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Preface

This book aims to provide a coherent and pedagogical collection of articles on the
physics and applications of molecular magnets. All contributors have played a ma-
jor role in either (1) discovering or elucidating the physics that underlies molecu-
lar magnets, or in (2) the present exploration of avenues toward their applications.
Issues that are by now well understood as well as open questions are covered. In-
evitably, overlaps among some chapters do occur, but we are sure that the reader
will find them complementary rather than repetitious.

Molecular magnets are made up of chemically identical molecules with high–
spin cores. The cornerstone for the rise of present day interest in molecular
magnetism was the discovery of magnetic quantum tunneling in Mn12-acetate
molecules. There was before 1996 some indirect evidence for quantum tunneling
of large spins. In 1993, magnetic hysteresis (and thus magnetic memory) at liq-
uid Helium temperatures was shown to come from single molecular clusters of
Mn12-acetate. However, a clear imprint of magnetic quantum tunneling was only ob-
served in 1996. Then, experiments revealed that magnetic hysteresis in Mn12-acetate
is rather unconventional, in that the magnetization jumps at equally spaced values
of the applied magnetic field. The gist of this effect is that spins can tunnel between
different magnetic states as they are brought on and off resonance by an external
magnetic field. Mn12-acetate molecules thus behave as “single molecule magnets”
(SMMs). “Resonant spin tunneling” in molecular magnets illustrates beautifully
quantum physics at the mesoscopic scale, that is, in the crossover region between the
macroscopic and microscopic worlds, where quantum and classical physics meet.
Finally, SMMs are a variant of magnetic nanoparticles, which are at the basis of
magnetic recording. Much interest in SMMs arises from this fact.

The field has expanded considerably in the last two decades, owing to the creativ-
ity of molecular chemists (who have crafted high and low spin clusters and single
chain magnets), to the observation and elucidation of interesting phenomena (e.g.,
hole burning, spin avalanches and deflagration, as well as dipolar long-range or-
dering), and to the development of experimental techniques (e.g., single molecule
manipulation on substrates). Finally, there is the vibrant ongoing work on applica-
tions. Most of it has to do with the fact that single molecule magnets are potential
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2-level qubits for quantum computation. There are other applications for molecu-
lar magnets, such as to magnetic refrigeration (making use of the magneto–caloric
effect) of electronic devices at cryogenic temperatures.

A brief historical account of the discovery of stepwise hysteresis loops, which
are the hallmark of molecular magnets, as well as the physics of the underlying
magnetic-quantum-tunneling phenomena, can be read in the first section, Tunneling
of Single Molecule Magnets. How stepwise hysteresis loops were discovered, and
first reported early in 1996, is the subject of Chap. 1. How the existence of stepwise
hysteresis loops was subsequently corroborated in Mn12-acetate single crystals, and
more, can be read in Chap. 2. The theory of magnetic quantum tunneling that takes
orbital angular momentum into account is given in Chap. 3. There is however more
in the first section. Interesting effects that cannot be accounted for assuming each
SMM acts as a single spin S are reported and explained in Chap. 4.

The second section, Beyond Single Molecules, covers various collective phenom-
ena. Deflagration is one of them. It has been found to proceed in molecular magnets
by rapidly moving magnetic-quantum-tunneling fronts, much as ordinary deflagra-
tion takes place by chemical combustion processes. Experimental and theoretical
accounts are given in Chaps. 5 and 6, respectively. A rather different sort of col-
lective phenomenon, equilibrium magnetic phase transitions, have been observed
in some of the best known molecular magnets. Magnetic ordering is brought about
by magnetic-dipolar interactions. Because system-wide ordering processes cannot
bypass slow quantum tunneling processes, the realization of magnetic ordering was
not a foregone conclusion. Order can either be destroyed by heating, through a clas-
sical phase transition, or by applying a transverse magnetic field, through a quantum
phase transition. This is the subject of Chap. 7. Single Chain Magnets, the subject
of Chap. 8, resemble SMMs in that they can relax extremely slowly. Their under-
lying physics is however rather different. In single chain magnets relaxation pro-
ceeds through thermal excitation of domain walls. Models are also discussed in this
chapter. Metal-phthalocyanine (MPc) are uniquely suited for the exploration of the
intrinsic mechanisms which give rise to molecular magnetism. The structural and
magnetic properties of bulk crystals, thin films and single MPcs molecules adsorbed
on different substrates are covered in Chap. 9. The Kondo interaction, tunneling pro-
cesses, switchability and spin control are reviewed.

Most of the section on Applications is devoted to issues that arise from the role
molecular magnets can play in information technology. How to control and ex-
ploit the quantum properties of SMMs, achievements of recent years and foresight
for their near future are all weaved into Molecular Nanomagnets for Information
Technologies, which is Chap. 10. In Chap. 11, Molecular Magnets for Quantum
Information Processing, a brief introduction into quantum computing is given. Di-
Vincenzo’s criteria for its successful physical implementation are introduced and
used as a guideline throughout. Utilization and control (mainly, through the spin-
electric effect) of the spin degrees of freedom in SMMs as qubit states is consid-
ered. The various decoherence mechanisms which affect SMMs and their advan-
tages on this point over more traditional qubits are examined. Finally, a proposal to
implement Grover’s algorithm using molecular magnets is discussed. In Chap. 12,



Preface vii

Single Molecule Spintronics, recently developed techniques that can be applied to
measurements of electronic transport through a SMM are discussed. Spectroscopic
information, obtained from measurements on spin-transistor-like three-terminal set
ups, confirms the high-spin state and magnetic anisotropy of the robust Fe4 SMM.
The experimental observation that electric gate fields drastically modify the mag-
netic properties of an oxidized or reduced molecule is discussed. The main aim of
molecular quantum spintronics, that is, to bring together concepts from spintronics,
molecular electronics and quantum computing for the purpose of fabrication, char-
acterization, and study of molecular devices—such as, molecular spin-transistors
and molecular spin-valves—are reviewed in Chap. 13 (Molecular Quantum Spin-
tronics). Finally, Chap. 14 is devoted to a totally different topic, the application (by
means of the magnetocaloric effect) of molecular magnets to very low temperature
refrigerants in microdevices.

In closing, the Editors wish to express their pleasure at having worked with the
authors, and we would like to thank each and everyone of them for their warm
response and full co-operation.

J. Bartolomé
F. Luis

J.F. Fernández

Zaragoza, Spain
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Part I
Tunneling of Single Molecule Magnets



Chapter 1
From Quantum Relaxation to Resonant Spin
Tunneling

Javier Tejada

Abstract A brief historic review of the research on quantum tunneling of magne-
tization is given and the story behind the discovery of resonant spin tunneling in
Mn-12 acetate is told with the emphasis on the underlying physics. Important areas
of studies in this field are mentioned and thoughts are presented on the future of
research on molecular magnetism.

1.1 Historic Notes

My interest in quantum tunneling of magnetization was instigated by the 1988 Phys-
ical Review Letter of Chudnovsky and Gunther [1], in which they proposed that
superparamagnetic behavior of small magnetic particles may not freeze down to
absolute zero due to quantum tunneling of the magnetic moment. In 1990 Chud-
novsky came to Barcelona on my invitation and we discussed at length possible
experiments on quantum tunneling of the magnetization. I chose to study magnetic
relaxation (which is sometimes called magnetic after-effect) in arrays of magnetic
particles and other magnetic systems and to see if it persists down to very low tem-
perature and eventually becomes independent of temperature when quantum effects
take over thermal fluctuations.

From 1990 to 1995 we mounted a large effort at the University of Barcelona
to observe these effects in systems of small particles, random magnets, and su-
perconductors. This effort was reviewed in the book of Chudnovsky and myself
“Macroscopic Quantum Tunneling of Magnetization” (Cambridge University Press,
1998) [2]. Published experimental results demonstrated that non-thermal magnetic
relaxation was, indeed, present in all of the above systems. Moreover, theoretical
estimates of the temperature of the crossover from thermal to quantum relaxation
agreed well with our findings. Similar results on small particles were obtained
by Berkowitz at the University of California—San Diego [3]. Barbara at CNRS-
Grenoble [4], O’Shea at the University of Kansas [5, 6], and Arnaudas at the Uni-
versity of Zaragoza [7] observed non-thermal magnetic relaxation in bulk materials
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as well. These findings created a significant boost for research on quantum tunnel-
ing of magnetization that culminated in our discovery of resonant spin tunneling in
Mn-12 acetate [8].

The discovery of magnetic bistability of Mn-12 by Sessoli et al. [9] in early 1990s
made us think about definitive experiments on this system that would prove the ex-
istence of spin 10 tunneling beyond a reasonable doubt. The beauty of Mn-12, as
compared, to systems of small particles, was in that the molecules, unlike magnetic
particles, were identical, so that the tunneling rates had to be nearly the same for
a macroscopic number of molecules in a solid. This implied that the decay of the
magnetization of the Mn-12 sample would be similar to nuclear decay, that is, expo-
nential in time. (This turned out later to be only approximately true because of the
distribution of dipolar and nuclear hyperfine fields, as well as due to solvent disorder
inside individual molecules and due to crystal defects.)

In 1995 I came to New York for three months on the invitation of Chudnovsky
to do magnetic measurements with the group of Myriam Sarachik at City College.
They had just bought a Quantum Design Magnetometer that they were not sure how
to use. Our goal was to observe magnetic tunneling at low temperature. Previously,
Chudnovsky and I had chosen to work on Mn-12. To have samples of Mn-12 I
invited Ron Ziolo, head chemist at Xerox Corporation, with whom I had extensive
previous collaboration on small particles, to join our group. I was also pleased to
work with Jonathan Friedman, a talented Ph.D. student of Prof. Sarachik. Jonathan
came up with a brilliant idea to align microcrystals of Mn-12 (that we had at the
time) in a stycast using a high magnetic field. As far as magnetic measurements
were concerned, this made the array of microcrystals equivalent to a large single
crystal and allowed us to observe, for the first time, the equidistant steps in the
magnetization curve of Mn-12.

Our findings and their correct explanation in terms of resonant spin tunneling,
were first reported and publicly discussed at the MMM conference in Pittsburgh in
1995. Same year we submitted a paper to Physical Review Letters that was pub-
lished [8] in May 1996. During spring of that year my group at the University of
Barcelona, together with the group of Juan Bartolome at the University of Zaragoza,
confirmed equidistant tunneling resonances in measurements of the ac susceptiblity
of Mn-12 [10]. Barbara’s group reported in a follow-up article [11] experiments
performed on single crystals which corroborated these results.

From 1996 research on spin tunneling in molecular magnets picked up. Experi-
mental landmarks worth mentioning are topological interference in spin tunneling
demonstrated by Wernsdorfer and Sessoli [12], determination of the tunneling terms
in the spin Hamiltonian of Mn-12 by the groups of Kent and Hill [13], and the works
of New York and our groups on magnetic deflagration [14, 15]. There also has been
a remarkable effort by chemists to synthesize new molecular magnets (Christou,
Hendrickson, and others) with hundreds of them now available. With low tempera-
ture physics suffering from the rising cost of helium the future of this field depends,
in my opinion, on whether research on molecular magnets finds any applications.
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Fig. 1.1 Quantum tunneling
of the magnetic moment in a
single-domain particle

1.2 Early Experiments on Magnetic Tunneling at the University
of Barcelona

In the absence of the magnetic field, single-domain magnetic particles have two
opposite directions of the magnetic moment that correspond to the minimum of
the magnetic energy. This is true independently of the shape or other anisotropic
factors and is a consequence of the time-reversal symmetry. Magnetic field breaks
time-reversal symmetry, making the two minima different in energy. Still, under a
certain field strength, there is an energy barrier between the two states. It is due to
the combined effect of shape and magneto-crystalline anisotropy of the particle. In
large particles the barrier is high and the magnetic moment of the particle is frozen in
a certain direction. In smaller particles, thermal fluctuations may kick the magnetic
moment over the barrier, leading to the phenomenon of superparamagnetism. As
temperature goes down, thermal fluctuations die out and magnetic moments of even
the smallest particles would be frozen in the absence of quantum transitions. If,
however, there were quantum underbarrier transitions (tunneling) between energy
minima, the superparamagnetism would persist down to absolute zero, see Fig. 1.1.

Similar effects must exist in bulk magnetic materials where the change of the
magnetization occurs through motion of domain walls. The barriers for such a mo-
tion are provided by pinning of the domain walls by defects in a solid. In the absence
of the external magnetic field, the lowest energy state of a macroscopic magnet has
zero total magnetic moment owing to the breakage into magnetic domains of oppo-
site magnetization. Motion of domain walls separating magnetic domains is required
to achieve this lowest energy state. At high temperature, thermal fluctuations kick
the domain walls out of potential wells created by the pinning rather effectively, thus
providing good mobility of the walls. Consequently, a permanent magnet would lose
its magnetic moment rather fast. At low temperature, however, thermal processes
slow down and the only reason for domain walls to escape potential wells created
by the pinning would be quantum tunneling. This also applies to type-II supercon-
ductors, where change in the magnetization requires motion of Abrikosov flux lines
pinned by defects.

The earliest mentioning of the possibility of quantum tunneling of the magnetic
moment, probably, belongs to Bean and Livingston [16] who noticed that relax-
ation of the magnetization in systems of small particles did not disappear completely
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down to very low temperature. Later, various authors observed similar effect in bulk
magnetic materials and superconductors, and speculated about tunneling of domain
walls and Abrikosov flux lines [2]. Sustained progress in this direction was impeded
by the absence of the general theory of such phenomena. Chudnovsky in 1979 no-
ticed [17] that quantum tunneling of magnetization is given by the imaginary time
solutions (instantons) of the Landau-Lifshitz equation that had been traditionally
used to describe classical micromagnetic phenomena. This suggestion received fur-
ther development in several papers published by van Hemmen and Sütö [18], Enz
and Schilling [19], and Chudnovsky and Gunther [1, 20] between 1986 and 1988,
the latter two papers being a major breakthrough in the understanding of the tun-
neling of single domain particles at low temperatures. In the first of these papers
they computed the WKB exponent and estimated the temperature of the crossover
from thermal to quantum superparamagnetic behavior for single-domain magnetic
particles. The second paper dealt with quantum nucleation of domains in a mag-
netic film. These papers triggered modern interest, including my own, to quantum
tunneling of magnetization.

The most important theoretical prediction for experiment was that the tempera-
ture of the crossover from classical to quantum regime scaled with the components
of the magnetic anisotropy for both, uniform under-barrier rotation of the magnetic
moment in small particles [1] and quantum diffusion of domain walls in bulk mate-
rials [20]. The challenge for experiment was to test this and other predictions in the
presence of the broad distribution of energy barriers in systems of small particles
and bulk magnetic materials. Exponential dependence of the tunneling rate on the
barrier height stretches the lifetimes of metastable magnetic states from nanosec-
onds to the lifetime of the Universe. This, in fact, is a general situation in nature
whether one studies magnetic relaxation or relaxation of the elastic stress in solids.
The main point is that only those barrier heights, U , which have associated a flip-
ping time of the order of the experimental time scale t , contribute to the relaxation
process towards the global thermodynamic equilibrium. That is, measuring the slow
evolution of magnetization with time allows us to sweep the barrier height distribu-
tion: the bigger the time is, the higher the barriers are.

Observation that allows one to investigate such situation quantitatively is that
only certain barrier heights, U , contribute to the relaxation at a time t that elapsed
since the preparation of the material.

The rate of thermal decay of the metastable states with a barrier U at a tempera-
ture T is given by

ΓU = ν exp

(
− U

kBT

)
(1.1)

where ν is some pre-exponential factor (the attempt frequency) and kB is the Boltz-
mann constant. The characteristic time of the decay depends exponentially on the
barrier height: τU = 1/ΓU = τ0 exp(U/kBT ) where τ0 is the so-called microscopic
attempt time. The barriers that contribute to the relaxation at a time t are determined
by the equation t = τU , which gives U = kBT ln(t/τ0). By the time t metastable
states that have lower barriers have already decayed, while metastable states with
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Fig. 1.2 Logarithmic
relaxation of the magnetic
moment of the array of
CoFe2O4 nanoparticles
measured at various
temperatures [21]

Fig. 1.3 Temperature
dependence of the magnetic
viscosity of TbFe3
nanoclusters (1993) [22]

higher barriers have not decayed yet. Analysis of this situation [2] shows that the
change in the total magnetization, M , depends linearly on T ln(t). Such logarith-
mic relaxation is known in many systems, magnetic or non-magnetic, and is related
(through Fourier transform) to the notorious 1/f noise. An example of the logarith-
mic time relaxation in a system of CoFe2O4 nanoparticles [21] is shown in Fig. 1.2.

Thermal logarithmic relaxation implies that the derivative dM/d ln t (called
magnetic viscosity) is proportional to temperature and must go to zero as tem-
perature is lowered. Failure of the magnetic viscosity to go to zero in the limit
T → 0 would be an indication of non-thermal magnetic relaxation. This was the
basis of our early experiments on quantum tunneling of magnetization. Tempera-
ture dependence of the magnetic viscosity in a system of TbFe3 nanoclusters [22]
is illustrated in Fig. 1.3. It clearly shows the plateau in the magnetic viscosity be-
low 6 K, in agreement with theoretical expectation for quantum tunneling in these
clusters having very high magnetic anisotropy. Another theoretical prediction is that
the crossover temperature goes down with the decreased energy barrier. The latter
can be achieved by applying the magnetic field since the field of a certain strength
destroys anisotropy barriers altogether. The observed decrease of the crossover tem-
perature on the magnetic field in TbFe3 nanoclusters is shown in Fig. 1.4.

In the early 1990s similar results were obtained by us and other groups in various
systems, including small particles, mesoscopic wires, thin films, bulk magnetic ma-
terials, as well as type-II superconductors [2]. Tunneling in antiferromagnetic clus-
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Fig. 1.4 Field dependence of
the low-temperature magnetic
viscosity of TbFe3
nanoclusters (1993) [22]

ters has been studied (Chudnovsky and Barbara, Awschalom, Tejada). All data for
magnetic materials were combined by us in a table showing the dependence of the
crossover temperature on the strength of the magnetic anisotropy. It proved correla-
tion between the two quantities, with a clear tendency of the crossover temperature
being proportional to the anisotropy [2].

As years went by, measurements of individual nanoparticles had become pos-
sible. Wolfgang Wernsdorfer pioneered such measurements in Grenoble. In 1997
he reported [23] evidence of non-thermal magnetic relaxation in a single magnetic
nanoparticle of barium ferrite below 1 K. The reduction of the energy barrier needed
to provide a significant tunneling rate was achieved in Wernsdorfer’s experiment by
application of the magnetic field that was close to the field destroying the barrier.

1.3 Experiments on Mn-12

In the early 1990s Roberta Sessoli from Gatteschi’s group in Florence discovered
[24] that Mn-12 acetate molecules had a 65 K barrier between two lowest energy
states with opposite directions of spin S = 10. Consequently, a crystal of Mn-12
molecules was equivalent to a system of identical superparamagnetic particles. This
removed the challenge of broad barrier distribution that clouded interpretation of
experiments with magnetic particles and placed Mn-12 at the top of candidates for
observation of quantum tunneling of magnetization.

The spin Hamiltonian of the Mn-12 molecule subjected to the magnetic field, B,
in the direction of the easy magnetization axis z is

H =−DS2
z − gμBSzBz +H⊥ (1.2)

where D is the anisotropy constant, g is the gyromagnetic factor, μB is the Bohr
magneton, and H⊥ is a perturbation that does not commute with Sz. If S were a
classical vector, the dependence of the classical energy of the molecule on the ori-
entation of this vector, up to the small perturbation due to H⊥, would be given by

E =−DS2 cos2 θ − gμBSB cos θ (1.3)
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Fig. 1.5 Quantized spin
energy levels of Mn-12
molecule at the second
resonant field

where θ is the angle that S makes with the z-axis. The dependence of E on cos θ is
shown by the parabolic line in Fig. 1.5. It represents the magnetic anisotropy barrier
discussed in the previous section. In quantum mechanics, however, the projection of
S onto the z-axis is quantized, Sz|m〉 =m|m〉, where m is an integer between −10
and 10 for S = 10. Consequently, the energy is quantized too,

E =−Dm2 − gμBBm (1.4)

The corresponding 21 quantized energy levels for S = 10 are shown by horizontal
lines in Fig. 1.5.

Imagine now that one magnetizes the crystal of Mn-12 molecules in the negative
z-direction, making all molecules to occupy the level m=−10. If the field is now
applied in the positive z-direction the m = −10 level becomes metastable, while
m= 10 becomes the ground state, see Fig. 1.5. If no other interactions are involved,
a transition, due to H⊥ in (1.2), from a level on the left of the parabolic barrier to
a level on the right of the barrier is possible only if the energies of the two levels
coincide. Equating E of (1.4) for two levels, m and m′, one obtains that energies of
pairs of m-levels coincide at discrete values of the magnetic field,

Bz =−
(
m+m′)B0, B0 = D

gμB
(1.5)

Since m and m′ are integers, it is easy to see that the corresponding resonances are
equidistant on the magnetic field, separated by the field B0. For Mn-12 this field is
about 0.45 T.

The above consideration makes it clear that at T = 0 the change of the projection
of S on the easy magnetization axis may occur only via quantum tunneling between
resonantm-levels at the discrete values of the magnetic field. Consequently the hys-
teresis curve of the Mn-12 acetate crystal will not be as smooth as the conventional
hysteresis curve of magnetic materials because the bulk of the change of the mag-
netization should occur at the field that is multiple of B0. Finite temperature makes
this effect less dramatic because of thermal overbarrier transitions. However, the
steps in the magnetization at the values of the field that are multiple of B0 should be
apparent at a finite temperature as well because quantum tunneling adds to thermal
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Fig. 1.6 This figure reports
stepwise magnetization
curves in Mn-12 acetate

activation. (In Mn-12 thermal effects completely take over quantum transitions at
temperature above 3 K.)

Early experiments on quantum tunneling of magnetization in Mn-12 performed
in Grenoble tried to detect non-thermal magnetic relaxation at very low temperature.
They were inconclusive because of the very low tunneling rate in Mn-12 at T = 0.
Our first measurements of Mn-12 in New York and Barcelona were less ambitious.
They were aimed at the accurate magnetic characterization of Mn-12 acetate through
measurements of its magnetization curve. As it turned out this was all one needed
to demonstrate unambiguously the existence of quantum spin tunneling in Mn-12.
Quantum hysteresis curve of Mn-12, first observed by us [8] in dc magnetization
measurements performed in New York in 1995, is shown in Fig. 1.6. Soon thereafter
we performed in Spain the ac susceptibility measurements of Mn-12 [10] that con-
firmed the existence of resonant spin tunneling and permitted to extract the tunneling
prefactor τ0 ∼ 10−7s in the formula for the relaxation rate, τ = τ0 exp[U/(kBT )],
see Fig. 1.7.

The importance of our first works on Mn-12 was not simply in the observation
of equidistant magnetization steps but also in their correct interpretation as resonant
spin tunneling along the lines of the theoretical argument presented above. That in-
terpretation of the data was not straightforward at the time, it took us some time
to sort things out. The problem was in the strong dependence of the height of the
magnetization steps on temperature and on the rate at which the magnetic field was
changed in experiment. Different steps kept appearing and disappearing on us de-
pending on experimental conditions. Theoretical works appearing after our experi-
ments suggested that this striking behaviour was based upon two main mechanisms:
Dobrovitski and Zvezdin [25] noticed that the height of the magnetization step was
determined by the Landau-Zener theory of adiabatic quantum transitions between
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Fig. 1.7 Original figure [10]
(1996) that permitted
extraction of the tunneling
attempt time from ac
susceptibility measurements
(open circles) and dc
magnetic relaxation
measurements (closed circles)

crossing energy levels, which explained the dependence on the field-sweep rate. On
the other hand, the temperature dependence of the resonant tunneling effect was ex-
plained by means of the concept of thermally assisted spin tunneling, in which spins
were first excited by phonons to higher energy levels and then tunnelled from these
levels across the energy barrier [26–29].

For ten years after our discovery of resonant spin tunneling in Mn-12, one mys-
tery about Mn-12 remained unsolved. In early 1990s Paulsen and Park, working in
Grenoble, reported that sufficiently large crystals of Mn-12 exhibited abrupt rever-
sal of the magnetization that did not seem to follow any clear pattern on temperature
and magnetic field. This phenomenon received the name of “magnetic avalanche”.
For quite a while it was considered an impediment to the measurements of quantum
magnetization steps. In 2005 the group of Sarachik in New York placed micro-
Hall sensors along the length of the Mn-12 crystal and observed that the avalanche
propagated through the crystal as a narrow front moving at a constant speed [14].
Chudnovsky came up with an explanation in terms of the magnetic deflagration.

Deflagration is a technical term for slow combustion. A mixture of hydrogen
and oxygen in a pipe would burn via a slow (compared to the speed of sound)
propagation of a burning front inside which the chemical energy is released. In a
Mn-12 crystal the role of the chemical energy is played by the Zeeman energy of
the magnetic moment in the magnetic field. The rest is similar to the burning of a
flammable substance. In Sarachik’s experiments deflagration was always triggered
by the magnetic field sweep and occurred at random values of the field. This pre-
vented Sarachik’s group from observing magnetic avalanches at resonant fields. In
Barcelona we triggered avalanches by surface acoustic waves at a fixed value of the
field. This allowed us to observe an interesting phenomenon that was not known
for chemical combustion. We found that the “flammability” of the Mn-12 crystal
increased at the resonant fields due to the quantum enhancement of the rate of the
magnetization reversal [15], see Fig. 1.8. We called this phenomenon “quantum de-
flagration”.
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Fig. 1.8 Quantum peaks in
the field dependence of the
velocity of the magnetic
flame in a Mn-12 crystal [15]

1.4 Conclusion

As years went by, Mn-12 has been researched almost exhaustively, or has it been?
Chemists found that Mn-12 acetate molecules were not entirely identical as pre-

viously thought, but slightly different in H⊥ due to solvent disorder. The exact
form of H⊥ was established in a series of precise measurements performed by the
groups of Hill and Kent [30]. Another spin 10 molecular magnet, Fe-8, was dis-
covered and soon thereafter chemists began producing new molecular magnets at
an astonishing rate. They have been investigated theoretically by diagonalization of
spin Hamiltonians [31, 32] and by density functional theory [33]. Topological in-
terference in spin tunneling phenomena has been predicted [34] and observed [35].
Tunneling in antiferromagnetic and ferrimagnetic molecular clusters has been stud-
ied [36–38]. Effects of nuclear spins and dipolar interactions in molecular magnets
were addressed [39–43] and magnetocaloric effects have been investigated [44, 45].
Crossover between quantum and thermal regimes has been investigated in some
detail [46–50]. Resonant interactions of molecular magnets with electromagnetic
radiation has been measured [51–59]. Also long-range dipolar ordering has been
studied [60–65]. Behavior of Mn-12 in ultrafast pulses of the magnetic field has
been investigated [66, 67]. Magnetic molecules on surfaces have been studied [68]
and conduction through single molecules placed between conducting leads has been
measured. This account is, to the best of my knowledge, accurate. As the field of
quantum magnetic relaxation and spin resonant tunneling goes back to the end of
the 1980s, there will doubtless be some recollections that I have failed to fully ac-
knowledge. For these mistakes, I sincerely apologize in advance.

Are any important discoveries left in this field for the younger generation of re-
searchers? One area that remains cloudy is the possibility of superradiant emission
of electromagnetic radiation by a crystal of molecular magnets. While we and others
have published papers in this field [69, 70] the definitive proof of this possibility (or
impossibility) is still absent. The distances between the spin levels of many molec-
ular magnets are in the sub Terahertz range which has multiple applications. It is
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not clear, however, whether random dipolar and nuclear fields would allow strong
coherent effects. Experiments inside a resonant cavity may help to figure this out.
Up to date the reversal of the magnetic moment in molecular magnets has been ex-
plained claiming it occurs at the level of individual molecules [71]. However, it may
be the case that this reversal process could occur at the level of clusters of molecules
induced by spin-phonon transitions.

Since the energy barrier between opposite orientations of the magnetic moment is
formed by weak relativistic interactions, a crucial question would be whether stable
molecular magnets can ever break liquid nitrogen temperature of 77 K. Molecules
with big magnetic moments, such as those containing rare earth atoms, may have
their magnetization frozen at 77 K because of the strong magnetic anisotropy. Mak-
ing identical molecules comparable to mesoscopic magnetic particles will be a chal-
lenging task for chemists. Another challenging question would be whether magnetic
molecules can ever become ultimate memory units of conventional computers or
even elements of quantum computers. I hope to see answers to these questions in
the near future.
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Chapter 2
Quantum Tunneling of the Collective Spins
of Single-Molecule Magnets: From Early Studies
to Quantum Coherence

Bernard Barbara

Abstract This chapter presents a review of the discovery and study of the phe-
nomenon of mesoscopic quantum tunneling in Single Molecule Magnets (SMM,
such as Mn12, Fe8) and Single Ion Magnets (rare-earth ions) starting from the first
roots in the 70’s and ending with the most recent studies of coherent Rabi oscilla-
tions and of decoherence mechanisms.

2.1 Introduction

The possibility of observing quantum phenomena “at the macroscopic scale”
has been discussed from the earliest times of quantum mechanics (see, e.g. the
Schrödinger’s cat paradox [1]). Experiments, clearly devoted to the possible obser-
vation of “Macroscopic Quantum Tunnelling” (MQT) started in the 70’s or 80’s, in
particular under the impulse of A.J. Leggett [2] who developed the concept of quan-
tum tunnelling of a “collective order parameter” associated with the ground-state of
systems of intermediate sizes—we now say, “Mesoscopic”. In some sense this is, in
a more general approach, the quantum counterpart of Néel’s classical order parame-
ter of super-paramagnetic nanoparticles, which are nanomagnets with a continuous
order parameter equal to their magnetic moment They were intensively studied be-
tween the 40’s and the 60’s, under the name of “thin particles” [3]. As far as I know,
the first clear observation of a classical to quantum crossover in MQT was made on
single micrometer-size Josephson junctions, at IBM Yorktown Heights in 1981 [4].
The “switching current”, thermally-activated at high temperature, was independent
of temperature below a certain crossover temperature, in agreement with the expec-
tations of quantum tunnelling in weak dissipation regime [5]. At nearly the same
time, other quantum phenomena, such as those associated with a single atom placed
in the quantum field of a cavity, showed evidence of quantum coherence of a single
small object (atom, photon) [6], opening the door for quantum computing with, in
our context, spin systems [7, 8]. The search for MQT in Magnetism (MQTM) ap-
parently started in the early seventies (for a short historical review, see Ref. [9]) but

B. Barbara (B)
Institut Néel, CNRS & Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9, France
e-mail: bernard.barbara@grenoble.cnrs.fr

J. Bartolomé et al. (eds.), Molecular Magnets, NanoScience and Technology,
DOI 10.1007/978-3-642-40609-6_2, © Springer-Verlag Berlin Heidelberg 2014

17

mailto:bernard.barbara@grenoble.cnrs.fr
http://dx.doi.org/10.1007/978-3-642-40609-6_2


18 B. Barbara

the experimental situation evolved slowly due to the technical impossibility to work
with single-nanoparticles or single-spins [10–20] (which is no longer the case now,
see e.g. [21–24]). Those works paved the way to the unambiguous demonstration of
MQTM, which was obtained over the period of 1994–1996 on the Single Molecular
Magnet Mn12-ac, which is a single-crystal made of an ensemble of identical molec-
ular magnets [9, 25–28]. An intensive multi-disciplinary research on the quantum
behaviour of magnetic molecules followed and is still very active all over the world.
The observation of MQTM in nanometer size single molecule magnets (SMMs) was
later extended to the case of rare-earth ions diluted in insulating non-magnetic ma-
trices, known as “Single Ion Magnets” [29–32], showing that the mesoscopic scale
in magnetism has nothing to do with the spatial extensions of wave functions (size
of the object) but depends on the value of the spin only. It ranges up to a few hun-
dreds of spin units. Above quantum effects, even if they are undoubtedly present,
are more difficult to evidence due to the loss of measurable quantization (continuum
of states, see Sect. 2.2.1).

2.2 Prehistory and History

To my knowledge, the first publications clearly devoted to the search of MQT
in magnetism were about magnetic relaxation experiments performed in highly
anisotropic rare-earth inter-metallic single-crystals (Dy3Al2, SmCo3.5Cu1.5 [11–
20]). They provided magnetic relaxation experiments, thermally-activated above a
certain crossover temperature (a few kelvins) and independent of temperature below
it. Due to the high anisotropy to exchange ratio of rare-earths, the domain walls are
“narrow” and their thickness is a few inter-atomic distances only leading to intrinsic
pinning [11, 12] by a “magnetic Peierls potential” analogous to the Peierls potential
of dislocations. As this had been observed with dislocations [33–36] and obtained
in a theoretical attempt to interpret our first experiments [37] we attributed this non-
thermal relaxation to the de-pinning of small portions of domain-walls by tunnelling
through their magnetic Peierls potential. More precisely, the tunnelling effect was
considered to be a quantum nucleation on the wall surface (irreversible local wall
deformations) followed by a 2-D soliton-like propagation on the wall surface. In-
terestingly, tunnelling of dislocations was recently brought back to light to give a
possible interpretation of the controversial phenomenon of the super-solidity of 4He
[38]. Those first results on rare-earth inter-metallic systems [10–13] motivated the
first theory of quantum depinning of domain walls by T. Egami [37], leading, in
particular, to the first evaluation of the crossover temperature Tco between quantum
and thermally-activated relaxation regimes (see also [10]). Our experimental studies,
showing that spin reversal takes place within independent spin-blocks of ∼ 1–2 nm,
were followed by more focussed studies on magnetic thin films, ensembles of ferro-
magnetic nanoparticles with narrower size distributions (15nm-TbCeFe, 2nm-FeC,
. . . ) and tri-layer systems with a single domain-wall pinned in the centre layer,
which we called “Domain-Wall Junctions” (Co/CuCo/Co, GdFe2/SmFe2/GdFe2,
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Fig. 2.1 (a) Staircase hysteresis loop of a Sm3.5Cu1.5 single-crystal. The magnetization jumps
below 2.1 K were measured at constant sweeping field rate. (b) Faraday observation of macroscopic
domain walls jump and the related variations of raising and damping time [18]

FeTb/Cu/FeTb. . . ) ([19, 20] and references therein). Spin-reversal volumes were
found to remain constant below a certain Tco (non-thermal reversal mechanism at-
tributed to MQTM) and to linearly increase with temperature above it (thermally-
activated reversal) [19, 20, 39]. Those Tco were in good agreement with the ones
calculated theoretically according to the emerging theories of MQTM [10, 37, 40–
44]. Note that the prediction of MQTM in an antiferromagnetic nanoparticle [43]
showed that this effect should be easier to observe than with ferromagnetic nanopar-
ticles. This is an obvious consequence of the fact that the antiferromagnetic order
parameter (Néel vector) does not commute with the anisotropy Hamiltonian. As this
is now well known, this aspect of quantum mechanics of a single order-parameter
is not valid for a macroscopic antiferromagnet, which has been at the origin of what
was probably the most important controversy in the history of magnetism, ending
with the discovery of antiferromagnetism (B. Barbara, “L’œuvre de Louis Néel”).

Those magnetic relaxation studies in which spin-reversals of classical or quantum
origin take place at the nanometer-scale were sometimes followed by large magneti-
zation jumps which we called “magnetic avalanches” or “macroscopic Barkhausen
jumps” [17–20, 45, 46]. First observations of this phenomenon were made on Sm-
based single crystals above 1 K [17, 19] (Fig. 2.1(a)). Interestingly those jumps were
large but of finite size, leading to staircase hysteresis loops (Fig. 2.1).

Each avalanche results from macroscopic domain-wall jumps, initiated by 2-D
nucleations (of classical or quantum origin) randomly distributed over the existing
domain walls and followed by classical domain-wall motions spreading through
the crystal over about 1 µm with linear raising time τ1 ∼ 1 ms (constant velocity
∼ 1 µm/ms) and exponential slowing-down times of τ2 ∼ 5 ms (associated with
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Fig. 2.2 Left: avalanche observed in Mn12-ac and right: associated temperature variation (the sam-
ple was at 850 mK and tilted by 45° away from the field) [47, 48]. Similar temperature variations,
with a crossover to a regime where the temperature oscillates have been observed in Sm-based
systems in the limit of low sample-bath coupling [19]

heat release, Fig. 2.1(b)) [17, 19, 20]. The same phenomenon was also observed
later in Mn12-ac [47, 48] (Fig. 2.2), especially when the sweeping field rates exceed
a certain value or/and the crystals are not very small (for reasons which are made
obvious below).

Further studies of this phenomenon on Mn12-ac compared this phenomenon to
the propagation of a flame-front through a flammable substance “magnetic defla-
gration” (see reference [49] and the chapters by D. Garanin and M. Sarachik in the
present book). Our explanation for those avalanches was, and still is, related to the
transfer of a part of the magnetic energy stored in the hysteresis loop HdM/dt
to phonons, plasmons, spin-waves, etc, after the fast motion of a domain wall.
Avalanches were observed only if that heat could reach the cryostat at a rate slower
than the rate at which it was produced.

All that showed that unambiguous proof of MQTM was lacking, especially after
we realized that unavoidable energy barrier distributions could be a real problem
[28, 39]. On the basis of very general arguments, we actually showed that in the
presence of size or/and switching field distributions, the energy distribution func-
tion of non-interacting switching blocks is a power-law f (E) ∝ E1/α−1 where α
is a parameter depending on details of the initial distributions. The measured mag-
netic viscosity S = dM/d ln t = Tf [E = kBT ln(t/τ0)], should therefore be inde-
pendent of temperature if α � 1, an effect which could be mistaken for the ex-
pected temperature-independent plateau of MQTM. The application of this model
to the systems that we studied showed that (i) with large α, ensembles of Ba-ferrite
nanoparticles exhibit such a distribution-plateau below 10 K, thus hindering the
observation of MQTM and (ii) with α = 1, large assemblies of TbCeFe2 or FeC
nanoparticles, and amorphous-FeTb multi-layers do not show such a “distribution-
plateau”, suggesting that in those cases the plateaus observed were likely of MQTM
origin [19, 20] (Fig. 2.3).

Regarding interacting switching blocks, we developed a numerical model which
also ended up with a power-law distribution for f (E) [28, 45]. This was a 3-D
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Fig. 2.3 Variations of the effective temperature T ∗ (defined as τ = τ0 exp[−E(H)/kBT
∗] ∼mea-

suring time scale) vs. the measured temperature T , in particles of TbCeFe2 (a) and FeC (b) of a
few nm [20, 39]

Ising model with ferromagnetic interactions Jex and a random anisotropy distri-
bution of width K0�. The simulations showed the occurrence of spin avalanches
induced either by self-heating (as above) or by exchange-induced cooperative spin-
flips. In order to simulate heat transfer (first case) we assumed that each switched
spin transfers a fraction f of its energy dissipated during the switching to its first
neighbors. In the second case, exchange-induced cooperative spin-flips simply in-
crease with Jex. When f or/and Jex increase, more and more cooperative spin-flips
take place, leading to larger and larger spin-avalanches. In particular, at f = 0 spin-
flips are non-correlated, giving a continuous hysteresis loop when Jex/K0� < 1
and a single infinite avalanche when Jex/K0�� 1. In between, we obtained a hi-
erarchy of avalanches with a power-law size distribution, suggesting the occurrence
of Kohlrausch dynamics. As an example, the low temperature magnetic viscosity
S(T ), calculated at constant Jex, shows a plateau for f ∼ 0.2, and a divergence for
f ∼ 0.4 because the self-heating becomes too important. This model allowed us
to make a connection between our low temperature “distribution plateaus” (which
should not be mistaken for MQTM) and the occurrence of “critical self-organized
avalanches”, showing quite interestingly that the former is at the origin of the lat-
ter. These distribution models helped us considerably to discriminate between the
plateaus of “quantum origin” and those of “distribution origin”. Despite the fact that
it was not much developed, this study [45] was among the first models of this type
which were later popularized under the name of cracking noise models [46].

In order to minimize the effect of distributions on our MQTM studies, we started,
in the early nineties, two simultaneous projects with the search for (i) measurements
of single nanoparticles and (ii) measurements of ensembles of nanoparticles with the
narrowest possible size distributions. This led to (i) the development of the micro-
SQUID magnetometer for micro- and nano-magnetic detection [24], still one of the
most important existing tools for nano and molecular magnetism and (ii) the study
of Single Molecule Magnets where each “nanoparticle” is a magnetic molecule with
a collective spin S = 10 [28–31].
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Fig. 2.4 Left: temperature dependence of the width of the switching field distribution for a 20 nm
BaFeO nano-particle (magnetic moment 105μB) and for three different orientations of the applied
magnetic field. Solid data points were measured on a larger particle (106μB) [51, 55]. Right: ex-
perimental and calculated variations of the crossover temperature Tco with the field tilt angle. In
both cases, continuous lines are fits to the model of Ref. [56]

2.2.1 Micro-SQUID Measurements

The triggering factor for the realization of the micro-SQUID magnetometer was a
short discussion with A. Benoit from our institute (CRTBT at the time) who had de-
veloped a challenging micro-SQUID set-up to detect the persistent currents of single
non-superconducting loops [50]. Our argument was simple: detecting the magnetic
moment of a ferromagnetic nanoparticle (dream of generations of scientists in mag-
netism!) would be much easier than detecting the persistent current of a normal
mesoscopic loop. Two (four) years later, we published the first measurements on
micrometer (nanometer) single-particles, together with D. Mailly, K. Hasselbach,
and W. Wernsdorfer [21, 28, 51–53]. This enabled us to make a series of text-book
demonstrations on the foundations of nanomagnetism [54, 55] with, on the top of
that, a study suggesting MQTM of a single ferrimagnetic Ba-ferrite nanoparticle
(collective spin ∼ 105) when the huge barrier is strongly depressed by the appli-
cation of a magnetic field [51]. Above 0.4 K, the quantitative agreement with the
Néel-Brown theory allowed us to identify unambiguously the dynamical aspects of
uniform magnetization reversal (Fig. 2.4, left).

Below this temperature, strong deviations from this model were evidenced when
the applied magnetic field was tilted (Fig. 2.4, left), which were in quantitative
agreement with the predictions of the MQTM theory in the low dissipation regime
[56] (Fig. 2.4, right). This unique result suggesting macroscopic quantum tunneling
was nevertheless biased by the fact that the signature of resonant quantum tunnelling
could not be fully identified because of the impossibility to detect hysteresis loop
quantization, opening the door for other possible interpretations.

2.2.2 Mn12-ac, The First Single Molecular Magnet

The study of Mn12-ac was boosted by a talk given at the “scuola nazionale sui
materiali nano-strutturati” on “magnetic nanocrystallized systems”, Rimini (1993),
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in which we presented our works on MQTM (see above) and explained why
nanoparticles with the narrowest possible size-distribution were important to get
an unambiguous proof of this phenomenon. This talk found an immediate echo
in D. Gatteschi, as he was himself working with R. Sessoli on Mn12-acetate
([Mn12O12(CH3COO)16(H2O)4]) a system made of identical molecules with col-
lective spin S = 10. That was precisely what we were looking for, except that the
spin was much smaller than what we expected (we were used of nanoparticles of few
thousand spins, at least). However, due to the absence of distribution and the com-
plex character of the molecule (made of a hundreds of atoms), we did not hesitate
to start a collaboration in the course of our search for MQTM, that we formalized a
little later at the occasion of a short meeting at the CNRS centre of Aussois (not far
from Grenoble).

At the end of the same year a first paper reported the existence of magnetic bi-
stability in Mn12-ac [57]. It took between one and two years to start our MQTM
measurements. In fact, the discovery MQTM in SMMs was made in two steps, a
first one showing an unambiguous relaxation plateau at low-temperatures and low
magnetic fields and a second one showing a hysteresis-loop quantization in larger
fields. In order to avoid the above-mentioned distribution problems, we needed a
large single-crystal and a good SQUID magnetometer (some micro-SQUID exper-
iments were done on a small crystal of Mn12-ac, but they were not successful).
A first study, performed in 1995 on five single-crystals of Mn12-ac oriented under
a magnifying lens, already claimed MQTM [28] (see Sect. 2.3.2 below). The first
study performed on a single crystal (1 mm long parallelepiped, oriented under a
magnifying lens) [25] appeared in 1996. The same year, two other studies had been
published. One was performed on a fine powder obtained after severe pounding [26]
(although it was partially oriented in a magnetic field, the residual magnetization
was surprisingly smaller than the limit Ms/2 of a randomly oriented uniaxial pow-
der; Ms = saturation magnetization) and the other was performed on micrometer
crystals oriented in a field [27]. Those studies showed the existence of characteristic
steps in the hysteresis loop of Mn12-ac.

Shortly after the discovery of MQTM in SMMs these molecules became very
popular and to this day constitute a very active field of research with e.g. the search
of quantum tunnelling with larger spins (however one should keep in mind that the
presence of quantization is as useful as the absence of distribution, for the identifica-
tion of MQTM) or the possible use for magnetic memories: classical bits or quantum
qubits. It has always been clear to us that the former is a hopeless project due to the
impossibility to synthesize SMMs with energy barriers ≥ 105 K (except for low
temperature applications, or if 4f − 3d transition metal ions could be strongly cou-
pled in as this is the case in inter-metallic alloys), whereas the latter is a very active
field progressing rapidly (Sect. 2.6). Another and more important subject lays in
the study of the inner mechanisms of quantum relaxation (Sects. 2.3 and 2.4). The
unique understanding of incoherent quantum phenomena which has been reached
in magnetism, is not unrelated to the fact that, in magnetism, theory can start from
first principles which is not always the case for other fields such a superconduc-
tivity (for a review see e.g. [58]). Finally, a natural follow-up of the MQTM study
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Fig. 2.5 Left: simplified structure of Mn12-ac showing the positions and spin orientations of Mn
atoms. Right: interaction scheme

could start a few years ago, by switching to the regime of Mesoscopic Quantum Co-
herence in Magnetism (MQCM) with the first observations of Rabi oscillations in
SIMs [59, 60] (Sect. 2.5) and SMMs [61, 62] (Sect. 2.6). Ongoing studies on those
systems are trying to identify and to study the different decoherence mechanisms in
order to maximize the number of possible operations in a spin qubit, as it is done
for other types of qubits.

To conclude this historical section, it is interesting to point out, that our first
works in the 70’s started with the same system as those with which we have been
working these last years (rare-earth ions). Such a non-deliberate return to basics
converged step by step and merged into the independent flow of research in other
fields of physics and chemistry with now the study of coherent quantum dynamics
in all kinds of qubits and the search for optimisation at the smallest possible scales.

2.3 Quantum Tunneling in Single Molecule Magnets

2.3.1 Single Molecule Magnets: Basic Properties

As explained in the historical Sect. 2.2, first evidences of MQTM were found in
the SMM [Mn12O12(CH3COO)16(H2O)4], hereafter referred to as Mn12-ac. This
molecule, synthesized by Lis more than 30 years ago [63], has a tetragonal symme-
try and contains a cluster of twelve Mn ions divided into two shells with strong anti-
ferromagnetic couplings: four s = 3/2 Mn4+ ions from the inner shell, surrounded
by eight s = 2 Mn3+ ions from the outer shell, giving the collective spin S = 10
(Fig. 2.5).

Those molecules are chemically identical and form tetragonal crystals with an
average distance between Mn12 molecules of the order of 1.5 nm [63]. Intermolec-
ular exchange interactions are negligible and dipolar interactions between nearest
neighbours along the c axis, which coincides with the magnetic anisotropy axis z,
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Fig. 2.6 Left: energy of a SMM plotted vs. Sz; the parabolic shape comes from the dominant
anisotropy term DS2

z slightly modified by higher order longitudinal terms. Ground-state or ther-
mally activated tunnelling take place when the spin-up and spin-down states are at resonance,
provided that at least one transverse term induces a sufficient tunnel splitting � between them.
Right: same energy spectrum, but plotted vs. the angle θ derived from the semi-classical expres-
sion Sz = S cos θ , in abscissa (S� 1)

are about 0.13 K [64]. This is much smaller than the magnetic anisotropy barrier of
each molecule (which, as discussed in what follows, is about 60 K).

Magnetic Anisotropy: The “Giant Spin” Hamiltonian and Its Domain of Va-
lidity The magnetic response of these molecules is therefore determined mainly
by the magnetic anisotropy and by the Zeeman interaction with external magnetic
fields. In the case of Mn12-ac, the effective spin Hamiltonian describing the energies
of states with S = 10 (giant spin approximation), limited to fourth-order anisotropy
terms [63, 65], can be approximately written as follows:

H =−DS2
z −BS4

z +C
(
S4+ + S4−

)− gμBHS, (2.1)

with D/kB ≈ 0.56 K, B/kB ≈ 1.11× 10−3 K and C/kB ≈ 2.9× 10−5 K [57, 66].
The structure of magnetic energy levels that follows from (2.1) is shown in Fig. 2.6
as a function of Sz (left) and as a function of the semiclassical angle θ (right).
Longitudinal anisotropy terms give rise to a classical barrier, of height Ucl(0) ≈
DS2 + BS4, whereas transverse terms contribute to tunneling. The Zeeman term
shifts these levels (see Fig. 2.6, right) and reduces Ucl. For instance, if H points
along zUcl = Ucl(0)(1 − H/HA)

2, where HA ≈ (2S − 1)D/gμB ≈ 105 Oe is the
anisotropy field.

In order to see what the limits of application of this “giant-spin” Hamiltonian
(2.1) are, it is useful to analyze the thermal variation of the effective paramagnetic
moment μeff(T )= g√[S(S + 1)], determined from magnetization and susceptibil-
ity curves measured in the super-paramagnetic region between 3 and 300 K with a
field parallel to the crystal c-axis. AS = 10 Ising model provides an excellent fit of
data obtained below ∼ 10 K, with a crossover to an Heisenberg model between 10
and 30 K [58, 67]. Above 30 K, fits based on the assumption that S = 10 are no
longer valid. Correlatively, a fast decrease of μeff(T )∼ 21μB was observed above
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∼ 30 K, with a broad minimum around 150–200 K. These results show that excited
collective spin states with S = 9, S = 8, . . . cannot be neglected above 30 K, at least
in regard to the equilibrium behaviour [58]. This result, in accordance with weakest
intra-molecular interactions of 45–55 K (Fig. 2.5), agrees with neutron scattering ex-
periments reporting an energy separation of about 40 K between the S = 10 ground
state and the first excited S = 9 multiplets [68].

From a purely theoretical point of view one might, in principle, calculate the
energy spectrum levels of a Mn12-ac molecule with all the couplings between the
twelve Mn atoms. However the Hilbert space dimension (23/2+1)4(22+1)8 = 108

is too large. Besides, due to the uncertainty in experimental determination of the
coupling constants, any such attempt would not be very useful. In order to come
up with a solution to this problem, at least in the region of the temperatures be-
low 150 K, it was suggested to apply the idea of a “reduced” Hamiltonian in which
the largest coupling constant J1 ∼ 200 K between the spins S1 = 2 and S2 = 3/2
“locks” them into a spin-state of S12 = 1/2 up to temperatures of the order of J1
(similar “dimerization” was exploited in [66]). This assumption leads to an effective
8-spin Hamiltonian with a Hilbert space of 104 authorizing exact matrix diagonal-
ization [58]. This “truncated” Hamiltonian includes both exchange and anisotropy
(through equivalent anisotropic exchange). It should be noted that Dzyaloshinsky-
Moriya (DM) interactions were ignored despite the fact that they should be, as in
most low-symmetry SMMs, of the order of a few kelvins because intra-molecular
couplings of are of several hundred kelvins (see [69–71] and references therein).
They can induce anisotropy, remove Kramer’s degeneracy, enhance tunneling or
induce a coupling between multiplets without changing significantly their internal
structure (energy spectrums) [65, 72–76].

Susceptibility and magnetization curves calculated from the 8-spin Hamiltonian
account very well for the experimental data, with only three free parameters, thus en-
abling us to determine them without any ambiguity [58]. The corresponding energy
level structure, given in the left-hand panel of Fig. 2.7, shows that the S = 9 multi-
plet becomes occupied above approximately 30–40 K, confirming that the S = 10
collective ground-state model is no longer valid above these temperatures, at least
regarding equilibrium properties. However, as most experiments devoted to study
MQTM in Mn12-ac are done at low temperature, a description in terms of the S = 10
ground multiplet is quite sufficient.

In the following, I describe in detail how the discovery of MQTM in Mn12-ac
took place in two steps, one before and one after the 1994 NATO workshop on
“Quantum tunneling of magnetization” [28].

2.3.2 First Evidences

Magnetization and ac-susceptibility experiments, performed in 1993–1994 on fine
polycrystalline powders [57] or collections of parallelepiped Mn12-ac crystals [28],
showed a super-paramagnetic behaviour [3]. At high temperatures (T > 2.5 K),
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Fig. 2.7 Left: calculated energy spectrum of a Mn12-ac cluster [58] (valid up to 180 K). The
stars show a parabolic behavior D(S2 − S2

z ) where −S ≤ Sz ≤ S, D/kB = 0.627 K, and S = 10.
Right: energy spectrum of a V15 cluster calculated on the full Hilbert space of 215. In a square:
the ground-state is formed of two S = 1/2 doublets and the first excited state is an S = 3/2 ex-
cited quartet (I. Tupitsyn, private communication and [76]). These 8 levels are also obtained in the
8-spins approximation

the magnetic relaxation time obeys the Arrhenius law τ = τ0 exp(U/kBT ) with a
prefactor τ0 ∼ 10−7 s and an activation energy U/kB 61 K. This gives rise to a
superparamagnetic blocking of the magnetic susceptibility below a blocking tem-
perature TB ≈ U/kB ln(t/τ0) ∼ 3.3 K for t ≈ 1 h. Such an exponential behaviour
is typical of extremely narrow particle size-distributions (Sect. 2.2). Above TB a
Curie-Weiss law with a very small positive paramagnetic temperature θ ∼ 70 mK,
indicates the existence of weak dipole-dipole interactions. As temperature decreases
the low-field relaxation evolves from exponential (about 103 sec) to non-exponential
below ∼ 2 K (two exponential times were observed, to be connected with a spe-
cific non-exponential behaviour discovered later, see Sect. 2.4.4). Besides, (i) a
thermally-activated relaxation observed above∼ 2 K was followed at lower temper-
atures by a well defined plateau down to ∼ 0.2 K (Fig. 2.8, left) and (ii) a minimum
of relaxation was seen near H ∼ 0 together with two less pronounced minima near
μ0H ∼ 0.4 and 0.8 T (Fig. 2.8, right) [28].

Those results were attributed to MQTM between the ground-states m = ±S of
Mn12-ac. Indeed, in the absence of any distribution, the plateau could not have
any other interpretation. Furthermore, the WKB exponent B = 3γ (UclK⊥)1/2

√
ε/

8kBMs (where K⊥ gives the energy of transverse anisotropy terms and ε = 1 −
H/HA [10] leads to a crossover temperature Tco = Ucl/B ∼ (Ucl/K⊥)1/2 ∼ 2 K,
very close to the experimental one (and later confirmed by sub-Kelvin measure-
ments in large fields described in Sect. 2.3.2 below). The observed crossover temper-
ature was rather important because it was measured in zero field i.e. with a large bar-
rierUcl(0). At higher fields, Tco decreases rapidly, with the barrierUcl(0)≈Ucl(0)ε.
The relaxation-time minima of Fig. 2.8 (right) were also interpreted in terms of
MQTM when the level schemes of the two wells with S =±10 are in coincidence”.
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Fig. 2.8 Left: thermal variation of the relaxation time measured on a few large crystals of Mn12-ac
for fields H = 0, 0.4 and 0.8 T applied 45° from the easy axis. Right: field-dependence of the
relaxation time measured just above and below Tco (the overall linear decrease is simply due to the
Zeeman reduction of the classical barrier [28]

Fig. 2.9 Left: hysteresis loops measured on a single crystal of Mn12-ac [25] with a field along c
(easy-axis of magnetization). The steps take place when spin-up and spin-down states are in coin-
cidence (resonant tunneling), independently of temperature. The hysteresis loop depends on tem-
perature after the first step, when the crossover temperature decreases. Right: field variation of the
derivative Mz/Hz taken at 1.9 K. The observed Lorentzian line-shape suggests that the system of
spins is in the diluted limit, close to equilibrium

2.3.3 Main Evidences

Thermally-Activated Tunneling The above results on low-field ground-state tun-
neling in Mn12-ac were extended a little later to the case where a longitudinal
magnetic field is applied. Figure 2.9(left) shows the results of our experiments per-
formed, at temperatures 1.5 (K) < T < TB, on a single-crystal with parallelepiped
shape carefully oriented along the applied field direction by the use of a magnify-
ing lens [25]. They show a succession of plateaus (relaxation-times � measuring-
timescale) and steps (relaxation-times < measuring-timescale) [25–27].

The plot ofMz/Hz versus longitudinal field Hz (Fig. 2.9, right) gives Lorentzian
peaks enabling to accurately define the magnetic fields Hn at which the magnetiza-



2 Quantum Tunneling of the Collective Spins of Single-Molecule Magnets 29

Fig. 2.10 Left: field dependence of the relaxation times measured on the Mn12-ac hysteresis loop
at 1.9 K, showing deep dips at resonant fields [25]; the relaxation times are plotted against in-
verse temperature in the inset. Right: real ac-susceptibility component measured at 5 K [27]; open
squares: 980 Hz, open ellipses quasi-static, solid circles: 15 Hz. Solid lines: predictions for classi-
cal thermally activated relaxation. Inset: field dependence of the relaxation time at 5 K

tion steps occur: Hn0.44nT (n = 0,1,2, . . .). The width is mainly associated with
dipolar interactions and therefore with the value of the sample magnetization; some
disorder might also contribute if the crystal quality is not good enough (more details
are given in Sect. 2.4.4 below). The relaxation time shows deep minima at the field
values where the steps are observed (resonances) (Fig. 2.10, left). Ac-susceptibility
experiments show that the minima of relaxation time can be seen on a broader tem-
perature range, up to 5 K (Fig. 2.10, right), with however less pronounced minima.

In those experiments the measured transition rate decreases rapidly with temper-
ature showing that MQTM is thermally-assisted i.e. it takes place from thermally-
activated excited levels [25–27]. In this case, the spin reversal probability is
the product of the thermal activation probability, which promotes the spin from
its ground-state m = −S to an excited state m = −S + n, by the tunneling
probability switching the spin from m = −S + n to m′ = S, giving 1/τTA =
(1/τ0) exp(−B) exp(−Em/kBT ). The tunneling probability is then equivalent to
changing the prefactor from 1/τ0 to 1/τ0Q = (1/τ0) exp(−B). It is well known since
Néel’s time that 1/τ0 increases at low temperature (in some models such as 1/

√
T ).

This classical effect, resulting in the slowing down motion of the “particle” at the
bottom of the well, can also be attributed to a decreasing of the classical entropy
when temperature decreases (associated with different paths inside the well, see
e.g. [77] and references therein). However, at T = 0, the “particle” is at rest and
the dynamics, necessarily of quantum origin, will take place only if tunneling is
possible. In this case, new channels open paths extending the “particle” motion to
the second well and leading to a zero-Kelvin entropy, increasing with the tunnel-
ing rate 1/τQTA = exp(−BTA) at finite temperature and 1/τQGS = exp(−BGS) at
zero Kelvin. 1/τTA ≈ exp(−ETA/kBT ) gives ETA = Em − kBT S, defining an en-
tropy STA = ln(1/τ0) + ln(1/τQTA) at low but finite temperatures and an entropy
SGS = ln(1/τQGS) at T = 0 in which quantum paths contribute by analogy with
Feynman’s path integrals [78].
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Fig. 2.11 Left: hysteresis loop of a Mn12-ac crystal obtained from torque experiments with a mag-
netic field along the easy c-axis. The curves become independent of temperature at all fields below
0.7 K [65]. Inset: field-derivative of the n= 8 resonant transition at 0.90 (dots), 0.95 (dashed) and
1.0 K (continuous). The resonance splits in two: tunnelling from the ground state m = −10 and
from the excited state m = −9; the other resonances show the same behaviour. Right: the main
part of the figure gives an example of relaxation curves measured in the plateau i.e. resulting from
ground-state tunneling. Inset: relaxation rates in a longitudinal or a transverse field vs. temperature

Ground-State Tunnelling and Relaxation Experiments performed above 1.5 K,
and reported in Refs. [25–27], constituted the best proof of the thermally activated
MQTM. Furthermore they confirmed the interpretation of ground-state MQTM be-
tween ∼ 0.2 and 2 K, in low-field (Fig. 2.8) [28]. The observation of staircase hys-
teresis loops showing ground-state MQTM in Mn12-ac at different fields came later,
extending the low-field ground-state MQTM [28] to the case of a variable field [65].
In those sub-Kelvin experiments (Fig. 2.11, left) the field derivative of the magneti-
zation curves near resonant transitions shows either a single peak at lowest tempera-
ture or two peaks when the temperature is high enough to excite the next upper level
as shown in the inset of Fig. 2.11(left) and in Fig. 2.12, where the resonant transi-
tions from the ground-state m = −10 and from the first excited state m = −9 are
simultaneously apparent above 0.8 K. Below this temperature, only the ground-state
resonance m=−10 is seen. Between the two, a transfer of intensity is observed as
temperature increases.

This behaviour, observed for all resonances, led to the construction of Fig. 2.12
showing how MQTM evolves with temperature in this system, when the longitu-
dinal field increases and temperature decreases. The coexistence, in a narrow tem-
perature range, of two resonances with m and m− 1, defines the crossover temper-
ature Tco(Hz) and shows that thermally-activated MQTM, taking place just above
Tco(Hz), is continuous and evolves step by step by simple spin-phonon transitions
[65]. The thermal variation of Tco(Hz), easily defined by taking the middle of the re-
gion where the first two transitions occur simultaneously, gives Tco ∼ 0.7 K at∼ 5 T
a value which increases when the field decreases and reaches 1.2 K at 3 T. A simple
extrapolation gives, in zero longitudinal field, Tco(Hz = 0) ∼ 1.5–2 K confirming
the first results shown in Fig. 2.8 [28].

The above results on Mn12-ac were based on hysteresis loops measured at sub-
Kelvin temperatures from torque experiments and in fields up to 6 T [65]. Fig-
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Fig. 2.12 (a) Peak maxima
measured vs. temperature in
Mn12-ac between 1.4 and
0.4 K (left) [65]. Horizontal
lines indicate the calculated
crossing fields obtained from
the energy level spectrum
calculated from exact
Hamiltonian
diagonalisation (b). The shift
of the crossings by the fourth
order term B of (2.1) is
clearly visible

ure 2.11 shows that, below 0.8 K, the different loops merge showing that tunneling
takes place from the ground-statem= 10 at fields larger than a few Tesla (above this
temperature, as in Fig. 2.9, they merge only at lower fields, in agreement with the
fact that Tco increases with decreasingH ). Similar results were obtained in the same
set of experiments, but with a transverse field of about 4 T. As an example, I give in
the right-hand inset of Fig. 2.11 the temperature dependence of the relaxation times
measured in a transverse or a longitudinal field. The relaxation time in a transverse
field of 3–4 T is clearly independent of temperature below 0.8 K, evidencing MQTM
between the ground statesm= 10 andm=−10 of the two symmetrical wells in the
majority phase of Mn12-ac [65].

Interestingly, the slow increase of the tunneling rate above 0.7–0.8 K is too
smooth to be due to thermally-activated tunneling between m = ±9, ±8 states.
It rather comes from direct phonon-assisted tunneling between the ground-states
m=±10. These experiments show that, unless it is a first order transition [79], the
crossover from ground-state tunneling to thermally-activated tunneling goes through
an intermediate regime where tunneling takes place between non-resonant states
m = +10 and m = −10 split by the magnetic field and by dipolar interactions,
due to spin-phonon transitions between the two wells [65]. This phonon-assisted
tunneling regime, in a large transverse field, was predicted in [80, 81] to dominate
magnetic relaxation for sufficiently high transverse magnetic fields. Its existence has
been confirmed by the results of EPR [82] and time-dependent heat capacity [83, 84]
experiments performed under similar conditions (strong transverse magnetic fields
and low temperatures).

In a longitudinal magnetic field, the relaxation rate first increases above 0.6 K,
goes to a maximum near 0.8 K and then decreases (Fig. 2.12, inset). This effect was
also connected with spin-phonon transitions, but within a single-well this time. This
shows in particular how thermally-activated tunneling takes place from one level
to the next one in relation with the results of Sect. 2.3.2. The right-hand panel of
Fig. 2.11 gives an example of relaxation curves measured in the plateau, i.e., result-
ing from ground-state tunneling. At short time scales, relaxation follows a square
root law but at longer times it becomes exponential (for details see Sect. 2.4.4).
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Fig. 2.13 Monte Carlo
calculations predicting the
effect of quantum hole
digging in the initial
distribution of internal fields
[85]

This square root law is specific to MQTM and comes from non-equilibrated spin-
state transfer from one well to the other one, by tunneling, which creates a time-
dependant hole in the initial density of states. Figure 2.13 shows this hole as it was
first obtained by the quantum simulations of Prokof’ev and Stamp [85].

Microwave-Activated Tunnelling After the evidences for ground-state [28] and
thermally-activated [25–27] MQTM in Mn12-ac, one question became rather obvi-
ous: is it possible to induce activated MQTM by microwaves? It was indeed well
known that microwaves can easily promote a quantum state to an upper one if its
frequency matches the level separation, as this is done in EPR [86]. The question
was simply to know whether the lifetime of the excited level can be large enough
in comparison with the “waiting time for tunneling”. The answer was also yes as
it was indeed possible to observe m = 9m = −9 MQTM after the application of a
circularly polarized microwave of frequency �ω=E(S)−E(S− 1)(2S− 1)D to a
crystal of Fe8 SMMs [87]. A first important remark is that, contrary to a linear polar-
ization, a circular polarization has the advantage to distinguish between �m=+1
(left polarization, σ− photons) or �m = −1 (right polarization, σ+ photons), so
that the population of only one of the two excited states m = ± 9, is enhanced.
If we start from a saturated state at +Ms , then tunnelling takes place essentially
from S to −S or S − 1 and −(S − 1) implying the use of σ+ microwave photons.
The hysteresis loops of a Fe8 single crystal measured at 60 mK under irradiation
(easy axis parallel to the applied field), show that the tunneling transition near zero
field is strongly enhanced for the radiation of 115 GHz, which precisely matches
the m = 10 to m = 9 level separation. The observed increase of the tunneling rate
at zero field, as a consequence of the absorption of photons induced by circularly
polarized radiation, became evident by comparing the zero-field steps after positive
(+Ms), or negative (−Ms) saturation. The irradiation effect was found to be much
smaller for other frequencies where it resembles the thermally-activated MQTM
case. A simple interpretation of the data, based on the equation of energy transfer
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in the bottleneck regime [86] showed that the spin temperature Ts (which is an ef-
fective temperature reflecting the occupation of excited states caused by microwave
irradiation at T ∼ 0 K), increases linearly with microwave power. This result agrees
with a simple model where both the specific heat of spins and the typical spin-spin
diffusion time, accounting for energy transfer by spins (also related with the level
lifetime), were supposed to be independent of temperature [87]. This first study of
microwave activated tunnelling in a SMM was followed by other studies [88, 89].

2.4 Theory and Comparisons with Experiments

2.4.1 Resonance Conditions

The spin S = 10 Hamiltonian (2.1) gives the values of the longitudinal magnetic
field Hn anti-parallel to the persistent magnetization at which the intersection of en-
ergy levels occurs. The condition for the intersection of two levels with Sz =m> 0
and Sz = n−m< 0, is approximately given by [25–27]:

Hn ∼ nDeff/gμB. (2.2)

At these values of the magnetic fieldHz, levels associated withm> 0 and n−m< 0
magnetic states come into resonance and tunneling channels open. The value
Deff/kB ∼ 0.56 K derived from EPR measurements [57, 66] gives, with (2.2),
Hn ∼ 0.42n T, which differs slightly from the experimental Hn ≈ 0.44n T, mea-
sured at intermediate temperatures (wherem= 3–4, Figs. 2.9–2.11). This difference
can be accounted for by the fact that Hn depends on the temperature at which the
experiments are done, through modifications of (2.2) by the fourth order anisotropy
term:

Hn = nD/gμB
[
1+ (B/D)((m− n)2 +m2)] (2.3)

where m = Sz and n = integer number of level shifts between the two wells.
D should be derived from this expression (2.3) and not from (2.2), the latter provid-
ing only an effective value Deff. Assuming that the difference between Hn ∼ 0.42n
and Hn ∼ 0.44n comes from that, we get (m − n)2 + m2 ∼ 13, which effectively
corresponds to the transitions m ∼ 3–4 with Deff/kB ∼ 0.6 K. Later on, a direct
verification of expression (2.3) was given [69] in which a linear fit gives D/kB ∼
0.51± 0.02 K and B/kB ∼ 1.0± 0.3 mK, i.e. Deff/kB = 0.51+ 10−3[(m− n)2 +
m2] ∼ 0.64 K for the observedHn ∼ 0.48n. We deduce (m−n)2+m2 ∼ 130 which
corresponds to transitions from the ground-statem= S = 10 with n−m= 5–6. The
termB also contributes to the zero-field energy barrierUcl(0)=DS2+BS4 ∼ 61 K.
We shall now see how the decreasing of this barrier by application of a longitudi-
nal or transverse field or by temperature, can be interpreted in terms of quantum
fluctuations.
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2.4.2 Quantum Fluctuations and Barrier Erasing

The tunneling rate between two states −m and m − n depends sensitively on the
values of m and n. As an example, in zero longitudinal field it is extremely small
withm=±S (very long timescale) and fast with e.g.m=±1 (very short timescale).
Measurements being always performed at a given timescale, only a few sets of levels
can be recorded, say ±mt . All levels above (below) those ones have larger (smaller)
tunnel splitting and therefore tunnel too rapidly (slowly). If the latter do not modify
the result of measurements, this is not the case for the former where the presence
of tunnel splittings larger than level separations associated with diagonal anisotropy
terms (cf. (2.1)) leads to a short-cut of the top of the barrier. This means that the “ef-
fective” height of the barrier in zero magnetic field is Ueff(0)=Ucl(0)(S2−m2

t )/S
2

instead of Ucl(0), i.e. it is reduced by quantum fluctuations resulting from large tun-
nel splittings near the top of the barrier. This effect was observed experimentally
[69] in the high temperature relaxation regime of Mn12-ac (between 2.6 and 3 K)
where relaxation times follow Arrhenius lawUeff(H)= T ln[τ(T ,H)/τ0], as shown
from the data points plotted in the left-hand panel of Fig. 2.14. The resonant tunnel-
ing dips reduce Ueff(H) by about 10 % at all fields allowing one to estimate mt . In
particular the zero-field barrier shows a minimum at∼ 57 K and a maximum at∼ 64
K. The linear field decrease of the effective barrier of Fig. 2.14(left) fits the classical
expression Ueff(Hz)= Ueff(0)(1+Hz/HA)

2 although it is of pure quantum origin:
when the longitudinal field increases, the barrier height and width decrease and tun-
neling is faster authorizing an easier barrier short-cut of the top of the barrier. This
barrier short-cut takes place when the tunnel splitting associated with ±m is equal
to the mean level separation between the consecutive states issued from m and m±
1. An example is given Fig. 2.14(right) for the case of a transverse field where the
classical barrier reduction, Ueff(H)= Ueff(0)(1+Hx/HA)

2, precisely follows this
rule.

2.4.3 Tunnel Splittings, Spin-Parity and Observation of MQTM

Tunnel splittings are generally evaluated numerically in order to take into account
the contributions of different symmetries, simultaneously and accurately. How-
ever, analytical expressions are useful for orders of magnitudes and physical dis-
cussions. Following van Hemmen and Suto [40], the tunnel splitting between the
two states −m and m− n generated by an off-diagonal perturbation DpS

p
±, of or-

der p, can be written [90, 91] as �(p)m,n−m ∼ DS2(DpS
p/2DS2)(2m−n)/p . Indeed,

to connect two states −m and m − n the operator Sp± of order p, must be iter-
atively applied an integer number of times, allowing a tunnel transition between
−m and m− n only if (2m− n)/p = integer k, which leads to the above expres-
sion [91, 92]. In the case of Mn12-ac we have �(4)m,n−m ∼ DS2(CS2/2D)(2m−n)/4

and �(1)m,n−m ∼ DS2(Hx/2DS)(2m−n) for the fourth and first order terms respec-
tively. In samples with so-called “fast species”, where isomers with tilted local
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Fig. 2.14 Left: effective energy barrier of Mn12-ac measured as a function of a magnetic field
applied along the easy c-axis in the high temperature regime,showing a parity effect resulting from
different symmetries of the crystal-field parameters [69]. Right: evolution of the energy spectrum
vs. a transverse field, calculated from exact diagonalization of the Hamiltonian. Maxima and min-
ima of the classical energy barrier (classical expression) are given in dashed lines. Interestingly
these lines cross the quantum energy spectrum when tunnel splittings are equal to level separa-
tions. This is what we called the “quantum erasing of a classical barrier”

anisotropy directions induce a second order transverse term [93], the tunnel splitting
�
(2)
m,n−m ∼DS2(D2/2D)(2m−n)/2 should also be considered.
These expressions give good orders of magnitude for tunnel splittings and al-

low a simple understanding of parity rules for tunneling. In Mn12-ac we find
�
(4)
10,−10 ∼ 10−11 K, a value which is about 10 times larger than the 310−10 K ob-

tained experimentally from the sub-Kelvin measurements described above. How-
ever, this difference can easily be understood as due to higher-order transverse
anisotropy terms [58, 69]. These terms, of unknown values, can actually make sig-
nificant contributions to the tunnel splitting even if they are very small. This can
be seen directly from our �(p)m,n−m expression showing that �(p)m,n−m remains of the
same order of magnitude if the coefficient Dp does decrease much faster than a
power-law, which is generally the case [58]. This makes any really quantitative cal-
culation of the tunnel splitting from (2.1) rather problematic.

Having a large enough tunnel splitting is important to observe MQTM. However
it is even more important that the spin-parity rules are obeyed i.e. 2m− n= kp for
a pth order transverse term (see above). For an integer spins, elementary arithmetic
shows that the contributions to tunneling are non-zero only if n is a multiple of 4 for
p = 4, with a shift of 2 between even and oddm (4th order term S4±), a multiple of 2
for p = 2 (2nd order term S2±) and a simple integer if p = 1 (1st order term Sx ). As
an example, in order to connect the states−m andm−n with the fourth order trans-
verse anisotropy term of Mn12-ac, the S4− operator must be iteratively applied an in-
teger number of times, i.e. 2m− n= 4k, giving n= 2(m− 2k), i.e. n= 0,4,8, . . .
for even m and n = 2,6,10, . . . for odd m. Notice that, even if they are relatively
weak, environmental magnetic fields (e.g. those arising from dipolar interactions be-
tween different molecules) can partially lift these selection rules. As was discussed
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in [58, 80], the combination of fourth-order anisotropy terms with such linear terms
gives rise to nonzero tunnel splittings between any pair of magnetic states. More
precisely, even resonances are induced by S4+ or S4−, whereas odd resonances are in-
duced by combinations like SxS4+ or SxS4− explaining why even and odd resonances
have different sizes (Fig. 2.14, left, [69]). Experimentally, MQTM is observed for
any integer n and not only for resonance numbers that are multiple of 2, 4, etc. In
the case of Mn12-ac, for instance, relaxation rates measured at odd-numbered reso-
nances are only slightly lower than those measured at even-numbered ones [69, 94].
In addition to the combinatory effect mentioned above, one might add the likely
important role of Dzyaloshinsky-Moriya interactions, which has been pointed out
many times since 1997 [65, 69–71] (see Sect. 2.3.1). The low point symmetry of
SMMs and the important strength of intra-molecular super-exchange interactions
(several 102 K) does enable Dzyaloshinsky-Moriya interactions of a few Kelvin,
which is quite enough to enhance tunnel splittings strongly and, more importantly,
to enable tunneling for integer n, as observed experimentally. Besides, the small
differences observed between odd and even resonances in Fig. 2.14(left) may come
from the presence of a 2nd order term of the type S2± which is related, in Mn12-ac,
to a minor species of isomers with local anisotropy axes tilted by a few degrees [93]
(see above, the parity rule is 2m − n = 2k). This could be a convincing evidence
for the presence of a small amount of the fast species where even contributions to
MQTM are larger than odd ones by ∼ 15 %. Note that this percentage does not
reflect the proportion of fast species precisely as it should be renormalized by the
ratio of squared tunnel splittings. A rough evaluation based on published anisotropy
parameter of the fast species [93] and taking this renormalization into account, gives
us a few % which seems very likely.

These parity rules, required to connect two states of opposite spin components in
the two potential wells, should not be mistaken for those associated with the Haldane
topological phase [95] causing the Berry oscillations [96] of the tunnel splitting
about �(p)m,n−m in a transverse magnetic field [97, 98] that were first observed in
the system Fe8 [99]. The simplest way to describe these oscillations analytically
is to truncate the general Hamiltonian to a simple low-energy 2-level Hamiltonian
[96, 98, 100–102], i.e., to consider a case identical to the classical one [103]. An
extension to the quantum case has been achieved by taking into account the fourth-
order anisotropy terms [58], which in particular allowed one a closer approach of
the Berry phases in SMMs. However, one should not forget contributions of higher-
order anisotropy terms to the tunnel splitting, which makes these calculations rather
pointless if they have to be precise.

2.4.4 Quantum Tunneling and Spin-Bath

In the most naïve approach, the tunneling rate Γ is sometimes taken as equal to the
quantum tunnel splitting �. However, this assumption is far from reality because
(i) it implies that the homogeneous line width is smaller than or equal to the tunnel
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splitting, which is generally not the case, (ii) it neglects the dynamics i.e. the times
interval during which the two levels are in coincidence (iii) it neglects environmental
effects. Essential for the understanding of quantum phenomena in magnetism is the
spin-bath, i.e., the ensemble of environmental spins (nuclear spins or neighboring
electronic spins) interacting with the central spin [85, 97, 102, 104–106].

When both environmental and dynamical (times interval during which the two
levels are in coincidence) effects are neglected, Γ ∼�2/G, where G is the level-
broadening (we assumeG��; ifG→ 0, Γ ∼ 1− exp(−�2/G)→ 1, is indepen-
dent of�). If only environmental effects are neglected, we find the situation covered
by the Landau-Zener model [107, 108], where quantum superpositions ⇑±⇓ of the
two states of a single spin S = 1

2 are removed by a longitudinal magnetic bias evolv-
ing with time from −∞ to +∞ at a given rate ν = gzBdHz/dt . The Landau-Zener
tunneling probability is given by:

PLZ = 1− exp
(−2/�ν

)
(2.4)

At large sweeping rates, expression (2.4) gives PLZ ∼�2/�ν. This model has been
applied to the tunneling problem in magnetism ever since the first MQTM results
were obtained [109–111]. Note that the sweeping field term ν is equivalent to a level
broadening.

In the general case where the environment is also taken into account, most impor-
tant effects come from level broadenings by phonons, nuclear spins or dipolar fields
which constitute the first manifestations of the phonon or the spin baths. The ways
in which these level broadenings intervene are very different depending on whether
they are homogeneous or inhomogeneous. The environment is able to absorb finite
variations of energy and angular momentum, which is extremely important because
the non-conservation of these quantities can forbid the tunneling. However, its most
important “positive” effect is that it enables the observation of MQTM and this is
what we will discuss now (the “negative” effects such as the suppression of co-
herent quantum spin dynamics will be discussed in Sect. 2.6). As we consider the
spin dynamics at low temperatures, we shall mainly concentrate on the spin-bath
[85, 97, 102, 104–106, 112–115] (even if it shows interesting effects (Sect. 2.3.2)
the phonon-bath [79–81, 116–118] has a much smaller impact at low temperatures
and low magnetic fields).

Long-range dipolar interactions spread out each resonant level −m, m− n into
frozen spin-up and spin-down distributions (inhomogeneous broadening). The de-
grees of coincidence of these distributions is given by the energy difference ξm,n =
E(m,n)−gzμB(2m−n)Hz, where E(m,n)=D(n−m)2−Dm2. For a given pair
−m,m−n of broadened levels the writing may be simplified and the distribution of
spin-down states (available for tunneling) can be written ND(ξ) where the function
ND is a Lorentzian or a Gaussian (depending on the degrees of dilution/equilibration
[58]). The homogeneous distributions of hyperfine or super-hyperfine interactions
(they must be weak, see Sect. 2.5) create a dynamical window in this distribution al-
lowing resonant spin-up and spin-down states to “see each-other”, as this is the case
with the (necessarily homogeneous) tunnel splitting of a single-spin in the Landau-
Zener model. The corresponding time-scale being the nuclear coherence time T2,



38 B. Barbara

the Landau-Zener probability, renormalized by the spin-bath can be written in the
limit of small splitting � as follows [85, 97, 102, 104–106]:

PSB(ξ)= π�2e−|ξ |/ξ0ND(ξ)
EN

(2.5)

The exponential factor limits the tunnel window to the width ξ0 of the homoge-
neous nuclear-spin broadening given by the hyperfine energy ξ0 ∼ AIS, the distri-
bution ND(ξ) gives the number of down spins available for tunneling and EN is the
energy associated with the nuclear-spin flip timescale. Expression (2.5) can also be
written as PSB(ξ)= π�2e−|ξ |/ξ0ND(ξ)ξ0/(�ξ0T −1

2 ) where T2 is the characteristic
nuclear spin flip time, which therefore defines the “sweeping field time” of the mag-
netic field HNZ = ξ0/gZμB generated by nuclear spins on the electronic spin S. In
this form, connections with the Landau-Zener model are clearly seen. Note that if
T2 is large enough, T2 � �ξ0/�

2, then the exponential in (2.4) cannot be expanded
and the transition is adiabatic showing that the SMM spin almost always follows the
nuclear spin and inversely (good entanglement). This type of “coupling” is different
from the case of a large hyperfine interaction ξ0 ∼ AIS, where the two spins are also
locked but not necessarily entangled (case of rare- earth ions, Sect. 2.5).

Resonant Tunneling Line Shapes and Observation of MQTM In the present
case of a SMM crystal, each molecule is submitted to an internal field of dipolar ori-
gin varying in direction and amplitude. Longitudinal field components split the two
states±m of each molecule by a value between∼ 0 andHDMax (the maximum dipo-
lar field), generally of the order of 10–100 mT in these systems, (it can be evaluated
experimentally and calculated from the crystallographic structure). In order to put
states+m and−m of a given molecule in resonance, one has to apply a longitudinal
field compensating the local dipolar field acting on it (Fig. 2.6). For states such that
�m,n < ξm,n(HDMax), molecules have a chance to tunnel if the applied field sweeps
between 0 and ∼HDMax. Under these conditions, the resonance line-width is of the
order of HDMax. On the other hand, resonance line widths associated to tunneling
via states having�m,n > ξm,n(HDMax) are, as this is well known, mainly determined
by�m,n eventually corrected by phonon broadenings (see, for instance, [58, 80, 81]
and below). Experimentally, resonance lines for Mn12 have been obtained from ei-
ther the plot of dMz/dHz vs. Hz or from field-dependent susceptibility data. In
both cases, nearly Lorentzian line-shapes are observed (Fig. 2.7, right), the width of
which (40–100 mT) depends on the value of the magnetization (i.e. of the index n)
and on the shape of the sample [25, 27]. Note that Lorentzian line-shapes are ex-
pected in the limit of dilute/equilibrated static dipoles ([58] and references therein)
or/and at high enough temperatures when homogeneously broadened resonance re-
sults from equilibration by spin-phonon transitions (see e.g. [25, 69, 70, 118]). An
alternative explanation for the observed Lorentzian line shapes is that, at sufficiently
high T , magnetic relaxation proceeds by tunneling via states close to the top of the
barrier, which have tunnel splittings comparable or even larger than dipolar bias
[80, 81].
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The tunneling rate is maximum (center of the magnetization steps) when the
applied field is such that the two distribution maxima are in resonance. The first re-
laxation maximum (n= 0) measured in Mn12-ac was not exactly in zero-field but in
a weakly negative field, which was interpreted as a consequence of the competition
between the demagnetizing field −NM (shape-dependent, where N is the demag-
netizing factor) and the local Lorentz field 4πM/3 [65, 69]. The same effect was
also observed in Fe8 but with a significant difference: the first resonance was ob-
served in a small positive (and not negative) field [119]. Since the Mn12-ac crystals
are elongated, their demagnetizing field is smaller than the Lorentz field and the
internal field is parallel to the magnetizationM : one has to apply a negative field to
cancel the internal field, whereas the situation is just opposite with Fe8 where the
crystals are flat.

It is also interesting to recall that ground-state MQTM could never have been
detected, with the finite field resolution of existing magnetometers, in the absence
of the important broadening of dipolar interactions (40–100 mT [25]). It is because
in the absence of such broadenings a resonance would have required to put in co-
incidence two levels of width �, which is of the order of 10−10 K ∼ 10−11 T for
the m = 10 Mn12-ac ground-state resonance (and 10−8 K ∼ 10−9 T in Fe8). Note
that pure phonon broadening (by a factor of ∼ 100) is also too small to authorize
this detection at low temperatures, even if phonon-assisted tunneling is possible (see
Sect. 2.3.2).

Tunneling via Thermally Activated Excited States Following the Landau-
Zener description discussed above, the tunneling probability between states −m
and m − n of a SMM, submitted to a magnetic field Hn ∼ nD sweeping at
the rate ν = gBdHz/dt , can be expressed as P−m,m−n = 1 − exp(−2−m,m−n/2ν),
where �m,n−m ∼ DS2(Hx/2DS)(2m−n) is the tunnel splitting. This gives for the
TA probability 1/τTA(−m,m−n)(1/τ0)[1 − exp(2−m,m−n/2ν)] exp(−E−m/kBT ) or
1/τTA(−m,m−n) = (1/τ0)(

2−m,m−n/2ν) exp(−E−m/kBT ) if 2−m,m−n � 2ν. As the
population of thermal states does not involve only one state but an ensemble of
states, the measured TA relaxation time is given by:

1/τTA = (1/τ0)
∑
m

(
π�2−m,m−n/2�ν

)
exp(−E−m/kBT ) (2.6)

According to this model, for a single spin the wave-function collapses (and co-
herence is thus lost) in the timescale of �m,n−m/ν [103]. Expression (2.6) has been
extensively used to interpret MQTM experiments, derive the value of tunnel gaps,
etc.

The validity of the Landau-Zener model is restricted to states with tunnel split-
tings larger than level broadening (typically �−m,m−n > ξ0 for the spin-bath and
�m,n−m > h/τ0 for the phonon-bath) and subjected to magnetic fields varying faster
than environmental fluctuations (more specifically ν��m,n−m/τ0 for the phonon-
bath and ν��m,n−m/T2 for the spin-bath). If the latter condition is not fulfilled,
the external magnetic field Hz can be considered as being quasistatic within the
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excited level lifetimes (τ0). The relaxation rate is determined then by spin-phonon
interactions at high temperatures and by spin-spin fluctuations at low temperatures
(kBT � level spacing). In case h/τ0 > �m,n−m [79, 116–118] the level lifetime
τ0 ∼ 10−7–10−8 s is much shorter that the tunneling oscillation time h/�m,n−m
and prevents the existence of quantum coherent oscillations between states located
on opposite sides of the magnetic anisotropy barrier. For excited states that fulfill the
opposite condition h/τ0 <�m,n−m any coherent spin dynamics is also lost, in time
scales of the order of h/�m,n−m [80, 81]. The latter prediction seems to be con-
firmed, for Mn12-ac, by the results of nonlinear ac susceptibility experiments [67].
In any case, all these results strongly suggest that thermally activated tunneling of
SMMs is a fully incoherent process. The following expression, where hWm = h/τ0
is the phonon-line broadening associated with inter-level transitions allowed by the
spin-phonon interaction, (see [58] and therein refs.)

1/τTA ≈
∑
m

�2−m,m−nWm
ξ2
m,n +�2−m,m−n + h2W 2

m

exp

(
−E−m
kBT

)
(2.7)

represents both h/τ0 >�m,n−m and h/τ0 <�m,n−m limits. It results from the cor-
rect contribution to all orders in �m,n−m from inelastic phonon processes.

In the situations described by (2.6) and (2.7), Berry phase oscillations of the tun-
nel splittings �−m,m−n should manifest themselves also in the thermally activated
regime. In this context, we should mention a recent study showing oscillations of
the ac-susceptibility and blocking temperature TB of a Fe8 crystal as a function of
the transverse magnetic field. Interestingly, a clear frequency shift was observed
with respect to oscillations observed in low temperature experiments (and calcula-
tions) [77]. This shift, attributed to a mixing between the ground-state S = 10 and
excited S = 9 multiplets (allowed by the presence of anti-symmetrical interactions),
suggests that the traditional ground-state multiplet approximation might not be ac-
curate enough here [77].

Mechanisms of MQTM, Square Root Relaxation, Spin-Spin Correlations and
Magnetic Order Let us now see how tunneling takes place. When spin-up and
spin-down state-distributions overlap, a large number of states n − m and m are
close to resonance, but not really at resonance because they do not “see each other”,
the intrinsic resonance-width (or tunnel window) �m,n−m being extremely small
(∼ 10−8 to 10−9 K for SMMs ground-states). The only way to increase the number
of spins at resonance in order to find a tunneling rate comparable to observed ones,
would be to increase the tunnel window, but the tunnel splitting is a fixed quantity
(see above) and homogeneous phonon-broadening is useless at low temperatures (it
may increase the tunnel window by a factor of 100 giving ∼ 10−6–10−8 K which
is still too small). In fact, some noise should be present to shift these levels close to
resonance and put them at resonance many times per unit of time. This noise could
come from the measuring tool itself, but present magnetometers are very stable and
the source of fluctuations is really intrinsic as it comes from the interplay between
the applied sweeping-field rate and the dynamics of electronic and nuclear spins.
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After a variation of the applied magnetic field (to move from one point of the hys-
teresis loop to another one, inside a resonance) the nuclear spins, rather quiet (T1 and
T2 are usually rather large), restart new flips producing hyperfine field “scans” of a
few mT on the SMMs spins, bringing them across resonance at a rate of the order
of 1/T2 ∼ some kHz. Inversely, when the spin of a given molecule flips, it produces
a time-dependent magnetic field which can bring other molecules to resonance, an
effect which is amplified by the long-range character of dipolar interactions. This
defines an effective tunnel-window of width ξ0 ∼ 10 mT in which the spin-states
near resonance are homogeneously broadened, can “see” each other and make states
superposition (during very short periods of times), before collapsing into one or the
other state (depending on the speed of the “hyperfine scan”). The initially less occu-
pied (say spin-up) direction being favored, quantum relaxation will take place from
spin-down to spin-up.

The corresponding relaxation rate has been calculated in a first model giving
τ−1

N (ξ) ≈ τ−1
0 exp(−|ξ |/ξ0) with τ−1

0 ≈ 2�2−m,m−n/π1/2ξ0 [97], which accounts
rather well for some of the observations made on Mn12-ac or Fe8. In these expres-
sions, −m and n−m are the levels near resonance, �−m,m−n is the tunnel splitting
(m≤ 10) and ξ0 ∼ ξm,n−m = ξm−ξn−m is the applied field bias (ξm =E0

m−gBmHz
and E0

m =−Dm2 − Bm4). In fact, this model, which assumes a time-independent
density of spin-states, describes only the initial relaxation stages (very short times)
for which the density of spin-states remains equal to the initial one. In a more de-
tailed study, Prokof’ev and Stamp [85] considered both the short and long time
limits, now assuming a time-dependent density of spin-states, and found again a
square root law in both cases. Taking as the example the short time limit, they ob-
tained for the inhomogeneous field-distribution of the diluted dipoles the Lorentzian
function Pα(ξ) = [(1 + αM(t))/2]/[(Γd(t)/π)/{(ξ − αE(t))2 + Γ 2

d (t)}] where
Γd(t)= (4π2ED/35/2)[1−M(t)] and E(t)= ηVD[1−M(t)]. η is a sample shape-
dependent constant and VD the strength of dipolar interactions. The relaxation law
was found to be a square root law [85] (see also [58]):

M(t)/Ms = 1− (τ−1
shortt

)1/2
, τ−1

short = η�2
10,−10P(ξD)/� (2.8)

It is worth mentioning here that the general validity of the square root relaxation
has been questioned on theoretical grounds. For a theory that gives a time relaxation
different from t1/2, as well as relevant pro and con discussions on the subject, see
Refs. [113–115].

As indicated in Sect. 2.3.2, this square root law has been verified experimentally
in both Mn12-ac [65, 69, 72] and Fe8 [119, 120] for both ground-state and thermally-
activated tunneling (Figs. 2.11 and 2.15) not only at saturation but also in the small
initial-magnetization. However, a crossover from square root to exponential relax-
ation has been systematically observed in Mn12-ac in the long time limit, contrary to
the predicted validity of the square root relaxation in both limits [65, 69, 72]. In par-
ticular Fig. 2.15 [72] shows the scaling plot of the magnetizationM(t)= f (t/τ (T ))
measured above 2 K, in which f is a function of τ(T ) given by an Arrhenius law
determined experimentally. The solid curve was calculated assuming an exponen-
tial relaxation, showing a clear deviation in the short-times/low-temperatures limit,
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Fig. 2.15 Left: time decay of the remnant magnetization measured at low temperature, and plotted
vs. the square root of time; lines show the fits. Right: scaling plot of the square root relaxation and
its crossover to exponential at larger temperature/waiting-times (continuous line); for clarity, only
5 % of the data points have been plotted (they all fall in the same curve) [72]

where direct measurements showed a pure square root law. Below 1.7 K, where the
scaling plot is no longer valid, the square root law becomes independent of temper-
ature.

In Ref. [85], it was argued that the square root law is the consequence of a
density-of-state transfer from the initial spin-down well (before tunneling) to the
final spin-up one. The tunneling rate being very small, those densities of states
are rather isolated from each other leading to the formation of a hole at reso-
nance in the initial one. Monte-Carlo calculations (see Refs. [85, 112–114] and
Fig. 2.13) clearly show such a “hole-digging” phenomenon. This prediction was
verified by micro-SQUID measurements in Fe8 and the minor species of Mn12-ac
[119, 121]. This is in the short-time limit, when the spins are not at equilibrium. In
fact, in the long-time/high-temperature limit the spins equilibrate with the phonon
and spin baths so that the hole should progressively disappear leading to the initial
Lorentzian density of states. This physical picture suggests the following very sim-
ple model: being at equilibrium, the transfer of spin-states by tunneling from one
well to the other does not modify the shape of the initial Lorentzian density of states
fm(ξ)=m/(ξ2 +m2), a function of the bias field ξ , the width of which is given by
the reduced magnetization m=M/Ms which increases proportionally to the spins
concentration as the dipolar energy does. The usual rate equation dm/dt = −Γm,
now writes dm/dt = −Γfm(ξ) = −Γm/(ξ2 + m2) which gives, after integration
ln(m)+m2/2ξ2 =−(Γ/ξ2)t +m2

i /2ξ
2 where mi is the initial magnetization. This

solution is not a stretched exponential despite the fact that the results can be fitted
by such a function at high temperature. The two limits m = mi

√{1− (2Γ/mi)t}
at short times and m=mi exp(−Γ ξ−2t) at long times, show the square root to ex-
ponential crossover. This model, where the relaxation rates of the exponential and
square root regimes are connected (by the factor mi/2ξ2) suggests that the square
root regime persists after the equilibrated hole disappears and before the exponential
regime.
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This simple phenomenological model should not lead us to forget that the physics
of MQTM is much deeper and complex and constitutes a basis for the study of a
quantum computer. The general Hamiltonian of networks of quantum gates made
from solid-state qubits [104], is typically described as an ensemble of coupled
2-level systems: their formation can be speeded up by a transverse field

H = (�jτjx + εjτjz)+ΣijVijτizτjz (2.9)

where the control parameters �j, εj and Vij can be manipulated to make gate oper-
ations. This Hamiltonian mimics the full low-energy Hamiltonian of the spin-bath
model (incorporating all mutual effects in a spin environment). In such a Hamil-
tonian, the “control parameters” are actually constituted of full expressions tak-
ing into account the coherent motion of SMM spins in interaction with nuclear
spins and other environmental spins. It is important to note here that this Hamil-
tonian has three limiting cases, each one bringing out important aspects of the spin-
bath physics: topological decoherence, orthogonality blocking, degeneracy blocking
[85, 97, 102].

We shall conclude this section in an attempt to have a better qualitative under-
standing on how the spin-bath MQTM modifies the spin structure of a crystal. As
seen above, hyperfine interactions of weak strength and long range induce MQTM
through the short-lived entanglements that they favour between electronic and nu-
clear spins, leading to the homogeneous tunnel window. Subsequent energy transfer
between molecule spins is critical for the building of multi-molecule correlations
leading to the formation of SMMs ferromagnetic domains, or for triggering and
propagating the avalanches described in the first part of this paper. Such ferromag-
netic domains, clearly visible in the structure of SmCo3.5Cu1.5 (before and after
an avalanche, Sect. 2.2, Fig. 2.1) were not observed in SMMs. One way to induce
the coexistence of spin-up and spin-down domains in a SMM is to cool down the
system below its Curie temperature in a field small enough to avoid saturation of
the magnetization. This was done recently in a crystal in the SMM Fe8 for which a
ferromagnetic transition, expected below Tc ∼ 0.6 K [64], was observed [122]. As
with most SMMs, the Curie temperature is smaller than the blocking temperature
TB showing that, when the temperature decreases from the super-paramagnetic side,
all the spins will be quenched as soon as T < TB in more or less random directions
making impossible their reorientation towards a ferromagnetic state. In the absence
of thermal fluctuations, this state was reached thanks to the large quantum fluctu-
ations induced, at constant energy, by a large transverse field which was reduced
before the measurements (“quantum annealing” [122]). Visualizing the spin config-
uration of a SMM, in the same conditions should allow the observation of magnetic
domains.

Is it possible to find new systems in which the spin-bath is “simplified”? A rapid
answer to this question will tentatively be given in Sect. 2.5 where we first show
that quantum staircase hysteresis loops are not specific of SMMs but can also be
observed with simple paramagnetic ions provided they have a large enough uniaxial
anisotropy. These systems, that we called Single Ion Magnets, are easily realized
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with rare-earths ions. The latter generally have strong hyperfine interactions leading
to a “condensation” of the nuclear degrees of freedom from the spin-bath to the
central spin system. In Sect. 2.5.1, an analogy will be made with the spin-bath of
SMMs, which can be considered as an ensemble of SIMs with vanishing hyperfine
interactions. Section 2.6 will be devoted to the coherent regime which is a natural
follow-up of the quantum relaxation regime developed above, especially with the
first observations and studies of the Rabi oscillations in SIMs and SMMs.

2.5 Quantum Tunneling and Coherence in Single Ion Magnets

As explained just above, Single Ion Magnets consist of rare-earth ions diluted in an
insulating matrix allowing for strong uniaxial anisotropy [29]. We started the study
of these systems in order to answer a simple question: why such simple paramag-
netic ions would not show MQTM, as SMMs do? Indeed (i) they carry magnetic
moments as a large as the collective spins of SMMs and (ii) they can easily show
anisotropy barriers at least as large as those of SMMs. We decided to start with
the uniaxial system LiY1−xHoxF4 because it (i) belongs to a very well known and
characterized series of which single crystals of excellent quality are made, (ii) it has
an Ising doublet ground-state and (iii) the energy barrier separating the two lowest
lying magnetic states is of the right order of magnitude. The choice of an insulating
matrix was obviously to minimize the sources of decoherence. The main difference
between SMMs and SIMs is their degree of complexity: hundred of atoms forming
a collective spin with huge Hilbert space dimensions for the former and a single-
atom carrying a simple paramagnetic spin with very small Hilbert space dimension
for the second. In the case of rare-earth ions, another important difference comes
from their much larger hyperfine interactions. It is worth mentioning that, in recent
years, molecules consisting of a single lanthanide ion encapsulated by nonmagnetic
ligands have been studied in detail and that they show quantum tunneling and hys-
teresis phenomena [30–32] resembling those found in inorganic SIMs shown above.

2.5.1 First Evidence of MQTM in SIMs and Comparison with
SMMs

The main subject of this book being devoted to SMMs, we will pass over this sec-
tion rather rapidly and show only the aspects of SIMs which are useful for a better
understanding of SMMs and the possible new extensions in their study. The hys-
teresis loop shown Fig. 2.16(left) [29] was observed on a simple paramagnetic en-
semble of spins at temperatures below a paramagnetic (and not super-paramagnetic)
blocking temperature TB ∼ 250 mK. This system was a LiYF4 single-crystal where
∼ 0.2 % of Ho3+ was substituted for Y3+ (the total angular moment of Ho3+ is
J = L+ S = 8 and its Landé factor gJ = 5/4). This hysteresis loop is very
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Fig. 2.16 Left: Hysteresis loop measured on a single crystal of Ho0.002Y:LiF4 at 30 mK and
sweeping field rate of 0.6 mT/s for different transverse fields [29]. Right: Electro-nuclear levels
scheme, obtained by exact diagonalisation of the 136× 136 matrix of HCF +AJ IJ on the basis
J,m, I,mI for the stable isotope 165Ho. It is formed of two combs of parallel levels going up or
down, with effective spins ± 1

2 and energies En = ±geffμBH/2+ n�E where �E/kB = AJ Jz.
These levels intercept at fields μ0Hn = n�E/geffμB = nAJ /2gJμB(−7≤ n≤ 7), giving the sep-
aration of steps of the hysteresis loop [29, 92, 124]

similar to the one of Mn12-ac, with a difference however: the separation of con-
secutive steps is not determined by the longitudinal crystal-field term B2

0O
0
2 (equiv-

alent to the anisotropy constant DS2
z of Mn12-ac, giving Hn ∼ nD) but by the hy-

perfine term AJ IJ with a quite large AJ ∼ 40 mK (natural Ho has only one stable
isotope with nuclear spin I = 7/2). As a consequence, the spin dynamics is gov-
erned by the total electro-nuclear angular momentum I + J and not by the total
angular momentum J (or the spin S, as this is the case with SMMs where hyper-
fine couplings are weak). In particular, the moment which tunnels is not J or S,
but I+ J. These first observations show that (i) super-paramagnetism with collec-
tive spin is not required to observe a blocking temperature TB with hysteresis at
T < TB, (ii) complexity is not required to observe MQTM, (iii) nuclear spins can
drive macroscopic spin-dynamics associated with MQTM.

The S4 point symmetry group at Ho3+ sites is equivalent to the D2d symmetry,
with the crystal-field Hamiltonian:

HCF = B0
2O

0
2 +B0

4O
0
4 +B4

4O
4
4 +B0

6O
0
6 +B4

6O
4
6 +B−4

6 O−4
6 + gJμBJH (2.10)

whereOml are Stevens’ equivalent operators andBml are crystal field parameters, ini-
tially determined by high resolution optical spectroscopy and checked many times
[130]. This Hamiltonian is quite similar to (2.1), but complete and adapted to the
case of rare-earths. Exact diagonalization of (2.10) leads, at zero field, to a zero-
field ground-state doublet and a first excited singlet at ∼ 9.5 K above it (top of
the barrier) [29]. The expected weak mixing of the doublet by weak off-diagonal
terms (crystal-field distribution, internal magnetic fields, Jahn-Teller effect, hy-
perfine interactions, . . . ) should, in principle, lead to a single tunnel transition in
zero-field (we must say that this was our initial expectation). However the hystere-
sis loop (Fig. 2.16) shows much more than a single step. In fact, the scheme of
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electro-nuclear levels obtained by exact diagonalization of the 136× 136 matrix of
HCF +AJ IJ on the basis |J,m, I,mI 〉) is formed of two combs of parallel levels
going up or down, reminiscent of the initial effective spins ± 1

2 of the Ising doublet,
En =±geffμBH/2+ n�E where �E/kB = AJJz (Fig. 2.16, right). Levels inter-
cept at fields μ0Hn = n�E/geffμB = nAJ /2gJμB(−7≤ n≤ 7) [29, 92, 124]. The
best agreement between measured and calculated resonanceHn(mT)= 23nwas ob-
tained for AJ /kB = 38.6 mK, a value comparable to the one found by NMR. This
provides a new way of determining hyperfine constants in rare-earths; it is more
accurate than NMR as it is simply limited by the resolution of the applied magnetic
field and by the line-shape which can be made very narrow. In the present dilution
of 0.2 %, inhomogeneous level broadening by dipolar interactions is ∼ 20 mK. The

finite avoided level crossings of the states 1
2 ,mI ±− 1

2 ,mI ′ result from off-diagonal

crystal-field and hyperfine interactions (B4
4O

4
4 +AJ (J+I− + J−I+)/2) leading to

the selection rule (mI −mI ′)/2 = odd integer. Nevertheless, the above mentioned
weak but unavoidable distortions enable to observe all transitions. The used single-
crystals being among the best that can be made, we believe that cell distortions
are unavoidable in all types of systems, permitting tunnelling for all n-values. This
should also be true with SMMs with symmetry ≥ 2, beyond the particular case of
Mn12-ac where symmetry lowering comes from disorder of the acetic acids of crys-
tallization [125].

Let us now discuss shortly the tunneling of multimers of Ho3+ ions [29, 92, 124]:
(I + J) of a single Ho3+ ions, (I + J)1 + (I + J)2 of two ions, etc and, by anal-
ogy, the case of two SMMs (S1 + S2) [92]. I will show that the resonance fields
of multimers do not depend on the coupling strength Jex (we exclude here the
case of a spin reversal “in the field of another spin” or exchange-bias tunnelling
[29, 92, 124] which corresponds to a simple antiferromagnetic SMM). In the weak
coupling limit (for example in the case of two distant Ho3+ ions), the discussion
can be limited to the single-ion level scheme, where Ep = ±geffμBH/2 + p�E.
The resonance involving the states p, p′ and p′ + 1, entails Ep = (Ep′+1+Ep′)/2,
giving geffμBHp,p′ = (p− p′ − 1

2 )�E. As observed experimentally, two-ion reso-
nances are shifted by 1

2 with respect to single-ion ones. This is because the Zeeman
energy is multiplied by two (two spins), while the zero-field energy �E =AJJzkB
is not. In the single-ion case Jz and geff cancel each other out in the expression of
the resonance field, giving a direct relationship between the measured field and the
hyperfine constant.

In the case of a SMM with uniaxial anisotropy, En =−Dm2 ± gμBmH , a simi-
lar result can be obtained although zero-field levels are not equidistant. Co-tunneling
with parallel (↑↑→↓↓) or anti-parallel (↑↓→↓↑) initial states, gives a resonance
if the absolute value of the quantum number m of one of the two spins changes
(e.g. from m to m ± 1) while that of the other spin is unchanged (e.g. m changes
to −m). In this case, only the first spin will contribute to change the anisotropy en-
ergy (by ∼D), while both spins contribute to the Zeeman energy (by ∼ 2gμBH ),
giving gμBH ∼D/2. The fact that the two spins can be in different states is a con-
sequence of weak interactions (Jex �D). Contrary to the case of equidistant levels,
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co-tunneling resonances are here not exactly in between single-spin resonances, un-
less m ∼ S is very large. In the strong coupling limit of, for example, two spins
S1 and S2 with the same anisotropy constant D (see (2.1)) coupled by Jex �D the
addition of two spins S1 and S2 should apparently give S= S1+S2 with a trivial res-
onance at gμBHn = nD (cf. (2.2)). In fact, this result is wrong, the right expression
being gμBHn = nD/2. The reason is that the ligand-field parameter D depends on
a nontrivial way on the spin S. This has consequences on the way the anisotropy en-
ergy of a SMM spin S—equal to the sum of several elementary spins σ with the ele-
mentary parameterD0—is built. It is easy to show that the expression gμBHn = nD
for a spin S, becomes gμBHn = nD/2 for a spin 2S or gμBHn = nD/N for a spin
NS. This explains the difference between the two definitions of the anisotropy en-
ergy barrier of a SMM, Ucl = KV ∝ KS (Sect. 2.2) where the extensive variable
K is expressed in energy/volume-unit, and Ucl = DS2 where D results from the
choice of the Hamiltonian [92]. The expression gμBHn = nD/N shows that the
quantization of the hysteresis loop tends to vanish as S→∞, as expected.

We have shown that the quantum dynamics of electronuclear singlets, pairs,
triplets, . . . of Ho3+ SIMs comes from long-lived entanglements of such enti-
ties [29, 92, 124]. In order to understand the spin-bath of SMMs even better, one
may imagine similar many-body SIMs electronuclear entanglements but with much
weaker hyperfine and super-hyperfine interactions giving rise to very short-lived en-
tanglements of electronic and nuclear spins within a level structure similar to the one
of Fig. 2.16, but with much closer levels, the overall width being a homogeneous
level broadening of hyperfine nature, which is nothing else but the tunnel window
of SMMs (Sect. 2.4.4) the timescale of which is associated with decoherence by
nuclear spins.

2.5.2 First Evidence of MQCM in SIMs, Paving the Way for SMMs

In the previous sections we have seen how coherently mixed spin-up and spin-down
states collapse after tunnelling with either a spin-up or a spin-down (for a simple
intuitive interpretation see [103]). In the case of SMMs, where tunnel splittings are
extremely small in low fields, the time τt ∼ h/� that we can define as the tunnelling
time is extremely large (∼ 10−3 s in Mn12-ac) leading to strong decoherence by the
environment even if its dynamics, associated with e.g. nuclear spins, is slow. Due
to such decoherence, most SMMs resonant spin-states end with a final spin-state
identical to the initial one i.e. without tunnelling, whereas the rare events ending
with spin reversal (tunnelling) lose their coherence immediately. The reduction of
decoherence by an existing spin-bath, requires either to suppress it physically or
to slow it down below the measuring timescale, the former solution being better
because a frozen spin-bath produces decoherence in the presence of microwaves,
see below). This is what we tried to do in our search for Mesoscopic Quantum
Coherence of the Magnetization in SIMs and SMMs.

We started with Er3+ ions diluted in a single-crystal of CaWO4 [59], a ma-
trix isomorphic to YLiF4 and containing almost no nuclear spins (only 15 % of
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Fig. 2.17 Left: electro-nuclear level scheme of a 167Er ion in CaWO4 obtained by exact diag-
onalization of the 128 × 128 matrix of HCF + AJ IJ on the basis |J,m, I,mI 〉. The zero-field
16-fold degenerated electro-nuclear ground-state is partially removed by hyperfine interactions,
the remaining degeneracy being removed by a magnetic field H perpendicular to the c-axis [59].
The arrows indicate the EPR transitions with �mI = 0 between the two sets of 8 levels with ef-
fective spin projections ± 1

2 (each on them being labelled by its nuclear spin projection going from
−7/2 at the centre of the figure to +7/2). Inset: measured CW EPR transitions. Right: measured
frequencies of the associated Rabi oscillations

the W second neighbours). The total angular momentum J = 15/2 of the Er3+
ground-state multiplet and its Landé factor gJ = 6/5 give a magnetic moment of
9μB, comparable to that of Ho, Mn12-ac or Fe8 so that we keep in the meso-
scopic regime. The crystal-field Hamiltonian of Er:CaWO4 is identical to the one of
Ho:LiYF4 (2.10), their space group I41/a and point symmetry S4 being the same.
Exact diagonalization of the 16× 16 matrix with H = 0 and appropriated crystal-
field parameters [59] gives an easy plane perpendicular to the c-axis with a dou-
blet ground-state characterized by the geff tensor (g// = 1.247, g⊥ = 8.38 [130]).
Natural Erbium having two isotopes with nuclear spins I = 0 and I = 7/2, we ex-
tended this calculation by adding the hyperfine term AJ IJ (with AJ = 125 MHz
and I = 7/2). Diagonalization of the 128 × 128 matrix gives an energy spec-
trum whose 16-fold degenerated electronuclear ground-state is partially removed
by the hyperfine interactions themselves, the remaining degeneracy being removed
by a magnetic field H applied perpendicular to the easy plane (Fig. 2.17, left)
[59]. The eight transitions with �mJ = ±1 and �mI = 0 have been observed
in continuous and pulsed EPR. Rabi oscillations result from the coupling of two
eigenstates φ1 and φ2 by application of a linearly polarized microwave field hmw.
The corresponding Hamiltonian Hmw = μBgeffSxhmw cos(ωt) shows that, as long
as its phase is preserved from the environmental fluctuations, the wave function
|ψ(t)〉 of the coupled system oscillates in time between |φ1〉 and |φ2〉, according to
|ψ(t)〉 = cos(ΩRt)|φ1〉− i sin(ΩRt)|φ2〉, at the Rabi frequencyΩR = gxyμBhmw/�

[126].
Pulsed EPR measurements give access to the occupation probability of, say, state

|φ2〉 which oscillates as sin2ΩRt . The EPR transitions of Er3+:CaWO4 were ob-
served at 4He temperatures using a Bruker X-band spectrometer at 9.7 GHz for
both isotopes I = 0 and I = 7/2. An example of Rabi oscillations, measured
at T = 3.5 K on the I = 0 isotope, is shown in Fig. 2.18(left) [59]. The fit to
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Fig. 2.18 Left: Rabi oscillations obtained at T = 3.5 K on the I = 0 isotope for μ0H =
0.522 T//c and microwave field and frequency hmw = 0.15 mT//b and 9.7 GHz [59]. The fit
to Mz =Mz(t = 0)e−t/τR sin(ΩRt) gives the exponential damping (or Rabi) time, τR ∼ 0.2 µs.
Right: the same experiment performed at a microwave field 20 times smaller showing that τR
increases, the number of Rabi oscillations N(c) remaining nearly unchanged. Inset: oscillations
damping time measured vs. Rabi frequency, showing the effect of decoherence by microwaves

Mz =Mz(t = 0)e−t/τR sin(ΩRt) gives the damping (time τR ∼ 0.2 µs of Rabi oscil-
lations. Experiments performed at different fields showed oscillations of the second
isotope I = 7/2: eight electronuclear oscillations separated by �HR ∼ 6–8 mT se-
lectively addressed by a small sweeping field (Fig. 2.17, right) [59]. These first ob-
servations of Rabi oscillations with rare-earth ions showed that coherent quantum
spin dynamics can be seen at the mesoscopic scale, paving the way for the realisa-
tion of Electro-nuclear Mesoscopic Spin Qubits, which may be easily manipulated
by weak applied fields at EPR and/or NMR frequencies [59]. Here, I shall skip the
specific aspects of these qubits (such as, e.g. the strong crystal-field anisotropy of
the Rabi frequencies when the frame of applied fields (hmw⊥H) is rotated, see right
hand panel of Fig. 2.17 [59, 60]). Instead, I concentrate on decoherence mecha-
nisms and, in particular, on a basic mechanism that we found to be very general
and which is also present in SMMs: the measured Rabi decay time τR is always
smaller (or even much smaller) than T2, the spin-spin coherence time which is often
considered as the time limiting quantum calculations in an hypothetical quantum
computer. Experiments performed at different microwave power (Fig. 2.18) showed
that τR increases as power decreases, while the number of Rabi oscillations N(c)
remains nearly unchanged i.e. N(c) ∼ τR(c)ΩR with N(c) ∼ 20 (right-hand inset
of Fig. 2.18). This increase of τR < T2 suggests the phenomenological expression
[59]

1/τR(c)∼ΩR/N(c)+ 1/T2(c) (2.11)

where τR(c), N(c), and T2(c) are concentration-dependent. Expression (2.11),
which was recently confirmed in quantum simulation studies [128], shows that Rabi
oscillations are lost for t � T2 in the low-power limit where ΩR → 0, and for
t � N(c)/ΩR in the large power limit where ΩR � N(c)/T2. In the first case,
T2 is limited by well-known spin-diffusion due to long-range dipolar interactions
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(as in the absence of microwaves), whereas in the second case the observed be-
haviour is characteristic of an inhomogeneous nutation frequency associated with
weak distribution of gxy due, in the case of Er3+ ions, to unavoidable crystal-field
distributions even in these crystals of excellent quality [129, 130]. Note that the dis-
tribution of gz contributes to the inhomogeneous line-width which remains rather
small in Er:CaWO4 (∼ 2 mT, as in Ho:YLiF4 and much smaller than in SMMs,
10–100 mT), but nevertheless gives a contribution to 1/τR in the limit of ΩR → 0
(but not at ΩR = 0, i.e. it does nor modify T2).

To conclude this section, let us say that, if we consider the effect of decoherence
by microwaves, the so-called “figure of merit” of a qubitQM2 =ΩRT2/π becomes
QMR =ΩRτR/π . As shown above, τR being generally smaller (even much smaller)
than T2, the figure of merit associated with the observed number of Rabi oscillations
QMR will be smaller (even much smaller) than QM2, related to the hypothetical
number of oscillations based on the value of T2. As this number corresponds to
the number of quantum operations which can be made, it is important to reduce
decoherence by microwaves so that QMR → QM2. For that, we need to make all
qubits identical to each other, as far as possible. We may also give a very simple
theoretical expression for the “Rabi figure of merit” QMR. As in the presence of a
Lorentzian distribution of transverse g-factors of width Γ the reciprocal Rabi time
writes 1/τR = ΓΩR [128], it is immediate to see that the figure of merit QMR =
1/πΓ is inversely proportional to the g-factor distribution-width. The condition
QMR ≥ QM2 with which disorder becomes negligible, gives Γ ≤ 1/πQM2 i.e. a
disorder weak enough so that the width of the g-factor distribution does not exceed
the inverse of ∼ 3 times the theoretical number of oscillations (given by T2). Taking
the example of a figure of merit of 104, the distribution width of the transverse
g-factors of the qubit ensemble should not exceed 10−4, which might be a problem
in many cases.

2.6 Quantum Coherence in Single Molecule Magnets

In order to observe quantum coherent oscillations in systems of SMMs, a major
problem to be addressed is the minimization of decoherence induced by dipole-
dipole interactions [106]. In bulk, and despite their natural dilution (the distance
between molecules is at the nm scale), dipolar interactions remain important and
are of the order of 40–100 mT in Mn12-ac or Fe8 [25], which is crippling unless the
ratio H/T (see below) [106]. A possible way out is diluting these molecules with-
out modifying their architecture. Measurements performed on frozen solutions of
different SMMs give values of T2 up to a few µs [61, 127, 131, 132] while measure-
ments performed on a single crystal gave much shorter times [133], thus suggesting
that it should also be possible to observe Rabi oscillations in diluted SMMs.

In order to minimize dipolar interactions, we focused our study on a low spin
SMM, the so-called V15 system of formula K+6 [VIV

15As6O42(H2O)]6−H2O, and

found a way to dilute the anionic clusters [VIV
15As6O42(H2O)]6− by using the
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Fig. 2.19 Left: Rabi oscillations of the system V15− DODA [135] (see also[61]). MeasuredMz(t)
for an applied field of 0.354 T and μ0hmw in the range 0.054 to 0.054 to 1.24 mT (or, equiva-
lently ΩR/2= 2.6 to 59.2 MHz, where the ratio ΩR/2hmw = 48 MHz/mT was determined exper-
imentally). Right: measured variation of damping rate τ−1

R vsR [135]. The broad peak in the range
8 MHz < ΩR/2 < 15 MHz implies the existence of a decoherence mechanism that is extremely
sensitive to the microwave field amplitude. The calculated continuous line shows a shoulder at
ΩR ∼ ωN the Larmor frequency of protons in the applied field of 0.354 T and a main peak on
the left, which is shifted from the shoulder by the dipolar super-hyperfine field of protons on V15
clusters

cationic surfactant [Mn2N{(CH2)17Me}2]+ as an embedding material (so-called
DODA) [61]. In this system, each cluster of size ∼ 1.3 nm is made of 15 spins
1
2 coupled by frustrated antiferromagnetic super-exchange interactions, so that the
collective spin is S = 1/2. This low-spin SMM can be considered as a mesoscopic
spin 1

2 with a spatial extension of ∼ 1.3 nm. It exhibits a unique layered struc-
ture with a large central VIV

3 spin-triangle sandwiched between two smaller VIV
6

spin-hexagons [134]. Dzyaloshinsky–Moriya interactions (Sect. 2.4, [65, 69, 70])
were studied in detail in this system [73–76]. Energy spectrum calculations on the
full Hilbert space of 215 give two S = 1/2 ground-state doublets and an S = 3/2
excited quartet (Fig. 2.12(b)). These low-lying energy states, which are “isolated”
from a quasi-continuum of states lying ∼ 250 K above, can also be obtained to
a good accuracy using a triangular three-spin approximation coupled with an ef-
fective interaction J0 much smaller than the frustrated intra-molecular interactions
(valid below 100 K) [73–76]. The separation 3J0/2 between the two doublets and
the quartet was determined from susceptibility measurements and high-field mag-
netization curves giving J0 ∼ 2.45 K [73]. The D-M interactions remove the de-
generacy of the two low-lying doublets weakly (producing the first-order zero-field
splitting�DM ∼ 3

√
Dz) and of the exited quartet (producing the second-order zero-

field splitting �′DM ∼D2
xy/8J0 ��DM).

EPR experiments were performed on this V15 hybrid material at ∼ 4 K using
the same Bruker spectrometer operating at 9.7 GHz [61] as for SIMs (Sect. 2.5.2).
The sample was characterized using different methods [61] and among them,
the CW-EPR of a frozen sample at 16 K which gave the same g// ∼ 1.98 and
g⊥ ∼ 1.95 as previously obtained at the solid state. These results were also con-
sistent with previous sub-Kelvin CW micro-SQUID experiments on a single-
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crystal of V15 [133]. A pulsed EPR experiment showed the first Rabi oscilla-
tions in a SMM [61]. Figure 2.19(left) shows the results of a new set of exper-
iments performed later with another V15-DODA sample between 2 and 20 K,
for an applied field of 0.354 T and microwave field hmw in the range 0.054
to 1.24 mT [135]. Each Mz(t) corresponds to the superposition of oscillations
between S = 3/2 states with slightly different Rabi frequencies (the transitions
associated with the ground doublets being much less intense). Oscillations, be-
tween spin projections mS + 1 and mS occur at Rabi frequencies Ω(±3/2↔±1/2)

R =√
3(gμB/�)hmw and Ω(1/2↔−1/2)

R = 2(gμB/�)hmw. Taking g = 1.96, we find

Ω
(±3/2±1/2)
R /2π = 47.5hmw MHz/mT and Ω(1/2−1/2)

R /2π = 54.9hmw MHz/mT,
giving a mean Rabi frequency ΩR/2π = (247.5+ 54.9)hmw/3∼ 50hmw MHz/mT,
very close to ΩR/2hmw = 48hmw MHz/mT obtained experimentally (not shown).
All curves show a fast decrease of ΩR at short times due to the dephasing of spin-
packets with different resonance frequencies in the non-homogeneous EPR line,
followed by a number of damped Rabi oscillations nR = 7 to 10. However, fast
damping is observed, particularly in the frequency range from 8 to 15 MHz where
nR < 3. In order to extract the exponential damping time τR for different ΩR (or
hmw) each curve was fitted to j0(ΩRt)e

−t/τR , where j0(z)=
∫∞
z
J0(z)dz(J0) is the

zero-order Bessel function) is associated with the distribution of Larmor frequen-
cies within the EPR line [135]. The full evolution of the damping rate τ−1

R vs. ΩR

is shown in the right-hand panel of Fig. 2.19, where the broad peak appearing in
the range 8 MHz<ΩR/2π < 15 MHz implies the existence of a new and efficient
decoherence mechanism that is extremely sensitive to the microwave field ampli-
tude. The amplitude of oscillations in that particular region does not obey a simple
exponential law. The peak value τR = 36 ns obtained atΩR/2π = 8 MHz is close to
an order of magnitude shorter than the coherence time T2 = 250 ns measured under
the same experimental conditions showing that this time, which is generally taken
as a reference to certify the quality of a qubit, should at the very least be taken with
caution.

We now switch to the interpretation of the observed decoherence. The slow lin-
ear variation of τ−1

R with ΩR/2π in the range 20–60 MHz (right-hand panel of
Fig. 2.19) is a consequence of the random distribution of the Landé factor of V15

clusters in the frozen solution (plus intra-cluster hyperfine interactions) [135] and
has the same origin as in Er:CaWO4 (Sect. 2.5.2). This is not the case for the de-
coherence peak observed around 8 MHz, which constitutes the first observation of
a decoherence window in the space of Rabi frequencies (or microwave fields). This
peak is accompanied with a shoulder at ΩR/2π ∼ 15 MHz, close to the Larmor
frequency of protons (15.1 MHz in the static field of 0.354 T) suggesting a deco-
herence mechanism associated with resonant electronuclear cross-relaxation when
the V15 Rabi frequency ΩR is close to the average proton Larmor frequency ωN.
Such a mechanism of polarization transfer from the electronic to the nuclear spin-
bath, is analogous to the one which takes place in the Nuclear Spin Orientation Via
Electron spin Locking (NOVEL) technique of dynamic nuclear polarization that
is produced under resonant microwave field and with the electronic spin nutation
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frequency tuned to ωN ([135] and references therein). However, here, we are not in-
terested in the degrees of polarization of the nuclear spin bath, but on the degrees of
depolarization of the electronic spin-bath. The Hamiltonian of a “central” V15 spin
interacting with static and microwave external magnetic fields and a large number
of nuclear spins can be written [135] as:

H = ωeSz + 2ΩRSx cosωt +
∑
j

ωj I
j
z +

∑
j

α=x,y,z

A
j
zαSzI

j
α (2.12)

where ωe and ΩR are the Larmor and Rabi frequencies of a cluster and ωj are the
precession frequencies of the proton spins I = 1/2 distributed around ωN with half-
width σN (average local field produced by the V15 spins at nuclear spins). The last
term represents the super-hyperfine interaction between V15 and nuclear spins. The
following effective Hamiltonian is obtained in the rotating reference frame [135]:

H ′ =ΩSx + V (t) (2.13)

where

V (t)= 1

2Ω
(ΩRSz + εSx)

∑
j

{[(
A
j
zx − iAjzy

)
eiωj t I

j
+ + cc

]+ 2AjzzI
j
z

}
(2.14)

and Ω = (ε2 +Ω2
R)

1/2 is the distributed nutation frequency of V15 collective spins
(ε = ωe − ω). V (t) involves two components of the local random fields induced by
the nuclei at the V15 site (for details see [135]). Terms S̃xI

j

+(−) and S̃xI
j
z , associ-

ated with V15 transverse spin components, result in a dephasing of Rabi oscillations
by nuclear spins, relevant far from resonance when ε ∼ΩR [135]. Cross-relaxation
terms S̃zI

j

+(−) are responsible for V15 Larmor dephasing, inducing mutual flips of
the electronic and nuclear spins, leading to energy dissipation in the applied static
magnetic field. This resonant process occurs only when ωj ∼ΩR i.e. when the Lar-
mor frequency of nuclear spins is close to the Rabi frequency of V15 clusters. Aver-
aging over the ensemble of spin-packets that are coherently driven by the microwave
pulse, leads to simulations of the time evolution of the magnetization 〈Mz(t)〉 allow-
ing a comparison between the calculated and the measured evolutions of the damp-
ing rate τ−1

R vs. ΩR, as shown in the right-hand panel of Fig. 2.19. In particular,
the broad decoherence window and its shoulder are reproduced. A damping factor
e−(βΩR+Γ2)t was added to the theoretical expressions in order to account for the lin-
ear background resulting from transverse g-factor distribution (Sect. 2.5.1). These
results show [135] that the main peak at ∼ 8 MHz is associated with a shift from
the protons Larmor frequency (shoulder) created by the dipolar field of protons on
the V15 sites. This peak comes from a mechanism of dissipative decoherence asso-
ciated with a resonant process (V15 Rabi frequency ∼ protons Larmor frequency).
The contribution from nuclear spins other than protons to decoherence (75As, 14N
and 51V) is negligible for ΩR > 5 MHz but can be important when ΩR → 0, i.e. in
the absence of microwaves, as in T2 measurements [61, 135].
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This first study of the decoherence of Rabi oscillations vs. variable microwave
field in a SMM shows a feature that is quite general: a linear increase of Rabi de-
cay rate τ−1

R with ΩR/2, associated with the often unavoidable dispersion of the
g-factors [61, 135], and a feature that seems to be specific to SMMs: the existence
of a decoherence window in a certain range of frequencies associated with polariza-
tion transfer between electronic and nuclear subsystems [61, 135]. This decoherence
is accompanied with energy dissipation from the electronic to the nuclear spin-bath.
This seems to be a rare example, showing in which cases decoherence takes place
with or without dissipation. Before ending this section we should recall that the
protons which produce this decoherence window come essentially from DODA, the
cationic surfactant embedding the V15 anionic clusters. It might therefore be of in-
terest to measure Rabi oscillations on a single-crystal of V15. Till now, the only
EPR measurements made on a SMM single-crystal have been done on Fe8, with T2
measurements [135]. In this case, decoherence is collective due to the presence of
short-lived spin-wave excitations associated with dipolar interactions in the super-
paramagnetic state. As mentioned above (Sect. 2.4.4), this systems orders magneti-
cally below Tc ∼ 0.6 K through dipole-dipole interactions [122] implying that even-
tual T2 measurements below this temperature might lead to a coherence breakdown,
the spin-waves lifetimes being much longer. Such a possibility may compete with
another one much more attractive in which spin-waves become coherent at T < Tc
leading to a macroscopic coherence.

2.7 Conclusion and Perspectives

This chapter gives an overview of the subject of quantum tunneling of the magneti-
zation in SMMs, starting from its roots in the 70’s (Sect. 2.2) and ending with the
coherent quantum dynamics (Sect. 2.6) which is a fast-growing subject, due in par-
ticular to its potential applications for the implementation of a quantum computer.
The collective spin S = 10 of such molecules is large enough for both quantum
and classical facets of their behavior to be observed and studied. This is why the
word “mesoscopic” was linked to these studies of Quantum Tunneling of the Mag-
netization (Sects. 2.3 and 2.4). Last, the study of quantum coherence in magnetism
(Sect. 2.6) permits to reach a degree of understanding that is for example not pos-
sible with superconducting qubits. Regarding spin qubits, SMMs might not be the
best-suited for these applications in comparison with other types of qubits, but this
is not proved as this type has important resources still to be explored. An exam-
ple is given here, where, after the first demonstration of quantum coherence in a
SMM (Rabi oscillations, Sect. 2.6), it is clearly shown in which cases decoherence
is accompanied or not by dissipation, a distinction which is still not clear elsewhere.
Going back in time, the study of the coherent quantum dynamics of SMMs was
preceded by that of rare earths ions. These simple, but nevertheless mesoscopic,
paramagnetic spins allowed us to progress towards different mechanisms of deco-
herence, showing for example that a very significant damping of Rabi oscillations is
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created by the microwaves which induce them (Sect. 2.5.2). This is quite a general
phenomenon, always present if the different qubits of a system (such as a quantum
computer) are not identical to each other, which is generally the case. Just before
(Sect. 2.5), we extended the observation of MQTM to such rare earth ions, showing
that this phenomenon is not specific to SMMs. Due to their large hyperfine inter-
actions, MQTM and MQCM of rare earth ions also involve nuclear spins leading
to “electronuclear quantum dynamics” in which the electronic and nuclear spins of
each rare earth ion tunnel simultaneously. Such a two-body tunneling (extension to
many-bodies tunnelling were also considered) leads to typical electro-nuclear steps
in the hysteresis loop of rare-earth ions with uniaxial anisotropy (Sect. 2.5.1). If
one imagines that the large hyperfine interactions of rare-earth ions decrease and
become small enough, then the electronics and nuclear spins form short-living en-
tangled pairs, as this is the case in SMMs. Such entanglements form the essential
part of the dynamical spin-bath of Prokof’ev and Stamp, the quasi-static part be-
ing associated with the dipolar interactions between SMMs (Sect. 2.4). Besides,
an experimental description of spin-bath effects is given explaining e.g. thermally-
activated or microwave-activated MQTM, ground-state MQTM, the reasons why
MQTM can be observed so easily, square root relaxation, quantum barrier-erasing
and its amplification by a magnetic field, . . . . The physics of MQTM and MQCM
in ensembles of mesoscopic spins is now rather well understood and can be used
in nanotechnology e.g. for the study of small devices preparing the implementation
of a quantum computer, in which each spin should be manipulated and addressed
individually. An advantage of SMMs may be the possibility of elaborating supra-
molecular self-organized networks of nearly identical molecules (which is a crucial
task to keep long coherence times, Sect. 2.6). Regarding rare earth ions, they might
be embedded in a quantum-well semi-conductor layer for the implementation of
a Kane-like electronic quantum computer (not published) or might be inserted in
self-organized molecules containing one or several rare earths [137, 138]. However,
despite the fact that the addressing of single nano-objects is currently performed
with e.g., a single-atom [139] or a single-electron transistor [140], a single-shot de-
tection of an electron [141] or of a nuclear-spin [142] (in particular of a rare-earth
nuclear spin [143] if advantage is taken from the persistence of the rare-earth elec-
tronuclear steps [29], Sect. 2.5.1, at the molecular scale), it is not yet possible to
manipulate and to address a large enough number of qubits and, in the case this
would be possible, one would be faced with the problem of to make them, and their
connections, nearly identical to prevent decoherence by microwaves (Sect. 2.6).
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Chapter 3
Spin Tunneling in Magnetic Molecules That
Have Full or Partial Mechanical Freedom

Eugene M. Chudnovsky

Abstract While most of the research on spin tunneling in molecules has focused
on crystals of molecular magnets, future experiments may involve molecules loosely
attached to a substrate, as well as free magnetic molecules. What would be the ef-
fect of the mechanical freedom on spin tunneling? Exact solutions for this set of
problems have been recently obtained. They involve anomalous commutation rela-
tions for spin and rotational angular momentum in the rotating frame of reference.
Application of these findings to magnetic molecules points towards important ef-
fect of the mechanical freedom on spin tunneling. In a free molecule the tunneling
is prohibited unless the molecule is sufficiently heavy and the tunnel splitting is
large.

3.1 Introduction

North and south magnetic poles of a small particle or a molecule can interchange via
quantum tunneling [1]. Due to this effect, crystals of magnetic molecules have been
shown to exhibit stepwise magnetization curve [2]. The tunneling implies quantum
superposition of states characterized by a definite orientation of the magnetic mo-
ment. The hope has been expressed that isolated magnetic molecules may one day
become elements of quantum computers. Long coherence time of spin states is re-
quired for quantum computation. This made researchers think about ways to isolate
magnetic molecules from the dissipative environment [3]. Efforts have been made to
suspend a single magnetic molecule between conducting leads and deposit magnetic
molecules on surfaces [4]. Quantum states of molecules that are partially isolated
from the environment must be easier to manipulate. Such molecules, however, may
have some degree of mechanical freedom that must be taken into account in the
quantum problem.
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Fig. 3.1 Torsional
nano-oscillator with a
two-state macrospin

To simplify notations, we shall treat this problem as if magnetism were of spin
origin. This is not necessarily true for small atomic clusters or molecules containing
rare-earth atoms. In this case the spin S in all our expressions must be replaced with
the internal angular momentum (due to both spin and orbital electronic states) that is
responsible for the magnetic moment of the nanomagnet. An important distinction,
however, should be made between that internal angular momentum and the mechan-
ical angular momentum L that corresponds to the rotation of the nanomagnet as a
whole. The latter, unlike the internal angular momentum, does not contribute to the
magnetic moment of the electrically neutral particle. For a free particle one should
find the entangled quantum states of the spin and mechanical angular momentum.
For a nanomagnet having partial mechanical freedom the quantities of interest are
the tunnel splitting � and the spin decoherence rate Γ .

The problem is clearly related to the conservation of the total angular momen-
tum [5]. Even before it is applied to a free molecule, one can ask what happens
to the total angular momentum when spin 10 of a Mn-12 molecule tunnels be-
tween opposite orientations in a crystal. The answer one usually gets is that the spin
Hamiltonian for this problem, e.g., H = −DS2

z + dS2
y , does not possess the full

rotational symmetry and, therefore, it does not conserve the total angular momen-
tum, J= S+ L. This, however, simply sweeps the problem under the rug because
the full Hamiltonian that describes the spin and quantized phonon modes in the solid
containing that spin must conserve the total angular momentum. Conservation of an-
gular momentum is responsible for the parameter-independent lower bound [6, 7],
Γ = S2�5ρ3/2/(12π�

4G5/2), on the spin decoherence rate in a solid of mass den-
sity ρ and shear modulus G. The latter is a measure of the rigidity of the solid with
respect to elastic twists, required for the transfer of the angular momentum between
the spin and the solid. It can be shown [8] that when G→ 0 the tunnel splitting
� disappears as exp(−const/

√
G). Similar effect occurs in a mechanical nanores-

onator with a magnetic molecule [9, 10]. This problem, depicted in Fig. 3.1, will be
discussed in Sect. 3.2. It turns out that the spin tunnelling is suppressed by the zero-
point oscillations of the nanoresonator [11]. The effect becomes more pronounced
with decreasing the size and the spring constant of the resonator. Coupling to a light
mechanical resonator may also lead to strong decoherence of quantum oscillations
of the spin [12].
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Fig. 3.2 Tunneling between
states with zero total angular
momentum

For a free magnetic molecule some insight into the importance of the conserva-
tion of angular momentum can be obtained by considering a spin S embedded in
a rigid body that is free to rotate. While large magnetic molecules can hardly be
treated as mechanically rigid, this approximation catches the essence of the effect
of mechanical rotations. Spin tunneling leads to the ground state that is a superpo-
sition of spin-up and spin-down states. It is separated from the first excited state by
the tunnel splitting gap �. Delocalization in the spin space due to tunneling lowers
the energy of the degenerate non-tunnel states by �/2. The only problem is that the
tunneling of the spin alone violates conservation of the total angular momentum. It
may occur, however, in a rotational state with J = 0, as is illustrated in Fig. 3.2. In
this case, spin tunneling is accompanied by the tunneling of the mechanical angular
momentum L= S. The corresponding ground state entangles the spin with mechan-
ical rotations. It has a mechanical energy �

2L2/(2Iz) = �
2S2/(2Iz) (we consider

dimensionless S and L), where Iz is the moment of inertia for rotation about the
spin quantization (easy magnetization) axis. Whether this state has advantage in en-
ergy over the non-rotating state with a frozen direction of the magnetic moment
depends on whether the energy gain, �/2, due to spin tunneling is greater than the
energy loss, �

2S2/(2Iz), due to mechanical rotation. In the limit of a macroscopic
rigid body, when Iz→∞, this effect becomes irrelevant and spin tunneling always
lowers the energy. For a small moment of inertia, however, the mechanical energy
needed to sustain spin tunneling is large and the ground state is a non-rotating state
with a frozen orientation of the magnetic moment. In Section 3 we will present a
rigorous solution of this problem that shows that the above energy argument misses
the critical value of Iz only by a factor of 2.

The question of conservation of angular momentum in spin tunneling was more
academic than practical until experimentalists began the effort of isolating mag-
netic molecules from the environment. Rigorous quantum-mechanical solution for
a rotating two-state spin system was obtained only recently, first for the case when
rotations were allowed about a fixed axis [13, 14], and then for arbitrary rotations
of a symmetric quantum rotator [15]. They provided a framework for treating situa-
tions when nanomagnets have partial or full mechanical freedom. We shall consider
these problems in the following sections. At the end we will discuss implications of
our findings for experiments.
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3.2 Nanomechanics of a Two-State Spin System Rotating About
a Fixed Axis

3.2.1 Quantum Mechanics of a Two-State Spin System

The general form of a spin Hamiltonian is

ĤS = Ĥ‖ + Ĥ⊥, (3.1)

where Ĥ‖ commutes with Sz and Ĥ⊥ does not. The states |±S〉 are degenerate
ground states of Ĥ‖, where S is the total spin of the nanomagnet. We are interested
in a situation when Ĥ⊥ only slightly perturbs these states, adding to them small
contributions from other |mS〉 states. We will call these degenerate perturbed states
|ψ±S〉. Physically they describe the magnetic moment aligned in one of the two
directions along the anisotropy axis. Full perturbation theory that accounts for de-
generacy of ĤS provides quantum tunneling between the |ψ±S〉 states for integer S.
The ground state and first excited state are symmetric and antisymmetric combina-
tions of |ψ±S〉, respectively,

Ψ+ = 1√
2

(|ψS〉 + |ψ−S〉)

Ψ− = 1√
2

(|ψS〉 − |ψ−S〉),
(3.2)

which satisfy

ĤSΨ± =E∓Ψ±, (3.3)

where

E+ −E− ≡�. (3.4)

The tunnel splitting � is generally very small compared to the distance to other
spin energy levels, which makes the two-state approximation very accurate at low
energies.

It is convenient to describe these lowest energy spin states Ψ± with a pseudospin-
1/2. The components of the corresponding Pauli operator σ are

σx = |ψ−S〉〈ψS | + |ψS〉〈ψ−S |
σy = i|ψ−S〉〈ψS | − i|ψS〉〈ψ−S | (3.5)

σz = |ψS〉〈ψS | − |ψ−S〉〈ψ−S |.
The projection of ĤS onto |ψ±S〉 states is

Ĥσ =
∑

m,n=ψ±S
〈m|ĤS |n〉|m〉〈n|. (3.6)
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Expressing |ψ±S〉 in terms of Ψ± one obtains

〈ψ±S |ĤS |ψ±S〉 = 0, 〈ψ±S |ĤS |ψ∓S〉 = −�
2
, (3.7)

which gives the two-state Hamiltonian

Ĥσ =−�
2
σx (3.8)

having eigenvalues±�/2. In the absence of tunneling a classical magnetic moment
is localized in the up or down state. It is clear that delocalization of the magnetic
moment due to spin tunneling reduces the energy by �/2.

3.2.2 Renormalization of the Spin Tunnel Splitting
in a Nano-oscillator

We now place the nanomagnet considered in the previous subsection in a torsional
oscillator shown in Fig. 3.1, with the quantization (easy magnetization) axis parallel
to the axis of mechanical rotations. The full Hamiltonian of such system,

Ĥ = Ĥ ′
S + Ĥrot, (3.9)

consists of the spin part, Ĥ ′
S , and the mechanical part

Ĥrot = 1

2Iz

(
�

2L2
z + I 2

z ω
2
r φ

2). (3.10)

Here Iz is the moment of inertia of the oscillator, ωr is its resonant frequency, and
φ is the angle of rotation. Operator of the mechanical angular momentum, Lz =
−i∂/∂φ, satisfies commutation relation

[φ,Lz] = i. (3.11)

The subtle point is that Ĥ ′
S in (3.9) is different from ĤS in (3.1). The latter was

written in the coordinate frame rigidly coupled with the axes of the nanomagnet. As
the nanomagnet is now allowed to rotate together with the mechanical oscillator, its
spin Hamiltonian is given by

Ĥ ′
S = R̂ĤSR̂−1, (3.12)

where

R̂ = e−iSzφ. (3.13)
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This gives

〈
ψ±S |Ĥ ′

S |ψ±S
〉= 0,

〈
ψ∓S |Ĥ ′

S |ψ±S
〉=−�

2
e±2iSφ (3.14)

for the matrix elements of Ĥ ′
S . Noticing that

Sz|ψ±S〉 ∼= Sz|±S〉 = ±S|ψ±S〉, (3.15)

it is easy to project Hamiltonian (3.12) onto ψ±S . A simple calculation yields [13]

Ĥ ′
σ =−

�

2

[
cos(2Sφ)σx + sin(2Sφ)σy

]=−�
2

(
e−2iSφσ+ + e2iSφσ−

)
, (3.16)

where σ± = 1
2 (σx ± iσy). This expression generalizes (3.8) for the case of φ �= 0.

Standard quantization of mechanical rotations of the oscillator gives

φ =
√

�

2Iωr

(
a + a†). (3.17)

The full Hamiltonian of the system then becomes

H = �ωr

(
a†a + 1

2

)
− �

2

[
e−iβ(a+a†)σ+ + eiβ(a+a†)σ−

]
, (3.18)

where

β =
√

2�S2

Izωr
. (3.19)

The simplest case corresponds to ωr ��/�, when the excited states of the me-
chanical oscillator are separated by the large energy gap from the lowest energy spin
states. In this case one can simply average Ĥ ′

σ of (3.16) over the ground state of the
oscillator to obtain the effective spin Hamiltonian. Noticing that

〈0|e−2iSφ |0〉 = 〈0|e2iSφ |0〉 = 〈0|eiβ(a+a†)|0〉 = 1− 1

2
β2 + · · · = e−β2/2, (3.20)

one obtains

Ĥ eff
σ =−�

2
e−β2/2(σ+ + σ−)=−�eff

2
σx (3.21)

with

�eff =�e−β2/2, (3.22)

as compared to the Hamiltonian Ĥσ = −�2 σx of (3.8) unperturbed by mechanical
rotations.
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To have a sense of the renormalization of the spin tunnel splitting by the coupling
to the oscillator, one should express ωr in terms of the spring constant (torsional
rigidity) k of the oscillator and its moment of inertia Iz. Writing ωr as

√
k/Iz gives

β =
√

2�S2
√
kIz
. (3.23)

Together with (3.22) this shows that coupling to a macroscopic oscillator with
large k and Iz has little effect on spin tunneling. The reduction of Iz at a con-
stant k eventually leads to the exponential freezing of the tunnel splitting, �eff ∝
exp(−const/I 1/2

z ).
In-depth study [12] shows that the behavior of the system depends on two dimen-

sionless parameters:

α = 2(�S)2

Iz�
, r = �ωr

�
. (3.24)

At large r , the spin once prepared in the state up, oscillates between up and down at
a frequency �eff/�. This is easy to see by writing this state as

Ψ (t) = 1√
2

(
Ψ+ei�t/(2�) +Ψ−e−i�t/(2�)

)

= cos

(
�t

2�

)
|ψS〉 + sin

(
�t

2�

)
|ψ−S〉 (3.25)

and computing the corresponding expectation value of σz:

〈Ψt |σz|Ψt 〉 = cos

(
t�

�

)
. (3.26)

Numerical solution [12] of the Schrödinger equation with the Hamiltonian (3.18)
shows that at small r the coupling to mechanical oscillations produces strong deco-
hering effect on the quantum oscillations of the spin. The typical small r behavior
of the spin is shown in Fig. 3.3. At large α the spin tunneling disappears altogether.
In the next Section we shall see that this is also true for a free nanomagnet.

3.3 Free Quantum Rotator with a Two-State Macrospin

3.3.1 Anomalous Commutation Relations

The problem of a free quantum rotator with a spin has a natural solution in the
rotating coordinate frame that is rigidly coupled with the rotator. In this Subsection,
we re-derive some known but largely forgotten facts about commutation relations of
the operators of angular momentum in the rotating frame. This treatment applies to
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Fig. 3.3 Time dependence of
the expectation value of σz at
different values of α for
r = 0.03 [12]. At α = 2 the
spin tunneling is frozen and
the spin points in one
direction

the general case of mechanical rotations of a quantum system with internal angular
momentum degrees of freedom [16]. In our case this internal degree of freedom is
the spin, S. Starting with the usual commutation relations for the components of S,
components of the angular momentum of mechanical rotations L, and total angular
momentum J = S + L in the laboratory frame, we derive commutation relations
in the rotating (body) frame. We show that in the body frame all components of J
and S commute, and therefore the corresponding quantum numbers provide good
description of the quantum states of the system.

Let the X,Y,Z axes make up the laboratory frame that is fixed in space. The
x, y, z axes define the coordinate system that is rigidly coupled to the body, and
are directed along its principle moments of inertia. Initially, these two frames co-
incide. At any other instant the orientation of the rotating xyz frame relative to the
fixed XYZ frame is specified by the Euler angles [17] φ, θ,ψ . A vector R with
components RA (we use uppercase Roman letters to indicate the laboratory frame
components) as measured in the fixedXYZ frame can be projected onto the rotating
xyz coordinate frame. In the rotating frame, this vector is described by r and has
components rα (lowercase Greek indices denote components in the rotating frame).
The transformation r=CR is given by the rotation matrix C,

C=
⎛
⎝λxX λxY λxZ
λyX λyY λyZ
λzX λzY λzZ

⎞
⎠ (3.27)

where the λαA are direction cosines between laboratory frame and rotating frame
axes.

The total angular momentum J obeys the usual commutation relations in the
laboratory XYZ frame,

[JA,JB ] = iεABCJC, (3.28)
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where εABC is the fully antisymmetric Levi-Civita tensor (summation over repeated
indices is implicit throughout this chapter). In the rotating xyz frame, the total an-
gular momentum has components

Jα = λαAJA (3.29)

and the sign of i in the commutation relation is reversed,

[Jα, Jβ ] = −iεαβγ Jγ . (3.30)

The components of the mechanical angular momentum can be resolved in either
frame, or in terms of the Euler angles φ, θ,ψ . The operator forms of the correspond-
ing angular momenta are

pφ =−i� ∂
∂φ
, pθ =−i� ∂

∂θ
, pψ =−i� ∂

∂ψ
(3.31)

which mutually commute. The rotational angular momentum operators can be pro-
jected onto the laboratory frame coordinate system,

LX = − cot θ cosφpφ − sinφpθ + csc θ cosφpψ

LY = − cot θ sinφpφ + cosφpθ + csc θ sinφpψ (3.32)

LZ = pφ,
or the body frame coordinate system,

Lx = − csc θ cosψpφ + sinψpθ + cot θ cosψpψ

Ly = csc θ sinψpφ + cosψpθ − cot θ sinψpψ (3.33)

Lz = pψ.
The commutation relations can be obtained by direct calculation, with the laboratory
frame components satisfying

[LA,LB ] = iεABCLC, (3.34)

while the rotating frame components obey

[Lα,Lβ ] = −iεαβγ Lγ . (3.35)

The spin obeys the same regular commutation relations in either frame. To show
this, we define the spin components in the laboratory frame where

[SA,SB ] = iεABCSC. (3.36)

Using the fact that [SA,LB ] = 0, it is easy to see that the components of J= L+ S
in the laboratory frame satisfy the commutation relation given by (3.28). Projecting
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this spin onto the rotating axes, Sα = λαASA, and noticing that [SA,λβB ] = 0, we
obtain

[Sα,Sβ ] = λαAλβB [SA,SB ] = iεABCλαAλβBSC = iεαβγ λγCSC = iεαβγ Sγ .
(3.37)

The relation

εABCλαAλβB = εαβγ λγC (3.38)

follows from the fact that for a special orthogonal matrix any element is equal to
its cofactor. In order to obtain the same sign for all angular momenta in the rotating
frame, we define reversed spin S→ S̃ =−S, giving

[S̃α, S̃β ] = −iεαβγ S̃γ . (3.39)

Now we may write J = L − S̃, and the components of J satisfy the anomalous
commutation relations, (3.30).

Alternatively, the commutation relation for the total angular momentum in the lab
frame can be calculated directly. Using the fact that the directional cosines transform
according to

[λαA,JB ] = [λαA,LB ] = iεABCλαC, (3.40)

and that the spin and rotational angular momenta do not commute in the rotating
frame

[S̃α,Lβ ] = −λβB [λαA,LB ]SA =−iεαβγ S̃γ (3.41)

gives

[Jα, Jβ ] = [Lα,Lβ ] − [Lα, S̃β ] − [S̃α,Lβ ] + [S̃α, S̃β ]
= −iεαβγ (Lγ + S̃γ )=−iεαβγ Jγ . (3.42)

Similarly, we can show that

[Jα, S̃β ] = [Lα, S̃β ] − [S̃α, S̃β ] = 0, (3.43)

allowing us to simultaneously choose quantum numbers corresponding to both J
and S̃.

3.3.2 Rotating Two-State Spin System

The full Hamiltonian of a rotating nanomagnet is given by the sum of the rotational
energy and magnetic anisotropy energy

Ĥ = �
2L2
x

2Ix
+ �

2L2
y

2Iy
+ �

2L2
z

2Iz
+ Ĥ

S̃
. (3.44)
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Note that the mechanical part and the spin part of this Hamiltonian are not in-
dependent because in the body frame the operators L and S̃ do not commute,
[Li, S̃j ] = −iεijkS̃k . It, therefore, makes sense to express the above Hamiltonian
in terms of the commuting body-frame operators of the total angular momentum J
and reversed spin S̃:

Ĥ = �
2

2

(
J 2
x

Ix
+ J

2
y

Iy
+ J

2
z

Iz

)
+ �

2

2

(
S̃2
x

Ix
+ S̃

2
y

Iy
+ S̃

2
z

Iz

)

+ �
2
(
JxS̃x

Ix
+ JyS̃y

Iy
+ JzS̃z

Iz

)
+ Ĥ

S̃
. (3.45)

For a symmetric rigid rotor with Ix = Iy this Hamiltonian reduces to

Ĥ = �
2J2

2Ix
+ �

2J 2
z

2

(
1

Iz
− 1

Ix

)
+ �

2
(
JxS̃x + JyS̃y

Ix
+ JzS̃z

Iz

)
+ ˆ̃
H
S̃
, (3.46)

where

ˆ̃
H
S̃
= Ĥ

S̃
+ �

2

2

(
1

Iz
− 1

Ix

)
S̃2
z +

�
2S̃2

2Ix
. (3.47)

The last term in ˆ̃
H
S̃

is an unessential constant, �
2S(S + 1)/(2Ix).

The second term in (3.47) provides renormalization of the crystal field in a freely
rotating particle. For, e.g., the biaxial spin Hamiltonian, ĤS = −DS2

z + dS2
y , one

has

D→Deff =D − �
2

2

(
1

Iz
− 1

Ix

)
. (3.48)

Since �/D scales as (d/D)S , this leads to the renormalization of �:

�eff =�
[

1− �
2

2IzD
(1− λ)

]1−S
, (3.49)

where we have introduced the aspect ratio for the moments of inertia,

λ= Iz

Ix
. (3.50)

The range of λ for a symmetric rotator is 0≤ λ≤ 2. (For, e.g., a symmetric ellipsoid
with semiaxes a = b �= c, one has λ= 2a2/(a2 + c2).) Depending on the shape of
the rotator, the tunnel splitting can therefore increase or decrease. This effect is
typically small [14].

Projection of (3.46) on the two spin states along the lines of the previous Section
gives

Ĥ = �
2J2

2Ix
+ �

2J 2
z

2

(
1

Iz
− 1

Ix

)
− �

2
σx − �

2S

Iz
Jzσz. (3.51)
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where we have used

〈ψ±S |Sz|ψ±S〉 = ±S, 〈ψ±S |Sx,y |ψ±S〉 = 0. (3.52)

We construct eigenstates of this Hamiltonian according to

|ΨJK〉 = 1√
2

(
C±S |ψS〉 ±C∓S |ψ−S〉

)|JK〉 (3.53)

where

J2|JK〉 = J (J + 1)|JK〉, J = 0,1,2, . . .

Jz|JK〉 =K|JK〉, K =−J, . . . , J.
(3.54)

Solution of Ĥ |ΨJK 〉 =E|ΨJK〉 gives energy levels as

E
(±)
JK =

�
2J (J + 1)

2Ix
+ �

2K2

2

(
1

Iz
− 1

Ix

)
±
√(

�

2

)2

+
(

�2KS

Iz

)2

, (3.55)

The upper (lower) sign in (3.55) corresponds to the lower (upper) sign in (3.53). For
K �= 0 each state is degenerate with respect to the sign ofK . ForK = 0,1,2, . . . the
coefficients in (3.53) are given by

C± =
√

1± αK/
√
S2 + (αK)2, (3.56)

with α given by (3.24).

3.3.3 Ground State

Minimization of the energy in (3.55) with respect to J , taking into account the fact
that J cannot be smaller thanK , immediately yields J =K , that is, the ground state
always corresponds to the maximal projection of the total angular momentum onto
the spin quantization axis. In semiclassical terms this means that the minimal energy
states in the presence of spin tunneling always correspond to mechanical rotations
about the magnetic anisotropy axis. This is easy to understand by noticing that the
sole reason for mechanical rotation is the necessity to conserve the total angular
momentum while allowing spin tunneling to lower the energy. To accomplish this
the magnetic particle needs to oscillate between clockwise and counterclockwise
rotations about the spin quantization axis in unison with the tunneling spin. If such
mechanical oscillation costs more energy than the energy gain from spin tunneling,
then both spin tunneling and mechanical motion must be frozen in the ground state
as, indeed, happens in very light particles (see below). Rotations about axes other
than the spin quantization axis can only increase the energy and, thus, should be
absent in the ground state.
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For further analysis it is convenient to write (3.55) in the dimensionless form,

E
(±)
JK

�
= α

4

[
J (J + 1)−K2

S2
λ+ K

2

S2

]
± 1

2

√
1+ K

2

S2
α2. (3.57)

For a given λ, as α increases the ground state switches from J = 0 to higher J when

E
(−)
00

[
α0
J (λ)

]=E(−)JJ

[
α0
J (λ)

]
. (3.58)

Solution of this equation for α0
J (λ) gives

α0
J =

(2S)2(J + λ)
J [(2S)2 − (J + λ)2] . (3.59)

This first transition occurs for the smallest value of α0
J (λ) and the transition is from

J = 0 to the corresponding critical value, Jc. For α < α0
Jc

the ground state corre-
sponds to J = 0 and C±S = 1. After the first transition from J = 0 to J = Jc, the
ground state switches to sequentially higher J at values of α which satisfy

E
(−)
J−1 J−1

[
αJ (λ)

]=E(−)JJ

[
αJ (λ)

]
. (3.60)

Solution of this equation for αJ (λ) gives

αJ = (2S)2T (J,λ)√
(2S)2(2J − 1)2 − T (J,λ)2√(2S)2 − T (J,λ)2 , (3.61)

with

T (J,λ)= 2J − 1+ λ. (3.62)

The critical αJ has poles at λ= 2(S− J )+ 1. For λ≥ 1 there is no longer a ground
state transition to J = S, even for very large values of α.

Because the ground state is completely determined by the parameters α and λ, we
can depict the ground state behavior in a quantum phase diagram shown in Fig. 3.4.
The curves separate areas in the (α,λ) plane that correspond to different values of
J and different values of the magnetic moment. The latter is due entirely to the
spin of the nanomagnet (or the internal angular momentum in place of the spin), as
Lz represents mechanical motion of the nanomagnet as a whole, and not electronic
orbital angular momentum. Thus,

μ=−gμB〈ΨJK |Sz|ΨJK〉 = −gμBS αK√
S2 + (αK)2 . (3.63)

Here g is the spin gyromagnetic factor, and the minus sign reflects the negative
gyromagnetic ratio γ =−gμB/�.
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Fig. 3.4 Quantum phase
diagram for the total angular
momentum J and magnetic
moment μ of a symmetric
rotator with spin 10, ratio of
the principal moments of
inertia λ, and
magneto-mechanical ratio α
[15]. The lower picture shows
the fine structure of the
diagram near the first
critical α

3.4 Conclusions

In free magnetic molecules like Mn-12 or Fe-8 spin tunneling should be completely
frozen. Indeed, according to (3.24) the spin tunneling in a free rotor can occur only
if α = 2�

2S2/(Iz�) is not too large compared to one. For the moment of inertia Iz ∼
10−42 kg m2, which is in the right ball park for Mn-12 and Fe-8 spin-10 molecules,
this requires � of order 0.1 K. The natural tunnel splitting in Mn-12 and Fe-8 is
much smaller. Of course, these molecules can hardly be treated as rigid rotators. It
is, obvious, however, that their “softness” can only further impede the transfer of the
angular momentum between spin and mechanical degrees of freedom that is needed
for spin tunneling.

For a magnetic molecule attached to a surface by some kind of a molecular leg,
another relevant parameter is the torsional rigidity of the leg k, see (3.22) and (3.23).
For Iz ∼ 10−42 kg m2 the value of β2/2 in �eff =� exp(−β2/2) becomes of order
unity at k < 10−22 N m (ωr < 1010 s−1). At such values of k, that correspond to
a loose connection with the surface, spin tunneling will be strongly suppressed. At
ωr <�/� significant decoherence of spin states will occur as well. For comparison,
the renormalization of � in a Mn-12 molecule attached to a carbon nanotube [3]
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(k ∼ 10−18 N m) must be very small. These effects should be taken into account
when designing qubits based upon molecular magnets.
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Chapter 4
A Microscopic and Spectroscopic View
of Quantum Tunneling of Magnetization

Junjie Liu, Enrique del Barco, and Stephen Hill

Abstract This chapter takes a microscopic view of quantum tunneling of magne-
tization (QTM) in single-molecule magnets (SMMs), focusing on the interplay be-
tween exchange and anisotropy. Careful consideration is given to the relationship
between molecular symmetry and the symmetry of the spin Hamiltonian that dic-
tates QTM selection rules. Higher order interactions that can modify the usual se-
lection rules are shown to be very sensitive to the exchange strength. In the strong
coupling limit, the spin Hamiltonian possesses rigorous D2h symmetry (or C∞ in
high-symmetry cases). In the case of weaker exchange, additional symmetries may
emerge through mixing of excited spin states into the ground state. Group theoretic
arguments are introduced to support these ideas, as are extensive results of magne-
tization hysteresis and electron paramagnetic resonance measurements.

4.1 Spin Hamiltonian

The concept of an effective spin-Hamiltonian involving only spin variables has been
employed in the study of paramagnetic species for well over half a century. This for-
malism is particularly suited to the study of transition metal complexes in which the
ground state is very often an orbital singlet that is well isolated from excited orbital
states due to the strong influence of the ligand field [1]. The ground state multiplicity
is determined entirely by the spin state of the ion in this situation, even though the
ground wave functions are not exact eigenstates of Ŝ2 because of residual spin-orbit
(SO) coupling. It is this coupling that gives rise to the familiar anisotropic zero-field
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splitting (zfs) and Zeeman terms in the resultant spin Hamiltonian, parameterized

by the zfs
↔
D and Lande

↔
g-tensors.

4.1.1 Giant-Spin Approximation Hamiltonian

The magnetic moment of a typical polynuclear transition metal cluster is determined
by the exchange interactions between the spins associated with the constituent ions.
As detailed in this chapter, there are a number of ways to extend the spin Hamilto-
nian formalism to this multi-ion situation. By far the simplest is the so-called Giant
Spin Approximation (GSA), in which one assigns a total (giant) spin quantum num-
ber, S, to the lowest-lying (ms ) magnetic levels [2]; for a ferromagnetic molecule,
S is obtained from the algebraic sum of the spin values associated with each of the
ions. If the exchange coupling within the molecule is large in comparison to the
single-ion zfs interactions, then this ground spin multiplet will be well separated
from excited spin states. One may then employ a GSA Hamiltonian to describe the
magnetic properties of the molecule, provided that the temperature is sufficiently
low that excited spin states are not thermally populated.

A series expansion in terms of the spin component operators Ŝx , Ŝy , and Ŝz,
employing so-called Extended Stevens operators, results in the following effective
zfs Hamiltonian [3–5]:

Ĥzfs =
2S∑
p

p∑
q=0

B
q
pÔ

q
p, (4.1)

where Ôqp(Ŝx, Ŝy, Ŝz) represent the operators, and Bqp the associated phenomeno-
logical (or effective) zfs parameters. The subscript, p, denotes the order of the op-
erator, which must be even due to the time reversal invariance of the SO interaction;
the order is also limited by the total spin, S, of the molecule such that p ≤ 2S.
The superscript, q (≤ p), denotes the rotational symmetry of the operator about the
z-axis. Equation (4.1) has been employed with great success in the study of single-
molecule magnets (SMMs), particularly in terms of describing low-temperature
quantum tunneling of magnetization (QTM) behavior and electron paramagnetic
resonance (EPR) data [2]. In fact, (4.1) has even been applied quite successfully
in cases where the ground spin multiplet is not so well isolated from excited spin
states [6–9]. Fourth and higher order operators are often found to be important in
these cases. This chapter examines the microscopic origin of these terms, which are
often negligible for the constituent ions. However, the usually dominant 2nd-order
zfs interaction is first considered.

4.1.1.1 Second Order Anisotropy

Although fourth and higher order Stevens operators (p ≥ 4) are allowed for a
molecule with S ≥ 2, it is not always necessary to include all of them (up to
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Fig. 4.1 Potential energy surface corresponding to the 2nd-order anisotropy tensor. The surface
is generated employing (4.2) with |E/D| = 1/5 and D < 0. The radial distance to the surface
represents the energy of a spin as a function of its orientation

p = 2S). For SMMs comprised of transition metal ions, the low-energy physics
is usually dominated by 2nd-order SO anisotropy. Therefore, the simplest zero-field
GSA Hamiltonian used in characterizing SMMs is often written as:

Ĥzfs =DŜ2
z +E

(
Ŝ2
x − Ŝ2

y

)
. (4.2)

Equation (4.2) includes only 2nd-order terms, where D (= 3B0
2 ) parameterizes the

uniaxial anisotropy and E (= B2
2 ) the rhombicity. For an approximately uniaxial

system, DŜ2
z is the dominant anisotropy, with z chosen as the quantization axis. In

biaxial cases, the ratio between E and D is usually restricted such that |E/D|< 1/3;
one can always perform a rotation of the coordinate system such that this criterion
is satisfied.

One of the main goals of this section is to understand the influence of molecular
symmetry on the QTM properties of SMMs. Hence, it is important to examine the
symmetry of (4.2) since, strictly speaking, the symmetry of the Hamiltonian should
be compatible with the symmetry of the molecule under investigation. In addition,
the nature of SO coupling ensures that the spin Hamiltonian be invariant under time-
reversal (p is even), i.e., the spin Hamiltonian naturally possesses Ci symmetry. As
such, the physics is invariant to inversion of either the total spin moment or the
applied field. A classical representation of (4.2) is shown in Fig. 4.1, with |E| =
|D|/5 and D < 0. This graphical representation is obtained by substituting the spin
operators in (4.2) by their classical equivalents, as follows:

Ŝx→ S sin θ cosφ;
Ŝy→ S sin θ sinφ;
Ŝz→ S cos θ;

(4.3)

where θ and φ are the inclination and azimuthal angles in spherical coordinates, re-
spectively. In this representation, the spin is treated as a macroscopic magnetic mo-
ment for which all the three components (Sx , Sy and Sz) can be determined simulta-
neously. The surface shown in Fig. 4.1 represents the energy of the spin as a function
of its orientation, where the radial distance to the surface corresponds to its energy.
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As can be seen, (4.2) contains the following symmetry elements: (a) three orthogo-
nal C2 axes, corresponding to x, y and z, and (b) three orthogonal mirror planes, cor-
responding to the xy, yz, and zx-planes. These symmetry elements, together with
the Ci symmetry, give rise to a D2h symmetry for (4.2), which is obviously a much
higher symmetry than most real molecules. Consequently, even though (4.2) can of-
ten account very well for low-temperature thermodynamic measurements performed
on SMMs (e.g. ac susceptibility and magnetization), it may nevertheless fail to ex-
plain symmetry-sensitive quantum mechanical (spectroscopic) observables such as
QTM steps, Berry-phase interference (BPI) patterns and EPR/neutron spectra.

It should be noted from the preceding discussion that the B1
2 Ô

1
2 (Ô

1
2 ≡ 1

2 [Ŝx Ŝz+
ŜzŜx]) term was neglected in (4.2), even though it is perfectly allowed within the
GSA. With the exception of Ci , the Ô1

2 operator satisfies none of the symmetry op-
erations described in the preceding paragraph. However, such a term is unnecessary,
as can be seen when writing the 2nd-order GSA Hamiltonian in the more compact
form:

Ĥzfs = Ŝ· ↔D ·Ŝ, (4.4)

where
↔
D is a 3 × 3 matrix corresponding to the full 2nd-order anisotropy tensor.

In (4.4), D and E are related to the diagonal elements of
↔
D (see below) while B1

2

appears as off-diagonal elements. The only restriction on
↔
D is that it must be Hermi-

tian in order to guarantee the Hamiltonian be Hermitian; indeed,Dxz =Dzx = 1
2B

1
2 .

Consequently,
↔
D can always be diagonalized by rotating the original Cartesian co-

ordinate frame. Upon doing so, all of the off-diagonal elements of the rotated matrix
vanish, i.e., B1

2 = 0 in the new Cartesian coordinate frame. Finally, one may adjust
the absolute values of the resultant eigenvalues without altering the symmetry of

the Hamiltonian simply by subtracting 1
2 (Dxx +Dyy)

↔
I from

↔
D (

↔
I is the identity

matrix). The zfs Hamiltonian can then be rewritten as (4.2) with

D =Dzz − 1

2
(Dxx +Dyy) and E = 1

2
(Dxx −Dyy), (4.5)

where Dii (i = x, y, z) refer to components of the diagonalized (rotated)
↔
D tensor.

In other words, (4.4) is equivalent to (4.2), requiring just two parameters, D and E,
to completely describe the effective 2nd-order anisotropy within the GSA. Inclusion
of Ô1

2 results simply in a rotation of the surface depicted in Fig. 4.1. Consequently,
the 2nd-order GSA Hamiltonian necessarily possesses at least D2h symmetry.

The preceding discussion demonstrates something very important: even though
2nd-order terms typically represent the dominant interactions within the GSA de-

scription of a SMM, the resultant
↔
D tensor possesses an artificially high (D2h) sym-

metry which may not be compatible with the structural symmetry of a particular
molecule under investigation. The consequences of this property of the GSA in
terms of the resultant QTM will be discussed in detail in the following sections.
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Fig. 4.2 Potential energy surfaces corresponding to the fourth order Stevens operators Ô1
4 (a),

Ô2
4 (b), Ô3

4 (c) and Ô4
4 (d). As can be seen, the q-even operators include the xy-plane as an extra

symmetry element while the q-odd operators include improper rotations (see main text)

4.1.1.2 Higher-Order Anisotropies

For a SMM with S ≥ 2, Stevens operators of order four (and higher) are allowed in
the GSA Hamiltonian—note that p can take on any even value from 2 to 2S. The
values of the 4th-order parameters are often deceptively small, especially for SMMs
with large spin values. For example, |B0

4/D| ∼ 5× 10−5 for the Mn12 SMMs, yet
the B0

4 Ô
0
4 GSA term contributes∼ 20 % to the energy barrier. This is due not only to

the higher order of Ŝz in Ô0
4 , but also because of the way in which the Ô0

4 operator
is defined—a multiplier of 35 is associated with S4

z . In general, the contribution
of higher-order terms to the energies of spin states may be expected to be smaller
than those of the 2nd-order terms. However, this rule of thumb breaks down in the
weak exchange limit (or for particularly high-symmetry molecules [10]); indeed, it
is in this limit that one may call into question the validity and/or usefulness of the
GSA. Axial (q = 0) 4th-order terms lead to a non-parabolic energy barrier, which
gives rise to non-even spacings between EPR and QTM resonance fields [11–14].
More importantly, the higher-order transverse (q �= 0) terms introduce additional
symmetries into the GSA Hamiltonian, enabling a more precise description of the
quantum properties of SMMs.

Figure 4.2 displays the classical energy surfaces corresponding to the 4th-order
Stevens operators; the Ô0

4 surface is not shown since it commutes with Ŝz and pos-
sesses C∞ (cylindrical) rotational symmetry. All of the surfaces, and hence the op-
erators, exhibit rotational symmetries which are compatible with the superscript q.
However, one may note a systematic difference between the q-odd and q-even op-
erators: the q-even operators have the xy-plane as an additional mirror plane; this
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is not the case for the q-odd operators. In particular, the lobes of the Ô2
4 and Ô4

4
operators lie within the xy-plane, whereas those of Ô1

4 and Ô3
4 alternately lie above

and below this plane. The symmetries of the 4th-order operators can be understood
in terms of combinations of rotational symmetries and the intrinsic Ci symmetry
of the Hamiltonian. For the q-even operators, the direct product of the rotational
and inversion groups leads to: C2×Ci = C2h symmetry for Ô2

4 ; and C4×Ci = C4h

for Ô4
4 . Thus, the xy-plane is introduced as a new symmetry element. In contrast, for

the q-odd operators, C1 ×Ci = Ci for Ô1
4 and C3 ×Ci = S6 for Ô3

4 . The resultant
symmetry groups corresponding to these operators include an improper rotation (Ci
can be treated as the improper rotation S2). The absence of the xy-mirror plane for
the q-odd operators suggests that the molecular hard plane may not coincide with
the xy-plane, which leads to several intriguing phenomena described later in this
chapter.

The inclusion of p ≥ 4 Stevens operators in the GSA has a significant influence
on the interpretation of QTM measurements. When limited to 2nd-order anisotropy,
the zero-field Hamiltonian can only mix spin projection states that differ in ms by
an even number, i.e., �ms = |ms1 −ms2| = 2n (n= integer). This means that only
k-even (k =ms1 +ms2) QTM resonances should be observable for parallel applied
fields (H ‖ z). Moreover, in molecules for which rhombicity is symmetry forbidden
(E = 0), a purely 2nd-order Hamiltonian would be cylindrically symmetric. Con-
sequently, for H ‖ z, ms remains an exact quantum number and QTM should be
completely forbidden. However, plenty of such high-symmetry molecules exist and
are known to exhibit clear QTM behavior, including Mn12 and several other SMMs
discussed in this chapter. In these situations, it is necessary to include higher order
anisotropies in the GSA. The corresponding operators introduce new spin-mixing
rules which can lead, for example, to k-odd QTM resonances.

The advantage of the GSA lies in the fact that one can usually restrict the total
number of zfs parameters involved in data analysis to just a few by considering
the overall symmetry of the molecule under study. Furthermore, the GSA Hilbert
space includes only the 2S + 1 states that belong to the ground spin multiplet, such
that the Hamiltonian matrix has dimension (2S + 1)× (2S + 1). This makes data
analysis for large clusters computationally possible. However, the GSA completely
ignores the internal degrees of freedom within a molecule, thus completely failing
to capture the underlying physics in cases where the total spin fluctuates [15–17].
Moreover, when a molecule possesses very little symmetry (e.g. Ci ), the number of
GSA zfs parameters cannot be restricted on the basis of symmetry and, in principle,
all possible terms (up to p = 2S) should be taken into account. In these cases, it
may be advantageous to employ a multi-spin Hamiltonian, particularly in situations
where microscopic insights are desired.

4.1.2 Multi-Spin Hamiltonian

In the multi-spin (MS) model, a molecule is treated as a cluster of magnetic ions
(spins) which are coupled to each other via pairwise exchange interactions. The
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corresponding zero-field Hamiltonian is:

Ĥzfs =
∑
i

ŝi ·
↔
RTi ·

↔
di ·

↔
Ri ·ŝi +

∑
i<j

ŝi ·
↔
J i,j ·ŝj , (4.6)

where ŝi represents the spin operator of the ith ion, and
↔
di is the 2nd-order zfs ten-

sor associated with this same ion; lowercase symbols are used here to differentiate
parameters/variables employed in both models, i.e., lowercase ≡MS and uppercase

≡ GSA. For the sake of simplicity,
↔
d i is written in the diagonal form:

↔
d=

[
ei 0 0
0 −ei 0
0 0 di

]
, (4.7)

where the local coordinate frame of
↔
d i is chosen to match the local principal

anisotropy axes of the ith ion.
↔
Ri is the Euler matrix, specified by the Euler an-

gles θi , φi and ψi , which transforms the local coordinate frame of the ith ion into

the molecular coordinate frame. The matrix
↔
J i,j specifies the exchange interaction

between the ith and j th ions. It should be emphasized that all of the parameters
in (4.6) should be constrained by the structure of the molecule under study, i.e.,
the overall symmetry of the Hamiltonian must be compatible with the molecular
symmetry.

The MS model captures physics associated with internal molecular degrees of
freedom that are not easily understood within the GSA framework. First and fore-
most, the MS model is capable of describing phenomena in which the total spin
of a molecule fluctuates, i.e., it gives the energies of excited spin states in addition
to the ground state, and includes the mixing between these states [18]. Secondly,
the parameters in the MS Hamiltonian have clear physical significance, i.e., they
describe the magnetic properties of the constituent ions and the coupling between
them. Moreover, many of these parameters can be independently verified through
measurements of related compounds [19]. In contrast, the parameters deduced on
the basis of a GSA are purely phenomenological. For example, comparisons be-
tween the two models have shown that higher order anisotropies in the GSA arise
from the interplay between the local 2nd-order single-ion anisotropy and the mag-
netic interactions between the ions, leading to mixing of excited spin states into the
ground spin multiplet [16, 18, 20]. In other words, the phenomenological p ≥ 4 zfs
parameters are a direct manifestation of physics that goes beyond the GSA. The fol-
lowing section deals with this issue in detail, with a focus on the correlation between
QTM behavior and the structural symmetries of real molecules.

4.2 Quantum Tunneling of Magnetization in High-Symmetry
Mn3 Single-Molecule Magnets

The first clear observation of QTM selection rules, i.e., a complete absence
of symmetry forbidden resonances [21], was reported for the trigonal SMM
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Fig. 4.3 The molecular structure (a) and schematic representation of the magnetic core (b) of the
Mn3 SMM. Color code: Mn = purple, Zn = green, O = red, N = blue, C = black and Cl = dark
gold. H-atoms have been omitted for clarity

[NE4]3[Mn3Zn2(salox)3O(N3)6Cl2] (henceforth Mn3) [22, 23]. This section fo-
cuses on QTM in SMMs with trigonal symmetry, emphasizing (i) symmetry-
enforced selection rules that allow quantum relaxation in k-odd resonances
(Sect. 4.2.2), (ii) the role of disorder (Sect. 4.2.3), and (iii) the microscopic ori-
gin of the B3

4 Ô
3
4 GSA interaction which is predicted to give rise to unusual BPI

patterns (Sect. 4.2.4).

4.2.1 The Mn3 Single-Molecule Magnet

Several Mn3 SMMs are known to crystallize in the trigonal space group R3c with
racemic mixtures of C3 symmetric chiral molecules [18, 22, 23]. The structure of the
[NE4]3[Mn3Zn2(salox)3O(N3)6Cl2] molecule is shown in Fig. 4.3(a). The magnetic
core consists of three ferromagnetically coupled MnIII (s = 2) ions, which form an
equilateral triangle with two ZnII ions located above and below the Mn3 plane, thus
forming a trigonal bipyramidal structure. The C3 axis of the molecule is perpendic-
ular to the Mn3 plane, while the local easy-axes of the individual spins are defined
by the Jahn-Teller (JT) elongation axes of MnIII ions, which are tilted slightly with
respect to the C3 axis. At low temperatures, the spin S = 6 ground state multiplet
can be described with the following GSA Hamiltonian:

Ĥ =DŜ2
z +B0

4 Ô
0
4 +B3

4 Ô
3
4 +B6

6 Ô
6
6 +μB �B·

↔
g ·Ŝ (4.8)

Due to the C3 symmetry of the molecule, the 2nd order transverse anisotropy term,
E(Ŝ2

x− Ŝ2
y), is rigorously forbidden. Hence, the leading trigonal (Ô3

4 ) and hexagonal

(Ô6
6 ) transverse zfs terms are instead included in (4.8).
Mn3 is highly attractive in the context of understanding the origin of QTM at

a microscopic level. The dimension of the MS Hamiltonian matrix for three s = 2
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Fig. 4.4 Zeeman diagram for
a spin S = 6 multiplet with
easy-axis anisotropy (D < 0
in (4.8)) and H//z. All
possible non-zero tunneling
gaps for C3 symmetry are
labeled according to the
scheme discussed in the main
text. The inset shows the HT
dependence of the odd-n
tunneling gaps

spins is just [(2s + 1)3]2 = 125 × 125. The C3 symmetry reduces the number of
interaction parameters to just a single exchange constant, J , and identical d and e
values for each ion; it also guarantees identical θi Euler angles (= 8.5◦) for the three
spins, with φi = (i − 1) × 120◦. The remaining parameters have then been deter-
mined from fits to EPR and magnetization hysteresis measurements [18, 21–23].
Lastly, the structure contains no solvent molecules. This is rare among SMMs and
removes a major source of disorder [24]. Consequently, exceptional spectroscopic
data (QTM and EPR) are available against which one can test theoretical models.

4.2.2 QTM Selection Rules in Mn3

For large spin systems, the effects of q �= 0 zfs terms typically manifest themselves
at energy scales that are orders of magnitude smaller than those of the axial (q = 0)
terms. One must therefore focus on avoided level crossings, where the tunneling
gaps are governed by the transverse terms in (4.8). Figure 4.4 displays the Zeeman
diagram corresponding to the nominal spin S = 6 ground state multiplet of the Mn3
molecule. Due to symmetry restrictions (q = 3n for C3 symmetry, where n is an
integer), non-zero tunneling gaps are limited to level crossings with �ms = 3n,
where ms is the projection of the total spin onto the molecular C3 (z-) axis. All such
gaps, �ms,m′s , have been labeled in Fig. 4.4 for QTM resonances k ≤ 3, where k (=
ms +m′s ) denotes an avoided crossing between pairs of levels with spin projections
ms and m′s (m̄s denotes −|ms |).

By performing a mapping of the energy diagram obtained via exact diagonaliza-
tion of (4.6) onto that of the GSA Hamiltonian (4.8) one can obtain microscopic
insights into the emergence of p ≥ 4 transverse terms in the latter approxima-
tion. Published zfs parameters were employed for simulations involving (4.6), i.e.,
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Table 4.1 Comparison of tunneling gaps obtained for Mn3 from the MS and GSA models for
resonances k = 0, 1, 2 and 3, for the two cases θ = 0 (top) and θ = 8.5◦ (bottom)

k n � GSA-gap (K) MS-gap (K) Ratio

JT-axes parallel to the molecular z-axis

0 2 �3̄,3 2.60× 10−2 2.66× 10−2 0.98

0 4 �6̄,6 1.10× 10−6 1.05× 10−6 1.05

2 2 �2̄,4 2.37× 10−2 2.35× 10−2 1.01

JT-axes tilted θ = 8.5◦ away from the molecular z-axis

0 2 �3̄,3 2.76× 10−2 2.91× 10−2 0.95

0 4 �6̄,6 1.26× 10−6 1.25× 10−6 1.01

1 3 �4̄,5 4.68× 10−5 4.19× 10−5 1.12

1 1 �1̄,2 6.33× 10−2 6.31× 10−2 1.00

2 2 �2̄,4 2.45× 10−2 2.61× 10−2 0.94

3 3 �3̄,6 8.66× 10−5 7.53× 10−5 1.15

3 1 �0,3 1.76× 10−1 1.76× 10−1 1.00

d =−4.2 K and e = 0.9 K [21]. An isotropic exchange constant J (=−10 K) was
employed, set to a value that is artificially high in order to isolate the ground state
from excited multiplets, thereby simplifying analysis of higher-lying QTM gaps (see
Fig. 4.4). The Euler angles were set to φ1 = 0, φ2 = 120◦ and φ3 = 240◦ (all ψi = 0)
to preserve C3 symmetry, while θi (= θ ) was allowed to vary in order to examine its
influence on QTM selection rules.

The situation in which the JT axes of the three MnIII ions are parallel to the C3
axis is first considered, i.e., θ = 0. The top section of Table 4.1 lists the magnitudes
of even-n QTM gaps involving pairs of levels with �ms = 3n, deduced via diago-
nalization of (4.6) in the absence of a transverse field,HT (⊥ z). The odd-n,HT = 0
gaps are identically zero, as can be seen from their dependence on HT (Fig. 4.4
inset): the power-law behavior indicates no contribution from zfs interactions (at
HT = 0). Consequently, one expects only even-n zfs terms of the form B3n

p Ô
3n
p in

the GSA: those satisfying this requirement have six-fold rotational symmetry about
the C3 axis, i.e., a higher symmetry than the real molecule (further explanation is
given below). For comparison, these QTM gaps are simulated employing (4.8) with
B3

4 = 0 and B6
6 = 4.3× 10−7 K. As seen in Table 4.1, an excellent overall agree-

ment between the two models is obtained. Small differences may be attributed to
higher-order six-fold terms such as B6

8 Ô
6
8 , B6

10Ô
6
10, etc., which have been neglected

in this analysis.
A more realistic situation involves a tilting of the JT axes away from the C3 axis

by θ = 8.5◦, as is the case for Mn3 [23]. Both even- and odd-n, HT = 0 QTM gaps
are generated in this situation, i.e., k-odd QTM resonances become allowed. This
may be understood within the framework of the GSA as being due to the emergence
of zfs interactions possessing three-fold rotational symmetry about the molecularC3
axis, i.e., B3n

p Ô
3n
p with n= 1 and p ≥ 4; the leading such term is B3

4 Ô
3
4 . Table 4.1
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Fig. 4.5 The influence of the orientations of the JT-axes of the MnIII ions on the zero-field magneto
symmetry of the Mn3 SMM. In (a), the JT-axes of the MnIII ions (left) are parallel to the molecular
C3 axis; consequently, the resultant Hamiltonian of the molecule (right) possesses C6h symmetry.
In (b), the JT-axes of the MnIII ions (left) are tilted away from the molecular C3 axis; consequently,
the resultant Hamiltonian of the molecule possesses S6 symmetry

lists the QTM gaps evaluated via diagonalization of (4.8) using B6
6 = 4.3× 10−7 K

and B3
4 = 4.77× 10−4 K. Excellent agreement is once again achieved between the

GSA and MS Hamiltonians. Minor deviations may, in principle, be corrected by
introducing higher-order transverse terms such as B3

6 Ô
3
6 .

The emergence of the B3
4 Ô

3
4 interaction in the GSA description of Mn3 clearly

indicates a lowering of the symmetry of the spin Hamiltonian upon tilting the JT
axes. To understand this one must consider both the symmetry of the molecule and
the intrinsic symmetry of the zfs tensors of the individual ions. Considering only 2nd
order SO anisotropy, the Hamiltonian of a single MnIII ion possessesD2h symmetry
(as noted in Sect. 4.1.1), with three mutually orthogonal C2 axes. When the JT axes
are parallel (θ = 0), the local z-axis of each MnIII center coincides with the molec-
ular C3 axis. The resultant Hamiltonian should then possess C3 × C2 × Ci = C6h
symmetry (see Fig. 4.5(a)), requiring B3

4 = 0; the additional Ci symmetry arises
from the time-reversal invariance of the SO interaction. In contrast, when the JT
axes are tilted, the C2 and C3 axes do not coincide. In addition, the xy-mirror sym-
metry of the molecule is broken, as is that of the spin Hamiltonian. The rotational
symmetry then reduces to three-fold and, hence, B3

4 Ô
3
4 is allowed; the symmetry in

this case is C3 ×Ci = S6 (Fig. 4.5(b)).
It is possible to reinforce the preceding discussion via group theoretic arguments,

without the need to write down an exact expression for the Hamiltonian. When
the external magnetic field is applied parallel to the molecular C3-axis, the C6h
symmetry reduces to C6, and the 13 basis functions of the S = 6 ground state fall
into six distinct one-dimensional irreducible representations [25]. These functions
can be grouped according to their behavior under a C6 rotation: |−6〉, |0〉, |+6〉 ∈
Γ1; |−2〉, |+4〉 ∈ Γ2; |+2〉, |−4〉 ∈ Γ3; |−3〉, |+3〉 ∈ Γ4; |+1〉, |−5〉 ∈ Γ5; |−1〉,



88 J. Liu et al.

Fig. 4.6 Calculated QTM
gaps for the Mn3 SMM as a
function of the coupling
constant J . Simulations were
performed with the JT-axes
tilted 8.5◦ away from the
molecular C3-axis. The QTM
gaps associated with same
|�m| value are rendered in
the same color. Note that the
results are plotted on a
logarithmic scale

|+5〉 ∈ Γ6, where Γ1...6 are the six irreducible representations following the Bethe
notation [25]. Because the Hamiltonian operator belongs to the totally symmetric
representation, 〈ms |Ĥ |m′s〉 is non-zero only when |ms〉 and |m′s〉 belong to the same
representation [26]. As can be seen, such states have�ms = 3n, with n even, which
is the criterion for state mixing in C6 symmetry. When the symmetry of the Hamil-
tonian is reduced to S6 (C3 upon application of H//z) the basis functions may
be grouped into three different irreducible representations: |0〉, |±3〉, |±6〉 ∈ Γ1;
|+4〉, |+1〉, |−2〉, |−5〉 ∈ Γ2; |−4〉, |−1〉, |+2〉, |+5〉 ∈ Γ3. Here, the selection rule
for mixing is �ms = 3n, with n being integer, again in agreement with the preced-
ing calculations.

Before concluding this section, the influence of the exchange coupling, J , on the
QTM observed in Mn3 deserves further consideration. The J dependence of higher-
order (p ≥ 4) coefficients in the GSA has been discussed previously for several other
high-symmetry SMMs [16, 18, 20, 27, 28]. In these cases, the 2nd-order transverse
anisotropy (q > 0) cancels exactly, emerging at higher orders as a consequence of
the mixing of spin states. This is illustrated for Mn3 in Fig. 4.6, which plots the
power law dependence of several QTM gaps as a function of the ratio of J/d ; the
single-ion zfs parameters given above were employed in these calculations. It is
found that the QTM gaps are proportional to |J |−n, i.e., B3

4 ∝ |J |−1 and B6
6 ∝ |J |−2

[18]. Note that this implies a complete suppression of QTM in the strong coupling
limit (|J | � |d|).

4.2.3 The Influence of Disorder on QTM

An important conclusion of the preceding analysis is the demonstration of the ex-
istence of k-odd QTM resonances, i.e., a quite realistic parameterization of (4.6)
generates zfs terms in the GSA containing odd powers of Ŝ+ and Ŝ−. These ideas
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should apply quite generally. For example, the disorder potential associated with the
distortion of a symmetric molecule likely contains zfs terms (e.g. Ô1

4 or Ô3
4 ) that un-

freeze k-odd QTM resonances (as explicitly demonstrated in Sect. 4.3.3), contrary to
the belief that odd QTM resonances cannot be generated in this way [29]. However,
it remains to be seen whether this can account for the absence of selection rules
in SMMs such as Mn12. We note that these arguments do not apply to zero-field
(k = 0) QTM in half-integer spin systems, which is strictly forbidden according to
Kramers’ theorem [30].

This revives a partly unresolved and somewhat controversial issue concerning
the influence of disorder on the QTM characteristics of SMMs. Disorder became
a focus of attention in some of the early spectroscopic investigations of the Mn12-
acetate and Fe8Br SMMs, revealing significant distributions (or strains) in the mea-
sured GSAD parameters [31–34]. Around the same time, Chudnovsky and Garanin
argued that long-range strains nucleated by line dislocations could give rise to a
broad distribution of transverse 2nd-order anisotropies in otherwise high-symmetry
crystals of SMMs such as Mn12-acetate, i.e., a broad distribution (on a logarithmic
scale) in E centered about an average value of zero [35, 36]. Importantly, the Chud-
novsky/Garanin theory pointed out that disorder would lead to local variations in
molecular symmetry away from the ideal (S4 for Mn12-acetate), and that this could
modify the selection rules governing QTM. This motivated intense efforts aimed at
carefully studying QTM in Mn12-acetate, including selective hole-burning experi-
ments targeted at subsets of molecules belonging to different parts of the relaxation
time distribution [37–40]. A breakthrough was achieved as a result of crystallo-
graphic investigations by Cornia et al. [41], that revealed a form of intrinsic disorder
associated with the acetic acid solvent that co-crystallizes with the standard form of
Mn12-acetate (we refer the reader to Refs. [13, 39–43] for detailed discussion). The
acetic acid forms a hydrogen-bond to the Mn12 core, resulting in a non-trivial dis-
tortion of the molecule. However, while each solvent molecule occupies a position
between two Mn12’s, it can only hydrogen-bond to one of them, with 50 : 50 prob-
ability. Hence, real Mn12-acetate crystals contain a statistical distribution of several
different solvent isomers, some of which maintain approximate four-fold symme-
try, while more than 50 % have a lower (rhombic) symmetry [41]. EPR, inelastic
neutron scattering and magnetic hysteresis measurements subsequently yielded ex-
cellent qualitative and quantitative agreement with the model proposed by Cornia,
thus demonstrating for the first time that solvent disorder can have a profound influ-
ence on QTM relaxation [13, 39, 40, 42, 43].

Many more recent studies have reinforced the idea that solvent disorder can sig-
nificantly influence QTM relaxation in SMMs. First of all, magnetization and EPR
studies have shown that the anomalous distributions in zfs parameters found for
Mn12-acetate are absent in several newer high-symmetry (S4) Mn12 SMMs that do
not suffer from the intrinsic solvent disorder (or for which the interaction between
the solvent and the SMM core is far weaker than in the original acetate) [24, 28, 44–
47]. Interestingly, the deliberate removal of solvent from the newer Mn12’s (by
pumping on the samples at room temperature) has been shown to accelerate the
low temperature magnetization relaxation, without affecting the height of the classi-
cal relaxation barrier [24]. Meanwhile, EPR studies demonstrate that the solvent
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loss induces disorder that looks very similar to the intrinsic disorder in Mn12-
acetate [24]. This again suggests that the induced (extrinsic) disorder causes the
faster relaxation, presumably as a result of quantum tunneling processes. This leads
to known sample handling problems, i.e., crystals containing volatile solvent (e.g.
Mn12BrAc·CH2Cl2) can change beyond recognition as far as their QTM and EPR
characteristics are concerned if they are cooled under vacuum [24, 47, 48].

The reason why the ideal Mn12 SMM is so susceptible to disorder is because it
has such a high symmetry; the nominally forbidden 2nd-order transverse anisotropy
rapidly reemerges upon the introduction of weak disorder, either through solvent
loss or otherwise. This is not the case for lower symmetry molecules that already
possess a 2nd-order rhombic zfs interaction [49]. This has caused some confusion in
the literature. As an aside, we note that internal transverse dipolar/hyperfine fields
can, in principle, also affect QTM selection rules in high-spin SMMs [50]. Indeed,
early work demonstrated that a combination of allowed transverse zfs interactions,
together with transverse dipolar/hyperfine fields, may explain the observed absence
of QTM selection rules in Mn12-acetate in the thermally activated regime [51, 52].
However, this explanation fails in the pure QTM regime, where tunneling couples
low lying spin states at a high order of perturbation theory (�ms � 1). More recent
studies claim that differences in QTM relaxation observed for the various high-
symmetry Mn12 SMMs are due entirely to differences in the widths of the dipolar
field distributions, which obviously depend on the crystal structures [50]. However,
the recent preparation of two versions of Mn12-acetate that are identical in almost
all respects (including the lattice constants), apart from the co-crystallizing solvent
(acetic acid in one case, methanol in the other), seem to rule out this assertion [24].
While dipolar fields undoubtedly play a crucial role in the collective QTM relaxation
in SMM crystals [53], the marked differences in relaxation rates found for the two
Mn12-acetates appear to be related to the disorder associated with the hydrogen
bonding acetic acid solvent, which is not present in the methanol variant.

The large dimension of the Mn12 MS Hamiltonian presents a considerable chal-
lenge in terms of gaining theoretical insights into the effects of disorder. However,
there exist many smaller molecules with equally high symmetry which are, thus,
more amenable to this type of study. Indeed, this issue is revisited in Sect. 4.3.3,
which deals explicitly with the distortion of a Ni4 SMM that possesses the same
intrinsic S4 symmetry as the ideal Mn12’s [16]. Aside from the obvious compu-
tational advantages, several smaller SMMs are also known to crystallize with no
lattice solvent molecules [18, 22, 54]. More importantly, there exist families of low-
nuclearity SMMs for which some members co-crystallize with solvent, while others
do not. These include Mn3, Mn4 and Ni4, which represent the focus of the remain-
der of this chapter. The spectroscopic differences between solvated and solvent-free
SMMs are quite dramatic. For instance, D-strain is almost absent in the latter, giv-
ing rise to remarkably sharp EPR spectra. This again implicates solvent molecules
as a major source of disorder in SMM crystals. The key finding involved a solvent-
free Mn3 compound, which is the only SMM to display a complete absence of a
symmetry-forbidden QTM resonance [21]. When combined with the observation of



4 A Microscopic and Spectroscopic View of QTM 91

Fig. 4.7 (a) Field derivative of the magnetization curves obtained for a Mn3 single crystal at
different temperatures, with B ‖ z. (b) Ground-state tunnel splittings associated with resonances
k = 0 (black squares), k = 1 (red circles), k = 2 (green triangles), and k = 3 (blue stars) as a
function of the transverse field HT, with the JT-axes aligned along the C3 axis (thin lines) and
tilted by 8.5 degrees away from the C3 axis (thick lines). The strength of the dipolar magnetic
field in the sample is represented by the central gray area, with the corresponding splitting values
achieved for such dipolar field values for resonances k = 1 and k = 2 (dashed horizontal lines)

uniquely sharp EPR spectra [22], this result suggests that it is the absence of sol-
vent that unmasks the intrinsic QTM selection rules, again hinting at the connection
between solvent, disorder and the absence of QTM selection rules in other SMMs.

Figure 4.7(a) shows derivatives of magnetization hysteresis curves for Mn3,
recorded at different temperatures from 0.3 K to 2.6 K, with H ‖ z. At low tem-
peratures, the k = 1 resonance is completely absent. It eventually appears for tem-
peratures above 1.3 K as a result of a symmetry allowed thermally activated QTM
process. As discussed above, the trigonal symmetry of this molecule enforces the
|�m| = 3n selection rule when taking into account the 8.5 degrees misalignment
of the JT axes from the molecular C3 axis (S6 reduced to C3 when a longitudinal
field is applied). The effect can be seen in Fig. 4.7(b), which shows the tunnel split-
tings for the four lowest resonances k = 0− 3, calculated by diagonalization of the
MS Hamiltonian of (4.6) with the parameters given in Ref. [21]. In the absence of
a transverse field (HT = 0), the ground state tunnel splitting is always absent for
resonances k = 1 and k = 2, while the degeneracy is only broken in resonances
k = 0 and k = 3. Consequently, one expects steps in the hysteresis curves (peaks
in the derivatives) appearing only at k = 0 and k = 3. The absence of the k = 1
resonance at low temperatures constitutes direct evidence for the expected QTM
selection rule, an observation made possible because of the highly ordered solvent-
free crystal structure. Following the same reasoning, resonance k = 2 should also
be absent at low temperatures, since the ground tunnel splitting couples spin states
differing by |�m| �= 3n. However, as can be seen in Fig. 4.7(b), the k = 2 splitting
grows quickly as a function of the transverse field, reaching observable magnitudes
for field values provided by internal dipolar fields. This result shows that internal
Zeeman fields can indeed unfreeze some QTM resonances, but not all of them. In-
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Fig. 4.8 (a) The calculated BPI patterns associated with the ground state k = 0 QTM resonance

for the Mn3 SMM: the color contour plot shows �6̄,6 as function of HT (with B6
6 set to zero);

a compensating HL field is required that alternates between positive (red) and negative (blue)
values. (b) The compensating HL field for �6̄,6, as a function of the magnitude of HT; note the
curvature (except for the 30◦ trace, for which HL = 0)

deed, the ground state tunnel splitting associated with the k = 1 resonance remains
almost two orders of magnitude smaller than that of k = 2 for the same transverse
field. One would expect the influence of dipolar fields to diminish further still in the
pure QTM regime for SMMs with larger S values.

The Mn3 SMM illustrates perfectly how crystalline disorder can mask the funda-
mental QTM behavior in SMMs; in this particular case, it is the absence of disorder
that unmasks intrinsic symmetry-enforced quantum properties. This, in turn, allows
fundamental insights into the influence of the internal molecular degrees of freedom
on the QTM phenomenon. The low-nuclearity of the Mn3 SMM proved particularly
helpful by making this a computationally tractable problem. The following section
digs deeper into the unusual BPI patterns predicted for trigonal SMMs.

4.2.4 Berry Phase Interference in Trigonal Symmetry

This section focuses explicitly on the BPI patterns generated by the Ô3
4 operator.

In contrast to all of the even-q GSA terms, the xy-plane does not correspond to a
symmetry element for the odd-q interactions, as discussed in Sect. 4.1.1.2. Hence,
the Ô3

4 operator is expected to result in BPI patterns which have not been observed in
previous studies of SMMs, essentially all of which possess even rotational symmetry
with only even-q zfs interactions [55–57].

The influence of B3
4 Ô

3
4 is quite fascinating. In order to simplify discussion,

Fig. 4.8 was generated with B6
6 = 0; details of the calculations can be found in

Ref. [58]. The �6̄,6 (k = 0) QTM resonance exhibits the most intriguing new fea-
tures. One might expect a six-fold behavior due to the intrinsic Ci symmetry of the
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Hamiltonian, i.e., the spectrum should be invariant under inversion of HT. How-
ever, this assumes that HL = 0. In fact, application of a transverse field causes a
shift of the �6̄,6 minimum away from HL = 0, as illustrated in Fig. 4.8(b), i.e., the
k = 0 QTM resonance shifts away from HL = 0 in the presence of a finite trans-
verse field. The resultant transverse-field BPI patterns appear to exhibit a hexagonal
symmetry in Fig. 4.8(a). However, the color coding represents the polarity of the
required compensating longitudinal field, HL. Thus, on the basis of the sign of HL,
one sees that the BPI minima in fact exhibit a three-fold rotational symmetry, which
is consistent with the symmetry of the B3

4 Ô
3
4 interaction. One way to interpret this

result is to view the Ô3
4 operator as generating an effective internal longitudinal

field, H ∗
L , under the action of an applied transverse field; H ∗

L is then responsible for
the shift of the k = 0 resonance from HL = 0. This can be seen from the expression
of the Ô3

4 = 1
2 [Ŝz, Ŝ3− + Ŝ3+] operator, which, unlike the q-even operators, contains

an odd power of Ŝz, akin to the Zeeman interaction with H ‖ z. An alternative view
may be derived from the S6 surface depicted in Fig. 4.2(c), where one sees that the
hard/medium directions do not lie within the xy-plane, contrary to the case for the
q-even operators. In other words, the classical hard plane is not flat, but corrugated
with a 120◦ periodicity. Consequently, application of a longitudinal field is required
in order to insure that the total applied field lies within the hard plane when rotat-
ing HT. Note that the predicted BPI patterns nevertheless exhibit the required Ci
symmetry, i.e., they are invariant with respect to inversion of the total field.

Figure 4.8(b) plots the shift of the k = 0 resonance (�6̄,6 minimum) away from
HL = 0 upon applying a transverse field, HT, for several orientations within the xy-
plane. The shift is positive for 0◦ and 15◦, and negative for 45◦ and 60◦, with no
shift at 30◦ (i.e. the 30◦ resonance occurs at HL = 0). In other words, the quantum
molecular hard plane is not flat, but rather corrugated, with a 120◦ periodicity. This
is consistent with the classical energy surface shown in Fig. 4.2(c). It is also notable
that the HL shift displays a non-linear dependence on HT, which indicates that the
exact locations of the hard directions depend on the magnitude of HT. Finally, it
should be emphasized that these phenomena, especially the shift of the k = 0 reso-
nance from HL = 0, cannot be generated by any of the even-q operators [57], where
the xy plane necessarily corresponds to the hard plane because of the additional
mirror symmetry about this plane (see the discussion in Sect. 4.1.1.2).

4.3 Quantum Tunneling of Magnetization in the High-Symmetry
Ni4 Single-Molecule Magnet

4.3.1 The Ni4 Single-Molecule Magnet

The [Ni(hmp)(dmb)Cl]4 SMM (henceforth Ni4) possesses q-even rotational sym-
metry [14, 16, 54, 59, 60]. The complex crystallizes in an I41/a space group with-
out any lattice solvent molecules. The structure of the Ni4 molecule is shown in
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Fig. 4.9 The structure (a) and schematic representation of the magnetic core (b) of the Ni4 SMM.
Color code: Ni = olive, O = red, N = blue, C = black and Cl = dark gold. H-atoms have been
omitted for clarity. (c) Representation of the zero-field magneto symmetry of the Ni4 SMM re-
sulting from the situation in which the 2nd-order single-ion zfs tensors have their C2 axes tilted
away from the molecular S4 axis. Once added, the time reversal symmetry of the SO interaction
guarantees that the resultant zero-field Hamiltonian of the molecule possesses C4h symmetry (see
text for details)

Fig. 4.9(a). The magnetic Ni4O4 core is a slightly distorted cube with the NiII ions
(s = 1) located on opposite corners, as sketched in Fig. 4.9(b). The distorted cube
retains S4 symmetry, with the S4-axis indicated in Fig. 4.9(a). The four NiII ions
are ferromagnetically coupled, leading to a spin S = 4 molecular ground state. The
Ni4 SMM exhibits extremely fast zero-field QTM, which significantly reduces the
effective relaxation barrier. Nevertheless, it does display a small magnetic hysteresis
[60]. However, the fast relaxation unfortunately precludes the observation of k > 0
QTM resonances. Nevertheless, a theoretical study of Ni4 proves enlightening. The
molecule can be described with the following spin Hamiltonian:

Ĥzfs =
4∑
i=1

ŝi ·
(↔
n
T )i · ↔d · (↔n)i · ŝi +∑

i<j

ŝi ·
↔
J ij · ŝi . (4.9)

This Hamiltonian differs from (4.6) in that the individual rotation matrices,
↔
Ri , are

replaced by a single matrix,
↔
n, which explicitly takes the rotational symmetry of

the molecule into account, including cases involving improper rotations. The zero-

field anisotropy can then be parameterized by a single
↔
d -tensor (corresponding to

one of the ions), specified with respect to the molecular coordinate frame. If the
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Fig. 4.10 (a) Frequency dependence of the positions (in field) of the three EPR transitions as-
sociated with the isolated NiII triplet (S = 1) state in a diluted single crystal of the compound
[Zn3.91Ni0.09(hmp)4(dmb)4Cl4] (see Ref. [19] for assignments of the A, B and C peaks). The col-
ored curves correspond to best fits to the data employing the following single-ion zfs parameters:
d = −5.30(5) cm−1, e = ±1.20(2) cm−1, gz = 2.30(5), and a tilting of the local z-axes of 15◦
away from the symmetry (c-) axis of the crystal. The energy splittings around 5 T provide a di-

rect measure of the tilting of the local
↔
d tensors; the dashed curves correspond to the non-tilted

case, for which these splittings are zero. The widths of the colored curves reflect the uncertainty
in the orientations of the local x- and y-axes, which were subsequently deduced from two axis
rotation studies [19]. (b) 2D color map of the EPR absorption intensity as a function of the mag-
netic field strength and its orientation within the hard plane of a single crystals of the S = 4 SMM
[Ni4(hmp)(dmb)Cl]4 (see Ref. [61] for explanation of the peak labeling). Superimposed on the
absorption maxima (darker red regions) are fits (white curves) to the data that involve just a sin-
gle adjustable zfs parameter, B4

4 = 4× 10−4 cm−1 (over and above those deduced from easy-axis
measurements [16])

local coordinate frames of the individual ions are related by a series of proper rota-
tions (C2, C4, etc.) within the molecular coordinate frame, then

↔
n may be replaced

by a single rotation matrix
↔
R (corresponding, e.g., to a 90◦ rotation about z for a

molecule with C4 symmetry). On the other hand, if the local coordinate frame of
the ith ion is related to the molecular frame by an improper rotation (S4 or S3

4 ), then
↔
n= σ ↔

R, where σ represents a reflection in the plane perpendicular to the S4 axis.

Note that, for S4 symmetry,
↔
n

2
is equivalent to a C2 rotation, and

↔
n

4
is equivalent

to the identity matrix.
The Ni4 SMM is a particularly ideal platform for comparison with Mn3. The

molecule possesses a well separated S = 4 ground state with the S = 3 excited
spin multiplets located roughly 30 K above in energy. The 3× 3 Hamiltonian ma-
trix associated with a single NiII ion contains only two 2nd-order zfs parameters,
d and e, i.e., higher order single-ion anisotropies (p ≥ 4) are strictly forbidden.
The zfs of the individual NiII ions, as well as their orientations, have been directly
measured through EPR studies on an isostructural diluted Zn4−xNix compound (see
Fig. 4.10(a) and Ref. [19]). Due to the restriction of S4 symmetry, only two indepen-
dent Heisenberg interaction parameters, J1 and J2, are allowed; these interactions
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Fig. 4.11 Zeeman diagram
for the ground state S = 4
multiplet associated with the
Ni4 SMM, simulated
employing (4.9). The k = 0 to
4 ground state QTM splittings
are labeled in the figure

can be determined by dc susceptibility measurements [60]. Therefore, all of the
parameters in (4.9) are known independently. Meanwhile, the molecule possesses
the same S4 symmetry as Mn12, which prohibits the rhombic anisotropy term in
the GSA Hamiltonian. The high symmetry of the molecule has been confirmed by
single-crystal EPR measurements, where exceptionally sharp resonances are again
observed, with a four-fold modulation pattern upon rotating HT (see Fig. 4.10(b)
and Ref. [61]). This clearly illustrates the presence of a 4th- (or higher-) order trans-
verse GSA anisotropy which is responsible for the fast QTM.

4.3.2 Quantum Tunneling of Magnetization in the Ni4 SMM

In analogy with Mn3, the transverse GSA anisotropy in Ni4 is assessed by cal-
culating the QTM gaps, focusing on the k = 0,1, . . . ,4 ground state resonances,
as shown in Fig. 4.11; the |�m| values associated with these resonances equal
8,7, . . . ,4, respectively. The simulations were performed using the published zfs
parameters d = −7.6 K, e = 1.73 K and J1 = J2 = −10 K [14, 16, 19]. Previous
EPR studies also show that the local easy-axes of the NiII ions are tilted away from
the molecular z-axis by θ = 15◦ (See Fig. 4.9(c)). However, the θ = 0◦ case is also
examined in order to further explore the influence of easy-axis tilting on the sym-
metry of the molecular Hamiltonian.

Figure 4.12 shows the ground state QTM gaps as a function of transverse field
(HT), deduced via exact diagonalization of (4.9). As seen in the figure,�4̄,4 (k = 0)
and�0,4 (k = 4) retain non-zero values in the absence of a transverse field, while all
other tunnel splittings vanish atHT = 0. This result is not surprising based on the S4
molecular symmetry, where only |�m| = 4n (n is an integer) QTM resonances are
allowed. However, unlike the Mn3 SMM, the QTM selection rules corresponding
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Fig. 4.12 The ground state
QTM gaps for the Ni4 SMM
as a function of HT. The
simulations were performed
employing (4.9) with the
parameters given in the main
text. The solid lines were
generated with θ = 0 and the
dash lines were generated
with θ = 15◦

to the θ = 15◦ and 0◦ situations are exactly the same. In both scenarios, only the
�4̄,4 (k = 0) and � 0,4 (k = 4) gaps are non-zero, while the other k-even QTM
gap, �2̄,4 (k = 2), vanishes when HT = 0. These results imply that the easy-axis
tilting does not affect the symmetry of the Hamiltonian, contrary to the case for the
Mn3 SMM. This can be understood in terms of the different symmetry properties
associated with q-even and q-odd cases. In the even case, the molecular z-axis must
also be a C2 axis. Consequently, forcing the local C2 axes of the individual ions to
be parallel to the molecular z-axis (θ = 0◦) does not introduce an extra C2 symmetry
to the molecular Hamiltonian. In contrast, the molecular z-axis is not a C2 axis in a
molecule with odd rotational symmetry. Therefore, the symmetry of the molecular
Hamiltonian changes when θ = 0◦.

In the preceding discussions of Mn3, the QTM selection rules can be simply un-
derstood in terms of the rotational symmetry of the molecule (C6 or C3). In contrast,
the selection rules for Ni4 cannot be fully explained by the S4 molecular symme-
try; one must additionally take into account the intrinsic Ci symmetry of the spin
Hamiltonian. Upon application of a magnetic field parallel to the molecular z-axis,
the S4 symmetry group reduces to C2, for which the �2̄,4 (k = 2) QTM resonance
should be allowed. This clearly contradicts the simulation in Fig. 4.12, which sug-
gests a higher symmetry. However, one must also consider the Ci symmetry as-
sociated with the SO interaction. The consequential zero-field spin Hamiltonian
then possesses S4 × Ci = C4h symmetry, which corresponds to the symmetry of
the Ô4

4 interaction, as seen in Fig. 4.2(d). Upon application of a longitudinal field,
the C4h group reduces to the C4 group, for which the expected QTM selection rule
|�m| = 4n is recovered. The Ci symmetry is guaranteed by the nature of the SO
interaction. This property is not limited to spin Hamiltonians, i.e., it applies to any
Hamiltonian dictated by crystal field and/or SO physics, where the Ci symmetry
should apply regardless of whether the orbital angular momentum is quenched or
not. In other words, it is always necessary to consider the Ci symmetry in addition
to the structural symmetry, especially when improper rotations are involved. Unfor-
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Fig. 4.13 The effect of
disorder on the ground state
QTM gaps for the Ni4 SMM.
The simulations were
performed employing (4.9)
by misaligning the zfs tensor
of one of the NiII ions with
respect to the unperturbed
molecular z-axis (see details
in the main text)

tunately, observation of k > 0 QTM steps in Ni4 is impractical due to the extremely
fast tunneling at k = 0. This tunneling should be greatly suppressed if the ground
spin state of the molecule is increased, as is the case for Mn12. However, it would
be interesting to obtain a four-fold symmetric SMM constituted of four s = 2 MnIII

ions, for which it would be possible to study the k > 0 QTM steps. Moreover, the
Hamiltonian dimension of just 625× 625 would be quite manageable.

4.3.3 Disorder

In the presence of random disorder, one would expect the symmetry of most
molecules to be lowered, leading to an absence of QTM selection rules. The Ni4
molecule provides an excellent platform to study this issue. Figure 4.13 was gen-
erated by adjusting the orientation of the zfs tensor of one of the NiII ions in the
molecule, i.e., the zfs tensors of three of the Ni ions are tilted 15◦ from the molecu-
lar z-axis, while the other is tilted 10◦. It should be emphasized that it is not trivial
to find the orientation of the molecular easy-axis in this situation, i.e., it no longer
coincides with the molecular z-axis. For each resonance (k = 0 to 4), a search was
performed for the minimum QTM gap by varying the orientation of the applied field.
As seen in the figure, all resonances posses a non-zero QTM gap at HT = 0. The in-
set to Fig. 4.13 plots �3̄,4 (k = 1), �2̄,4 (k = 2) and �1̄,4 (k = 3) on a log-log scale,
clearly demonstrating that these QTM gaps, which are forbidden for S4 symmetry,
also saturate at non-zero values whenHT → 0. These results show that a small disor-
der effectively unfreezes all QTM steps without the assistance of a transverse field.
This argument can be reinforced by group theoretic considerations. With random
disorder, the symmetry of a molecule is lowered to C1, resulting in a spin Hamil-
tonian with Ci symmetry. Upon applying a longitudinal field, the Ci group reduces
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Fig. 4.14 (a) The Mn4-anca
molecule. (b) The Mn4-Bet
molecule. Color code:
Mn = purple, O = red,
N = blue, C = grey,
H = white, B = pink and
Cl = green. (c) Sketch
showing the different
exchange interactions used to
solve the four spin MS
Hamiltonian for these
molecules. (d) Trimer model
representing the Mn4
molecules assuming an
infinite J coupling between
the two central MnIII ions

to C1, where all of the states necessarily belong to the same one-dimensional irre-
ducible representation [25]. Therefore, mixing between all states is allowed. We note
that this kind of disorder can be introduced by small crystallographic defects, which
always exist to some degree in real samples. Thus, exceptionally clean crystals are
required in order to observe symmetry imposed QTM selection rules. Importantly,
the preceding discussion clearly demonstrates that disorder can be responsible for
the observation of k-odd QTM steps in SMMs with even rotational symmetries.

4.4 Quantum Tunneling of Magnetization in Low-Symmetry
Mn4 Single-Molecule Magnets

In order to contrast results presented in previous sections, EPR and QTM/BPI re-
sults are presented here for two related Mn4 SMMs that possess almost no symme-
try. Both molecules crystallize in the triclinic P1̄ space group. One of the structures
co-crystallizes with solvent, while the other does not. Consequently, significant dif-
ferences are observed in terms of the widths of EPR and QTM resonances due to
the different degrees of disorder in the two crystals. In addition, small structural
differences associated with the Mn4 cores result in different coupling strengths be-
tween the Mn ions within the two molecules which, in turn, result in different QTM
behavior.

4.4.1 The Mn4 Single-Molecule Magnets

The Mn4 molecules (Figs. 4.14(a) and (b)) possess mixed-valent butterfly-type
structures, with two central MnIII ions (s2 = s4 = 2) in the body positions and
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two MnII ions (s1 = s3 = 5/2) in the wing positions (see Fig. 4.14(c)). Magnetic
superexchange is mediated through oxygen bridges. The Mn4 molecule that co-
crystallizes with solvent is [Mn4(anca)4(Hedea)2(edea)2]·2CHCl3·2EtOH, hence-
forth Mn4-anca (see Fig. 4.14(a) and Ref. [8] for more details). The solvent-
free molecule is [Mn4(Bet)4(mdea)2(mdeaH)2](BPh4)4, henceforth Mn4-Bet (see
Fig. 4.14(b) and Ref. [9] for more details). Both molecules crystallize in the cen-
trosymmetric triclinic space group P1̄. The asymmetric unit therefore consists of
half the molecule (MnIIIMnII), with the other half generated via an inversion. This
also ensures that all four Mn ions lie in a plane. Temperature dependent susceptibil-
ity data recorded at different magnetic fields indicate that both molecules possess a
spin S = 9 ground state at low temperatures, implying overall ferromagnetic cou-
pling within the molecules (note that this does not rule out the possibility that one
of the exchange paths could be antiferromagnetic).

4.4.2 EPR and QTM Spectroscopy in Mn4 SMMs with and
Without Solvent

A selection of EPR and QTM measurements from Refs. [8, 9] are presented in
Fig. 4.15: (a) displays 165 GHz EPR spectra recorded at different temperatures for
a single crystal of Mn4-anca, with the magnetic field applied close to the molec-
ular easy-axis; (b) shows equivalent spectra obtained for Mn4-Bet at a frequency
of 139.5 GHz and similar temperatures. The first thing to note are the obvious dif-
ferences in the EPR linewidths in the two figures. This again provides a clear il-
lustration of the inferior quality of samples in which the SMMs co-crystallize with
interstitial solvent molecules. In the present example, the Mn4-anca sample is the
more disordered, resulting in a broader distribution of GSA zfs parameters. A series
of nine absorption peaks can clearly be seen for the Mn4-anca SMM in Fig. 4.15(a),
which have been labeled 1 through 9. These correspond to transitions from con-
secutive spin projection (mS ) states belonging to the S = 9 ground state multiplet,
where the numbering denotes the absolute mS value associated with the level from
which the EPR transition was excited, e.g., resonance α = 9 corresponds to the
mS = −9 →−8 transition. The fact that all of the spectral weight transfers to the
α = 9 resonance as T → 0 indicates uniaxial anisotropy, i.e., D < 0 according to
the GSA Hamiltonian of (4.2). The uneven spacing between the labeled ground state
resonances is indicative of 4th- (and higher-) order anisotropy within the GSA (or
weak exchange within the MS picture). Finally, as the temperature is increased, a
few weaker resonances (not labeled) can be seen to appear in Fig. 4.15(a) between
the labeled transitions. These additional peaks are associated with the population of
higher-lying, excited spin states, e.g., S = 8.

The EPR spectra obtained for Mn4-Bet (Fig. 4.15(b)) are not so simple to inter-
pret. First and foremost, many more peaks are observed, suggesting the population
of many more spin states. Based upon the knowledge gained from Mn4-anca, and the
results of subsequent simulations, the nine resonances corresponding to transitions
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Fig. 4.15 EPR spectra obtained at different temperatures with the field along the easy-axis at:
165 GHz for Mn4-anca (a); and 139.5 GHz for Mn4-Bet (b). Zeeman diagrams depicting the low–
lying energy levels for Mn4-anca (c) and Mn4-Bet (d), obtained by diagonalization of the MS
Hamiltonian (4.6) using the trimer model depicted in Fig. 4.14(d). Arrows relate the QTM peaks
observed in the field derivatives of the magnetization curves obtained at different temperatures
(bottom of the graphics) with the corresponding crossings between spin levels; with black arrows
indicating crossings of the ground state |S = 9,ms = 9〉 (red for excited states) with other states
within the same spin multiplet (S = 9), and blue arrows signaling both ground and excited cross-
ings involving levels of different spin length (S = 9 and S = 8)

within the S = 9 ground state multiplet have been labeled in the figure. Meanwhile,
the peaks that are not labeled correspond to transitions within low-lying excited
spin multiplets. Clearly, the emergence of excited state EPR transitions at much
lower temperatures indicates significantly weaker exchange coupling in the Mn4-
Bet molecule; note that excited state intensity is seen even at the lowest tempera-
ture, whereas this is not the case until ∼ 9 K in the Mn4-anca sample. The weaker
exchange and higher crystal quality associated with the Mn4-Bet sample lead to the
observation of unusual MQT/BPI behavior, as detailed in the following section.

Although one can reproduce the peak positions of the nine labeled EPR transi-
tions in both Figs. 4.15(a) and (b) using the GSA (including p ≥ 4 terms), a MS
Hamiltonian becomes essential to account for transitions within excited spin states.
In other words, one starts to see the limitations of the GSA in these two cases—
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especially for Mn4-Bet. Diagonalization of the exact MS Hamiltonian that consid-
ers all four Mn ions and the couplings between them (as indicated in Fig. 4.14(c))
is manageable on a standard computer. However, a convenient and reasonable ap-
proximation replaces the ferromagnetically coupled central MnIII ions with a single
sB = 4 spin, resulting in a linear trimer consisting of the central spin, sB , and the
two outer sA = 5/2 MnII spins, as depicted in Fig. 4.14(d). This approximation,
which contains elements of both the GSA and MS models, has been compared with
the more exact four-spin model for the case of Mn4-Bet in Ref. [7]. The two models
give good agreement in terms of the lowest-lying portions of the energy-level dia-
grams that dictate the low-temperature QTM and EPR properties, provided that the
ferromagnetic coupling between the MnIII ions is not too weak. Although it involves
a level of approximation, the trimer model captures all of the important physics asso-
ciated with these low-symmetry SMMs. Moreover, the smaller Hamiltonian matrix
dimension enables much faster fitting (hours instead of days), and employs fewer
parameters—just two d tensors and a single exchange coupling constant, J. Finally,
working with a single J parameter to identify the internal exchange energy becomes
particularly useful in relating the distinct behavior of the two molecules to different
intramolecular couplings which result from slight structural disparities between the
two compounds. In the following, we diagonalize the MS Hamiltonian (4.6) using
the trimer model (Fig. 4.14(c)) to account for the energy landscape associated with
the lowest lying molecular spin multiplets, which result from the main anisotropy
terms in the Hamiltonian (i.e. axial terms). The full MS Hamiltonian (4.6) includ-
ing the four manganese ions (Fig. 4.14(d)) is used to account for the behavior of
the tunnel splittings, which result from the smaller anisotropy terms in the Hamilto-
nian (i.e. transverse terms) and are more sensitive to small variations of the internal
degrees of freedom of the molecules.

In fitting the data in Figs. 4.15(a) and (b), as well as other EPR data obtained at
different temperatures and applied field orientations (see Refs. [8, 9]), one finds that
the exchange coupling constant J has a strong influence on the positions of the EPR
peaks (particularly the relative spacings between peaks). This again highlights the
fact that one cannot use a GSA to realistically describe these results, especially those
of Mn4-Bet, i.e., there is no exchange parameter in the GSA (all energy splittings
are parameterized in terms of the SO anisotropy). It is thus preferable to use the
MS approach whenever computational resources will allow, as is the case for all of
the low-nuclearity SMMs described in this chapter. Indeed, there are many other
interesting features associated with the magnetic behavior of SMMs that cannot be
explained with the GSA, regardless of how complex the corresponding Hamiltonian
is, e.g., QTM resonances involving level crossings between different spin states.

QTM spectroscopy also facilitates comparisons between the two Mn4 molecules.
Figures 4.15(c) and (d) show the association between the observed QTM resonance
positions and the corresponding energy-level diagrams for the Mn4-anca and Mn4-
Bet molecules, respectively. The QTM resonances are determined from the posi-
tions of the peaks in the derivatives of the magnetization versus field curves ob-
tained at different temperatures, as shown in the lower portions of Figs. 4.15(c)
and (d). Note that the effects of the solvent disorder can again be seen, causing
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broader QTM resonances for Mn4-anca in comparison to Mn4-Bet. The energy
level diagrams are obtained via exact diagonalization of the MS Hamiltonian of
(4.6) using the trimer model depicted in Fig. 4.14(c) with the following parameters:
J = 5.42 K, d1 = d2 = dA =−0.115 K, dB =−2.22 K in Mn4-anca (Fig. 4.15(c));
and J = 1.90 K, dA = −0.115 K, dB = −2.00 K in Mn4-Bet (Fig. 4.15(d)), with
isotropic g = 2.0 for all ions in both cases. The correspondence between QTM res-
onances and their associated level crossings are indicated by vertical arrows. Cross-
ings involving the ground state |S = 9,ms = 9〉 with other levels within the same
multiplet (S = 9) are indicated by black arrows and expected to appear at the lowest
temperatures, for which transitions involving all excited states (red arrows) should
vanish. Interestingly, some of the resonances (blue arrows) correspond to crossings
between levels associated with different spin states, i.e., S = 9 and S = 8. The main
difference between the two molecules resides in the value of J , being more than
double for Mn4-anca. This results in the lowest spin projection states (mS = ±8)
associated with the first excited state (S = 8) being much closer to the mS = ±9
ground states in Mn4-Bet (∼ 8 K separation) than in Mn4-anca (∼ 22 K separation).
These findings are consistent with the temperature dependence of the EPR spectra,
which suggested the excited states to be appreciably lower in energy in the Mn4-Bet
molecule in comparison to Mn4-anca. The differences in J values can be reconciled
with the minor structural differences between the two molecules. It is well known
that the superexchange coupling between two transition metal ions is very sensitive
to the bridging angle, to the extent that the sign of the interaction can switch from
ferromagnetic to antiferromagnetic within a small range of angles [18, 62, 63]. In-
deed, there are measurable differences in the bond angles and distances associated
with these two Mn4 molecules.

4.4.3 Berry Phase Interference in Mn4-Bet

The spectroscopic results presented in the previous section illustrate how small
structural perturbations can lead to significant changes in the exchange coupling
within a molecule. Crucially, the Mn4-Bet SMM resides in a particularly interest-
ing region of the ‘anisotropy’ versus ‘exchange’ parameter space in which excited
spin states exert a significant influence on the low-energy/low-temperature quantum
properties. First and foremost, it can be seen that some of the QTM resonances in-
volve level crossings between different spin multiplets. More importantly, the QTM
properties within this intermediate exchange regime (d ∼ J ) are extraordinarily sen-
sitive to the internal magnetic structure of the molecule. As noted in previous sec-
tions, the physics associated with the strong exchange limit (J � d) is dominated by
the 2nd-order GSA anisotropy. Consequently, any observable BPI patterns should
display a high degree of symmetry (D2h), regardless of the molecular symmetry.
However, in the intermediate exchange regime, one may expect any BPI effects to
mimic the symmetry of the molecule under investigation much more closely. This
symmetry can be expressed exactly using a four spin MS model in the case of Mn4-
Bet, although we note that one can also reproduce most of the features of these
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Fig. 4.16 Modulation of the QTM probabilities for resonances k = 0 (a) and k = 1 (b) as a func-
tion of HT applied at different angles, φ, within the xy-plane of the Mn4-Bet SMM. The asymme-
try of the BPI pattern of oscillations in resonance k = 1 is inverted upon reversal of HL. (c) and
(d) show the modulation of the tunnel splitings of resonances k = 0 and k = 1, respectively, for
different directions of the transverse field

experiments using a GSA that includes appropriate 4th- (and higher-) order terms.
The virtual lack of any symmetry associated with Mn4-Bet leads to some remark-
able BPI patterns, which also shed light on a previous mystery surrounding another
high-nuclearity Mn12 SMM [64].

Low temperature QTM measurements performed in the presence of a transverse
magnetic field, HT, enable exploration of the dominant symmetries associated with
the Hamiltonian describing a SMM. Figure 4.16(a) shows the modulation of the
QTM probability for the k = 0 resonance for Mn4-Bet as a function of the mag-
nitude of HT applied parallel to the hard axis of the molecule (φ = 0◦, see Ref.
[7] for details). As explained in Sect. 4.2.4, the oscillations correspond to BPI
(constructive/destructive interference associated with equivalent tunneling trajec-
tories on the Bloch sphere), with minima occurring at regularly spaced field values
(�HT = 0.3 T). Experiments designed to probe the modulation of the k = 0 QTM
gap as a function of the orientation of a fixed transverse field within the hard plane
(see Ref. [7]) reveal a two-fold behavior. One may be tempted to ascribe this to a
rhombic anisotropy. However, the molecule possesses a much lower symmetry (P1̄).
In fact, the two-fold pattern is a direct manifestation of the Ci symmetry associated
with the SO interaction. Since no longitudinal field (HL) is present for the k = 0 res-
onance, the Hamiltonian must be invariant with respect to inversion of HT—hence
the apparent two-fold behavior. Note that the k = 0 BPI oscillations do, indeed,
respect the symmetry of the Hamiltonian, i.e., they are invariant under inversion
of HT.

Due to the absence ofHL, k = 0 turns out not to be the most interesting QTM res-
onance, because the Ci symmetry guarantees symmetric BPI patterns aboutHT = 0.
In contrast, this is clearly not the case for the BPI pattern associated with the k = 1
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resonance, as can be seen in Fig. 4.16(b). In this case, a single interference mini-
mum is observed at HT = 0.3 T for only one polarity of the transverse field, i.e., the
corresponding BPI minimum is completely absent under inversion of HT. Such a
result is not so surprising when one recognizes that there are no mirror symmetries
within P1̄. Hence, there is no reason why the BPI patterns should be invariant under
inversion of just one component of the applied field. However, the Hamiltonian, and
therefore the BPI patterns, must be invariant under a full inversion of the applied
field, i.e., inversion of bothHT and HL together. This indeed turns out to be the case
for the k = 1 resonance, as clearly seen in Fig. 4.16(b).

Another interesting feature observed in the BPI patterns of Mn4-Bet is the motion
of the minima associated with the k = 1 resonance within the xy-plane. This can be
observed in Fig. 4.16(d), which shows a color contour plot of the QTM probability
in k = 1, as a function of the magnitude and the orientation of HT. Two minima
can clearly be observed; they are again spaced by ∼ 0.3 T, and are located half way
between the k = 0 minima, as is usually the case for even/odd resonances. However,
the k = 1 minima do not appear at the same orientations within the xy-plane as those
of k = 0. Moreover, the orientations of the two observed k = 1 minima do not even
coincide: φ = 13.5◦ for the first minimum and φ = 6◦ for the second one. Note that,
in contrast to k = 1, all of the k = 0 minima lie along the nominal hard anisotropy
axis (φ = 0), as seen in Fig. 4.16(c). In essence, the hard directions associated with
the k = 1 resonance (for which both HL and HT are finite) do not occur along a
fixed axis, as would be the case for a rhombic molecule. This property, which is
analogous to the behavior seen in Fig. 4.7(b), is a direct consequence of the absence
of any mirror symmetries in the P1̄ space group. It is impossible to simultaneously
satisfy both Ci symmetry and a mirror symmetry if the BPI minima do not reside
on a fixed axis in space. However, if the mirror symmetry is broken, then the BPI
minima may in principle occur anywhere on the Bloch sphere, so long as they occur
in pairs related by inversion. The results displayed in Fig. 4.16(d) were obtained by
rotating HT while keeping HL fixed; the space above and below the xy-plane was
not explored due to experimental constraints. One cannot rule out further minima
above or below the xy-plane. Indeed, this may explain why the 2nd k = 1 minimum
is so weak, i.e., its real location may be above or below the xy-plane. In fact, this
could also be true for the k = 0 minima, as again emphasized in Fig. 4.7(b) for
the case of the Mn3 molecule, which lacks xy mirror symmetry. More detailed (and
time consuming) experiments are clearly required to further explore this issue in
Mn4-Bet.

In order to simulate the observed BPI patterns, one must obviously break some
or all of the mirror symmetries within the Mn4-Bet spin Hamiltonian, whilst also
respecting the inversion symmetry of the real molecule. There really is only one
way to achieve this, involving misalignment of the 2nd-order zfs tensors associated
with the MnIII and the MnII ions. The molecular inversion symmetry guarantees that
the JT axes associated with the MnIII ions be parallel to each other; likewise the zfs
tensors associated with the MnII ions must be co-linear. However, there is no re-
quirement that the tensors associated with the two types of ion be co-linear. Indeed,
all of the results in Fig. 4.16 have been reproduced in Ref. [7] following exactly this
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approach. Although the trimer model (Fig. 4.14(c)) can reproduce the observed be-
havior quite well, the four spin Hamiltonian (4.6) was employed in order to describe
the geometry in Fig. 4.14(d), since it gives a better quantitative agreement and allows
for a more physical interpretation of the observations (e.g. the real dipolar coupling
between the four Mn ions can be employed, which involves no fitting parameters).
Using this approach, we find the optimal parameter set to be as follows: (central
MnIII’s) d2 = d4 = −4.99 K and e2 = e4 = 0.82 K, with the easy and hard axes
along z (α2 = 0) and x (β2 = 0), respectively; (outer MnII’s) d1 = d3 = −0.67 K
and e1 = e3 = 0, with the axes rotated with respect to the central spin by identical
Euler angles α1,3 = 45◦, β1,3 = 0◦ (as required by inversion symmetry); γ being
zero for all ions; finally, isotropic ferromagnetic exchange constants Ja =−3.84 K,
Jb = −1.20 K and Jc = −3.36 K were employed. It should be stressed that these
parameters were additionally constrained by the EPR and QTM data in Fig. 4.15.
They do not necessarily constitute the correct parameterization, but they account
for all experimental observations. Note that the zfs tensors of the two MnII ions are
tilted by 45 degrees with respect to the MnIII tensors, thereby breaking the molecu-
lar xy mirror symmetry. This results in a breaking of the xy mirror symmetry of the
corresponding spin Hamiltonian. Note that this would not be the case for a molecule
with even rotational symmetry, because of the Ci symmetry associated with the SO
interaction. However, in P1̄ (q = 1), the xy mirror symmetry of the Hamiltonian is
broken, as was also the case for the trigonal (q = 3) Mn3 SMM. One could, in prin-
ciple, also explain these results using a GSA by introducing 4th- (and higher-) order
terms. However, a more natural and satisfying account of the results is obtained by
diagonalizing the four-spin Hamiltonian, which easily allows for a tilting of the zfs
tensors of the four Mn ions.

Interestingly, there again exists a connection to Mn12, albeit a wheel molecule
that bears no resemblance to the well studied, high-symmetry Mn12’s discussed in
Sect. 4.2.3. The Mn12 wheel molecule [64], which possesses the exact same P1̄ sym-
metry as the Mn4 molecules considered in this section, attracted considerable con-
troversy on account of the observation of asymmetric k > 0 BPI patterns [17, 65].
Initial attempts to account for this behavior involved treating the molecule as a
dimer, including an unphysical Dzyaloshinskii-Moriya coupling between the two
halves of the dimer (this interaction is forbidden on account of the molecular inver-
sion symmetry [66]). The present studies have shown that asymmetric k > 0 BPI
patterns are, in fact, quite natural in low-symmetry molecules. As in the case of
Mn3, a detailed understanding of the QTM characteristics in the Mn4 molecules is
made possible due to the low nuclearity of the system, which enables the employ-
ment of a MS Hamiltonian. This, in turn, provides fundamental insights that are
much harder to achieve when studying larger molecules using a GSA.

4.5 Summary and Outlook

This chapter focuses on the microscopic factors that dictate the QTM behavior ob-
served in polynuclear transition-metal SMMs, with particular focus on molecular
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symmetry. The examples provided involve relatively simple, low-nuclearity clus-
ters (Mn3, Mn4 and Ni4) which display essentially the same physics as the original
Mn12 and Fe8 SMMs that have occupied chemists and physicists working in this
field for nearly two decades. The simpler systems are amenable to analysis using
a microscopic spin Hamiltonian that incorporates both the single-ion physics, and
isotropic exchange coupling between the constituent ions, and relies on relatively
few parameters. One can therefore systematically investigate the role of internal
spin degrees of freedom within a molecule, in contrast to the approximate GSA ap-
proach employed for most studies of Mn12 and Fe8. Comparisons between theory
and experiment are presented for a range of cluster symmetries, with remarkable
quantitative agreement achieved in all cases.

Until fairly recently, most SMM research was directed towards polynuclear 3d
transition metal clusters, with the synthetic goal of maximizing both the molecu-
lar spin state and the magneto-anisotropy. However, a number of fundamental fac-
tors have limited progress based on this strategy, with the record blocking temper-
ature for a Mn6 cluster [67] only just surpassing that of the original Mn12 SMM
[24]. Limiting factors include: (i) a tendency for superexchange interactions be-
tween constituent transition metal spins to be both weak (few cm−1) and often an-
tiferromagnetic; (ii) the fact that strong crystal-field effects typically quench the
orbital momentum associated with 3d elements, thus significantly suppressing the
magneto-anisotropy; and (iii) the difficulties associated with maximally projecting
any remaining (2nd order SO) anisotropy onto the ground spin state. In fact, careful
studies of this issue suggest that one is unlikely to achieve anisotropy barriers that
significantly exceed those of the constituent ions [18]. This is perhaps best illus-
trated by the optimum Mn3, Mn6 and Mn12 SMMs, which possess similar barriers
(to within a factor of < 2 [18]). This is because the molecular anisotropy, D, is
given by a weighted sum of the anisotropies of the constituent ions (di ), where the
weighting is inversely proportional to the total molecular spin, S [18, 68]. Thus,
D decreases as S increases, and the theoretical best that one can hope to achieve is
an anisotropy barrier (∼DS2) that scales linearly with S (or N , the number of mag-
netic ions in a ferromagnetic molecule). Even then, many challenges remain—some
fundamental (quantum tunneling, spin state mixing, etc. [6]), some synthetic. The
synthetic challenges, in particular, become more complex with increasing molecule
size, e.g., maintaining ferromagnetic couplings, maintaining parallel arrangements
of the individual anisotropy tensors, etc. Thus, it is perhaps no surprise that the
optimum [MnIII]N SMM has a nuclearity of just six [67]!

Given the aforementioned situation, it has become clear that a more direct route
to magnetic molecules that might one day be used in practical devices involves the
use of ions that exhibit considerably stronger magnetic anisotropies than those that
have traditionally been employed in the synthesis of large polynuclear clusters, i.e.,
ions for which the orbital momentum is not quenched, and/or heavier elements in
which strong SO effects are manifest. Examples include certain high-symmetry and
low-coordinate 3d transition metal complexes (FeII [69], CoII [70], even NiII [71]),
as well as elements further down the periodic table such as the 4f and 5f ele-
ments. Indeed, over the past few years, a number of mononuclear complexes have
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been shown to exhibit magnetization blocking of pure molecular origin [69, 70, 72–
74]. However, the quantum magnetization dynamics of these single-ion molecular
nanomagnets has yet to be studied in detail, and much remains to be learned theo-
retically. Obviously, much of the physics related to exchange which is discussed in
this chapter does not apply in these cases. Nevertheless, the spin Hamiltonian for-
malism remains applicable, as does the crucial importance of molecular and crys-
tallographic symmetry. In particular, 4th and higher-order crystal-field interactions
may be expected to play a crucial role in the quantum dynamics of mononuclear
lanthanide SMMs [75]. Thus, one would expect similar combinations of theory and
spectroscopy to contribute in future to this evolving field of research.
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Chapter 5
Magnetic Avalanches in Molecular Magnets

Myriam P. Sarachik

Abstract The reversal of the magnetization of crystals of molecular magnets that
have a large spin and high anisotropy barrier generally proceeds below the blocking
temperature by quantum tunneling. This is manifested as a series of controlled steps
in the hysteresis loops at resonant values of the magnetic field where energy levels
on opposite sides of the barrier cross. An abrupt reversal of the magnetic moment of
the entire crystal can occur instead by a process commonly referred to as a magnetic
avalanche, where the molecular spins reverse along a deflagration front that travels
through the sample at subsonic speed. In this chapter, we review experimental results
obtained to date for magnetic deflagration in molecular nanomagnets.

5.1 Background

First reported by Paulsen and Park [1], magnetic avalanches occur in many different
molecular magnets. Systematic experimental studies of avalanches have focussed
largely on crystals of Mn12-ac [Mn12O12(CH3COO)16(H2O)4] a particularly sim-
ple, high-symmetry prototype of this class of materials.

As shown in the left panel of Fig. 5.1, the magnetic core of Mn12-ac has four
Mn4+ (S = 3/2) ions in a central tetrahedron surrounded by eight Mn3+ (S = 2)
ions. The ions are coupled by superexchange through oxygen bridges with the net
result that the four inner and eight outer ions point in opposite directions, yielding
a total spin S = 10 [2]. The magnetic core is surrounded by acetate ligands, which
serve to isolate each core from its neighbors in a body-centered tetragonal lattice.
A crystalline sample typically contains ∼ 1017 or more (nearly) identical, weakly
interacting single molecule nanomagnets in (nearly) identical crystalline environ-
ments.

The interesting physics and potential applications of Mn12-ac and similar mate-
rials derive from the fact that: (i) the exchange between ions within the magnetic
core is very strong, resulting in a sizable, rigid spin-10 magnetization per molecule
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Fig. 5.1 Left panel: Chemical structure of the core of the Mn12 molecule. The four inner spin–
down Mn3+ ions each have spin S = 3/2; the eight outer spin-up Mn4+ ions each have spin S = 2,
yielding a net spin S = 10 for the magnetic cluster; the small grey spheres are O bridges; the ar-
rows denote spin direction. Acetate ligands and water molecules have been removed for clarity;
Middle panel: Double-well potential in the absence of magnetic field showing spin-up and spin–
down levels separated by the anisotropy barrier. Different spin projection states |m〉 are indicated.
The arrows denote quantum tunneling. Right panel: Double-well potential for the N = 2 step in a
magnetic field applied along the easy axis

with no internal spin degrees of freedom at low temperatures, and (ii) the anisotropy
is exceptionally large, so that the spins are bistable at low temperature, exhibiting
slow relaxation and hysteresis below a blocking temperature TB . To lowest order,
the spin Hamiltonian is given by:

H=−DS2
z − gzμBHzSz + · · · +H′, (5.1)

where the first term denotes the anisotropy barrier, the second is the Zeeman energy
that splits the spin-up and spin-down states in a magnetic field, and the last term,
H′, contains all symmetry-breaking operators that do not commute with Sz, thereby
allowing quantum tunneling. For Mn12-ac,D = 0.548 K, gz = 1.94; μB is the Bohr
magneton.

As illustrated in the middle and right-hand panel of Fig. 5.1, the energy is mod-
eled as a double-well potential, with one well corresponding to the spin pointing
along the easy axis in one direction and the other to the spin pointing in the opposite
direction. In zero field, there is a set of discrete, doubly degenerate energy levels
corresponding to (2S + 1) projections, m = +10,+9, . . . ,0, . . . ,−9,−10, of the
total spin along the easy (c-axis) of the crystal. Applying a magnetic field along the
easy axis lowers the energy of the potential well with spins pointing in the direction
of the field relative to the potential well for spins opposite to the field.

The relaxation rate decreases as the temperature is reduced, and below a (sweep
rate-dependent) blocking temperature (TB ∼ 3 K), the large anisotropy barrier gives
rise to slow relaxation and hysteresis loops that display steps [3] as a function of
magnetic field Hz as the magnetic field is swept from full magnetization in one di-
rection to full magnetization in the other [3–5]. The left panel of Fig. 5.2 shows the
magnetization M as a function of magnetic field μ0Hz. These steps, characteristic
of molecular magnets, can be understood with reference to the double well poten-
tial of Fig. 5.1: faster relaxation occurs by spin-tunneling at the “resonant” values
of the magnetic field that correspond to alignment of levels on opposite sides of
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Fig. 5.2 Left: Hysteresis loops of a Mn12-ac crystal for magnetic field applied along the uniaxial
c-axis direction at different temperatures below the blocking temperature; the magnetization is
normalized by its saturation value; magnetic field was swept at 10 mT/s. Right: Hysteresis loops at
0.25 K interrupted by magnetic avalanches (vertical lines)

the anisotropy barrier. Full saturation of the magnetization is thereby reached in a
stepwise fashion, where the detailed form of the steps depend on sweep-rate and
temperature. For reviews, see Refs. [6–13] and articles in the current volume.

By contrast, a magnetic avalanche signals a sudden reversal of the full magne-
tization of the crystal, as shown in the right panel of Fig. 5.2. This process has
been attributed to a thermal runaway which can be understood again with reference
to the right panel of Fig. 5.1: when tunneling of a molecular spin occurs from the
lowest state of the metastable (left-hand) well to an excited state in the stable (right-
hand) well, the subsequent decay to the ground state results in the release of heat
that, under appropriate conditions, can further accelerate the magnetic relaxation.
Direct measurements of the heat emitted have confirmed the thermal nature of these
avalanches.

From time-resolved measurements of the local magnetization using an array of
micron-sized Hall sensors placed on the surface of Mn12-ac crystals, Suzuki et al.
[14] discovered that a magnetic avalanche propagates through the crystal at subsonic
speed in the form of a thin interface between regions of opposite spin magnetization.
Figure 5.3(a) shows traces recorded during an avalanche by sensors placed sequen-
tially along the easy axis near the center of a Mn12-ac sample. Figure 5.3(b) is a plot
of the sensor position versus the time of arrival of the peak. The inset is a schematic
that illustrates the bunching of field lines at the propagating front that gives rise to
the observed peaks. From these measurements one deduces that the front separating
up- and down-spins travels with a constant (field-dependent) speed on the order of
1 to 30 m/s, two to three orders of magnitude slower than the speed of sound.

From a thermodynamic point of view, a crystal of Mn12 molecules placed in
a magnetic field opposite to the magnetic moment is equivalent to a metastable
(flammable) chemical substance. The release of energy by a metastable chemical
substance is combustion or slow burning, technically referred to as deflagration [15].
It occurs as a flame front of finite width propagates at a constant speed small com-
pared to the speed of sound. For “magnetic deflagration” in Mn12-ac, the role of
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Fig. 5.3 (a) The local magnetization measured as a function of time by an array of micron-sized
Hall sensors placed along the surface of the sample. The inset shows the placement of the Hall
sensors on the crystal; (b) The sensor position as a function of the time at which the sensor regis-
tered the peak. The propagation speed for this avalanche is 2.2 m/s, approximately three orders of
magnitude below the speed of sound. The inset illustrates the “bunching” of magnetic field lines as
the deflagration front travels past a given Hall sensor

the chemical energy stored in a molecule is played by the difference in the Zeeman
energy, �E = 2gμBHS, for states of the Mn12-ac molecule that correspond to S
parallel and antiparallel to H.

The avalanches that have been studied experimentally to date are driven predom-
inantly by the increase in temperature associated with an input of energy. As further
discussed below, Chudnovsky and Garanin have proposed a comprehensive theory
to account for this process [16]. In a subsequent series of papers, the same authors
have pointed out that the decay rate is also affected near spin-tunneling resonances
by dipolar fields that can block or unblock the tunneling [17–20]. They found that
the magnetization adjusts self-consistently in such a way that the system is on res-
onance over a broad spatial extent, with the consequence that there can be propa-
gating spin reversal fronts that are driven by dipolar interactions. In general, both
dipolar field and temperature are expected to control the propagation of quantum
deflagration [19, 20].

This review provides an overview in Sect. 5.2 of the work done to date on
avalanches where temperature is the dominant driver of the deflagration front. Sec-
tion 5.3 briefly considers the possibility of tunneling fronts driven by dipolar inter-
actions. Section 5.4 ends the review with a brief summary and suggestions for future
research.

5.2 Temperature-Driven Magnetic Deflagration

Although the probability of a spontaneous avalanche has been shown to be higher at
resonant magnetic fields than off-resonance [21], avalanche ignition is unpredictable
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in a swept external magnetic field, the experimental protocol that has generally been
used to study the steps in the hysteresis loops. Avalanche ignition under these con-
ditions is a stochastic process that depends on factors such as the sweep rate, the
temperature, the quality of the crystal, and perhaps other factors. In order to carry
out systematic studies of avalanche characteristics one needs to trigger avalanches
in a controlled manner. This has been achieved using a heater [22], and by using
surface acoustic waves (which serve to heat the sample) [23]. Recent studies [24]
have used current pulses. Control of the location as well as the time of ignition could
be accomplished using optical methods.

5.2.1 Avalanche Ignition

McHugh et al. [22] used a resistive wire element as a simple electric heater to trig-
ger avalanches in a manner similar to the work of Paulsen and Park [1]. In these
experiments, an external magnetic field is ramped to, and held at a fixed value. The
heater is then turned on to slowly heat the sample until an avalanche is triggered at a
temperature measured by a small thermometer. Avalanches launched by this method
occur at well-defined, reproducible ignition temperatures. Figure 5.4(a) shows a typ-
ical temperature profile: starting at the base temperature of 300 mK, the temperature
gradually rises until an abrupt sharp increase in the temperature signals the ignition
of an avalanche. For this particular avalanche triggered at μ0Hz = 0.83 T, the igni-
tion temperature is about 1 K.

Single crystals of Mn12-ac are known to contain two types of molecules. In ad-
dition to the primary or “major” species described at the beginning of this review,
as-grown crystals contain a second “minor” species at a level of ≈ 5 percent with
lower (rhombohedral) symmetry [25–27]. These faster-relaxing molecules can be
modeled by the same effective spin Hamiltonian, (5.1), with a lower anisotropy bar-
rier of 0.49 K. Avalanches of each species can be studied in the absence of the other
through an appropriate magnetic protocol described in Ref. [28].

Interestingly, avalanches are separately triggered by the two species in low mag-
netic field. As shown in Fig. 5.4(b), at low fields the minor species relaxes prior to
and independently of the major species, while above ∼ 0.7 T the major and minor
species ignite together and propagate as a single front. It is analogous to grass and
trees that can sustain separate burn fronts that abruptly merge into a single front
when the grass becomes sufficiently hot to ignite the trees.

Despite the turbulent conditions that one might expect for deflagration (as
in chemical combustion), quantum mechanical tunneling clearly plays a role, as
demonstrated in Fig. 5.5, where the temperature of ignition is plotted as a func-
tion of a preset, constant magnetic field [22]. The temperature required to ignite
avalanches exhibits an overall decrease with applied magnetic field, reflecting the
fact that larger fields reduce the barrier (see the double-well potential in Fig. 5.1).
The role of quantum mechanics is clearly evidenced by the minima observed in the
ignition temperature at the resonant magnetic fields due to tunneling when levels
cross on opposite sides of the anisotropy barrier.



118 M.P. Sarachik

Fig. 5.4 (a) Temperature recorded by a thermometer in contact with a Mn12 crystal during the
triggering of an avalanche at 0.83 T. The heater is turned on at ∼ 0.03 s, the temperature then in-
creases slowly until an abrupt rise in temperature at 0.11 s signals the ignition of an avalanche. The
inset shows data taken near ignition with higher resolution. The noise at low temperatures derives
from digitizing the analog output of the thermometer, which depends weakly on temperature below
0.4 K; (b) Temperature profiles for avalanches of major and minor species triggered at low fields
in a Mn12 crystal. The two types of avalanches are triggered separately below a sample-dependent
magnetic field, while at higher fields ignition of the minor species triggers the ignition of the major
species

Fig. 5.5 Temperature
required to ignite avalanches
plotted as a function of
magnetic field. The vertical
lines denote the magnetic
fields where sharp minima
occur in the ignition
temperature corresponding to
tunneling near the top of the
anisotropy barrier. The
overall decrease in ignition
temperature is due to the
reduction of the anisotropy
barrier as the field is
increased

In the ignition studies described above, the barrier against spin reversal was low-
ered by applying a longitudinal magnetic field, Hz, along the uniaxial c-direction,
which serves to unbalance the potential wells and lower the barrier against spin
reversal. Tunneling can also be promoted by applying a transverse field Hx which
reduces the anisotropy barrier by introducing a symmetry-breaking term, gμBHxSx ,
to the Hamiltonian, (5.1). Macià et al. [21] investigated the threshold for avalanche
ignition in Mn12-ac as a function of the magnitude and direction of a magnetic field
applied at various angles with respect to the anisotropy axis and as a function of tem-
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Fig. 5.6 Top: Angle
dependence of metastability
measured through the
occurrence of avalanches.
Squares (triangles) denote
parameter values where
deflagration occurs for initial
temperature 2.2 K (1.8 K);
Bottom: Theoretical
calculation for the area of
stability against ignition of
avalanches (solid curve) and
against slow relaxation
(dashed curve) (as is true for
the determination of blocking
temperatures, the position of
the dashed line depends on
the typical experimental time
scale). Circles denote points
where avalanches are
predicted to occur at a given
angle θi within the first
quadrant. The angle θc
denotes the crossing point
between areas of slow
relaxation and avalanche
stability. These results were
obtained with Tf as a
parameter varying from 6.8 K
for H = 4600 Oe to 10.9 K
for H = 9200 Oe. From
Macià et al. [21]

perature. As the external field is increased at a constant rate from negative saturation
to positive values, both Hz and Hx increase, tracing a trajectory in the (Hz,Hx) pa-
rameter space. Examples of sweeps starting from zero are shown by the arrows in
Fig. 5.6. An avalanche was recorded for each pair (Hx,Hz) denoted by a square (for
T = 2.2 K) or a triangle (for T = 1.8) K.

A theory of magnetic deflagration developed by Garanin and Chudnovsky [16]
that considers only thermal effects (no dipolar interactions) explains the main fea-
tures of the ignition experiments of McHugh et al. in which the critical relaxation
rate was reached by varying T0 with a heater, and the experiments of Macià et al.,
where the ignition threshold was reached by controlling the barrier U using Hx
and Hz.

A deflagration front is expected to develop when the rate at which energy is
released by the relaxing metastable spins exceeds the rate of energy loss through
the boundaries of the crystal. This condition can be expressed in terms of a critical
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relaxation rate, [16]

Γc = 8k(T0)kBT
2
0

U 〈E〉l2 , (5.2)

where Γc = Γ0 exp[−U/kBT0], T0 is the initial temperature, k is the thermal con-
ductivity, l2 is the characteristic cross section of the crystal, and 〈E〉 is the av-
erage amount of heat released per molecule when its spin relaxes to the stable
state. The energy released when a single molecule relaxes is the Zeeman energy
�E = 2gμBSBz. To obtain the average energy per molecule, one has to consider
the fraction of molecules that relax:

〈E〉 = 2gμBS

(
�M

2Ms

)
Bz, (5.3)

whereMs is the saturation magnetization and �M = |Mz−Ms | is the change from
initial to final magnetization.

Calculations based on (5.2) yield the curves shown in Fig. 5.6(b). Two areas
are defined in the (Hz,Hx) parameter space where the spins are expected to be
metastable against relaxation: the solid line denotes the region of metastability
against relaxation by triggering avalanches while the dashed curve delineates the
region of metastability against slow, stepwise relaxation.1 If the experimental tra-
jectory, denoted by the arrows, crosses the grey solid line first, an avalanche will ig-
nite. If the dashed line is crossed first, the metastable spins will relax slowly without
triggering an avalanche. This defines a critical angle θc, above which an avalanche
cannot occur.

Macià et al. measured the ignition threshold by applying an increasing external
field at an angle with respect to the crystal. The relaxation rate increases as the field
grows until Γc is reached and deflagration ignites, as shown in Fig. 5.6(a). For suf-
ficiently large values of Hx , they found that the slow relaxation of the metastable
spins occurs before deflagration can ignite. This defines a line in parameter space
separating regions where one or the other mode of relaxation occurs, as shown in
Fig. 5.6(b). The theory predicts that the transverse field should result in a significant
decrease in the magnetization metastability at the resonant fields of Hz. The data
recorded in Fig. 5.6(a) confirm this and are consistent with the ignition temperatures
of Fig. 5.5. In addition, ignition thresholds were measured at two different tempera-
tures. The area of stability is clearly reduced by the increased initial temperature, as
expected.

5.2.2 Avalanche Speed

Hernández-Mínguez et al. [23, 29] carried out a systematic investigation of
avalanche speeds as a function of a preset, constant magnetic field μ0Hz for

1As is true for the determination of blocking temperatures, the position of the dashed line depends
on the typical experimental time scale.
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Fig. 5.7 The speed of propagation of the magnetic avalanche deflagration front as a function of
the (fixed) field at which the avalanche is triggered. Data are shown for category C avalanches for
which the average energy released, 〈E〉, is held constant at 18.3 K and 32.6 K (see text). Note
the enhancement of propagation velocity at magnetic fields corresponding to quantum tunneling
(denoted by vertical dotted lines). From McHugh thesis [30]

avalanches triggered by surface acoustic waves. From SQUID-based measurements
of the total magnetization of a crystal of known dimensions, and the realization that
the avalanche propagates as an interface between regions of opposite magnetization
[14], they deduced that the speed of propagation of the avalanches is enhanced at the
resonant fields where tunneling occurs, confirming the important role of quantum
mechanics and prompting the authors to name the phenomenon “quantum magnetic
deflagration”. Similar results were obtained from local, time-resolved magnetization
measurements using micron-sized Hall sensors [30], as shown in Fig. 5.7.

McHugh et al. [31] reported a detailed, systematic investigation of the speed
of magnetic avalanches for various experimental conditions. The speed of prop-
agation of an avalanche is described approximately [14] by the expression,
v ∼ (κ/τ0)

1/2 exp [−U(H)/2kBTf ], where U is the barrier against spin reversal,
Tf is the flame temperature at or near the propagating front where energy is re-
leased by the reversing spins, κ is the thermal diffusivity, and τ0 is an attempt time.
We note that the energy barrier U and the flame temperature Tf appear only as the
ratio U/Tf in the above expression for the velocity. It is therefore convenient to plot
the speed of the avalanche as a function of U/Tf .

In the studies of McHugh et al. [31], avalanches were controllably triggered using
three different protocols, as follows:

(A) From fixed (maximum) initial magnetization in various external fields; there
is full (maximum) magnetization reversal, �M/2Ms = 1; both U and Tf vary;

(B) In fixed external field starting from different initial magnetization; here the
amount of “fuel” �M/2M is varied for a fixed magnetic field (thus U is held con-
stant); the avalanches differ primarily through the amount of energy released—the
flame temperature Tf varies;
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Fig. 5.8 (a) Avalanche speeds for a single crystal with various initial magnetic preparations. A de-
notes avalanches with �M/2Ms = 1; B1 and B2 denote data taken at μ0Hz = 2.2 T and 2.5 T,
respectively; C1 and C2 denote avalanches with estimated flame temperatures Tf ≈ 10 K and
12 K, respectively. (b) Avalanche speeds for different crystal with �M/2Ms = 1. The fit requires
an unphysical temperature dependence for the thermal diffusivity, κ ∝ T 3.5

(C) for fixed energy release, thus fixed Tf , by adjusting external magnetic fields
and initial magnetization.

The theory of magnetic deflagration [16] provides the following theoretical ex-
pression for the speed of the deflagration front:

v =
√

3kBTf κΓ (B,Tf )

U(B)
. (5.4)

If one assumes the thermal diffusivity κ is approximately independent of temper-
ature, or that its temperature dependence is unimportant compared to that of other
parameters in the problem, then all measured avalanche velocities should collapse
onto a single curve when plotted as a function of (U/Tf ).

Figure 5.8(a) [31] shows the measured avalanche velocity as a function of
(U/Tf ) obtained using the three different protocols described above. Although an
approximate collapse is obtained, there are clear and systematic deviations. That
these different experimental protocols introduce systematic variations, albeit small,
suggests that the theory is incomplete.

Shown in Fig. 5.8(b), an attempt to fit to the theory by allowing the thermal dif-
fusivity to vary as a power law of the temperature for avalanches of type (A) that
involve full magnetization reversal yields κ ∼ T 3.5. This is a distinctly unphysical
result, as the thermal diffusivity is generally a strongly decreasing function of tem-
perature [32] for these materials. We note that experimental measurements of the
thermal diffusivity of Mn12 are not available.

In brief, the Chudnovsky-Garanin theory of deflagration captures the main fea-
tures found in the experiments. However, although the ignition experiments have
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yielded results that agree with it in detail, the theory does not provide a fully sat-
isfactory description of the speed of propagation of the deflagration fronts. It is
possible that dipolar interactions (discussed in the next section) play a sufficiently
important role to account for the discrepancies.

5.3 Cold Deflagration

Although small compared to other energies, dipolar interactions are now recognized
as playing an important role in many molecular magnets. This is confirmed by re-
ports of ferromagnetism mediated by dipolar interactions below 1 K in Mn12-ac
[33, 34], as well as in other molecular magnets [35–37]. Even in the paramagnetic
phase, where long range order is not realized, the change of the spin state of a
molecule results in a change of the long-range dipolar field acting on other nearby
spins [38, 39]. Thus, dipolar interactions can tune spins in and out of resonance and
can thereby have a profound influence on the spin dynamics.

D.A. Garanin and E.M. Chudnovksy [17–20] have proposed that propagating
fronts of spin reversal (avalanches) can occur that are driven by the dipolar interac-
tions between magnetic molecules. Their numerical simulations show that dipole-
dipole forces establish spatially inhomogeneous states in molecular magnets2 such
that there is a self-consistent adjustment of the metastable population acting to create
a dipolar field that is constant over a sizable region of the sample, thereby bringing
the system to resonance over an extended region where all the spins can relax col-
lectively by tunneling. This, in turn, can lead to propagating fronts of spin reversal,
which they have dubbed “cold deflagration”.

Interestingly, Garanin and Chudnovsky have noted that such collective traveling
spin reversal fronts are potential sources of Dicke superradiance [41–47] at fre-
quencies in the teraHertz range, a particularly interesting region of the electromag-
netic spectrum where few sources are available. If self-organization does result in
a uniform dipolar field within the tunneling front, the resonant condition is fulfilled
for a macroscopic number of magnetic molecules inside the front, and it is indeed
plausible that these avalanches could emit a superradiant electromagnetic signal. In-
tense bursts of radiation have indeed been detected experimentally during magnetic
avalanches. There has been much speculation that this could be Dicke superradi-
ance, but experiments have been inconclusive on this very interesting issue [48–53].

The avalanches that have been studied experimentally to date have been trig-
gered in large longitudinal bias fields near the higher-number field resonances. In
these circumstances, the spins tunnel from a metastable state and decay to a ground
state of opposite spin that is much lower in energy, releasing Zeeman energy to the
phonon system and generating heat. This triggers thermal avalanches, as confirmed
by a measured increase in the temperature of the crystal. It will be of great interest

2Experimental evidence of such inhomogeneous states has been obtained by local measurements
in Mn12-ac that show oscillating magnetization near a tunneling resonance; see [40].
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to find magnetic avalanches that are driven (or partially driven) by dipole-dipole in-
teractions, and to study the relative roles of cold and “hot” deflagration for different
parameters (temperature, parallel and perpendicular magnetic field, sweep rate, and
so on). The possibility that superradiance will be emitted in the process is particu-
larly exciting.

Although hints of cold deflagration may have been found, there are no definitive
reports of this process to date. We note that a particularly large effect is expected in
the presence of a strong transverse field which promotes tunneling and lowers the
anisotropy barrier, so that relaxation toward equilibrium can proceed by tunneling
at zero longitudinal bias field without thermal assistance and without releasing Zee-
man energy into the system. However, recent experiments [24] show that in a strong
transverse magnetic field the relaxation near tunneling resonances becomes so rapid
that it is difficult to create an initial state with a sizable out-of-equilibrium popula-
tion sufficient to trigger a tunneling front. This is a major experimental challenge
for realizing dipole-driven spin-reversal fronts.

5.4 Summary and Outlook for the Future

Once considered events to be avoided, as they interfere with a detailed study of
the stepwise process of magnetization via spin-tunneling, magnetic avalanches have
recently been the focus of attention and renewed interest, partly stimulated by the
theoretical suggestion that the radiation emitted during an avalanche may be in the
form of coherent (Dicke) superradiance [41]. Although the issue of coherence of
the radiation has yet to be resolved, recent studies have clarified the nature of the
avalanche process itself.

Magnetic avalanches proceed as traveling fronts along which the molecules re-
verse their spin, releasing Zeeman energy which drives the spins to reverse through-
out the crystal. These spin-reversal fronts propagate at subsonic speeds, and are
analogous to the process of chemical combustion, technically known as chemical
deflagration: here a chemical reaction propagates along a front where energy is re-
leased that drives the reaction front at subsonic speed. A burning sheet of paper is
a clear example of chemical deflagration. A great advantage of the magnetic analog
is that, unlike burning paper, it is non-destructive, fully reversible and continuously
tunable using an external magnetic field. Magnetic deflagration is thus amenable to
carefully controlled study.

In this chapter, we have reviewed experiments on the ignition and the speed of
propagation of a magnetic avalanche driven by the release of Zeeman energy at the
deflagration front. The conditions for ignition and the speed of propagations both
show clear effects of quantum mechanics at the resonant fields that allow tunneling
across the anisotropy barrier. The theory of magnetic deflagration of Chudnovsky
and Garanin is in excellent agreement with the parameters determined experimen-
tally for ignition. The theory also provides a good qualitative fit to the observed
avalanche velocity, but there are detailed discrepancies that suggest that additional
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factors need to be included to obtain good quantitative agreement. The effect of
dipolar interactions must clearly be included in a full theory [20].

Dipole-dipole interactions are sufficiently strong in some molecular magnets that
they lead to long-range ordering at low temperatures. A particularly interesting con-
sequence of dipolar interactions is “cold deflagration” proposed by Garanin and
Chudnvosky, a process in which spin-reversal fronts are driven predominantly by
dipolar effects. These have not yet been realized (or perhaps recognized) exper-
imentally. Garanin and Chudnovsky suggest that self-organization of the internal
dipolar fields brings molecules into resonance over a broad front that may serve as a
source of coherent teraHertz radiation. In addition to the intrinsic interest, it would
be interesting to search for cold deflagration as a potential source of Dicke superra-
diance in this difficult and important range of the electromagnetic spectrum, where
few sources are available.

More experimental work is clearly needed. Currently underway, a detailed inves-
tigation of avalanche ignition in fixed transverse and fixed longitudinal (bias) field
is yielding interesting, new results [24]. Measurements of the thermal diffusivity
would provide an important constraint on the theory, as would a reliable determina-
tion of the (local) temperature of the deflagration front. Investigations of the influ-
ence of sample shape, size and quality would also be illuminating. Spatial control
of the avalanche ignition points, possibly by optical means, could provide impor-
tant information. Studies of the shape of the deflagration front, and its character
(turbulent or laminar) would be particularly interesting.

The possibility of observing a transition to detonation is intriguing [20, 54]. De-
flagration is but one type of combustion process. Another, more violent type, is
detonation, where heat spreads from the reaction front as a shock wave rather than
by diffusion. It is natural to ask whether crystals of molecular magnets can support
the magnetic analog of chemical detonation. Decelle et al. [55] have reported results
hinting at this possibility using high external field sweep rates (4 kT/s). The inter-
pretation of these experiments is not entirely clear, and much work remains to be
done.

We close by noting once more that, to the degree that magnetic deflagration re-
sembles chemical deflagration, the magnetic manifestation of this process offers
some clear advantages for the study of chemical combustion. The magnetic analog
is non-destructive and reversible, enabling a broad range of controlled studies on a
single sample. Unlike the chemical process, it is a particularly interesting realization
of deflagration in which quantum mechanical tunneling plays an important role.
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Chapter 6
Theory of Deflagration and Fronts of Tunneling
in Molecular Magnets

D.A. Garanin

Abstract Decay of metastable states in molecular magnets leads to energy release
that results in temperature increase that boosts the decay rate. This is the mechanism
of the recently discovered magnetic deflagration that is similar to regular chemical
burning and can propagate in a form of burning fronts. Near spin-tunneling reso-
nances the decay rate is also affected by the dipolar field that can block or unblock
tunneling. There are non-thermal fronts of tunneling in which the magnetization ad-
justs in such a way that the system is on resonance within the front core. Both dipo-
lar field and temperature control fronts of quantum deflagration. The front speed can
reach sonic values if a strong transverse field is applied to boost tunneling.

6.1 Introduction

Deflagration or burning is the decay of metastable states accelerated by a temper-
ature rise due to energy released in this process [1, 2]. In most cases the decay
rate has the Arrhenius temperature dependence, Γ = Γ0 exp[−U/(kBT )], where U
is the energy barrier. Because of very strong positive feedback, burning can have a
form of a thermal runaway: almost undetectably slow relaxation at the beginning fol-
lowed by an explosion-like relaxation at the end (explosions at ammunition-storage
sites, Bhopal disaster, etc.). In other cases there is a burning front propagating with
a constant speed away from the ignition point. These fronts are driven by the heat
conduction from the hot burned region to the cold unburned region before the front.
Burning of a sheet of paper is a good example of a deflagration front.

Molecular magnets (MM), of which the most famous is Mn12Ac [3], are burnable
materials because of their bistability resulting from a strong uniaxial anisotropy that
creates an energy barrier [4]. One can make magnetic state metastable by applying a
magnetic field along the anisotropy axis. Burning, of course, should lead to a much
faster relaxation than a regular relaxation at fixed low temperatures. Indeed, in early
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experiments on relaxation of large specimens of MM [5–7] an abrupt and nearly to-
tal relaxation of the metastable magnetization has been detected but not explained.
The 2005 space-resolved experiments of the Sarachik group [8] on long crystals
of Mn12Ac have shown propagating fronts of relaxation that were interpreted as
deflagration fronts. In this experiments, regularly-spaced Hall probes at the sides
of the crystal detected the transverse magnetic field created by the non-uniformity
of the magnetization [9]. Measurements of the time dependence of the total mag-
netization by the Tejada group, inspired by the above experiment, have shown a
linear time dependence that was attributed to a deflagration front travelling through
a Mn12 crystal [10]. Here quantum maxima of the front speed vs the bias field have
been detected, Fig. 4 of Ref. [10]. Discovery of magnetic deflagration, mainly on
Mn12Ac [11–14], opened an active field of experimental research. Experiments at
high sweep rates [15, 16] have shown spin avalanches propagating at a fast speed.
In this region, deflagration can go over into detonation [17]. Magnetic deflagration
(coupled to a structural phase transition) has also been observed on manganites [18]
and intermetallic compounds [19, 20]. By contrast, it is problematic to observe de-
flagration fronts on another popular MM Fe8 because of the pyramidal shape of its
crystals.

One can ask if deflagration can exist in traditional magnetic systems, many hav-
ing a strong uniaxial anisotropy. Unfortunately, the energy release in magnetic sys-
tems is much weaker than in the case of a regular (chemical) deflagration. Thus, at
room temperatures, the ensuing temperature increase is too small to change the re-
laxation rate and support burning. Only at low temperatures the increase of the relax-
ation rate becomes large. A hallmark of magnetic deflagration is its non-destructive
character. “Burned” MM can be recycled (put again into the metastable state) by
simply reversing the longitudinal magnetic field.

A comprehensive theory of magnetic deflagration given in Ref. [21] includes
calculations of the stationary speed of the burning front, ignition time due to local
increase of temperature or change of the magnetic field, as well as the analysis of
stability of the low-temperature state with respect to deflagration that depends on
the heat contact of the MM crystal with the environment. However, up to now there
is no complete accordance between the theory and experiment for several reasons.
First, thermal diffusivity κ of Mn12 that plays a crucial role in deflagration has not
been measured up to now. Second, there is no completely satisfactory theory of
relaxation in molecular magnets that takes into account important collective effects
such as superradiance and phonon bottleneck.

Because of their not too large spin (S = 10 for Mn12 and Fe8), molecular magnets
are famous exponents of spin tunneling [22–25] which has a resonance character and
leads to the steps in dynamic hysteresis curves at the values of the longitudinal mag-
netic field where quantum levels of the spin at the two sides of the potential barrier
match [26–28]. Since the discovery of magnetic deflagration there has been a quest
for quantum effects in it. The simplest approach [10, 21] uses the fact that usually
spin tunneling occurs via pairs of quantum levels just below the classical barrier.
This tunneling is thermally assisted and can be described by an effective lowering
of the energy barrier at resonance values of the bias field (Fig. 2 of Ref. [7]). Thus
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using the Arrhenius relaxation rate with such an effective barrier does incorporate
spin tunneling. Experimentally it was found that spin tunneling strongly affects ig-
nition of deflagration (Fig. 5 of Ref. [11]) and to a smaller extent the front speed
(Fig. 5 of Ref. [11] and Fig. 4 of Ref. [10]).

Quantum effects in deflagration should be sensitive to the dipolar field cre-
ated by the sample. In a long uniformly magnetized crystal of Mn12Ac the dipo-
lar field is B(D) = 52.6 mT, as calculated microscopically in Ref. [29], while
the measured value [14] is very close to it. This creates a dipolar energy bias
W(D) = gμBB(D)(m′ −m) between the pair of resonant quantum levels m and m′
(quantum numbers for Sz in the two energy wells). This energy bias typically largely
exceeds the tunnel splitting � that contributes to the resonance width. In the defla-
gration front the dipolar field typically changes between +B(D) and −B(D) and so
does the energy bias. As the result, spin tunneling in the deflagration front does not
occur at a fixed resonance condition. This can explain why the observed quantum
maxima in the front speed can be not as strong as expected, compared to the effect
of tunneling on the ignition of deflagration.

Further theoretical research led to the idea of the dipole-dipole interaction (DDI)
playing an active role in deflagration by controlling the relaxation rate, as tempera-
ture does in regular deflagration. Adding to the external bias field, the dipolar field
can set particular magnetic molecules on or off resonance, facilitating or block-
ing their tunneling relaxation. The problem is self-consistent since tunneling of one
magnetic molecule changes dipolar fields on the other ones. A numerical solution
of this problem in a form of a moving front of tunneling at zero temperature (some-
times called “cold deflagration”) has been found in Ref. [30]. An analytical solution
for the front of tunneling in the realistic strong-DDI case has been obtained in Ref.
[31].

Pure non-thermal fronts of tunneling can occur in the case of a very good thermal
contact of the MM crystal with the environment, so that its temperature does not in-
crease and remains so low that tunneling takes place directly from the metastable
ground state into a matching excited state on the other side of the barrier. This pro-
cess can be efficient only if a strong transverse field is applied and the corresponding
tunnel splitting � is large enough. In this case the speed of fronts of tunneling can
theoretically exceed the speed of a regular deflagration by a large margin. Indeed,
the dipolar field in the crystal changes instantaneously, in contrast to the tempera-
ture changing via heat conduction. In addition, the relaxation rate due to tunneling
directly from the ground state can be much higher than the relaxation rate due to
barrier-climbing processes in the regular deflagration.

If an MM crystal is thermally insulated, its temperature is increasing as a result
of a decay of the metastable state, so that there can be a mixture of both mechanisms
of deflagration considered above [32]. Whereas far from resonances a regular defla-
gration takes place, near resonances tunneling leads to a great increase of the front
speed. A more detailed treatment of the quantum-thermal deflagration for a realistic
model of Mn12Ac with S4

z terms in the effective Hamiltonian was recently given in
Ref. [33].

Theories of fronts of tunneling mentioned above are based on the model sim-
plification considering it as one dimensional. In the regular deflagration, there is
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Fig. 6.1 Energy barrier of a
biased molecular magnet

a mechanism that makes fronts flat and smooth (laminar), so that the deflagration
problem in long crystals indeed becomes 1d . In the case of dipolar-driven fronts of
tunneling, it is not immediately clear whether fronts are flat or not, and, moreover,
there is a mechanism that favors non-laminar fronts. The full 3d theory of fronts of
tunneling that will be presented below, numerically yields non-flat and non-laminar
fronts. The latter slows down the front speed in comparison to the simplified 1d
theory but, nevertheless, the speed can reach values comparable with the speed of
sound in MM near tunneling resonances in strong transverse fields.

In the main part of this contribution, the regular (thermal) magnetic deflagration
will first be considered. Then calculation of the dipolar field in molecular magnets
will be explained. The final part is devoted to the theory of fronts of tunneling.

6.2 Magnetic Deflagration

For the generic model of a molecular magnet the energy has the form

H=−DS2
z − gμBBzSz +H′, (6.1)

where D > 0 is the uniaxial anisotropy constant and H′ stands for all terms that do
not commute with Sz and thus cause spin tunneling. In Mn12Ac there is an additional
smaller longitudinal term −AS4

z , the implications of which will be discussed later.
In the biased case Bz > 0, the dependence of the energy on Sz is sketched in Fig. 6.1.
The energy barrier U shown in Fig. 6.1 has the form

U = (1− h)2U0, U0 =DS2, h≡ gμBBz/(2DS). (6.2)

With S = 10 the zero-field energy barrier U0 has a large value of 67 K in Mn12Ac.
The energy of the metastable state is given by �E = 2SgμBBz.
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In the absence of spin tunneling at low temperatures, U/(kBT )� 1, the rate
equation describing relaxation of the metastable population n (the fraction of mag-
netic molecules in the left well) has the form

ṅ=−Γ (n− n(eq)), (6.3)

where the relaxation rate is given by

Γ = Γ0 exp

(
− U

kBT

)[
1+ exp

(
−�E
kBT

)]
. (6.4)

Here the second term in the square brackets describes back transitions from the
stable well to the metastable well. In the strong-bias case, �E � kBT , this term
can be omitted. The equilibrium metastable population n(eq) is given by

n(eq) = 1
/[

exp

(
�E

kBT

)
+ 1

]
. (6.5)

In the strong-bias case it can be neglected.
The second equation describing deflagration is the heat conduction equation

CṪ =∇ · k∇T − ṅ�E, (6.6)

where k is thermal conductivity and C is heat capacity. The second term on the
right is the energy release due to decay of the metastable state. The heat capacity
is mainly due to phonons, whereas the magnetic contribution is relatively small. At
low temperatures only acoustic phonons are excited, whereas high-energy optical
phonons are frozen out, thus C has the form [34]

C =AkB(T /ΘD)α, (6.7)

where α = 3 in three dimensions, A= 12π4/5! 234 is a numerical factor and ΘD
is the Debye temperature, ΘD ! 40 K for Mn12Ac. Although at low temperatures
this expression is in a reasonable accordance with measurements on Mn12Ac [35],
its applicability range is very narrow, T � 5 K. On the other hand, the temperature
generated in deflagration (the so-called flame temperature) is typically above 10 K.
The heat capacity of Mn12Ac can be well described within a broad temperature
range with the help of the extended Debye model (EDM) [36] that comprises three
different acoustic phonon modes as well as optical modes. Practically, one can use
measured values of C [35].

It is convenient to use the relation C = dE/dT to rewrite (6.6) in terms of the
energy E (here due to phonons) as

Ė =∇ · κ∇E − ṅ�E, (6.8)

where κ = k/C is thermal diffusivity. The latter has not yet been measured, al-
though a crude estimate κ ! 10−5 m2/s was deduced from experiments [8, 13]. This
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value is comparable with that of metals. Temperature dependence of κ that could be
substantial at low temperatures remains unknown.

Equations (6.3) and (6.8), together with (6.4) and the relation

E(T )=
∫ T

0
C
(
T ′
)
dT ′, (6.9)

is a strongly-nonlinear system of equations. It is easy to solve these equations nu-
merically but it costs efforts to do it analytically. The two main problems to solve
are (i) stability of the low-temperature state with respect to thermal runaway or igni-
tion of a deflagration front and (ii) the shape and speed of the stationary deflagration
front in long crystal.

6.2.1 Ignition of Deflagration

If the sample is perfectly thermally insulated, the whole released energy remains in-
side and the temperature monotonically increases. This leads to a thermal instability
that can take a considerable time to develop, the ignition time. If there is a thermal
contact with the environment, maintained at a constant low temperature T0, there
are two possible cases. In the subcritical case, the temperature rise in the sample
due to slow decay leads to temperature gradients and heat flow toward the sam-
ple boundaries that ensures a stationary low-temperature state (proper conditions of
explosives’ storage). In the supercritical case, heat loss through the boundaries is
insufficient to balance the increase of released heat owing to the rising temperature.
This leads to ignition of a self-supporting burning process. In small crystals of MM,
temperature gradients are higher and heat loss to the environment is more efficient.
In larger crystals, temperature gradients are lower and thermal instability is more
likely. This is why deflagration was observed in larger crystals.

Thermal instability occurs because of a stronger temperature dependence of the
relaxation rate, (6.4), than that of the heat exchange with the environment. The
essence of the problem is contained in the old Semenov model of explosive in-
stability [37] described by a single equation

Ṫ =Qreaction −Qcooling, (6.10)

where Qreaction ∼ Γ (T ) and Qcooling = α(T − T0). In the case B in Fig. 6.2, the
thermal contact to the bath is too weak, Qcooling < Qreaction at all T , so that the
system is absolutely unstable. In case A, the thermal contact is stronger and there is
a stability range T < T2, where the stationary state T = T1 is an attractor. However,
heating the system above T2 leads to a thermal explosion.

Semenov’s model is zero-dimensional, whereas in MM crystals the problem is at
least one-dimensional and more complicated. There are different cases of thermal
instability, mainly instability of a large crystal initially at uniform temperature (that
begins at the center), instability due to heating one end of a long crystal, and the
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Fig. 6.2 Semenov’s
mechanism of a thermal
runaway, (6.10)

instability due a magnetic field gradient that makes the barrier lower at one side of
the crystal. Analysis of all these cases has been done in Ref. [21]. In particular, in
simplest case of the uniform energy barrier and constant temperature T0 maintained
at the boundaries, the crystal loses stability against formation and propagation of the
flame (magnetic avalanche) when the rate of the spin flip for an individual molecule,
Γ (H,T0) , exceeds

Γc = kBT0

U

8kT0

l2ni�E
. (6.11)

Here k is thermal conductivity at T0 and the length parameter l is uniquely deter-
mined by geometry, being of the order of the smallest dimension of the crystal,
whereas ni is the metastable population in the initial state.

Experimentally magnetic deflagration can be initiated either by heating one end
of the crystal [11–13] or by sweeping the magnetic field in the positive direction,
which reduces the energy barrier and makes the condition in (6.11) satisfied [8]. In
Ref. [10] deflagration was ignited by surface acoustic waves (SAW), instead of by
heating.

6.2.2 Deflagration Fronts

Fronts of magnetic burning propagating in long crystals of molecular magnets are
flat and smooth, i.e., the problem of deflagration is one-dimensional. The stability
of flat fronts can be immediately seen. Indeed, if a fraction of a front gets ahead of
neighboring fractions, the heat released at this place will be propagating not exactly
straight ahead (as in a flat front) but also sideways. This will slow down this leading
fraction of the front and speed up the lagging fractions surrounding it. Thus any
local deviation from a flat front will disappear with time.
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In a stationary-moving front, all physical quantities depend only on the combined
variable that can be chosen, e.g., in the time-like form u≡ t − z/v, where v is the
front speed. In terms of u the deflagration equations have the form

dn

du
=−Γ (T )(n− n(eq)(T )

)
dE
du

= 1

v2

d

du
κ
dE
du

− dn
du
�E

(6.12)

plus (6.9). Integrating the energy equation one obtains

E + n�E − κ

v2

dE
du

= const. (6.13)

Far before and far behind the front, the term with the derivative vanishes. Thus one
obtains the energy conservation law in the form

Ei + ni�E = Ef + n(eq)(Tf )�E, (6.14)

where i stands for “initial” (before the front) and f stands for “final” or “flame”.
This is a transcendental equation for the flame temperature Tf that has to be solved
together with (6.9). If Ei ≈ 0 (low initial temperature) and n(eq)(Tf ) is negligible
(full-burning case realised at a strong bias, see (74) of Ref. [21]) one immediately
finds the flame energy from ni�E = Ef , and then Tf follows by inverting (6.9).
In the incomplete-burning regime at small bias, a pulsating instability of stationary
deflagration fronts [38] was found. The operations above assume that the heat is not
exchanged via the sides of the crystal. In the opposite case, the energy conservation
becomes invalid and the theory has to be extended.

One can immediately get an idea of the front speed by rewriting the deflagration
equations (6.12) in the dimensionless form. In terms of the reduced variables

ñ≡ n/ni, Ẽ ≡ E/(ni�E), ũ≡ uΓf (6.15)

and parameters

Γ̃ ≡ Γ/Γf , κ̃ ≡ κ/κf (6.16)

(6.12) become

dñ

dũ
=−Γ (ñ− ñ(eq))

dẼ
dũ

= 1

ṽ2

d

dũ
κ̃
dẼ
dũ

− dñ
dũ
,

(6.17)

where the reduced front speed ṽ is related to the actual front speed v by

v = ṽ√κf Γf . (6.18)
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References [2, 8] give the expression above without ṽ for the front speed.
It turns out that ṽ in (6.18) is not merely a number but rather it is a function of

dimensionless parameters such as

Wf ≡U/(kBTf ). (6.19)

Because of the non-linearity of the first of (6.17), their general analytical solution
that defines ṽ does not exist. There are two parameter ranges in the problem: Slow-
burning high-barrier range Wf � 1 and fast-burning low-barrier range Wf � 1.

In the former, burning occurs in the front region where the temperature is already
close to Tf . Assuming that κ is temperature independent, κ̃ = 1, and linearizing
Γ (T ) near Tf , one can solve the problem analytically. Within the full-burning ap-
proximation (n(eq)⇒ 0) the reduced front speed is given by [21]

ṽ =
√
Cf Tf

ni�E

kBTf

U
. (6.20)

With the help of (6.7) (that is not accurate, however!) this result simplifies to

ṽ =
√
(α + 1)/Wf . (6.21)

The applicability range of these expressions is ṽ� 1.
The corresponding profile of the metastable population n in the front has the

form

ñ= 1

1+ eu =
1

2

(
1− tanh

ũ

2

)
(6.22)

that corresponds to the symmetric tanh magnetization profile σz = 1 − 2n =
tanh(ũ/2). In real units the result reads

n= ni
2

[
1+ tanh

(
z

2ṽld
− Γf t

2

)]
, (6.23)

where ld =
√
κf /Γf is the a-priori with of the deflagration front. Magnetization

profile of this kind can be seen in Fig. 11 of Ref. [21] and in the upper panel of
Fig. 10 of Ref. [33]. The reduced energy in the front is given by

Ẽ = (1− e−u)−ṽ2 = (1− ñ)ṽ2
. (6.24)

Since in the high-barrier approximation ṽ� 1, the formula above yields Ẽ ≈ 1 in
the active burning region and actually everywhere except for the region far ahead of
the front where ñ is very close to 1. This justifies the approximation made.

It should be noted that the full-burning approximation used above requires a
bias high enough thus the barrier low enough, Wf � 6, according to (79) of Ref.
[21]. Thus the applicability range of the slow-burning high-barrier approximation
is rather limited. The theory can be improved by taking into account incomplete
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burning. However, this makes analytics cumbersome because of the transcendental
equation (6.13) defining Tf . Numerical solution for the deflagration front poses no
problems, nevertheless. Because of incomplete burning, Tf and thus the front speed
decrease below the values given above.

In the low-barrier fast-burning regime Wf � 1 there is no rigorous analytical
solution to the problem. Additionally, the Arrhenius form of the relaxation rate,
(6.4), becomes invalid. In this regime the magnetization profile is asymmetric, as
can be seen in the upper panel of Fig. 12 of Ref. [33].

Making the simplifying approximation for the relaxation rate

Γ̃ (Ẽ)=
{

0, Ẽ < Ẽ0

1, Ẽ > Ẽ0,
(6.25)

where Ẽ0 will be defined below, one can solve the problem of a stationary deflagra-
tion front in the whole parameter range. Let us search for the front in which Ẽ = Ẽ0
at u= 0. In the reduced form of the energy equation (6.13),

dẼ
dũ

= ṽ2(Ẽ + ñ− 1), (6.26)

one has ñ= 1 before the front, u < 0. Thus the energy equation solves here to

Ẽ = Ẽ0e
ṽ2ũ. (6.27)

On the other hand, for u > 0 the solution of the population equation dñ/dũ =
−Γ̃ ñ=−ñ reads ñ= e−ũ. Inserting this into (6.26), and integrating the differential
equation, one obtains the solution

Ẽ =
(
Ẽ0 − 1

1+ ṽ2

)
eṽ

2ũ + 1− ṽ2

1+ ṽ2
e−ũ. (6.28)

The first term of this expression must vanish because of the boundary condition
Ẽ(∞)= 1. This defines the reduced front speed,

ṽ =
√

1

Ẽ0
− 1. (6.29)

To define Ẽ0, consider the reduced Arrhenius relaxation rate

Γ̃ = exp

[
Wf

(
1− 1

T̃

)]
(6.30)

and require

Wf

(
1− 1

T̃0

)
=−1 (6.31)
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as the switching point between Γ̃ = 0 and Γ̃ = 1. This yields

T̃0 = Wf

1+Wf . (6.32)

Using (6.7), one obtains

Ẽ0 = T̃ α+1
0 =

(
Wf

1+Wf
)α+1

. (6.33)

Substituting this into (6.29), one finally obtains

ṽ =
√(

1+Wf
Wf

)α+1

− 1. (6.34)

Limiting cases of this formula are

ṽ ∼=
{√
(α + 1)/Wf , Wf � 1

1/W(α+1)/2
f , Wf � 1.

(6.35)

It is remarkable that the rigorously obtained high-barrier slow-burning result of
(6.21) is recovered exactly. In the low-barrier fast-burning case the reduced front
speed becomes large, as well as the actual front speed of (6.18). One can see that
(6.34) is in good agreement with the numerical solution shown in Fig. 6.3.

The high-speed regime of the deflagration should be superseded by detonation
when the front speed approaches the speed of sound. In detonation, thermal expan-
sion resulting from burning sends a shock wave into the cold region before the front.
As a consequence, the temperature before the front rises as a result of compression,
initiating burning. Such a mechanism was recently considered for Mn12Ac in Ref.
[17].

6.3 Fronts of Tunneling

6.3.1 Tunneling Effects in the Relaxation Rate

The relaxation rate Γ including spin tunneling is at the foundation of the quantum
theory of deflagration in molecular magnets. In the generic model of MM, (6.1),
tunneling resonances occur at the values of the total bias field Btot,z (including the
self-produced dipolar field) equal to

Bk = kD/(gμB), k = 0,±1,±2, . . . (6.36)

for all the resonances. Spin tunneling leads to the famous steps in the dynamic hys-
teresis curves [26–28]. In the real Mn12Ac there is an additional term −AS4

z that
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Fig. 6.3 Reduced speed of a
deflagration front defined by
(6.18). The numerical result
has been obtained in Ref. [21]
within the full-burning
approximation using the
low-temperature form of the
heat capacity, (6.7).
Analytical result is (6.34).
The dotted line is the
high-Wf asymptote, (6.21)

makes higher-energy resonances be achieved at smaller Bz than low-energy reso-
nances. The resulting tunneling multiplets

gμBBkm = k
[
D+ (m2 + (m+ k)2)A] (6.37)

were used to experimentally monitor [39, 40] the transition between thermally as-
sisted and ground-state tunneling [41] in Mn12Ac. Below Bk will stand for the res-
onance field Bkm, for simplicity of notations.

In the case of an isolated magnetic molecule, the probability of a spin to be
in one of the resonant quantum states is oscillating with time with the frequency
�/�, where � is the tunnel splitting. However, coupling to the environment, e.g.,
to phonons, introduces damping to these oscillations. If the decay rate of at least
one of the resonance states, Γm or Γm′ , exceeds �/�, tunneling oscillations of the
spin are overdamped. This can be illustrated in the case of a resonance between the
metastable ground state | − S〉 and the matching excited state at the other side of
the barrier |m′〉 of a biased MM at zero temperature. Ignoring all other levels, that
is justified at T = 0, one can write down the Schrödinger equation in the form [31]

ċ−S =− i
2

�

�
cm′

ċm′ =
(
iW

�
− 1

2
Γm′

)
cm′ − i

2

�

�
c−S,

(6.38)

where

W ≡ ε−S − εm′ =
(
S +m′)gμB(Btot,z −Bk) (6.39)

is the energy bias between the two levels. Whereas the level |−S〉 is undamped, the
level |m′〉 can decay into lower-lying levels in the same well via phonon-emission
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processes. At T = 0 there are no incoming relaxation processes for |m′〉. In this
case the damped Schrödinger equation above is accurate, as it can be shown to
follow from the density matrix equation. In the underdamped case Γm′ ��/� the
solution of these equations is oscillating. The first choice for studying tunneling
dynamics in molecular magnets is the overdamped case Γm′ ��/�, since for not
too strong transverse fields B⊥ the tunnel splitting� is a high power of B⊥ (Ref.
[42]) and typically it is much smaller than Γm′ . In the overdamped case the variable
cm′ in (6.38) adiabatically adjusts to the instantaneous value of c−S and the solution
greatly simplifies. Setting ċm′ = 0 in the second of these equations, one obtains

cm′ = �

2�

c−S
W/�+ iΓm′/2 . (6.40)

Inserting this into the first of (6.38) yields a closed differential equation for c−S . Us-
ing n= |c−S |2 for the metastable occupation number, one arrives at the rate equation

ṅ=−Γ n, (6.41)

where the dissipative resonance-tunneling rate Γ is given by [43]

Γ = �2

2�2

Γm′/2

(W/�)2 + (Γm′/2)2 . (6.42)

This is a Lorentzian function with the maximum at the resonance,W = 0. (6.41) and
(6.42) were used in Refs. [30, 31] to study dipolar-controlled fronts of tunneling at
T = 0, or “cold deflagration”. The full system of (6.38) could also be used to this
purpose but nothing had been published up to date.

At nonzero temperatures, tunneling transitions via higher energy level pairs be-
come possible (thermally-assisted tunneling) and one has to take into account non-
resonant thermal transitions over the top of the barrier. This makes the problem
more complicated, and one needs to use the density matrix equation (DME) taking
into account spin-phonon interactions explicitly. One of the first works using DME
for Mn12Ac was Ref. [43] in which spin tunneling was considered with the help of
the high-order perturbation theory [42] for a small transverse field B⊥. The spin-
phonon processes taken into account were due to dynamic tilting of the anisotropy
axis by transverse phonons. Ref. [43] could qualitatively explain thermally-assisted
tunneling via the level pairs just below the classical barrier. However, tunneling via
low-lying resonant level pairs or tunneling directly out of the metastable ground
state are inaccessible by this method because large enough splitting requires non-
perturbatively large transverse field that can only be dealt with numerically.

Further work on spin-phonon relaxation in MM lead to elucidation of the uni-
versal relaxation mechanism [44, 45]. This mechanism consists in distortionless
rotation of the crystal field acting on a magnetic molecule, actually the same mech-
anism as used in Ref. [43]. It was, however, understood that this mechanism does
not require any poorly-known spin-lattice coupling constants and everything can be
expressed through much easier accessible crystal-field parameters. This mechanism
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Fig. 6.4 Relaxation rate of
Mn12Ac vs temperature and
longitudinal magnetic field in
a small transverse field.
Resonance multiplets with
k = 2,3 are seen

was overlooked in older theories of spin-lattice relaxation based on energy contri-
butions responsible for the coupling. Rotations, to the contrary, cost no energy and
the effect has a purely inertial origin.

The universal relaxation mechanism allows a general numerical implementation
of the DME fully based on the crystal field parameters, recently accomplished in
Ref. [46] that summarizes the current state of the problem. Another important fea-
ture of Ref. [46] is using the so-called semi-secular approach capable of dealing
with resonant pairs of levels and thus describe spin tunneling. Conventional imple-
mentations of the DME (see, e.g., Ref. [47, 48]) use the secular approximation that
crashes on tunneling resonances. In Ref. [46] the relaxation rate Γ is extracted from
the time-dependent numerical solution of the DME (expressed in terms of eigenval-
ues and eigenfunctions of the density matrix) as the inverse of the integral relaxation
time [49, 50]. Unlike using the lowest eigenvalue of the density matrix, this method
also works at elevated temperatures.

The temperature and field dependence of Γ in Mn12Ac at a small transverse
field (B⊥ = 0.04T that typically arises due to a 1º misalignment of the easy axis
and the applied longitudinal field) is shown in Fig. 6.4. One can see very narrow
and high maxima of Γ (note that logΓ is plotted!) due to spin tunneling. Maxima
corresponding to the ground-state tunneling, for which the maximum in Γ does not
disappear at T = 0, correspond to the highest value of Bz in the multiplet. There
are k = 2 and k = 3 tunneling multiplets seen in Fig. 6.4. Note that tunneling via
low-lying resonances is relatively weak and it is eclipsed by the thermal activation
contribution at higher temperatures.

At stronger transverse field such as B⊥ = 3.5 T in Fig. 6.5, the barrier is strongly
reduced and high-lying tunneling resonances are broadened away. Here, one can
see the ground-state resonance (Bz = 0.522 T) and the first-excited-state resonance
(Bz = 0.490 T) for k = 1 multiplet. The ground-state resonance does not disappear
at the highest temperature that has an important implication in the dynamics of
fronts of tunneling. Note the much higher tunneling rate at T = 0, in comparison to
the previous figure.

A puzzle in the theory of relaxation of molecular magnets is the prefactor Γ0 in
the Arrhenius relaxation rate, (6.4), being by two orders of magnitude too small.
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Fig. 6.5 Relaxation rate of
Mn12Ac vs temperature and
longitudinal magnetic field in
the transverse field
B⊥ = 3.5 T. One can see the
ground-state resonance at
Bz = 0.522T and the
first-excited-state resonance
at Bz = 0.490T for k = 1
multiplet

This was already recognized in the early work [43]. Using the standard spin-lattice
relaxation model considering one spin in an infinite elastic matrix, it is impossi-
ble to arrive at Γ0 ! 107 s−1 observed in experiments [35, 51] without introducing
artificially strong spin-phonon interactions [52]. For a strongly diluted molecular
magnet, considering a single spin could be justified, but in the regular case it can
not. High density of magnetic molecules should lead to such collective effects as
superradiance [53–55] and phonon bottleneck [56–58]. Possibility of superradiance
in fast avalanches triggered by a fast field sweep has been discussed in Ref. [15].
References [59, 60] report microwave emission from MM that can be interpreted
as superradiance. However, it would be difficult to address these complicated issues
while dealing with the quantum deflagration problem, so that the calculated relax-
ation rate will be simply multiplied by 100 to approximately match the experiment,
as was done in Ref. [33].

6.3.2 Dipolar Field in Molecular Magnets

Very sharp resonance peaks in the relaxation rate Γ seen in Figs. 6.4 and 6.5 require
an accurate calculation of the dipolar field in the crystal that can self-consistently
control tunneling by setting individual molecules on or off resonance. The equations
describing this are the same relaxational equations (6.3) and thermal equation (6.8),
as before, only with Γ depending on the total magnetic field

Btot,z(r)= Bz +B(D)z (r), (6.43)

where Bz is the external bias field and B(D)z is the self-consistently calculated dipo-
lar field. In the case of cold deflagration, the thermal equation can be discarded
and one has to solve only the relaxational equation (6.41). Since the dipolar field
depends on the magnetization everywhere in the crystal, the equations of quantum
deflagration are integro-differential equations. Note that the transverse component
of the dipolar field can be discarded because its effect is small.

For the purpose of calculating the dipolar field, conventional magnetostatics (see,
e.g., Ref. [61]) is unsuitable because it provides an irrelevant magnetic field formally
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averaged over the microscopic scale that ignores the lattice structure. The physically
relevant dipolar field is the field created at positions of magnetic molecules by all
other molecules. It is a microscopic quantity that depends on the lattice structure.
To illustrate this point, magnetostatic field in a uniformly magnetized long sample
is B(D) = 4πM , where M is the magnetization. However, the microscopically cal-
culated dipolar field in a long uniformly magnetized crystal of Mn12Ac is much
smaller, B(D)z = 5.26M .

It is convenient to express the z component of the dipolar field at site i (i.e., at a
particular magnetic molecule) in the form

B(D)z = (SgμB/v0)Dzz, (6.44)

where v0 is the unit-cell volume. For Mn12Ac one has SgμB/v0 = 5.0 mT. The
reduced dipolar field Dzz, created by all other molecular spins polarized along the z
axis is given by

Dzz(ri )=
∑
j

φ(rj − ri )σz(rj ), φ(r)= v0
3(ez · n)2 − 1

r3
, n≡ r

r
, (6.45)

where σz ≡ Sz/S. To calculate the sum over the lattice for the site i, one can in-
troduce a small sphere of radius r0 around i satisfying v1/3

0 � r0 � L, where L
is the (macroscopic) size of the sample. The field from the spins at sites j inside
this sphere can be calculated by direct summation over the lattice, whereas the field
from the spins outside the sphere can be obtained by integration. The sum of the
two contributions does not depend of r0. If the magnetization in the crystal depends
only on the coordinate z along the symmetry axis of the crystal that coincides with
the magnetic easy axis z (that is the case for a flat deflagration front), the integral
over the volume can be expressed via the integral over the crystal surfaces. The cor-
responding contribution can be interpreted as that of molecular currents flowing on
the surface. The details are given in the Appendix to Ref. [29].

In particular, for a uniformly magnetized ellipsoid the total result has the form

Dzz ≡ σz
∑
j

φ(rj )= D̄zzσz, (6.46)

independently of i, where

D̄zz = D̄(sph)
zz + 4πν

(
1/3− n(z)) (6.47)

and ν is the number of molecules per unit cell (ν = 2 for Mn12Ac having a body-
centered tetragonal lattice). Here D̄(sph)

zz comes from the summation over a small
sphere and the remaining terms come from the integration. For the demagnetizing
factor one has n(z) = 0, 1/3, and 1 for a cylinder, sphere, and disc, respectively. One
obtains D̄(sph)

zz = 0 for a simple cubic lattice, D̄(sph)
zz < 0 for a tetragonal lattice with

a = b < c, and D̄(sph)
zz > 0 for that with a = b > c. The latter is the case for Mn12Ac
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having D̄(sph)
zz = 2.155. For a long cylinder this results in D̄(cyl)

zz = 10.53 or, in real
units [14, 29],

B(D)z = 52.6 mT. (6.48)

The dipolar energy per magnetic molecule can be written in the form E0 =
−(1/2)D̄zzED , where

ED ≡ (SgμB)2/v0 (6.49)

is the characteristic dipolar energy, ED/kB = 0.0671 K for Mn12Ac. The role of
the DDI in spin tunneling is defined by the ratio of the typical dipolar bias W(D) =
2SgμBB

(D)
z = 2EDD̄

(cyl)
zz to the width of the overdamped tunneling resonance Γm′

in (6.42). It is thus convenient to introduce the parameter

ẼD ≡ 2ED/(�Γm′) (6.50)

that is always large. For instance, using the experimental Arrhenius prefactor Γ0 !
107 s−1 for Γm′ , one obtains ẼD ! 103.

For a cylinder of length L and radius R with the symmetry axis z along the easy
axis, magnetized with σz = σz(z), the reduced dipolar field along the symmetry axis
has the form [29]

Dzz(z)=
∫ L/2

−L/2
dz′ 2πνR2σz(z

′)
[(z′ − z)2 +R2]3/2 − kDσz(z), (6.51)

where σz = 1 − 2n is polarization of pseudospins representing spins of magnetic
molecules (σz =±1 in the ground and metastable states, respectively) and

kD ≡ 8πν/3− D̄(sph)
zz = 4πν − D̄(cyl)

zz > 0, (6.52)

kD = 14.6 for Mn12Ac. In (6.51), the integral term is the contribution of the crystal
surfaces, while the lattice-dependent local term is the contribution obtained by direct
summation over lattice site within the small sphere r0 minus the integral over this
sphere that must be subtracted from the integral over the whole crystal’s volume.
For other shapes such as elongated rectangular, one obtains qualitatively similar
expressions [31].

A striking feature of (6.51) is that the integral and local terms have different
signs. The integral term changes at the scale of R while the local term can change
faster, that creates a non-monotonic dependence of Dzz(z). In the case of a regular
magnetic deflagration, the spatial magnetization profile in the slow-burning limit
is of the type σz(z) = − tanh[(z − z0)/ ld ], where ld is the width of the deflagra-
tion front that satisfies ld � R, c.f. (6.23). The resulting dipolar field is shown in
Fig. 6.6, where the line is the result of (6.51) and points represent the dipolar field
along the symmetry axis of a long cylindrical crystal calculated by direct summa-
tion of microscopic dipolar fields over the Mn12Ac lattice. One can see that (6.51)
is pretty accurate, small discrepancies resulting from ld being not large enough in
comparison to the lattice spacing a. The central region with the large positive slope
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Fig. 6.6 Reduced dipolar
field in a deflagration front in
the slow-burning limit,
created by the magnetization
profile σz(z)=
− tanh[(z− z0)/ ld ].
Analytical result: (6.51);
Points: Direct summation of
dipolar fields over Mn12Ac
lattice

is dominated by the local term of (6.51) that changes in the direction opposite to
that of the magnetization. For R≫ ld , Dzz reaches the values ±14.6 due to the
local term before it begins to slowly change in the opposite direction. In real units
the dipolar field at the local maximum and minimum is ±B(kD)z , where

B(kD)z = 72.9 mT, (6.53)

exceeding the dipolar field of the uniformly magnetized long cylinder (6.48). Also
one can see from Fig. 6.6 that the dipolar field becomes opposite to the magnetiza-
tion at the ends of the cylinder, that should lead to an instability of the uniformly-
magnetized state in zero external field.

The 1d theory of fronts of tunneling [30–33] is based on the simplifying assump-
tion that the deflagration front is flat, σz = σz(z), and the dipolar field is given by
(6.51) everywhere. Since, in fact, the dipolar field also depends on the distance from
the crystal’s symmetry axis, it is likely that such a more complicated structure of Bz
will self-consistently affect the front structure, making it non-flat.

There is also a question of stability of a smooth front at a small scale. Whereas
flat and smooth fronts of regular burning are stable, there is an instability mechanism
for a flat front in the presence of tunneling controlled by dipolar fields that will be
explained below. This is why it is important to develop a full 3d theory of fronts of
tunneling.

If the magnetization σz of a MM crystal depends on all the coordinates x, y, z
but this dependence still has a macroscopic scale, one can again use the method of
calculating the dipolar field that combines summation over a small sphere (where σz
does not change) and integration over the remaining volume of the crystal. In this
case the integral over the volume does not reduce to an integral over the surface and
it has to be done numerically, i.e.

Dzz(r)= ν

v0

∫
|r′−r|>r0

dr′φ
(
r′ − r

)
σz
(
r′
)+ σz(r)D̄(sph)

zz , (6.54)
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where φ is defined in (6.45). A problem with this integral is that the contribution
of the excluded region is comparable with the total result because of the singularity
of the DDI. The solution to this problem is, for any point r, to add and subtract the
dipolar field in a uniformly magnetized crystal with σz = σz(r). The total reduced
dipolar field can be thus represented as

Dzz(r)= ν

v0

∫
dr′φ

(
r′ − r

)(
σz
(
r′
)− σz(r))+ σz(r)(νD̄zz(r)− kD), (6.55)

Because of the terms subtraction at r′ → r, the contribution of the excluded small
sphere in the integral is negligible and the integral can be extended to the whole
volume of the crystal.

In the solution of the deflagration problem, it is convenient to discretize the vol-
ume of the crystal and use the same grid to sample the magnetization variables and
to calculate the dipolar field. Then the values of the integral for all points of a rect-
angular grid can be computed via a summation method based on the fast Fourier
transform (FFT) that takes ∼ N log(N) operations, where N is the number of grid
points. Straightforward calculation of the integral costs ∼N2 operations and it has
to be avoided.

The remainder of (6.55) corresponds to a uniformly magnetized crystal and its
structure is similar to (6.51). Again, the term with kD is the local contribution, while
D̄zz(r) is the contribution of surface molecular currents, the result of conventional
magnetostatics. For a crystal of a rectangular shape with dimensions 2Lx × 2Ly ×
2Lz and −Lx ≤ x ≤ Lx etc. the result can be obtained as a particular case of (88)
of Ref. [62] and it has the form

D̄zz(r) =
∑

ηx,ηy ,ηz=±1

arctan
(Lx + ηxx)−1(Ly + ηyy)(Lz + ηzz)√

(Lx + ηxx)2 + (Ly + ηyy)2 + (Lz + ηzz)2
+ (x⇒ y), (6.56)

in total 16 different arctan terms. A transformation of this formula yields the needed
result for box-shape samples with dimensions Lx ×Ly ×Lz and 0≤ x ≤ Lx etc.

6.3.3 Fronts of Tunneling at T = 0

The theory of dipolar-controlled fronts of tunneling at T = 0 (“cold deflagration”)
[30, 31] uses the relaxational equation (6.41) with the resonance tunneling rate of
(6.42), in which the energy bias W is given by (6.39) with Btot,z of (6.43). Within
the 1d approximation [30, 31], the dipolar field is given by (6.44) and (6.51) for a
cylinder. The problem is thus an integro-differential equation.

It is convenient to use the reduced energy bias W̃ ≡W/(2ED) that has the form

W̃ = W̃ext +Dzz, W̃ext = (S +m
′)gμB

2ED
(Bz −Bk), (6.57)
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wherem′ = S−k is close to S for not too strong bias. Propagating dipolar-controlled
fronts of tunneling have been found numerically [30, 31] and analytically [31]
within the dipolar window near the resonance

0≤ W̃ext ≤ D̄(cyl)
zz , (6.58)

where D̄(cyl)
zz = 10.53. In real units this yields the dipolar window

Bk ≤ Bz ≤ Bk +B(D)z , (6.59)

where B(D)z is given by (6.48) for Mn12Ac.
The solution for the front of tunneling depends on several parameters such as

the transverse size of the crystal R and the resonant value of the relaxation rate of
(6.42), Γres =�2/(�2Γm′). Rewriting the equations in a reduced form [31], one im-
mediately finds that the front speed is of order ΓresR. The only non-trivial parameter
is ẼD , (6.50). An analytical solution of the problem is possible because of the large
value of ẼD . The front speed is given by [31]

v = v∗ΓresR, v∗ ! Bz −Bk
Bk +B(D)z −Bz

, (6.60)

within the dipolar window, independently of ẼD . Above Bk +B(D)z the front speed
is zero. The reason for this is that for the external field above Bk + B(D)z , the total
field well before the front (where all spins are directed in the metastable negative
direction and produce the dipolar field −B(D)z ) is above its resonance value Bk (and
spin tunneling would even increase the total field). Thus in this case resonance tun-
neling transitions cannot occur. To the contrast, just below Bk +B(D)z the field well
before the front is a little bit below the resonance and increases closer to the front
where the magnetization is switching. In this case, there is a wide region where the
system is close to the resonance, and the front speed becomes very high. Thus as
Bz crosses the value Bk +B(D)z from below, the front speed diverges and then drops
abruptly to the value corresponding to the regular deflagration.

Let us compare the speed of fronts of tunneling v ! ΓresR with the speed of
regular deflagration, (6.18). With a sufficiently strong transverse field applied, one
can have �/� ∼ Γm′ at the applicability limit of the overdamped approximation,
and then Γres ∼ Γm′ � Γf because thermal activation goes over high levels of the
magnetic molecule where the distances between the levels and thus the energies of
phonons involved are much smaller than for the low-lying levels, and also because
Γf is exponentially small since Tf � U . Additionally, estimation of ld with κf =
10−5m2/s and the experimental value Γ0 = 107s−1 yield ld ∼ 3 × 10−4 mm for
Bz near the first tunneling resonance and even smaller for larger bias. As in the
experiment the width of the crystal was much larger than ld (0.3 mm in Ref. [8],
0.2 mm in Ref. [11], and 1 mm in Ref. [10]), one can see that ΓresR � Γf ld is
quite possible in a strong transverse field, and then the front of spin tunneling is
much faster than the front of spin burning. A very conservative estimation with
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Fig. 6.7 Spatial profiles of
the metastable population n
and the reduced bias W̃ in the
front for W̃ext = 2 and
ẼD = 20. Everywhere in the
front the system is near the
resonance, W̃ ≈ 0. At this
value of W̃ext the solution
begins to lose stability and
periodic structures behind the
front begin to emerge

Γres ⇒ Γ0 = 107s−1 and v∗ ⇒ 1 for the crystal 0.2 mm thick yields v ∼ 1000 m/s.
As said above, in a strong transverse field one can have Γres � Γ0, so that the speed
of a spin-tunneling front can easily surpass the speed of sound that is about 2000 m/s
in molecular magnets (see analysis in Ref. [36]).

A hallmark of the cold deflagration is residual metastable population behind the
front [31] that can be rewritten as

nf = (Bz −Bk)/B(D)z (6.61)

(here n= ni = 1 before the front). One can see that the change of n across the front
�n= 1−nf goes to zero at the right border of the dipolar window, Bz = Bk+B(D)z .
This reconciles the situation with the general requirement that the rate of change of
the magnetization of the crystal Ṁ , limited by the tunneling parameter �, remains
finite. Indeed,

Ṁ ∝ (1− nf )v = ΓresR(Bz −Bk)/B(D)z (6.62)

reaches only a finite value Ṁ ∝ ΓresR at the right border of the dipolar window
before it drops to zero.

To obtain a numerical solution for the cold deflagration, the integro-differential
equation was discretized to make the integral in (6.51) a sum and the whole problem
a set of coupled non-linear first-order differential equations. The program was writ-
ten in Wolfram Mathematica. A typical result for spatial profiles of the metastable
population n and total energy bias W̃ are shown in Fig. 6.7. In the cold deflagration
front, magnetization and dipolar field are self-consistently adjusting in such a way
that inside the front core of the width R the spins are on resonance and can tunnel.
To the contrary, before and after the front magnetic molecules are off resonance and
tunneling is blocked. One of the reasons why fronts of tunneling can be so fast is
that their width R entering the expression for the front speed, (6.60), is much larger
than the width of the deflagration front ld , c.f. (6.18). The solution shown in Fig. 6.8
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Fig. 6.8 Reduced front speed
v∗ of (6.60) vs the reduced
bias W̃ext of (6.57) for
different number of grid
points. For W̃ext � 1 (the
laminar regime) the
numerical results are in a
good accordance with (6.60)
(straight line)

is an example of the laminar solution for the cold deflagration front that is realized
for a not too strong bias, W̃ext � 1–2 or Bz −Bk � 5–10 mT.

For a stronger bias, the laminar solution becomes unstable. The front of tunneling
is moving with a non-constant speed, leaving spatially-nonuniform distribution of
the unburned metastable population behind. The spatial dependence of the dipolar
field becomes discontinuous and the resonance condition in the front is not fulfilled
(see Fig. 6 of Ref. [31]). As a result, the front speed begins to decrease as the insta-
bility develops with the increase of the bias, Fig. 6.8. The instability of the solution
is manifesting itself in the dependence on the discretization, absent in the laminar
regime.

The only experimentally feasible method to ignite cold deflagration is the sweep
of the bias field Bz. When Bz is swept in the positive direction in a negatively mag-
netized MM crystal, the resonance condition is first achieved at the ends of the crys-
tal where the (negative) dipolar field is weaker (see, e.g., the right side of Fig. 6.6).
Spin tunneling at the ends of the crystal caused by field sweep leads to change of the
dipolar field in this region that brings the system closer to the resonance in a region
of the depth of order R, the transverse size of the crystal. At some moment, a spatial
structure close to a stationary front of tunneling is formed and it begins to propagate
into the depth of the crystal, the field sweep playing no role anymore. This mech-
anism is illustrated in Fig. 9 of Ref. [31]. Numerical calculations show that front
of tunneling is ignited at the “magic” value of the reduced bias W̃ext ! 5, weakly
dependent on ẼD . For this value of the bias, the front of tunneling is non-laminar.

Fronts propagating at other values of the bias, including laminar fronts, can be
ignited by a modified procedure proposed in Ref. [31]. First, a global bias is be-
ing changed, as before, by a uniform field sweep until the desired value of W̃ext

is reached. After that, front of tunneling can be ignited by a local increase of the
bias near the crystal’s end using a small coil producing a local magnetic field. This
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Fig. 6.9 Numerically
calculated speed of the
deflagration front in a long
Mn12Ac crystal for a weak
transverse field

method works well in the numerical solution of the cold deflagration problem. How-
ever, such kind of experiment has not been performed yet.

Cold deflagration can be most likely observed on thinner crystals having a good
thermal contact to the environment, so that the heat released inside the crystal gets
quickly removed and the temperature does not increase. As said above, the effect
only exists within dipolar windows near tunneling resonances.

It was shown that disorder in resonance fields of individual magnetic molecules
is compensated for by adjustment of the dipolar field in the front, so that fronts of
tunneling survive [30].

6.3.4 1d Theory of Quantum Deflagration

Here we consider a more general situation in which the temperature of the crystal is
increasing as the result of the decay of the metastable state, the case when the crys-
tal is thermally insulated. The decay process is controlled by both the temperature
(for any bias) and by the dipolar field (near tunneling resonances). The theory of the
general quantum-thermal deflagration includes the relaxation equation (6.3) and the
heat conduction (energy diffusion) equation (6.8), as well as the expression for the
dipolar field (6.51) in the 1d approximation. The relaxation rate Γ (T ,Bz) was cal-
culated for the generic Mn12Ac model (6.1) in Ref. [32] and for the realistic model
of Mn12Ac containing the −AS4

z term that splits tunneling resonances in Ref. [33].
Whereas an analytical solution of this problem has not been found, its qualitative

features can be well understood and the numerical solution based on discretization
is available. In the case of a zero or weak transverse field, that was the case in all
experiments up to date, spin tunneling is thermally assisted and it only modifies the
main effect of regular deflagration, resulting in tunneling peaks in the field depen-
dence of the front speed v(Bz). As in the case of regular deflagration, ignition can
be achieved by raising the temperature at an end of the crystal.

Figure 6.9 shows the front speed calculated for the bias and crystal size corre-
sponding to the experiments in Refs. [11–13] and using the relaxation rate Γ shown
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Fig. 6.10 Spatial profiles of the deflagration front in a small transverse field, B⊥ = 0.05 T at the
peak of the front speed at Bz = 2.852 T. There is a resonance spin tunneling at the face of the front
and burning in its central and rear parts. In the tunneling region, the total field Bz,totsticks to its
resonance value

in Fig. 3 of Ref. [33]. The tunneling peaks are quite pronounced, at variance with
the results of these experiments. The latter can be due to a large ligand disorder in
Mn12Ac that leads to a substantial scatter of the anisotropy constant D and thus of
the positions of the resonances of individual molecules [63–65], especially for the
bias as strong as here. Just above 3 T and just below 3.5 T there are regions where
the speed is too high to be measured in this calculation, an effect of ground-state
tunneling.

Spatial profiles of the magnetization, energy, and the total bias field in the defla-
gration front give an idea of the role played by spin tunneling. Figure 6.10 shows
the spatial profiles at the asymmetric peak of v at Bz = 2.852 T in Fig. 6.9. Here
the front speed is high because of tunneling at the face of the front, where in the
lower panel the total bias field is flat at the level of the tunneling resonance at
Bz,tot = 2.889 T. Magnetization distribution adjusts so that the dipolar field ensures
resonance for a sizable group of spins that can tunnel. Tunneling of these spins re-
sults in energy release, the temperature and relaxation rate increase, and tunneling
gives way to burning in the central and rear areas of the front.

Formation of the asymmetric maxima of the front speed can be explained as fol-
lows. When Bz increases, the peak of Bz,tot that arises due to the local dipolar field
(central part of Fig. 6.6) reaches the resonant value. In thick crystals (R� ld ) this
happens if Bz+BkDz = Bk , where BkDz is given by (6.53). This defines the left border
of the dipolar window Bz = Bk −BkDz (that differs from Bz = Bk for the cold defla-
gration). At the left border of the dipolar window, a strong increase of v(Bz) begins.
The maximum of Bz,tot sticks to the resonance value and becomes flat with progres-
sively increasing width. Greater width of the resonance region results in a stronger
tunneling and higher front speed. With further increase of Bz, the right edge of the
tunneling region moves too far away from the front core into the region where the
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Fig. 6.11 Front speed for a
strong transverse field
(B⊥ = 3.5 T) in the vicinity
of the ground-state tunneling
resonance at 0.522 T. The
small peak on the left is due
to the first-excited-state
tunneling resonance. Left and
right of the dipolar window
the front speed is about
50 m/s

temperature is too low. As the tunneling resonance in question is thermally assisted,
it disappears at low temperatures, thus the flat region of Bz,tot cannot spread too
far to the right. As a result, the flat configuration of Bz,tot becomes unstable and
suddenly Bz,tot changes to the regular shape of the type shown in Fig. 6.6.

If a strong transverse field is applied, the barrier becomes lower and it can com-
pletely disappear at a ground-state tunneling resonance. In this case Γ (T ,Bk) is
practically temperature independent and this maximum of the relaxation rate does
not disappear at the highest temperatures achieved after burning, Tf . An example is
the ground-state tunneling maximum at Bz = 0.522T in Fig. 6.5. Although at high
temperatures this maximum is hardly visible in the log scale, it is clearly visible in
the normal scale in Fig. 5 of Ref. [33]. In such strong transverse fields, the speed of
the front becomes very high and spin tunneling plays the dominant role in the front
propagation. Figure 6.11 shows a high front speed within a broad dipolar window

Bk −B(kD)z ≤ Bz ≤ Bk +B(D)z (6.63)

having the width of 125.5 mT. The front speed diverges towards the right edge of
the dipolar window in accordance with (6.60) and becomes supersonic. A qualita-
tively similar behavior was observed earlier in calculations for the generic model
of Mn12Ac, see Fig. 4 of Ref. [32]. In contrast to thermally-assisted tunneling res-
onances, progressive flattening of Bz,tot at its resonant value is not limited by the
temperature before the front since ground-state tunneling occurs already at zero
temperature. Thus the front speed diverges at the right edge of the dipolar window,
(6.63), where the width of the tunneling region becomes very large.

Comparing the present results with the analytical and numerical results for the
cold deflagration, one can see that thermal burning in the central and rear parts of
the front are stabilizing the process, so that the laminar solution, (6.60), holds up to
the right edge of the dipolar window. There is no breakdown of the laminar regime
seen in Fig. 6.8 at W̃ext ! 1.
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Another feature of quantum deflagration is complete burning due to the tem-
perature rise, in contrast to the incomplete burning in the cold deflagration, (6.61).
Although the speed of the cold deflagration front diverges at Bz→ Bk + B(D)z (in
the laminar regime), the amount of burned metastable population goes to zero, so
that the rate of burning remains finite, (6.62). In quantum deflagration burning is
complete (up to the equilibrium residual population n(eq) in (6.5)) while the front
speed is diverging, so that the rate of burning is diverging, too.

Accordingly, the width of the front becomes very large at Bz → Bk + B(D)z ,
in contrast to the width of the cold-deflagration front that remains constant. The
structure of the front of the quantum-thermal deflagration near the right border of
the dipolar window has a two-tier structure. First goes a fast front of tunneling that
reverts a small fraction of the magnetization. The latter leads to heat release that
ignites a front of thermal burning that burns all. In the stationary case the speed of
the second part of the front is the same but it takes time to develop, thus the width
of the whole two-tier front is large. Note that the speed of the quantum deflagration
front is not limited by the speed of sound, contrary to the case of detonation [17].

6.3.5 3d Theory of Quantum Deflagration

As mentioned above, the 1d theory of fronts of tunneling assumes a flat front that is
not well justified because the dipolar field is given by (6.51) only at the symmetry
axis. Different values of Bz,tot away from the symmetry axis should self-consistently
result in the distribution of the magnetization that depends on all coordinates x, y, z,
i.e., in a non-flat front.

On the top of this, there is an instability mechanism for a flat front at a smaller
scale due to DDI. In Fig. 6.10 we have seen that, approaching a front of tunnel-
ing from before, Bz,tot increases and reaches the resonance value, then it becomes
flat. Now, if a small fraction of the surface of a front (going from left to right and
changing the magnetization in the positive direction) moves ahead of its neighbors,
it produces a negative dipolar field on the lagging neighboring parts of the front,
as any dipole, see Fig. 6.12. This brings the neighbors further from the resonance,
so they tunnel later and their lagging increases. Conversely, lagging portions of the
front produce a positive dipolar field on the leading part of the front that helps it
to propagate faster. (The same mechanism leads to instability of flat domain walls
considered in Ref. [29].)

The DDI instability mechanism can potentially destroy any initially flat front of
tunneling, making it microscopically rough. The question is whether micro-random
dipolar fields produced by a micro-random magnetization in the front are still com-
patible with resonance tunneling. It is clear that roughness of the front breaks the
concept of the adjustment of the system to the resonance, so that the speed of the
front should decrease. On the other hand, spins are crossing the resonance, although
at random times, so that still there should be a speed-up of the deflagration front
near tunneling resonances.
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Fig. 6.12 Dipolar instability
of a flat front of spin
tunneling. A leading part of
the front (in the center)
produces the dipolar fields on
its neighbors that slow them
down

Fig. 6.13 Front speed within
the 3d model for a strong
transverse field (B⊥ = 3.5 T)
in the vicinity of the
ground-state tunneling
resonance at Bz = 0.522 T

In 3d model of quantum deflagration the dipolar field was calculated using (6.55)
for crystals of box shape with dimensionsLx = Ly � Lz using the relaxation rate Γ
for B⊥ = 3.5T shown in Fig. 6.5. The crystal was discretized with about 1 million
total grid points in all 3 dimensions. The resulting system of first-order nonlinear
equations was implemented in Wolfram Mathematica in a vectorized form using a
compiled Butcher’s 5th-order Runge-Kutta solver with a fixed step.

As expected, roughness of the front due to the dipolar instability has been de-
tected within the dipolar window, (6.63), where the computed front speed is lower
than within 1d model, Fig. 6.11. Nevertheless, the front speedup due to spin tun-
neling is still huge, reaching sonic speeds in Mn12Ac on the right of the dipolar
window, see Fig. 6.13.

Outside the dipolar window, a regular deflagration with a flat front and front
speed v ! 50 m/s has been found for this value of the transverse field. With en-
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Fig. 6.14 Profile of the
metastable population n in
the 3d model of quantum
deflagration for Mn12Ac at
B⊥ = 3.5 T and Bz = 0.5 T
(upper) and 0.56 T (lower)

tering the dipolar window from the left, the front becomes progressively non-flat
with its central part leading. Front roughness emerges and increases with the bias.
Figure 6.14 shows the profile of the metastable population n for the crystal with
Lx = Ly = 0.2 mm, as in experiments of Refs. [11–13], for Bz = 0.5 T and 0.56 T.
The metastable population n is represented as a 3d plot as a function of x and z
with y = 0 at some moment of time. The unburned cold portion of the crystal on
the right is shown in blue, while the burned hot part on the left is shown in red. In
the upper part of the figure showing the result for Bz = 0.5 T the front is essentially
non-flat and there is some roughness, especially strong near the symmetry axis. The
speed of this front v = 161 m/s is already much greater than the speed of the regular
deflagration, 50 m/s.

Numerical results for a larger bias Bz = 0.56 T and a longer crystal are shown
in the lower part of Fig. 6.14. The front has a nearly sonic speed of v = 1674 m/s
and is very rough, while becoming flat again. The animation of this process looks
like precipitation. Ignition of this front occurs at some distance from the left end
of the crystal where the resonance condition is fulfilled. From this point, a very
fast tunneling front is propagating to the right while a regular slow burning front is
propagating to the left.

6.4 Discussion

Regular temperature-driven magnetic deflagration in long crystals of Mn12 has been
experimentally observed and is relatively well understood. The lack of a quantitative
accordance between the theory and experiment can be attributed to still unknown
temperature dependence of the thermal diffusivity κ , as well as to the absence of a
microscopic theory of relaxation in MM taking into account collective effects such
as phonon/photon superradiance and phonon bottleneck.
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Effects of spin tunneling on ignition of deflagration and front speed near reso-
nance values of the bias field have been experimentally detected in zero transverse
field. However, these effect are due to thermally-assistant tunneling just below the
top of the barrier and they are not strong.

In contrast, spin tunneling directly out of the metastable ground state in strong
transverse fields can lead to huge effects, such as supersonic quantum deflagration
within the dipolar window around tunneling resonances. Unfortunately, creating an
initial state for this process is practically difficult. In a strong transverse field also
non-resonant spin tunneling is rather fast. While the system is being biased to reach
the initial state close to the resonance, it is already relaxing and a large portion of the
metastable population gets lost before a front of tunneling could start. In addition,
non-resonant tunneling in a biased MM leads to heat release that can result in self-
ignition if the crystal is thermally insulated.

It would be desirable to employ a fast field sweep to bring the MM into starting
position for quantum deflagration in a strong transverse field without deteriorating
its state. To observe non-thermal fronts of tunneling, thinner crystals with a good
thermal contact to the environment have to be used.
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Chapter 7
Dipolar Magnetic Order in Crystals
of Molecular Nanomagnets

Fernando Luis

Abstract This chapter reviews experimental studies of long-range dipolar magnetic
order in crystals of single-molecule magnets. Quantum annealing by a transverse
magnetic field enables one to explore the ground state of highly anisotropic SMMs,
such as Mn12 and Fe8, both of which order ferromagnetically below Tc = 0.9 K
and 0.6 K, respectively. In Mn12 acetate, molecular tilts caused by the disorder in
the orientations of some solvent molecules affect dramatically the character of the
field-induced transition, which agrees with the predictions of the random-field Ising
model. The existence of a quantum critical point has been shown in crystals of Fe8
clusters, which are among the best realizations of the archetypical quantum Ising
model in a transverse magnetic field.

7.1 Introduction

Dipolar interactions are ubiquitous in Nature. A dipolar magnetic moment μi , e.g.
a magnetic ion, generates a magnetostatic field that affects other dipoles μj located
in its surroundings. The coupling energy between any pair of dipoles separated by a
position vector rij can be expressed as follows

Hdip,ij =−
[

3(μirij )(μj rij )

rij5
− μiμj

rij3

]
(7.1)

Dipolar interactions are known to affect the physical behavior of magnetic materials
in a number of ways. They often dominate the line broadening of resonance spec-
tra measured on paramagnets [1]. In magnetically ordered materials, an important
manifestation is the formation of magnetic domains pointing along different orien-
tations [2]. However, dipolar interactions often play but a minor role in determining
the intrinsic magnetic structure. In order to better understand why this is the case,

F. Luis (B)
Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia
Condensada, CSIC–Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
e-mail: fluis@unizar.es

J. Bartolomé et al. (eds.), Molecular Magnets, NanoScience and Technology,
DOI 10.1007/978-3-642-40609-6_7, © Springer-Verlag Berlin Heidelberg 2014

161

mailto:fluis@unizar.es
http://dx.doi.org/10.1007/978-3-642-40609-6_7


162 F. Luis

Fig. 7.1 Luttinger and Tisza
[4] solutions for the
ground-state configurations of
interacting magnetic dipoles
located on each of the three
Bravais cubic lattices

let us consider a specific and simple example: pure metallic iron. Iron is a ferromag-
net below a Curie temperature Tc = 1046 K. The typical dipolar energy between
nearest neighbor Fe atoms amounts to approximately 0.5 K. Clearly, dipolar inter-
actions are much weaker than exchange interactions, of quantum mechanical origin,
and the later drive the onset of magnetic order in iron as well and in the vast ma-
jority of magnetic materials. The same argument explains why it is so difficult to
find systems in Nature showing pure dipolar magnetic order. Even relatively weak
exchange couplings, difficult to avoid, might dominate over dipolar interactions.

Brief Survey of Theoretical Studies Not surprisingly, the first steps in the study
of dipolar magnetism were almost exclusively of a theoretical nature. Compared
with the situation met when exchange interactions are dominant, the problem state-
ment is appealingly simple. Interactions are known, and given by (7.1), and all that
needs to be done is to minimize the free energy of a given lattice of dipoles over
all possible configurations. However, its numerical solution is complicated by the
long-range character of dipolar interactions. Early attempts consisted of numerical
calculations (carried out without the aid of a computer!) of the energies of some con-
figurations of classical dipoles located in simple lattices [3]. It was not until 1946
that J.M. Luttinger and L. Tisza found a rigorous method that enables finding the
ground state configurations for simple, body-centered, and face-centered cubic lat-
tices [4]. This method was later extended to cover lattices with up to two equivalent
dipoles per unit cell [5] and to even more complex lattices in the case of strongly
anisotropic (Ising-like) dipoles [6]. The ordering of dipolar Ising crystals was reana-
lyzed in [7], where a simple expression for the interaction energy between chains of
spins pointing along their anisotropy axes was derived. Finally, the ordering temper-
atures of some materials have been determined by Monte Carlo calculations [7–9].

It follows from these results that the ground state configurations are dictated by
lattice symmetry. In cubic systems (see Fig. 7.1), for instance, lattices with low coor-
dination numbers (diamond and simple cubic lattices) order antiferromagnetically,
whereas face centered and body centered lattices are ferromagnetic. The same ar-
gument applies, within a certain range of parameters (determined by the ratio c/a),
for tetragonal and hexagonal lattices [7, 10]. The existence of dipolar ferromag-
netism was, however, questioned by Luttinger and Tisza themselves, and thought
to depend upon the shape of the specimen [4]. The argument is that the onset of a
spontaneous magnetization gives rise, in any finite sample, to an additional increase
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Fig. 7.2 Molecular structure of Mn12 acetate (left) and molecular packing in the tetragonal unit
cell (center). This molecular crystal provides a close approximation to a tetragonal lattice of
strongly anisotropic (Ising-like) spins, coupled via dipole-dipole interactions (right)

in magnetostatic energy that depends on its demagnetizing tensor. The existence of
a well-defined ground state for macroscopic lattices at zero magnetic field, inde-
pendent of the specimen’s shape, was demonstrated more than 20 years latter by
R.B. Griffiths [11]. This result suggests that dipolar ferromagnets, like any other
ferromagnetic material, tend to subdivide into magnetic domains below Tc [12].
Some other important theoretical results worth mentioning here are the existence
of important zero-point fluctuations [13] and the prediction that three-dimensional
dipolar lattices provide close approximations of mean-field models. In particular,
the marginal dimensionality for mean-field behavior is d∗ = 3 in an Ising dipolar
ferromagnet [14].

Experimental Realizations: Single Molecule Magnets For the reasons men-
tioned above, experimental realizations of dipolar lattices are scarce, even today.
Best-known examples are provided by crystals of lanthanide-based compounds
[15–22]. Exchange interactions between lanthanide ions are weak, on account of
the localization of 4f electrons. In lattices with sufficiently separated ions, dipolar
interactions might therefore become of comparable and even dominating strength.
In these cases, ordering temperatures are often very low, typically below 100 mK.
An outstanding exception is represented by LiHoF4, which orders ferromagneti-
cally at Tc = 1.54 K [15, 18]. However, in the later case the underlying physics is
somewhat complicated by the existence of non-negligible exchange interactions and
rather strong hyperfine couplings [23, 24].

Crystals of molecular nanomagnets [25–29] are suitable candidate materials to
investigate magnetic order of pure dipolar lattices (see Fig. 7.2). Each of these
single-molecule magnets (SMMs) is an electrically neutral entity, in which the mag-
netic core is surrounded, thus also isolated from its neighbors, by a shell of organic
ligands. Many of these molecules have large spins (e.g. S = 10 for Mn12 and Fe8
clusters), and therefore large magnetic moments μ= gμBS, where g is the molec-
ular gyromagnetic factor. Dipolar interactions are then relatively strong and often
dominate over the very weak, if present at all, exchange interactions. Ordering tem-
peratures are expected to be of the order of 0.5 K or even higher [7], which con-
siderably simplifies the experimental study of the magnetic phase transitions by a
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variety of techniques, including heat capacity, magnetic susceptibility, and magnetic
neutron diffraction.

From a fundamental point of view, these crystals provide close to ideal realiza-
tions of physical models, such as the quantum Ising model [30], of broad interest
for physics. Dipolar interactions also affect the spin dynamics. This effect is par-
ticularly important at very low temperatures, when spin flips occur predominantly
via pure tunneling processes. Under these conditions, dipolar bias fields energeti-
cally detune states between which tunneling takes place, and magnetic relaxation
becomes a collective phenomenon [31]. It follows then that not only the equilibrium
state, but also the rate at which this state is attained strongly depend on the onset of
magnetic order below Tc [32]. Knowing the equilibrium magnetic state is therefore a
necessary pre-requisite to fully understand magnetic relaxation and quantum tunnel-
ing phenomena observed at very low temperatures [33–39]. A particularly attractive
question is the competition between dipolar interactions, typically weak, and quan-
tum fluctuations, which are strong in molecular nanomagnets and can be made even
stronger via the application of an external magnetic field, eventually leading to a
quantum phase transition [40, 41].

The information gained via these studies can also be of relevance to other scien-
tific fields and even to applications. In many aspects (e.g., the existence of magnetic
memory effects at sufficiently low temperatures, associated with a strong magnetic
anisotropy), crystals of SMMs are equivalent to ordered and monodisperse arrays of
magnetic nanoparticles. The study of dipolar interactions in the former provides use-
ful information on the nature of the collective magnetic response of coupled nano-
magnets [42]. The onset of long-range magnetic order reduces the entropy of the
spin lattice, which rapidly vanishes below Tc. This effect ultimately limits the lowest
temperature attainable by adiabatic demagnetization methods. Molecular nanomag-
nets are among the best magnetic coolers at liquid Helium temperatures [43]. The
study of dipolar ordering in these materials, and how it depends on crystal symme-
try and magnetic anisotropy, is then of practical interest for magnetic refrigeration
technologies.

Outline of the Chapter The present chapter is written from an experimental
perspective. Its aim is mainly to show, with the help of examples, the existence of
dipolar order in some of the most famous single-molecule magnets, in particular
Mn12 acetate and Fe8, how these phenomena have been experimentally uncovered,
and what physics can be learned from it. Section 7.2 provides a very basic theo-
retical background on the interactions that play a role in determining the physical
behavior of SMMs lattices, and their respective effects. This section introduces also
mean-field approximations, which are simple and therefore especially convenient to
analyze the results of experiments. Section 7.3 discusses one of the most serious
difficulties faced by such experiments and which is related to the slow relaxation of
molecular nanomagnets. This section also shows how measurements of the magneti-
zation dynamics and hysteresis can be used to estimate the effective intermolecular
interaction fields. Sections 7.4 to 7.6 describe the results of experimental studies
of magnetic order performed on several molecular materials. The experiments per-
formed on Mn12 (Sect. 7.5) and Fe8 (Sect. 7.6) illustrate that highly interesting
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physical phenomena result from the competition between dipolar interactions and
transverse magnetic fields. The last Sect. 7.7 summarizes the main conclusions and
suggests possible evolutions of this research field.

Most of the results described in this chapter refer to work done, and published
[44–49], in the course of the past decade. Yet, it contains a few original aspects
too, in particular the determination of the interaction fields in Mn12 acetate that is
included in Sect. 7.3. Also, the interpretation of some of the experimental results
is re-examined on the basis of subsequent theoretical [10] and experimental [50]
developments.

7.2 Theoretical Background

7.2.1 Spin Hamiltonian

The spin Hamiltonian of a lattice of SMMs coupled via dipolar interactions can be
written as follows

H= 1

2

∑
i

∑
j �=i

Hdip,ij +
∑
i

H0,i +
∑
i

HZ,i (7.2)

where the dipolar interaction Hamiltonian Hdip,ij is given by (7.1), H0,i gives the
magnetic anisotropy of each isolated molecule

H0 =−DS2
z +BS4

z +E
(
S2
x − S2

y

)+ C
2

(
S4+ + S4−

)+ · · · (7.3)

where D, B , E, C, . . . are anisotropy parameters, and

HZ =−gμBHzSz − gμBH⊥(Sx cosφ + Sy sinφ) (7.4)

describes the Zeeman interaction with an external magnetic field H, having com-
ponents Hz along the anisotropy axis z and H⊥ perpendicular to it, where φ is the
azimuthal angle of H in the xy plane.

The zero-field energy level scheme of a generic SMM with Ising-like uniaxial
anisotropy (i.e. with D > 0 and weak higher-order anisotropies) is schematically
shown in Fig. 7.3. “Diagonal” terms (i.e. those commuting with Sz) give rise to a
classical energy barrier Ucl = DS2 − BS4, separating spin-up (i.e. eigenstates of
Sz with eigenvalue m> 0) from spin-down states (with m< 0). Off-diagonal terms
(i.e. non-commuting with Sz), induce quantum tunneling between magnetic states
±m, at zero field, and between m and −m − n, with n integer, at the “crossing
fields”

Hz,n(m)= n(D/gμB)
{
1+B[m2 + (m+ n)2]/D} (7.5)

At these fields, the classical degeneracy between the crossing levels is lifted by a
finite quantum tunnel splitting �m.
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Fig. 7.3 Left: Structure of magnetic energy levels of a generic SMM. The spin reversal can take
place via a thermally activated mechanism or via pure quantum tunneling processes. Right: Ze-
ro-field specific heat of Fe8, whose molecular structure is shown in the inset. Above the blocking
temperature Tb, the experimental data (dots) agree with the equilibrium specific heat, obtained
from Monte Carlo calculations (solid line). Below Tb, it decreases rapidly, showing no hint of the
phase transition to long-range magnetic order

The first term in (7.2) induces, below a critical temperature Tc, a phase transition
to a long-range magnetically ordered state, which is mainly determined by crystal
symmetry and lattice parameters [7]. Magnetic interactions compete with the polar-
ization induced by an external magnetic field H. In addition, and similarly to what
happens with exchange-coupled spin systems [51], both the nature of the ensuing
magnetic order and Tc are affected by the magnetic anisotropy. A particular case,
which is highly relevant to most SMMs, arises when the uniaxial anisotropy is much
stronger than dipolar interactions. More specifically, when the zero-field splitting
Ω0 ! (2S − 1)D that separates the ground and first excited level doublets of (7.3)
is much larger than the characteristic interaction energy, given by kBTc, the dipolar
Hamiltonian (7.1) can be simplified to the following Ising interaction Hamiltonian

Hdip,ij !−
[

3(μi,zzij )(μj,zzij )

rij5
− μi,zμj,z

rij3

]
(7.6)

involving only Sz.
Zero-field magnetic ground states and ordering temperatures Tc of some spe-

cific lattice symmetries, relevant to some particular SMMs systems, have been
determined using Monte Carlo calculations based on the Ising Hamiltonian (7.6)
[7, 45, 47]. Results of some of these calculations are listed in Table 7.1.

7.2.2 Mean-Field Approximations

An even simpler method to treat the effect of interactions is to make use of a mean-
field approximation, which is especially well suited to deal with dipolar magnets
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Table 7.1 Magnetic ordering temperatures of some crystals of SMMs. The fifth and sixth columns
show data calculated, for pure dipolar interactions, using Monte Carlo and mean-field methods,
respectively. The seventh column provides experimental data. Na stands for data that are “not avail-
able”

System Lattice Spin D/kB (K) TMC
c (K) TMF

c T
exp
c (K)

Mn4Me Monoclinic 9/2 0.69 0.1 n.a. 0.21(2) [45]

Mn6 Monoclinic 12 0.013 0.22 n.a. 0.15(1) [44]

Fe8 Triclinic 10 0.294 0.54 [7] n.a. 0.60(5) [49]

Mn12ac Tetragonal 10 0.6 0.5 [7] 0.8 [77] 0.9(1) K [46]

Fe17 Trigonal 35/2 0.02 n.a. n.a. 0.8 [66]

[14]. For simplicity, in the following I consider a lattice of spins ordering ferromag-
netically. Within the mean-field approximation, the spin Hamiltonian (7.2) reduces
itself to an effective Hamiltonian for a single spin (say spin i)

H=H0 − gμBHzSz − gμBH⊥(Sx cosφ + Sy sinφ)− Jeff〈Sz〉T Sz (7.7)

where 〈Sz〉T is the thermal equilibrium average of Sz and

Jeff = −(gμB)
2

2

∑
j �=i

(3z2
ij

rij5
− 1

rij3

)
(7.8)

is an effective interaction constant. The last term in (7.7) can also be written as a
Zeeman interaction −gμBHeff,zSz with a mean-field magnetic bias

Heff,z = Jeff

gμB
〈Sz〉T (7.9)

The mean-field Hamiltonian (7.7) is appealing for experimentalists, because it
allows a relatively easy comparison to different measurable quantities. Above Tc, the
intrinsic (i.e. free from demagnetization effects) equilibrium longitudinal magnetic
susceptibility χi,zz follows Curie-Weiss law

χi,zz = C

T − θ (7.10)

where C is the Curie constant and θ = Tc is the Weiss temperature. Notice that
(7.10) also applies to dipolar lattices ordering antiferromagnetically. In the latter
case, however, θ < 0. Analytical expressions for θ and C can be found for specific
limiting situations. For instance, when the magnetic anisotropy is very strong as
compared to both dipolar interactions and kBT , each molecular spin behaves effec-
tively as a spin-1/2 system. Under these conditions (i.e. for D→∞), (7.7) reduces
to an effective spin-1/2 Hamiltonian

H!−μBSH⊥(gxσx cosφ + gyσy sinφ)− gzμBSHzσz − JeffS
2〈σz〉T σz (7.11)
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where the σ ’s are Pauli spin operators, gz ! g, and gx and gy depend on the ratio
between off diagonal and diagonal anisotropy parameters (i.e. on E/D, C/D, etc).
The Curie constant and Weiss temperature then read as follows

C =N (gμBS)
2

3kB

θ = JeffS
2

kB

(7.12)

where N is the concentration of molecular spins per unit of volume. The suscepti-
bility χpowder of randomly oriented crystals χpowder = (1/3)(χi,xx + χi,yy + χi,zz).
Often, especially close to Tc, χi,zz � χi,xx , χi,yy . Therefore, the susceptibility of
powdered samples also follows Curie-Weiss law (7.10).

Strictly speaking, (7.10) applies to the case of an infinitely long cylindrical sam-
ple, whose long axis coincides with z. For real samples of finite size, demagnetizing
effects play a role [52–54]. The susceptibility that is actually measured in a experi-
ment in then approximately given by the following expression

χzz ! χi,zz

1+ χi,zzÑzz
(7.13)

where it has been considered, for simplicity, that the z axis corresponds to a principal
axis of the demagnetization tensor Ñ . Notice that, at T = θ , χzz no longer diverges
but approaches χmax = 1/Nzz.

An additional attractive feature of mean-field models is that they can readily in-
clude effects of quantum fluctuations, induced by either the magnetic anisotropy or
transverse magnetic fields [46], and of molecular disorder [10, 50], both of which
are cumbersome to deal with using Monte Carlo calculations. These effects give rise
to interesting physical phenomena and are also particularly relevant to experimen-
tal situations met with some molecular crystals, such as those described below in
Sects. 7.5 and 7.6.

7.3 Dipolar Order vs. Single-Molecule Magnet Behavior

7.3.1 Magnetic Order and Relaxation Towards Thermal
Equilibrium

The above considerations about magnetic ordering apply only provided that spins
reach thermal equilibrium, i.e. the state of minimum free energy, below Tc. Relax-
ation to equilibrium is brought about by the coupling of spins with vibrations of
the crystal lattice, which acts as a thermal bath [55–57]. The rate depends on the
strength of spin-phonon couplings but also on the structure of magnetic energy lev-
els and the nature of the energy eigenstates. Here, the magnetic anisotropy plays a
second, very important role. In many of the best-known single-molecule magnets
(SMMs), and as it has been described in detail in previous chapters of this book,
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relaxation becomes in fact hindered at low temperatures by the presence of high
anisotropy energy barriers. This question represents, in fact, one of the most seri-
ous difficulties encountered in the search for dipolar magnetic order in crystals of
SMMs.

For temperatures not much lower than the zero-field splitting Ω0, relaxation to
thermal equilibrium proceeds via thermally activated processes, whose character-
istic relaxation time τ ! τ0 exp(U/kBT ) increases exponentially with decreasing
temperature [59]. For any given experimental time τe, spins “freeze”, i.e. they de-
viate from thermal equilibrium below a superparamagnetic “blocking” temperature
Tb = U/kB ln(τe/τ0). Here, the pre-factor τ0 gives the order of magnitude of ex-
cited levels lifetimes and U is usually smaller than Ucl because spins can flip by
tunneling via intermediate states [60–63]. Pure ground state tunneling events might
provide also an alternative path for the spin system to approach long-range ordering
[32]. However, these processes are usually very slow. For instance, tunneling times
measured on Fe8 are of order 104 s [36], while in Mn12 acetate they are probably
longer than 2 months [64]. Therefore, often Tb > Tc and the underlying magnetic
order remains hidden.

The situation can be best illustrated with the help of a specific example. Fig-
ure 7.3 shows the specific heat c of Fe8 measured at zero field [39, 65]. Monte Carlo
simulations predict a maximum in c signalling the onset of ferromagnetic order at
Tc ! 0.5 K [7]. However, experimental data deviate from equilibrium already at
Tb = 1.3 K, decreasing exponentially with T and showing no evidence whatsoever
for the existence of a phase transition.

The search for dipolar order must therefore be oriented towards crystals of molec-
ular nanomagnets with sufficiently fast spin-lattice relaxation, i.e. those having
Tb < Tc. Funnily, the goal is just the opposite to that of finding single-molecules
with long-lasting magnetic memory, which has been the main stream of activity
in this research field. A remarkable intermediate situation was found in crystals of
Fe17 SMMs, with a very high spin S = 35/2 [66, 67]. These clusters can be packed
in two different crystal structures, of cubic and trigonal symmetries, respectively.
The critical temperatures associated with dipolar magnetic order in these lattices
are different, with Tc(cubic) < Tc(trigonal). In the cubic case, a situation similar
to that described above for Fe8 arises, thus the system behaves as a SMM with
a blocking temperature Tb ! 0.5 K. In the trigonal case, Tc ! 0.8 K, thus larger
than Tb. As a result, both the equilibrium heat capacity and magnetic susceptibility
show clear indications of the onset of long-range dipolar order. Further examples in
which equilibrium conditions can be attained down to sufficiently low temperatures
are described in detail in Sects. 7.4 to 7.6.

7.3.2 Influence of Dipolar Interactions on Magnetic Relaxation
and Spin Tunneling

Dipolar interactions modify also the nature and rates of magnetic relaxation pro-
cesses. In the paramagnetic state, magnetic fields Hd vary from one lattice point to
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another. Near a crossing magnetic field, Hz,n(m), the longitudinal Hd,z acting on
a given molecule detunes energetically states m and −m − n, which would oth-
erwise be in resonance. The effect is to block quantum tunneling processes be-
tween these states, the more so the smaller the ratio �m/ξd(m), where the bias
ξd = gμB|m−m′|Hd,z. As a result, thermally activated tunneling takes place pre-
dominantly via spin levels for which this ratio is not too far from unity [61].

The effect of dipolar interactions becomes even more dramatic at very low tem-
peratures, when only the ground state doublet (±S at H = 0) is populated. Since
�S is usually many orders of magnitude smaller than the typical ξd(S), only those
molecules for which the local bias is either smaller than �S or can be compensated
by hyperfine interactions with magnetic nuclei are able to flip their spin [31, 68].
Relaxation becomes then a purely collective process, because the tunneling of each
spin changes the local fields acting on other crystal sites. The rate and time evolution
depend on the symmetry of the lattice and also on whether the system is evolving
towards a paramagnetic or a magnetically ordered state [32, 69, 70].

Transverse dipolar field componentsHd,x andHd,y affect also spin tunneling and
relaxation processes. Off-diagonal anisotropy terms in (7.3) are even. Therefore,
they can only connect states m and m′ provided that |m − m′| is even too [71].
This condition applies at zero field, but not at some of the crossing fields defined
by (7.14). In particular, tunneling would be strictly forbidden at crossing fields with
odd “n”. Transverse dipolar fields can contribute to break down such “selection
rules”, as they enable the quantum mixing between any pair of states [61]. This
effect explains why magnetization steps (see Fig. 7.4) are observed at all crossing
fields even in very precisely aligned crystals that are free from molecular disorder
[72].

7.3.3 Experimental Determination of the Average Interaction
Fields

The first of the effects described above provides a suitable method to measure the
effective interaction field Heff,z (cf. (7.9)). The method makes use of the strong
sensitivity of quantum tunneling to the presence of even small bias magnetic fields.
Tunneling resonances occur at well defined local magnetic fields Hz,n(m) given
by (7.5). However, the magnetic bias field acting on each molecule in a crystal
consists of the applied field Hz plus contributions arising from the interactions with
other molecules. The resonant field must therefore fulfill the following approximate
condition

Hz,n(m)=Hz − ÑzzMz +Heff,z (7.14)

where Mz = NgμB〈Sz〉T is the volumic longitudinal magnetization. It can be ex-
pected that Heff,z depends on the spin configuration of a crystal, i.e. onMz, thus the
external field Hz that fulfills condition (7.14) also does.



7 Dipolar Magnetic Order in Crystals of Molecular Nanomagnets 171

Fig. 7.4 A: Magnetization hysteresis loop of Mn12 acetate measured at T = 2.5 K. The inset
shows the structure of magnetic energy levels of this molecule at the first crossing field H1, which
corresponds to the magnetization step observed near μ0Hz = 0.45 T. B: Magnetization of Mn12
measured as the magnetic field is swept back and forth across this tunneling resonance. C: Magne-
tization derivative determined from these data. D: Position of dMz/dHz maxima (resonant fields)
as a function of magnetization

This dependence can be explored experimentally by sweeping the magnetic field
back and forth across a given crossing field. Figure 7.4 shows the magnetization
measured as this procedure is repeated near the first crossing field (n= 1) of Mn12

acetate, at T = 2.5 K. The magnetization step, associated with this first tunneling
resonance, shifts towards lower Hz asMz increases. In fact, the dependence is close
to linear, thus showing that the effectiveHeff,z is nearly proportional toMz too. Cor-
recting from the demagnetization factor of the crystal, (7.14) gives Heff,z ! λMz,
with λ≡ Jeff/N(gμB)

2 ! 6. For a magnetically polarized crystal of Mn12 acetate,
with Mz =Ms ! 96 G, the maximum Heff amounts then to approximately 575 Oe.
Taking into account the experimental uncertainties involved (mainly associated with
the accuracy in the determination of the demagnetization factor) this value agrees
well withHeff = 515±85 Oe, reported in Ref. [73]. In the latter work, the hysteresis
loop of fast relaxing Mn12 molecules [74] was used to monitor the magnetic field
created by the standard, slower relaxing ones.

These results give also the opportunity to estimate the effective, or mean-field,
interaction constant Jeff/kB ! 7.5 × 10−3 K. For Mn12 clusters, Ω0/kB ! 19 K,



172 F. Luis

thus it is much larger than Tc. Mean-field equations (7.10) and (7.12) are therefore
applicable. The above value of Jeff gives then rise to a critical temperature Tc =
0.75 K for Mn12 acetate, close to the experimental Tc ∼ 0.9 K (see Sect. 7.5).

7.4 Dipolar Order of Molecular Nanomagnets with Low
Magnetic Anisotropy. Ferromagnetism in Mn6

One of the simplest ways to obtain a dipolar magnet is to look for high-spin
molecules having sufficiently weak magnetic anisotropy, thus also low energy bar-
riers opposing the spin reversal. In this section, I briefly describe results of experi-
ments performed on one of such molecules, Mn6O4Br4(Et2dbm)6, hereafter abbre-
viated as Mn6 [44, 47, 75].

The molecular core of Mn6, shown in the inset of Fig. 7.5, is a highly symmetric
octahedron of Mn3+ ions (with spin s = 2) that are ferromagnetically coupled via
strong intra-cluster super-exchange interactions. Its ground magnetic state is a S =
12 multiplet. The net magnetocrystalline anisotropy of this cluster proves to be very
small, with D ! 0.013 K [44, 47]. The classical energy barrier separating spin-up
and spin-down states is then Ucl/kB ! 1.9 K, much smaller than Ucl/kB ! 70 K
of Mn12. Mn6 crystallizes in a monoclinic lattice with 4 molecules per unit cell
[75] bound together only by Van der Waals forces. Inter-cluster super-exchange
interactions are therefore expected to be negligible.

As a result of its weak magnetic anisotropy, the equilibrium magnetic suscep-
tibility and specific heat of Mn6 can be measured down to very low temperatures.
Curves measured forH = 0 are shown in Fig. 7.5. Contributions associated with lat-
tice vibrations and hyperfine interactions dominate c above 2 K and below 100 mK,
respectively. Between these two limits, c is mainly due to the thermal population
of molecular spin levels, split by the magnetic anisotropy and dipole-dipole inter-
actions (cf. (7.2)). This magnetic contribution shows a sharp peak at 0.15(2) K.
The magnetic entropy change, estimated from data measured between 0.08 K and
4 K, amounts to 3.4kB per molecule, thus very close to the maximum entropy
�Sm = kB ln(2S + 1) = 3.22kB of a S = 12 spin multiplet. It therefore seems ap-
propriate to assign the peak in c to the onset of long-range magnetic order.

It is worth pointing out that the magnetic anisotropy of Mn6, despite its weak-
ness, leaves its mark on the nature of the long-range order that arises below Tc. The
magnetic entropy change measured between 0.08 K and Tc amounts to about 1kB
per spin, thus not far above�Sm = kB ln(2)= 0.7kB that is expected for an effective
spin-1/2 system. This shows that, because of the low value of Tc, mainly the lowest
energy spin states (with m=±12) take part in the magnetic ordering.

Information on the character of the magnetic order, i.e. whether it corresponds to
a ferro- or antiferromagnetic phase, can be obtained from the ac magnetic suscepti-
bility data shown on the right-hand side of Fig. 7.5. The real susceptibility compo-
nent χ ′ shows a sharp maximum at Tc = 0.161(2) K, close to the ordering tempera-
ture estimated from heat capacity measurements. These data are compared with the
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Fig. 7.5 Left: Dots, zero-field specific heat of Mn6; dotted line, phonon contribution; dashed line:
Schottky contribution due to crystal field splitting of the S = 12 multiplet as calculated with (7.3)
for D/kB = 0.013 K; dotted curve: nuclear contribution expected from the 55Mn nuclear spins.
Solid line: equilibrium specific heat derived from Monte Carlo calculations, and including all pre-
vious contributions as well as the effects of dipole-dipole interactions. The inset shows a sketch
of the symmetric octahedral core of each Mn6 molecule, with total spin S = 12. Right: Real com-
ponent of the ac susceptibility of Mn6 measured at several frequencies. The solid line gives the
paramagnetic susceptibility of non interacting Mn6 clusters. These calculations include the effects
of the zero-field splitting and of demagnetizing fields

paramagnetic susceptibility of Mn6, calculated by taking into account the effects of
the magnetic anisotropy and of the sample’s demagnetization factor. The experimen-
tal susceptibility lies clearly above this prediction, thus suggesting that the magnetic
order in Mn6 is ferromagnetic, i.e., that θ > 0 in (7.10). Figure 7.6 shows indeed
that, above Tc, the intrinsic magnetic susceptibility χi, corrected for demagnetiza-
tion effects, follows accurately Curie-Weiss law, with C = 0.034(1) emu K/g Oe
and θ = 0.20(3) K. These data agree with the fact that three-dimensional dipolar
lattices must be close approximations of mean-field models. The ferromagnetic na-
ture of the ordered phase is also confirmed by the fact that relatively weak magnetic
fields completely suppress the heat capacity maximum [44, 47].

The dipolar magnetic order in Mn6 has been investigated by means of Monte
Carlo simulations, which are described in detail in [44, 47]. As it has been have
argued in Sect. 7.2, because Ucl/kB � Tc only states with m=±12 are appreciably
populated at and below Tc. This justifies the use of the Ising Hamiltonian (7.6) to
describe the magnetic ordering of Mn6 molecular nanomagnets.

Monte Carlo simulations show that the ground state is ferromagnetically ordered,
as observed, and predict a shape for c that is in reasonably good agreement with the
experiment. The solid line in Fig. 7.5 shows c calculated assuming that all molecular
anisotropy axes (z) point along one of the two nearly equivalent short axes of the
actual lattice. Similar results were obtained for other orientations of the anisotropy
axes. These simulations give Tc = 0.22 K, which is slightly above the experimental
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Fig. 7.6 Reciprocal
magnetic susceptibility of
Mn6 corrected for
demagnetization effects. The
solid line is a least-squares fit
of a Curie-Weiss law to the
data measured above 0.3 K

Tc = 0.161(2) K. As it was argued in [47], this difference can be assigned to the
finite value of the anisotropy. Model calculations, performed for the same crystal
structure but assuming classical Heisenberg spins with varying anisotropy show that
different ferromagnetic ground states are possible, depending on the competition
between local crystal field effects and long-range dipolar interactions. The strong
dependence of variation of Tc on the sign and orientation of the magnetic anisotropy,
as well as the form of the calculated and observed specific heat anomalies turn out
to be specific for dipolar interactions, and differ widely from the analogues for usual
ferromagnets, coupled via super-exchange interactions [51].

Spin Dynamics Close to Tc Ac susceptibility data provide also interesting infor-
mation on the dynamics of spins close to and below Tc. The maximum value of χ ′
is seen to weakly vary with the frequency ω/2π of the ac excitation magnetic field.
This variation suggests that, for the highest frequencies employed in these experi-
ments, spins begin to deviate from equilibrium already above Tc. A more dramatic
effect is observed below the ordering temperature. The real susceptibility compo-
nent χ ′ decreases rapidly, thus suggesting that the ferromagnetic response is also
being blocked by slow relaxation processes.

These phenomena can be understood, at least qualitatively, if one takes into ac-
count once more the finite magnetic anisotropy of Mn6 clusters. The superparamag-
netic blocking of Mn6 spins is expected to occur at Tb !DS2/kB ln(1/ωτ0). Setting
τ0 = 10−8 s, which is a typical value found for other SMMs, gives Tb ! 0.25 K for
ω/2π = 7.7 kHz. In other words, for T → Tc, the approach to equilibrium begins
to be hindered by the anisotropy barrier of each molecular spin. These estimates
have been confirmed by recent experiments performed on different derivatives of
Mn6, which show slightly lower values of Tc [76]. In these samples, a frequency-
dependent super-paramagnetic blocking is observed below 0.2 K.

Below Tc, the slow magnetic relaxation contributes to “pin” magnetic domain
walls. This effect accounts for the sharp decrease observed in the linear magnetic
susceptibility. The dynamics associated with the displacement of domain walls in
Ising-like dipolar ferromagnets had not been simulated until recently [77]. The
present experiments suggest that, in the case of Mn6, the magnetization dynamics
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close to Tc seems to be dominated by thermal fluctuations. An interesting question
that needs to be addressed by future experimental work is whether domain walls
move by flipping one molecular spin at a time or via a collective process.

7.5 Dipolar Order in a Transverse Magnetic Field.
Ferromagnetism in Mn12 Acetate

7.5.1 Magnetic Ordering Via Pure Quantum Tunneling

For many of the best known SMMs, magnetic anisotropy barriers are so high that,
close to Tc, thermally activated spin flips take place in time scales that are much
longer than the typical experimental time scales. Under these conditions, only pure
spin tunneling events contribute to the magnetization dynamics. The precise mecha-
nism by which quantum tunneling enables the spin system to exchange energy with
the lattice is not yet fully understood. However, in spite of their intrinsically quan-
tum nature and the fact that they are independent of temperature, experiments show
that these quantum fluctuations are nevertheless able to bring the spin system to
equilibrium with the thermal bath [45, 65, 78, 79]. These processes enable also the
onset of long-range magnetic order in crystals of SMMs. However, as it has been
mentioned above, they are also rather slow, with time scales of the order of many
hours for Fe8 or even months, as it is the case for Mn12 clusters.

Quantum tunneling can be, to some extent, controlled by chemical design. The
symmetry of the cluster magnetic cores determines the structure of the spin Hamil-
tonian (7.3). Lowering the molecular symmetry allows the presence of lower order
off-diagonal terms, which contribute to enhance quantum tunneling probabilities. In
clusters with a Mn4O3X cubane magnetic core, this effect has been induced via the
chemical binding to different ligands X. Then, while highly symmetric Mn4O3Cl
and Mn4O3OAc clusters [80] show the typical SMM behaviour, with blocking tem-
peratures in the vicinity of 1 K, the spins of a strongly distorted Mn4O3MeOAc
[81] remain in equilibrium down to very low temperatures. In the latter sample, the
heat capacity shows the onset of long-range magnetic order at Tc = 0.2 K [45]. This
value is found to be larger than the maximum critical temperature compatible with
dipolar interactions. Therefore, in this case super-exchange interactions probably
play a non-negligible role. This example shows that conclusions on the existence
of pure dipolar order cannot be drawn from qualitative arguments alone, and that
a quantitative comparison with theoretical predictions are always necessary. Ferro-
magnetic order has also been observed in crystals of low symmetry Ni4 clusters,
which show one of the highest tunneling rates (of order 105 s−1) ever measured
[48, 76].

7.5.2 Quantum Annealing

An additional trick, based on the above considerations, can be played in crystals of
SMMs having their magnetic anisotropy axes aligned along given crystallographic
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Fig. 7.7 Irreversibility transverse magnetic field separating equilibrium and non-equilibrium con-
ditions of Mn12 acetate spins. Solid and open dots have been determined from specific heat data
(experimental time constant ∼ 1 s) and magnetic neutron diffraction experiments (experimental
time constant ∼ 104 s), respectively. The arrows show schematically the quantum annealing pro-
tocol employed to explore the existence of long-range magnetic order at very low temperatures

directions. Transverse components of the Zeeman interaction (7.4), i.e. those asso-
ciated with magnetic field components Hx and Hy , also induce quantum tunneling
of the spins. Since off-diagonal terms play, to some extent, a role comparable to that
of a kinetic energy in the tunneling of a material particle, the magnetic field enables
then to “tune” the effective tunneling mass. This ability has been used to directly
detect the existence of a quantum tunnel splitting [38, 39] and to induce quantum
interference phenomena between different tunneling trajectories [37]. Naturally, it
can also be applied to explore the existence of a magnetically ordered phase.

The basic protocol for this “quantum annealing” (see also [82, 83]) is shown in
Fig. 7.7. By increasing the transverse magnetic field H⊥, tunneling probabilities are
rapidly enhanced, thus at some point spins are able to reach thermal equilibrium with
the lattice. If at this temperature and field the spin system remains ferromagnetically
ordered, a net magnetization will be recorded that will “freeze” as the magnetic field
is set back to zero through the irreversibility field Hirr. The latter field, thus also the
result of the quantum annealing process, depend on the experimental probe and its
characteristic time scales. This dependence is shown in Fig. 7.7 that compares data
derived for Mn12 acetate using heat capacity [84] and magnetic neutron diffraction
experiments [46].

7.5.3 The Quantum Ising Model

The control of quantum tunneling fluctuations by an external magnetic field of-
fers an additional and very attractive possibility for fundamental physical studies.
As it has been discussed in Sect. 7.2, dipole-dipole interactions between highly
anisotropic spins (with D→∞) can be approximated by a spin-1/2 Ising Hamil-
tonian. In the presence of a transverse magnetic field, a crystal of perfectly oriented
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SMMs can therefore provide a material realization of the quantum Ising model [30].
The spin Hamiltonian of this model reads as follows

H=−S
2

2

∑
i

∑
j �=i
Jij σi,zσj,z −�

∑
i

σi,x (7.15)

where Jij are longitudinal couplings (here of dipolar origin) and � is the ground-
state tunnel splitting which depends on and vanishes with H⊥. Equation (7.15) rep-
resents the archetypical (and arguably the simplest) model for a quantum phase
transition [40, 41]. The classical long-range order that exists forH⊥ =�= 0 (ferro-
magnetic or anti-ferromagnetic) competes with field-induced quantum fluctuations.
The magnetic phase diagram, representing (Tc,�c) [or, equivalently, (Tc,Hc)]
points at which magnetic order is suppressed, can be calculated using the mean-
field approximation (7.11). The magnetic phase boundary between the ordered and
paramagnetic phases is defined by the following equation

kBTc(H⊥ = 0)

�c
= coth

(
�c

kBTc

)
(7.16)

where Tc(H⊥ = 0)= θ is given by (7.12). At T = 0, magnetic order is completely
destroyed at �c = kBTc(H⊥ = 0).

Quantum phase transitions have been extensively studied in recent years. Exam-
ples include the superconductor insulator transition in cuprates [85–87], the onset of
antiferromagnetism in heavy fermions [88], the pressure driven insulator-metal tran-
sition in V2O3 [89], and the magnetic transitions driven by field (LiHoYF4 [90]) or
concentration (CrxV1−x alloys [91]). In addition to their intrinsic interest, a plethora
of new properties arise at nonzero temperature.

In spite of this intense activity, pure realizations of the quantum Ising model
with magnetic materials are very scarce. As it happens with dipolar magnetism in
general, lanthanide-based insulators seem to be a natural choice for these studies
[90, 92]. However, the strong hyperfine interactions seriously limit the observation
of the intrinsic quantum criticality in these materials [23, 24]. Crystals of single
molecule magnets, for which hyperfine interactions are typically much weaker, are
then very attractive candidates.

7.5.4 Magnetic Order in Mn12 Acetate

Neutron Diffraction Experiments The cluster of Mn12 acetate [93], the first
and most extensively studied member of the family of single-molecule magnets, is
shown in Fig. 7.2. It contains 12 manganese atoms linked via oxygen atoms, with a
sharply-defined and monodisperse size. At low temperatures, each of them exhibits
slow magnetic relaxation and hysteresis, due to the combination of an S = 10 mag-
netic ground state with appreciable uniaxial magnetic anisotropy. Finally, they orga-
nize to form tetragonal molecular crystals. Monte Carlo simulations [7], as well as
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mean field calculations [77], predict that Mn12 acetate must order ferromagnetically
as a result of dipolar interactions between molecular spins. The critical temperatures
derived from these calculations are Tc = 0.5 K and 0.8 K, respectively. Therefore,
these crystals seem to offer a nearly perfect realization of the quantum Ising model
(7.15). To which extent this is indeed the case will be discussed in the following.

Not surprisingly, detecting the presence of long-range magnetic order in Mn12
faces some important experimental difficulties. Spin reversal via resonant quantum
tunneling [33–35, 64] becomes extremely slow at low temperatures (of order two
months at T = 2 K). For the time scales ∼ 102–104 s of a typical experiment Tb ∼
3 K, thus much higher than the ordering temperature Tc. Equilibrium conditions can
be explored via the application of the quantum annealing protocol described above.
Magnetic diffraction of thermal neutrons is a suitable tool for these studies because
it can probe different components of the magnetization vector, in particularMz [94],
in the presence of a transverse magnetic field. In addition to this, diffraction patterns
provide a very accurate determination of the crystal’s orientation. And finally, the
typical data acquisition times required to obtain reasonably good results are very
long, which gives rise to smaller values of Hirr (see Fig. 7.7). In the experiments
whose results are described below [46], a ∼ 0.5× 0.5× 1.5 mm3 single crystal of
deuterated Mn12 acetate was attached to the mixing chamber of a 3He-He4 dilution
refrigerator with its c axis perpendicular (up to a maximum deviation of about 0.1(1)
degrees) to the magnetic field.

Given the strong magnetic anisotropy of Mn12 clusters, the magnetization is con-
fined in the plane defined by c and H, with components Mz and M⊥, respectively.
At 4 K, that is, in the paramagnetic state,Mz = 0 andM⊥ is proportional toH⊥. For
T ≤ 900 mK, by contrast, a large additional contribution to the magnetic diffraction
intensities shows up for μ0H⊥ < 5 T, but only provided thatH⊥ is first raised above
Hirr at each temperature. As shown in Fig. 7.8, this contribution reflects the onset
of a non-zero spontaneous Mz below Tc = 0.9(1) K. The latter value is close to
the Weiss temperature θ ! 0.8(1) K extracted from the extrapolation of 1/χ ′zz data
measured above Tb (Fig. 7.8). These data suggest that Mn12 acetate does indeed
order ferromagnetically, as predicted. The experimental Tc is in good agreement
with mean-field calculations [77]. However, it is nearly a factor two larger than the
critical temperature derived from Monte Carlo calculations for pure dipolar interac-
tions [7]. Therefore, the presence of weak super-exchange interactions contributing
to enhance the magnetic ordering temperature of Mn12 acetate cannot be completely
ruled-out. The same conclusion was derived from the analysis of the susceptibilities
and Weiss temperatures of different Mn12 derivatives [54].

Another remarkable finding, shown in Fig. 7.9, is the strong dependence of Mz
on H⊥. At the minimum temperature T = 47 mK, Mz is approximately zero for
μ0H⊥ > 5.5(5) T and then it increases when decreasing μ0H⊥, reaching 16μB per
molecule at zero field. These results show that a transverse magnetic field tends
to suppress the ferromagnetic order. The Tc–Hc magnetic phase diagram of Mn12
acetate is shown on the right-hand panel of Fig. 7.9. A ferromagnetic phase exists
for sufficiently low temperatures and transverse magnetic fields. The qualitative re-
semblance between the effects caused by temperature and field is typical of systems
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Fig. 7.8 Left: Longitudinal magnetization Mz of Mn12 acetate obtained from neutron diffraction
data measured at μ0H⊥ = 0 after decreasing the transverse magnetic field from 6 T at each tem-
perature. The solid line is a calculation (for a perfect orientation of the magnetic field perpendicular
to the easy axes of all molecules) that includes interactions via the mean-field Hamiltonian (7.17).
Right: Reciprocal parallel susceptibility measured at T > 4.5 K (i.e. above Tb) along the c crystal-
lographic axis. The solid line is a least-squares linear fit, giving θ = 0.8(1) K

undergoing a quantum phase transition. However, as it is argued in the following,
understanding the true nature of the field-dependent transition can only be achieved
by a quantitative comparison to theoretical simulations.

Comparison to the Quantum Ising Model Predictions For a perfectly oriented
crystal of Mn12 molecules in a transverse magnetic field, the mean-field Hamilto-
nian (7.7) can be written as

H= −DS2
z +BS4

z +
C

2

(
S4+ + S4−

)
− gμBH⊥(Sx cosφ + Sy sinφ)− Jeff〈Sz〉Sz (7.17)

Spectroscopic measurements [95–100] give g = 1.9, D/kB = 0.6 K, B/kB =
−10−3 K, and C/kB = −6.1 × 10−5 K. Experiments performed on single crys-
tals [99] provide also the orientation of the fourth-order anisotropy axes x and y
with respect to the crystallographic axes a and b. In the neutron diffraction exper-
iments, H was approximately parallel to the 11̄0 crystallographic direction, which
corresponds to φ ! π/4. The mean-field constant Jeff was set to 9× 10−3kB that,
according to (7.12), fits the experimental Tc = 0.9 K. The above Jeff value is close
to 7.5 × 10−3kB determined from quantum tunneling experiments described in
Sect. 7.3.3.

Predictions for Mz as a function of temperature and magnetic field that follow
from (7.17) are shown in Figs. 7.8 and 7.9(A). These calculations account reason-
ably well for the temperature dependence of Mz measured at H⊥ = 0. The fact that
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Fig. 7.9 Left: Longitudinal magnetization Mz of Mn12 acetate measured while decreasing the
transverse magnetic field μ0H⊥ from 6 T at T = 47 mK. The dotted line has been calculated using
(7.17) and the parameters given in the text. Right: Magnetic phase diagram of Mn12 acetate. The
dotted line was obtained using the mean-field Hamiltonian (7.17) for perfectly aligned anisotropy
axes. The solid line is the mean field prediction following from the random-field Hamiltonian
(7.18), which includes effects of molecular disorder [50]

Mz remains smaller than the saturation magnetization of 19μB per molecule even at
T → 0 can be ascribed to non equilibrium effects. It probably arises from reversed
spins that remain frozen as the magnetic field is reduced below μ0Hirr ! 4 T, be-
cause quantum tunneling rates become then extremely slow. However, the same
model fails to account for the field-dependent behavior. In particular, the zero-
temperature critical field μ0Hc(T = 0), at which quantum fluctuations finally de-
stroy the long-range ferromagnetic order, is close to 8 T, thus considerably higher
than the experimental μ0Hc ! 5.5 T. The discrepancy manifests itself also in the
shape of the magnetic phase diagram at low temperatures, shown in Fig. 7.9(B).

Molecular Disorder : Random-Field Magnetism in Mn12 Acetate In the orig-
inal analysis of the neutron diffraction experiments [46], the field-dependent mag-
netization was fitted by introducing a large and positive fourth-order off-diagonal
parameter C, which “helps” the magnetic field in generating sufficiently strong
quantum fluctuations. Disorder in the orientation of acetic acid solvent molecules
can lower the local symmetry of Mn12 molecules and give rise, for some of them, to
additional off-diagonal terms, such as E(S2

x − S2
y), not allowed for the ideal molec-

ular symmetry [101]. The presence of such terms has been put into evidence by
magnetic relaxation [102, 103] and spectroscopic experiments [99]. However, in-
troducing such terms in (7.17) cannot, by itself, account for either the value of Hc

or the magnetic-field diagram that are experimentally observed.
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Molecular disorder can, however, affect ferromagnetism in a different, subtle
manner. Some of the different isomers, associated with given orientations of the
interstitial molecules with respect to Mn12 cores, have their easy axes z tilted with
respect to the crystallographic c axis [101]. The tilting angles δ have been estimated
by several experimental methods and turn out to be rather small, of the order of
1 deg., or even less [99, 104]. At zero field, it is therefore expected that their influ-
ence on the ferromagnetic order be small. However, their presence makes itself felt
when a magnetic field is applied perpendicular to c. As it was first pointed out by
Millis and co-workers [10], some molecular sites then “see” a nonzero bias fieldHz,
which for H⊥ ≥ 3 become already stronger than the maximum Heff associated with
intermolecular magnetic interactions. Furthermore, the bias is randomly distributed
among the different sites.

In order to describe these effects, the mean-field Hamiltonian for each molecule
at site ri must include an additional random-field term [10, 50]

H(ri) = −DS2
z +BS4

z +
C

2

(
S4+ + S4−

)− gμBH⊥(ri)(Sx cosφ + Sy sinφ)

− gμBHz(ri)Sz − Jeff〈Sz〉Sz (7.18)

As can be expected, the effect of disorder is to suppress magnetic order for ap-
plied magnetic field values H that are significantly smaller than the critical field of
the pure quantum Ising model (7.17). The solid line in Fig. 7.9(B) shows the mag-
netic phase diagram derived [50] from (7.18), using the distribution of random easy
axes tilts calculated by Park and co-workers [105]. In [50], it was shown that this
model gives a fair account of the Weiss temperatures determined from the extrap-
olation of the reciprocal susceptibility (see Fig. 7.8), although its predictions tend
to slightly overestimate Hc at any temperature. It can be seen that it also provides a
better description of the low-T /high-H⊥ behavior obtained from magnetic neutron
diffraction experiments. However, the discrepancy between experimental and theo-
retical values of Hc is even larger than that derived from magnetic data [50]. This
suggests that the degree of interstitial disorder can be different for different crys-
tals of Mn12 acetate and that these differences manifest themselves in the magnetic
phase diagram.

These results illustrate the rich physical behavior of Mn12 acetate in the presence
of a transverse magnetic field. This system provides a unique opportunity to inves-
tigate the interplay between dipolar interactions and randomness and represents one
of the best material realizations of the random-field Ising model known to date.

7.6 Magnetic Order and Quantum Phase Transition in Fe8

The previous section illustrates some of the difficulties met in the search of pure
quantum phase transitions with SMMs: molecular disorder turns Mn12 acetate into
a realization of the classical random-field Ising model. In this section, I review ex-
perimental work performed on a crystal of Fe8 SMMs [49]. This molecular material
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Fig. 7.10 A: Longitudinal in-phase ac susceptibility of Fe8 measured at ω/2π = 333 Hz and for
different values of the transverse magnetic field H⊥. B: Shift of the superparamagnetic block-
ing temperatures with increasing H⊥. The solid line shows theoretical predictions for quantum
spin-phonon relaxation that follow from Pauli’s master equation as described in [61]

[106] possesses some properties that make it especially well suited for these stud-
ies, viz (i) classical Monte Carlo (MC) simulations suggest a ferromagnetic ground
state with Tc = 0.54 K [7] (ii) hyperfine interactions are much smaller than both
the magnetic anisotropy and dipolar interactions, thus they cannot perturb quantum
dynamics of SMMs and (iii) disorder is weak enough to avoid sizable random fields.

Each Fe8 molecule (brief for [(C6H15N3)6Fe8O2(OH)12]) has a spin S = 10 and
a strong uniaxial magnetic anisotropy [107]. It can be described by Hamiltonian
(7.3) with D/kB = 0.294 K, E/kB = 0.046 K, and g = 2 [107, 108]. x, y and z
correspond to the hard, medium and easy magnetization axes that, in the triclinic
crystal structure of Fe8, are common to all molecules [109].

Ac magnetic susceptibility experiments, reported in [49], were performed down
to 90 mK on a 1.6 mg single crystal of approximate dimensions 1 × 2 × 1 mm3.
The magnetic easy axis z was oriented approximately parallel to the ac excitation
magnetic field. Therefore, these experiments give access to the longitudinal linear
magnetic response that is expected to diverge close to a magnetic phase transition.
The dc magnetic field was then carefully aligned with respect to the crystal axes
with the help of a 9 T× 1 T× 1 T superconducting vector magnet, using the strong
dependence of the paramagnetic χ ′zz on the magnetic field orientation [49]. It was

found that
−→
H is perpendicular (±0.05◦) to z and close (φ ! 68◦) to the medium y

axis.
As expected for a high-anisotropy SMM, the ac susceptibility (Fig. 7.10) of Fe8

deviates from equilibrium for low H⊥ and low T , as shown by the vanishing of χ ′zz.
The superparamagnetic blocking temperature Tb strongly depends on frequency.
However, even for the lowest available frequencies, Tb remains much higher than
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Fig. 7.11 Reciprocal in-phase ac susceptibility measured at μ0H⊥ = 2.25 T as a function of T
(left) and at T = 0.110 K as a function of H⊥ (right). The crossovers between the “Curie-Weiss”
law, observed at either high T or high H⊥ (dotted blue lines), and the ferromagnetic limit
1/χ ′max = Ñzz (solid red lines) give Tc (= 0.34(1) K) and μ0Hc (= 2.65(5) T), respectively

1 K, thus also higher than the expected critical temperature. The same applies to
heat capacity experiments that have been discussed in Sect. 7.3.1 (cf Fig. 7.3).

As with Mn12 acetate, this situation can be reversed by enhancing quantum spin
fluctuations via the application of H⊥. As shown in Fig. 7.10, increasing H⊥ re-
duces Tb, thus showing that spins are able to attain thermal equilibrium at progres-
sively lower temperatures. It is interesting to mention also that, besides enhancing
the spin dynamics, the magnetic field also lowers the paramagnetic susceptibility.
This decrease can be associated with the reduction of the effective Sz by quantum
fluctuations as well as with the decrease in the paramagnetic Weiss temperature (see
below). Both effects become more noticeable for H⊥ ≥ 1 T, as seen in Fig. 7.10.

Experiments show that χ ′zz becomes independent of frequency, thus it reaches
full equilibrium, for μ0H⊥ ≥ 2 T. Above this field, Tb ≤ 0.1 K. Under these condi-
tions, it is possible to explore the existence of a magnetic phase transition in Fe8 and
study its critical behavior. As shown in Fig. 7.11, 1/χ ′zz measured at μ0H⊥ = 2.25
T follows the Curie-Weiss law at sufficiently high T , becoming independent of T
below 0.34 K, which we take as the critical temperature Tc at this field. Furthermore,
the saturation value 1/χmax = 9.5(5) cm3Oe/emu agrees well with the demagnetiz-

ing factor of our sample Ñzz = 10(1) cm3Oe/emu. As discussed in Sect. 7.2.2, this
is the behavior expected for an equilibrium ferromagnetic phase transition. Addi-
tional evidence supporting the existence of a transition to a ferromagnetic phase is
found in the results of neutron diffraction experiments, similar to those described
above for the case of Mn12 acetate [49].
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Fig. 7.12 Log-log plot of
demagnetization-corrected
χ ′i,zz of Fe8 vs the reduced
temperature (for
μ0H⊥ = 2.33 T with
Tc = 0.31 K, ◦) and field (at
T = 0.110 K with
μ0Hc = 2.65 T, •). The linear
fits give critical exponents
γcl ! 1.1(1) and γqu ! 1.0(1)

The ferromagnetic character of the low temperature phase agrees with theoretical
predictions for the magnetic order resulting from dipole-dipole interactions [7, 110].
However, to find out if this transition is dominantly driven by such interactions, one
needs to compare also the experimental and theoretical values of Tc. Unfortunately,
equilibrium properties cannot be measured in Fe8 below 1 K for H⊥ = 0. Yet, it
is still possible to estimate Tc ! θ , using θ determined from the Curie-Weiss fit of
the reciprocal susceptibility measured above Tb. This method is particularly appro-
priate here, as the limiting value 1/χmax is known from experiments performed for
μ0H⊥ ≥ 2 T (see, for instance, Fig. 7.11). It gives Tc(H⊥ = 0) = 0.60(5) K, in
very good agreement with the theoretical Tc = 0.54 K derived from Monte Carlo
calculations [7]. It can then be safely concluded that Fe8 becomes a pure dipolar
ferromagnet at very low temperatures.

The reciprocal susceptibility shows a very similar behavior when H⊥ is varied
at constant T (Fig. 7.11). Again, 1/χ ′zz depends linearly on H⊥ until it saturates

(to the same value ! Ñzz) below μ0Hc = 2.65(5) T, which we take as the critical
magnetic field at T = 110 mK. These experiments evidence that, also in Fe8, a suf-
ficiently strong transverse magnetic field can destroy ferromagnetic order. However,
as we shall see below, the nature of this transition is qualitatively different from that
observed in Mn12 acetate. Before discussing this question in more detail, it is worth
examining the critical behavior of the susceptibility, i.e. its temperature and field
dependencies close to the phase transition.

The intrinsic susceptibility χ ′i,zz, corrected from demagnetizing effects, is plotted
vs the reduced temperature (T /Tc − 1) (at μ0H⊥ = 2.33 T) and field (H⊥/Hc − 1)
(at T = 110 mK) in Fig. 7.12. Under equilibrium conditions, χ ′i,zz should follow, as
it approximately does, the power laws

χ ′i,zz =
(
T − Tc

Tc

)−γcl

, χ ′i,zz =
(
H⊥ −Hc

Hc

)−γqu

(7.19)

The slopes give critical exponents γcl = 1.1(1) and γqu = 1.0(1), in good agreement
with γ = 1 of the mean-field universality class. This result agrees with the predic-
tion that the marginal dimensionality for mean-field behavior is d∗ = 3 in an Ising
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Fig. 7.13 Hc–Tc phase diagram determined from the linear extrapolation of 1/χ ′zz to 1/χmax.
• and ◦ correspond to Tc > Tb and Tc < Tb, respectively; �, data determined from susceptibility
scaling plots, as those shown in Fig. 7.12. Solid line, quantum mean-field calculation of the phase
boundary using (7.7) and the parameters given in the text; dashed line, classical phase diagram,
derived from Monte Carlo simulations

dipolar ferromagnet [14] and with the fact that the critical exponents for the field-
induced transition at T → 0 become equivalent to those of the classical transition in
(d + 1) dimensions [111].

The Hc-Tc magnetic phase diagram of Fe8 is shown in Fig. 7.13. Each data point
in this diagram was obtained by linearly extrapolating 1/χ ′zz, measured either as
a function of temperature at a fixed H⊥ or as a function of magnetic field at con-
stant T . A third method, which provides equivalent results, consists of using the
scaling plots of Fig. 7.12 to determine Tc independently. As expected, Tc decreases
when quantum fluctuations increase, i.e. with increasing H⊥, thus ferromagnetism
survives only for sufficiently low temperatures or magnetic fields.

The experiments can be compared with predictions following from the S = 10
quantum Ising model (7.7), using the fact that all anisotropy parameters as well as
the magnetic field orientation are accurately known. As Fig. 7.13 shows, a very
good fit is obtained for Jeff/kB = 6 × 10−3 K, which, following (7.12), gives
Tc equal to the experimental value of 0.6 K at zero field. Classical Monte Carlo
simulations of the same model give, by contrast, the classical phase boundary
shown by the dashed line in Fig. 7.13. This boundary is well approximated by
Hc(Tc)=Hc(0)[1− Tc/Tc(H⊥ = 0)]1/2. In this model Hc(0) equals the anisotropy
field HK = 2[D −E(sin2 φ − cos2 φ)]/gμBS ! 3.8 T, which clearly overestimates
the experimental critical field due to the absence of quantum fluctuations. The exis-
tence of a quantum critical point in Fe8 can therefore be safely concluded. In sum-
mary, these results show that Fe8 provides a close approximation of the archetypical
quantum Ising model in a transverse magnetic field. Recently, the magnetic field de-
pendence of the high-T susceptibility of Mn12-acetate-MeOH has also been found
to be in agreement with the quantum Ising model [112]. This high symmetry Mn12-
acetate variant has the same spin structure, anisotropy and similar lattice constants
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to the original Mn12-acetate but has minimal solvent disorder [112, 113]. An impor-
tant implication of this study is that magnetic order in two chemically very similar
SMMs can be described by distinct physical models.

7.7 Conclusions and Outlook

The results reviewed in this chapter show that, despite their name, the physics of
SMMs deviates from the image of an isolated molecule, especially at very low tem-
peratures. In a crystal of SMMs, dipolar interactions induce the onset of long-range
order. These materials provide therefore examples of pure dipolar magnets, of which
so few exist in Nature.

Especially attractive are studies of long-range order in the presence of a trans-
verse magnetic field, as those described in Sects. 7.5 and 7.6. The magnetic ground
state results then from a subtle competition between dipolar couplings, quantum
fluctuations, and random bias magnetic fields caused by molecular tilts, that is, by
local disorder. The underlying physics is very rich, and depends qualitatively on
the relative energy scales of these three interactions. In Mn12 acetate, random fields
generated by molecular tilts dominantly suppresses ferromagnetism. By contrast,
disorder-free Fe8 undergoes a quantum phase transition at T → 0, purely induced
by quantum fluctuations generated by the transverse magnetic field. Within this in-
terpretation, Mz vanishes above the critical field because the magnetic ground state
becomes a quantum superposition of ‘spin-up’ and ‘spin-down’ states, a mesoscopic
magnetic “Schrödinger’s cat”.

Molecular materials offer the possibility to realize in the lab two archetypical
models, with broad interest for Magnetism and Solid State Physics: the random-
field Ising model and the quantum Ising model. In this respect, molecular systems
are appealing because properties such as the spin, magnetic anisotropy, and lattice
symmetry can be controlled, to some extent, by chemical design. These possibility
might enable experimentalists to explore situations which have not been realized yet,
such as low-dimensional (i.e planes or chains) dipolar lattices, for which important
deviations from the mean-field behavior can be expected [114], or situations with
finite anisotropies that cannot be described by an Ising interaction Hamiltonian.

Quantum entanglement is enhanced near a quantum phase transition [115]. In
molecular nanomagnets, the long-range character of the dominant dipolar interac-
tions might lead to new sources of multipartite entanglement, thus change its range
with respect to that found in spin systems with dominant nearest neighbor interac-
tions. Entanglement is one of the resources for quantum computation and communi-
cation [116]. In my opinion, the measure and characterization of spin entanglement,
and the study how quantum information propagates across a crystal of SMMs near
the Tc–Hc phase boundary provide fascinating, yet unexplored, topics for research.

The above considerations refer to equilibrium magnetic properties of molecular
crystals. However, SMMs are famous for displaying fascinating dynamical phenom-
ena, such as hysteresis, i.e. magnetic memory, and quantum spin tunneling. The ex-
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periments described in the present chapter, an a few others, suggest that pure quan-
tum tunneling processes, despite their inherently temperature-independent charac-
ter, are nevertheless able to bring the spin system into its thermal equilibrium state,
be it paramagnetic or magnetically ordered. How this mechanism actually works
and, in particular, how energy is exchanged between spins and phonons, is not clear
yet and deserves to be investigated further. An interesting, related question is how
magnetic correlations grow below Tc, especially when spins are only able to flip by
tunneling. This question has been addressed by Monte Carlo simulations [32] per-
formed on the basis of the Prokof’ev and Stamp model for pure quantum tunneling
[31], but needs to be tested experimentally. Another relatively unexplored area, es-
pecially from the experimental point of view, refers to the structure of domain walls
in dipolar ferromagnets and their classical or quantum dynamics.

Close to a phase transition, the system dynamics tends to suffer from a “crit-
ical slowing down” [117]. The study of such non-equilibrium critical phenomena
came to the fore when it was shown that they give information on the formation
and the structure of defects in the early Universe and that some experiments could
be carried out on real systems available at the laboratory [117]. An example is the
formation of vortices in the vicinity of the (classical) phase transition of superfluid
Helium at Tλ = 2.14 K [118]. Crystals of SMMs offer the possibility to investigate
non-equilibrium spin dynamics (e.g. the nucleation of domain walls) across a quan-
tum critical point (T ! 0,Hc). These studies can reveal the influence of quantum
fluctuations [119] and might be relevant to the implementation of adiabatic quantum
computation schemes [120] in crystals of SMMs.
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Chapter 8
Single-Chain Magnets

Dante Gatteschi and Alessandro Vindigni

Abstract Single-chain magnets are molecular spin chains displaying slow relax-
ation of the magnetisation on a macroscopic time scale. To this similarity with
single-molecule magnets they own their name. In this chapter the distinctive fea-
tures of single-chain magnets as opposed to their precursors will be pinpointed. In
particular, we will show how their behaviour is dictated by the physics of thermally-
excited domain walls. The basic concepts needed to understand and model single-
chain magnets will also be reviewed.

8.1 Introduction

The observation of magnetic hysteresis of molecular origin in Single-Molecule
Magnets (SMMs) is considered one of the most relevant achievements in nanomag-
netism [1, 2]. Fundamental aspects related to quantum tunnelling of the magnetisa-
tion have been thoroughly discussed in the previous chapters. On a more practical
perspective, that observation rendered the molecular approach one of the possible
routes to realizing bistable nano-objects, suitable for magnetic storage or quantum-
computing applications. In spite of many efforts, the highest blocking temperature
attained by SMMs remains, still nowadays, in the liquid-helium temperature range.
The idea that one-dimensional (1D) structures of coupled paramagnetic ions might
afford higher blocking temperatures started developing at the end of the nineties and
the first examples of slowly relaxing 1D systems were reported at the beginning of
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the new century [3, 4]. The resulting molecular systems have been dabbed Single-
Chain Magnets (SCMs) in order to evidence analogies with their precursors, SMMs,
while remarking—at the same time—the 1D character. In some cases, SMMs them-
selves have been employed as building blocks for such 1D magnetic lattices [5].
With the aim of increasing the blocking temperature as much as possible, different
synthesis strategies have been followed to obtain some type of magnetic anisotropy
at the level of building blocks or of the coupling among them. In the present chapter
we will be dealing with uniaxial anisotropies only, though this requirement is not
strict for the observation of SCM behaviour [7–9].

A distinctive feature of 1D magnetic systems is the development of short-range
correlations upon cooling. This makes them substantially different from both para-
magnets and bulk magnets. Should one establish an analogy between classical mag-
netic ordering and phases of matter, paramagnets would be identified with perfect
gases while bulk magnets with solids. Pushing this naive analogy further, spin chains
would be associated with liquids, specifically in the temperature range in which
short-range correlations extend over several lattice units. The degree of spatial cor-
relation is quantified by the correlation length. In molecular chains consisting of
magnetic building bocks with uniaxial anisotropy, the correlation length typically
diverges exponentially with decreasing temperature. From a snapshot taken at finite
temperature, any chain would appear as a collection of randomly oriented magnetic
domains1 separated by domain walls (DWs). The average size of those domains is
of the order of the correlation length. This pictorial, but essentially correct, scenario
is consistent with thermally-driven diffusion of DWs. In this sense, the response of a
SCM to a tiny a.c. field is expected to be determined by the time needed to adjust the
size of domains to the external stimulus. A robust scaling argument associates the
characteristic time of this readjustment with the time elapsed while a DW diffuses
over a distance proportional to the correlation length. Within this idealized picture,
the relaxation time of the magnetisation is expected to scale with temperature like
the square of the correlation length.

The qualitative description given above applies to the ideal case of infinite chains
and small applied fields. The first hypothesis is practically never fulfilled in real
systems. In fact, the number of magnetic centres interacting consecutively is typi-
cally limited to 102–104 by naturally occurring defects, non-magnetic impurities or
lattice dislocations [10–12]. A SCM may thus behave as if it extended indefinitely
only when the correlation length is much smaller than the average distance between
successive defects. Upon lowering the temperature, a crossover is expected at which
the correlation length becomes of the order of the average distance among defects.
Below this crossover temperature, spins enclosed between two successive defects
are parallel with each other and no DW is present at equilibrium. In this finite-size
regime relaxation is somewhat equivalent to magnetisation reversal in nanoparticles
or nanowires, which may occur via Néel-Brown uniform rotation or by droplet-
nucleation mechanism [13].

1These soft, fluctuating domains should not be confused with Weiss domains encountered in mag-
netically ordered phases.
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All the mentioned mechanisms represent potential channels for relaxation in
SCMs. Which one is favoured depends on the experimental conditions: tempera-
ture, applied field and amount of defects in the sample. The random-walk argu-
ment which relates the correlation length to the relaxation time holds in the linear-
response regime, i.e., when such tiny fields are applied that just slight deviations
from thermodynamic equilibrium are induced. On the contrary, relaxation from a
saturated configuration typically entails far-from-equilibrium dynamics. In this type
of experiments nucleation of soliton-antisoliton pairs or of a single DW adjacent to
a defect possibly initiates the relaxation process. Néel-Brown uniform rotation prac-
tically represent an alternative channel for relaxation only for very short segments
of chain, encountered in samples in which finite-size effects have been enhanced by
doping with non-magnetic impurities [10, 11].

It should not be forgotten that molecular spin chains are packed in three-
dimensional crystals. Though several synthesis strategies may be followed to mini-
mize interactions among chains, at least the dipolar interaction cannot be suppressed
completely. Therefore, below some temperature, a 3D magnetically ordered phase is
expected to appear. Whether such a phase is observed or not in a specific compound
depends on how long the relaxation time is at the transition temperature [14]. Gen-
erally, when the time needed for the system to equilibrate is much longer than ex-
perimental time scales, the distinctive features of the underlying equilibrium phase,
possibly ordered, cannot be evidenced. For weakly interacting spin chains, the ex-
pected transition temperature is much higher than interchain interaction in Kelvin
units (kTC � J ′ with the forthcoming notation). In fact, the 3D-ordering process
is “assisted” by the development of strong short-range correlations inside each
chain [15–17]. However, in realistic samples, defects prevent the intrachain cor-
relation length from diverging indefinitely, which eventually lowers the transition
temperature to the ordered phase. In several SCMs slow dynamics was observed
down to few Kelvins, before 3D ordering took place, right because of the presence
of defects and non-magnetic impurities.

Both SMMs and SCMs are characterized by slow dynamics of molecular origin,
acting at macroscopic time scales and in the absence of 3D magnetic ordering. Even
if impurities play a crucial role in SCMs, they usually do not bring enough disorder
to give rise to spin-glass behaviour. Consistently, slow dynamics is typically charac-
terized by a single time scale which does not display a super-Arrhenius behaviour at
any temperature [18–20]. Besides preventing the onset of 3D magnetic ordering, the
increase of relaxation time with cooling usually leads to complete blocking before
genuine quantum effects become evident [21–23].

From what written till now, it should be clear that many effects may interplay in
determining the magnetic behaviour of spin chains. We will focus on those systems
in which slow dynamics can be ascribed to each single chain and does not originate
from cooperative 3D interactions.

The goal of this chapter is that of highlighting the properties of SCMs with a
critical view to what has been done and what still deserves further investigation.
We will not try to cover in detail all the representative literature, for which the
reader is addressed to excellent reviews [6–9]. Although SCMs have been widely
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Fig. 8.1 Sketch representing the configurations whose free-energy difference is evaluated in the
text: a ferromagnetic ground state with all the spins parallel to each other (right) and a configuration
consisting of two domains with opposite spin alignment (left)

investigated, the interest of the physics community has not been comparable to that
shown for SMMs. This is partially due to the fact that the novelty of SCMs compared
to traditional 1D spin systems hardly emerged. Here we attempt to provide and
efficient overview of the essential, novel physics of SCMs and hope that the final
comment will be more benevolent. The chapter is organised as follows: Section 8.2
will cover the basic aspects of classical spin chains; the chemical frame will be
discussed within a bottom-up or building-block approach in Sect. 8.3; in Sect. 8.4
the spin Hamiltonians typically used to rationalise the physical properties of SCMs
will be introduced; relevant extensions of the Glauber model developed in the SCM
context without and with defects will be treated in Sects. 8.5 and 8.6, respectively;
phenomenological arguments not contained in the Glauber model but relevant for
understanding SCMs will be discussed in Sect. 8.7; a short section on perspectives
will conclude the chapter.

8.2 Thermal Equilibrium and Slow Dynamics in Ideal SCMs

In this section the peculiarities of classical spin chains with uniaxial anisotropy that
directly affect the physics of SCMs will be recalled. Indeed, the distinctive feature
of SCMs is that of approaching thermodynamic equilibrium slowly. By slowly we
mean that relaxation time becomes longer than milliseconds at temperatures of the
order of 10 K or lower. The reference equilibrium state to be reached is also relevant.
As already mentioned, as long as 3D interactions are negligible, no magnetisation is
expected in zero applied field at thermodynamic equilibrium. Long-range magnetic
order may be destroyed by thermally-excited spin waves or DWs either. The first
ones are effective in the absence of anisotropy, according to the Mermin–Wagner
theorem [24, 25]. The fact that disordering is, instead, driven by DWs in the pres-
ence of anisotropy can be easily understood recalling an argument presented in the
Landau–Lifshitz series [26]. Let us consider a group of N spins that preferentially
point along the same direction, say up or down. For the moment we assume the
axes of easy anisotropy to be collinear, as represented schematically in Fig. 8.1.
We evaluate the variation of the free energy associated with the creation of a DW
starting from a configuration with all the spins parallel to each other. Creating a
DW increases the energy by a factor E2 − E1 = Edw. On the other hand, such a
DW may occupy N different positions in the spin chain, so that the relative en-
tropy increase scales as S2 − S1 = k ln(N). The free-energy difference between the
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two configurations sketched in Fig. 8.1 is roughly �F ! Edw − kT ln(N). When
the thermodynamic limit N →∞ is taken, one immediately realizes that it is al-
ways convenient to split the system into groups of parallel spins. As a consequence,
long-range magnetic order is destroyed at any finite temperature. In principle, in
an infinite chain, the same mechanism may allow creating an indefinite number of
DWs. However, the average distance among them does depend on temperature and it
is inversely proportional to the correlation length [27]. It is worth remarking that in
the text-book argument given above the following assumptions have been implicitly
made:

1. DWs extended just only over one lattice unit
2. spin-wave excitations were not considered
3. the thermodynamic limit was taken.

Whether the first hypothesis is fulfilled or not depends on the relative strength of
exchange interaction and magnetic-anisotropy energy. This can be discussed more
concretely by considering the classical Heisenberg model with uniaxial anisotropy:

HH =−
N∑
i=1

[
JSi · Si+1 +D

(
Szi

)2]
, (8.1)

where Si are classical spins, J and D the exchange and the magnetic-anisotropy
energy, respectively; |Si | = 1 will be assumed henceforth. Though it does not entail
the complexity of many real systems, Hamiltonian (8.1) is a useful reference to
discuss the physics of SCMs. To the aim of distinguishing between two simple types
of DWs, we fix D > 0 and J > 0. With Hamiltonian (8.1), DWs can be larger
than one lattice spacing. In fact, the actual DW profile results from the competition
between the exchange energy (which is minimized by broadening the wall) and
the anisotropy energy (which favours a sharp wall). Domain walls whose structure
develop over more lattice units will be referred as broad; these are opposed to sharp
DWs in which the local magnetisation changes abruptly its sign, within one lattice
distance. The energy associated with a broad DW is Edw = 2

√
2DJ [28], namely

the energy needed to create one soliton “particle” in the spin chain [29]. For sharp
DWs, one obtains Edw = 2J , as per the Ising model. The crossover from sharp-
to broad-wall occurs at D/J = 2/3 [30–32]. The analytic formula for broad-DW
energy, Edw = 2

√
2DJ , was obtained in the continuum formalism and gets less and

less accurate as the threshold ratio is approached from below, D/J → (2/3)−.
If the Landau’s argument is rephrased for DW excitations of finite thickness w =√
J/2D, the counting of equivalent configurations with the same energy needs to

be modified and—in turn—the entropy contribution S2 − S1 = k ln(N/w). In this
case, splitting the uniform configuration into domains becomes convenient as soon
as the number of spins exceeds the product weEdw/kT . The latter threshold gives
an estimate of the average number of consecutive spins that can be found aligned
at a given temperature. To the leading order, the correlation length scales in the
same way at low temperature: ξ ∼weEdw/kT . The energy Edw represents the natural
“unit” which controls the divergence of the correlation length. Thus, in classical
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Fig. 8.2 Log-linear plot of ξ in lattice units computed with the transfer-matrix technique as func-
tion of the ratio Edw/kT for different values of D/J . For D/J = 0.1 (red crosses), 0.3 (green
crosses), 0.5 (blue stars) DWs are broad and Edw has been computed numerically on a discrete
lattice. For D/J = 5 (open squares) DWs are sharp and Edw = 2J has been used. The two solid
lines give the “reference” behaviour ξ ∼ e�ξ /kT which is indeed followed when DWs are sharp
(D/J = 5) but not when DWs broaden. Inset: Λ = ξ/w is plotted as a function of Edw/kT for
the values of D/J consistent with broad DWs. The universality of Λ is highlighted by the data
collapsing. Solid lines evidence the decrease of �ξ with increasing temperature [34]

spin chains with uniaxial anisotropy the characteristic exponential divergence of ξ
is closely related to the fact that ferromagnetism is destroyed by thermally excited
DWs.

In contrast to the Ising model [33], the classical spin Hamiltonian (8.1) can also
host spin-wave excitations, besides DWs. Due to the interaction between spin waves
and broad DWs an additional temperature-dependent factor appears in front of the
exponential in the low-temperature expansion of the correlation length [35]. More-
over, spin waves renormalise the DW energy at intermediate temperatures. The net
result of the complicated interplay between thermalised spin waves and DWs is that
the energy barrier controlling the divergence of ξ (usually called �ξ in SCM liter-
ature [6–9]) is generally smaller than Edw and takes different values depending on
the temperature range in which it is measured [34]. A similar effect was reported for
the activation energy of 2π sine-Gordon solitons in Mn2+-radical spin chains [36].
Figure 8.2 highlights how �ξ is constant and equal to Edw for sharp DWs, while
it varies significantly for broad DWs. However, the correlation length in units of w
keeps depending only the ratio Edw/kT , i.e., ξ/w =Λ(Edw/kT ). The inset shows
that the curves corresponding to broad DWs indeed collapse onto each other when
the ratio ξ/w is plotted as a function of Edw/kT .

As mentioned in the introduction, in realistic spin chains the divergence of
the correlation length is always hindered by the presence of defects and non-
magnetic impurities. This implies that results derived taking the thermodynamic
limit, N→∞, do not hold down to indefinitely low temperatures. If we assume—
for the time being—an idealized scenario in which such defects do not occur, a cer-
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tain number of DWs shall be present at any finite temperature. A simple random-
walk argument then relates the relaxation time to the correlation length: within a
time τ a DW performs a random walk over a distance proportional to ξ [37]. In
other words, the relation

ξ2 ! 2Dsτ (8.2)

can be assumed, with Ds being the diffusion coefficient. The latter generally in-
creases with increasing temperature. Moreover, it is expected to depend on temper-
ature differently for sharp or broad diffusing DWs. When presenting the Glauber
model we will see that Ds can also be interpreted as the attempt frequency to flip a
spin adjacent to a sharp DW.

Summarizing, the presence of uniaxial anisotropy produces an exponential diver-
gence of the correlation length with decreasing temperature. As the relaxation time
is related to ξ by a random-walk argument, it is also expected to diverge likewise,
so that

ξ ∼ e�ξ/kT τ ∼ e�τ /kT . (8.3)

In ideal 1D magnetic systems [29, 38] the correlation length is proportional to the
product of temperature by static susceptibility (measured in zero field):

χeqT ∼ ξ. (8.4)

The relaxation time can, instead, be obtained from dynamic susceptibility measure-
ments as follows

χ(ω,T )= χeq

1− iωτ , (8.5)

where ω is the frequency of the oscillating applied field and χeq is the static suscep-
tibility.2 Both real and imaginary parts of χ(ω,T ) display a maximum for ωτ = 1.
The basic experimental characterization of SCMs essentially reduces to determining
the temperature dependence of ξ and τ , which is—in principle—possible thanks to
(8.4) and (8.5).

Even within the idealized scenario presented in this section, the way in which�ξ
and �τ defined in (8.3) relate to the Hamiltonian parameters J and D depends on
the DW thickness,w, and on the temperature range in which such energy barriers are
measured. Besides this, model Hamiltonians of real SCMs may differ significantly
from (8.1). In the next section we will recall some synthesis strategies that have
been followed to produce different SCMs. The features of the employed building
blocks and the type of coupling among them eventually decide which model is more
appropriate to describe a specific SCM.

2The more general Cole-Cole equation is needed when relaxation is not characterised by a single
τ or to account for adiabatic contribution to χ [39].
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8.3 Tailoring SCMs by Building-Block Approach

The initial interest in Molecular Magnets stemmed from the attempt to design
molecular systems displaying long-range magnetic order. However, after more than
30 years of attempts there are only two room-temperature molecular magnets and
matters are no better for liquid-nitrogen temperatures [40, 41]. To have long-range
order it is necessary to build 2D or 3D structures of centres magnetically coupled.
This is difficult with molecular bricks since the number of coordination sites which
are available to propagate the exchange coupling in different directions is small due
to the presence of capping ligands. Such bricks are then more suitable to produce
low-dimensional systems, like clusters of metal ions (zero dimensional) [2] or spin
chains. These systems do not display long-range order but still show a variety of in-
teresting phenomena, including SCM behaviour. It is pedagogically useful to imag-
ine that synthesizing a SCM is like assembling bricks with a magnetic functionality
and a structural functionality. Usually, the latter is provided by organic molecules
and the former by metal ions. Building blocks need to be chosen and arranged in a
structure which maximizes the intrachain and minimizes the interchain interactions.
Bricks with magnetic functionality must be coupled ferro- or ferri-magnetically and
control of the magnetic anisotropy must be achieved. Chemists are not yet able to
have that detailed control but progress is fast and serendipity always helps.

Some centres of the building blocks shall be magnetically active, which implies
the presence of unpaired electrons that are formally assigned to magnetic orbitals,
either p, d, or f. In organic radicals the unpaired electrons normally belong to p or-
bitals: these are external orbitals which strongly interact with the environment. For
this reason such electrons hardly remain unpaired but rather tend to couple with
electrons of other molecules in covalent bonds, which eventually explains why few
stable organic radicals exist. In the following, we will mostly refer to nitronyl ni-
troxide radicals (NITR), whose structure is shown in Fig. 8.3(a). The unpaired elec-
tron is delocalised on the group O-N-C-N-O and, from the magnetic point of view,
basically behaves as a free electron. Its magnetic moment is essentially spin deter-
mined, with little orbital contribution due to small spin-orbit coupling. This implies
low magnetic anisotropy which is the final blow for purely organic SCMs.

NITR radicals have the right geometry for bridging two metal ions through their
equivalent oxygen atoms (extremes of the O-N-C-N-O fragment in Fig. 8.3(a)).
The above considerations suggest that NITR radicals are not appropriate for being
used alone, but they become excellent bricks for SCMs when coordinated to metal
ions [6–9, 42]. In fact, the interaction of the p orbitals with the d (or f) orbitals can
be strong, of direct type, both ferro and antiferromagnetic in nature.

Transition-metal ions provide good magnetic bricks. As anticipated in the intro-
duction, we will limit ourselves to consider SCMs possessing uniaxial anisotropy at
the brick level. In molecular systems, magnetic anisotropy is closely related to the
fact that the surrounding of metal ions is not spherically symmetric. Figure 8.4(a)
shows a generic metal atom (M) in an octahedral environment of ligands. Oxygen
atoms occupy the vertices of the octahedron. In the group M(hfac)2, for instance,
two oxygens of each hexafluoroacetylacetonate (hfac) ligand coordinate to M, thus
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Fig. 8.3 (a) schematic structure of the NITR radical: the unpaired electron is delocalised over
the O-N-C-N-O fragment (coloured), which is magnetically active. (b) and (c) show two possible
realisations of direct exchange coupling between the electron of each NITR radical and a metal
ion (intrachain interaction): each M can be bond to two NITR groups through oxygens occupying
either trans (b) or cis (c) positions in the coordination octahedron (see Fig. 8.4)

Fig. 8.4 Sketch of a metal ion (purple spheres) in an octahedral environment of oxygen-donating
ligands (red spheres representing oxygens). (a) metal-oxide coordination in an extended solid.
(b) and (c) M(hfac)2 moiety with two empty coordination sites in trans position (b) and in cis
position (c); the CF3 groups of hfac ligands are not shown for clarity sake. Green dashed lines
indicate the directions along which the intrachain exchange coupling mediated by a different ligand
(e.g., NITR radical) may propagate

occupying two neighbouring vertices of the octahedron per hfac molecule. The two
remaining, empty coordination sites can be in either trans or cis position (Fig. 8.4(b)
and (c), respectively) and may host oxygens of other ligands that can be used to
connect different M(hfac)2 moieties. The choice of NITR to bridge those moieties
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creates a strong, direct exchange coupling between M and the electron delocalised
on each O-N-C-N-O group (intrachain interaction, J ). Consistently with the two
possible coordination configurations of M(hfac)2 sketched in Fig. 8.4, the segments
connecting the metal ions with NITR oxygens may form an angle of 180◦ (trans)
or 90◦ (cis). Such segments specify the direction along which the intrachain in-
teraction propagates. The bulky hfac groups prevent efficient interchain exchange
coupling. The residual interchain interaction J ′ has mainly dipolar origin and it is,
typically, from 3 to 6 orders of magnitude smaller than the intrachain interaction.
For this reason, M(hfac)2 moieties are perfectly suited for realizing isolated spin
chains (|J ′/J | < 10−3). The interaction between successive magnetic bricks can
either be ferro- or ferrimagnetic and give rise to straight or zig-zag structures. Be-
sides, magnetic bricks are often characterized by low symmetry with the metal ions
occupying general positions in the unit cells, which does not impose limitations to
the orientation of anisotropy axes. Therefore, in practice, full collinearity among
anisotropy axes is more an exception rather than the rule [6–9].

Since SCM behaviour requires some magnetic anisotropy, the orbital momentum
must not be completely quenched. The surviving component may be associated with
single-ion anisotropy or with pair-spin interaction. In the former case, the residual
orbital contribution can show up in a g tensor different from the free-electron one
and/or in the zero-field splitting. With a large periodic table it is amazing that only
cobalt and manganese, with some iron and nickel have been used. Mn3+ is an exam-
ple of anisotropy determined by zero-field splitting; while in Co2+ the anisotropy
is associated with the g tensor [43]. The crystal-field theory is the simplest way to
describe the ground and low-lying levels of a transition-metal ion. The Hamiltonian
can be expressed as a sum of terms:

H=H0 +Hee +HCF +HLS, (8.6)

where H0 is the origin of the electron configuration (3d)n, Hee is the electron-
electron repulsion, HCF is the crystal-field term and HLS is the spin-orbit coupling.
For 3d ions Hee and HCF are comparable and larger than spin-orbit coupling. It
is customary to neglect in first approximation the spin-orbit coupling which is in-
troduced later as a perturbation. Mn3+ has a (3d)4 valence-electron configuration
which in octahedral symmetry yields a 5Eg ground state. This is unstable to phonon
coupling (Jahn-Teller theorem), which lowers the symmetry to D4h, namely to a
tetragonally elongated coordination. The ground state 5A1g, in zero-order approxi-
mation, is five-fold degenerate (no orbital degeneracy and S = 2 spin multiplet). The
spin-orbit perturbation yields no contribution in the first order, but to the second or-
der it admixes excited states with the ground state. This removes the degeneracy of
the spin multiplet and produces anisotropic components in the g tensor. Its effect
is usually summarized introducing an effective single-ion spin Hamiltonian of the
form:

H=−DŜ2
z −μBBgŜ, (8.7)

where g is a symmetric tensor. The first term is responsible for the zero-field splitting
of the 2S + 1 levels. It is often referred to as crystal-field term, even though this is
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misleading because it is not the crystal field which splits the levels but rather the
spin-orbit coupling. The spin-Hamiltonian parameters are determined by the spin-
orbit coupling constant λ and by the degree of mixing between the 5A1g ground
state and the excited states induced by HLS [44]. The lowering of the symmetry
produces axially symmetric g and D tensors3 whose components are related, to the
leading order, through the following formula:

D =Dz −Dx,y = λ(gx,y − gz)= λ�g. (8.8)

8.4 Realistic Spin Hamiltonians for Single-Chain Magnets

So far we have neglected the coupling among spin pairs, which can be written as

Hexch =−ŜpJŜk, (8.9)

where Ŝp and Ŝk are effective spin operators of any two interacting magnetic bricks
and J is a generic 3-by-3 matrix. Limiting ourself to intrachain spin-spin coupling,
we can neglect the contribution due to dipolar interaction which is typically much
smaller than the exchange one. When pair-spin interaction involves transition met-
als whose ground state is not orbitally degenerate, the isotropic contribution to the J
tensor dominates. As mentioned before, second-order perturbation theory prescribes
that the ground-state wave functions be modified because of the admixing with ex-
cited states mediated by spin-orbit coupling. When the corrected wave functions of
the bricks p and k are employed to compute the exchange integral, the anisotropic
and antisymmetric contributions emerge. The former is proportional to (�g/g)2,
while the latter is proportional to �g/g. This ratio is usually much smaller than
one, thus the antisymmetric term—if allowed by symmetry—is expected to domi-
nate with respect to the anisotropic exchange. For our purposes, it will be enough to
know that anisotropic contributions to J can be neglected when the g tensor is fairly
isotropic, as for Mn2+, Mn3+, high-spin Fe3+, etc.

When magnetic bricks comprise transition metals with orbitally degenerate
ground state, predicting the properties of the g, D and J tensors on simple foot-
ing becomes extremely complicated [45]. One possibility is that of considering
just a symmetric exchange tensor, which is then diagonal on a proper basis with
principal values Jx , Jy and Jz. If compatible with symmetry, an antisymmetric,
Dzyaloshinskii-Moriya term may be added independently.

In 1D magnetic systems realized by coupling radicals with neighbouring
transition-metal ions, anisotropic terms in J may originate only from the metal
atoms. The first successful examples consisted in ferrimagnetic chains of general

3Without loss of generality g and D can be assumed symmetric. Consequently, they are diagonal
on a proper reference frame with eigenvalues gx , gy , gz and Dx , Dy , Dz . The same notation will
be used for the J tensor.
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formula Mn(hfac)2NITR [17]. The radical is isotropic and so is Mn2+, therefore
J is expected to be proportional to the identity. Indeed, these systems represented
text-book examples of 1D Heisenberg ferrimagnets described by the Hamiltonian

HMn-rad =−J
N/2∑
p=1

Ŝ2p · (ŝ2p+1 + ŝ2p−1), (8.10)

where Ŝ2p stand for Mn2+ spin operators (lying at even sites 2p with S2p = 5/2),
while ŝ2p+1 are the radical spin-one-half operators. J is negative and tends to orient
the nearest-neighbouring spins antiparallel to each other. The temperature depen-
dence of the static susceptibility was fitted using the Seiden model [46] with |J | in
the range 300–475 K depending on the substituent R on the radical4 [47]. In the Sei-
den model the Mn spins are replaced by classical vectors, which—in the absence of
field and single-ion anisotropy—makes the model analytically solvable. Due to the
large value of the coupling between Mn2+ and NITR radicals, strong pair-spin cor-
relations develop, which is highlighted by a divergence of the correlation length at
low temperature (proportional to |J |/T and not exponential like in spin chains with
uniaxial anisotropy [47]). In the presence of such strong intrachain correlations even
a tiny interchain interaction J ′ may induce 3D ordering [15]. In Mn(hfac)2(NITiPr)
this happens at TC = 7.6 K [17]. ESR and NMR studies provided evidence of spin-
diffusion effect allowing for an estimate of the ratio between inter- and intrachain
exchange interaction of the order |J ′/J | = 2× 10−6 [16].

This example confirms that combining transition metals with organic radicals
is a powerful strategy for designing ideal 1D systems. An additional ingredient is
needed to realize a SCM: magnetic anisotropy. This may easily be introduced by
replacing Mn2+ with Mn3+. Recently, the observation of slow relaxation consistent
with SCM features was reported for ferrimagnetic spin chains consisting of Mn3+
and TCNQ or TCNE5 organic radicals [9, 48–50]. The relatively large multiplicity
of Mn3+ spins, S = 2, allows justifying their replacement by classical vectors. Thus,
the Seiden model is still a good starting point for describing the magnetic properties
of these systems, provided that single-ion-anisotropy terms are added. Even if the
modelling aspects are well-defined, the rationalization of Mn3+-radical SCMs is
complicated by the fact that J �D, meaning that the relevant excitations are broad
DWs.

The extreme anisotropic g tensor obtained for Co2+ in a tetragonally compressed
symmetry suggests that its coupling with NITR be, to leading order, of the Ising
type. This idea led to the synthesis of the first compound showing SCM behaviour:
Co(hfac)2(NITPhOMe) [3]. Experimental results pertaining slow dynamics have

4Henceforth, energies will be expressed in Kelvin units to make it easier to compare them with
thermal energy. The conversion factor to SI coincides with the Boltzmann constant k : 1 K =
1.3806503× 10−23 J.
5Acronyms stand for tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE).
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shown a substantial agreement with the kinetic version of the Ising model devel-
oped by Glauber [51]. Unfortunately, up to date, the static properties have not been
successfully modelled yet. The first reason is that above 40 K treating Co2+ as an
effective S =1/2 is not legitimate (the energy separation between the ground-state
Kramers doublet and the excited multiplets is about 100 K). A second reason relates
to the helical structure of this compound, because of which the elementary magnetic
cell contains 3 Co2+ and 3 radical spins. Apart from the question of reproducing its
static properties, it is instructive to give a closer look at the Hamiltonian of this
system to show how non-collinearity can be modelled in general. For temperatures
lower than 40 K, a reasonable Hamiltonian for the Co(hfac)2(NITPhOMe) chain is
given by

HCo-rad = −
N/(2Nr)∑
p=1

Nr∑
r=1

[
Ŝp,2rJ2r (ŝp,2r+1 + ŝp,2r−1)

+μB(Bg2r Ŝp,2r + gB · ŝp,2r+1)
]
, (8.11)

where both Ŝp,2r and ŝp,2r+1 are spin one-half operators associated with Co2+ ions
and radicals, respectively. p represents the magnetic cell index while r spans the
inequivalent Co2+ atoms inside each cell (with ŝp,2Nr+1 = ŝp+1,1). For the specific
case, r takes Nr = 3 different values which correspond to different orientations of
the principal axes along which the J and g tensors are diagonal. If spin projections
are expressed in the crystal frame, the tensors appearing in Hamiltonian (8.11) are
built applying a standard O(3) rotation to the diagonal tensors [43, 55, 56]. For-
mally, r in J2r and g2r labels different sets of rotation angles. The Landé factor of
the radical is isotropic and thus independent of r .

When spins S > 1/2 are considered, a magnetic brick may possess some single-
ion anisotropy, which implies that also the D tensor needs to be rotated in non-
collinear systems.

The thermodynamic properties of classical spin chains with nearest-neighbour
interactions can be efficiently computed by means of the transfer-matrix method.
Letting the general Hamiltonian be H=−kT ∑p V (Sp,Sp+1), the partition func-
tion Z is obtained integrating over all the possible directions along which each
unitary vector Sp may point:

Z =
∫
dΩ1

∫
dΩ2 · · ·

∫
eV (S1,S2)eV (S2,S3) · · · eV (SN ,S1)dΩN. (8.12)

Defining the transfer kernel as K(Sp,Sp+1) = eV (Sp,Sp+1) and assuming periodic
boundary conditions, the partition function Z can be recasted into the trace of the
N -th power of K(Sp,Sp+1):

Z =
∫
dΩ1

∫
dΩ2 · · ·

∫
K(S1,S2)K(S2,S3) · · ·K(SN,S1)dΩN = Tr

{
KN}.

(8.13)
When the transfer kernel is expressed on a basis of eigenfunctions, the partition
function reduces to a sum of eigenvalues Z =∑m λ

N
m , where ψm(Sp) and λm are
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solutions of the following eigenvalue problem:

∫
K(Sp,Sp+1)ψm(Sp+1)dΩp+1 = λmψm(Sp). (8.14)

For kernels that can be written in a symmetric form with respect to the exchange
Sp↔ Sp+1 the spectral theorem warrants that eigenvalues are real.6 They are also
positive, because the transfer kernel is a positive function of Sp and Sp+1, and
upper bounded so that they can be ordered from the largest to the smallest one:
λ0 > λ1 > λ2 > · · · . In the thermodynamic limit the asymptotic behaviour of the
partition function (8.13) is dominated by the largest eigenvalue λ0, Z ! λN0 , mean-
ing that the free energy per spin is given by f = −kT logλ0. Macroscopic exper-
imental observables are obtained as derivatives of f , but this method allows com-
puting microscopic averages as well. Apart from some fortunate cases [25], (8.14)
needs to be solved numerically by sampling the unitary sphere with a finite number
of special points. This number can be increased dynamically untill the desired preci-
sion is reached. Even though it may not be transparent from our description, a new
eigenvalue problem ought to be solved for any computed temperature or applied
field. Referring the reader to the existing literature for implementation details [52–
55], we remark that the transfer-matrix method allows computing the magnetic prop-
erties of classical spin chains more efficiently than, e.g., standard Metropolis Monte
Carlo. This makes it possible to fit spin Hamiltonian parameters directly to experi-
mental data sets. The major drawback is that the number of spin variables that appear
in the kernel scales like the range of interaction (2 for nearest-neighbour, 4 for sec-
ond nearest-neighbour interaction, etc.), which finally affects the complexity of the
eigenvalue problem in (8.14).

The transfer-matrix method can easily be extended to models in which classical
and quantum spins alternate, like in the Seiden model [46]. Noting that the quantum-
spin operators are not directly coupled with each other, one can integrate out their
degrees of freedom independently. In fact, a generic quantum spin located at site
2p + 1 experiences an effective “field” kT h2p,2p+2 = J (S2p + S2p+2) + μBgB .
The corresponding energy levels are ±kT |h2p,2p+2|, which depend parametrically
on the orientation of the two classical spins, S2p and S2p+2. After tracing over the
quantum degrees of freedom, one is left with the kernel

K(S2p,S2p+2)= 2 cosh(|h2p,2p+2|) exp

(
μBBgS2p

kT

)
exp

(
D(Sz2p)

2

kT

)
(8.15)

where the single-ion anisotropy and Zeeman term acting on the classical spins have
been added. The kernel (8.15) may be used to compute, e.g., the equilibrium sucep-
tibility of Mn3+-radical chains [48–50]. To the aim of sketching how to proceed for

6In the general, non-symmetric case left and right eigenfunctions of K(Sp,Sp+1) have to be con-
sidered, but the basic ideas of the transfer-matrix method remain the same.
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Fig. 8.5 Sketch of the periodicity associated with Hamiltonian (8.11): small, black arrows rep-
resent radical spins ŝp,2r+1, while the large coloured arrows represent the metal-ion ones Ŝp,2r .
The kernel (8.16) depends only on Sp,2 and Sp+1,2 (blue arrows) because an integration over the
internal degrees of freedom Sp,4 (red arrows) and Sp,6 (green arrows) has been performed

modelling non-collinearity, let us substitute the spins Ŝp,2r in Hamiltonian (8.11) by
classical vectors.7 Even after integrating out the radical degrees of freedom, the are
still 3 non-equivalent classical spins in each magnetic unit cell, resulting in 3 differ-
ent kernels if B is applied along a generic direction: K(Sp,2,Sp,4), K(Sp,4,Sp,6)
and K(Sp,6,Sp+1,2). The role of the kernel (8.15) is played by

K(Sp,2,Sp+1,2)=
∫
dΩ4

∫
K(Sp,2,Sp,4)K(Sp,4,Sp,6)K(Sp,6,Sp+1,2)dΩ6,

(8.16)
obtained by tracing over the degrees of freedom internal to the considered cell, dΩ4

and dΩ6.8 The way in which the kernel is built is sketched pictorially in Fig. 8.5.
In the thermodynamics limit the partition function is given by Z ! λN/(2Nr)0 , where
the number of spins have been replaced by the number of unit cells N/(2Nr).

Due to non-collinearity, a strong anisotropy in the D, g or J tensors may not
necessarily be evident at the macroscopic level [56]. More concretely, having similar
saturation values for the magnetisation along different crystallographic directions
may still be compatible with a strong uniaxial character at the level of individual
bricks. Non-collinearity is also consistent with an inversion of the directions of easy
and hard magnetisation by increasing temperature [55] or with the vanishing of the
correlation length for some specific applied fields [57].

In passing, we note that finite-size effects can be taken into account in the general
transfer-matrix framework [52] as well as interchain interactions if treated at the
mean-field level [15, 58, 59].

In the cases in which one of the principal values of the D or J tensors is much
larger than the other two (say Jz � Jx, Jy ), spin operators can be substituted by
two-valued classical variables σp = ±1. In this way, the problem reduces to the

7Even though this is not justified for the specific case of Co2+, the classical approximation allows
us to discuss the general formalism.
8Actually, the choice of the unit cell is not unique: one might integrate over any pair of inter-
nal degrees of freedom dΩ2r . This turns necessary in order to compute microscopic averages of
individual spin components.
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Fig. 8.6 Sketch of a two-fold non-collinear Ising chain. The local anisotropy axes have been
chosen coplanar for simplicity and form an angle θ with the chain axis c. For θ < π/4 and J > 0,
slow relaxation is expected only when B is applied parallel to the chain axis

Ising Hamiltonian

H=−J
N∑
p=1

σpσp+1 −μBB

N∑
p=1

gpσp, (8.17)

in which J and gp may contain information about non-collinearity. In Fig. 8.6 a
sketch of a two-fold, non-collinear Ising chain is shown. Assuming that both the
g and J tensors have only one non-zero component along their principal axes,
the corresponding parameters in Hamiltonian (8.17) are given by J = cos(2θ)Jz
and gp = cos(θ)gz if B is parallel to the chain axis (c axis in Fig. 8.6) while
gp = (−1)p sin(θ)gz if B is perpendicular to the chain.9 The framework in which
static properties of SCMs can be modelled seems to be well-defined. However, it
should not be forgotten that the genuine 1D static behaviour can be accessed only
above a certain temperature Tb, dependent on the specific experiment, below which
slow dynamics starts playing a major role. Moreover, finite-size effects or 3D inter-
chain interactions may come into play at higher temperature than Tb [14]. On the
high-temperature side, distinctive 1D features (short-range order) smear out in the
isotropic paramagnetic phase. All these phenomena set limitations to the applicabil-
ity of any equilibrium 1D model.

8.5 Glauber Model and Single-Chain Magnets

In this section we will assume the anisotropy at the brick level to be large enough
that Hamiltonian (8.17) suffices to discuss the important features of slow dynamics.
A kinetic version of the Ising model was proposed by J.R. Glauber in 1963 [51].
As based on stochastic dynamics, this model relates to coarse-grained dynamics,
typically some orders of magnitude longer than a Larmor period.

Following Glauber, let P(σ , t) be the probability of occurrence of some config-
uration σ = σ1, . . . , σp, . . . , σN at time t and wσp→−σp the probability of reversing

9The reader is addressed to Ref. [43, 45] for a more rigorous treatment.
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the p-th spin per unit time. The master equation of the problem, thus, reads

d

dt
P (σ , t) = −

N∑
p=1

wσp→−σpP (σ1, . . . , σp, . . . , σN , t)

+
N∑
p=1

w−σp→σpP (σ1, . . . ,−σp, . . . , σN , t). (8.18)

To model the magnetisation dynamics and a.c. susceptibility it is not necessary to
solve (8.18): one can limit oneself to single-spin averages sp(t)

sp(t)=
∑
{σ }
σpP (σ , t). (8.19)

It can be shown that spin averages fulfill the differential equation

dsp
dt

=−2〈σpwσp→−σp 〉, (8.20)

where 〈. . . 〉 denotes, again, the time-dependent average performed by means of
P(σ , t). In order that dynamics drives the system towards Boltzmann equilibrium,
the detailed-balance condition shall hold

Peq(σ1, . . . ,−σp, . . . , σN)
Peq(σ1, . . . , σp, . . . , σN)

= wσp→−σp
w−σp→σp

. (8.21)

The equilibrium probabilities on the left-hand side of (8.21) are obtained reversing
the p-th spin while leaving the other (N − 1) unchanged. Their ratio can be written
as follows

Peq(σ1, . . . ,−σp, . . . , σN)
Peq(σ1, . . . , σp, . . . , σN)

= exp[−κσp(σp−1 + σp+1)] exp(−hpσp)
exp[κσp(σp−1 + σp+1)] exp(hpσp)

= [1− 1
2σp(σp−1 + σp+1) tanh(2κ)][1− σp tanh(hp)]

[1+ 1
2σp(σp−1 + σp+1) tanh(2κ)][1+ σp tanh(hp)]

(8.22)

with κ = J/kT and hp = μBBgp/kT . The above relation suggests the following
form for the transition probability:

wσp→−σp =
1

2
α

[
1− 1

2
γ σp(σp−1 + σp+1)

][
1− σp tanh(hp)

]
, (8.23)

with γ = tanh(2κ), so that detailed balance (8.21) is automatically fulfilled. Equa-
tion (8.23) corresponds to Glauber’s original choice; other transition probabilities
fulfilling (8.21) could be chosen [60, 61], but—to our knowledge—they have not
been considered in the context of SCMs. Note that the parameter α entering (8.23)
sets the natural time unit of the model. It can be interpreted as the attempt frequency
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of an isolated spin, i.e., the transition probability for vanishing exchange coupling,
J = 0. Already Suzuki and Kubo commented that, in general, α should depend on
temperature [62]. We will come back to this important point further on. Combin-
ing (8.20) and (8.23), a set of differential equations for spin averages is obtained

1

α

dsp
dt

=−
[
sp− γ

2
(sp−1+ sp+1)

]
+
[

1− γ
2
(rp−1,p+ rp,p+1)

]
tanh(hp), (8.24)

where rp,l = 〈σpσl〉. This means that the knowledge of pair-spin correlations is
needed to solve (8.24). In turn, the knowledge of three-spin correlations is needed
to obtain rp,l and so on. In other words, (8.24) is the first one of an infinite hierar-
chy of kinetic equations [51, 63]. A judicious truncation of this series is, therefore,
required in order to get analytic results which could easily be compared with exper-
iments. In the following, we will analyse different decoupling schemes, related to
different physically relevant situations. Another crucial point concerns the choice of
boundary conditions for the system (8.24). A realistic SCM consists of a collection
of open arrays of spins coupled via the exchange interaction. The length distribution
of these arrays is determined by the spatial distribution of defects in a sample. In this
sense, open boundary conditions give a more accurate description of SCM dynamics
than periodic boundary conditions. However, we start considering periodic bound-
ary conditions because calculations are less involved but still provide insight into
the essential features which are not affected by the presence of defects.

When no external field is applied, hp = 0, the dependence on rp,l disappears
from (8.24) that then reduces to a linear system of first-order differential equa-
tions. The corresponding eigenvalue problem involves a circulant matrix and is
diagonalized by a discrete Fourier transform. A general solution takes the form
sp =∑q s̃qeiqpe−λq t , with

λq = α(1− γ cosq) (8.25)

and q = 0,2π/N, . . . ,2π(N − 1)/N set by periodic boundary conditions. The ini-
tial configuration determines, instead, the Fourier amplitudes. If the system is pre-
pared into a ferromagnetic saturated state with sp = 1 for every p, the only nonzero
Fourier component corresponds to q = 0, that is s̃0 = 1/N . Accordingly, the mag-
netisation is expected to follow a mono-exponential relaxation with a characteristic
time scale τ = 1/[α(1− γ )]. For ferromagnetic coupling, J > 0, τ diverges expo-
nentially at low temperature like e4κ . Because of this divergence, some ferromag-
netic ordering may persist over macroscopic time scales in the absence of applied
field. In this sense, the work of Glauber has foresaw what would be observed in
SCMs about forty years later. The realization of these systems gave the opportunity
to generalize the original Glauber model to include features of realistic SCMs and
specific experiments.

The response to a tiny a.c. field B = B ′e−iωt is modelled by linearising the hyper-
bolic tangent in (8.24). But this does not eliminate the dependence on pair-spin cor-
relations. Already Glauber circumvented this problem replacing rp−1,p and rp,p+1
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by their equilibrium average, equal to tanh(κ) [51]. Limiting himself to equiva-
lent spins (gp = g independent of the site), he predicted an a.c. susceptibility of the
form (8.5), provided that χeq was taken as the static susceptibility of the Ising model
and τ = 1/[α(1−γ )]. As mentioned in the previous section, non-collinearity among
local anisotropy axes is more the rule rather than an exception. This affects Hamil-
tonian (8.17) through the site-dependent Landé factor. The spatial periodicity of gp
defines the magnetic unit cell. It is worth remarking that the periodicity of gp gener-
ally depends on the direction along which the magnetic field is applied. The simplest
case of a two-fold non-collinear Ising chain is sketched in Fig. 8.6. With relatively
small effort, an analytic formula for the a.c. susceptibility can be derived, which ac-
counts for non-collinearity or non-equivalence of magnetic centres [64]. For ω� α,
a resonant behaviour, i.e. a frequency-dependent peak in χ(ω), is expected only
when the field is applied along specific crystallographic directions (e.g., the c axis
in Fig. 8.6). In particular, those directions are the ones along which the ground-
state magnetisation is uncompensated. This prediction for the dynamic response of
non-collinear Ising chains was indeed supported by experiment [56, 64, 65].

For several years the truncation schemes summarized above had represented the
starting point for generalizations of the Glauber model which aimed at giving a
better account for the characteristics of real SCMs. Then, the restriction to zero-
field a.c. susceptibility prevented from modelling the dependence of relaxation time
on static applied field. A breakthrough was represented by the work of Coulon and
co-workers [66] who actualized the local-equilibrium approximation for pair-spin
correlations proposed by Huang in the seventies [63]. Let us start from refreshing
the main ideas of local-equilibrium approximation for the case of periodic boundary
conditions, as treated by Huang. Equivalent magnetic moments, gp = g, coupled
ferromagnetically will be assumed. With these hypotheses, the single-spin averages
are independent of the site at thermodynamic equilibrium and read

m= 〈σp〉eq = sinh(h)

�1/2
with �= e−4κ + sinh2(h), (8.26)

where 〈. . . 〉eq stands for equilibrium average, given by Boltzmann statistics. Trans-
lation invariance holds also for nearest-neighbour pair-spin correlations, of our in-
terest, which are given by

Γ = 〈σp+1σp〉eq = sinh2(h)

�
+ e−4κ [cosh(h)−�1/2]

�[cosh(h)+�1/2] . (8.27)

By means of (8.26), sinh(h) and cosh(h) appearing in the nearest-neighbour corre-
lation can be expressed in terms of m and e−4κ , which yields

Γ = 1− 2(1−m2)

1+√m2 + (1−m2)e4κ
. (8.28)

In two physically relevant situations translational invariance may be assumed for
time-dependent spin averages, sp , as well. The first one corresponds to having equal
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initial conditions for all spins: sp(0)= μ, with −1≤ μ≤ 1. Since gp = g has been
assumed, this initial condition is simply realized when a magnetic field (possibly
zero) has been switched on far in the past (t→−∞) and changed to some different
value at time t = 0. The second situation is a typical a.c. susceptibility experiment,
for which only the stationary response to a tiny external drift is relevant. In these
two cases, time-dependent spin averages become independent of the site and the
label p can be dropped from the variables sp in (8.24). The local-equilibrium ap-
proximation consists in assuming that (8.28), which establishes a closed relation
between equilibrium spin averages and nearest-neighbour correlations, holds true
for time-dependent averages as well, namely out of equilibrium. Equation (8.24),
thus, simplifies as

1

α

ds

dt
=−(1− γ )s + (1− γΓ ) tanh(h), (8.29)

where Γ is given by (8.28) withm is replaced by s (time-dependent average). Within
the Glauber model, the local-equilibrium approximation is nothing but a trick to
truncate the hierarchy of kinetic equations. The resulting equations of motion are
generally non-linear, the non-linearity arising from Γ [s]. Fortunately enough, equa-
tion (8.29) can be solved analytically [63]. More importantly, for t →∞ the ex-
act steady-state solution is recovered. For instance, a mean-field truncation scheme
might alternatively be assumed, setting Γ = s2, but this would not reproduce the ex-
act steady-state solution. Note that local-equilibrium approximation does not require
small applied fields. For what concerns SCMs, much interest relates to the study of
linear departures from equilibrium. Following Pini and co-workers [67], let us split
the field into a static contribution of any intensity (h0 = μBB0g/kT ) plus an oscil-
lating field of much smaller intensity B ′ and with frequency ω: h = h0 + h′e−iωt .
As a consequence, s is expected to deviate slightly from its equilibrium value,
m(T ,B0), and (8.29) can be linearised as follows:

1

α

dδs

dt
=−(1− γ + 2γ tanh2(h0)

)
δs + (1− tanh2(h0)

)
h′e−iωt , (8.30)

where δs = s(t) − m and the fact that Γ [s] ≈ Γ [m] + (dΓ/dm)eqδs with
(dΓ/dm)eq = 2 tanh(h0) has been used. The stationary behaviour is obtained in-
serting the trial solution δs = δ̃se−iωt in (8.30), which yields the a.c. susceptibility.
The resulting formula is equivalent to (8.5) and χeq is the susceptibility that would
be obtained by differentiating m in (8.26) with respect to B . This matching is a di-
rect consequence of the fact that local-equilibrium approximation provides the exact
steady-state solution for s. The relaxation time is, instead, given by the inverse of
the prefactor of δs in (8.30):

τ = 1

α(1− γ + 2γ tanh2(h0))
. (8.31)

The Glauber relaxation time is recovered in the limit h0 → 0 and, as already pointed
out, diverges exponentially upon lowering temperature. Note that the net effect of
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a static field is that of removing such a divergence, though the dependence of the
relaxation time on B0 is much less dramatic than on temperature.

The Glauber model was extended to weakly interacting spin chains by Zǔmer
[68]. Similarly to Scalapino [15], he treated the interchain interaction as a mean
field, limiting his analysis to the critical region around the transition to a 3D or-
dered phase. Equation (8.31) may allow generalizing Zǔmer’s results to lower tem-
peratures, away from the critical region. A joint theoretical and experimental in-
vestigation of this phenomenon would provide important information on the critical
behaviour of SCMs [14]. A realistic model should, however, take into account finite-
size effects induced by the presence of defects.

8.6 Glauber Model for Finite Chains

Though it may sound somewhat technical, the study of finite-size effects have played
a central role in theoretical and experimental characterization of SCMs. As a first
step, open boundary conditions need to be considered, which makes the transition
probability of extremal spins take the form

wσ1→−σ1 =
1

2
α[1− ησ1σ2]

[
1− σ1 tanh(h1)

]

wσN→−σN =
1

2
α[1− ησNσN−1]

[
1− σN tanh(hN)

]
,

(8.32)

with η= tanh(κ) (and κ = J/kT ), obtained again from the detailed-balance condi-
tion. The kinetic equations for spin located at boundaries are modified accordingly:

1

α

ds1
dt

=−(s1 − ηs2)+ (1− ηr1,2) tanh(h1)

1

α

dsN
dt

=−(sN − ηsN−1)+ (1− ηrN−1,N ) tanh(hN).
(8.33)

In the absence of external field, the characteristic time scales can be deduced by
inserting the trial solution sp = (Apeipq + Are−ipq)e−λq t into system (8.24) that
still holds for bulk spins, with labels 2 ≤ p ≤ N − 1. The relation between λq and
q remains the same as in (8.25) but the values taken by q are different from the
case of periodic boundary conditions. Due to the loss of translation invariance, both
amplitudes Ap and Ar must be considered. A pair of equations for these amplitudes
are obtained inserting the trial solution into (8.33), with λq given by (8.25). For
B = 0, this is a homogeneous system that only admits the trivial solution Ap =
Ar = 0 unless the determinant of the coefficients of Ap and Ar is zero. By requiring
this, the following implicit equation for the values of q is obtained [69, 70]:

tan
[
(N − 1)q

]=− 2ξ̂ tanq

1− ξ̂2 tan2 q
(8.34)

with ξ̂ = η/(γ − η). The q = 0 solution has to be rejected because it is independent
of N for every temperature, which is not physical. The remaining solutions will
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be labelled with ν, i.e., λν . For ferromagnetic coupling, J > 0, the eigenfrequency
corresponding to the slowest time scale can be expanded for low temperatures to
get [71]

λ1 = 2α

N − 1
e−2κ +O

(
e−4κ). (8.35)

The previous expansion contributed significantly to understanding SCMs. From
(8.35) one expects the slowest degrees of freedom of the system to equilibrate with
a relaxation time τN ∼ Ne2κ . The fact that the energy barrier at the exponent is
halved with respect to Glauber’s result suggests that, at low temperature, relax-
ation is driven by nucleation of a DW from a boundary. At higher temperatures,
the Glauber behaviour is recovered. This happens when the correlation length be-
comes significantly smaller than N and physics becomes independent of boundary
conditions. Thus, in real systems, the relaxation time is expected to diverge like e4κ

at high temperatures—when ξ is much smaller than the average distance among
defects—and like e2κ at low temperatures. The experimental observation of such a
crossover represented an important step in establishing that SCM behaviour could,
indeed, be described properly in the framework of Glauber dynamics [4, 6]. When
ξ �N , the first step of relaxation is analogous to the nucleation of a critical droplet
to reverse the magnetisation in metallic nanowires or elongated nanoparticles [13].
Depending on geometrical characteristics of the sample, non-uniform magnetisa-
tion reversal may be favoured with respect to the standard Néel-Brown mechanism
(uniform rotation). The latter is known to follow an Arrhenius law, τ ∼ e�τ /kT ,
with an energy barrier proportional to the sample volume. To the leading order, the
temperature dependence is of the Arrhenius type also in the case of non-uniform
magnetisation reversal, but �τ typically does not depend on the sample size. This
fact directly originates from the local character of DW excitations that serve as nu-
clei to initiate magnetisation reversal (relaxation), both in metallic nanowires and in
SCMs at low temperature.

After being nucleated at one boundary, a DW may reach the other end of the
chain with probability ∼ 1/N by performing an unbiased random walk [31]. This
is at the origin of the dependence on N appearing in (8.35) and, consequently,
in τN . When this is the main channel for relaxation, in real SCMs one would ex-
pect to observe a decrease of the pre-exponential factor of the relaxation time by
increasing the number of defects (see (8.3)); the energy barrier of the Arrhenius
law should, instead, remain constant: �τN = 2J . This trend was qualitatively con-
firmed in Co(hfac)2(NITPhOMe) compounds in which part of the Co2+ ions were
substituted, in different amounts, by non-magnetic Zn2+ atoms [10, 11]. The fact
that the pre-exponential factor increases with the system size is typical of a sizeable
time elapsed during DW propagation in the relaxation process. In passing, we note
that the opposite trend, i.e., a decrease of the pre-exponential factor of relaxation
time with increasing the system size, was predicted for nanowires in which mag-
netisation reversal is forced to initiate from the bulk (e.g., in toroidal samples or
with enhanced anisotropy at the ends) [13]. In that case, the probability to nucleate
a soliton-antisoliton pair increases with N and the reversal rate consequently.
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The local-equilibrium approximation may also be used to decouple the hierar-
chy of Glauber equations when a finite field is applied to an open chain. It is con-
venient to linearise directly (8.24) with respect to δsp = sp − mp . Note that the
equilibrium values mp are now site-dependent due to the lack of translation in-
variance. The kinetic equations for δsp contain the variation of nearest-neighbour
correlation functions δrp−1,p and δrp,p+1. For a chain of N equivalent spins, with
gp = g, Matsubara and co-workers provided a set of analytic relations to express
equilibrium correlations 〈σpσp+1〉eq as functions of single-spin averages of open
chains of different length [72]. If one assumes that such relations still hold true out
of equilibrium, pair-spin variations can be written in terms single-spin averages:
δrp,p+1 = AN,pδsp + BN,pδsp+1 with AN,p and BN,p depending only on equi-
librium quantities (the reader is addressed to Ref. [66] for details). With the same
convention introduced in (8.30) the response to an a.c. field B ′e−iωt superimposed
to a static field B0 is described by a system of linear equations of the form:

dΣ

dt
=−MΣ + α(1− tanh2(h0)

)
h′e−iωtΨ , (8.36)

where Σ = (δs1, . . . , δsN)T; the matrix M and the vector Ψ are only functions of
equilibrium averages, model parameters, temperature and static field (explicit ex-
pressions can be found in Ref. [67]). Let φν and λν be the eigenvectors and eigen-
values of M , namely Mφν = λνφν . The stationary solution of (8.36) then reads

Σ = α(1− tanh2(h0)
)
h′e−iωt

∑
ν

Ψ · φν
λν

φν
1− iωτν (8.37)

with τν = 1/λν . The dynamic susceptibility is given by χ(ω)= gμBeiωt
∑
p δsp/B

′,
where δsp are the components of the Σ vector in (8.37). With respect to the case
with periodic boundary conditions, the choice of a site-independent Landé factor
does not yield an a.c. response dependent on a single relaxation time. The relative
weight of different contributions labelled by ν shall depend on temperature and on
the static field B0. In practice, the matrixM can be diagonalized numerically for any
values of B0 and T . The size of this matrix, N by N , is set by the number of spins
in the chain. Realistic values of N fall in the range 10–104, meaning that χ(ω) can
easily be computed with standard diagonalisation routines. Among other things,
this allows checking whether a unique relaxation time is dominating the summa-
tion (8.37) and thus χ(ω). When the distribution of defects in a SCM compound
is not peaked, an average over all the possible lengths may be required to com-
pare the theoretical susceptibility with experiments [10, 11, 67]. Analogously, for a
comparison with experiments on powder samples an average over all the possible
orientations of the applied field with respect to the easy axis might be needed [66].
Due to space limitations, we prefer not to enter the details of those averaging pro-
cedures but rather address to the existing literature.

The divergence of relaxation time upon lowering temperature can be interpreted
as critical slowing down. The 1D Ising model displays a magnetic phase transition
at zero temperature, meaning that the critical point is located at the origin of the
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(T ,B0) plane, that is T = 0 and B0 = 0. Since the divergence of the correlation
length is hampered by defects, it is more appropriate to investigate the critical be-
haviour of SCMs with finite-size scaling. For B0 = 0, Luscombe et al. noted that the
ratio between the relaxation time of a finite chain, τN , and that of the infinite chain,
τ originally obtained by Glauber, is a universal function of x =N/ξ , when both N ,
ξ �1:

τN

τ
= f (x)= 1

1+ (ω(x)
x
)2
, (8.38)

where ω(x) is the smallest root of the transcendental equation ω tan(ω/2)= x [70].
By definition, f (x) tends to one for x� 1; while for x� 1 it is f (x)! x/2. The
reader may easily verify this limit by using formulae τ ! e4κ/2α, τN ! Ne2κ/2α
and ξ ! e2κ/2, which hold for N , ξ �1 (see (8.35) and (8.25)). More recently,
Glauber dynamics of the open chain in presence of realistic fields was studied by
Coulon and co-workers [66] who found

τN(B0 = 0)

τN(B0 �= 0)
= 1+ a2h2

0; (8.39)

remarkably, the constant on the right-hand side is given by a = 2ξf (x
√

2/3), f (x)
being the scaling function defined in (8.38). For x � 1, the limit a = 2ξ is recov-
ered by expanding the hyperbolic tangent in (8.31) (remember that f (x)→ 1 in
this limit). In the opposite limit, one has a =√2/3N consistently with the work of
Schwarz developed in the context of helix-coil transition of polypeptides [73]. The
quadratic dependence on B0 of the ratio of relaxation times in the vicinity of the crit-
ical point stated by (8.39) was confirmed by experiment: first, in SCMs made up of
repeating trinuclear units, Mn3+-Fe3+-Mn3+ and Mn3+-Ni2+-Mn3+ [66], later in
Co(hfac)2(NITPhOMe) compounds [67]. As pointed out in Ref. [66], the quadratic
dependence on B0 is also expected for SMMs. In fact, when repeating units in a spin
chain consist of SMM-like centres an additional dependence on temperature and on
B0 enters the Glauber model through the attempt frequency α. Thus, information
about the 1D universality class is somehow contained in the scaling function f (x)
rather than in the quadratic take-off of τN(B0 �= 0) as a function of the applied field.

In summary, the Glauber model prescribes that precise relations among char-
acteristic energy scales shall hold for a text-book SCM. Recalling (8.3) and (8.4),
the barrier controlling the divergence of the correlation length can be directly de-
duced from static susceptibility measurements at high enough temperature. The last
condition is required in order for ξ to be smaller than the distance among defects.
When this ceases to hold true, a saturation of the product χT is observed, at low
T . According to the Ising model �ξ = 2J , which implies that the energy barrier
of the relaxation time is expected to be �τ = 2�ξ = 4J at high temperature and
�τN =�ξ = 2J at low temperature. Moreover, the crossover between the thermo-
dynamic limit (ξ � N ) and the finite-size regime (ξ � N ) should be described
by (8.38) and (8.39) in the presence of a static applied field. SCMs represent a class
of model systems in which most of these predictions were confirmed. Often, find-
ing a quantitative agreement required ad-hoc generalizations of Glauber’s idealized
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picture, without renouncing its basic concepts. Some of those generalizations will
be discussed in the next section.

8.7 Beyond the Glauber Model

An important generalisation of the Glauber model relates the temperature depen-
dence of the parameter α [74]. Introduced in (8.23) for the single-spin transition
probability, this parameter turns out to be the proportionality coefficient between
the low-temperature expansions of the correlation length and the relaxation time:
τ = 2ξ2/α. In other words, for the time scales of interest, one has that α = 4Ds,
with Ds being the diffusion coefficient for thermally-driven DW motion (see (8.2)).
Given this equivalence, we will focus on Ds henceforth. For explaining the experi-
mental results of a SCM made of Mn3+-Ni2+-Mn3+ repeating units it was proposed
that Ds ∼ e−�A/kT , where �A was the global effective anisotropy energy of each
unit [4]. The relationship between the energy barriers of the correlation length and
the relaxation time was adapted accordingly: �τ = 2�ξ + �A. The last formula
has been validated by experiments on a variety of SCMs with sharp DWs. In those
cases, it was also found that the energy barrier of τ has to be modified consistently
at low temperature, namely �τN =�ξ +�A.

One minor remark is that the �A contribution to the energy barrier of the re-
laxation time is justified only when some single-ion anisotropy is present. For in-
stance, we have seen that Co2+ in distorted octahedral environment is usually as-
sumed to behave as an effective spin one-half at low temperature. This assump-
tion is not consistent with a finite �A for SCMs based on Co2+. More importantly,
the picture appears more blurred for broad DWs. Let us refer again to Hamilto-
nian (8.1). As mentioned in Sect. 8.2, for J > D the correlation length in units of
DW width is a universal function of the temperature expressed in units of DW en-
ergy: ξ/w =Λ(Edw/kT ). It has been known since the eighties that a spin wave can
propagate across a broad DW acquiring a phase shift10 [75]. In order to conserve the
total magnetisation at short time scales, the DW is left displaced after this scattering
event [76]. When many of such events occur incoherently and involve thermalised
spin waves, the resulting DW motion may be assimilated with that of a Brownian
particle. Indeed, still in the eighties, it was shown that Ds scales like the square of
the ratio kT /Edw in the absence of damping [77, 78] and linearly when some damp-
ing term is included [79, 80]. Dimensional analysis suggests to complete the latter
result as

Ds ∝ w
2

τd

kT

Edw
, (8.40)

with τd being a characteristic time scale of the problem, associated with short-time
dynamics. Equation (8.40) is consistent with recent numerical results reported in

10Recently, magnonic applications of DWs which exploit such a phase shift has been proposed in
the context of metallic nanowires [81–83].
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Ref. [34]. In the same paper, the activated behaviour of Ds expected for sharp DWs
was recovered as well. A qualitative argument for the different temperature depen-
dence of Ds expected for sharp and broad DWs can be given starting from zero-
temperature dynamics. In the continuum formalism one finds that a field of any
intensity applied along the easy axis is able to move a broad DW [28, 75, 84–87]. In
the opposite limit, it was shown that a finite threshold field is needed to let a sharp
DW propagate [30]. In this case, translating a DW requires local modifications of
the spin profile, which create an effective Peierls potential. This potential is periodic
with respect to the position of the DW centre and the difference between its minima
and maxima decreases exponentially with increasing the DW width [32, 88, 89],
till it vanishes in the continuum limit. It seems, therefore, plausible to expect a
thermally-activated diffusion coefficient only for sharp DWs.

While for sharp DWs the relaxation time depends on J , D and T independently,
our present understanding of SCMs suggests that τ should depend only on the ratio
Edw/kT for broad DWs. This can be readily deduced by relating τ to the correla-
tion length ξ = wΛ(Edw/kT ) by means of the random-walk argument and (8.40)
(remember that this argument holds only for ξ �N ) [34].

The standard theoretical framework to deal with magnetisation dynamics is the
Landau-Lifshitz-Gilbert (LLG) equation. In that context, one expects τd introduced
in (8.40) to be of the order of the dumping time: τd ! (1 + α2

G)/(αGγ0HA) !
�/(2DαG), where αG � 1 is the Gilbert damping [90], γ0 is the gyromagnetic factor
and HA the anisotropy field. For values of D that are realistic for SCMs, �/D falls
in the picosecond range while the damping constant is typically αG = 10−1–10−4.
As slow dynamics is usually probed in SCMs at time scales longer than millisec-
onds, it clearly pertains to long-time behaviour in the language of LLG equation.
Moreover, since physics of SCMs is dictated by thermal fluctuations, a stochastic
noise should be included in numerical simulations [91–95]. In spite of the enor-
mous improvements experienced in computational capabilities [96–98], performing
a stochastic-dynamic simulation which covers a time window of several orders of
magnitudes still remains prohibitive. In this sense, the brute-force approach to SCMs
dynamics does not seem promising for the next future.

With respect to the sharp-wall case, there is no analogous of the Glauber’s for-
malism for SCMs with broad DWs. Experimental realizations basically consist of
ferrimagnetic chains alternating Mn3+ with an organic radical [48–50]. A reason-
able model is the one which produces the kernel (8.15), where Mn spins are treated
as classical vectors. In the experimentally accessible region�ξ can be much smaller
than Edw—up to about half of it—due to spin-waves renormalisation [9]; while for
sharp DWs one has�ξ = Edw at any temperature kT < J [34]. This fact needs to be
taken into account in the experimental characterization of SCMs with broad DWs
(see Fig. 8.2). For what concerns the barrier of the relaxation time, the available ex-
perimental results yield�τ about 10–20% times larger than Edw

11 [9, 48–50]: much
smaller than twice the DW energy at T = 0 as predicted by Glauber for the Ising

11For these mixed chains Edw = 2
√
JD, with a factor 2 of difference with respect to Hamilto-

nian (8.1) [9].
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model. Making a definitive statement about the origin of energy scales involved in
dynamics is not possible yet. Defects probably affect the nucleation and diffusion
of broad DWs differently with respect to the Ising limit. In metallic nanowires, for
instance, defects act as pinning centres for DWs or vortices. In SCMs a similar phe-
nomenon may induce a reduction of DW mobility, namely Ds. Another possibility
is that DWs may preferentially be nucleated at defects because it is energetically
favourable.12 Only a thorough characterisation of SCMs with broad DWs in which
the concentration of defects may be controlled could allow answering those ques-
tions. At the same time, such a study would provide important information about
the joint effect of defects and thermal fluctuations. This would also be relevant for
DW dynamics in metallic nanowires that are typically described by the very same
classical Heisenberg Hamiltonian (8.1) [13, 32, 85–87, 99–106].

8.8 Conclusion and Perspectives

The title of the review we wrote about five years ago was “Single-chain magnets:
where to from here?” [42]. The idea was that of reviewing critically what had been
done in the synthetic, experimental and theoretical fields. The analysis indicated
that the hunt for high-temperature blocking magnets was going to continue. This
has been confirmed but with the explosion of the interest for Lanthanides with the
challenging difficulties associated with the large unquenched orbital moment [107].
Much more work shall be done especially in theory. Another field which is de-
veloping fast is that of ab initio, DFT calculations which are rapidly complement-
ing/substituting Ligand-field approaches [55, 108, 109]. Far-from-equilibrium dy-
namics and aging [18–20, 110, 111] as well as the interplay between SCM be-
haviour and quantum effects [21–23, 112] call for a more systematic investigation.
The comparison of the properties of molecular nanomagnets with elongated mag-
netic nanoparticles and magnetic nanowires has been stated a few times throughout
the chapter [13, 34]. We feel that SCMs can provide good insight into the finite-
temperature behaviour of such nanosystems. Finally, as a matter of facts, molecular
systems have already entered the domains of spintronics [113] and quantum com-
puting [114, 115]. In future, besides their traditional role as model systems, SCMs
can possibly find their place in those applicative research contexts.
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Chapter 9
Magnetism of Metal Phthalocyanines

Juan Bartolomé, Carlos Monton, and Ivan K. Schuller

Abstract Metal-phthalocyanine (MPc) are uniquely suited for the exploration of
the intrinsic mechanisms which gives rise to molecular magnetism. In this chap-
ter, we review the structural and magnetic properties of bulk crystal, thin film and
single MPcs molecules adsorbed on different substrates. Traditional magnetic mea-
surements and new techniques like x-ray magnetic circular dichroism show that the
magnetic behavior of MPc molecules is strongly related with the electronic ground
state of the central metal atom hybridized with the ligand states (intra-molecular in-
teraction). In bulk and thin films, with stacked molecules, intermolecular exchange
interactions between magnetic M atoms regulates their magnetic properties. More-
over experimental results show that the magnetic properties of single molecules are
strongly affected by the electronic coupling to the supporting substrate.

9.1 Introduction

Since their discovery and later systematic studies of their molecular structure [1, 2],
Phthalocyanines [3–5] have been subject of research because of their multiple ap-
plications such as dyes, catalysts and coatings. At present they are one of the most
studied organic materials for possible applications in nanodevices and spintronics
[6, 7]. This chapter describes the magnetic properties of Metal Phthalocyanines in
bulk solid state phases, thin films and isolated molecules on various substrates. It
also summarizes their recently expanding applications in molecular magnetism with
a future perspective given at the end.
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Fig. 9.1 (a) M-Phthalocyanine molecule. (b) Schematic stacking of the herring-bone α- and
β-phases. θ , angle between the z axis of the molecule and the b axis of the crystal structure

9.2 Solid State MPcs

The MPc is a macrocyclic planar aromatic molecule (Pc) in which a central metal
atom (M) is bound to the organic structure through four inwardly projecting nitrogen
centers (Fig. 9.1(a)). Interestingly, in these molecules a large number of M substitu-
tions are possible, giving rise to special physical and chemical properties [8]. In the
present chapter only the transition metal substitutions M=Mn, Fe, Co, Ni and Cu
compounds will be reviewed since they are the most relevant MPcs in the field of
molecular magnetism.

Bulk MPcs crystals grow in high aspect ratio needle-shapes, a consequence of
their strong anisotropic molecular structures. This anisotropy arises from the van-
der-Waals molecule-molecule interactions which are greatest when the plate-like
molecules are face-to-face rather than side-to-side. Such an affinity gives rise to
molecule stacking in which the central metal atoms form one-dimensional (1D)
chains. The stacking axis is defined by the direction of these chains, which define
the b-axis, as shown in Fig. 9.1(b). In some MPcs strong intrachain and weak in-
terchain coupling between metal atoms exist resulting in new anisotropic, optical,
electrical and magnetic properties [7].

The angle between the b-axis and the normal to the plane of the molecule θ , to-
gether with the intermolecular distance, gives rise to different polymorphs, the most
abundant being the α and β-phases (see Fig. 9.1(b)). The β-phase is mostly found
in bulk crystals is stable and characterized by θ ∼ 45◦. In contrast, the α-phase is
metastable with θ ∼ 25◦ angle found in bulk and often in thin films at room temper-
ature. Table 9.1, summarizes the available structural data for solid (bulk) phase and
thin film MPc molecules.

The MPc´s magnetic properties depend basically on the electronic ground state
of the M substitution, which, in turn, are determined by the nearest neighbor coor-
dination and MPc polymorphism. The molecular symmetry of MPc is very close to
D4h point group (see Fig. 9.1(a)), which in a simple approximation implies that the
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Table 9.1 Phases and structural parameters of the MPc molecules in bulk and film phases. (θ : an-
gle between b-axis and normal to the molecule; β: angle between ab and ac planes)

MPc S. Group a (Å) b (Å) c (Å) θ (deg) β (deg) References

α′-MnPc (film) Rhombohedral 17.60 17.60 17.6 25.0 82.0 [9]

β-MnPc P21a 19.40 4.76 14.61 47.9 120.7 [10]

α-FePc Monoclinic 25.50 3.77 25.2 26.5 90.0 [11]

β-FePc P21a 19.39 4.78 14.60 47.3 120.8 [10]

α′-CoPc (film) C2/c 25.88 3.75 24.08 26.5 90.4 [12]

β-CoPc P21c 14.54 4.77 19.35 47.3 120.8 [13]

α′-NiPc (film) C2/c 26.15 3.79 24.26 ∼26.5 94.8 [12]

β-NiPc P21a 19.90 4.71 14.90 ∼46.5 121.9 [14]

α′-CuPc (film) C2/c 25.92 3.79 23.92 26.5 90.4 [12, 15]

β-CuPc P21a 19.60 4.79 14.60 46.5 120.6 [14, 15]

Fig. 9.2 (a) Metal-d orbitals with respect to the Pc molecule axes (notation as irreducible rep-
resentations in D4h symmetry). Spatial electron probability density of the orbitals. Blue and red
identify the different complex wave function phases. (b) Electron filling scheme for MPc’s (black)
paired electrons and (red) un-paired electrons. Below, total spin due to the unpaired electrons

M d-orbitals can be classified according to a square-planar ligand-field. The mono-
electronic d-states are denoted by the irreducible representation under which each
transforms in the D4h symmetry (and in the Cartesian coordinates notation). With
this the five metal d-orbitals transform as: a1g(dz2), b1g(dx2-y2), eg(dzx,dyz) and
b2g(dxy) (see Fig. 9.2(a)). The different M substitutions supply the electrons that fill
consecutively these states (see Fig. 9.2(b)).

The M atom electronic states are hybridized with the phthalocyanine molecular
orbitals (MO), generating the total MO, with dominant 3d electron character arising
from M. The gas phase MOs for M=Mn, Fe, Co, Ni and Cu have been calculated
in a series of works [16, 17] using density functional theory (DFT). These calcu-
lations incorporate hybrid states with π and σ character. The most relevant MO
states to the magnetic properties are the 3eg, a1u, a2u and the 4eg ∗ π antibonding
states, which may hybridize with d-orbitals as seen in Fig. 9.3. The eg MO states
results from the interaction between the Fe (dxz,dyz) and the nitrogen (N)-pz states
of the delocalized π system. The a1g MO state results from the interaction of Fe dz2

states and the N-s and N-pxy states, pointing toward the metal center (i.e. parallel
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Fig. 9.3 Electron probability density of the molecular orbital states formed by the coupling of M
and ligand p-states identified by the irreducible representation with respect to the D4h point group
[19, 20] (Reprinted Figure with permission from Betti et al. [20]. Copyright 2012 by the American
Chemical Society)

to the substrate). The b2g MO results from the interaction of Fe dxy states and the
N-pxy states, orthogonal to the metal center. In the same way the b1g MO state is the
combination of the Fe dx2-y2 states with the N-pxy states pointing toward the metal
center. The overlap between the metal and organic states determines the relative en-
ergy ordering of these MO states. Besides, for example, in CuPc the a1u MO state is
the highest occupied molecular orbital (HOMO) and the 2eg(π) orbital is the lowest
unoccupied molecular orbital (LUMO) [18]. These MO states have wavefunctions
fully localized at the macrocycles. The energy level configuration of the MO states
for the transition metal substitutions was calculated for M = Fe, Co, Ni and Zn,
where the LUMO and HOMO levels have been predicted showing that 3d electrons
are more localized in MPc with closed shells.

Tables 9.2 and 9.3 show the experimental and theoretical information available
regarding the d-electron ground states for MPcs in α and β-phases. The ground state
wavefunction, made of coupled monoelectronic d-states, is described in parenthesis
by the irreducible representation (irrep) under which it transforms in D4h symmetry,
and by the upper right index by its electron occupancy N, (irrep)N (see Tables 9.2
and 9.3, 3rd column) on one hand, and as the irreducible representation of the total
spin configuration in terms of the corresponding irreducible representation and its
spin degeneracy n, nXirrep (see Tables 9.2 and 9.3, 4th column), on the other hand.
Some results in Table 9.3 include the ligand state occupation, as given by Ref. [18].
In many cases there are still disagreements in the reported information (i.e. β-MnPc
and β-FePc ground states occupancy). Moreover, with the advent of new experi-
mental techniques like x-ray magnetic circular dichroism (XMCD) some of these
experimental conclusions are under revision.

The description of the magnetic properties of the MPc molecules is best done
in terms of localized moments at the M atom. In the solid phases, there are two
different crystallographic sites for the M atom. Therefore, in crystalline bulk phases,
the spin Hamiltonian which describes the MPc molecules is represented by:

H =−2
∑
ij

J Ŝi · Ŝj − 2
∑
ij

J ′Ŝi · Ŝj +
∑
j

D
(
Ŝxj
)2 +∑

k

D
(
Ŝ
y
k

)2 (9.1)

This equation includes both, intrachain (J ) and interchain (J ′) exchange interac-
tions, and single-ion crystal field (D) anisotropy terms at the two different crystal-
lographic sites (third and fourth terms).
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Table 9.2 Ground state orbital occupancy determined by experimental techniques. MP refers to
magnetic properties, MS magnetic susceptibility, MCD magnetic circular dichroism, XRD x-ray
diffraction, XANES x-ray absorption near edge structure, XAS x-ray absorption spectroscopy,
XMDC x-ray magnetic circular dichroism, PE photoemission and NMR nuclear magnetic reso-
nance. J/kB is the intrachain exchange. D/kB is the crystal field parameter

MPc Exp.
technique

Ground state
occupancy

Ground
state

Spin Tc (K) J/kB D/kB Refs.

β-MnPc MP (b2g)
2(eg)

2(a1g)
1 3/2 8.3(c) 11 28 [21]

β-MnPc MS (b2g)
2(eg)

2(a1g)
1 4A2g-4Eg 3/2 (c) [22]

β-MnPc MP 3/2 10(c) [23]

α-MnPc MP 3/2 (e) [23]

MnPc(a) MCD (eg)
3(b2g)

1(a1g)
1 4Eg 3/2 [24]

MnPc(b) XAS, PE (eg)
3(b2g)

1(a1g)
1 3/2 [25]

(eg)
2(b2g)

2(a1g)
1

β-FePc XRD (b2g)
2(eg)

3(a1g)
1 EgA 1 (d) [26]

β-FePc MS (b2g)
2(eg)

3(a1g)
1 3EA 1 (d) [27]

β-FePc XANES (a1g)
2(eg)

3 (b2g)
1 3E 1 (d) [28]

β-FePc MS 3Bg 1 (d) [29]

α-FePc MP (b2g)
2(eg)

3(a1g)
1 EgA 1 5(c) 25.7 53.2 [30]

76(h)

FePc(b) XAS, PE (b2g)
2(eg)

3(a1g)
1 1 [30]

(b2g)
2(eg)

2(a1g)
2

β-CoPc MS (b2g)
2(eg)

4(a1g)
1 1/2 (d) [31–33]

α-CoPc XAS, XMCD (eg)
3.8(b2g)

2(a1g)
1.2 2A1g-2Eg 1/2 [34]

CoPc(b) XAS, PE (eg)
4(b2g)

2(a1g)
1 1/2 (d) [25]

β-CuPc MP 1/2 (d) 0 [23]

β-CuPc MS (b2g)
2(eg)

4(a1g)
2(b1g)

1 1/2 (d) [31, 33]

β-CuPc NMR (g) 0.286 [35]

α-CuPc(b) MP 1/2 (e) ∼ 1.5 [23]

CuPc(b) XAS, PE (b2g)
2(eg)

4(a1g)
2(b1g)

1 1/2 (d) [25]

β-NiPc MS (b2g)
2(eg)

4(a1g)
2 0 (f) [31, 36]

(a) In Ar matrix, (b) thin film, (c) ferromagnetic, (d) paramagnetic, (e) antiferromagnetic, (f) diamag-
netic, (g) one dimensional chain, (h) intrachain interaction (J/kB) obtained from the soliton-kink
model for s= 1/2

In general, most of the bulk solid state MPcs remain paramagnetic down to the
lowest achievable temperatures because the molecule-molecule interaction is too
weak to sustain long range order. However NiPc, β-MnPc and α-FePc are excep-
tions. Both polymorphs of NiPc are diamagnetic on account of their completely
filled orbitals. On the contrary, β-MnPc and α-FePc polymorphs, develop long
range ferromagnetism below an ordering temperature, Tc, caused by weak interchain
interactions (see Tables 9.2 and 9.3). As a summary of the current understanding of
the MPc’s magnetic properties, we describe briefly the properties of each MPc com-
pound.
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Table 9.3 Ground state orbital occupancy obtained from theory. DFT refers to density functional
theory

MPc Theoretical
method

Ground state occupancy Ground state Spin References

β-MnPc AB initio (b2g)
1(eg)

3(a1g)
1 4Eg 3/2 [37]

MnPc(im) DFT 4Eg 3/2 [38]

β-FePc DFT 3B2g/
3Ag [17]

β-FePc DFT (b2g)
2(a1u)

2(a1g)
2(1eg)

2 3A2g 1 [18]

β-FePc AB initio (b2g)
1(eg)

4(a1g)
1/(b2g)

2(eg)
3(a1g)

1 3Eg/
3B2g 1 [37]

β-CoPc AB initio (b2g)
2(eg)

4(a1g)
1 2A1g 1/2 [37]

β-CoPc DFT (a1g)
2(a1u)

2(1eg)
3 1Eg 1/2 [18]

CoPc(im) DFT 2A1g 1/2 [38]

β-CuPc DFT 2B1g 1/2 [18]

β-NiPc DFT 1A1g 0 [18]

(im) Isolated molecule

Mn-Phthalocyanine This compound presents both ferromagnetism (FM) and an-
tiferromagnetism (AFM) in the β or α-phase polymorphs, respectively. In MnPc
the intrachain superexchange interactions via the organic ring (Pc)π MO compete
in sign. For example, the Mn-Mn FM coupling is promoted by d-electrons a1g–a1g
interactions via the eg filled π MO, while the AFM coupling is due to d-electrons
eg–eg interaction via the eg MO. In the early 70’s Barraclough [22] found that in
β-MnPc the intrachain FM interaction prevails with J/kB = 11K for Mn(II) S= 3/2.
Recently, Kataoka et al. [39] using XMCD confirmed the proposed FM coupling
and determined that the ground state of β-MnPc is 4Eg, where the a1g is the HOMO
level.

Crystal field splitting also plays an important role in the MPc’s magnetic proper-
ties. In β-MnPc for example, the crystal field splits the Mn(II) S= 3/2 quadruplet
into two doublets. This can be deduced from (9.1). Since the crystal field splitting
is positive [22], D= 20 cm−1, and the exchange field is Bex = 48 T, below Tc the
competing exchange interaction and the positive crystal electric field pull down the
energy of the electronic state Sz =−3/2 below the Sz =−1/2 one, turning it into
the ground state. Alternatively, the Sz = −3/2 ground state may be explained in
terms of a negative effective crystal field, D′ < 0, as proposed by Miyoshi et al. [33]
In β-MnPc the interchain interactions are strong enough to give rise to FM ordering
at Tc = 8.3 K (see Table 9.2). The magnetic structure of single crystals was deduced
from neutron diffraction experiments by Mitra et al. [21]. They proposed that MnPc
molecules order in a canted structure with an easy magnetization axis on the ac
plane.

Fe-Phthalocyanine Direct M-M ferromagnetic interaction may occur when there
is overlap between two orbital states in each metal atom, a half-filled and an empty
orbital, or a half-filled and a full orbital [40]. In α-FePc direct exchange is dom-
inant since the latter case is applicable, and the mechanism may be effective to
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yield ferromagnetic interaction. Indeed, the orbital configuration of each Fe is EgA
(b2g)

2(eg)
3(a1g)

1 (Table 9.2). Therefore, the (eg)
3 orbital doublet of one Fe is triply

occupied, thus it has a half filled orbital and a full orbital. It may overlap with the
homologous in the nearest neighboring Fe since the interatomic distance is small.
Since the Fe-Fe distance in α-FePc (0.38 nm) is smaller than in β-FePc (0.47 nm),
direct FM exchange is most likely responsible for the FM correlations within the Fe
chain with J/kB = 25.7 K, for Fe(II) S= 1, while weak interchain interactions give
rise to long range order transition at TC = 5 K. In contrast, β-FePc remains paramag-
netic above 2 K. The reason is that the crystal field parameter above 70 K is positive,
D/kB = 53.2 K, with S= 1, in other words the ground state corresponds to Sz = 0
while the excited state is Sz =±1. Therefore, the ground state is non-magnetic, and
the observed paramagnetism corresponds to the thermal population of the excited
doublet [27]. In the α-phase, on the other hand, the intrachain exchange interaction
is J/kB = 25.7 K and it splits the upper doublet Sz =±1 lowering the Sz =−1 level
44 K down in energy, close enough to match the Sz = 0 level. As a result, at low
temperatures this system behaves as a S= 1/2 effective spin [30].

Since the metastable α-phase FePc is difficult to obtain in single crystal form,
there are few studies of its magnetic properties. Evangelisti et al. [30], using
magnetic measurement and Mössbauer spectroscopy, found FM behavior below
T = 10 K in α-FePc. In contrast to the behavior of β-MnPc, the α-phase of FePc
shows an unusual slow relaxation which resembles the one-dimensional slow re-
laxation process attributed to domain wall excitations along weakly coupled FM
chains. These domain wall excitations (solitons) arise in an Ising system, i.e., when
the single ion anisotropy is high compared to the intrachain interaction. Under these
conditions the domain wall, labeled as a “kink”, is just the separation by one lattice
constant of spin-up and spin-down domains.

Two types of excitations are possible in Ising chains, kink-pair excitation
(Fig. 9.4(a)), and single kink excitation at the end of the chain or at defects
(Fig. 9.4(b)). Each excitation type presents the following energies Ea2 = 2J and
Ea1 = J respectively. Filoti et al. [41] successfully explained the observed slow mag-
netic relaxation dynamics using the soliton-kink model. They took into account that
α-FePc satisfies Ising chain conditions and that its magnetic ground state below Tc
can be described with an effective S= 1/2 and an intrachain exchange interaction
J/kB = 76± 2 K.

The temperature dependence of the relaxation time constant can be described by
an Arrhenius law, τ = τ0 exp(−Ea/kBT ), where Ea is the soliton activation energy.
The temperature dependence of the frequency dependent (10< f < 5000 Hz) sus-
ceptibility shows two peaks arising from a single or double kink excitations with
Ea1 = 72 K and Ea2 = 116 K respectively, and the same τ0 = 2× 10−11 seconds
pre-factor time constant. (See Fig. 9.4(c)). The temperature dependent Mössbauer
spectra show an excess electron spin flip linewidth broadening due to the propaga-
tion of the kink (or double kinks) along the chain. The flip rate Γω is proportional
to the product of the wall density and the average wall velocity (nS × vS). As a
consequence, the electronic spins fluctuate and the Mössbauer spectra are broad-
ened via the hyperfine interaction with the Fe nuclei as Γω approaches the Larmor
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Fig. 9.4 (a) Double kink soliton, (b) single kink soliton. Keys indicate the domain wall (DW),
arrows indicate the DW motion direction. (c) Experimental Mössbauer spectra linewidth as a func-
tion of temperature. Dashed line is a fit to the temperature dependence of the linewidth due to
the soliton single-kink. Inset: Inverse of the relaxation rate, with single- and double kink soliton
activation energies, as determined from a.c. susceptibility measurements (squares) performed at
B= 800 G, and from the Mössbauer spectra [41] (circle)

frequency ωL. Its temperature dependence is given by the same Arrhenius law as
the ac susceptibility. The excess Mössbauer line width broadening due to solitons
is given by �Γ ∝ Γω/(ω2

L + Γ 2
ω ) (inset of Fig. 9.4(c)). The double kink process

on the other hand cannot be observed in Mössbauer spectroscopy, probably because
its excitation energy falls beyond its frequency window. The spin fluctuations above
Tc can also be deduced from the Single Chain Magnet model proposed in this book
(Chap. 8). The relaxation processes are then described in terms of Glauber´s model
for the relaxation of 1D classical chains [42]. Within this model the spin transition
probability depends on the local field experienced by the spin and an Arrhenius law
is predicted with an activation energy Ea = J for Ising S= 1/2 spins, as applicable
to α-FePc. Thus soliton excitation scheme explains satisfactorily the peculiar slow
relaxation found below Tc in α-FePc.

Co-Phthalocyanine Both α- and β-CoPc are paramagnetic down to the lowest
measured temperature. The g tensor components of both phases were determined
using electron spin resonance (ESR) at 77 K of α-ZnPc and β-ZnPc diamagnetic
matrices, with some Zn atoms substituted with Co(II). In both phases g⊥ > g//, i.e.
Co presents planar anisotropy. This anisotropy is more accentuated in the β-phase
where the ratio g⊥/g// is larger [43]. The effect of the different N adjacent positions
with respect to the Co atom in the α- and β-CoPc is also detected with emission
Mössbauer spectroscopy since the chemical shift and the quadrupole splitting are
larger for the β-phase [44]. The anisotropic character of Co in the Pc environment
is also evidenced by magnetic susceptibility. Powder β-CoPc shows a rounded max-
imum, characteristic of an antiferromagnetic coupled chain with S= 1/2. These re-
sults imply that although the intrachain interaction is rather strong (J/kB =−2.3 K),
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low dimensionality inhibits the establishment of long range order down to 1.8 K
[33].

Cu-Phthalocyanine β-CuPc is paramagnetic down to T = 1.7 K, the lowest tem-
peratures investigated so far. This paramagnetism is due to thermal fluctuation of
1D character, with a non-negligible intrachain interaction. Using NMR proton spec-
troscopy [35], it was determined that its spin is S = 1/2, and that the electron-
nuclear dipolar interaction couples the proton nuclear spins of the molecule directly
to the well localized electronic spins at the Cu sites. The analysis of the spin-spin
relaxation time is also explained in terms of an S = 1/2 isotropic Heisenberg in-
teraction with an intrachain exchange constant of |J/kB| = 0.286K . An upper limit
of the interchain interaction found yields a ratio |J/J′| ≥ 6.4 × 103. This limit is
obtained from the lack of 1-D to 3-D crossover of the spin-lattice relaxation T1(ω)

down to the lowest measured temperature. For completeness sake, let us mention
that XAS and XMCD measurements in bulk powder β-CuPc at the Cu L2,3 edge
are available [45]. The XAS features just a simple peak as expected for Cu which
has an almost filled 3d orbital.

9.3 MPc Thin Films

Many different techniques, like Langmuir Blodget synthesis, spin coating [46] and
organic molecular beam epitaxy (OMBE) [47] have been used to grow MPc thin
films. Among these, OMBE produces MPc films with different crystalline orienta-
tion and order which depends on the substrate type. In general Cu-, Fe-, Mn-, Co-
and Ni-Pc molecular planes stack parallel (“lying”) to the substrate surface when
deposited on Au, [48] Ag, [49–51] Cu [52]or Pd (this work), and tilted so that the
MPc molecule plane is nearly perpendicular to the substrate, as has been found for
FePc deposited on sapphire, [47], or on polycrystalline substrates [53] and low work
function metals like Al and V [54].

Figure 9.5 shows molecular orientations in the standing and lying configurations.
In spite of the molecular orientation, MPc films always grow in the lying configura-
tion in most of metallic substrates when the temperature is kept below 200 °C during
deposition. The angle θ corresponds to the stacking found in the bulk α-phase [9],
however this phase is not identical since the herringbone structure is not observed.
Different orientations of the adjacent MPc molecules have been reported to occur,
[55, 56] therefore, we denote this structure as α′-phase. MPc films allow exploration
of the anisotropic properties related to this phase.

The x ray absortion (XANES) and photoemission (PE) spectra of NiPc, CoPc and
FePc thin films have been measured and a qualitative assignment of the peaks done,
which show that most of the HOMO and LUMO electronic states are mainly of
3d character [58]. Angular studies using X-ray linear polarized absorption (XLPA)
and X-ray magnetic circular dichroism (XMCD), at the M ion L2,3 edges (2p →
3d electron excitations) helps relate magnetic properties to the electronic structure.
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Fig. 9.5 MPc thin film
stacking on a supporting
surface. (a) Standing
configuration, (b) lying
configuration [57]

A simple analysis based on the angle dependent selection rules for the dipolar 2p
→ 3d excitations, has been proposed [59] to explain the XLPA and XMCD spec-
tra. This method is based on the so-called “lighthouse-effect”, namely that the ab-
sorption intensity is proportional to the number of empty valence states in the di-
rection of the electric field of the incoming linearly polarized x-ray photons. The
inset in Fig. 9.6(a) shows an incoming linearly polarized x-ray beam with the elec-
tric field contained in the incidence plane at grazing incidence. In this geometry,
for MPc in the lying configuration, the electric field vector is perpendicular to the
molecule plane (z axis), while for normal incidence the electric field is parallel to
the molecule’s xy-plane. Since the a1g (dz2 ) orbital along the z axis has a larger
density of hole states than in the xy-plane, a strong intensity variation is expected
as a function of incident angle. This variation reflects the number of empty states
in this specific orbital. Similar considerations can be used for the other three ligand
field split 3d-states. In addition, increasing the x-ray photon energy (i.e. varying the
energy of the incident x-ray beam) allows determination of the empty states above
the Fermi level (see Fig. 9.6(a)). The indexing is aided by the calculated spin-split
molecular orbital energy level scheme (Fig. 9.6(b)).

This analysis, first applied to a FePc α′-phase thin layer [60], implied that above
the Fermi level, the 2p→ 3d electron transitions to the 3d empty orbital may be in-
dexed as follows: for increasing photon energy, to minority spin empty eg state, with
some mixing of the a1g state, and to the a1g state, the next excitations correspond to
transitions to the eg state in the minority antibonding states, and finally to the b1g
majority and minority antibonding states (see Figs. 9.6(a) and 9.6(b)).

In the following subsections the magnetic properties of different MPc compounds
films are discussed.

Mn-Phthalocyanine Epitaxial thin films of MnPc were grown on a hydrogen-
terminated Si [H-Si(111)] substrate. In these thin films, the molecules stack in
columns up to 40 molecular layers, with the stacking axis forming an angle of
θ = 26.5◦ with respect to the substrate plane normal, and with an intermolecular dis-
tance close to d= 3.3 Å. The angle θ corresponds to the α′-phase and becomes less
definite for thicker films [9]. Such a highly textured film growth produces striking
magnetic anisotropy, with the easy axis perpendicular to the substrate and antiferro-
magnetic intrachain interactions, in radical contrast to the ferromagnetism of bulk
β-MnPc phase. This different magnetic behavior can be explained within the same
model of d-electron orbitals overlap as for β-MnPc. However, the relative Mn and N
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Fig. 9.6 (a) X-ray linear polarized absorption at the Fe L2,3 edges of FePc at different incident
angles; γ = 0 (black line) and 75◦ (red line). The peaks are classified according to selection rules
for X-ray dipolar (2p → 3d) transitions. Inset shows the incidence angle γ and the electric field
vector E//. (b) Spin split molecular orbital energy level scheme of FePc, where only the states
with a relevant component of 3d weight (w3d > 0.05) have been included. EF is the Fermi energy.
Arrows indicate the electron occupation and spin direction at each energy level [60]

positions differ between the thin film and bulk phases; the ferromagnetic exchange
path via the ag–eg(π) becomes weaker, while the antiferromagnetic exchange path
eg–eg(π), via the egπ MO prevails.

Fe-Phthalocyanine These films have been extensively studied since their struc-
ture and texture strongly affect their magnetic properties. The “standing” and “ly-
ing” stacking of the molecules (Fig. 9.5) can be controlled by the type of substrate
as described at the beginning of this section.

In the standing case, depending on the substrate temperature during deposition,
AFM and x-ray diffraction [47, 61] show that asymmetrical, elongated grains are
formed. Between room temperature and 200 °C the grains consist of α′-phase FePc
chains with characteristic lengths ranging from 100 to 3000 molecules, and a typical
width of 25 to 80 chains [57]. When the substrate temperature is above 200 °C, the
chains organize within the grain in the β-phase [62].

Below 4.5 K, the α′-phase grains order magnetically and give rise to “wasp-
like” hysteresis loops. This peculiar magnetic behavior has been explained using the
Preisach model with a bi-modal coercive field distribution [63] as found by optical
magnetic circular dichroism (MCD) at 2 K. However, part of the hysteresis loop
opening may come from slow magnetic relaxation. In contrast, the β-phase grains
do not present long range order, as expected from the paramagnetism down to the
lowest temperature of the bulk β-phase.

FePc film grows in the “lying” configuration on sapphire substrates covered with
a 40 nm nominal thickness Au buffer layer. Annealing for one hour at 300 °C im-
proves surface quality. For optimal crystalline growth and grain size, the substrate is
kept at 150 °C during deposition [47]. The lying configuration was determined us-
ing grazing incidence XLPA at the N-K edge. The spectra corresponding to the hor-
izontal ( �E field near the substrate normal) and vertical ( �E parallel to the substrate)
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Fig. 9.7 (a) XMCD at the Fe L2,3 edges of FePc, at different incident angles; γ = 0 (black line)
and 75◦ (red line). The applied field (B= 5 T) and the helicity of the beam are parallel for every γ .
(b) Fe spin (blue line) and orbital moments (red line) as a function of incident angle [60]

polarizations are completely different. The near disappearance of the π∗ resonances
for �E in the molecular plane demonstrates that the four N atoms lay parallel to the
substrate [60]. The molecules stack parallel to the substrate, forming chains along
an axis which forms an angle of 26.5◦ with respect to the normal to the substrate.

The magnetization of FePc film, with the molecules parallel to the substrate, is
highly anisotropic; at T = 1.8 K, with the magnetic field parallel to the substrate
(parallel to the plane of the molecule) a magnetic hysteresis loop is observed. This
loop nearly collapses when the applied field is perpendicular to the substrate plane.

The “lying” FePc film configuration has also been studied using XMCD at the
Fe L2,3 edges as a function of the incident angle. At T = 6 K (slightly above Tc in
the paramagnetic region), a magnetic anisotropy is observed when the magnetic mo-
ments are polarized by the applied field in the parallel and perpendicular directions
with respect to the substrate [60] (see Fig. 9.7(a)).

Information on the orbital and spin components of the magnetic moment of the
absorbing atom projected along the field direction for a given incidence angle γ is
obtained from the sum rules at the L2,3 edges [64, 65],

mL(γ )

μB
=−2nh

r

∫
(�μL3 +�μL2)dE (9.2)

meff
S (γ )

μB
=−3nh

r

∫
(�μL3 − 2�μL2)dE (9.3)

where �μL2,3 = μ−L2,3 − μ+L2,3, and μ−L2,3 and μ+L2,3 are the absorption measured
with left (−) and right (+) circularly polarized light. The number of d holes above
the Fermi energy is given by nh.

After applying the sum rules analysis, the results are fitted to the following equa-
tions:

mL =mzL cos2 γ +mxy
L sin2 γ,

meff
S =mS − 7

(
mz
T cos2 γ +mxyT sin2 γ

)
,

(9.4)



9 Magnetism of Metal Phthalocyanines 233

where γ is the incident angle (Fig. 9.7(b)). The magnetic moment parameters are
collected in Table 9.4. The most striking result is the easy-plane anisotropy of the
orbital component of the magnetic moment, mxy

L (parallel to the molecule plane),
and the very large ratio with respect to the spin component, mL/mS . This implies
that in FePc there is a highly unquenched orbital moment, with a larger component
in the molecule plane. The intra-atomic dipolar term mT is not negligible in this
anisotropic FePc layered film and its contribution to the XMCD signal is associated
to the planar symmetry of the ligand field.

The origin of this anisotropy is related to the orbital degeneracy of the HOMO,
d-electron eg level. In the α′-phase FePc thin layer the electronic structure can be de-
termined from XLPA measured at the Fe L2,3 edges as a function of incident angle,
at T = 6 K [60]. Using the selection rules for these transitions, the spectral peaks
could be indexed in terms of the spin-split molecular orbital energy level scheme
[66]. Ab initio density functional calculations (DFT), including ligand field interac-
tions, intra atomic exchange and the hybridization with the four N atoms, provide
the energy levels (Fig. 9.6(b)) which explain quantitatively the measured XANES
and XMCD. Comparison of these spectra to the results of the calculation suggests
that an eg orbital doublet with three electrons lies at the Fermi energy level (EF)
with the LUMO at an energy 0.3 eV above EF and an empty state a1g at 0.93 eV.
The hole-hole interaction between the eg and a1g levels and the spin-orbit coupling,
split the degenerate states into three doublets with a ground state with 〈Lz〉 = ±�

[41]. A second order perturbation, for example, any interaction that lowers the sym-
metry from D4h to D2h, splits this doublet yielding an occupied and an unoccupied
eg level with a1g mixing. The orbital moment of Fe(II) is largely unquenched, thus
explaining qualitatively the large orbital moment found. The presence of the all-
important eg partially unoccupied level has been observed in electron energy-loss
spectroscopy (EELS) measurements on a free-standing FePc film, in the form of a
low energy excitation from the a1u(π) ligand states into the Fe (eg) d-states [67].

The FePc electronic state has been obtained from DFT calculations of the isolated
and interacting molecule cases. In the former case the ground state is found to be
3A2g. In the latter case, the columnar stacking of the FePc molecules in α′-FePc
gives the 3Eg as the ground state because of the hybridization between MO orbitals
along the b-axis. From these results one can conclude that exchange interaction has
a strong effect on the electronic ground state [68].

Co-Phthalocyanine CoPc films deposited on Au(111) have been studied by XAS
[69], XMCD [34] and XLPA [19]. The first two imply that the electronic ground
state is a mix of 2A1g and 2Eg states. However, the XLPA data analysis of the
L3 spectra indicates that the electronic ground state of CoPc is similar to that of
FePc, except for the absence of the low energy eg excitation. Since Co has one more
electron than Fe, it occupies the lowest available hole located at the eg level filling
it completely. As a consequence, only one electron remains uncoupled giving rise
to a total spin S= 1/2. For this reason, the orbital degeneracy is lost and the orbital
moment may be quenched.

The XMCD at the L2,3 edges with a 5T applied field as a function of incident
angle, was used to determine the magnetic moment components [19] (see Table 9.4)
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Table 9.4 Atomic orbital and spin component moments of M in MPcs, as determined from XMCD
experiments. EDM refers to easy direction of magnetization

MPc EDM mZL m
xy
L mL mS mZ

T mL/mS mT Ref.

β-MnPc 0.21 1.45 1.66 [39]

α′-FePc x, y 0.29(5) 0.53(4) 0.45 0.64(5) 0.074(5) 0.70(4) 1.19 [60]

α′-CoPc x, y 0.01(3) 0.07(3) 0.05(3) 0.10(4) 0.02(3) 0.5 0.15 [19]

α′-CuPc z 0.05(2) 0.01(1) 0.02 0.21(2) −0.08(5) 0.1 0.23 [19]

CuPc 1 ML z 0.20 0.045 0.096 −0.268 0.096 1.096 [45]

of a CoPc film. A strong reduction in the magnetic moment is evident, coming from
a strong orbital quenching, as expected for a A1g ground state. However, orbital
intermixing due to spin-orbit coupling may give rise to a small contribution to the
orbital moment. The easy axis magnetic anisotropy is found to be in-plane, as for
FePc.

Another mechanism giving rise to small magnetic moments is the AFM intra-
chain coupling, already active at short range, though attenuated by thermal fluctua-
tions. Even though this is an expected feature, as discussed in the previous section,
it is noteworthy that an AFM intrachain coupling with J/kB =−208 K (18 meV) has
been reported using inelastic electron tunneling microscopy (IETS) [70]. We believe
this is erroneous, since it differs from the reported interactions for other MPcs by
3 orders of magnitude (see Table 9.2).

Cu-Phthalocyanine In thin CuPc films there is only one strong XLPA peak at the
L3 edge that arises from the p→ d electron transition to the only hole state available
at the b1g high energy level. XMCD shows one peak that corresponds to the excita-
tion of a 2p electron to that hole. The analysis, in terms of the sum rules, indicates
an out-of-plane easy magnetic anisotropy axis. In addition, the orbital component of
the magnetic moment is very small and the spin component corresponds to S= 1/2.
Since the orbital moment is nearly quenched for the b1g state, the strong uniaxial
anisotropy originates in the dipolar intra-atomic term mT of the effective spin mo-
ment and it reflects the planar b1g orbital which governs the magnetic properties of
this compound [19].

9.4 MPc Molecules Adsorbed on Substrates

The very robust adsorption of MPc molecules on a wide variety of substrates, has
allowed to perform non-destructive x-ray absorption experiments. Low temperature
Scanning Probe Microscopy allows inducing modifications at the single molecule
level. The possibility of manipulating, modifying, relocating, and constructing struc-
tures at the atomic level has been essential to develop understanding of the interac-
tion mechanisms at the molecule-substrate interface.
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Fig. 9.8 STM topographic images of MPcs. (a) Image of MnPc deposited on Pb [71] (Reprinted
Figure (a) with permission from Fu et al. [71]. Copyright 2007 by the American Physical Society).
The MnPc molecular structure is superimposed. (b) Bias voltage dependent images of the M= Fe,
Co, Ni and Cu Pcs deposited on Au(100). Note the chiral contrast for the Ni and Cu cases [51]
(Reprinted Figure (b) with permission from Mugurza et al. [51]. Copyright 2012 by the American
Physical Society)

MPcs have attracted much attention because of their self-assembling capacity on
substrates [72]. For a metal substrate, hybridization of the 3dz2 states of the metal
(M) center in the MPc and the electronic states of the substrate forces the position of
M on the substrate, while the orientation of the molecule is mostly influenced by the
interaction of the N atoms and the surface. The relative orientation of the molecules
is driven by intermolecular forces. It is now clear that the substrate on which the
molecule is adsorbed plays a fundamental role in defining its magnetic state. The
final state of the molecule depends on whether the substrate is a ferromagnet, a
metal or a semiconductor.

Typically, a single MPc molecule adsorbed on a metallic surface appears in STM
as a four-leaf clover shape with a protuberant (Fe, Co) or depressed (Cu, Ni) spot
at its center (see Fig. 9.8). The MOs of the π conjugated macrocycles interact with
the conducting substrate and modify the total spin of the molecule. The mecha-
nism underlying these phenomena is known as the Kondo effect [73]. This effect
is produced by resonant scattering coming from the hybridization of the magnetic
impurity, in this particular case the MPc molecule, with a continuum of electronic
states, in the conducting substrate. As a result, the net effect is the generation of a
collective non-magnetic singlet state. The Kondo effect occurs below a characteris-
tic temperature TK, which defines the boundary between resonant and non-resonant
behavior. When molecules assemble in clusters, the intermolecular interactions may
compete with the Kondo effect and the molecules may become magnetic. The first
report on Kondo screening of MPcs was done by Gao et al. [74] on FePc. In a short
period after his report many researchers have dealt with this subject. Below we re-
view some of the most prominent results on the magnetism of adsorbed MPcs on
different substrates.

Mn-Phthalocyanine Single MnPc molecules were deposited by sublimation on
top of Pb(111) nanoislands [71]. The molecule image consists of a four lobe cross
with a protrusion at its center. The thickness of the Pb nanoisland affects strongly
the Kondo resonance, with TK oscillating as a function of the number of Pb mono-
layers. This feature originates in the strong confinement of the Pb electrons in films
thickness ranging from 2 ML to 22 ML. By comparing STM spectra to simulations,
it was concluded that the magnetic moment on Mn decreases from 3μB, for an iso-
lated molecule, to 0.99μB when adsorbed on Pb. The contribution to the magnetic
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Table 9.5 Kondo temperature , TK, and calculated magnetic moment,m, located at the metal atom
in M-Phthalocyanine molecules adsorbed on a single-crystal substrate

Sample Substrate TK (K) m(μB) Reference

MnPc Pb(111) 23–419 0.99 [71]
FePc Au(111) 2.6± 1.4 [75]
Dehydrogenated CoPc Au(111) 208 1.03 [76]
CuPc Ag(100) 27± 2 [51]

moment arising from the dxy orbital survives since it is less hybridized with the
substrate energy bands.

Fe-Phthalocyanine Single FePc molecules which lay parallel on Au(111) single
crystal surface show up as a four-leaf clover, with the organic lobes as the leafs. The
clover is oriented in two configurations, at 15◦ with respect to each other. A bright
spot protrusion, at the molecule center, is related to the d-orbital character near the
Fermi surface [74]. This feature is related to the strong coupling of the a1g and eg
(perpendicular) orbitals near the Fermi level with the tip states [77]. The STM spec-
tra at the single molecule center position shows a Fano-type resonance characteristic
of the Kondo effect. From its temperature dependence, the Kondo temperature TK
of the molecule and substrate collective singlet state can be determined [75] (see
Table 9.5). As the density of molecules increases on the substrate, molecules self-
assemble in planar clusters, forming a 2D Kondo superlattice on the metal surface.
The STS spectra at the borders of these superlattices has a Fano resonance similar
to that of a single molecule, however, below TK the Fano resonance intensity at the
center of the cluster is reduced and is split into two peaks. This feature is caused by
the oscillatory Ruddermann-Kittel-Kasuya-Yosida (RKKY) interaction, via the con-
duction electrons, which generates an antiferromagnetic coupling and consequently,
AFM correlations between the spins [75].

In contrast, no Kondo effect is detected when a single FePc molecule is deposited
on Ag(100). This is caused by a stronger interaction of the a1g and eg perpendicular
states with the substrate [51]. Basically due to the interaction between the FePc
molecules and Ag, one electron is transferred from the substrate. The MPc states
2eg and eg are mixed due to hybridization with the substrate while a1g is the MO
with the highest degree of hybridization. This modifies the charge distribution in the
molecule, which consequently reduces the Fe spin value.

These results are in agreement with XMCD performed on a 1ML FePc on
Au(111) [19, 34], which shows a reduced (but not completely quenched) Fe mag-
netic moment (Fig. 9.9). This conclusion arises from the charge transfer between
the d6 Fe configuration and the metal substrate through the dz2 orbital, assuming a
weak mixing with the d7 configuration. Under this assumption, the net result is that
the spin of the bound electron from the substrate couples AFM to the two lowest
states of Fe, and as a consequence yields a total spin S= 1/2.

The conductivity of the substrate also plays an important role in the magnetic
state of the adsorbed molecule. In a single FePc molecule deposited on a clean,
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Fig. 9.9 (a) Circular polarized XAS (upper) and XMCD (lower) at the Fe L2,3 edges on a 1ML
FePc on Au(111) at two different incident angles θ (black lines). (b) X-ray linear polarized absorp-
tion in two polarizations. The x-ray electric field vector is either fully in-plane or out-of-plane at
an angle of 20◦ with respect to the surface normal (red lines) simulations [34] (Reprinted Figure
with permission from Stepanow et al. [34]. Copyright 2011 by the American Physical Society)

metallic Cu(110) substrate, the Fe magnetic state changes from the bulk S = 1
to S = 0. In contrast, when deposited on semiconducting, oxidized, Cu surface
(Cu(110)(2 × 1)-O), the S = 1 state is retained, although with a different ligand
field splitting than in the bulk [78].

A recent interesting development is the deposition of FePc on graphene, sup-
ported by Ir(111). FePc sub-monolayers lay flat on graphene with a 8 ± 10◦ an-
gular tilt with respect to the graphene surface. Thicker deposition leads to less or-
dered island formation [79]. XMCD measurements, at the Fe L2,3 edge, show clear
anisotropic dichroism, indicating that magnetic properties of FePc are affected by
the interaction with graphene. An increase in the planar anisotropy (more intensity
due to the in-plane orbitals) with respect to α′-FePc in the thin film case (Sect. 9.3.
and Table 9.4) is observed. On the other hand, the total moment of the Fe atom de-
creases. Both the moment and anisotropy decrease with increasing thickness [80].

Co-Phthalocyanine As for FePc deposited on Ag, STM of CoPc shows a protu-
sion at the CoPc molecule center [51]. However, in CoPc deposited on Au(111) or
Ag(100) there is no Kondo effect [51, 76]. In fact, XMCD of 1 ML CoPc shows
that valence fluctuations quench the Co moment [34]. Charge transfer between the
molecule and the substrate accounts for the absence of magnetic moment. This oc-
curs because a Co excited level is occupied by an extra substrate electron which
intermixes with the ground state. As a result there is a reduced a1g level occupation,
and the total coupled state is a non-magnetic singlet state [51]; i.e. with S = 0. In
CoPc deposited on Cu(111), the N 1s XAS spectra imply that an electronic charge
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redistribution, compatible with charge transfer from the substrate to the molecule,
takes place upon adsorption [52].

Single CoPc molecules couple FM to Co nanoislands as shown by spin polarized
STM. The magnetization density observed in this case reaches a maximum close
to the Co atoms, although there is some oppositely oriented magnetic moment at
the N and C atoms. The compensation of these moments leads to the quenching
of the total moment [81]. Moreover, when 1ML CoPc is deposited on a metallic Fe
FM film, a small but distinguishable XMCD component is detected, which indicates
the presence of a non-zero moment parallel to the Fe substrate magnetization [52].
In fact, no XMCD signal is observed on a 1ML of CoPc deposited on Au(110)
[19]. When the thickness increases to 6 ML this XMCD component completely
disappears, as in the thick film case. In fact, no XMCD signal is observed on a 1ML
of CoPc deposited on Au(110) [19]. This result is compatible with DFT calculations
of the electronic structure and van der Waals (vdW) forces to determine the total
molecule spin state. Although the electron supplied by the substrate fills the dz2 MO
state, the distortions produced by the vdW forces give rise to a spin redistribution
so that spin splitting is recovered due to the molecule-surface bonding at the ligand
portions of the molecule [52, 82].

A very interesting development in the field of MPcs adsorbed on metallic sub-
strates is the possibility of manipulating the Pc ligands in order to modify the mag-
netic state of the molecule/substrate magnetic state. Pioneering work has shown that
an STM tip may induce dehydrogenation of a single CoPc adsorbed on Au(111)
[76]. The as-deposited CoPc molecule shows no Kondo effect, while in the dehy-
drogenated molecule there is an onset of Kondo effect, with TK ≈ 208 K. The STM
tip removes the external H atoms of the CoPc molecule and as a consequence, favors
chemical binding with the substrate via the ligands. The molecule deforms from a
flat shape, prior to dehydrogenation, into a four-legged concave cap-like table with
the concavity towards the surface, after H removal (Fig. 9.10(a)). The magnetic
state of CoPc transforms from initially non-magnetic, to magnetic in the H-trimmed
bound molecule, with a moment of 1.09μB. Curiously, such a moment is larger than
that of a single Co atom directly bound to a Au atom on the Au(111) substrate. The
coupling of the Co atom in the molecule with the substrate, via the H-trimmed Ph-
thalocyanine molecule ligands, is stronger than in the direct Co-Au coupling case
[76, 83].

Cu-Phthalocyanine Adsorption of sub-monolayers CuPc on Au(111), Ag(111)
and Cu(111) studied with low-energy electron diffraction [84], show various degrees
of binding. The binding is weak on Au (physisorption), where no charge transfer
is observed. On Ag it is more intense (weak chemisorption), with charge transfer
that gives rise to intermolecular repulsion. When deposited on Cu the interaction
with the substrate is the strongest (strong chemisorption), and the intermolecular
interaction is attractive. The symmetry reduction from fourfold to twofold caused by
the different filling of the LUMO state induces an electrostatic quadrupole moment
that, in turn, generates an attractive intermolecular force. These attractive forces
prevail over the repulsive ones and there is a net effective attractive interaction.
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Fig. 9.10 Schematic diagram of MPc molecule deposited on a substrate (blue circles represent
the substrate’s atoms): (a) dehydrogenated CoPc on Au [76]. (b) NH3/FePc/Au. Note the NH3 is
located in the external side of the FePc molecule [85]. (c) FePc/(η2-O2)/Ag. Note the O2 group
sandwiched between the FePc molecule and the substrate [86]

STM of CuPc adsorbed on Ag shows a depression at its center. The spin state
of Cu is S = 1/2 and an elastic Kondo resonance is also observed. This Kondo
resonance arises from the presence of an unpaired spin located at the macrocycle
2eg(π) orbital. The S= 1/2 spin couples with the Cu S= 1/2 to generate a S= 1
triplet ground state and an excited S= 0 singlet. This is confirmed by the presence
of a strong Kondo peak at zero bias with TK = 27 K.

These results may be compared to XMCD performed at the Cu L2,3 edge on a
1ML thin film on Au, recalling that this technique is only sensitive to the Cu empty
d-states. The XMCD measurements on a CuPc 1ML [19, 45] show that about 10 %
of the magnetic moment is of orbital origin, and the anisotropy is perpendicular
to the molecule plane. Moreover, the value of the magnetic moments is strongly
enhanced with respect to that of the Cu in a thin film [19] (see Table 9.4). The
anisotropic dipolar term, represented by mT (Table 9.4) is negative in the CuPc,
reflecting the uniaxial anisotropy instead of the planar one observed in FePc and
CoPc.

9.5 Perspectives of MPcs

In this Section we mention briefly the research lines on MPcs that have been opened
and are gaining impetus in the advancing field towards single molecule magnetic
switching. This relates to the possibility of controlling the magnetic state of a
molecule by external means and on single molecule spintronics.

Since the seminal work on chemical switching of magnetic properties of
molecules deposited on a substrate [67], a renewed activity in the molecule state
control has erupted. A planar Fe-TPA4 (TPA = terephthalate) molecule deposited
on Cu can switch the Fe in-plane magnetic anisotropy to out-of-plane when the
molecule adsorbs selectively two oxygen atoms (O2-FeTPA4) [87]. FePc deposited
on a metallic substrate, and subject to adsorption of different molecules, has been
used in this context also. After deposition on Au, as described in the previous sec-
tion, FePc is allowed to react with different ligands. In NH3/FePc/Au there is a
weak chemisorption bonding of NH3 with the Fe atom on the external side of the
deposited FePc molecule on Au (Fig. 9.10(b)). This modifies the Fe coordination
with a consequent reorganization of the Fe charge, which leads to pairing of elec-
trons and quenching of the spin (S = 0). In addition, there is a weakening in the
FePc-Au bonding. These conclusions are obtained from the interpretation of XPS
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measurements at the 2p3/2 line combined with DFT calculations [85]. For Pyri-
dine/FePc/Au the effect on the molecule-surface bonding and spin quenching is
similar. However, in the case of NO/FePc/Au the spin quenching seems to be partial
(S= 1/2). The mechanism causing the weakening of the FePc- substrate interaction
is the capture of the gas molecule on the external side of the adsorbed molecule [88]
that causes a redistribution of charges and, in turn, the dehybridization of the Fe dz2

orbitals and the substrate Au(111) states.
The self-assembly of functionalized MPc’s on a oxygen-reconstructed Co sub-

strate has been used to create a checkerboard lattice of Mn(III)Pc and fluorinated
Fe(II)F16Pc [89]. XMCD, shows that both Fe and Mn are AF coupled to the Co
substrate magnetization. In a subsequent step, dosing with NH3 modifies the elec-
tronic state of the 3d metals; it quenches the magnetic moment of Fe (S= 0), while
it maintains the Mn moment AF coupled to the substrate. The original state is re-
covered by annealing at 300 K; the Mn moment is ON (AF coupled to Co, while
the Fe moment switches from ON (S = 1/2, AF coupled to Co) to OFF (S = 0).
The process can be reversible, thus it allows cyclic switching. This recent achieve-
ment corroborates the very active research on the magnetic switching by external
chemical activation.

The exposure to oxygen of 1 ML FePc on Ag(110) produces different binding.
The most stable configuration, compatible with experimental STM and spectro-
scopic evidence (XAS, XPS), is the FePc/(η2-O2)/Ag one, where η2-O2 describes
that each of the O atoms is bound to Fe by an Fe-O bond. In this configuration the
oxygen is chemisorbed in the interfacial structure between the organic molecule and
the Ag support, with the Fe of the Pc molecule placed on top of an Ag atom and the
two oxygen Fe-O bonds directed towards two lateral substrate Ag atoms; i.e. the
oxygen is encaged between the FePc and the Ag substrate (Fig. 9.10(c)). The effect
of this configuration on the magnetic properties remains to be studied. Interestingly,
the FePc/Ag system acts as a cyclic catalyst in the oxygen reduction reaction, a
property that is of great interest as a substitute for Pt catalyst [86]. This implies
an expanding basic and applied surface chemistry and physics activity related to
molecular switching mechanisms produced by adsorption of atoms and ligands.

The possibility of creating single molecule spintronic devices, such as spin valves
or spin-filters, in electrode/MPc/electrode sandwiches has been theoretically and
experimentally explored recently. Particularly intriguing is the predictions that a
MnPc molecule sandwiched between two semi-infinite armchair single walled car-
bon nanotubes may be a robust, 100 % efficient spin-filter with very high transmis-
sion around the Fermi energy [90]. The delocalization of the π type HOMO MnPc
molecule states and their “pinning” with the conducting states of the carbon elec-
trodes lead to the formation of efficient conducting channels. The same efficient
spin-filter configuration is predicted to occur with the FePc molecule [91].

In addition, giant magnetoresistance (GMR) has been reported to occur through
a single H2Pc molecule. This was claimed for a molecule on a Co metal island
deposited on Cu(111) surface FM electrode, with a Co coated tip as the second FM
electrode. GMR as high as 60 % was measured. This was proposed to be due to
the LUMO molecular states coupling to highly polarized spin minority states of Co
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[92]. GMR was also found for a H2Pc molecule sandwiched between AFM Mn
as one electrode and an Fe coated ferromagnetic tip [6]. Thus, the fabrication of a
single molecule phthalocyanine spin-valve may not be too far.

In the introduction of this chapter we set out to cover the magnetic properties of
transition metal MPcs. However, M substitution is much richer and goes beyond the
simple MPcs described above. Of particular interest to this book is the recent work
on double decker phthalocyanines (LnPc2), where Ln is a rare earth. In this type
of molecule, the Ln(III) atom is sandwiched between two Pc molecules, rotated
by 45◦ with respect to each other. The Ln = Tb and Dy compounds hysteresis
cycle exhibits slow relaxation, similar to that of Single Molecule Magnets (SMM)
formed by clusters. Interestingly, in this case however a single magnetic atom is
responsible for the phenomenon, which has been therefore denoted as a “single ion
magnet” (SIM) [93, 94]. The low temperature hysteresis curves show steps at certain
fixed fields, similar to those in SMMs discussed in other Chapters, which have been
explained as due to the existence of Magnetic Quantum Tunneling (MQT). In the
very low temperature hysteresis loop in a single crystal, these occur in TbPc2, less
clearly in DyPc2 [95], and later in HoPc2 [96]. To explain the regularly spaced
steps in applied magnetic field in the Ho case, and irregularly in the Tb case, a
different mechanism is necessary. The steps due to magnetic tunneling resonance in
SMM clusters (see Chaps. 1 and 2), take place when the field split electronic spin
levels cross. In the LnPc2’s this type of crossing yields to very high crossing fields
compared to those observed. In fact, the non-zero nuclear spin of the Ln lends a new
magnetic degree of freedom. The interactions acting on the 4f electronic ground
state are the ligand field which splits the Ln free electronic states. This gives rise to
a highly uniaxial anisotropic electronic spin ground state, the hyperfine interaction
coupling it with the nuclear spin I and the nuclear quadrupole interaction term. Then,
the steps in the LnPc2 low temperature hysteresis curves occur at those applied
fields for which the total energy levels (i.e. the entangled electronic J and nuclear
spin states I ), φ = |Jz〉|Iz〉, become degenerate. Moreover, the hyperfine and the
quadrupolar interactions provide the off-diagonal terms in the Hamiltonian to allow
resonant tunneling at the so called, “avoided crossing” of levels, which produce
the fast relaxation channels at the crossing field. The nuclear spin states degree of
freedom play a crucial role for the Quantum Tunneling of LnPc2 but not for the
transition metal SMMs [95, 96].

Because of the chemical stability of the MPc adsorbed on different substrates
and of the magnetic bi-stability, TbPc2 is a natural candidate as a possible single
molecule memory or quantum computing element. TbPc2 has been deposited on
polycrystalline Au [97] and Cu(100) substrate covered by ferromagnetic Ni thin
capping layer [98]. Molecules are in the “lying” configuration i.e. with the easy
magnetization axis perpendicular to the substrate. The ferromagnetic Ni layer cou-
ples antiferromagnetically with the Tb magnetic moment and stabilizes its polar-
ization up to room temperature. In contrast to the ferromagnetic coupling present
in the transition metal ferromagnetic substrate, discussed in the previous section, in
TbPc2 there is an intermediate Pc molecule between the Tb ion and the substrate. As
a consequence, direct interaction between Tb and Ni substrate weakens and allows
for the AFM superexchange coupling to prevail.
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The element selectivity of XMCD has been exploited very nicely in proving the
AFM character of this interaction [98]. As a function of applied field, the XMCD
at the Ni L3 and the Tb M5 edges were measured at fixed photon energy at the
XMCD peak. The field applied perpendicular to the substrate overcomes the com-
peting AFM Tb-Ni exchange field until the Tb moment rotates and becomes aligned
with the field. This first exciting result opens the possibility of using these molecules
as spintronic elements at room temperature, and that new molecules and configura-
tions can be expected to appear in the near future.
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Chapter 10
Potentialities of Molecular Nanomagnets
for Information Technologies

Marco Affronte and Filippo Troiani

Abstract The possibility of tailoring their functionalities at the molecular scale
makes molecular nanomagnets interesting for applications in information technolo-
gies where the race for extreme miniaturization will soon lead at requiring com-
ponents of few nanometers in size. Properties like the magnetic bistability or the
switchability by external stimuli actually allow one to mimic, at the molecular
scale, basic operations commonly used in computers while embedding magnetic
molecules in suitable electronic circuits allows the fabrication of novel spintronic
devices. Even more challenging is the control and the exploitation of quantum prop-
erties in molecular spin clusters that may allow the encoding of quantum informa-
tion with molecules. These concepts are substantiated by many achievements ob-
tained in the recent years and presented in this chapter along with some perspectives
and next challenges for the future.

10.1 Introduction

In this chapter we consider possibilities for exploiting molecular nanomagnets
(MNM) for Information and Communication Technologies (ICT). The basic ideas
are essentially grounded on the parallelism between the way molecular nanomag-
nets and computer components work. For instance, a molecule with a double-well
potential due to magnetic anisotropy mimics the behaviour of a magnetic register
at the nanoscale; a switchable molecule can be seen as an element in a logic gate
or in a spintronic device, while the dynamics of a molecular spin perfectly maps
operations required by quantum gates.

Before discussing in detail all these mechanisms and related potentialities for ap-
plications, we notice that the search of these parallelisms follows similar activities
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done in the past in different fields of research. It is interesting to notice, for instance,
that the pioneers of Information Science had first to figure out fundamental relation-
ships between some algebras and the functioning of electronic switches and relays
in order to built a machine capable to solve problems. Claude Shannon in the 1930’s
first established the relation between Boolean logic and the functioning of electronic
devices that is still at the basis of a modern computers in spite of the revolution due
to the introduction of semiconductors in ICT in the late Fifties. Similarly, Richard
Feynman noticed, in 1982, that the evolution of a quantum system cannot be ef-
ficiently simulated by classical ones, and thus by conventional computers. Since
the initial Feynman’s proposal, several quantum systems, such as photons, quan-
tum dots, semiconducting circuits, trapped ions or impurities in solids have been
studied with the aim to fabricate quantum computers. Yet the most suitable quan-
tum hardware has not been definitively found, and molecular spin clusters may well
contribute to this search.

In a different field, the similarities between the charge transport mechanisms
through organometallic groups with the functioning of specific electronic devices
have been noticed, thus providing sufficient ground to propose the use of these
molecules as electronic devices. That was the start of molecular electronics about
20 years ago. In chemistry, the Nobel laureate J.M. Lehn noticed that the growth of
(supra-) molecular assemblies follows specific laws, and that these can be used to
solve complex problems.

From these examples we learn that, in order to find applications of MNM in ICT,
we have to understand and control how molecular spin clusters work and establish
a parallelism between these and the operational mode of devices in ICT.

The race for faster, smaller and more versatile devices for ICT is well known and
it is a great stimulus for the search of new and smarter materials, with novel func-
tionalities or better performances with respect to CMOS (Complementary Metal
Oxides Semiconductors) or to the magnetic metals used in hard disks. Molecules
constitute pre-assembled functional units, that can efficiently work at the nanoscale.
Coordination and supramolecular chemistry allow one to tailor the magnetic states
and properties of MNM, that are real systems on which it is possible to observe
and control quantum phenomena at single molecule level. These arguments provide
further motivation to study molecular nanomagnets with the aim of finding efficient
functional materials working at the nanoscale. The challenges that we have to face
to provide efficient solutions to ICT problems are, however, very tough. In this chap-
ter we discuss some recent activities ongoing in this interdisciplinary field, report
achievements obtained in the last few years, and discuss targets for the future. The
ambitious goal of this chapter is to touch many aspects of the problem in order to
have a broad view of this emerging field. Many topics mentioned in this chapter cer-
tainly deserve a much deeper discussion. Some of them are central in other chapters
of this book and they will be treated more extensively there. For others, we shall just
mention the essential literature and refer the reader to dedicated textbooks.

The chapter is organized as follows: in Sect. 10.2 we introduce some basic con-
cepts in classical and quantum computation; in Sect. 10.3 we review some of the
main issues and trends in ICT; In Sect. 10.4 we discuss the implementation of quan-
tum information processing with MNM. While the former two Sections will have
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Fig. 10.1 Bloch sphere
representing a qubit state |ψ〉.
The north and south poles
correspond to the states |0〉
and |1〉 states, respectively.
Points on the sphere (r = 1)
represent pure states |ψ〉 =
cos(θ/2)|0〉+ eiϕ sin(θ/2)|1〉.
Points in the sphere (r < 1)
correspond to mixed states

a very general character, in the latter one we focus on some more specific aspects,
more related to our own research activity.

10.2 Classical and Quantum Bits

C. Shannon, one of the pioneers of information theory, first introduced the word
bit to name binary digit in 1948. Modern computers still work with elementary bits
of information, represented by two-valued variables and these can be implemented
by bistable systems. The ON/OFF states of transistors, the opposite polarizations of
light, or the UP/DOWN magnetization states of small magnets may well represent
a bit. The hysteresis loop of a magnet with two states of remanent magnetization
(UP and DOWN) was actually one of the first methods for data recording: in 1898 a
Danish engineer V. Poulsen used a magnetic wire to store information. Since then,
bistability in many other systems, such as ferroelectrics, non linear optical media,
capacitors or transistors were used to store and process bits.

There are many forms of bistability in molecular systems, such as spin
crossover [1], valence tautomers [2], single molecule magnets with anisotropy bar-
rier [3], etc: that’s why it is straightforward to imagine them as elementary units
for data encoding. There are also systems that present multi-states. It is possible to
encode multiple bits with the same unit, although this is a less common practice due
to a reduced reliability in writing, reading and storing information: each of these
processes needs to be robust enough to limit errors.

In quantum mechanics, we learn to deal with quantum states of physical sys-
tems. Quantum states are represented by wavefunctions |ψ〉. The simplest case is a
quantum state represented in a basis of two eigenvalues |0〉 and |1〉, which allows to
define the elementary quantum bit or qubit. The difference between a classical bit
and a quantum bit is therefore clear: the quantum state may exist in any superposi-
tion of the two states of the basis set |ψ〉 = α|0〉 + β|1〉, while the classical bit is
either in state 0 or 1. Quantum bits can be implemented by many physical systems,
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Fig. 10.2 Schematics of
basic elements in a
computing machine

such as one electron in a quantum dot, or a photon with two polarization states, or a
nuclear or electron spin s = 1/2. The latter is well described by spinors which can
be represented using a Bloch sphere (see Fig. 10.1).

Computing Machines The variety (number and type) of tasks performed by com-
puters changes continuously. The same is—even more—true for the their compo-
nents, yet we can identify some common items. Interestingly, some basic operations
and units in modern laptops are essentially the same that one could find in the early
machines (Fig. 10.2). In 1936 Alan Turing, a British mathematician, proposed a
prototype of a computing machine that is still used to fix basic operations and ele-
ments [4]. The Turing machine consists of a memory unit, such as an infinite tape,
on which symbols can be written and read in unit cells by a head. A finite sequence
of instructions is performed by a processor on these symbols. An alternative de-
scription considers electronic circuits that comprise active and passive elements.
Among these, interconnections now deserve considerable attention as critical ele-
ments in terms of efficiency (e.g., power dissipation or speed), and for the need to
build complex architectures. Besides these basic elements, interfaces with external
world (e.g. communication, sensors, displays) also play an important role in modern
computers. Most of these elements (memories, processors, interconnections, com-
munication, sensors, etc.) are also found in quantum technologies. Therefore in a
quantum computer we need registers to store and others to efficiently process quan-
tum information or to communicate these at different length scales. With this gen-
eral scheme (Fig. 10.2) in mind, we can envisage possible applications of molecular
nanomagnets in a computing machine.

Memory Cells Bistable molecules can act as registers where information can be
recorded for short time or “permanently”. In the latter case, the general requirement
for commercial memories is that information must be retained for at least 10 years
at ambient conditions. The benchmark for nanomagnets are FePt nanoparticles, that
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have the highest magnetocrystalline anisotropy (108 erg/cm3) know so far, besides
showing high chemical stability at high temperatures. Three nanometer FePt par-
ticles actually have a stability ratio �E/kBT > 50 at room temperature, thus sat-
isfying the requirement for commercial memories. So, the first issue for molecular
nanomagnets is to stabilize their magnetization at room temperature.

In spin crossover systems, atoms of first-row transition metals with electronic
configurations d4-d7 in an octahedral symmetry can adopt two different electronic
ground states, according to the occupation of the d orbitals split into the eg and t2g
subsets. The mechanism of bistability originates from the interplay between orbital
levels and lattice vibrations and, as such, it may actually work at room tempera-
ture [1]. Recently, great progresses have been achieved in nano-structuring Prussian
Blue Analogues [5], and intense research is also devoted to demonstrate spin transi-
tion in Fe compounds at single molecule level and at room temperature [6].

Isomers of organic compounds that can readily interconvert [7] or, more specif-
ically, valence tautomers comprising transition metals [8, 9] present chemical (and
magnetic) bistability which—in principle—can also be used to store information.
Typically, these are systems based on radicals using polyoxolene molecules which
can be in the paramagnetic S = 1/2 semiquinone forms or in the diamagnetic
cathecolate or quinone form. Their interactions with metal ion species which un-
dergo internal charge transfers may be obtained, thus providing magnetic bistability
at finite temperature.

The mechanisms controlling relaxation of the magnetization in single molecule
magnets have been largely studied in the last two decades and are discussed in
detail in Ref. [3] (see also Fig. 10.3). Typically, the uniaxial magnetic anisotropy
gives rise to a double well of energy levels in the ground state multiplet, that in-
clude states with opposite magnetization Fig. 10.3(a). The highest anisotropy barri-
ers have been recently found in rare earths embedded in organic shells (single ion
magnets) [10]. Much effort is currently devoted to control the retention of magne-
tization through chemical and physical interactions of a single molecule with an
active surface, which also looks a viable route for room temperature operation [11].

A general issue in view of using magnetic memories is how to “write” and “read”
information at the nm scale. In a transistor we can “write” 0 and 1 by changing the
gate voltage and we can “read” such information by measuring the current passing
into the channel. The conventional way to write information in a magnetic memory
is to use magnetic fields. Yet, as magnets get smaller and smaller, it becomes more
difficult to address them individually by localized magnetic fields (this is more dif-
ficult than with electric fields). For instance, it is not trivial to design heads or small
antennas that may generate magnetic fields confined within 10 nm [12]. Moreover,
magnetic fields generated by electrical currents waste a lot of energy. These two are
additional problems that need to be solved in order to make nanomagnets competi-
tive in the race for ultra high density memories.

A conventional way to read a magnetic bit is to use highly sensitive magnetic flux
detectors in proximity of the nanomagnets. In commercial hard disks, spin valves,
based on celebrated enhanced (giant/colossal) magnetoresistance effects, are nor-
mally used [13]. Whether this scheme of detection can be extended to the ultimate
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Fig. 10.3 Switching mechanisms and possible use of molecular switches: (a) magnetic bistability
induced by anisotropy in a single molecule (ion) magnet: in this case an external magnetic field can
be used to switch the magnetization from UP to DOWN and the other way around; (b) molecular
switch between two magnetic registers: an optical or electrical stimulus can be used to switch
ON and OFF the coupling between two magnetic registers; (c) temperature-induced magnetic
switch in FeCo Prussian blue [9]: when the sample is cooled, the high temperature phase with
the Fe(III)-CN-Co(II)−HS structure is trapped without relaxing back to the low-temperature phase
with the Fe(II)-CN-Co(III)−LS structure (from Ref. [9]). The magnetic state of these molecular
systems can be used to probe temperature

limit of single molecule level is an open issue, that was recently addressed by the
realization of tiny devices based on carbon nanotubes [14] or graphene [15]. Alter-
natively, single molecule transistors have been demonstrated to detect the magnetic
state of a single molecule inserted between two electrodes [14, 16]. In both cases,
the molecular spin state is converted into electronic information.

Writing and reading quantum bits are certainly more difficult tasks, so that we
have to define efficient methods and protocols to do these jobs. Besides what has
been mentioned above for classical bits, we have to control the phase of the quan-
tum state, that is the α and β coefficients in the bra-ket notation used above. To
appreciate the difficulty of this task, we may consider the fascinating experiments
of spin-polarized STM recently presented [17–19], where it was possible to write
and read the UP and DOWN state of each single magnetic atom but the quantum
information (phase) appears washed out by the method used in current experiments.
At first glance, writing and reading magnetic states in a molecule seems easier than
in atoms, due to the larger size of the molecules, but this is not straightforward: be-
sides technical problems to deposit molecules on clean surfaces, recent experiments
and theoretical works showed that the magnetic polarization of the organic ligands
may well be different from that of the metal ions, due to the interaction with the
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Fig. 10.4 Diarylethene ligand as reversible photo-cromatic switch between two radicals (from
Ref. [22])

metal substrate [20]. This further puzzles the protocol of reading the magnetic state
of an isolated molecule by STM tips.

Molecular Switches Switching molecules and interconversion between molec-
ular states are fascinating topics that keep attracting the interest of chemists and
physicists after several years of intense research [21]. Within the context of this
chapter, we are interested in molecules switching their magnetic states/properties,
although many molecules are known as electronic switches [21]. Incidently, the
switch of magnetic states/properties is often related to the electronic ones. In princi-
ple, switchable magnetic molecules can be exploited in different ways for ICT (e.g.,
information storage, processing, sensing etc.) as depicted in Fig. 10.3. For instance,
bistable molecules capable of retaining their magnetization for long time can be
used as memory cells (Fig. 10.3(a)), as previously discussed. Alternatively, switch-
able organometallic groups can be inserted between two molecular spins to set ON
or OFF magnetic interactions (Fig. 10.3(b)).

In the previous paragraph we have mentioned the conventional switch of a mag-
netic molecule under the application of a magnetic field (writing process). Much
interest has been attracted by the optical switch of molecular states due to energy
or electron transfer [21]. The reversible processes can be photo-isomerization or
photo-cyclization but there are also redox-based molecular switches, rotaxanes or
catenates, chiro-optical switches or molecular systems that function by virtue of
photo-chemical reaction [21]. A prototypical case is realized by a photocromatic
diarylethene ligand that magnetically links two spins (for instance two nitronyl ni-
troxides) at the edges (Fig. 10.4). The magnetic coupling can be switched on and off
reversibly by using UV or visible radiation [22–24]. In this way, the magnetic state
of the two radicals is controlled by an external stimulus via the switchable ligand.
There are also linkers with switchable metal centers that can do the same job. This
is the case of luminescent Re compounds, dimers (such as Cu2 or Ni2 acetates) with
spectroscopically accessible separation between active and passive magnetic states
or, alternatively, Ru2 dimers with redox properties and switchability [21]. Much in-
terest has been recently devoted to organic free radicals which are stable on surfaces
and present interesting switchable electronic, optical and magnetic properties [25].

Besides the application of magnetic field or light, the spin state of the metal cen-
ter can be also changed by different external stimuli such as temperature or pressure.
In the large family of spin crossover compounds (more than 200) there are molec-
ular systems for which the spin transition is induced by temperature [1, 6] (see
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Fig. 10.5 Top: Generic logic
gate comprises one (or more)
input(s), a control input and
an ouput. Note that
information may only flow
from the input to the output.
Bottom: two-bits gates AND
and OR and related truth
tables explaining their
functioning

Fig. 10.3(c)). Since the switching parameter is an external stimulus, these systems
have been proposed for the realization of molecular sensors [26].

Interconnections These are further essential elements for the realization of a
computing machine. More specifically, we are interested in molecular linkers—
not necessarily switchable—that can transmit magnetic information at nanometric
scale. Organic materials, made of light elements, have long spin coherence time due
to the weak spin-orbit interaction. Consider, for instance, the prototypical case of
spin information propagation through aromatic linkers. These have been intensively
studied for the realization of permanent bulk molecular magnets. The strength of
the interactions between two spins linked by an aromatic bridge, has been found to
obey some general empirical rules [27]: (1) the larger the number of bonds which
compose the interaction path, the smaller is the interaction; (2) charge and spin po-
larization induced by bonding to a metal site proceed in an alternating fashion in
aromatic cycles; (3) since a magnetic interaction can be sustained by different bond
paths in the linker, the strength of the interaction should depend on whether con-
structive or destructive quantum interference between paths with different lengths
arise [28]. Our recent studies have shown how aromatic groups may also link large
molecular spin clusters [29, 30]. Moreover, the magnetic coupling can be mechani-
cally switched on and off by twisting the angle between two aromatic groups [30],
similarly to what happens for the electronic communication channels in the same
aromatic systems [31].

Logic Gates Conventional gates perform Boolean logic operations such as AND,
NOT, OR, whose functioning is represented by truth tables reported in Fig. 10.5.
Typically, we can recognize basic elements in a gate: input(s), control and ouput in
such a way that the output is determined by the inputs upon the condition(s) given



10 Potentialities of Molecular Nanomagnets for Information Technologies 257

by the control (Fig. 10.5). Due to their electronic and optical capabilities, several
molecular groups have been considered as true elementary logic gates [21]. More
complex operations can be performed by assembling elementary Boolean gates and
it can be demonstrated that a minimum set of elementary gates can constitute a
universal computing machine, able to solve a large number of problems. An alter-
native approach is to realize more sophisticated gates that perform only specialized
operations but with higher efficiency.

A similar situation is found for quantum gates: there are basic quantum gates that
constitute a universal set and perform a wide class of quantum operations. An ex-
haustive description of these is given in textbooks of quantum computation like that
of Nielsen and Chuang [4]. Single-electron spins represent a prototypical example
of a two-level system. The qubit encoding in composite and complex spin systems—
such as molecular nanomagnets—is less straightforward. In order to make MNMs
competitive candidates for quantum computation we have to compare their perfor-
mances with those of other, well established, candidate quantum systems. Some
peculiarities of molecular spins exist and we shall discuss them in Sect. 10.4.

For the sake of completeness, we note that quantum computation is not the only
way in which a molecular system can efficiently process information. Alternative
computational methods have been proposed and still attract much interest, espe-
cially to solve complex problems. J.M. Lehn first noticed how some chemical reac-
tions perform specific codes and sequences to give rise to supramolecular structures
[32]. Similarly, the way biological systems (DNA) perform complicated operations,
such as recognition, is highly efficient [33]. Another novel way of computing is
that performed by neural networks [34]. Arrays of molecular spins interacting by
exchange coupling work as quantum cellular automata that may efficiently solve
specific problems [35]. The contribution of molecular nanomagnets to these and
other alternative ways of computing has not been explored yet.

10.3 Issues, Trends and Benchmarks of Information
Technologies

An alternative way to figure out how magnetic molecules and related synthetic and
characterization methods can be used in ICT is to identify main problems and trends
in current technologies. This approach to the problem may better help to fix goals
and benchmarks. To have an idea on the design and realization of today devices we
refer to the roadmap of international organizations on nanotechnologies [36] or to
review articles on nanoelectronics [37] or spintronics [13].

Size Reduction The race towards smaller and smaller devices is well know in
ICT. For semiconductors, the 25 nm-technology is currently in production while,
for commercially available hard disks with storage density of 50 Gbit/in2, the size
of an elementary magnetic register is ∼1000 nm2. At present, industries are devel-
oping hard disks with 1 Tbit/in2 storage density and this implies magnetic cells of
∼100 nm2 in size. We’ll soon approach the nm scale, i.e. the molecular scale!
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The trend towards extreme miniaturization has several consequences and the
threshold of 10 nm seems to be critical for several reasons. The first one is related to
the fabrication processes. Although radiation with shorter and shorter wavelengths
may well be used to define devices with resolution down to nm scale, lithographic
methods are becoming more and more sophisticated and expensive so bottom-up
fabrication methods can represent an interesting alternative [38]. Therefore, besides
the individuation of specific molecules, any achievement on the definition of prod-
ucts, methods and protocols for deposition of functional molecules on surfaces is
of potential interest for ICT. This search also stimulates the application and the de-
velopment of methods for the chemical and magnetic characterization of arrays of
molecules on surface [39]. Self assembly of functional units is certainly interesting
for the production of scalable devices. While the evaporation and organization of
simple molecules, like metal phthalocianines, on surfaces is well established, self
assembling of large and complex magnetic molecules on surfaces has been demon-
strated only recently [40], along with the chemical stability and preservation of their
functionalities [41]. Moreover, the realization of nanoarchitectures and devices re-
quires precise positioning over large area and selective deposition of molecules. Sev-
eral tools and methods for nano-structuring and decorating surface with molecules
(nano-particles) are currently under study [39]. Among these, dip-pen lithography
allows us to deposit few molecules with nanometric precision . A further require-
ment for realization of devices is the control of orientation, more specifically the
control magnetic anisotropy with respect to the substrate. On this line, important
results have been obtained for Fe4 high spin molecules [42] and for Cr7Ni low spin
rings [43].

Size Effects As just mentioned, extreme miniaturization implies several techno-
logical challenges. Yet we have to realize that there are also fundamental limitations
that occur at the nm scale and that cannot be simply overcome by technical means.
We deal here with size effects that, in first instance, induce a discrete pattern of en-
ergy levels and states. In semiconductors, energy bands are replaced by discrete lev-
els in quantum dots so single electron devices can be considered as the natural evo-
lution of transistors in nano-electronics. From this viewpoint, molecules with well
defined patters of energy levels and states represent a unique playground to test and
develop new ideas in magnetism. Besides, molecules are better than nanoparticles,
that typically have irregular shape and size dispersion. However, organo-metallic
molecules are fragile so a crucial step is to demonstrate that individual molecules
preserve their characteristics in different environments, like for instance on surfaces
or in ambient conditions. These are big challenges. Yet, similarly to previous expe-
riences in other fields, the study of size effects in molecules present unique opportu-
nities from which we can learn a lot and hope that this knowledge can be transferred
to suitable systems in the future.

A further consequence of the reduction in size is the appearance of quantum phe-
nomena. Discrete levels and states for molecules or quantum dots are intrinsically
quantum in nature and should be treated as such. In the presence of quantum coher-
ence, properties like interference and entanglement can be exploited for new gener-
ations of quantum devices. This evolution implies new concepts and extra value can
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Table 10.1 Comparison of typical switching times between electronic and magnetic devices and
different molecular processes

System Switching process Switching time (ns)

Electronic device Electrical ∼10−1

Magnetic bit in HD [44] Magnetic ∼1

SMM [3] Magnetic 10

Ru(II)-complexes [45] Redox >103

Molecular motors [46] Mechanical 106–109

Spin crossover [1, 26] Optical 102

Valence tautomers [9] Optical 10−3–102

Photo-chromic switches [21] Optical 10−4–1

be actually added to conventional computation. On the other hand, quantum states
are fragile and we have to learn to manipulate them in coherent way, as discussed in
the following section.

Switching Rates Performances in ICT are measured in time scale so, bit writing
or communication rates are benchmarks to be considered. To fix some numbers,
modern electronic processors write bits with rates of few tenths of ns, i.e. few GHz.
Without going into many details on the functioning of each device, Table 10.1 di-
rectly compares the order of magnitude of switching times of electronic devices and
magnetic memories that are currently in the market with typical rates of molecular
switching processes.

Power Dissipation One of the most critical factors that currently limits perfor-
mance of electronic devices is the power consumption and the consequent dissi-
pation of heat. There are impressive numbers here. For instance, about 5–10 % of
whole national electricity budget in the U.S. is dissipated by computers and commu-
nications today and this fraction will double by the year 2020. The power density
dissipated by an electronic processor attains 100 W/cm2, that is more than what
is dissipated by a hot plate to cook eggs! Trends show that the situation is getting
even worse for electronic nanodevices due to the increase of active devices density
and the intrinsically reduced thermal conductivity [47]. In electronics, we can dis-
tinguish several sources of power consumption: (i) dynamic switching processes;
(ii) leakage power (related to maintain device in standby mode); (iii) Joule effect
in the electrical connections. Power consumption is given by the energy required to
activate a process (e.g. a switch) times the rate at which this process occurs. It has
been shown that the minimum energy required to switch a binary device is 3kBT
[47]. In electronics, information is related to the intensity of charge current so a
switch is very consuming: at present, fast electronic devices require ∼103kBT . To
flip a spin S bound by an exchange coupling J requires an energy of order of JS2,
while a thermally activated process of magnetization reversal of the same spin in a
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anisotropy double well requiresDS2. In order to guarantee that information is suffi-
ciently stable against thermal fluctuations, it is generally required that the magnetic
barrier is ln(�/kBT ) > 50 so, in principle, magnetic switch requires less energy
than an electronic device to operate at room temperature. Magnetic information is
also non volatile, so they do not require energy for standby mode (that is the case
of all magnetic memories, for instance). It is also worth noting that magnetic bits,
being vectors, are more efficient than charge current (scalar), but interconversions
between spin and charge information are scarcely efficient processes and it should
be avoided. This consideration leads to the idea of realizing “all spin logic” comput-
ing machine [48], that represents a monolithic spintronic machine (see Fig. 10.6).

Besides these general arguments, it is interesting to consider how specific spin-
tronic devices work. A prototypical spin-FET is not consuming less than an equiva-
lent MOSFET [49]. MRAM, currently in the market, make use of a magnetic field
generated by an electrical current to switch the magnetic memory and thus they re-
quire more power than the equivalent electronic RAM. The use of spin torque may
well reduce the energy required to switch a magnetic bit, and such type of solu-
tion make spintronics promising for the future [50]. Whether these concepts can be
extended down to the molecular level is an open question.

Nano-architectures So far we have considered planar arrangements of devices,
memories and sensors as the natural choice. While this may hold for the present,
recent trends suggest that 3D architectures can become attractive in the near future.
A first reason for this is related to efficient packing: the density of devices achiev-
able in 3D is by far denser than any arrangement in 2D. Secondly, realization of
interconnects is recognized as one of the most difficult tasks in electronics. Thus,
exploiting the vertical dimension to connect devices and memories represents an
advantage with respect to any planar arrangement. The idea of employing 3D ar-
chitecture is not new and several proposals have been put forward in the past but,
obviously, these have to face difficulties in the realization using current technology.
Yet some solutions have been recently demonstrated to be feasible and efficient and
can be kept in mind when we deal with molecular nanomagnets. For instance, the
introduction of holographic methods to optically address 3D arrays of memories is
a technology available in the market since 2006 [51]. In principle, this method can
be applied to optically switchable molecular crystals or metallorganic frameworks
(MOF). Another way in which molecular science may contribute is to develop meth-
ods for hierarchical 3D growth of functional molecular layers. Along this line, the
realization of hybrid architectures that alternate, for instance, carbon-based conduc-
tors with functional molecules looks also particularly attractive.

Spintronics and Quantum Computation We have already mentioned the fields
of Spintronics and of Quantum Computation (QC). When talking about spins, quite
often we mix the two since the common effort is actually devoted to exploit the spin
as information carrier. There are, however, some differences between these fields,
starting from the fact that, historically, the former was developed by the commu-
nity studying electron transport in magnetic metals while the latter was born—and
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Fig. 10.6 Spintronics, quantum computation and quantum spintronics

it is still—strongly related to diverse branches of quantum physics (quantum optics,
low-dimensional semiconductors, superconducting circuits, atomic physics, etc.).
Following the scheme in Fig. 10.6, as suggested by S. Bandyopadhyay and M. Ca-
hay [13], we can notice that:

– for QC, the spin is a quantum observable which can exist as superposition of
states, while it is simply treated as tiny magnet with only the North and South
poles in Spintronics;

– the control of coherent spin dynamics is essential for QC: the phase of the
wavevector contains an essential part of the quantum information. This is not
required in conventional Spintronics;

– QC exploits resources, like entanglement, which are typical features of quantum
systems, while this is not the case for Spintronics.

Therefore, QC is much more powerful but also much more demanding as compared
to Spintronics. Conventional Spintronics makes use of both the charge and the spin
of electrons. Ideally, a device which does not need to interconvert spin information
in charge current, like the “All Spin Logic” proposal described in Ref. [48], would
be a “Monolithic” spin technology. We can also distinguish between passive de-
vices, like spin valves, for which information is essentially carried by charge current
and the magnetism of the polarizers is used only to control it, from active devices,
like spin-FET, where information is carried also by the spin current (see Fig. 10.7).
A new branch has also emerged in the last few years and it aims at exploiting the
interconversion of information contained in a (single) spin in a charge signal while
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Fig. 10.7 Schematic view of prototypical spintronic devices: (a) spin valve (upper pannel) and
(b) spin FET (Field Effect Transistor, lower panel). The spin valve is essentially made by two
ferromagnets sandwiching a non-magnetic layer (NML). The first ferromagnet (FM1) injects spin
polarized current through the NML, which is then collected by the second ferromagnet (FM2).
The resistance of the valve depends on the relative orientation of magnetization of the two FM
polarizers [13]. The magnetization controls the current, that is the true carrier of information. This
is thus a passive spin device (see Fig. 10.6). In the spin Field Effect Transitor, a spin polarized
current is injected to a spin channel by a ferromagnetic electrode (source). The polarization of the
spin current is controlled by the gate, which can be controlled either by an electric or by a magnetic
field. The ferromagnetic drain detects the polarization of the spin current at the end of the channel.
The information variable is the spin current, and the control is made directly on this. Therefore,
the device is an active one [13] (see Fig. 10.6)

preserving the coherence of the wavefunction during the spin manipulation. This
field, known as Quantum Spintronics, started with fascinating experiments on quan-
tum dots and on spin impurities in Si and it is now becoming a realistic avenue with
pioneering experiments performed on single magnetic molecules, as discussed in
another chapter of this book.

These distinctions, although not universally accepted/used, should help the
reader to appreciate the different requirements needed to realize different types of
technology.

10.4 Quantum Computation

Spin Cluster Qubits As widely engineerable and coherent systems, molecular
nanomagnets have been initially proposed by Leuenberg and Loss in 2001 for the
encoding and manipulation of quantum information [52]. Scalable proposals for
general-purpose quantum computation are based on the use of each MNM as a spin-
cluster qubit [53, 54]. The molecules suited for the qubit encoding typically consist
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Table 10.2 Ground state spin S of various molecular spin clusters, their measured decoherence
times (if references are not specified, information are taken from private communications)

Molecule Ground state Decoherence time (µs)

Cr7Ni [56] S = 1/2 15 µs at 2K [57]

V15 [58] S = 3/2 0.2 µs at 4K

Cu3 [59] S = 1/2 1 µs at 1.5K

Nitronil nitroxide radicals S = 1/2 3 µs at 70K

Malonyl radicals [60] S = 1/2 1 µs

Polyoxometallates [61, 62] S > 1/2 1 µs at 1.5K

Fe4 [63] S = 5 0.64 µs at 2K

Fe8 [64] S = 10 0.7 µs at 1K

Mn12 [65] S = 10

Er ions [66] J = 15/2 1 µs at 2K

Tb2 [67–70] J = 6 0.1 µs at 4K

of spin clusters with antiferromagnetic exchange interaction, and with an uncom-
pensated spin that results in an S = 1/2 ground doublet. Radicals with S = 1/2,
well known for their sharp line-shape in EPR spectra, have also shown great poten-
tialities as molecular building block for the implementation of quantum gates [55].
High spin molecular spin clusters or molecular derivatives of single lanthanide ions
working as effective two-level systems might in principle be considered, as long as
two basic requirements are fulfilled. Firstly, it must be possible to efficiently rotate
the two lowest states |0〉 and |1〉 into one another by external fields (as is the case for
theM =±1/2 states, that are coupled to each other by magnetic dipole transitions).
Secondly, occupation of the additional levels must be suppressed in the initialization
process, and kept negligible throughout the qubit manipulation. This implies that the
applied fields should not induce undesired transitions between the |0〉 and |1〉 states
and higher-lying levels.

Besides the level structure, molecular nanomagnets can present significant differ-
ences in terms of decoherence times. In fact, the coupling to the nuclear spin bath, as
well as to phonon modes, can present relevant system-specific features. In addition,
the possibility of growing ordered arrays by depositing the molecules on surfaces, or
of inducing intermolecular exchange by means of supramolecular bridges can vary
significantly from one system to the other. These aspects, that can play an important
role in the implementation of quantum information processing, can in fact depend
not only on the magnetic core of the molecules, but also on the surrounding shell
of organic ligands. In Table 10.2 we report the ground state spin of a number of
molecular nanomagnets, as well as their decoherence times, measured at low tem-
peratures. The form in which the molecules can be aggregated within the sample are
also reported.

The main advantage of using a spin cluster, rather than a single electron spin,
for encoding the qubit was initially identified with the larger spatial extension of
the former with respect to the latter one [53]. This would in principle facilitate the
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individual addressing of the qubits, by reducing the required spatial resolution of
the applied fields. With the development of more system-specific proposals, other
potential advantages have emerged, resulting from the possible exploitation of the
internal degrees of freedom belonging to the spin clusters. These can in fact be
exploited to relax some of the most demanding requirements related to the MNM-
based implementation of quantum-information processing (switchable interaction
between the molecules, individual addressing of the nanomagnets) [71], or to enable
the qubit manipulation by means of electric—rather than magnetic—fields [72].
Some of these issues are discussed in more detail in the following.

Coherent Switching of the Qubit-Qubit Coupling The implementation of
single- and two-qubit gates [4] requires the individual addressing of the molecules
and the coherent switching of intermolecular coupling. In order to be coherent, the
switching should take place in timescales shorter than the decoherence time (typ-
ically microseconds, see Table 10.2), and it shouldn’t involve degrees of freedom
other than spin (such as in phonon emission, or other forms of relaxation). The re-
quirements are thus more stringent than in the case of classical switches, mentioned
in the previous paragraph. However, different approaches to the qubit manipula-
tion can be envisaged, that allow to partially relax the above requirements. We
first consider the ones based on short-range, exchange coupling between MNMs.
One possible way to switch the effective coupling between two qubits, in spite of
the permanent character of the underlying exchange interaction, is to exploit the
different spin textures of the ground- and excited-multiplet states of MNM. For ex-
ample, the intermolecular bridge can symmetrically couple a nanomagnet A with
two spins of a second MNM B that—in the subspace {|0〉, |1〉}—have opposite ex-
pectation values [71]. This condition is approached by neighboring spins in rings
with antiferromagnetic exchange, and can be fully met provided that the two spins
in question are equivalent [73], resulting in a vanishing intermolecular exchange.
The coupling can be controllably turned on by exciting qubit B to an auxiliary
excited state where such cancellation condition doesn’t apply. The same principle
can be exploited in MNM acting as auxiliary units [74], that mediate the magnetic
coupling between spin qubits. In the simplest case, such unit consists of a dimer
of antiferromagnetically coupled spins, with a finite amount of S-mixing, such that
singlet-triplet transitions are dipole-allowed. This dimer can act as a switch, that
prevents or allows the magnetic coupling between the qubits depending on whether
the two spins have zero or finite expectation value, as in the S = 0 and S = 1 states,
respectively. We note that within this approach, the internal degrees of freedom that
one exploits are the ones of the auxiliary unit, while the qubits themselves need
no longer be spin clusters, and can be encoded in single spins. In both the above
approaches, the effective switchability of the qubit-qubit coupling requires a fine
(though time-independent) tuning of the intra- and inter-molecular exchange inter-
actions. Alternative approaches, based on the dynamic control of the intermolecular
exchange through, e.g., electric fields would disclose alternative opportunities for
quantum-information processing with MNMs.
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Individual Addressing of the Qubits Another crucial aspect is the individual
addressing of the molecules, required for their selective manipulation and for the
qubit-specific readout of the final state. These operations imply the use of external
fields with a high spatial and/or spectral resolution. Two approaches have been pro-
posed for relaxing this requirement and performing the qubit manipulation only by
means of global (i.e. spatially homogeneous) fields. One consists in performing uni-
versal general-purpose quantum computation with global control schemes [75–77].
Here, the individual addressing of the molecules is achieved by using part of the
qubits as auxiliary units. The state of each auxiliary unit only determines whether
or not the neighboring qubits—that actually encode information—are to be manip-
ulated by each applied field. Typically, the auxiliary units are all in their |0〉 state,
apart from one (the so-called control unit), which is moved next to the qubit to be
addressed at each step. The lack of individual control in the global-field approach
implies an extra cost in terms of complexity of the hardware, of the qubit encoding
and of the manipulation scheme. The presence of auxiliary levels within molecu-
lar spin clusters, along with the above mentioned switching mechanism, allows to
minimize both these costs [71].

Quantum Simulation A second strategy to cope with the absence of local con-
trol is that of reducing the generality of the computational task. This corresponds
to implementing a dedicated device, rather than a universal quantum computer, as
in the case of quantum simulators [75, 78, 79]. Quantum simulators are devices—
initially envisioned by Richard Feynman [80]—that can simulate the dynamics of
other quantum systems. A digital simulator is in fact nothing less than a (small)
quantum computer, where the time-evolution operator e−iH t/� is decomposed into a
discrete sequence of single- and two-qubit quantum gates. In analog quantum simu-
lators, the system interactions are tuned in such a way that its Hamiltonian coincides
with (or is equivalent to) that of the target system. Hybrid approaches can also be
conceived, where the manipulation consists of a sequence of quantum gates, but the
resemblance between simulated and simulating systems (in terms of, e.g., geometry
and dimensionality) allows a significant reduction of the physical requirements. In
particular, translationally invariant Hamiltonians can be efficiently simulated in ar-
rays of molecular nanomagnets, manipulated by global fields [74]. Here, one of the
key resources is represented by the demonstrated capability of synthesizing MNM
chains, and of linking neighboring MNMs through intermolecular exchange bridges
with a high degree of control. We note that, even if the simulator shares physical fea-
tures with the simulated system, the local interactions can be completely different
in the two cases. In fact, the nanomagnet-based simulator can efficiently mimic the
dynamics of prototypical fermion systems, or of chains of spins s > 1/2. In all these
cases, the translational invariance of the simulated systems allows to implement the
simulation by a number of pulses that is independent of the system size.

Cavity-Mediated Coupling While the coupling between MNMs considered
above relies on short-range exchange interactions, an alternative approach can be
developed, based on long-range couplings between the qubits, mediated by mi-
crowave photons of planar cavities. In order for this to be possible, the timescale
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Fig. 10.8 Schematics of a
time-dependent electric field
applied to the Cu3 spin
triangle. The in-plane
introduces a different
renormalization of the three
exchange couplings, and
couples states with equal
values of S and of the spin
projection Sz (shaded spin
triangle)

of the cavity-qubit coupling needs to be shorter than those of the dissipative and
dephasing processes in the system (including both the cavity and the molecular
nanomagnets). This defines the so-called strong-coupling regime. With the avail-
able stripline cavities, the maximum field intensity and the photon-loss rate don’t
allow to achieve the strong coupling regime between a single cavity photon and a
single spin. The limitations arising from the small value of the spin-photon coupling
constant g can however be overcome by replacing single-spins (or a single MNM),
with spin ensembles. If an ensemble of identical systems are coupled to the field,
the transition amplitude between its two lowest (Dicke) states is

√
N times larger

than that between the two lowest states of each molecule. The strong coupling has
been achieved in this way with color centers (more specifically, nitrogen-vacancy
defects) in diamond [81, 82]. In this scenario, each qubit would thus correspond
to an ensemble of molecular nanomagnets, and the excitation of the |1〉 state is no
longer that of a single molecule, but is rather delocalized in the whole ensemble. The
main advantage with respect to the exchange-based approach is that here qubits can
be separated by macroscopic distances, making their individual addressing much
easier. Besides, the cavity represents an ideal means for coupling heterogeneous
systems and degrees of freedom, such as spin and superconducting qubits. Within
such hybrid device, different systems can be exploited for different functions, ac-
cording to their specific features [83]. For example, degrees of freedom that are
more protected with respect to the environment can be used for storing information,
whereas those that are more efficiently accessible to external means can be used for
the manipulation and read-out of quantum information.

Spin-Electric Coupling Spin-based proposals for implementing quantum-infor-
mation processing are typically based on the use of the spin projection as the com-
putational degree of freedom: |0〉 and |1〉 are identified with physical states of equal
S (ideally S = 1/2) and different Sz. This choice implies the use of pulsed magnetic
fields for the qubit manipulation. Molecular nanomagnets offer however additional
spin degrees of freedom, such as spin chirality, that can be possibly manipulated
by means of pulsed electric fields [72]. Triangles of antiferromagnetically coupled
spins, with Dzyaloshinskii-Moriya interaction represent the ideal systems for the
exploitation of spin-electric coupling [84] (Fig. 10.8). In fact, one can define there
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the chirality operator Cz = (4/
√

3)s1 · s2× s3, that commutes with both S2 and with
the three components of the total spin. An applied electric field introduces an in-
homogeneous modulation of the exchange couplings in the triangle, resulting in a
spin-electric Hamiltonian that couples states of opposite chirality (Cz = ±1). The
basic and general requirement for the linear spin-electric coupling to be present is
the lack of inversion symmetry within each bond of the triangle. In other words, the
nanomagnet must exhibit permanent electric dipoles on each of the bonds, while the
overall dipole of the molecule doesn’t need to be finite. Spin-Hamiltonian calcula-
tions show that electric-field induced transitions between states of opposite chirality
can also take place in triangles of s > 1/2 spins [84]. Rings consisting of an odd
number of spins with N > 3 can present eigenstates of opposite chirality within
the ground S = 1/2 quadruplet, but these are not directly coupled to each other
by electric-dipole transition. The actual value of the spin-electric coupling in exist-
ing molecules is still unknown. Theoretical estimates, based on ab initio density-
functional theory calculations, are compatible with manipulation times in the order
of 1 ns [85]. Further investigation is indeed required in order to measure such value,
and to engineer molecule with large spin-electric couplings [86].

Decoherence-Free Qubit The electron-spin coherence in molecular nanomagnets
can be limited by nuclei, phonons, or dipolar interactions [3]. While the former
two contributions can significantly depend on the arrangement of the molecules
within the sample, hyperfine interactions represent an intrinsic source of decoher-
ence, since they are still present when the molecules are isolated from one another.
The chirality qubit presents an important peculiarity that has potential relevance
to nanomagnet-based quantum-information processing, namely it can be relatively
immune to nuclear-induced decoherence [87]. In fact, the nuclear bath couples ef-
ficiently to the total-spin projection of the molecule, and can thus discriminate be-
tween |0〉 and |1〉, if these are encoded in two molecular states that present dif-
ferent total-spin projections. Degrees of freedom such as spin chirality allow in-
stead to encode |0〉 and |1〉 in two physical states with identical spin projections. As
a consequence, the terms in hyperfine interactions Hamiltonian that dominate the
decoherence of the Sz qubit vanish in the case of the chirality qubit. This results
in an enhancement of at least two orders of magnitude of the time scales related
to nuclear-related decoherence [87]. Spin chirality is not the only operator whose
eigenstates are coupled by the electric field. Within the spin triangle, one could in
fact define the partial spin sum S12 as an alternative encoding within the ground
S = 1/2 quadruplet. Here, |0〉 and |1〉 coincide with two states with S12 = 0,1, and
correspond to the eigenstates of an isosceles triangle, where the exchange coupling
between s1 and s2 differs from that of the remaining pairs. This alternative qubit
encoding presents features that are intermediate between those of Sz and Cz. In fact,
like the chirality qubit, the total-spin expectation value is the same for the two log-
ical states. However, unlike Cz, the expectation values of the single spins strongly
depends on the qubit state (see Fig. 10.9). The simulations performed for the S12

qubit provide decoherence times much closer to those of the spin-projection qubit,
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Fig. 10.9 Expectation values of the single-spin operators si,z corresponding to the two logical
states |0〉 and |1〉 as a function of the qubit encoding in the S = 1/2 subspace of the spin triangle.
In the case of chirality (upper left), the two states have identical expectation values. In the case of
the partial spin sum (upper right), the logical states have identical values of the total spin projec-
tion, 〈Sz〉 = −1/2, but different expectation values of the individual spins. The more conventional
encoding, based on the value of Sz , makes the |0〉 and |1〉 states distinguishable both in terms of
the total and of the local spin projections

than to those of the chirality qubit. This shows that, in order for the qubit to be sub-
stantially immune to decoherence, the two logical states need to be indistinguishable
also in terms of their single-spin expectation values.

Entanglement Within a Nanomagnet Quantum entanglement is one of the fun-
damental resources exploited in quantum-information processing. The capability of
generating and detecting entanglement in nanomagnets is therefore one of the pre-
liminary requirements for their use in this context. To some extent, entanglement
comes for free in molecular spin clusters. These are in fact prototypical examples
of strongly correlated quantum systems, with highly entangled ground states. Quan-
tum correlations are thus expected to persist in the equilibrium state of the molecules
up to temperatures of the order of the energy gap between ground and first excited
state. In order to detect and quantify such correlations, suitable tools have to be
developed. Most of the many result obtained in the field of entanglement quantifi-
cation and detection in fact apply to qubit systems, i.e. s = 1/2 spins, whereas the
spins that form nanomagnets are typically s > 1/2. One of the most practical means
for entanglement detection is represented by entanglement witnesses. These are ob-
servables whose expectation value can exceed given thresholds only in the presence
of specific forms of entanglement. In spin systems with dominant exchange inter-
action, energy can be regarded as an entanglement witness. Let’s consider for sim-



10 Potentialities of Molecular Nanomagnets for Information Technologies 269

plicity a chain of N spins s, with nearest-neighbor coupling J . In the absence of
quantum correlations between two spins, the lowest possible value of their scalar
product is the classical minimum −s2. As a consequence, the minimum of 〈H 〉 is
−J (N − 1)s2. Quite remarkably, one can derive additional thresholds correspond-
ing to multi-spin correlations. In fact, it can be shown that the ground state of the
Heisenberg chain exhibits N−spin correlations (i.e., it’s not factorizable, not even
partially), and that the absence of k-spin entanglement results in lower bounds Ek of
the exchange energy, where Ek are decreasing functions of k [88, 89]. Expectation
values of 〈H 〉 lower than Ek thus imply the presence of k-spin entanglement in the
equilibrium-state density matrix.

In an homogeneous system, such as a homometallic ring, all pairs of neighbor-
ing spins are equivalent, and pairwise entanglement is homogeneously distributed
amongst all spin pairs. The controlled introduction of magnetic defects, can spatially
modulate quantum correlations, and potentially represents a useful means for engi-
neering entanglement in molecular systems. The underlying physical mechanism is
in fact rather intuitive. In order to minimize its exchange energy, each spin pair in
the ring tends to a singlet state, which also happens to be a maximally entangled
state. The spin sk , however, cannot simultaneously form a singlet state with both
its neighbors, sk−1 and sk+1: the two conditions are mutually exclusive. (This can
also be regarded as a manifestation of the so-called entanglement monogamy.) The
ring ground state therefore results from the compromise between the tendency to
minimize non-commuting exchange operators (such as sk−1 · sk and sk · sk+1) in the
Hamiltonian. The substitution in the ring of an ion, with spin s, with one belonging
to a different chemical element, carrying a spin s′ �= s, breaks such balance. It thus
introduces a spatial modulation, and more specifically an oscillating dependence of
spin-pair entanglement on the index k that identifies the spin pair. In Cr-based anti-
ferromagnetic rings, a whole set of chemical substitutions have been demonstrated
in the last years. By comparing these cases, one can show that the amplitude of the
above mentioned oscillations increases monotonically with the difference between
the impurity spin sM and that of the Cr ion (s = 3/2). Such dependence persists at
finite temperature and can be detected by local observables, corresponding to (com-
binations of) two-spin exchange operators [90].

Entanglement Between Nanomagnets Besides being composite quantum sys-
tems, molecular nanomagnets can be regarded as building blocks of supramolec-
ular structures. In this perspective, it is thus useful to investigate entanglement
between the collective spin degrees of freedom, such as the total spin projection
of each molecule [92]. In order to induce equilibrium-state entanglement between
two (or more) MNM, an antiferromagnetic intermolecular exchange interaction is
required, whose magnitude is smaller than the working temperature. Once such sys-
tem has been synthesized, a direct experimental evidence of entanglement can be
achieved by using magnetic susceptibility as an entanglement witness [89]. In fact,
just like exchange energy, also the variance of the total spin projection—averaged
over three orthogonal directions - presents a lower bound that can only be exceeded
in the presence of entanglement. Such direct experimental evidence of quantum
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correlation between molecular spins has been recently provided within dimers of
antiferromagnetically-coupled Cr7Ni rings [91, 92]. A detailed understanding of
intermolecular exchange [30] can enhance the range of physical parameters (tem-
perature, magnetic field) where equilibrium-state entanglement is observable. Inter-
estingly, such entanglement between collective degrees of freedom is compatible
with that between individual spins within each ring, as can also deduced from gen-
eral symmetry arguments [90].

10.5 Conclusions and Future Directions

From the very beginning, the possibility to control magnetic bistability in high spin
molecules has suggested the use of MNM as elementary cells to store information.
More recently, the control of coherent spin dynamics, on one side, and the control
of spin entanglement, on the other, have disclosed the possibility of using molecular
spin clusters for quantum information processes. In spite of the fact that experimen-
tal conditions to manipulate molecular spins remain difficult (but not impossible!)
some advantages in using molecular—rather than isolated—spins for quantum in-
formation processing have emerged in the last few years. One of this is certainly
the flexibility of engineering magnetic links or auxiliary (excited) states at (supra-
)molecular level that may allow to design specific quantum devices. Relaxing the re-
quirements for specific quantum operations (e.g. coherence and entanglement) there
is still much room to figure out spintronic devices at single molecule level. Here we
may exploit either the switchability or the retention of magnetic properties of single
molecule as well as the capability to selectively position molecules on substrates.
Challenge for the next future is the control of these features at single molecule level
which implies much synthetic, experimental and theoretical work and . . . imagina-
tion. Further potentialities of molecular nanomagnets for what concerns communi-
cation, sensing or power dissipation at nm scale have not been explored yet but they
may deserve attention in future.
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Chapter 11
Molecular Magnets for Quantum Information
Processing

Kevin van Hoogdalem, Dimitrije Stepanenko, and Daniel Loss

Abstract In this chapter we will examine the possibility of utilizing molecular
magnets for quantum information processing purposes. We start by giving a brief
introduction into quantum computing, and highlight the fundamental differences
between classical- and quantum computing. We will introduce the five DiVincenzo
criteria for successful physical implementation of a quantum computer, and will use
these criteria as a guideline for the remainder of the chapter. We will discuss how
one can utilize the spin degrees of freedom in molecular magnets for quantum com-
putation, and introduce the associated ways of controlling the state of the qubit. In
this part we will focus mainly on the spin-electric effect, which makes it possible to
control the quantum states of spin in molecular magnets by electric means. We will
discuss ways to couple the quantum state of two molecular magnets. Next, we will
identify and discuss the different decoherence mechanisms that play a role in molec-
ular magnets. We will show that one of the advantages of using molecular magnets
as qubits is that it is possible to use degrees of freedom that are more robust against
decoherence than those in more traditional qubits. We briefly discuss preparation
and read-out of qubit states. Finally, we discuss a proposal to implement Grover’s
algorithm using molecular magnets.

11.1 Introduction

Conceptually, a computer is a device that takes an input and manipulates it using
a predetermined set of deterministic rules to compute a certain output. Both input
and output are defined in terms of bits, classical physical systems which can be in
one of two different states. These states are typically denoted 0 and 1. The set of
rules that a computer uses for a computation, also named the algorithm, can be de-
scribed by a set of gates. A simple example of a gate is the one-bit NOT-gate, which
gives a 1 as output when the input is 0, and vice versa. An example of a two-bit
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gate is the NAND-gate, which gives a 0 as output only if both the input bits are 1,
and yields a 1 otherwise. Interestingly, it can be shown that any classical algorithm
can be implemented using a combination of NAND-gates only. However, this com-
pleteness theorem does not state anything about the time in which a certain problem
can be solved. Instead, such questions belong to the field of computational com-
plexity theory [1]. A large class of problems, called NP, contains all the problems
for which a candidate solution can be checked in polynomial time. In contrast, the
class of problems that can be solved in polynomial time is called P. Whether P is a
strict subset of NP is one of the great open problems in mathematics. It is widely
believed that there are problems in the difference between P and NP. Some of the
candidates were shown to be solvable using a quantum computer, but an efficient
solution on a classical computer is unknown. This inability of a classical computer
to solve certain problems efficiently is one of the main driving forces behind the
study of quantum computation. Heuristically one might argue that, since classical
computers are governed by Newtonian mechanics—which is only valid in certain
limits of the underlying quantum theory—a quantum computer must have compu-
tational power which is at least the same as, and hopefully greater than, that of a
classical computer [2]. Different algorithms exist that support the claim that a quan-
tum computer is inherently more powerful than a classical computer. Among these
are Deutsch-Jozsa’s [3, 4], Grover’s [5], and Shor’s algorithm [6].

Besides being interesting from this pragmatic point of view, quantum computing
is also of fundamental importance in the fields of information theory and computer
science. The fact that quantum mechanics plays a role in information theory be-
comes clear when one realizes that abstract information is always embedded in a
physical system, and is therefore governed by physical laws. This was made explicit
by Deutsch [7], when he proposed a stricter version of the Church-Turing hypoth-
esis, emphasizing its ‘underlying physical assertion’. The original Church-Turing
hypothesis loosely states that every function which would naturally be regarded as
computable can be computed by the universal Turing machine [8, 9], and this state-
ment can be seen as the basis underlying computer science. In a sense, a universal
Turing machine is a theoretical formalization of a computer (with an infinite mem-
ory) as we described it previously. Deutsch replaces this hypothesis by his more
physical Church-Turing principle: ‘Every finitely realizable physical system can be
perfectly simulated by a universal model computing machine operating by finite
means’. He then went on to show that the universal Turing machine does not ful-
fill the requirements for a universal model computing machine, while the universal
quantum computer, proposed in the same work, is compatible with the principle.
In this way, the universal quantum computer takes the role of the universal Turing
machine.

The basic unit of information in a quantum computer is a qubit [10]. Like a
classical bit, a qubit is a physical two-level system, with basis states denoted by |0〉
and |1〉. Unlike a classical bit, however, a qubit is a quantum system. This makes
the information stored in a qubit ultimately analog, since a qubit can be in any state
|ψ〉 = α|0〉 + β|1〉, with α and β complex numbers such that |α|2 + |β|2 = 1. In a
quantum computer, a gate will act linearly on a state |ψ〉, and hence in a sense on
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|0〉 and |1〉 simultaneously. This quantum parallelism is one of the advantages of
a quantum computer. Of course, one must keep in mind that reading out the qubit
(measuring the state) collapses the quantum state into one of the basis states |0〉
or |1〉, so this parallelism cannot be used trivially. The other key advantage of using
quantum computing is the fact that two qubits can be entangled, i.e. there can exist
non-classical correlations between two qubits. The final important property of qubits
is captured by the no-cloning theorem [11], which states that it is impossible to
copy an unknown quantum state. This theorem invalidates the use of classical error-
correction methods -which are typically based on redundancy, and therefore require
copying of bits- for quantum computation. Instead, one has to resort to quantum
error-correction codes that rely upon entanglement and measurement, but do not
require an ability to copy an unknown quantum state.

Quantum mechanics dictates that the time evolution of an isolated quantum state
is described by a unitary operator. This means that the action of any valid quantum
gate must also be described by a unitary operator. In fact, it turns out that this is the
only requirement on a valid quantum gate. Consequently, there exists a rich variety
of quantum gates: Where the only non-trivial classical one-bit gate is the NOT-
gate, any rotation in the one-qubit Hilbert space is a quantum gate. As an important
example of a one-qubit gate that has no classical analog we mention the Hademard-
gate, which transforms |0〉 into (|0〉 + |1〉)/√2 and |1〉 into (|0〉 − |1〉)/√2. An
example of a two-qubit gate is the CNOT-gate, which acts as a NOT-gate on the
second qubit when the first qubit is in the state |1〉, and does nothing otherwise. It
can be shown that arbitrary single qubit rotations together with the CNOT-gate are
sufficient to implement any two-qubit unitary evolution exactly [12].

After all these theoretical considerations, one might wonder what is actually re-
quired to build a physical quantum computer. The requirements have been succinctly
summarized by DiVincenzo, in terms of his five DiVincenzo criteria for successful
implementation of a quantum computer [2]. In order to have a functional quantum
computer we need

• a collection of well-defined physical quantum two-level systems (qubits), which
should be well-isolated and scalable, i.e. it should be possible to add qubits at
will.

• a procedure to initialize the system in an initial state, for instance |00 . . .0〉.
• the ability to perform logic operations on the qubits, i.e. one- and two-qubit gates.
• long enough decoherence times compared to the ‘clock time’ of the quantum

computer for quantum error correction to be efficient.
• the ability to read out the final state of the qubit.

Satisfying these criteria in a single system simultaneously has turned out to be quite
a tour de force. Although tremendous progress -both theoretical and experimental-
towards completion of this goal has been made in a wide variety of different areas
of solid state physics, it is at this point not clear which system will turn out to
be most suitable. Of all the systems that have been proposed as a basis for qubit,
we mention here quantum dots [13, 14], cold trapped ions [15], cavity quantum
electrodynamics [14, 16], bulk nuclear magnetic resonance [17], low-capacitance
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Josephson junctions [18], donor atoms [19, 20], linear optics [21], color centers in
diamond [22–24], carbon nanotubes [25], nanowires [26], and lastly the topic of this
chapter: Molecular magnets [27–32].

11.2 Encoding of Qubits in Molecular Magnets

We have seen that information in a quantum computer must be encoded in qubits,
i.e. well-defined physical quantum two-level systems. Probably the first candidate
for a qubit that comes to mind is a single spin in for example an atom. However, ex-
perimentally it would be very challenging to control this single spin, since the length
scale on which this control would have to take place is prohibitively small. On the
other side of the spectrum, solid state implementations of qubits such as Ref. [13]
require fields on the scale of several tens to hundreds of nanometers only, making
control of the state easier (though still very hard). However, with the increased size
we pay the price of additional sources of decoherence, and a huge effort has been
made in recent years to combat these sources. For molecular magnets, the require-
ments on the spatial scale on which control has to be possible are loosened with
respect to those for a single spin, because the typical size of such systems is rela-
tively large. However, molecular magnets are still small as compared to other solid
states implementations of qubits. This fact, as well as the possibility of chemically
engineering molecular magnets with a wide variety of properties, may make one
hopeful that sources of decoherence in molecular magnets can be suppressed. In-
deed, we will show later that such suppression is possible by choosing the degree of
freedom that encodes the qubit wisely.

On the other hand, since molecular magnets have a complex chemical structure
containing many interacting magnetic atoms, it is not a priori clear that it will be
possible to identify a well-separated, stable, and easily controllable two-level sub-
space in the spectrum. As we will show next, the fact that this does in fact turn out to
be possible is due to the high symmetry of the molecule and the existence of well-
separated energy scales. We have seen in previous chapters that molecular magnets
can—to a very good approximation—be described by a collection of coupled spins.
The low-energy multiplet of the system is then described by a spin-multiplet with
fixed total spin, separated from excited states on an energy scale set by the exchange
interaction. This low-energy multiplet has either maximal total spin for ferromag-
netically coupled individual spins, or minimal total spin for antiferromagnetically
coupled spins. In the latter case, the details of the ground state are then determined
by the symmetry of the molecule, and frustration can play an important role.

The first requirement which has to be fulfilled by any qubit-candidate is that
the physical system has to show genuine quantum behavior. Quantum behavior of
the spin state in molecular magnets has been shown in experiments on quantum
tunneling of magnetization [33–40], and shows up in hysteresis curves of ferromag-
netic (although similar effects are predicted to occur in anitferromagnetic systems
[41, 42]) molecular magnets with large spin and high anisotropy barrier [36, 37, 43–
45]. In the absence of external fields, the barrier due to the anisotropy lifts the de-
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generacy between states with different magnetization, and leads to the existence of
long-lived spin states. Transitions between different spin states can be driven in a co-
herent manner, and manifest themselves as stepwise changes in the magnetization.
The fact that the transitions show interference between transition paths and Berry
phase effects are a signature of their coherent nature [46–52].

Quantum computing in antiferromagnetically coupled spin clusters was studied
in Ref. [29]. In the simplest cases of a spin chain or a bipartite lattice with an odd
number of spins the degenerate ground state is a spin doublet with effective total spin
1/2. The total spin can be controlled by an applied magnetic field just as a single spin
can, and exchange interaction between two clusters can be introduced by coupling
single spins in the two different clusters. A downside of using a collection of spins
is that generally decoherence increases with number of spins, unless one manages to
encode the qubit in a state which is protected due to symmetry, something we will
come back to later. In Ref. [30], Cr-based AFM molecular rings, and specifically
Cr7Ni, were proposed as suitable qubit candidates.

An interesting way of encoding a qubit is offered by geometrically frustrated
molecules [32, 53]. Exemplary molecules that display geometric frustration are anti-
ferromagnetic spin rings with an odd number of spins. The simplest example of such
a system is given by an equilateral triangular molecule with a spin-1/2 particle at
each vertex, such as is for instance realized to a good approximation in Cu3 (we will
use Cu3 as an abbreviation for the molecule Na9[Cu3Na3(H2O)9(α-AsW9O33)2] ·
26H2O) (see Ref. [54]). Spin rings (of which the spin triangle is the simplest
non-trivial example) in general are described by the Heisenberg Hamiltonian with
Dzyaloshinskii-Moriya interaction

H0 =
N∑
i=1

Ji,i+1Si · Si+1 +Di,i+1 · (Si × Si+1). (11.1)

Here,N is the number of spins in the ring, and SN+1 = S1. For the triangular molec-
ular magnet N = 3. Furthermore, the fact that the point group symmetry of the tri-
angular molecule is D3h imposes the constraints Ji,i+1 = J and Di,i+1 = Dẑ on
the parameters of the Hamiltonian of an planar molecule. Since we are consider-
ing antiferromagnetic systems, J is positive. In a Cu3 molecule, |J |/kB ∼ 5 K and
|D|/kB ∼ 0.5 K. Due to this separation of energy scales, and in the absence of
strong magnetic- or electric fields, the Hilbert space containing the 8 eigenstates of
the triangular molecule can be split up in a high-energy quadruplet with total spin
S= 3/2 and a low-energy quadruplet with total spin S= 1/2. The splitting between
the two subspaces is 3J/2.

In the absence of Dzyaloshinskii-Moriya interaction the low-energy subspace is
fourfold degenerate. The eigenstates are given by

|1/2,±1〉 = 1√
3

2∑
j=0

e±i2πj/3Cj3 |↑↓↓〉, (11.2)

and |−1/2,±1〉. The latter states are also given by (11.2) but with all the spins
flipped. These states are thusly labeled as |mS,mC〉, with mS the quantum number



280 K. van Hoogdalem et al.

belonging to the z projection of the total spin of the triangle, andmC the z projection
of the chirality of the molecular magnet. The chirality operator C has components

Cx = −2

3
[S1 · S2 − 2S2 · S3 + S3 · S1],

Cy = 2√
3
[S1 · S2 − S3 · S1], (11.3)

Cz = 4√
3

S1 · [S2 × S3].

The chirality contains information about the relative orientation of the spins that
make up the molecule. Like the components of the total spin operator, the compo-
nents of the chirality operator obey angular momentum commutation relations. It
is straightforward to show that the total spin and chirality commute. We will show
later that states with opposite chirality are split by an energy gap which is deter-
mined by the magnitude of the Dzyaloshinskii-Moriya interaction. Furthermore, we
can separate states with opposite total spin by applying a magnetic field. This allows
us to choose which doublet makes up the ground state, chirality or total spin. In this
way it is possible to either encode the qubit in the total spin of the molecule or in
the chirality. Furthermore, even thought the commutation relations of the chirality
components are the same as those of the spin components, the transformation prop-
erties of spin and chirality under rotations, reflections, and time-reversal do differ.
Therefore, interactions of chirality with external fields can not be inferred from the
analogy with spins. We will discuss later how using the chirality offers certain bene-
fits with regards to the possibility to control the qubit and with regards to increasing
the decoherence time of the qubit.

11.3 Single-Qubit Rotations and the Spin-Electric Effect

If one chooses to encode a qubit in a spin state -be it the spin of an electron in
a quantum dot, or the total spin of a molecular magnet- the most intuitive way to
implement a one-qubit gate is by utilizing the Zeeman coupling μBB · ¯̄g ·S, where ¯̄g
is the g-tensor. This coupling in principle allows one to perform rotations around an
arbitrary axis by applying ESR (electron spin resonance) pulses. Indeed, it has been
shown to be possible to implement single spin rotations on a sub-microsecond time
scale using ESR techniques in quantum dots [55]. Furthermore, Rabi-oscillations of
the magnetic cluster V15 have been shown to be possible, also on a sub-microsecond
time scale [56]. At the moment, however, it appears experimentally very challenging
to increase the temporal- and spatial resolution with which one can control magnetic
fields to the point that is required for quantum computation in molecular magnets
(i.e. nanosecond time scale and nanometer length scale).

For this reason, a large effort has been made to find alternative ways to control
the spin state of molecular magnets. One natural candidate to replace magnetic ma-
nipulation is electric control. Strong, local electric fields can be created near a STM
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tip, and these fields can be rapidly turned on and off by applying an electric voltage
to electrodes that are placed close to the molecules that are to be controlled.

Electric manipulation requires a mechanism that gives a sizable spin-electric cou-
pling. In quantum dots, the mechanism behind this coupling is the relativistic spin-
orbit interaction (SOI), and experiments that show that it is possible to perform
single spin rotations by means of electric dipole spin resonance (EDSR) have been
proposed [57] and performed [58]. Unfortunately, the fact that this effect scale with
the system size L as L3 makes them unsuitable for molecular magnets, which are
much smaller.

Instead, in Ref. [32], Trif et al. proposed a mechanism that leads to spin-electric
coupling in triangular magnetic molecules with spin-orbit interaction and broken in-
version symmetry. The mechanism relies on the fact that in such systems an electric
field can alter the exchange interaction between a pair of spins within a molecule
due to the field’s coupling to the dipole moment of the connecting bond.

The lowest order coupling between electric field and the spin state of the trian-
gular molecule is given by the electric-dipole coupling, through the Hamiltonian
He-d = −e∑i E · ri ≡ −eE · R. Here, e is the electron charge and ri is the po-
sition of the i-th electron. The total dipole moment of the molecule is given by
−e∑i ri =−eR. Because of the D3h symmetry of the molecule, the diagonal ele-
ments of total dipole moment operator must vanish in the proper symmetry-adapted
basis. However, the electric-dipole coupling can mix states with different chirality.
The nonzero matrix elements are the ones that are invariant under the symmetry-
transformations of the triangular magnet. Since the |mS,±1〉 states and the oper-
ators ±X + iY both transform as the irreducible representation E′ of the group
D3h, it follows that the only nonzero components in the low-energy subspace of the
triangular molecules are

〈mS,±1|−eX|m′S,∓1〉 = i〈mS,±1|−eY |m′S,∓1〉 ≡ dδmS,m′S . (11.4)

Coupling to the S = 3/2 subspace is suppressed by the finite gap between the two
subspaces. By its very nature, this symmetry analysis cannot yield any informa-
tion on the magnitude of the effective electric dipole parameter d . This information
will have to be extracted using other methods, such as ab initio modeling, Hubbard
modeling, or experiments, something we will come back to later. We do note that
a finite amount of asymmetry of the wave functions centered around each vertex of
the triangle is required for the matrix elements in (11.4) to be nonzero. This asym-
metry is caused by the small amount of delocalization of the electron states due to
the exchange interaction with the states on the other vertices and creates the finite
dipole moment of individual bonds. The dipole moment of the bonds, furthermore,
must depend on the relative orientation of the two spins which are connected by that
bond (i.e. whether they are parallel or anti-parallel) in order for the matrix elements
in (11.4) to be nonzero.

Since the electric-dipole coupling connects states with different chirality, we can
rewrite it in terms of the vector C‖ = (Cx,Cy,0) as H eff

e-d = dE′ ·C‖. The vector E′
is given by E′ =R(7π/6− 2θ)E, where R(φ) describes a rotation by an angle φ
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around the z axis, and θ is the angle between r1−r2 and E‖ = (Ex,Ey,0). With the
definition of the chirality operator as given in (11.4), we can rephrase the effective
electric-dipole Hamiltonian in terms of exchange coupling between the individual
spins

H eff
e-d =

4dE

3

3∑
i=1

sin

[
2π

3
(1− i)+ θ

]
Si · Si+1, (11.5)

where E is the magnitude of the in plane components of the electric field. Since
the change in the exchange interaction Ji,i+1 is proportional to |E‖ × (ri+1 − ri )|,
only the component of the electric field that is perpendicular to the bond ri+1 − ri
affects the exchange interaction Ji,i+1. This is consistent with the picture that the
finite dipole moment of the bond between two vertices is caused by the deformation
of the wave function due to exchange interaction. Otherwise, the strength of the
coupling is completely determined by the parameter d . The fact that the change
in Ji,i+1 is not uniform is crucial here, since therefore [H0,H

eff
e-d] �= 0 even in the

absence of DM interaction, which allows the electric-dipole interaction to induce
transitions between states with different chirality.

We have seen then that the electric-dipole coupling allows one to perform rota-
tions of the chirality state about the x- and y axis, but not around the z axis (assum-
ing a diagonal g-tensor). This is sufficient to perform arbitrary rotations in chirality
space. However, so far the total spin does not couple to the electric field. This situa-
tion is remedied when we include spin-orbit interaction.

As with the electric-dipole coupling, one can deduct the form of the spin-orbit
interaction from general symmetry considerations. Given the D3h symmetry of the
molecule, the most general form of the spin-orbit interaction is

HSO = λ‖SOTA2Sz + λ‖SO(TE′′+S− + TE′′−S+). (11.6)

Here, TΓ denotes a tensor which acts on the orbital space and transforms according
to the irreducible representation Γ . The nonzero elements in the low-energy sub-
space are then given by 〈mS,±1|HSO|m′S,±1〉 =mSλ⊥SOδmS,m′S , which leads to the

spin-orbit Hamiltonian HSO =�SOCzSz, where �SO = λ‖SO. Alternatively, one can
use the fact that the spin-orbit interaction can be described by the Dzyaloshinskii-
Moriya term in (11.1). Because of the symmetry of the molecule, the only nonzero
component of the DM vector Di,i+1 is the out-of-plane component, so that it takes
the form Di,i+1 = (0,0,Dz). This gives the same form for HSO as the previous
considerations, provided one identifies λ‖SO =Dz.

Combining the results from this section, it follows that the Hamiltonian describ-
ing a triangular magnet in the presence of a magnetic- and electric field can be
written in terms of the chirality and total spin of the molecule as

H =�SOCzSz +μBB · ¯̄g · S+ dE ·C‖. (11.7)

Hence, for a magnetic field in the z direction, the eigenstates are | ± 1/2,±1〉, and
an electric field causes rotations of the chirality state, but does not couple states
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with opposite total spin. When B is not parallel to ẑ, Sz is no longer a good quantum
number, and hence an applied electric field can cause rotations in the total spin
subspace through the electric-dipole and spin-orbit coupling. In this way it becomes
possible to perform arbitrary rotations of the total spin state.

In Ref. [53], the authors were able to identify the parameters of the effective
spin Hamiltonian with the parameters of the underlying Hubbard model. On the one
hand, this has opened up the possibility to determine the parameters of the effective
spin Hamiltonian by means of ab initio calculations [59, 60]. On the other hand, the
description of the spin-electric effect in the language of the Hubbard model is use-
ful because it gives an intuitive interpretation of the phenomena that we discussed
so far. The Hubbard model description of a molecular magnet including spin-orbit
interaction is given by

HH =
∑
i,j

∑
α,β

[
c

†
iα

(
tδαβ + iPij

2
· σαβ

)
cjβ +H.c.

]
+
∑
j

Uj (nj↑, nj↓). (11.8)

Here, c†
iα creates an electron with spin α whose wave function |φiσ 〉 is given by a

Wannier function located around atom i. Furthermore, t describes spin-independent
hopping. The vector Pij describes spin-dependent hopping due to spin-orbit interac-
tion and hence is proportional to the matrix element ∇V ×p between Wannier states
centered around atom i and j . The vector σ contains the Pauli matrices. Lastly,
U describes the on-site repulsion. Typically, one considers a single-orbital model,
and assumes that U is the largest energy scale. A perturbative expansion of (11.8) in
(|t |, |Pij |)/U allows one then to map the Hubbard model on a Heisenberg Hamilto-
nian with DM interaction [61, 62].

Equation (11.8) describes two scenarios. First, if the index i runs over the three
magnetic atoms of the triangle only, it describes coupling between the magnetic
atoms through direct exchange. Alternatively, (11.8) can describe the situation in
which the coupling between two magnetic atoms is mediated by a non-magnetic
bridge by adding a doubly-occupied non-magnetic atom on every line connecting
two vertices. The former choice allows for a simpler description, whereas the latter
choice is anticipated to be the more realistic one for molecular magnets. We will
shortly discuss how either can be used to obtain more insight into the spin-electric
effect.

The first thing one can show is that in the case of direct-exchange interaction the
basis functions of the Hubbard model to first order in t and λSO ≡ Pij · ez (due to
symmetry Pij = λSOez) are

∣∣Φ1σ
A′2

〉 = ∣∣ψ1σ
A′2

〉
(11.9)

∣∣Φ1σ
E′±
〉 = ∣∣ψ1σ

E′±
〉+ (e−2πi/3 − 1)(t ± σλSO)√

2U

∣∣ψ2σ
E′1±

〉

+ 3e2πi/3(t ± σλSO)√
2U

∣∣ψ2σ
E′2±

〉
, (11.10)
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where |ψnσΓ 〉 denotes the symmetry-adapted eigenstate of the Hubbard model with
three electrons, total spin σ , and either single- (n= 1) or double (n= 2) occupancy
that transforms according to the irreducible representation Γ . Specifically, the spin
part of |ψ1σ

E′±
〉 is given by the states |σ,±1〉 in (11.2). It follows that in the limit of

t, λSO � U (the limit in which the spin model gives an accurate description) the
eigenstates of the Hubbard model are indeed the chirality states. At finite t, λSO, the
eigenstates contain small contributions from doubly-occupied states.

Within the direct-exchange model, the electric field couples to the state of the
molecule via two different mechanisms. The first term that has to be added to the
Hubbard Hamiltonian comes from the fact that the electric potential takes different
values at the positions of the magnetic centers in a molecule, which affects the on-
site energy of the electrons as

H 0
e-d =−e

∑
σ

Eya√
3
c

†
1σ c1σ − a

2

(
Ey√

3
+Ex

)
c

†
2σ c2σ + a

2

(
Ex√

3
−Ey

)
c

†
3σ c3σ .

(11.11)
Here, a is the distance between two magnetic atoms. The second contribution is
given by

H 1
e-d =

∑
i,σ

tEii+1c
†
iσ ci+1σ +H.c., (11.12)

which describes the modification of the hopping strength due to the electric field.
The electric field-dependent hopping is given by tEii+1 = −〈φiσ |er · E|φi+1σ 〉, and
is hence related to the matrix elements of the electric dipole moment which mix the
different Wannier functions. As before, a symmetry analysis tells us that the only
nonzero matrix elements within the total spin-1/2 subspace are those proportional
to

〈φσ
E′+
|ex|φσ

E′−
〉 = −i〈φσ

E′+
|ey|φσ

E′−
〉 ≡ dEE. (11.13)

Here, |φσΓ 〉 describes the linear combination of Wannier states with total spin σ
which transforms according to the irreducible representation Γ . One can then cal-
culate the matrix elements of both the electric-dipole coupling as well as the spin-
orbit Hamiltonian perturbatively in (t, eaE,dEEE)/U . Furthermore, since the elec-
trons are localized, the off-diagonal elements of the dipole moment, dEE , satisfy
dEE� ea. To lowest order the results are

|〈Φ1σ
E′−
|H 0

e-d|Φ1σ
E′+
〉| ∝

∣∣∣∣ t
3

U3
eEa

∣∣∣∣, (11.14)

|〈Φ1σ
E′−
|H 1

e-d|Φ1σ
E′+
〉| ≈

∣∣∣∣4tU EdEE
∣∣∣∣, (11.15)

|〈Φ1σ
E′−
|HSO|Φ1σ

E′+
〉| = ±5

√
3λSOt

2U
sgn(σ ). (11.16)
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These first two matrix elements can be identified with the matrix elements in (11.7)
that mix the states with different chirality, and hence determine the parameter d .
The last matrix element determines Dz. Therefore, all parameters of the effective
spin model in (11.7) can be determined from the underlying microscopic model. In
Ref. [60], Nossa et al. utilized the presented analysis to determine the value of Dz
and J in the molecular magnet Cu3 using spin-density functional theory.

It is known that in molecular magnets the direct exchange mechanism is often
suppressed due to the localized nature of the electrons that determine the magnetic
properties (which are typically of a d-wave nature) combined with the fact that
the magnetic atoms are typically separated by non-magnetic bridge atoms. In Cu3,
for instance, exchange interaction between two Cu atoms follows a superexchange
path along a Cu-O-W-O-W-O-Cu bond, which makes the Cu atoms third nearest
neighbors [54]. A more accurate description on a microscopic basis of the spin-
electric effect in a triangular magnet is therefore given by a model which includes a
doubly-occupied non-magnetic atom on every line connecting two vertices, so that
the mechanism behind the exchange interaction is superexchange. This is further
strengthened by the expectation that the orbitals of the magnetic atoms do not de-
form easily in an electric field, whereas the bridge orbitals are expected to change
their shape more easily.

In Ref. [53], the authors analyzed the behavior of a single Cu-Cu bond, including
the non-magnetic bridge atom that connects the two Cu atoms, under the applica-
tion of an electric field. By performing a fourth-order Schrieffer-Wolf transforma-
tion [63] on the Hamiltonian (11.8) for such a bond (using (|t |, |Pij |)/U as small
parameter) one can map the Hubbard model on the spin model

H12 = JS1 · S2 +D · (S1 × S2)+ S1 ·� · S2. (11.17)

Here, � is a traceless- and symmetric matrix. Equation (11.17) describes the most
general quadratic spin Hamiltonian possible. The parameters J,D,� can be deter-
mined from the parameters of the Hubbard model. Assuming that the bond angle
between the Cu atom and the bridge atom is finite, the largest possible symmetry of
a single bond with bridge atom is C2v . This determines which spin parameters can
be nonzero. If the electric field breaks the C2v symmetry, extra terms can be gen-
erated. However, from the C2v symmetry it follows that the strongest spin-electric
coupling will be in the plane spanned by the Cu atoms and the bridge atom, and
perpendicular to the Cu-Cu bond. This is due to the fact that this is the only di-
rection in which the bond can have a finite dipole moment in the absence of an
electric field (due to the molecular field), which gives rise to linear electric-dipole
coupling. Indeed, it is this coupling that causes the effective Hamiltonian in (11.5),
with effective electric-dipole moment given by

d = 4

U3

[(
48t3 − 20tp2

z

)
κt +

(−20t2pz + 3p3
z

)
κpz
]
. (11.18)

Here, t is the hopping parameter, pz is the z component of the spin-orbit hopping,
and κt = δt/E and κpz = δpz/E relate the changes in t and pz to the electric fieldE.
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Using ab initio methods, the authors in Ref. [59] calculated the effective electric-
dipole moment d in Cu3. They found the value d = 3.38× 10−33 C m. This corre-
sponds to d ≈ 10−4ea, where a is the length of the Cu-Cu bond, and leads to Rabi
oscillation times τ ≈ 1 ns for electric field E ≈ 108 Vm−1.

So far, we have only discussed single-qubit rotations. However, for a complete set
of quantum gates, we also need a two-qubit gate. In the next section, we will discuss
different proposals that have been made on how to implement such a two-qubit gate.

11.4 Two-Qubit Gates

Suppose we chose to encode our qubit states in the spin degrees of freedom of a
system. Two-qubit gates such as the CNOT- or the

√
SWAP-gate can then be imple-

mented by turning on the Heisenberg exchange interaction between two spins for a
certain time [64]. For spins in quantum dots, this is relatively simply done by apply-
ing appropriate voltage pulses to the gate that controls the tunneling between two
quantum dots. In contrast, in molecular magnets the exchange interaction between
two molecules is typically determined by the chemistry of the molecule, and one
has to search for more sophisticated ways to implement two-qubit gates.

The first method to couple the state of two qubits that we will discuss is based
on coupling of two triangular molecular magnets through a quantum mechanical
electric field in a cavity or stripline [32]. Such electric fields offer long-range and
switchable coherent interaction between two qubits. The electric field of a phonon
with frequency ω in a cavity of volume V is given by E0(b

†
ω + bω), where b†

ω cre-
ates a photon with frequency ω and the amplitude of the field is |E0| ∝ √�ω/V .
The coupling of such a photon to the in plane component of the chirality C‖ of
a triangular molecule is then given by δHE = dE′0 · C‖(b†

ω + bω). In the rotating
wave approximation, the Hamiltonian that describes the low-energy subspace of
N triangular molecular magnets which interact with the photon field is given by
H s-ph =∑j H

(j) + �ωb†
ωbω, with

H(j) =�SOC
(j)
z S

(j)
z +B · ¯̄g · S(j) + d|E0|

[
eiφj b†

ωC
(j)
− +H.c.

]
. (11.19)

Here, φj = 7π/6+θj . Application of a magnetic field B with an in plane component
allows one to couple both the chirality as well as the total spin degrees of freedom
of spatially separated molecules. This coupling can be turned on and off by bringing
the molecules in resonance with the photon mode, by applying an additional local
electric field. One difficulty in using cavities is that the electric fields are weaker
than those at an STM tip. A typical value is |E0| ≈ 103 V m−1, which leads to Rabi
times τ ≈ 0.01–100 µs.

For the discussion of another proposed implementation of an electrically con-
trolled two-qubit gate (in this case the

√
SWAP-gate), we turn our attention to the

polyoxometalate [PMo12O40(VO)2]q− . This molecule consists of a central mixed-
valence core based on the [PMo12O40] Keggin unit, capped by two vanadyl groups
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containing one localized spin each [31]. In such a molecule, one can encode a two-
qubit state in the spins of the vanadyl groups. The spins of the two vanadyl groups
are weakly exchange coupled via indirect exchange interaction mediated by the
core. The crucial property of the core is that one can tune the number of electrons
it contains, since the exchange interaction between the vanadyl spins depends on
the number of electrons on the core. Namely, if the core contains an odd number
of electrons, the spin of the unpaired electron on the core couples to those of the
vanadyl groups, and the effective interaction between the two qubits is relatively
strong. In contrast, for an even number of spins on the core, the spins on the core
pair up to yield a ground state with total spin 0. In this case, the exchange interaction
between the pair of vanadyl spins is strongly reduced as compared to the situation
with an odd number of electrons on the core. Since the redox flexibility of such
polyoxometalates is typically rather high, the number of electrons nC on the core
can be tuned by electric means, by bringing the molecule near the tip of an STM.
The system is then described by the Hamiltonian

H = −J (nC)SL · SR − JC(SL + SR) · SC
+ (ε0 − eV )nC +UnC(nC − 1)/2. (11.20)

Here, SL/R are the spin operators of the two vanadyl groups, and SC is the spin of the
core. J (nC) denotes the exchange interaction between the two vanadyl spins. Given
the previous discussion, J (0) ≈ 0. The orbital energy of the electron on the core
is given by ε0, and V is the electric potential at the core. Lastly, U is the charging
energy of the molecule, which defines the largest energy scale in the problem. We
consider the subspace of only nC = 0 or nC = 1 electrons on the core.

The two-qubit
√

SWAP is now implemented as follows: One starts out with an
electric potential such that the stable configuration has nC = 0 electrons on the core.
That way, the two qubits are decoupled. By applying a voltage pulse Vg to the STM
tip, one can switch to the state with nC = 1 electrons. The Hamiltonian that de-
scribes the spin-state of the molecule is then given by [31]

H1 =−
[
J (1)− JC)

]
SL · SR − JC

2
S2. (11.21)

Here, S= SL+ SR + SC is the total spin of the molecule. The time-evolution of the
system is determined by (11.21) for the duration τg of the pulse, afterwards the two
vanadyl spins will be decoupled again. The first part of this Hamiltonian contains
the wanted exchange coupling, and one can implement different two-qubit gates
depending on the pulse length τg . For the

√
SWAP-gate, this time is given by the

condition [
J (1)− JC

]τg
�
= π

2
+ 2πn, (11.22)

where n is an integer. The second term in (11.21) depends on the spin-state of the
core, and is unwanted. However, we can get rid of it by choosing the pulse-length
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such that the unitary evolution associated with the second term is equal to the unit
operator. This condition turns out to be satisfied for times

τg = 4π

3

�

|JC |m, (11.23)

wherem is an integer. Together, these last two equations give a requirement on J (1)
and JC , namely

J (1)

|JC | = sgn(JC)+ 3

8

1− 4n

m
. (11.24)

So far, we have assumed that switching between states with nC = 0 and nC = 1
can be perfectly controlled and is instantaneous. In reality, however, this transi-
tion is governed by quantum processes, and is a probabilistic process governed by
the tunneling rate Γ between STM tip and molecule. Therefore, τg is inherently
a stochastic quantity. To analyze these quantum effects, the authors in Ref. [31]
numerically calculated the averaged fidelity F = √

ρrealρideal between the ideal-
ized

√
SWAP-gate with instantaneous switching and the real

√
SWAP-gate with the

stochastic tunneling (ρreal/ρideal denote the obvious density matrices at the end of
the

√
SWAP-gate operation here). They found that the fidelity can be as high as

F = 0.99.

11.5 Decoherence in Molecular Magnets

Up to this point, we have assumed that the evolution of the quantum state of any
qubit is unitary, and hence the information content of the qubit is infinitely long-
lived. This assumption is only valid for a perfectly isolated system. In reality, how-
ever, any qubit will be coupled to its environment. Fluctuations in the environment
can then lead to decoherence: The process whereby information about a quantum
state is lost due to interaction with an environment. Decoherence of a single qubit
typically takes place on two different time scales. The longitudinal decoherence
time, or T1-time, describes the average time it takes the environment to induce ran-
dom transitions from |0〉 to |1〉, and vice versa. The transverse decoherence time,
the T2-time, describes the time it takes a systems to lose its information about the
coherence between the |0〉 and |1〉 state. In other words, the T2-time is the time it
takes for a system initially in the pure quantum state described by the density ma-
trix ρ̂0 = |ψ0〉〈ψ0|, where |ψ0〉 = α|0〉 + β|1〉, to transform into the classical state
ρ̂(t)= |α|2|0〉〈0| + |β|2|1〉〈1|. In this sense, decoherence is the cause of the transi-
tion from the quantum- into the classical regime. The T1-time sets on upper limit on
the time a system can be used as a classical bit, whereas a system can only be used
as a qubit for times T � T1, T2. The T1- and T2-time of a system are not unrelated,
and can indeed become of comparable magnitude in certain systems. For molecular
magnets at low temperatures, however, typically T2 � T1.



11 Molecular Magnets for Quantum Information Processing 289

The first measurement of the T2-time of a system consisting of molecular mag-
nets was performed by Ardavan et al. in 2007 (Ref. [65]). The measurements were
performed on Cr7M heterometallic wheels (M denotes Ni or Mn), and the authors
found T2-times of 3.8 μs for perdeuterated diluted Cr7Ni solutions. The typical
way to measure relaxation times is to use standard spin-echo techniques [66]. The
T2-time can be obtained from the decay with τ of a 2-pulse Hahn-echo measure-
ment, consisting of the sequence: π/2− τ −π − τ − echo. In a similar manner, the
T1-time can be determined using the sequence π − T − π/2− τ − π − τ − echo.
Here, T is varied, and τ is constant and short. One of the difficulties in measuring the
T2-times in magnetic clusters is the fact that, in a crystal, the different molecules are
coupled by dipole-dipole interactions. This limits the T2-time. The natural approach
to avoid this problem is to consider molecules in solution. However, here the prob-
lem is that many magnetic clusters with high spin display strong axial anisotropy,
with relatively large zero-field splitting. In a solution, these clusters will orient in a
random matter. This problem is circumvented by using Cr7Ni-clusters, which have
a S = 1/2 ground state (and hence no zero-field splitting), and small anisotropy of
the g-factor.

It was found that the main mechanism limiting the T2 -time of the Cr7Ni-clusters
was coupling to protons. To increase the decoherence time, the authors therefore
considered the perdeutered analogue compound. Indeed, according to expectations
(2D has a gyromagnetic ratio which is about 1/6 of that of 1H), this increased the
coherence time roughly by a factor of 6, leading to a T2-time of 3.8 μs at 1.8 K.

Our remaining discussion of decoherence in molecular magnets follows that of
Ref. [67]. In spin systems, the two most common sources of decoherence are fluc-
tuations in the electric environment (which couple to the spin state via spin-orbit
interaction) and fluctuations of the spin state of the N nuclear spins Ip in the host
material of the qubit, which are coupled to the system spins Si due to hyperfine
interaction. We will mainly focus on the latter mechanism, since it typically limits
the decoherence time [56, 65]. The hyperfine interaction between nuclear spins and
system spins is due to dipole-dipole interaction as well as contact interaction

HHF =DHF

∑
i

∑
p

Si · Ip − 3(Si · r̂ip)(Ip · r̂ip)
r3
ip

+
∑
i

aiSi · Iq(i). (11.25)

Here, DHF = (μ0/4π)gIμIgSμS , and rip = ri − rp . The contact interaction
strength ai is due to the finite overlap of the wave functions of the system spin
and nuclear spins located at the same magnetic center. For small clusters, the latter
term only leads to oscillations of the coherence, and hence we can neglect it [67].
To see how the hyperfine interaction leads to decoherence, let us consider a sys-
tem in which the state of the qubit and that of the bath are initially uncorrelated.
Furthermore, let the initial state of the qubit be given by |ψ(0)〉 = 1√

2
(|0〉 + |1〉),

and let the bath be prepared in the (mixed or pure) state described by the density
operator ρ̂n(0)=∑I pI |I〉〈I|. Here, |I〉 = |mI

1 , . . . ,m
I
N 〉 with mI

i the projection
of the nuclear spin operator Ii along the magnetic field. Two examples of possible
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states the bath may be prepared in are the spin-polarized (pure) state with polar-
ization P , and the equal superposition (mixed) state. In the first case, pI = δI,n,
where |n〉 is the state such that

∑
p I

z
p|n〉 = P

2 |n〉. In the latter case, pI = 1/2N .
This is the initial state of the bath in the absence of an external magnetic field, ig-
noring interactions between the nuclear spins. Over time, interactions between the
bath and the qubit will introduce correlations between the two subsystems, evolv-
ing the state |ΨI(0)〉 = |ψ(0)〉 ⊗ |I〉 into the state |ΨI(t)〉 = 1√

2
(|0,I0〉 + |1,I1〉)

(if we consider only loss of phase coherence). In general, the states |I0〉 and |I1〉
will not be the same. Therefore, the reduced density matrix of the qubit, given by
ρ̂S(t)= Trn[∑I pI |ΨI(t)〉〈ΨI(t)|], may have a decreased degree of coherence (i.e.
smaller off-diagonal elements), since the nuclear spins are correlated with the spins
of magnetic centers that encode the qubit. The degree of coherence can be quanti-
fied by r(t) =∑I PIrI(t), where rI(t) = 〈I1(t)|I0(t)〉, and 〈0|ρ̂S(0)|1〉 = rI/2.
It is known that the decoherence rate depends on the initial state of the nuclear spin
bath. For example, it has been shown that techniques such as narrowing of the nu-
clear state can drastically increase the decoherence times in quantum dot systems
[68].

Next, we want to show in what way (11.25) leads to decoherence in a spin-
cluster qubit (such as is realized in the triangular magnet in Sect. 11.2) in more
detail. We have shown before that in spin clusters the qubit state is typically not
encoded in the Si ’s themselves, but instead in quantities like the total spin S or
the chirality C. However, we can always denote the basis states of the qubit by
|0〉 and |1〉. Quite generally then, by projecting the spin operators Si on the space
spanned by |0〉, |1〉, and performing a second order Schrieffer-Wolff transformation
on the resulting Hamiltonian, one can transform (11.25) into the Hamiltonian H =∑
k=0,1 |k〉〈k| ⊗Hk , with

Hk =
N∑
p=1

ωkpI
z′
p +

∑
p �=q

(
AkpqI

z′
p I

z′
q +BkpqI+p I−q

)
, (11.26)

where ẑ′ = B/|B|. In the derivation of (11.26), we ignored terms that do not con-
serve energy. ω0

p−ω1
p is linear inHHF, and the quantitiesA0

pq−A1
pq and B0

pq−B1
pq

are quadratic in HHF. The fastest contribution to decoherence is due to inhomoge-
neous broadening due to the terms ∝ I z′p in (11.26). These terms describes the mag-
netic field due to the nuclear spins, which is called the Overhauser field. The Over-
hauser field depends on the specific realization of the nuclear spin state (for times
t � τn, where τn is the typical evolution time of the nuclear spin state, the magnetic
field is static). Therefore, if the nuclear spins are in a mixture of states, the coher-
ence of the state |ψ(0)〉 is washed out due interference of the states that undergo
time-evolution under different effective magnetic fields. This can be seen from the
decoherence factor r(t), which for t � τn evolves as r(t)≈ ei(E0−E1)t

∑
I PIe

iδI t ,
where

δI ≈ gSμS
∑
i

BI
HF(ri ) ·

[〈0|Si |0〉 − 〈1|Si |1〉]. (11.27)
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The sum is over the spins in the spin cluster. Furthermore, BI
HF(ri ) =

DHF
∑
p m

I
p [ẑ′ − 3(ẑ′ · r̂ip)r̂ip]/r3

ip is the Overhauser field. It has been shown, that

decoherence of a qubit encoded in the total spin S=∑3
i=1 Si of a triangular cluster

due to the distribution of the Overhauser field for the equal superposition mixed state
typically takes place on time scales of 100 ns. The second order terms in (11.26)
give contributions to the decoherence times that are several orders of magnitude
smaller.

We have seen that due to hyperfine interaction, both the qubit state as well as
the nuclear spin state evolve in time. Furthermore, even in the absence of hyperfine
interaction the nuclear spin state itself evolves in time, according to the Hamiltonian
Hn = B̂ ·∑p ωpIp +Dn∑p<q [Ip · Iq = 3(Ip · êpq)(Iq · êpq)]/r3

pq . This dynamics
of the nuclear bath can lead to additional broadening of the Overhauser field, and
has been shown to lead to decoherence on the μs-time scale for a qubit state encoded
in the total spin.

An interesting possibility to increase the decoherence time of a qubit is a triangu-
lar spin cluster was put forward in Ref. [67]. The idea is to use the chirality of cluster
as qubit, instead of the total spin. In that case, the states |0〉 and |1〉 of this section
become |0〉Cz = |−1/2,1〉, |0〉Cz = |−1/2,−1〉. The crucial property of these state
that causes the increased decoherence time is that since

〈1|Sz,i |1〉 = 〈0|Sz,i |0〉 = −1/6, (11.28)

the Overhauser field from (11.27) does not couple to the qubit. Therefore, decoher-
ence processes in (11.26) are second order only. This can lead to decoherence times
approaching milliseconds.

11.6 Initialization and Read-out

Initialization of a qubit in its ground state is arguably the DiVincenzo criterion that is
most routinely realized. Therefore, we will not spend a lot of time discussing it here.
The way to prepare a qubit in its ground state is by cooling it down to temperatures
that are much smaller than the gap between the ground state in which one wants to
prepare the system and the first excited state. This gap, which could for instance be
due to magnetic anisotropy, is typically of the order of a few Kelvin, and may be
controlled by external means, such as placing the molecular magnet in a magnetic
field. This limits the temperature at which experiments can be done to several mK
to K.

The read-out of the spin state is a topic on itself, and we refer the reader to the
literature for an overview of the different techniques that are used [69].
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11.7 Grover’s Algorithm Using Molecular Magnets

One special topic that we wish to discuss in this chapter is the implementation of
Grover’s algorithm using molecular magnets [27]. Grover’s algorithm can be used
to find an entry in an unsorted database with N entries. A typical situation in which
this would be required is if we were given a phone number, and wanted to find the
associated name in a phone book. Classically, we would have to start with the first
entry, and work our way down the list. Finding the name in this manner requires
on average N/2 queries. If we had encoded the information in the phone book in a
quantum state, we would have been able to find the correct entry with high proba-
bility in O(N1/2) queries using Grover’s algorithm. A crucial requirement for this
algorithm is the possibility to generate arbitrary superpositions of eigenstates (and
in particular the superposition where all eigenstates have approximately the same
weight).

In large-spin magnetic molecules, the eigenstates are labeled by the quantum
number mS , the z projection of the total spin S� 1/2. The Hamiltonian describing
a single spin S with easy-axis along the z direction is given by

H =−AS2
z −BS4

z + V, (11.29)

where V = gμBH · S. This gives rise to the typical double-well spectrum with non-
equidistant level spacing. Such level spacing is crucial for the proposal in Ref. [27],
as will become clear shortly. Suppose one starts out by preparing the system in the
ground state |ψ0〉 = |s〉, and wishes to create an equal superposition of all the states
|m0〉, |m0 + 1〉, . . . , |s − 1〉, where m0 = 1,2, . . . , s − 1. This corresponds to using
n− 1 states for Grover’s algorithm, where n = s −m0. In principle, one can cre-
ate superpositions by applying a weak transverse magnetic field H⊥ (whose effect
can be described using perturbation theory) which drives multiphoton transitions
via virtual states through its coupling to S+, S−. However, to create the equal su-
perposition that is required for Grover’s algorithm, the amplitudes of all k-photon
processes (here k = 1,2, . . . , s −m0) must be equal. Clearly, perturbation theory is
not valid in this regime. Therefore, a more sophisticated scheme is required.

The scheme that is proposed in Ref. [27] to create an equal superposition uses
a single coherent magnetic pulse of duration T with a discrete frequency spectrum
{ωm}. It contains n high-frequency components and a single low-frequency com-
ponent ω0, chosen such that �ω0 � εm0 − εm0+1. Here, εm is the energy of the
eigenstate |m〉. The frequencies of the n high-frequency components are given by
�ωs−1 = εs−1−εs−�(n−1)ω0 and ωm = εm−εm+1+�ω0 form=m0, . . . , s−2.
For the molecular magnet Mn12, the high-frequency components have frequencies
between 20-120 GHz, and ω0 is around 100 MHz. Because of the non-equidistant
splitting of the energy levels, all frequencies are different. The low-frequency com-
ponent is applied along the easy axis, the high frequency components are in plane,
so that the coupling is given by

Vlow(t) = gμBH0(t) cos(ω0t)Sz, (11.30)
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Vhigh(t) =
s−1∑
m=m0

gμBHm(t)
[
cos(ωmt +Φm)Sx − sin(ωmt +Φm)Sy

]

=
s−1∑
m=m0

gμBHm(t)

2

[
ei(ωmt+Φm)S+ + e−i(ωmt+Φm)S−]. (11.31)

Hence, absorption (emission) of a high-frequency σ−-photon induces a transition
with �m = −1 (1); the low-frequency π -photons do not change m, instead they
supply the energy required to fulfill the resonance condition for allowed transitions.
The phases Φm can be chosen freely, we will come back to this point later. With this
setup, the lowest order transition between the ground state |s〉 and all states |m〉 (for
m0 ≤m< s) is n’th order in V (t)= Vlow(t)+ Vhigh(t).

To see this, let us consider an explicit example where s = 10, m0 = 5, and hence
n = 5. The lowest order transition from |s〉 to |s − 1〉 uses 4 π -photons of energy
�ω0 and 1 σ−-photon with energy �ωs−1. The transition from |s〉 to |s − 2〉 uses 3
π -photons of energy �ω0, 1 σ−-photon with energy �ωs−1, and 1 σ−-photon with
energy �ωs−2; and so on for the other transitions. ω0 can be chosen such that lower
order transitions are forbidden due to the requirement of energy conservation. The
amplitude of higher order transitions is small in the perturbative regime.

Since all transition amplitudes are the same order in V (t), they are all approxi-
mately equal. To make them exactly equal requires some fine-tuning. For rectangu-
lar pulses with Hk(t) = Hk for T/2 < t < T/2, the n’th order contribution to the
S-matrix for the transition between |s〉 and |m〉, denoted by S(n)m,s , is given by

S(n)m,s =
∑
F

Ωm
2π

i

(
gμB

2�

)nΠs−1
k=mHkeiΦkH

m−m0
0 pm,s(F )

(−1)qF qF !rs(F )!ωn−1
0

× δ(T )
(
ωm,s −

s−1∑
k=m

ωk − (m−m0)ω0

)
. (11.32)

The sum runs over all Feynman diagrams F . Ωm = (m − m0)!, qF = m − m −
rs(F ), pm,s(F )=Πs

k=m〈k|Sz|k〉rk(F )Πs−1
k=m〈k|S−|k+1〉, with rk(F )= 0,1,2, . . .≤

m−m0 the number of π -transitions in the transition belonging to the Feynman dia-
gram F . δ(T )(ω)= 1/(2π)

∫ T/2
−T/2 dteiωT is the delta-function of width T . It ensures

energy conservation. For the example above, the requirement |S(n)m,s | ≈ |S(n)−1,s | for all
m≥m0 (which corresponds to the equal superposition) is satisfied for parameters

H8/H0 = 0.04, H7/H0 =−0.25, H6/H0 =−0.61, H5/H0 =−1.12.
(11.33)

H9 can be chosen independently. For numerical estimates, we refer to the original
paper, Ref. [27]. This concludes the discussion of generating the equal superposition
required for Grover’s algorithm.

With some adaptions, a single step in Grover’s algorithm can be used to read-in
and decode quantum information. This opens up the possibility to use molecular
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magnets as dense and efficient memory devices. The phases Φm in (11.30)–(11.31)
play a crucial role here. We denoteΦm =∑m+1

k=s−1Φk+φm. As we have seen before,
we can irradiate the system with a coherent magnetic pulse of duration T such that
all S(n)m,s = ±η. In other words, the state after the pulse is |ψ〉 =∑s

m=m0
am|m〉,

where the amplitudes a1 = 1 and am =±η. By identifying the amplitude ±η with
the logical-1, respectively logical-0, we see that this state encodes a n-bit state.
Because of theΦm dependence of the S-matrix (see (11.32)), we can switch between
the ±η amplitude by choosing φm = 0,π . This allows us to encode a general state
between 0 and 2n − 1 in the quantum state of the molecular magnet. The set {φm}
that one uses depends on the number that has to be encoded. For instance, encoding
1210 = 11012 requires φ9 = φ8 = φ7 = 0 and φ6 = φ5 = π . Here, the states with
m= 9,8,7,6,5 represent respectively the binary digits 20,21,22,23,24.

To decode the state of the molecule, one applies a pulse for which S(n)m0,s =
S
(n)
m0+1,s = · · · = S(n)s−1,s = −η. This pulse amplifies the bits which have amplitude
−η, and suppresses those with amplitude η. The accumulated error in this procedure
is approximately nη2. Read-out of this decoded state can be done by measuring the
occupation of the different levels by standard spectroscopy, for instance using pulsed
ESR. Irradiation with a pulse which contains the frequency �ωm−1,m = εm−1 − εm
drives transitions that are given by S(1)m−1,m. If the state |m〉 is occupied (meaning
that its amplitude was −η), we would observe stimulated absorption when irradi-
ating with frequency ω6,7 and stimulated emission when irradiating with frequency
ω7,8. Since the energy levels are non-equidistant, this uniquely identifies the level.
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Chapter 12
Single-Molecule Spintronics

Enrique Burzurí and Herre S.J. van der Zant

Abstract During the last few years different techniques have become available to
study transport through an individual magnetic molecule. In a spin transistor, the
magnetic molecule links two electrodes that are used to apply a bias voltage; a third
gate electrode controls the position of molecular levels such that resonant tunnel-
ing and different redox states become accessible. Sequential single-electron trans-
port and current suppression (Coulomb blockade) are generally observed. In this
chapter, we show that spectroscopic information obtained from these three-terminal
measurements confirms the high-spin state and magnetic anisotropy of the robust
Fe4 single-molecule magnet incorporated in the junction. Moreover, we find that
the electric gate field drastically modifies the magnetic properties of the oxidized or
reduced molecule.

12.1 Introduction

In standard electronics we manipulate electrons and send them through different
device components to, in the end, transport, read and write information. Spintronics
[1, 2] aims at using not only the charge of the electrons but also controlling its
spin states. The use of this additional degree of freedom as a relevant parameter in
transport is expected to increase the speed and storage capacity of electronic devices.
Most importantly, it opens the door to new functionalities like quantum computation
arising from the quantum nature of the spin. Progress in this field seeks to use the
spin state of individual magnetic molecules trapped between electrodes instead of,
or in combination with, the spin of the flowing electrons. This emerging field is
known as molecular spintronics [2, 3].

Among the different families of magnetic molecules, single-molecule magnets
(SMM) discovered in the late 90s [4] are very promising candidates because of their

E. Burzurí (B) · H.S.J. van der Zant
Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft,
The Netherlands
e-mail: E.BurzuriLinares@tudelft.nl

H.S.J. van der Zant
e-mail: H.S.J.vanderZant@tudelft.nl

J. Bartolomé et al. (eds.), Molecular Magnets, NanoScience and Technology,
DOI 10.1007/978-3-642-40609-6_12, © Springer-Verlag Berlin Heidelberg 2014

297

mailto:E.BurzuriLinares@tudelft.nl
mailto:H.S.J.vanderZant@tudelft.nl
http://dx.doi.org/10.1007/978-3-642-40609-6_12


298 E. Burzurí and H.S.J. van der Zant

magnetic anisotropy and usually large spin. Bulk properties have been extensively
studied and now the challenge in the field lies in the detection and manipulation of
their giant molecular spin at the individual level.

12.1.1 How to Detect Spin in Magnetic Molecules?

There are several well-established methods to detect the spin state of large ensem-
bles of molecules. For instance, electron spin resonance (ESR) combines the use
of electromagnetic waves (usually microwaves) and magnetic fields to induce and
afterwards detect changes in the spin state of the molecules. Other examples in-
clude superconducting quantum interference devices (SQUIDS) that are made of
superconducting rings to detect a tiny magnetic flux induced by magnetic particles
lying around the coil. The sensitivity of these techniques is, however, limited to
large numbers of molecules. By pushing the limits, groups have measured clusters
of nanoparticles containing thousands of spins with highly sensitive micro-SQUIDS
[5–7]. For single molecules, the route becomes complex as the sensitivity should be
extraordinarily high. Some initiatives propose the use of SQUIDS based on carbon
nanotubes [8].

An alternative approach is to use an electrical current to probe the magnetic prop-
erties of individual molecules. For applications, electrical control of the spin is faster
and can be done locally in single molecules in contrast to other external stimuli like
the magnetic field. Electrical control can be achieved in single-electron transistors
where individual molecules are attached to conducting electrodes. From the per-
spective of a fundamental research, a three-terminal molecular spin transistor is a
unique playground for exploring the interaction between the magnetic states of a
molecule and the electrical current. Depending on the interaction strength between
the current and the magnetic molecule, we can distinguish two different approaches:
indirect (non-invasive) and direct (invasive) electrical probing described schemat-
ically in Fig. 12.1. With indirect probing, the current does not flow through the
magnetic core of the molecule. Instead, the molecule is attached to a conducting in-
termediary channel like a carbon nanotube [9] or a graphene sheet [10] that is used
as a probe to detect changes in the spin states of the attached magnetic molecule (see
Fig. 12.1(b)). This method has very recently been used to read out the nuclear spin
state of the double-decker SMM TbPc2; the current through one of the Pb ligands
probes the spin-state of the Tb atom [11].

When the current flows through the magnetic core of the molecule the spin-
charge carrier interaction will be strong. It is an invasive method that in turn allows
to charge the molecule and therefore explore its magnetic properties in different re-
dox states (see Fig. 12.1(a)). In this chapter we discuss how spin information can
be obtained in different charge states from direct probing of individual magnetic
molecules. We stress that the field is still in rapid development and therefore we will
include at the end a description of newly proposed methods to read and control the
spin information. The chapter is organized as follows: we start with a section on
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Fig. 12.1 Schematic picture
of a molecular quantum dot
(red sphere) in a
three-terminal configuration.
(a) With direct probing, the
current flows through the
magnetic core of the
molecule. The molecular
quantum dot is connected to
source and drain electrodes
via tunnel barriers. (b) With
indirect probing the current
flows through an adjacent
conductor like a carbon
nanotube or graphene sheet,
which is coupled to the
magnetic core by for example
a tunnel barrier

the theory of charge transport followed by a section describing the fabrication of a
spin transistor. We will then discuss measurements performed on a particular case,
the Fe4 single-molecule magnet. The chapter will finish with a description of future
experiments.

12.2 Coulomb Blockade

At low temperature, a single molecule in a three-terminal configuration can be seen
as a confined electronic system or quantum dot that is coupled by tunnel barriers to
the source and drain electrodes as shown schematically in Fig. 12.1(a). The electrons
can hop from the source to the molecule and from it to the drain by tunneling through
the barriers. The tunneling rate depends on the coupling between the molecular wave
function and that of the conduction electrons in the leads. It is given by Γs and Γd
for the source and drain electrodes respectively. Γs,d is typically expressed in meV
and ranges from 1 to 100 meV in single-molecule transport experiments.

The metallic leads act as a reservoir of electrons available at the Fermi levels μs
and μd of, respectively, the source and drain electrodes. In contrast, the quantum
dot possesses a discrete electronic spectrum. Figure 12.2(a) shows schematically
this electrochemical description of the magnetic molecule-electrodes system. The
energy required to add or subtract an electron to the quantum dot, known as the ad-
dition energy Eadd , is defined by the energy spacing�(N) between the Lowest Un-
occupied Molecular Orbital (LUMO) and the Highest Occupied Molecular Orbital
(HOMO) plus two times the charging energy Ec = e2/2C (see Fig. 12.2(a)). De-
pending on the relative strength of Γs,d , or simply Γ if we assume Γs ≈ Γd for sim-
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Fig. 12.2 First-order transport. (a) Electrochemical scheme of a first-order sequential tunneling
process involving the ground state (solid black arrow) or (b) an excited spin state (dashed blue
arrow). (c) Differential conductance map (or stability diagram) in which dI/dV is plotted in grey
code as a function of V and Vg for a molecule in the weak coupling regime. Dark areas (Coulomb
diamonds) are low-conductance areas where the charge is stabilized in the molecule. The dif-
ferent spin states participate in conduction and appear as diagonal (white) lines of high dI/dV .
(d) Typical double-well potential for a SMM. The Coulomb edges correspond to a transition from
±Sz(N − 1) to ±Sz(N) (solid black arrow). The SET excitation may correspond to a transition
between the ground state N − 1 to a spin excited state in the N charge state (blue dashed arrow)

plicity, we distinguish different transport regimes: weak coupling when Γ � EC ,
�(N), kBT and strong coupling when Γ � EC , �(N), kBT . The crossover be-
tween these two regimes is called the intermediate coupling regime and is of special
interest as we will show below.

Figure 12.2(c) shows schematically a conductance map (or stability diagram) of
a quantum dot in the weak coupling regime. A conductance map is built up from
individual dI/dV traces plotted versus the bias voltage V as a function of the gate
voltage Vg . Due to the discrete character of the molecular energy spectrum, elec-
trons can only hop onto the molecule (at first order in Γ ) when the Fermi levels of
the electrodes are in resonance with a free energy level of the molecule. In the gen-
eral case, these levels are out of resonance and transport is forbidden; the charge is
stabilized within the magnetic molecule. This process is known as Coulomb block-
ade and shows up in conductance measurements as low conductance areas (dark
areas in Fig. 12.2(c)). By applying a bias voltage the chemical potential difference
between source and drain can be varied according to

eV = μs −μd. (12.1)
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Whenever a charge state (μmol(N)) enters this bias window as sketched in
Fig. 12.2(a), resonant tunneling occurs and transport through the molecule is al-
lowed. Electrons now hop one by one on and off the molecule in an incoherent,
sequential electron tunneling (SET) process: the number of electrons in the dot
changes continuously between N − 1 to N . Coulomb blockade is lifted and a large
increase in the conductance is observed as diagonal lines in the conductance map.
These are the Coulomb edges shown in Fig. 12.2(c). The crossing of the Coulomb
edges at zero bias is the charge degeneracy point where adjacent charge states have
the same ground-state energy. An orbital can be brought into the bias window by
increasing the bias window or by “pulling” the energy levels of the molecule with
the gate voltage. For large enough gate fields, successive molecular orbitals can be
brought into the bias window and thus different charge states are accessible. As long
as the gate voltage remains fixed, these redox states are stable and they can therefore
be characterized in great detail.

12.3 Spectroscopy of Magnetic Spin States

The magnetic molecular excitations of single-molecule magnets take part in the
electronic transport and leave their fingerprint in the conductance of the molecule.
A conductance map can therefore be used as a very sensitive spectroscopic tool.
As we will show, in transport measurements one generally measures energy differ-
ences, and their interpretation therefore requires a description in terms of chemical
potentials. One can furthermore infer information about any change in the charge
(oxidation, reduction) or spin state that might occur upon charging the molecule.
To study the magnetic nature of the excitations, we examine their evolution in the
presence of an applied magnetic field. As a first approximation, the energy levels of
an anisotropic single-molecule magnet can be described by the Hamiltonian

H =DS2
z + gμB �B · �S. (12.2)

The first term is the anisotropy contribution whereD is an axial magnetic anisotropy
parameter and Sz is the z-component (parallel to the easy axis) of the spin. The
second term is the Zeeman term which describes the interaction of the spin with
the magnetic field B , where μB is the Bohr magneton and g is the Landé factor.
Even in the absence of a magnetic field, the spin ground state multiplet of a SMM
splits into 2S + 1 levels distributed over an energy barrier (see Fig. 12.3(a)). The
zero-field splitting (ZFS) is the energy difference (�exc) between the two lowest-
lying doublets (green arrow in Fig. 12.3(a)). Figure 12.3 shows the energy levels
versus magnetic field for two different angles θ = 0 (b) and θ = 90◦ (c) between
the easy axis and the magnetic field orientation. The curves have been calculated by
numerical diagonalization of the Hamiltonian (12.2) for a typical set of parameters.

Figure 12.3 shows that for an anisotropic molecule, the energy (�exc(B, θ)) of
the different spin states is a non-linear function of �B and depends strongly on θ . The
spectrum is different and the conductance map changes accordingly, thus, revealing
information of the magnetic anisotropy and the spin excitations.
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Fig. 12.3 (a) The magnetic
anisotropy splits the spin
ground state into 2S + 1
states distributed over an
energy barrier that prevents
the spontaneous reversal of
the magnetization.
(b) Evolution of the spin
states when the magnetic field
is parallel to the easy
anisotropy axis (θ = 0◦) and
(c) when the magnetic field is
perpendicular to the easy axis
(θ = 90◦)

12.3.1 Weak Coupling: SET Excitations

Figure 12.2(b) shows schematically the electrochemical picture of a quantum dot
with one excited state within the N charge state (blue dashed arrow). The origin
of this excited state can be, for instance, the excited spin states of a SMM in the
ground state multiplet (see Fig. 12.2(d)). As soon as the excited state enters the bias
window, the additional conduction channel induces an increase in the current and
a corresponding peak in the differential conductance plot. In the stability diagram
sketched in Fig. 12.2(c) these excitations appear as diagonal lines running parallel
to the Coulomb edge ending in the charge state corresponding to the excitation (N
in this case). The bias voltage at which the excited state and the Coulomb edges
cross gives the energy of the excitation �exc(B, θ) that depends on B and θ .

Not all transitions between different states can be seen in a transport experiment.
First, tunneling through an excited state is only possible when both excited and
ground states lie in between the Fermi levels of the electrodes. In addition, since the
spin of a single electron is 1/2, conservation of the spin imposes additional selection
rules together with the conservation of the charge. The spin excitations can only be
observed in SET when �S =±1/2 and �m=±1/2. In the double-well potential
picture of a SMM depicted in Fig. 12.2(d), the excitation corresponds to a transition
from the ground state in the N − 1 charge state to the excited state in the N state
(blue dashed arrow). It is also important to note that the first transition to be reached
with the bias voltage is the ZFS which has the largest energy difference. The con-
sequence is that once the bias voltage is increased such that the ZFS is accessible,
all other transitions within the multiplet are triggered. In the dI/dV maps generally
one single excitation line remains, namely the one corresponding to the ZFS [12].
Finally, at low bias, only excited states of the spin ground state multiplet participate
in the electronic transport. By further increasing the bias voltage, higher energy spin
excited multiplets may appear in the conductance map (i.e. a multiplet carrying total
spin S − 1).



12 Single-Molecule Spintronics 303

Importantly, the value of Γ is usually a limiting factor for the detection of exci-
tations in the SET regime as Γ is also a measure of the level broadening. Therefore,
Γ has to be lower than the level spacing�exc(θ,B) in order to observe the magnetic
excitations as resolved lines in the conductance. Typically, the zero-field splitting
(energy difference between the two lowest-lying states) for a SMM is in the range
of the meV, so that Γ should be < 1 meV. However, Γ cannot be too low because
the current is proportional to it. In practice this means that there is a rather small
window to resolve the ZFS in the SET regime.

Finally, we emphasize that first-order SET processes are incoherent. This means
that the electron tunnels onto the molecule and interacts with it so that stays there
long enough to lose its phase. Chemically speaking, the molecule gets charged (ox-
idized or reduced) and for this reason SET processes always involve transitions
between two adjacent charge states. The properties of the charged molecule are thus
of great importance in describing transport. For single-molecule magnets, however,
little is known about properties such as the spin value or the orientation of the easy
axis of a charged molecule. As we will see, some of these magnetic properties can
be inferred from transport characteristics in the SET regime (see e.g. Sect. 12.3.4).
The situation must be contrasted to higher-order tunneling processes which take
place in the coherent regime. They only involve one particular charge state, namely
the one that is stabilized by Coulomb blockade. The next two subsections deal with
this regime and in Sect. 12.3.4, we will come back to first-order SET transport.

12.3.2 Intermediate Coupling: Inelastic Spin-Flip Co-tunneling
Process

In case the coupling is of the order of the level spacing and the thermal energy
(Γ ∼EC , �(N), kBT ), high-order tunneling processes become relevant. These are
of particular interest as they can lead to well defined features in the conductance
maps. Depending on the final energy state of the molecule, two co-tunneling regimes
can be distinguished: elastic and inelastic co-tunneling.

In an elastic co-tunneling process, an electron from the molecule hops into the
drain leaving the molecule in a virtual forbidden state. Due to the Heisenberg uncer-
tainty principle, this event is possible if the molecular state remains unoccupied for
a period of time �t ≤ �/(Ec +�). Another electron from the source hops into the
molecule within�t and occupies the same state leading to a net transport of current.
This process can occur at an arbitrarily low bias and leads to a non-zero background
conductance within the Coulomb blockade regime.

A second scenario is inelastic co-tunneling. It occurs when the molecule ends in
an excited state at the end of the co-tunneling process, as sketched in Fig. 12.4(a).
In this case, the electron hopping from the source occupies an excited state of the
molecule within the same charge state. In contrast to elastic co-tunneling, it occurs
when Vb !Eexc, and shows up in the conductance map as an horizontal line inside
the Coulomb blockade regime that ends at the Coulomb edges (see Fig. 12.4(c)).
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Fig. 12.4 High-order transport. (a) Electrochemical diagram of an inelastic co-tunneling process.
(b) Typical double-well energy diagram of a SMM showing the excitation corresponding to an
inelastic co-tunneling excitation. (c) Stability diagram showing high-order tunneling processess.
Inelastic co-tunneling excitations appear as horizontal lines in the Coulomb blockade regime that
end in the Coulomb edges of the SET regimes. Kondo appears as a zero-bias excitation. If the
molecule is in a high spin state (S ≥ 1), Kondo appears in succesive adjacent states. (d) Electro-
chemical diagram of a Kondo co-tunneling process

Since now two electrons participate in the transport, the corresponding spin se-
lection rules are �S = 0,±1 and �m = 0,±1 for a second-order process. For a
single-molecule magnet, this transition for example corresponds to spin-flip excita-
tions inside the potential well of a single charge state (see Fig. 12.4(b)). As stated
before, this energy depends on B and θ , so that the anisotropy of a particular charge
state can be quantified by measuring its dependence on these parameters. Note again
that the ZFS is the largest energy scale and would therefore be the dominant feature
in the conductance maps.

12.3.3 Kondo Correlations

A different high-order co-tunneling process appears when the spin of the electron is
taken into account. As a first approach, Kondo excitations appear when the molecule
has orbitals with unpaired electrons. At zero-bias, the unpaired electron in the dot
can hop into the drain by an elastic co-tunneling process and be replaced by an elec-
tron with the opposite spin orientation from the source as sketched in Fig. 12.4(d).
This conduction process leads to a resonant conduction peak at zero-bias within
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the Coulomb diamond (see Fig. 12.4(c)). Such Kondo peaks have already been ob-
served in single molecules [13–16]. In the case of a SMM, the scenario can be more
complicated by the presence of several unpaired electrons in different ions of the
molecule. In this case, Kondo resonances may appear in two or more consecutive
charge states which is a fingerprint of a high-spin state (S ≥ 1) in one of the charge
states of the molecule. It can therefore be used as a strong indication of the presence
of a SMM in the junction.

The conductance maximum of the Kondo resonance changes logarithmicaly with
temperature following the empirical expression [17]:

G(T )=Gc +Ga
[
1+ 21/s − 1)(T /TK)

2]−s , (12.3)

where Ga is the conductance at T = 0, Gc is a temperature-independent offset and
s is a parameter that depends on the spin of the dot. For an electron with S = 1/2,
s = 0.22 and it is lower for higher spin values in the SMM. The Kondo temperature
TK defines the onset of Kondo correlations. Note, that at low temperatures the width
of the Kondo resonance is:

FWHM! 4kBTK/e. (12.4)

For typical vales of TK of ∼ 10 K (∼ 1 meV), the Kondo peak width can be larger
than the zero-field splitting and therefore may mask other co-tunneling excitations
coming from spin excited states such as the ZFS. Spin excitations to higher mul-
tiplets may still be visible (e. g. the S = 5 to S = 4 transition in the Fe4 SMM is
about 4 meV). In high-magnetic fields the zero-bias peak splits due to the Zeeman
effect in different components separated by �Vb = 2gμBB . This Zeeman splitting
together with the logarithmic scale are hallmarks of the Kondo effect.

12.3.4 Ground State to Ground State: Gate Spectroscopy

A different route to obtain information on magnetic properties of SMMs involves
ground state to ground state transitions rather than to excited spin states. The virtues
of this method are, as we will see, that it is less sensitive to the strength of the
coupling between the molecule and the electrodes and therefore it can be applied
in a broader range of cases. Moreover, it is very sensitive to small changes of the
magnetic anisotropy in different charge states. The method relies on measuring the
position of the Coulomb peak in the conductance map. The Coulomb peak marks
the ground-state SN to ground-state SN+1 transition between two adjacent charge
states N and N + 1 at zero-bias (see Fig. 12.2(d)). The position in gate voltage
of this peak depends on the energy difference �E between those two states. Such
energy difference can be varied by applying an external magnetic field, i.e. �E =
�E(B, θ).
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Fig. 12.5 �E calculated for
seven different values of θ
(from 30◦ to 90◦ every 10◦)
by numerical diagonalization
of the Hamiltonian given in
(12.2). The values of θ and D
are the same for both charge
states and are taken to be
D =−56 µeV

If the molecule is isotropic, the chemical potential depends linearly on the applied
magnetic field (Zeeman effect):

�E(B)= (EN+1(B)−EN(B)
)− (EN+1(0)−EN(0)

)=−gμBB�S (12.5)

where μB is the Bohr magneton and �S = SN+1− SN . EN and EN+1 are the ener-
gies of the SN and SN+1 states. This change in the chemical potential corresponds
to a change in the position of the zero-bias Coulomb peak:

�Vg(B)=�E(B)/β =−gμBB�S/β (12.6)

where β is the molecule-gate coupling.
In case of an anisotropic molecule, the energy spectrum is very sensitive to the

relative orientation of the magnetic field with respect to the easy magnetization axis
of the molecule. The energy �E can thus depend nonlinearly on B and this depen-
dence can be used to study quantitatively the magnetic anisotropy of an individual
molecule. Figure 12.5 shows �E calculated at different angles θ between the easy
axis and magnetic field by numerical diagonalization of the Hamiltonian (12.2). For
simplicity, we have taken DN =DN+1 =D and θN = θN+1 = θ .

At high magnetic fields, �E is linear with the magnetic field, meaning that the
Zeeman contribution dominates over the magnetic anisotropy. The sign of the slope
gives information about the change in the spin upon oxidation or reduction of the
molecule. According to (12.6), the slope of the curve at high fields is positive when
�S < 0 and vice versa. Consequently, in the situation considered in Fig. 12.5 the
spin ground state decreases upon reduction of the molecule. A negative slope would
mean the opposite. In addition, the electron carries a spin s = 1/2 and then the
difference in spin between two adjacent charge states is |�S| = 1/2. Therefore,
SN+1 = SN − 1/2 for a positive slope. This information can be very valuable when
no other reference of the charge states is known beforehand. A more complex sce-
nario may appear in SMMs if �S �= 1/2 between ground states SN and SN+1. Se-
lection rules forbid transport and the low-bias conductance should be suppressed
(spin blockade, see for instance [18, 19]). Looking now at the low-field region in
Fig. 12.5, we observe that�E is not linear with B and depends strongly on θ . In this
case, the magnetic anisotropy dominates over the Zeeman effect. The shape of the
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Fig. 12.6 Stability diagram
of a high spin molecule
schematically showing the
Coulomb diamonds of three
different charge states. SET
excitations, co-tunneling lines
and Kondo excitations
provide information about the
magnetic structure of
individual molecules

curves, the evolution with the angle and the crossover field between the non-linear
to linear behavior give quantitative information about the anisotropy parameters at
the single-molecule level.

The previous curves are calculated for the simple case when the magnetic
anisotropy does not change in magnitude or orientation when the molecules are
charged. By making θ and D different in adjacent charge states, the curves un-
dergo sizable differences that can be used to study subtle changes in the magnetic
anisotropy of different charge states at the single molecule level.

12.3.5 Summary

To summarize this section, we have shown how direct probing of the magnetic
molecule is a powerful and unique spectroscopic tool to study individual magnetic
molecules in different charge states. Figure 12.6 compiles the main information we
can obtain in a stability diagram. Co-tunneling and SET lines provide the energies of
spin excited states. The field evolution of the degeneracy-point supplies information
on the magnitude and orientation of the magnetic anisotropy. Finally, a Kondo res-
onance in adjacent charge states is a fingerprint of a high-spin state in the molecule.

12.4 Fabrication of a Spin Transistor

The fabrication of a three-terminal transistor involves various nanoscale techniques.
The different components of the device are first defined by electron-beam lithog-
raphy (EBL). Afterwards the selected metal for the electrodes (mostly gold) is
deposited by evaporation. The fabrication of a nanometric gap (1–2 nm) between
source and drain lies, however, beyond the resolution of EBL which is about 10 nm.
For this reason, we use controlled electromigration [20, 21] with an active feedback
to open a nanometric gap in the evaporated metal nanowire.

12.4.1 Electron-Beam Lithography

The four EBL steps required to fabricate the device are described in Fig. 12.7. The
first step defines the alignment markers and the contact pads that will connect source
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Fig. 12.7 The fabrication of the nanodevice consists of four electron-beam lithography steps.
In the first step (a) the gold contact pads are defined. Second, the aluminum gate electrode is
deposited. In a third step (c), on top of the oxidized gate, we pattern the gold nanobridge that will
be electromigrated to form the source and drain electrodes. Finally (d), the strips that connect the
gold nanowire with the contact pads are evaporated

Fig. 12.8 Scanning electron
microscopy image of the
nano-junction showing the
gold nanobridge before
electromigration and the
underlying aluminum gate
electrode

and drain with the electronics. This step is followed by the evaporation of 3 nm of
titanium and 50 nm of gold. Titanium is used as a sticking layer because of its good
adhesion to silicon oxide.

The second lithography step defines the gate electrode that is common to all
junctions. Afterwards, 75 nm of aluminum are evaporated and subsequently oxi-
dized inside an O2 chamber at 50 mTorr to obtain a 2–4 nm aluminum oxide layer.
This fabrication step is critical since the oxide layer has to be thin enough to have
a large molecule-gate coupling but thick enough to avoid any source/drain to gate
current leakage. In the next EBL step, a thin (12 nm thick and 100 nm wide) gold
nanowire is patterned on top of the oxidized gate electrode. This nanowire will be
used to fabricate the source and drain electrodes afterwards. Finally, the last EBL
step defines the strip (110 nm) that connects the gold nanowire with the contact pads
defined in the first step.

A picture of a device is shown in Fig. 12.8. This scanning electron microscopy
image shows the gold nanobridge before electromigration on top of the aluminum
electrode used as the gate.
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Fig. 12.9 (a) Scheme of the
“self-breaking”
electromigration technique.
(b) I-V plot of a typical
electromigration process

12.4.2 Electromigration

The fabrication of the nanogap consists of self-breaking electromigration of the
gold nanowire. Electromigration is the movement of the ions in a metal caused
by momentum transfer from the electrons onto the ions. In other words, the ions
forming the metal are “pushed” away by the moving electrons. In practice, (see
Fig. 12.9(a)), the voltage through the nanowire is increased over the electromigra-
tion threshold (around 100 meV in our gold wires) while continuously monitor-
ing the wire resistance with fast-response electronics. Whenever a change in the
resistance of typically 10 % of the original value is detected, the applied voltage
is reduced to the starting value. The aim of this controlled electromigration is to
avoid a too fast or violent breaking of the wire that in turn may create a too large
gap not suitable to trap the molecules. The process is repeated until the resistance
reaches around 5 k". At this resistance, a nanoconstriction in the wire has been
created. Due to the high mobility of gold atoms at room temperature, the resis-
tance continues to increase and, eventually, the nanoconstriction “self-breaks” into
a nanometric gap with a resistance of the order of a few M". The time scale for self-
breaking varies between a few minutes to a few hours [21]. Figure 12.9(b) shows
typical voltage-current curves observed in the course of an electromigration pro-
cess. The main advantage of self-breaking is that it avoids a sudden break of the
gold nanowire which in turn can lead to the formation of gold nanoparticles within
the gap. These unwanted gold particles can mask or even be mistaken with the target
molecules.

Electromigration is carried out under solution of the magnetic molecules at room
temperature. Once the target resistance (few M") has been reached in as many
junctions as possible on the chip, the molecular solution is pumped out and the
whole system is cooled down to stop the self-breaking process and to allow detailed
spectroscopic measurements to be performed.
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12.4.3 Preliminary Characterization

The first electrical characterization is to distinguish whether the junction contains a
single molecule or a few or even none. To do this, the bias voltage is fixed (typically
at 50 meV) and the current through the junction is measured as a function of Vg
between ±3 V (gate leakage usually appears for higher voltages). Single-molecule
magnets are expected to have charging energies of the order of eV whereas with the
gate we can typically shift the energy levels by ±0.4 V. For this reason, at most two
redox states are usually accessible within this gate voltage window. The measured
I–Vg characteristic would then show a single peak in current that marks the onset
of SET between both charge states. In contrast, the occurrence of several peaks
is probably the fingerprint of the presence of several molecules bridging the gap.
Subsequently, a full stability diagram as a function of Vg and V is measured. Only
those junctions showing a clear signature of a single molecule are used for further
analysis (about 10 % of the junctions).

12.5 A Practical Example. The Fe4 Single-Molecule Magnet

12.5.1 Why the Fe4 Single-Molecule Magnet?

Mn12 is the archetypical and most studied single-molecule magnet since its syn-
thesis in the early nineties [4]. For this reason, it was the first SMM studied in a
three-terminal geometry and showed signatures of sequential electron transport and
even magnetic properties in transport [22, 23]. However, subsequent experiments
showed that the magnetic properties of the magnetic core may not be preserved
under deposition of the molecule on gold [24]. Ideal SMMs for transport should
have a magnetic core sufficiently protected by an outer shell to avoid any structural
distortion that may alter its properties. In addition, the core has to be accessible
for electrons. A large spin and magnetic anisotropy are paramount to observe other
quantum phenomena such as quantum tunneling of the magnetization or quantum
interference (Berry phase). Fe4 SMM meets these characteristics and, importantly,
X-ray experiments have shown that its magnetic properties, in particular the magni-
tude and orientation of the magnetic anisotropy, are preserved under deposition on
gold surfaces [25, 26].

Fe4 is made of four Fe3+ ions with spin s = 5/2 as illustrated in Fig. 12.10(a).
The strong exchange antiferromagnetic interaction between the central and the pe-
ripheral ions gives rise to a total molecular spin S = 5. The magnetic anisotropy
originated from the asymmetry of the molecule lifts the degeneracy of the spin
ground state into five doublets and a singlet distributed over an energy barrier that
hinders the spin reversal. The energy diagram is usually described by a double-well
potential like the sketched in Fig. 12.10. The bulk value of the axial anisotropy pa-
rameter is D =−56 µeV resulting in a height of the barrier of U = 1.4 meV [27].
The zero-field splitting is 0.5 meV.
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Fig. 12.10 (a) Magnetic core
of the Fe4 including some
peripheral ligands.
(b) Magnetic anisotropy splits
the spin ground state into
2S + 1 states distributed over
an energy barrier that
prevents the spontaneous
reversal of the magnetization

Fig. 12.11 dI/dV color maps versus Vg and V for two different junctions containing an individ-
ual Fe4 SMM with different couplings Γ . (a) High-conductance lines mark the onset of SET that
separates two charge states. Kondo correlations in adjacent charge states are fingerprint of a high
spin state. (b) Charge-degeneracy point of a different sample. Γ is larger and co-tunneling exci-
tations appear. The color scale is saturated as to highlight the co-tunneling lines. Measurements
temperature is T = 1.9 K and T = 1.6 K respectively

As we have seen, different transport regimes provide different information on
the magnetic properties of the molecule. The value of Γ cannot be controlled or
changed during the experiments. We present therefore results obtained for different
junctions in different transport regimes. Figure 12.11 shows differential conduc-
tance maps (dI/dV ) of two different junctions containing an individual Fe4 SMM
with different couplings Γ to the electrodes. The upper plot shows lines of high
dI/dV characteristic of single-electron transport through the molecule. The low-
differential conductance regions (blue in the figure) on either side of the charge de-
generacy point, correspond to charge states N and N + 1. At positive bias, a strong
excitation is visible within the SET regime with energy 4.8 meV. This value is
of the order of the calculated energy for the first excited spin multiplet (S = 4)
of Fe4 [26, 28]. High-order co-tunneling excitations are also visible around zero-
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Fig. 12.12 dI/dV versus V
traces measured at
(a) Vg =−1.5 V and
(b) Vg = 2 V corresponding
to the left and right-hand
charge states respectively.
(c), (d) Excitation energy (V )
as a function of B measured
at the same fixed Vg than (a)
and (b) respectively. Solid
lines are fits to a
Lambe-Jaklevic equation (see
[12])

bias in both charge states, which is fingerprint of high-spin Kondo correlations. The
value of Γ is relatively low and the Coulomb peak is well defined; we have per-
formed gate-voltage spectroscopy in this sample (see Sect. 12.5.3). In the bottom
dI/dV map of Fig. 12.11, the value of Γ is larger and inelastic co-tunneling lines
are present in both charge states. We use this example to discuss spin excitations
in the co-tunneling regime. Importantly, the results of both examples confirm the
presence of an anisotropic magnetic molecule bridging source and drain electrodes
[12, 29, 30].

12.5.2 Spin Excitations: Inelastic Spin Flip Spectroscopy

In Fig. 12.11(b), within the left-hand Coulomb diamond three clear inelastic co-
tunneling excitations are observed at ±0.6 meV, ±4.6 meV and ±6.7 meV. Two
other excitations appear in the right-hand charge state at ±0.9 meV and ±5 meV.
The energy of the lowest excitation in both charge states is of the order of the zero-
field splitting (∼ 0.5 meV) of Fe4. To gain a deeper insight on the magnetic nature
of these excitations we study their evolution in the presence of a magnetic field.
We measure dI/dV versus V at a fixed Vg =−1.5 V for different magnetic fields.
The results are shown in Fig. 12.12(a). The energy of the excitation (marked with
a red arrow) increases with B as shown in Fig. 12.12(c). The curve is symmetrical
upon field reversal (see supplemental information in [12]). The observed behavior is
characteristic of the existence of a finite ZFS, as described by the spin Hamiltonian
(12.2). The linear dependence with B indicates a low value of θ . Figures 12.12(b)
and (d) show similar data measured at Vg = 2 V corresponding to the excitations in
the right-hand charge state. The low-field behavior shown in Fig. 12.12(d) is slightly
non-linear with B which may be a fingerprint of magnetic anisotropy. Interestingly,
the slightly different magnetic field dependence of the excitations in left and right
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Fig. 12.13 (a) dI/dV versus
Vg curves measured at
zero-bias and T = 1.9 K for
three different magnetic
fields. (b) dI/dV color plot
around the degeneracy-point
as a function of B and Vg

charge states points to a misalignment of the easy axes when charging the molecule.
In particular θN should then be larger than θN+1.

12.5.3 Gate-Voltage Spectroscopy

We now focus on the position of the Coulomb peak in gate voltage and its evolution
under a magnetic field. We measure dI/dV curves as a function of Vg around the
Coulomb peak shown in Fig. 12.11(a) [30]. A lock-in bias voltage modulation with
amplitude 0.1 mV is used with no DC voltage applied between source and drain.
The result are shown in Fig. 12.13(a) for different magnetic fields. These results
show a shift of the peak towards higher gate voltages as B increases.

To understand in detail the evolution of the peak position with the applied mag-
netic field, we have carried out detailed measurements covering the field range
−6T ≤ B ≤ 6T . The result is represented in Fig. 12.13(b) as a dI/dV color plot
versus B and Vg . The position of the peak in Vg depends clearly non-linearly with B
indicating the presence of magnetic anisotropy in this molecule [30]. For clarity, we
show in Fig. 12.14(a) the position of the peak maximum as obtained from Gaussian
fits of the curves shown in Fig. 12.13.

Further information about the anisotropy is obtained by changing in-situ the
value of θ . This is done by rotating the whole chip with a piezo-driven rotator inside
the cryostat. Figure 12.14 shows the position of the Coulomb peak in gate voltage at
different angles of the rotation α.1 The low-field behavior differs significantly. We
observe a gradual change from an almost linear dependence in Fig. 12.14(a) to an
almost flat field dependence at low fields (Fig. 12.14(d)). According to the model
used in Fig. 12.5, the evolution of the curves suggest a rotation towards larger values
of θ , approaching θ = 90◦

For a quantitative estimation of the magnetic anisotropy, we calculate �E by
numerical diagonalization of Hamiltonian (12.2) following the model described in
Sect. 12.3.4. The results are the solid lines in Fig. 12.14. For this calculation we
assume that the neutral charge state is the left-hand Coulomb diamond and that the
magnetic anisotropy is the same as in the bulk [26, 31]. Similar fits with slightly

1Note that α, the angle of rotation, is in general different from θ , the angle between the easy axis
and the magnetic field.
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Fig. 12.14 Coulomb peak
position in Vg as a function of
B at four different angles of
the rotation: (a) α1,
(b) α2 = α1 + 30◦,
(c) α3 = α1 + 60◦ and
(d) α4 = α1 + 90◦. The solid
lines are calculated by
numerical diagonalization of
Hamiltonian (12.2)

Fig. 12.15 dI/dV color map
of a junction containing an
Fe4 SMM in the intermediate
coupling regime. Zero-bias
excitations are observed in
adjacent charge states which
is fingerprint of high-spin
Kondo

different parameters can be obtained by assigning the neutral state to the right-
hand state. From the positive slope at high fields, the spin in the reduced (right-
hand) charge state is found to be SN+1 = 9/2. Free parameters are then DN+1,
θN and θN+1. The best fitting values are DN+1 = 68 μeV and the angles that ap-
pear in Fig. 12.14. It is therefore possible to conclude that the molecular ground
state S decreases and the magnetic anisotropy is enhanced by reducing the molecule
[30]. These results agree with the conclusions extracted from the co-tunneling lines
[12, 29].

12.5.4 Kondo Excitations and High-Spin State

Figure 12.15 shows the stability diagram of a third molecular junction in the in-
termediate coupling regime. Strong zero-bias excitations appear in adjacent charge
states, which is fingerprint of a high-spin (S ≥ 1) Kondo effect. In order to reveal the
Kondo origin of the excitation, we measure the dependence of the resonance with
temperature and magnetic field [29].

Figure 12.16(a) shows a dI/dV trace versus V measured at a fixed Vg = 0 and
for B= 0 (blue curve) and B = 8 T (red curve). Figure 12.16(c) shows the re-
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Fig. 12.16 dI/dV traces
versus V . (a) dI/dV at
Vg = 0 V measured at
B = 0 T (blue line) and
B = 8 T (red line).
(b) dI/dV measured at
Vg =−0.6 V and different
temperatures. (c) dI/dV at
Vg = 1.7 V measured at
B = 0 T (blue line) and
B = 8 T (red line).
(d) dI/dV measured at
Vg = 1.4 V and different
temperatures

sults of measurements carried out at Vg = 1.7 V, corresponding to the right-hand
charge state. The peak at zero field splits into two components at B = 8 T in both
charge states. Using the Zeeman component of (12.2) we estimate the value of the
Landé factor to be g = 2. Further proof of the Kondo resonance is obtained from the
temperature dependence. Figure 12.16(b) shows the Kondo resonance measured at
Vg =−0.6 V and at different temperatures. The peak width increases and its height
decreases when increasing T . The same behaviour is observed in Fig. 12.16(d) for
the right-hand charge state. The Kondo temperature is obtained (see [29] for more
details) from the evolution of the total width half maximum (FWHM) with the tem-
perature. The results are TK = 13 K for the left-hand charge state and TK = 10 K
for the right-hand charge state (see [29]).

12.6 Future Directions

12.6.1 Quantum Tunneling of the Magnetization and Berry Phase

The sensitivity of the three-terminal transistor as a spectroscopic technique paves
the way to study quantum phenomena at the individual molecule level. Some SMM
present transverse anisotropy (perpendicular to the easy axis) that mixes the en-
ergy levels at both sides of the energy barrier. This overlap allows the spin to tunnel
through the barrier instead of relaxing by “jumping” over it [32–34]. The probability
of tunneling is usually small but it can be enhanced with the application of an exter-
nal magnetic field perpendicular to the easy axis of the SMM [35]. If the magnetic
field is applied along the “hardest” anisotropy axis within the hard anisotropy plane,
the probability of tunneling oscillates and even quenches due to destructive interfer-
ences. This is known as Berry phase oscillation. Quantum tunneling and quantum
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Fig. 12.17 Three-terminal transistor made of ferromagnetic electrodes on graphene. Gold is used
to inject electrons into the graphene layer. A ferromagnetic metal is deposited on top of graphene
to polarize the current. The magnetic molecule lies within the gap in the few-layers graphene gap

interferences may leave their fingerprint in the current flow through the magnetic
molecule. A spin transistor may be used then to observe them at the single molecule
level.

12.6.2 Ferromagnetic Electrodes

Theoretical and experimental approaches described in this chapter assume that non-
polarized electrons are injected by the gold electrodes. Additional control over the
molecular spin is predicted by using spin polarized electrons. Recent theoretical
works [36] show that by making one of the linking electrodes ferromagnetic, the
flowing electrons can flip the spin of the molecule to a final state where it is blocked
leading to current suppression. That final state and the total current depend on the
initial spin of the molecule and the magnetic anisotropy. This spin-charge conver-
sion may be used to read out the spin information. Interestingly, it is predicted that
by making ferromagnetic both electrodes the magnetic state of the molecule can be
switched with the spin polarized current [37]. The switching process may be visible
in the current by applying a voltage over time.

Usually, ferromagnetic metals oxidize in ambient conditions hindering electrical
transport. For this reason, only a few examples of a spin polarized current addressing
a molecule have been reported to date [38]. An alternative approach is to use an
intermediary conductor between the ferromagnetic material and the gap with the
molecule. Recently, it has been shown that graphene can be electromigrated in a
similar way as gold to open a nanogap [39]. Graphene versatility allows to deposit
a ferromagnetic metal on top that can act as a spin polarizer. Figure 12.17 shows
schematically a possible configuration for these experiments.

12.6.3 Spin Crossover Molecules

Spin crossover (SC) molecules form a different family of magnetic molecules with
interest for molecular spintronics. SC are known as molecular switches for their
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Fig. 12.18 Spin crossover
mechanism in a 3− d metal.
The molecule is in a low-spin
state if � is larger than the
spin pairing energy

ability to change their magnetic ground state under the action of external stimuli,
such as temperature, light or pressure [40]. This phenomenon is widely observed in
the first row transition metals like Fe.

Figure 12.18 shows the mechanism behind a spin crossover transition for a 3d
metal with 6 electrons. In the presence of a crystal field the 5 levels of the d-orbital
split in a doublet and a triplet separated by an energy �. When the splitting � is
larger than the pairing energy, the electrons do not follow Hund’s rule and fill the
lower levels. The molecule is then in a low-spin state (S = 0). Under an external
stimulus the symmetry around the 3d ion can change and � is reduced. The energy
levels are quasi-degenerated and the orbital filling now follows Hund’s rule. The
molecule is in a high-spin state S = 2.

The crossover temperature of a temperature-driven SC transition can be tuned by
tailoring the ligands around the metallic core. For instance some molecules show a
SC transition close to room temperature [41]. Recent theoretical works [42] indicate
that the conductance through the molecule may change because of a shifting of
the molecular levels or a change in the coupling of the molecule to the electrodes.
However this has not been established experimentally yet.
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Chapter 13
Molecular Quantum Spintronics
Using Single-Molecule Magnets

Marc Ganzhorn and Wolfgang Wernsdorfer

Abstract The objective of molecular quantum spintronics is to combine the con-
cepts of spintronics, molecular electronics and quantum computing in order to
fabricate, characterize, and study molecular devices (for example molecular spin-
transistors and molecular spin-valves) allowing the read-out and manipulation of
the spin states of one or several molecules. The main first goal is to perform ba-
sic quantum operations. The visionary concept of molecular quantum spintronics is
underpinned by worldwide research on molecular magnetism and supramolecular
chemistry. Indeed, chemists have acquired a strong expertise in tuning, controlling
and manipulating the properties of the molecules (spin, anisotropy, redox potential,
light, electrical field. . . ) allowing the creation of tuneable devices with new func-
tionalities. This chapter summarizes the concepts and the first important results in
this new research area, which open up prospects for new spintronic devices with
quantum properties.

13.1 Introduction

Everyday life is full of useful magnets, solids, oxides, metals and alloys. On the
contrary, molecules are most often considered as non-magnetic materials. However,
recent discoveries show that molecules can bear large magnetic moments that can
have a stable orientation like traditional magnets. They have therefore been called
single-molecule magnets (SMMs) and they might be the ultimate limit for informa-
tion storage. They do not only exhibit the classical macroscale property of a magnet,
but also new quantum properties such as quantum tunnelling of magnetization and
quantum phase interference, the properties of a microscale entity. Such quantum
phenomena are advantageous for some challenging applications, e.g. molecular in-
formation storage or quantum computing. In this context, the objective of molecular
quantum spintronics is to combine the concepts of three novel disciplines, spin-
tronics, molecular electronics, and quantum computing. The resulting research field

M. Ganzhorn · W. Wernsdorfer (B)
Institut Néel, CNRS & Université J. Fourier, BP 166, 25 rue des Martyrs, 38042 Grenoble
Cedex 9, France
e-mail: wolfgang.wernsdorfer@grenoble.cnrs.fr

J. Bartolomé et al. (eds.), Molecular Magnets, NanoScience and Technology,
DOI 10.1007/978-3-642-40609-6_13, © Springer-Verlag Berlin Heidelberg 2014

319

mailto:wolfgang.wernsdorfer@grenoble.cnrs.fr
http://dx.doi.org/10.1007/978-3-642-40609-6_13


320 M. Ganzhorn and W. Wernsdorfer

aims at manipulating spins and charges in electronic devices containing one or more
molecules [1]. The main advantage is that the weak spin-orbit and hyperfine inter-
actions in organic molecules are likely to preserve spin-coherence over times and
distances much longer than in conventional metals or semiconductors. In addition,
specific functions (e.g. switchability with light, electric field etc.) could be directly
integrated into the molecule [2].

This chapter summarizes the concepts and the first important results in this new
research area of molecular quantum spintronics. It first discusses briefly the moti-
vations for using molecular nanomagnets as magnetic center of spintronic devices.
Several designs of supramolecular quantum spintronic devices are then presented,
which are able to probe an individual molecular spin. The main part of the chap-
ter focuses on a single-molecule magnet with a single magnetic center. It is a ter-
bium ion Tb3+, embedded between two phtalocyanines (Pc) ligand planes. The
mononuclear complex is denoted as TbPc2. We then describe various experimen-
tal approaches that have successfully probed the quantum mechanical nature of an
isolated TbPc2 single-molecule magnet. Landau-Zener tunneling, spin-lattice relax-
ation, single shot electrical read-out of a single nuclear spin, nuclear spin trajecto-
ries, level life times, and Rabi oscillations of a single nuclear spin are discussed in
detail. The results contribute to the understanding of the electronic and magnetic
properties of isolated molecular systems and they reveal intriguing new physics.

13.2 Molecular Nanomagnets for Molecular Spintronics

SMMs possess the right chemical characteristics to overcome several problems as-
sociated to molecular junctions. They are constituted by an inner magnetic core
with a surrounding shell of organic ligands [3] that can be tailored to bind them on
surfaces or into junctions [4–7] (Fig. 13.1). In order to strengthen magnetic interac-
tions between the magnetic core ions, SMMs often have delocalized bonds, which
can enhance their conducting properties. SMMs come in a variety of shapes and
sizes and permit selective substitutions of the ligands in order to alter the coupling
to the environment [3–5, 8]. It is also possible to exchange the magnetic ions, thus
changing the magnetic properties without modifying the structure and the coupling
to the environment [9, 10]. While grafting SMMs on surfaces has already led to im-
portant results, even more spectacular results will emerge from the rational design
and tuning of single SMM-based junctions.

From a physics viewpoint, SMMs are the final point in the series of smaller
and smaller units from bulk matter to atoms (Fig. 13.2). They combine the clas-
sic macroscale properties of a magnet with the quantum properties of a nanoscale
entity. They have crucial advantages over magnetic nanoparticles in that they are
perfectly monodisperse and can be studied in molecular crystals. They display an
impressive array of quantum effects (that are observable up to higher and higher
temperatures due to progress in molecular designs), ranging from quantum tun-
nelling of magnetization [11–14] to Berry phase interference [15, 16] and quantum
coherence [17–19] with important consequences on the physics of spintronic de-
vices. Although the magnetic properties of SMMs can be affected when they are
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Fig. 13.1 Representative
examples of the peripheral
functionalization of the outer
organic shell of the Mn12
SMM. Different
functionalizations used to
graft the SMM to surfaces are
displayed [1]. Solvent
molecules have been omitted.
The atom color code is
reported in the figure, as well
as the diameter of the clusters

deposited on surfaces or between leads [8], these systems remain a step ahead of
non-molecular nanoparticles, which show large size and anisotropy distributions,
for a low structure versatility.

13.3 Introduction to Molecular Spintronics

Various designs for molecular spintronic devices using individual SMM’s were pro-
posed over the last decade [1, 2]. One can use for instance a scanning tunneling
microscopy to probe an isolated SMM on a conducting surface [20–22]. Alterna-
tively, one can built a three-terminal molecular spin-transistor where an individual
SMM is bridging the gap between two non-magnetic leads [23, 24]. In such a con-
figuration, the electric current is flowing directly through the molecule, leading to
a strong coupling between the electrons and the magnetic core (see the Chap. 12).
This direct coupling thus enables a readout of the molecule’s magnetic properties
with the electronic current, but also leads to a strong back-action on the molecule’s
magnetic core [1].

An less invasive approach consists in coupling the SMM to a second non-
magnetic molecular conductor which is subsequently used as detector. For such an
indirect coupling, the magnetic core of the molecule is only weakly coupled to the
conductor but can still affect its transport properties, thus enabling an electronic
readout with only minimal back-action.

Among the different possible detectors (nanowires, carbon nanotubes, quantum
dots, ligands, mechanical resonators, nanoSQUIDs), the carbon nanotube stands out
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Fig. 13.2 Scale of size that goes from macroscopic down to nanoscopic sizes. The unit of this scale
is the number of magnetic moments in a magnetic system (roughly corresponding to the number
of magnetic atoms). At macroscopic sizes, a magnetic system is described by magnetic domains
that are separated by domain walls. Magnetization reversal occurs via nucleation, propagation, and
annihilation of domain walls (hysteresis loop on the left). When the system size is of the order of
magnitude of the domain wall width or the exchange length, the formation of domain walls re-
quires too much energy. Therefore, the magnetization remains in the so-called single-domain state,
and the magnetization reverse by uniform rotation or nonuniform modes (middle). SMMs are the
final point in the series of smaller and smaller units from bulk matter to atoms and magnetization
reverses via quantum tunneling (right)

due to its unique structural, mechanical and electronic properties [1]. We will pro-
pose several designs of a supramolecular quantum spintronic device, where a car-
bon nanotube is used to probe an individual molecular spin via different coupling
mechanism at cryogenic temperatures (flux coupling, electronic coupling, mechan-
ical coupling).

13.3.1 Direct Coupling Scheme

The first scheme we consider is a magnetic molecule attached between two non-
magnetic electrodes. One possibility is to use a scanning tunneling microscope tip
as the first electrode and the conducting substrate as the second one. So far, only
few atoms on surfaces have been probed in this way, revealing interesting Kondo
effects [25] and single-atom magnetic anisotropies [26]. The next scientific step is
to move from atoms to molecules in order to observe richer physics and to modify
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Fig. 13.3 Schematic
representation of different
device geometries for
molecular spintronic devices.
(a) Three-terminal spin dot
device. In a direct coupling
scheme, the current flows
through the spin dot (SD).
(b) Three-terminal double-dot
device. In an indirect
coupling scheme, the current
flows through a second
non-magnetic quantum dot,
the readout dot (RD), which
is coupled with the spin dot
(SD) via exchange
interaction (J).
(c) Supramolecular spin valve
device, with two SD coupled
to the RD. The current in the
RD is therefore sensitive to
relative spin orientation in the
two SD’s. (d) Multi-terminal
multi-dot device

the properties of the magnetic objects. Although isolated SMMs on gold have been
obtained [4–7], the rather drastic experimental requirements, i.e. very low temper-
atures and high magnetic fields, represents a considerable technological challenge.
Nevertheless, recent experiments performed by low temperature STM revealed a re-
versible chiral switching [21] and an electric current control of a local spin [20] in
a bis(phthalocyaninato)terbium(III) SMM (TbPc2 SMM) on a metal surface. Spin-
polarized STM furthermore allows the real-space observation of spin-split orbitals
in a TbPc2 SMM [22].

Another possibility concerns break-junction devices [27], which integrate a gate
electrode. Such a three-terminal transport device, called a molecular spin-transistor,
consists of a single magnetic molecule, the “spin” dot, bridging the gap between two
non-magnetic electrodes (Fig. 13.3(a)). The current passes through the magnetic
molecule via the source and drain electrodes, and the electronic transport properties
are tuned via a gate electrode.

The first experimental realization of this scheme has been achieved using Mn12
with thiol-containing ligands, which bind the SMM to the gold electrodes with
strong and reliable covalent bonds [28]. An alternative route is to use short but weak-
binding ligands [29]: in both cases the peripheral groups act as tunnel barriers and
help conserving the magnetic properties of the SMM in the junction. As the elec-
tron transfer involves the charging of the molecule, we must consider, in addition to
the neutral state, the magnetic properties of the negatively- and positively-charged
species. Because crystals of the charged species can be obtained, SMMs permit
direct comparison between spectroscopic transport measurements and more tradi-
tional characterization methods. In particular, magnetization measurements, elec-
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tron paramagnetic resonance, and neutron spectroscopy can provide energy level
spacings and anisotropy parameters. In the case of Mn12, positively charged clusters
possess a lower anisotropy barrier [30]. As revealed by the first current spectroscopy
(Coulomb blockade) measurements, the presence of these states is fundamental to
explain transport through the clusters [28, 29].

Studies in magnetic field showed a first evidence of the spin transistor proper-
ties [28, 29]. Degeneracy at zero field and nonlinear behavior of the excitations as a
function of field are typical of tunneling via a magnetic molecule. However, follow
up experiments indicate an alteration of the Mn12 properties during the deposition
of the molecules on gold electrodes [31].

In contrast to Mn12 molecular magnets, the magnetic properties of Fe4 SMM’s
are preserved upon deposition on gold electrodes due to the protection of the mag-
netic centers by an outer shell of organic ligands. Indeed, the magnetic anisotropy
of the Fe4 molecule has been observed via current spectroscopy in single molecule
transistors with various electron transport regimes (SET, co-tunneling, Kondo)
[32, 33].

13.3.2 Indirect Coupling Scheme

In the direct coupling scheme, the conduction electrons are tunneling directly
through the magnetic center of the SMM. Although the strong coupling between
the electrons and the magnetic center enables the detection of the molecular spin by
the conduction electrons, a significant back-action acts on the molecule’s magnetic
core.

In order to reduce the back-action, one can couple the magnetic molecule to
a second non-magnetic conductor serving as a readout dot (Fig. 13.3(b)). In this
indirect coupling regime, the spin dot is only weakly coupled to the readout dot via
an exchange interaction but can still affect its transport properties, thus enabling a
readout of the molecular spin with only minimal back-action. Such a configuration
was recently demonstrated in a TbPc2 SMM spin transistor [23, 24], where the
current tunneling through the organic ligand of the TbPc2 (i.e readout dot) enables
the detection of the nuclear spin on the magnetic Tb3+ ion core (i.e spin dot).

A molecular spin valve has a geometry similar to a spin transistor but contains at
least two magnetic elements or spin dots. In analogy to a polarizer-analyzer setup,
the current in the spin valve device depends on the relative spin orientation of the
magnetic centers. In the simplest geometry, a molecular spin valve consists of a
diamagnetic molecule integrated between two magnetic electrodes. A first experi-
mental realization on a C60 molecule between two Ni electrodes reveals for instance
considerable magnetoresistance effects [34]. Other geometries have also been pro-
posed in the past, involving for example a magnetic molecule coupled to only one
magnetic electrode or a molecular magnet with two magnetic centers sandwiched
between non-magnetic electrodes [2, 35].

The most promising alternative however consists of coupling two molecular mag-
nets to a readout dot connected between two non-magnetic electrodes (Fig. 13.3(c)).
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The localized and highly anisotropic magnetic moment of the molecular magnets
can influence the electric current in the readout dot via exchange interaction, which
leads to a highly efficient spin polarization or very large magnetoresistance effects.
Hence, a spin valve configuration enables the non-destructive readout of molecular
spin states [1]. Among the different potential readout dots (nanowires, nanotubes,
semiconductor quantum dots, mechanical resonators), carbon nanotube stands out
due outstanding mechanical and electronic properties. In fact, the carbon nanotube
is a one-dimensional molecular conductor with a cross section on the same order
of magnitude than that of a molecular magnet, resulting in an almost ideal coupling
between the readout and the spin dot. Indeed, in a supramolecular spin valve con-
sisting of TbPc2 SMM grafted to a carbon nanotube, the strongly localized magnetic
moment of the SMM’s leads to a magnetic field dependance of the electrical current
in the carbon nanotube, resulting in a magnetoresistence ratio up to 300 % below
1 K [36].

Chemical engineering furthermore allows the synthesis of billions of perfectly
identical molecular magnets. One can therefore functionalize a readout dot like a
carbon nanotube with several molecular magnets and, using state-of-art nanofabri-
cation techniques, integrate multiple gate electrodes in such a device (Fig. 13.3(d)).
In such a multi-terminal device configuration, each molecular magnet can be ad-
dressed and manipulated independantly, for example by oscillating electric or mag-
netic fields. Furthermore, the gate electrodes can be used to modulate the exchange
interaction between a spin dot and the readout dot. Using the readout dot as a media-
tor or quantum-information bus, one could therefore perform a highly efficient spin
or quantum information transfer between two different spin dots. With the strong
quantum coherence of certain molecular magnets, such a device configuration would
enable quantum information processing and the implementation of certain quantum
computation protocols [1].

13.3.3 Magnetic Torque Detector or Probing Via Mechanical
Motion

Alternatively, one can also couple a SMM to a suspended carbon nanotube NEMS
and probe the molecular nanomagnet with the carbon nanotube’s mechanical motion
(Fig. 13.4). Such a detection scheme is based on torque magnetometry.

We consider a SMM with a magnetic moment μ = gμB
�

S to be rigidly grafted
to the suspended carbon nanotube beam. Upon applying an external magnetic field
Bext, the SMM magnetization will experience a torque given by

Γ SMM = μ×Bext = gμB

�
S ×Bext, (13.1)

resulting in its rotation towards the magnetic field direction. In order to minimize its
magnetic anisotropy energy the SMM starts to rotate, hence inducing a bending and
mechanical strain in the suspended carbon nanotube beam. The additional tension in
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Fig. 13.4 Carbon nanotube NEMS as magnetometer for molecular magnets. (a) Schematic rep-
resentation of a molecular magnet (blue ellipse) grafted to a carbon nanotube NEMS. The carbon
nanotube is suspended between two non-magnetic electrodes over trench etched in a SiO2/Si sub-
strate. Under the influence of a magnetic field B (green arrow), the molecular magnet yielding
a magnetic moment μ (blue arrow) will experience a magnetic torque �Γ (red arrow), given by
equation (13.1). By changing the magnetic field |B|, one can therefore induce a change in the
molecule’s magnetic torque |Γ |. If the molecular magnet is rigidly grafted to the carbon nanotube
NEMS, a change of the torque �|Γ | will induce a bending and an additional tension in the carbon
nanotube beam, resulting in a shift of its resonance frequency f0 → f0 +�f . (b) Amplitude of
the nanotube motion as a function of frequence, before and after the magnetization reversal of the
magnetic moment

the resonator will result in a shift the mechanical resonance frequency of the carbon
nanotube, see Fig. 13.4(b).

Lassagne et al. studied the mechanical response of a carbon nanotube NEMS to
the magnetization dynamics of a nanomagnet with a uniaxial magnetic anisotropy
and a magnetic moment of 100μB [37]. They determined the magnetic hysteresis
of the nanomagnet (Stoner-Wolfahrt model, Fig. 13.5(a)) and the magnetic field
dependance of the carbon nanotube NEMS resonance frequency (Euler-Bernoulli
formalism, Fig. 13.5(b)) for different orientations of the magnetic field with respect
to the nanomagnets easy axis. The model can be readily extended to a SMM, with a
magnetic moment of a few μB.

The calculations reveal a discontinous jump in the nanotube’s resonance fre-
quency, induced by the magnetization reversal of the nanomagnet (highlighted by
the black arrows in Fig. 13.5(b)). Furthermore, the field dependance of the reso-
nance frequency reflects the hysteretic behaviour of the nanomagnet as well as its
magnetic anistropy. For a magnetic field aligned close the nanomagnet’s easy axis, a
large hysteresis in the magnetizationm and the frequency�f is visible (θ0 = π/50,
red loop in Fig. 13.5(a) and (b)). The hysteresis gradually disappears upon rotat-
ing the magnetic field into the hard plane of the molecule (θ0 = π/2, black loop in
Fig. 13.5(a) and (b)). The maximum frequency shift reaches 90 kHz for a magnetic
moment of 100μB.



13 Molecular Quantum Spintronics Using Single-Molecule Magnets 327

Fig. 13.5 Mechanical
response of carbon nanotube
NEMS to the magnetization
reversal of a nanomagnet with
uniaxial anisotropy.
(a) Magnetic hysteresis loop
of the nanomagnet for five
different orientations of the
magnetic field, with respect to
its easy axis of magnetization
θ0 = 90◦,70◦,45◦,10◦,5◦.
One can observe the uniaxial
anisotropy upon rotating the
magnetic field away from the
easy axis. (b) Frequency shift
�f as a function of the
magnetic field. The curves
translate the hysteretic
behavior and the magnetic
anisotropy of the
nanomagnet. Modified figure
from [37]

The sensitivity for such a magnetic torque detector is limited by the frequency
noise induced by thermomechanical fluctuations and yields

δfth = 1

2π

(
kBT

kx2
0

2πf0fBW

Q

)1/2

(13.2)

For a resonance frequency f0 = 50 MHz and quality factor Q = 105, [37, 38] a
spring constant k ≈ 10−4 N/m of the carbon nanotube NEMS, [37] one obtains a
sensitivity of δfth = 150 Hz/

√
Hz at 40 mK.

Furthermore, the carbon nanotube NEMS should provide a strong coupling with
an individual molecular magnet in order to achieve the maximum sensitivity δfth.
Indeed, previous experiments on SMM grafted to a carbon nanotube NEMS revealed
a strong coupling on the order of 1 MHz between an individual molecular spin and
the nanotube’s mechanical motion [39].

One should therefore be able to reach a sensitivity of 1μB at cryogenic temper-
atures with such a carbon based torque magnetometer, thus providing a mechanical
readout scheme for a single (molecular) spin.

13.3.4 NanoSQUID or Probing Via Magnetic Flux

Finally, one can also probe the magnetic flux emanating from a single molecule
magnet grafted onto a SQUID magnetometer. The maximum magnetic flux gener-
ated by SMM’s like lanthanide complexes LnPc2 was estimated to be on the order
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Fig. 13.6 Schemes of the flux coupling between a magnetic particle or a molecule and a SQUID.
(a) Schematic drawing of a planar nano-bridge DC-SQUID on which a ferromagnetic particle is
placed. The SQUID detects the flux through its loop produced by the sample magnetisation. Due
to the close proximity between sample and SQUID, a very efficient and direct flux coupling is
achieved. (b) Cross-section (50× 20 nm2) of a nano-bridge junction on which a 3-nm-sized parti-
cle is placed. The flux coupling is rather poor because of the large mismatch between the particle
size and the junction cross-section. (c) Schematics of one of the two carbon nanotube junctions
of a nano-SQUID. A nanometer-sized molecule sits on top of the carbon nanotube. (d) Cross-sec-
tion (1 nm2) of a single-walled carbon nanotube junction on which a 0.6-nm-sized molecule is
placed. The flux coupling is optimized because the molecule size and the junction cross-section
are comparable

of ΦSMM ≈ 10−5Φ0, which is well within the flux sensitivity of a SQUID, given by
the quantum limit Φq ≈ 10−8Φ0 [40, 41].

However, only the magnetic flux penetrating the SQUID’s cross section will con-
tribute to the measured flux quantity in the SQUID loop. The cross section of a
SQUID is usually orders of magnitude larger than the size of the molecule, which
typically results in a very weak flux coupling in this case (Fig. 13.6(a)–(b)).

In order probe the flux of a single molecule it is therefore essential to reduce the
cross section of the SQUID, ideally to the same size than the SMM. Indeed, the cross
section of a carbon nanotube is on the order of 1 nm2 which is comparable to the
size of the molecule (Fig. 13.6(c)–(d)). One obtains an almost ideal flux coupling in
a carbon nanotube SQUID with a flux sensitivity of SΦ ≈ 10−4Φ0/

√
Hz [40, 41].

Although the flux of an individual SMM is within the NanoSQUID’s sensitivity
at measurement frequency about a few hundreds of Hz, only preliminary results
have been published so far [42].

13.4 Magnetism of the TbPc2 Molecular Nanomagnet

In this section we describe a SMM with a single magnetic center, in this case
a terbium ion Tb3+, embedded between two phtalocyanines (Pc) ligand planes
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Fig. 13.7 Mononuclear Terbium complex TbPc2. Figure from [10] (a) Side view and (b) top view
of the molecule. The upper Pc ligang (light grey) is a mirror image of the lower Pc ligand (black),
rotated by 45◦

(Fig. 13.7). The mononuclear complex will be denoted as TbPc2 in the following
and was designed, synthesized and characterized by Svetlana Klyatskaya and Mario
Ruben at the Karlsruhe Institute of Technology (KIT) in Germany [43].

13.4.1 Molecular Structure

The magnetism of the terbium(III) or other lanthanide(III) is mainly determined
by the strongly anisotropic and partially filled 4f orbitals in these ions. A Tb3+ ion
exhibits an electronic structure of [Xe]4f 8 which corresponds to a spin of S = 3 and
an orbital momentum of L = 3. Due to the inherentely strong spin-orbit coupling
in rare earth atoms, L and S are no good quantum numbers. In consequence, the
magnetic moment is described by a total angular momentum J = L− S . . .L+ S,
where L+ S is the ground state for more than half-shell filling (Hund’s rule). The
ground state of the Tb3+ ion thus yields J = L+ S = 6 and is separated from the
first excited state J = 5 by an energy of 2900 K due to the large spin-orbit coupling
in the Tb3+ ion [44]. We can therefore restrict the discussion to the ground state
multiple J = 6, yielding 2J + 1 (degenerate) substates |J,Jz〉.

13.4.2 Spin Hamiltonian

The Tb3+ ion is embedded between two parallel Pc ligand planes, with a quantiza-
tion axis z oriented perpendicular to the Pc ligand planes. The Tb3+ ion is coordi-
nated by 8 nitrogen atoms and the upper Pc ligand (blue in Fig. 13.7) is a mirror
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Fig. 13.8 Ligand field
splitting of the ground state
multiplet J in different
mononuclear lanthanide
complexes LnPc2. Modified
from [45]

reflection of the lower Pc ligand with respect to the (x-y) plane (black in Fig. 13.7),
rotated by 45◦ around the z-axis. The Tb3+ is therefore exposed to a ligand elec-
tric field with a antiprismatic symmetry D4d which is described by the following
Hamiltonian [45]

Hlf = αA0
2O

0
2 + β

(
A0

4O
0
4 +A4

4O
4
4

)+ γ (A0
6O

0
6 +A4

6O
4
6

)
(13.3)

where α = −1/99, β = 2/16335 and γ = −1/891891 are constant parameters re-
lated to the ion [46], Okq the equivalent Stevens operators and Akq the ligand field
parameters.

The Stevens operators Okq are defined as linear combinations of Jz, J−, J+ and
are listed in Refs. [44, 46]. The ligand field parameters Akq can be determined ex-
perimentally by NMR or magnetic susceptibility, yielding [47]

A0
2 = 595.7 K

A0
4 =−328.1 K, A4

4 = 47.5 K (13.4)

A0
6 = 14.4 K, A4

6 = 0

The diagonalization of Hcf in the |J,mJ 〉 eigenbasis then reveals that the ligand
field partially lifts the degeneracy of the 2J +1 substate in the ground state multiplet
J = 6. Indeed, the degenerate ground state doubletmJ =±6 of the Tb3+ ion is now
separated from the first excited state doubletmJ =±5 by approximately 600 K (see
Ref. [45] and Fig. 13.8). The TbPc2 single molecule magnet thus behaves as an Ising
spin system at cryogenic temperatures.

Furthermore, each mJ -doublet splits in an external magnetic field due to the
Zeeman effect as described by the following Hamiltonian

HTbPc2 =Hlf + gμBμ0HzJz (13.5)

where g = 3/2 is the g-factor of the terbium. The resulting Zeeman diagram is
depicted in Fig. 13.9 [10].
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Fig. 13.9 Calculated Zeeman
diagram for the ground state
multiplet J = 6 in a TbPc2
SMM extracted from [10]

In the following we will therefore restrict the discussion to the ground state dou-
blet mJ =±6.

The Tb3+ ion also carries a nuclear spin of I = 3/2 with a natural abundance
of 100 %, yielding (2I + 1) substates mI = 3/2,1/2,−1/2,−3/2. Due to a strong
hyperfine interaction between the nuclear spin I = 3/2 and the electronic angular
momentum J = 6, the Hamiltonian of TbPc2 contains two additional terms corre-
sponding to nuclear dipole and quadrupole interactions, respectively,

HTbPc2 =Hlf + gμBμ0HzJz +AdipI · J + Pquad

(
I 2
z +

1

3
I (I + 1)

)
(13.6)

I · J = JzIz + 1

2
(J+I− + J−I+) (13.7)

where Adip = 24.5 mK is the hyperfine constant and Pquad = 14.4 mK the
quadrupole constant [10].

The dipolar term AdipI · J thus splits the electronic states from the ground state
doublet mJ =±6 into the four nuclear spin states mI = 3/2,1/2,−1/2,−3/2. The
quadrupole term PquadI

2
z results in a non-equidistant spacing of the nuclear spin

states. The excited nuclear spin states thus have energies of 120 mK, 270 mK and
450 mK with respect to the nuclear spin ground state (Fig. 13.10) [10].

Finally, it should be noted that the resulting intersections are indeed energy level
crossings except the four intersections that conserve the nuclear spin (black circles
Fig. 13.10). For the latter ones, an anti-crossing on the order of a few µK is ob-
served [10]. These anti-crossings are due to the transverse anisotropy term O4

4 in
(13.3) which yields off diagonal terms in the ligand field Hamiltonian. In fact, the
operator O4

4 is a linear combination of J 4+ and J 4−, which mixes states with mJ and
states with mJ ± 4n. Hence, the mJ =+6 state mixes with the mJ =−6 state, gen-
erating an avoided level crossing at the four highlighted intersections close to zero
magnetic field (Fig. 13.10).
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Fig. 13.10 Zeeman diagram
for the ground state multiplet
J = 6 in a TbPc2 SMM.
Avoided level crossings are
highlighted by the black
circles. The enlarged region
shows an avoided level
crossing with tunnel splitting
� caused by the mixing of
the mJ =−6 and mJ =+6
states. The dotted lines shows
the two states without mixing
and the blue arrows depict the
QTM process. Phonon
assisted relaxation or direct
transitions of the TbPc2
magnetization occurs at
higher magnetic field

By sweeping the magnetic field applied to the TbPc2 SMM one can then induce
a magnetization reversal from |mJ = −6,mI 〉 to |mJ = +6,mI 〉 (and vice versa)
either by QTM at one of the four avoided level crossings around zero field or by
phonon-assisted or spin-lattice relaxation at large magnetic fields (Fig. 13.10).

Figure 13.11 shows a magnetic hysteresis loop measured by a microSQUID tech-
nique [48] on an assembly of TbPc2 SMMs arranged in a matrix of non-magnetic
YPc2 SMM, with a [TbPc2]/[YPc2] ratio of 2 %. Upon sweeping the magnetic field
from −1 T up to 1 T, approximately 75 % of the SMM in the crystal reverse their
magnetization by QTM around zero field, resulting in sharp steps in the crystal’s
magnetization. The remaining SMM reverse their magnetization by phonon-assited
relaxation at larger magnetic fields.

13.4.3 Quantum Tunneling of Magnetization and Landau-Zener
Model

At the four avoided level crossings highlighted by the black circles in Fig. 13.10, the
nuclear spin is conserved and the small transverse anisotropy mixes the state mJ =
−6 with the state mJ =+6, due to the J 4+ and J 4− terms in (13.3). By sweeping the
magnetic field through one of these avoided crossing one can therefore tunnel from
the state mJ =−6 to the state mJ =+6 (and vice versa). Such a process is called
quantum tunneling of magnetization (QTM).

According to Landau and Zener [49], the probability PQTM for such a QTM
process depends on the magnitude of the mixing, i.e. the tunnel splitting �, and the
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Fig. 13.11 Magnetic
hysteresis loop of an
assembly of TbPc2 SMM
measured with a
microSQUID in a diluted
single crystal (2 % TbPc2 in
an YPc2 matrix) for different
field sweep rates and
temperature of 40 mK (top
panel). Zeeman diagram of a
TbPc2 SMM (bottom panel).
The characteristic steps in the
magnetization curve around
zero field correspond to QTM
events in the single crystal
(highlighted by the dashed
lines), whereas the
continuous change of the
magnetization at high field is
attributed to phonon-assisted
relaxation (blue arrows in the
Zeeman diagram)

sweep rate of the magnetic field ν, thus yields

PLZ = 1− exp

(
−α�

2

ν

)
(13.8)

For a given (nonzero) �, if the magnetic field is swept adiabatically slow in the
vicinity of the avoided crossing, QTM from mJ =−6 to mJ =+6 (and inversely)
will occur with a high probability. One observes the characteristic steps in the mag-
netization curves, as described in the previous section (dark blue cycle Fig. 13.11).
As the magnetic field sweep rate increases the probability PQTM for QTM becomes
exponentially smaller. The steps associated with QTM become less pronounced and
eventually vanish at large sweep rates (black cycle Fig. 13.11).

If �= 0, the levels cross and no quantum tunneling of magnetization can occur
irrespective of the sweep rate.

13.4.4 Spin-Lattice Relaxation

Alternatively, the magnetization reversal of the TbPc2 SMM from |mJ =−6,mI 〉 to
|mJ =+6,m′I 〉 can occur by phonon-assisted or spin-lattice relaxation (Fig. 13.10).
Spin-lattice relaxation in an SMM is due to the modulation of the molecule’s ligand
electric field by phonons from a surrounding thermal bath, for example the lattice
vibration in a diluted SMM single crystal [44]. Due to the strong spin-orbit coupling,
the modulation of the ligand field will result in transitions between different spin
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Fig. 13.12 Spin-lattice relaxation processes. (a) Direct relaxation into the ground state involving
the emission of a phonon with an energy �ω. (b) Two-phonon Orbach process. The electron is
excited into a vibrational (lattice) mode by absorption of a phonon �ω1, before relaxing into the
ground state under the emission of a phonon �ω2 with �ω = �ω2 − �ω1. (c) Two-phonon Raman
process. The relaxation occurs by the absorption and emission of virtual phonons. The hyperfine
splitting was omitted for simplicity

states of the Tb3+ ion. The magnetization reversal can be assisted by one or multiple
phonons [44] (see Fig. 13.12).

Direct Relaxation Process At very low temperatures, the magnetization of the
TbPc2 SMM is reversed in a direct relaxation process under the emission of a
phonon into the surrounding bath (Fig. 13.12(a)). The relaxation rate 1/τ for a such
a direct relaxation can therefore be expressed in terms of the absorption and emis-
sion rates of the phonon, given by Fermi’s golden rule

ωabs = 2π

�
|〈−6|H′| + 6〉|2

ωem = 2π

�
|〈−6|H′| + 6〉|2 exp

(
�ω

kBT

) (13.9)

where 〈−6|H′| + 6〉 is the matrix element of the pertubation Hamiltonian H′ be-
tween the states |mJ =−6〉 and |mJ =+6〉, �ω the phonon energy and T the tem-
perature of the phonon bath. The relaxation rate then holds

1

τ
= ωem +ωabs = 2π

�
|〈−6|H′| + 6〉|2

[
1+ exp

(
�ω

kBT

)]
(13.10)

The relaxation from |mJ =−6〉 to |mJ =+6〉 is induced by the modulation of the
ligand field by phonons, and the modified ligand field Hamiltonian yields [44]

Hlf =H0
lf + εH1

lf + ε2H2
lf (13.11)

where ε refers to the mechanical strain in the ligand.
In first order, the pertubation Hamiltonian gives H′ = εH1

lf and (13.10) trans-
forms to

1

τ
= 2π

�
ε2|〈−6|H1

lf| + 6〉|2
[

1+ exp

(
�ω

kBT

)]
(13.12)
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The strain can be related to the phonon densityD(ω) by ε2 =D(ω)/2ρv2, where
v is the phonon group velocity and ρ the mass density of the phonon bath [44].
Finally one obtains

1

τd
∼D(ω)|H1

lf|2
[

1+ exp

(
�ω

kBT

)]
(13.13)

Therefore, the relaxation rate is essentially limited by the phonon density D(ω), the
matrix element coupling the spin to phonon |H1

lf| as well as the phonon energy �ω.
Also, the relaxation rate intrinsically depends on the dimensionality of the phonon
bath [39].

Two Phonon Relaxation Processes Upon increasing the temperature higher ex-
cited phonon states become accessible and a so called two-phonon Orbach pro-
cess contributes to the relaxation of the SMM’s magnetization. As depicted in
Fig. 13.12(b), the electron is excited from |mJ = +6〉 into a vibrational state |e〉
under absorption of a phonon with an energy �ω1. In a second step, the electron
then relaxes into the ground state |mJ = −6〉 under emission of a second phonon
with an energy �ω2 = �ωph. The process can occur if ω2 − ω1 = ω, where ω is the
energy separation of the two spin states. The relaxation rate yields [44]

1

τo
∼ |H1′

lf |2�3 1

exp(�/kBT )− 1
(13.14)

where |H1′
lf | is the product of the matrix elements between the states |mJ = −6〉,

|mJ =+6〉 and |e〉. The process is therefore thermally activated if kBT ��.
Finally, relaxation can occur via a Raman like process (Fig. 13.12(c)). The mech-

anism is similar to the Orbach process, however it involves a virtual excited state,
resulting in a relaxation time of the form [44]

1

τr
∼ |H2

lf|2
(
kBT

�

)7

(13.15)

where |H2
lf| is the second order pertubation from (13.11).

13.5 Molecular Quantum Spintronics with a Single TbPc2

Various molecular quantum spintronic devices have been recently proposed to
probe the quantum mechanical nature of an isolated TbPc2 single-molecule magnet
(Sect. 13.3). The most promising approach consists in probing the spin dynamics of
a TbPc2 SMM with the electrical current tunneling through a quantum dot, which is
weakly coupled to the molecule (Sect. 13.3).

As we will describe in the following, such an indirect coupling scheme enables in
fact the electronic readout of both the electronic and the nuclear spin of the TbPc2,
ultimately revealing the lifetime and coherence time of a single nuclear spin.
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Fig. 13.13 Carbon nanotube
based supramolecular spin
valve. Courtesy of
M. Urdampilleta

13.5.1 Read-out of the Electronic Spin

The magnetization reversal of the electron spin in an isolated TbPc2 SMM can oc-
cur via two different processes at cryogenic temperatures (Sect. 13.4). Around zero
magnetic field, the avoided level crossings allow for quantum tunneling of mag-
netization |Jz, Iz〉 → |−Jz, Iz〉. At high magnetic fields the magnetization reverses
through a direct relaxation process involving non-coherent tunneling events com-
bined with the emission or absorption of phonons.

One can couple a SMM to a state-of-the-art carbon nanotube transistor and use
the electric current in the nanotube to probe and manipulate the spin of the SMM.
A carbon nanotube behaves as a quantum dot at very low temperatures, showing
an impressive array of electronic properties ranging from Coulomb blockade [50] to
Kondo effect [51]. In this regime, a carbon nanotube is sensitive to very small charge
fluctuations in its environment which results in a modulation of the conductance in
the carbon nanotube quantum dot. For instance, the nanotube’s conductance can be
altered by the magnetization reversal of a SMM grafted to the carbon nanotube’s
sidewall as we will describe in the following.

Indeed, Urdampilleta et al. [36] reported a supramolecular spin valve behaviour
without magnetic leads in a carbon nanotube quantum dot functionnalized with
TbPc2 SMMs (Fig. 13.14(a)).

They showed that two SMMs, coupled to a carbon nanotube via a π -π inter-
action, act as spin-polarizer and analyzer for the conduction electrons in the carbon
nanotube channel. Mediated by exchange interactions, the magnetic moment of each
molecule induces a localized spin polarized dot in the carbon nanotube quantum dot,
which can be controlled by a magnetic field (Fig. 13.14(b) and (c)).

At large negative magnetic fields, both molecular spins are oriented in parallel to
each other and the quantum dot is in a high conductance state. Upon increasing the
magnetic field (following the red trace in Fig. 13.14(a)), the molecular spin A is re-
versed by quantum tunneling of magnetization close to zero field, resulting in an an-
tiparallel spin orientation and a current blockade in the quantum dot (Fig. 13.14(b)).
By further increasing the field, the second spin B is reversed by phonon assisted
relaxation, restoring a parallel spin orientation and the high conductance regime in
the quantum dot (Fig. 13.14(c)). After reversing the sweep direction, one obtains
the characteristic butterfly hystersis loop of a spin valve device with a magnetore-
sistance ratio (GP −GAP)/GAP up to 300 % (Fig. 13.14(a)). A detailed description
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Fig. 13.14 Spin valve behaviour in a supramolecular spintronic device based on a carbon nanotube
quantum dot functionnalized with TbPc2 SMM’s. Figures from [36, 52] (a) Butterfly hystersis loop
at T = 40 mK. (b) Antiparallel spin configuration: the spin state in dot A is reversed with respect to
that of dot B. The energy mismatch between levels with identical spin results in a current blockade.
(c) Parallel spin configuration for both molecules A and B. Energy levels with same spin are aligned
allowing electron transport through the carbon nanotube

of the mechanism can be found in [36, 52]. Each current switching event, or switch-
ing field, can be attributed to the magnetization reversal of a SMM thus providing
an electronic readout scheme for a molecular spin.

Uniaxial Magnetic Anisotropy The spin valve effect and the current switch-
ing exhibits the fingerprint like characteristics of the TbPc2 SMM. Figure 13.15(a)
shows the difference between upwards (red trace in Fig. 13.14(a)) and downwards
sweeps of the magnetic field (blue trace in Fig. 13.14(a)) during a hysteresis loop as
function of the applied magnetic field orientation. In the white region both molecules
have the same polarization, while in the red region their polarizations are antipar-
allel to each other. The limit between both regions corresponds to the switching
field associated with the phonon assisted relaxation of the second molecule B. The
projection of the switching field along the Hx -direction, defined as easy axis, is
constant, which is consistent with the Ising like uniaxial magnetic anisotropy of the
TbPc2.

Also, the inherently stochastic character of the SMM magnetization reversal can
be revealed by repeating a hysteresis loop a certain number of times (Fig. 13.15(b)).
Finally, the spin valve effect becomes less pronounced upon increasing temperature
and disappears above a temperature of 1 K (Fig. 13.15(c)), which is also consistent
with the thermally activated magnetization reversal of a SMM. For a more detailed
description, the reader may refer to Urdampilleta et al. [36].

Landau-Zener Tunneling One can probe the Landau-Zener tunneling of the
electron spin in an individual TbPc2 SMM using a carbon nanotube quantum dot
as readout system [52] (Fig. 13.13). As described above, the conductance through
the carbon nanotube quantum dot exhibits a typical spin valve behaviour consistent
with such a supramolecular spintronic device. Figure 13.16(a) shows measurements
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Fig. 13.15 Supramolecular spin valve and molecular fingerprint. Figures from [36] (a) Angular
dependance of the spin valve behaviour. The difference in conductance between the up- and down-
wards magnetic field sweep in a hysteresis loop is plotted as a function the magnetic field angle.
For spins oriented parallel, the difference is negligeable (white color), whereas in an antiparal-
lel configuration the difference is non zero (red color). The red-white boundary corresponds to
the switching field of the second molecule B, and is consistent with the uniaxial anisotropy of
the TbPc2 SMM. (b) Stochastic switching of molecule B. Three times out of 11, the molecule
can switch its magnetization by quantum tunneling magnetization, while 8 times out of 11 the
reversal occurs by phonon assisted magnetic relaxation as predicted by the Landau Zener model.
(c) 20 hysteresis loops at different temperatures

recorded with a constant transverse field of 0.35 T and presenting only quantum
tunneling of magnetization (QTM) features, the ones presenting a direct transition
(DT) being rejected. The conductance suddenly decreases, between the magnetic
field values of −50 mT and +50 mT (QTM of B), and then increases in all cases
above approximately +50 mT (QTM of A). This measurement was repeated 3500
times with a 100 mT s−1 sweep rate. Whenever DT failed to occur, the longitu-
dinal position of the QTM in molecule B was stored in the histogram plotted in
Fig. 13.16(b): four peaks emerge with a FWHM of approximately 10 mT, and a
mean peak-to-peak separation of 25 mT.

In order to explain these results, we compare the position of these peaks with the
Zeeman diagram. Figure 13.16(b) shows a very good correspondence between the
four peaks and the avoided-level crossings of the Zeeman diagram. This diagram is
slightly different from the one presented in Fig. 13.10 since we took into account
that the easy axis is not lying exactly in the plane (H‖, H⊥). As evident from the
comparison between the histogram and the diagram, each of these peaks can be
attributed to a particular nuclear spin state.

Similar results have recently been demonstrated at the single molecule level by
Vincent et al. [23], in a molecular transistor configuration. It is important to note
that in the present case the FWHM is larger than in the case of Vincent et al. leading
to a lower fidelity in the single-shot read-out measurement [24]. One reason for
this could be that the current tunneling through the carbon nanotube is interacting
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Fig. 13.16 Landau-Zener
tunneling of a single TbPc2
electronic spin.
(a) Magneto-conductance
curves recorded under a
0.35 T transverse field, at a
100 mT s−1 sweep rate. The
relative QTM positions for
molecules A and B are clearly
split, the angle between their
easy axes is then estimated to
be about 15◦. (b) Histogram
of QTM jumps for
molecule B, determined from
3500 consecutive traces
recorded under the same
conditions as those applied in
(a). Each peak corresponds to
an avoided level-crossing in
the Zeeman diagram of the
ground doublet Jz =±6 split
by the hyperfine coupling
with the nuclear spin I = 3/2

more strongly with the TbPc2 molecules. Nevertheless, one advantage of the present
device is the very large variation of conductance induced by the spin reversal (200 %
in the present case versus 1 % in the work of Vincent et al.[23]), which makes the
measurement very easy since it does not require any specific filtering (physical or
numerical).

In order to confirm that only one QTM position exists per nuclear spin state,
we measured the tunneling probability as a function of the sweep rate and com-
pared it with the Landau-Zener theory. 100 magneto-conductance measurements
were recorded for a given sweep rate. The tunneling probability PQTM of molecule
B can be obtained by PLZ = 1− PDT, where PDT is the probability of a DT. PLZ
is plotted in Fig. 13.17 as a function of the reciprocal sweep rate. The experimen-
tal data were fit with (13.8), from which a tunnel splitting � = 1.7 µK was ex-
tracted. The exponential behavior clearly demonstrates that only the four circled
level crossings in Fig. 13.16(b) are avoided level-crossings. This is in agreement
with the work of Vincent et al. [23] but not with the measurement done on a single
crystal of TbPc2. The latter case presents QTM at all intersections of the diagram
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Fig. 13.17 Landau Zener
tunnel probability as a
function of the inverse of the
sweep rate measured at
transverse magnetic fields
μ0H⊥ = 0,0.1,0.2,0.3 T.
The experimental data are
fitted by exponential curves,
in accordance with equation
(13.8). The inset indicates the
variation of tunnel splitting as
a function of the transverse
field, the red line is a guide
for the eye

depicted in Fig. 13.16(b), see the work of Ishikawa et al. [10]. In an assembly of
molecules, coupled with weak dipole interactions, multi-spin tunnel effects[53, 54]
might be responsible for this observation but further investigations are needed to
better understand this issue.

An applied transverse field tunes the tunnel splittings via the H⊥(J+ + J−) term
of the Hamiltonian. In order to study this effect on the different level crossings, we
measured the tunneling probability for several constant transverse fields and field
sweep rates. The symbols in Fig. 13.17 correspond to the experimental points and
the continuous lines are least-square fits using (13.8). The data agree very well with
the Landau-Zener behavior, which suggests that no other measurable avoided-level
crossings are induced by the application of a transverse field. The tunnel splitting
amplitudes were extracted from the fits, and then plotted as a function of the trans-
verse field (inset of Fig. 13.17). This behavior cannot be explained by using the
parameters of Ishikawa et al. [10] Firstly, the ligand field might be different from
the mean bulk value because the grafted molecules are probably slightly distorted
and their anisotropy modified [55]. Secondly, the ligand field Hamiltonian does not
predict a linear increase as observed for our measurements, which were confirmed
on other molecular devices. This observation needs further experimental and theo-
retical investigations. In particular, we believe that, in the case of single molecules,
the angular moment conservation has to be taken into account. When the latter is
not conserved, the Landau-Zener equation is not valid[39]. Nevertheless, our stud-
ies showed that the hyperfine interaction is a robust feature allowing us to read the
nuclear spin state regardless the deposition and measurement techniques. Moreover,
the possibility of tuning the tunnel splitting is very convenient for experiments of
coherent nuclear spin manipulation since the read-out mechanism needs the right
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Fig. 13.18 Spin-phonon
relaxation processes in
TbPc2* single molecule
magnets: A direct
one-phonon process
dominates at lowest
temperatures, whereas
two-phonon Orbach and
Raman processes take over as
the temperature increases.
The phonon energy is then
transfered to a thermal
reservoir. The arrows indicate
the direction of the energy
transfer. Figure inspired
from [44]

value: not too small (no read-out) and not too large (DT possible, reducing the read-
out fidelity).

Spin-Lattice Relaxation Spin-phonon relaxation processes in TbPc2 SMM are
due to a modulation of the molecule’s crystal electric or ligand field by the vibra-
tions of charged ions in a surrounding lattice, so called phonons. Due to strong
spin-orbit interactions in the Tb3+ ion, the fluctuating ligand field can induce tran-
sitions between different spin states. Different transition mechanisms can contribute
to the molecule’s magnetization reversal, involving the emission or absorption of
one or two phonons as described in Sect. 13.4 and in Fig. 13.18. At the lowest tem-
peratures, spin-lattice relaxation is typically dominated by the one-phonon direct
process. As temperature increases, higher order two-phonon Orbach and Raman
processes, involving a real and virtual excited state (or phonon sideband) respec-
tively, contribute to magnetic relaxation [44]. In the following, we discuss the time
scale for spin-lattice relaxation in a TbPc2 SMM coupled to a carbon nanotube [56].

The spin relaxation time associated to a direct transition is essentially given by
the phonon energy and the phonon density at the spin resonance as well as the spin-
phonon coupling (see (13.13)). In a TbPc2 coupled to a non-suspended carbon nan-
otube, the direct relaxation is mainly enabled by 3D bulk phonons in the amorphous
SiO2 [56]. The coupling is mediated by the carbon nanotube, which is mechanically
coupled to the TbPc2 spin and is in thermal contact with the SiO2 phonons [56]. The
energy distribution of 3D bulk phonons in SiO2 is continuous and the phonon den-
sity for a longitudinal acoustic phonon mode is given in the Debye approximation
by

D(ω)= �ω3

2π2v3
l [exp( �ω

kBT
)− 1] (13.16)
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Fig. 13.19 Relaxation time τ of the electron spin in an individual TbPc2 SMM [56]. Left panel:
Cumulative histogram showing the probability of electron spin reversal PDT as a function of the
waiting time t (see text). The measurement is performed for 3 different switching fields HSW. A fit
with an exponential law P = 1− exp(−t/τ ) gives the relaxation time τ . Right panel: Relaxation
time τ vs. switching field HSW. The magnetic field is oriented with the easy axis of the TbPc2
SMM

where vl is the group velocity of a longitudinal phonon. Combining (13.16) and
(13.13) one finds

1

τd
∼ (�ω)3 coth

(
�ω

2kBT

)
∼H 3

SW coth

(
βHSW

2kBT

)
(13.17)

with the phonon energy �ω = gμ0μB�mJHSW = βHSW and HSW the magnetic
switching field.

The relaxation time of the electronic spin can be estimated using the following
measurement protocol described by Urdampilleta et al. [56]: starting at a magnetic
field value of Hinit = −1 T, the field is ramped with a sweep rate of 20 mT/s to
a magnetic field HSW > 0. The electron spin then switches after a certain waiting
time t and the measurement is repeated 100 times. The waiting time t is then ex-
tracted from each measurement and compiled in an cumulative histogram showing
the switching probability PDT of the electron spin as function of the waiting time t .
Finally the measurement is performed for different switching fields HSW.

The relaxation time τ is obtained by fitting the cumulative histogram, i.e. the
reversal probability with an exponential law P = 1− exp(−t/τ ) for each switching
field HSW. As depicted in Fig. 13.19, the relaxation τ indeed follows the predicted
H−3

SW dependance.
As described in the previous section, higher order spin relaxation processes (Or-

bach, Raman) are activated upon increasing temperature to the system. Both pro-
cesses effectively correspond to a thermal activation of the magnetization over an
energy barrier. In agreement with (13.14) and (13.15), the relaxation time τ of the
electron spin should therefore decrease upon increasing temperature.
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Fig. 13.20 Relaxation time τ of the electron spin in a TbPc2 SMM as a function of the temper-
ature. Figures reproduced from Ref. [56]. (a) Scaling law of an Orbach process. Solid line corre-
sponds to a fit with equation (13.14). (b) Scaling law of a Raman and direct relaxation process.
Solid line corresponds to a fit with 1/τ = 1/τr + 1/τd = aT 7+ b, where the first term corresponds
to the Raman process and the second to the direct relaxation

Urdampilleta et al. [56] observed a constant relaxation time τ below 300 mK,
consistent with a direct transition process. Above 300 mK however, a significant de-
crease of the relaxation time is found with increasing temperature (Fig. 13.20). The
experimental data are indeed in qualitative agreement with the Orbach and Raman
scaling laws above 300 mK (Fig. 13.20(a) and (b), respectively). However, a quan-
titative analysis of the fitting parameters reveals significant differences between the
magnetization reversal in an individual SMM’s described here and SMM’s in molec-
ular crystals [44].

Considering the Orbach scaling parameters (Fig. 13.20(a)), the time constant τ0

can be related to the energy barrier EB by the relation τ−1
0 = CE3

B , where C is the
coupling the electron spin of the TbPc2 and the SiO2 phonons involved in the pro-
cess [56]. The obtained value C ≈ 400 kHz/K3 is three orders of magnitude larger
than that found for SMM’s in a molecular crystal [56]. Such a strong coupling can
indeed be mediated by the carbon nanotube, which yields a strong mechanical cou-
pling to the TbPc2 spin (see Ref. [39] and Sect. 13.5.3) and is in good thermal con-
tact with the SiO2 phonons. Also, the energy barrier EB is two orders of magnitude
smaller than the expected barrier in molecular crystals [56].

The comparison of the experimental data with the Raman process (Fig. 13.20(b))
furthermore reveals a ratio of the relaxation times τd and τr for an individual SMM
of the form

τr

τd
= b
a
=
( |H1

lf|
|H2

lf|
)2

105 (13.18)

with the crystal field matrix elements |H2
lf| and |H1

lf|. One therefore finds |H2
lf| =

104|H1
lf| for the relaxation of an individual SMM, which stands in contrast to the

findings for SMM crystals yielding |H2
lf| ∼ |H1

lf| [56].
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Fig. 13.21 Mean switching
field HSW of the electron spin
in a TbPb2 as a function of
the magnetic field sweep rate
dH/dt [56]. The error bars
correspond to the standard
deviation from the mean
value and the solid line
corresponds to a fit with
(13.20)

Finally, the switching field associated with a direct transition of the TbPc2 de-
pends on the magnetic field sweep rate, in analogy to the magnetization reversal of
ferromagnetic nanoparticles [57]. Assuming a magnetization reversal probability of

P = 1− exp(−t/τ ), the probability density function is maximum for d
2P

dt2
= 0, i.e.

for

d2P

dt2
=−dτ

dt

1

τ 2
(1− P)− 1

τ

dP

dt
= P − 1

τ 2

(
dτ

dt
+ 1

)
= 0 (13.19)

Equation (13.19) implies dτ
dt
=−1. Using (13.17), one gets dτ

dt
∼H−4

SW
dH
dt

and there-
fore

HSW ∼
(
dH

dt

)1/4

(13.20)

where dH/dt corresponds to the magnetic field sweep rate.
Urdampilleta et al. performed [56], magnetization reversal measurements for dif-

ferent field sweep rates. Figure 13.21 depicts the mean value of the switching fields
from 100 consecutive measurements performed at 8 different field sweep rates, as
well as the standard deviation. A fit with (13.20) shows indeed an excellent agree-
ment between the experimental data and theoretical predictions.

13.5.2 Read-out of the Nuclear Spin

Single Shot Electrical Read-out of a Single Nuclear Spin So far, only sig-
natures accounting for the electronic magnetic moment have been addressed, and
there has been no quantitative comparison with the expected theoretical magnetic
behaviour of an individual SMM. Recently, transport measurements taken through
a single bis(phthalocyaninato)terbium(III) SMM were studied in a three-terminal
geometry obtained by electromigration [23] (see Fig. 13.22). It has been reported
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Fig. 13.22 Artist view of the molecular spin-transistor, consisting of a TbPc2 molecular magnet,
connected to source and drain gold electrodes, and a back-gate underneath. The Pc-ligands (white)
are acting as a read-out quantum dot. The terbium ion (pink) posses an electronic spin with J = 6
(orange) and a nuclear spin with I = 3/2 (green). The uniaxial anisotropy axis of the Tb ion is
perpendicular to the Pc-plane

that TbPc2 SMMs conserve both their structural integrity and their magnetic prop-
erties even when sublimated at 820 K on a copper surface [23]. In addition, the
redox state of the Tb3+ ion is very stable, suggesting that a current flow through the
Tb3+ ion is highly unlikely (see Supplementary Information in [23]). The two Pc
ligands have a conjugated π system, which can easily conduct electrons.

Transport measurements through a single TbPc2 SMM were previously per-
formed by scanning tunnelling spectroscopy (STS) experiments [20], where the
electronic transport occurred through the Pc ligands and exhibited Coulomb block-
ade and Kondo effects depending on its charge state (spin states S = 0 or 1/2).
However, no signature of the magnetic moment carried by the Tb3+ ion was ob-
served in this experiment. In order to detect the reversal of the magnetic moment,
the TbPc2 SMM was directly inserted into an electromigrated gold junction (see
Fig. 13.1). The differential conductance, dI/dV, is shown in Fig. 13.23(a) as a func-
tion of the drain-source voltage, Vds, and the gate voltage, Vg. It exhibits a single
charge-degeneracy point with a weak spin S = 1/2 Kondo effect. A detailed study
of the Kondo peak as a function of the applied magnetic field is presented in the
Supplementary Information of [23]. A ferromagnetic exchange interaction of about
0.35 T was measured between the spin 1/2 of the quantum dot and the magnetic
moment carried by the Tb3+ ion. Alternative coupling mechanisms such as dipolar,
magneto-Coulomb, mechanical, or flux coupling were also considered [23], but the
relatively high value of the exchange interaction strongly indicates the latter being
the major contribution to the coupling mechanism. As a consequence, the read-out
quantum dot is spatially located close to the Tb3+ ion. This is indirect proof that
the electronic transport occurs through the aromatic Pc ligands, and that the most
favourable geometric configuration is the one depicted in Fig. 13.22.

In summary, the Pc ligands form a molecular quantum dot and the anisotropic
magnetic moment of the Tb3+ ion is coupled to the electron path only indirectly,
mainly through a ferromagnetic exchange interaction. Moreover, the presence of a
gate allows fine-tuning from the Coulomb blockade to the Kondo regimes of the
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Fig. 13.23 Conductance characteristics and electronic read-out procedure [23]. (a) Stability dia-
gram of the Pc read-out quantum dot exhibiting the differential conductance, dI/dV , in units of
the quantum of conductance, G0, as a function of gate voltage, Vg, and bias voltage, Vsd, at 0.1
K. (b) dI/dV measurements for a given working point (Vg =−0.9 V; Vds = 0 V) as function of
the magnetic field B . The arrows indicate the field-sweep direction. Abrupt jumps in the differ-
ential conductance, attributed to the switching of the Tb3+ magnetic moment, are visible for all
traces of B , showing a clear hysteresis in the dI/dV characteristics. (c) Histogram of switching
field obtained for 11000 field sweeps showing four preferential field values that are assigned to
QTM events. (d) Normalized hysteresis loop of a single TbPc2 SMM obtained by integration of
1000 field sweeps and performed for trace and retrace on a larger magnetic field range than in c.
The four arrows on the trace curve show the four preferential field values associated to QTM (red,
−40 mT; green, −14 mT; blue, 14 mT; purple, 40 mT)

molecular quantum dot, revealing that the magnetic properties of the Tb3+ ion are
then independent of the charge state of the Pc quantum dot (see Supplementary
Information in [23]). Finally, owing to the exchange coupling, we can use the Pc
ligands as a read-out quantum dot to detect the reversal of the electronic magnetic
moment carried by the Tb3+ ion spin dot.

To achieve the electronic read-out of the single spin carried by the spin dot, we
chose experimental conditions close to the charge degeneracy point (Vg =−0.9 V
and Vds = 0 V in Fig. 13.23(a)). When sweeping the magnetic field from nega-
tive to positive values (upwards sweep), we observed a single abrupt jump of the
differential conductance, which is reversed if the field is swept in the opposite di-
rection (downwards sweep) as depicted in Fig. 13.23(b). These jumps and the cor-
responding magnetic field, the switching field, can be associated with the reversal
of the Tb3+ magnetic moment, which slightly influences the chemical potential of
the read-out quantum dot through the magnetic interactions.
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Fig. 13.24 Transition matrix of the QTM events as a function of the waiting time. The switching
fields of the Tb3+ magnetic moment of subsequent field sweeps are plotted in two-dimensional
histograms for three waiting times, tw: (a) tw = 0 s; (b) tw = 20 s; and (c) tw = 50 s. The two axes
correspond to the trace and retrace field sweeps, Bt and Br, respectively. Two successive measure-
ments with the same nuclear spin states are situated on the diagonal of the matrix, whereas the
off-diagonal positions correspond to nuclear spin-state changes of �mI = ±1,±2 and ±3. The
predominance of diagonal terms up to tw = 20 s indicates the long level lifetime of the nuclear
spin states. For tw = 50 s, the diagonal terms vanish owing to nuclear spin-flip processes. Further-
more, the high amplitude of the bottom-right (Bt = Br = 40 mT) matrix element accounts for the
relaxation of the nuclear spin towards a thermal equilibrium

In order to obtain a magnetization reversal statistic, 11000 upwards and down-
wards sweeps were performed at a sweep rate of 50 mT/s. All switching fields were
recorded and compiled into a histogram, revealing a magnetization reversal at four
distinct values of magnetic field(Fig. 13.23(c)). These are in perfect quantitative
agreement with theoretical predictions [10] of QTM of a Tb3+ magnetic moment at
the four avoided energy-level crossings with the nuclear spin states |−3/2〉, |−1/2〉,
|1/2〉, |3/2〉 (Fig. 13.10). Moreover, the histograms of the four switching fields do
not overlap, revealing the high efficiency of this electronic read-out procedure. The
field integration of the normalized switching histograms yields the magnetic hys-
teresis loop (Fig. 13.23(d)), which is in excellent accordance with micro-SQUID
measurements of assemblies of TbPc2 SMMs (see Ref. [23]). At higher magnetic
fields, the reversal of the magnetization occurs stochastically, as predicted for a di-
rect relaxation process involving a non-coherent tunnelling event combined with a
phonon emission.

The lifetimes of the four nuclear spin states could be measured by studying the
correlations between subsequent measurements as a function of the waiting time,
tw, between field sweeps. Figure 13.24 presents two-dimensional histograms (tran-
sition matrices) obtained from 22000 field sweeps. The two axes correspond to the
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Fig. 13.25 Spin-flip dynamics and nuclear spin-state occupancy of the Tb3+ nuclear spin states.
Evolution of the nuclear spin-state occupancy as a function of the waiting time, tw, for two dif-
ferent working points: (a) gate voltage Vg = −0.9 V and (b) Vg = −0.1 V (both at bias voltage
Vsd = 0 V). The measurements clearly show that the populations evolve towards different thermal
equilibriums. (c) Spin dynamics for a fixed waiting time of 10 s, as a function of temperature, T .
With increasing temperature, the population of the different spin states evolves towards equal oc-
cupancy

trace and retrace field sweeps, Bt and Br. Two subsequent measurements with the
same nuclear spin states are situated on the diagonal of the matrix, whereas off-
diagonal positions correspond to nuclear spin state changes of �mI =±1,±2,±3.
For zero waiting time (tw = 0 s, Fig. 13.24(a)), the diagonal positions are predom-
inant, highlighting the robustness of the nuclear spin states and long level lifetimes
for the individual Tb3+ nuclear spin states. The diagonal positions persist even for
a waiting time of tw = 20 s (Fig. 13.24(b)). However, for tw = 50 s, the off-diagonal
positions start to be populated, which suggests the occurrence of nuclear spin-flip
processes during the waiting time (Fig. 13.24(c)). From this series of measurements,
we conclude that the level lifetime (T1) on the nuclear spin states is on the order of
tens of seconds, confirming that the invasiveness of the measurement procedure is
low (see Supplementary Information of Ref. [23]).

A more detailed insight into the spin-flip dynamics of an individual nuclear spin
can be gained by measuring the population of nuclear spin states as a function of
waiting time and temperature (Fig. 13.25). To this end, we determined the nuclear
spin-state occupancy for two different working points corresponding to two differ-
ent charge states of the read-out quantum dot (Vg = −0.9 V in Fig. 13.25(a) and
Vg = −0.1 V in Fig. 13.25(b), both at Vsd = 0 V). It is clear that the state occu-
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pancy, relaxing towards a thermal equilibrium, depends heavily on the transport
characteristics (the current flowing through the Pc quantum dot and/or the electro-
static environment modulated by the gate voltage). Indeed, the electron tunneling
through the Pc-ligands read-out dot gives rise to small fluctuations of the local elec-
tric field, which could modify nuclear spin-flip processes through the quadrupole
interaction [44]. A detailed study addressing this problem is in progress and will
be described in the next section. We also determined the population of nuclear spin
states as a function of the temperature (Fig. 13.25(c)). The strong temperature de-
pendence of this occupancy demonstrates that a single nuclear spin can be ther-
malized down to at least 0.2 K, which is close to the electronic temperature of our
dilution refrigerator (0.08 K).

In order to obtain a deeper understanding of the relaxation mechanism of an
isolated nuclear spin, one can for instance follow the time-trajectory of the Tb3+
nuclear spin via the previously described electrical readout. The device, a TbPc2
single-molecule magnet spin-transistor (Fig. 13.22), detects the four different nu-
clear spin states of the Tb3+ ion with high fidelities of 95 %, allowing us to measure
individual relaxation times (T1) of several tens of seconds. A good agreement with
quantum Monte Carlo simulations suggests that the relaxation times are limited by
the current tunneling through the transistor, which opens up the possibility to tune
T1 electrically by means of bias and gate voltages [24].

Nuclear Spin Trajectories One can follow the time-trajectory of an isolated nu-
clear spin in TbPc2 SMM using the single shot electrical readout presented earlier.
Whenever the Tb electronic spin is reversed, the chemical potential of the readout
dot located on the Pc ligands of the SMM is shifted due to a ferromagnetic exchange
interaction, resulting in sharp conductance jump [23].

The external magnetic field was aligned, using a home-made 3D vector mag-
net, with the easy-axis of the TbPc2 and constantly ramped it up and down between
±60 mT (Fig. 13.26(a)). By simultaneously monitoring the conductance of the read-
out dot, one observes conductance jumps happening at four distinct magnetic fields,
which can be accounted for QTM transitions of the Tb electronic spin. From the four
unique positions of the jumps, one can determine the four nuclear spin states and
thus reconstruct the nuclear spin trajectory (Fig. 13.26(b)). For statistical analysis
this procedure was repeated 80000 times. The first 500 seconds of the nuclear spin
trajectory are shown in Fig. 13.27(a). Note that due to the probabilistic nature of the
tunnel mechanism, QTM transitions were observed in≈51 % of all sweeps. By plot-
ting all detected jumps in histograms (Fig. 13.27(b)), one obtains 4 non-overlapping
Gaussian distributions. The fidelity of nuclear spin read-out is about 95 % and only
limited by the noise-floor. The widths of the histograms were dominated by elec-
tronic noise and the finite response time of the lock-in amplifier used to measure the
conductance jumps.

Level Life Times The time-average population of each state was obtained by
integration of the Gaussian distributions (colored bars Fig. 13.27(b)). Since with
every QTM transition the energy levels of the ground state and the excited states
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Fig. 13.26 Scheme of the
measurement procedure.
(a) The magnetic field H|| is
swept up and down as a
function of time t over the
four avoided level crossings
and (b) the conductance g
through the read-out dot is
simultaneously measured.
Whenever the electronic spin
undergoes a QTM transition,
a conductance jump is
observed (indicated by
dashed lines), revealing the
nuclear spin state

Fig. 13.27 Nuclear spin trajectory. (a) By continuously ramping the magnetic field up and down,
the conductance jumps reveal the nuclear spin states (grey dots) as a function of time, yielding
the nuclear spin trajectory (red curve). We found that the nuclear spin quantum number changes
only by �mI = ±1 (see Supplementary Material of Ref. [24]). (b) Histograms (grey) of about
40000 conductance jumps, showing four non-overlapping Gaussian distributions (dashed lines)
and yielding a 95 % fidelity of the nuclear spin state read-out. The colored bars, obtained by
integrating over the Gaussian distribution, show the time-average population P of each nuclear
spin state

were inverted, the population was found far from its thermal equilibrium. By plot-
ting the expectation value of each nuclear spin state versus time, one obtains a per-
fect exponential decay, yielding the relaxation times T1 of each nuclear spin state
(Fig. 13.28(a)–(d)). The close to perfect exponential decay indicates an ideal Mar-
covian behaviour, i.e. there is no hidden memory effect and the time evolution of the
system solely depends on its current state. Furthermore the obtained lifetimes were
an order of magnitude larger than the measurement interval, which is a proof of the
quantum non-demolition nature of the detection scheme.
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Fig. 13.28 Nuclear spin
relaxation times. (a)–(d)
Measured expectation value
and (e)–(f) QMC simulations
of each nuclear spin state
versus time. The given T1
values were obtained by
fitting the data to an
exponential function
exp(−t/T1) (grey dashed
lines)

In order to get a deeper understanding of the nuclear spin trajectory obtained un-
der non-equilibrium conditions, we performed quantum Monte Carlo (QMC) simu-
lations using the QMC wave function approach [58–60]. The nuclear spin was mod-
eled as a four-level system (2I + 1 states) which was coupled to a thermal bath of
temperature T = 150 mK (cryostat temperature). The Hamiltonian of the isolated
nuclear spin H0 is mainly determined by its quadrupole moment, resulting in un-
equal nuclear level spacings of ω0,1 = 121 mK, ω1,2 = 149 mK, and ω2,3 = 178 mK
[10]. All environmental contributions were combined in an effective Hamiltonian
with non-hermitian perturbation H1:

H1 =− i�
2

∑
m

C†
mCm, (13.21)

wherem represents all possible transition paths. We further assumed that transitions
between those three levels are only allowed if �mI = ±1, leading to one relax-
ation and one excitation path for each transition (i, j), modeled by Ci,j1 and Ci,j2
respectively:

C
i,j

1 =
√
Γi,j (1+ n(ωi,j , T )δi,j+1, (13.22)

C
i,j

2 =
√
Γi,j (n(ωi,j , T )δi+1,j , (13.23)
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where n(ωi,j , T )= [exp(�ωi,j /kBT )− 1]−1 is the Bose-Einstein distribution func-
tion and Γi,j is the transition rate between the i-th and the j -th nuclear spin state.
Note that latter was the only adjustable parameter in the simulation. The transition
probability dp for each level and time step dt is then calculated as:

dp = 〈Ψ (t)|C†
1C1 +C

†
2C2|Ψ (t)〉dt. (13.24)

The non-equilibrium dynamics is introduced by sweeping the magnetic field in
intervals of �t = 2.5 s back and forth. Every time we reached one of the four
avoided level crossings we swapped the ground state and the excited states with the
experimentally obtained QTM probability. Since �t < T1 we get a non-equilibrium
distribution. To compute a nuclear spin trajectory of several days, we repeated this
procedure 224 times.

From the simulated data we extracted the relaxation times T1 of each nuclear
spin state (Fig. 13.28(e)–(h)) and obtained a perfect agreement with our experiment.
The difference in lifetime between the ±3/2 and ±1/2 states comes from the fact
that the nuclear spin in the ±3/2 states has only one escape path (excitation or
relaxation), whereas if the nuclear spin in the±1/2 has two escape paths (excitation
and relaxation). Since the lifetime is roughly inversely proportional to the number
of transition paths, the T1’s show a difference of approximately two. The exact ratio
depends of course on temperature and the individual transition rates.

In order to reveal the dominant relaxation mechanism, we considered spin-lattice
interactions and nuclear spin diffusion. The latter mechanism was found to be very
weak in Tb crystals [61] and can hence be neglected for rather isolated and non-
aligned SMMs. Concerning the spin-lattice relaxation mechanism, we examined
closer the Γi,j extracted from the simulation. Depending on its proportionality to the
nuclear level spacing ωi,j we can distinguish between three types of mechanisms.

(i) The Korringa process in which conduction electrons polarize the inner lying
s-electrons. Since these couple with the nuclear spins via contact interaction, an en-
ergy exchange over this interaction chain is established, leading to Γi,j ∝ |〈i|Ix|j 〉|2
[62] .

(ii) The Weger process, which suggests that the spin-lattice relaxation is dom-
inated by the intra-ionic hyperfine interaction and the conduction electron ex-
change interaction [63]. It is a two-stage process, where the energy of the nu-
cleus is transmitted to the conduction electrons via the creation and annihilation
of a virtual spin wave. This process is similar to the Korringa process but results in
Γi,j ∝ |〈i|Ix|j 〉|2ω2

i,j .
(iii) The magneto-elastic process, which leads to a deformation of the molecule

due to a nuclear spin relaxation yields → Γi,j ∝ |〈i|Ix|j 〉|2ω4
i,j [64]. The term

|〈i|Ix|j 〉|2 arises from the fact, that only rotations of the spin perpendicular to the
z-directions are responsible for longitudinal transitions [65].

A comparison between the Γi,j ’s and the different mechanisms is shown in
(Fig. 13.29). The almost perfect agreement with the Weger process suggests that
the dominant relaxation process is caused by the conduction electrons. Since they
are ferro-magnetically coupled to the Tb electronic spin which in turn is hyperfine
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Fig. 13.29 The transition
rates Γi,j obtained from the
QMC simulations exhibit a
quadratic dependence on the
nuclear spin level spacing
ωi,j . This behaviour is
expected from a Weger
relaxation process in which
the nuclear spin is coupled
via virtual spin waves to
conduction electrons

Fig. 13.30 Measurement protocol for the Rabi oscillations of the TbPc2 nuclear spin. The mag-
netic field is swept upwards over the four avoided levels to read the nuclear spin state mI before
the following RF pulse (frequency 2.451 GHz and a pulse length τ ). The magnetic field is then
swept downwards to read the nuclear spin state m∗I after the RF pulse. The dots in the top panel
depict the QTM of the Tb, revealing the nuclear spin state

coupled to the nuclear spin, an energy and momentum exchange via virtual spin
waves could be possible. This suggests that by controlling the amount of available
conduction electrons per unit time the relaxation rate and thus T1 can be changed.
Hence, an electrically control by means of the bias and gate voltages is possible.
We performed such experiments and were able to significantly reduce the T1 of the
nuclear spin [24].

Rabi Oscillations With nuclear spin lifetime T1 of tens of seconds, one can now
perform coherent manipulation i.e. Rabi oscillations of the TbPc2’s nuclear spin.

For this purpose, an RF antenna was mounted in close proximity to the device
to address the SMM with a microwave signal. The dc magnetic field applied to
the SMM is then swept upwards over the four avoided level crossing to read out
the nuclear spin state mI prior to a microwave pulse. A microwave pulse with a
frequency of 2.451 GHz and a pulse length τ is then applied to induce a coherent
oscillation between the nuclear spin ground state and the first excited state. The
magnetic field is then swept downwards to read the nuclear spin state m∗I after the
microwave pulse (Fig. 13.30). This measurement is then performed 400 times in
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Fig. 13.31 Rabi oscillation
of a single nuclear spin. The
transition probability from a
nuclear spin state mI to a
nuclear spin state
m∗I =mI ± 1, obtained from
400 repetitions of the
measurement procedure in
Fig. 13.30, is plotted as a
function of the applied pulse
length τ for a microwave
power of 0 and 2 dBm

order to obtain the transition probability of the nuclear spin from the state mI to the
state m∗I =mI ± 1.

Figure 13.31 represents the probability to observe a transition of the nuclear spin
from mI to m∗I = mI ± 1 as a function of the microwave pulse length τ at two
different microwave powers. The preliminary measurements show Rabi oscillations
with frequencies on the order of a few MHz.

In the future, further experiments such as Ramsey or Hahn-echo measurement
would allow to the determine the coherence times T ∗2 and T2. Based on the findings
from Thiele et al. indicating an electrical tuning of nuclear spin relaxation [24], one
could also explore the possibility of controlling the quantum coherence by electrical
means using gate and bias voltages.

13.5.3 Coupling of a Single TbPc2 SMM to a Carbon Nanotube’s
Mechanical Motion

The spin-lattice relaxation time for a direct phonon induced transition (see Sect. 13.4
above) is essentially limited by the phonon density of states at the spin resonance
and the spin-phonon coupling [44]. In a macroscopic 3D system, like a SMM crys-
tal, the phonon energy spectrum is continuous whereas in a low dimensional quan-
tum system, like a suspended carbon nanotube (CNT), the energy spectrum is dis-
crete and can be engineered to an extremely low density of states [66]. An individual
SMM, coupled to a suspended carbon nanotube, should therefore exhibit extremely
long relaxation times [66] and the reduced size and dimensionality of the system
should result in a strongly enhanced spin-phonon coupling [39, 67, 68].

Carbon nanotubes (CNT) have become an essential building block for nano-
electromechanical systems (NEMS). Their low mass and high Young’s modulus
give rise to high oscillation frequencies for transverse [69, 70] and longitudinal
modes [71–73], therefore enabling ground state cooling with state of the art cryo-
genics and a large zero point motion in the quantum regime [74]. Moreover, the
strong coupling between nanomechanical motion and single-electron tunneling in
high-Q CNT NEMS allows an electronic actuation and detection of its nanome-
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chanical motion [38, 75–77]. As such, a CNT NEMS can be used for ultrasensitive
mass sensing [78–80] or as magnetic torque detectors for single spin systems [37].

A single spin, strongly coupled with a CNT NEMS in the quantum regime, could
serve as elementary qubit in quantum information processing. It has been recently
suggested that a strong coupling between a quantum CNT NEMS and a single elec-
tron spin would enable basic qubit control and the implementation of entangled
states [66]. In this framework, coupling a single-molecule magnet (SMM) to the
quantized nanomechanical motion of a CNT NEMS is a very attractive alterna-
tive [1]. Moreover, it was recently predicted that the spin-phonon coupling between
an SMM and a quantum CNT NEMS is strong enough to perform coherent spin
manipulation and quantum entanglement of a spin and a resonator [67, 68].

In Ref. [39] the magnetization reversal of a TbPc2 SMM grafted to a CNT res-
onator was studied (Figs. 13.4(a) and 13.32(a)). At cryogenic temperatures, the
magnetization reversal can occur via either quantum tunneling of magnetization
|Jz, Iz〉 → |−Jz, Iz〉 [10, 36], or, at high magnetic fields, through a direct relax-
ation process involving non-coherent tunneling events combined with the emission
or absorption of phonons [36] (Fig. 13.10). Previous experiments on TbPc2 sin-
gle crystals [10] and on TbPc2 coupled to a non-suspended CNT [36] showed that
the spin relaxation was mainly enabled by bulk phonons in the environment of an
individual SMM (crystal or substrate). An individual TbPc2 SMM grafted on a sus-
pended CNT is however physically decoupled from the bulk phonons in the sub-
strate or the transistor leads. As a consequence the TbPc2 SMM can only couple to
one-dimensional phonons, associated with the nanomechanical motion of the CNT.
It was recently demonstrated that high frequency and high-Q transverse [69] and
longitudinal phonon [71–73] modes in a CNT at cryogenic temperatures ought to
be quantized, thus yielding a discrete phonon energy spectrum.

Single-electron tunneling (SET) onto the CNT quantum dot shifts the equilib-
rium position of the CNT along the CNT’s axis by an amount proportional to the
electron-phonon coupling g [72]. For an intermediate electron-phonon coupling
g ∼ 1, the electron therefore effectively tunnels into an excited vibrational state
(Fig. 13.32(b)). If the tunnel rate Γout is larger than the relaxation rate γ into the
vibrational ground state, the electron tunnels out of the dot, resulting in equidistant
excited states in the region of SET, running parallel to the edge of the Coulomb
diamond (black arrows Fig. 13.32(c)) [71, 72]. For large electron-phonon coupling
g� 1, one observes additionally a current suppression at low bias, a phenomenon
known as Franck-Condon blockade [73]. It was also demonstrated, that one can
pump excited vibrational states in a Coulomb-blockade regime by higher-order co-
tunneling processes [71].

Indeed, one observes such quantized longitudinal phonon mode for the device
studied in Ref. [39]. Bias spectroscopy reveals a spectrum of equidistant excited
states in the region of SET (black arrows in Fig. 13.32(c)) with an average en-
ergy separation and phonon energy of �ωph = 140 µeV = 1.5 K (Fig. 13.32(d)).
According to the relation �ωph = 110 µeV/L [µm], the obtained phonon energy cor-
responds to a carbon nanotube length LCNT = 850 nm, which is consistent with the
measured carbon nanotube length Lmeas

CNT = 800 nm (Fig. 13.32(a)). The quality fac-
tor is given by Q= ω/(2πγ ), where γ is the relaxation rate into the ground state.
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Fig. 13.32 Longitudinal stretching modes in CNT NEMS functionnalized with TbPc2 SMMs.
(a) False color SEM image of a CNT NEMS with local metallic (Vlg, blue) and Si++ (Vbg, gray)
back gate. The SMM is shown as a chemical structure overlaid on the image. (b) Actuation and
detection of longitudinal stretching modes (LSM) of a CNT NEMS: (i) Single Electron Tunneling
onto the suspended CNT shifts the equilibrium position of the CNT along his axis and proportional
to the electron-phonon coupling g, leaving the electron in an excited vibrational state (red). (ii) If
Γout > γ , the electron tunnels out of the dot, resulting in equidistant excited states running parallel
to the edge of the Coulomb diamond (indicated by the black arrows in (c)). (c) Stability diagram
of the CNT showing the differential conductance as a function of gate and bias voltages at 20 mK
and 1.4 T. The black arrows indicate the excited vibrational states attributed to a LSM, as described
above. (d) Energy of excited vibrational states (black squares) vs. the excitation line number n at
Vg = 18 mV. A linear fit suggests a LSM frequency of �ωph = 140 µeV, which is consistent with
CNT length of 850 nm (see text). From the maximum current intensity�I (blue dots) of the excited
vibrational states we can estimate the LSM electron-phonon coupling factor to g ∼ 0.6± 0.3. Due
to measurement uncertainties in (c), the relative error on �I is estimated to be about 10 %

In order for the vibrational states to be visible in SET, we should have Γout > γ .
The tunnel current at the edge of the Coulomb diamond I gives an approximation
of the tunneling rate Γout = I/e. For tunnel current at the edge of the Coulomb di-
amond of I ≈ 50 pA, we find a tunneling rate Γout ≈ 310 MHz. We can determine
a lower boundary for the quality factor Q > ωph/2πΓout ≈ 110, equivalent to an
upper boundary for the linewidth of excited phonon states of δEph � 15 mK.

In a regime of Coulomb blockade and strong spin-phonon coupling, the magne-
tization reversal of an individual TbPc2 SMM via direct transitions can induce the
excitation of this longitudinal stretching mode phonon on the CNT quantum dot,
which effectively behaves as a two-level system (Fig. 13.33(a)). The linewidth of
the high-Q phonon was estimated to be on the order of δEph � 15 mK and is there-
fore smaller than the energy level spacing �EI = 120,150,180 mK between the
nuclear spin states of the Tb3+ ion [10, 23]. As a consequence we should observe
four different direct transitions matching the phonon energy �ωph = 1.5 K, i.e. four
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Fig. 13.33 Coupling mechanism between a single TbPc2 spin to a quantized longitudinal res-
onator mode, described as a two-level system. The magnetization reversal of the TbPc2 via direct
transition results in the excitation of the electron into a vibrational LSM state in the carbon nan-
otube resonator. In contrast to bulk phonons, the energy spectrum of a LSM phonon in 1D car-
bon nanotubes is discretized and yields high quality factors around Q ∼ 100. The corresponding
phonon linewidth δEph ≈ 15 mK is smaller than the energy separation between the Tb3+ nuclear
spin states �EI > 120 mK. Hence, we observe four different transitions, corresponding to the four
nuclear spin states as depicted by the colored arrows

switching fields at 89, 113, 137, 161 mT corresponding to the different nuclear spin
states of the Tb3+ ion (Fig. 13.3(a)). By sweeping the magnetic field component par-
allel to the TbPc2 easy axis, we can induce the magnetization reversal of the Tb3+
ion. As described in Sect. 13.5.1 the SMM’s reversal causes an abrupt increase of the
differential conductance through the CNT quantum dot, thus enabling an electronic
readout and revealing the four switching fields of the Tb3+ ion (Fig. 13.33(b)).

In Ref. [39], magnetic field sweeps along the TbPc2 easy axis were performed
with a rate of 50 mT/s, from negative to positive field values at different transverse
magnetic fields μ0H‖ while monitoring the differential conductance in the CNT.
The magnetization reversal of the Tb3+ ion in a sweep translates as a jump in the
CNT’s differential conductance, as described above (see also Fig. 13.33(b)). The
corresponding magnetic field, the switching field μ0HSW, is extracted and plotted
as a function of the transverse magnetic field μ0H⊥ (Fig. 13.34(a)). The measure-
ment reveals four switching fields between 80 and 160 mT, which are independant of
μ0H⊥. By reversing the field sweep direction, the TbPc2 magnetization is reversed
symmetrically between −80 mT and −160 mT. In order to obtain a magnetization
reversal statistic, we performed 200 back and forth sweeps at zero transverse mag-
netic field. The histogram of the extracted switching fields shows four dominant
switching events at 88 mT, 112 mT, 137 mT and 160 mT with an average FWHM
of 2 mT (Fig. 13.34(b)). The model described in Fig. 13.33 predicts that in case
of a strong coupling between the TbPc2 spin and the observed quantized longitu-
dinal phonon mode in the CNT (�ωph = 1.5 K and linewidth δEph � 15 mK), the
magnetization reversal of the TbPc2 will indeed occur from each of the four nuclear
spin states of the Tb3+ ion at magnetic fields of 89, 113, 137, 161 mT (Fig. 13.33).
Also, the Zeeman energy corresponding to the FWHM of each switching event in
Fig. 13.34(b) is approximately 30 mK, which is in close agreement with the phonon
linewidth of δEph � 15 mK determined above. Moreover, all four switching events
in the TbPc2 have a transition energy of�Ez = 1.5 K, which is in perfect agreement
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Fig. 13.34 Nuclear spin dependent magnetization reversal of a single TbPc2 coupled to a CNT
NEMS. (a) Switching field μ0HSW vs. transverse magnetic field component μ0H⊥ for a sweep
rate of 50 mT/s. We observe four distinct switching fields at positive values when sweeping the
field from negative to positive values (open symbol) and at negative values when reversing the
sweep direction (full symbols). The switching does not depend on the transverse magnetic field
component. We therefore attribute these events to the magnetization reversal of the Tb3+ ion via
a nuclear spin dependent direct transition enabled by a strong spin-phonon coupling. No quantum
tunneling of magnetization was observed in our measurement. The dotted lines are to guide the eye.
(b) Histogram of the switching fields obtained for 200 field sweeps with a zero transverse magnetic
field component for one sweep direction and a sweep rate of 50 mT/s. We observe four dominant
switching events at 88 mT, 112 mT, 137 mT and 160 mT corresponding to the switching fields for
the +3/2, +1/2, −1/2 and −3/2 nuclear spin states, respectively. The FWHM of the switching
field yields δB = 2 mT and the corresponding Zeeman energy of δEz ∼ 30 mK is consistent with
phonon linewidth δEph � 15 mK

with the LSM phonon energy of �ωph = 1.5 K. The experimental findings are thus
in excellent agreement with the provided model.

Upon coupling the magnetic moment of a TbPc2 SMM to a quantized longitudi-
nal phonon mode in the carbon nanotube NEMS, i.e. a two-level system, the quan-
tization of the latter enables the detection of the four nuclear spin states of the Tb3+
in magnetization reversal measurements. Those findings suggests a strong coupling
between the molecular spin and the quantized phonon mode, which was indeed esti-
mated to 1.5 MHz [39]. The value is comparable to the coupling strength predicted
for a carbon nanotube based spin qubit coupled to a carbon nanotube’s nanomechan-
ical motion [66] or to a superconducting coplanar waveguide [81]. In the following,
we will show that other low dimensional, two-level systems such as quantum dots,
may also enable the magnetic relaxation and the detection of the nuclear spin in an
individual molecular magnet.

13.5.4 Coupling of a Single TbPc2 SMM to a Quantum Dot

It has been demonstrated in Sect. 13.5.2 and Ref. [23], that the magnetic moment
of TbPc2 SMM couples to a spin S = 1/2 quantum dot located on the SMM’s Pc
ligands via a strong exchange interaction. The quantum dot effectively behaves as
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Fig. 13.35 Zeeman diagram of a system coupling the magnetic moment J = 6 of the TbPc2 and
the spin S = 1/2 of a quantum dot. (a) The coupling leads to two ground state doublets with an
exchange interaction of 0.5 K. (b) A zoom on the crossing around 250 mT reveals a tunnel splitting
of 1 µK, enabling a tunneling event from (+6,−1/2) to (−6,−1/2)

a two-level system and could therefore enable the magnetic relaxation in the TbPc2

SMM, in analogy to the magnetization reversal of the TbPc2 SMM coupled to a
quantized carbon nanotube phonon described in the previous section.

A system coupling the magnetic moment J = 6 of the TbPc2 and the spin S =
1/2 of a quantum dot (electron) can be described by the following Hamiltonian
(hyperfine interaction is omitted for simplicity)

H=Hcf+(gjμBJz+gsμBSz)μ0H||+(gjμBJx+gsμBSx)μ0H⊥+CJ ·S (13.25)

where Hcf describes the crystal electric field of the TbPc2 and accounts for the
magnetic anisotropy energy of the TbPc2, gj and gs the gyromagnetic factors for the
Tb3+ and the quantum dot respectively, Jz,x and Sz,x the spin operators of the Tb3+
and the quantum dot respectively, and C the magnitude of the exchange coupling
between the TbPc2’s magnetic moment and the spin 1/2.

Assuming an exchange interaction of C = 0.5 K and gs = 2, the diagonaliza-
tion of H leads to the Zeeman diagram depicted in Fig. 13.35. At a magnetic
field of 250 mT the coupled system undergoes a tunnel event from (+6,−1/2) to
(−6,−1/2), due to a tunnel splitting of a few µK. Moreover, the field position of this
avoided level crossing should evolve linearly with an applied transverse magnetic
field μ0H⊥ for each nuclear spin state according to (13.25).

Urdampilleta et al. performed magnetization reversal measurements on TbPc2

SMM grafted to a non-suspended carbon nanotube [56] using an electronic readout
described in Sects. 13.5.1 and 13.5.3. Magnetoresistance curves recorded along a
field direction parallel to the SMM’s easy axis show a spin-valve behaviour which
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Fig. 13.36 Direct relaxation of a TbPc2’s magnetic moment coupled to a spin 1/2 quantum dot.
(a) 50 butterfly hysteresis loop in the conductance of a carbon nanotube functionnalized with TbPc2
SMM at a sweep rate of 50 mT/s. (b) Histogram of the switching events at higher magnetic field
extracted from the hysteresis loops in (a). The measurements reveal four distinct switching events,
characteristic for the magnetization reversal from the four nuclear spin sates in the Tb3+ ion in the
presence of a spin 1/2 system

is characteristic for such a supramolecular spintronic device (Fig. 13.36(a)). Mag-
netization reversal statistics furthermore reveal four distinct conductance switching
events at high magnetic field, which can be associated with the direct relaxation
of the TbPc2’s magnetic moment from its four nuclear spin states (Fig. 13.36(a)
and (b)).

Finally, the switching fields μ0H||,SW associated with the relaxation from each
nuclear spin state exhibit a linear dependance on a transverse magnetic field com-
ponent μ0H⊥ (Fig. 13.37(a)), in very good agreement with theoretical predictions
(Fig. 13.37(b)).

In conclusion, a strong coupling on the order of 0.5 K was found between the
TbPc2’s magnetic moment and a S = 1/2 quantum dot, which consequently enables
the magnetization reversal in the TbPc2 SMM from its four nuclear spin states.
A similar behavior was also observed in TbPc2 spin transistor by Vincent et al.,
indicating that the S = 1/2 quantum dot is in fact located on the molecule, most
likely on Pc ligands planes.

13.6 Conclusion

The achievements in the field of molecular magnetism and spintronics proved to be
milestones on the ambitious path towards the implementation of a quantum com-
puter. The unique physical and chemical properties of molecular magnets provide a
large variety of quantum mechanical effects ranging from tunneling processes, in-
terference phenomena to large quantum coherence, making them an ideal candidate
for a so called spin qubit system. In order to explore these possibilities, new and very
precise setups are currently built and new methods and strategies are developed. This
chapter resumed the new research field of molecular quantum spintronics, which is
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Fig. 13.37 Transverse
magnetic field dependance of
the TbPc2 switching field.
(a) Switching field μ0H||,SW
vs. transverse magnetic field
component μ0H⊥ for a
sweep rate of 50 mT/s. We
observe four distinct
switching fields at positive
values when sweeping the
field from negative to positive
values and at negative values
when reversing the sweep
direction. The switching field
associated with each nuclear
spin state depends linearly on
the transverse magnetic field
component. (b) Experiment
vs. model. The fit with the
model (black curves) are in
very good agreement with the
experimental data (black
dots) extracted from (a)

a emerging field of nanoelectronics with a strong potential impact for the realization
of new functions and devices helpful for information storage as well as quantum
information. Such devices will lead to enormous progress in the understanding of
the electronic and magnetic properties of isolated molecular systems and they will
reveal intriguing new physics.
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Chapter 14
Molecule-Based Magnetic Coolers:
Measurement, Design and Application

Marco Evangelisti

Abstract The recent progress in molecule-based magnetic materials exhibiting a
large magnetocaloric effect at liquid-helium temperatures is reviewed. The exper-
imental methods for the characterization of this phenomenon are described. The-
ory and examples are presented with the aim of identifying those parameters to be
addressed for improving the design of new refrigerants belonging to this class of
materials. Advanced applications and future perspectives are also discussed.

14.1 Introduction

Magnetic refrigeration exploits the magnetocaloric effect (MCE), which can be de-
scribed as either an isothermal magnetic entropy change (�Sm) or an adiabatic tem-
perature change (�Tad) following a change of the applied magnetic field (�H). The
roots of this technology date back to 1881, when Warburg experimentally observed
that an iron sample heated a few milliKelvin when moved into a magnetic field and
cooled down when removed out of it [1]. In 1918, Weiss and Piccard explained
the magnetocaloric effect [2]. In the late 1920s, Debye and Giauque independently
proposed adiabatic demagnetization as a suitable method for attaining sub-Kelvin
temperatures [3, 4]. In 1933, Giauque and MacDougall applied this method to reach
0.25 K by making use of 61 grams of Gd2(SO4)3 ·8H2O, starting from 1.5 K and ap-
plyingμ0�H = 0.8 T [5]. Since then, magnetic refrigeration is a standard technique
in cryogenics, which has shown to be useful to cool down from a few Kelvin [6, 7].
Applications include, among others: superconducting magnets, helium liquifiers,
medical instrumentation, in addition to many scientific researches. So-called adia-
batic demagnetization refrigerators (ADR) are used as ultra-low-temperature plat-
forms in space borne missions, where the absence of gravity prevents cooling by
methods based on 3He-4He dilutions. Magnetic refrigeration at liquid-helium tem-
peratures provides a valid alternative to the use of helium itself, specially for the
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Table 14.1 Selection of molecule-based magnetic refrigerants and corresponding references.
A rough chronological order is followed from top to bottom

Compound Ref.

{Mn12} [9]
{Cr7Cd} [10]
{NiCr}n [14, 15]
{Mn3+

6 Mn2+
4 } [16]

{Mn3+
6 Mn2+

8 } [17]

{Mn4+
8 Mn2+

24 } [20]

{Mn3+
6 Mn2+

4 } [22]

{Mn3+
12 Mn2+

7 } [22]
{Mn19} [24]
{Ni6Gd6P6} [25]
{Co6Gd8} [26]
{Cu5Gd4} [29]
{Co8Gd8} [31]
[Gd2(OAC)3(H2O)0.5]n [32]
[Gd2(OAC)3(MeOH)]n [32]
{Co4Gd6} [33]
{Co4Gd2} [33]
{Co8Gd8} [33]
{Fe5Gd8} [34]
{Gd10}-POM [36]
{Zn8Gd4} [37]
{Cu8Gd4} [37]
{Cr2Gd3} [39]
{Co10Gd42} [41]
[Gd2(N-BDC)3(dmf)4] [42]
{Cu2+

6 Gd3+
6 } [44]

{NiNb4+}n [46]
[Gd(HCOO)(C8H4O4)] [47]
{Fe17} [49]
{Ni12Gd5} [51]
{Gd(OOCH)3}n [53]

Compound Ref.

{Fe8} [9]
{Fe14} [11–13]
{Cr3Gd2}n [14, 15]
{Mn3+

6 Mn2+
4 } [17]

{Mn3+
4 Gd4} [18, 19]

[Gd2(fum)3(H2O)4] · 3H2O [21]

{Mn3+
11 Mn2+

6 } [22]

{Gd7} [23]
{Na2Mn15} [24]
{Ni12Gd36} [26]
[Gd2(OAC)6(H2O)4] · 4H2O [27, 28]
{Ni3Gd} [30]
{Co4Gd6} [31]
[Gd4(OAC)4(acac)8(H2O)4] [32]
[Gd2(OAC)2(Ph2acac)6(MeOH)2] [32]
{Co8Gd4} [33]
{Co8Gd2} [33]
{Co8Gd4} [33]
{Cu36Gd24} [35]
{Gd30}-POM [36]
{Ni8Gd4} [37]
{Gd5Zn(BPDC)3}n [38]
{Cr2Gd2} [40]
{Ni10Gd42} [41]
[Mn(H2O)6][MnGd(oda)3]2 · 6H2O [43]
Co4(OH)2(C10H16O4)3 [45]
{Mn2+Nb4+}n [46]
{Gd12Mo4} [48]
{Gd24} [50]
{Co6Gd4} [52]
{MnGd} [54]

rarer 3He isotope, whose cost has been increasing dramatically during the past few
years.

All magnetic materials show the MCE, although the intensity of the effect de-
pends on the properties of each material. Since the initial proposition that mag-
netic molecular clusters are promising systems for refrigeration at low tempera-
tures [8], very large values of�Sm and�Tad have been repeatedly reported for sev-
eral molecule-based magnetic materials. Table 14.1 lists a wide up-to-date selection
of such refrigerants, with their corresponding references. An extensive investigation
is currently under way, with a view to finding or synthesizing new molecule-based
materials capable of record performances in terms of the MCE.
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In order to efficiently exploit the MCE for a realistic application, this effect
should be maximized within the working temperature range of interest. In order
to do so at cryogenic temperatures, the molecule-based magnetic coolers must pos-
sess a combination of a large spin ground state with negligible anisotropy, weak
ferromagnetic exchange between the constituent magnetic ions, in addition to a rel-
atively large metal:non-metal mass ratio, i.e., a large magnetic density. This chap-
ter describes the underlying physics of magnetic refrigeration with molecule-based
coolers. Section 14.2 defines the MCE and provides its theoretical framework. Sec-
tion 14.3 addresses which experimental techniques should be applied, and how to
correctly do it, in order to characterize the MCE of this class of materials. Several
case examples are provided in Sect. 14.4, with the aim of highlighting the character-
istics which are known to influence the performance of these coolers. Section 14.5
introduces the reader into the field of on-chip microrefrigeration—an advanced ap-
plication which starts from the challenging magnetic characterization of molecule-
based magnetic coolers deposited over a substrate. Concluding remarks are pre-
sented in Sect. 14.6.

14.2 Theoretical Framework

In order to explain the origin of the magnetocaloric effect, we use thermody-
namic relations which relate the magnetic variables (magnetizationM and magnetic
fieldH ) to entropy SE and temperature T . Let us recall [55] that the definition of the
entropy of a system having Ω accessible states is SE = kB ln(Ω). Since a magnetic
moment of spin s has 2s + 1 magnetic spin states, the entropy content per mole of
substance associated with the magnetic degrees of freedom at T =∞ is

Sm =R ln(2s + 1), (14.1)

whereR =NAkB is the gas constant. The spin s should be considered as an effective
spin describing the multiplicity of relevant magnetic states.

When a material is magnetized by the application of a magnetic field, the mag-
netic entropy is changed as the field changes the magnetic order of the material. The
MCE and the associated principle of adiabatic demagnetization is readily under-
stood by looking at Fig. 14.1. The system, assumed to be a paramagnetic material,
is initially in state A(Ti,Hi), at temperature Ti and field Hi . Under adiabatic con-
ditions, i.e., when the total entropy of the system remains constant, the magnetic
entropy change must be compensated for by an equal but opposite change of the en-
tropy associated with the lattice, resulting in a change in temperature of the material.
That is, the adiabatic field change Hi →Hf brings the system to state B(Tf ,Hf )
with the temperature change �Tad = Tf − Ti (horizontal arrow in Fig. 14.1). On
the other hand, if the magnetic field is isothermally changed to Hf , the system goes
to state C(Ti,Hf ), resulting in the magnetic entropy change �Sm (vertical arrow).
Both �Sm and �Tad are the characteristic parameters of the MCE. It is easy to
see that if the magnetic change �H reduces the entropy (�Sm < 0), then �Tad is
positive, whereas if �H is such that �Sm > 0, then �Tad < 0.
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Fig. 14.1
Temperature-dependence of
the molar magnetic entropy
of a (super)paramagnet with
spin s per formula unit, for
magnetic field Hi and
Hf >Hi . AB process:
adiabatic magnetization
(A → B) or demagnetization
(B → A), providing �Tad .
AC process: isothermal
magnetization (A → C) or
demagnetization (C → A),
providing �Sm

14.3 Experimental Evaluation of the MCE

A widely-accepted approach used to evaluate the MCE consists in obtaining �Sm
exclusively from magnetization measurements as function of temperature and ap-
plied magnetic field, by adopting the procedure described in Sect. 14.3.1. Although
some care should be taken for collecting and then analyzing the experimental data
correctly, this approach has the clear advantages of being simple and relatively fast.
No other experimental tool is needed but a conventional magnetometer. A far more
complete characterization of the MCE is accomplished by means of heat capacity
measurements collected for varying temperature and applied magnetic field, which
permit to compute both �Sm and �Tad . For the practical cases, these two indi-
rect approaches rely on the numerical evaluation of integrals that, by their nature,
can produce heavy errors, as made evident by Pecharsky and Gschneidner [56]. To
overcome any inherent shortfall, a third and more reliable option is the direct mea-
surement of the physical effect. Although several experimental methods succeeded
in measuring directly the MCE, a higher degree of sophistication is required and
therefore this option is restricted within a few specialized laboratories.

14.3.1 Indirect Methods

In order to establish the relationship between H ,M and T to the MCE terms, �Tad
and �Sm, we consider the Maxwell equation for the magnetic entropy

(
∂Sm(T ,H)

∂H

)
T

=
(
∂M(T ,H)

∂T

)
H

. (14.2)

Integrating (14.2) for an isothermal process, we obtain

�Sm(T ,�H)=
∫ Hf

Hi

(
∂M(T ,H)

∂T

)
H

dH. (14.3)
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This equation indicates that �Sm is proportional to both the derivative of magne-
tization with respect to temperature at constant field and to the field variation. The
accuracy of �Sm calculated from magnetization experiments using (14.3) depends
on the accuracy of the measurements of the magnetic moment, T and H . It is also
affected by the fact that the exact differentials are replaced by the measured vari-
ations (�M , �T and �H ). Furthermore, it is worth mentioning that the Maxwell
equation does not hold for first order phase transitions, since ∂M/∂T →∞.

By replacing the specific heat at constant field

C = T
(
∂Sm

∂T

)
H

,

in the expression of the infinitesimal change of Sm(T ,H), we have

dSm =
(
∂Sm

∂T

)
H

dT +
(
∂Sm

∂H

)
T

dH = C
T

dT +
(
∂Sm

∂H

)
T

dH. (14.4)

For an adiabatic process, dSm = 0. Thus, we obtain

dTad =−T
C

(
∂Sm

∂H

)
T

dH, (14.5)

where Tad is the adiabatic temperature. Therefore, taking into account (14.2), the
adiabatic temperature change is expressed by

�Tad(T ,�H)=
∫ Hf

Hi

(
T

C(T ,H)

)
H

(
∂M(T ,H)

∂T

)
H

dH. (14.6)

From the experimental specific heat, the temperature dependence of the magnetic
entropy Sm(T ) is obtained by integration, i.e., using

Sm(T )=
∫ T

0

Cm(T )

T
dT , (14.7)

where Cm(T ) is the magnetic specific heat as obtained by subtracting the lattice
contribution from the total measured C. Hence, if Sm(T ) is known for Hi and Hf ,
both �Tad(T ,�H) and �Sm(T ,�H) can be obtained.

The accuracy in the evaluation of MCE using specific heat data depends criti-
cally on the accuracy of the C measurements and data processing, e.g., the use of
�T instead of dT . Indeed, small errors in C can produce important differences in
�Sm and�Tad at high temperature due to the integration process. Moreover, C data
measured by the heat pulse technique are less accurate near phase transitions due to
the long relaxation times required for thermal equilibrium after each pulse. An addi-
tional source of uncertainty may eventually come from the fact that, in order to carry
out the integration of (14.7), one has to extrapolate the experimental data to T = 0
and to T =∞. The former extrapolation might become critical depending on the
lowest experimentally-accessible temperature in comparison to the magnitude of the
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Fig. 14.2 Scheme of the
thermal sensor used for the
direct determination of the
temperature change on
magnetization and
demagnetization

relevant energies involved in the magnetic ordering mechanism due to, e.g., interac-
tions that are typically weak in molecule-based magnetic materials. For a magnetic
system that undergoes a phase transition within the accessible T window, one can
sometimes attempt the extrapolation to T = 0 by making use of spin-wave mod-
els [20]. Alternatively, the ‘missing’ entropy that characterizes the not-accessible
lowest temperatures can be estimated from the expected full entropy content (14.1),
after subtracting the result obtained by integrating (14.7) between the experimental
lowest T and the high-T extrapolation (∝ T −2). However, one has to consider that
the drawback of such a method is an increasingly large uncertainty, which might
jeopardize and even invalidate the analysis based on the specific heat data. For a
molecule-based refrigerant containing Gd3+ spin centers, the zero-field magnetic
specific heat shows up for temperatures lower than 2–3 K. It is then not sufficient
to use a commercial calorimeter typically limited to ≈ 2 K as the lowest achievable
T by pumping 4He. An unfortunate example of poor analysis of specific heat data
can be spotted in the recent literature [41]. As a rule of thumb, if the molecule-based
refrigerant contains Gd3+ spin centers, then sub-Kelvin temperatures are needed for
characterizing the MCE by specific heat experiments.

14.3.2 Direct Measurements

A far more elegant and reliable method for determining the MCE is by means of
direct measurements. Clearly, the advantage resides in avoiding those drawbacks
inherent to indirect methods, such as the poor accuracy associated to the data pro-
cessing and the T → 0 extrapolation of the specific heat (see Sect. 14.3.1). However,
any experimental set-up designed for direct MCE measurements has to deal with
unavoidable heat dissipations, i.e., the lack of ideal adiabatic conditions. Most em-
ployed methods are based on a rapid change of the applied magnetic field during the,
correspondingly short, time interval of a single measurement [57]. These measure-
ments could be considered adiabatic experiments, at least to a first approximation.
In the procedure described below, we go beyond this time interval by providing a
full description of the physical process involved, which becomes relevant at a scale
longer than the time needed for fully changing the applied field [27, 53].

In the experimental set-up, the sample-holder is a sapphire plate to which a resis-
tance thermometer is attached (Fig. 14.2). The wires provide electrical connection,
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mechanical support and thermal contact to a controlled thermal bath at constant
temperature T0. Starting with the sample at zero field H = 0 and T0, the measuring
procedure comprises the following four steps: (a) gradual application of a mag-
netic field, up to a maximum H0; (b) relaxation until the sample reaches again the
thermal equilibrium with the bath; (c) gradual demagnetization down to H = 0;
(d) relaxation at zero field until the sample reaches the equilibrium at T0. During the
whole procedure, the as-measured temperature T and applied magnetic field H are
recorded continuously.

In order to cope with the unavoidable lack of ideal adiabaticity, one has to relate
the as-measured T to the adiabatic temperature Tad , i.e., the temperature if the sam-
ple would have been kept thermally isolated during the process. For this purpose,
the experimental entropy gains (losses) of the sample which originate from heat dis-
sipation from (to) the thermal bath should be evaluated. The thermal conductance κ
of the wires is previously measured as a function of the temperature using a free-
oxygen copper block as the sample. The specific heat at constant field, C, of the
sample is also previously measured using another calorimeter.

The entropy change of the sample in an infinitesimal time interval is

dS = k(T0 − T )
T

dt. (14.8)

Taking into account (14.4), we then have

k(T0 − T )
T

dt = C
T

dT +
(
∂S

∂H

)
T

dH,

dT

dt
= k(T0 − T )

C
− T
C

(
∂S

∂H

)
T

dH

dt
.

(14.9)

By replacing dTad from (14.5), we obtain

dT

dt
= k(T0 − T )

C
+ dTad

dt
,

which finally results in

Tad(t)= T (t)−
∫ t

t0

k(T0 − T )
C

dt. (14.10)

Therefore, knowing κ and C, the adiabatic temperature can be precisely deter-
mined for the whole magnetization-demagnetization process. From (14.10), we note
that the deviation of T (t) from Tad(t), as in the ideal adiabatic process, increases
with t . We then also note that T (t) ! Tad(t) when t/t0 ! 1. Thus, if the measure-
ment is based on a fast change of the applied magnetic field and it is limited to the
short time scale corresponding to the interval needed for fully changing the applied
field, then the as-measured T already provides a good determination of the adiabatic
temperature. In this treatment, the entropy contribution due to the heat transferred
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Fig. 14.3 Structure of the
{Gd(OOCH)3}n
three-dimensional
metal-organic framework
material. Gd = purple,
O = red, C = gray. H atoms
are omitted for clarity

Fig. 14.4 Top: Direct
measurement of the
experimental temperature T
and deduced adiabatic
temperatures Tad and T ′ad for
{Gd(OOCH)3}n on a
magnetization and
demagnetization cycle.
Bottom: Time evolution of the
corresponding applied
magnetic field

from the sample holder to the refrigerant material, i.e., �Ssh =
∫ T
T0
Csh/T dT , is

disregarded. This is acceptable since the specific heat of the sample holder Csh typ-
ically is orders of magnitude lower, and therefore negligible, with respect to that of
the sample at these liquid-helium temperatures.

Case Example: {Gd(OOCH)3}n 3D Metal-Organic Framework Hereafter, we
describe the direct measurements of the temperature changes, induced by �H ,
that were reported in Ref. [53] for gadolinium formate, whose chemical formula
is {Gd(OOCH)3}n, which belongs to the class of metal-organic framework (MOF)
materials (Fig. 14.3).

For {Gd(OOCH)3}n, Fig. 14.4 shows the time evolution of the field H , experi-
mental temperature T and deduced adiabatic temperature Tad for a representative
magnetization-demagnetization full cycle, starting at T0 = 0.98 K and reaching
μ0H0 = 1 T. In sequential order, we can observe the following stages. The ex-
perimental temperature T increases while the field increases up to 1 T. Here Tad

increases more than T because the thermal losses to the bath are compensated to
compute Tad . The experimental temperature T decays back to T0 = 0.98 K, but
Tad = 3.5 K is constant, since it corresponds to an hypothetical adiabatic process at
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constant H . In the demagnetization process, starting from t0 = 5270 s in Fig. 14.4,
T decreases below T0 due to the magnetocaloric effect (Sect. 14.2). By ‘resetting’
T0 to 0.98 K, we can here define a new, though equivalent, adiabatic temperature
T ′ad (dashed line in the top panel). We observe that Tad tends to recover the initial
value T0 corresponding to t0 = 0, while T ′ad cools down to the new temperature of
0.47 K because of the MCE. Then, the experimental temperature T gradually re-
laxes back to the equilibrium value, while Tad and T ′ad are constant. Specifically,
Tad is equal to the starting T0 = 0.98 K for t0 = 0, since the real entropy gain is ex-
actly compensated for by the calculation. The fact that the final temperature T tends
to agree with Tad after demagnetization, indicates that entropy gains and losses have
been correctly estimated throughout the whole process. Remarkably, the final adi-
abatic temperatures of 3.5 K and 0.47 K obtained after sweeping the 1 T field up
and down, respectively, corroborate the results independently inferred from indirect
methods [53].

Recollecting the discussion on the adiabaticity and its lack thereof, we finally
note that the use of (14.10) is not essential if the MCE is sufficiently large, as
for {Gd(OOCH)3}n, and the measuring time does not exceed the time needed for
fully changing H . For instance for the above-mentioned demagnetization process,
the as-measured T is 0.48 K at the precise time in which the field reaches zero
value (i.e., t = 5370 s in Fig. 14.4). From (14.10), we obtain the correspond-
ing Tad = 0.47 K, which is equivalent to a 2 % correction, only. This means
that the measured cooling for T = 0.48 K and μ0�H0 = (1 − 0) T is given by
�T = (0.98 − 0.48) K = 0.50 K, which is corrected to �Tad = 0.51 K after ap-
plying (14.10). Therefore, we conclude that this type of experiments can provide a
direct estimate of the parameters which characterize the MCE.

14.4 Designing the Ideal Refrigerant

This section addresses the parameters which are known to influence the performance
of a molecule-based material as a cryogenic refrigerant. We anticipate that the de-
sign of the ideal refrigerant requires the optimization of the following items:

• magnetic anisotropy,
• type and strength of the magnetic interactions,
• relative amount of non-magnetic ligand elements.

One further criterium to be considered is the type of spins involved since the mag-
netic entropy is determined by the spin according to (14.1). In this respect, gadolin-
ium is the preferred constituent element because its 8S7/2 ground state provides the
largest entropy per single ion. Furthermore, it has no orbital angular momentum
contribution to the ground state. This implies that its full magnetic entropy R ln(8),
corresponding to a spin value s = 7/2, is readily available at liquid-helium tempera-
tures. For the same reason, Mn2+ and Fe2+ ions are also often used for the synthesis
of molecule-based refrigerants because of their next largest 5/2 spin value.
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Fig. 14.5 Magnetic entropy
changes �Sm, normalized to
the gas constant R, calculated
for spin s = 10 and varying
anisotropy D =−0.5 K,
−1.5 K and −3.0 K,
following an applied field
change of μ0�H = (7− 1) T

14.4.1 Magnetic Anisotropy

In addition to a large spin value, another condition that favors a large MCE is a rela-
tively small magnetic anisotropy. The crystal-field effects arising from the metal ox-
idation states and surrounding organic ligands, concurrently with anisotropic mag-
netic interactions, set in a preferential direction for the spins. The larger is this
anisotropy, the less sensitive to H is the polarization of the spins, or (equivalently)
higher fields are needed, therefore yielding a lower MCE. This concept is further
explained by the following example which is based on observing the evolution of
the Schottky specific heat CSch as a function of temperature, field and anisotropy.
Let us mention that the Schottky anomaly for a finite set of energy levels Ei and
corresponding degeneracies gi is defined by the expression

CSch =
(

1

kBT

)2
∑
i,j gigj (E

2
i −EiEj )exp[−(Ei +Ej)/kBT ]∑

i,j gigjexp[−(Ei +Ej)/kBT ] . (14.11)

We consider a hypothetical fixed value s = 10 for the spin, while we vary the ax-
ial anisotropy as such to be D = −0.5 K, −1.5 K and −3.0 K. First, for each
D we calculate the Schottky heat capacities CSch from (14.11) for two different
values of the applied field, e.g., μ0Hi = 1 T and μ0Hf = 7 T. Then, we obtain
the corresponding magnetic entropies Sm(T ,H) by making use of (14.7). As de-
picted in Fig. 14.1, we finally deduce the magnetic entropy changes�Sm(T ,�H)=
[Sm(T ,Hf ) − Sm(T ,Hi)] for the applied field change μ0�H = (7 − 1) T. Fig-
ure 14.5 shows that the resulting T -dependence of −�Sm shifts to higher tempera-
tures and, overall, decreases to lower values by increasing the value ofD. Therefore,
we can conclude that, if we target the highest MCE, we should design the molecule-
based material as such to present the lowest anisotropy, which would permit the
easy polarization of the spins in order to yield a large magnetic entropy change. This
also demonstrates that, in order to be successful, the applicability of the (isotropic)
molecule-based materials has to be at very low temperatures.
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14.4.2 Magnetic Interactions

A common strategy to optimize the MCE is by playing with the magnetic interac-
tions since these set the way in which the magnetic entropy is released as a function
of temperature. Let us present the physics involved in the way in which magnetic or-
dering can lead to a partial concentration of the total magnetic entropy change into a
limited range of temperature. For the sake of simplicity, we assume a magnetically-
isolated molecule with a total spin Stot = ns for a finite number n of spins s, which
are part of the same molecule. If it is paramagnetic, with n non-interacting spins s,
the magnetic entropy per mole is

Sm = nR ln(2s + 1), (14.12)

from (14.1). However, at low temperatures where the n spins s couple into Stot = ns,
the entropy to consider is S′m =R ln(2Stot+1)=R ln(2ns+1), which is clearly dif-
ferent. Obviously the total magnetic entropy gain that can be reached between zero
and infinite temperature remains equal to Sm, which is the maximum entropy gain.
What does change is the way in which the magnetic entropy is released as a function
of temperature. Indeed, the temperature dependence of the magnetic entropy shows
a smooth gradual increase from zero at T = 0 to the maximum R ln(2s + 1) in the
paramagnetic case, while it changes into a more steep dependence in the temperature
range where the interactions become important. This can be used advantageously to
produce a large �Sm by means of a limited change in T and/or H , that is, a much
larger change than can be produced in the absence of such interactions.

We note that the aforementioned argument is conceptually analogous for a bulk
solid-state material. In the case of a magnetic phase transition at a critical tem-
perature TC , one could in principle play the same game, i.e., enhancing the en-
tropy change in proximity of TC by small changes in field or temperature. For most
high-temperature solid-state refrigerant materials, the MCE is indeed driven by the
mechanism of magnetic ordering [57], and so is also for molecule-based materials,
namely Prussian blue analogues [14, 15]. In the case of liquid-helium temperatures,
thermal fluctuations are typically stronger than magnetic fluctuations arising from
intermolecular interactions, especially when the material contains Gd3+ spin cen-
tres. Therefore for such systems, one would expect the magnetic dimensionality to
play no dominant role in the MCE, unless experiments are carried out deep in the
sub-Kelvin regime [36]. We finally note that a drawback inherent to any magnetic
phase transition is that the MCE steeply falls to near zero values below TC , limiting
the lowest temperature which can be attained in a process of adiabatic demagneti-
zation. Therefore, particular attention should be devoted to ‘control’ the magnetic
interactions depending on the target working temperature of the magnetic refriger-
ant.

14.4.2.1 Sign of Exchange Interaction

The MCE is heavily influenced by the type of magnetic interactions involved. This is
particularly true in the case of antiferromagnetic interactions that tend to contribute
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Fig. 14.6 For a dimer of
spins s1z = s2z = 7/2,
calculated magnetic entropy
changes �Sm, normalized to
the gas constant R, obtained
for exchange constant
J =+1 K (ferromagnetic
interaction) and J =−1 K
(antiferromagnetic
interaction) following an
applied field change
μ0�H = (7− 1) T

negatively to the physical effect. To shed some light, let us present the model of a
dimer of spins s1 and s2 that are magnetically coupled to each other by an exchange
constant J . As a simplification, we restrict the spins to point along a z direction and
we assume s1z = s2z = 7/2. Therefore, the Ising Hamiltonian accounting for the
magnetic exchange and a Zeeman interaction is given by

H=−J s1zs2z − gμB(s1z + s2z)H, (14.13)

where g is the Landé g-factor and μB is the Bohr magneton. Through numerical
matrix diagonalization, one can compute the energy levels and eigenvectors, and
hence the specific heat, for varying J and H . We consider ferromagnetic and an-
tiferromagnetic exchange either by setting J = +1 K or J = −1 K, respectively.
For each case, the calculation is repeated twice for applied field values μ0H = 1 T
and μ0H = 7 T, respectively. Then by making use of (14.7), we obtain the mag-
netic entropy, which straightforwardly leads to the entropy change �Sm, depicted
in Fig. 14.6 for μ0�H = (7− 1) T and both ferro- and antiferromagnetic interac-
tion. It is easy to discern that the sign of J is highly relevant in the determination
of the MCE, this being larger and shifted to higher temperatures for the case of
ferromagnetic coupling. By further increasing �H , both ferro- and antiferromag-
netic −�Sm(T ,�H) curves will gradually increase to ultimately reach the limit
of the full entropy content, which corresponds to the entropy of two magnetically-
independent spins, i.e. 2×R ln(8)! 4.16 R. We note that a larger �H is needed in
the case of the antiferromagnetic interaction for reaching such a limit. Extrapolating
the result of this simulation, we can conclude that ferromagnetism is to be preferred
to antiferromagnetism since the former promotes a higher magnetocaloric effect.

14.4.2.2 Screening by Diluting: Ultra-Low Temperatures

Attaining temperatures in the range of milliKelvin dates back to the very beginning
of the research field on cooling by adiabatic demagnetization. For the aforemen-
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Fig. 14.7 Molecular
structure of the GdW30
polyoxometalate salt

tioned reasons, this goal can only be achieved by avoiding any source of magnetic
interactions. Diluted paramagnetic salts, like cerium magnesium nitrate (CMN) and
chromic potassium alum (CPA), can achieve mK temperatures favored by the weak
strength of the interactions between the paramagnetic ions [6]. However, these
commercially-employed magnetic refrigerants are also characterized by a relatively
strong magnetic anisotropy and low refrigeration power, which results from the
small effective-spin values and spin-to-volume ratios. From Sect. 14.4.1 we have
learnt that the lower the anisotropy, the less pronounced are the crystal field effects
which, splitting the energy levels, result in MCE maxima at lower temperatures. This
leads once again to consider gadolinium as a potentially interesting element for mK
cooling. Gadolinium sulfate [5, 58] and gadolinium gallium garnet (GGG) [59, 60]
are well-known low-temperature magnetic refrigerants, although they are limited
by their magnetic ordering temperatures, and so is the gadolinium acetate tetrahy-
drate with TC ! 0.2 K [27]. Likewise, one may expect a relatively large ordering
temperature in the case of extended Gd3+-based systems, such as one-dimensional
chains [32]. Mixed Gd3+-Mn3+, Gd3+-Co2+, and Gd3+-Ni2+ molecular nanomag-
nets have been considered as magnetic coolers (see Table 14.1) but they are not suit-
able for ultra-low temperatures due to the anisotropy induced by the Mn3+, Co2+,
and Ni2+ ions, respectively.

Case Example: Mononuclear GdW10 and GdW30 POM Salts A recent
research has focused on the magnetocaloric properties of two novel molecu-
lar nanomagnets based on polyoxometalate (POM) salts with general formula
Na9[Gd(W5O18)2]·35H2O (hereafter shortened as GdW10) and K12(GdP5W30O110)

· 54H2O (hereafter shortened as GdW30—see Fig. 14.7), respectively [36]. Both
compounds are characterized by having a single Gd3+ ion per molecular unit, pro-
viding therefore a relatively large spin ground state and small magnetic anisotropy.
Importantly, each magnetic ion is encapsulated by a closed POM framework, which
acts as a capping ligand. The resulting intermolecular distances are exceptionally
large, reaching 10 Å for GdW10 and 20 Å for GdW30. By chemically engineering
the molecules in such a way, one can achieve an effective screening of all magnetic
interactions and therefore a suitable refrigerant for ultra-low temperatures. This
is supported by experiments since magnetic ordering is reported to occur only at
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36 mK in the case of GdW10, while the more diluted GdW30 is the best realization
of a paramagnetic single-atom gadolinium compound because it remains paramag-
netic down to the accessed lowest T ! 10 mK. The inherent downside of such an
approach is related to the heavy structural POM framework of each molecular unit
that, being non-magnetic and anticipating the discussion presented in the following
section, ultimately lowers the efficiency of these refrigerants. The search for other
mononuclear molecular isotropic nanomagnets having lighter capping ligands, yet
effective in screening all magnetic interactions, should motivate further studies.

14.4.3 Magnetic Density and Choice of Units

As the name tells, the magnetocaloric effect is ‘magnetic’. For any refrigerant mate-
rial, this obvious remark implies nothing but cooling driven by the magnetic el-
ements solely, while the remaining majority of constituting elements participate
passively in the physical process. The first step towards the application is the self
cooling of the refrigerant material itself: the magnetic elements have to cool the non-
magnetic ones, indeed. Therefore, in order to successfully design an ideal refriger-
ant material one should maximize the magnetic:non-magnetic ratio—for instance,
by making use of light ligands interconnecting the magnetic centers.

So far, we have expressed the magnetic entropy change �Sm in terms of the mo-
lar gas constant R ! 8.314 J mol−1 K−1 since this has facilitated us in focusing on
parameters, such as anisotropy and interactions, that determine the MCE. However,
the most common choice of units for �Sm is J kg−1 K−1. By including the mass,
these units carry information on the relative amount of magnetic elements. Further-
more from a practical standpoint, an engineer dealing with the development of an
adiabatic demagnetization refrigerator would prefer to know the amount of refrig-
erant material which can be employed per unit of volume. The third option, which
is then better suited for assessing the applicability of a refrigerant material, consists
in expressing the volumetric ρ�Sm, where ρ is the mass density of the material,
in terms of mJ cm−3 K−1 units. On this point, one could correctly argue that the
MCE of molecule-based refrigerant materials is disfavored by their typically low
ρ—though it is not always the case, as exemplified below.

The experimentally-observed maximum value of the entropy change has expe-
rienced a terrific escalation in the recent literature. Numerous publications break
records and report comparison tables or graphs containing the �Sm of several com-
pounds. However, we point out that the impression that the reader could get from
such comparisons may be mislead by the choice of units employed for �Sm. To
better illustrate how arbitrary and yet how important are the units of measurement,
let us consider the following examples.

Case Example: {Mn4+
8 Mn2+

24 } Molecular Nanomagnet Let us start by con-

sidering the high-nuclearity cluster {Mn4+
8 Mn2+

24 }, whose magnetically-relevant
molecular structure [61] consists of eight planar “centered triangles” composed
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Fig. 14.8 Molecular
structure of {Mn4+

8 Mn2+
24 }.

Mn4+ and Mn2+ = violet,
N = light blue, O = red,
C = gray. H atoms are
omitted for clarity

of a central Mn4+ spin center, with s = 3/2, antiferromagnetically coupled to
three peripheral Mn2+ spin centers, each having s = 5/2 (Fig. 14.8). Within the
molecule, eight triangular clusters are weakly coupled together in the form of a trun-
cated cube by azide and carboxylate ligands. Each {Mn4+

8 Mn2+
24 } core is also sur-

rounded by one and a half non-coordinated [Mn(bpy)3]2+. The full formula of the
complex reads {Mn(bpy)3}1.5[Mn32(thme)16(bpy)24(N3)12(OAc)12](ClO4)11 [61].
The magnetocaloric investigations of {Mn4+

8 Mn2+
24 } reported a maximum value

−�Sm = 23.2 R at T ! 1.6 K for μ0�H = (7− 0) T, which reduces to −�Sm =
10.0 R at T = 0.5 K for μ0�H = (1 − 0) T field change [20]. For widespread
applications, the interest is chiefly restricted to applied fields which can be pro-
duced with permanent magnets, viz., in the range 1 − 2 T. The important remark
here is the extremely large values for the entropy change in units of R. Obviously,
this is the result of the high spin-nuclearity which favors a correspondingly large
magnetic entropy according to (14.12). Taking into account the molecular mass
m= 11 232.47 g mol−1 of {Mn4+

8 Mn2+
24 }, the ‘new’ though equivalent values of the

entropy change read −�Sm = 18.2 J kg−1 K−1 and 7.5 J kg−1 K−1 for μ0�H =
(7− 0) T and (1− 0) T, respectively. Finally, to complete our analysis, we consider
its mass density ρ = 1.37 g cm−3 which provides −ρ�Sm ! 25.0 mJ cm−3 K−1

and 10.3 mJ cm−3 K−1 for μ0�H = (7− 0) T and (1− 0) T, respectively.

Case Example: {Gd2} Molecular Nanomagnet Next, we focus on the gadolin-
ium acetate tetrahydrate, [Gd2(OAc)6(H2O)4] · 4H2O, hereafter shortened as {Gd2}
(see Fig. 14.9), which is a second example of a molecular cluster, though the nu-
clearity strongly decreases to just a mere Gd3+-Gd3+ ferromagnetic dimer [27].
Because of the low nuclearity, −�Sm does not exceed ≈ 4.0 R at T ! 1.8 K
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Fig. 14.9 Molecular
structure of {Gd2}. Gd =
purple, O = red, C = gray.
H atoms are omitted for
clarity

Fig. 14.10
Temperature-dependence of
the magnetic entropy change
�Sm for {Gd2}, as obtained
from magnetization and
specific heat data [27] for the
indicated applied-field
changes �H

for μ0�H = (7 − 0) T, which is nearly six times smaller than in {Mn4+
8 Mn2+

24 }.
However, this scenario changes drastically after considering the {Gd2} molecular
mass m = 812.89 g mol−1, since the latter yields −�Sm = 40.6 J kg−1 K−1 and
27.0 J kg−1 K−1 for μ0�H = (7− 0) T and (1− 0) T, respectively (Fig. 14.10).
For the sake of information, ρ = 2.04 g cm−3 for {Gd2}, which results in−ρ�Sm !
82.8 mJ cm−3 K−1 and 55.1 mJ cm−3 K−1 for μ0�H = (7− 0) T and (1− 0) T,
respectively, i.e., definitely much higher than in {Mn4+

8 Mn2+
24 }. Really are these last

values so exceptionally large?

Case Example: GGG Prototype Material Gadolinium gallium garnet (GGG)
is the reference magnetic refrigerant material for the liquid-helium temperature
region [59, 60]. Indeed, its functionality is commercially exploited in spite of a
relatively modest maximum −�Sm = 20.5 J kg−1 K−1 for μ0�H = (2 − 0) T.
This apparent contradiction is resolved by measuring the entropy change in terms
of equivalent volumetric units, which take into consideration the GGG mass den-
sity ρ = 7.08 g cm−3. By so-doing, GGG achieves a record value −ρ�Sm !
145 mJ cm−3 K−1 for the same applied field change of 2 T.

Case Example: {Gd(OOCH)3}n 3D Metal-Organic Framework In Sect. 14.3.2,
we have introduced the molecule-based {Gd(OOCH)3}n metal-organic framework
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Fig. 14.11
Temperature-dependence of
the magnetic entropy change
�Sm for {Gd(OOCH)3}n, as
obtained from magnetization
and specific heat data [53] for
the indicated applied-field
changes �H . Vertical axes
report units in J kg−1 K−1

(left) and volumetric
mJ cm−3 K−1 (right)

material. The MCE of {Gd(OOCH)3}n was recently determined down to sub-
Kelvin temperatures by direct and indirect experimental methods [53]. This three-
dimensional MOF is characterized by a relatively compact crystal lattice of weakly
interacting Gd3+ spin centers interconnected via light formate ligands, overall pro-
viding a remarkably large magnetic:non-magnetic elemental weight ratio.

In units of R, the magnetic entropy change is reported to reach the value
−�Sm ≈ 2 R at T ! 1.9 K for μ0�H = (7 − 0) T. Because of just one Gd3+
spin center per formula unit, the maximum experimental value is indeed consistent
with the full magnetic entropy, which corresponds to R ln(2s + 1) = 2.08 R, ac-
cording to (14.1) for s = 7/2. This very modest −�Sm turns out spectacularly large
after taking into account the molecular mass m = 292.30 g mol−1 and mass den-
sity ρ = 3.86 g cm−3 of {Gd(OOCH)3}n. As can be seen in Fig. 14.11, the MCE
of {Gd(OOCH)3}n is characterized by maxima −ρ�Sm ! 120 mJ cm−3 K−1 and
189 mJ cm−3 K−1 for μ0�H = (1− 0) T and (3− 0) T, respectively. These values
compare favorably with the ones obtained from GGG and are decidedly superior
than in any other molecule-based refrigerant material.

Among the Aforementioned Examples, Which One Has the Largest MCE?
It should be clear by now that there exist multiple and apparently contradictory
answers. If we restrict ourselves to �Sm as expressed in R units, then there is
no doubt that we should prefer {Mn4+

8 Mn2+
24 }. However adopting the J kg−1 K−1

units, {Gd2} and {Gd(OOCH)3}n perform largely better. Finally, GGG and again
{Gd(OOCH)3}n are far more appealing in the case of volumetric mJ cm−3 K−1

units. As anticipated, the latter choice of units provides more information since it in-
cludes the mass density of the material. In this regard, we note that {Gd(OOCH)3}n
has a very large ρ among molecule-based magnetic materials, though yet smaller
than that of GGG. As a matter of fact, the mass density of these two mate-
rials is effectively counterbalanced by the magnetic:non-magnetic weight ratio
nAr/m = 0.54 and 0.47 for {Gd(OOCH)3}n and GGG, respectively, where Ar =
157.25 g mol−1 is the gadolinium relative atomic mass and n is number of Gd3+
ions per formula unit, which amounts to 1 in {Gd(OOCH)3}n and to 3 in GGG. For



382 M. Evangelisti

comparison, the nAr/m ratio further reduces to 0.39 in the case of {Gd2} for which
n= 2.

That {Gd(OOCH)3}n has a larger MCE than the other molecule-based refrig-
erant materials is also corroborated by the behavior of the adiabatic temperature
change, which is strictly related to �Sm as we have learnt in Sect. 14.2. For
μ0�H = (7 − 0) T, we indeed observe a maximum �Tad = 22.4 K, 12.7 K and
6.7 K for {Gd(OOCH)3}n, {Gd2} and {Mn4+

8 Mn2+
24 }, respectively [20, 27, 53].

14.5 Towards Applications: On-Chip Refrigeration

Sub-Kelvin microrefrigeration is an emerging trend in cryogenic physics and tech-
nology since it allows for the reduction of large quantities of refrigerants [62, 63].
It also has the potential to open up new markets by making available cheap (3He-
free) cooling. On-chip devices are expected to find applications as cooling platforms
for all those instruments where local refrigeration down to very-low temperatures
is needed. These can include, although is not limited to, high-resolution X-ray and
gamma-ray detectors for, e.g., astronomy, materials science, and security instrumen-
tation.

In parallel, research on surface-deposited molecular aggregates has been evolv-
ing with the aim of assembling and integrating molecules into on-chip functional
devices [64]. In this regard, the exploitation of the cooling properties of molecule-
based materials is seen as a promising future technology. By developing a suitable
silicon-based host device which is adiabatically isolated and has a negligible specific
heat in the working temperature range, one could expect to cool from liquid-helium
temperature down to milliKelvin, after having provided a field change of a few tesla.
This could represent by far the best performance for on-chip cooling. Microrefrig-
erators based on solid-state electronic schemes, currently studied and developed
for low-temperature applications, provide a cooling of the order of �T ≈ 0.1 K
at the very best [63]—a value notably smaller than that promised by the magnetic
molecules. Obviously, for this approach to become a reality, a relatively strong bind-
ing of the molecules to the surface and the preservation of their functionalities once
deposited are sine-qua-non conditions.

The magnetic investigations on molecule-based coolers have so far been carried
out for bulk materials. The target of extending these studies to include molecules
deposited onto surfaces is challenging, both for the low temperatures required and,
specially, for the relatively small amount of deposited material which results in a
weak strength of the magnetic signal.

Case Example: Surface-Deposited {Gd2} Molecular Nanomagnet From the
very recent literature [28], we report the first study by magnetic force microscopy
(MFM) of molecular coolers deposited on a Si substrate, as an intermediate step
towards the interfacing of these molecules with a future Si-based thermal sensor de-
signed to function as a microrefrigerator. This work specifically refers to the {Gd2}
molecular nanomagnet (Fig. 14.9) that we already met in Sect. 14.4.3.
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Fig. 14.12 Scheme
representing a sampling of
{Gd2} molecules (dots)
positioned within a droplet
delimited by an experimental
profile and deposited on the
Si substrate (xy plane). The
sensing magnetic tip is at
constant height h≈ 150 nm.
The applied field H is
oriented along z

The substrate consists of a Si wafer that is p-doped with boron to improve its con-
ductivity and to permit its grounding, particularly important for preventing the accu-
mulation of electric charges during MFM measurements. Previous to surface mag-
netic measurements, a rational organization of the {Gd2} molecules on the Si sub-
strate is necessary to ensure a proper contrast between magnetic and non-magnetic
areas as needed to estimate the magnetic stray field generated by the deposits. For
this purpose, dip-pen nanolithography (DPN) is a suitable tip-assisted technique
since it has already been shown to precisely place drops of a controlled size ac-
cording to predefined patterns with sub-micrometer precision [65]. As a last step
before the deposition, a clean writing surface is provided by ultrasound in acetoni-
trile, ethanol and deionized water. This last step also ensures the presence of a thin
layer of native oxide, which in turn enables the adsorption of molecular species
through hydrogen bonding with hydroxyl groups naturally present at the surface of
oxides, even without specific pre-treatment. With its four terminal coordinated wa-
ter molecules and acetate groups in various coordination modes, the neutral {Gd2}
molecule may form a range of hydrogen bonds, either as donor or acceptor, with
surface hydroxyls or adsorbed water, as it indeed does in its crystalline form with
lattice water molecules [27]. A further advantage of this material resides in a rel-
atively robust, yet light, structural framework surrounding each Gd3+ ion. {Gd2}
is thus a good candidate to preserve its structure after an efficient grafting to hy-
drophilic surfaces without pre-functionalization.

Figure 14.12 shows the scheme of the measurements reported in Ref. [28], con-
sisting of a MFM tip positioned at a constant height ≈ 150 nm from the Si substrate
and a {Gd2} droplet, whose height is≈ 10 nm, while the lengths of the two oval axes
are≈ 1.7 µm and≈ 1.4 µm, respectively. The applied field is oriented perpendicular
to the plane. Figure 14.13 shows the MFM images collected in the frequency shift
mode (�f ) at T = 5.0 K. The frequency shift measures the gradient of the force act-
ing on the MFM tip and it is here directly proportional to the stray field generated by
the drop [28]. Each MFM image is accompanied by the corresponding profile along
a line bisecting the droplet. For H = 0, no magnetic stray field is expected from
the {Gd2} droplet. Therefore, in order to minimize van der Waals contributions, the
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Fig. 14.13 Magnetic images
(frequency shift, �f ) of an
individual {Gd2} droplet
taken at T = 5.0 K and
different magnetic fields, as
labeled. The images are
represented in the same
contrast scale, namely from
−3.4 Hz to 1.5 Hz. Magnetic
profiles are presented below
each corresponding image,
with the background
zero-field level being
represented by a horizontal
dotted line

tip-to-sample distance is set as such to barely see any topography for zero-applied
field (see the first panel in Fig. 14.13). The area external to the drop is the non-
magnetic contribution of the substrate which constitutes the reference background
(dotted lines in the profiles). The tip magnetization is constantly at saturation for all
in-field MFM images, since the applied magnetic field largely exceeds the coercive
field of the tip (≈ 5× 10−2 T).

The evolution of magnetic contrast between the {Gd2} droplet and the non-
magnetic substrate is well visible in Fig. 14.13, as a function of the applied mag-
netic field. Specifically, the inner area of the drop becomes darker, while the border
brighter and thicker, by increasing the field. In order to explain the observed be-
havior, let us first consider the magnetic field generated by the {Gd2} droplet as
represented by lines of induction or flux lines. One can easily understand that the
stray-field flux lines gradually change their direction, till reaching the inversion, on
approaching the border of the drop. Accordingly, the magnetic interaction between
tip and sample changes from attractive to repulsive depending on the orientation
of these flux lines, therefore shifting the resonance from lower (darker) to higher
(brighter) frequencies, respectively. The profile lines provide further evidence for
the dependence of the magnetic contrast on the applied field.

Importantly, a quantitative analysis of the magnetic contrast reveals that the
(T ,H)-dependence of the �f measurements can be directly associated to the mag-
netization of bulk {Gd2}, enabling us to conclude that the as-deposited molecules
hold intact their magnetic characteristics and, consequently, the cooling functional-
ity as well [28]. Transferring a known, excellent cryogenic magnetocaloric material,
such as the {Gd2} molecular nanomagnet, from bulk crystal to a silicon substrate
without deterioration of its properties paves the way towards the realization of a
molecule-based microrefrigerating device for very low temperatures.
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14.6 Concluding Remarks

Over the past couple of years there has been an upsurge in the number of molecule-
based materials proposed as enhanced magnetic coolers for cryogenic temperatures.
The research has been recently opened to extended three-dimensional structural
frameworks, which will allow taking advantage of both the chemical variety and
intrinsic robustness of MOF materials. However, in spite of the many efforts de-
voted so far to this end, there are still challenges to overcome before molecule-based
magnetic coolers find widespread applications. For instance, sizeable intermolecu-
lar magnetic correlations and intrinsically low thermal conductivities are two issues
that limit their applicability, especially at very low temperatures. New solutions are
proposed and explored by combining chemical synthesis with materials science and
advanced instrumentation techniques. There is a promising research future on graft-
ing molecule-based magnetic coolers to substrates with a high thermal conductivity.
One can envision that in a not-too-distant future, devices of reduced sizes will ex-
ploit the cooling functionality of these molecules.
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Debye approximation, 341
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Figure of merit, 50
Finite-size, 192
Finite-size effects, 193, 205, 206, 211
Flame temperature, 133
Flux coupling, 328
Franck-Condon blockade, 355
Freezing, 67
Frequency noise, 327
Front of tunneling, 131
Front speed, 148
Full-burning approximation, 137
Functionalizations, 321



Index 391

G
Gadolinium, 372, 373, 377, 379
Gadolinium gallium garnet (GGG), 377, 380,

381
Garanin, 116
Gate spectroscopy, 305
Gate-voltage spectroscopy, 313
Gd, 365, 366, 370, 375, 377, 380, 382–384
Geometric frustration, 279
Giant magnetoresistance, 240
“Giant spin” Hamiltonian, 25
Giant-spin approximation, 78
Glauber model, 206, 209, 211
Global thermodynamic equilibrium, 6
Ground state, 64
Ground state multiple, 329
Group theoretic arguments, 87
Group theoretic considerations, 98
Grover’s algorithm, 292

H
Hahn-echo, 354
Hall sensors, 116
Heat capacity, 368
Heat conduction, 131
Height of the magnetization steps, 10
Heisenberg Hamiltonian, 217
Heisenberg model, 195
Hierarchy of avalanches, 21
Higher-order anisotropies, 81
Highest occupied molecular orbital, 224
Histogram, 342, 347, 350, 358, 360
Historical review, 17
Homogeneous nuclear-spin broadening, 38
Hubbard model, 283
Hund’s rule, 329
Hybridization with the substrate, 236
Hyperfine constant, 331
Hyperfine interactions, 177, 267, 289
Hyperfine or super-hyperfine interactions, 37
Hypothetical quantum computer. Experiments,

49
Hysteresis, 114
Hysteresis loops, 113, 115

I
Ignition, 116
Ignition threshold, 120
Improper rotation, 82, 95, 97
Indirect coupling, 321, 324
Individual addressing of the molecules, 265
Inelastic co-tunneling, 303

Inelastic neutron scattering, 89
Information and communication technologies

(ICT), 249
Initialization, 291
Integral relaxation time, 142
Interchain interaction, 193, 198, 200, 202, 205,

206, 211
Interconnections, 256
Interface, 115
Intrachain interaction, 199, 200
Inversion symmetry, 105
Iron, 365
Irreducible representations, 87
Irreversibility, 176
Ising, 166, 206, 376
Ising model, 203, 206, 213

J
Jahn-Teller (JT) elongation axes, 84

K
Kondo, 322
Kondo effect, 235, 345
Kondo excitations, 304, 314
Kondo temperature, 236
Korringa process, 352
Kramers’ theorem, 89

L
Landau Zener, 339, 340
Landau Zener model, 37, 332, 338
Landau Zener tunneling, 337
Landau-Lifshitz-Gilbert (LLG) equation, 216
Lanthanide, 329
Lanthanide-based compounds, 163
Large-spin magnetic molecules, 292
Level life times, 349
Lifetime, 347, 348
Ligand field, 330, 333
Local-equilibrium, 209, 210, 213
Logarithmic relaxation, 7
Logic gates, 256
Longitudinal phonon, 355
Longitudinal phonon mode, 357, 358
Longitudinal stretching mode, 356
Lorentz field, 39
Lorentzian line-shapes, 38
Lying configuration, 230

M
Macroscopic Barkhausen jumps, 19
Macroscopic quantum tunneling, 22
Magnetic anisotropy, 70, 165, 174, 312, 373
Magnetic avalanche, 11, 113



392 Index

Magnetic coolers, 164
Magnetic deflagration, 11, 132
Magnetic domains, 43
Magnetic field, 176
Magnetic flux, 327
Magnetic force microscopy (MFM), 382
Magnetic hysteresis, 89
Magnetic molecules, 61
Magnetic moment, 73
Magnetic ordering, 375, 377
Magnetic Peierls potential, 18
Magnetic phase diagram, 177, 178, 185
Magnetic phase transition, 375
Magnetic refrigeration, 365
Magnetic relaxation, 3, 115, 164, 169
Magnetic structure, 226
Magnetic susceptibility, 167
Magnetic torque, 325
Magnetic torque detectors, 355
Magnetic tunneling, 5
Magnetic viscosity, 7
Magnetization, 113, 179, 368, 384
Magneto-Coulomb, 345
Magneto-elastic process, 352
Magnetocaloric effect (MCE), 365, 373, 378
Magnetoresistance, 325, 336
Magnetostatic field, 161
Magnetostatics, 147
Marcovian behaviour, 350
Mass density, 378–381
Master equation, 207
Matrix elements, 66
Maxwell equation, 368
MCE, 366–370, 373–378, 381
Mean-field, 163, 210
Mean-field approximation, 166
Mechanical freedom, 61
Memory cells, 252
Memory devices, 294
Mesoscopic, 17
Metal-organic framework (MOF), 372, 380
Metastable, 115
Metastable population, 133
Metastable state, 133
MFM, 383
Micro-SQUID magnetometer, 22
Microrefrigerating, 384
Microrefrigeration, 382
Microscopic model, 285
Microwave photons of planar cavities, 265
Microwaves, 32
Minor species, 117

Mirror symmetries, 105
Mn, 366, 378, 379, 381
Mn12, 89, 106, 171
Mn12-ac, 24, 113
Mn12 acetate, 89, 171, 177, 179, 180
Mn12 wheel, 106
Mn3, 83, 90
Mn4, 90, 99, 100, 103, 175
[Mn4(anca)4(Hedea)2(edea)2]·2CHCl3·2EtOH,

100
[Mn4(Bet)4(mdea)2(mdeaH)2](BPh4)4, 100
Mn6, 172, 173
Modes, 355
MOF, 385
Molecular disorder, 180
Molecular magnets, 113, 129
Molecular nanomagnets, 249, 320, 328
Molecular orbitals, 223
Molecular quantum spintronics, 319, 335
Molecular spintronics, 297, 320, 321
Molecular switches, 255
Molecular symmetry, 83
Moment of inertia, 63
Monolithic spintronic machine, 260
Monte Carlo, 162, 173, 185
Multi-spin Hamiltonian, 82
Multi-terminal, 325
Multimers, 46

N
Nanoelectromechanical systems (NEMS), 354
Nanomagnets, 113
Nanoparticles, 18
Nanoresonator, 62
NanoSQUID, 327
Nanowires, 212
[NE4]3[Mn3Zn2(salox)3O(N3)6Cl2], 84
Néel vector, 19
NEMS, 325
Neutron diffraction, 177
Ni4, 90, 93, 96, 175
[Ni(hmp)(dmb)Cl]4, 93
NITR radical, 198, 199, 202
Noise, 40
Non-collinearity, 203, 205, 206, 209
Non-equilibrated spin-state, 32
Non-equilibrium critical phenomena, 187
Non-exponential, 27
Nuclear dipole, 331
Nuclear quadrupole interaction, 241
Nuclear spin, 331
Nuclear spin trajectories, 349
Nucleation, 212



Index 393

O
Orbach, 341, 343
Orbach, Raman, 342
Orbach process, 334, 335
Orbital, 225
Orbital and spin component, 234
Ordering temperature, 166, 174
Orthogonal matrix, 70
Overhauser field, 290

P
P1̄, 105
P1̄ symmetry, 106
Paramagnetic, 44, 229
Paramagnetic salts, 377
Perspectives of MPcs, 239
Phase diagram, 185
Phonon assisted relaxation, 332
Phonon density, 335, 341
Phonon-assisted, 333
Pinning, 5
Plateau, 27
Plateaus, 28
Polymorphs, 222
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