant and every term is equal to the constant se. Now we know
that the limit of a constant sequence of numbers is the constant. That is

lim s,e, = se. (5.52)
n—oo
Furthermore, since the secant lines approach the tangent line, we see that the lengths of the secant
lines approach the length of the tangent, and the lengths of the external segments of the secant
lines also approach the length t of the tangent line. In symbols: r}im sy =t and lim e, =t. Now,
— 00

n—oo
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using equation (5.52) we have

se = lim s,e,

n—oo

= lim s, - lim ¢,

n—o0 n—oo

=t.t

=t?

and we are done. W

5.6.3 Ptolemy’s Theorem

One result relating to circles that is done in some secondary school courses is Ptolemy’s theorem,
which we present next. Ptolemy lived in the second century and was one of Greece’s most
influential astronomers. He propounded the theory that the earth was the center of the solar
system, which was believed until about 1543, when Copernicus showed otherwise. Ptolemy is
credited with making the first tables of sines, cosines, and tangents and applying these to problems
in astronomy. The proof of Ptolemy’s theorem uses similar triangles. Its consequences are quite
unexpected and powerful and relate directly to the secondary school curriculum.
Here is Ptolemy’s theorem.

Theorem 5.19 Suppose that quadrilateral PQRS is inscribed in a circle as shown in Figure 5.27
below:

Figure 5.27

If we multiply the lengths of the opposite sides of the quadrilateral and sum the results, we get the
product of the diagonals. That is,

QR-PS+PQ-SR=QS-PR.

Proof. Here is a plan for the proof. We will pick a point T on diagonal PR such that £ RQT = £SQP.
We will then show that triangle RQT is similar to SQP, and triangle RQS is similar to triangle TQP
and thereby establish proportions that will lead to our theorem.
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So, begin by picking a point T on diagonal PR such that {RQT = £SQP. Thus, by construction,
we have one angle of triangle RQT equal to one angle of triangle PQS.

Since £QRP and £QSP subtend the same arc, PQ, it follows that LQRP = £QSP. This gives us a
second pair of equal angles in triangles RQT and SQP.

Since two angles of triangle RQT are equal to two aalgles 8{; triangle SQP, triangles RQT and SQP

are similar by Corollary 5.9 (A4 = AA). It follows that TR=PS Cross-multiplying, we get

QS-TR=QR- PS. (5.53)

Now we show that triangle RQS is similar to triangle TQP. We know that, by construction
£RQT = £LPQS. If we add £SQT to both of these angles, we get that £PQT = £RQS, providing us
with one pair of equal angles in triangles, RQS and TQP. Also, since £QPR and £QSR both subtend

arc QR, we have that LQPR = £QSR. So now triangles RQS and TQP are similar by AA = AA. So their
QP

sides are in proportion. That is, PT-SR" Cross multiplying we have

PT-QS=QP-SR. (5.54)
Now, if we add equations (5.53) and (5.54) we get

QS-TR+PT-QS=QR-PS+QP-SR
and if we factor out QS we get

QS-(PT+TR)=QR-PS+PQ- SR
and since PT + TR = PR, this simplifies to

QS-PR=QR-PS+PQ-SR.

]
The tendency is to say “So what?” Let’s see how you feel after the next example.

Example 5.20 Show using Ptolemy’s theorem that sin(« + ) = sin« cos B + cos« sin B.

Solution. Work in a circle of diameter 1 shown in Figure 5.28 below.

Q

Y

S
Figure 5.28
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Here we have drawn a quadrilateral, one of whose sides, QS, is a diameter. Thus, QS = 1. Now
since QPS is inscribed in a semicircle, it is a right angle. (It is measured by half its intercepted arc
which is 180 degrees.) So

adjacent PS PS§

= - _-_2_pPS 5.55
cosa hypotenuse QS 1 ( )
Similarly,
cos B = SR, (5.56)
sina = PQ, and (5.57)
sin 8 = QR. (5.58)

(Verity!) Since the diameter of the circle is 1, we have by Corollary 5.16 that

PR = sin(a + B). (5.59)
Now we are ready to proceed. By Ptolemy’s theorem

PQ-SR+PS-QR=PR-QS. (5.60)

Now we know that QS =1, and substituting the values for PQ, SR, PS, QR, and PR, obtained in
equations (5.56)—(5.59) in (5.60) we get

sina -cosB+cosa-sing =sin(e¢+p) -1

which was our goal! So we have seen yet another surprising and corroborating proof of the formula
for sin(a + B).

We can get other trigonometric identities from Ptolemy’s theorem, some of which we leave for
the Student Learning Opportunities.

Student Learning Opportunities

1 Triangle ABC is inscribed in a circle. The smaller arcs, AAB, BAC, and 64 are, respectively, 2x, 3x,
and 5x degrees. What are the angles of the triangle?

2 (C) Your students want you to explain why an angle inscribed in a semicircle is a right angle.
Show how you would explain this by using theorems from this chapter.

3 (C) You have encouraged your students to use some dynamic geometric software to examine
what happens if you create an isosceles triangle and draw an altitude from the vertex angle
to the base. They have noticed that, regardless of the size and shape of the isosceles triangle
they make, the altitude seems to always bisect the vertex angle as well as the base. Your
students want to know if this is always true and, if so, how can you prove it. What is your
response and how do you prove it? (Note that this relationship was used in Theorem 5.15.)

4 (C) Through the use of dynamic geometric software, your students have become convinced
that every triangle ABC can be inscribed in a circle. (That circle is called the circumscribed
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circle.) They ask you how you can construct the circumscribed circle for any triangle. How do
you do it? [Hint: Proceed as follows. Draw the perpendicular bisectors of two sides, say AB and
BC of the triangle. They will intersect at some point P. Prove that AP = PB using congruent
triangles. Now, in a similar manner PB = PC. Finish it.]

5 (C) Through the use of dynamic geometric software, your students have noticed that,
whenever they inscribe a right triangle in a circle, the hypotenuse always seems to be the
diameter of the circle. They want to know if this is always the case, and if so, how to prove
it. How will you do it? They then want to know why the median to the hypotenuse of a
right triangle has length half the hypotenuse. How can you show it, based on what you have
already done?

6 Use Ptolemy’s theorem to show that, if a rectangle with legs a and b and diagonal c is
inscribed in a circle, then a? + b? = 2. Thus, we have yet another proof of the Pythagorean
Theorem.

7 Use Ptolemy’s theorem to prove that sin(w — 8) = sina cos 8 — cosa sin 8. Use Figure 5.29
below where we take the diameter AD =1, and use Corollary 5.16. [Hint: AB=cos«, BC=
sin(e — B) by Corollary 5.14.]

C
B
o
A s . D
1
Figure 5.29

8 Prove the following theorem, which answers the launch question: If an equilateral triangle
ABC is inscribed in a circle, and P is any point on the circle, then the shorter two of the three
segments, PA, PB, and PC adds up to the third. [Hint: Call the side of the equilateral triangle s,
and connect P to the three vertices of the triangle to form a quadrilateral. Then use Ptolemy’s
theorem.]

Note: We have been using Ptolemy’s Law to derive geometric and trigonometric results.
In fact, there is a very famous and exceedingly useful law in optics that says that, when
light traveling with velocity vy in a medium, say air, enters a medium, say water, entering at
an angle of 0; relative to the vertical, the light is refracted, that is, bent, and travels at an
angle 6, to the vertical. Furthermore, its velocity in the medium it enters changes to v;,. The
relationship is known as Snell’s Law and says that

sin 61 U1

sin 92 U2 ’

A big surprise: Ptolemy’s theorem can be used to show that Snell’s Law as well as another
principle known as Fermat’s principle, which states that light travels in such a way so
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as to minimize its travel time from point A to point B, lead to the same geometry of
refraction.

Find the area of the pentagon shown in Figure 5.30 below. Angle A is a right angle.

Figure 5.30

(©) You have encouraged your students to use some dynamic geometric software to make a
conjecture regarding the angle a tangent line drawn to a circle makes with a radius drawn
to that tangent line at the point of tangency. They have all discovered that these two lines
always seem to be perpendicular to one another. They want to know why this happens.
How can you help them to discover this? [Hint: Draw the radius of the circle to the point of
tangency. So, its length is r, the radius of the circle. Then draw a line to any other point P on
the tangent line and show that its length is more than r. How does this show it?]

(©) Your students have been using dynamic geometric software to investigate the relationship
of two tangent lines drawn to a circle from a common external point. They have made
the conjecture that the two tangent lines have the same length and now they need some
guidance on how to prove it. How can you help them?

(©) You have encouraged your students to use some dynamic geometric software to make
some conjectures. They have observed over and over that, if a line is drawn perpendicular to
a chord, AB, it bisects the chord. They ask you for a proof. How do you prove it? (Drawing
radii to the endpoints of the chord will help.)

Suppose we have two circles with the same center and that the area of the shaded region
between them is 257. A chord is drawn in the larger circle, which is tangent to the smaller
circle. (See Figure 5.31 below.)

Figure 5.31

What is the length of the chord? [Hint: Draw a radius to the point of tangency and another
to B.]
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14 (C) Using dynamic geometric software, your students have noticed that, if they draw two
chords that are the same distance from the center of a circle, they always have the same
length. They want to know how to prove it. How can you prove it? [Hint: Draw the lines that
give the distance from the center. Also, draw radii to the one endpoint of each chord.]

15 (C) Using dynamic geometric software, your students have noticed that, if in one circle they
draw two chords that have the same length, then they are the same distance from the center
of the circle. They want to know how to prove it. Show them.

16 (C) Using dynamic geometric software, your students have noticed that, if in one circle they
draw chords of equal length, they always seem to subtend minor arcs that have the same
angle measure. They want to know if this is always the case, and if it is, how can it be proven.
What do you say and how can you prove it?

17 Show that, if a circle of radius r is inscribed in a triangle with perimeter P and area A, then

P 2
yinirs [Hint: Draw radii to the sides and connect the center of the circle to the vertices. Then
sum the areas of the 3 triangles formed. Each has height r.]

18 (C) Your students have learned that, if two chords intersect within a circle, then the product
of the segments of one chord is equal to the product of the segments of the other chord.
That is, in the following diagram, ab = cd. Some of your more curious students want to know
how that is proven. How do you do it? [Hint draw the dotted lines as shown in Figure 5.32
below, and try to get similar triangles.]

Figure 5.32

19 Prove Theorem 5.13 for figure 5.21.

20 Using Figure 5.33 below, find the missing piece of information in parts (a)—(d).

B
C
E
D
A

Figure 5.33

(a) BE=12, AE=9, DE=1, CE=?
(b) BC=5, CE=4, DE=9, AD=?
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(c) BC=6, AD=4, DE=2, CE=?
(d) CE=4, DE=3, AD=4, BC=?

5.7 Technical Issues

LAUNCH

Historically, the cosine of an acute angle A in a right triangle was defined as the ratio of the side
adjacent to A to the hypotenuse. Unless this ratio is the same for all right triangles having an acute
angle equal to A, this definition is unusable. But, how can we be sure that the cosine of an angle is
the same, regardless of the right triangle in which it occurs?

We hope that, after thinking about this, you realized that similar triangles are used to show this.
The usual argument given is: “If A is an angle in two right triangles, then the triangles must be
similar, since they both have angle A and a right angle. Since they are similar, their sides are in
proportion. That means that the ratio of the adjacent side to the hypotenuse is the same in both
triangles.” That is, the cosine of A is independent of the right triangle in which it resides. Our goal
in this chapter was to prove the theorems about similarity using the fact that sines and cosines
are well defined, and we cannot use theorems about similar triangles to assume that the sine and
cosine are well defined, or else we would be engaging in what is known as circular reasoning (using
theorems about similar triangles to prove the same theorems about similar triangles).

So, to avoid this circular reasoning, we will now give an independent proof of the fact that
the sine of an angle is independent of the triangle in which it resides. Surprisingly, we can use
areas of triangles to prove this, which we will now do. But first we need the following preliminary
theorem.

Theorem 5.21 Suppose that, in a given triangle ABC, a line is drawn from B to AC intersecting AC
at D. Then, the ratio of the areas of triangle ABD to triangle CDB is the same as the ratio of AD to
DC.

Proof. We refer to Figure 5.34 below.

B
I
I
I
I
I
I
I
I
I
I
I
I
I

il

A D C
Figure 5.34
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We see that both triangles ABD and DBC have the same height h. Thus,

1
Area of triangleABD EAD b _AD
Area of triangle DBC % pc.n PC

Corollary 5.22 Given a right triangle ABC with right angle at C, draw a line DE parallel to BC,

AC AD
where D is any point on AC and E is where this line intersects AB . Then 1E- AR That is, COsA is

the same whether we take the ratio of the opposite side to the hypotenuse in right triangle AED or in
right triangle ABC.

Proof. We begin with our picture, Figure 5.35.
B

[] []
A D ¢
Figure 5.35

First draw EC, dividing the triangle into triangles I and II as shown in Figure 5.36 below:

B

A D
Figure 5.36

Now, from Theorem 5.21, applied to triangle AEC we have

Area of I _AD

Areaof I DC’ (5.61)

Now, draw DB, yielding Figure 5.37.
B

A D
Figure 5.37



The Triangle: Its Study and Consequences 193

Again, by Theorem 5.21, only applying it to triangle ABD, we have

Areaof I AE

- o .62

Area of Il EB (5.62)
Finally, we note that both triangles II and III have base ED and height DC (since ED is parallel to
BC and hence are the same distance from each other everywhere). Thus, the areas of II and III are

the same. Replacing Area III by Area II in equation (5.62) we get that

Area of I _AE

Areaof I EB’ (5.63)
Comparing equations (5.61) and equation (5.63), we see that

AD AE

e IR (5.64)

We will now add the number 1 to both sides of equation (5.64). (You will soon see what this
accomplishes.) We get

Combining each side into a single fraction, we get

AD + DC _AE+EB

DC B (5.65)
Dividing equation (5.65) by equation (5.64), we get that
AD+DC  AE+EB
DC _ __EB
AD AE
DC EB
which simplifies to
AD+DC AE+EB
AD AE
and, since AD + DC = AC and AE + EB = AB, this is just
AC AB
From this proportion, it follows that
AC AD

and we are done. H
The importance of this theorem cannot be underestimated. It says that, if A is any angle, cos A
is unique without the assumption of similar triangles. So, if we have two right triangles, ABC and
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AED, each containing an acute angle A, then we can just overlap them together so that we get
Figure 5.38 as shown below:

A D
Figure 5.38

and then from equation (5.67) we see that the cosine of A is independent of the triangle we are
using.

We can use a similar proof to show that sin A is independent of the triangle in which it resides,
or we can prove it using trigonometric identities. (See Student Learning Opportunity 1.) Now that
we know that sin A and cos A are well defined, and don’t change depending on which triangle we
are working in, we can use these facts freely.

There is one other result we need for our work to be complete.

Theorem 5.23 As an acute angle A in a right triangle increases, its cosine decreases. As angle
A increases, so does its sine.

Proof. Since cos A is independent of the triangle in which it resides, we will consider only triangles
with hypotenuse = 1. Such a triangle will look as shown in Figure 5.39.

B

A X C
Figure 5.39

From the Pythagorean Theorem, x2+(BC)?2 =1. It follows that x =,/1 — (BC)2. From this
relationship we see that, as BC increases, x decreases. Now, if A increases, BC also increases, and
hence x decreases. But, from the triangle, x = cos A. So, as angle A gets bigger, cos A gets smaller.

The proof of the second part is similar. B

We used the following theorem throughout this chapter (see, for example, Theorem 5.2). Now
it can be justified.

Corollary 5.24 If A and B are acute angles and if cos A = cos B, then LA = £B.

Proof. From the theorem, as an angle increases, its cosine decreases. Hence, it is not possible for
two different acute angles to have the same cosine. Thus, it must be that {A=4«4B. R
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Student Learning Opportunities

1 Draw a right triangle ABC with right angle C. Starting with the Pythagorean Theorem
and dividing both sides by c?, show that sin’ A +cos? A = 1. From this, show that sin A =
V1 —cosZ A. (We don’t use the & square root since the cosine of an angle in a triangle
can’t be negative. It is the ratio of the lengths of two sides.) Use this to show that sin A is
independent of the triangle in which it resides.

2 (C) Your students have been investigating triangles using dynamic geometric software. Under

your direction, they have noticed that, if they create any triangle ABC, and they draw a line

. . AD CE
parallel to AC, intersecting AB at D and BC at £, then DE- B They want to know how to
prove this. How do you respond?

3 Show that, if A and B are acute angles, and if sin A = sin B, it follows that £ A = £B.

4 In the proof of Corollary 5.22 we said that equation (5.67) follows from equation (5.66).
Show it.

5.8 Ceva’s Theorem

LAUNCH

1 On a piece of standard loose-leaf paper, draw a triangle at the top half of the paper. Using
a ruler, or by folding the segments, locate the midpoints of each segment and then connect
these midpoints to the opposite vertices. You should have just drawn three medians. What do
you notice? Do the medians intersect? Do they all intersect at the same point? Do you think
this will this always happen?

2 On the bottom half of your paper, draw an entirely different type of triangle. As before,
draw the three medians. Did the same thing happen? Do you think this will always happen?
Explain.

Now that you have completed the launch question, we hope you are marveling at the myster-
ies of the triangle. The truth is that there are many interesting results related to the triangle
that you will be reading more about in this section. For example, in addition to the medians
meeting at a point, the three altitudes meet at a point, and the three angle bisectors meet at
a point, although the points at which they meet are usually different. All of these theorems,
as well as many others, follow from one remarkable result called Ceva’s Theorem (after the
mathematician Giovanni Ceva (1647-1674) who we know little about, except that he was a
professor of mathematics in Mantua, Italy and published one of the first works in mathematical
economics).
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We begin with a definition. A cevian is a line that emanates from a vertex to the opposite side
of a triangle (or its extension). Thus, altitudes, medians and angle bisectors are all cevians. In this
section we will once again use areas of triangles in a completely unexpected way.

But first we need an interesting lemma about fractions. (The word “lemma” is used to refer to
a preliminary result that is used to prove a more important result.)

Lemma 5.25 If § = g, then § = § = §=5. Thus, if we subtract numerators and denominators of two
equal fractions, we get an equivalent fraction.

To illustrate: 2 = 2 = 228 which is true!

Here is the proof:

Proof. Let t be the common value of the fractions § and §. So, § =t and § = t. Multiplying these
equations by b and d, respectively, we get a = bt and ¢ = dt. Using these values in the fraction 7=3,

we get ;=5 = % = % =t. Thus, 7= has the same value, t, as the other fractions have. So all

three fractions are equivalent.

Theorem 5.26 (Ceva’s Theorem): In triangle ABC, if AE, BF, and CD are cevians that meet at G

inside the triangle, then 5 . 4L . €& =1 _(See Figure 5.40.)

A F C
Figure 5.40

Proof. Before getting into the heart of proof, we just remind you of Theorem 5.21 which says that
if two triangles have the same height, then the ratio of their areas is the same as the ratio of their
bases.

Now, since triangles ABF and CBF have the same height,

area (ABF) AF

area (CBF) FC’ (5.68)
Similarly, since triangles AGF and FGC have the same height
AGF AF
area ( ) (5.69)

area (CGF)  FC’
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From equations (5.68) and (5.69),

area (ABF) area (AGF) AF

= = 7
area (CBF) area (CGF) FC (5.70)

and so, by the previous lemma, with a, b, ¢, and d replaced by the appropriate numerators and
denominators of equation (5.70) we have

area (ABF) — area (AGF) AF

=, 71
area (CBF) — area (CGF) FC .71

But area (ABF) — area (AGF) = area(AGB) and area (CBF) — area (CGF) = area(CGB). (Look at the
figure to confirm!) Substituting into equation (5.71) we have

area(AGB) AF

bbbt el 5.72

area(CGB) FC ( )
We now use the cevian AE in a similar manner to get that

CE area(AGC)

— = 5.73

EB area(AGB) ( )
And then again use cevian CD in a similar manner to get

BD CGB

_ area(CGB) (5.74)

DA ~ area(AGC)’
Using equations (5.72), (5.73), and (5.74) and multiplying we get

AF CE BD _area(AGB) area(AGC) area(CGB) _ 1 [dividing common areas]
FC EB DA area(CGB) area(AGB) area(AGC) & ’

[ |
The converse of Theorem 5.26 is also true.

Theorem 5.27 If in triangle ABC we have three cevians, AE, BF, and CD, and 4L . ¢£ . BD 1,
then the cevians AE, BF and CD meet at a point.

Proof. Suppose that AE and DC meet at G. Draw BG and let it intersect AC at F’ as shown in
Figure 5.41.

A F F C
Figure 5.41
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Then by Ceva’s Theorem,

AF CE BD
e E A=l (5.75)

But we are given that

AF CE BD
et (5.76)

From equations (5.75) and (5.76) we have

AF CE BD AF CE BD
....... (5.77)

Dividing both sides of equation (5.77) by £& - 2D we get
AF_AF
F'C  FC’

From which it follows that F = F’. Thus, AF’ really is AF and the three cevians go through the
same point, G. B

Student Learning Opportunities

1 (C) Using their dynamic geometric software, your students have been investigating what
happens in a triangle when they construct medians from all three vertices. No matter how
they drag their figures and change the sizes and shapes of their triangles, it always seems
to be that the medians meet at one point and that the six triangles formed by the medians
have the same area (which they have programmed their software to calculate). They ask you
if these relationships can be proven, and if so, how it is done. Use Ceva’s Theorem to prove
this.

2 Prove that, if a circle is inscribed in a triangle (see Figure 5.42 below)

B

Figure 5.42

then the Cevians drawn from each vertex to the points where the circle is tangent meet in a
point. (You will need to use the fact that the tangents drawn to a circle from an external point
are equal. That is, BD = BE, and so on.) This point where they meet is known as the Gergonne
point.
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3 We only proved Ceva’s Theorem for the case where the Cevians met inside of the triangle.
But the Cevians can meet outside the triangle. Consider Figure 5.43 where we begin with
triangle ABC and draw Cevians AE, CD, and BF. Go through the proof of Theorem 5.27 line
by line to see if the proof of the theorem works in this case.

A C F
Figure 5.43

4 (C) Your students have been using their dynamic geometric software to explore what hap-
pens when you create a triangle and draw the angle bisectors from each of the three vertices.
They notice that the three angle bisectors always meet at a point. They ask you how to prove
that this will always happen. How can you prove it to your students, using Ceva’s Theorem?
[Hint: Student Learning Opportunity 7 from Section 5.3 may help.]

5 (C) Your students have continued their exploration of triangles using their dynamic geometric
software and have now drawn a triangle and constructed the altitudes from all three of the
sides. Much to their surprise they notice that, no matter the size or shape of their triangle,
the altitudes meet at one point. They are eager to know if this always happens and why. How
does Ceva’s Theorem help you to prove it? [Hint: In Figure 5.44 AD = AB cos (£BAC). obtain
similar relationships for the other segments.]

—

A D C
Figure 5.44

6 In the proof of the converse of Ceva’s Theorem we made the statement that, if
AF AF
FCFC
then F = F’. Verify that this is true.
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5.9 Pythagorean Triples

LAUNCH

1 Pick any two positive integers m and n where mis greater than n. Now compute g, b, and c,
where a = n? — n?, b=2mn and ¢ = m? + n?. Examine your values for a, b, and c. Specifically,
check if a® + b?> = ¢2. What does this mean? What did you just find?

2 Pick two different positive integers m and n, where m is greater than n. Follow the directions
above again. Did the same relationship exist between a, b, and ¢?

3 Do you think this will always work? What does this mean?

Now that you have completed this launch question, you may be thinking that you have found a
way to generate three numbers that can serve as sides of a right triangle. Pretty cool, isn’t it? We
will investigate this further in this section.

Thus far, we have demonstrated how the Pythagorean Theorem and its consequences can
be used to develop some very important relationships. In this section we wish to study the
Pythagorean Theorem a bit further.

As you know, there are many “special” right triangles that are included in the secondary school
curriculum. For example, there is the 3-4-5 right triangle, the 5-12-13 right triangle, and so on.
Such sets of 3 positive integers which can serve as the sides of the same right triangle are called
Pythagorean triples.

You may be thinking that the method you used in the launch question can be used to generate
all Pythagorean triples. Surprisingly, that is true. In this section, we will show how this can be
done, and in the process we will connect the material we studied in Chapter 2 on divisibility with
geometry and algebra. The connections alone make the journey worthwhile.

Here is our first theorem:

Theorem 5.28 Suppose we have a triangle ABC with sides a, b, and ¢, and suppose that there are
positive integers m and n such that a = m? —n?, b= 2mn, and ¢ = n? + n?. Then, the triangle ABC
will automatically be a right triangle.

Proof. All we have to do is show that a? + b = c2. Since a = m? — n?,
a? =m* — 201? + n* (5.78)

as you can easily verify by multiplying a by itself.
Since b = 2mn,

P = 4nPn?. (5.79)
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And, since ¢ = n? + n?,
2 =m* + 2nPn? + . (5.80)

However, notice that, if you add equations (5.78) and (5.79), you get equation (5.80) . Thus, a>+ b?* =
¢? and, by Theorem 46 from the previous chapter, the triangle, ABC is a right triangle, regardless
of the values of mand n. W

What is surprising is that the converse of Theorem 5.28 is true; namely, if we start with a
right triangle with legs a and b, and hypotenuse ¢, where a, b, and ¢ have no common factors
(other than 1), then there MUST be positive integers m and n such that a = m? — n?, b = 2mn, and
¢ = n? + n?. This result will be the main theorem of this section.

We reiterate, we are assuming from the outset that a, b, and ¢ have no common factors. What
this means is that the greatest common divisor of a, b, and c is 1.

We first observe that, if a number is squared, then all its prime factors are raised to even powers.
Furthermore, if all the prime factors of a number (when it is factored completely into primes) are
raised to even powers, then the number is a perfect square.

Let us give a numerical example to demonstrate. If N = 235°, then N? = 2°5!2 and all exponents
are even. Conversely, if P = 3974, then P = T?, where T = 3372. That is, if all powers of the primes
in the factorization of a number are even, then the number is a square. Armed with this fact, we
can prove our first lemma.

Lemma 5.29 If's and t are positive integers with no common factors and st is a perfect square, then
both s and t are perfect squares.

Proof. Let us factor st into primes. Since it is a square, all primes in the factorization are raised to
even powers. Since s and t have NO COMMON FACTORS, each prime raised to its power goes with
EITHER s or with t. You cannot have a prime going with s and with ¢ because that would mean
that s and t will have a common factor. Since all the powers of the primes are even, those that go
with s have even powers and all the primes that go with t also have even powers. Thus, s and t are
squares. W

Lemma 5.30 If a, b, and c are positive integers with no common factor and if a®> + b? = ¢2, then one
of a or b is even, and the other is odd.

Proof. If both a and b are even, then c2 being the sum of two even numbers is even, and hence ¢
is even. That means that each of a, b, and c are even. This contradicts that they have no common
factor. So a and b cannot both be even.

If both a and b are odd, then so are their squares. And since ¢ = a? + b?, ¢> must be even, being
the sum of two odd numbers. Hence ¢ must be even. Since a and b are odd and we now know that
c is even, we can write a = 2k+ 1 and b = 2] + 1 and ¢ = 2r where k, /, and r are integers. Substituting
this into a? + b* = ¢?, we get that

(2k+ 1)+ 21+ 1) = (2r)?,
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or, after squaring and simplifying, that
4K + 4k + 417 + +41 + 2 = 412,

which in turn can be written as
4r2 — (4k*> + 4k + 41° + 4]) = 2.

Now, since 4 can be factored out of the left side of this equation, the left side is divisible by 4. But
the right side isn’t. This can’t be. Thus, it can’t be that both a and b are odd.

We have dispensed of the case where both a and b are even and where a and b are odd. The
only case left is that one of @ and b must be even and the other odd. B

Lemma 5.31 If a is odd and c is odd, and if a and ¢ have no common factor (other than 1), then

c+a c—a
Tand have no common factor (other than 1).
c+a c—a c+a
Proof. First, we know that = and are integers, since ¢ + a and ¢ — a are even. Now, if >
c—a c+a c—a
and 5 had a common factor, say d, then, since d divides both, > and — d must divide

c+a c—a c+a c—a
their sum and difference. That is, d must divide > + = c and d must divide — T, < a.

But ¢ and a have no common factors other than 1. So d mustbe 1. W
We are now ready to prove the main theorem about generating our Pythagorean triples.

Theorem 5.32 Given that a, b, and c are positive integers with no common factors, and a is odd and
b is even, then, if a® + b* = ¢, there are positive integers m and n such that

a=ne +n?
b =2mn
c=n?+n.

Proof. Write a® + b*> = ¢? as
P =c®-a®
Dividing both sides by 4 we have

P2 _g?
44

which in turn can be written as

b 2_(c+a) (c—a)
<§> == 5 (5.81)

So, on the left, we have the square of an integer, and on the right, we have the product of two
integers @ and (C;Z“)With no common factor other than 1. So, by Lemma 5.30 we have that both
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(c+a)

>— and @ are perfect squares. That is,

(c+a)

5= m? and (5.82)

(c—a) _
5 = n. (5.83)

Substituting these values from equations (5.82) and (5.83), into equation (5.81) we get

b 2_(c+a) (c—a) _ 5
(2)" 2 Tz S

from which it follows that that g =mn. Hence, b =2mn. Also, subtracting equation (5.83) from
equation (5.82), we get a = n? — n?, and adding equations (5.83) and (5.82) we get ¢ = n? + n?.

Thus, we have shown that g, b, and c satisfy the formulas we gave in the theorem. B

This theorem is telling us that all right triangles are generated in the same way using different
values for m and n. This is a rather interesting result, don’t you think?

As we hope you are aware, throughout this text we have been trying to point out the
connections that exist between different areas of the mathematical content studied in secondary
school. We now take the opportunity to make connections between number theory and geometry
by showing a second proof that +/2 is irrational (though this is not as elegant as the proof in
Chapter 1 which required minimal knowledge).

Begin with a right triangle whose legs are 1 and 1, and suppose that the hypotenuse, which is
V2, is rational and equal to E' where p and g are positive integers with no common factor. Then

p

the sides of our triangle are 1, 1, and ~ and, if we multiply all the sides by g, we get a similar right

triangle with legsa=¢q, b=¢q, and ¢ =q p. But, by Lemma 5.30, one of the legs, say a, of the right
triangle has to be odd and the other, b, has to be even. But a and b are the same! How could this
be? We have a contradiction!

Our contradiction arose from assuming that /2 was rational. Thus, +/2 is irrational.

In the next section, we return to the area of a triangle, and get some exciting results.

Student Learning Opportunities

1 What is the Pythagorean triple generated by m=2and n=1?

2 Generate a Pythagorean triple which gives us a value of 12 for one of the legs of the triangle.
Is there more than one triple with this property?

3 Find the sides of a right triangle that has all integer sides, and for which one leg is 9. Can you
find a Pythagorean triple one of whose sides is k where k is any odd integer? Explain.

4 Find the sides of a right triangle with all integer sides where the hypotenuse is 25.
5 Find a Pythagorean triple where the even leg is the smallest side.

6 (C) In trying to generate Pythagorean triples, some of your students have noticed that, if you
start with the Pythagorean triple, 3, 4, 5 and multiply each number by 2, you get 6, 8, 10,
which is another Pythagorean triple. If they multiply each number in the original triple by 3,
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they get 9, 12, 15, which is again a Pythagorean triple. They are wondering if it is always true
that, if each entry in a Pythagorean triple is multiplied by a positive integer k, the result will
be a Pythagorean triple. How do you respond and how do you prove it?

7 (C) One of your students has made the observation that, in all of the Pythagorean triples,
she has seen, at least one member is divisible by 3. For example, in the triple, 6, 8, 10, the
first member 6 is divisible by 3. In the triple 5, 12, 13, the second member 12 is divisible by
3. She has made a conjecture that every Pythagorean triple has a member that is divisible
by 3. Is it true, and if so, how do you prove it? [Hint: What can m and n be congruent
to mod 37]

5.10 Other Interesting Results about Areas

LAUNCH

In Figure 5.45

Figure 5.45

the sides of the triangle ABC, where C is the right angle and B is the vertex at the base of the
triangle, are of length a =3 units, b=4 units, and ¢ = 5 units. Let’s see how many different ways
you can calculate the area of this triangle.

1 First use the formula A = 3b x h. What did you get?

2 Now, use the formula A = %absin C. What did you get?

3 Now, examine the grid, noting that the triangle is one half of a rectangle whose sides are
3 units and 4 units. What did you get for the area?

4 Next, you will do something that is probably unfamiliar to you.

a. Figure out the perimeter of the triangle and let s equal 1/2 the perimeter.
b. Now, use the strange formula A = /s(s — a)(s — b)(s — ¢). Did you get the same area as
before?

5 Next, you will find the area by counting only boundary and interior points on the dot
diagram.
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(a) Count the number of dots that lie on the boundary of the triangle and let it be, B.
(b) Count the number of dots that lie on the interior of the triangle and let it be, /.

B
(c) Now use the strange formula A =1 + 5 1. Did you get the same area as before?

6 Compare and contrast the different formulas you used to calculate the area of the triangle.
When would you use one over another?

Having completed the launch question, you are probably still wondering about the formulas you
used in parts 4 and 5. Where did they come from? This section will explain.

5.10.1 Heron’s Theorem

Thus far, when finding the area of a triangle, we have used either A = %b x h or %ab sin C. While
these are most useful formulas, they necessitate knowing either the height or an angle of the
triangle. But, what if this information is not available? It would be most helpful if we could derive
a formula for the area of a triangle that only requires information about the sides. Actually, given
the relationships we have established thus far, we can do just that. We will use the Pythagorean
Theorem, the fact that we can factor n? — n? into (m — n)(m+ n), and the formula for the area of a
triangle, %ab sin C. Let us proceed.

Theorem 5.33 (Heron’s formula) The area, A, of a triangle with sides a, b, and c is given by

A=/s(s—a)s —b)(s—c)

. . . . . _ b
where s is half the perimeter of the triangle; that is, where s = #2*.

1
Proof. We know from Theorem 5.11 that the area of a triangle is A = Eab sin C. Let us square both

1
sides to get A% = Zazb2 sin® C. Since sin” C is 1 — cos? C, we can write this last statement as
2 1 21,2 2
A :Za b*(1 — cos“ C)
L 22
= Za b*(1 +cosC)(1 — cosC). (5.84)
22 2 22 2

Ty +2ab ¢ .Thus,1+cosC=1+—a +2 2 c .

a
. _(c+a—-Db)(c—a+Db)
. Similarly, 1 —cosC = 2ab .

Now, from equation (5.29) we have that cosC =
a’?+2ab+b*—c*>  (a+b)*—c®> (a+b+c)a+b—o)

2ab 2ab 2a
Substituting these expressions for 1 + cos C and 1 — cos C into equation (5.84) we get

1
A? = Zazbz(l +cosC)(1 — cosC)

_ lazbz(a+b+c)(a+b—c) (c+a—b)(c—a+D)
T4 2ab . 2ab
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_ (a+b+c)la+b—c)(c+a—b)(c—a+Db)

16
_(a+b+c) (a+b—c) (c+a—-b) (c—a+b)
= 5 . 5 . 5 . 5 . (5.85)
. a+b+c . . . . a+b+c a+b—c
Since s = ————, our first factor in equation (5.85) is s. Since s — ¢ = —Cc= L our

second factor in equation (5.85) is s — ¢. In a similar manner, the third factor in equation (5.895) is
s — b, and the fourth factor in equation (5.85) is s — a. Thus, our previous string of equalities now
simplifies to

A? =5(s — c)(s — b)(s — a).

Taking the square root of both sides and rearranging the terms, we have

A=/s(s—a)s —b)(s — ).

5.10.2 Pick’s Theorem

We end this chapter with one last result, Pick’s theorem. Pick’s theorem is concerned with finding
the area of a polygon whose vertices are at lattice points of the xy plane. (Lattice points are
points both of whose coordinates are integers.) In around 1899 Georg Pick discovered a remarkable
theorem showing how to do this that depends on nothing more than the number of lattice points
on the boundary of the polygon and the number of interior lattice points of the polygon. How
surprising!

We can model a portion of the xy plane using dot paper as shown in Figure 5.46 below. Each
dot represents a lattice point where the distance between consecutive horizontal dots is 1, and
the distance between consecutive vertical dots is 1. (Geoboards that allow students to easily form
different polygons, are usually used as a manipulative to help students develop area concepts,
and also develop Pick’s theorem. The following website is an applet that models the geoboard:
http://standards.nctm.org/document/eexamples/chap4/4.2/part2.htm#applet ).

Figure 5.46
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Consider the rectangle shown in the figure above. Finding its area is easy. We just count
the number of 1 unit squares contained in the figure giving us an area of 20 square units.
But, what if the figure was a triangle like the one shown below in Figure 5.47? How would
you find its area? In this case the polygon cannot be divided into easily countable square
units.

[ ] [ ]
[ ] [
° °
° °
[ ] [ ]
[ ] [
° °
° °
o o o o o o o
Geoboard
Figure 5.47

One could enclose the whole figure by a rectangle as shown below, and find the area of
the rectangle and then subtract the areas of the individual right triangles labeled in Figure 5.48
below.

®
[

]
®
[ )

Figure 5.48

Let’s do it. The area of the circumscribing rectangle is 6 x 5 or 30. The area of right triangle I

3x3 3x5 2x6
is %, of right triangle II is, %, and of right triangle III, % Thus, the area of the middle
triangle is

3x3 3x5 2x6
6x5—< > + > + 5 ):12.

Suppose we have a very complicated polygon and want to find its area. Proceeding as above
would be difficult and tedious. This is where Pick’s formula comes to the rescue. Here is the
theorem. We will break the proof up into several small parts.
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Theorem 5.34 The area of a polygon whose coordinates are lattice points is given by the following
simple formula

B
Area=1+= —1
rea +2

where I is the number of lattice points inside the polygon and B is the number of lattice points on the
boundary of the polygon.

Let us check the previous example using this theorem. Using the figure above, we can see that
there are 10 points inside the triangle and 6 points on the boundary. Thus, the area should be
10+6/2 —1 or 12, which is exactly what we got before. Look how much simpler this was! Let us
now move to the proof of this remarkable theorem.

We begin by proving Pick’s Theorem for a rectangle whose sides are parallel to the x and y axes,
respectively, and whose corners are at lattice points. We give the proof with a numerical example
first, and then extend it to the general case. So, let us focus on the rectangle in Figure 5.49 below.

Figure 5.49

We notice that there are 6 dots on the side which represents the length, and that makes the
side of the rectangle one less, or 5, as we can see. Similarly, there are 5 dots along the side which
represent the width of the rectangle, so that length is one less or 4. Thus, if a side of the rectangle
has a lattice points, the length of that side is a — 1. So a rectangle with a lattice points on one side
and b lattice points on the adjacent side has area (a — 1)(b — 1).

Now let’s count the interior points. There are (S — 2) or 3 rows of interior points, and (6 — 2)
or 4 columns of interior points. Thus, the number of interior points is (5 —2)(6 —2) or 12. In a
similar manner, if the number of lattice points on two consecutive sides of a rectangle are a and b,
then the number of interior points is (a — 2)(b — 2).

We now turn to the number of boundary points of the rectangle. This is the number of
boundary points on the left edge of the rectangle, 5, plus the number of boundary points on the
right edge (also 5), plus the number of lattice points on the top edge not already counted (6 — 2),
plus the number of lattice points on the bottom edge not already counted (6 — 2), for a total of
S+5+6—2+6—2=18. Similarly, if the left side of the rectangle has a lattice points and the top
side has b lattice points, then the number of boundary points on the rectangleisa+a+b—2+b—2
or just 2a + 2b — 4. We summarize these observations in Theorem 5.35.



The Triangle: Its Study and Consequences 209

Theorem 5.35 If the vertices of a rectangle are at lattice points and there are a lattice points along
the width and b lattice points along the length, then the area of the rectangle, Ag, is (a — 1)(b — 1), the
number of interior points, Iy, is (a — 2)(b — 2) and the number of boundary points, Bg, is 2a + 2b — 4.

Corollary 5.36 Pick’s Theorem holds for rectangles.

Proof. The area, Ag, of the rectangle by Theorem 5.35 is given by Ar =(a —1)(b — 1), which
simplifies to

Agp=ab—a—-b+1. (5.86)

1
Now, let us compute Ip + EBR — 1. By Theorem 5.35, the number of interior points of the rectangle
is (@ — 2)(b — 2) and the number of boundary points is 2a + 2b — 4. Thus,

1
IR+§BR—1

(a—2)(b—2)+%(2a+2b—4)— 1
=ab—a—-b+1. (Simplifying.) (5.87)

Comparing equations (5.86), and (5.87), we see that they are the same. So, Pick’s Theorem works
for this rectangle. B

We are now ready to verify Pick’s Theorem for a right triangle. (Can you see where we are going
with this?)

Look at the right triangle in Figure 5.50 below.

Figure 5.50

If the vertical leg has a lattice points and the horizontal leg has b lattice points (here a is 4 and
b is 7), then the number of lattice points on the two legs combined will be a + b — 1, since before
we counted the lattice point at the right angle twice, once for the vertical leg and once for the
horizontal leg. Thus, we have to subtract one from the count, so as to only count the corner lattice
point once.

Now, suppose that the hypotenuse of the right triangle has k points on the boundary. We
have already counted 2 of them when we added the number of lattice points on the legs. So, the



210 The Triangle: Its Study and Consequences

additional number of lattice points on the hypotenuse that we haven't yet counted is k — 2, and
the total number, B, of boundary points willbea+b —1+k — 2 or just

B=a+b+k-3. (5.88)

Let I be the number of interior points of the triangle. We want to show that the area of the triangle,
Ar, is given by Pick’s theorem. What this means is that the area is

B
Ar=1+ 5~ 1
which by equation (5.88) amounts to showing that the area is

a+b+k—-3 . 1 1 1 5
I+T—1 or just I+Ea+§b+§k—§. (5.89)

Now imagine the right triangle as half a rectangle as shown in Figure 5.51 below.

Figure 5.51

Then each of the two triangles has the same number of interior points, which is I, and the k — 2
vertices on the diagonal now become interior points, so the total number of interior points in the
rectangle is 21 + k — 2. The number of lattice points on the boundary is 2a + 2b — 4 (Theorem 5.35).
Thus, by Pick’s theorem for the rectangle, Corollary 5.36, the area of the rectangle is

(2a+2b—4) B

Ap =21 +k—2+ >

1

which simplifies to

Ar =2l +k+a+b-5.

It follows that the area of the triangle is half of this or

1 1, 1 5
AT=I+§a+§b+§k—§
and this is exactly equation (5.89), which is what we were trying to show. We have proved

Corollary 5.37

Corollary 5.37 Pick’s theorem holds for right triangles whose sides are parallel to the x- and y-axes.
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We now come to the hardest part of the proof, which is to prove Pick’s Theorem for arbitrary
triangles. But we seem to know what to do. We simply enclose the triangle in a rectangle whose
sides are parallel to the axis, and then proceed as we did in the beginning of the section. The idea
is simple, the algebra is messy, and we need to be careful when counting boundary points, interior
points, and so forth.

So referring to Figure 5.52 below,

b, a,

° o 9o o o °
°; "o o\elle o o
k, k,

° o o o o\ o 0,0

\% :
o o o o o ¢ o
ks
° 8 o 0 o o\o¢ o
° oo o o o °

Figure 5.52

we call the number of lattice points on the legs and hypotenuse of triangle I, a;, b1, and k;, and
use similar definitions for triangles II, III, and IV. We let I3, I, I3, and I4 be the number of interior
points of triangles I, II, III, and IV, respectively.

Now we know that each of the k; — 2 points on the hypotenuse of the first triangle are interior
points of the rectangle and the same is true for the other two triangles. Thus, the number of interior
points of the rectangle which we denote by Igis 1 + b+ I3+ s + k1 — 2+ ks — 2+ k3 — 2 or just

IR=I1+12+I3+I4+k1+k2+k3—6. (590)
The number of boundary lattice points on the rectangle which we denote by By is

(m+b3—-1) + (b2)
— ——
Lattice points on left edge  Lattice points on right edge

+ (b1 +az — 3) + (a3 — 2).
— —— ———

Not already counted lattice points on upper edge  Not already counted lattice points on lower edge

(See if you can explain the —1 in the first parentheses and the —3 in the third parentheses.)
This yields

BR:a1+a2+b1+a3+b2+b3—6. (591)

Let us denote the area of the rectangle by Ag. Applying Pick’s theorem to the rectangle and using
equations (5.90) and (5.91) we have
Br

AR=IR+7—1

N (a1 +az +by +az + by + by — 6)

=h+L+L+I4+ki+ky+k3s—6 >

1. (5.92)
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1 1
Then, from our previous work (see equation 5.89), the area of right triangle I'is I; + S+ Ebl +

1 5
Ekl ~ 5 and there are similar expressions for the areas of the other two right triangles. So the sum

1 1 1 5 1
of the areas of the three right triangles which we call St is (I; + S+ Ebl + zk1 - z) + (I + 532+
1 1 ) 1 1 1 5
Ebz + Ekz — z) + (I3 + Eag + §b3 + Ekg — z)

which simplifies to

(a1 +az+by +az +by + b3 +ky + kz + k3) _E
2 27

ST=11+12+13+ (593)

Now, if we denote the area of the middle triangle by Ay, we have that the area is the difference
between the area of the rectangle and the sum of the areas of the three triangles, which in
symbols is:

Ar = Ag — S7. (5.94)

If we replace Ag in equation (5.94) by equation (5.92) and St in equation (5.94) by equation
(5.93), and do the algebra, we get.

N (@y+ax+by+az+b, + b3 —6)

Il+12+l3+14+k1+k2+k3—6 2 1
Ar = Area of Rectangle
C(h+L+Ts+ (a1 +az + b1 +az + by + by + ki + ky + k3) B 1_5)
2 2
sum of the areas of the right triangles
ki + ko + k 5
which simplifies to Ar = I4 + % — 5 which can be written as
ki+ky+ks—3
ap=p,4 Kirketk =3 (5.95)

2

We have only one last step: The number of boundary points for the middle triangle, is (k; + k» +
k3 — 3) where the —3 is for the three vertices of the middle triangle which were double counted.
Letting B, = k1 + k2 + k3 — 3 and substituting into the above equation we get

B,

AT = I4 + 7 — 1,
which is exactly what we were trying to prove.

Now, to prove Pick’s Theorem for polygons, we can break the polygons up into triangles, or do
an induction proof. (See Chapter 8 for a review of induction and for the proof of the remainder of
this theorem.) For now, we accept it as true.

Pick’s Theorem is elegant. It is easy to state, though as you can see, it is quite another thing to
prove.

Student Learning Opportunities

1 (C) Your students have learned that there are multiple strategies for solving a problem and
some methods come easier to them than others. Given the problem of finding the area of
the triangle in Figure 5.53 below,
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Figure 5.53

do the following:

(a) List at least four different formulas they could use to find the area.
(b) Calculate the area using each of the formulas you have listed.
(c) Which of the formulas might be helpful for your more visual learners? Explain.

Find the area of a triangle whose sides are 10, 12, and 15.

Find to the nearest integer, the area of a quadrilateral ABCD if AB=5, BC=6, CD=7, and
DA =38, if 4B =100 degrees.

In Figure 5.54 below, the circles of radii 8, 10, and 12 are tangent to one another. Find the
area of the region between the circles to the nearest tenth.

of

Figure 5.54

A person is to pay a one time tax of 10 dollars per square meter on the area of his backyard.
The shape and dimensions of the parts of the backyard are given in Figure 5.55 below.

30 meters

15 meters
40 meters

Figure 5.55

Estimate the area of the land to the nearest square foot and the tax paid on this land.
[Hint: Draw RP and find its length as well as the measure of angle RPQ.]
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6 Find the areas of each of the following figures (Figures 5.56, 5.57, 5.58) using Pick’s Theorem.
Verify your answer without using Pick’s Theorem.

Figure 5.58



CHAPTER 6

BUILDING THE REAL NUMBER SYSTEM

6.1 Introduction

Have you ever wondered where the number system we use today came from? How did it come
about? Most secondary school students have never given this question a second thought and
don't realize that it was created by human beings over the course of thousands of years. The
understanding of the natural numbers (1, 2, 3, ...) seems to come quite “naturally” to all children
at very young ages. In fact, they are so basic that the mathematician Kronecker once said, “God
made the natural numbers; all else was the work of man.” (Bell, 1986, p. 477.) Indeed, the number
0, the negative numbers, fractions, and finally irrational and complex numbers were all human
creations, as were the rules for working with them. The evolution of today’s number system is most
interesting and will be the subject of this chapter. We will begin with the rudiments of numbers
and progress to some rather sophisticated properties and critical theorems about real numbers and
their representations.

The first part of this chapter investigates the reasons for the different methods we use to
perform operations on numbers. For example, we will address such questions as: “Why, when
we multiply a negative number by a negative number, do we get a positive number?” “Why, when
we divide fractions, do we invert and multiply?” We will discuss these informally at first, leaving
the more formal aspects to a later part of the chapter.

We will describe the kinds of observations that led to the discovery of the commutative,
associative, and distributive laws for whole numbers. We will then extend these rules to negative
integers. This will require defining rules for addition and multiplication of signed integers. These
rules will be motivated by practical applications. We will then show that, with these rules, the
commutative, associative, and distributive laws hold for integers. We then discuss and extend the
definitions of addition and multiplication to rational numbers. Afterwards, we prove again that,
with these definitions, the commutative, associative, and distributive laws hold. Finally, we extend
the laws to all the real numbers, which will entail using limits. Once we have these rules, we will
turn to the topics of exponents and radicals and develop their laws. We will follow this by a study
of logarithms, and solving equations, and inequalities.

In the second part of this chapter, we will discuss decimal representations of numbers and
prove some of the basic theorems concerning decimal expansions of real numbers. We will also
discuss the fascinating topic of cardinality, which we will then link to the study of algebraic and
transcendental numbers we started in Chapter 3. This seems like a long and drawn out process.
But there are no shortcuts to this. Although the ultimate formation of the number system as we
know it today was done by mathematicians, its creation hinged on years of observations made by



216 Building the Real Number System

people in the course of their lives. It is in this spirit that we tell the story of the development of
the number system. Join us on this interesting historic journey.

6.2 Part 1: The Beginning Laws: An Intuitive Approach

LAUNCH

A friend of yours challenges you to show how the distributive law, a(b+c¢) =a- b+ a- ¢, might be
applied in real life. You tell him that you use it all the time to do quick mental multiplication. Show
how you use the distributive law to calculate 7 - 28 quickly in your head instead of using the standard
algorithm for multiplication.

After having done the launch problem, you may now have a suspicion that, throughout your life,
you have been using the fundamental laws for numbers without even realizing it. After all, when
did you last question the fact that 4 + 5 = 5 + 4? These laws are so natural to us that we don’t even
think about them. In fact, surely we have used the laws long before we learned they were laws.
After reading this section, we hope you will have gained a better understanding of why this is
the case.

Throughout your mathematical studies, you have probably been exposed to the commutative,
associative, and distributive laws many times. That is because they play an important role in the
foundations of mathematics. Actually, since these laws are deeply rooted in our observations, we
readily accept them. For example, think of the statement that 2 + 3 is the same as 3 + 2. Historically,
addition meant combining. So, if you have two sticks and combine them with three sticks (say by
putting them all in a bag), whether you place 2 sticks in the bag first and then place another 3 in
afterwards, it is clearly the same as if you reverse the process. You will still have the same 5 sticks in
the bag. The figure below is a very elementary way of visualizing what you did, where the symbol
“1” represents a stick. Combining simply means moving things together, so that they are next to
each other.

IT + I = [IIII
e

combining 2 and 3

I + 11 = [IIII
—

combining 3 and 2

This idea holds true for all examples we construct like this and seems to point to the fact that,
for any natural numbers a and b, a+ b = b + a. Since no one has ever found an exception to this,
and our intuition about this is so strong, we accept it as a rule for natural numbers and you know
it as the commutative law of addition.

We can use similar examples to verify the associative law. In this case we use parentheses
to mean, “consider as a unit.” To illustrate the associative law, consider two different ways of
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combining sticks, which we represent by (2 + 3) + 4 and 2 + (3 + 4). First, examine the meaning of
2+3)+4

(Il + IOI) + III = (M) + 1T = T
~—— ——

243 result
—_—
(2+3)+4

Next, examine 2 + (3 + 4)

IT + (IIT + IIIT) = II+ (IIIIII) = IIIIIIIOI
——— ——

344 result
~—
2+(3+4)

We get the same result in both cases. In repeated examples we observe similar results. Thus, we
accept that, for any three natural numbers a, band ¢, (a+b)+c=a+ (b+c).

The distributive law for natural numbers can also be illustrated with pictures. To see, for
example, that 2(3+4)=2-3+2-4, we need only draw the following picture where we use the
fact that multiplication means repeated addition. That is, 2(3 + 4) means adding (3 + 4) to itself,
twice; that is, (3+4) + (3 +4).

upon rearranging

(ITI + TIIT) + (III 1110 (11 + TIT) + ( III1 + 1100
——— ————

2(3+4) 2.3+ 2.4

Using similar pictures, we repeatedly verified this relationship and thus accepted the rule that,
for natural numbers a, b, and ¢, a(b+c) =a - b+ a - ¢, otherwise known as the distributive property.

Similar pictures can be used to illustrate the commutative laws of multiplication and associative
laws of multiplication for natural numbers. We ask you to do this for specific cases of 2(3) = 3(2)
and 2-(3-4) =(2-3) - 4, respectively, in the Student Learning Opportunities.

When we add the number O to the natural numbers, we get the whole numbers, and the rules
still hold. If we combine any number of objects with nothing, where nothing is represented by the
symbol 0, we get the same number of objects. That is, a+ 0 =0+ a = a. Again, the commutative,
associative, and distributive laws still seemed to hold with 0 added to the natural numbers. Thus,
for whole numbers, the following laws were postulated (accepted without question):

1. a+b=b+a Commutative Law of Addition

2. (a+b)+c=a+((b+c) Associative Law of Addition

3. ab+c)=a-b+a-c Distributive Law

4. ab=ba Commutative Law of Multiplication
5. (ab)c = a(bc) Associative Law of Multiplication

6. a+0=0+a=a Zero Property

We would like to comment on the use of parentheses in rules 2 and S in particular. Recall
(a + b) means, “Consider a + b as a single number.” Why do we put parentheses in rule 2 in the first
place?

The answer is more subtle than you might think. Addition is what is called a binary operation,
meaning that you can only perform the operation of addition on two numbers at a time. You have
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been doing this all your life, though you probably never thought of it. For example, think about
how you would add the following set of numbers:

13
+26
+22.

You probably would first add the 3 to the 6 in the last column, then you would take the result, 9,
and add it to 2 to get 11. Then you would carry. At each step of the way, you would add only two
numbers at a time. That is the only way our brain can process addition.

Thus, when we insert the parentheses on the left side of rule 2, we are indeed adding only two
numbers, the single number a + b, (expressed by putting parentheses around a + b), to the single
number c. The right side is similarly saying that we are adding the single number a to the single
number b + c. If we had just written a + b + ¢, it really would make no sense, since we can only add
two numbers at a time. If we just wrote a + b + ¢, it could be interpreted in two different ways. We
can see it as (@ +b) + c or a + (b + ¢). Rule 2 is saying that no matter how you interpret it you will get
the same answer. So, based on the associative law, if you are adding three numbers, you don’t need
to include the parentheses and writing the sum as a + b + ¢ is fine. If you are adding more than two
numbers, this is also true and that law is known as the generalized associative law. We will say
more about this in a later section.

The same remarks we made for rule 2 hold for rule 5. Multiplication is also a binary operation.
You can only multiply two numbers at a time. No matter how you interpret the multiplication
abc, whether it be (ab)c or a(bc), rule 5 says you get the same result. So, again, you can omit the
parentheses.

Rule 3, the distributive law, is quite important since it is the basis of so many of the algebraic
manipulations we do. Eventually, we will show that it works for all real numbers. We use this
when we multiply x(x +3) to get x> +3x. We also use this in the “FOIL” method that is often
taught in secondary school to multiply binomials. You will establish this in the Student Learning
Opportunities. Even when we solve more complicated equations like x(x + 3) + 2(x — 4) = -2, we
need the distributive law to expand and break up the parentheses so that we can proceed to solve
the equation. It is probably not a misstatement to say that the distributive law is the most useful
and important law in elementary algebra.

We have agreed to accept the commutative, associative, and distributive laws for natural
numbers, and also for whole numbers since not only has it been repeatedly verified, but it also
defies our intuition not to accept them. Of course, if someone comes along one day and finds a
counterexample to any of these laws, we are in trouble and would have to start all over again. It is
not likely to happen as we see in the next paragraph.

You may be wondering if one can rigorously prove that these laws are true. That way, we
wouldn’t have to just accept them. The surprising answer is, “Yes,” and a mathematician, Guisseppe
Peano (1852-1932) did prove them by just assuming more basic facts about numbers, together with
the principle of mathematical induction. He and others developed the entire real number system
from scratch and proved all the laws that we accept. Thus, they put this area of mathematics on a
solid foundation. It is a beautiful piece of work, but beyond the scope of this book, since it requires
a very detailed analysis that would take at least a semester to do completely. So, we will stick
to what people observed, and continue to develop the number system intuitively, just as human
beings did. Ultimately, we can rest assured that mathematicians have proven these rules.
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Student Learning Opportunities

1 (C) Your students who are more visual learners would benefit from seeing a picture that
illustrates that 2(3) = 3(2). What picture can you draw?

2 (C) Your students think that the following relationship is quite obvious and don’t really
see a conceptual difference in the expressions on either side of the following equation:
2-(3-4)=(2-3)-4. Draw a picture that would help them clarify this issue.

3 (C) When using the distributive property, your students often forget to distribute completely.
You decide that a visual representation might help improve their understanding and use of
the distributive law. What picture can you draw to illustrate this and how would you use the
picture to illustrate the law? [Hint: Begin with the rectangle shown in Figure 6.1 below.

b c

Figure 6.1

Finish it.]
4 Draw a picture similar to the picture from Student Learning Opportunity 3 and show

geometrically that a(b+ c + d) = ab + ac + ad for positive numbers, g, b, ¢, and d.

5 (C) You have decided that it would be helpful for all of your students to see a geometric
representation of the algebraic relationship that for positive numbers a and b, (a+ b)? =
a® + 2ab+ b?. How do you do it? [Hint: Start with the square below with side a+ b]. (See
Figure 6.2)

a b

Figure 6.2

After explaining the result geometrically, prove it using the laws presented in this section.

6 Using only the laws presented in this section, do the following problems. (Although we
assumed in this section that the numbers were whole numbers, the laws hold for all real
numbers and you may assume that.)

(a) Prove the “FOIL” method that is taught in secondary school:
(a+ b)(c+d) =ac+ad+ bc + bd.
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(b) Apply this method together with your knowledge of rules for exponents to show that
(X2 +1)(yz+3)=x?yz+3x2 + yz+3.

(c¢) Show that, for whole numbers ag, b, ¢, and d, a(b+ c+ d) = ab+ ac + ad.

(d) Show in a step by step manner why (a + b)(a? + ab+ b?) = @® + b> + 2ab? + 2a°b.

6.3 Negative Numbers and Their Properties: An Intuitive Approach

LAUNCH

One of the typical questions that teacher candidates are asked when going on a job interview for
a mathematics teaching position is how to explain to students that a negative number times a
negative number is a positive number. What would you say, if you were asked this question on an
interview?

As a mathematics major, you have used the rule that a negative number times a negative number
is a positive number many times over in doing your arithmetic and algebraic computations. But,
have you ever tried to figure out why this rule is used or how you could make sense of it to yourself,
or anyone else for that matter? Hopefully, in answering the launch question, you have come up
with an adequate explanation. In fact, there can be many explanations for this rule, some of which
you will learn about in this next section.

Negative numbers were created by human beings to express opposite situations. For example,
if 3 represented a gain of 3, then negative 3 represented a loss of three. So, if you combine (add) a
gain of 3 and a loss of three, the net result is no gain or loss. In symbols, (3) + (—3) = 0. A statement
like (—4) + 3 = —1 can be interpreted as “A loss of 4 combined with a gain of three results in a loss
of 1” which makes perfect sense. And (—4) + (—3) = —7 simply says that “A loss of 4 combined with
an additional loss of 3 results in a loss of seven.”

If we want to abbreviate our last example, we can omit the plus sign and the parentheses and
simply write —4 — 3 = —7 and read it as “A loss of three followed by a loss of four, results in a loss
of seven,” which is what we usually do in algebra.

In summary, mathematicians created the concept of negative numbers to allow us to express
opposite situations, and the following rule holds.

7. For every whole number a, there is, by creation,
a “number,” denoted by — a such that a + (—a) = 0.
The “number” —a that we refer to above is called the additive inverse of g, and we have our
seventh law, which is known as the additive inverse property. We put the word “number” in

quotes just to emphasize that this is a creation. We think of it as a number, since we are going to
use it in our computations.



Building the Real Number System 221

If we wanted an additive inverse of O, it would be a number which, when added to 0, gives O.
Since 0+ 0 =0, the additive inverse of O is taken to be 0. Put another way, —0 = 0. Notice in rule
7 we said there was a “number,” which is an additive inverse. Does this mean that there could be
more than one? As we will see later, the answer is, “No.”

Having created the negative numbers, we can now extend our number system. If to the whole
numbers we adjoin the negatives of whole numbers, we get the set of integers. Thus, the set of
integers includes O, +1, + 2, and so on.

In order to apply negative numbers to real problems, we must decide on rules for computing
with them, so this will ultimately make sense. Certainly, if we add two negatives, we should get a
negative (since, for example, the sum of two losses is a loss). And, if we add a positive and negative,
then the gain represented by the positive and loss represented by the negative must produce either
a gain or a loss depending on whether the gain is greater or the loss is greater. Since you are familiar
with these rules for addition of signed numbers, we need not discuss them further. But, for the sake
of our future work, we give the definition of the sum of two negatives. If x and y are whole numbers
then

—x + —y is defined to be — (x +y). (6.1)

So, for example, the sum of —3 and —4 is by definition, —(3 + 4) or —7.

Let us turn to multiplication of signed numbers. In elementary school we learn that, when we
multiply two numbers, we are performing repeated addition. Thus, 2(3) means that we add 3 to
itself 2 times. In a similar manner, we can extend this idea to multiplying a positive number by
a negative number. Thus, for consistency, 3(—4) should mean, adding negative 4 to itself 3 times.
In more practical terms, this means having 3 losses of 4 resulting in a net loss of 12. In symbols:
3(—4) = —12. Thus, at least in the business sense of gains and losses, we will have to define a positive
times a negative to be a negative. And, if we are lucky, after we have constructed all our rules for
computing with signed numbers, we will find that the commutative law holds and then it will
follow that (—4)(3) will also be —12. That is, a negative times a positive should also be a negative.
At this point in our development though, we have not confirmed that the commutative law holds
for signed numbers. We are just starting to operate with them. So, here are our formal definitions
of multiplying a positive times a negative and a negative times a positive, based on what we have
seen in practical applications: If x and y are whole numbers, then

(x)(—yp) is defined to be — (xy) (6.2)
(—p)(x) is defined to be — (xy). (6.3)

Notice, we defined the product in both cases to be the same. Thus, we have built commutativity
into our definition of multiplication.

How should a negative times a negative be defined so that it reflects what we see in real life?
Actually, it has been defined to be a positive, but how can we make sense of this? Imagine the
following scenario: If each week you lose three pounds, you can represent this loss by (-3). If
this has been going on for several weeks and continues, then 4 weeks from now your weight
will decrease by 12 pounds. This loss of weight can be computed as follows: 4(—3) = —12. In this
computation, 4 means 4 weeks in the future. Therefore, 4 weeks in the past, the opposite situation
would be represented by —4, and 4 weeks ago your weight was 12 pounds more than your weight is
now. So, if 4(—3) means what your change in weight will be 4 weeks in the future, then (—4)(-3)
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would represent your weight change four weeks in the past. And since that weight change was
positive 12, we should probably define (—4)(—3) = 12.

This is not a proof, but simply a way of saying that, if we are going to represent opposite
real-life situations by using negative numbers, we are forced to accept the rule that a negative
times a negative is a positive for reasons of consistency in applications. Our formal definition of
multiplication of a negative times a negative is given by:

(=X)(=y) = xy (6.4)

where x and y are whole numbers. Thus, by definition, (—3)(—4) =3 -4 or 12. Notice that, by
definition, (—y)(—x) is yx which we know is xy since x and y are whole numbers. Thus, both
(—x)(—y) = xy and (—y)(—x) = xy. Thus, our definition automatically guarantees commutativity of
multiplication of negative numbers.

So, now that we have definitions (6.1), (6.2), (6.3), and (6.4) for addition and multiplication,
we have to establish that the commutative, associative, and distributive laws hold. They do, but
since the proofs are somewhat tedious, we just demonstrate a special case of one of them, the
distributive law, to give you a flavor of what is involved in the proofs and ask you to verify some
other cases in the Student Learning Opportunities.

Example 6.1 Prove the distributive law for a negative number times the sum of two positive numbers.

Solution. Suppose a, b, and ¢ are positive natural numbers, then (—a)(b+c) is the product of
a negative and two positive whole numbers. By (6.3), this expression by definition is equal to
—[a(b + c)], where we have replaced y by a and x by b+c. This, in turn, equals —[ab + ac], since
the distributive law holds for natural numbers and a, b, and ¢ are natural numbers. And now,
by equation (6.1) with x replaced by ab and y replaced by ac, we have, —[ab + ac] = —(ab) + —(ac).
Finally, by equation (6.3), this can be written as (—a)(b) + (—a)(c).

In summary, we have shown that (—a)(b+c) = (—a)(b) + (—a)(c) when a, b, and ¢ are natural
numbers. Thus, the distributive law holds in this case.

This was only one case. We have to deal with the cases (—a)(—b+ —c), and (—a)(b+ —c), and
(a@)(—b + ¢), and so on. Since this is quite tedious, we will not do it here. Instead, we will just accept
these rules and be grateful that mathematicians took the time to prove them. We now have the
following theorems.

Theorem 6.2 Rules (1) — (7) (found on pages 217 and 220), hold for the integers.

Secondary school students have no trouble accepting rules (1)-(7) for integers. That a positive times
a negative is a negative is also easily accepted using the repeated addition concept we presented
earlier. However, accepting that a negative times a negative is a positive troubles them.

Another way to convince yourself or a student of this is to create an argument in which we
examine a specific case. Let us consider the product (—4)(—3). Assuming that we accept that O times
anything is O, we have that

-3.0=0.
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Rewrite this as
-34+(-4)=0. (6.5)
Now if we believe the distributive law holds, then we can distribute in equation (6.5) to get
(=3)(4) +(=3)(-4) = 0. (6.6)
But we already have accepted that (—3)(4) = 4(—3) = —12 so equation (6.6) becomes,
—-12+(-3)(—4) =0.

From this, it follows that (—3)(—4) = 12. (We are adding something to negative 12 and getting zero.
So that something, (—3)(—4), must be +12.)

Now that we have given a variety of reasons for why a negative times a negative must be
a positive, you might be more comfortable about accepting it. But, we should mention that
some mathematicians bitterly fought the existence of negative numbers. They didn’t believe in
their existence and many really did not understand them. As late as the nineteenth century,
author F. Busset, in his handbook of mathematics describes negative numbers as “the roof of
aberration of human reason.” An eighteenth century mathematician, Francis Maseres, describes
negative numbers as those which “darken...equations and make dark of the things which are in
their nature excessively obvious.” Given how accepted negative numbers are today, this type of
perception is hard to comprehend.

We have mentioned that negative numbers were created to express opposite situations, and
—3 represented the opposite of what 3 meant. What then would —(—3) mean? It would mean the
opposite of —3. Since —3 and 3 are opposites, the opposite of —3 is 3. That is, —(—3) = 3.

We have defined the rules for addition and multiplication of signed numbers. We have not
defined what subtraction of signed numbers means. We define a — b to mean a+ (—b). The
definition we give makes sense from a practical standpoint since, when you lose money, you
are adding a loss to your finances. Thus, any theorems about subtraction can be proven by
turning them into addition problems. To illustrate the definition of subtraction, 2 — 3 is defined as
2+(-3)=—-1and3-(-4)=3+—-(—4)=3+4.

This last example shows why, when you subtract a negative, you are adding a positive. A
more intuitive way of explaining this is to approach it from a practical standpoint. If a negative is
thought of as a debt, then subtracting a negative means, “taking away” a debt. And, when you have
a debt removed, you have gained. Thus, subtracting a negative is equivalent to adding a positive.

We have been using the negative sign in two different contexts. One is for subtraction, the
other is to represent the opposite of a number. The context makes it clear which is which. Most
calculators have separate buttons for subtracting and taking the negative of a number. All we really
have to keep in mind is that subtraction means addition of the opposite. This is a definition!

Student Learning Opportunities

1 (C) How might you explain to a student that a(0) = O for a an integer?

2 Using equations 6.1 and 6.4, show that (—a)(—b+ —c) = (—a)(—b) + (—a)(—c) where g, b, and
c are natural numbers.

3 Assuming the distributive law for addition holds, show that a(b— ¢) = ab — ac.
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4 (C) Your students want you to give another practical example, like the one given in the text
about losing weight over a period of weeks, to illustrate why a negative times a negative
should be a positive and why a positive times a negative should be a negative. What example
can you give?

5 Suppose that a, b, and c are natural numbers. Show that (—a)(bc) = (—ab)(c).

6 Suppose that a and b are natural numbers. We define —a+ btobe —(a— b)ifa > band b—a
otherwise. Use these definitions to add —4 + 3 and —3 + 4.

7 Show that, if a, b, and c are natural numbers, then —a+ (—b+ —¢) = (—a+ —b) + (—0).

6.4 The First Rules for Fractions

LAUNCH

It is a well known fact that fractions is one of the most confusing topics for elementary mathematics
students. In fact, secondary school mathematics teachers claim that their students have extremely
weak skills when it comes to fractions, and that this deficiency creates a major stumbling block when
they are trying to learn algebra. One of the reasons they have such difficulty is that the rules don’t
make any sense to them. How would you explain to your students who are having trouble learning
and accepting the rules for operating on fractions, why, when dividing fractions, you invert and

1/2
multiply? Specifically, how would you explain why, 3—;5 =1/2.5/37?

We hope that you were able to come up with an explanation for the rule for the division of fractions
that would be helpful to secondary school students. If not, don’t despair, since after you have read
this section, you should have a clearer idea of how this rule came about, and why it works. You
might even come up with more ideas for how to make this and other rules for operating with
fractions more understandable for you as well as your future students.

In this section we examine fractions, starting with only those that are rational numbers whose
numerator and denominator are positive. Later, we will expand our study to fractions that are the
quotients of any two numbers.

Fractions are natural quantities that people are faced with during the course of their lives.
For example, we often break things into parts and need to be able to describe what we see.
More specifically, we are first taught that % of a quantity is that which results from dividing that
something up into 3 equal parts and taking one of them. Thus, % of 6is 2.

We have in our minds what a picture of % of a loaf cake might be. Namely (Figure 6.3),

1/3 of a cake
Figure 6.3
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It is from pictures like these that the first rules for working with fractions arose. Since we are
developing the concept of fraction, we can define addition and multiplication any way we see fit,
and so we define it based on what we observe. So, for example, if we wanted to add % + %, it is clear
from Figure 6.4 below that the answer is %

Figure 6.4

We are just adding 2 pieces of cake that have the same size, %, and then another 3 to it, also
with size % So, all together we have five pieces of cake that size, or % of a cake. Thus, the rule is: to
add fractions with a common denominator, we just add the numerators and keep the denominator.
This follows from what the picture shows us. In symbols that rule is:

a b_a+b

c C c

6.7)

We emphasize that this is a rule that we accept, which tells us what we observe in the case when

3
a, b, and c are positive integers. Since — of a cake is 1 whole cake, just as 3 of a cake is a whole
cake, our observations lead to another rule: For any nonzero number k,

-=1

k

Let us turn to multiplication of fractions. Suppose that we want to take % of %. When we take
% of something, we divide it into 3 equal parts and take two of them. Thus, to compute % of %, we
divide the ‘51 into 3 equal parts, and take two of those parts. Here is the picture (Figure 6.5).

4/5
-

2/3 ———

Figure 6.5

The 4 vertical strips going top to bottom of the large rectangle represent % of the large rectangle.
We want % of this. So, we divide the % portion into 3 equal parts by horizontal lines and then take
two of them. This is represented by the cross hatched area. The overlap between the shaded area
and cross hatched area represents % of %. This is clearly % of the cake as we can see, since the cake
is divided into 15 equal parts by the horizontal and vertical lines, and we have 8 of them in this
part.

It appears that, to get the result, %, we needed to only multiply the numerators and denom-

inators of the fractions. We get the same sense with other similar examples. Each time we take
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a fraction of a fraction, it seems as if all we do is multiply the numerators and denominators
of the fractions involved to get the correct answer. So, we define an operation on fractions
that accomplishes this and we call this operation, multiplication of fractions. The definition of
multiplication of fractions is:

a ¢ _ac

b d bd
(where b and d are not zero).

Again, this is a rule based on pictures and observations. It explains what we are taught in
elementary school namely, that the word “of” in this case means “times.” The reason it means
times is because taking a fraction of a fraction seems to be done by multiplying the numerators
and denominators of the fractions, and thus it follows our definition of “times” for fractions.

When we come to adding fractions with different denominators, we have to be a bit more
careful. Let’s say we wanted to add % of a cake to % of the same size cake. Since, at this point,
we only know how to add fractions that have the same denominator, we must cut both of the
pieces into pieces of the same size. Hence, we have the idea of a common denominator. Finding a
common denominator has the effect of cutting the pieces into the same size.

Let us illustrate. Look at Figure 6.6 below. First, we consider % (the shaded section in part (a) of
the figure below) and then % (the shaded part of figure (b)) . We divide each third in figure (a) into
2 equal parts, and each half in figure (b) into three equal parts. We have thus divided each cake
into 6 equal parts of the same size. The figures also tell us right away that % is the same as % and
that § is the same as 2.

1/3=2/6

(@

1/2=3/6
(b)

Figure 6.6

Now that our cakes have been broken into pieces of the same size, we can proceed: %+ % =
2 + 2 = 3 Thus, the idea of getting a common denominator is based on cutting objects into pieces
of the same size, so that it is easy to tell how many we have.

The preceding analysis led us to the conclusion that 1 was equivalent to 2 and that 1 was
equivalent to % In short, our analysis illustrated the fact that we can multiply the numerator and
denominator of a fraction by the same quantity and get an equivalent fraction (or the same size

piece of cake.) This observation is called the Golden Rule of Fractions.

Golden Rule of Fractions: The numerator and denominator of a fraction can both be multiplied
by the same nonzero quantity, and we will get an equivalent fraction. In symbols, the Golden Rule
says that, if a, b, and k are positive numbers and b# 0O, then

=ﬂ; it k20. 6.8)

SR
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Again, we accept this because all examples in our experience show us this is true. This at least is
what happened historically.

Given our example of adding % and %, we can explain the rule for addition of fractions that we
learned in elementary school. We have to get a common denominator. Thus, to add j + 5, where
a, b, ¢, d are whole numbers and b, d # 0, we may use as a common denominator, bd. We use the
Golden Rule to multiply numerator and denominator of the first fraction by d, and the numerator
and denominator of the second fraction by b, and the sum becomes

a ¢ ad c¢cb ad+bc

b d"bd ' bd” bd
Thus, we can define the sum of rational numbers in general as follows: § + 5 = %ﬁibc. Remember,
this is a definition that is based on what we observe for quotients of natural numbers.

Eventually, we will show that these rules for addition and multiplication hold for all fractions,
even when the numerators and denominators irrational. In this last sentence we seem to be saying
that, after this section, fractions will mean quotients of numbers, regardless of what the numbers
are, as opposed to rational numbers which will be quotients of integers. Indeed, this will be the
case. We will prove many of these laws from laws involving limits.

But first let us return to the Golden rule for a minute. If we read the symbolic representation of
the Golden Rule, equation (6.8) in reverse, that is, from right to left, it tells us that, if the numerator
and denominator of a fraction have a common factor k, then the common factor can be “cancelled”
to give us an equivalent fraction. (We will use the word “cancel” to mean dividing out common
factors from the numerator and denominator.) Thus, the justification for cancelation is the Golden
Rule (but read from right to left). That is why in algebra we cannot simplify the fraction “7”’ by just

cancelling a in the numerator and denominator to get %’, since a is not a factor of the numerator.

That is also why, when we simplify an expression like ’;2:39 , we must factor first before we divide.
Thus, ’f%f = (X(;i)éf_+13) = ("&i)gf) = @ No doubt, one of your (future) students would have gotten
the same answer by dividing the x? in the numerator by the x in the denominator to get x, and
then dividing —9 in the numerator with —3 in the denominator to get +3. Of course, this makes
no mathematical sense. It is pure luck that it worked in this case.

The rule for division of fractions that we learned in elementary school, which is to “invert and
multiply,” can be explained in several ways. Here is one: Suppose we wanted to divide % by %

This is:

niN|w| =

If the Golden Rule is to be true for all fractions, then we can multiply the numerator and

S
denominator of this complex fraction by the same quantity, 7 This yields

1 15 15
3 32 32 15
2 25 1 32
5 52

Thus, for consistency with our other rules, in particular, the Golden rule, we have to define
division of fractions by the rule “invert and multiply.” A second way to explain this is that division
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and multiplication are opposite in the sense that, when we perform the division 13—5 to get 5, we
check by multiplying 3 by 5 to get 15. For consistency then, if

niN|w| =
I
=

then Zx has to give 1 by cross multiplying. What must x then be? Answer, 2, since 2 x 2 = 1. But 2
is the result of inverting and multiplying! There are other ways to justify this definition. We point
out some of them in the Student Learning Opportunities.

We summarize our definitions for working with fractions where a, b, and ¢ are positive

integers.

p1:2,0_arb

c c c

a ¢ ac

a ¢ ad+bc
B3 4™ ha

a

p a d
F4a:2-2.2%

¢ b c

d

Now that we have rules for working with fractions, we can ask if the set of fractions satisfies
the commutative, associative, and distributive laws. They do and it is not difficult to show.

Theorem 6.3 The commutative, associative, and distributive laws hold for fractions.

Proof. We won'’t give the proof in all cases, but just show in a few cases how they follow from

the definitions F 1—F 4 above. Let us verify the commutative law of addition. By definition, § + § =

%. Furthermore, by definition, 5+ = %. But, since the numerator and denominator consist
of positive integers (and we already know that, for these numbers, the commutative, associative,
and distributive laws hold) (Section 1), we have

b
2 - ""db; © [By definition of addition of fractions, F1.]
bc + ad

=~ 0d [Commutative Law for addition of whole numbers.]

chb+da

== [Commutative Law for multiplication of whole numbers.]

c

= + lo_; [ Definition of addition of fractions again.].

Let us give one more proof, that multiplication of positive rational numbers is associative. We

begin with three fractions, %, 2, and % We wish to show that (% . 2) . % = g . <§ . E). Here is
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how it goes:

<a C) L& (E) . % [Definition of multiplication of fractions, F2.]

b d) f \bd

(ac)e .

= [Ditto.]
(bd) f

_a(ce) L.

= bdp [Associative Law for whole numbers.]
a (ce i T .

=3 (Ec) [Definition of multiplication of fractions, F2.]
a (c e )

=5 <3 . 7) [ Ditto.].

]
In a very similar manner, we can prove the rest of the commutative, associative, and distributive
laws for positive rational numbers. You will do some of this in the Student Learning Opportunities.
So far in this section, the word fraction has meant quotients of natural numbers. This is not
standard terminology as we have pointed out. When the word fraction is used in mathematics, the
numerator and denominator can be any type, including irrational numbers. A rational number,
by contrast, is the quotient of integers, where the denominator is not zero. Do the rules F1-F4
hold for rational numbers? Since we now are allowing negative integers for the numerator and
denominator, in this definition, we really are creating a new entity. So we have to define what we
mean by addition and multiplication and division of rational numbers. We define them by rules
(F1)—(F4) as we did earlier. Now, if we wanted to prove Theorem 6.3 for rational numbers, the
proof would be identical, since the definitions are identical and we have already pointed out that
the commutative, associative, and distributive laws held for all integers (and % =1 for all integers.)
Thus, we have:

Theorem 6.4 Rules (1)-(7), the commutative, associative, and distributive laws hold for all rational
numbers.

We emphasize that now we are allowing negative numbers in the numerators and denominators.
Before leaving this section, we should say a few words about why, when we deal with fractions, we
don't allow denominators of zero. There are many reasons for this, the primary one being that it
leads to inconsistencies which are not acceptable in a mathematical structure.

Here is an elementary explanation: Multiplication was originally defined as repeated addition.
Division can similarly be thought of as repeated subtraction. Thus, 15 divided by 3 can be thought
of as the number of groups of 3 that we can remove (subtract) from a group of 15 before we have
nothing left. Of course, the answer is 5. Now what would 15 divided by 0 mean? Answer: How
many groups of nothing can we take away from 15 till we end up with nothing? Of course this has
no answer, since no matter how many times we subtract O we will never be left with nothing. So,
we don’t divide by O.

As was demonstrated in Chapter 1, much can go awry if you try to divide by zero. The following
was an Student Learning Opportunity in Chapter 1: Find the flaw in the following proof that 1 = 2:
Start with the statement a = b. Multiply both sides by b to get ab = b*. Subtract a? from both sides
to get ab — a? = b> — a?. Factor the left and right sides of the equation to get a(b — a) = (b — a)(b + a).
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Now divide both sides by b —a to get a = b+a. Now, if we let a =b =1 we get the statement that
1 =2. The error here was that we divided both sides by a — b which was zero. That is what led
to the false statement that 1 = 2. The literature is replete with similar kinds of examples where
false conclusions result from trying to divide by zero. However, the main reason we can’t divide
by zero is that doing so would cause inconsistencies in the system, causing breakdowns in the
development of new results. Therefore, division by 0 is banned.

Student Learning Opportunities

1

(©) You are distressed to see that some of your high school students still have difficulty
adding fractions with unlike denominators. They insist on adding both the numerators and
denominators to get their answers. For example, given the following example, they would

4 1 5 . .
do as follows: 3t3=7 How would you use diagrams to help them see that their answer

and their procedure makes no sense and that finding a common denominator is a necessity?

(©) Your student has done the following work and is satisfied since he got the correct result.

. 2_ 2 _
Comment on your student’s work and correct it. £=22 = £ 4+ =2 = x + 5.

5 ~— x " =5

We mentioned that division is repeated subtraction, just as multiplication is repeated addition.
Use this idea to justify each of the following:
1
1+-=3
@ 1+
2
b)4--=6
(b) 4+ 3
6 3
— = — = 2
© 3 +3
16 4
d —-+-=4
d — -+
Based on (¢) and (d) of the previous example and similar examples, it seems that a - ¢ is

b b
equivalent to a Accept this as true. Using this, give another proof of the invert and multiply

rule. [Hint: Convert all fractions to a common denominator.]

5 Prove that multiplication of rational numbers is commutative.

6 Prove that the associative and distributive laws hold for rational numbers.

. . a
7 Use the rules from this section to show that 5 a =1.

10

11

b
Using the idea of division being repeated subtraction, explain why 7 is b for any positive
integer b.

a
Use the laws of this section to show that, if a and b are positive integers, b - 5= a.

When one solves the equation ax = b for x, one divides both sides by a. Using the laws from
this section, show why the left side becomes x. That is, justify it using the rules from this
section. (Here a# 0.)

(©) Your students ask you if integers are rational. What do you say?
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6.5 Rational and Irrational Numbers: Going Deeper

LAUNCH

In elementary school, children are introduced to the number line, a one-dimensional picture of a
line in which the integers are shown as specially marked points evenly spaced on the line. If we wish
to fill up this line with other numbers that are not integers, how would we do it? Specifically, answer
the following questions:

1 Where would the rational numbers fall on the line? How many rational numbers (points)
would be found between the point 0 and the point 1/2?

2 Where would we locate the point representing +/2?

3 How many irrational numbers would be on the line? How would these numbers be spaced?
Evenly or unevenly?

Did you ever stop to appreciate how beautiful the number line is as a representation of real
numbers? Actually, the number line was invented by John Wallis, an English Mathematician
who lived from 1616-1703. He must have realized that, since there is an infinite number of real
numbers, and there is an infinite number of points on a line, the correspondence of points to real
numbers is perfect! But, interesting questions arise when you begin to think about where all of
the numbers would appear on the line. This section will describe features of the rational and
irrational numbers that will give you a better picture of the density of the number line and the
quantity and distribution of all of the different types of real numbers.

The Greeks believed that all numbers were rational. That is, anything that could be measured,
necessarily had a length g, where p and g are integers, and g # 0. As we all know now, they couldn’t
have been further from the truth.

The Pythagoreans, the group that gets credit for discovering the irrational numbers, was
a secret society formed by the mathematician Pythagoras. The sect was very strict, lived in
caves, had many rituals, and studied mathematics as part of their attempt to understand the
universe. They were sworn to secrecy and many of their discoveries remained untold. Although
the Pythagorean Theorem was attributed to the master of their sect, Pythagoras, it was known long
before Pythagoras was born. Perhaps the reason the Pythagorean Theorem was attributed to this
group was that they may have given its first deductive proof. But, as is common in history, it is
hard to know exactly what happened over a span of a few thousand years, especially when many
of the books which might have contained the correct history have been destroyed.

As you may have guessed from the previous paragraph, the discovery of irrational numbers
hinged on the Pythagorean Theorem. That is, consider a right triangle where each leg is one. We
see, using the Pythagorean Theorem that the length of the hypotenuse is +/2. The surprise, of
course, was that +/2 is irrational as we have already shown in Chapter 1. There are infinitely many
irrational numbers, as we have seen in earlier chapters, and in a somewhat surprising result, there
are far more irrational numbers than rational numbers. (For more on this, see Section 6.16.)
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The Pythagoreans called irrational numbers “alogon” which means “unutterable.” It is written
that they were so shocked by this discovery, that anyone who dared mention it in public was put to
death. There is a well known story that the person who discovered irrational numbers, Hippasus of
Metapontum, “perished at sea.” Whether this happened as a result of the leak or because of rough
seas or illness, we don’t know. But most accounts seem to indicate that he was drowned as a result
of this discovery. One thing is clear though, this discovery was a major upset in the mathematical
world. Indeed, many of the proofs in geometry that depended on the idea that all numbers were
rational had to be corrected.

So now that we know that irrational numbers exist, we can join the set of rational numbers
with the set of irrational numbers to form (their union) a set called the real numbers. Thus, by
definition, every real number will be either rational or irrational.

Because of the launch question, you might be wondering about the spread of the irrational
numbers on the number line. Are they evenly distributed or not? Are they scarce or everywhere?
The next two results show that rationals and irrationals are everywhere. However, since in this
book, we are not developing the real number system completely, we have to make use of some
facts about real numbers that are intuitive. Here are the facts we accept: (a) The fraction % can be
made as small as we want by taking » large. (Thus, if n is one million, this fraction is m which
is small.) (b) Between any two numbers that differ by 1, there lies some integer. That is, for any
number a, there is always some integer k, that satisfies a < k < a + 1. For example, if a = 3.5, this
last statement says that between 3.5 and 4.5 there is an integer k, specifically the integer 4. If a = 2,
the above statement says that there is an integer k that satisfies 2 < k < 3. Obviously, that integer
k is 3.

Theorem 6.5

(1) Between every two real numbers there is a rational number.
(2) Between every two rational numbers there is an irrational number.

Proof. (1) Suppose x and y are any two real numbers, and that x < y. This implies that y — x > 0.
Since % can be made as small as we want, there is some positive number n that makes }1 <y-—x.
Let us take the smallest such n. Since the numbers nx and nx + 1 differ by 1, we know there is some

number k that satisfies nx < k < nx + 1. Divide this inequality by n to get x < f—j <X+ % But, since

we know that 1 <y — x (notice the strict inequality), the previous inequality can be written as

n
X< % <X+(y_x)l OriUStasx< % <.
We have found that between any two real numbers x and y there is a rational number 5, SO we

have proven the first part of the theorem.

Proof. (2) Take x and y rational and suppose that x < y. Multiply both sides of this inequality by v/2
to get v/2x < +/2y. Now, by part (1) of the theorem, there is a rational number k between the two
real numbers +/2x and +/2y. That is, there is a rational number k such that v/2x < k < +/2y. Divide
this inequality by +/2. to get x < \% < y. And since (Student Learning Opportunity 7) a rational
number divided by an irrational number is irrational, we have found an irrational number,
between x and y. W

Let us take this further. Suppose that r is any real number. Then, between the real numbers
r and r + 1, there is a rational number, r; by part (1) of the theorem. Similarly, there is a rational
number, 7, between r and r + % and a rational number r3 between r and r + %, and so on. Since the

k
Nok
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numbersr +1, 7 + %, r+ %, and so on get closer and closer to r, the numbers r1, 12, r3, and so on get

closer and closer to r. We have established the following (critical!) theorem.

Theorem 6.6 For any real number, r, one can find a sequence ry, r2, 13 ... of rationals converging to
r. (In the language of calculus, we are saying thatr = lim r,.)
n—oo

Now we know from calculus that the limit of the sum is the sum of the limits. There are similar

statement for the limit of the difference, product, and quotient (provided in the quotient, the

limit of the denominator is not 0). The first statement that the limit of the sum is the sum of the

limits can be expressed more formally in this case as I}Lrglo (a, +b,) = r}grgo a, + ;}Lnolo b, with similar

expressions for lim (a, — b,), lim (a,b,), and lim (a,/b,) provided limb, # O in the last statement.
n—o0 n—o0 n—oo n—oo

Here, all the limits are assumed to exist and be finite.

In the beginning of this chapter, we said that we would accept the associative laws, commu-
tative laws, and distributive laws for all whole numbers and then pointed out how, once the rules
for multiplying negatives were established, we could extend these rules to negative numbers and
eventually rational numbers which we have done. Using the theorems from this section, we can
now extend the rules to all real numbers.

We illustrate how this is done with one example.

Example 6.7 Show that, for any real numbers a and b, a + b = b + a assuming that the commutative
law holds only for rational numbers.

Solution. Pick a sequence of rational numbers a, converging to a, and a sequence of rational
numbers b, converging to b. Then

a=lima, and (6.9)
n—oo
b = lim b,,. (6.10)
n—oo
Now

a+b= }im ap + ’}im b, [Using equations (6.9) and (6.10)]

= ’}im (a, + by) [The limit of the sum is the sum of the limits from calculus.]
— 00
= lim (b, + a,) [Addition of rational numbers is commutative.]
— 00

= limb, +lima, [The limit of the sum is the sum of the limits again]

n—oo n—oo

=b+a [From equations (6.9) and (6.10)].

The proofs of all the other rules are similar. Thus, with the notion of limit, we can fill all the gaps
and move from rationals to all real numbers. So, we finally have:

Theorem 6.8 Rules (1-7) (found on pages 217 and 220), hold for all real numbers.
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Student Learning Opportunities

1 Assuming that ab=ba and a(b+c)=ab+ac hold for rational numbers, show, using
Theorem 6.6 that they hold for all real numbers.

2 Prove, using Theorem 6.6, that multiplication is associative for all real numbers, assuming
that it is associative for all rational numbers.

3 Show that, if a sequence {r,} of rational numbers converges to a then the sequence {—r,}
converges to —a. Then show that rule 7, that a + (—a) = 0 holds for all real numbers a.

4 (C) Your students ask you what the last rational number is that comes right before 3. How
would you explain to them that there is no “last rational number” that comes right before 3?
(In their proofs, we have often heard students say things like, “Well, let’s take the last rational
number before 3” in an argument.)

5 Show that the sum, difference, product, and quotient of any two rational numbers are
rational.

6 Show +/2++/3 isirrational. (Assume it is rational and square both sides.)

7 Show, using a proof by contradiction, that the sum, product, difference, and quotient of a
rational number and an irrational number are irrational.

8 Show that the product of two irrational numbers can be rational.

9 (C) Your students find it very hard to believe that there are really an infinite number of
(a) irrational numbers and (b) rational numbers between any two real numbers. How would
you prove to them that this is true?

10 Show that \/g and \/g are both irrational.

11 How many points are there with rational coordinates in the region of the plane bounded by
the line x + y = 6, the x-axis, and the y-axis?

6.6 The Teacher’s Level

LAUNCH

1 If a student asks you to prove that a negative times a negative is a positive, how would you
proceed?

2 A teacher explains the rule this way: If you show a movie of someone walking backwards in
reverse, then it looks like the person is moving forwards. Is this a proof? Comment on it.
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Experienced mathematics teachers will attest to the fact that secondary school students often want
to make sense out of the rules for multiplying signed numbers. In this section we provide proofs
of the validity of the critical theorems underlying those questions that are used on a regular basis
in algebra. Understanding these proofs should help you explain the areas that students find so
confusing.

In previous sections we gave intuitive and rigorous arguments to support basic theorems about
rules about operations with signed numbers and working with fractions. In this section we will
actually prove all of these theorems; however, we will have to assume something, and what we
assume is the validity of the commutative, associative, and distributive laws. Thus, if we assume
that the operations of addition and multiplication satisfy rules (1)-(7) found on pages 217 and
220, then it must follow that a negative times a negative is a positive, and that a positive times a
negative is a negative, and that any number times O is 0, and so on.

We will now begin an abstract development of the critical theorems you use regularly in
algebra. Below are the only assumptions we make.

For all real numbers, a, b, and ¢

1. a+b=b+a Commutative Law of Addition

2. (a+b)+c=a+(b+c) Associative Law of Addition

3. ab+c)=a-b+a-c Distributive Law

4. ab=ba Commutative Law of Multiplication
5. (ab)c = a(bc) Associative Law of Multiplication

6. There is a number O that has the property that

a+0=0+a=aqa Zero Property
7. For each a, there exists a (unique) number —a,

such that a + (—a) =0. Additive Inverse Property.

We assume nothing else. (Actually, we also assume that the sum and product of two real
numbers is a real number too, but we don’t explicitly state that since it seems so obvious.)
The first theorem is essential.

Theorem 6.9 There can only be one additive inverse of a number, x.

Proof. Our strategy for this proof is to begin by assuming that there are two numbers that are
additive inverses of a given number and then argue that they must be equal.

Suppose there were two additive inverses of x and that they are a and b. Then, by definition of
additive inverse,

X+a=0 (6.11)
and

x+b=0. (6.12)
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Now,
a=a+0 (Rule 6 above)

=a+(x+b) (Byequation (6.12))
=(a+x)+b (Associative law)
=(x+a)+b (Commutative law)
=0+b (By equation (6.11))
=b (Zero property)

|

We have shown that any two additive inverses a and b of x are the same. Thus, the additive
inverse is unique.

We now show how, with acceptance of rules (1)-(7), we can derive some of the usual rules of
algebra. These proofs show step by step what is really happening in some of the typical algebraic
manipulations that students do in their algebra work.

Theorem 6.10
(a) The equation x + x = x has only one solution, namely x = 0.
(b) If a represents any number, then a(0) = 0.
(¢) (—a)(b) = —(ab). In particular, a negative times a positive is a negative.
(d) (—a)(—b) = ab. In particular, a negative times a negative is a positive.

One would think that, because we are proving this for all real numbers, we will need limits for
parts (¢) and (d). However, we don’t need them, since Rules (1-7) on page 235 will do.

Proof. (a) Start with x + x = x and rewrite this as (x + x) = x. Add —x to both sides to get
(x+x)+(—x) = x+ (—x).
Use the Associative Law to rewrite this as
X+ (x+(—x) =x+(—x).
Use rule 7 above to rewrite this as
x+0=0.
Finally, use the rule 6 above to rewrite this as
x=0.
Thus, if x + x = 0, we have that x = 0.
(b) Since 0 + 0 = 0 by rule 6 above, with a = 0, we have,
a(0) = a(0 + 0).

Distributing, we get
a(0) = a(0) + a(0).
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Now, calling a(0) = x, this becomes

X+ X=X
And now by part (a),

x=0. (6.13)
But x = a(0). Thus, equation (6.13) says, a(0) = 0.

(c) We now know that a(0) = 0. Rewrite this as a((—b) + b) = 0. Distribute to get

a(—b)+ab=0. (6.14)

Equation (6.14) says that a(—b) is an additive inverse of ab, since they sum to zero. But there is
only one additive inverse of ab and that is —(ab). Thus,

a(—b) = —(ab). (6.15)

(d) We already know that any number times O is 0. Thus, (—a)(0) = 0. Rewrite this as (—a)(—b +
b) = 0. Distributing we get,

(=a)(=b) + (-a)b = 0. (6.16)
By equation (6.15), equation (6.16) reduces to
(=a)(=b) + (=(ab)) = 0. (6.17)

Now, equation (6.17) says that (—a)(—b) is an additive inverse of —(ab). But so is ab. Since the
additive inverse of (—a)(—b) is unique, (—a)(—b) = ab.

An alternative way of showing this is to start with equation (6.17) . Now we add ab to both sides
and follow along as in the proof of (a) or (c) to get (—a)(—b) = ab. You should work this through
and see it happen. B

Notice we have just proved theorems about addition and additive inverses. We have said
nothing about subtraction. We define subtraction the way it is done in secondary school. Namely
a — b is defined to be a + (—b). Here is another set of rules that one uses in secondary school.

Theorem 6.11

1) —(-a)=aq,
2) —(a—by=b—a

Proof. The first part is easier than it looks. We know that
—a+—(—a)=0 (6.18)

for we are just adding —a to its additive inverse. Now equation (6.18) says that —(—a) is an additive
inverse of —a. But so is a. Since there is only one additive inverse of a number, —(—a) = a.
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The proof of the second part is similar, but requires more detail. See if you can fill in the reasons
for each step below:

(@-b)+®b—a
=(@+-b)+(b+—a)
=({(a+-b)+b)+—a
=@+ (-b+b)+—a
=@+ (0)+—a
=(a)+—a

=0.

Since (a — b) + (b — a) =0, (b — a) is an additive inverse of (a — b). But there is only one additive
inverse of (@ — b) and thatis, —(a—b).So —(a—b)=b—a. R

As you well know, in algebra it is helpful, or sometimes essential, to be able to rearrange terms.
Often students have difficulty accepting the legitimacy of claims such as a — b + ¢, is the same as
—b + ¢ + a. We will now show why this can be done. Similar arguments will show that, when you
have a group of terms separated by plusses and/or minuses, they can be rearranged as long as the
signs are unchanged.

We know that a — b+ ¢ means a + —b + c. And we have pointed out in an earlier section that, by
the associative law, it makes no difference if you interpret a+ —b+c as (a+ —b) +c or a+ (—b +c¢).
The meaning is the same. So we can drop the parentheses and just write a — b+ c. Now, by the
commutative law, a+ —b+c = —b+a+c. So we have succeeded in showing that a — b+ c is the
same as —b +a +c.

In a similar manner, abcdef has the same value as decbfa. Again, we use rules (1)—(7) to prove
this and state this as a theorem for reference, since it is such a useful result. We will develop it more
in the Student Learning Opportunities.

Theorem 6.12

(a) In an algebraic expression consisting of terms added and subtracted, we may rearrange the
terms, as long as we keep the signs intact.
(b) In a product, the terms may be rearranged and we will get the same product.

Proof. Prior to the theorem, we have indicated how this is done when we have three terms. The
proof of this result in general, when there are many terms, is somewhat tricky and uses induction.
We don’t include it here, but we will give you a feel for how involved the proof is by demonstrating
it for 4 terms. We use the expression (a + b) + (c + d). Now, suppose we wanted to show that this
was the same as (d + b) + (c + a) . Here are the steps.

(a+b)+(c+d)=(c+d)+(a+b) [Commutative law]
=c+(d+(a+b)) [Associative law]
=c+(d+(+a) [Commutative law]

=c+((d+b)+a) [Associative law]
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=c+(a+(d+b) [Commutative Law]
=(c+a)+(d+Db) [Associative Law]

=(d+b)+(c+a) [Commutative Law].

It is this kind of proof that shows that, by using a combination of the commutative and
associative laws we can rearrange any sum and always arrive at an equivalent expression. That
is why we can discard the parentheses in any sum and write an expression like (a + b) + (c +d) as
just a + b+ c + d. No matter how you interpret this sum, the result is always the same! B

Part (b) of the theorem provides justification for why an expression like (—3x?)?)(4x*y) is equal
to —12x°y*. Although secondary school students are required to perform these rearrangements
in their study of algebra, they often don'’t feel confident in doing it and don’t understand the
reason it is allowed. That is, the standard procedures for representing the product is to place
the number first, followed by all of the x's, followed by all of the y's. In our example above we
have that (—3) (4)x>x*)?y and this readily yields the result —12x°y* once the rules for exponents
are employed.

There are some other properties of real numbers, which are important and which we postulate.

8. There is a number 1 with the property that

a-1=1-a=a for any real number a.

This property is known as the multiplicative identity property. (You multiply a number by 1 and
you get the identical number.)

Another property that we accept is the following.

9. For each nonzero number a there is a (unique) number

=g l.g=1.

denoted by a~! such thata-a~
The number a~! is called the multiplicative inverse of a.
Until now we have not needed to use rules (8) and (9), but we will need them now to continue
extending the properties of real numbers.
Rule 8 can be used to explain many algebraic processes. For example, when we solve quadratic
equations, we sometimes factor and then set each factor equal to zero. Why do we do that? The
following theorem tells us why.

Theorem 6.13 If a and b are real numbers and ab =0, then a =0 or b= 0.

Proof. Either a =0 or it isn’t. If a = 0, then we are done. If it is not, then a~! exists by rule 8. Now,
multiply both sides of the equation ab = 0 by a~! to get

a~(ab) = a1(0).
Since we have proven that a=1(0) is 0, this simplifies to

a(ab) = 0. (6.19)
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Using the associative law we get

(ala)p=0
or just
1-b=0. (6.20)

But 1-b =b by rule 9. Thus, equation (6.20) becomes b = 0. A similar proof shows that, if b# 0,
then a must be 0. W

Now let’s examine how this theorem plays a part in solving quadratic equations. If we want to
solve x2 — 5x + 6 = 0, we factor the left side and get (x — 2)(x — 3) = 0. Thinking of x — 2 as a and
x — 3 as b, we have ab = 0. Thus, either a or b must be 0. That is, either x — 2 or x — 3 must be 0. This
principle extends. If we have a product of any number of expressions, which is equal to zero, then
one of the factors is 0. This is often used in solving higher degree equations. For example, if we
wish to solve x> = x, then we bring everything over to one side of the equation to get x3 — x =0,
which factors into x(x — 1)(x + 1) = 0. This means that either x=0, x+1 =0, or x — 1 =0, which
tells us that either x =0, x =1, or x = —1.

Students often make the following mistake when trying to solve quadratic equations. Say they
want to solve x> — 2x = 4. They factor both sides to get x(x —2) =1-4 and then conclude that
x=1and x — 2 = 4 and therefore the solutions are x =1 and x = 6. Of course, if they check their
answers, they will see this is not correct. When we have a product like x(x — 2) = 4, we can make
no conclusion about what either of the factors is since the number 4 can be written as a product in

many ways. (It couldbe 1-40r2-2o0r6- % and so on.) So this method is completely wrong. But,
if the product of two factors is zero, then we can make a conclusion, and that conclusion is given
by the above theorem: Either one or the other factor is zero.

Ancient civilizations had methods for solving linear equations and for solving certain quadratic
equations, but the method of solving by factoring took a very long time to evolve. Part of that may
be that the concept of O as a number came relatively late in the history of mathematics.

In the next few sections we will discuss other aspects of the real number system. More
specifically, we will examine decimal representation of numbers, which represented a major step
forward for humankind. But first we need to review the concept of geometric series.

Student Learning Opportunities

1 (C) One of your students claims that x + x = x2 and 2x + 3y = 6xy. How do you help the

student? What are correct statements? What laws or definitions substantiate the correct
statements?

2 (C) If a student asks, “How do you know that 2x + 3y is the same as 3y + 2x,” how do you
answer?

3 (C) A student wants to know what the justification is behind the statement from algebra,
“When you add like terms to like terms, you will get a term of the same type.” (For example,
3x% + 2x? = 5x2.) How do you answer?

4 Using the laws for real numbers, show why a — b= —b+a.
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Using the laws for real numbers, show in detail why, if y + x = 0, then y must be —x.

Using the laws for real numbers, show in detail thata—b—c=—-c—b+a.

Using only rules 1-7 and Theorem 6.10, give a detailed proof that (a + b) + (a + b) = 2a + 2b.
Using only rules 1-7 and Theorem 6.10, give a detailed proof that (a+ b) + a = 2a + b.

One law that is used repeatedly in algebra is the following: If a+ b= a+ ¢, then b = c. Justify
this law using whichever of rules 1-7 you need. Thus, when someone sees the equation
X +y = x +3, one can eliminate the xs to get y = 3.

Using the fact that we don’t need parentheses when adding numbers, we can prove the
following surprising result: The commutative law of addition, rule 1, did not have to be given
as a postulate since it automatically follows from the other rules! Prove this. [Hint: Start with
(a+b)+(a+b)=2a+2b=(a+a)+(b+ b). Rewrite this as

a+b+a+b=a+a+b+b. (6.21)
Finish it by adding the appropriate quantities to both sides of equation (6.21).]

Using the laws for real numbers, show in detail that x — y — z=—z+ x — y.

Multiply the following numbersin your head: (245)(342)(4341)(3533)(5235)(0)(4566)(3004).
Explain how you did it. What rule(s) did you use?

(C) After learning how to solve quadratic equations by factoring, one of your students does
the following work and is confused why her solution does not check:

x2+3x=10

x(x+3)=10
x=5 and x+3=2
x=5 and x=-1.

How can you help your student? What is incorrect about this work? How can you use the
zero property to solve this equation properly?

Show that (—1) - x = —x. [Hint: 0- x =0. Write O as 1T + —1.]
Show that —(x+ y) = —x —y.
Show that b - (—a) = —ab.

(C) How would you justify, in detail, the following algebraic manipulation to a student:
(x+y)—3(x=2y)=(x+y)—(3x — 6y)? How would you continue to justify that this is the
same as x + ¥ — 3x + 6y and that this is the same as —2x + 7y?

If a and b are integers, then a+ b= b+ a mod m. That is, addition is commutative mod m.
Which of the other rules 1-7 are true mod m? Verify those that are true.

Prove that the multiplicative inverse of a number is unique.

. 1
Show that, if a sequence {r,} of rational numbers converges to g, then the sequence {r_}
n

1 1
converges to . Then show that a - i 1 for any real number a. It follows that a~' = Pt
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21 Let us consider the set, S, of all numbers of the form a+ bv/2 where a and b are integers
and that we add and subtract numbers of this form the same way we did in algebra. Will
the commutative, associative, and distributive laws hold for this set of numbers? How do you
know?

6.7 The Laws of Exponents

LAUNCH

One of the typical job interview questions for a mathematics teaching position is to describe how
you would explain to students why the expression 3° is equal to 1. How would you respond?

The secondary school curriculum requires that students have facility using the laws of exponents.
In order for this to occur, they must have a basic understanding of the fundamental rules and their
meanings. This section will clarify these rules and their associated theorems.

6.7.1 Integral Exponents

Algebra is a shorthand. We observe that 2+3=3+2 and 5+7=7+35, and so on. In order to
express our observations concisely, we can use the shorthand a + b = b + a. This is simple, clean, and
captures the whole essence of the concept that addition is commutative regardless of the numbers.
The same is true for all the other laws we have given—the associative, distributive laws, and so on.
When it comes to exponents, we also use shorthand. If n is a positive integer, we abbreviate

a-a-da-...-d
N — e’
n times

as a". Using this notation, we can establish the following laws of exponents.

Theorem 6.14 For positive integers m and n,
(E1) a™-a"=a™"
am

(E2) P am"
(E3) (a™)"=a™

axn a"
9 (5) = 5
(ES) (ab)" =a"b".

We refer to these rules for exponents as rules (E1)-(ES). Since we will be referring to these
rules often, we suggest you jot them down for easy access.
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The first law follows immediately from the definition of a raised to a power:

a’.-a’=a-a-a-...-a-a-a-a-...-a

m times n times

and we see that, when we multiply the two terms on the left, we have a string of m+n a’s on the
right. So we see that a” - a" = a"™".

When first working with exponents, it is wise for students to represent a few examples in
expanded form such as a?a® = (a-a)(a-a-a)=a®. This way it becomes very clear why the rules
hold.

Rule (E2) is explained by dividing. Most of the time rule (E2) is first taught assuming that
m > n so that negative exponents don’t have to be addressed. Thus, we may show the student

. ., a
some specific examples like —
a

a-a-a-a-a
a3 a-a-a

Now, we divide three of the five a's in the numerator with the three a’s in the denominator
and we end up with a - a or just a? in the numerator and 1 in the denominator. A few examples
like this will clearly demonstrate why the second rule for exponents holds.

Rule (E3) can be explained by expanding some simple expressions. For example: (a?)® =
a?-a? - a? = (by rule (E1)) = a**?*2 = a3® = g%, After a few examples, one discovers the rule that,
when you “power twice,” you multiply the exponents.

Rule (E4) Follows immediately since

2.4

n times

o TE TR a
) =33 5=

by the rule that, when we multiply fractions, we multiply numerators and denominators.

Thus, rules (E1)—(ES) follow almost directly from the definition of raising a variable to a power.
We leave the proof of rule (ES) for the Student Learning Opportunities.

Typically, students confuse the different laws of exponents. That is why it is important to do
such things as compare rules (E1) and (E3). That is, it is useful to compare values of expressions
such as a* - a® and (a*)? and then point out that the first is a’ while the second is a'?, and why
this is so.

At this point, it is only natural to wonder if rules (E1)—(ES) can be extended to negative and
fractional exponents. First, we must ask the question, “What must the definition of a raised to a

negative exponent or fractional exponent be for rules (E1)—(ES) to hold in all cases?”
m

If we want rule (E2) to be true all the time, then it must be true when m = n. In particular, Z—m
must be @ = a°. And since any (nonzero) number, a”, divided by itself is 1, for consistency we
must DEFINE a° to be 1 when a# 0.

If you check most algebra books, you will see the statement a° =1, a# 0. Often one asks,
“What happens if a = 0 in the above definition of a®?” Well, we get 0°. So, what does 0° equal?
Some people feel that it should be defined to be 1 for consistency. But actually if you define it to
be 1, you get a different inconsistency: We know that O raised to any power is 0. So if you define
it to be 1, you run into the problem that, on the one hand, 0° = 1 and, on the other hand, 0° = 0.
We run into a similar problem if we define 0° to be 0, since then you have the inconsistency that
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a’ = 1. Mathematicians hotly debated this issue of defining 0°, and the final decision was made to
leave it alone. It is undefined. It is like division by O.
Continuing in this way, if we want (E2) to be true in all cases, we want it to be true when
0

a
m= 0. In particular, we want i to be equal to a®~" or a~". But we have agreed that a” = 1 (when

0 1
a#0). So Z—n = a~" simply becomes prie a " when a# 0. It was this desire for rule (E2) to hold that

1
motivated the definition of a=" as t It was fortunate that all of the rules (E1) — (ES) hold with this

definition as we shall see.
Let us illustrate an example that involves both positive and negative exponents and shows that
rule (E3) holds.

Example 6.15 Show that (a=2)~3 = a®.

Solution. We transform the negative exponents into positive exponents, since we know by Theo-
rem 6.14 that rules (E1)-(ES) hold for positive exponents. Now,

1\-3
(@?3= (a_z) [Definition of negative exponent.]
= 11 5 [Ditto.]
(@)
1
= 71N [Theorem 6.14 part (E4).]
(a
6
=1 T [Invert and multiply.]
=ab.

In an identical manner, we can show that (a7)™" = a"™ where —m and —n are negative
exponents.

Similarly, one can prove all the other laws, but many cases must be taken. We will ask you to
prove some of the other laws in the Student Learning Opportunities. For now, we simply state the
results of all this as a theorem.

Theorem 6.16 Rules (E1)—(ES) hold if the exponents are any integers.

Student Learning Opportunities

1 (C) Your students are very confused by all of the algebraic rules they have learned and
claim the following: (2x2y*)(5x3y) = 10x6y* and (3x°y3)(4x3y?) = 12x'° 5. How do you help
them? Which law are they confused about?
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2 (C) Using only rules (E1)-(ES) for positive exponents, and the definition of a negative expo-
nent (that is, without using Theorem 6.16), how would you help your students understand
that each of the following are true.

@ (a2)’=a¢

(b) 073 _ b4

b4~ @B
(© a3-b3=(ab)3
(d) aa_; =ad®
(e) (a®)%=a'?

3 Assuming that mand n are positive integers, and using only Theorem 6.14 and the definition
of a number raised to a negative exponent, show that

@ (5)"=(2)

(b) (@) =a™

© (55)=am"

(d) afmafn — afmfn

6.8 Radical and Fractional Exponents

LAUNCH

If a student asked you why 252 is defined to be +/25, what would you say? If a student asked you
“What does 23 mean?,” how would you respond?
A student claims that +/25 = £5. Is that student correct? Explain.

If you were able to respond correctly to the launch question, you understand that there are some
subtle rules that you must be aware of when dealing with problems involving radical and fractional
exponents. The purpose of this section is to clarify these rules so that any areas of confusion you
may have had will be resolved.

6.8.1 Radicals

We saw in Chapter 3 a theorem that the equation x? = a has a solution for each positive a. In fact,
there are two solutions. But only one of them is positive. In algebra, a square root of a positive



246 Building the Real Number System

number, g, is any number b which when multiplied by itself gives a. Thus, a square root of 9 is 3,
since 3 multiplied by itself is 9. Another square root of 9 is —3 since —3 multiplied by itself is 9.
Thus, there are two square roots of 9.

The positive square root of 9 is denoted by +/9. Stop! Notice the words, “The positive square
root.” Many people think that +/9 is +3. It is not. On the secondary school level, the use of the
square root symbol means the positive square root. If we wanted to talk about the other square
root of 9, we would denote it by —+/9. This quantity is —3. The confusion here seems to come from
the fact that the equation x? = 9 has two solutions, +3, or put another way, ++/9. Yes, the equation
has two solutions, but the symbol +/9 by itself means the positive square root. Some books call the
positive square root the principal square root of a.

As we observed, every positive number has two square roots. The positive square root of a is
denoted by ./a. Of course, there is only one square root of 0 and that is 0.

We will now present theorems that support our work on radicals. Here is our first theorem. We
don’t really need the words “If a is nonnegative” since the symbol /a in secondary school already
requires that a be nonnegative. We include it for emphasis.

Theorem 6.17

(a) If a is nonnegative then, \/a - \/a = a.
(b) Ifa and b are nonnegative, then \/a - /b = v/ab.

. Ja \/E
c) If a and b are nonnegative, then ~— = | —.
() If & 75 Vb

Proof. (a) This first proof is much simpler than one might think. We defined /a to be that
nonnegative number, b, which when multiplied by itself gives a. Thus, by definition, ./a multiplied
by itself must be a. That is, /a - \/a = a.

2
(b) Let us compute (ﬁ- \/E) . This is (\/5 \/l_a) : (ﬁ - «/l—7> = (Va- Ja)- <\/E \/E) = ab. Here
we have used part (a).
We have shown that ,/a - /b when multiplied by itself gives us ab. Thus (ﬁ . \/E) is one of

the square roots of ab. Since (ﬁ - JE) is nonnegative, and there is only one nonnegative square
root of ab which we denote by v/ab, it must be the case that v/ab = /a - /b.

(c) We leave this proof to you as it is very instructive. W

In the same way as we show that every nonnegative number has a square root, using the
Intermediate Value Theorem from Chapter 3, we can show that every real number a has a unique
cube root (that is, something which when multiplied by itself three times gives a.) We simply form
the function f(x) = x> — a for that specific a, and show that f(x) takes on positive values for some
x and negative values for other x. By the Intermediate Value Theorem, that means that the graph
must cross the x-axis. Crossing the x-axis means f(x) = 0 and hence that x* = a for some x. That
shows that there is a cube root of a. To show that there is only one cube root of a, we need to show
that the function never crosses the x-axis again. That is, f(x) is never O again. This follows since
the function is increasing. So, once it crosses the x-axis, it never crosses it again. (Refer back to
Chapter 3, the last section, for a review of this.) We denote this cube root by .7/a . There are similar
definitions for 4th roots, 5th roots, and so on. Thus, an nth root of a number a is a number which
when multiplied by itself n times gives us a. When # is odd, there is only one nth root. When n
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is even and a > 0, there are two nth roots, and the positive one (or principal nth root of a) is
denoted by /a. In general, when we say the nth root of a, we will mean the positive nth root when
n is even. The analog of Theorem 6.17 is Theorem 6.18.

Theorem 6.18 If n is a positive integer

@ (¥a
) 9 =

oG-

When n is even, we assume that a and b are nonnegative.

Proof. The proof is entirely analogous to the proof of the previous theorem and we leave it to
you. W

6.8.2 Fractional Exponents

Raising a number to a fractional exponent means nothing until we give it some meaning. We
begin with the definition of a]i, which we learned in secondary school means ,/a. Where did that

come from? Well, if we want to be able to apply rule (E1) in all cases, then it must be true that
11 11
az.-az =a2*2 =a' =a. Thus a2 multiplied by itself will have to give you a. By definition of square

roots, this tells us that, if a2 means anything at all, it must be a square root of a. We defined a: to
be ./a, but, since we cannot take the square roots of negative numbers and get real numbers, we
restrict our definition to a > 0 on the secondary school level.

Similarly, if we want rule (E1) to be true for fractional exponents, then az - as - as = ai*s+3 = al.

1

So as multiplied by itself 3 times will give us a. That is, a3 is a cube root of a. But, there is only
1

one cube root of a. Thus, we define a3 = J/a for consistency.

1 1
Similarly, we define a4 = /a, and so on. In general, we define a»n = /a when n is a positive
integer. But, if we are going to apply the rules (E 1) — (ES5) unconditionally, we are forced to require

that a > 0. While it is true that we can define cube roots of negative numbers, and fifth roots of
1 1.1
negative numbers and so on, we will NOT be able to make a statement like a2 - a3 =a2"3 unless

a > 0, since a% is not defined unless a is nonnegative. That is why, in textbooks where they ask you
to simplify radicals, you will often see the words, “Assume that all the variables under consideration
are nonnegative.”

One other thing. We denote the positive square root of a by \/a. When it is convenient, as it
will be later on in some proofs, we will denote this also as Za.

1
Having defined an, what would be an appropriate definition for a%? Well, if we want rule (E3)
1

m 1 m 1
to apply, then an must be (an)™. But an = /a. So, one way to define an is to define it as (an)™
which is (/a)™. Of course, for this definition to make sense when n is even, we must require that

1 m
a > 0. Note that, although an and a» have been defined based on consistency, we still do not
know whether rules (E1)—(ES) will hold with these definitions. After we establish some theorems
familiar to most secondary school students, we will begin the process of showing that these rules
do hold.
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Theorem 6.19 If a > 0, and m and n are positive integers, then (/a)" = «/a™. That is
1\" 1
(a n ) = (a™)n.

Proof. We know that

Ja)™  [Definition of amTH]

—_ ~

/a)™)" [Rule (E3) with /a in place of a]
myn m
= (a n ) [Definition of an].
This string of equalities read from the bottom up, tells us that
n
(a%q> =a™

m m
In words, if we take the number (a¥ ) and raise it to the n th power, we will get a™. Thus, <a5>
being nonnegative, must be the (principal) nth root of a™. We display this.

an = Jam. (6.22)
But, by the definition of a%, we have

= (Va)". (6.23)

Comparing equations (6.22) and (6.23) we see that

Jam = (Ya)". (6.24)

m
an

If a were negative and n were odd, then there is nothing wrong with the string of inequalities
that we have given, and thus equation (6.24) would be true in this case. We run into a problem
when n is even and a < 0. Thus, to avoid this problem, we will agree that, when a negative
number is raised to a fractional exponent, the exponent must be in lowest terms with an odd
denominator. W

A Student Learning Opportunity that we presented in Chapter 1 will show why we need these

1
restrictions. There, we Computed the value (—8)3 two ways. We computed (— 8)3 as /-8, which is
the deﬁmtlon of (— 8)3 and we got —2 as we should have. If we take the same (—8)3 3 and rewrite it

as (—8)6 6 and then attempt to apply Theorem 6.19, we get \/(—8)2, which is +2, not negative 2. We
cannot apply Theorem 6.19 in this case since a < 0, or explained another way, since the fraction %
is not in lowest terms, and we agreed that when a negative number is raised to a fractional power,
the fraction must be in lowest terms. This explains why, in mathematics books, you will often see
the following statement, “We define a% = /a™ for fractions “ that are in lowest terms.” This is
required when a < 0. But, when a > 0, we have seen in Theorem 6.19 that we do not have to have
this concern.
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So, do rules (E1)-(E5) hold for fractional exponents? Well, the theorem that this is the case for
fractional exponents when the bases being raised to powers are nonnegative has a proof which is
similar in nature to the way we do the following examples. It is easier to focus on the numerical
examples than on the proof in general.

[[98)

4 3
5 2t

[

Example 6.20 Show that, ifa> 0, a2 -as =a

4
3

ola
SN

. 3 i 15+8 23
Solution. a2 -a5 =a10 -a10 = (Ya)" - (Va)® = (va)"*"* = (va)*’ =a

ZES
NIw
(SIS

3
Example 6.21 Show that ifa > 0, <a§> =a

Solution. This is a bit more subtle. Since fractional exponents are defined in terms of radicals, we
will convert our expressions to radicals. We will need the fact that y/.¥a = ¥a. Why is this true?

5 1

Well, if we compute ( 1{’/5)5, we get al0 = a2. This last sentence says that '/a multiplied by itself 5
1 s/ 1

times is a2, so ¥a must be V a2 or, put another way, ¥a = ./%a.

Now we proceed to the main part of this example. Using the definition of a fractional expo-

4 4
3\5 3\* 3 4 4
nent we have <a§) = <a§) = (5 (tﬁ)) = (5 Vv (a3)> = (1\0/a3) = <10 (a(S))4> = (k/" a(3)(4)> =
12 34
a2 = g70 = g2'5.
As you can see, proving the rules for exponents in general is not trivial, and verifying all the
cases the way we have done can be even more tedious. So once again, having given you the flavor

for how these proofs are done, we simply state the theorem and outline some of the proofs.

Theorem 6.22

(1) Ifa = 0, then /J/a = V/a.
(2) Rules (E1)—(ES) hold for positive fractional exponents.

Proof. (1) The proof is similar to the first part of Example 6 21. So we leave it to you.

m n m, m n mq np
(2) Proof of Rule (E1): We will show thata? -a4 =a? q NowaP -ad =abd -abd
mqinp m n
= ®fam . %a? = (rya)™ - (a)? = (wa)" "™ =a p =ar’a
n

mn

m
(Proof of Rule E3) We will show that (a P > T =ar.

weave (a5 ) - Ty W))” - (@) = (v = (Vamm) =ai =a¥i

Rules (E 2), (E4), and (ES) are left for the Student Learning Opportunities. W
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Corollary 6.23 Rules (E1)-(ES) hold for all fractional exponents.

Proof. Again, we just change everything to positive exponents and work from there. The proofs
can be tedious and we just accept the theorem. W

6.8.3 Irrational Exponents

Having explored the meanings and rules that apply for integer and fractional exponents, it is only
natural to wonder about the meaning of a” when p is irrational. There are some serious issues with
this, and to get into all of them would be beyond the scope of the book. But we can, at least, lay
the groundwork. In Section 6.5, Theorem 6.5 we proved that every irrational number p is the limit
of a sequence of rational numbers, r,. So one way of defining a” is to define it to be lima™. We

n—oo

are working with rational exponents, r,, when defining a”. We have already seen that we need to
require that a to be > 0 when dealing with arbitrary rational exponents, and, in fact, we avoid
many technical issues if a > 0. Thus, we will require that a be positive when defining a” where p
is irrational. When we talk about the function f(x) = a*, we also assume that a > 0.

One issue with this definition is that the irrational number, p, can be the limit of many
sequences, and we have to show that we get the same answer for a” regardless of which sequence
we take.

We do that now.

Theorem 6.24 Suppose that a > 0. If hm r,=p and hm Sp = p, then lim a’» = lim a*. Thus, the

n—oo n—oo

definition of a? = lim a' is mdependent of which sequence we take approaching p.
n—oo

T'n
Proof. Let’s examine lim

. Since r,, and s, both approach p, their difference r,, — s, approaches

n—oo (f°n
an an lim a™
0. Thus, lim = lim a" % = g° = 1. Since from calculus lim — = 2= and we showed this
n—oo @S n—oo n—oo (Sn lim as»
n—o0

limit is 1 in the last sentence, it follows that the numerator and denominator of this last fraction
are the same. That is, hm am=lima* W

So now we know how to gc_;ﬁpute with irrational exponents. Thus, if we wanted to define
3v2 power, we notice that V2=1.4142 ..., where the dots indicate it goes on forever, so we can
compute 31, 314, 3141 31414 and the limit of these is the meaning of 3v2. (A calculator might
just compute +/2 to say 4 places to get 1.4142 and then compute the value of 314142 as the value of
3vZ, Actually most calculators use more than 4 places.)

With our definition of a”, we can now show that rules (E1)—(ES) hold. We just need the limit
laws from calculus.

Theorem 6.25 Rules (E1)—(ES) hold even if the exponents are irrational.

Proof. (Rule (E1)) We will prove rule (E1) and leave the rest for you as they are very similar. We
wish to show only the special case that a” - a? = a’*? when p and q are irrational.
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Pick a sequence of rational numbers r,, converging to p and a sequence of rational numbers s,
converging to g. Then

al . gl =lim g™ - lim a*

n—oo n—oo

= lim (a™ - a’) [The limit of the product is the product of the limits.]

n—oo

= lim g’»*% [Since we have established rule (E1) for rational exponents.]

n—oo

lim (7,+s,)
— n— 00

[By a limit law from calculus.]

= al* [Since r,, + s, is a sequence converging to p +4.]

[ |

Notice how calculus, specifically the notion of limit, was needed to prove this result from
algebra. This is just another indication of the power of calculus. Not only was it a fundamental
tool in the sciences that allows us to make major discoveries about planetary motion and physical
systems in general, but it, allows us to prove relationships that were previously accepted without
question.

One of the kinds of equations that secondary school students are often asked to solve are those
that have variable expressions for the exponents. Here is a typical problem of the simplest type.

Example 6.26 Solve the equation for x : 42* = 83%+1,

Solution. The approach here is to represent both 4 and 8 in exponential form with the same base.
Since both 4 and 8 are powers of 2, our equation can be rewritten as

(22)2x — (23)3x+1 )

Using the rules for exponents this can be simplified to

24x — 29x+3

Since the bases are the same, the exponents must be the same also. (There is more to this
statement than meets the eye. It has to do with the fact that exponential functions are 1 — 1.) (See
Chapter 9 for more of a discussion on 1-1 functions.) Thus, 4x = 9x + 3 and solving for x, we get
that x = —3.
A slightly harder equation is

Example 6.27 Solve for x :

Solution. We observe that, since 9 = 32, 27 = 33, our equation can be written as

(32)x2 . (33)3)( _

35 1
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which by the laws of exponents can be simplified to 32¥ .3%.3-5=1. This, in turn can be
simplified to 32*+%*~5 = 3° and hence 2x? + 9x — 5 = 0. Factoring, we get (2x — 1)(x +5) =050 x =
and x = —5.

Student Learning Opportunities

1 (C) Your students claim that the solutions to the following equations are the same. Are they
correct? Explain.

X =+36
x? =36
2 How many real solutions are there for x that satisfy the equation
26x+3 . 43x+6 — 84x+57
X X+y

9 )
ey = 8 and 35 - 243, find x and .

3 If
Prove part (c) of Theorem 6.17.
Prove part (a) of Theorem 6.18.
Prove part (b) of Theorem 6.18.

Prove part (c) of Theorem 6.18.

® N O n b

Prove that Z—Z = aP~9 when p and q are irrational.

1
9 (C) How would you explain to a student why the definition of a4 is /x?

10 Show that every real number has only one real fifth root.

11 (C) How would you help your students understand that each of the following are true?

9 1
(a) 70 . @70 =aq

3 1

2 7
(b) a3 -a%4 =a72

2\* 8
© (03) =a3

1
125\3 5
@ (7) "z
x1/3 1/2 \
(e) (m) =X
2\ V2
12 (C) A student wants to know if the expression (ﬁ ) is rational or irrational. What would

you say? How would you explain your answer?

13 Solve the following equations for x:
(a) 22x L24x  J6x _ g

(b) 3" =9
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2

2%
(C) ? = 64
X+3

s -|6x+1 B
@@
(e) 4% —10(4)+16=0

14 If x = (&) and y= t(£7) where t > 0 and t# 1, then show that x¥ = y*. [Hint: Observe that
y = xt. Now compute %.]

15 Show that +/2 is a solution of x** = 2. Find a solution of x*’ = 3 and then try to make a general
statement about the solution of x*" = n.

6.9 Working with Inequalities

LAUNCH

Comment on the following solution procedure: A class is given the system of equations, x + y < 3,
x —y <7 and is told to solve for x and y. Student A adds the equations to get, 2x < 10, hence
x < 5. Student B immediately jumps in and says, “But, if we take the point x =4, y =0, it doesn't
work. So x < 5 can’t be the solution.” In response to this, student A says, “Hold your horses, | am not
done.” Student A then proceeds to subtract the two inequalities to get 2y < —4 so that y < —2. He
now looks at B and says, “The answer is x < 5 and y < —2. Your example, x =4 and y = 0 doesn’t
fit these conditions.” B looks A squarely in the eye and says, “Well then take x =4 and y = —3. That
satisfies your conditions, but doesn’t work in the original inequalities!” Resolve this issue. Who is
right?

If you are like most, you found the above scenario a bit confusing. When working with inequalities,
care must be taken, as there are quite a few subtleties that must be attended to. We hope this next
section will clarify these issues.

Now that we have essentially constructed the real numbers, we will turn to the issue of
inequalities. Before we begin, we must define what a < b means. Although you have an intuitive
sense of what this means, in mathematics, intuition is not enough when trying to determine for
sure which statements are true and which statements aren’t. Proof is what is needed.

So let us begin. We define a < b to mean that we can find a positive number p such that
a+ p =b. Thus, 3 < 4 since we can find a positive number, namely 1, such that 3 + 1 = 4. Similarly,
—4 < —1 since we can find a positive number, namely 3, such that —4 + 3 = —1. We define a > b to
mean b < a. (So, we define it in terms of what we know. We essentially are saying that any “greater
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than” inequality is a “less than” inequality read in reverse.) Using these simple definitions, we can
now prove without too much difficulty, some important relationships. This again emphasizes the
importance of having good definitions to make proofs easier.

Theorem 6.28 Ifa < b and c < d, then

(@) a+c<b+d.
(b) Ifkis a positive number, then ka < kb.
(¢) Ifkis a negative number, then ka > kb.

Part (a) states that we can add inequalities if they have the same sense (both “less than” or
both “greater than.”) Thus, since 3 <4 and 5 < 6, 3+4 < 5+ 6. Part (b) says that multiplying an
inequality by a positive number does not change the sense of the inequality, and part(c) says that
multiplying an inequality by a negative number reverses the sense of the inequality. So, since
3 <4, 53) < 5(4), but (-5)3) > (-5)4).

Proof. (a) Since a < b, there is a positive p such that

a+p=h. (6.25)
Similarly, since ¢ < d, there is a positive number q such that

c+q=d. (6.26)
We now add equations (6.25) and (6.26) to get

a+c+(p+q)=b+d. (6.27)

(Notice that adding equations is really a special case of adding the same quantity to both sides of
an equation. In this case we are adding c + g to the left of equation (6.25) and adding d to the right
of equation (6.25) which by equation (6.26) are the same quantity.)

Now, since p and g are positive, so is p+g. So equation (6.27) shows that we have found a
positive number, p + g, such that, when added to a + ¢, gives us b+ d. So, by the definition of “less
than,” a+c < b+d.

Proof. (b) Again, we begin with equation (6.25) and multiply both sides by k to get
ka +kp = kb. (6.28)
Since both k and p are positive, kp is positive, and equation (6.28) shows that we have found a

positive number, kp, which when added to ka gives kb. So ka < kb.

Proof. (c) We begin with equation (6.25) and multiply both sides by k, where k is a negative
number, to get equation (6.28) and then realize that, since k is negative and p is positive, kp is
negative. So —kp is positive. We add the positive quantity —kp to both side of equation (6.28)
to get

ka = kb + (—kp). (6.29)
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Since we have added a positive quantity, —kp , to kb to get ka, it follows by definition of “less than”
that kb < ka, which written in reverse tells us ka > kb. Thus, we needed to reverse our original
inequality, a < b, when we multiplied by a negative number. B

Here are some typical secondary school problems:

Example 6.29 Solve the inequality 2x — 3 < 4x + 1.

Solution. We subtract 4x from both sides and then add 3 to both sides to get —2x < 4. We divide
by —2 to get x > —2. Notice the reversal of the inequality.

-9
Example 6.30 Find all values of x which make XZ g~ 0.

X4 —

Solution. This problem is more complex than the first, but we can simplify the problem if we use
our prior knowledge of functions. Call the left hand side of the given inequality f(x). Thus, our
problem now becomes, “Find all values of x which make f(x) > 0.” Another way of stating this is
“Find the values of x where the graph of f(x) is above the x-axis.”

Suppose you have the graph of a function and you want to determine where the graph is above
the x-axis, (that is, where f(x) > 0) and where the function is below the x-axis (that is, where the
function is negative). The only way the graph of a function can go from positive to negative is to (a)
pass through the x-axis or to (b) jump from above the x-axis to below the x-axis or vice versa. That
is, (a) the function must take on the value O, or (b) the function must have a discontinuity. Thus,
to solve an inequality of the form f(x) > O, we need to only look at the places where it crosses
the x-axis, that is, where f(x) =0 and where it is discontinuous. If we mark these points where
f(x) =0 or where f(x) is discontinuous on a number line, this will divide the number line into
subintervals. The sign of f(x) cannot change sign in any such subinterval, though it can change
sign from one subinterval to the next. Since f(x) cannot change sign in any subinterval, we need
only test the sign of f(x) for one number in each subinterval and that will determine the sign
of f(x) in that subinterval.

That is the background. Now, using this approach let us solve the inequality above. We let

-9
f(x)= ;‘2—_9 f(x) will be 0 when the numerator is 0. That is, when x —9 =0 or when x =9.

f(x) will be discontinuous when the denominator is 0. That is, when x> — 9 = 0, which is when
x = £3. We mark off the numbers +3 and 9 on the number line and then check the sign of f(x) in
the subintervals. On the interval from —oo to —3, we get that f(x) is negative. (We need only
compute f(x) at one number in the interval. We can, if we like, compute f(—4) and we will see that
we also get a negative number.) Similarly, from x = —3 to 3 we see that f(x) is positive (compute
f(1), for example) and after x = 3 but before x =9, f(x) <0 (e.g. compute [(4)). After x =9, the
function is positive again (e.g. compute f(10)). So, the solution to our problem is ”% > 0,
when -3 < x < 3 or when x > 9”.

Now let us see what happens when we graph the function using the software used to write this

book (Figure 6.7).
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25+

-5 25 0 25 5

Figure 6.7

Notice that it is not clear from the graph that the function has discontinuities at x = —3 and
at x = 3. Had we not done the algebraic analysis, we could never be sure about what happened at
these points. Note also that our picture does not tell us what happens for x > 9. Is the graph above
the x-axis? Even if we redraw the picture in an interval containing 9, we still can’t see fully what is
happening as Figure 6.8 shows:

y150 T
100 4+

50 +

Lol )

15 ~10 5 o [ s 10 15
X

-100 +

Figure 6.8

That is because the values of f(x) after 9 are small. Of course, we can zoom in at 9 and get
a better idea of what is happening there. But, without the algebraic analysis, we wouldn’t even
know that we should examine the function at x = 9. Furthermore, what happens at x = 500? Will
this picture tell us? Maybe the graph crosses the x-axis at several other times and we just don’t
know it. The algebraic analysis tells us there are no other crossings.

Here is the picture of the graph of f(x) for x between 8 and 100, just to give credence to the
fact that f(x) is indeed positive after x = 9 (Figure 6.9). Notice the small numbers on the y-axis.
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Figure 6.9

We hope that this discussion has made it clear to you why, despite the power of machine
graphing technologies, we still need to be able to do the algebraic analysis!

1
Example 6.31 Solve for x: i 3.

Solution. A natural, but incorrect way to approach this problem that most students use is to
multiply both sides of the inequality by x to get 1 < 3x and then divide by 3 to get x > % Since,
if x is negative, the original inequality holds, through this approach we have lost infinitely many
solutions. What has not been considered is the fact that x could be negative. When x is negative
and you multiply both sides by x, you reverse the inequality.

Therefore, this problem really has two cases, Case 1 or Case 2.
Case 1. x > 0. You multiply both sides by x as we did above and you get x > %

Case 2. x < 0. Now you multiply both sides by x and you get x < % That is, the only negative x’s
that work are those less than 1. However, all negative xs are less than 1. So all negative x's work
in Case 2.

Our final solution requires the joining of the two cases. Since Case 1 or Case 2 can hold, our
answer is x > 3 or x < 0.

If we were to graph this on a number line our graph would look as follows (Figure 6.10):

& ) L S
< 7 T ?

0 1/3
Figure 6.10

An easier approach, that doesn’t involve cases, would be to rewrite our original inequality as

1—- 1—
3% _ 0. 1f we call f(x)= X3x,

X
then f(x) =0 when x=1/3, and f(x) is discontinuous when x = 0. We mark them both off on a

1
— — 3 <0, and then combine the fractions on the right to get
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number line and then check the sign of f(x) in the various subintervals to again get the picture
above.

Let us briefly discuss inequalities with absolute value. We know that |N| = 3 happens when
N = 4+3. When will [N| be < 3? When —3 < N < 3. Of course, |N| will be > 3 when N > 3 or when
N < —3. These principles are used to solve absolute value inequalities, and were used in certain
parts of calculus, for example, in finding the interval of convergence for power series.

Example 6.32 Solve |1 — 3x| > 3.

Solution. We can think of 1 — 3x as N. Our inequality becomes |N)| > 3 which means that N > 3
or N < —3. Using the value of N, this yields the inequalities, 1 — 3x > 3 or 1 — 3x < —3. We subtract
one from both sides of each inequality, then divide by —3 and make sure we remember to flip the

4
inequality. We get as our solution that x < —3 or x > 3

Student Learning Opportunities
1 Show by example that, if a < band ¢ < d, it does NOT follow thata —c < b—d.
2 Prove that, ifa < band b < ¢, thena < c.

3 (C) Astudent is convinced that if a < b, then a® < b?. Is the student correct? How would you
convince the student of the correct answer to this question?

4 Prove using Theorem 6.28 that, if 0 < a < b, then a? < b?.

1 1
5 (O) A student wants to know whether it is true that, if a < b, then s Respond to the

student by giving some examples and then give a proof that, if a, b > 0, it is true. Is it true if
aand b are < 0?7

6 (C) One of your students has solved the following inequality as given below and has
recognized that, when he picks a point in the solution set, x = 3.5, it doesn’t work. What
happened? How can you help your student realize where the error is and solve it correctly?

3x -9
x—4
3x —9 >0 (Multiplying both sides by x — 4.)
3x > 9

>0

x>3

7 Solve each of the following inequalities.
4x+16
<

@ x—1 =0
2x+1

(b) _3>2

(© > <4

x—13
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8 (C) One of your students has solved the following absolute value inequality as given below
and has concluded that there is no solution since, x > 5 and x < —1, and there are no such
numbers that satisfy both inequalities. Is the student right? If not, how can you correct the
student’s work?

4 —2x| < 6
—-6<4—-2x<6
-10 < —2x <2

5<x<-1

9 Solve each of the following inequalities involving absolute values.
@ 14-3x/ <6
(b) 18+2x|>7
3x -8
© |
(d) Ix—=3]<0.

>0

10 (C) You asked your students to resolve the issue we presented in the launch question and to
decide which of the two students, A or B, was right. Most felt that B was right. If that is true,
what did A do that was wrong?

6.10 Logarithms

LAUNCH

Your friend Tilly the Trickster asked you to help her with her homework and compute x = log;(—27).
Is there a solution? Why or why not?

Students of mathematics typically find the topic of logarithms quite confusing. It involves learning
new notation, new language, and many new rules. Beyond that, there are quite a few restrictions
that you must be aware of, as you can see exemplified in the launch question. This section
should serve as a good review of the basics of logarithms, the related rules, and interesting
applications.

Before the age of calculators, logarithms were used in the sciences to simplify some of the
difficult computations that were a regular part of scientific work. Since the age of calculators,
logarithms are no longer used for this purpose. However, there still is a very important use for
logarithms and that is to solve equations like 2%* = 3 where the variable occurs in the exponent.
This is especially true when the right and left hand sides of the equation cannot be expressed in
terms of a common base.
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The word logarithm is synonymous with exponent. Let us explain. In secondary school we
say that the logarithm of N to the base a is x and write

log, N=x (a>0,a#1) (6.30)
if and only if
a*=N. (6.31)

Thus, log, 8 = 3 since 23 = 8, and log, ; = —1 since 471 = % If we look at equation (6.30), we
see that x is the logarithm. If we look at (6.31), we see x is the exponent. Thus, the logarithm and
exponent are really the same.

It takes some time to get used to the switching between equations (6.30) and (6.31) but, once
you have it, it is easy. A way of thinking of the logarithm in words is, “the logarithm of N to the
base a is the exponent to which we must raise a to get N.” Thus, since the exponent to which we
must raise 2, to get 8 is 3, the logarithm of 8 to the base 2 is 3.

One thing you should take strong note of is that we cannot take the logarithm of a negative
number. For, if we were asked to compute x =log,(—3), we would be asking for a real number x
such that 2* = —3. But, 2 raised to any real power is positive.

The two most important logarithms are the common logarithm, which is the logarithm to the
base 10, and the natural logarithm, which is the logarithm to the base e. The common logarithm
is abbreviated log, while the natural logarithm is abbreviated In. On your calculator, you will see
both buttons.

Let us practice a bit with some typical secondary school problems.

Example 6.33 (a) Solve the equation log,(3x + 2) = 1. (b) Solve 10%* = 7.

Solution. (a) This is in the form of equation (6.30). We put the equation in exponential form,

and the resulting equation is 3x + 2 = 4. Thus, x = 2/3 and if we check it, we see it works.

log

7
(b) We write the equation as log,, 7 = 4x and therefore x is %. Now on your calculator,

you see a button labeled “log”. That button represents the log;, . You press the log button followed
by 7. Then divide the answer by 4 and you find x, which in this case is approximately 0.2112.

Natural logarithms are particularly useful in equations involving e. For example, if we had to solve
e* =5, we could write it in logarithmic form and get that x =1log, 5 or just In 5.

People at first cannot understand why the natural logarithm, which to many seems unnatural,
plays such a big role in mathematics. It is quite remarkable that it does. In fact, it occurs in
many equations describing behaviors of natural processes like radioactive decay, bacterial growth,
population growth, electrical circuitry, and so on, which is probably the reason for the word
“natural” in the expression “natural logarithm.”

Anything that we can do with the natural logarithm, we can do with the common logarithm,
but the natural logarithm offers us a simplicity that is preferable. There are many reasons for this,
not the least of which is that the natural logarithm function has a much simpler derivative than
the common logarithm (log,,) function. Since the derivative measures a rate of change, which
is an important concept in applications, the natural logarithm, having the simpler derivative, is
often preferable.
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The natural logarithm function and the related function e* just seem to occur everywhere in
applications. They are wonderful functions that do a great deal for us. Let us stop for a bit and give
some real applications of these.

Newton’s Law of Cooling states that, if a body with initial temperature T, is put in a room
with surrounding temperature Sy, then t hours after it is placed in the room, its temperature will
be given by the formula

T =So+ (Ty — Sp)ert (6.32)

where k is a constant. We said “t hours” but t can represent any unit of time.

Newton’s law is derived using calculus and is based on observations that physicists have made.
The law has been verified over and over again experimentally. It is an excellent model of reality.
Thus, when a cup of hot coffee is brought into a colder room, its temperature starts to decrease
according to Newton’s Law of Cooling until it gets to room temperature. The same thing happens
when a person dies. His body temperature decreases as time passes according to the above law.
This law is used in determining the time of death of a person whose body is found. The body’s
temperature is taken at two different times and that determines the constant k in equation (6.32)
for this body. The approximate time of death is then readily obtained as illustrated in the problem
below.

Example 6.34 George Smith arrives at work in the morning to find his boss 1. M. Meany, draped
across his desk and very dead. George calls the police who arrive and measure the body’s temperature
at 8 am. to be 76°F. At 9 am. they repeat the measurement and find the body’s temperature is 73 °F.
They observe that the thermostat in the room is at 70 degrees. They also see a note on the desk that
says, “Fire that jerk, Smith.” Naturally, Smith is the prime suspect and needs an alibi. For which times
must he have a good alibi?

Solution. Smith needs to find an alibi for a time period surrounding the time of death, say
between 1 hour before and 1 hour after. So, we need to determine the time of death. Newton'’s
Law is valid starting at any time we wish to start thinking about the cooling process. Thus. we can
let 8 am represent t = 0. Therefore, Ty, the body’s initial temperature at this time, is 76 °F, while
So, the surrounding room temperature is Sop = 70 °F (the temperature the thermostat was set at). By
Newton'’s Law of Cooling, the body’s temperature at any time ¢ after 8§ am (as well as before) is
given by

T=70+(76 —70)ek  orjust T =70+ 6e. (6.33)

We know that at 9 am (f=1), the body’s temperature is 73°F Using this information in
equation (6.33) we get

73 =70 + 6eKV). (6.34)

We subtract 70 from both sides of the equation, divide by 6, to get the equation
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and then, writing this in logarithmic form, we get k =1n(1/2) = —0.6931. We substitute this value
of k in equation (6.33) to get the body’s temperature at any time ¢. Thus,

T =70 + 6700931, (6.35)

We are now ready to finish. At the time of death, the body’s temperature was normal body
temperature, or 98.6 °F. We use this in equation (6.35) to get

98.6 = 70 + 600931t (6.36)
We subtract 70 from both sides of equation (6.36) and divide by 6, to get
4.766666666 = 06931,

Writing this in logarithmic form we get In(4.766666666) = —0.6931t and dividing by —0.6391 we
get t = —2.2. That is, Mr. Meany died about 2.2 hours before time t = 0 which was 8 am. So Mr.
Meany died a bit before 6 am. But, at 6 am. “the jerk,” Smith, was home having breakfast with his
wife and kids. Furthermore, his mother-in-law, his father-in-law, and his neighbor were all eating
with him. So Smith was probably safe. He had many witnesses and the perfect alibi.

The last problem may have seemed a bit facetious, but in fact is very real and is used by coroners
on a daily basis. (They actually take the temperature at two different times and then use a formula
derived from Newton’s Law of Cooling to determine approximate time of death.)

Here is another real example from archaeology: Again, this is real.

Example 6.35 In the 1300s, a shroud known as the shroud of Turin, was found and it was claimed
to be the original burial shroud of Jesus Christ. The images on this shroud were so compelling that
people had no doubt of its authenticity and considered it sacred. Then, in 1389, the bishop of Troyes,
Pierre d’ Arcis, wrote a memo to the pope claiming the shroud was a forgery, “cunningly painted” by
one of his colleagues.

In 1988, the shroud was subjected to carbon dating. Carbon dating is based on the fact that all
things have a certain amount of radioactive carbon 14 in them, and that it decays according to the
formula,

N = Nyekt

where N is the amount of carbon 14 currently in the shroud, and Ny is the initial amount of radioactive
carbon 14. t is the time elapsed since we begin the measurement of the decay. To date the shroud, we
need to take t = O to be the time it was painted.

For carbon 14, it is known that the constant k is —0.000121 when t is measured in years. Thus,
the amount of carbon 14 is

N = N0€70'000121t. (637)

Now, if the shroud were real, the age of the cloth should have been about 1960 years old at the time
of the dating. Scientists, using well known methods in the science community, ascertained that 92.3%
of the original amount of carbon 14 remained. (a) Based on this, was the Shroud in fact a fake?
(b) Approximately how old was the shroud?
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Solution. It is the real nature of this problem that makes it so interesting. If, in fact, the shroud
were 1960 years old, then using this information in equation (6.37), we get that the amount of
carbon 14 in 1988 should have been measured by

N = Noe—0.000121(1960) ~ 0789N0

which tells us that 78.9% of the initial amount, N,, of carbon 14 would remain. Since 92.3%
remained, we know that the shroud cannot be real.

(b) Given that 92.3% of N, the original carbon 14 remained, we can use this in equation (6.37)
and we get

0.923 Ny = Nye0:000121¢,
We divide by Ny and get
0.923 = ¢—0:000121¢

and then solve the usual way by writing this as a In statement giving us In 0.923 = —0.00121¢ and

In0.923
hence t = m = 662.20. So the shroud was about 662 years old, placing it in the 1300s and

corroborating the bishop’s story.
Isn’t this the neatest application?

6.10.1 Rules for Logarithms

There are four basic rules for logarithms. All require that M and N be positive (Why?)
Rule (L1): log. MN =log.M +log. N
M
Rule (L2): log, N log. M —log. N
Rule (L3): log.M? = plog. M

Rule (L4): log,a=

What does the first one mean? Recall we said that the word “logarithm” meant exponent.
If you think of the word logarithm as exponent, Rule (L1) is saying that, when you multiply
numbers with the same base, you add the exponents. Similarly, the second statement is saying
that, when you divide numbers expressed with a common base, you subtract the exponents. Thus,
these strange looking statements are telling us what we already know, but in a different format.

To give you a feel for the rules before providing the proofs, we will illustrate them with some
numerical examples. Let M be 100 and N be 1000. Now log M = 2 (the exponent to which 10 must
be raised to get M is 2) and log N = 3 (the exponent to which 10 must be raised to get N is 3). Also
MN =10°, log MN =5 (the exponent to which we must raise 10 to, to get MN is 5). So we see that
it is true that log MN = log M+ log N.

M 1 M
Using the same numbers as in the previous paragraph, we have ~N-10 and log N —1, which

we see is the same as log M — log N.
The third rule tells us that exponents can be pulled out of logarithms. Thus, log 22 is the same
as 3 log 2, which you can check on the calculator by computing log 8 and 3 1og 2.
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The fourth rule gives us a mechanism by which we can find the logarithm of any number g,

to any base, b, by dividing the logarithm of a by the logarithm of b. The base that we are using for
log2

the particular conversion is irrelevant. Thus, if we use the common log, we have that log; 2 = fog3

and this, in turn, is equal to LI;—Z (by taking the base of the logarithm to be e).

We now give the proofs of these rules. The proofs amount to nothing more than switching
between equations (6.30) and (6.31).

Proof of Rule (L1). Call log. M = x and log. N = y. Then, from the definition of logarithm,
¢*=M and ¢’=N.

If we multiply these two equations, we get
c*c¢’ = MN

which reduces to
c**’ = MN.

If we write this last statement in logarithmic form, we get
log. MN=x+1y.

But x =log. M, and y = log, N. If we substitute these expressions in the above equation, we get
log. MN =log. M +1log,N.

Of course, you can convince yourself and your students of this rule by doing a few numerical
examples. For example, using the calculator, you can easily verify that log6 =1log?2 + log 3. Other
examples will show you the same.

Proof of Rule (L2). We leave this for you. The proof is very similar to the proof of (L1) and is
instructive to do.

Proof of Rule (L3). Call log. M = x. Then, by definition of logarithm,
=M.

If we raise both sides to the p power and use the laws for exponents, we get
chP* = MP.

If we write this in logarithmic form, we get
log, M? = px.

But, since x = log. M, this last statement becomes log. M? = plog. M, which is what we wanted to
prove.
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Proof of Rule (L4). Call log, a = x. Then
b*=a.

Take the logarithm of both side of this equation to the base c to get.
log, b* =log.a.

Now use rule (L3) to pull out the exponent, x, and we get
xlog.b=1og. a.

Hence

_log.a
~ log b’

But x =1og;, a. Thus,

log, a
log. b’

Let us give some examples to practice these rules. These are typical secondary school problems.

Example 6.36 Solve log, x —log,(x — 1) = 3.

Solution. Using rule (L2) we have that

log, x —log,(x — 1) =3 implies that
log, ﬁ =3 which implies that

2% = Ll and upon multiplying both sides byx — 1 we have

8x —8=x. Hence,

x—8
=

We can check that x = g works.

Student Learning Opportunities

1 Without using a calculator, compute each of the following logarithms. Afterwards, check your
answers with the calculator.

(a) log, 16
(b) logs V6

1
(©) log, 16



266 Building the Real Number System

(d) log; 128
(e) (log,3)(log; 4)
(f) (log; 7) (log 79)
2 (C) Astudent wants to know why we require that a# 1 in in the definition of logarithm. How
would you respond?

3 Change each of the following statements to an equivalent statement in logarithmic form:

(a) 4> =64
1

-2 _
(b) 3 =3

(c) 103 = 1000
(d) e* =5

4 Prove rule (L2) for logarithms.

5 (Q) If a student asked why you can't take the logarithm of a negative number and get a real
number, what would you say?

6 Prove that, if a < 0 and mis even, then log a™ = mlog |a| .

7 (C) A student makes the following series of statements. “Given log x* = 4 log 3. It follows that
4log x =4log 3, hence x = 3.” Since we know that there is another solution, x = —3, where
did it go? Where is the error in the student’s solution and how would you solve it correctly?

I
8 (C) Students often say that |Zgiz

But rule (L2) deals with a single logarithm of a fraction, not with the quotient of logarithms.
How would you convince a student that the misconception we pointed out is, in fact, a
misconception?

=log.a — log. b. They are of course, thinking of rule (L2).

9 Iflog,a=log,bwhere a # b, ab> 0 and neither a nor b are 1, then what is the value of ab?
10 Solve for x :
(@) logs(x2 —7)=2
(b) logg(logs x) = -2
() logs(x +2) +log;(5) =4
(d) log, 2x+1)—log,(x —2)=1
(e) log, 6 =log,(x? +8) — log, x
f 61 —6%=5
Q) x*=n

11 Suppose that we have a function f(x) such that f(ab) = f(a)+ f(b) for all rational numbers
a and b.

(a) Show that f(1)=0.
(b) Show that f(%) = —f(a).
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(c) Show that f(g) = f(a) — f(b).
(d) Show that f(a") = nf(a) for every positive integer n.
12 Prove each of the following:

@ 1 N 1 B
log,ab  log,ab

(b) a'°9° = p°9? where log means log,,

13 When a beam of light enters an ocean vertically, its intensity decreases according to the
formula | = Ioe=001019 where Iy is its initial intensity and d is the depth in centimeters the
light has penetrated. How far below the ocean’s surface will the intensity of a beam of light
be reduced to 2% of its initial intensity?

14 A painting supposedly done by Rembrandt in 1640 was found in the 1960s and was
dated using carbon dating, and found to contain 99.7% of its original carbon 14. How old
(approximately) was the painting in 19607

15 The energy, E, released by an earthquake is measured in units called joules. The intensity of all
earthquakes are measured according to a standard called Eq, which is 10%* joules of energy.
The measure of an earthquake’s strength is measured by the Richter scale, and the formula
that measures the Richter score for an earthquake is

2 E
R = g IOg“) (E—O> .

The great San Francisco earthquake of 1906 measured R = 8.25 on the Richter scale. How
many joules of energy were released and approximately how many times as much energy as
Eo was released?

6.11 Solving Equations

LAUNCH

You ask Maria, one of your students, to solve the equation (x + 1)(x + 3)(x + 5) = (x + 1)(x + 3). The
student divides both sides of the equation by (x + 1)(x + 3) to get (x + 5) = 1. Solving this equation,
she gets x = —4. Has she solved the equation correctly?

Another student, Matt, is asked to solve the equation /x = —7 and squares both sides to get
x =49. Is Matt correct when he asserts that this is the answer?

Both Maria and Matt are wrong. When solving equations, there are a few issues that you must
watch out for so that you don’t get faulty, inadequate, or misleading results. That is the focus of
this section.
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6.11.1 Some Issues

Having discussed the development of the real number system and the solutions of equations within
it, we now turn to problems that can occur in the solution process.

When asked to solve an equation like 4x — 1 = 2x + 3, the process is simple. We subtract 2x
from both sides, add one to both sides, and get 2x = 4. We then divide by 2 to get x = 2. We check
it and it works, and so we are done.

In general, when solving equations, we can add the same quantity to both sides, or subtract the
same quantity from both sides, or multiply or divide both sides by the same quantity. We can also
do other things when solving equations: square both sides, cube both sides, take the square root or
cube root of both sides, take the logarithm of both sides, take the sine of both sides, and so on. We
do lots of different things when solving equations. But, if we are not cautious when using these
processes, many strange things can happen. For example, we can get answers that don’t work. We
can lose answers that do work. We can miss answers that are in front of our eyes, and so on. Let us
begin by illustrating exactly what we mean.

We begin with several examples. The following illustrate some of the more common errors
teachers see.

Example 6.37 Jason solves the equation x*> = 3x by dividing both sides by x to get x = 3. He has lost
the solution x = 0. What did he do wrong?

Example 6.38 Chan has the equation /x = —5 and tries to solve it by squaring both sides. He gets
x = 25. Yet, when he checks the solution, he realizes it doesn’t work, since the square root of 235, is
positive. He concludes something is wrong.

Example 6.39 Juan solves the equation x*> = 9 by taking the logarithm of both sides. He gets log x> =
log9, and then rewrites this as log x> = log 3%. He remembers that, with logarithms, you can pull the
exponent out, so he gets

2logx =2log 3. (6.38)

He divides by 2 to get log x = 10g 3, and then concludes that x = 3. Yet, he missed the solution x = —3.
Where did it go?

Example 6.40 Indira solves the equation (x+4)(x —3) =8 by setting x+4=8 and x—3 =1,
thereby getting the solution x = 4 from both equations. She checks her answer by substituting x = 4
into the original equation and finds that it works. She concludes that this quadratic equation has only
one solution, x = 4. But, if we check x = —5, it also works. She lost a solution. What went wrong?

Examples like these show us that we need to exercise a great deal of care when solving
equations. Let us examine the solution process more carefully.
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6.11.2 Logic Behind Solving Equations

What is it that we are really doing when we solve an equation, and why do we sometimes lose
solutions or find solutions that don’t work?

To understand this better, we need to examine the logic behind solving an equation. Examining
a specific example will help us to illustrate this. Suppose we wish to solve the equation

JX=2x—1. (6.39)

Recall that ,/x means the positive square root of x and therefore +/9 means 3, not +3.
We begin by squaring both sides of equation (6.39) to get

x=4x> —4x+1. (6.40)

This process makes use of a fundamental fact regarding equations which states that: If a = b then
a? = b* (or in words, if two quantities are equal then so are their squares). Next, we bring all the
terms over to one side, to get

4x* —5x+1=0. (6.41)

Here, we are using the fact that we can add and/or subtract the same quantity from both sides of an
equation and get a valid equation. In particular, when we bring all the terms over to one side, we
are subtracting the quantity, 4x*> — 4x + 1 from both sides of the equation, to get equation (6.41).

Finally, we factor equation (6.41) to get (x — 1)(4x — 1) = 0. We set each factor equal to zero
and get

1
x=1, and x= 1 (6.42)

(Here we are using a fact that we proved earlier that, if the product of two numbers is zero, then
one or the other or both must be 0.)

This all seems pretty straight forward. Every novice in algebra believes that, by using the above
approach, he or she has solved equation (6.39) . But, if we actually check our answers from equation
(6.42) in equation (6.39), only the solution x = 1 works. How could this be?

Let us take a closer look at what we have really done when solving this equation, and then in
general when solving any equation.

What we are really saying when we go from equation (6.39) to equation (6.40) is that IF
equation (6.39) is true for a particular value of x, THEN by squaring, so is equation (6.40) true for
that value of x. That is, any solution of equation (6.39) is a solution of equation (6.40). In terms of
sets, we are saying that the solution set of equation (6.39) is a subset of the solution set of equation (6.40).
We are NOT saying that the solution sets of equations (6.39) and (6.40) are the same.

Let us continue. When we go from equation (6.40) to equation (6.41) by subtracting 4x> — 4x +
1 from both sides, (a perfectly legitimate operation), we are again saying that IF equation (6.40)
is true for a specific x, THEN so is equation (6.41). That is, every solution of equation (6.40) is a
solution of equation (6.41), or put another way, the solution set of equation (6.40) is a subset of
the solution set of equation (6.41).

Since the solution set of equation (6.39) is a subset of the solution set of equation (6.40),
and the solution set of equation (6.40) is a subset of the solution set of equation (6.41), we have
that the solution set of equation (6.39) is a subset of the solution set of equation (6.41).
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Following the same reasoning as before, when we go from equation (6.41) to equation (6.42),
we are saying that the solution set of equation (6.41) is a subset of the solution set of (6.42) . Since
the solution set of equation (6.39) is a subset of the solution set of equation (6.40) and that, in
turn, is a subset of the solution set of equation (6.41) which in turn is a subset of equation (6.42),
we have that the solution set of equation (6.39) is a subset of the solution set of equation (6.42).
Since the solution set of equation (6.39) is only a subset of the solutions of equation (6.42), there
may be solutions of equation (6.42) that don’t work in equation (6.39). Thus, we must check the
answers we got to see that they work in equation (6.39). Only x = 1 does.

To recap, when we solve an equation, if we perform legal steps, we are finding a set containing
the solutions of this equation. This set will, in general, be larger than the set containing the
solutions. The answers must be checked in the original equation to see that they work. Those that
don't, are called extraneous solutions. In the previous example, the solution x = % was extraneous.

Notice the word “legal” in the first sentence of the last paragraph. What are legal operations?
That is, what are operations that we can perform on an equation that will guarantee that we
generate an equation whose solutions contain the original set?

Well, we have already seen some.

(L1) If two quantities are equal, we can add to or subtract the same quantity from each of them,
and the results will still be equal. (Thatis, ifa=b, thena+c=b+canda—c=b—c.)

(L2) If two quantities are equal, we can multiply or divide each of them by the same quantity
and the results will still be equal provided that when you divide, you don’t divide by zero.
(That is, if a = b, then ac = bc and, if c# O, then £ = %.

(L3) We can raise both sides of an equation to a positive integer power and we will get an
equality. (That is, if a = b, then a” = D" for positive integers n.)

As simple as these rules seem, we still need to exercise care when using them.

Example 6.41 Debbie solves the equation

x—l_x—l

x+1  x+3 (6.43)
by dividing both sides by x — 1 and gets the equation
1
L (6.44)

x+1 =x+?>

from which she concludes by cross multiplying that
x+1=x+3.

She then subtracts x from both sides of this last equation and gets the contradiction that 1 = 3. She
says, “This is impossible,” and from this she concludes there is no solution to the original equation.
Yet, the original equation has the solution x = 1. Where did it go?

Solution. To see what is wrong here, we need only recall that there are restrictions on division.
Specifically, we cannot divide by zero. But Debbie divided by x — 1, which can be zero. And that
happens when x = 1. Thus, when x = 1, she performed an illegal operation. This means that the
resulting equation may not contain the solutions of our original equation. Indeed, that is the case



Building the Real Number System 271

here. Whenever you divide an equation by an expression that may be zero, you need to check the
values of x that make the divisor O in the original equation. Thus, Debbie needed to check if x =1
satisfied the original equation. If she checked, she would have seen it did, and would not have
lost it.

Very often students make this kind of mistake and this, in fact, is the error with Example 6.37
above. On the other hand, if we have the equation x(x?> + 1) = 9(x? + 1), and we are interested in
real solutions, we can divide both sides by x? + 1 without fear, since for real numbers x, x? + 1 is
never 0. We will not lose real solutions, in the process. (But we will lose the complex solutions,
x = +i.) Our point is, don’t divide both sides of an equation by a variable quantity in an effort
to simplify it unless you are sure that the variable quantity is not zero. If the expression you are
dividing by can be zero, then you need to check the values of x that make it zero in the original
equation to see if they work.

So, to summarize, here is the fix to Debbie’s solution: When she divides equation (6.43) by
x — 1 to get equation (6.44), she has to put herself on the alert that x — 1 can be O when x = 1.
Thus, her division is illegal when x = 1. She needs to check if this value x = 1 works in the original
equation. This wayj, if it does, she will recover the lost solution.

Example 6.42 Solve the equation x(x — 3)(x — 4) = (x — 3)(x — 4).

Solution. The tendency is to divide both sides by (x — 3)(x — 4) to get x = 1. But now we are wiser.
We know that (x — 3)(x — 4) can be zero when x = 3 and when x = 4, and both of these values need
to be checked in the original equation. Since both work in the original equation, our final solution
isthat x =1, x = 3, and x = 4. All of them work.

Other examples of illegal operations are given in Examples, 6.39, and 6.40. Let us go back
to Example 6.39 where Juan solved x? = 9 by taking the logarithm of both sides. Juan correctly
concluded that

log x* = log 3°. (6.45)

His next step, however, that 2 logx = 21log 3, was incorrect. One cannot take the logarithm of a
negative number. Thus, while log x? is defined for all positive and negative x, log x is only defined
for positive x. Thus, the statement log x> = 21og x is not correct when x < 0. The correct statement
is log x? = 21log | x|, regardless of what x is. Now, if we use this to replace log x? in equation (6.45),
we have

2log|x| =2log3

from which it follows that log |x| = log 3. From here, we have that |x| = 3 and therefore x = 3 and
we have not lost any solutions.

Another place where we may risk losing solutions is by using “identities” that are not really
identities. Actually, we just did that when we said that log x> = 21og x. Here is a more sophisticated
illustration that involves trigonometry.

Example 6.43 Solve the equation:
tan (x +45) =2cotx — 1. (6.46)
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Solution. If we recall the rules from secondary school trigonometry that tan(x + y) = fenxany.

I-tanxtany’
and that cot x = ﬁ, we can substitute these into equation (6.46) to obtain

tan x + tan 45 2
= — 6.47
1 —-tanxtan45 tanx ( )
and since tan 45° = 1, equation (6.47) becomes.
1 2
tanx+1 _ ~1. (6.48)

1—tanx tanx

We now multiply both sides of equation (6.48) by tan x(1 — tan x) to get

tan? x + tanx = 2 — 2tan x — (tan x)(1 — tan x)

which, upon multiplying out, and combining terms, and subtracting tan?x from both sides
simplifies to

tanx =2 — 3tanx.

Adding 3 tan x to both sides and dividing by 4, we get tan x = %, and therefore x = (tan~1(1/2)) +
k(180°) where k=0, +1, + 2, and so on.

Now, all these solutions work as you can verify with your calculator. But we are missing
infinitely many solutions of our equation, namely all integer multiples of 90°. (Substitute,
90°, 180°, and 270° in equation (6.46) and use your calculator to convince yourself these work.)
Where did these solutions go?

We know that we need to look for moves that might be illegal. The first place to look for a
false identity is in equation (6.48). On the left side we have a denominator of 1 — tan x. What if
tan x = 1?7 Then the left side of equation (6.48) is not defined. What we are really saying is that the
relationship from secondary school, tan(x + y) = %ﬁy is not always valid. It is not valid when
the denominator is 0.

Similarly, the “identity” we used, that cotx = ﬁ is not valid when tan x =0. We must
examine where the denominators of equation (6.48) are zero and check them separately to see
if they work in equation (6.46). When 1 —tan x =0, x =45° + k(90°). When k is odd, the left
side of equation (6.46) will then involve taking the cotangent of an even multiple of 90 degrees,
and that would mean cotx would not be defined, causing the right side of equation (6.46) to be
meaningless. So none of these solutions work. When k is even, the left side of equation (6.46)
involves an odd multiple of 90°, making the tangent undefined. So none of these values work
either. The bottom line is that none of the solutions of 1 — tan x = 0 are solutions of our original
problem.

But there was the other identity we used: cot x = ﬁ, and the right side is not defined when
tan x = 0 or is undefined. That happens when x is an integer multiple of 90 °. Every one of these
does work since, the left side of equation (6.46) evaluates to —1 and so does the right side. (Again,
you can check with your calculator.) So we have recovered our infinitely many lost solutions.

6.11.3 Equivalent Equations

Do we always have to check our solutions to see if they work? The answer is, “No.” If we can reverse
the steps that we used to go from an equation (A) to an equation (B), by going from (B) back to (A),
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then the solutions to equations (A4) and (B) will be the same. Why, you ask? The answer is simple.
When we go from (A) to (B) using legitimate operations, the solutions of (A) are a subset of the
solutions of (B). When we go from (B) to (A) using legitimate operations, the solutions of (B) are
a subset of the solutions of (A). Since the solutions of (A) are a subset of (B) and vice versa, these
equations have the same solution set.

When two equations have the same solution set, we say they are equivalent equations. We
have the following.

Theorem 6.44 If the steps used in solving an equation are reversible, then the solution of the final
equation and the solution of the original equation are the same. That is, the equations are equivalent.
We need not check our answers, though we still should.

Let us apply this to the solution of the equation

2x+1=3. (6.49)

We subtract 1 from both sides, to get
2x=2. (6.50)

By rule (L1) from the previous subsection, this is legal. Thus, by our previous work, the solution
set of equation (6.49) is a subset of the solution set of equation (6.50).

Now, starting with equation (6.50), rule (L1) says we can add 1 to both sides of equation (6.50)
to get equation (6.49). That is, we can reverse our steps to go from equation (6.50) back to equation
(6.49). Thus, the solution set of equation (6.50) is a subset of the solution set of equation (6.49).

Since the solution set of equation (6.49) is a subset of the solution set of equation (6.50),
and since the solution set of equation (6.50) is a subset of the solution set of equation (6.49), the
solution sets of equation (6.49) and equation (6.50) are the same, and equation (6.49) and equation
(6.50) are equivalent.

Let us continue. Starting with equation (6.50) we can divide both sides by 2 (a nonzero number)
to get

x=1. 6.51)

Thus, the solution set of equation (6.50) is a subset of the solution set of equation (6.51).

Since we can multiply equation (6.51) by 2 to get back to equation (6.50), that is, we can
reverse the steps, it follows that the solution set of equation (6.51) is a subset of the solution set of
equation (6.50) and thus equation (6.50) and equation (6.51) are equivalent. Since equation (6.49)
and equation (6.50) are equivalent, equation (6.50) and equation (6.51) are equivalent, equation
(6.49) and equation (6.51) are equivalent, and the solutions of equation (6.49) and equation (6.51)
are the same. That is, the solution of equation (6.49) is x =1. We don’t have to check that it
works.

Since the steps used in solving equations such as 3x + 1 = 5x — 3 are all reversible, when solving
first degree equations of this form, we don’t really have to check our answers. The only reason
we ask students to always check their answers is that they may have made a mistake in their
computations. Also, we want to train them to check answers in other cases where answers really



274 Building the Real Number System

do need to be checked. Besides, it is never a bad idea for any of us to check our answers. We are all
capable of making errors.
Our discussion leads to the following.

Theorem 6.45 If we add or subtract the same quantity to or from both sides of an equation, we get
an equivalent equation. If we multiply or divide an equation by the same NONZERO quantity, we get
an equivalent equation. (Thus, for these cases we don’t have to check our solutions.)

We have seen that adding or subtracting the same quantity to, or from, both sides of an equation
results in an equivalent equation as does dividing or multiplying both sides of an equation by a
nonzero quantity. On the other hand, squaring both sides of an equation can yield non-equivalent
equations, as we have seen in our first example of this section. So we must check our answers as
Chan did in Example 6.38. Only, he concluded, mistakenly, that something was wrong. Nothing
was wrong. His equation, /x = —5 had no solution.

Consider the next example which is similar.

X 3
E le 6.46 Sol = .
xample ovex_3 =3

Solution. We multiply both sides by x — 3, and we immediately get x = 3. Must we check our
answer? Sure! We multiplied by x — 3 and that step is not reversible, as x — 3 can be 0. We must
check. Our solution doesn’t work since the left and right sides of the equation both involve
divisions by 0 when x = 3. Thus, this equation has no solution.

Before leaving this topic, we wish to focus more clearly on what happens when we apply a
function to both sides of an equation, as we did in Example 6.42. There, we took the logarithm of
both sides. The problem with applying a function to both sides of an equation is that functions
often have restricted domains. So, if we start with a statement like A= B and then apply the
function f to both sides to get f(A)= f(B), we will not run into a problem if A and B are
unquestionably in the domain of f. But if they aren’t, we may lose solutions. For example, the
equation (x — 1)(x — 2) = (x — 1) has two solutions, x =1 and x = 3. Yet, if we apply the functilon

f(x)= ; to both sides of the equation (that is, we take the reciprocal), we get D2 =371

and this does not have two solutions, since x =1 does not work in this latter equation. Since

we failed to account for the fact that the function f(x)= % has a restricted domain we lost a
solution. However, if the function f(x) that we apply to both sides has domain all x, or if we
are sure that A and B are both in the domain of f(x), then we need not worry about loss of
solutions when we apply f(x) to both sides since in both of these cases, if A = B, it does follow that
f(A) = f(B).

Thus, when we square both sides of an equation, we are applying the function f(x) = x? to
both sides of the equation. This function has domain all x. So we will not lose any solutions
(though we might gain something, which is why we have to check our answers). When we solve a
linear equation, we add or subtract constant quantities from both sides, or multiply both sides by a
constant, or divide both sides by a nonzero constant. That is, we apply the functions f(x) =x £c,
f(x) = cxor f(x) = £ where ¢ # 0, to both sides of an equation. The functions have domain all x. So
we don’t lose any solutions when applying these functions. In fact, neither do we gain solutions
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because all of these functions are reversible. But, if we take the logarithm of both sides of an
equation, we may lose a solution because the domain of the logarithm is restricted. If we take the
reciprocal of both sides of an equation, we may lose something because the reciprocal function has
a restricted domain. Our point is, if we apply a function with a restricted domain to both sides of
an equation, we may lose solutions.

Why, you may ask, don’t we seem to worry about this in secondary school? Well, consider a
typical equation that students are asked to solve by taking the logarithm of both sides: 2* =5 to
get xlog 2 =log 5. Despite the fact that the logarithm has a restricted domain, 2* and 5 are always
positive. So they are in the domain of the logarithm function, and we lose nothing by taking the
logarithm of both sides.

Student Learning Opportunities

1
1 Are there any values of x for which XL T # 1?7 If so, what are they?

+1
: . 2x2—19x
2 How many real solutions are there to the equation T 5y S X7 3?
. . 2x2 —19x
3 Are there any complex solutions to the equation 2 = x — 37 If so, what are they?

4 (C) What are equivalent equations? What are some of the operations that lead to equivalent
equations?

5 (C) One of your students solves the following equation and can’t figure out why he came up
with a solution (x = 1) that does not work. How do you help your student understand why
this happened? His work follows:

5—-x=x-3
5—x=(x—3)> (Square both sides of the equation.)

5—-x=x*>—6x+9

x> —5x+4=0
x=4)x-1)=0
x=4, x=1

6 Solve each of the following equations:

@) 1T++/2x+5=—x
b)) V5x—-1T+/x—-1=2

7 One of your students solves the following equation and can’t figure out why she only got
two solutions rather than three like everyone else. She lost the solution x = 3. How do you
explain to her what happened?

x(x=3)=x(x-3)(x—-1)
x(x=3)  x(x=3)(x—-1)

x—3 x—3
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8

9

10

11

12

13

14

15

16

17

x=x(x—1)
x=x*—x

x2—2x=0
x(x—=2)=0
x=0,x=2

Solve each of the following equations:
@ xX*x+1)—2x—-1)2x+1)=0
4x -1 4x-1
b =
®) 3x+2 5x—-6
(C) After being cautioned about all the pitfalls involved in solving equations, one of your

.a b
students concludes that, if s where c# 0, then a = b. Is the student correct? How can the
student justify the answer?

(©) Your students are now very cautious when performing algebraic manipulations when
solving equations. They are given the equation PRl where neither of g and b is zero. They
conclude that a must equal b since, if two fractions are equal and their numerators are equal,
it must be that their denominators are equal. Is this correct? Justify your answer.

Solve for x :

(@) 2log(x — 3) =log4
(b) log(x — 3)? = log 4

(C) How can you prove to a student that, if we begin with a quadratic equation, ax? + bx + ¢ =
0, the solutions we get by the quadratic formula always work?

(C) Give an example that would demonstrate to a student that, if we begin with a linear
equation and then manipulate it into a quadratic equation, say by squaring, the solutions of
the quadratic might not work in the original equation.

Solve for x : 8 +8— 6
"x2—x x 2x-2'

x—1 2 1

+x—2= +
x—1 x-

Solve the equation: > in any manner you wish.

(C) One of your students has become intrigued by the strange things that can happen when
solving equations and comes to you with the following question. He began with the equation
x =1, which he knew had only one solution. Then he cubed both sides of the equation to
get x3 = 1 which he knew should have 3 solutions (by the Fundamental Theorem of Algebra).
Since he was aware that he could then reverse the procedure by taking the cube root of both
sides, he thought these equations should be equivalent. But, they are not, since one equation
has one solution and the other three. He knew something was wrong, but couldn’t figure out
what it was. How do you help your student realize what went amiss here?

What is the error in Example 6.407
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6.12 Part 2: Review of Geometric Series: Preparation for Decimal
Representation

LAUNCH

Using a pencil, ruler, and an 815 inch by 11 inch piece of lined loose leaf paper, do the following
activity: Starting at the edge of your paper, along one of the horizontal lines, draw a line segment
that is 4 inches long. Then, add on a line segment that is 1/2 as long as your first line segment.
Next, add on a line segment that is 1/2 as long as your previous line segment. Continue in this way.
Will you ever get to the other edge of the paper? Why or why not?

Did you realize that the launch activity led to an example of a geometric series? You undoubtedly
studied these in your precalculus courses. You will be surprised to learn that, in order to discuss
decimals in any kind of meaningful way, we need to use geometric series. So we now review them.

Recall that a geometric series is a series (infinite sum) of the form a+ar +ar? + ar?
This abstract expression simply says that a is the first term and each term of the series is the
previous term multiplied by some fixed number r . Thus, the second term, ar, is the first term, a,
multiplied by r. The third term, ar?, is the second term, ar, multiplied by r, and so on. For example,

1,1

1+ % +g+g+ ... s a geometric series where a = 1 and each term is the previous term multiplied

by r = 1. Notice that this series can be written as: 1+1-2+1-(2)>+1-(1)>+ ..., which is of the

+ ...

forma+ar +ar?+ar3+ ... .

The sum of a series is defined in terms of a limit. That is, we add one term, two terms, three
terms, four terms, and so on, each time adding one more term. What we get is a sequence of
numbers called the sequence of partial sums. If the limit of this sequence of partial sums is a finite
number, this finite number is called the sum of the series.

1 1 1
Let us see what happens to the series 1 + 5 + 1 + 3 + .... If we let s1, 52, 53, and so on represent

respectively, the sum of the first term, the sum of the first two terms, the sum of the first three
terms, and so on of the series above, we get the following sequence of partial sums:

s1=1

sz=1+%=1%

s3:1+%+%=1%

s4=1+%+%+%=1§
and so on

and it can be shown that the pattern you see above continues. Thus, ss = 1%, S6 = 1%, and so on.

So it appears that these partial sums approach 2. They do. Because of this, we say that the sum of

this series 1+ J + § + g + ... . is 2 or that the series 1+ 1 + ; + § + ... converges to 2. In summary,
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the sum of an infinite series is defined to be ’}Lnolo su, where s, is obtained by adding the first n terms
of the series.
We recall from our study of series in calculus that some series have finite sums and others
don't. Those that have finite sums are said to converge and those that don't are said to diverge.
A series a; + ap + as + ... is abbreviated as ijl a; or when the index is clear, Zi" a;. Furthermore,
the letter we use for the index makes no difference. Thus, ) ;; 4 means exactly the same thing as
21 -

Here is the main theorem about geometric series.

Theorem 6.47
a—ar"
1—-r "
(b) A geometric series a +ar +ar? +ar® + ... converges when |r| < 1 and its sum is =
(c) A geometric series diverges if |r| > 1.

(a) The sum of the first n terms of a geometric series is given by s, =

Proof. (a) The sum of the first n terms of this geometric series is denoted by s,. By definition,

sp=a+ar +ar’+ ... +ar" 2 +ar™ . (Count the number of terms! This is a sum of n terms.)
(6.52)
Multiply both sides of this equation by r to get
saf =ar +ar’>+ard+ .. +ar"™ ' +ar’”. (6.53)

Subtract equation (6.53) from equation (6.52) and notice that many of the terms combine to
give us 0, leaving us with:

Sp— St =a —ar”. (6.54)

Rewrite equation (6.54) as s,(1 —r) = a — ar" and divide this equation by 1 —r to get

a—ar"
Sp = 1

(6.55)

Proof. (b) Now, if |r| < 1, then —1 < r < 1 and this implies that r” gets closer and closer to zero as
n gets larger and larger. It follows that ar” — 0 as n gets large, and thus the fraction on the right

of equation (6.55) approaches .. In terms of calculus, lims, = %. But lims, is the sum of the
n—00

I-r- n—00
series. (That is the definition of the sum of the series!) Thus, the sum of the series is %.
Proof. (¢) If |r| > 1, then ar” does not approach a finite number as n approaches infinity. Thus,
lim s, in equation (6.55) does not exist. That is, the geometric series diverges.

n—mWe can now answer a question from Chapter 1. There we gave the series 1+2+4+8+ ... and
said that the sum was .. Since a = 1 and r = 2, this sum becomes —1. We asked how this could be.
The answer is, this can’t be. The series does not converge, since |r| > 1. We can’t use the formula
1=, as this is only valid for convergent series. W
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To clarify this, let’s give a few numerical examples.

Example 6.48 Find the sum of the first n terms of the series, 1+ 5 + 1+ + ... .

Solution. According to part (a) of Theorem 6.47, the sum of the first n terms is s, = “I*f;" =

1;}8;5;" = 1—(11%2)” =2(1—(1/2)") =2 —2(1/2)". Thus, if we sum 50 terms, our sum will be sso =

2 —2(1/2)%0 and if we sum 100 terms our sum will be 5199 = 2 — 2(1/2)'%° and both of these are
extremely close to 2. In fact, so close, that if you tried to compute this on a calculator, the calculator
would say that both ss5p and s190 are 2! But, of course, we know this is not true. However, the more
terms we take, the closer and closer the sums will get to 2. This is just a reflection of what Theorem

6.47 says, namely, that the series should converge to ;% = Wll/z)) =2.

Example 6.49

(a) What is the sum of the series, 4 — § + =+ .7
2

4
9
(b) What is the sum of the series 1 — 3 + 12 — ..

Solution. (a) This is a geometric series with a=4 and r = —%. Since |r| < 1, the sum of the series
. _ 4 _
is 1% = 173 = 3-

—4
(b) This is also a geometric series with r = 3 Since |r| > 1, this series diverges.

The following is a very useful result as we shall see.

Theorem 6.50 (Comparison Test) Suppose that > °a; and Y {°b; are two series consisting of
nonnegative terms and suppose that we know that y 1" b; converges. Then, if a; < b; for all i, Y 1" a;
also converges.

What this is saying is that, if the larger of two nonnegative series has a finite sum (converges), then
so does the smaller one. This makes perfect sense.
Let us illustrate this.

Question: Does the series, >7° 52~ =1 + 1 + § + ... converge?

. . 00 1 oo 1 . 1 1 . . .
Answer: Yes, the sum of the series ) ] 57T < 2.1 a7, Since 54 < 5 for each i. Since the series
¥ El' is a geometric series with |r| < 1, it converges and hence, by the comparison test, so does
the original series.

Student Learning Opportunities

1 (C) Your students are given the series 3—6+12—-24+ ... . They try to find the sum by
calculating 7%, where in this case a=3 and r = —2. They figure out that the sum of the
series will be 1. Seeing that the negative numbers in the series are always twice as large as
the positive numbers, they realize that their solution is impossible! How do you help them
realize what has gone wrong?
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2 (C) You gave your students the launch question in this section and your students engaged
in a heated debate about whether the line segments they were drawing would ever reach
the other side of the page. How would you help them realize that what they were dealing
with was a converging geometric series? How would you help them represent this series and
resolve their argument by determining the sum?

3 Find the sum of each of the following series. If the series has no sum, explain why.

1T 1 1
(a) 1 _§+Z_§+
(b)) 2—-4+8-16+ ...
2 4 8
(C) 2+ ; + p +F
(d) 4—4/2+8-8V2+16— ...
5 5 5
© 35 -35+37 -
4 Show that the series Zﬁ"’% converges. [Hint: Start by showing that n! > 2"~" and hence
AR I
nl — 2n-1°

5 (©) You ask your students to begin with a square that has sides of length 6 inches. Have them
inscribe a circle in that square. Next, inscribe a square in that circle and then inscribe a circle
in that latter square. Have them continue in this manner until the figures get too small to
continue. Now, ask your students to figure out what the sum of the areas of the circles would
be if they could continue their drawings forever. What is the answer?

6 The sum of a geometric series is 15. The sum of the squares of the terms of the series is 45.
Show that the first term of the series is 5.
3 3
53541 55+1 5741
8 Show that the Harmonic series 7% 1 =1 + 1 +
1,54 > 13, 53 > 2. and so on.]

7 Does the series

... converge or diverge? How do you know?

% + ... diverges. [Hint: Show that s; > %, Sy >

6.13 Decimal Expansion

LAUNCH

1 Can every rational number be represented as a decimal? Explain your answer.

2 Give the decimal expansion of %.

3 Can every decimal number be represented as a fraction? Explain your answer.

4 Give the fractional equivalent of the decimal (a) 0.666666...(b) 0.64646464 ... .
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Despite the fact that you studied decimal and fractional notations in elementary school, the launch
questions have probably given you some reason to doubt the depth of your understanding of these
important concepts. It is for this reason, that this next section focuses on the meanings of these
concepts from a higher level. You will be surprised to see how complex it can get.

The advent of decimal notation was a great moment in the history of mathematics. With
decimal notation, computations that had up to that time been very cumbersome, suddenly became
easy. In this section we look at some of the issues that arose in the development of decimal
representation of numbers.

When we see a number like 325, we know that this is an abbreviation for 3 hundreds+ 2 tens+ 5
ones. Notice that this can be represented as 3 - 10? + 2- 10 + 5 - 10°. Since this expresses a number
as powers of 10, the tendency might be to continue the pattern and also express numbers with
negative powers of 10 also. The decimal point would be the demarcation line where the exponents
go from nonnegative to negative. In fact, this is exactly what is done. Thus, 325.46 would mean
3:102+2-10"+5-10°+4-107' +6-1072.

The first issue that comes up is what does an infinite decimal like 0.123412341234 ... mean?
The answer is that this representation is an abbreviation for the infinite series 1-1071 +2-1072 +
3.1073+4-10*+ ... or in more familiar terms, & + 5 + 1255 + To055 + --- - 1hus, decimals are
infinite series.

At first glance, this may not seem like a problem. But it really is, for not all infinite series have
finite sums, and it might be that some decimals that we construct, or those that we use in real
life really make no sense since the sums they represent might be infinite. This would be a serious
problem! So let us put that to rest right away. The following says this never happens.

Theorem 6.51 Any decimal number .ddyds . .. represents a series that has a finite sum.

Proof. The important thing is to realize that each digit, d; in the decimal representation is < 9.
Thus, if we call N = .d1d,d;s ..., then
_d D d3 20 9 9

~707100 "1000 T " =10 700 " 1000 T

The series on the right is a geometric series where |r| < 1 (in fact, r = lio). So it has a finite sum
(it converges!) and hence by the comparison test (Theorem 6.50), so does the series on the left.
That is, the series that the decimal represents, also has a finite sum. W

A common problem in secondary school mathematics is to find the fractional equivalent of a
decimal. The following illustrates the procedure.

Example 6.52

(a) Find the fractional equivalent of the decimal 0.323232 ... .
(b) Find the fractional equivalent of 0.034212121 ... .

Solution. (a) Let

N=0.323232 .... (6.56)
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We multiply by 100 and we get

100N =32.3232 ... . (6.57)

. . 32

Subtract equation (6.56) from equation (6.57) to get 99N = 32 and hence, N = 99
(b) This is a bit more difficult. Rewrite 0.034212121 ... as 0.034 + 0.000212121 ... . Now, the

4
first part is the fraction 1(3)% and to find the other part, we let

N =0.000212121 ... . (6.58)
We multiply N by 100 to get
100N =0.0212121 ... . (6.59)

We then subtract equation (6.58) from equation (6.59) . Observing that the right sides of equations
(6.58) and (6.59) are the same after the fifth digit, we get:

21
99N: 0021 or m,

3387
99 000

4
and dividing by 99 we get N = L Adding this to 13% we get that 0.034212121 = and

99000
you can easily check on a calculator that this works.

Now that we know that every decimal converges (that is, represents a finite number), we ask
another question. How do we know that every number has a decimal representation? We know
how to find the decimal expansion of a rational number from elementary school work. We use
long division. But how do we know that that procedure really works and gives us the correct
decimal expansion for all rational numbers? Furthermore, what if we want to find the decimal
expansion of an irrational number like +/2? Then what? In that case we certainly cannot use long
division.

We will now address these important issues. We will need to use the concept of the greatest
integer < x. Suppose x is any number. Then the largest or greatest integer < x is exactly what it
says—the largest integer < x and is denoted by [x]. By definition, [x] is an integer < x. Since each
number x lies between two consecutive integers

[X] =x < [x]+ 1 (6.60)

Let us illustrate. [3.2] = 3. Clearly, 3 < 3.2 < 3 + 1. As another example, [—3.1] = —4. Clearly, —4 <
—3.1 < —4+ 1. Finally, [6] =6 and we have 6 < 6 < 6 + 1.

Here is the first theorem in the development of decimal representation which is a fundamental
result.

Theorem 6.53 Every real number N, where O < N < 1 can be written as a decimal.

Proof. Since 0 < N < 1,0 < 10N < 10. Let a; = [10N]. Since a; is the largest number less than 10N
and 10N is nonnegative and less than 10, 0 < a; < 10.
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Letting x = 10N in (6.60) and using the fact that a; = [10N] we get that

a <10N < a; + 1. (6.61)
Subtract a; from both sides of (6.61) and we get that

0<10N-a < 1. (6.62)

Since 10N — a; is between 0 and 1, 10 times 10N — a; = 100N — 10a; is between O and 10
(excluding 10), so if we let g, = [I00ON — 104y ], then 0 < a; < 10 and by (6.60) with 100N — 104
taking the place of x we get

a; < 100N — 10a; < az + 1. (6.63)
Subtracting a, from both sides of (6.63) we get that

0 < 100N —10a; — a, < 1. (6.64)
Since 100N — 10a; — a, is between 0 and 1, 10 times 100N — 10a; — a, = 1000N — 100a; — 10a, is
between 0 and 10. So we let az = [1000N — 100a; — 10a;], and so on. After n steps, we have the
following generalization of (6.64)

0<10"N—-10"'a; —10"2a, — ... —a, < 1. (6.65)

If we divide both sides of (6.65) by 10", we get

a az as a, 1
N——— —— —— — - — .
U= 10 100 1000 10" =~ 107 (6.66)
or, in decimal form,
0= N ads .. dy < — (6.67)
= ardp ...dy < 10". .

Now, since ﬁ approaches 0 as n goes to infinity, (6.67) is saying that the difference between

N and the decimals we are generating gets smaller and smaller as n gets larger and larger. Thus,
the decimals O.a;a; ...a, we are generating, are getting closer and closer to N as n gets large. But
the finite decimals O.a;a; ...a, we are generating are partial sums of the series which the infinite
decimal O.qyaz ...a, ... represents. Since the partial sums O.a;a; .. .a, are getting closer and closer
to N, the sum of the series represented by the infinite decimal 0.a1a; ...a, ... must equal N. Thus,
every number N can be written as a decimal. W

We see that we really needed the concept of limits to get into a full discussion of decimals.

Now that we know that every N between 0 and 1 can be expressed as a decimal we turn to the
process of how to find the digits in the decimal representation of N. This will be simple once we
observe that, if you are given a number like N = 32.425, the largest integer less than or equal to N
is 32, the number before the decimal point. We will need this shortly in a proof.
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Now we know that every number N between O and 1 can be written as N = 0.d1dd; ... . Thus,
10N =d . dpds ... . (6.68)

and we see that d; is the largest integer less than or equal to this number 10N. Thus, d;, the first
digit in the decimal representation of N is equal to [10N;]. Subtracting d; from both sides of 6.68
we get

10N; —d; =0.dadzdy ... . (6.69)

To find the second digit, d,, in the decimal representation of N, we multiply equation (6.69) by 10
to get

100N, — 10d; = dp. dzdy . .. . (6.70)
And now we see that d, = [I00N; — 104, ]. Subtracting d, from equation (6.70) we get

100N; — 10d; —dy =0.d3d, . .. (6.71)
and multiplying both sides of 6.71 by 10 we get

1000N; — 100d; — 10dz = dz.dy . .. (6.72)

and now we see how to get d3, namely d; = [1000N; — 100d; — 10d;]. We subtract d3 from equation
(6.72) and multiply the result by 10 to get 10000N; — 1000d; — 100d; — 10d3 = dy.dsdg ... and we
see that d; = [I0000N; — 1000d; — 100d, — 10d3], and so on.

This seems to be a complicated procedure, but in fact it can be described as follows. To generate
the digits in the decimal expansion of a number, N , we multiply N by 10, to get a number #, take
the greatest integer, g, less than or equal to n. The number ¢ is the next digit in our decimal
expansion of N. Next, compute n — g, and start over again with n — g in place of N and continue
in a similar manner.

To clarify this, we will need an example which is key to the rest of this section. Study it
carefully.

Example 6.54 Find the decimal expansion of .

1
First, we multiply N = 7 by 10, to get %. Since g = [%)] is 1, 1 is the first digit in the decimal

1
expansion of 7 Subtract ¢ =1 from 1—70 to get % We have completed the first step.

Now we start over with N being replaced by % We do the same as before. We multiply % by 10
to get %. Now compute g = [30/7] = 4. Thus, 4 is our second digit in the decimal expansion of %
Subtract this 4 from % to get a result of % We have now completed the second step.

Start again with 2 in place of N. Multiply this by 10 to get 2. Since g =[] = 2, this is the third
digit in the expansion of 1. Subtract 2 from % to get a result of $.
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Start again with ¢ in place of N. Multiply the result by 10 to get &. Since g = [2] is 8, the

next digit in our decimal expansion of 1 is 8. Subtract 8 from 6—70 to get %. and so on.

At this point you may be thinking that all this is unnecessarily complicated in compari-
son to the very simple method that you learned in elementary school. At that time you used
the following method of long division to find the decimal expansion of a number, in this
case % Here are the steps you learned in elementary school to find the decimal expansion of %

(Figure 6.11)

0.142857 (6.73)
7] 1.00000
7

30
28
20
14
60
56

40
35

50
49

10
Figure 6.11

Do you notice anything similar about the two methods? Yes, long division is exactly what we
were doing in Example 6.54. Let us see how.

Look at the first step. In the above Example 6.54, we began with N = % and multiplied by 10 to
get %. Then we computed g = [%]. But to compute g, we need to divide 7 into 10. Take the integer
part of the quotient which is 1 to get our first digit in the decimal representation of % Now look
at the long division above. Our long division begins as

Line O
7|1.00000 Line 1.

We begin by asking how many times 7 goes into 10. This is exactly what we did in Example
6.54 . It goes in 1 time. Our division problem now looks like:

0.1 Line O
7/1.00000 Line 1
7 Line 2

3 Line 3.

We “bring down a zero” (which essentially means we multiply the remainder 3 by 10). So our
division problem now looks like:

0.1 Line O
7|1.00000 Line 1
7 Line 2

30 Line 3.
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Our next step in our long division is to compute how many times 7 goes into 30 to get the

1
next digit in the decimal representation of = The number of times 7 goes into 30 is, of course,

30
[7] . Now look back at Example 6.54. We were doing the same computation.

Our next division looks like:

0.14 Line O
711.00000 Line 1
7 Line 2
30 Line 3
28 Line 4
2 Line S.

Now we bring down a zero. Again, we are multiplying our remainder by 10. Our division
looks like:

0.14 Line O
711.00000 Line 1
7 Line 2
30 Line 3
28 Line 4
20 Line 5.

Then we compute the number of times 7 goes into 20 to get the next digit in our decimal
representation. That is, we compute [2—70] . We again are following our Example 6.54.
Since 20 divided by 7 gives a quotient of 2 with a remainder of 6, the quotient, 2, is

1
the next digit in the decimal expansion of - and this goes on line 0. Our division looks as

follows:

0.142 Line O
711.00000 Line 1

7 Line 2
30 Line 3
28 Line 4
20 Line 5
14 Line 6
6.

We bring down a zero and our computation is to determine how many times 7 goes into 60 to

get our next digit in the decimal representation of ; That is, we computed [?] just as we did in
example 6.54, and so on.

Thus, we see that the long division process is exactly what we were doing above in Example
6.54, and in some sense, we have justified the process of long division. Of course, the long
division process works only for rational numbers, while the proof of Theorem 6.53 shows us how
to find, at least theoretically, the decimal expansion of any real number. Thus, Theorem 6.53 is
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somewhat sharper. We also notice that each time we bring down a zero in the long division
problem, that is analogous to the multiplying by 10 that we did in Example 6.54. Thus, we
see in a very strong manner, the parallel nature of long division and the procedure we used in
Example 6.54.

The steps for finding a decimal representation of a rational number are so much easier to
process if we just use long division. So, now that we know the long division process is precisely
what is being done in the proof of Theorem 6.53, we can use long division when we need to get
our decimal representations of rational numbers.

One key thing to realize in long division of 1 by 7 is that every time we subtract a line from
the previous line, we are getting a remainder when the previous number is divided by 7. Thus,
when we begin, and we ask how many times does 7 go into 10, the answer is 1 and the remainder
is 3. That remainder, 3, is what was on line 3 before you brought down the zero. Similarly, in
the second step you asked “How many times does 7 go into 30?” The answer is 4 times, and the
remainder is 2. That remainder of 2 went on line 5 before we brought down the zero. Why are we
bringing this up? Well, there are only a finite number of remainders when you divide a number by
7 and they are O, 1, 2, 3, 4, 5, 6. Thus, eventually one of the remainders we got earlier will have
to show up again (you can see that the remainder of 1 in the last line of equation (6.73) is the
same as in the first line), and all subsequent steps in the long division process will repeat. What
this means is our decimal expansion for the fraction will repeat. Thus, when we divide two whole
numbers, we will get a repeating decimal for the decimal expansion. We have essentially shown how to
prove:

Theorem 6.55 All rational numbers are repeating decimals. Furthermore, the number of digits in the
repeating part is no more than the divisor.

We said above that the maximum number of digits in the repeating part of a decimal is
the size of the divisor. We need not even approach that maximum. For example 23/666 =
0.0345345345 ... . The repeating part is “345”, which only has three digits, though theoretically,
it could have as many as 666 since there are 666 remainders that one can get when one uses long
division.

The size of the repeating part of a decimal is called its period Thus, the period of 23/666 is 3
while the period of 2/3 is 1 since 2/3 = 0.6666 ... .

We now know that every rational number can be expressed as a repeating decimal. Further-
more, it works in reverse. Every repeating decimal can be expressed as a rational number. We show
this exactly as we did in Example 6.52. Thus, we have the following theorem.

Theorem 6.56 Rational numbers are precisely those numbers that can be expressed with repeating
decimals.

A corollary of this is

Corollary 6.57 Irrational numbers are precisely those numbers that don’t have repeating decimals in
their decimal expansions.
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So, if we write the number N = 0.101001000100001 ... where each time we insert one more zero to
the previous string of zeros before putting in a one, from the way it is designed, this clearly cannot
repeat. So this number is irrational.

Student Learning Opportunities

1 (C) One of your students vehemently claims that any number that can be written as a fraction
is rational. How would you respond? Is she correct? Why or why not?

2 (C) Your students claim that the number 0.212223242526272829210211212 ... is rational
since there is a pattern that keeps repeating. What is the pattern they are referring to? Are
they correct in claiming the number is rational? If so, why? If not, why not?

3 Write each of the following as a rational number. (The bar over a set of digits means the digits
are repeated indefinitely.)

(a) 0.345345345 ...=0.345
(b) 0.9898989898 ... =0.98
(c) 1.06545454 ... =1.0654

4 Which of the following are rational? Explain.
(a) 0.12131415161718 ...

(b) 0.3956789

V2
© 5
5 Use the procedure of Theorem 6.54 to find the decimal expansion of each of the following
fractions. Verify your answers by using long division.

1
(@) 3

3
() >
5
© 17

6 (C) It is stated in algebra that, if we take a number N and multiply it by say 103, we move the
decimal place three units to the right, and if we multiply by 103 we move the decimal point
3 units to the left. Similar statements hold if you multiply a number by 10”7 and 10~ where
p is positive. Thus, we can write 0.0023 as 23 x 10~* and 231000 as 231 x 103. How would
you use this to explain to students the rule that they learn in elementary school that, if we
multiply 2.1 x 3.02, we need only multiply 21 by 302, and then move the decimal place in
our answer three places to the left (where the number of places we move the decimal point is
the sum of the number of places after the decimal point in each of the numbers you multiply
together)?
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6.14 Decimal Periodicity

LAUNCH

1 What are the similarities and differences between and among the following decimals?

(a) 0.428

(b) 0.382382 ...

(c) 0.00467878787878 ...
(d) 0.20200200020000 ...

2 Express each of the decimals represented in question #1 as a rational number in fraction form.
Can it be done for each case? Why or why not?

3 When a rational number is written as a repeating decimal, can one predict how many places
after the decimal point the repetition will begin?

Having read the previous section and trying to respond to the launch questions, you are probably
convinced that the mathematics behind decimals can become quite complex. We hope that, by
reading this section, some of the questions about the decimal representation of numbers will be
resolved.

So, let us now continue our investigation of the decimal representation of numbers. A decimal
is called terminating, if it ends in all zeros. Thus, N =0.3750000 ...=0.375 is a terminating
decimal.

We can ask the following question: “What Kinds of rational numbers can be represented by
terminating decimals?” Well, suppose we start with a terminating decimal, say N = 0.3750000 ... =

1000° That is, the

fraction has a denominator that is a power of 10. Conversely, if a fraction has a denominator that
can be turned into a power of 10, then the fraction can be written as a terminating decimal. For

0.375. Then it is clear in this latter form that the decimal can be written as

7
example, g can be built up to a fraction whose denominator is a power of 10. We just multiply

7 875
the numerator and denominator by 125 to get 3=1000 " 0.875. Thus, we have that: the decimal

representation of a rational number will terminate in O’s, if and only if the denominator can be
built up to a power of 10.

What allows us to build the denominator of a fraction up to a power of 10? Well, if the
denominator can be turned into a power of 10, then its only factors are 2 and 5. Thus, it appears
that, if the denominator of a fraction has only factors of 2 and/or 5, then it can be built up to a

7
power of 10. Let us illustrate. Suppose we have the fraction 553 If we multiply the numerator

28
and denominator by 22, we get the following equivalent fraction: ——— and this is clearly .028.

1000
3
Similarly, if we have the fraction >3 it can be converted to a denominator that is a power of 10 by
3 3.5 375
multiplying numerator and denominator by 53 to get 23 = 2353 = 1000 and this is 0.375. These

examples illustrate the following result.
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Theorem 6.58 A rational number can be written as a terminating decimal if and only if the
denominator can be expressed as a power of 10. This is true if and only if the only factors of the
denominator are 2 and/or 5.

As we have seen, a rational number can be expressed as a repeating decimal. The repeat can start
right in the beginning of the decimal expansion or after a lag. For example, in 0.123123 ... = 0.123,
the repeating part starts right away, whereas in 0.021343434 ... = 0.02134, the repeating digits start
repeating at the 4th digit.

When a fraction is expressed as a decimal, and the repeat starts right away, the decimal is called
a simple periodic decimal, while when there is a lag before the decimal repeats, the decimal is
called a delayed periodic decimal.

In Example 6.52 we saw that the simple periodic decimal 0.3434 ... could be written as 34/99.
We showed this by calling the decimal N, multiplying by 100, and then subtracting the former
from the larger to get 99N = 34, so N = 34/99. In an entirely similar manner, if we had the simple
periodic decimal N =0.321321 ...we could multiply N by 1000 and subtract N to get 999N = 321
so N =321/999. Notice that, in both of the given examples, the denominator consisted of all 9’s
and the numerator consisted of the repeating part.

43
We can reverse the process. If we know that N = 99 we can immediately write the decimal

expansion of N. That would be 0.4343 ... and if N = 32/999, we could write the decimal expansion

as 0.032032... . We simply write the numerator with the same number of digits as there are 9’s
on the denominator. So 32 becomes 032. Similarly 7/9999 = (0007)/9999 = 0.00070007 ... . This
yields the following:

Theorem 6.59 Any simple periodic decimal can be written as a fraction whose denominator consists
of a number with all 9’s. Furthermore, if we have a fraction less than 1 whose denominator can
be turned into one that consists of all 9°s, then the decimal representation of that fraction is simple
periodic.

Thus, 1/3 is simple periodic since it can be written as 3/9. 1/13 is simple periodic since it can be
written as 76923/999999. Needless to say, this is not the best test for determining if a fraction has
a simple periodic expansion, since we have to know that the denominator can be built up to a
fraction with the denominator consisting of all 9’s.

There is a much simpler criterion for determining if a fraction has a simple periodic expansion,
of which we will only give half a proof. The other half is more sophisticated and is taken up in the
Student Learning Opportunities. We do need the previous theorem for this proof.

Theorem 6.60
(a) If a rational number % in lowest terms has a simple periodic decimal expansion, then the
denominator, n, has no factors of 2 and no factors of 5.
(b) if a rational number %1 is in lowest terms and n has no factors of 2 or 5, then %1 has a decimal

expansion that is simple periodic.
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Proof. We prove (a) saving the other half for the Student Learning Opportunities. Now we know

m m a
that, if p is simple periodic, then -, can be written as a fraction 999 9 where the denominator

consists of all 9’s. Cross multiplying we get that

(999 ...9)m= an. (6.74)

Equation (6.74) says that (999 ...9) m is a multiple of n. Now, if n did have a factor of 2 or 35,
then so would (999 ...9)m have a factor of 2 or 5, and since this factor cannot come from 999...9
(since it is not even nor divisible by 5) it must be m that has this factor. That means that m and n
both have that common factor of 2 or 5, contradicting the fact that the fraction is in lowest terms.
Thus, our supposition that # has a factor of either 2 or 5 led to a contradiction of the fact that the
fraction was in lowest terms, and thus n cannot have a factorof 2 or 5. W

Theorem 6.60 tells us that a rational number in lowest terms has a simple periodic expansion,
if and only if the denominator has no factors of 2 or 5. To illustrate the theorem, 1/13 is a simple
periodic fraction since it has no factor of 2 and no factor of 5 in the denominator and is in lowest
terms. In fact, 1/p, where p is any prime greater than 2, is always a simple periodic fraction.

3
Similarly, since 37 has no factors of 2 or 5, we can expect the fraction 37 to be simple periodic.

Indeed it is. 33—7 =0.081081081 ... =0.081.

The above theorem seems to be implying that, if the denominator of a fraction has no factors
of 2 or 5, it can be expressed as a fraction with a denominator consisting of all 9’s. Yes! And this is
not in the least bit obvious! A corollary of this is:

Corollary 6.61 A rational number in lowest terms has a delayed periodic expansion if and only
if the denominator has a factor of either 2 or S and at least one other prime factor in the
denominator.

We can also give an idea of how big the delay is before the decimal expansion repeats. We

illustrate with a numerical example which generalizes. Suppose we have the fraction % We

write this as 3

1
100 (97.3333 ...)=0.97333 ... and we have a delay of 2 resulting from the factor of Wlo in
front. Notice what makes this work. Once we have built up the denominator so that it has the
smallest power of 10 possible as a factor, we can factor this out of the denominator and the

remaining fraction will have no factors of 2 or 5 in the denominator. So the remaining fraction

73 73 73.22  73.22 73.4 292 1 292 1 9 1\
75 52.3752.3.22° 52.22.3  100-3 100-3 100 3 ~ 100 -

must have a decimal expansion that is simple periodic. Multiplying by % just moves the decimal
two places to the left and thus, there are two places before the repetition. Similarly, when
the denominator of a fraction that is in lowest terms has been factored, and we get 2! .53,
then we can build the denominator up to have a power of 10® (by multiplying numerator
and denominator by 22) and thus, there would be a delay of 3 before the repetition. Here

is a numerical example. Consider o7 = o7 = 97.2° = 1 388 = 1 553 =
pe. 1750 2-53.7 23.53.7 1000 \ 7 )~ 1000 \>>7)~

1 S -
1000 (55.428571) =0.055428571. These two examples illustrate the result:
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Theorem 6.62 If the denominator of a rational number in lowest terms is factored completely, and
the factor 2 occurs to the power r and the power 5 occurs to the power s, then the delay before the
fraction repeats is the maximum of r and s. (Here r or s can be 0O, that is, there may be no factor of 2
or 5, but they both can’t be 0 since there must be a factor of one of either 2 or 5.)

97
So, in the fraction % =53 r =1 and s = 3. So the delay is the maximum of r and s, which
3 73
is 3. This is exactly what we found prior to the theorem. Similarly, in the fraction 75 =523

r =0 and s = 2, so the delay is the maximum of r and s which is 2. This is also what we found
earlier.

Student Learning Opportunities

1 (C) You impress your students by asking them to give you any fraction that has only
9’s in the denominator and immediately giving them the decimal expansion (i.e. 48/99 =
0.484848 ..., 164/99999 = 0.001640016400164). After you do a few more like these, and
they seem to be noticing a pattern, you ask them to find the decimal expansion of some other
fractions with only 9’s in the denominator. Although they are excited that they can now do
what you did, they want to know why this works. What proof will you give them?

2 (C) Your students realize that, if you have a fraction whose denominator is a power of 10,
then it is easy to write it in decimal form. They want to know if all fractions can be converted
into that form and if so, how? What is your response and how do you justify it?

3 Without using a calculator, determine how many digits there are before the following
fractions repeat. Then check your answers with a calculator.

©)

I~ Sl=
N

(b) -

17
c _
© 75
4 Without a calculator, determine which of the following will terminate. Explain your work.
Check your answer with a calculator.

(o]
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1 — :
5 If — where pis a prime can be written as .ab where a and b are different, what are the only

values of p?

6 True or False: If 15 is simple periodic and has period p, then so does % if a and b have no

common factor. Justify your answer.

7 Here is an outline of the proof of part (b) of Theorem 6.60. Suppose that % is between 0

and 1, delays before repeating, and that we know the delay is 2 before repeating. (The same
argument works if the delay is 3, 4, or any number.) Furthermore, assume the period is 3.
Then our fraction is O.r%bcdecdecde... . Then, from the previous section, the first c in the
decimal expansion of P is the remainder when 10b is divided by n, and the second c is the

remainder when 10e is divided by n. This means that 10b and 10e leave the same remainder
when divided by 10, and thus 10b — 10e = 10(b — €) must be divisible by n (Why?) Since n
has no factors of 2 or 5, it can’t be 10 that is divisible by n. So it must be that b — e is divisible
by n. But b and e are both less than n and nonnegative. The only way n can divide b — e then,
is if b=e. Thus, our decimal is really 0.aecdecdecde. .. . Finish the proof.

6.15 Decimals: Uniqueness of Representation

LAUNCH

One of your secondary school students asks, “What number (other than 1) is closest to 1?”. Another
student answers, 0.999 ... . Is that second student right?

At first glance, this launch question might seem quite easy. But, we're sure that, as you thought
about it, the answer was not obvious at all. Hopefully, after reading this section, you should have
better insight into what the answer is.

Most students know that every real number has a decimal representation, and believe that
there is only one way to represent a number as a decimal. After all, if you type 3/4 into a calculator
and press enter, you only get back one answer, 0.750000... .

The next example shows that this is a common misconception. There actually is more than
one decimal representation of sorme numbers.

Example 6.63 Show that 0.7499999 ...=0.75.

Solution. Let

N =0.7499999 ... (6.75)
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Multiply both sides of equation (6.75) by 10 to get
10N = 7.499999 ... (6.76)

Subtract equation (6.75) from equation (6.76) to get 9N = 6.75 and divide by 9 to get N=0.75.
Thus, we have two ways of representing 0.75, one of them being 0.749999 ... and the other
being 0.75!

As it turns out, the only decimals that can be written in this non unique fashion are those
that terminate with all O’s or all 9’s. (For example, 0.75 which is 0.7500000000...0r 0.74999 ... .)
All other real numbers have only one representation as a decimal. That is the content of the next
theorem whose proof is somewhat sophisticated. One needs to be comfortable with summation
notation to understand it. You may wish to read it a few times to get a better understanding. We
will only give the proof for numbers x such that 0 < x < 1, since the integer part of a number has
no effect on the decimal part of the representation of the number.

Theorem 6.64 (a) Every nonnegative real number x between 0 and 1 is represented by a unique
infinite decimal, except those numbers whose decimal representations terminate in an infinite number
of zeros or an infinite number of 9’s. These and only these decimals can also be represented in two
ways.

Proof. We already know that each real number can be written as a decimal. What we will prove
is that if there are two decimal representations of a number, x, then that number x must be
representable in the form x = 0.b1b, ... 50000000 ... and that the alternate way of expressing
that number is 0.h1b; ... (bx — 1)99999999 ... . That will imply all other numbers have a unique
representation as a decimal and this will also prove our theorem.

So suppose that x had two representations:

x=0.ma; ... (6.77)
and
x=0.b1by .... (6.78)

Let ax be the first digit at which the two representations of x differ. Then ay # by, but

ap =by,
ay = bz

(6.79)
a—1 = by_1.

Let us suppose that ax < bx. (There is a similar proof if by < ax.) Since ax and by are different integers,
they differ by at least one. That is, by — ax > 1, or put another way,

ag+1 < by. (680)
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Our plan is to produce a list of expressions and show that they are all between x and x and so
they must all be the same, namely, x. Now, we have

o0

x =32 (by(equation 6.77)) (6.81)
Y 1gn byleq
1
1
= ( 1 1&) + — 10k <Z 10”) (Just breaking the sum up.) (6.82)
g ax > 9
n .
< <Z : 0n> 1o (Z W) (Since each a, < 9.) (6.83)
1 k+1
= |+ — + [ 1Y) (Sum of geometric series.) (6.84)
- 10" 10% 1-— %
k-1
= Z D + e i (Simplification of the last term.) (6.85)
- 10" 10% 10%
= 3 Dy + — s (By the equations in (6.79)) (6.86)
“\&10r) Tkt 10k yHieeq '
k-l b, ag+1
=(> o7 )+ 1o (Combining the last two terms.) (6.87)
1
1y b
= (21: 161,1) + 1—5,( (Since a; + 1 < by by equation (6.80.) (6.88)
k-1 bn bk 00 b
< ; 107 + 1ok + Z 107 (We are just adding more.) (6.89)
= Z o (6.90)
= .bibybs ... (The series represents this decimal.) (6.91)

X (By equation (6.78)).

We have a list of expressions sandwiched between x and x, so all lines in the above display
must be equal. In particular, the contents of line equation (6.87) = the contents of line equation
(6.88) or

k-1 k-1
by, a + 1 by by
= —. 6.92
(Fi) 50t 652

Subtracting Zﬁ 10,, we get
dg + 1 bk
Tor T 108 (©73)

and multiplying equation (6.93) by 10% we get that g, + 1 = by or that
dg = bk - 1. (694)
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Also, from equations (6.88) and (6.89) we have

k-1 k-1 00
by by by by b,
(Z 10n> + 10k — (Z 10n> + 10% + Z 107 (6.95)

1 1 k+1

Subtracting ( ]i_l %) + %E from both sides of equation (6.95), we get that

= b
Z 1(;’71

k+1

=0. (6.96)

Equation (6.96) tells us we have a sum of nonnegative numbers whose sum is zero and the only
way this can happen is if all the b's in (6.96) are 0. That is, if bxi1 = bs2 = bry3 and so on are all
equal to zero.

Stop. Saying that by = bii2 = brs3 and so on are all equal to zero is saying that the representation
we gave for x in equation (6.78) terminates in all zeros.

Thus, we have now shown that the representation of x given by equation (6.78) must
terminate in all zeros and, in fact, looks like

x = 0.b1by ...H0000000 ... . (6.97)

Now, from equations (6.82) and (6.83) we have
k—1 00 k-1 00
(i) (55)- () i (£5)
k - K :
- 107 10 — 107 - 107 10 = 107

k-1 00 00
Subtracting (Z %) + % from both sides, we get " % =Y 2 and subtracting the sum on
1 k+1

10”
k+1

o
the left hand side, we get )_ 91‘0‘}1” =0. Now, since a, <9, we again have a sum of nonnegative

k+1
numbers whose sum is zero. Thus, 9— a, =0, for all n > k+ 1. That is, a, =9 for all n > k + 1.

Stop again! We have shown that the tail end of the a, of the representation for x given in
equation (6.77) consists of all nines. That is,

x=0.a1ay ...a99999 ... . (6.98)

To summarize, equations (6.97) and (6.98) show that any number that has two decimal
expansions must have either all O’s at the end or all 9’s at the end.
To finish the proof, we compare equations (6.97) and (6.98) to get

x =b1b, ... 5000000000 ...=0.a1az ...ax99999 ... . (6.99)

From equation (6.94) ax = by — 1 and from display (6.79) we have that a; = by, a, = by, ...ax = bx.
When we substitute these in equation (6.99), it becomes

x =b1b, ...p 000000000 ...=0.b1by ... (bx —1)9999 ... (6.100)

and we are done. W
Thus, the fraction 0.658000000 ... is the same, for example, as 0.6579999999 ... .



Building the Real Number System 297

Student Learning Opportunities

1 Represent each of the following decimals in a different decimal form. If it is not possible, say
so. Explain your answers. (Again, the bar over a set of digits means that that set of digits
keeps repeating indefinitely.)

(a) 0.345

(b) 0.4929

(c) 0.1234

(d) 0.123

(e) 10100100010000 ...

2 Show that, if one has an infinite sequence of numbers dy, d>, d3, and so on written in decimal
form, where none of them end in all O’s or all 9’s, one can always find a decimal different
from each of these.

3 (C) Your students simply cannot accept the fact that 0.9999999...=1. How would you
convince them that this is true? [Hint: One way that might work is to start with the statement
that % =0.33333 ... which most students accept and then multiply both sides by 3. Find
other ways.]

4 (C) One of your clever students has written a decimal formed by writing all the natural
numbers in order after the decimal point.

0.123456789101112131415161718192021 ...

She wants to know if it is rational or irrational. Most students in the class say it is rational.
Why do you think they are saying that and how do you prove the number is irrational? [Hint:
If it were rational, there would be a part that keeps repeating. Suppose that part has, for
argument’s sake 1000 digits. What this means is that, after a certain point, those thousand
digits would repeat over and over. But one of the numbers that occurs in this decimal we
constructed is 11111 ... 1 consisting of 1001 1’s. What this means is that the repeating part
consists of all 1’s. Said another way, the “tail” of this decimal consists of all 1’s. Finish it. ]

6.16 Countable and Uncountable Sets

LAUNCH

1 How many rational numbers are there? How many irrational numbers are there? Are there
more rational numbers or irrational numbers?

2 How many real numbers are there? Are there more real numbers than natural numbers?
Explain.
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You can judge by the launch questions, that we are getting you to think about some very interesting
concepts of “countability.” When you were asked, “How many natural numbers are there?” did you
answer “Infinitely many?” When you were asked how many real numbers there are, did you again
answer, “Infinitely many?” When you were asked whether there were more real numbers than
natural numbers, did you and your classmates answer differently? Did one person say, “Sure. It
is obvious that there are more real numbers than natural numbers?” Did another person say, “Of
course not. Both sets are infinite and the word infinite means neither set can be counted. So they
both have the same size-infinite!”

This may not strike you as a big issue, but to mathematicians in the 19th century, this was a
major problem. To many mathematicians, infinity was infinity. Period! To say that one infinite set
has more elements than another infinite set made no sense. In fact, many mathematicians refused
to even think much about infinite sets because infinite sets had their own pathological difficulties
as the following examples illustrate.

Example 6.65 Hotel Infinity boasted of the largest number of rooms in the world. They had infinitely
many rooms numbered 1, 2, 3, and so on. One day a guest showed up and said “I would like a room.”
The receptionist said, “I am sorry sir, all our rooms are filled.” The prospective guest thought for a
moment and then said, “Well, then, move the guest in room number 1 to room number 2, and the
guest in room number 2 to room number 3, and so on. This way room 1 will be empty, and I can
take it.”

INDEED!

Example 6.66 (Hotel Infinity continued). The hotel is full. Infinitely many guests arrive. Each is
wearing a T-shirt. The T-shirts are numbered 1, 3, 5, ..., and so on. (It is a rather odd set of guests.)
They all want rooms. The receptionist who has learned from the previous example says, “No problem!
This is hotel infinity! “So he moves the guest in room 1 to room 2, and the guest in room 2 to room
4, and the guest in room 3 to room 6, and so on. This leaves all the rooms numbered, 1, 3, 5, and so
on open. He tells each guest, “Go to the room number on your T-shirt. “And all the guests go to their
rooms with a smile.

These facetious examples show some of the problems involved in studying infinite sets. George
Cantor (1845-1918) was a mathematician who wasn’t quite ready to accept that all infinite sets
were the same. In his own mind he wanted proof that all sets with infinitely many elements had
the same size because he didn’t believe it! So he set himself to the task of deciding how to compare
sizes of infinite sets. He formalized what it means for two infinite sets to be “the same size.” His
definition made perfect sense. He was guided by what happens with finite sets.

Two finite sets are the same size if their elements can be matched up. Thus, the sets {a, b, c, d, e}
and the set {1, 2, 3, 4, 5} would be the same size because we can match them up in the following
way:

— < |
N &
w < 9
o X
U< D
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He felt the same definition for infinite sets was logical. He simply said that two infinite sets A and
B were the same size (or had the same cardinality) if their elements could be matched up. With
this definition, he could say that the set of natural numbers was the same size as the set of even
numbers, because they could be matched up, as we see below:

.oono ..
¢ ¢ ... (6.101)
2n

B o N
N> W
R0 >

1
¢
2

That is, with each natural number he matched its double.

Cantor’s goal was to determine once and for all if all infinite sets could be matched up with
one another. If they could be, then all infinite sets had the same size or cardinality. If they couldn’t
be, then there were different size infinities.

If you are one of those who thinks that all infinite sets have the same size, you are in for a BIG
shock, for Cantor showed they don't. This discovery wreaked havoc in the mathematics commu-
nity much like the discovery of irrational numbers wreaked havoc on the Greeks. Mathematicians
at first refused to believe this. But the reasoning was sound.

Now it is accepted that different infinite sets can have different sizes, and that is a standard
part of a pure mathematics major’s education. Let us begin this fascinating journey concerning the
size of infinite sets.

Essentially, Cantor began with the definition of countable. We say that an infinite set is
countable if it can be matched in a one-to-one fashion with the natural numbers. (Some books
use the word countably infinite. We won'’t do that.) Saying that a set can be matched in a one-to-
one manner with the natural numbers means that each natural number is matched with only one
element of the set and each element of the set is matched with only one natural number. Thus, the
set of natural numbers is countable (since it can be matched up with itself: 1 is matched with 1, 2
with 2, and so on). The even integers are also countable. We saw this in equation (6.101), where
we presented the matching.

There is a very convenient way of describing a countable set. Any set whose elements can be
listed in a row is countable. Thus, the set of numbers 1, 2, 3, ... is countable since we have listed
the elements in a row. The set of numbers 2, 4, 6, ... is countable since its elements have been
listed in a row. Why is a set whose elements can be listed in a row countable? Well, if we match
the first number in the listing with 1, match the second number in the listing with 2, and so on,
we have our matching with the natural numbers. Thus, the set is countable.

Our first theorem tells us that there are as many rational numbers as there are natural numbers.
Does this surprise you?

Theorem 6.67 The set of rational numbers with positive numerators and denominators is countable.

Proof. What we need to show is that we can list the elements of this set in a row.

Now, let us begin by writing all rational numbers with denominators of 1 in a row. In the next
row let us put all rational numbers with denominators of 2. In the third row we put all rational
numbers with denominators of 3, and so on. So what we have looks like:

1 2 3 4

1 1 1 1
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and we have succeeded in listing all the rational numbers in an infinite number of rows. The issue
now is, how can we “string them out” in one row?

Cantor solved this ingeniously by doing what is called a diagonal argument. He lists the
elements by “following the arrows” in the picture below. Essentially, he is moving along the
diagonals.

1 2 3 4
1 1 1 1
v S/

1 2 3
> > e

VS

1 2 3

3 3 3
v

1

- —

4

So here is our listing: 1, 2, 1,1, 2,2, 4,2, 2 1 and so on. Only some numbers are repeated. So
as we list them, we make sure that we never list a number already listed. Clearly, every rational
number is in this listing. For example, if we ask whether 99/100 in the listing, we can answer “Yes,
we encountered % in the 100th row and 99th column and, since we traversed all the diagonals, it
is picked up in our listing.” The same can be said for any other rational number. Thus, all rational
numbers have been listed in a row, and the set of rational numbers is countable. W

Neat!

You may be thinking, “What is the big deal? We can do this diagonal argument for any infinite

set. So all infinite sets are countable!” If you think that, then the following will surprise you.

Theorem 6.68 The set of real numbers between 0 and 1 is NOT countable.

What this means is that, even though this set is infinite, its elements cannot be listed, in a
horizontal row. No matter who tries, no one will succeed! Thus, this infinity represents a different
size infinity! It is mind boggling! Here is the proof.

Proof. Suppose we can list the real numbers in a row. We will show this leads to a contradiction.
Let us assume we can list the real numbers rq, r5.r3, and so on. Now if we can list them in a row,
we can list them in a column and vice versa. For convenience of exposition, it is easier to list them
in a column.

Since each real number can be written as a decimal, we would like to write, say, r1 = 0.d1dxd3 ...
where d; represents the first digit of the decimal expansion of r;, d, the second digit of r;, and so
on. However, we have infinitely many r’s and infinitely many digits in their decimal expansions,
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so we will be forced to use subscripts as well as superscripts. The subscript will tell us which digit
we are looking at while the superscript will tell us which real number we are focusing on. Thus, if
we want to write the decimal expansion of the first real number, it will look like r1 = 0.d{d}dj ... .
Here the superscript 1 tells us we are writing the decimal expansion of the first real number. The
digit d} stands for the 25th digit in the decimal expansion of the first number. If we wanted to
write the second real number, it could be written as r, = 0.d?d2d3 ... . Again, the superscript 2 tells
us we are writing the decimal expansion of the second real number. The digit d7, would represent
the 10th digit of the 2nd real number, r,, in the list, and so on.

So here is our supposed listing of the real numbers. We have bolded the diagonal entries for a
reason. You will see why shortly.

rn=0ddd ...
ry = 0.2 ...

(6.102)
ry = 0.d3d3d3 ...

and so on.

We will show that this list cannot possibly contain all real numbers. So numbers are missing.

Consider the following number r where r = 0.e;eze3 ... and each ¢; is either 1 or 2. Specifically,
we look at dll in listing (6.102) . If it is 1, we choose e; to be 2. If d11 is any other digit, we take e; to
be 1. Thus, the first digit of r differs from the first digit of r; in listing (6.102) .

Now we look at df. If it is 1, we choose e;, the second digit in our newly constructed number,
r, to be 2. If it is any other digit, we take e; to be 1, and so on. Thus, r differs from the second digit
of rp in listing (6.102). We continue in this manner choosing e; to be 1 or 2 but different from
d; and e4 to be 1 or 2 but different from dj and so on. The number r we constructed therefore
differs from each element in the listing (6.102) by one digit, and thus must be different from
every number in the listing (6.102). Thus, any listing of real numbers cannot pick up all real
numbers. It follows from this that the set of real numbers cannot be listed and therefore is not
countable. W

Is this not fascinating? What this is telling us is that the set of real numbers between 0 and
1 is a different infinity from the set of rational numbers between 0 and 1. The rational numbers
between 0 and 1 can be listed in a horizontal row. The real numbers can’t be. Since the set of
rational numbers between O and 1 is a subset of the set of real numbers between O and 1, the only
conclusion that we can make given that they are different infinities is that there are more real
numbers than rational numbers. That is, the set of real numbers constitutes a larger infinite set. It
is not countable.

Of course, if the number of real numbers in the interval (0, 1) is more than the number of
rational numbers in (0, 1), how does the cardinality of all real numbers compare to the cardinality
of real numbers in (0, 1). Again, our gut tells us, “Well, it has to be more.” Once again, we are
wrong.

The cardinality of the set of all real numbers is the same as the cardinality of the real numbers
in (0, 1). That is, there are as many real numbers as there are real numbers in (0, 1). This seems
incredible. But if we can match the set real numbers in (0, 1) with the set of all the real numbers,
then this result will follow. We can give a simple picture that illustrates this. Imagine we have the
real number line and that above it we have the interval from (0, 1) only we bend the interval (0, 1)
into a semicircle as shown in Figure 6.12 below.
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Q
Figure 6.12

Above that, put a point P. Now, draw a line from P to any point Q on the curve representing
the interval (0, 1). If we extend this line to the real number line below, it hits it at a point Q'.
We match Q with Q’. This is our matching between the real numbers in the interval (0, 1) and
all real numbers. Thus, these sets have the same size. We notice that the closer we are to the
endpoint of the interval (0, 1) the further out we go on the real number line. (For those who don’t
find the picture satisfying, here is a function that sets up a one-to-one correspondence between

(0, 1) and the real line: f(x) =tan (% -(2x — 1)) . As x varies from O to 1, % -(2x — 1) varies from
T T . . . P .
) to 5 and hence tan x varies from —oo to co. And, since the tan function is increasing on

this interval, this function is one-to-one. So different x’s yield different y’s.) We state that as a
theorem.

Theorem 6.69 The set of all real numbers has the same cardinality as the set of real numbers between
0and 1.

Cantor took this further and proved something even more astounding. He proved that the number
of points inside a square has the same cardinality as the interval (0, 1). (See Figure 6.13.)

(@

(b)

Figure 6.13 The number of points in the square in (a) is the same as the number of points on the line
in (b).

(We won't prove this.) When he discovered this he remarked, “I see it, but I don't believe it!”
What happens when we unite two countable sets? Is the resulting set still countable? The
answer is “Yes,” and it is easy to show: Suppose that we have two countable sets, S and T and that
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the elements of S are s1, S, $3 ... and those of T are 1, b, f3, ... . Then, if we can list the elements
of the two sets in a row, the union of those sets is countable. Here is the listing.

s1, b, S2, 1, 3, ....

Thus, we have:

Theorem 6.70 The union of two countable sets is countable.

Corollary 6.71 The union of any finite number of countable sets is countable.

The proof of the corollary is left as a Student Learning Opportunity.
The next theorem is yet another surprise.

Theorem 6.72 The irrational numbers are not countable.

Proof. We know the set of rationals is countable. If the set of irrationals was also countable, then
their union, the set of real numbers, would be countable. But, we saw in Theorem (6.68) that the
set of real numbers is uncountable. So, this contradiction tells us that the set of irrational numbers
cannot be countable. W

Countable sets represent the smallest infinity. The set of rational numbers is countable and its
size represents the smallest size that any infinite set can have. The next size infinity, as far as we
know, is the size of the real numbers. So we already have two sizes of infinity. What is surprising is
that it doesn’t stop here. Given any size infinity, one can always find a larger one. Thus, there are
infinitely many different sizes of infinity! We refer the reader to the many articles on the Internet
on this topic.

6.16.1 Algebraic and Transcendental Numbers Revisited

In Chapter 3, we discussed the concept of algebraic and transcendental numbers. Every rational
number, like 2/3, is the solution of a polynomial equation with integral coefficients. In this case,
2/3 is the solution of 3x — 2 = 0 and any other rational number, p/q is the solution of gx — p = 0.
Certain irrational numbers are also solutions of equations with integral coefficients. For example,
V2 is the solution of x> — 2 = 0, and /3 is a solution of x> — 3 = 0. We recall that any number that
is a solution of a polynomial equation with integral coefficients is called algebraic. Since every
rational number satisfies a polynomial equation with integral coefficients, every rational number
is algebraic. Any number which is not algebraic, is called transcendental.

Any transcendental number must be irrational since, if it were rational, it would be algebraic
as pointed out in the last paragraph. We described in Chapter 3 how difficult it was to find
transcendental numbers, and how it took many years for someone to construct a transcendental
number (the mathematician Louisville). Then, after great effort, it was proved that both = and e
were transcendental. So we had 3 transcendental numbers. It seemed that transcendental numbers
were pretty scarce. Then Cantor once again shocked us.
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Theorem 6.73 The number of transcendental numbers is uncountable.

Thus, not only are transcendental numbers not rare, they are abundant! They are even more
abundant than rational numbers. Again, this is mind boggling. We outline the proof of this in the
Student Learning Opportunities. Since this goes well beyond the secondary school curriculum, we
simply stated the theorem as a matter of historical interest.

Student Learning Opportunities

1 Show that the set of multiples of 3 is countable.

2 How could you convince your students that there are as many cubes of natural numbers as
there are natural numbers?

3 One of your students asks how you can make a one-to-one correspondence between the
counting numbers and the whole numbers. How do you do this?

4 (C) Your students are really intrigued by the mysteries of cardinality. They ask you if it is
possible to give a geometric proof that any open interval has the same cardinality as (0, 1).
Show them how to do it. [Hint: Draw the two intervals parallel, with the larger one on the
bottom. Connect the endpoints of the intervals to get a triangle. What is your matching of
the intervals?]

5 (©) Your students want to know if there are more rational numbers than irrational numbers
or are they equal in number. How do you respond and help your students understand your
explanation?

6 Show that if the sets, $q, S5, ..., S, are each countable, then so is their union. (In words: The
union of a finite number of countable sets is countable.)

7 Show, using the diagonal argument, that if Sy, S, ..., Sp ... is a countable collection of
countable sets, so is their union.

8 (C) Your students ask if it is possible to show that the set of all rational numbers is countable.
How do you reply and prove your point?.

9 Suppose we have a polynomial of degree n with integral coefficients. We define the height of

the polynomial to be the degree added to all the absolute values of the coefficients. Thus, the
height of the polynomial x2 —3x+4is2+|1|+|=3|+|4| or 10.
Let P« denote the set of polynomials of height k. Thus, P; is the set of polynomials whose
degree added to the absolute value of the coefficients is 1. (There are only two such
polynomials here, 1 and —1.) P, is the set of polynomials whose height is 2. (This contains
polynomials like x and —x.)

(a) Explain why each set Py has only a finite number of elements.
(b) Suppose that we find all the roots of all polynomials in P, for each k. Show that we get a
finite set.
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(c) Show that, if we unite all the roots of all the polynomials in all the P;’s, we get all the
algebraic numbers.
(d) Show all the algebraic numbers are countable.

10 (C) One of your students makes the suggestion that all irrational numbers are transcendental.
Is the student correct? Explain.

11 Show that each of the following numbers is algebraic by finding a polynomial with integral
coefficients that it satisfies.

(a) V4

(b) 1++/3
(© V2+3
(d) vV2+/3






CHAPTER 7

BUILDING THE COMPLEX NUMBERS

7.1 Introduction

When secondary school students are first introduced to imaginary numbers, they find the whole
topic somewhat baffling. Although they usually don’t have too much trouble with the manipu-
lation of complex numbers, they are usually bewildered by their meaning. They are often told
that i was invented to solve the equation x>+ 1 =0, and so are left with the impression that
imaginary numbers are just something that mathematicians dreamed up to help continue on
in their abstract excursions. What students are rarely told is that, like them, for quite a long
time many mathematicians were also reluctant to accept imaginary numbers. But, it wasn’t too
long after their discovery that the use of imaginary numbers enabled mathematicians to find
the answers to many difficult questions left unanswered by the use of real numbers alone. And
most surprising, it turned out that imaginary numbers have many practical applications! In fact,
because of their extensive uses in engineering, many people studying to be engineers are required
to take courses involving complex numbers. In this chapter we begin by talking about some of
the interesting issues with complex numbers, and then address many of the topics included in
precalculus courses, and finally connect them to higher level concepts in mathematics. By the end
of the chapter, we will expose you to some connections and applications you most likely have not
seen before, that will hopefully leave you with a sense of the power, as well as the mysteries of
complex numbers.

7.2 The Basics

LAUNCH

Find two real numbers whose sum is 10 and whose product is 40.

You will probably be very surprised to know that this launch problem is quite famous, as it was
first posed by Cardan, in his well known algebra book Ars Magna (The Great Art), published in
1545 (Dunham, 1994, p. 288). Let us examine the trouble he encountered when he used an
algebraic approach. He called the numbers x and y, then obtained the equations x + y = 10 and
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xy =40. Since y =10 — x, he substituted it in the second equation to get x(10 — x) = 40, which
yielded the quadratic equation x> — 10x + 40 = 0. The quadratic formula yielded the solutions for
x: x = 195/=60 'When he noticed the +/—60, he realized that he hit a stumbling block. Since v—60
was a meaningless quantity in his day, he was led to believe that there is no solution to this
particular problem. Nevertheless, Cardan pressed on. He chose x = %’TO and solved for y to get
y=10—-x=10— @. He treated these seemingly meaningless objects as if they were numbers,

and computed y: y= 20 — 10+4/=60 _ 10-y=60 Now, he added x+y as one would do with real
numbers, to get x + y = 10¥=60 L 10-¥=60 _ 20 _ 10 which checked. Then he multiplied the fractions
the way we usually do and assumed that +/—60 - /—60 = —60, even though these expressions had
no meaning to him. He got: xy = 10+/=60 . 10-/-60 _ 100+10v=60_10v=60-(-60) _ 160 _ 40, and this also
checked. The point is that, even though he had no idea about what the square roots of negative
numbers meant, he multiplied and added these expressions as if they were real numbers and got
correct answers. This was convincing enough to others so perhaps we should take a closer look at
these expressions.

Mathematicians began examining expressions involving square roots of negative numbers.
They began with the symbol /—1. Consistent with the computations we did in the previous para-
graph, they declared that, whatever this symbol meant, it would have to satisfy v/—1-+/—1=—1.
To simplify the representation of v/—1, they called this new symbol “i" for imaginary number. After
all, it was not a real number in the usual sense. By definition, i? = /=1 -+/—1 = —1. Of course, it
was desired that «/—4 -/—4 also be —4. So one had to figure out how to define +/—4. A logical
guess was to define v/—4 to be 2i since 2i - 2i (assuming that we can rearrange expressions when
multiplied) would give us 4i? which is —4. This follows since i? was defined to be —1. Continuing
in this manner, the square root of any negative number was defined in an analogous way. So, if N
is a positive number (so that —N is negative), we define

V=N=+/N-i.

Thus, V=3 = +/3 - i by definition! Similarly /=16 = /16 - i = 4i by definition.
We have one last step. When solving the equation x? — 10x + 40 = 0 earlier, we got as solutions

10”2_60 and 1= Y =69 Thus, it seemed that we had to be able to make sense of an expression like 10 +

v—60, which is some combination of real and imaginary numbers. Since our previous definition
of /=60 was /60 - i, this number 10 + /=60 can be written as 10 + +/60 - i. This leads to our final
definition: A complex number is a symbol of the form a + bv/—1, or just a + bi, where a and b are
real numbers and i is an abbreviation for v/—1. a is called the real part of the complex number,
and b the imaginary part. Notice that, at this point, these are just symbols. They have no meaning.
We have to decide now how to operate on these symbols. That is, we have to give them some
semblance of structure.

7.2.1 Operating on the Complex Numbers

Before operating fully with complex numbers we must first decide what it means for two complex
numbers to be the same. We will say that two complex numbers are the same if the real
and imaginary parts are equal. Thus, if we say that (x — 2) + (y + 1)i =4 — 3i, where 4 — 3i means
4 + (—3)i, then x — 2 must be 4, and y + 1 must be —3.

We now define addition and subtraction of complex numbers. We define addition of two
complex numbers in a natural way that mimics what happens in algebra if we treat i as a variable.
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That is, we add complex numbers by adding the real and imaginary parts of them. In symbols we
define (a + bi) + (c + di) to mean (a + ¢) + (b + d)i and, of course, subtraction is defined as you would
expect: (a+bi) — (c+di)=(a—c)+ (b —d)i. Thus, from our definitions of addition and subtrac-
tion, we have that (2+3i)+(4+6i)=(2+4)+(3+6)i =6+9i and that (2+3i) —(4+6i)=(2—4) +
B-6)i=-2-3i.

We will define multiplication of complex numbers the way we multiply binomials in algebra.
If in algebra we had to multiply (a + bi)(c + di), we would get ac +adi + bci + bdi®. If we do this
for complex numbers, remembering that i? = —1, this last expression simplifies to just (a + bi)
(¢ +di) =ac+adi + bci — bd = (ac — bd) + (bc + ad)i. We emphasize this definition of multiplication
of complex numbers:

DEFINITION: (a + bi)(c + di) = (ac — bd) + (bc + ad)i. 7.1)

Thus, (2+3i)(4 — 5i) = (2(4) — 3)(=95)) + 3(4) + 2(-95))i = 23 + 2i.

Since we created the rules for working with imaginary numbers, we can’t just blindly work
with them as we would expect them to behave. For example, are addition and multiplication of
complex numbers commutative, and associative? Is there a distributive law? One can take several
specific examples and verify that the commutative, associative, and distributive laws hold for
those examples, but again, this doesn’t mean it holds for all complex numbers. Perhaps we were
just lucky enough to pick the numbers for which it held. Thus, we need a proof, which will be
forthcoming.

Before turning to division, we talk about the conjugate of a complex number. With each
complex number z = a + bi, there is a number Z called its conjugate. By definition, Z = a — bi. Thus, if
z=3+2i, then Z=3 — 2i. One of the nice things about conjugates that we will use is that,
if a number is multiplied by its conjugate, the result is a real number. Thus, if z=3+2i,
7Z=(3+2i)(3-2i)=9 —4i2=9 —4(-1)=13. We can now move on to division of complex
numbers.

The same way we divide ordinary numbers, we wish to divide imaginary numbers. But then
what complex number should % be? Since we want to express this in the form a + bi where a
and b are real numbers, we need to get rid of the complex denominator. One way to do this is
to multiply the denominator of the fraction by 4 + 5i. Since for real numbers we are allowed to
multiply the numerator and denominator of a fraction by the same quantity, the part of us that
likes consistency says we should be able to do this for complex numbers too. So it seems that

G30 = ZO) . Qo5 = 822007 - =722 = 27+ 2. But the symbol §*¥) has no meaning! So what

(4-50) ~ (4-50) " (&+5) ~ 16-25i 41
gives us the right to multiply the numerator and denominator of a meaningless expression by the

conjugate and proceed as we did? The way to get out of this hole is to define, for example, ((Zi?;’l)) to

be the complex number obtained by multiplying the numerator and denominator by the number
4 + 5i, the conjugate of the denominator, and then split the fraction into real and imaginary as if it
made sense. We do this for all symbols of this type. Thus, we define the quotient of two complex

numbers, Ei‘:sg by

(a+bi) ac+bd bc—ad,

DEFINITION: = .
(c+di) c2+d? Tevar!

(7.2)

(This is the result of multiplying the numerator and denominator of Ez‘ﬁ; by ¢ — di, the conjugate

of c+di, and splitting up the fraction into real and imaginary parts, as you should check.)
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In particular, if a=1 and b =0, we get

1 c —d

c+di:c2+d2+c2+d21' (7.3)

Note that we still have not established the validity of multiplying numerators and denominators
of fractions with complex numbers by the same complex number, nor if it is valid to multiply
complex fractions the same way we do real fractions, namely by multiplying numerators and
denominators. We have also not established if, when dividing two fractions involving complex
numbers, it is valid to invert and multiply. As you can see, at this point we really know very little
about what we can and cannot do with complex numbers. But don’t despair, as we will soon know
a great deal more. We will soon show all of these properties. First, however, we establish some
basic laws. We will follow the convention that complex numbers are denoted by the letter z. The
following theorem may not surprise you, but given the unusual definition of multiplication of
complex numbers, this requires some work to verify.

Theorem 7.1 For any complex numbers zi, zp, and z3

(@) z1 + 2z = 2o + z; (Commutative Law of Addition)

(b) z1 -2y =2y - z1 (Commutative Law of Multiplication)

(©) (z1+ 22) + 23 = 21 + (22 + z3) (Associative Law of Addition)

(d) (z1-22)-23=21-(22- 73) (Associative Law of Multiplication)

(e) z1- (22 +23) = 71 - Zp + 71 - z3 (Distributive Law )

(f) z1-1=2, wherel=1+0i. (Law of Multiplicative Identity)

(g) For each complex number z, z+ 0 = z, where O means 0 + 0i. (Zero Law)

(h) For each complex number z # 0, there is a complex number z~! such that z - z~' = 1. (Existence
of Multiplicative Inverse)

Proof. All of these results can be proved by brute force writing z; =a +bi, zz =c+di,and zz = e + fi
and then just verifying that the left hand sides and right hand sides of each of the expressions in
(a)-(h) match. For example, to prove (a),

71+ 2o = (a + bi) + (c + di)
= (a+c)+ (b +d)i by the definition of addition of complex numbers
= (c +a) + (d + b)i because addition for the real numbers, a, b, c, d is commutative

= 7, + z; by the definition of z; + z;.

Notice that, to prove commutativity for the complex numbers, we needed to use the commu-
tativity of the real numbers. You will find that, to prove associative laws and distributive laws for
complex numbers, you will have to use the corresponding rules for real numbers. We leave the
proofs of most of (b)—(e) for the Student Learning Opportunities.

To prove (f), we use the definition of multiplication z; - 1 = (a+bi)(1+0i)=(a@-1—-b-0)+ (b -1+
a-0)i =a+ bi since a- 1 = a for real numbers, and since b - 0 = 0 for real numbers.
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To prove (h) we take as a candidate for z~! the complex number % + ﬁzi. We are motivated
to do this by equation (7.3). Now, using the definition of multiplication for complex numbers,
we can show that z-z '=(a+ bi) (=5 + ﬁi )=1. You will do this in the Student Learning
Opportunities. It is a good algebraic exercise.

The next theorem is more sophisticated. It tells us that we can operate with fractions whose
numerators and denominators are complex numbers the same way we can do with fractions whose
numerators and denominators are real numbers. That is, we multiply fractions whose numerators
and denominators are complex numbers by multiplying numerators and denominators. This is
not at all obvious since fractions involving complex numbers are defined in a rather unusual way.
Veritying this by using the definitions alone is quite tedious. We will, however, give elegant proofs.

Before giving the proof of the next theorem, we should comment that the associative and
commutative laws can be used to show (although it is a bit tedious) that, if a group of complex
numbers are being multiplied together, the order in which they are multiplied does not matter, nor
do we need parentheses, although we can insert them if we wish, anywhere that we wish. Thus, if
we have an expression like z(w~!c)(d~1z7!), we can simply write this as zz-'w~lcd~! without any
parentheses or as zz~'(w~'c)d~! if we wish. The result is the same. We will use this fact a few times
in the next proof.

Theorem 7.2 If z, z1, 7,, z3, and z4 are complex numbers, then
z
@ —=2z- Zy

Z1+ 72y Z1 V43
—_ = — 4+ =

(b)

Z3 Zz3 73

(©)

(d)

1 z
= 71 - — (This can also be stated as = = 2z,")
2 22 V)

(e) There is only one complex number w such that zw = 1. (Uniqueness of multiplicative inverse.)

1 1

) B (This can also be stated as (z122)~" = (z;'z;).)
Z12 Z1 Z»
@ 1202

73274 73 Z4
(h) If z; - z» = O, then either z; = 0 or z; = 0.

Proof. The tendency is to try to prove these relationships the way we did the last theorem, namely
by writing z; as a+ bi and z, as ¢ +di. If we did that, the proofs would be very tedious and not
particularly interesting. But, we now have the previous theorem at our disposal, and having done
some of the ground work, we can now provide elegant proofs of these results. The only part that
requires a bit of work is part (a).

Proof. (a) In the proof of part (h) of the previous theorem we showed that, if z, = ¢ + di, then
z,' = 555 + =4 i. Now, letting z; = a + bi, we have

c —d .. ac+bd bc—ad.

I P Gl I L I 7.4)

zl~zz_1 =(a+bi)-(c
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(using the definition of multiplication of complex numbers). Furthermore, by definition of divi-
sion, (see equation (7.2))
z1 a+bi ac+bd bc—ad,

Z_2=c+di=c2+d2+c2+d21' 7.3)

z
Comparing the expressions we have for Z—l and z; -z, in equations (7.4) and (7.5), we see that
2

21 _
they are the same, so — =z;-z,". W
%)

Proof. (b) By part (a)

7 +2z
ara (71 + Zz)zgl
Z3

=7123' +22;"  (By the Distributive Law.)

_a,z (Again, by part (a).).
Z3 73

and we are done.

Proof. (c) Use part (a). We leave it for you to do in the Student Learning Opportunities.
1
Proof. (d) By part (a) ? =712, logz. - (by part (¢)).
2 2

Proof. (e) To show that this is the only number that multiplies z to give you 1, suppose w; and w;
are any two complex numbers that multiply z to give you 1. So zw; = zw, = 1. We use this in the
following string of inequalities.

w1
=wi(1)
= w1 (zw2)
= (W12)w;
= (Dw,
=w;.
So w; = wy. We have shown that any two complex numbers, w; and w, that multiply z to give

1 must be the same, so there is only one multiplicative inverse of a given (nonzero) complex
number, z.

Proof. (f)

e (3) (z)
(o 2) (= 2)

=(z1-%")(2-7") (By part (a).)
=1-1 (Theorem 7.1 part (h).)
=1.
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N

Since 71z, when multiplied by (%) (}), gives us 1 and since z;z,, when multiplied by (z,2,)71,

also gives us 1, it must be that (z;2,) ™!

1 1 . . .
Z)(Z) by the uniqueness of the inverse shown in part (e).

Proof. (g)
VAVA)

73274
= (1122)(z324)7"
=(112)(z3'z;") (By part (f).)

= (212, )(222,")
4 D
T oz

(By part(d).).

Proof. (h) If z; - p = 0 and z #0, we may multiply both sides of this equation on the left by z;*
to get z;'-z -2z, =2z;"' -0, which, simplifies to 1 -2, =0 or just to z, = 0. We have shown that, if
z1 #0, then 7z, has to be zero. You can similarly show that, if z, is not zero, then z; has to be zero.
Thus, when we multiply two numbers and get zero, one or the other must be zero.

It is very encouraging to see that, in many ways, complex numbers behave like real numbers
and share important properties like commutative, associate, and distributive laws. This allows us

to operate with them as freely as we do with real numbers.

Note: It is customary to consider the real numbers as a subset of the complex numbers. Every real
number a can be thought of as a + 0i, and thus is complex. This makes sense since 0-i =0, by
Student Learning Opportunity 11. Since we are considering the real numbers as a subset of the
complex numbers, we are thereby considering the complex numbers to be an extension of the real
numbers.

Part (c) of the above Theorem 7.2 is telling us that the multiplicative inverse of a complex
number, is the reciprocal. The same is true for each real number, since the real numbers are a subset
of the complex numbers. Part (d) is telling us that, when you divide two complex numbers, you
multiply the numerator by the inverse of the denominator. In particular, if the complex numbers
in the numerator and denominator are rational numbers, it is saying that, to divide two fractions,
you invert and multiply, since the inverse of a rational number is its reciprocal. (You will show the
same thing is true for complex numbers in the Student Learning Opportunities.) This corroborates
what we have seen in the previous chapter.

Statement (h) is important when solving equations. Essentially, it says that, if we can factor
an expression into a product which is equal to zero, then one or the other factors in that product
will be zero. We use this all the time in algebra when solving quadratic equations and equations of
higher degree.

Student Learning Opportunities

1 True or False: Every real number is complex.

2 (C) You ask your students to simplify +/—16 - «/—25. Two students volunteer to put their work
up for the class to see. Sahil writes: «/—16 - +/—25 = +/400 = 20. Julio writes: +/—16 - /=25 =

4j - 5i = 20i? = —20. Who is correct? How do you help clarify the issue?
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3

8

10
11
12
13
14

15

16

17

(C) One of your students is pursuing the concept of imaginary numbers and asks if 3 +4i is
greater than or less than 5 + 2i. How do you respond in a way that will satisfy your student’s
curiosity?

(©) In studying imaginary numbers, your students have learned about the powers of i.(i.e.,
i2=-1,i3=i,i*=(i%)?=1,i° =i, and so on.) They want to know how that will help them
find other values such as i'7, 32,43, and i'*. What shortcuts do you help them discover to
find these values and others that they will encounter?

Simplify each of the following as much as possible:

@ 34-N+32-1)

(b) 24

(©) 3i(i = 1)—=2i@i —3)

If x— y+(x+y)i=4—>5ifind x and y assuming x and y are real numbers.

Write each of the following in a + bi form:

1—i
@ 757

2-3i
®) 75

(©) Your student Lisa is asked to find complex numbers x and y other than x =4 and y =3
that make 3x + 5yi = 12+ 15i. She claims there are none. Is she right? Explain.

Prove parts (b) and (c) of Theorem 7.1.

Prove parts (d) and (e) of Theorem 7.1. This is a bit tedious.

Verify the statement made in part (h) of Theorem 7.1 that (a + bi)( ;% + ﬁi) =1.
Prove part (c) of Theorem 7.2.

Show that (2 +i)3 =2+ 11i.

In Chapter 3 we solved the cubic equation x> — 15x = 4 whose solutions we noted were

all real and got, using Ferro’s formula, that x=\3/4”2‘484 +\3/4‘V2‘484. Now J /=484

\3/4‘V2‘484 = \3/‘”52" + \3/4‘222’ =/2+11i + /2 =11i. Show, using the previous problem, that
one value of this is 4. (Later, we will establish that nonzero complex numbers have 3 cube
roots.)

Using only the commutative and associative laws, show that (2 2)(z324) = (21 3)(2224). You
must be careful with your parentheses in this proof.

(C) One of your curious students asks if 0-z=0 if zis a complex number? Is it? How can
you prove it? [Hint: Write 0 as 0 + 0/ and then use the definition of multiplication of complex
numbers.]

Show, using only the definitions and theorems that we have given that

z
(a) 5= 1 if zis not zero.

V4| -1 Vg
®(3) -5
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4|

7 Z1 24
C) === — . —
()é 7 73

Z4

(d) (z")7" = z This can be written as, 4 = z.

s
1
z

. . 7z z
18 Show that the following “cancellation law” holds for complex numbers: z1_z = 2—1 (If you are
2 2

thinking, ‘Oh, just cancel” then you are missing the point. These are not real numbers. These
are a new invention. We don’t know if the rules for real numbers hold for complex numbers
and the point of this problem is to show that they do!)
19 Show that we add fractions involving complex numbers the same way we add real fractions,
71 73 2124+ 2223
namely, — + — = ———.
V) Z4 72274
20 Find the roots of the quadratic equation x> — 2x + 2 = 0 and check that one of them works
by actually substituting it into the equation and showing that you get 0.

7.3 Picturing Complex Numbers and Connections to Transformation
Geometry

LAUNCH

1 You have seen how the real number line has been used to represent the real numbers. What
are some of the uses of this number line? (List at least three.)

2 How might you create another line that represents all of the purely imaginary numbers (e.g.,
2i,3i, 2i)? Draw it.

3 You have used two real number lines set at right angles (the coordinate plane) to help you plot
points such as (3,4). Now, in a similar manner, arrange the real number line and imaginary
number line that you have created to represent the real and imaginary components of the
complex number, 3 +4i, as a point.

4 What might be some uses of representing complex numbers with a picture, such as the one
you drew in the previous question?

We hope that these launch questions got you thinking more deeply about the value of visual
representations of abstract concepts.

We have all heard the expression that “a picture is worth a thousand words.” So, you
probably realize how helpful it would be if we could create a visual representation of complex
numbers similar to the way that a number line is used to represent real numbers. Actually, it
took quite a few years for mathematicians to come up with such a, picture, though once you
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see it, you wonder why it wasn’t found sooner. In this section we will describe in detail, how
complex numbers can be represented pictorially, and the many uses of representing them in
this way.

Every complex number a + bi has a real part a, and an imaginary part with coefficient b. Thus,
we can think of a complex number as an ordered pair (a, b) where a is the real part, and b is
the imaginary part. And, of course, that gives us the idea of how to create a picture of complex
numbers! We draw what is known as the complex plane. This consists of the plane, divided into
quadrants by two axes, a real axis, and an imaginary axis. We plot points just as we do in the real
plane only now when we plot a pair of numbers, the first coordinate represents the real part and
the second coordinate, the imaginary part of a complex number. Thus, when we plot a point (3, 4)
(as you did before) the way we do with real numbers, we are really plotting the complex number
z=3+4i. When we plot (-2, 5), we are plotting z=—2 + 5i. When we plot (4, 0), we are plotting
the number 4 + 0i which we take to be the real number 4. Below, in Figure 7.1, we see a picture of
the complex plane and the number z = 3 + 4i.

Imaginary axis

(EA)

Real axis

Figure 7.1

Notice that we have drawn an arrow from the origin. The above picture is called an Argand
diagram. Many books represent complex numbers that way, as arrows, since when we add complex
numbers we add them as we do vectors, and vectors are denoted by arrows. The arrow itself has no
particular importance. As long as we realize that the point (3, 4) represents the complex number
3 + 4i, the arrow is not needed.

When we draw the complex plane, it has in it a real axis and an imaginary axis. The real
axis is a subset of the complex plane and every real number, a, on the real axis, has coordi-
nates (a, 0) which we know means it can be written as a =a +0-i. This is consistent with what
we have pointed out earlier, namely, that every real number a is considered as the complex
number a + 0i. Thus, the set of real numbers is a subset of the set of complex numbers. Put
another way, we may consider the set of complex numbers to be an extension of the set of real
numbers.

Recall that, for every complex number, z = a + bi, there is associated another complex number
a — bi, which is called the conjugate of z. The conjugate of z is denoted by Z and we can immedi-
ately represent Z with a picture. (See Figure 7.2 below.)
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Imaginary axis

o (@, b)

Real axis

NI

(a, -b)

Figure 7.2

Notice that Z is the reflection of z about the x-axis. (Reflections and other transformations
are discussed in more detail in Chapter 10. In this chapter we assume you know the basics of
these concepts. If not, see Section 2 of Chapter 10.) Notice this interesting link between complex
numbers and transformation geometry. In fact, if we take a complex number z = a + bi and multiply
it by i, a very fascinating thing happens: We get iz = ai + bi’> = ai — b = —b + ai. If we plot both the
complex number z and iz on the same set of axes, we get (Figure 7.3)

Imaginary axis

(—b, G) ) (a/ b)

Real axis

Figure 7.3

The slope of the arrow representing the complex number z is

0 or just g, while the slope

a—0 a
5-0""b
negative reciprocals of each other. What this means is that the arrows representing z and iz are
perpendicular to one another. Put another way, when we multiply a complex number, z, by i, we rotate
the arrow representing the complex number by 90 degrees counterclockwise. Thus, we have a geometric
representation of multiplication by i, which represents another situation where geometry and
complex numbers are connected. First, Z reflected a complex number z about the x-axis, and then
multiplying z by i resulted in a rotation! In a similar manner, multiplying a complex number by —i
rotates the complex number 90° clockwise.

of the arrow representing the complex number iz is . Thus, the slopes of z and iz are
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What if we multiplied a complex number z=a+bi = (a, b) by a real number k, which we
at first take to be positive? Then, considering the real number k as k+ 0i and performing our
multiplication, we get kz = (k+ 0i)(a + bi) = (k — Ob)a + (a - O + kb)i = ka + kbi = (ka, kb). In the figure
below (Figure 7.4) we show z and kz.

Imaginary axis

o (ka, kb) = kz

(a, b)=z

Real axis

Figure 7.4

What do we notice? We see that kz stretches the arrow representing z by k. That is, multiplying a
complex number by a constant performs a dilation on it/ Wow! Yet another connection! (If k is negative,
then kz stretches z in the opposite direction by a factor of |k|).

We have hardly begun operating with complex numbers and have already found connections
to such transformations as dilations, rotations, and reflections. It is only natural to wonder if
arithmetic operations with complex numbers can result in translations. Well, the answer is “Yes!”
Suppose we start with a complex number z=a+bi and then add to it the complex number
w = ¢ +di. We get a new complex number, u = (a + ¢) + (b + d)i. What this does is translate the point
z a horizontal distance of ¢ and a vertical distance of d as we see in Figure 7.5 below. In that figure
we see z and w and the result of adding them. It is as if the arrow w has been moved so that its
tail is at the tip of z. Indeed, this is the “vector interpretation” that you probably recognize for
addition of vectors.

Imaginary axis

u=(a+b,c+d)

(¢ d)

Real axis

Figure 7.5
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Thus, we also get translations also with complex arithmetic! If nothing else, this shows the
power of complex numbers.

7.3.1 An Interesting Problem

There is a very interesting problem that one finds in an old book One Two Three . . . Infinity by George
Gamow originally published in 1957 and republished in 1988. It is a delightful application of the
rotational property of multiplying by i. It is about a youngster who, when rummaging through his
grandfather’s papers, finds directions for locating a treasure. He is to go to a specified island and
find the only gallow on the island. From there, he is to walk to the only oak tree on the island,
counting his steps. When he reaches the tree, he must turn right and walk the same number of
steps and put a stake in the ground where he lands. He then returns to the gallows and walks to
the only pine tree nearby, counting the steps again. When he reaches the tree, he should turn left
and walk the same number of steps and again place a stake where he lands. The treasure will be
midway between the stakes! Here is how this was presented in Gamow'’s book, where the following
was written on the piece of paper that the grandson found.

“Sail to ( a certain omitted latitude) north latitude and (a certain omitted longitude) west lon-
gitude where thou wilt find a deserted island. There thou wilt find a large meadow, not pent, on
the north shore of the island where standeth a lonely oak and a lonely pine. There thoust wilt also
see an old gallows on which we once were wont to hang traitors. Start thou from the gallows and
walk to the oak counting thy steps. At the oak thou must turn right by a right angle and take the
same number of steps. Put here a spike in the ground. Now must thou return to the gallows and
walk to the pine counting thy steps. At the pine thou must turn left by a right angle and see that
thou takest the same number of steps and put another stake in the ground. Dig halfway between
the stakes: the treasure is there.”

George Gamow was a bit of a comic and tells his readers that he left out the latitude and
longitude lest some of us drop his book and run out to find the treasure! He also acknowledges
that oak and pine trees do not grow on deserted islands, but that he has changed the names of the
real trees so that we cannot know what island he is talking about! Of course, for the grandson, the
numerical values of the latitude and longitude were written in as well as the real kinds of trees
he was referring to. We will stick with oak and pine trees.

The story continues with the young grandson traveling to the island where he does see the
trees described, but no gallows. They have disintegrated over the years from the bad weather and
no clue as to where the gallows were remains. The young man, saddened that he will not find the
treasure, leaves the island.

Before reading on, try to decide if you can figure out a way of finding the treasure. What are
the issues you are faced with?

What the grandson didn’t know, is that he could have found the treasure. And remarkably, he
could have found it by using complex numbers! Here is how it is done.

We begin by placing a set of axes on the map. This will allow us to represent locations
and distances. The real axis will join the oak and pine trees from the problem, as well as the
origin which will be placed midway between the trees. The imaginary axis will be drawn through
the origin. So one of the trees, say the oak tree is at the point (—d, 0) while the other tree,
the pine, is at the point (d, 0) since the origin is drawn midway between them. (See Figure 7.6
below.)
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Imaginary axis

gallows
©(a, b)
oak tree pine tree
O O Real axis
(-d, 0) (d, 0)

Figure 7.6

Now, since one of the main difficulties is that we don’t know where the gallows are, we suppose
that the gallows are at some point (a, b) relative to the origin. Now, imagine sliding the axes to the
gin is at the oak tree. Then everything will be d units further away, horizontally,
from the original origin than it was before. So, the new coordinates of the gallows are (a + d, b) and
tes of the pine tree are (2d, 0). (See Figure 7.7 below where the axes have been

left so that the ori

the new coordina
translated.)

Imaginary axis

gallows
© (a+d, b)

]

pine tree

v )
D—— Real axis

origin now at

Figure 7.7

To find the location of the first spike, according to the directions, we walk from the gallows to
the new origin, then turn right by a right angle and walk the same distance, at which point we
place a spike which we denote by ;. Here is our picture where the walk is indicated by a dashed

oak (2d, 0)

oak tree

arrow (Figure 7.8).
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Imaginary axis

(a+d, b)
§d

Real axis
oak

Figure 7.8

What this means is that, to locate the first spike, we can rotate the arrow representing the
complex number (a + d, b) 90 degrees counterclockwise, as we see from the above picture. This is
accomplished by multiplying the complex number (a +d, b), which represents a+d +bi by i to
get —b+(a+d)i or just (—b,a+d). To find the coordinates of this point relative to our original
origin, we must remember that, when we first moved the origin to the oak tree, we had to add
d to the x coordinate of every point, so now when we move back to our original origin, we have
to subtract d from the x coordinate of every point to gets its coordinates relative to the original
origin. Thus, the coordinates of the first spike relative to our original origin are

Si:(~b—d,a+d). (7.6)

To find the coordinates of the first spike, we moved the origin to the oak tree. To find the
location of the second spike, we will do something similar— we will move the origin to the pine
tree. That means that the coordinates of the gallows relative to this new origin are (a — d, b), since
each point to the right of the origin is d units closer to the origin and the coordinates of the oak
tree are (—2d, 0). (See Figure 7.9 below.)

Imaginary axis

gallows
$ (a-d b
oak tree
© Real axis

24, 0) pine

origin now at pine tree

Figure 7.9
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To find the location of the second spike, we walk to the origin from the point representing the
location of the gallows and go left by a right angle. Here is our picture where we again denote the
walk by a dashed arrow (Figure 7.10).

Imaginary axis

ola-db)

- Real axis
pine

Figure 7.10

This is equivalent to rotating the arrow representing the complex number (a — d, b) clockwise
90°, as the above picture shows us. To accomplish that, we multiply the complex number a — d + bi
by —i to get the complex number b — (a — d)i or just (b, —(a — d)).

Since we originally subtracted d when we moved the origin to the pine tree, to find the
coordinates of this second spike relative to the original origin, we have to add d to each x
coordinate. (We are translating the origin back to its original position.) Thus, the location of the
second spike relative to our original origin is

Sp:(b+d, —(a—dy). 7.7)

Now, the treasure is halfway between the first and second spikes. To find this point, we just
use the midpoint formula from secondary school. We add the x and y coordinates of the spike
locations given by (7.6) and (7.7) and divide by 2 to get the location of the treasure, which is
(-b—d)+b+d a+d—(a—d)
2 ’ 2
used the midpoint formula. That is, we didn’t need to know the coordinates (a, b) of the gallows!
Our treasure is at the location (0, d) or just the complex number di. But we know what d is. It is
half the distance between the trees! So we know exactly where to find the treasure. We move from
our origin, which we took to be midway between the trees, and move up along our imaginary axis
a distance of d units. That is where we find the treasure.

Isn’t this a nice problem?

Are you still there? Hmm, we bet you too are out looking for the island!

We hope you have enjoyed how we were able to use complex numbers to solve this fictitious
problem. But we want you to know that complex numbers are extremely powerful in the solution
of critical real-life areas such as: control theory, signal analysis, electromagnetism, quantum
mechanics, solving differential equations, fluid dynamics, aerodynamics, and fractals—and the
list is still growing.

= (0, d). Notice that the a’s and b’s summed to zero when we




Building the Complex Numbers 323

7.3.2 The Magnitude of a Complex Number

Another useful concept is the magnitude of a complex number z, which is denoted by |z|.
This is the distance the complex number is from the origin in the Argand diagram, and is
often represented by the letter r. From the Pythagorean Theorem (look at the Figure 7.11
below)

Imaginary axis

(a, b)

Real axis

Figure 7.11

we find that r = |z| = va? + b2. Thus, |3 +4i| = v/32+42 =5,
There are some results about conjugates and magnitudes that we should point out, which we
will use in this chapter.

Theorem 7.3 If z; and zp are complex numbers, then

@ Z1+n=n+2

bz =07

© Zm=2z

d) z-71 = 2>

(e) 7y is real if and only if z; is real.

Proof. Most of the proofs are simple and are left to the Student Learning Opportunities. For exam-
ple, to show that (a) is true, write z; =a+bi and z=c+di then z1+z=(@+c)+(b+d)i, Z1 + 2, =
(a+c)—(b+d)i, m=a—bi, Zz=c—di. Now, when we add z1 + Z; we get (a — bi)+ (c — di) =
(a+c) — (b+d)i, which is nothing more than z; + z,.

To get a better sense of what the rules are saying, you can just take some specific examples of
complex numbers and check the rules for those numbers. B

Parts (a) and (b) can be generalized to any number of complex numbers. The generalizations
are:

N+Zp+ ... +Zy=Z1+22+ ...+ 27,
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and

VAR 4)

.. In=721"Z2 ... Zp

These are proved by induction. (See Chapter 8 for a review of induction.)

Student Learning Opportunities

1

10
11
12

13
14

15

(Q) Your students want to know what the similarities and differences are between the
coordinate plane and the complex plane. What are some of the things you can say?

(C) Your students are eager about the lesson for the day. You have promised to show them
how some operations with imaginary numbers have geometric interpretations. What are
some of the relationships you can point out and how would you help the students discover
them?

(C) One of your curious students is intrigued by the fact that, when a complex number is
multiplied by its conjugate, the resulting number seems to always be real and nonnegative.
(e.g., Q+7i)2—7i)=4—49i%2 =4 +49 = 53). Your student wants to know if this is always
the case. How do you help the student figure out that this is always the case?

Suppose we rotate the arrow representing the complex number —3 + 2i, 90° counterclock-
wise. At what complex number is the tip of the rotated arrow?

Suppose we wish to rotate the arrow representing a complex number, z 180° counterclock-
wise. What must we multiply z by?

Suppose we wish to rotate a complex number 270° counterclockwise. What must we multiply
by?

Show that (2 +i)2 = 3 — 4i.

Show that, for every complex number, z,Z= z.

Show that, if Z= zthen zis real and conversely, if zis real, then z=Z
Show that, for all complex numbers z, zz = |z)%.

Show that for all complex numbers z; and 2, Z1z; = 71 - Z2.

Using Theorem 7.2 part (c), show that the inverse of every complex number is a multiple of
its conjugate.

Show that, for every complex number z, z+Z s real, and z— Zis purely imaginary.

Using the result of the previous problem, show that |z;z;| = |z1| - | 2| . [Hint: |z nPl=22-
717z = (you fill in the details) (|z] - |z2])?. Proceed from there.]

‘ 1

Show that, for every complex number z, = R
z
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7.4 The Polar Form of Complex Numbers and De Moivre’s Theorem

LAUNCH

1 Solve the equation x? = 4. How many solutions are there? How many square roots of 4 are
there?

2 Can you find a square root of a purely imaginary number? If so, what is a square root of 4i?
How many square roots of 4/ are there?

3 Can you find a square root of a complex number? If so, what is a square root of 1+i? How
many square roots of 1 +/ are there?

If you are totally stymied by the launch, have no fear, as the next section is here. It will describe
the fascinating connection between complex numbers and trigonometry that will then put you in
a position to answer the launch questions. We hope you enjoy learning about these fascinating
connections between different areas of mathematics and how powerful they are.

One of the nice connections between trigonometry and complex numbers is the fact that
every complex number can be expressed in trigonometric form. This alone is quite amazing and
surprisingly this representation has many applications. We will now develop some of the beautiful
resulting theorems that are part of the precalculus syllabus in many secondary schools.

If the line joining the origin to the complex number (a, b) makes an angle 0 with the x-axis
(see Figure 7.12 below), then from trigonometry,

Imaginary axis

(a, b)
r b
0 .
Real axis
a
Figure 7.12
we have
adjacent a
cosf= ——— = —
hypotenuse r
and
opposite b
sinf = L —

hypotenuse r
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where r = |z|. It follows from these that

a=rcosf and b =rsiné. (7.8)
Thus, the complex number z = a + bi can be written as

zZ=r1cosh + (rsin6)i. (7.9)

This is called the polar form of a complex number and is often abbreviated as z=r cis 6§ where
“cis” is a way to remember, “cosine plus i times sine.” 0 is called the polar angle of z. Thus,

r cis 0 =r cosé + (r sino)i. (7.10)

Example 7.4 What is the polar form of the complex number —1 +i?

Solution. The coordinates of this complex number are (—1, 1). That places the point in the second
quadrant and, when we drop a perpendicular to the x-axis from that point, we get an isosceles right
triangle as shown in Figure 7.13 below.

Imaginary axis

(G

1 P

Real axis

Figure 7.13

Each acute angle in that triangle is 45 degrees, which makes our polar angle 6 135 degrees.
Furthermore, by the Pythagorean Theorem, the magnitude of zis r = +/2. Thus, z = +/2 cis 135.

Example 7.5 The polar form of a complex number is 3 cis 240. What is the number in a + bi form?

Solution. From equation (7.8) we immediately get that a = 3 cos240° = —3/2 and b = 3 sin 240° =
—3(+/3/2). Thus, the exact representation of this complex number 3 cis 240 is —3/2 + (—3+/3/2)i.

The first question one asks is why bother with polar form? The answer is that, with polar
form, we can do some very difficult computations very easily. The following theorem tells us how
to quickly multiply two complex numbers in polar form. It simply says that we multiply their
magnitudes and add their polar angles. What could be simpler?
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Theorem 7.6 If z; =ricis 61 and zy = rycis 0,, then 212y = r112€is(01 + 63).

Thus, if we want to multiply the two complex numbers whose polar forms are 3 cis (20) and 2 cis
(30), we immediately get 6 cis (50). The simplicity of multiplying complex numbers this way surely
has to be appreciated.

Proof. The proof involves one of those nice connections between the various parts of secondary
school mathematics and is one of our favorite theorems.
Since z; =rq cis 61 and 7, =, cis 6;, we have, when we write these in expanded form,

71 =11 COsbH1 + (Tl sin 91)1

Zp =75 C0S0, + (ry sin6,)i.

When we multiply these two expressions together, using the definition of multiplication of
complex numbers (see equation (7.1)), we get

712 = [r17r2 COS 01 COS Oy — 1172 sin 61 sin 0] + [r172 sin 6, cos O, + 1112 cos 61 sin H,]i
which, upon factoring out ri72, gives us
Z1Zp = 1112[COS 671 COS O, — sin 67 sin 6,] + 1171, [sin 6, cos O, + cos O sin H,]i. (7.11)

But, we know that

cos(61 + 62) = cos By cosHy — sin By sin 6, (7.12)
and that
sin(fy + 6,) = sin H; cos B, + cos b7 sin b, (7.13)

(See Chapter 12 for a review of this.) Thus, we can reduce equation (7.11) to

71Zp = 1172 COS(01 + 02) + r1r2(sin(01 + 63))i
= rirz[cos(81 + 62) + (sin(6y + 6,))i]

= T1T2CiS(91 + 92).

|

Let us apply this theorem. Suppose that z; = 2 cis (30°) and that z; = 3 cis (45°). Then, by the
theorem 712z, =2 - 3 cis (30 + 45) = 6 cos 75. We may interpret this product in two ways. First, we
can view it as taking the complex number z; = 2 cis 30, dilating it by a factor of 3, the magnitude
of 7;, and then rotating it 45°, the angle that z, makes with the positive x-axis. A second way to
interpret the product is to start with z, = 3 cos 45°, dilate it by the magnitude, 2, of z;, and rotate it
30°, the polar angle z; makes with the positive x-axis. Either approach tells us that, when we
multiply two complex numbers, we are dilating one by the magnitude of the other as well as
rotating it by the polar angle the other makes with the positive x-axis.

This generalizes to any two complex numbers. That is, when we multiply z; by z;, we can
think of z;, whose polar angle is 6;, dilated by the magnitude of z;, and then rotated by 6,,
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the polar angle that z, makes with the positive x-axis. Alternatively, we may begin with z,, whose
polar angle is 6;, and imagine it being dilated by the magnitude of z;, and rotated by 6;, the polar
angle from z;. Thus, multiplication of complex numbers can always be thought of as “dilate one by
the magnitude of the other and rotate it by the polar angle of the other.” (See Figure 7.14 below.)

2,72, 2,
°
Imaginary axis Z,
°

6,+ 6,

®Z

0, %

Real axis

Figure 7.14

Of course, the word “dilate” also includes shrinkage if one of the numbers ry orry is less than 1.
When r; = 1, then multiplying by r; cis 6; simply rotates the other complex number by 6;. That
result is worth stating as a theorem:

Theorem 7.7 If we take a complex number z and multiply it by 1 cis 6, = cos 0 +i sin 61, where 6,
is measured in degrees, this rotates z by 0, degrees.

From Theorem 7.6, we can immediately deduce that, if z=r cis 9, then 22 =z-z=r cis 6 - r cis
6 =r? cis (0 +0) =r? cis (20). Similarly, z*> = r3 cis 30, and so on. This gives us the following powerful
theorem, which tells us how to raise complex numbers to powers immediately. This theorem is due
to the French mathematician De Moivre (1667-1754).

Theorem 7.8 (DeMoivre) If z=r cis 0, then z" = r''cis n where n is any integer.

Proof. The computations preceding the theorem essentially give us the proof. A more formal proof
for n, a natural number would use induction (Chapter 8). Then we would only need to consider
the case of negative integer exponents, which we do now.

We first show that z~! = r~! cis (—6). We already saw in Theorem 7.2 part (e) that every complex
number z has only one inverse. If we can show that z multiplied by r~cis 6 gives us 1, then r~!cis
6 MUST be the inverse of z because of the uniqueness of the multiplicative inverse. But, this is
straightforward.

z-(r~ ! cis (—0))

=r cis 6 - (rcis (—6))
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=r-r~!cis (6 + (—0))
=1cisO

= 1[cos 0 + (sin 0)i]
=1

Now we proceed as before: (z71)2 = (r~! cis (=0))?> = r~! cis (=0)- r=! cis (—0) =r~2 cis (-26).
Similarly, (z~1)® = r =3 cis (—36), and so on. Thus, z* = r" cis né for all integers n. W

Corollary 7.9 If z=rcis 0 is a nonzero complex number, then z=' = r~cis(—0) .

Proof. Take n=—1 in the theorem. B
We also observe something else useful:

Observation: If z=r cis(9), then Z=r cis (-0).

Example 7.10 Compute
(@) z=(1+1)® in polar form
(b) z7!in polar form
(c) zin polar form.

Solution. (a) The polar form of 1 +i is +/2 cis 45. (Verify!). So z= (1 +i)® = (+/2)°cis (5 - 45) = 44/2 cis
1
225 = —4 — 4i. Here we are using the well known fact that sin 45° = cos45° = E' which you can
1

verify from the triangle you drew to get the polar form of 1+i and that cos225 =sin 225 = 7

Of course, you can just use a calculator to verify this answer.
1
(b) and (c) Since z in polar form is 4/2 cis 225,Z = 4+/2 cis(=225) and z ! = mcis (—225).
Thus, we see a close relationship between the conjugate and the inverse. This relationship always
holds and you will verify it in the Student Learning Opportunities.

The same way it is easy to multiply and raise complex numbers to powers using De Moivre’s
Theorem, it is easy to divide complex numbers.

T
Theorem 7.11 If z; =1y cis 6, and z; =, cis 0,, then Z—l = r—l cis (01 — 02).
2 2

Thus, if z; = 16 cis 40 and z, = 4 cis 10, then ;—1 =4 cis(40 — 10) = 4 cis(30). It is that simple!
2

z
Proof. From Theorem 7.2, part (a), Z—l =271Z,". And by De Moivre’s theorem z,' =r;"' cos (—6).
2

1 r
Thus, z12," =r1 cis (61) - — cis (—6,) = r—l cis (61 — 6,). W
2 2
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7.4.1 Roots of Complex Numbers

We now get back to what we started in our launch question and ask “Can we take square roots and
cube roots of complex numbers?”

The answer is “Yes,” and this is what was needed to simplify the strange answers to the
cubic equation we studied earlier in Chapter 3 Section 7 that Cardan’s formulas for solving cubic
equations provided us with.

Let us see how this works. We will define a square root of a complex number z to mean
a complex number, w, such that, w? = z. Stated another way, a square root of z is a root of the
polynomial p(w) = w? — z. Since any second degree polynomial has 2 roots counting multiplicity,
every complex number has two square roots. Similarly, we say that a complex number w with the
property that w? = z is a cube root of z. Again, an alternate way of saying this is that w is a root of
the polynomial p(w) = w® — z. Since every third degree polynomial has 3 roots counting multipli-
city, there are 3 cube roots of any complex number. We will see that “counting multiplicity” plays
no part here. There are two different square roots of every complex number and three different
cube roots, and four different fourth roots of any complex number, and so on. Since every real
number is considered a complex number, every real number also has 3 cube roots, although two
of them are imaginary. We will now determine how to find roots of complex numbers.

Suppose we wanted to find the cube roots of 1+i. That is, we wanted to solve w® = 1 +i. We
write both w and 1 +i in polar form. w will be r cis ¢ and 1 +i = +/2 cis 45. Thus, w? = 1 + i becomes
(r (cis 0))® = ¥/2 cis 45, and by De Moivre’s theorem, this can be written as

r3cis (30) = V/2 cis 45

1
This equation gives us what we need to find a solution for r and 6. Since r® = v/2 =22, we
1
have that r = 26 or +/2. Since 36 = 45, 6 can be taken to be 15. So, one solution of this equation is
3
w = +/2cis 15, and checking, using De Moivre’s theorem, we see it works, since w? = (f/ﬁ cis 15) =

V2 cis 45.

But when we did our analysis above, we said that 36 = 45. That is not quite correct. Every time
we add 360° to an angle, we get essentially the same angle. Therefore, a correct statement is not
that 36 = 45° but that 36 = 45° + (any multiple of 360°). Dividing by 3, we get that 6 = 15°+any
multiple of 120°. Thus, 6 = 15°, 15° + 120°, 15° +2(120°), and so on. This yields what appears to
be many solutions of the equation, w? = 1 +1i, namely, r cis 15°, r cis 135°, r cis 255°, and so on,
where r = ¥/2. But, in fact, the answers we get by repeatedly adding multiples of 120° start to repeat,
once we add 3 multiples of 120°. Thus, r cis 375°, the result of adding three multiples of 120°, is
the same as r cis 15°. r cis 495°, the result of adding 4 multiples of 120°, is the same as r cis 135°.
Thus, we only get three cube roots, as we should have since the Fundamental Theorem of Algebra
told us we can’t get more than 3 roots to the equation w? = 1 +1.

Let us do another example.

Example 7.12 Solve the equation w* = 1 — /3.

Solution. 1 —+/3i is in the 4th quadrant and the polar form of this complex number is 2 cis
(300°), as we ask you to verify. Writing w =r cis 4, our original equation becomes (r cis 6)* = 2 cis
(300°) or r* cis 40 = 2 cis (300°), from which it follow that r* = 2 and 46 = 300° plus any multiple
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of 360°. Therefore, r = +/2 and 6 = 75°+ any multiple of 90°. Thus, our solutions are w = v/2 cis
75°, w = /2 cis 165°, w = +/2 cis 255°, and w = /2 cis 345°. Adding more multiples of 90° just
makes our roots repeat. The method we used to solve this equation can now be stated as a theorem.

360k
n

)
Theorem 7.13 If w" =r cis 0, then w = J/r (cis (ﬁ +
n—1.

) where k takes on the values 0, 1, 2, ...

In addition to being able to find roots of complex numbers, secondary school students find it
fascinating that we can get a picture of the nth roots of unity, and these provide us with a regular
polygon. The next example illustrates this.

Example 7.14 Find the solutions of w® = 1 and graph them. That is, find all five of the 5th roots of
unity and plot them.

Solution. The polar form of 1 is easy to see by inspection. It is 1 cis 0. Thus, the other roots by the

0
above theorem are +/1 cis <§ +

or just 1 cis 72k where k=0, 1, 2, 3, 4. Thus, our roots are

wi=1cis0, wy =1cis 72, w3 =1 cis 144,w4 =1 cis 216 and ws = 1 cis 288. All of these roots are a
distance 1 from the origin, since r = 1 for each of them, and they form angles that differ from each
other by 72 degrees. That is, when they are plotted, they give the vertices of a regular pentagon,
which we have drawn in Figure 7.15 below.

Imaginary axis

________ vﬁ_"" Real axis
Wy ﬂ

Figure 7.15

Now that we know how to work with complex numbers, we can derive some rather nice
trigonometric formulas. Here is an example to show you how this works. We will use this example
later in Chapter 14 to solve a problem that has baffled mathematicians for thousands of years.

Example 7.15 Show that cos 30 = cos3 6 — 3 cos 0 sin?6, and that sin 30 = 3 cos? 0 sind — sin> 6.

Solution. Let z=r(cos6 +isin@). We compute z3 in two ways, first, by De Moivre’s theorem to get
73 = r3(cos 36 +i sin 39), which is the same as

22 =r3cos 36 +irdsin 36. (7.14)
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Next, we compute z3 by writing z as r cos 6 + ir sin 6, multiplying it by itself three times and using
the formula that (a +b)? = a® + 3a®b + 3ab? + b3. Letting a = r cos@ and b =r sinf, we get (leaving
the details to you) that

22 = (3 cos® 0 — 3rd cos 0 sin?6) +i(3r3 cos? 0 sin 6 — r3 sin® 6). (7.15)

Since the complex number z* is the same in both equations (7.14) and (7.15), the real and
imaginary parts of z* are the same. That is

r3cos30 =r3cos® 6 — 3r3 cos6sin® 6 (7.16)
and

r3sin 36 = 3r3 cos?#sind — r3sin® 6. (7.17)
Dividing equations (7.16) and (7.17) by r3 we get, respectively:

cos 36 = cos® 6 — 3 cos @ sin® 0
and

sin 30 = 3 cos?#sin6 — sin® 6.

We can get other similar trigonometric identities if we wish.

We are not suggesting this is the way to find trigonometric identities. It is just another nicety
about complex numbers. It easily allows us to find trigonometric identities if we wish. If we have a
computer algebra system available that does algebraic manipulations for us, like cubing or raising
to the fifth power, then we can exploit that to get many trigonometric relationships.

Despite the fact that De Moivre was a first rate mathematician, he was not able to secure a
regular teaching job. As a result, he made a meager living at tutoring—something that upset him
his whole life. As he became older, he became more lethargic and according to Eli Maor in his book,
Trigonometric Delights, (1998) “He declared on a certain day that he would need 20 more minutes
of sleep each day. On the 73rd day—when the additional time accumulated to 24 hours, he died;
the official cause was recorded as ‘somnolence’ (sleepiness).”

Student Learning Opportunities

1 (C) One of your students multiplies the following as indicated below:
(7 cis 60)(2 cis 30) = 14 cis 1800.

Is your student correct? Why or why not? How would you help your student understand
the rules for multiplication of numbers in polar form and the geometric interpretation of this
product?

2 Suppose we wish to rotate the arrow representing the complex number 4 + 5i, 50° counter-
clockwise, and then stretch the result by a factor of 3. By which complex number must we
multiply 4 + 5i to achieve this?
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Multiply:

(a) (3 cis 20)(2 cis 30)
(b) (4 cis 70)(2 cis —30)
(c) (5 cis 40)(3 cis 70)
Divide:

@) 6 cis 20

2cis10
12 cis 90

2 cis (—30)

Convert the following complex numbers to polar form:
(a) -8

(b) 2-2j

(€ V3+i

(d) 1+3i

(e) 2+11i

(b)

Write each of the following complex numbers in the form a + bi.
(a) 3cis120
(b) 5cis 330
(c) 7 cis 180

Find the cube roots of unity (the number 1) and plot them on an Argand diagram. What kind
of triangle do we get when we connect the three roots of unity?

Plot the six 6th roots of unity.

(C) You give your students the expression below to simplify.

You ask one half of your students to convert it to polar form and then simplify, and the other

2 2
half of your students to multiply \/7— + \/7_/ by itself three times without converting it to polar

form. Two students (one from each group) put their work on the board. Assuming they did
it correctly, show the work that was put on the board and compare the answers. If you ask
your students which method they would prefer to use if they were given a similar problem
again, what do you expect they would say, and what reasons do you think they would give?

Use the polar form of a complex number to simplify each of the following:

4
(a) L + ﬁi
2 2
(1+10)8
(1 —iy
Your students are asked to solve the following equation for w: w? = 4 +4i. They do it as
follows: First they write both w and 4 + 4i in polar form. w is r cis 0 and 4 + 4i = /32 cis 45.

(b)
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Substituting into the original equation they get (r cis #)* = /32 cis 45 which can be written as
r3 cis 30 = /32 cis 45. They then claim that r3 = v/32= 32"/2, which means that r = (32)'/6.
Since 30 = 45, 6 = 15. They therefore claim that their solution is w = /32 cis 15. What are
your comments on your students’ solution? Is it correct? Have they found all of the solutions?
Give a detailed explanation and complete solution.

12 Solve the following equations for all values of w:

(@ w=8

(b) w*=-16

(© w3=2-2ij
(d) wh=—v3—i

13 Find all eight 8th roots of 1. How many of them are complex?

14 Prove that cos 26 = cos? # — sin® 6 and that sin 26 = 2sin 6 cos 6 using De Moivre’s result. Then
do it using equations (7.12) and (7.13).

15 (Tricky) Prove that z-z = is a sum of squares. Then show that the product of a sum of squares
of real numbers can be written as a sum of squares in two different ways. That is, show that
(a? + B?)( + d?) = m? + n? for two separate pairs of numbers for mand n. [Hint: Write a? + b?
as (a+ bi)(a — bi) and do a similar thing for the second factor. Then rearrange the factors to
show that you are multiplying two complex numbers, zand ]

7.5 A Closer Look at the Geometry of Complex Numbers

LAUNCH

Complete the blanks in the following sentences by describing the geometric transformation that
occurs. Choose from among the following: rotation, translation, dilation, reflection.

1 Conjugating a complex number z performs a of z about the
X-axis.

2 Multiplying a complex number z by 5

3 Adding a complex number, say 7 to another complex number z

4 Multiplying a complex number z by cis 6

If you were able to correctly complete the above sentences you have a pretty clear idea of how
complex number arithmetic can be interpreted geometrically. We will discuss these things in more
detail in this section.

For clarification and easier reference, we will state all of these relationships which are answers
to the launch as a theorem.
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Theorem 7.16 (a) The function f(z) = z+ zo where zy = a + bi translates each point z in the plane a
horizontal distance of a and a vertical distance of b. (b) The function f(z) = (cis 0) z takes every point
in the plane and rotates it about the origin an angle of 0 degrees counterclockwise if 0 is positive and 0
degrees clockwise if 0 is negative. (c) The function f(z) = Z reflects each point z about the x-axis. (d)
The function f(z) = kz takes each complex number and moves it k times its original distance from the
origin if k is positive. That is, it performs a dilation.

To fully appreciate the power of complex number arithmetic to represent geometric transforma-
tions, let us give an example. Suppose that you were interested in taking the point representing
a complex number, z, and performing the following operations on it: (1) rotate it 30 degrees,
(2) reflect the image about the x-axis, and (3) translate the result horizontally 5 and vertically 3.
We can accomplish these transformations as follows: Multiplying z by 1 cis 30 will rotate z 30°
counterclockwise by part (b) of the previous theorem. Taking the conjugate of the result will reflect
the result about the x-axis by part (c) of the previous theorem. Adding the complex number 5 + 3i
to the result will accomplish (3) by part (a) of the previous theorem. Putting it all together, the
function f(z) = (cis 30)z+ 5 + 3i will accomplish our goal.

Similarly, if we wanted to translate every point z by z), then take the result and dilate it by a
factor of 5 and finally reflect the result about the x-axis, the function g(z) = 5(z+ zo) will do the job.
Let us examine some more complicated operations.

Example 7.17 Using complex numbers, explain how to reflect a point z about a line | which passes
through the origin.

Solution. This is really nice. Suppose that the line / makes an angle 6 degrees with the positive
x-axis, as we see in Figure 7.16(a) below. If we multiply every point in the plane by cis (—6), the
entire figure gets rotated 6 degrees clockwise and we get Figure 7.16(b) where the line I becomes the
positive x-axis and z becomes z'. We now reflect z' about the x-axis, (which is the new I) by taking
the conjugate of zZ' and we get the point z’. (See Figure 7.16 (b).) Finally, we rotate the picture back
6 degrees and z” becomes z”. (See Figure 7.16(c) below.) This last point, z”, is the reflection of z
over . The net effect of all this is that we have reflected the point z about the line /.

oz I !

1
[ V4

"

[ V4

(@ (b) ©
Figure 7.16

Now, let us describe this using complex arithmetic. Rotating z, 6 degrees clockwise is accom-
plished by multiplying z by 1 cis (—0) . Reflecting about the x-axis means conjugating the result to
get cis (—0) z. Rotating the result 6 degrees conterclockwise means multiplying by cis 6. Thus, the
function f(z) that takes any point z and reflects it about a line [ is given by f(z) = ( cis 6) cis (—6) z.



336 Building the Complex Numbers

Example 7.18 Suppose we have two lines, one line, I, making an angle of 15 degrees with the positive
x-axis, and the other line m, making an angle of 45 degree with the positive x-axis, and that both lines
pass through the origin. Describe how, with complex number arithmetic, we can take a point z, and
reflect this about about | first and then m next.

Solution. We essentially do what we did in the last example. First, we rotate the picture 15 degrees
clockwise. z becomes 7. (See part (a) in Figure 7.17 below.) Then reflect z' about the x-axis (the new
position of line I) to get z’. (See Figure 7.17(b) below.) Of course, m having been moved in the
process now makes an angle of 30 degrees with the positive x-axis. We then rotate the resulting
picture 30 degrees clockwise to bring m to the positive x-axis. During this rotation z’ becomes z”.
(See Figure 7.17(c) below.) We then reflect z” about the x-axis (the new position of m) to get w.
We then rotate the whole picture back 45° counterclockwise and w becomes w'. (See Figure 7.17(d)
below.) The image of z after two reflections, one about I and the other about m in that order,
becomes w'.

© (d)
Figure 7.17

Let us take these steps one by one. Rotating a complex number clockwise 15° is achieved
by multiplying it by cis (—15). Reflecting the result about the x-axis is achieved by conjugation.
Rotating the result clockwise 30 degrees is achieved by multiplying by cis (—30). Reflecting the
result about the x-axis is achieved again by conjugation. Finally, rotating counterclockwise by
45 degrees is achieved by multiplying by cis (45). In short, the function that accomplishes all

thisis f(z) = cis 45 (CiS (=30) (CiS (—15)2)) . Now, in this form, everything looks complicated. But

according to Theorem 7.3 since the product of the conjugates is the conjugate of the product we
have

f(2) = cis 45 ( cis (—30) (m))

cis 45 cis (—30) (cis (—15)2) (Theorem 7.3 part (c).)
cis 45 cis (30) cis (—15)z (Theorem 7.3 part (b) and the observation on page 329.)

(cis 60) z (Theorem 7.6. We add the angles when we multiply.)
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Of course, this representation and operation is much simpler. In fact, his identical argu-
ment can be generalized to the following result, which we ask you to prove in the Student
Learning Opportunities. The proof simply mimics the above example replacing 45 by 6; and
15 by 92.

Theorem 7.19 Suppose that I and m are two lines which pass through the origin and that the angle
from I to mis 6. Then if we reflect a point z about | and then about m, the net effect is a rotation of z
by an angle of 20. The function which performs this operation is f(z) = (cis 20) z.

What this theorem says is that performing two successive reflections about two intersecting lines
is equivalent to a rotation of twice the angle from [ to m. (0 is positive if, to get from I to m, we
must travel counterclockwise. Otherwise, it is negative.)

Although we stated this theorem for lines passing through the origin, it is true if the lines
intersect at some point other than the origin. The proof really amounts to translating the picture
so that the point of intersection lies at the origin, performing the reflections, which rotates the
point by an angle of 26 and then translating the picture back so that the origin is where it was
originally. The net effect is that z has been rotated by an angle of 26.

There is a similar theorem for reflecting about parallel lines. We will ask you to try the proof in
the Student Learning Opportunities.

Theorem 7.20 Suppose that | and m are two lines parallel to each other and initially parallel to the
x-axis. Then, if we reflect a point first over | and then over m, the net effect is a translation of z in a
direction perpendicular to 1 and m and a distance twice the distance from 1 to m.

We have already established that the magnitude of a complex number z represents the distance z
is from the origin. One can easily find the distance between any two complex numbers z; and
7 by using nothing more than the formula for the distance between two points. If we have
two complex numbers z; = a+bi and z; = ¢ +di, then the distance between z; and z, is given

by \/(c — a)? + (d — b)*. See Figure 7.18 below.

Imaginary axis

Z; (C, d)

z,(a,b) ¢-a

Real axis

Figure 7.18
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Of course, the derivation of this formula is the same as that in the real plane using the
Pythagorean Theorem. In the picture above, both z; and z are in the first quadrant. Since

the complex number z, — z; = (c — a) + (d — b)i has magnitude \/ (c—a)2+(d- b)z, we see that

the distance between z; and z, is |z, — z;|. Of course \/(c —a)?+(d- b)2 = \/(a -2 +(b— d)2 and
this latter square root is |z; — zz|. S0 |22 — z1| = |z1 — 22| . We can now verify an intuitively obvious
result.

Theorem 7.21 Rotations, translations, and reflections preserve distance. That is, if zi and z, are any
two complex numbers, then the distance between z; and zp stays the same under any of the above
transformations.

Proof. The proof is not difficult. We show just one part, that rotations about the origin preserve
distance. We first observe that | cis | = 1. This follows since cis § = cosd +isind and | cis 0| =
Vcos26 +sin?6 = 1.

Before the rotation, the distance between z; and z; is |z; — z;|. After a rotation by an
angle of 9, the points z; and z; become (cisf)z; and (cisf)z;. The distance between these
new points is |(cis0) z; — (Cis0) 2| = |(cis0) (21 — z2)| = |(cis0)| |(z1 — 22)| = 1 - |(&1 — 22)| = (21 — 22)].
Thus, the distance between z; and z, before a rotation, namely |z; — 2|, is the same as the distance
between them after a rotation. Thus, rotations preserve distance. B

We will have much more to say about rotations and translations and reflections in Chapter 10.
For now we get into some applications of complex numbers.

Student Learning Opportunities

1 Show that, if z; and z, are complex numbers, then the distance between them stays the same
when both are translated by the same amount, z.

2 Show that, if z and z, are complex numbers, then the distance between them stays the same
when both are reflected about the real axis. Then show that, when we reflect the two points
about any line, the distance between them is preserved.

3 Show, using complex arithmetic, that if we translate a point z by 7z and then translate the
result by wp, the result is the same as if we translated z by z, + wo.

4 Show, using complex arithmetic and the ideas of this section, that if we take a point, z and
reflect it about a line / and then another line m both passing through the origin, then the net
effect is a rotation of zby an angle of 26 where 6 is the angle going from / to m.

5 (C) You give your class the following question: Find two lines, / and m passing through the
origin such that, if we reflect any point P about / and then about m, the net effect is a rotation
of 60° counterclockwise. They respond by drawing two lines that pass through the origin and
are at an angle of 120 degrees with each other. Are they correct? If they are not correct, what
is a correct answer?



6

10

11

12

13

Building the Complex Numbers 339

(©) Your students have just completed reflecting a point P across lines | and m that intersect
at the origin and that are at an angle of 45 degrees with each other. First, they reflect P across
the line / and then they reflect it across the line m. One of your curious students asks if the
result would be the same if he had taken the point P and first reflected it across the line m
and then across the line /. How do you respond? Is it the same? If not, what would the new
result be? How would you help your student understand this?

Find the function that takes a complex number z and reflects it about a line / parallel to the
x-axis. [Hint: Translate the line so that it becomes the x-axis, and then do the reflection and
translate back again.]

Show, using complex arithmetic and the ideas of this section, that if we take a point, z and
reflect it about a line / and then another line m both parallel to the x-axis, that the net effect
is a translation of z by a distance of 2d in a direction perpendicular to the lines, where d is the
distance between the lines. (A similar proof shows this result is true if the lines are parallel,
but not necessarily to the x-axis. We just have to rotate them so that they are.) This result,
together with Theorem 7.19, tells us that the performance of two reflections, about lines, is
either a reflection or a translation.

(©) You ask your students to do the following: Find two parallel lines / and m such that, when
we reflect any point about / and then take the result and reflect about m, we get a translation
of that point 10 units in a positive vertical direction. Your students have each found different
pairs of lines and are quite confused about this. How could this have happened? What are
some possible pairs of lines they could have found?

Suppose we have 4 lines, /, m, I, and n through the origin where the angle between /, and
m is the same as the angle between I’ and n7. Show that, if we reflect a point P, first about /
and then about m, we get the same result as we would get if we reflect that point first about
I” and then about n.

Suppose we have 4 lines, I, m, I” and n7 all parallel to one another. Suppose that the distance
between | and mis the same as the distance between /" and n7. Show that if we reflect a point
P, first about / and then about m, we get the same result that we would get if we reflect that
point first about /” and then about n7.

A glide reflection of a point about a line / is a reflection in | of P followed by a translation
parallel to /.

(a) Write the function that reflects a point z about the x-axis and then translates it parallel to
the x-axis a distance 5 in the positive direction.

(b) Write the function that reflects a point z about a line that makes a 45° angle with the
positive x-axis, and then translates the result by 1 + /.

(c) Write the function that reflects a point zabout a line, /, that makes an angle of 6 degrees
with the positive x-axis, and then translates the result by a complex number z,.

(C) A student asks if a glide reflection (see the previous problem) is the result of three
reflections? Give an explanation that would help your student understand the answer to
this question.
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7.6 Some Connections to Roots of Polynomials

LAUNCH

Find all cube roots of 1. Explain your work and justify your answer.

When posed with the launch question, you might have been wondering why we specified that
you should find multiple cube roots of 1. Well, if you remember, in the previous section we saw
that every complex number has 3 cube roots and 4 fourth roots, and so on. Since we are now
considering real numbers as a subset of the complex numbers, it follows that every real number
has 3 cube roots, and 4 fourth roots, which can be complex numbers. Consider the next example
which shows how to complete the launch problem and find the 3 cube roots of 1.

Example 7.22 Find all cube roots of 1.

Solution. We can write 1 =1 cis 0. So, by De Moivre’s theorem, the roots are given by /1 cis
(3 +25%) = cis 120k where k=0, 1, and 2. The roots are thus 1 cis 0 =1, 1 cis 120, which we call
w, and 1 cis 240, which from De Moivre’s theorem is w?. Thus, the three cube roots of 1 are 1, w,
and »?. If we evaluate o = cis 120, we get 5 + %gi , and if we evaluate »? = cis 240 we get 5! — %gi.
Thus, the three cube roots of 1 are ‘71 + @i and 1. Since w is a cube root of 1, ® = 1. As we shall
soon see, this fact will be very useful.

The number w plays a part in cube roots of all complex numbers. If we know a cube root of a
number z, then we can automatically find the other two cube roots of z. Specifically, if one cube
root of z is p, then the others are wp and w?p. Why? Well, saying that p is a cube root of z means
that

=z (7.18)

Now, if we compute the cube of wp, we get w® p3. Since w® = 1, as we observed in the last example,
this simplifies to p3, which by equation (7.18) gives us z. Similarly, if we cube w?p, we get
w®p3 =1- p3 =2z Thus, each of p, wp and »?p gives us z when cubed, so each is a cube root of z.
You will show in the Student Learning Opportunities that p, wp, and »?p are all different, and
since any complex number has only 3 roots, p, wp and «?p are the three cube roots of z. Thus, we
can write the 3 cube roots of any number very simply once we know one of them.

We are now ready to tie up a loose end from Chapter 3. We said in that chapter that complex
numbers were really developed as a result of trying to understand the roots of cubic equations. Let
us show how this all fits together with an example.

Example 7.23 Suppose that we have the cubic equation, x> — x = 0. (a) Use factoring to find all
solutions. (b) Use the formula for solving cubic equations given in Chapter 3 Section 7 to find the
solutions.
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Solution. (a) We factor x*> — x into x(x — 1)(x + 1) to get x(x — 1)(x + 1) = 0 and then set each factor
equal to zeroto get x =0, x =1, and x = —1.
(b) Now let us use the formula from Chapter 3 Section 7. That formula was for solving

. 4> 4p°
27 "7
equations of the form x® + px = ¢, and the solution was given by x = > + > .

In this case, p = —1 and g = 0 and our solution becomes:

3 =% 3 _ |4
27 , &z (7.19)

2 2

—4

However, we know that %is a complex number and has 3 cube roots. Thus, there are 3 values

for the first cube root that occurs in (7.19) and the same is true for the second cube root. Thus,
there are a total of 9 possible values for (7.19), which we will detail in question #7 in the Student
Learning Opportunities. Three of them are O, two are 1, and two are —1. Thus, we see how
the solutions we obtained in (a) can be explained by the strange and complicated expression
in (7.19)

One of the facts that students are often presented with in precalculus courses is that, if we have
a polynomial equation

P(2) =anZ" +ay 12"V + . .a1x+ay=0 (7.20)

and if the coefficients are real numbers, then the roots of this polynomial occur in conjugate pairs.
We state that as a theorem.

Theorem 7.24 If a + bi is a root of the polynomial, p(z) =a, - 2"+ ay_1 - "1+ ... ay-z+ao, then
so is a — bi.

Proof. This is easy to prove, for if p(z) = 0, then p(z) = 0 by part (e) of Theorem 7.3, since 0 is a real
number. But

@) =7 +a, 12"+ .. @ Z+ T
=0, 7"+0,1-7"7'+ ... @ -2+ @
=a, - Z'+a,_1-Z" '+ ...a1-Z+ap (Since all the a,s are real)
= p(z) (Definition of p(2))
=0 (Since we started with ﬁ which is 0.)
In summary, the above sequence of equations tells us that p(zZ) = O which means that Zis a root

of the equation p(z) = 0. That is, complex solutions come in conjugate pairs. B
Here is a typical question found in precalculus texts.

Example 7.25 Write an equation that has as its roots 3 + 2i and 4 + i.
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Solution. Since the roots come in conjugate pairs, if 3 + 2i is a root, so is 3 — 2i. If 4 +i is a root,
so is 4 —i. From Chapter 3, if r is a root of a polynomial, then z —r is a factor. Thus, an equation
which works in factored form is

z—CB+2)(z—CB—-2i)(z—(4+i))(z—(4—-1i))=0

The first two factors multiply together to give z2 — 6z+ 13, while the second two factors

multiply together to give z2 — 8z+ 17. Thus, our equation becomes
(22 —62+13)(2 —82z+17)=0

or just z* — 1473 + 7822 — 206z + 221 = 0.

Another theorem that one sees in precalculus courses is that, if a + +/b is a root of an equation,
then so is a — /b, assuming that a and b are rational numbers and +/b is irrational. The number
a++/b and a — /b are also known as conjugate surds. The proof of this is identical to the proof
of Theorem 7.24 if we make a few replacements. If, when x = a + +/b, we denote by X the number
a — /b, then the following is easy to verify: (%)* = (?) and by induction that (x) = (%)". Also, if k
is a rational number, then @ = kx. (We need k to be rational since, if k is any real number, like NS
then, when we multiply by k, we won'’t get an expression of the form a + /b where a is rational.)
What we are saying is that, if in the proof of Theorem 7.24, we replace z by x and Z by X, and use
the observations we just described, the identical proof of Theorem (7.24) yields:

Theorem 7.26 If we have a polynomial with rational coefficients, and if a++/b is a root of the
polynomial, then so is a — +/b.

Here is a simple example.

Example 7.27 Find a polynomial with real integer coefficients which has as its roots, i and 1 + /2.

Solution. The complex roots and roots of the form a ++/b come in conjugate pairs. Thus, the
roots of the polynomial will be z=1i, z= —i, z= 1++/2, and z= 1 — +/2. Our polynomial will be

(z—i)z+i)z— 1 +V2)(z-(1-+2)=0.

The product of the first two factors is z2 + 1 and the product of the second two factors is 72 —
2z — 1. Thus, our polynomial is (z* + 1) (z2 — 2z — 1) = 0, which simplifies to

A —22-2z-1=0.

Student Learning Opportunities

1 Show that, if x=a++/b, where a and b are nonnegative rational numbers and /b, is
irrational, then x2 can be written in the form c++/d, where ¢ and d are rational and +/d
is irrational.

2 Prove that no two of the complex numbers p, wp, and w?p are the same. Thus, if p is one
cube root of a complex number, the other two are wp and «? p.
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3 Write a polynomial with real coefficients, two of whose roots are 1 +i and 4 — /2.
4 Write a polynomial with real coefficients, two of whose roots are 2i and /3.
5 Write a polynomial p(x) whose roots are 1 ++/2 and 1 — +/3 and such that p(2) = 5.

6 (C) You asked your students to find the roots of the equation z2 — 2iz—1 = 0. They were
able to determine rather quickly that z =i is a root, which they verified by substitution. Using
Theorem 7.24, they immediately figured out that z= —i should also be a root. But, much to
their shock and disappointment, when they substituted —i into the equation, it did not work.
They asked you how this could have happened? What is the answer?

[—4 3 __4 1
7 Using the polar form of %, show that —% = ﬁ cis (30 + 120k) for k=0, 1, 2, and

3 |4

N

3| [—

1
that N27 D cis (90 + 120k) for k = 0, 1, 2. Show that three of the values of \| -5~ +

23

3| [ -

—% are0, 1, and —1.

N

8 (C)You have presented Theorem 7.24 to your students. In order to determine if your students
really understood it, you gave them 1 minute to answer the following question: “Does there
exist a 4th degree polynomial with integer coefficients that has as its root, 2i, 3i, 4i, and 5i?
If so, find it. If not justify your answer.” How could you expect your students to answer this
question so quickly? Explain.

9 Show that x* + 5x2 + 1 = 0 has no real roots.

7.7 Euler’s Amazing ldentity and the Irrationality of e

LAUNCH

1 Give the definition of 7.
2 Give the definition of e.
3 Give the definition of i.
4 Are the above numbers related in any way? Explain.

Most likely, in response to the launch question, you did not see any relationships among =, e, and
i. You will be very surprised to see that in fact, they are related in a very well known formula that
you will learn about in this section. Let us begin by examining the value of ¢* more closely.
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When you studied calculus, you studied series and discovered the interesting fact that the
functions sin x, cos x, and e* could be represented as series. Specifically,

X3 5 7

. X X

smx=x—§+§—ﬂ+... (7.21)
x2 x*  x°

COSX=1—E+I—E+... (7.22)
x> x3 x*

€X=1+X+2—!+§+4—!... (723)

In calculus, these series are restricted to real values of x. Euler wondered what would happen
if we were to replace the variable x in equation (7.23) by a complex number. Specifically, replace x
by ix where x is a real number. This yields

(ix)> (ix)° (0 (ix)°

ix _ .

e¥=1+ix+ 5] + 3 + 1 + 3 (7.24)
He then expanded the terms of equation (7.24) and obtained

) 2,2 33,3 4,4 35,5

e”‘=1+ix+lx+lx+lx+lx (7.25)

2! 3! 4! S!

and then made use of the facts that i2=—1, i3=—i, i*=1, i® =1, and so on, and found that
equation (7.25) simplified to
ix3 x* ix®
IR

2
: X
X __ H -
er=1+ix ol 3!+

He then grouped all the odd powers of x together and all the even powers of x together and got

2 X4 3

G O (7.26)

ix _ _r
r=0-5+7

and observed that the series in parentheses in equation (7.26) match those in equations (7.21) and
(7.22) . His conclusion was that

e* =cosx+isinx (7.27)

where x is measured in radians. This is known as Euler’s Identity. He substituted x = 7 in equation
(7.27) and got as a result that

e =cosw +isinm
=—1+0
=—1. (7.28)

He thus discovered an incredible relationship among three of the most important numbers in
mathematics, e, i, and = namely, that eim = —1.

You might be thinking that this is pretty amazing. Well, let’s check into this a bit further.

Euler used a formula that was true for real numbers and in it he substituted a complex
number. How could such an illegal move lead to a correct result? Furthermore, what does e'”
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mean? Specifically, how could equation (7.28) be correct if we don’t even know what it might
mean to have e raised to an imaginary power? All these issues were eventually resolved when
mathematicians defined e* when z is complex, by the series

2
=1+z+—+—+...

2! 3l

That is, they defined e” as an extension of the definition of ¢* when x is real. There are many
issues with this definition. First, what does it mean for an infinite series of complex numbers to
have a sum? One might suspect that limits will play a part, but what does it mean for a function
of a complex variable to have a limit? Limits use the idea of closeness and what is an appropriate
definition of complex numbers being close? Many more issues come up, and all of them can be
resolved. The definition of e* given above is fine. The series will have a sum which is a complex
number regardless of what z is. And it can be proven that the series may be split up as we did
in equation (7.26). The details are involved and we have the mathematician Cauchy to thank for
figuring much of this out. He was a major player in the development of complex numbers and
their calculus. Even more interesting was the fact that complex numbers turned out to have many
real-life applications.

What equation (7.27) is telling us is that cis # and ¢ are one and the same, namely, cosé +
isin6. Thus, we may describe the function which rotates all complex numbers 6 degrees about
the origin as f(z) = ¢!’z instead of f(z) = (cis #)z as we saw earlier in the chapter. Furthermore, by
equation (7.27) any complex number z, by De Moivre’s theorem, can now be written as z = re’
instead of r cis 6. Now, we know that r cis 6 describes a point r units from the origin, making an
angle of # degrees with the positive x-axis. Since re® and r cis @ are the same, if you are given a
complex number re'? where r > 0, you immediately know that the complex number is at a distance
r units from the origin, and that the arrow representing the complex number makes an angle 6
with the positive real axis. Thus, you can immediately plot z =4 ¢*. It is 4 units from the origin
and the arrow representing it makes an angle of = with the positive real axis. In Figure 7.19 below
we show the locations of several points written in the form re'.

Imaginary axis

4 Seiw/z)
| 26/
3ei/r
Y ) 4 )
Real axis
: 3er‘(3/l/2)
Figure 7.19

Using equation (7.23) we can give a proof of a fact that you have probably taken for granted.

Theorem 7.28 ¢ is irrational.




346 Building the Complex Numbers

14

Proof. Use the series, equation (7.23) and let x = 1. Assume that e is rational. Then by e = a and

by equation (7.23), we have

P 1 1 1
5_1+1+5+§+Z+”" (7.29)

Multiply both sides of equation (7.29) by g!. Then equation (7.29) becomes

Pocqregs @, 4,4 @, 4 q:
qq'_q'+q'+2!+3!+4l+“'+q!+(q+1)!+(q+2)!+'“ (7.30)
——

11 12

since the g divides ¢!, the left side of equation (7.30) is an integer, I;. Since each of the numbers 2!,

31, 41,...q! divide q!, the first g + 1 terms on the right will also be integers. Thus, we have an integer

I, on the right side of equation (7.30) consisting of the first g + 1 terms (which we have indicated),
1 1

... Moving I, to the left side,

followed by the terms + + + .
Y g+1 G+ D@+2) " G+ D@+2q+3)
we get another positive integer, I = I; — I on the left side. Our equation now reads:

1 1 1
L-L=1= + + + ...
T T g1 @+ D@+ @+ D@+2)(q+3)
1 1 1
N
< g+l + PESIE + PESIE +.... Why?)
1
= Lll (The sum of a geometric series.)
_q+1
1 . .
= a (Simplifying)
<1

But this string of equations and inequalities tells us that I < 1. That is a contradiction since
I is a positive integer. Our contradiction arose from assuming that e was rational. Thus, e is
irrational. W

Student Learning Opportunities

1 (C) Your students have just been exposed to one of the most incredible formulas in mathe-
matics, Euler’s Identity, which states that €™ = —1. Although they are all very excited by it,
some of your very brightest students seem somewhat skeptical. They are concerned about
several issues with this formula. What are the issues they might raise? How would you respond
to their concerns?

2 (C) After being exposed to Euler’s formula, your students are asked to plot the complex
number z=7¢'(). They convert it to 7 cis (%), figure out what that is, and then plot it. You
amaze them, however, by plotting the point immediately, without doing the work they did.
Your students want to know how you can locate this, and other points like it, so quickly. They
also want to know the mathematical reasoning behind your “trick.” How do you explain it?
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3 Evaluate
(a) e2ri
(b) 4e3
(c) 2e ™
(d) —2e 7
(e) 5e2i
(f) 3e™
(g) 7eC/2)
4 Show, using Euler’s identity, that &/©1+%) = ¢ . &% (You can't just argue that, when you
multiply numbers with the same base, you add the exponents since that is a rule for real

number exponents! Numbers with imaginary exponents are a new creation. You need to use
either definitions or theorems to prove this for complex numbers.)

5 Without doing any computations at all, write each of the following in the form re®, where
r=0
(@) 2i
(b) —3i
() —4
6 Explain why in the proof of theorem 7.28, | is a positive integer.

7 Using the facts that sin(—6) = —sin 6 and that cos(—6) = cos6

i6 —i0
(a) Show that ere sing .
2
o~ ,—if
(b) Show that & = cosg
2i

7.8 Fractal Images

LAUNCH

1 If you were asked to measure the exact length of your desk, what would you use?

2 If you were asked to measure the exact circumference of the round clock in your room, how
would you do it?

3 If you were asked to trace your open hand on a piece of paper and then measure the perimeter
from the base of your thumb to the base of your pinky, how would you do it?

4 If you were asked to measure the perimeter of a maple leaf, how would you do it?

In which of the above cases would you be able to get the most accurate measurement? Why?

6 In which of the above cases would you get the least accurate measurement? Why?

]
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Before thinking about the launch question, you might have thought that all lengths are measur-
able. We hope that you are now beginning to wonder if that is really the case. This section will
introduce you to a most fascinating branch of mathematics that will have you thinking about
geometric figures in a very new way. We expect that you will be very intrigued.

Euclidean Geometry is used to help us study figures in our environment whose boundaries are
smooth. So, for example, the sides of a polygon are straight lines which can be considered smooth.
A circle has no bumps in it, so it too can be considered smooth. But, in many parts of nature,
we see shapes that are not smooth, but rather jagged. And the closer we look at some of these,
the more jagged they may appear. For example, consider a coastline. If you wanted to measure
the length, you might use a scaled drawing of the coastline, to get an estimate. Or you might
actually take a ruler and start measuring the physical coastline that way. But the coastline is not
straight, and a ruler would miss some of the nooks and crannies. You might think that a device
that measures smaller distances, say a centimeter at a time, would work better, but we would run
into the same problem. There are tiny nooks and crannies that even this device cannot measure.
Our point is that, no matter how small a device we use to measure the coastline, we will never be
able to measure it accurately, because no matter how many times we zoom in on the coastline, we
find that it always has more nooks and crannies. That is, the coastline is really not smooth and
has a completely different character from, say a straight line or a circle. One might say that the
coastline has “infinite complexity,” meaning that, no matter how many times you zoom in, you
see jaggedness. Figures that have this infinite complexity are called fractals. Thus, if we want to
study such real world phenomena, we have to develop a new kind of geometry. Only in the last
100 years, and in particular in the last 30 or so years, have we begun to make progress in this area,
and surprisingly, imaginary numbers play a big role in it.

Suppose we take an imaginary number, say z = 3 +i. Its magnitude, or distance from the origin
is /32 + 12 or +/10. Suppose we square z to get z2. We know that its magniture is |z|*> = 10. Now
suppose we repeat this operation on z2. That is, we square it again. We get z* whose magnitude,
or distance from the origin, is 100. Thus, this is even further from the origin than z? is. The more
times we square, the further from the origin we get. Thus, the magnitudes of the resulting complex
numbers, go off to infinity.

A sequence of such points whose magnitudes get larger and larger is said to diverge to infinity.
So the sequence of complex numbers we generated starting with z = 3 +i and successively squaring

2
1 1
722 = 5 and that of z4, 7 and so on, and now we see that the magnitudes of the numbers are getting

1 1 /1
diverges to infinity. In contrast to this, if we take z = 5 + —i, then |z| = 5 So the magnitude of

smaller and smaller. What this means is that the points, z, z2, z*, and so on are getting closer and
closer to the origin.

Finally, if we take a complex number, z, whose magnitude is 1, then 1z*>=1, and in a
similar manner |z*| =1, and so on. That is, all points generated remain at a distance 1 from the
origin.

In summary, points that start out on the circle whose center is at the origin, and whose radius is
1, stay on the circle as we repeatedly square, those inside get close to the origin, and those outside
the circle initially have magnitudes that get larger and larger and diverge to co. This may not seem
important, but watch what happens if we vary the process a bit. Pick a complex number ¢ and
form the function, f(z) = z2 + ¢. This function takes a complex number z, squares it, and then adds
a fixed complex number, ¢, to the result. Now, suppose that we start with a complex number, z,
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and repeatedly apply the function [(z) to it. That is, compute z; = f(z) then compute z, = f(z;),
and so on where we keep taking the result we get and substituting it back into the expression.
One of two things will happen. Either the sequence of complex numbers we generate will go to
oo or they won't. We are going to draw a picture to illustrate what happens. If the sequence of
numbers generated by z, doesn’t go to infinity, we will place a black dot in the complex plane at
7y to indicate this. Otherwise, we will not do anything. The picture we get is called the c— Julia
set, and the pictures we get are rather remarkable. Each ¢ value has it’s own Julia set. For example,
below is the Julia we get when ¢ = —0.0519 + 0.688i. We notice that, though it is elaborate, it comes
in one piece. We say that this set is connected (Figure 7.20).

Figure 7.20

You might be thinking where are the real and imaginary axes? We have left them out so as not
to detract from the picture. Here is the picture with the axes put in (Figure 7.21):

Imaginary axis

Real axis

Figure 7.21

Below is the Julia set for c = —0.577 + 0.478i. Here the Julia set comes in many pieces. (Picture
from http://fractals.iut.u-bordeaux1.fr/jpl/jplla.html) (Figure 7.22).
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Figure 7.22

What is interesting in these two pictures, which is similar to the coastline example, is that
the boundaries of these Julia sets are jagged. In fact, if we zoomed in repeatedly, we would see
the same thing we alluded to with the coastline example, namely, continued jaggedness at all
magnifications, and hence, infinite complexity. Thus, the boundaries of these sets are fractals.
Scientists and mathematicians are hoping that the geometry associated with these kinds of figures
and the repetitive procedures used to generate these pictures might help us in understanding
fractals.

One other related picture is called the Mandelbrot set. In this set, a point representing a
complex number is only blackened if its Julia set is connected. Otherwise it isn’t. The Mandelbrot
set looks like Figure 7.23 below. (A more illustrious and color version of this figure may be found
at: http://commons.wikimedia.org/wiki/File:Mandelbrot_set_2500px.png.)

Figure 7.23

Thus, every complex number inside the Mandelbrot set will give a connected Julia

It is the complex numbers on the boundary of the Mandelbrot set that form the
most interesting Julia sets. You can actually see which Julia set corresponds to each com-
plex number in the Mandelbrot set (as well as the complex number’s coordinates) at:
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http://math.bu.edu/DYSYS/applets/Julialteration.html. It is certainly worth a visit. For some other
very pretty pictures of fractals, see http://www.wirefree.net.au/~lawrence/.

Other than beautiful pictures that fractals often provide, what can fractals be used for? We
quote from http://library.thinkquest.org/3288/usesfrac.html:

“Fractals provide a simple solution to capture the enormous detail and irregularity of clouds
and landscapes. Fractal geometry is an efficient way to draw realistic natural objects on a computer
screen. Landscape designers start with basic shapes and iterate them over and over. Science-
fiction films design imaginary landscapes likewise for backdrops. (This was true for the Star Wars
series where landscapes were made by computer using iteration.) In the 1980s Benoit Mandelbrot
working with some metallurgists concluded that a metal surface’s fractal dimension may be a useful
measurement of a metal’s strength. This can be used to distinguish or characterize metals. The
evolution of different ecosystems have been described and predicted using fractals. For example,
Herald Hasting used fractals to model ecosystem dynamics at Okefenokee Swamp. Fractals along
with ecosystem studies are essential in determining the spread of acid rain and other pollutants.
Other uses of fractals are describing astronomy, meteorology, economics, ecology, and in the study
of galaxy clusters.”

A promising new area of technology related to fractals is with antennas. Specifically, a new and
powerful type of antenna known as a fractal antenna has been used by the military to do some
very sophisticated transmitting. These are tiny antennas with an exceedingly powerful ability to
transmit.

7.8.1 Other Ways to Generate Fractal Images

In Chapter 3 we used Newton’s method to find roots of polynomials. What is surprising is that this
same method can be used to find roots of polynomials with complex coefficients. Just as we did in
Chapter 3, we start with a polynomial of degree n with complex coefficients and choose a complex
number 7 to start with, and then generate the following sequence of points.

_ f (20
1T )
B f(zy)
2EAT )
B [(2)
BEeT f'(z2)

We call this sequence of numbers the Newton sequence for z,. What will happen (most of the
time) is that this Newton sequence of numbers will converge to a root of the polynomial. If
r1 is a root of the polynomial, then the set of all zy) whose Newton sequence converges to rq
is called the r; attractor set or the Newton Basin for r;. Since the polynomials have n roots
counting multiplicity, there will be at most n different attractor sets for a polynomial. We can
color the attractor sets with different colors. It turns out that the pictures we get are quite
involved and the boundaries form fractals. One can view some of these beautiful fractals at:
http://alephO.clarku.edu/~djoyce/newton/newton.html.

Below we have a black and white picture to illustrate this. These are the Newton Basins for
the 6 roots of the polynomial (22 — (1 + 3i)?)(z> — (5 +1)?)(2> — (3 — 2i)?) whose roots are obviously
+(1 + 3i), £(5 +1i), and £(3 — 2i). The six roots are located where the white dots are (Figure 7.24).
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Figure 7.24

For a picture in color see http://aleph0O.clarku.edu/~djoyce/newton/examples.html. We hope
you appreciate how surprising it is that complex numbers relate to the study of fractals.

Student Learning Opportunities

1 (C) You ask your students to take out a piece of paper from their loose leaf book and measure
its length. Then you ask them to rip their paper in half vertically, and thereby create a jagged
edge along the length. You now ask them to tell you whether the new length is longer or
shorter than the original length (which was approximately 11 inches). You then request that
they measure this new length as accurately as they can using a magnifying glass if they wish.
After doing this activity, your students are completely intrigued and want to know what this
has to do with their current unit on complex numbers. How do you respond?

2 Visit the website http://facstaff.unca.edu/mcmcclur/java/Julia/ and generate the Julia sets for
each of the following points by running your mouse over to the selected point. Describe the
similarities and differences you notice in the pictures.

(@) ¢=0.270+0.008i
(b) ¢=0.322+0.606i
(c) c=-0.63—-0.467i

7.9 Logarithms of Complex Numbers and Complex Powers

LAUNCH

State whether the following values are real or imaginary. (a) i? (b) i3 (c) i* (d) i (e) i’
Support your answers with explanations.
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Surely, you were quite confident with your responses to the first four examples in the launch. You
are probably also quite sure about your answer to part (e), although you are not positive. After you
have read this section, you will be ready to find out the answer, which will most likely be a shocker
for you.

Strictly speaking, the topic of logarithms of complex numbers and complex powers is not
part of the secondary school curriculum. Nevertheless, we would like to go into greater depth
with complex numbers and show you how mathematicians have extended the concepts taught
in secondary school. The ideas you will see in this section are not strictly abstract. They are used
by engineers on a daily basis and are the basis of many powerful (though sophisticated) real-life
applications.

Recall from Section 6, Euler’s amazing identity that for any real 6 in radians,

e’ = cosf +1isiné. (7.31)

We would like to extend the definition of e raised to any complex power z. One of the rules
for exponents for real numbers is that, if we multiply numbers with the same base, we add the
exponents. This very useful rule, which we mentioned in Section 6 holds. So, if z=x +iy, it must
follow that

Xy = X . el (7.32)

Using Euler’s identity, equation (7.31) this can be written as

e* e = e¥(cosy +isiny) (7.33)
or just
e’=rcisy (7.34)

where r = ¢* and it is assumed that y is measured in radians. Thus, e raised to a complex power,
z, is defined to be the specific complex number defined by equation (7.33) or equivalently,
equation (7.34)

This is a new idea, so let us examine some examples.

Example 7.29 Evaluate (a) >3 (b) ¢//?) (c) 4e~1*

Solution. (a) e?*3 =¢? . ¢3 = ¢? (cos 3 +1i sin 3) by equation (7.33). For (b), we notice that the real
part of the exponent is 0, thus ¢/™/2 = ¢°(cos (r/2) +i sin (7/2)) = 1(0 +i(1)) = i. For part (c), we have
4e~ = 4e~(cos1+i sin1).

We are now ready to motivate the definition of the logarithm of a complex number. Suppose
we want to solve the following equation for z:

ef=1+i. (7.35)
Writing z = x + iy, the left side of equation (7.35) is ¥ cis y while the right side is +/2 cis (z/4). Thus,

e*cisy = V2 cis (/4)
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which implies that

e* =2 (7.36)
and that
cis y = cis (r/4). (7.37)

But equation (7.36) is an equation with a real exponent, and from this we get x = In /2. From
equation (7.37) we see that y = /4 is a solution of equation (7.37). This is called the principal
solution. But, there are infinitely many solutions of equation (7.37) and each differs from the next
by a multiple of 2z. That is, y = w/4+ 2kn where k=0, £ 1, £ 2, and so on. Thus, our equation
(7.37) has infinitely many solutions. For now, we are only interested in the principal solution. That
is,

z=x+iy=InV2+i(n/4).

Let us redo this whole process for the general case. If we want to solve the equation ¢’ =w
where w is a complex number, we let z= x +iy and w = re’’. Then e? = w becomes e* cis y =r cis 6.

This implies that e* =r and that cis y = cis 6. It follows from this that one solution is x = Inr and
that y = 6, and that this is, in fact, the principal solution. Thus, we are led to the following:

The principal solution of ¢* = w, where w =re'? is z=Inr +i(f), where 0 < 6 < 2. (7.38)

The quantity Inr +i6 is called the principal logarithm of w and is denoted by Log w. (Notice the
capital “L.”) Let’s give some examples.

Example 7.30 Find Logw, where w = —1 + V3i

Solution. The polar form of —1 +i+/3 is 2 cis (27/3). Thus, r =2, and 6 = 27/3. Since Logw=
Inr +i6, it follows that Log (—1 + 1\/?) =ln2+i(2n/3).

Example 7.31 Solve for the principal value of z: e* =1 —i.

Solution. z=Log (1 —i). Since 1 —i = +/2 cis (—/4), Log(1 —i) = In V2 +i(—7n/4).

If we are working with only real numbers, then we cannot take the logarithm of a negative
number. But, if we work with complex numbers, such a thing is possible. We can see how this
works in the next example.

Example 7.32 Find Log(-1).

Solution. Since —1 =1 cis =, Log(—1) =In1 +in = wi. We can check our answer. If Log (—1) = =i,
then by definition of the principal value of the logarithm, ¢™’ should be —1. It is by Euler’s amazing
identity!
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Before we finish with complex numbers, we take this one step further. Recall that, for real
numbers, if

a‘=b (7.39)

where a and b are positive numbers, we are allowed to take the natural logarithm of both sides of
the equation to get ulna = In b. If we write this last equation in exponential form, we get that

eulna =b. (7.40)

Comparing equation (7.39) with equation (7.40), we see that

u

a'=e'". (7.41)

Now, suppose that we wish to define z¥ where z and w are complex numbers. Taking the lead
from equation (7.41), we can define the principal value of z by

7V = ewLogz_ (7.42)

Since we now know what it means to raise e to a complex power, we know how to evaluate z”
for any two complex numbers where z # 0. Let us give some examples.

Example 7.33 Find the principal value of (—2)'.

Solution. Since —2 = 2 cis =, we have by equation (7.42) that

(=2)’
= ¢/ 196 (=2 (By equation (7.42))

= ¢/In2+i7) By equation (7.38), definition of Log.)
= ¢! In27  (Multiplying)

=e ™2 (Simplifying and rearranging.)

— e—rrei In2

=e¢ "(cos(In2) +isinln(2)) (Euler’s identity (7.31).)

Notice that our answer is complex, as we expect it would be. But this might not be the case.
We now leave you with quite a surprise.

Example 7.34 Show that the principal value of i’ is a real number.

Are you shocked? Most people are. Here is the solution:

Solution.

il =¢' L8 7  (by equation (7.42)

i (In1+i(1/2)) (by equation (7.38)
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=¢/(@/2)  (Since In1 = 0)

— e—n/Z

This, of course, is real. And that fact, is unreal!

Student Learning Opportunities

1

Solve for the principal value of z

(a) e?=i
(b) e??=1+i
() e*=-1

What is the value of each of the following expressions?

(a) Log (3i)

(b) Log (—2i)

(c) Log (1 ++/3i)
(d) Log (—/3 —1i)

3 (C) A student asks, why z can’t be zero in the definition of z". How do you respond?

(C) You ask your students to simplify the expression Log (—1 — i)? and the first thing they
do is to write it as 2 Log (—1 — /). Evaluate each of the expressions, Log (—1 — i)? and 2 Log
(=1 — i) and decide if they are correct. If they are not correct, explain why.

Show that Log (—i)(i) # Log (—i) + Logi. What can you say about the applicabilty of the Laws
of Logarithms that you learn in high school to complex numbers?

(©) You ask the students in your enrichment class if (zc)d is the same as z°“ when ¢ and
d are complex, and everyone says, “Yes.” Are they correct? If not, how can you help them
understand why not? [Hint: Let z= —i, c=—i, and d =i.]

Find the principal value of (1 —i)*.
Show that the principal value of (—1)= = ¢'.

Accepting the fact that ¢ - e = e#*%, show that, if z, ¢, and d are complex numbers, then

chd — Zc+d.



CHAPTER 8

INDUCTION, RECURSION, AND FRACTAL DIMENSION

8.1 Introduction

Despite the fact that most people encounter recursive relationships in the course of their lives,
it is a topic that secondary school students don’t get to study in a formal way, unless they
take a course in precalculus, which, as we well know, most students never do. Many practical
problems can be solved by using recursive relationships, making recursion a very important topic
in applied mathematics. Its applications are numerous, ranging from the mundane, like finance,
to the obscure, like fractals. Closely related is the topic of mathematical induction, which is a
powerful tool both in mathematics, and also in the study of recursive relationships. In this chapter
we take a very close look at both of these topics in hopes that you will appreciate their value and
be able to incorporate them in some of the updated curricula now being used in many secondary
schools.

8.2 Recursive Relations

LAUNCH

A standard roll of paper towels consists of a cardboard tube with outer diameter 4 cm. A typical roll
contains 100 sheets of paper each 25 cm long, so the total length of paper is 2500 cm. Imagine the
paper being wound onto the cardboard tube. After each complete winding, the total diameter of
the roll increases by an amount 2¢t, where t cm is the thickness of the paper. Let S, cm denote the
total length of paper wrapped around the tube when it is wrapped around n times, so that So = 0.

1 When the paper is wrapped around the roll the first time (n = 1), what will the outer diameter,
D+, of the roll be?

2 What length of paper, C;, is needed to wrap around the roll the first time?

3 When the paper is wrapped around the roll the second time (n= 2), what will the outer
diameter, D, of the roll be?

4 What length of paper, C,, is needed to wrap around the roll for the second time?

5 How much paper, S, (in centimeters) will you have wrapped altogether, after this second
wrapping?
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6 After three wrappings, how much paper, S3, will you have wrapped altogether?

7 After n wrappings, how much paper, S, will you have wrapped altogether?

8 How does the amount of paper after n wrappings, S,, compare with the amount of paper
after n — 1 wrappings? Write a relationship that expresses it.

We hope that when doing the launch problem, you realized that to answer some of the questions,
you were using the same operations repeatedly. Did you also notice that the final relationship you
expressed involved both S, and §,-,? Without knowing it, you have been examining a recurrence
relation, which we will investigate further in this section.

What do you think of when you hear the term“recursion?” Probably, the word repetition comes
to mind. The fact is that recursion is a very sophisticated type of repetition. What do we mean by
this? In this section we will answer this question by investigating many different applications of
recursion as well as the related topic of induction.

We begin by examining a case of recursion that you probably encounter in your daily life. That
is, consider what happens when you put money into a bank account and you receive interest. How
does your money grow? Here is an example that addresses this situation.

Example 8.1 You just got a gift of 126 dollars which you put into an account paying annual interest
at the rate of 6% per year, hoping that it will grow into a thousand dollars in 10 years. Assuming that
you don't withdraw any of the money, will this be possible?

Solution. Let A, be the amount in the account at the end of n years, and A the initial amount
put into the account. So Ap = 126. At the end of year 1, we have in the account our initial amount
Ay, plus the interest, 0.06 Ay, for a total amount of 1.06A . Let us call this amount, A4, to remind
us that it is the amount that is in the account after 1 year, or equivalently, at the beginning of the
second year. So,

Al = A() + 006A0 that iS,

A =1.06A.

In a similar manner, at the end of year 2, we have our initial amount from the beginning of the
year, A; plus the interest 0.06 A for a total of 1.06A;. That is,

A2 = A1 + 006A1

Ay =1.06A;.

If we let A, be the amount in the account at the end of the nth year, we can compute it as
follows: It is the amount at the beginning of the year, which is A,._;, plus the interest, 0.06A,_; for
a total of 1.06A,,_;. Thus the amount in the account at the end of n years is given by the equations:

A, =1.06A,_1 8.1)

Ao =126. 8.2)
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The equation (8.1) is what is called a recursive relation. A recursive relation is a rule
which tells us how to compute new values from old values. Equation (8.2) is called an initial
condition.

Using the recursive relation and the initial condition, we can now generate a sequence of
numbers, which tells us how much money is in the account after n years. Here is our table:

n 0 1 2 3 4 5 etc.

A,=| 126 | 133.56 | 141.57 | 150.06 | 159.07 | 168.61

In each case, we simply multiplied the previous value A,_; by 1.06 to get A,. Thus, Az = 1.06A;
and A4 = 1.06 A3z, and so on. Finish the table and answer the question.

Example 8.2 When you take any medication, say in pill form, written on the bottle are directions for
how often you should take the pills. This is because scientists know that, with time, a certain portion
of the medication is excreted from the body. Another pill will have to be taken at a certain time interval
in order to maintain the effective level of medication in the bloodstream. Suppose that one begins an
initial dosage of 80 milligrams of a medication, and that at the end of each 24 hour period 40% of
what is in the body has been excreted. As a result, a new 80 milligram dose must be taken after each
24-hour period. Write a recursive relation that expresses the amount of medication in the bloodstream
after n 24-hour periods right after each new dosage is taken.

Solution. Let Ap represent the initial dose. Thus Ay = 80. After one 24-hour period, 40% of the
medication is excreted, thus 60% of the medication stays. So, the amount in the system right before
we take the new dose is 0.60A,. We then take an 80 milligram dose and the amount of medication
in our system, represented by A; is given by

A1 =0.60A40 + 80.

This analysis holds for the other 24-hour periods.
In general, the amount of medication after n days (right after the new dose of medication is
taken) is 60% of the amount in the bloodstream after the last dose +80. In symbols,

A, =0.604,_; +80.

This is our recursive relation which we will now use to generate some values.
A1=0.60A0+80=0.60(80)+80=128; A2 =0.60A; +80=0.60(128) + 80 =156.8, and so on.
Below is a table with the first 6 values of A,;:

A,=1]80| 128 | 156.8 | 174.08 | 184.45 | 190.67
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In the previous two examples, A, was defined in terms of A,,_;. Now we give you an example of
a recursive relation that defines A, in terms of both A,_; and A,_». It leads to the famous Fibonacci
sequence.

Example 8.3 We start with the two initial conditions F1 = 1 and F, = 1. We define the nth Fibonacci
number F,, where n > 2 to be the sum of the previous two Fibonacci numbers. Thus, F, = Fp_1 + Fy_»
when n > 2. Generate a table that gives the first 7 Fibonacci numbers.

Solution. Our recursive relation, F, = F,,_1 + F,_», yields the following table

Fq F, F3 Ey F5 F6 E; etc.

1 1123 |5 | 8|13

where it is clear that each Fibonacci number is the sum of the previous two. Notice that, in the
first two examples, the A, was defined in terms of only one previous value, namely, A,_;. In this
example, A, is defined in terms of two previous values A,_; and A,_,. In general, in a recursive
relation, it is possible to define A, in terms of several of the previous values of A.

In each of the previous three examples, our recursive relations generated sequences of numbers.
However, recursive relations can be defined for other objects as well. Here is an example which we
will talk more about when we discuss fractals.

Example 8.4 Begin with an equilateral triangle. Call that T,. Connect the midpoints of the triangle
cutting the triangle into 4 equilateral triangles, and then remove the “middle one,” which we have
shaded, leaving us with three equilateral triangles. Call the resulting figure T>. Now do the same
thing on each of the remaining 3 unshaded triangles in T, , namely, join the midpoints of the sides,
forming 4 equilateral triangles, and then remove the middle one in each triangle so divided. Thus, each
equilateral triangle will have been divided into three other equilateral triangles. Call this figure T3. On
T repeat the procedure and call the result Ty4. Describe the figure Ty.

Solution. Our first triangle, T; is shown in Figure 8.1(a) below.

T T, T T,

A\
RNRA

(@ (b) © (d)
Figure 8.1

We divide this into 4 equilateral triangles by connecting the midpoints and then removing
the middle one. In Figure 8.1(b) we see the resulting figure, T;, where the gray area represents the
triangle removed. Now, on each of the remaining (white) triangles in T, we join the midpoints
of the sides and split each such triangle into 4 triangles and then remove the middle one from
each triangle. Figure 8.1(c) shows the resulting Figure T3 with the gray representing the triangles
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removed. Now, on each white triangle in triangle 73, we perform the same process. We split it into
4 equilateral triangles and remove the middle one. We get the Figure T; in Figure 8.1(d).

If we do this forever, the final figure we get is what is called the Sierpinski triangle. It looks a
lot like Figure (d), only there are many more gray areas.

There are some interesting properties of the Sierpinski triangle. First, it is a fractal in the
sense of Chapter 7. That is, it has what is known as infinite complexity. Let’s look at its area and
perimeter. We work with a triangle all of whose sides are equal to 1.

In the first step we have an equilateral triangle with sides 1, whose perimeter is 3 and whose
area we know is \/Tg’ In the second step we have 3 triangles similar to the original, each of whose
sides is 1/2 the original. Thus, the perimeter of each of these smaller triangles is 1/2 that of the
previous triangle. But there are 3 of them. Thus, the perimeter of this second figure is 3/2 that of
the first or (%) (3). At each iteration, the perimeter of the new figure is 3/2 that of the prior figure.
So, after the second iteration, the perimeter is (%)2 (3). After the third iteration, the perimeter is
(%)3 (3). After n iterations the perimeter is (3)" (3) whose limit is co.

What about the sum of the areas of the triangles making up each successive figure? Do they
also go to infinity? The answer may surprise you. The area of the first triangle is ‘/Tg. At the second
iteration we have 3 similar triangles, each of whose sides is 1/2 the side of the original triangle.
Hence, the area of each of the smaller similar triangles is 1/4 that of the original triangle. But
there are 3 times as many smaller triangles. Thus, the area of the figure at the second iteration is

1,43

3.4 orjust 3 JT? After the next iteration, we have three times as many triangles each with
area 1/4 that of the previous. Thus the sum of the areas of the triangles in the next figure is
3 (3

I (Z . @) . Continuing in this manner, we can show (by induction) that, at the nth step of this

iterative process, the sum of the areas of the triangles is (%)nfl . JT? Now as n gets large, (%)W1

gets small and approaches zero, so (%)W1 . ‘/Tg, the sum of the areas of the triangles approaches
zero. Since the Sierpinski triangle is the figure created after infinitely many iterations, we have
established that the area of the Sierpinski triangle is zero, while its perimeter is infinite! Not only
that, the Sierpinski triangle still contains many points even though its area is zero. The vertex of
each unshaded triangle at each step is still there! How strange! This kind of property is not unusual
for fractals, as you will see later in this chapter (see section on fractals). But for now we move onto

solving recursive relations.

8.2.1 Solving Recursive Relations

As you have seen, recursive relations have many important applications. Our goal in this section
is to learn how to solve these recursive relations when they involve only numbers. Specifically,
we will examine procedures for finding the nth term of a recursive relationship in terms of n
alone. Finding such a formula is known as solving the recursive (or recurrence) relation. Using a
formula is much more efficient then generating tables to find our values as we did in the previous
section. Let us now see how we can find these powerful formulas.

The simplest type of recursive relation which you might already be familiar with is the
arithmetic sequence:

a,=a,-1+d where a; is given, (8.3)

and the number d is the common difference. Let us give an example.
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Example 8.5 Find the first 5 terms of the sequence generated by the recursive relation a,, = a,—1 + 5
given that a; = 3.

Solution. Here d is 5. Thus, according to our recursive relation, a; =a; +5 =3 + 5 = 8. Similarly,
a3 =dy +5=8+5 =13, and so on. This generates the table

a | ap | as N ds deg | ay | etc.

3 18 |13|18 |23 |28 |33

where it is clear that each entry is 5 more than the previous entry. (These tables are easily generated
by spreadsheets.)
Solving a recurrence relation like equation (8.3) is easy. We rewrite it as

a,—dy,_1=d. (8.4)

This yields the following system of equations obtained by substituting n=1, n =2, and so on
in equation (8.4):

612—611=d
613—(12=d
(14—(13=d

ay,—du,_1=d.

We have n— 1 equations here (as we can see, since the first equation involves a subtraction
of a;, the second of a, and the last, a,_1). If we add them up, we are left with a, —a; =n— 1)d
(since almost every term is matched with its opposite), which can be rewritten as

a,=a1+(n—1)d.

In words: The nth term of an arithmetic sequence is the first term, plus (n— 1) times the
common difference, d, which represents the solution of equation (8.3). We state this as a theorem.

Theorem 8.6 The solution of the recurrence relation given by a, = a,_1 + d where a is fixed, is given
bya,=a;+m— 1)d.

Thus, if we wanted to find the 23rd term in the above sequence from Example 8.5, we
would get

as=a1+m—1)d, which means that

ax; = 3 +(22)5 = 113.
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Another simple type of recursion is one you are also probably familiar with, the geometric
sequence, which looks like

an=Kan_1

where a; is known and k is a constant. Here, each term generated is a constant k, times the previous
term. We call k the constant multiplier. We saw a case like this in Example 8.1.
We can solve this recursion by rewriting it as

an

=k for n> 2. (8.5)
ap-1
This yields the following equations obtained by substituting n=2, 3, 4 and so on into
equation (8.5):
2 _k
ai
B _k
ap
as
as

=k

an_ _x.

aAn-1

Again, we see there are only n — 1 equations. If we multiply them together, we are left with:
a
a—" = k"1, (verify!) and this can be written as
1

a,=a k"L

We state this as a theorem:

Theorem 8.7 The solution of the recurrence relation a,, = ka,_1 where a,, the first term, is known,
is a, = a k™. Stated another way, the nth term of a geometric sequence is a k™1 where k is the
constant multiplier.

Let us see how this works in an example.

Example 8.8 Given the geometric sequence, 2, %, %, ..., find the 50th term.

Solution. The first term is 2, and the constant multiplier is k = % (That is, a; =2 and a,, = %an_l
is the recursive relation defining this geometric sequence.) By Theorem (8.7) the 50th term is,
=2 1y49
aso (3)*.
In Example (8.1) we wanted to find out the amount in an account after 10 years, given our
initial investment of 126 dollars. Thus, we were given a;. We were also told that we were earning
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interest at the rate of 6%, so the value of our investment after each year was 1.06 times that of the
previous year. That is, k was 1.06. Thus, by Theorem (8.7), after 10 years we would have

a, =ak’=(126)(1.06)° = $212.87.

You may have noticed that, in some examples, we have called the initial condition a¢ rather
than a;. The decision to use ag or a; is arbitrary and is usually based on what seems more natural
in a given problem.

The third type of recurrence relation we will now examine is a combination of the first two. It
is the relation: a,, = ka,_1 + b where k and b are constants and a; is known. This yields the following

equations.
a, =ka, +b (8.6)
as =ka +b (8.7)
as =kas +b (8.8)

d, =ka,_1+Db.
Substituting equation (8.6) into equation (8.7), we get

az =ka, +b
=k(kay+b)+b
=k?*a; +bk+Db
=k%a; +bk+1). 8.9)
(We are writing a3 in this form to enable us to find a pattern.) Substituting equation (8.9) into
equation (8.8) we get
as=kaz+b
= k(k?a; + bk +b) +b
=k3a; +bk* +bk+b
=k3a; +bk?+k+1)

and so on. Our final result is that
a,=k"la +bk"2+k" 1+ ... +1) (8.10)

(which we can prove by induction if we wish. See the section on induction later in this chapter

for a review.) The quantity in parentheses in equation (8.10) is a (finite) geometric series and we
_ pn-1

1
found in Chapter 6, Theorem 6.47 that the sum of that series is % Thus, our final result is

_ 1 n-1
an=k"1a1+b(%). (8.11)
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Sometimes in a recursion we call the first term ao as we did in Example 8.1. If we do that here,
our recursion formula becomes

1-—k"
a,,:k”a0+b<1_k). (8.12)

We can see how this is applied in Example 8.2, where we had a problem which involved the
administration of medication. Our recursion for that problem was a, = 0.60a,_1 + 80. Thus, after
n days, using the value of b = 80 and k = 0.60, in formula (8.12), the amount of medication in the
person’s system is

a, = (0.60)™(80) + 80 <ﬂ> .

0.40 (8.13)

Let us generate some of these amounts using formula (8.13): We get the following table:

ai a as as ds de a; etc.

128 | 156.8 | 174 | 184.4 | 190.6 | 194.4 | 196.2

As you can see, the number of milligrams of medication in the body is getting larger and larger
as the days go on. Now, suppose that a safe dose is under 225 milligrams. Can we be assured
that this patient will not go above the safe dosage? To answer the question, take the limit of
equation (8.13) as n — oco. Using the fact that (0.60)” — 0 as n — oo, we see that equation (8.13)
yields

. . 1-(0.60)" 1
- n - -
lim a, = ’}Lmoo(O.60) (80) + 80 ( 0.40 ) =0+80 (0'40) = 200.

n—oo
Thus, this patient is safe from overdose with the current dosage. Of course, if a safe dosage were
180 milligrams, then not only would our patient be at risk, but the doctor who prescribed the
medication would be open to a lawsuit! So, a careful analysis of such a problem as this is critical!
Another way to solve certain recursive relations is by a method shown below in Example (8.9).
Here, we simply use the recursive relationship given repeatedly until we get to our answer.

Example 8.9 Solve the recursive relation
a, =3na,_ (8.14)

where ay = 1.

Solution. We begin with the recursive relationship a, = 3na,_,. Now, since this recursive relation
holds for all n > 1, we have, replacing n by n— 1 in equation (8.14) that

Ap—1 = 3(71 — 1)(1,172. (81 5)
Similarly, replacing n by n — 2 in equation (8.14), we get

ap_p = 3(71 — 2)0,7,3, (81 6)
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and so on. Thus, using this string of equations (8.14)-(8.16) repeatedly, we have

a,=3n-d,_1
=3n-3(n— 1a,,
=3n-3n—-1)-3(n-2)a,_3

=3n-3(n—1)-3(n—2) ... -3(2)a;
=3n-3(n—-1)-3(n—-2)... -32)-1
=3"Yn-n—1)-n—2)... -2] -1 (since all have factors of 3 except the last)

= 3" 1pl,

Although we do not wish to explore recursion to the depths you might see it in a Discrete Math
course, we do wish to talk about one particular kind of recursion which, surprisingly, is solved
by finding roots of polynomial equations. This kind of recursion, known as a linear recurrence
relation, relates to material we studied in Chapter 3 and looks as follows:

an=kian_1+kan2+ ... kpan_, (8.17)

where a, is defined solely in terms of p of the previous terms and the k’s are constants. We saw
an example of this type of relation with the Fibonacci sequence, where each term was defined in
terms of the previous two terms. Here are examples of some other linear recurrence relations:

an = 3an,1 + 461”,2 (8.1 8)

a, =5d,_1+6d,_5+2a,_3. (8.19)

In equation (8.18) we see that a, is defined in terms of the two previous terms, while in
equation (8.19) we see that a, was defined in terms of the three previous terms.

With every linear recurrence relation, there is associated a polynomial equation called the
characteristic equation. If a, is defined in terms of the two previous terms, then our equation
is of second degree. If a, is defined in terms of the 3 previous terms, it is of third degree. If a, is
defined in terms of the k previous terms, it is of kth degree.

Here is how a characteristic polynomial is formed. If a, is defined in terms of the k previous
terms, replace a, by x* in equation (8.17). Then replace a,_; by x¥~! and a,,_, by x*~2, and so on.
So, in equation (8.18) since a, was defined in terms of the previous two terms, we replace a, by x>
and a,_1 by x, and so on. Thus, the characteristic equation for equation (8.18) is x> = 3x + 4 and
that of equation (8.19) is x> = 5x2 + 6x + 2, since it is defined in terms of the previous 3 terms.

Theorem 8.10 If the characteristic equation associated with a recurrence relation has degree k and
this equation has k distinct roots r1, 1, ... , rx then the solution of the recurrence relation (8.17) is of
the form a, = c1(r1)" + c2(r2)" + ... + ck(rx) ", where the c’s are constants.
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Thus, the roots of the characteristic equation gives us the solution to our recursion. We will
guide you through the proof of this in the Student Learning Opportunities, but for now, let’s give
some examples.

Example 8.11 Solve the recurrence relation a,, = 5a,,_1 — 6a,_», given that a, =4 and a, = 7.

Solution. Since a, is defined in terms of the two previous terms, our characteristic equation is of
second degree. We begin by replacing a, in the given recursion relation by x2. Our characteristic
equation becomes, x2 = 5x — 6. If we solve this quadratic, we get the solutions r; = 2 and r, = 3.
Thus by the theorem, the solution of our recursion is of the form

ay,=c1(2)"+c2(3)". (8.20)
Using the fact that a; = 4 we get, substituting in equation (8.20) that

ar=c12) +c,(3)! orjust 4 =2c; +3c,. (8.21)
Using the fact that a, = 7 in equation (8.20), we get that

a =c1(2)%2+c2(3)2 orjust 7 =4c; +9c. (8.22)

Solving the system of equations represented by equations (8.21) and (8.22) simultaneously, we get

(1= 5 and ¢; = _T (Verity!) Thus, the solution of our recurrence relation is
S n -1 n
ap = 5(2) + ?(3) . (8.23)

You can check that a; = 4 and that a, = 7 when substituting n = 1 and n = 2 in equation (8.23).
Let us solve one more recurrence relation.

Example 8.12 Find the solution to the recurrence relation a, = 9a,_1, given that a, = 5.

Solution. Since a, is given in terms of one of the previous terms, the characteristic equation must
be of first degree. The characteristic equation is x = 9x°, whose only root is r; = 9. Thus, the solution
to our recurrence relation is a, = ¢1(9)" and, since a; = 5, we have, by substituting n=1 into this

equation, that 5 =¢;(9)'. Hence ¢; = g and the solution of our recurrence relation is a, = 8(9)”,
which is what we would have expected anyway from Theorem 8.7.

Here is another example whose final result is quite surprising. Earlier, we mentioned the
Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13,... which was generated by using the recursion F, =
F._1+ F,_» where F; =1 and F, = 1. According to the work with recurrence relations, we should be

able to find a solution for the recursion. We set up our characteristic equation, which is x? = x + 1,
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1++5
and then solve for x by the quadratic formula. We get x = 2\/_. Thus, the solution to our
recurrence relation is:
F.=c 1+/5 " +c 1-5 "
n==01 2 2 2
Setting n =1 we get
1++/5 1-+v5
1=q +/5 +cy V5 (8.24)
2 2
and setting n = 2 we get
1=c 1+V5 2 +c 1-5 2
2 2\ 2
which simplifies to
6+2v5 6—2v5
1:q<*;J)+Q(—7§C> (8.25)

Solving equations (8.24) and (8.25) simultaneously, say using Cramer’s rule (see Appendix 1),
we get

1-+/5
1 2
6 — 25
R e wl S
- 1+4/5 1-45 NG
2 2
6+2V5\ 6-2V5
4 4
and
1+«/§
(7)
6+25 1
1+4/5 1-45 _ﬁ.
2 2
6+2V5\ 6-2V5
4 4

Thus, the solution to our recursion is

1 145\ 1 [1-5)\"
e (155) L (1) -
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Now equation (8.26) seems unbelievable, since all the terms of the Fibonacci sequence are integers
and in equation (8.26) square roots occur throughout our solution. But, this really does work. It can
also be proved by strong induction, though it is tricky (see the next section for a proof). However,
if you want to convince yourself that this works, just enter, equation (8.26) in your calculator and
see what it gives you for different values of n. We worked out the first five terms using a computer
algebra system, (the program used to write this book) and indeed it gave, F1 =1, F, =1, F3 =2,
Fy4=3, Fs=5.

There is one last recursion that we would like to talk about that relates to a famous puzzle
known as the Tower of Hanoi puzzle. This puzzle is actually sold commercially and is attributed
to the French mathematician Edouard Lucas, who discovered it in about 1883. Every computer
science student is usually exposed to this Hanoi problem, since its solution involves a recursion
which is a fundamental technique in computer programming. Also, recursion is used extensively
in sorting algorithms and database programs.

Example 8.13 (Tower of Hanoi) In this problem we have a set of n disks all of different sizes, and
we have three pegs. All of the disks are on the first peg, and they are in order of size with the largest
disk on the bottom. The goal is to move all the disks from the first peg to the second peg, moving only
one disk at a time. There is only one catch. You can never put a larger one on top of a smaller one. The
question is, what is the minimum number of moves needed to achieve this?

Solution. Here is the picture with 7 disks (Figure 8.2).

Peg1 Peg 2 Peg3

Figure 8.2

One can play with this puzzle a bit before reading what follows. Using the problem-solving
approach of starting with a simpler problem, try working it for 3 disks, 4 disks, and so on. The
following website gives an interactive program, where you can play with as many disks as you
want: http://www.mazeworks.com/hanoi/index.htm. It is worth visiting.

Getting back to the problem at hand, we let the minimum number of moves needed to solve
the problem when we have n disks be a,. We will try to set up a recursive relationship, which shows
how we can determine the minimum number of moves with n + 1 disks, when we know how to do
it with n disks.

First we realize that, with n+ 1 disks on a peg, since the largest one is on the bottom, it will be
the last to be moved when the disks are taken off the first peg. We refer to the largest disk as L. We
move all the disks to the third peg except for L. (Just think of this as the problem of moving the n
disks above L.) This requires a, moves. Then we will move L to the second peg. That requires one
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move. Then all of the n disks on the third peg will get moved back to the second peg. This requires
another a,, moves. Thus, the total number of moves, a,,1 needed to move the n+ 1 disks to the
second peg is given by

apea1=ap+1+a,
or just
ape1 = 2a, + 1.

Although we already know how to solve this, we will do it in the next section with induction,
where the solution is quite easy once we guess at the formula for a,,.

We have talked about the number of moves required to solve this puzzle, but we have not
discussed what the actual moves are. It is easy to find these moves. First solve the problem for 1
disk. There the movement is simple. We move the one disk to peg 2 and we are done. The recursive
analysis given in the previous paragraph tells you the moves for n = 2 disks. You move the 1 disk
above the largest disk to peg 3, then move the largest disk to peg 2, and then move the disk on
peg 3 to peg 2. This involves 3 moves.

Now, suppose we have 3 disks. We move the top two disks to peg 3, but we do it in a manner
similar to the way we did it in the previous paragraph where we dealt with the question of moving
two disks to peg 2. Then move the last disk to peg 2. Now we move the two disks on peg 3 to peg
2. This can be done by moving the smallest disk on peg 3 to peg 1, and then the remaining disk
to peg 2 and then the disk on peg 1 to peg 2. You should draw yourself a picture to see what is
going on and then try to figure out how to do it for 4 disks. Using those moves, we can generate
the moves for 5 disks, and so on.

Although there is much more we could say about recurrence relations, our goal has been to just
give a quick refresher to those of you who have seen it, and give a primer to those who haven't.

Student Learning Opportunities

1 Generate the first five terms of the sequence of numbers defined by each of the following
recursive relations. Is the resulting sequence an arithmetic sequence, geometric sequence, or
neither? Justify your answer.

(@) a,=5a,_1, where gy =2
(b) a,=2a,_1+0a,_2, wherea; =0and a; =1
(c) an=a,_1+6, where a; =2

2 (O)

(a) The seats in your local theater are arranged so that there are 50 seats in the first row,
52 seats in the second row, 54 seats in the third row, and so on, for a total of 100 rows.
You want your students to create a formula that will tell you how many seats, R, are
in row n. Jason answers by giving the recursion formula: R, = R,_1 + 2. Is his answer
complete? If not, what is missing?

(b) Johnny answers the same question in (a) as follows: R, =48 +2n, where n=1, 2,...,
100. Is he right?



Induction, Recursion, and Fractal Dimension 371

3 Write a recursive relation for each of the following scenarios:

(a) You invest 1000 dollars in a vehicle that pays interest at the end of each month at
the rate of 15% of whatever you had at the end of the previous month. Assuming no
money is withdrawn, write a recursive relationship that gives the amount of money in this
investment after t months. Then write a recursive relationship with this same scenario, but
where 50 dollars is withdrawn at the end of each month. Find how much will be in the
account under each scenario after 6 months.

(b) Bacteria are growing at the rate of 3% per hour. Write a recursive relationship that gives
the number of bacteria after t hours, if the initial bacterial population is 450 bacteria.

(c) A patient is advised to take a 50 milligram dose of a drug every morning at the same
time. If 40% of the drug is excreted each day, how much of the drug will be in his system
before he takes his fifth 50 milligram dose? What is the recursive relation that gives the
amount of drug in the patient’s system after n additional 50 milligram doses have been
taken? What happens as n goes to infinity?

(d) Jack begins a walking routine. The first day he walks a half a mile, then each day thereafter,
walks an additional ]—‘ mile. Write the recursive relation that describes the number of miles
he walks on the nthday.

(e) A pond is stocked with 3000 trout. Each year 500 new trout are removed, but in general
they grow at a rate of 30% per year counting deaths. Write a recursive relation that
describes the number of trout in the pond after n years.

4 Solve each of the following recurrence relations:
(@) a,=4a,_1, where a; =3
(b) a,=a,_1+4, wherea; =5
(©) a,=na,_1, where a; =1
(d) any1 =3a,—2a,1whenn>2,buta;=5anda, =7
(e) a,=4na,_1, where a; =2
(f) an=(2n— T)a,_1. No initial condition is given.

5 Answer the various parts of the launch question. Write the recursive relationship that
expresses S, in terms of S,_; and solve the recursive relationship.

6 Here is an outline of the proof of Theorem 8.10 for the special case of the recurrence relation
ap,=0adn,_1 + ba,_> (8.27)

where g and b are constants.

We guess a solution of equation (8.27) of the form, a,= x". Then substituting into
equation (8.27), we get x"=ax""!+bx"2. Setting this equation equal to 0, we get
x"—ax"" — bx"2 = 0 and dividing by x"~2 we get that

x2—ax—b=0. (8.28)

This, of course, is the characteristic equation. Thus, IF our guess is correct, the characteristic
equation must hold.

Reversing the steps, if r is a root of the characteristic equation (8.28) then r2 — ar — b= 0.
Multiplying this by r"~2 we get r" — ar "' — br "~2 = 0 and then, if we solve for r", we get
r=ar"" +br"2 This tells us that a, = r " satisfies equation (8.27). In short, if r is a root of
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the characteristic equation, then r " is a solution of the recursion. Thus, if r and s are the distinct
roots of the characteristic equation, then

n

r"=ar"™ +br"2 (8.29)

and

n

s"=as"" +bs"2. (8.30)

We want to show that a, = ¢ir" + 5" satisfies the recursion, equation (8.27). We compute
aa, 1+ ba, » and we must show that this is equal to a,. But aa, 1 +ba, » = a(cir™' +
Qs N +bar" 2+ cs" ) =qar" " +br" )+ ca(as" ' + bs"2) = cir"+ cs" by equa-
tions (8.29) and (8.30). And this last expression, is ay,.

Try to generalize this to the case when a, is defined in terms of the 3 previous terms.

7 (C) You have had your students investigate the Tower of Hanoi Problem and they are
comfortable with how to solve it for 1, 2, and 3 disks. However, when trying to explain
how to solve it for n=4 disks, they get very confused. How can you help them organize
their procedures and come up with an accurate written account that will demonstrate the
recursive nature of the solution?

8.3 Induction

LAUNCH

Imagine an extremely long line of dominoes, each standing vertically, with even spacing between
each one. Your little niece comes over and pushes the first domino over. She is excited to see that
the first domino knocks into the second domino and in turn, the second domino falls forward. You
might think that, since the dominoes are all spaced evenly apart, then the second domino will fall
and knock the third over, and so on down the line. Are you correct? Do ALL of the dominoes end
up falling? If you say, “Yes,” prove it.

If in the launch problem, you realized that all of the dominoes would end up falling over, then
you already have good intuition about the type of reasoning involved in proof by induction, the
focus of this section. You may be wondering why we need yet another type of proof, especially
since we have seen how well suited direct proofs have been in constructing certain theorems in
mathematics relating to natural numbers. However, there are theorems involving natural numbers
that are extremely difficult and complex to prove using a direct method. When this happens, we
often try to use the method of mathematical induction.
For example, we might like to prove that, for all natural numbers, n,

1+2+3+...+n=@
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or perhaps that Pick’s Theorem (Chapter 5 Section 7 Theorem 5.34) is true for any polygon with
n sides. While it is easy to give a direct proof of the first statement, as we did in Chapter 1, the
second statement about Pick’s Theorem would be harder to do without induction.

The idea behind mathematical induction is very intuitive and is illustrated by the dominoes
launch. Here is yet another perspective on this. Suppose that we told you that we saw a stairway,
and that we climbed the first step. Suppose we also told you that whenever we climbed a step, we
climbed the next step. How many of the steps on this stairway did we climb? The answer seems
obvious: we climbed all the steps!

Why? Well, we told you that we climbed the first step. We also told you that whenever we
climbed a step, we climbed the next step. Thus, we climbed the second step. By the same reasoning,
since we climbed the second step, we had to climb the third step, because we told you that,
whenever we climbed a step, we climbed the next step. Having already established that we climbed
the third step, we must have climbed the fourth step, for we told you that, whenever we climbed a
step we climbed the next step, and so on. Clearly, then, we climbed all the steps. This, essentially,
is the principle of mathematical induction. To state it more formally:

Principle of Mathematical Induction

1 Suppose that we have a statement about natural numbers. And suppose that it is true for the
natural number n = 1.

2 Suppose that, whenever the statement is true for the natural number n =k, it is also true for
the next natural number n=k + 1.

Conclusion: The statement must be true for all natural numbers.

Using the stair example above, it appears to make perfect sense. Saying that the statement
is true for n=1 is analogous to saying that you climbed the first step. Statement (2) says that,
whenever you climb a step, you climb the next step. Of course, the conclusion that the statement
is true for all natural numbers is essentially saying that we have climbed all the steps.

It is usually easy to verify that (1) holds in a problem, though not always.

The way step (2) is implemented is that we usually have to develop a method that will show us
how to get from any step to the next step. This can be very routine, to very difficult, depending on
the problem.

Let us demonstrate a proof by induction using a relationship for which we have already
provided a direct proof in Chapter 1. Secondary school students often see this example as their
first exposure to proof by induction.

Theorem 8.14 Using mathematical induction, show that if n is natural number, then

1+2+3+...+n="("2+1). (8.31)

Proof. First we must show that equation (8.31) is true when n = 1. When n = 1, the left side of the

1(1+1
equation consists only of the number 1, while the right side is the expression ( 2+ ). Clearly
1(1+1)
1= .
2

So equation (8.31) is true when n = 1.
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We now suppose that equation (8.31) is true for some value of n, say n = k, and then show that
it is true for the next n, namely n=k + 1.
Saying that the statement is true for n = k means that, we are supposing that, for some k,

k(k +1)

1+2+3+ ... +k=
+2+3+ ...+ 5

. (8.32)

What we have to show is that equation (8.31) is true for n = k + 1. That is, we have to show that

1+2+3+...+(k+1)=(k+1)(]+1+1). (8.33)
Let us work on the left side of equation (8.33).

1+2+3+ ... +(k+1)

=1+2+3+ ... +k+(k+1)

= k(k2+ b +(k+1), since we are assuming equation (8.32) is true.
1

= kk 2+ ) + 2(k2+ ) (Common denominator)

2 2k +2

= % (Simplifying)

k% +3k+2
2

Clearly, equation (8.34) is equal to the right side of equation (8.33) and we have shown what we
set out to prove. Having shown that equation (8.31) is true for n = 1, and having shown that, when
equation (8.31) is true for n = k, equation (8.31) is true for n =k + 1, it follows by the principle of
mathematical induction that equation (8.31) is true for all natural numbers. B

As we pointed out in the introduction to this section, one must admit that the direct proof
from Chapter 1, is certainly, well, more direct!

It is a general misconception that induction is only used to prove relationships involving the
sum of integers or squares of integers and so forth. Nothing could be further from the truth, as you
will see by the examples that follow.

Theorem 8.15 Prove using Mathematical Induction, that for all natural numbers n,

n<2nm (8.35)

Proof. (a) First we show that the relationship n < 2" is true when n = 1. That is,
1<21,

which is clearly true.
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(b) Next we suppose that inequality (8.35) is true for some natural number k. That is, we
assume that

k < 2k (8.36)

for some k, and then we try to show that inequality (8.35) is also true for the next natural number,
k + 1. That is, we try to show that

k+1 <2k, (8.37)

How do we do this? Let us work on the left side of inequality (8.36), which we are assuming is
true. Adding 1 to both sides yields:

k+1 <241
<2K4+2  (Obviously!)
< 2k 42k (Since 2 < 2K when k > 1)
=225

— 2k+1

This string of inequalities shows that k+ 1 < 2%*1 which is inequality (8.37) and this is what
we wanted to show. Having shown that inequality (8.35) is true for n = 1, and having shown that,
whenever inequality (8.35) is true for n =k, it is true for n = k + 1, it follows that, by mathematical
induction, inequality (8.35) is true for all natural numbers n.

You might feel that the statement in this theorem was so simple that there was no need to
prove it. Well, yes, the statement does seem obvious. But, with proof, we can be sure. We hope you
appreciate the simplicity of this next inductive proof of a non-obvious result.

Theorem 8.16 Prove that, for all natural numbers n,

4" +15n—1 s divisible by 9. (8.38)

Proof. Although this can be done using modular arithmetic, we will do it by induction, as it is a
bit more direct. First, let us show that equation (8.38) is true for n=1. When nis 1, our statement
becomes,

4+15—-1 isdivisible by 9.

This is clearly true since 4 + 15 — 1 =18.
Now suppose that equation (8.38) is true for some natural number k. This means that

4%¥415k—1 is divisible by 9 (8.39)
which can be rewritten as

4X4+15k—1=9m for some integer m. (8.40)
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We must show that equation (8.39) is true for n = k + 1. That is, we must show that
41 4 15(k+1)—1 is divisible by 9. (8.41)

Now, let us examine what we are trying to prove. We must show that 45! + 15(k + 1) — 1 is divisible
by 9. But, we know that

4kl L 15(k+1) — 1
=4.4%K+15k+14.
Now we have to remember that we are trying to use what we know, namely 8.40 in our proof. So
we need to manipulate the terms of this last expression so that it is clearly a multiple of 9. Here is
how we do that:
445+ 15k +14
=4(4X+ 15k — 1) — 45k + 18
=4(4% +15k — 1) — 9(5k — 2)
=4(9m) — 9(5k — 2) (Using equation (8.40)).
Since each term in this last expression is divisible by 9, the entire expression is divisible by 9.
So we have proved what we set out to prove and, by the principle of mathematical induction,
4" +15n — 1 is divisible by 9 for all natural numbers n. B
This last proof is just one example of how induction can be used to prove non-obvious
statements. In this next section we prove relationships that are often addressed in the secondary

school curricula, but whose proofs are hardly obvious, and would be tedious or impossible to do
otherwise.

8.3.1 Taking Induction to a Higher Level

We recall that the Fibonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 18, and so
on. If we denote the nth Fibonacci number by F,, then we can describe the terms of this sequence
as follows: F1 =1, F,=1,and forn> 2, F,, = F,_1 + F,,_,. That is,

any number in the sequence is the sum of the preceding two. (8.42)

Finding a formula for the Fibonacci sequence has been done in Section 8.2 using theorems related
to solving recursive relations. The formula of equation (8.26) for generating the Fibonacci sequence
is hardly obvious, but in fact can be proved by srong induction. (See the next section for a proof.)

Interesting relationships hidden in the Fibonacci sequence are numerous. In fact, it has so
many interesting properties, that there is a journal called The Fibonacci Quarterly, devoted exclu-
sively to the sequence and its applications. Did we say applications? Yes! There are numerous
real-life applications of the Fibonacci sequence! To talk about them now would divert us from our
main purpose, so we continue with induction, but urge you to pursue the fascinating aspects of
the Fibonacci sequence. But, we will now introduce you to some amazing relationships that lay
within the Fibonacci sequence, and how they can be proven by induction.
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Let us start with the sum of the squares of the first n Fibonacci numbers. Beginning with the

Fibonacci sequence 1, 1, 2, 3, 5, 8§, 13, ..., we notice that
12=1-1 (8.43)
12+1%2=1.2 (8.44)
12+412+2%2=2.3 (8.45)
12+412+2%2+3%2=3.5 (8.46)
12+12+2%+32+5%2=5-8 (8.47)

We notice that the right hand side of equation (8.43) is the product of the first two
Fibonacci numbers. The right hand side of equation (8.44) is the product of the second and
third Fibonacci number. The right hand side of equation (8.45) is the product of the third and
fourth Fibonacci number. The right hand sides of the next two equations are the product of
the fourth and fifth and fifth and sixth Fibonacci numbers, respectively. This seems to indicate
that, if we sum the squares of the first n Fibonacci numbers, we get the product of the nth
Fibonacci number and the 7 + 1st Fibonacci number. Quite surprising! Don’t you agree? If we use
the formula of equation (8.26) obtained in the previous section for the nth Fibonacci number and
try to prove this, we are in for a major headache. If we prefer not to use this complicated formula,
is there a way we can show this pattern always holds? The answer is induction.

Theorem 8.17 Using induction, show that the sum of the squares of the first n Fibonacci numbers is
FnFn+l .

Proof. When n = 1, this statement becomes simply the statement:
12=F F,.

Since F; = Fp =1, this is clearly true.
Now suppose that the statement in the theorem is true for some natural number k. This means
that

12412422+ ... + FZ = Fx- Fra. (8.48)
We need to show that the statement of the theorem is true for n =k + 1. That is,

12412422+ ... + F2| = Fo1 - Frea. (8.49)
We begin by working on the left side of equation (8.49).

1241%242%+ ... . +F2,

=124+1%242%+ ... F2+F2,

= Fy- Fra1 + F2,  (Using equation (8.48))
= Fi1(Fx + Fir1)  (Factoring)
= Fk+1(Fk+2) (Since Fyp = Fx + Frpq by (8.42)) .
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We have shown that the statement of the theorem is true for n=1 and we have shown
that, whenever the statement is true for some natural number k, it is true for the next natural
number. Hence, the statement of the theorem is true for all natural numbers n by the principle of
mathematical induction. B

Isn’t it remarkable how simple this induction proof was in proving a result that was hardly
obvious? This is what makes induction so powerful!

Let us now see how induction can be used with the Tower of Hanoi problem from the previous
section.

Example 8.18 In the Tower of Hanoi Problem (Example 8.13) we obtained the following recursion
formula for the minimum number of moves needed to move n disks from peg 1 topeg3 :a,=2a,-1 +1
where a1 is obviously 1. Generate some values of a,, and then guess at a formula for a,,. Finally, prove
your guess by induction.

Solution. We have, a, =2a;+1 =3, a3 =2a; +1 =2(3) + 1 = 7. Similarly, we can show that a4 = 15,
as = 31, and so on. It appears that

ap=2"—1. (8.50)

Let us prove equation (8.50) by induction.
When n =1, equation (8.50) becomes

a;=2'-1=1

which we already know is true since, if we only have one disk, it only takes one move to get it
from peg 1 to peg 2.

Now suppose that equation (8.50) is true for n = k. Then g, the minimum number of moves
needed to move k disks from peg 1 to peg 3, is 2¥ — 1, or

ak=2k_1_ (8.51)

We need to show that the minimum number of moves to move k + 1 disks is 2%¥*1 — 1. That is, we
must show that equation (8.50) is true for 1 = k + 1 or, put another way, that a,; = 2! — 1. It only
takes a few steps to show this. We will start with what we already know about ay,;.

a1 = 2ax+ 1 (By definition of the recurrence relation)
=2(2¥—-1)+1 (By equation (8.51))
=21 _241
— 2k+1 - 1.

How simple! So by mathematical induction, this relationship holds for all 7.

8.3.2 Other Forms of Induction

There are two variations of Mathematical Induction. The first deals with the case where we
are trying to prove a relationship only for all natural numbers greater than, or equal to, some
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number N (not for all natural numbers). For example, 2n+ 1 is only less than 2” when n > 3. To
prove the statement that 2n+ 1 < 2" when n > 3, by induction, is exactly like the procedure for
doing basic induction. The only difference is that, instead of showing the statement is true when
n=1 (since it isn’t), we begin by showing that it is true when »n = 3. Then we show that, if the
statement is true for n =k, then it is true for n=k + 1. We will show how this works in the next
example.

Example 8.19 Show that 2n+1 < 2" whenn > 3.

Solution. The statement is true when n = 3, since it says that 2(3) + 1 < 23.
Now suppose that the statement is true for n = k. That is,

2k+1 < 2k (8.52)

We need to show that it is true for n = k + 1. That is, we need to show that 2(k+ 1) + 1 < 2%+ or, put
another way, that 2k + 3 < 25! when k > 3. Here are the steps.

2k+3 =2k+1+2
———
< 2K+ 2 (By inequality 8.52)
< 2K 42k (Since k > 3 implies 2 < 2%)

= 2.2k

— 2k+1

This string of equations and inequalities shows that 2k + 3 < 2%! and since this is what we
wanted to show, we are done. You can get practice with doing proofs like this in the Student
Learning Opportunities.

Now we turn to another form of induction that is used and this is called the strong form of
induction.

Strong Principle of Mathematical Induction

1 Suppose that we have a statement about natural numbers. Also, assume that this statement
is true for the natural number n = 1.

2 Suppose that, whenever the statement is true for all natural numbers less than k + 1, then it
is also true for k + 1.

Conclusion: The statement is true for all natural numbers.

Thus, part (2) of this principle says that, if on the basis of the statement being true for all
natural numbers before k + 1, we can show the statement is true for k + 1, the statement is true
for all natural numbers. (The analogy with climbing steps is as follows: When we climb all the
previous steps, we climb this step.) Since in this type of proof we assume the statement is true for
all n < k+ 1, we can then use as many of those statements as we wish to prove it is true forn=k + 1
and therefore for all natural numbers. Here are two examples.
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Example 8.20 Prove that every natural number can be expressed as an integral power of 2 or a sum
of distinct integral powers of 2. (This is essentially base 2 representation of the number.)

Solution. This is certainly true for the natural number 1, since 1 can be written as 2°. Now suppose
that the result is true for all numbers less than k + 1. We must now show it is true for N = k+ 1. Let
2" be the largest power of 2 less than or equal to N. Then

N=2"4+b (8.53)

where O<b < 2™ < N.If b=0, then N is a power of 2 and we are done. If b #0, then b < N. But,
since we are assuming that all numbers less than N can be written as a sum of powers of 2, b
can be written that way. It follows from this, using equation (8.53) that N can also be written
as a sum of powers of 2. In summary, N is either an integral power of 2 or the sum of integral
powers of 2. Since we have shown that the statement we are trying to prove was true for n=1
and was true for N = k + 1 when it was true for all numbers less than N, it follows from the strong
principle of mathematical induction that the statement we are trying to prove is true for all natural
numbers #n.

We didn’t need induction for this. We already saw how to convert to base 2 in Chapter 2. But
suppose we didn’t. This would show that such a representation is possible.

Example 8.21 Prove the Fundamental Theorem of Arithmetic, that every positive integer > 2 is either
prime or can be factored into primes.

Solution. (Recall that a prime number must be greater than 1, which is why we are only
considering numbers > 2.) First look at 2. It is prime. Now, suppose that the every number less
than k + 1 (but > 2) is prime or can be factored into primes. We have to show that k + 1 is either
prime, or can be factored into primes. We have two cases. Either k+ 1 is prime, or it isn’t. If it is
prime, then we are done. If it is not, then it is composite and can be written as a product a - b,
where a and b are less than k + 1 and greater than or equal to 2. But a and b each being less than
k + 1 and greater than or equal to 2 can be factored into primes. Thus k + 1 being the product of a
and b can be written as a product of primes, namely those contained in a and b. We have shown
that k + 1 is either prime or a product of primes, and so by the strong principle of mathematical
induction, every positive integer, n > 2 is either prime or a product of primes.

Notice that we needed strong induction to assure us that both a and b were prime or factorable
into primes. We needed the factorability of all numbers less than k + 1, so that we could apply the
induction to both a and b. Regular induction wouldn’t work so easily.

Example 8.22 We showed earlier that the formula for the nth Fibonacci number is given by

F_L 1+\/§ n_i 1—«/5 n
Vs 2 S\ 2 '

Prove this using strong induction.
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Solution. The induction is a bit tricky. Let ¢; = # and ¢, = %3 These are the roots of x2 — x —

1 =0, as we can verify using the quadratic formula. So, in particular,
golz—gol—l:O and
07 —p2—1=0.

From these it follows that

92 =¢; +1and (8.54)
07 =@+ 1. (8.55)

Using our new notation, we are trying to prove that
1 n 1 n
=—¢] ——=¢;.
NSV
We do a strong induction on this. The case n =1 is left for you to check.
We assume that the formula of equation (8.56) is true for all natural numbers prior ton=k+ 1
and show that it is true for n=k+ 1. Now consider Fi,; which we know is Fi + Fx_;. But by our

strong induction hypothesis, both Fy and Fy,, are given by equation (8.56) . Substituting into the
expression for Fi,; we get

F, (8.56)

Fye1 = Fy+ Fyq

k ko 1o 1

= %901 - %% + ﬁ% «/3%
= %%k + %fﬁkl - <%<p2" + %@1)
= %‘Plk_l((ﬁ +1) — %qozk_l (g2 +1)
= %wlkl(wf) - %

1 k+1 _ 1 k+1

== ﬁfﬂz

95 ' (¢f)  (By equations (8.54) and (8.55))

\/§(p1 (Simplitying)

Since we have shown that the formula of equation (8.56) for Fi,; follows from the same
formula for the previous Fx and Fix_1, we have shown that the formula is true for all F,,.

Isn’t this a neat proof?

Some trigonometric identities would be very difficult to prove without induction. In Chapter 3,
Example 3.15, we proved that, for any rational value of 6, between 0 and 90°, cos 6 is irrational
except for 6 = 60°. To do this, we used a result that we had not yet proven, but which we will soon
prove using the following lemma.

Lemma 8.23 Show that cos(n+ 1)0 = 2 cosné cos8 — cos(n — 1)0 for any positive integer n.

Proof. Consider the standard trigonometric relationships

cos(A+ B) =cos Acos B — sin Asin B and

cos(A — B) = cos Acos B + sin Asin B.
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Upon adding these equations, we get
cos(A+ B) +cos(A— B) =2cos Acos B
from which it follows that
cos(A+ B) =2cos Acos B — cos(A — B).
Now, if we let A=n6 and B = 6 we have
cos(n+1)0 =2cosné cosd — cos(n— 1) (8.57)

which is what we were trying to prove. B

What follows is a trigonometric proof of the interesting result that any trigonometric function
of the form 2 cosn6 can be represented as a polynomial in 2 cos6 with lead coefficient 1. (This is
what we used to show that cos#é is irrational for any rational 6 strictly between 0 and 90° except
for 6 = 60°.) This proof is easiest with strong induction.

Example 8.24 Show that, for any rational value of 6, there exists a polynomial with integer
coefficients and lead coeffcient 1 such that

2cosnf =1x"+a,_1x" 1+ ... +ao (8.58)

where x =2 cos 8. In words: we can represent 2cosné as a polynomial of degree n in x with lead
coefficient 1 where x = 2c0s 0.

Solution. When we substitute n=1 in (8.58) we get 2 cos = x, which we know is true. This also
says that 2 cos @ is a polynomial in x of degree 1 with lead coefficient 1.

Now we use strong induction to complete the proof. Suppose that equation (8.58) is true for
all n < k. We will show that it is true for n=k + 1. So, let us consider 2 cos(k + 1)6. By our lemma,
this is the same as 2 - [2 cos k8 cos § — cos(k — 1)0] or just

=2-[2cosf coskd — cos(k — 1)0] (8.59)
=2cos6 -2coskd — 2 cos(k — 1)6. (8.60)

Now by the strong induction assumption, 2coskd is a polynomial of degree k in x with lead
coefficient 1. When this is multiplied by 2 cos8, which is x, we get a polynomial of degree k + 1
in x with lead coefficient 1. So the first term in equation (8.60) is a polynomial of degree k+ 1
in x with lead coefficient 1. Also, by the strong induction, the second term in equation (8.60),
2 cos(k — 1)0, can be written as a polynomial of degree k — 1 in x with lead coefficient 1. So, putting
these two polynomials together, we get that equation (8.60) is a polynomial of degree k + 1 with
lead coefficient 1, and we are done.
As a corollary of this example we have:

Corollary 8.25 Suppose that 0 is rational. Then x = 2 cos 0 satisfies an equation with lead coefficient
1 with integer coefficients.
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Proof. Suppose 6 = a/b. Choose n to be 360b. Then n6 = 360a and 2 cosn6 = 2, since the cosine of
any multiple of 360 is 1. Equation (8.58) becomes:

2=1x"+a,_1x" '+ ... ... +do

or,

Ix"+a,x™ 1+ ... L. +ap—2=0 (8.61)
which is satisifed by x = 2 cos 6. In short, we have shown that x = 2 cos 6 satisfies equation (8.61),
which is an equation with integral coefficients and lead coefficient 1. W

As we mentioned, this corollary was used in Chapter 3 Example 3.15 to prove that the only
rational value of 6 in degrees, where 0 < 6 < 90, that makes cos# rational is 6 = 60 degrees. You
might like to go back to that example now and review it in light of this theorem.

In Chapter 5 Section 11 we stated that Pick’s Theorem (Theorem 5.34) was true for polygons,
but we only gave a proof that was valid for triangles. We can now finish what we started and give
a proof that Pick’s Theorem is true for all convex polygons.

Example 8.26 Finish the proof of the following version of Pick’s Theorem started in Chapter 5: For
any convex polygon with n sides, where n > 3, with vertices at lattice points, the area is given by

Area=1+ 5 1, where I is the number of interior points, and B is the number of boundary points of
the polygon.

Solution. We have already proven the theorem for triangles in Chapter 5. Thus, we have proven
the theorem for the case when n = 3. Now assume that Pick’s Theorem is true for a convex polygon
with k sides. We would like to show that it is true for a convex polygon, Px,1, with k+ 1 sides. We
do this by strong induction. That is, we assume that Pick’s Theorem is valid for all convex polygons
with less than k + 1 sides and show that it is true for all convex polygon with k + 1 sides.

In the picture below we show part of a polygon with k+ 1 sides. We draw a diagonal from a
vertex A to vertex C which divides the polygon into a triangle and another polygon, Py with k
sides. (See Figure 8.3 below)

B

Figure 8.3 Py, is divided into a polygon Py with k sides, and a triangle T.
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We want to show Pick’s Theorem for a convex polygon with k+ 1 sides. The proof is not
much different than the proof we gave for triangles. First, observe that all boundary point on the
diagonal AC except for A and C are interior points of the polygon P. Thus, if the number of lattice
points on diagonal AC is By, then the number, ., of interior points on a polygon with k+1
sides is:

Ik+1 = IT+Ik+Bd -2 (862)

where I7 is the number of interior points of the triangle and I is the number of interior points of
the polygon with k sides.

Now we wish to represent the number of boundary points on a polygon with k + 1 sides in
terms of the polygons into which it is broken. When we add the boundary points of the triangle
and the polygon with k sides, we are including B, twice. And they are not boundary points of the
polygon with k + 1 sides. Thus, we have to subtract twice B; from our count, and then add back
the vertices A and C, which means we have to add back 2. Thus

Bk+1 = BT + Bk — 2Bd + 2. (863)
Here By and By are the number of boundary points of the triangle and k sided polygon, respectively.

If we denote the area of the triangle by Ar and the areas of the polygons Px and Py by Ax and
Axs1, respectively, we have, since we are assuming Pick’s theorum holds for Ar and A,

Ags1 = At + Ag
B B
= (1T+7T—1>+<Ik+7k—1>
Br+B
= I+ I+ — 0, (Rearranging terms)
Br+ Bk

=Ir+Ix+B;—2+ — B; (We just added and subtracted B,. This just changes the

way the expression looks, not its value.)

Br+B
=Tk + L By (Substituting equation (8.62) in the previous line.)
Br+ By —2B
= I + % (Rewriting the previous line.)
By —2
= Iy + MT (By equation (8.63))
B
oy kz“ 1.

We are done. We have shown Pick’s Theorem is true for convex polygons with k + 1 sides given
that it is true for convex polygons with k sides. So, by the principle of strong math induction, Pick’s
Theorem is true for convex polygons. Pick’s Theorem happens to be true for polygons that are not
convex as well.
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Student Learning Opportunities

1 Show that three consecutive Fibonacci numbers cannot be the sides of a triangle.

2 Show that, for any natural number n, nl+(n+1)!=nl(n+2). Then show that n!+
(n+ D!+ (n+2)! = nl(n+2)2. Is it true that ! + (n+ 1)+ (n+2)! + (n+ 3)! = nl(n+ 2)3? Can
you prove it?

3 Give a proof by induction that, for any positive integer n, (ab)” = a"b" where g and b real
numbers.

4 (C) Your students have completed the proof by induction that, for any positive integer

n, (ab)" = a"b"” where a and b real numbers. They are now curious to know if they can use a
n

similar proof to show that (%) " % and b # 0. How do you respond? Can it be done? If so,
how? If not, why not?

5 Prove, using induction, that if z1, z, z3, ... z, are complex numbers, then Zy + 2+ ... Z, =
+Z+....Zpnand Zy - - ... Zh=271-Z2 - ... Zp Where Z represents the conjugate of z.

6 Give induction proofs for each of the following where n is a natural number.
»_ nn+1)2n+1)

@ 12+22+3%+....n e
2
(b) 13+23+33+....+n3=<n(n2+1)>
() n<3"whenn=>1
@ DD +@@+ @@+ ..+ (n+1) = P2

e 1aH+2@2H+ ...+ n(M) =(n+ 1) =1
1 1 1 1 n

Ooteeteat Tenohane ) - 20+
1 1 113
(9) m+m+ .+%> ﬁwhenn=2, 3,4, ...

(h) n2 <2"whenn=>>5

7 (C) One of your inquisitive students asks if it is legal to use mathematical induction when
trying to prove a statement that you are claiming is true for all negative integers. Is it? If not,
why not?

8 Suppose that nis a positive integer.
(a) Show, by induction that x” — y" is divisible by x — y if y# x. [Hint: xkT — yk1 = xk(x —
y)+y(x* =y
(b) Using part (a), show using a direct proof that 3" — 1 is divisible by 2 and that 23" — 1 is
divisible by 7.
(c) Give a direct proof that 6(7)" — 2(3)" is divisible by 4. [Hint: Rewrite it as 2(7)" — 2(3)" +
4(7").]
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9

10

1

12

13

14

15

16

17

18

Show that, if the product of 2 or more complex numbers is zero, then one of them must
be 0.

In calculus it is shown that, if f(x) and g(x) are two functions, then lim(f(x)+ g(x)) =
X—>a

lim f(x)+ lim g(x). That is, the limit of the sum is the sum of the limits for two functions.

X—a X—a

Show that the limit of the sum of n functions is the sum of the limits of the n functions where
nis a positive integer > 2.

In calculus, one studies the product rule for finding the derivative of a product. That rule is,
(f(x)g(x)) = f'(x)g(x) + f(x)g'(x). Show that there is a product rule for 3 functions, and that
it is (f(x)g(x)h(x))’ = f'(x)g(x)h(x) + f(x)g’(x)h(x) + f(x)g(x)h’'(x). Generalize the product
rule to n functions and prove it by induction.

Prove De Moivre’s theorem from Chapter 7: If z=rcis 6, then for any positive integer, z" =
rcis né.

1 1
Use induction to show that, if { x + 1) = 1, then | x"+ W) is an integer for any natural

1 1 1
number n. [Hint: Multiply (xk + F) <x+ ;) and then subtract (x’<1 + xk_—1> . What do

you get? Use strong induction.]

Show that the sum of the interior angles of a convex polygon is 180(n — 2) where n is the
number of sides.

Prove the following facts about the Fibonacci sequence. Probably the easiest approach would
be to use a direct proof that uses the property that each Fibonacci number is the sum of the
previous two. Of course, if you prefer, try proving it by induction.

@) Fpo+Fp+Fo2=4F,wheren>3
(b) Friz+ Fn=2Fu0
() Fra+ Frn=3Fn0

1T 1 Fn+1 Fn
Let Q= . Show that Q" = h =2,3,4,...
et Q <1 0) ow that Q (Fn I__n_1)wenn , 3,4,

Show that the value of each term of the following recursive sequence is < 2: a; = v/2,
a=v2++/2, a3 =1/2++v2++/2, and so on, where an.1 =2 +a, forn> 1.

(©) A student comes to you saying that he has found the following proof that all horses are
the same color. He is completely baffled. Help him find the error in the proof: “Let P be the
statement that every horse in a set of n horses has the same color. If n =1, then we have only
one horse, so of course, it has the same color as itself. Suppose now that every horse in any set
of k horses has the same color. We need to show that every horse in a set of k+ 1 horses has
the same color. So take such a set, S, of k+ 1 horses and number the horses hy. hy ... hg,1.
Consider the subset, S; of S consisting of the horses hy, h; ... hi. Since this has k elements,
all the horses in this set have the same color, say brown by our supposition in italics above.
We need only show that the horse hy,q has this same color as the other horses. Now consider
the subset S, of S consisting of the horses hy, hs, ..., hi. This set also has only k horses. So
by assumption, these also must have the same color. But the horse numbered h, was in both
subsets S and S;. (See Figure 8.4 below.)
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S,
h1h2h3 hk h1h2h3 hk hk+1
~ /
S
Figure 8.4

By virtue of it being in set $;, it is brown. Since all horses in the second set S, have the same
color, by assumption, and h; is in that set, all horses in the second set are brown also. In
particular, since hi.1 is in that second set, it must also be brown.”

We have shown that all sets consisting of k + 1 horses have the same color, assuming that
all sets with k horses have the same color. Therefore, all sets of horses, regardless of the size
of the set, have the same color.

19 (C) One of your students tells you that someone from the math team has just proven to him
that all positive integers are small. He relays the following “proof” by induction: Step 1: The
number 1 is small. Step 2: If k is small, then so is k+ 1. Step 3: Since the result is true for
n=1, and it is true for k + 1 when it is true for k, it is true for all n > 1. How do you respond?
What is wrong with the proof?

20 What postages can be made using only 3 cents stamps and 5 cents stamps? Prove it.

8.4 Fractals Revisited and Fractal Dimension

LAUNCH

1 Fill in the missing numbers in Pascal’s Triangle (Figure 8.5).
2 Color in the odd and even numbers using two different colors.
3 Do you notice a pattern? What does it look like?
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If you have completed the launch problem, you are probably totally mystified by the relationship
that appears to exist between Pascal’s Triangle and the Sierpinski triangle. We agree that this is
quite amazing and mysterious. As you read through the remainder of this section, you will find
still more mind boggling relationships involving fractals. Enjoy!

Earlier in this chapter, we saw how we can use a recursive routine to generate a fractal,
specifically the Sierpinski triangle. We found that the perimeter of the Sierpinski triangle was
infinite, yet its area was zero. We now show another example of a fractal generated by using a
recursive relation.

Suppose we begin with a line segment as shown below, and for convenience, assume that
its length is 1. Our recursive routine has the following instructions: We divide each line in
the figure into 3 equal parts, remove the middle section, and replace it by two line seg-
ments equal to 1/3, the length of the segment removed. The result is shown in Figure 8.6(b)
below.

We now perform the same recursive procedure on each line segment in the resulting figure.
We remove the middle third of each line segment remaining in Figure 8.6(b) and replace it by two
segments of the same length. After this second iteration, we have the figure shown in Figure 8.6(c).

Now we repeat this once again. From each part, we remove the middle third and replace each
middle third by two segments of the same length to get Figure 8.6(d).

(@)

Line segment of length 1

/\

Middle segment replaced by two
segments of the same length

(© m

The process is repeated

@ m

The process is repeated again

(b)

Figure 8.6

We continue repeating the process and after infinitely many iterations we generate a figure
called the Koch curve, which is also a fractal. Of course, we can’t draw it, since the Koch curve is
the result of performing this recursion infinitely many times. But the figure in (d) does give us a
good sense of what it might look like.

There is something very interesting about the length of the Koch curve. When we formed it,
we began with one segment of length 1. In Figure (b) we had 4 segments of length 1/3 to give us a
total length of 4/3. In the Figure (c) we had 16 segments of length 1/9 to give us a length of 16/9
and in Figure (d) we had 64 segments of length 1/27 to give us a length of 64/27. Each successive
figure has a length equal to 4/3 the length of the previous segment. Thus, the length of the nth
figure is (4/3)""'. As n gets large, this goes to co. Thus, the perimeter of the Koch curve, the result
of iterating over and over is oco. Yet, the Koch curve can be enclosed in a rectangle with finite area
and so it behaves just like the Sierpinski triangle.
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One of the applications of fractals is the study of chaotic behavior. You may be wondering how
it is even possible to study something like chaos. The following game will illustrate this in a rather
remarkable way.

8.4.1 The Chaos Game

The chaos game is played in the following way. Begin with an equilateral triangle and label its
vertices A, B, and C. Now take a spinner which has been divided into 3 equal sectors with letters
A, B, and C on them. Pick an arbitrary point P in the triangle (although any point in the plane
will do). Now spin the spinner, and if it lands on A4, place a dot halfway between your starting point
P and vertex A. If B comes up, place a dot halfway between P and vertex B. If C comes up, then
place a dot 1/2 way between P and the third vertex. Call the new dot P; and iterate the procedure,
namely, spin again. If A comes up, place a dot halfway between P; and vertex A. If B comes up,
place a dot halfway between P; and vertex B. If a C comes up, place a dot halfway between P; and
vertex C. Call this new dot P,. Iterate this procedure on P,. That is, spin the spinner. If A comes
up, place a dot halfway between point P, and vertex A4, if B comes up place a dot halfway between
P, and vertex B. If a C comes up, then place a dot 1/2 way between P, and vertex C. Call the new
point we get, P3. Repeat this procedure on P; to get P4, and so on. The dots generated depend on
the spin of the spinner. The outcome of the spin is random. We would expect to find dots all over
the triangle scattered randomly. What happens is a major surprise. As you place more and more
dots, the picture you get looks like the following (Figure 8.7):

Figure 8.7

Yes! It is the Sierpinski triangle! Are you shocked? Most people are! Here we see what appears
to be a chaotic procedure, leading to a figure that seems to have regularity!

There are many websites on the Internet where you can play this game and have the computer
draw the dots one at a time. Here is one: http://serendip.brynmawr.edu/complexity/sierpinski
.html

It is interesting to note that you need not start with a triangle to generate a fractal with this
random process. You can start with any polygon and play the same game. Furthermore, you
don’t have to plot a point half way between the previous point and the vertex. You can plot a
point 1/3 of the way, or 1/6 of the way. The figures you get are always interesting. Here is the
picture generated when you start with a pentagon and play the game, each time placing the next
dot 1/3 of the way to the vertex that comes up when a spinner with 5 equal sectors is spun
(Figure 8.8).
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If we began with the same pentagon and took each successive point 3/8 of the way from
the previous point to the next vertex chosen at random, we would get the following diagram
(Figure 8.9):
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Figure 8.9

Does this remind you of anything? Doesn’t it look like a snowflake?

8.4.2 Fractal Dimension

In geometry you have studied the concept of dimension. You probably recall that a line is one
dimensional, a square is two dimensional, and a cube is three dimensional. Is it possible for a
figure to have fractional dimension? What would something like that mean? We will soon find out
as we investigate more properties of fractals.

When forming fractals like the Koch curve or the Sierpinski triangle using iteration, we always
do the iterative process by breaking the figure into smaller figures which are similar to the whole.
This process accounts for the self similarity that exists in many fractals. Let us look at this process
more closely.

Suppose we have a square, and we break it into 4 congruent squares as shown below
(Figure 8.10):
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Figure 8.10

Then the side of each of the congruent squares is 1/2 the side of the original square. Put another
way, the original square is the side of the smaller square magnified by 2. This number 2 is called
the magnification factor. If we broke the original square into 9 congruent squares as in the figure
below (Figure 8.11),

Figure 8.11

the magnification factor is 3.

When the magnification factor is 2, we have broken the original square into 4 squares. When
the magnification factor is 3, we have broken the square into 9 squares. If the magnification
factor is m, the number of parts into which we have broken the original square into is m?. (Thus,
when m =2 we get 22 smaller copies of the original. When m = 3 we get 32 smaller copies of the
original square.) The exponent 2 in m? is significant. It reflects the fact that the square is two
dimensional.

Now let’s extend this to a 3 dimensional object. Suppose that we have a cube and that we
divide it into smaller cubes by cutting it by planes. If the planes cut the sides in half, that is, if the
magnification factor is 2, we get 8 cubes as shown in the figure below (Figure 8.12).
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Figure 8.12

If we divide each side into thirds as shown in Figure 8.13 below,

/
M

Figure 8.13

that is, if the magnification factor is 3, we get 27 smaller cubes. In general, if the magnification
factor is m, we get m? smaller cubes.

In general, if the magnification factor is m and the object is D-dimensional, you will get N = mP
copies of the original. Thus the dimension, D, of an object satisfies

mP =N

where m is the magnification factor, and N is the number of smaller copies of the original that we
get. If we solve for D, we get

log N
_ 08N (8.64)
logm
It is this relationship that leads to the a definition of fractal dimension. The fractal dimension of
log N
an object formed by iteration using similar objects is given by D = l?)im' where N is the number

of copies of the original that the iteration performs, and m is the magnification factor. Let us now
see how we can use this relation to find the dimension of the Koch curve defined earlier. We realize
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that, at each iteration, we break the curve into 4 times as many parts we started with, so N = 4. But
the original object was three times the size of the iterates since, when forming the Koch curve, we
broke the curve up into parts of size 1/3 of the previous size. Thus, the magnification factor is 3.
Using the formula of equation (8.64) above, we see that the dimension of the Koch curve is

log4

~ 1.2619.
log 3

And so, we have found a figure that has a fractional dimension. So what does it mean?
Actually, fractal dimension was developed to determine the complexity of the fractal. The higher
the number, the more complex the object. Some people have suggested that you can envision
fractional dimension by thinking of a piece of crumpled paper.

There are many different definitions of dimension (the Renyi definition, the box counting
definition, the correlation definition, etc.) in use today to describe the complexity of a fractal;
however, the above definition is the one most related to the secondary school curriculum.

Student Learning Opportunities

1 (C) In response to your students’ desire to see real-world applications of the mathematics
they learn, you ask them to find examples of irregular shapes in the natural world that they
think can be modeled by fractals. They are at a total loss of what to look for. What are some
suggestions you can give them for real-life objects they can bring in? What are the properties
of these objects that would classify them as resembling fractals?

2 Determine the dimension of the Sierpinski triangle.

3 Begin with the line segment below, and replace the middle third by an open square as shown
below in Figure 8.14.

Figure 8.14

Now repeat the process on each segment in the resulting figure.

(a) What figure do you get in the next iteration?

(b) If this process is continued, what will the dimension of the resulting fractal be?
(c) Guess at what you think the final fractal would look like.

4 Begin with a square. Replace each side of the square with the following figure (Figure 8.15):

Figure 8.15
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(a) What will the resulting figure look like after one iteration?
(b) If we continue iterating the figures in this way, what is the dimension of the resulting
fractal?

5 Below are some fractals. Find their dimensions (Figures 8.16, 8.17, 8.18).

()

(b)

Figure 8.16

[Hint: This was generated from an initial figure by replacing each piece by 3 congruent

pieces, each half the size.]

Figure 8.17




©
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[Hint: This figure is known as the Sierpinski Carpet. This is formed by starting with a
square. The square is cut into 9 congruent subsquares in a 3-by-3 grid, and the central
subsquare is removed. The same procedure is then applied recursively to the remaining
8 subsquares.]

Figure 8.18

[Hint: Begin with a square and divide it into nine congruent subsquares. Remove the
middle square and the one above it. Now repeat the process on each subsquare.]






CHAPTER 9

FUNCTIONS AND MODELING

9.1 Introduction

The study of functions and modeling is now a cornerstone in the secondary school curriculum.
Students begin studying the concept of function in elementary school and continue throughout
their secondary school careers. With the advent of technology, students now can easily model
real-world situations using hand-held graphing calculators. Despite what most students think, the
notion of functions took many years to develop. Now it is the language of all science. In this
chapter we study a bit of the evolution of functions, how they are used to model practical problems,
how practical problems are solved by studying data and fitting them to curves known as regression
curves or best fit curves, and conclude with a careful discussion of inverse functions that will
prepare us for our higher level study of transformations in the next chapter.

9.2 Functions

LAUNCH

Examine the five different scenarios below:

1 If you enter a person’s name (x), in a data base, there is a footprint, (y), on file from when
they were born.

2 When you use a vending machine, you push a certain letter, (x), and your candy of choice,
(y), comes out.

3 You are planning a trip and on the computer you enter an amount of money, (x), you can
spend on airfare. The computer gives you the many different places, (y), you could fly to,
using that amount of money.

4 At the end of the semester, students’ math grades are posted in a table, which lists each
student’s ID number, (x), in the left column and the student’s grade, (y), in the right column.

5 You give your friend any number, (x), he squares it and then adds 2, and tells you the
result, (y).

Describe the similarities and differences of the five scenarios above.
In which do you think that y is a function of x? Why?



398 Functions and Modeling

After doing the launch problem, you are probably getting some ideas about functions. You might
have even noticed that the scenario described in the third example, was quite different from the
other four, and as you will soon discover, that in fact, y, was not a function of x. We hope you will
appreciate reading this section and finding out how functions and non-functions are part of our
daily lives.

9.2.1 The Historical Notion of Function

When you send a package through the post office, the postage you pay depends on the weight.
When you open a faucet, the amount of water that flows out per second depends on how much
you open the valve. When you drop a ball, the distance it falls before it hits the ground depends
on the amount of time that elapses since it has been dropped. Note that in each of these cases, we
have two quantities where one depends on the other.

Historically, when we had two variables, y and x, and one of them, say y, depended on x, then
we would say that y was a function of x. We called x the independent variable and y the dependent
variable.

Thus, using this historical notion of function, the postage that one pays on a package is a
function of the weight of the package, since the postage depends on the weight. The weight is the
independent variable, and the postage is the dependent variable. The amount of water that flows
out of a faucet, say every second, is a function of how much the valve is opened. The independent
variable is the amount the valve was opened. The dependent variable is the amount of water
flowing out per second.

This historical notion is satisfactory for most applications, and is how most students under-
stand the notion of function. However, in today’s world, the notion of function has been
refined.

9.2.2 Functions Today

Returning to the postage scenario, suppose when you went to the post office and asked, “How
much is it to mail this package?” the postal clerk answered, “That will be $3 and $4.” You would
look puzzled wouldn’t you? The postage should be either $3 or $4, not both. It is because of the
desire to avoid situations like this that the definition of function has changed over the years. Today,
for y to be a function of x, with each x under consideration, one must associate one and only one
y. Thus, if you had the equation y = x?, y is a function of x, since with each x we associate one
and only one y, namely x>. On the other hand, if we have the equation y = £,/x, then y is not
a function of x since, if x =9, there will be two values of y, namely y = 3 and y = —3. Having two
y values for the same x value is analogous to paying two different postages on the same package.
In applications, this just can’t exist. Thus, today, in order for y to be a function of x, with each x
under consideration, we must associate one and only one y.

The word “associate” does not imply any kind of dependence or cause and effect relationship
between y and x, as was the case in earlier years. We still call x the independent variable and y the
dependent variable when y is a function of x. The key point in the modern definition of function
is that, when we say that y is a function of x, the y associated with each x is unique. Let us illustrate
by giving some examples of different types of functions.
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Example 9.1 We are going to roll a die 3 times and record the outcome. We will let x be the roll
number, and y be the outcome of the roll. Construct such a function.

Solution. Suppose that, on the first three rolls, we got the numbers, 3, 5, and 2, respectively.
Then, with x = 1, we would associate y = 3. With x = 2, we would associate y = 5, and with x = 3 we
would associate y = 2. With each x, we are associating one y, and so y is a function ofx. However,
in this case, there is no dependence of y on x. The result, y, that the die falls on is random. In no
way does it depend on the roll number, x, and it is certainly not caused by the roll number x. We
still call x the independent variable and y the dependent variable.

If someone else tossed the die, one might get a different function, since the y values most likely
would be different. However, since we are associating with each x one and only one y, the new y
would still be a function of x, although a different function.

Example 9.2 It is known that the rate at which certain birds chirp is directly related to the temper-
ature outside. Suppose that the number of chirps per minute, C is given in terms of the temperature, T,
and that the function relating the two is

C=5T-32 9.1)

where T is measured in Fahrenheit and T is restricted to between 30 and 150 degrees. Suppose also
that the values of C are restricted to 118 to 718 chirps per minute. A student says, “C is clearly a
function of T since the number of chirps depends on the temperature.” However, the student continues,
“the temperature is not a function of C, since increasing the number of chirps does not cause the
temperature to increase.” Is this student correct?

Solution. While what the student said might have been true using the historical definition of
function, it is not true using the modern definition of function. For each T, there is associated
one and only one value of C computed by equation (9.1). So C is a function of T. Furthermore,
once a value of C is chosen (between 118 and 718), only one value of T is associated with it from
equation (9.1). So T is a function of C. The temperature is not caused by the number of chirps per
minute, but by today’s definition, T is still a function of C.

In this example, which variable is the independent one and which is the dependent one?
It depends on which we are considering to be a function of the other. If we are considering C
as a function of T and studying that function, then T is called the independent variable. If we
are considering T to be a function of C, and studying that relationship, then C is called the
independent variable. Thus, the words dependent and independent depend on which function
you are working with. This may sound confusing, but it is routinely done with functions and their
inverses. (See Section 9.7.)

When relating the weight of an object to its postage, we can consider the postage as a function
of weight. Since the post office restricts weight, we realize that the weight has limits. They will
not mail a letter weighing 100 pounds. The restricted values placed on the independent variable
constitute what is called the domain of the function. In the example where a ball is dropped and
the distance the object fell was considered a function of the time, ¢, elapsed since it was dropped,
the independent variable t must be >0. This would be the domain of our function.
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9.2.3 Functions — The More General Notion

Most functions that one studies in secondary school are those such as y = 2x + 1, where x and y
are numbers. That is, numbers are associated with numbers. This gives secondary school students
the impression that functions only deal with numbers. This is far too limited an interpretation of
functions. In reality, functions are used on a day-to-day basis in many contexts and the functions
used do not necessarily associate numbers with numbers. The functions may associate objects with
objects. This leads to a more general definition of function, which we refer to as the modern,
but not completely formal (from a mathematician’s point of view), definition. Increasingly, this
definition is seen more and more in secondary school texts today.

If A and B are any sets, then a function, f, from A to B, is a rule which associates with each element
x of the set A one and only one element, y, of the set B. The element y associated with x is called the
image of x under [ and is denoted by f(x). A is called the domain of the function, and the set of images
of the domain values is called the range.

Notice the wording: We have a function from A to B, and the y “associated” with x is denoted
by f(x). It does not say that there is a dependence of y on x (though we reiterate, in many
applications there is). Here are some examples of the modern definition of function.

Example 9.3 When we assign a set of workers to tasks, the assignment is a function from the set, A,
of workers to the set B of jobs. The domain is the set of workers being assigned. The range is the set of
jobs to which they are assigned. If we call this function [, and if John is assigned the job of manning
the telescope, then f(John) = manning the telescope.

Example 9.4 Suppose that, with each point on the earth’s surface, there is associated the single
ordered pair of numbers (latitude, longitude), of that point. This is a function from the set A of
physical points on the earth’s surface, to the set B of latitude-longitude pairs. The physical points
on the earth’s surface constitute the domain, and the image of any point on the earth’s surface is its
latitude—longitude pair. The set of all latitude-longitude pairs is the range. If we denote this function
by f, then f( New York City) = (40.70519 — 74.01136) since this pair gives New York City’s latitude
and longitude.

Example 9.5 Computers can only deal with data that have been converted to zeros and ones. When
we use a word processor and type the letter “A,” the computer translates this into the following string of
0% and 1°s called the ASCII value for the letter “A”: 01000001. (ASCII stands for American Standard
Code for Information Interchange.) If you type in the symbol “<,” the computer converts this to
00111100, the ASCII value for “<.” The ASCII value for each symbol we type consists of 8 digits,
which are 0 or 1. Consider the rule from the set of symbols to the set of 8 digit numbers consisting of
0’s and 1’s. With each symbol, we associate its ASCII value. Is the rule which associates with each
symbol, its ASCII value, a function of the symbol?

Solution. Since with each symbol we associate one and only one ASCII value, this is a function
from the set of symbols to the set of ASCII values. If we denote this function by the letter f, then
f(A) = 01000001 and f(<) =00111100. The domain of this function is the set of symbols that have
ASCII values, and the range is the set of all the ASCII values we obtain.
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Example 9.6 In Chapter 10 we will be discussing the notions of rotation, reflections, and transla-
tions. These are also functions in which figures are given and then transformed in some way to give
us new figures. Thus, with each figure, say a triangle, we might associate a dilated triangle, or similar
triangle, or rotated triangle, or reflected triangle. In these functions we can take the domain to be the
set of all “figures” where a “figure” means any set of points. Each “figure” is then associated with one
and only one transformed “figure.” The set of transformed figures is the range.

1
Example 9.7 Consider the equation y = w1 Is this y a function of x? If so, discuss the domain

and range.

Solution. For each real number x other than 1, we can compute the value of y and we get only
one y value. Thus y is a function of x. The values that x can take on are restricted. x cannot be 1.
Thus, the domain of this function is the set of x # 1. If we graph the function (see Figure 9.1 below),
we will see that the range, which is the set of y values taken on by the function, is all y# 0.

o)}

B

N
—

Figure 9.1

1 1
Since y is a function of x, we can write y = f(x) = Y1 Since, when x=3, y= > we would

write f(3) = %

9.2.4 Ways of Representing Functions

The functions one studies in secondary school can be represented in many different ways. The
purpose of this section is to highlight some of these representations that you may not be familiar
with and that clearly illustrate the concept of function.

" n

Example 9.8 Consider the function whose domain is the set of letters a, b, ¢, and d. With “a” we
associate the number 1, with “b”, 1, “c”, 2, and with “d”, 3. This is our complete function. Describe
4 ways to denote this function.
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Solution. If we call this function f, then we can describe f as follows:

fla)=1
fb) =1
flo) =2
f(d) = 3.

Here we have completely described the function by listing which element of the range is associated
with each element in the domain. This is known as the listing method. Here, the domain consists
of four elements, a, b, ¢, and d and the range is the set of numbers, 1, 2, and 3. Obviously, if the
domain is infinite, this listing method is not feasible.

Another way of describing functions is with ordered pairs where the first element is the
element of the domain, and the second element is the associated element of the range. Thus,
we can completely describe the function by listing the ordered pairs, {(a, 1), (b, 1), (c, 2), (d, 3)}.
Again, if the domain is finite, and not too large, this method of representing a function is
feasible.

A third way to represent a function is to give a table of values

Domain element Range element

a
b
c
d

w N =R =

A fourth way used to represent a function is with a picture akin to the following (Figure 9.2):

\_ 7
|
|

Figure 9.2

Each arrow goes from the domain element to its image. So, we can clearly see the association
between domain and range values.

Example 9.9 Discuss 3 other ways of representing functions.

Solution. A fifth way to describe a function, and probably the most useful way, is by the action
it performs or by the rule used to compute the dependent variable. Thus, if we have a rule that
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subtracts 2 from any number we start with, we might like to explicitly state the rule: f(x) =x — 2,
which tells us that, with each x, we associate the number x — 2.

A sixth way of thinking of a function (and this is a very common way), is to envision it as a
machine where the x is the input, and the y is the output. This “machine” somehow transforms x
into y. This is especially useful in certain geometric and computer science applications.

For example, when we type a document using some kind of word processor, say Microsoft
Word, and want to convert it, say to PDF format so that it can be read by anyone on any computer,
the document needs to be converted. The conversion process is a mechanical process. The machine
takes your original document as the input and outputs a document which is a PDF document. Here
is a picture (Figure 9.3).

Machine
MS word PDF
document document
—_— -

Figure 9.3

We can see this is a function of the Word document, since for each Word document that is
input, one and only one PDF document emerges. Again, in geometric applications, we might like
to describe the mechanical process of stretching an object. Thus, when we input a certain figure,
our machine, (stretch function) stretches it and gives us back the stretched figure (our output).
Figure 9.4 is a picture illustrating it.

Machine

/

_—

Input triangle "

Output stretched
triangle

Figure 9.4

Finally, a seventh way of representing a function which is pervasive in the secondary school
curriculum, is to graph the function. Of course, this representation only makes sense when the x
and y values are numbers. From the graph, many different conclusions can be made. For example,
we may notice that, as the x values increase, so do the y values (the graph is increasing), or each
successive increase in x by 1 causes y to increase by greater and greater amounts. (The curve
is concave up.) Since all prospective secondary school teachers have had a course in calculus
where graphs and their properties were discussed in great detail, we won't say more about it now.
However, for the most part, we will use this graphing approach. But, before we continue with other
issues related to functions, let us start applying the ideas developed thus far.
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Student Learning Opportunities

1 Which of the following are functions of x?

(a) The area of a circle with radius x.

(b) The value of y if y* = 2x3.

(c) The temperature in Chicago on January 1st, 2007, x hours after midnight where x is
between 0 and 12. [Hint: Which part of Chicago are we talking about? Is the temperature
the same everywhere in Chicago?]

(d) The price of an x ounce container of cottage cheese in Los Angeles on February 1st 2006.

(e) The tuition a student ends up paying if he or she goes to college x in a specific year.

(f) The birth date of a person x.

(9) The profit you make from selling x wazoos, where each wazoo sells for 10 cents and costs
5 cents to make, including all costs of production.

Consider a post office in a small town, and suppose, for simplicity, that it only accepts letters
up to 8 ounces in weight and charges the following rates.

Weight, W (ounces) Postage, P (cents)
O<W<2 39
2<W<4 43
4<W<6 47
6<W<38 55

Since with each weight we associate one postage, the postage P is a function of weight. If
we use the letter f to denote this function, then P = f(W).

(a) Compute f(1.5), f(2), and f(5).

(b) Compute f(9).

(c) What is the domain?

(d) What is the range?

In the introduction to Chapter 3 we gave the following example: A manufacturer has just
received a large order for metal boxes that must hold 50 cubic inches. He plans to make
these boxes out of rectangular pieces of metal 8 inches by 10 inches, by cutting out squares
from the corners and folding up the sides. There we found that, if x was the side of the square
cut out, then the volume of the resulting box was given by V(x) = x(8 — 2x)(10 — 2x), where
x was length of the side of the square cut out. For each x we get a box with a specific volume.
Thus, the volume is a function of the side x of the square cut out.

(a) Compute V(2). Interpret your answer.

(b) What is the domain of the function?

(c) At which x does the maximum volume occur? Use your graphing calculator or calculus
to answer this.

(d) Estimate the range of the function.

4 With the numbers x =1, 2, and 3, associate the letters a, b, and c, respectively. (These letters

represent our y values which we arbitrarily assign.) Is y a function of x? Explain.
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5 What are the domain and range of the following functions of x? (Assume that all variables
take on real values.) A graphing calculator might help.

(a) y=m
1
®) y=x+4

(©) f(x)=+9— x2
(d) g(x) =log;o(4x —8)

_ WX
(e) h(x)= ()(——3)
1
) k(x) = x—2y
@ I(x)=e¢
X
(h) y=-—

6 (C) Your students are confused about whether the following two statements are true or false.
How would you respond to help them understand whether in fact they are true or false?

(a) For y to be a function of x, y must be dependent on x in the sense that x causes y to
happen.
(b) If many x’s give the same y, then y cannot be a function of x.

. . -1
7 Show that the number y = 1 is not in the range of y = 2.

8 Below, we see a table of values which represents a “split function” with independent variable,
x. If we call this function f, compute f(1), f(2), and f(5).

X y
O<x<2 7
2<x<4 4
4<x<6 -11

9 (C) You spoke with your students about what it means for y to be a function of x. Now they
are curious about what it means for x to be a function of y and they want to know if in the
equation y? = x, they can say that x is a function of y, even though y is not a function of x.
How do you respond to their questions and clarify their areas of confusion?

10 (C) A student is given the equation y = x + 1, and asks whether y is a function of x or if x is a
function of y. How can you use a graph to help your student understand the answer to this
question?

11 (C) A student is given the equation x? + y? = 9, and asks whether y a function of x or if x is a
function of y. How can you use a graph to help your student understand the answer to this
question?

12 (C) A student is given the equation y = x*, and asks whether y a function of x or if x is a
function of y. How can you use a graph to help your student understand the answer to this
question?
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13 In secondary school the word “relation” is used to describe a set of ordered pairs. In (a) and
(b) examine the following ordered pairs of numbers, where the first coordinate is the x value
and the second coordinate is the associated y value. In each case, explain why y is not a
function of x.

@ {(1,2),(,3), 0,4}

(b) {(_2/ 1)/ (3/ 2)/ (4/ 3)/ (3/ 1)}

(c) Using the 4th method of representing functions described in this section, draw the picture
that represents each of the relations from (a) and (b).

14 What must be true about a relation for y to be a function of x, assuming that the first
coordinate of the ordered pair is x and the second coordinate is y?
In the following relations, is y a function of x? Why?

(@ {(1,2), (2, 3), 3, 9}
(b) {(_21 1)/ (3/ 2)/ (41 3)/ (5/ 1)}

15 Note that, for a relation to be a function, there can only be one arrow emanating from each
element in the domain. Draw the relation from 14(a) using the picture method and show that
this is the case for this relation. Show that the relation in 13(b) doesn’t satisfy this condition.

16 If we call the function f in 14(a), what is (1) + f(3)? (It is not unusual to see functions
written as a set of ordered pairs in books. For example, f ={(1, 2), (2, 3), (3, 9)}.)

9.3 Modeling with Functions

LAUNCH

Read each of the following scenarios and decide which type of algebraic function, y = f(x) would
best fit each one. Choose from among quadratic, linear, power, or polynomial functions.

1 You board an airplane in New York heading west. Your distance, y, from the Atlantic Ocean,
in miles, increases at a constant rate.

2 You are popping popcorn in the microwave oven and are counting the number, y, of pops
per minute, which changes over the course of the 4 minutes you let it pop.

3 Itis a dark night and you are driving to the country on a dark lonely road. You see a car coming
towards you from the distance. The intensity, y, of the approaching headlights increases.

In secondary school some of the more important graphs you studied were those of linear functions,
quadratic functions, exponential functions, polynomial functions, and root functions. Did you
ever wonder about their importance? We hope that this launch question helped you realize that
these functions can serve as models for real-life situations we encounter on a daily basis. In this
section we will briefly review these functions and discuss how they are used to model other real-life
situations.
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9.3.1 Some Types of Models

We begin this section by discussing linear functions, which you probably first encountered in
middle school, and which are used to model a myriad of situations.

Linear functions are those that are of the form y = f(x) = mx + b. The graph of a linear function
is a straight line, where m is the slope and b is the y intercept.

Example 9.10 (Linear Function Applied to Springs) Suppose that we have a spring attached to some
object which is stationary, and suppose that we pull the spring out a distance x units beyond its natural
length. Now, if it is a very stiff spring, then one would have to pull it with a lot of force, while if it is
not so stiff, a lesser force is needed. Physicists have determined that the force needed to pull the spring
x units beyond its natural length is given by F = kx, where k is a constant that depends on the spring’s
strength. This is known as Hooke’s Law. Since this law is of the form y = mx + b where F takes the
place of y and k takes the place of m (and b = 0), it falls under the category of a linear function, of
which the graph is a straight line.
For a given spring, we have the following data.

x| 123|145

F|2|4]6]|8]|10

Find the function which fits the curve to the data.

Solution. We know that a linear function fits this data and the function is of the form F = kx. We
need only find k by substituting any pair of corresponding x and F values in this equation and we
see that k must equal 2. That is, F = 2x.

Quadratic functions are those that are of the form y = f(x) = ax? + bx + ¢ where a# 0. Saying
that a# 0 means that there has to be an x? term. The graphs of these functions are parabolas. If
a > 0, the graph opens up. If a < 0, the graph opens down. See Figure 9.5 below.

y

|/
N4

Parabola with a > 0

y

AN
[

Parabola with a< 0

Figure 9.5
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Example 9.11 (Quadratic Function Applied to Firefighting) It can be shown that, if a hose is held at
an angle of 0 degrees with the horizontal, and water is coming out of the hose at a constant velocity
of v, in feet per second, then the height, h, of the water above ground measured in feet, at a distance
x feet from the nozzle is given by

2
h:—16(1+mz)x—2+mx+h0
v

where m = tan 0 is the slope of the nozzle and hy is the height of the nozzle above ground. Assume that
the nozzle is held at an angle of 45° and that v = 30 feet per second and that the hose is at an initial
height of 4 feet above the ground. Draw the graph of this function and estimate the distance from the
nozzle the water is at its highest point. Also, estimate how high the water goes and how far away from
the nozzle the water hits the ground.

Solution. Here is our picture (Figure 9.6).

Figure 9.6

2
Since m=tan 45 = g, our function for the height of the water above ground at a distance x
from the hose is
| —24x* V2

900 + TX +4 9.2)

2
obtained by substituting % for m in equation (9.2). The graph of this function is given by
Figure 9.7.
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Figure 9.7
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Here the y-axis is the “h” axis. As we can see, the path that the water follows is along a parabolic
arc, something that we know from experience. The picture indicates that the water hits the ground
at approximately 30 feet from the firefighter, and the maximum height occurs at roughly 13 feet. Of
course, if you need more exact answers, you can get them from analyzing the algebraic function.

b
Since the turning point of the parabola y = ax? + bx + ¢ occurs at x = 52 the maximum height

V2

will occur exactly at x = 2(—T§900) =13.258 and will be ~ 8. 687 5 feet, obtained by substituting

13.258 into equation (9.2). To find out exactly where the water hits the ground, set # = 0 and solve
for x, using either the quadratic formula or a calculator, to get x ~ 31.308 feet.

An exponential function is a function that can be put in the form y = f(x) = ca* where a > 0.
Thus y = 2(3)* is an exponential function, and so is y = —4 - 273 since the latter can be written as
y=—4-(273)* or —4-(1/8)*. The graph of an exponential function looks like one of the graphs
below. We notice that the graph either rises very quickly or rapidly decreases to 0, which is usually
what we look for when trying to fit a curve with an exponential function (Figure 9.8). Later, we
will discuss this further.

Y Y
\
X x
Graph of y = 2" Graph of y=27"
y Y
x Pt
/
Graph of y = 2" Graph of y=-2"

Figure 9.8

Example 9.12 (Exponential Function Applied to Fossil dating) If Ny grams of a radioactive element
are present in an object now, then t years from now the number, N, of grams left in the object is
given by

N = Nyekt

where k is a constant that depends on the radioactive element. (In fact, if it takes T years for half of the
radioactive element to decay, then k = —1In 2/ T.) This formula is used to date fossils and old paintings,
and so on. (See also Chapter 6 Example 6.35 for a very interesting example of this.) It is known that,
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when something living dies, the radioactive carbon C14 in its body (something all living things have),
begins to decay. It is also known that the half life of carbon 14 is 5730 years old. (a) Suppose that an
object containing 100 grams of radioactive carbon 14 dies. What percentage of radioactive carbon will
remain after 500 years? (b) A fossil is found and, using certain well known techniques in the sciences,
it is determined that 20% of the original C14 it contained at the time of death remains. How old is the
fossil?

—In2
Solution. (a) We use the formula N = NyeX! and make use of the fact that k = % ~ —0.000121.

Since we are given that Np, the initial amount of C14 is 100, we have N = 100e—%0121  After
500 years, the number of grams of C14 is

N = 100e~0-00121590) ~, 54 607 grams.

(b) We measure everything from the time of death of the fossil, since that is when the carbon
begins to decay. We are given that, currently, the amount of C14 left is 20% of the original amount,
or 0.20 Np. Substituting this into the formula we get

0.20Np = Noe 0121,

Dividing this equation by Ny we get that 0.20 = ¢~0%01217 and solving for t we get that t ~ 13,
300 years old, which tells us the age of the fossil.

A polynomial function is a function of the form f(x)=ap +a1X +dpx% + ... +a,x", where
n is a whole number. The highest power that occurs is called the degree of the polynomial.
Thus f(x) = x> — 4x% + 5 has degree 3 since the highest power of x that occurs is 3. A quadratic
function is a special case of a polynomial function and has degree 2. In general, the graphs
of polynomials generally speaking have “wiggles” in them. (But having wiggles doesn’t make
a graph a polynomial. For example f(x)= x+sinx or g(x) = cos2x have wiggles in them and
they are not polynomials.) Below, we see the graphs of several different polynomials (Figures 9.9,
9.10, 9.11).

-20,20 Y
75+

50 +

Figure 9.9 The graph of f(x) = x* — 6x.
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Y
501
X
-5 125 0]0 1.25 25 3.75

-100 1

-150 1

Figure 9.10 The graph of f(—x) = —(x +2)>(x + 1)(x — 3)%.

-1251

Figure 9.11 The graph of f(x) = x°.

Finally, a function is a power function if it is of the form f(x) = x?, where p is a constant.
Below we see the graphs of several power functions drawn on the same set of axes (Figure 9.12).

2
y f(x) = x?

/

\
\
\

Figure 9.12

We will give some applications of polynomial functions and power functions later in the
chapter.

The examples we have presented in our short review are actual practical applications, and
represent what are known as mathematical models of reality. A mathematical model is simply a
mathematical representation of what we observe. A good mathematical model is one that explains
what we observe and has predictive value in the sense that we can use it to tell what will happen
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under new sets of circumstances. The models we gave above were fairly accurate and have good
predictive value as has been verified experimentally over and over.

We are not always that lucky. Many times in doing scientific research, it is difficult to find
models which connect or explain the data we observe and we have to accept what appears to be
our best model, though it may not be perfectly accurate. Still, these models can sometimes be
useful to make predictions. So how do we go about finding models? We address this in the next
section.

9.3.2 Which Model Should We Use?

When trying to model real-world phenomena, we often begin by plotting the data. This plot is
called a scatter plot. We examine the graph and then use our knowledge of functions and their
graphs to try to decide which model might be best.

Let us illustrate with some examples from real life.

Example 9.13 When the Magellan spacecraft was sent to the planet Venus in 1991, it sent back
its measurements of the temperature of the planet at various altitudes as it descended. The following
table gives the approximate data sent back:

Altitude (km) Temperature (K)
60 250
55 300
50 340
40 410
35 460

At an altitude of 35 kilometers, it stopped transmitting data. One goal of that mission was to find
out the temperature at the surface of Venus. Find it.

Solution. If we plot the data points to get a scatter plot, we get the following picture (Figure 9.13).
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Figure 9.13
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We can see that the data are almost perfectly linear. (Actually it had transmitted a lot more data
up to that point, all consistent with the linear picture near the surface of the planet.) Therefore,
we might take a leap of faith, and try to fit the data accurately with the equation of a line. Since
we can see that not all the data lie on one straight line, we find a line that best fits the data, known
as the regression line. When we are fitting a curve to data, the curve of best fit is known as the
regression curve.

Most graphing calculators have the capability of making scatter plots and of finding regression
curves that fit the data. Of course, we have to tell it which model to use to fit the data: linear,
exponential, quadratic, and so on. The manual that comes with your calculator will tell you how
to do this.

Our goal in this problem is to predict the temperature at the surface of Venus. So we ask
the computer to draw a scatter plot and then fit the data with a line, since our data seem
to lie very close to a line. The computer (specifically Microsoft Excel), gives us the following
(Figure 9.14):
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Figure 9.14

Our regression line for this data is T = (—8.093)h + (740.47), where h is the height above the
surface of Venus, and T is the temperature at that height. To find the temperature at the surface
of Venus, we set h =0, as h = 0 represents the surface of Venus. After setting / to zero and solving
for T we get T = 740.47 Kelvin. Thus, we estimate that the temperature on the surface of Venus is
740.47 K.

The most recent information from NASA puts the temperature at 740 K (hot enough to melt
lead). Our model led to some very accurate conclusions.

Example 9.14 A person with diabetes needs insulin to help process the glucose in his body. Insulin
breaks down very quickly in the body, and so the goal is to give medication via some delivery system
which releases the insulin slowly. To get an idea of how quickly the insulin breaks down in a patient’s
body, 20 units of insulin is injected into the body of a patient, and every 10 minutes blood is drawn to
see the level of insulin. Here are the data for a particular patient that represents what happens in nearly
all patients, though the rate of breakdown differs from patient to patient.
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Time, t (elapsed in minutes) Number of Units of Insulin
0 20
10 9.5
20 3.6
30 1.3
40 0.2
50 0.1
60 0.03

Try to fit a mathematical model which describes the level of insulin in this person’s system
over time.

Solution. The rapid decrease to O seems to indicate that an exponential function probably is the
right model here and drawing the scatter plot below seems to verify this. So, we ask the calculator
to do an exponential regression . We get the following equation and show the data plotted together
with the regression equation (Figure 9.15).
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Figure 9.15

The fit is excellent. It is models like these that allow doctors and pharmaceutical companies to
decide on dosages.

Example 9.15 Farmers need rain for their crops to grow. But too much rain can result in fungus
growth and subsequent loss of crops. In the following table we see how the number of inches of rain
affected the corn crop in a certain region of the country over a period of several years.

Year  Rainfall (in) Corn yield (bushels)

1998 18.1 4325
1999 20.3 5167
2000 13.4 3462
2001 22.6 4856
2002 26.2 4126
2003 35.8 2678
2004 28.5 4576
2005 30.2 3698

Draw a scatter plot of the data, and fit the data with a curve.




Solution. Here is a scatter plot of the data (Figure 9.16):
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No function we have discussed so far seems to fit it extremely well. But it certainly looks
like the quadratic function might offer us a better fit than any other function we are aware of.
We do a quadratic regression and find that the quadratic function that fits the data best is y =
—13.053x% + 594.8x — 2037.

So, if one had to estimate how many bushels of corn this part of the country would pro-
duce, assuming they planted the same amount each year and they had 30 inches of rain, we
need only substitute 30 in the above formula for y to get y = —13.053(900) + 594.