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In June 1946, recognizing an impasse among scientists debating measurement 
strategies in psychology, S. S. Stevens observed that measurement – the assign-
ment of numerals to objects and events according to rules – depended on the 
scales to which data were assigned. Nominal scales involved the use of numerals 
as qualitative labels only, “and quite naturally,” Stevens (1946, 679) wrote, 
“there are many who will urge that it is absurd to attribute to this process of 
assigning numerals the dignity implied by the term measurement.” Indeed, sim-
ple frequency counts offered limited information, and because advanced analytic 
techniques for nominal data had not been developed, scholars typically exam-
ined relationships two variables at a time, in some cases controlling the level of 
a third measure.

At the next level of measurement, the ordinal level, observations appeared in 
a ranked sequence. Stevens (1946) cited hardness among minerals as an exam-
ple, emphasizing that while order did exist, one could not assume equal inter-
vals between observations; the interval between topaz and corundum, for 
instance, might not equal the interval between corundum and diamond. “In the 
strictest propriety,” Stevens (1946, 679) cautioned, “the ordinary statistics 
involving means and standard deviations ought not to be used with these scales, 
for these statistics imply a knowledge of something more than the relative rank‐
order of the data.” In other words, summing a set of scores and dividing by the 
number of observations could yield a distorted average; the median, or exact 
middle score, served as a more appropriate measure. Nevertheless, like promi-
nent statisticians who would follow, Stevens did not advocate the wholesale 
elimination of mean scores at the ordinal level, opting only to state that inac-
curacies stood to increase as differences among intervals did the same.

For Stevens, data became “quantitative” at the interval level of measurement. 
Here, means and standard deviations could be computed without qualification, 
based on assumptions of equal intervals among observations. Centigrade and 
Fahrenheit temperature scales served as examples of interval measures, to be 
followed by a fourth and final level of measurement, the ratio scale, which 

Preface



 contained a point of absolute zero in addition to equal intervals. Periods of 
time, Stevens wrote, could be measured on a ratio scale, as one could observe a 
period that was twice as long as another. In contrast, it made little sense to assert 
that a temperature of 70 degrees Fahrenheit was twice 35‐degree weather.

In the years since Stevens (1946) described the four levels of measurement, 
statisticians have generally referred to data measured at the nominal and ordi-
nal levels as categorical while referring to data measured at the interval and 
ratio levels as continuous; the current text focuses on the former. While schol-
ars in social‐science fields such as economics, political science, psychology, 
and sociology have written monographs and longer books addressing the 
analysis of nominal and ordinal data, communication scholars have lacked a 
text on which to draw in conducting studies and teaching quantitative research 
methods. Designed for graduate students in communication as well as faculty 
members and research professionals in the public and private sectors, 
Categorical Statistics for Communication Research seeks to fill a disciplinary 
void by presenting communication scholars with a discipline‐specific guide to 
categorical data analysis. In that sense the book seeks to complement statistics 
texts by Hayes (2005), Reinard (2006), and Weber and Fuller (2013). Their 
texts contain excellent instruction on techniques such as the analysis of vari-
ance (ANOVA) and ordinary least squares (OLS) regression, but the books 
do not address advanced approaches for analyzing categorical data. In cover-
ing advanced techniques in categorical statistics, the present text assumes the 
reader will have completed an undergraduate course addressing the funda-
mentals of quantitative research methods. Such a course may have followed 
one of the texts mentioned above, or perhaps one from Babbie (2015), Keyton 
(2014), or Wimmer and Dominick (2014).

At the graduate level, communication seminars on quantitative methods 
tend  to focus on techniques that assume interval‐level response variables. 
Following discussions of descriptive statistics and measures of central tendency, 
instruction often focuses on the t‐test and one‐way analysis of variance before 
moving to correlation tests, factorial ANOVA and ordinary least squares regres-
sion. Advanced topics include techniques such as structural equations and 
 hierarchical linear modeling (see Hayes, Slater, and Snyder 2008). In contrast, 
instruction on categorical statistics tends to begin and end with cross‐tabulation 
and chi‐square analysis; techniques for the simultaneous analysis of multiple 
categorical variables often receive little, if any, attention. In addressing such 
techniques, the current text aspires to the following objectives:

 ● To provide an accessible guide to the use of categorical statistics, blending 
necessary background information and formulas for statistical procedures 
with data analyses illustrating the respective techniques;

 ● To include examples from multiple areas of the communication discipline;



 ● To demonstrate how techniques discussed in the book can be applied to data 
gathered through surveys, content analyses, and other methods;

 ● To offer useful instructions for categorical data analyses in IBM SPSS®;
 ● To demonstrate how procedural assumptions – and problems with meeting 

those assumptions – can offer substantive insight into communication pro-
cesses;

 ● To address points of methodological debate in an even‐handed manner, 
identifying approaches within and between areas of study;

 ● To include a significant number of references for readers seeking additional 
background information about the techniques addressed.

To meet these objectives, the text begins with an introduction to categorical 
data analysis, reviewing statistical terminology and the assumptions statisticians 
have made in developing bivariate and multivariate tests. As the chapter explains, 
where techniques such as ANOVA and OLS regression assume a normal prob-
ability distribution, modeling procedures covered in the current text assume 
Poisson, binomial, and multinomial distributions, making the techniques com-
parably robust to non‐normal data. Additionally, modeling techniques covered 
in the text use maximum likelihood estimation (MLE), as opposed to least 
squares (LSE), in parameterization processes. Because MLE tends to be less 
biased with large samples (Nunnally and Bernstein 1994), procedures addressed 
in the book can prove valuable for studies that draw on large public datasets.

Chapter 2 addresses univariate goodness of fit and bivariate tests of independ-
ence and association. The chapter focuses on the use of chi‐square to assess 
proportions in the categories of a single variable and independence in contin-
gency tables containing two measures. In doing so, the chapter includes exam-
ples from recent content analyses and survey research initiatives, also reviewing 
measures of association and the likelihood ratio statistic. Regarding terminol-
ogy, readers may recognize chi‐square analysis as a popular nonparametric, 
 “distribution‐free” technique for comparing observed and expected frequencies 
in cross‐ tabulations (see Conover 1999, Siegel 1956). Absent a point of refer-
ence, scholars sometimes regard categorical statistics, in general, as nonparamet-
ric; however, as indicated in the previous paragraph, most of the categorical 
models in this text assume an established distribution. As Anderson and Philips 
(1981) pointed out, such models focus on parameter estimation and travel 
beyond mere significance testing. In short, categorical statistics should not be 
confused with distribution‐free, nonparametric procedures such as the Kruskal‐
Wallis nonparametric ANOVA test or Spearman correlation analysis.

Chapter 3 moves from two‐dimensional contingency tables to analyses con-
taining three categorical variables. Analyses of three‐dimensional tables involve 
testing relationships between two measures at a fixed level of a third. As the 
chapter demonstrates, the Breslow‐Day (B‐D) and Cochran‐Mantel‐Haenszel 



(C‐M‐H) tests facilitate comparisons of odds ratios and allow researchers to 
gather information about three‐way tables in an efficient manner. The B‐D and 
C‐M‐H tests have been applied primarily in studies of health communication, 
but scholars working in other areas also may find the procedures useful.

Chapter 4 focuses on log‐linear modeling, a technique used to examine con-
tingency tables in more than two dimensions. Unlike logit log‐linear analysis, 
addressed in Chapter 5, general log‐linear models do not recognize differences 
between explanatory (independent) and response (dependent) measures; rather, 
analyses treat all variables as outcomes, modeling the natural logs of cell fre-
quencies. Researchers who use log‐linear analysis generally seek to remove 
parameters from a saturated model, which contains all effects but 0 degrees of 
freedom, toward a more parsimonious representation of the observed data. 
Scholars who use logit log‐linear models also seek to identify parsimonious rela-
tionships, but they do so with a “categorical variable analog” (Knoke and Burke 
1980, 25) to ordinary least squares regression. As Chapter  5 explains, logit 
log‐linear models estimate the log odds of a response measure as a function of 
explanatory variables, and the model also allows more than one dependent vari-
able to be included in a given analysis. In that sense, the logit procedure bears 
some similarity to the multivariate analysis of variance, which allows more than 
one response measure to be included in a model.

Chapter  6 addresses binary logistic regression, a technique used in analyses 
containing a dichotomous dependent variable (e.g., whether or not an individual 
communicated with an elected representative in the previous 12 months). Logistic 
regression accommodates categorical and continuous explanatory measures and 
produces parameter estimates that can be exponentiated to form odds ratios. 
Chapter 7 covers multinomial logistic regression, which researchers use when a 
categorical dependent variable contains more than two levels. As an example, 
scholars of political communication might study predictors of national optimism, 
with a response measure indicating that survey respondents (a) appeared optimis-
tic about the future of the nation, (b) appeared pessimistic, or (c) appeared  neither 
optimistic nor pessimistic. Although the multinomial procedure treats a response 
measure as nominal, the technique often proves useful when ordinal logistic 
regression models, addressed in Chapter 8, do not meet assumptions. As its name 
implies, the ordinal model analyzes predictors of ordered response measures, 
which often appear in the form of Likert attitude statements. Researchers may ask 
study participants to indicate whether they Strongly Agree, Agree, are Undecided, 
Disagree, or Strongly Disagree that a social protest received fair treatment in the 
press. While many researchers would treat such a variable as quasi‐interval, Likert 
statements are technically ordinal measures.

Chapter 9 focuses on probit analysis, a technique similar to logistic regression. 
As the text explains, the binary probit model assumes an underlying, normally 
distributed, latent continuous measure. This assumption makes the probit 



model useful in studies involving issues such as gun control, attitudes toward 
which are more complex than simple for‐or‐against binaries. Probit analyses 
contain multinomial and ordinal approaches as well.

Chapter  10 addresses Poisson and negative binomial regression, two 
 techniques used in analyses of count data (i.e., discrete units observed in a given 
period of time). A communication scholar might use the procedures in studying 
whether a number of “tweets” posted about a certain topic vary by region of the 
country and the gender of social media users. If the scholar coded tweets for a 
subjective measure, such as tone, he or she would need to measure interrater 
reliability, which the current text covers in Chapter 11. This chapter  contains 
reliability formulas and examples for both nominal and ordinal content varia-
bles, explaining how reliability testing advances a study from personal belief to 
social science, facilitating replication in the process.

In discussing statistical procedures, the text draws on a content analysis pub-
lished in Journalism & Mass Communication Quarterly (Denham 2014) as well 
as three datasets made available by the Inter‐university Consortium for Political 
and Social Research (ICPSR) at the University of Michigan. The datasets include 
the 2008 American National Election Study (The American National Election 
Studies 2008), the 2011 National Survey on Drug Use and Health (United 
States Department of Health and Human Services 2011), and the 2012 
Monitoring the Future study of American youth (Johnston, Bachman, O’Malley, 
and Schulenberg 2012). Examples illustrate procedures through topics in polit-
ical and health communication as well as other areas in the communication 
discipline.

Regardless of the topics communication scholars engage, quantitative research 
studies invariably contain nominal and ordinal variables. Categorical Statistics 
for Communication Research seeks to enhance the measurement of these varia-
bles in statistical systems, contributing both theoretically and methodologically 
to disciplinary research.

Bryan Denham
July 2016

Clemson, SC
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This text focuses principally on the analysis of nominal and ordinal data. 
Nominal measures contain unordered categories while ordinal variables contain 
categories in a sequence; both types of measures appear frequently in comm
unication research. At the nominal level, news texts may or may not mention 
specific issue attributes, and during election years, individuals may or may not 
view a debate, campaign for a candidate, or vote in a primary. Individuals may 
be male or female, and they may or may not have served in the military. In addi
tion to these dichotomous measures, unordered polytomous variables include 
items such as race, religion, and marital status, each of which contains more than 
two categories. At the ordinal level, attitude statements frequently include five 
response options: Strongly Agree, Agree, Undecided, Disagree, and Strongly 
Disagree. Estimations of risk may range from No Risk to Great Risk, and 
i ndividuals responding to policy decisions may range from Strongly Approve to 
Strongly Disapprove in their reactions.

Statistician Alan Agresti (1990) mentioned two additional types of categori
cal data: discrete interval and grouped interval. Discrete interval measures often 
contain a limited number of values, and because they take the form of inte
gers – and integers only – they are not treated as continuous quantitative meas
ures, which can take on any real value. As an example of discrete interval data, 
a college dean might record the number of people who earn a graduate degree 
in commu nication each year, with recipients constituting discrete units. 
Regarding grouped interval data, researchers sometimes combine continuous 
interval measures into ordered brackets, as in the case of income, where asking 
a survey respondent for a specific figure might be considered both invasive and 
unnecessary. As a second example, while news reports about a given subject 
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2 Categorical Statistics for Communication Research

might average 731 words, a researcher might be interested in the number of 
articles that appear in ordered increments of 250 words.

Historical Overview

In covering techniques for analyzing both ordered and unordered categorical 
variables, the current text recognizes that statisticians have differed in their 
assumptions and approaches to categorical data analysis. As Powers and Xie 
(2000) explained, one school of thought considers categorical data part of an 
underlying continuous distribution, while a second perspective considers cat
egorical data inherently categorical. In historical terms, Agresti (1990) 
explained that Karl Pearson (1900), who developed the chi‐square goodness‐
of‐fit test, assumed continuous distributions underlying categorical variables, 
while one of Pearson’s contemporaries, George Udny Yule (1900), believed 
that certain types of variables were inherently categorical and did not require 
assumptions of underlying distributions. Fienberg (2007) observed merit 
in both perspectives, noting that Pearson and Yule, along with R. A. Fisher 
(1922a, 1922b), played significant roles in building a foundation for the 
development of more advanced analytic techniques (see, for additional  history, 
Fienberg and Rinaldo 2007, Plackett 1983). Interestingly, several decades 
would pass before statisticians developed advanced procedures for categorical 
data analysis. Most of the m odeling techniques covered in the current text 
emerged after 1960, whereas statisticians had developed multivariate tests for 
continuous data decades earlier.

Seminal research in communication (e.g., Lazarsfeld, Berelson, and Gaudet 
1948) demonstrates how social scientists analyzed and displayed categorical 
data. Lacking advanced statistical procedures, researchers typically presented 
data in the form of frequency charts and cross‐tabulations. As an example, 
Table 1.1 contains data gathered in the 1948 election year and published in 
Voting: A Study of Opinion Formation in a Presidential Election (Berelson, 
Lazarsfeld, and McPhee 1954, 243). The table contains both nominal and ordinal 
frequency measures and offers descriptive information in a limited but effective 
manner. Recognizing a pattern between exposure to mass media and level of 
interest in the presidential election, the authors reported demographic and 
psychographic information about 814 individuals in Elmira, New York. In the 
table, numbers appearing in parentheses indicate cell frequencies while figures 
outside the parentheses indicate the percentage of individuals in each cell who 
were exposed to media at “High and High‐Middle” levels (N = 432). This 
approach allowed readers, if so inclined, to calculate the number of respondents 
in each cell who scored “Low and Low‐Middle” on exposure indices (N = 382), 
all the while inspecting results across three levels of campaign interest. The use 
of percentages for “High and High‐Middle” media users allowed the authors to 
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show statistical patterns that raw cell frequencies would have obscured. 
Examining the table, one observes that individuals exposed the most to mass 
media and interested the most in the election belonged to more organizations, 
had higher levels of education, and appeared in higher socioeconomic classes.

Readers familiar with significance testing may notice that Table 1.1 does not 
contain chi‐square analyses, commonly used to determine whether significant 
differences exist between observed and expected cell frequencies. Lazarsfeld, a 
research methodologist, did not consider it appropriate to test bivariate rela
tionships for statistical significance, reasoning that additional variables could 
alter – or eliminate –  significant relationships.1 As indicated, when Lazarsfeld 
and his colleagues conducted their election research, multivariate techniques for 
categorical data had not been developed. For example, log‐linear modeling, 
which examines associations among multiple categorical variables simultane
ously, did not exist as such; had the technique been available, Lazarsfeld and 
other researchers may have used it in analyzing frequency data. In fact, Alwin 
and Campbell (1987, S147) described log‐linear models as, “in many ways, the 

Table 1.1 Example of cross‐classifications containing nominal and ordinal measures

Percentage with High or High‐Middle Exposure (on Index)

Level of Interest

Characteristics Great Deal Quite a Lot Not Much at All

(a) Organization Membership:
Belongs to Two or More 82 (103) 68 (87) 39 (64)
Belongs to One 72 (71) 57 (74) 34 (68)
Belongs to None 62 (100) 47 (112) 24 (126)

(b) Education:
College 88 (58) 62 (37) 48 (25)
High School 71 (166) 60 (171) 30 (152)
Grammar School or Less 56 (48) 45 (62) 25 (81)

(c) Socioeconomic Status:
Higher 79 (167) 63 (120) 39 (105)
Lower 60 (108) 52 (153) 25 (154)

(d) Sex:
Men 72 (122) 60 (124) 38 (110)
Women 71 (153) 54 (149) 25 (149)

(e) Neuroticism:
Low 77 (112) 64 (106) 30 (100)
High 67 (149) 50 (147) 30 (138)

Note: Table appeared originally in Berelson, Lazarsfeld, and McPhee (1954), Voting: A Study of Opinion 
Formation in a Presidential Election. © 1954 by The University of Chicago. Reprinted with permission, 
University of Chicago Press.
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culmination of the classic Lazarsfeldian tradition. They relate to it directly, 
rather than obliquely. They focus on tables, the basic building blocks of survey 
analysis, and they provide precise tests of simple and complex versions of partial
ling and elaboration hypotheses.” Indeed, where Pearson and Yule worked with 
2 x 2 contingency tables (i.e., cross‐tabulations in which both variables c ontained 
two categories), statisticians who developed log‐linear models (see Goodman 
1978) established approaches for the simultaneous analysis of more than two 
variables, each of which may have contained more than two categories.

In addition to log‐linear modeling, the current text also addresses binary, 
multinomial, and ordinal logistic regression analyses. As with ordinary least 
squares (OLS) regression, logistic models examine the effects of one or more 
independent (explanatory, predictor) variables on a single dependent (response, 
outcome) measure.2 Like log‐linear models, logistic regression techniques 
belong to a special class of generalized linear models (GLMs), developed by 
Nelder and Wedderburn (1972). As explained in Chapter 4 of the current text, 
a GLM contains a systematic and a random component as well as a link function. 
Explanatory variables form the systematic component, while a dependent 
m easure and the probability distribution assigned to it constitute the random 
component (Agresti 2007, 66–67; see also, McCullagh and Nelder 1989). Link 
functions connect the systematic and random components.

In the case of log‐linear and logistic regression techniques, the link function 
transforms a response measure, such that the dependent variable can be m odeled 
as a linear function of explanatory measures. In OLS regression, a trans formation 
is not necessary, as the procedure models the mean of a dependent variable 
directly, using an identity link. Log‐linear analysis, which models cell frequencies, 
uses a log link function, while logistic regression analysis, which models a 
response measure containing a value between 0 and 1 (e.g., a probability), uses the 
log of the odds. Statisticians who developed logistic regression models (e.g., 
Cox 1958, McCullagh 1980) built on the work of individuals such as Chester 
Bliss (1935), who popularized the probit model, and Joseph Berkson (1944), 
who applied the term logit to log odds.3

Because advanced modeling techniques for categorical data facilitate the simul
taneous examination of multiple variables, they can help to lower the risk of Type 
I error, or a false rejection of the null hypothesis. When a researcher conducts 
multiple bivariate analyses using the same set of data, he or she increases the like
lihood of identifying “significant” relationships that may be little more than 
chance occurrences. Yet, legitimate relationships can be rejected when analyses are 
too conservative; in such cases, Type II error – a failure to reject the null hypothesis 
when it should be rejected – can occur.4 As the current text observes, examining 
multiple variables simultaneously offers an appropriate balance for controlling the 
two types of error – provided statistical tests meet their assumptions.

Categorical statistics, in general, assume independence among observations, 
and when that assumption is violated, artificial inflation of a sample may occur, 
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leaving statistical tests technically flawed. The chi‐square test statistic, in particular, 
is sensitive to sample size, and a lack of independence among observations will 
almost certainly compromise a study. As an example, while a researcher might 
content analyze 84 individual news reports, a statistician would not consider 
sentences or paragraphs within those reports independent units. Relatedly, 
c ategories within variables should be mutually exclusive and exhaustive, mean
ing that categories should be independent of one another and contain options 
for all observations. When categories lack independence and a complete set of 
response options (or content codes), observations may be classified into more 
than one category, or no categories at all. In either case, the analysis may not 
measure what it seeks to measure (i.e., the study may lack internal validity) and 
attempts to replicate the research may prove futile given an absence of reliability. 
The following section offers an overview of distributional assumptions and 
parameter estimation in categorical statistics.

Probability Distributions and Parameter Estimation

A probability distribution links the quantitative outcome of a study with the 
probability the outcome will occur. In the social sciences, statistics texts focus 
heavily on outcomes obtained through models such as ordinary least squares 
regression. OLS regression assumes a normal probability distribution with a 
dependent variable measured at the interval level. It also assumes a random 
sample and equality of v ariances, and when analyses meet these assumptions, 
OLS models yield reliable and parsimonious results. When assumptions are not 
met, parameters may be m isestimated, affecting substantive interpretations 
(see Aldrich and Nelson 1984).

In contrast to OLS regression, techniques for analyzing categorical response 
measures vary in the distributions they assume. Models covered in the current 
text generally assume one of three distributions: Binomial, multinomial, or 
Poisson (see Plackett 1981). The binomial distribution models the probability of 
observing a specific number of successes in a certain number of independent 
trials, and the multinomial distribution models the probability of observing a 
specific number of successes in each of several categories in a certain number of 
trials. The Poisson distribution models the probability of observing a specific 
number of successes in a fixed time period (see also Agresti 2007, 4–16).

In addition to differences in distributional assumptions, categorical proce
dures rely on a different type of parameter estimation. While OLS regression 
models contain parameter estimates based on least squares (LSE), techniques 
addressed in this book draw on maximum likelihood estimation (MLE). 
Addressing parameterization, Nunnally and Bernstein (1994, 148) defined an 
estimator as “a decision rule that results in a particular value or estimate that 
is a function of the data.” Developed by R. A. Fisher (for historical discussion, 
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see Aldrich 1997), MLE selects parameter estimates that have the greatest like
lihood of resulting in the observed sample (Myung 2003). Nunnally and 
Bernstein noted that while LSE shows little bias in small samples, MLE tends to 
show greater efficiency and consistency with large datasets.5

Example of Maximum Likelihood Estimation

Because MLE is central to procedures addressed in this text, it is important for 
readers to gain a sense of how maximum likelihood estimates parameters. One 
approach for demonstrating MLE is to use the binomial formula to first com
pute the probability that, in this case, a certain number of males (y) will appear 
in a sample (n), with population parameter π indicating the probability of being 
male. With factorials denoted by!, the binomial formula is expressed as:

 
P

n
y n y

y ny n yy
!

! !
, , , ,1 0 1 2  .

 

To find the probability that three men will appear in a sample of 10 with the 
probability of male being .50, one would construct the following equation:

 
P y 3

10
3 7

5 1 53 7!
! !

. .
 

One would then perform the necessary calculations to arrive at the probability 
of three men appearing in a sample of 10 individuals, given the .50 probability 
of being male:

 
P y 3

10 9 8 7 6 5 4 3 2 1
3 2 1 7 6 5 4 3 2 1

125 0078. . 1125
 

 
P y 3

3628800
6 5040

125 0078125. .
 

 
P y 3

3628800
30240

000976563.
 

 P y 3 117.  

In this case, the probability that three men will appear in the sample of 10, given 
the π value of .50, is 0.117. The formula for the probability distribution and 
the values of the parameters π and n were known, and the task was to find the 
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probability of observing outcome y. But in the practice of quantitative research, 
parameter values are not known and must be estimated from sample data. 
A researcher therefore must substitute observed data into the formula for the 
probability function and then examine different values of π. Using data from 
the example above, the formula is thus:

 
P y 3

10
3 7

13 7!
! !  

After examining the probability for multiple values of π, one arrives at a value 
for the maximum likelihood estimate; that is, the value of π at which the likeli
hood of the observed data is highest. Given observed data indicating three suc
cesses in 10 independent trials, .3 is the most probable and thus the best estimate 
for π. Maximum likelihood is used in parameterization processes for advanced 
categorical statistics and will be referenced throughout the text. The preceding 
example was designed to familiarize readers with the process, as social scientists 
often have greater familiarity with least squares estimation (see, for additional 
discussion, Myung 2003).

A Note on Statistical Software

To facilitate measurement, each chapter in this text contains a section addressing 
SPSS® techniques for categorical data analysis. Purchased by IBM® in 2009, SPSS 
is a popular software package in communication and other social science disci
plines, and the current text uses SPSS for Windows version 19. Scholars have also 
used SAS, Stata, and R, each of which functions very well in studies requiring 
multivariate statistics (see Stokes, Davis, and Koch 2012, Long and Freese 2014). 
SAS and Stata, in particular, are more powerful than SPSS; however, given the 
disciplinary prevalence of SPSS, the text focuses on that software. To conserve 
space in the text, SPSS output is condensed in certain places, with amenable font.

Chapter Summary

This chapter began with examples of categorical variables, noting that statisti
cians such as Karl Pearson and George Udny Yule differed in their assumptions 
about measurement. The chapter included an example of cross‐classified 
f requency data from the election research of Berelson, Lazarsfeld, and McPhee 
(1954) and introduced the types of statistical procedures covered in subsequent 
chapters. Unlike OLS regression, which assumes a normal probability distri
bution, procedures covered in this text assume binomial, multinomial, and 



8 Categorical Statistics for Communication Research

Poisson distributions. Additionally, instead of least squares estimation, categorical 
t echniques use maximum likelihood in parameterization processes.

Chapter Exercises

1. Define (or explain) each of the following terms as applicable to categorical 
statistics.
a. Binomial distribution
b. Dependent variable
c. Dichotomous measure
d. Discrete interval data
e. Exhaustiveness
f. Grouped interval data
g. Independent variable
h. Maximum likelihood estimation
i. Multinomial distribution
j. Mutually exclusive
k. Nominal data
l. Null hypothesis
m. Ordinal data
n. Poisson distribution
o. Polytomous measure
p. Statistical significance
q. Type I error
r. Type II error

2. Classify each measure below as nominal, ordinal, discrete interval, or 
grouped interval, briefly justifying each classification.
a. Position in news organization (advertising representative, editor, publisher, 

reporter).
b. Number of “tweets” counted in 60‐minute period.
c. Televised anti‐drug spots seen in past week (0, 1–2, 3–5, 6–9, 10–19, 20+).
d. Attitude toward establishment of federal shield law for journalists 

(strongly approve, approve, undecided, disapprove, strongly disapprove).
e. Political ideology (liberal, moderate, conservative).
f. Political party identification (democrat, republican, independent, other).
g. Number of violent acts in episode of police drama.
h. Attention to national television news (no attention, some attention, 

quite a bit of attention, a great deal of attention).
i. Empathy for speaker (none, a little, some, a great deal).
j. Length of public address (less than 60 minutes, 60–74 minutes, 75–89 

minutes, 90–104 minutes, 105–119 minutes, 120 or more minutes).



Introduction to Categorical Statistics 9

3. Use the binomial formula to find the probability that 4 women will appear 
in a sample of 10 with the probability of female being .50. Then, calculate 
a maximum likelihood estimate. Be sure to show your work, indicating the 
steps taken to perform the calculations.

Notes

1 As readers may recall from previous courses, statistical analyses inform researchers of 
whether relationships among variables exceed chance occurrences; when relationships 
exceed chance, they may be considered statistically significant. In communication 
research, scholars often establish a significance level, or alpha level, of .05, meaning that 
if researchers conducted the same analysis 100 times, they would observe similar find
ings in 95 instances. Assuming random sampling, relationships would be attributable to 
chance just 5 times in 100 cases. Lazarsfeld also recognized that data analysis involves 
more than testing relationships for statistical significance. Calculating confidence inter
vals informs researchers of where a true population value is likely to fall given sample 
estimates (see Koopmans 1987, 226–227). Confidence intervals contain a lower bound 
and an upper bound, each based on the sample data. In communication research, a 
confidence coefficient of .95 is typically selected for quantitative studies, and after 
calculating a confidence interval based on that coefficient, researchers can conclude, with 
95% certainty, that a true population value lies between the lower and upper bounds.

2 Because categorical response measures (a) may or may not contain order and (b) may 
or may not contain more than two categories, scholars who have written texts on 
categorical data analysis (see, e.g., Agresti 1990, Azen and Walker 2011, Powers and 
Xie 2000) have focused primarily on dependent variables, whose measurement is 
critical in drawing valid and reliable conclusions.

3 In general, the current text follows Fienberg (2000, 2007) in discussing advanced 
techniques for categorical data analysis, observing certain limitations with a GLM 
approach. As Fienberg (2000, 643–644) explained in the context of log‐linear mod
eling, “It is true that computer programs for GLM often provide convenient and 
relatively efficient ways of implementing basic estimation and goodness‐of‐fit assess
ment. But adopting such a GLM approach leads the researcher to ignore the special 
features of log‐linear models relating to interpretation in terms of cross‐product 
ratios and their generalizations.” Fienberg provides additional reasons for approaching 
statistical procedures as traditionally conceived, noting, for instance, the importance 
of monitoring empty cells.

4 In recent years communication scholars (see Matsunaga 2007, O’Keefe 2003, 2007, 
Weber 2007) have debated the advantages and disadvantages of using techniques 
such as the Bonferroni correction, which divides an established alpha level, or stand
ard for assuming statistical significance (e.g., p < .05), by the number of pairwise com
parisons. Thus, if a researcher did not use a multivariate technique and instead opted 
to examine variable relationships using, for instance, three separate cross‐tabulations, 
the Bonferroni correction would require the researcher to divide .05 by three, thereby 
establishing .0177 as a new significance level.
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5 In terms of estimator selection, Nunnally and Bernstein (1994, 154–155) identified 
four considerations: bias, efficiency, consistency, and sufficiency. Bias indicates the 
extent to which an expected value or average reflects an actual population parameter, 
and efficiency indicates the degree to which values obtained from different samples 
produce similar results. Consistency, Nunnally and Bernstein noted, reveals whether 
an estimate falls increasingly closer to a population parameter as the size of a sample 
increases, and sufficiency indicates whether all pertinent sample information is used 
in parameter estimation.
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More than 100 years after Pearson (1900) introduced the chi‐square test, the 
analytic technique remains one of the most popular approaches for (a) measur-
ing goodness of fit for the categories of a single variable and (b) determining 
whether an association exists between two variables in a contingency table, or 
cross‐tabulation. This chapter addresses both uses of chi‐square and also covers 
the likelihood ratio statistic as well as exact tests for small samples and McNemar’s 
test for matched pairs. The chapter includes measures of association for both 
nominal and ordinal variables, addresses frequent pitfalls in bivariate analyses, 
and concludes with instructions for univariate and bivariate analyses in SPSS.

Chi‐Square Test for Goodness of Fit

Research situations sometimes call for comparisons between observed and 
expected frequencies, the former generated through surveys, content analyses, 
and other methods and the latter based on theory or existing data. In such stud-
ies, the null hypothesis suggests that observed and expected frequencies will be 
the same (statistically), while the alternative hypothesis anticipates differences, 
or a lack of fit. Information concerning goodness of fit is useful for both 
academicians and industry practitioners, and the current chapter applies the 
chi‐square goodness‐of‐fit test to a situation involving policy compliance at a 
public university.

In December 2012 The Red & Black, the student newspaper at the University 
of Georgia (UGA), published a feature story on Title IX, a federal law prohibit-
ing sex discrimination in educational institutions that receive federal funding. In 
the context of competitive sports, Title IX stipulates that percentages of male 

2

Univariate Goodness of Fit 
and Contingency Tables 
in Two Dimensions
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and female athletes on campus reflect overall percentages of male and female 
students. In her article for The Red & Black, Mariana Heredia (2012) included 
a link to a 2010 university self‐study identifying the number of participants in 
each varsity sport at UGA. Overall, the self‐study showed relatively even num-
bers of male and female athletes; however, the study did not provide enrollment 
figures. One therefore could not discern whether relatively even numbers of 
male and female athletes met the proportionality standard of Title IX.

Data available from the United States Department of Education indicate that 
in 2010, 273 males and 266 females competed in varsity sports at UGA, with 
10,218 men and 14,081 women enrolled as undergraduates.1 One might test 
the Title IX proportionality standard by applying the chi‐square goodness‐of‐fit 
test to these athlete and overall enrollment figures, presented in Table 2.1.

The Pearson formula for calculating chi‐square (χ2) is relatively simple: The 
value of chi‐square equals the summation of expected category frequencies sub-
tracted from observed category frequencies, their quantities squared, and then 
divided by expected frequencies. Thus:

 

2
2Observed Expected

Expected  

Given the data in Table 2.1, the first task is to calculate expected counts for 
male and female athletes. In 2010 males accounted for 42.1% of all undergradu-
ate students at the university, and if one multiplies the total number of athletes 
(N = 539) by that percentage, one arrives at an expected count of 227. 
Subtracting 227 from 539, one arrives at an expected count of 312 female ath-
letes. One can then use the Pearson formula to calculate a χ2 value for the test 
statistic:

 
2

2 2273 227
227

266 312
312

16 1.
 

As indicated in the above calculation, summing the male and female category 
values results in an overall chi‐square value of 16.1. To determine whether 
this value is statistically significant, one must examine a chi‐square table (see 
Appendix A), which contains values that assume the null hypothesis is true 

Table 2.1 Data for Title IX goodness‐of‐fit test

Sex Number of Athletes Number of Students Percentage

Male 273 10,218 42.1
Female 266 14,081 57.9
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(i.e., that no differences exist between observed and expected frequencies). 
For the null hypothesis to be rejected, the chi‐square value of 16.1 must 
exceed a corresponding critical value from the table. To locate the critical 
value, one must calculate degrees of freedom, which Kerlinger and Lee (2000, 
231) described as the “latitude of variation contained in a statistical problem.” 
More generally, degrees of freedom refer to the number of items in an equa-
tion that are free to vary.

In a chi‐square goodness‐of‐fit test, degrees of freedom are calculated by sub-
tracting 1 from the number of categories. In this case, two categories exist and 
therefore degrees of freedom equal 1. Looking at the left margin of the chi‐
square table, the row for 1 degree of freedom shows a critical value of 3.841 for 
the alpha level of .05; because 16.1 exceeds this value, one rejects the null 
hypothesis and concludes significant differences between observed and expected 
frequencies. For the substantive topic of Title IX, one would conclude that even 
though the numbers of male and female athletes are relatively even, χ2 shows 
that their proportions are significantly different.2

Chi‐Square Test of Independence in Contingency Tables

Contingency tables contain frequency counts for cross‐classified categorical 
 variables. Also referred to as cross‐tabulations, contingency tables may be used 
in a descriptive manner, demonstrating statistical patterns through frequency 
counts and associated percentages, or they may be used to display variables 
tested for independence with chi‐square analysis or the likelihood ratio statistic. 
In terms of structure, contingency tables contain cells created by intersections 
among rows and columns. If a table contains two variables, respectively consid-
ered explanatory (X) and response (Y), one should position the explanatory 
measure in the rows and the categories for the response variable in the columns. 
This allows the reader to look across the table in examining how one measure 
relates to (or does not relate to) another. If variables are not viewed as explana-
tory and response, then the choice of row and column measures does not matter 
as much and is generally based on what a researcher seeks to emphasize or what 
statistical software packages assume. Although contingency tables often contain 
multiple rows and columns, the current chapter primarily uses 2 × 2 tables to 
demonstrate chi‐square and other procedures.3

The cross‐tabulation in Table  2.2 contains frequency data from a study 
(Denham 2014) that examined how a 2012 investigative series by The New York 
Times impacted content in other newspapers as well as radio and television news 
broadcasts. The study, which addressed problems in the sport of horse racing, 
analyzed the extent to which The New York Times transferred the salience of three 
issue attributes – (a) an injured or deceased horse, (b) equine drug use, and (c) a 
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trainer suspension or other disciplinary action – to other news organizations. To 
assess whether an intermedia agenda‐setting effect took place, the study analyzed 
news texts from two periods: prior to publication of the first investigative report 
and after the first report went to press. As part of examining influence on other 
news outlets, the study examined patterns of coverage in The New York Times 
itself, reasoning that coverage in other outlets would depend, to some extent, on 
how the “newspaper of record” portrayed the sport across time.

Table 2.2 indicates that 24 (13.6%) of 177 articles published in The New York 
Times prior to the investigative series mentioned the use of drugs as a story 
attribute, and following publication of the first investigative report, 42 (29.4%) 
of 143 news articles mentioned drug use in horse racing. References to equine 
drug use thus increased from the first to the second period of analysis, but did 
the references increase beyond chance? The null hypothesis suggested that time 
frame and mentions of drug use would be independent of one another, while 
the alternative hypothesis anticipated an association.

As with the goodness‐of‐fit example, the first step in an independence test is 
to calculate expected frequencies (i.e., frequencies that assume the null hypoth-
esis is true). This step involves multiplying marginal totals corresponding to 
each cell and then dividing by the total number of observations. For example, 
to calculate an expected value for cell a in Table 2.2, one would multiply the 
column total (66) by the row total (177) and then divide by the grand total 
(320). The process is then repeated for each cell, as indicated below:

 

Cell Cell

Cell

a b

c

. . . .

.

66 177
320

36 51
254 177

320
140 50

66 143
3200

29 50
254 143

320
113 51. . .Cell d

 

After calculating expected cell frequencies, the next step is to calculate a value 
for chi‐square based on the Pearson formula. To begin, one would subtract the 

Table 2.2 Cross‐tabulation of time period by drug‐use mentions in horse‐racing reports

Time Frame

Equine Drug‐Use Mentions in  
The New York Times

Mention No Mention Totals

Before First Investigative Report a b
24 (13.6%) 153 (86.4%) 177

After First Investigative Report c d
42 (29.4%) 101 (70.6%) 143

Totals 66 254 320
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expected value for cell a (36.51) from the observed value for that cell (24), 
square the resulting quantity, and divide that number by the expected value. 
The process is then repeated for each cell in the 2 × 2 cross‐tabulation, and 
summing the cell quantities then provides an overall chi‐square value:

 

Cell Cell

C

a b.
.

.
. .

.
.

.
24 36 51

36 51
4 29

153 140 50
140 50

1 11
2 2

eell Cellc d.
.

.
. .

.
.

.
42 29 50

29 50
5 30

101 113 51
113 51

1 38
2 2

 

 
2 4 29 1 11 5 30 1 38 12 079. . . . .  

For a cross‐tabulation, degrees of freedom are calculated by multiplying the 
number of rows minus one (rows − 1) by the number of columns minus one 
(columns − 1). In a 2 × 2 contingency table, (2 − 1) multiplied by (2 − 1) equals 
1 degree of freedom. Looking to the chi‐square table in Appendix A, 12.079 
exceeds the chi‐square critical value of 3.841 for the alpha level of .05. This 
means the null hypothesis of independence is rejected and a significant associa-
tion between time period and references to equine drug use is observed.

Likelihood Ratio Statistic

An alternative to the chi‐square test of independence is the likelihood ratio sta-
tistic (G 2), which follows a chi‐square distribution and usually produces a value 
close to the chi‐square estimate. Because G 2 is the statistic minimized in pro-
cesses of maximum likelihood estimation (Bishop, Fienberg, and Holland 1975, 
125; see also Agresti 1983), it is important to understand how the statistic is 
calculated. The formula below demonstrates how G 2 is calculated and how it 
differs from chi‐square:

 
G Observed

Observed
Expected

2 2 ln
 

In brief, G 2 is equal to twice the summation of observed values multiplied by the 
natural log of values derived from dividing observed by expected frequencies. For 
the data included in Table 2.2, G 2 would be calculated as follows:

G 2 2 24
24

36 51
153

153
140 50

42
42
29 5

ln
.

ln
.

ln
.

101
101

113 51
2 10 07 13 04 14 84 112

ln
.

. . .G .. .80 12 074
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As indicated, the value for G 2 is often the same as the value for χ2, and that is 
basically the case here. Because the likelihood ratio statistic follows a chi‐square 
distribution and is central to modeling techniques addressed in this text, it will 
be mentioned frequently in subsequent chapters.

Exact Tests for Small Samples

When cells in a cross‐tabulation contain relatively few observations (i.e., fewer 
than five), the chi‐square test may be unsuitable as a statistical technique (Upton 
1978, 16–18). In such cases, exact tests make it possible to test relationships for 
significance. Returning to the horse‐racing study, Table  2.3 displays a cross‐
tabulation of time period by mentions of equine drug use, substituting reports 
from National Public Radio (NPR) for reports published in The New York Times. 
The table contains just 21 observations, and one cell contains a single case. 
Faced with such a distribution, one might use an exact test, which does not rely 
on an approximation but rather provides an exact probability level.

Statistician R. A. Fisher (1934) is credited with introducing the exact test for 
2 x 2 contingency tables (for discussion, see Agresti 1992). Basing his analysis on 
marginal totals, Fisher demonstrated how the hypergeometric distribution could 
explain the probability associated with a specific arrangement of cross‐tabulated 
data. In the formula below, which yields an exact probability level (p), the four cells 
in Table 2.3 are represented by a, b, c, and d and the grand total is represented by n. 
Parenthetical expressions in the numerator equal the marginal totals in Table 2.3.

 
p

a b c d a c b d
a b c d n

! ! ! !
! ! ! ! !

! ! ! !
! ! ! ! !
9 12 6 15
1 8 5 7 21

.178
 

Calculation of factorial counts demonstrates that time frame and mentions of 
equine drug use are independent of one another; that is, there is no association 

Table  2.3 Cross‐tabulation of  time period by drug‐use mentions in  horse‐racing 
reports on NPR

Time Frame

Equine Drug‐Use Mentions on 
National Public Radio

Mention No Mention Totals

Before First Investigative Report a b
1 (11.1%) 8 (88.9%) 9

After First Investigative Report c d
5 (41.7%) 7 (58.3%) 12

Totals 6 15 21
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between the two variables. Thus, even though the frequency percentages 
appear to show differences, none actually exist in the data.

McNemar’s Test for Correlated Samples

In some cases, researchers are interested in studying matched pairs. As an example, 
an experimental researcher may be interested in whether attitudes change before 
and after exposure to a stimulus. Guided by the binomial distribution, McNemar 
(1955) developed a version of the chi‐square test that analyzes pairs of observa-
tions, as opposed to single cases, in a 2 × 2 contingency table.

To illustrate the McNemar procedure, one might consider a hypothetical 
study addressing fear appeals. A researcher is interested in whether graphic foot-
age of an auto accident will deter adolescents (N = 72) from texting while driv-
ing. The researcher designs an experiment and develops a pretest and posttest 
instrument for measuring possible changes in attitudes. After conducting the 
experiment, the researcher creates a cross‐tabulation (see Table 2.4) and uses 
McNemar’s test to analyze the data.

In Table  2.4, cell a contains individuals who recognized texting dangers 
in both the pretest and the posttest, while cell b contains individuals who recog-
nized dangers in the pretest but did not identify dangers in the posttest. Cell c 
contains individuals who did not recognize dangers in the pretest but did identify 
them in the posttest, and cell d contains individuals who did not recognize tex-
ting dangers in either test. McNemar’s test focuses on cells b and c in the cross‐
tabulation, as cells a and d contain individuals who reported no attitude change.

The null hypothesis anticipates no differences in pretest and posttest 
 attitudes, and as McNemar (1955) showed, that assumption can be tested 
with the following formula:

 
Q

b c
b cm

2

 

Table 2.4 Cross‐tabulation of paired attitudes

Recognized 
Dangers in Posttest

Did Not Recognize 
Dangers in Posttest Totals

Recognized Dangers in Pretest a b
27 8 35

Did Not Recognize Dangers 
in Pretest

c d
24 13 37

Totals 51 21 72
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For the data displayed in Table 2.4, Q m would be calculated as follows:

 
Q m

8 24
8 24
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8 00
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In this case, the value for Q m exceeded the critical value for chi‐square with 
1 degree of freedom, and the researcher would therefore conclude a significant 
difference in proportions. It appears the stimulus had an effect on research par-
ticipants in this hypothetical example, with a significant number of individuals 
who did not recognize texting dangers in the pretest recognizing dangers in 
the posttest.

Measures of Association

In his 1967 Presidential Address to the American Statistical Association, 
Frederick Mosteller (1968, 1) commented on the use of chi‐square testing in 
social science: “I fear that the first act of most social scientists upon seeing a 
contingency table is to compute chi‐square for it. Sometimes this process is 
enlightening, sometimes wasteful, but sometimes it does not go quite far 
enough.” Applied to data in a contingency table, chi‐square indicates whether an 
association exists, and this section of the chapter addresses measures of associa-
tion, which indicate the strength of variable relationships (for reference, see Cliff 
1996, Liebetrau 1983). As Mosteller noted, researchers who use chi‐square 
tests sometimes do not provide sufficient information, omitting measures of 
association and key descriptive statistics.

Odds Ratio

As a measure of association, the odds ratio (OR) is central to statistical proce-
dures such as log‐linear modeling and logistic regression analysis. Odds are 
non‐negative and reflect the probability of an event occurring relative to the 
probability of an event not occurring. An odds ratio measures the association 
between two odds (Rudas 1998). Data from the cross‐tabulation displayed in 
Table 2.2 can be used to illustrate basic calculations. Prior to the first investi-
gative report published in The New York Times, the probability (π) of an equine 
drug‐use mention in news reports was 24/177, or .136, resulting in the 
following odds:

 1
136

1 136
157

.
.

.
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To establish an odds ratio, a researcher would need to calculate the probability 
of an equine drug‐use mention appearing in an article published after the initial 
investigative report; the probability 42/143, or .294, results in odds of .416. 
Dividing the odds indicated above (.157) by the odds just calculated (.416), 
one observes an odds ratio of .377. Thus, the odds of a report from the period 
before the first investigative article containing an equine drug‐use mention 
were  .377 times the odds of a report appearing after the first investigative 
 article making such a reference. If so inclined, one could switch the order of the 
two odds (i.e., create the ratio .416/.157) and conclude that the odds of an 
article from the second period containing an equine drug‐use mention were 
2.2 times the odds of such a mention in an article published prior to the first 
investigative report.

In an odds ratio, the value 1 is important, as it indicates independence between 
X and Y. In the example involving equine drug use, dividing odds of .157 
by .416 resulted in an odds ratio of .377, which was not close to 1.0. But if one 
were to replace .157 with .419 and leave the second odds at .416, then the 
resulting odds ratio would be 1.007, leading the researcher to conclude that 
drug mentions and time period appeared independent of one another. As Agresti 
(2007, 29) explained, the value 1 offers “a baseline for comparison.”

Conceptualizing categorical data as fixed, Yule (1900, 1912) developed a 
fundamental cross‐product formula for calculating odds ratios:

 
OR

ad
bc  

Referring to the data in Table 2.2, one would calculate an odds ratio based on 
the following cross‐product equation:

 
OR

24 101
153 42
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Subsequent use of cross‐product ratios in advanced statistical procedures led 
statisticians such as Fienberg (2007, 5) to consider Yule the “founder” of log‐
linear modeling, with Knoke and Burke (1980, 10) characterizing odds ratios as 
the “workhorse” of the log‐linear technique.

Odds ratios can prove especially useful in studies containing large samples. In 
the case of chi‐square, nearly any relationship will prove “significant” with 
enough observations, and therefore a researcher examining relationships in a 
large‐sample contingency table should focus more on association than inde-
pendence (see Kline 2013). For example, drawing on data gathered in the 2011 
National Survey on Drug Use and Health, Table 2.5 contains a 2 × 2 cross‐
tabulation indicating whether teens who had communicated with parents about 
drug risks appeared less likely to experiment with marijuana. Chi‐square analysis 
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indicates they did χ2 (1, n = 18,980) = 23.01, p < .001 (United States Department 
of Health and Human Services 2011).

Examining Table 2.5, the difference in marijuana experimentation between 
adolescents who did and did not communicate with their parents about drugs 
was less than three percentage points. While 16.6% of those who had communi-
cated had also experimented with marijuana, 19.3% of those who had not com-
municated had tried the substance. Moving beyond percentage‐point differences, 
the probability of an adolescent who had communicated about drugs experi-
menting with marijuana was 1,824/11,013, or .166, and the probability of a 
teen who had not communicated choosing to experiment was 1,534/7,967, 
or .193. Allowing for the calculation of odds, the odds ratio (.199/.239 = .83) 
indicates that the odds of individuals who had communicated opting to experi-
ment with marijuana were .83 times the odds of those who had not commu-
nicated choosing to experiment. With 1.0 indicating independence, or no 
association, the variable relationship, identified at p < .001 in a chi‐square test, 
did not appear as notable in terms of odds. In fact, as explained in Chapter 3, 
which includes instructions for calculating 95% confidence intervals for odds 
ratios, variables are considered independent when confidence intervals include 
the value 1.0.

Relative Risk

Not to be confused with the odds ratio in a 2 × 2 table is relative risk, which 
compares the probabilities – not the odds – of an event occurring (see Agresti 
1990, 17). To calculate relative risk in the data from Table 2.2, a researcher 

Table  2.5 Cross‐tabulation of  communication with  parents about drug dangers 
and experimenting with marijuana

Experimentation with Marijuana

Communication with Parents Experimented Did Not Experiment Totals

Communicated a b
1,824 (16.6%) 9,189 (83.4%) 11,013

Did Not Communicate c d
1,534 (19.3%) 6,433 (80.7%)  7,967

Totals 3,358 15,622 18,980

Note: These data were gathered in the 2011 National Survey on Drug Use and Health (NSDUH). 
The data were made available by the Inter‐university Consortium for Political and Social Research 
(ICPSR) at the University of Michigan.
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would divide the probability of a drug mention in period one (.136) by the 
probability of drug mention in period two (.294). The researcher would then 
report that the probability of a drug mention in period one was .46 times the 
probability of a drug mention in period two. In general, odds ratios tend to 
appear more frequently in categorical statistics, largely because techniques such 
as log‐linear modeling and logistic regression analysis produce parameter esti-
mates in the form of log odds, which can be exponentiated to form odds ratios. 
Scholars such as Zhang and Yu (1998) have proposed approximations of relative 
risk in the context of logistic regression analysis.

Phi Coefficient

Although this text focuses primarily on odds ratios as measures of association, 
other approaches do exist for bivariate analyses. In fact, as Van Belle (2002, 7) 
noted in reviewing 2 × 2 tables, “The number of ways of looking at these simple 
four numbers is astonishing.” Although this chapter does not review all of these 
approaches, it does discuss those that receive consistent use in social‐scientific 
research, the first being the phi coefficient for 2 × 2 tables (Chedzoy 2006). 
Yule (1912) proposed the following formula for calculating phi:

 

ad bc

a b c d a c b d  

where a, b, c and d apply to four cells in a contingency table. This approach to 
phi results in values ranging from −1 to +1 with 0 indicating no association. 
Applied to the data in Table  2.2, phi would be calculated in the following 
manner:
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Examining Table 2.2, the time period following the initial report in The New 
York Times appeared in the second of two row categories, while the lack of a 
drug mention appeared in the second of two column categories. As indicted by 
the inverse association, drug mentions appeared more frequently following the 
investigative report.

The phi coefficient relates to chi‐square (see Pearson and Heron 1913) and 
can be expressed as:

 
2

2

n  
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where n equals a + b + c + d in a 2 × 2 contingency table. Given this formula, 
 statistics texts often take a seemingly obvious step for measuring phi directly:

 

2

n  

Researchers should take caution when computing phi in this manner, however, 
as it does not indicate the direction of variable relationships. Again using the 
data from Table 2.2, phi would be calculated in the following manner:
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In this calculation, the strength of the relationship is accurate, but the researcher 
would need to determine its direction. Taking the square root of a chi‐square 
value divided by the number of observations yields a positive value for phi, but 
does that value agree with how the data are presented in the contingency table? 
In practical terms, statistical software packages such as SPSS provide a phi value 
with the positive/negative distinction matching the table a researcher has con-
structed. Still, it is important to be aware of direction.

Regarding significance testing, because phi relates to chi‐square, one can 
multiply the number of observations in a contingency table by “phi‐squared” 
and arrive at a value for chi‐square, which can then be checked against a chi‐
square distribution. For example, in Table 2.2, if one multiplies an n of 320 by 
(.194)2, the resulting chi‐square value of 12.079 exceeds the critical value of 
3.841, indicating a significant relationship between time frame and mentions of 
drug use in newspaper reports. Again, the researcher would want to double‐
check the direction of variable relationships.

Cramér’s V

In 1946 Harald Cramér extended phi to larger contingency tables. His statistic, 
Cramér’s V, is perhaps the most popular measure of association for nominal vari-
ables and can be calculated using the following formula, where k can be either a 
row or column, whichever is smallest:

 
V
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The value of Cramér’s V ranges between 0 and 1, with coefficients closest 
to  1 indicating comparatively strong relationships. The cross‐tabulation in 
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Table  2.6, based on data gathered in the 2008 American National Election 
Studies (ANES), includes three categories of race and an indication of 
whether or not survey respondents had contacted a public official during the 
previous year.4

To calculate Cramér’s V for the data in Table 2.6, a researcher would first 
need to establish a value for chi‐square. In this case, chi‐square equals 17.415, 
and with 2 degrees of freedom, it is significant at p < .001. Given the value of 
chi‐square, the number of observations, and the number of columns minus 1, 
Cramér’s V would be calculated as follows:
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The value for Cramér’s V, .091, indicates that while the cross‐tabulation in 
Table 2.6 showed statistical significance (p < .001), the association between race 
and communicating with a public official during the previous year was actually 
quite modest.

Pearson’s Contingency Coefficient

Pearson also proposed a measure of association for tables larger than 2 × 2 
(see  Pearson and Heron 1913), and statistical software packages usually 
include the Pearson contingency coefficient in cross‐tabulation procedures. 
This measure of association, the maximum value for which depends on the 
number of rows and the number of columns, can be calculated using the 
 following formula:
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Table 2.6 Cross‐tabulation of race and contacting a public official during previous year

Contacted Public Official to Express Opinion

Race Yes No Totals

White 247 (18.8%) 1,065 (81.2%) 1,312
Black  60 (11.4%) 465 (88.6%) 525
Other Race  33 (12.9%) 222 (87.1%) 255
Totals 340 1,752 2,092

Note: These data were gathered in the 2008 American National Election Studies (ANES) and were 
used with the permission of the ICPSR.
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The cross‐tabulation in Table 2.7, based on data gathered in the 2008 ANES, 
includes three categories of race along with respondent perceptions of which 
political party would be most capable of managing the US economy. As with 
the race measure, the economy variable included three categories, including 
Democrats, Republicans, and Little Difference (between the two parties). The 
3 × 3 cross‐ tabulation has (3 − 1) × (3 − 1) = 4 degrees of freedom.

To calculate Pearson’s C for this contingency table, a researcher would first 
need to establish a value for chi‐square. In this case, given the size of the sample as 
well as marked differences in category frequency percentages, the chi‐square value 
is quite large: 268.226. This value easily exceeds the critical value in the chi‐square 
distribution, but as indicated by the data in Table 2.6, a large sample requires a 
measure of association to help clarify the strength of variable relationships. 
Pearson’s C, the significance of which is based on chi‐square calculations, serves 
as an appropriate measure:
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The value of C, .329, indicates a moderate level of association between race and 
perceptions of the party most capable of managing the US economy, with few 
individuals apart from White respondents indicating support for the Republican 
party. Additionally, nearly three in four Black respondents indicated Democrats 
as the party most capable of managing the economy.

Kendall’s Tau

Statistical software packages generally include phi, Cramér’s V, and the Pearson 
contingency coefficient as measures of nominal association, and one of the 
most  popular measures of association for ordinal variables is Kendall’s taub, 

Table 2.7 Cross‐tabulation of race and perceptions of party most capable of managing 
economy

Party Most Capable of Managing US Economy

Race Democrats Republicans Little Difference Totals

White 495 (35.8%) 338 (24.5%) 549 (39.7%) 1,382
Black 405 (72.2%)  15 (2.7%) 141 (25.1%) 561
Other Race 144 (52.7%)  20 (7.3%) 109 (40.0%) 273
Totals 1,044 373 799 2,216

Note: These data were gathered in the 2008 ANES and were used with the permission of the ICPSR.
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a rank‐order measure that can be applied to a pair of ordinal variables or to a 
two‐level nominal measure and an ordinal variable (Agresti 1990).5 As a meas-
ure of association, taub ranges between −1 and +1 and reflects the proportion of 
concordant pairs of observations in a contingency table minus the proportion of 
discordant pairs (Kendall 1945). In statistics, when a subject ranked higher on 
an X variable also ranks higher on a Y measure, the pair is considered concord-
ant. In contrast, a pair is discordant when a subject ranked higher on an X 
measure ranks lower on a Y variable. The following formula, which accounts for 
ties between X and Y, is used to calculate Kendall’s Taub:
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where C is the number of concordant pairs, D is the number of discordant pairs, 
Tx is the number of pairs tied only on the X variable, and Ty is the number of 
pairs tied only on the Y variable.

To demonstrate the calculation of Kendall’s taub, Table  2.8 contains 
two ordinal variables indicating campaign articles read in newspapers (A Good 
Many, Several, Just One or Two) and campaign programs watched on 
television (A Good Many, Several, Just One or Two) by participants in the 2008 
ANES study. The table contains fewer observations (N = 589) than the previous 
cross‐tabulations, as those who indicated no newspaper exposure and/or TV 
programs were not included. The 2008 ANES also divided the sample into 
groups that received “old” and “new” survey questions.

Following Gibbons (1993, 67), the first step in calculating Kendall’s taub is to 
establish the total number of concordant and discordant pairs of observations, 
as illustrated in Table 2.9a.

Table 2.8 Cross‐tabulation of television and newspaper exposure during 2008 election 
campaigns

Campaign Programs 
Watched on TV

Campaign Stories Read in Newspapers

A Good 
Many Several

Just One or 
Two Totals

A Good Many 108 (48.0%)  80 (35.6%)  37 (16.4%) 225
Several  62 (23.8%) 136 (52.3%)  62 (23.9%) 260
Just One or Two    6 (5.8%)  38 (36.5%)  60 (57.7%) 104
Totals 176 254 159 589

Note: These data were gathered in the 2008 ANES and were used with the permission of the ICPSR.
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The second step in calculating Kendall’s taub is to account for ties among 
observations. Again following Gibbons’ (1993, 67) approach, Table 2.9b estab-
lishes values for ties among the ranked data, with t representing row totals and 
u representing column totals.
Given the corrections for ties, one can calculate a value for Kendall’s taub:
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In this case, the value for Kendall’s taub is .34, indicating a moderate  association 
between exposure to campaign newspaper articles and exposure to television 
programs about the campaigns. Those who read more newspaper articles also 
tended to watch more television programs. Conversely, those who read fewer 
newspaper articles tended to watch fewer TV programs. Such a finding might be 
important for scholars of political communication, who often seek to determine 
sources of voter learning during election campaigns.

Table 2.9a Calculations of concordant and discordant pairs

Pair Concordant Totals Discordant Totals

1,1 108 (136 + 62 + 38 + 60) 31968 108 (0) 0
1,2  80 (62 + 60) 9760  80 (62 + 6) 5440
1,3  37 (0) 0  37 (62 + 136 + 6 + 38) 8954
2,1  62 (38 + 60) 6076  62 (0) 0
2,2 136 (60) 8160 136 (6) 816
2,3  62 (0) 0  62 (6 + 38) 2728
3,1   6 (0) 0   6 (0) 0
3,2  38 (0) 0  38 (0) 0
3,3  60 (0) 0  60 (0) 0
Totals 55,964 17,938

Table 2.9b Calculation of corrections for ties

t (t2 − t)/2 u (u2 − u)/2

225 25,200 176 15,400
260 33,670 254 32,131
104  5,356 159 12,561
Totals 64,226 60,092
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Goodman and Kruskal’s Gamma

A second ordinal measure is Goodman and Kruskal’s (1954) gamma coefficient. 
This measure also calls for calculations of concordant and discordant pairs, with 
the resulting coefficient, which ranges between −1 and +1, based on the follow-
ing formula:
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C D  

Using the concordant and discordant totals established in Table 2.9a, gamma 
would be calculated in the following manner:
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In this analysis, the gamma coefficient shows a moderately strong association 
between exposure to newspaper articles and exposure to television programs 
about the 2008 election campaigns. While statistical software packages display 
significance levels for the gamma coefficient, special tables are required for tra-
ditional (pencil and paper) calculations (Goodman and Kruskal 1980).

Somers’ d

A third measure of ordinal association is Somers’ d (Somers 1962). It is included 
here because of its presence in most statistical software packages and because it 
allows the researcher to position one variable as independent and one as depend-
ent in calculations. As with gamma, Somers’ d ranges between −1 and +1 and is 
interpreted in a similar form. Gibbons (1993, 73) presented the following for-
mula for Somers’ d, indicating A as the independent variable:

 

d
C D

n f
B A

i

r

i

.

2

2

1

2

 

For the media‐exposure cross‐tabulation included in Table 2.8, Somers’ d would 
be calculated in the following manner, with n representing the table total and fi 
representing column totals:
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In this case, with exposure to television programs as the independent variable 
and exposure to newspaper articles as the dependent measure, Somers’ d 
shows  an association of .34, indicating a moderate relationship between the 
two variables.

Points of Concern in Bivariate Analyses

In a classic article addressing mistakes made by researchers who had used chi‐
square analysis, Lewis and Burke (1949) identified nine sources of error: (1) lack 
of independence among single events or measures; (2) small theoretical fre-
quencies; (3) neglect of frequencies of non‐occurrence; (4) failure to equalize 
the sum of the observed frequencies and the sum of the theoretical frequencies; 
(5) indeterminate theoretical frequencies; (6) incorrect or questionable catego-
rizing; (7) use of non‐frequency data; (8) incorrect determination of the num-
ber of degrees of freedom; and (9) incorrect computations. In 1983, Delucchi 
followed up on the Lewis and Burke (1949) article and noted that while most 
of the problems had diminished across time, some of the issues remained. Lack 
of independence among observations was  –  and is  –  a significant point of 
 concern, as Delucchi (1983, 173) noted:

The value of a chi‐square statistic is difficult to evaluate as it is both a function 
of the truth of the hypothesis under test and a function of sample size. To dou-
ble the size of a sample, barring sample‐to‐sample fluctuations, will double the 
size of the associated chi‐square. To compensate for this, the data analyst should 
 always calculate an appropriate measure of association so as to allow for judging 
the  practical, that is, the meaningful significance of the findings.

Because sample size plays an important role in whether chi‐square shows sig-
nificance, researchers should ensure that sample observations are independent of 
one another; lacking independence, a sample may be subject to artificial inflation 
and a greater tendency to show “significant” results when none may be present.

Lewis and Burke (1949) also considered problems that arise when cell fre-
quencies are too low. As a test statistic, chi‐square is based on a large‐sample 
approximation, and researchers should take caution when applying chi‐square 
tests to tables containing small cell frequencies (see Good and Hardin 2006, 
110). Delucchi (1983) recommended that social scientists consider the 
“Cochran rule.” In general, Cochran (1952) suggested, researchers should 
apply chi‐square when no more than 20% of cells have expected frequencies of 
five or fewer, and no cells contain zero observations.

The sidebar accompanying this section of the chapter addresses the reluctance 
of research methodologist Paul Lazarsfeld to test bivariate relationships for sta-
tistical significance. One of his primary concerns was that introducing  additional 
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variables in a statistical system might eliminate significance at the bivariate level, 
and while the current text does not advocate the elimination of significance test-
ing, it does caution researchers about the myriad of ways in which chi‐square, in 
particular, can indicate significant findings when none may actually exist.

Paul Lazarsfeld, Significance Testing, and Two‐Dimensional 
Contingency Tables

Along with Wilbur Schramm, Harold Lasswell, Kurt Lewin, and Carl Hovland, Paul 
Lazarsfeld is recognized as a leading figure in the establishment of communication as an 
academic discipline. Founder of the Bureau of Applied Research at Columbia University, 
Lazarsfeld specialized in empirical research methods. His panel‐study designs set the stand-
ard for election research, and his work with Bernard Berelson and Hazel Gaudet (1948) 
helped to shift the dominant paradigm in media‐effects research from the hypodermic‐
needle model to the two‐step flow.

But as much as Lazarsfeld valued quantitative research, he was reluctant to test variable 
relationships for statistical significance (Rogers 1994). When he and his colleagues con-
ducted their seminal studies of communication processes during election campaigns, 
technology did not allow for the simultaneous examination of multiple variables. Given 
the potential influence of “correlated biases” (Selvin 1957) and the realization that bivar-
iate relationships could be altered dramatically by the introduction of a third variable 
(Lazarsfeld 1961), Lazarsfeld and his colleagues focused more on descriptive statistics.

Social scientists took note of the concerns Lazarsfeld expressed, and in 1970, Denton 
E. Morrison and Ramon E. Henkel edited The Significance Test Controversy – A Reader. 
In the text, Leslie Kish (1970) addressed the timeless problem of “hunting with a shot-
gun,” explaining that “hunters” typically go in search of significant relationships and, 
upon locating them, attempt to ascribe meaning to what are, in many cases, chance 
occurrences. With enough two‐dimensional analyses and a sufficiently large sample, 
many relationships will appear “significant.”

In his 1990 text Survey Research Methods, Earl Babbie suggested that significance testing, 
while based on sound logic, could not be justified in certain conditions. “Tests of signifi-
cance make sampling assumptions that are virtually never satisfied by actual sampling 
designs,” Babbie (1990, 302) wrote. Significance tests also assume nonsampling errors and 
are frequently applied to associations that violate basic assumptions (e.g., Pearson correla-
tion coefficients based on ordinal measures). Lastly, Babbie argued, researchers frequently 
misinterpret statistical significance as an indicator of the strength of an association.

More recently, in communication, Timothy R. Levine and his colleagues (2008a, 
2008b) discussed issues associated with significance testing in quantitative research. 
Their papers addressed issues such as sample size, power, and associated error. To mini-
mize problems associated with significance testing, Levine and his colleagues recom-
mend reporting effect sizes and confidence intervals, among other approaches (see also 
Levine 2013). Overall, while communication scholars should not abandon testing for 
significance, they should inform readers of additional information in reporting results 
(Kline 2013).
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SPSS Analyses

This chapter has addressed goodness of fit, independence, and association, and 
it now offers an overview of SPSS procedures, beginning with the chi‐square 
goodness‐of‐fit test. In demonstrating this test, the chapter draws on the Title 
IX data from Table  2.1. The chapter then uses the horse‐racing data from 
Table 2.2 to demonstrate the chi‐square test of independence.

Testing Goodness of Fit in SPSS

Readers may recall from the Title IX data in Table 2.1 that expected counts 
of  male and female athletes differed significantly from observed numbers χ2 
(1, n = 539) = 16.1, p < .001. This section of the chapter uses the Title IX data to 
demonstrate goodness‐of‐fit testing in SPSS. Because the present test is based 
on total frequency counts (as opposed to raw data), preliminary weighting is 
required. Observing Figure 2.1, a researcher can assign variable weights through 
the following steps:

 ● Open the Data menu.
 ● Select Weight Cases.
 ● Select the Frequency Variable to be weighted (Count) and click OK.

SPSS will then recognize 273 males and 266 females in the system.

Figure  2.1 Display of SPSS Goodness‐of‐Fit windows. Source: SPSS® Reprints 
Courtesy of International Business Machines Corporation, © 2014 International 
Business Machines Corporation
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With preliminary weighting complete, goodness of fit can be tested. Again 
observing Figure 2.1, a researcher can compare observed and expected frequen-
cies through the following steps:

 ● Open the Analysis menu.
 ● Select Nonparametric Tests followed by One Sample.
 ● In the Objective section, select Customize analysis.
 ● In the Fields section, select a measure (Sex) for the Test Field.
 ● In the Settings section, select Compare observed probabilities to hypothe-

sized, and in Options, choose Customize expected probability. (Recalling 
the data in Table 2.1, the expected probability for males is .421 and the 
expected probability for females is .579).

 ● Select OK in Chi‐Square Test Options.
 ● Select Run in One‐Sample Nonparametric Tests.

As illustrated in Figure  2.2, the goodness‐of‐fit test produced output 
re‐stating the null hypothesis and indicating a decision in reference to it. In this 
case, SPSS recommended rejection of the null hypothesis, identifying significant 
differences between observed and expected frequencies. (Note: The SPSS 
syntax for conducting a goodness‐of‐fit test is presented in Appendix B.)

Having demonstrated the goodness‐of‐fit procedure in SPSS, the chapter 
now turns to the chi‐square test of independence.

Testing Independence in SPSS

As indicated in Figure  2.3, testing two variables for independence in SPSS 
requires the researcher to first create a cross‐tabulation. To do so:

 ● Open the Analyze menu.
 ● Select Descriptive Statistics and then Crosstabs.

Figure 2.2 Display of SPSS Goodness‐of‐Fit results. Source: SPSS® Reprints Courtesy 
of International Business Machines Corporation, © 2014 International Business 
Machines Corporation
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 ● In the Crosstabs window, enter a Row (explanatory) and a Column (response) 
variable.

 ● Click Cells, select Observed Counts and Row Percentages, and click 
Continue. (While SPSS can also generate Expected Counts as well as Column 
Percentages, those options need not be selected in every case, as they can 
lead to confusion and errors in reporting results.)

As indicated in Figure 2.4, when a cross‐tabulation has been created and cell 
information specified, a researcher can then select appropriate statistics. To do so:

 ● Select Statistics.
 ● Select Chi‐square and Phi and Cramer’s V (for nominal data).
 ● Click Continue in Statistics.
 ● Click OK in Crosstabs.

Before reviewing statistical output, other measures of association available in 
SPSS should be recognized. As shown in Figure 2.4, nominal measures include 
the Contingency coefficient, Lambda, and the Uncertainty coefficient.6 Also of 
note in Figure 2.4 are four ordinal measures of association: Gamma, Somers’ d, 
Kendall’s taub, and Kendall tauc. Additional options will be covered in Chapter 3.

Table 2.10 contains SPSS output for the cross‐tabulation of Period across 
Drug (use) for 320 reports published in The New York Times. Consistent with 
Table 2.2, the cross‐tabulation reveals that 13.6% of articles published prior to 

Figure  2.3 Display of SPSS Crosstabs and Cells windows. Source: SPSS® Reprints 
Courtesy of International Business Machines Corporation, © 2014 International 
Business Machines Corporation
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the first investigative report mentioned drug use, while 29.4% of articles pub-
lished after the first article mentioned equine drugs. As indicated in the table, 
the Pearson chi‐square test proved significant, as it did earlier, along with the 
significant likelihood ratio statistic. The table also contains output for Fisher’s 
exact test, which is not necessary in this case, as well as a continuity correction 
and a linear‐by‐linear association.7 The table shows measures of association for 
the 2 × 2 table, with the phi coefficient at − .194, consistent with earlier calcula-
tions. While the output also includes a value for Cramér’s V, it is not necessary 
in this case.

A Note on Style

Prominent journals in communication tend to follow guidelines set forth in the 
Publication Manual of the American Psychological Association (6th edition, 
2013). In text, a researcher would report the statistics shown in Table 2.10 
in the following manner: χ2 (1, 320) = 12.079, p < .001, Φ = −.194. Consistent 
with the advice of Kerlinger and Lee (2000), a researcher would also want to 
mention key descriptive statistics to assist the reader in following the quantita-
tive results.

Figure 2.4 Display of statistics available in SPSS Crosstabs procedure. Source: SPSS® 
Reprints Courtesy of International Business Machines Corporation, © 2014 International 
Business Machines Corporation
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Chapter Summary

This chapter began by addressing chi‐square analysis as a test for (a) goodness of fit 
and (b) independence. It covered the likelihood ratio statistic as well as exact tests 
for small samples and McNemar’s test for matched pairs before moving to measures 
of association. The chapter addressed odds ratios and the calculation of nominal 
measures such as phi, Cramér’s V, and Pearson’s contingency coefficient before 
addressing ordinal measures Kendall’s taub, Goodman and Kruskal’s gamma, and 
Somers’ d. A section addressed points of concern in bivariate analyses and cautioned 
researchers about significance testing. Lastly, the chapter offered an overview of 
SPSS techniques for analyzing goodness of fit, independence, and association.

Table 2.10 Display of SPSS cross‐tabulation and chi‐square statistics

Period * Drug Cross‐tabulation

Drug

Mention No Mention Total

Period Before Count 24 153 177
% within Period 13.6 86.4 100.0%

After Count 42 101 143
% within Period 29.4% 70.6% 100.0%

Total Count 66 254 320
% within Period 20.6% 79.4% 100.0%

Chi‐Square Tests

Value df
Asymp. Sig. 
(2‐sided)

Exact Sig. 
(2‐sided)

Exact Sig. 
(1‐sided)

Pearson Chi‐Square 12.079 1 .001
Continuity Correction 11.132 1 .001
Likelihood Ratio 12.074 1 .001
Fisher’s Exact test .001 .000
Linear‐by‐Linear Assoc. 12.041 1 .001
N of Valid Cases 320

Symmetric Measures

Value Approx. Sig.

Nominal by Nominal Phi −.194 .001
Cramér’s V .194 .001

N of Valid Cases 320
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Chapter Exercises

1. Research in sports communication has found that, during broadcasts of 
elite sporting events, commentators sometimes focus disproportionately on 
the physical appearance of female athletes, diminishing the abilities and 
achievements of the competitors (see Billings, Halone, and Denham 2002). 
In light of such patterns, a broadcast executive has commissioned a (hypo-
thetical) study in which a researcher will compare descriptors of female 
athletes in a recently televised tournament with descriptors from coverage 
the previous year. The data appear below.

Descriptors Previous Percentage of Descriptors Current Observed Frequencies

Speed 15 23
Strength 16 34
Agility 17 36
Composure 14 30
Appearance 14 18
Intelligence 12 24
Other 12 20
Totals 100% 185

Given the previous percentages, calculate expected frequencies for the cur-
rent data and use the chi‐square goodness‐of‐fit test to determine whether 
significant differences between observed and expected frequencies appeared. 
Remember that degrees of freedom will need to be adjusted based on the 
number of categories in the equation. What do the results suggest about 
descriptor patterns relative to the findings of earlier research?

2. Tables  2.2 and 2.10 displayed data gathered from horse‐racing reports 
published in The New York Times. Referring to Table 2.2, substitute the 
numbers 6, 48, 14, and 38 in cells a, b, c, and d, respectively. These num-
bers were derived from content in the Washington Post, as opposed to The 
New York Times, and also pertained to time period and drug mentions. 
After setting up a cross‐tabulation, calculate the following: (a) chi‐square 
statistic; (b) likelihood ratio statistic; (c) odds ratio; and (d) phi coefficient. 
Provide both statistical and substantive interpretations of your results.

3. Table  2.8 contained two ordinal measures, one addressing campaign 
 programs watched on television during the 2008 election year and the other 
focusing on campaign stories read in newspapers. The cross‐tabulation 
below contains a variable addressing campaign articles read in magazines in 
place of the television variable. Given this cross‐tabulation, calculate the fol-
lowing: (a) chi‐square statistic; (b) likelihood ratio statistic; (c) Kendall’s 
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taub, (d) Goodman and Kruskal’s gamma, and (e) Somers’ d. Provide both 
statistical and substantive interpretations of your results.

Campaign Stories 
Read in Magazines

Campaign Stories Read in Newspapers

A Good Many Several Just One or Two Totals

A Good Many  52 (76.5%)  12 (17.6%)  4 (5.9%)  68
Several  36 (24.2%)  93 (62.4%) 20 (13.4%) 149
Just One or Two  22 (19.1%)  42 (36.5%) 51 (44.3%) 115
Totals 110 147 75 332

Note: These data were gathered in the 2008 ANES and were used with the permission of the 
ICPSR.

Notes

1 The website of the United States Department of Education (http://ope.ed.gov/
athletics/) contains the Equity in Athletics Data Analysis Cutting Tool, which 
provides customized reports of male and female athletic participation at colleges and 
universities in the United States.

2 This example is provided solely to illustrate a statistical technique. Many universities 
meet Title IX expectations by demonstrating they are moving in the direction of 
proportionality.

3 It should be noted here that chi‐square is a continuous distribution, and counts in 
contingency tables come from discrete distributions such as the binomial. The χ2 
value is therefore an approximation. While statisticians frequently use 2 × 2 tables 
to demonstrate calculations, chi‐square sometimes offers a poor approximation in a 
2  x 2 table, which contains 1 degree of freedom. Historically, statisticians have 
used Yates’ (1934) continuity correction for 2 × 2 tables (see also Grizzle 1967), and 
 modern software packages offer continuity corrections as well as exact tests to 
 confirm findings.

4 As a matter of protocol, it should be noted that in 2008 the ANES oversampled 
African Americans and Latinos. The survey also included new versions of questions 
already in use, in some cases splitting the sample into two sets of respondents. For 
additional information about sampling techniques in 2008, see http://www.election 
studies.org/studypages/2008prepost/2008prepost.htm.

5 Kruskal and Wallis (1952) developed a nonparametric one‐way analysis of variance 
procedure to test for equality of distributions, and their test may prove useful when 
one measure is nominal and the other ordinal.

6 Lambda and the uncertainty coefficient are measures of association that indicate a 
proportional reduction in error when one variable is used to predict another. 
Additional information on these measures can be found in the manual IBM SPSS 
Statistics Base 20 (2011).
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7 The continuity correction should be examined in 2 × 2 tables, especially in cases 
when one cell has fewer than 5 observations. A linear‐by‐linear association measures 
linearity between ordinal measures. As with Note 6, additional information on these 
measures can be found in the manual IBM SPSS Statistics Base 20 (2011).
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Chapter  2 addressed univariate goodness of fit as well as independence and 
 association in two‐dimensional contingency tables. This chapter extends the 
discussion of contingency tables to three dimensions, moving from tables that 
contain an X and a Y variable to those that contain X, Y, and Z measures. As 
the chapter explains, inferential tests such as the Cochran‐Mantel‐Haenszel 
(Cochran 1954, Mantel and Haenszel 1959) and Breslow‐Day (Breslow and 
Day 1980) procedures examine relationships between two variables given the 
presence of a third measure. While statistics texts vary in their treatment of 
these tests –  some authors prefer to move directly to log‐linear models after 
covering two‐dimensional contingency tables – the current text considers tests 
designed for three‐dimensional tables containing nominal measures useful for 
communication research. In this regard, the chapter follows scholarship in 
health communication (Heuer, Maclure, and Puhl 2011, Jarlenski and Barry 
2013) as well as public health more generally (Kuritz, Landis, and Koch 1988, 
Landis, Heyman, and Koch 1978, Preisser and Koch 1997). Demonstrating 
how the tests can be applied in content analyses and survey research, the chapter 
includes examples from the horse‐ racing study, the 2011 National Survey on 
Drug Use and Health, and the 2008 American National Election Study.

Moving from Two to Three Dimensions

Before discussing the Cochran‐Mantel‐Haenszel and Breslow‐Day procedures, 
the chapter covers basic terminology in the multivariate analysis of categorical 
data. To facilitate the discussion, the chapter draws on data from the horse‐ racing 
study (Denham 2014). While previous examples referred to equine drug use, the 

3

Contingency Tables in 
Three Dimensions
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focus here involves mentions of horse injuries or horse deaths in news copy. 
Table 3.1 contains frequency data showing horse injury or horse death mentions 
in The New York Times and the Los Angeles Times across two time periods. Because 
The New York Times focused on injured and deceased horses in its investigative 
series, the content analysis anticipated increases in references to injuries/fatalities 
in other news outlets following the initial report in The New York Times.

Regarding statistical terminology, partial tables display data to be tested 
for conditional association, which refers to the presence of at least one 
 significant relationship between two variables at a fixed level of a third. 
In  Table  3.1, one would observe a conditional association if a significant 
relationship emerged between mentions of horse injuries/horse deaths and 
time period in The New York Times or the Los Angeles Times. If a relationship 
did not appear in either outlet, then one would conclude conditional inde-
pendence, indicating that odds ratios in each partial table did not differ 
( statistically) from 1.0.

In a three‐dimensional contingency table, a marginal table contains cross‐
classified data summed across a third measure. In Table 3.1, the marginal table 
contains 489 observations, reflecting 320 reports in The New York Times and 
169 in the Los Angeles Times. A marginal association occurs when a bivariate 
relationship emerges in the marginal table. When a relationship is not observed, 
one concludes marginal independence. Notably, in a three‐way table, marginal 
independence does not imply conditional independence, and vice versa. In 
fact, Simpson’s paradox (Simpson 1951) may occur when a marginal associa-
tion moves in the opposite direction of a conditional relationship (Azen and 
Walker 2011, 86). Without due consideration to descriptive statistics at each 
level of a contingency table, researchers may draw conclusions based on an 

Table 3.1 Cross‐tabulations of time period by horse injury or death mentions in two 
newspapers

Horse Injury or Horse Death Mentions

Newspapers Time Frame Mention No Mention Totals

The New York 
Times

Before First Report a 38 (21.5%) b 139 (78.5%) 177
After First Report c 52 (36.4%) d 91 (63.6%) 143
Totals 90 230 320

Los Angeles Times Before First Report 13 (17.8%) 60 (82.2%)  73
After First Report 32 (33.3%) 64 (66.7%)  96
Totals 45 124 169

Totals Before First Report 51 (20.4%) 199 (79.6%) 250
After First Report 84 (35.1%) 155 (64.9%) 239
Totals 135 354 489
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ecological fallacy, which occurs when the characteristics of individuals are 
 misinterpreted based on aggregate data (see Blyth 1972).

Analyses of three‐dimensional contingency tables also may involve testing for 
homogenous association, which occurs when odds ratios in partial tables do not 
differ from one another. In Table  3.1, homogenous association would be 
 present if (a) relationships showed conditional independence, or (b) significant 
relationships appeared (comparatively) equal. As Azen and Walker (2011, 87) 
pointed out, while conditional independence implies homogenous association, 
homogenous association does not imply conditional independence; that is, sta-
tistically significant associations observed in partial tables may not differ from 
one another. The chapter now addresses the first of two inferential tests for 
analyzing three‐way contingency tables.

Cochran‐Mantel‐Haenszel Test

The Cochran‐Mantel‐Haenszel (C‐M‐H) procedure (Cochran 1954, Mantel and 
Haenszel 1959) tests odds ratios for conditional independence. From a methodo-
logical standpoint, the literature addressing the C‐M‐H procedure is well‐ developed, 
in part because statisticians proposed the test more than five decades ago, but also 
because, unlike the Breslow‐Day (B‐D) test, reviewed later in the chapter, the 
C‐M‐H procedure is not limited to 2 × 2 × k tables; additional categories can be 
added if necessary (Kuritz, Landis, and Koch 1988, Mantel 1963; see also Agresti 
1990, 230–235, Bishop, Fienberg, and Holland 1975, 146–147). This makes the 
test applicable to categorical data analyses containing polytomous measures.

In communication contexts, health scholars have used the C‐M‐H test to analyze 
media use (Dennison, Erb, and Jenkins 2002, Tucker and Bagwell 1991, Tucker 
and Friedman 1989), media effects (Chen et  al. 2002, Eriksson, Maclure, and 
Kragstrup 2005, Schade and McCombs 2005), and media content (Jarlenski and 
Barry 2013). Among these studies, Dennison, Erb, and Jenkins (2002) analyzed 
the television and video viewing habits of a multiethnic, low‐income, preschool 
population. The study examined associations between time spent watching televi-
sion and videos, the presence of a TV in the bedroom, and the prevalence of over-
weight children. In a content analysis, Jarlenski and Barry (2013) studied news 
media coverage of trans fats, using the C‐M‐H procedure to examine trends in 
news representations across three time periods. Among their findings, the authors 
observed that stories mentioning risks for heart disease appeared more likely to 
mention governmental actions than articles that did not mention heart problems.

Examining the data in Table 3.1, articles published in The New York Times fol-
lowing the first investigative report contained more references to horse injuries/
horse deaths than articles published prior to the first report, and a similar pattern 
emerged in the Los Angeles Times. In The New York Times, the odds of an article 
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published in the first period containing an injury or fatality reference were .478 
times the odds of an article in the second period containing such a reference. In 
the Los Angeles Times, the odds ratio was similar, at .433, and the odds ratio for 
the marginal table was .473. Given those measures of association (and the pres-
ence of three categorical variables), the chapter first uses the C‐M‐H procedure 
to test the null hypothesis of conditional independence. The formula for the 
C‐M‐H test follows a large‐sample chi‐squared distribution with 1 degree of 
freedom (see Cochran 1954, Mantel 1963, Mantel and Haenszel 1959) and 
takes the following form:
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The statistic reflects the summation of observed minus expected scores, their 
quantities squared, and then divided by the variance. Using notation from 
Agresti (2007), where row totals are represented as (n1+k, n2+k) and column 
totals are represented as (n+1k, n+2k), expected values and the variance can be 
calculated using the following formulas:
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where μ11k represents the mean (ultimately an expected value) and Var(n11k) 
 represents the variance for the cells formed at the intersection of the first row 
and first column in each partial table. The C‐M‐H test cannot be calculated 
without these preliminary formulas, and thus the first step in calculating the 
C‐M‐H statistic is to establish an expected value for the first cell in each partial 
table. Drawing on the formula shown above, expected values for The New York 
Times and the Los Angeles Times can be respectively calculated as follows:
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The next step is to calculate the respective differences between observed and 
expected cell counts:

 n111 111 38 49 78 11 78. .  

 n112 112 13 19 44 6 44. .  
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Calculations of differences between observed and expected counts are followed 
by calculations of the variances for the respective cells:
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With all values for the C‐M‐H formula determined, the test statistic can then be 
calculated:
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Recalling that a C‐M‐H test follows a chi‐square distribution with 1 degree of 
freedom, a researcher would note that 13.72 exceeds the chi‐square critical 
value of 3.84 at the alpha level of .05, thus allowing the researcher to conclude 
a conditional association between time period and mentions of horse injuries or 
horse fatalities. This means that at least one of the partial tables contains an odds 
ratio significantly different from 1.0. One can then use the Breslow‐Day test to 
assist with interpretation and to indicate whether interpretation of a common 
odds ratio is appropriate.

Breslow‐Day Test

The Breslow‐Day procedure (Breslow and Day 1980) tests the null hypothesis 
that relationships between variables X and Y are (statistically) equal at each level 
of Z; an outcome of p < .05 indicates differences in association and a rejection of 
the null hypothesis. As examples of research applications, in a study examining 
the characteristics of adolescent chat‐room users, Beebe et al. (2004) compared 
behavioral odds of users with nonusers, employing the B‐D test to draw statistical 
inferences. In examining online news portrayals of obesity, Heuer, McClure, and 
Puhl (2011) used the procedure to conclude that, relative to non‐overweight 
individuals, obese individuals were more likely to have their heads removed from 
photos, to be portrayed showing only their lower bodies, and to be shown eating 
or drinking.

Use of the Breslow‐Day test is limited to 2 × 2 × k tables, and it therefore may 
not prove sufficient for answering more complex research questions in analyses 
containing three categorical variables. Additionally, the formula for calculating 
the B‐D test is somewhat complex; however, statistical software packages such 
as SPSS will include B‐D results along with C‐M‐H output, if requested. In a 
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software analysis for the current example, the B‐D procedure showed homoge-
nous association between time frame and mentions of horse injuries or horse 
deaths in The New York Times and the Los Angeles Times χ2 (1, 489) = .048, 
p = .827. Coupled with the C‐M‐H findings, these results suggest that both of 
the partial odds ratios were different than 1.0 and thereby justify the calculation 
of a common odds ratio for the three‐way table.

The common odds ratio, termed the Mantel‐Haenszel estimate (see Azen and 
Walker 2011, 88), can be calculated using the following formula:

 

n n n

n n n
k k kk

k k kk

11 22

12 21

/

/  

Examining this equation, one observes elements of the cross‐product ratio 
 illustrated in Chapter  2. In this case, for each partial table, the numerator 
 consists of (a)(d)/n and the denominator consists of (b)(c)/n, with the Mantel‐
Haenszel estimate reflecting the summation of these quantities. Applied to the 
data in Table 3.1, the common odds ratio would be calculated in the following 
manner:

 

38 91 320 13 64 169
139 52 320 60 32 169

10 81 4 92
22 5

( ) / ( ) /
( ) / ( ) /

. .
. 99 11 36

463
.

.
 

With homogenous association satisfied by the Breslow‐Day test, one would 
conclude that, on average, the odds of an article published in period one con-
taining a reference to a horse injury or horse death were .463 times the odds 
of an article published in period two containing such a reference. Statistical 
software shows this association significant at p < .001, but a researcher can also 
calculate confidence intervals for each of the odds ratios. If the lower and 
upper bounds of a given confidence interval include the value 1.0, then the 
appropriate conclusion is independence (i.e., a failure to reject the null 
hypothesis). Conversely, if a confidence interval does not include 1.0, then an 
association may exist.

The calculations involved in creating confidence intervals provide a glimpse of 
log odds ratios, which techniques such as logistic regression analysis produce as 
parameter estimates. Given the centrality of log odds to categorical statistics, in 
general, it is important for readers to appreciate the fundamental properties of 
logarithms. In mathematics, the logarithm (or log) of a number is an exponent 
to which a fixed value (i.e., a base) must be raised to (re)produce the original 
number. For example, the logarithm of the number 100 to base 10 is 2, such 
that 100 = 10 × 10 = 102. Miller (2012, 1) expressed the relationship between 
logs and exponents in the following manner:

 logb
xa x a b  
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“The log of a, base b, equals x,” Miller (2012, 1) explained, “which implies 
that a equals b to the x and vice versa.” Through a series of calculations, the 
author noted, one can also show the following:

 logb
xb x  

The logarithm of bx cancels the exponentiation, resulting in x. For purposes 
of categorical statistics  –  and more specifically, for purposes of moving from 
multiplicative equations to additive linear expressions – Miller (2012, 1) noted 
that “An important property of logarithms is that the logarithm of the product 
of two variables is equal to the sum of the logarithms of those two variables…
Similarly, the logarithm of the ratio of two variables is equal to the difference in 
their logarithms.” Thus, for variables X and Y:

 log log logb b bXY X Y  

and

 
log log logb b b

X
Y

X Y
 

Given the focus on odds ratios, it is important to note that the log of 1 is 0 and 
that log odds have a theoretical range of minus infinity to plus infinity (see Nussbaum 
2015, 263). Because an odds ratio cannot be expressed as a negative number, its 
distribution cannot show symmetry around the value 1 (see Agresti 2007, 30–31, 
Azen and Walker 2011, 52). Statisticians therefore transform odds ratios to log 
odds ratios, where initial odds values of less than 1 are expressed as negative num-
bers and values greater than 1 are expressed as positive numbers.

While the distribution for an odds ratio cannot be estimated using a standard 
normal distribution, the distribution of a log odds ratio can, facilitating the cal-
culation of a confidence interval. To that end, the log odds ratio can be expressed 
as ln(OR)  z * SEln(θ). In the equation, z represents a number from the standard 
normal table corresponding to, in this case, a 95% confidence interval.

To begin, the standard error for a log odds ratio is calculated based on the 
following formula:

 
SE

n n n nORln

1 1 1 1

11 12 21 22  

where n11, n12, n21, and n22 respectively correspond to cells a, b, c, and d in the 
first 2 × 2 partial table displayed in Table 3.1. Standard errors for log odds ratios 
of The New York Times and the Los Angeles Times would thus be calculated in the 
following manner:

 
NYT

1
38

1
139

1
52

1
91

026 007 019 010 249. . . . .
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LAT

1
13

1
60

1
32

1
64

077 017 031 016 375. . . . .
 

After calculating standard errors for the log odds of The New York Times and the 
Los Angeles Times, the next step is to use those values in calculating 95% confi-
dence intervals. The value of z, from the standard normal distribution, is 1.96, 
and as part of the calculations, it must be multiplied by both standard errors, 
and then added to either side of the logs of the original odds ratios for the two 
newspapers. Once those steps have been taken, the estimates can be exponenti-
ated back to the level of odds ratios.

 NYT ln . . . . . . , .478 1 96 249 738 488 1 226 25  

 NYT e e[ , . ,.. . ]1 226 25 293 779  

 LAT ln . . . . . . , .433 1 96 375 837 735 1 572 102  

 LAT e e1 572 102 207 903. ., . ,.  

Based on these calculations, a researcher would conclude with 95% certainty 
that the “true” odds ratio for The New York Times lies between .293 and .779, 
and the odds ratio for the Los Angeles Times lies between .207 and .903. Neither 
confidence interval includes the value 1.0, and thus the odds ratios for both 
newspapers indicate an association and a rejection of the null hypothesis of 
independence.

An Example in Public Health

A second example on the use of Cochran‐Mantel‐Haenszel and Breslow‐Day 
tests comes from data gathered in the 2011 National Survey on Drug Use and 
Health (United States Department of Health and Human Services 2011). As 
shown in Table 3.2, instead of a 2 × 2 × 2 analysis, this example involves a 2 × 2 × 6 
contingency table, with two categories of sex positioned across whether or 
not respondents had experimented with marijuana. A six‐category race measure 
serves as a control, or stratifier. The chapter includes this example to illustrate 
the analysis of a three‐dimensional contingency table derived from a large public 
dataset, and to demonstrate the importance of examining descriptive statistics, 
odds ratios, and confidence intervals.

Given the data in Table 3.2, a researcher interested in whether race would 
affect the relationship between sex and experimentation with marijuana would 
report, first, that a Cochran‐Mantel‐Haenszel test indicated the presence of a 
conditional association χ2 (1, 18,980) = 15.841, p < .001. Examining odds ratios 
and confidence intervals, it appears the strongest association occurred among 
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Black study participants, with 20% of males and 15% of females experimenting 
with marijuana. A modest association appeared among White respondents, in 
the same direction, but confidence intervals for all other races and ethnicities 
included the value 1.0, and therefore a researcher would not report associations 
among these groups.

In the current analysis, a Breslow‐Day test indicated homogenous association 
χ2 (5, 18,980) = 5.506, p = .130, justifying the use of a common odds ratio of 
1.17. But examining the confidence interval for the common odds ratio (1.082, 
1.257), and noting that 72% of the sample consisted of White and Black indi-
viduals, a prudent researcher would conclude only a modest association between 
sex and marijuana experimentation given race as a stratifier. From the standpoint 
of practical significance, the findings appear limited.

An Example in Political Communication

The third example of a three‐dimensional contingency table draws on data 
 gathered in the 2008 American National Election Study (The American National 
Election Studies 2008) and includes instructions for the Cochran‐Mantel‐
Haenszel and Breslow‐Day tests in SPSS. As indicated in Table 3.3, the example 
involves sex as a predictor of whether respondents ever discussed politics with 
friends or family members. Race served as a control in the cross‐classifications.

Table 3.3 indicates that the odds of White males having discussed politics with 
friends or family members were 1.68 times the odds of White females having done 
so. Among Blacks and members of other races, differences between males and 
females appeared slight. The marginal table indicates that, overall, the odds of males 
having discussed politics were 1.36 times the odds of females having done so.

As Figure 3.1 illustrates, SPSS can be used to indicate whether differences in 
odds ratios for Whites, Blacks, and members of other races exceed chance. To 
set up a three‐dimensional contingency table in SPSS, a researcher should do 
the following:

 ● Select Analyze > Descriptive Statistics > Crosstabs and enter variables in the 
appropriate spaces, as shown in Figure 3.1. For the data in Table 3.3, males 
and females appear in the rows and discussing politics and not discussing 
politics appear in the columns. The three‐level race measure appears in the 
open space beneath the row and column measures, serving as a control in 
the 2 × 2 contingency tables.1

 ● Open the Cells window, select Row percentages, and click Continue.
 ● Open the Statistics window, select Risk as well as Cochran’s and Mantel‐

Haenszel statistics, and click Continue, as shown in Figure 3.1.
 ● Click OK.
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Figure  3.1 SPSS screenshots for Breslow‐Day and Cochran‐Mantel‐Haenszel tests. 
Source: SPSS® Reprints Courtesy of International Business Machines Corporation, © 2014 
International Business Machines Corporation

Table 3.3 Cross‐tabulations of sex and political discussion with race as control measure

Discuss Politics with Family and Friends

Race Sex Yes No Totals OR

White Male 225 (80.4%)  55 (19.6%) 280
Female 251 (70.9%) 103 (29.1%) 354
Totals 476 158 634 1.68

Black Male  91 (75.8%)  29 (24.2%) 120
Female 121 (75.2%)  40 (24.8%) 161
Totals 212  69 281 1.04

Other Race Male  31 (72.1%)  12 (27.9%) 43
Female  61 (75.3%)  20 (24.7%) 81
Totals  92  32 124 0.85

Totals Male 347 (78.3%)  96 (21.7%) 443
Female 433 (72.7%) 163 (27.3%) 596
Totals 780 259 1,039 1.36

Note: Data were gathered in the 2008 American National Election Study and made available by 
the ICPSR.
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Table 3.4 reports odds ratios based on both row and column frequencies. SPSS 
produces both because a researcher cannot specify which odds ratios he or she is 
interested in comparing. In this analysis, odds ratios for gender are of interest, 
and they reflect those calculated through cross‐product ratios in Table 3.3. SPSS 
also produces confidence intervals for odds ratios, as displayed in the table.

As indicated in Table  3.4, the odds of White males discussing politics were 
approximately 1.68 times the odds of White females doing so. Looking at the lower 
and upper bounds of the confidence interval for White respondents, one would 
conclude with 95% certainty that the odds ratio in the broader population would 

Table 3.4 Odds ratios reported in Risk function in SPSS

95% Confidence 
Interval

Race Value Lower Upper

1. White Odds ratio for gender:
(1 = Male/2 = Female)

1.679 1.155 2.439

Ever discuss politics with
family or friends (1 = Yes)

1.133 1.037 1.238

Ever discuss politics with
family or friends (2 = No)

.675 .506 .900

N of valid cases 634

2. Black Odds ratio for gender:
(1 = Male/2 = Female)

1.037 .599 1.798

Ever discuss politics with 
family or friends (1 = Yes)

1.009 .882 1.154

Ever discuss politics with
family or friends (2 = No)

.973 .642 1.474

N of valid cases 281

3. Other Race Odds ratio for gender:
(1 = Male/2 = Female)

.847 .367 1.954

Ever discuss politics with
family or friends (1 = Yes)

.957 .765 1.198

Ever discuss politics with
family or friends (2 = No)

1.130 .612 2.086

N of valid cases 124

Total Odds ratio for gender:
(1 = Male/2 = Female)

1.361 1.019 1.817

Ever discuss politics with
family or friends (1 = Yes)

1.078 1.006 1.156

Ever discuss politics with
family or friends (2 = No)

.792 .636 .987

N of valid cases 1,039
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fall between 1.155 and 2.439. Also of note are the confidence intervals for races 
other than Whites, namely their intersections with the value 1.0. As indicated, 
when 95% confidence intervals include the value 1.0, variables should be consid-
ered independent.

Table 3.5 contains select SPSS results for the Breslow‐Day and Cochran‐Mantel‐
Haenszel tests. The first section displays the results of the Breslow‐Day test for 
homogenous association. Here the chi‐square value of 3.400 with 2 degrees of 
freedom did not show statistical significance, and thus the null hypothesis could 
not be rejected; the odds ratios showed homogeneity.

In the second section of Table 3.5, results of the Cochran‐Mantel‐Haenszel 
tests appear, with SPSS showing two values. The software contains slight differ-
ences in the algorithms used to calculate two very similar tests, but for practical 
purposes, researchers should use the more conservative of the two, which would 
be the Mantel‐Haenszel test. Because the chi‐square value of 4.034 with 1 degree 
of freedom is statistically significant, one can conclude that at least one of the odds 
ratios in Table 3.4 is statistically distinct from 1.0. The 95% confidence interval 
showed an association among White respondents only, and while the Breslow‐Day 
test justifies a common odds ratio (OR = 1.357, p < .05), a conservative approach 
to the results would be to note the comparatively large number of Whites in the 
analysis, observing their influence in the inferential tests.

Table 3.5 Select results of Breslow‐Day and Cochran‐Mantel‐Haenszel tests in SPSS

Tests of Homogeneity of the Odds Ratio

Chi‐Squared df Sig. (2‐sided)

Breslow‐Day 3.400 2 .183
Tarone’s 3.400 2 .183

Tests of Conditional Independence

Chi‐Squared df Sig. (2‐sided)

Cochran’s 4.343 1 .037
Mantel‐Haenszel 4.034 1 .045

Mantel‐Haenszel Common Odds Ratio Estimate

Estimate 1.357
ln (Estimate) 0.305
Standard Error of ln (Estimate) 0.147
Asymp. Sig. (2‐sided) 0.038
95% Confidence Interval Common Odds Ratio Lower Bound 1.017

Upper Bound 1.811
ln (Common Odds Ratio) Lower Bound 0.017

Upper Bound 0.594
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Chapter Summary

This chapter has addressed inferential statistics for three‐dimensional contingency 
tables. The chapter focused on calculations associated with the Cochran‐Mantel‐
Haenszel procedure, which tests the null hypothesis of conditional independence, 
and also reviewed the Breslow‐Day test for homogenous association. Examples 
included data gathered in a content analysis and in survey research, and analyses 
included nominal data only. Although Mantel (1963) extended the C‐M‐H 
 statistic to include ordered categories, calculations are somewhat complex and, 
for the applied statistician, unnecessary given the emergence of log‐linear models, 
discussed in Chapter 4.

Chapter Exercises

1. The following three‐dimensional table contains information from the 
horse‐racing study. The table includes measures of time frame, whether 
newspaper reports mentioned the suspension of an individual associated 
with horse racing and, as a control variable, the individual newspaper. 
Use the data to do the following: (a) Calculate an odds ratio for the par-
tial tables as well as the marginal table; (b) calculate an expected cell 
value and variance based on formulas provided earlier in the chapter; and 

Suspension References in  
News Reports

Newspapers Time Frame Mention No Mention Totals

The New York 
Times

Before First Report a 30 (16.9%) b 147 (83.1%) 177
After First Report c 47 (32.9%) d 96 (67.1%) 143
Totals 77 243 320

Los Angeles 
Times

Before First Report 7 (9.6%) 66 (90.4%) 73
After First Report 16 (16.7%) 80 (83.3%) 96
Totals 23 146 169

Washington 
Post

Before First Report 8 (14.8%) 46 (85.2%) 54
After First Report 16 (30.8%) 36 (69.2%) 52
Totals 24 82 106

Totals Before First Report 45 (14.8%) 259 (85.2%) 304
After First Report 79 (27.1%) 212 (72.9%) 291
Totals 124 471 595
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(c) use the results of those calculations (and the differences between 
observed and expected frequencies) to calculate the Cochran‐Mantel‐
Haenszel statistic. Given that a Breslow‐Day test identified homogenous 
association, calculate (d) a common odds ratio for the table; and (e) 95% 
confidence intervals for the odds ratios in the partial tables. Lastly, 
(f) report on whether the confidence intervals included 1.0; and (g) offer 
a brief summary of what the statistics mean in terms of substantive rela-
tionships between the variables.

2. The following three‐dimensional table contains information from the 2008 
American National Election Study. The table includes measures of sex, 
approval/disapproval of the manner in which the president had handled 
the war in Iraq and, as a control variable, a categorical indicator of political 
ideology. Use the data to do the following: (a) Calculate an odds ratio for 
the partial tables as well as the marginal table; (b) calculate an expected cell 
value and variance based on formulas provided earlier in the chapter; and 
(c) use the results of those calculations (and the differences between 
observed and expected frequencies) to calculate the Cochran‐Mantel‐
Haenszel statistic. Given that a Breslow‐Day test identified homogenous 
association, calculate (d) a common odds ratio for the table; and (e) 95% 
confidence intervals for the odds ratios in the partial tables. Lastly, (f) report 
on whether the confidence intervals included 1.0; and (g) offer a brief 
summary of what the statistics mean in terms of substantive relationships 
between the variables.

Management of War in Iraq

Ideology Sex Approve Disapprove Totals

Liberal Male a 21 (15.8%) b 112 (84.2%) 133
Female c 15 (8.7%) d 157 (91.3%) 172
Totals 36 269 305

Conservative Male 29 (19.2%) 122 (80.8%) 151
Female 46 (19.9%) 185 (80.1%) 231
Totals 75 307 382

Moderate Male 9 (12.7%) 62 (87.3%) 71
Female 15 (12.1%) 109 (87.9%) 124
Totals 24 171 195

Totals Male 59 (16.6%) 296 (83.4%) 355
Female 76 (14.4%) 451 (85.6%) 527
Totals 135 747 882
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Note

1 SPSS limits the Cochran‐Mantel‐Haenszel test to 2 × 2 × k categories, reflecting the 
statistical limits of the Breslow‐Day procedure. Therefore, more advanced analyses in 
SPSS need to be handled with log‐linear models, addressed in Chapter 4.
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Chapter 3 focused on the Cochran‐Mantel‐Haenszel and Breslow‐Day tests for 
contingency tables containing three categorical variables. The present chapter 
moves from inferential tests of variable relationships to techniques that model 
associations between multiple categorical measures. In general, models offer 
greater flexibility than inferential tests do, and the hierarchical structure of a 
log‐linear model, in particular, allows researchers to conceptualize studies 
in terms of main and interactive effects. In fact, statisticians often characterize 
log‐linear models as analogs of analysis of variance (ANOVA) procedures 
(see  Fienberg 2007, Knoke and Burke 1980), and researchers familiar with 
ANOVA techniques may notice conceptual similarities between the linear and 
log‐linear approaches.

The current chapter focuses on the general log‐linear model, which does 
not draw distinctions between explanatory and response measures. Instead, 
the general model treats all variables as outcomes, modeling the natural logs 
of cell frequencies. Chapter  5 covers logit log‐linear analysis, a technique 
that  does draw distinctions between independent and dependent measures. 
All forms of log‐linear analysis belong to a special class of generalized linear 
models (GLMs) (Nelder and Wedderburn 1972), and the current chapter 
offers an overview of GLM techniques. The following section reviews the 
 evolution of log‐linear modeling and identifies a limited number of analyses in 
communication research. The chapter then reviews model components and 
processes using data from the 2008 American National Election Study and the 
2012 Monitoring the Future study. As part of this discussion the chapter 
includes instructions for fitting general log‐linear models in SPSS and also 
addresses visual displays of data.

4

Log‐linear Analysis
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Development of Log‐linear Models

As indicated in Chapter 2, George Udny Yule (1900) viewed categorical  variables 
as inherently categorical, or discrete, and demonstrated how an odds ratio could 
be calculated through a simple cross‐product equation. In 1935, Bartlett used 
the cross‐product ratio in identifying a three‐factor interaction in a 2 × 2 × 2 
contingency table (Fienberg 2007, 5). While statisticians had long observed 
first order interactions between two variables, Bartlett (1935) produced research 
showing second order interactions among three measures. R. A. Fisher, who 
 statisticians credit with developing maximum likelihood estimation (Fienberg 
and Rinaldo 2007), consulted with Bartlett, whose work Roy and Kastenbaum 
(1956) extended to measures containing multiple categories (see also Roy and 
Mitra 1956).

In the 1960s, statisticians such as Birch (1963) and Mantel (1966) helped to 
move categorical data analysis closer to the point at which sociologist and 
 statistician Leo Goodman, in a series of papers (1968, 1970, 1971a, 1971b), 
developed log‐linear models for the social sciences.1 But as important as the 
Goodman articles were to the development of log‐linear modeling, his pub-
lished studies proved too technical for many researchers (Davis 1978). Statistical 
software packages had not been developed to any “measureable” degree, and 
graduate seminars maintained a focus on ANOVA procedures and linear 
 regression models. A dearth of nontechnical material addressed social‐science 
applications of log‐linear modeling (Swafford 1980), and only a few studies 
used the technique (see Knoke 1974).

Accessible studies and monographs based on the work of Goodman, Haberman 
(1973, 1974a, 1974b), and others began to appear in the early and middle 1980s 
(Alba 1987, Gilbert 1981, Kennedy 1983), primarily in sociology (Cohen and 
Cantor 1980, Weil 1982), where researchers analyze social and economic categories 
and classifications (see Sloane and Morgan 1996).2 Since that point, researchers in 
other disciplines, including communication, have used log‐linear models to analyze 
associations among categorical variables. The following section reviews some of 
those studies.

Examples of Published Research

Relatively few communication scholars used log‐linear analysis during its formative 
period, but as Denham (2002) explained, the differing foci of published studies did 
reveal the technique’s potential to inform communication processes. In a study of 
political communication, Rust, Bajaj, and Haley (1984) used log‐linear analysis to 
determine which of three media types appeared most efficient for reaching voters 
during election campaigns, and in the context of crisis communication, Dyer, 
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Miller, and Boone (1991) applied log‐linear analysis to a study of how news  services 
covered the Exxon Valdez oil spill. Scholars also applied the technique in studies of 
interpersonal and relational communication (Honeycutt et al. 1998, Witteman and 
Fitzpatrick 1986), nonverbal behavior (Metts and Cupach 1989), group dynamics 
and conflict (Franz and Jin 1995), deviance (Katz 1994), and community involve-
ment (Rothenbuhler 1991).

More recently, Olekalns and Smith (2000) studied relationships between 
negotiation strategies and quality of outcomes, Gnisci and Bakeman (2007) 
analyzed courtroom interactions, while Catellani and Covelli (2013) studied 
the use of counterfactual communication in politics. Roberts and Liu (2014) 
used log‐linear modeling in a cross‐national study of health‐related news frames, 
and their analysis is especially instructive for the current chapter. The authors 
studied “modal arguments” in editorials across a 35‐year period, with  arguments 
consisting of five news frames (economic, security‐related, political, welfare‐
related, cultural) across four reality claims (possible, impossible, inevitable, 
 contingent). The authors created a categorical variable for time, examining 
five‐year increments, and also included a measure indicating the country in 
which the news reports originated. Four‐variable log‐linear models then tested 
relationships among news frames, reality claims, time period, and country of 
origin. Through their research, Roberts and Liu (2014) demonstrated the 
potential of log‐linear analysis to inform communication processes.

Log‐linear Analysis: Fundamentals

The general log‐linear model examines associations between two or more 
 categorical variables. Conceptually, the technique can be viewed as a cross‐ 
tabulation in more than two dimensions. In log‐linear modeling, categorical 
factors may be measured at the nominal or ordinal level (Goodman 1978, 1984), 
and statistical packages such as SPSS also allow researchers to include continuous 
covariates in analyses (although software systems usually add averages, not 
unique values, to every cell). Researchers who use log‐linear techniques typically 
analyze whether a saturated model, which contains all possible interactions and 
main effects (and therefore 0 degrees of freedom), can be reduced to a more 
parsimonious representation of the data. As Powers and Xie (2000, 135) noted, 
a saturated model “simply parameterizes observed frequencies” and therefore 
offers little substantive value. In contrast, a parsimonious model reproduces cell 
frequencies in a statistically acceptable manner and increases degrees of freedom 
by eliminating unnecessary parameters.

From a purely statistical standpoint, then, the best‐fitting model is typically 
one in which the fewest parameters provide an adequate account of cell frequencies 
(Knoke and Burke 1980, 54). As discussed later in the chapter, researchers 
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 generally identify the best‐fitting model by comparing likelihood ratio statistics 
(G 2) across competing representations of the data. Informed by a theoretical 
framework, scholars often begin with a full hierarchical model and work toward 
a simpler one. Once a model is selected, its parameter effects can be observed 
and then exponentiated to form odds ratios.

In log‐linear analyses, statisticians use the multinomial distribution for 
 predetermined samples and the Poisson distribution for modeling an unknown 
number of counts accumulating across time (Agresti 1990, 37–38). In a 
 practical sense, this means that multinomial distributions should be used in 
surveys with systematically derived random samples, while Poisson  distributions 
should be used for content analyses that proceed chronologically, without a 
known sample. (Chapter 10 addresses Poisson regression techniques for the 
analysis of count data.)

Unlike ANOVA, which uses least squares estimation in parameterization 
 processes, log‐linear models use maximum likelihood estimation and the 
Newton‐Raphson algorithm or the iterative proportional fitting algorithm of 
Deming and Stephan (Haberman 1978, 192). Bishop, Fienberg, and Holland 
(1975) noted that maximum likelihood estimation is advantageous because it is 
relatively easy to calculate and, when applied to multinomial data with several 
zero‐count cells, the procedure still produces non‐zero estimates. The following 
section reviews statistical notation in the context of two‐way tables, allowing the 
chapter to then address more complex models.

Two‐way Tables

This section of the chapter uses notation from Agresti (1990, 2007), Fienberg 
(2007), and other scholars who have offered instruction on log‐linear analysis. 
Notationally, a two‐way contingency table cross‐classifies row variable X by 
 column variable Y, with subscript i signifying rows and j indicating columns. 
Observed cell frequencies for the ith row and j th column are denoted by fij. A row 
total is denoted by i+, a column by + j, and a grand total by ++. Thus, n equals 
f++. When a third variable Z is added, its categories are denoted by subscript k. 
Symbol π indicates cell probabilities, with μ reflecting expected frequencies, λ 
indicating parameter effects, and OR indicating odds ratios. The term “log” 
refers to the natural log of a given value.

For an independence model in a two‐way contingency table, row and column 
marginal totals determine joint cell probabilities (πij). Thus: πij = πi+π+j. As Agresti 
(2007, 204–205) noted, cell probabilities serve as parameters for a multinomial 
distribution, although the general log‐linear model uses expected frequencies 
rather than probabilities (μij = nπij). Expected frequencies under the Poisson 
 distribution are also denoted by μij, and the multiplicative independence model 
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is μij = πi+π+j. Applying the natural log to each side of this equation moves the 
model from multiplicative to additive, resulting in the following log‐linear 
model of independence:

 log ij i
X

j
Y

 

where λ is a constant, i
X  is a row effect, and j

Y  is a column effect (note that X 
and Y are superscript labels only). For two‐way tables, the only remaining model 
is a saturated one. The saturated model contains the interaction term ij

XY  and 
indicates that variables X and Y are not statistically independent, but dependent 
(Agresti 2007). The model is expressed in the following manner:

 log ij i
X

j
Y

ij
XY

 

As the following section demonstrates, moving from a model containing two 
variables to one containing three measures results in a marked increase in potential 
interactions.

Three‐way Models

In analyses containing three categorical variables, four types of models exist: 
(a) mutual independence, (b) joint independence, (c) conditional  independence, 
and (d) homogenous association (Azen and Walker 2011, 137–154, Tang, He, 
and Tu 2012, 212–218, Powers and Xie 2000, 136–137). This section of the 
chapter uses a 2 × 3 × 3 display of data gathered in the 2008 American National 
Election Study (The American National Election Studies 2008) to illustrate 
and discuss each of the four models. The three categorical factors include sex 
(Male/Female), race (White/Black/Other Race), and political leaning (Liberal/
Conservative/Moderate).3 The saturated model for the three measures – sex (S), 
race (R), and political leaning (P) – is represented as:

 log ijk i
S

j
R

k
P

ij
SR

ik
SP

jk
RP

ijk
SRP

 

The model contains three main effects, three two‐way (first order) associa-
tions, and one three‐way (second order) interaction. It also contains 0 
degrees of freedom and produces expected frequencies identical to observed 
values. The researcher is tasked with fitting a model that contains fewer 
parameters but generates statistically acceptable cell frequencies. To begin a 
systematic process of model selection, a researcher might first remove the 
three‐factor interaction term, resulting in the model of homogenous associa-
tion. This model, which appears below, contains each of the two‐way interac-
tions from the saturated model, in addition to main effects, and suggests that 
 associations between any two variables are consistent across each level of a 
third measure.
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 log ijk i
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Next, conditional independence models contain two two‐way interactions. 
The three models below indicate conditional independence, with combinations 
of first order associations varying in each model. The first model indicates no 
association between race and political leaning given sex as a control. The second 
model indicates independence between sex and political leaning given race as a 
control, and the third model suggests no association between sex and race with 
political leaning controlled.
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In the first model of conditional independence, where race and political 
 leaning appear independent given the sex measure, the table can be collapsed 
along race and political leaning, but not sex. Marginal associations for sex and 
race as well as sex and political leaning appear statistically equal to partial 
 associations; however, the marginal association for race and political leaning 
does not. Commenting on conditional independence, Powers and Xie (2000, 
137) noted, “This is an important model. It means that the marginal associa-
tion…may be spurious if one ignores a relevant variable…similar to an omitted‐
variable bias in linear regression.” In other words, control measures can prove 
integral to both statistical and substantive interpretations.

Joint independence models contain just one two‐way interaction. The first of 
the three models below suggests that associations between sex and race are the 
same at each level of political leaning. The second model implies that  associations 
between sex and political leaning are the same at each level of race, and the third 
model indicates that associations between race and political leaning are the same 
at each level of sex.
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Lastly, the mutual independence model contains no interactions: Sex, race, 
and political leaning are independent of one another. This model takes the 
 following form:

 log ijk i
S

j
R

k
P
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Having reviewed four types of three‐variable log‐linear models, the chapter 
now addresses goodness of fit and the selection of parsimonious models.

Goodness of Fit and Model Selection

Like many social scientists, communication scholars frequently conduct tests 
that indicate whether a statistically significant association exists between two 
measures or whether significant differences exist between two groups. 
Researchers also test relationships involving more than two variables and more 
than two groups, but in nearly all cases, scholars report on relationships that 
appear significant at p < .05. Parametric techniques frequently include the T‐test, 
the analysis of variance, the Pearson Product Moment Coefficient of Correlation, 
and ordinary least squares regression. Scholars typically examine cross‐tabulated 
categorical data with chi‐square analysis, rejecting or failing to reject the null 
hypothesis of independence, again with p < .05 as a criterion.

Log‐linear analysis requires a different approach, as the task of locating a 
 parsimonious model involves the observation of a nonsignificant value for G 2, the 
likelihood ratio statistic. Log‐linear models are grounded in the analysis of observed 
data, with the best‐fitting models producing expected values close to observed fre-
quencies. A significant G 2 value indicates significant differences between observed 
and expected frequencies, and thus a corresponding model does not fit the data. 
Knoke and Burke (1980) recommended that a G 2 statistic contain a p‐value between 
.10 and .35, as models with p‐values greater than .35 risk over‐parameterization 
(i.e., the models fit the data “too well”) and models with p‐values less than .10 indi-
cate departures between observed and expected cell frequencies. While few statisti-
cians would reject a model in which p = .40, establishing a specific range for G 2 and 
observing that range helps to keep  analyses systematic and operationally sound.

In terms of the likelihood ratio itself, statisticians have used the measure since 
Wilks (1935) developed it, preferring it to a similar chi‐square indicator of fit. 
As Agresti (1989, 297) noted, “An advantage of the likelihood ratio statistic G 2 
is that, unlike the Pearson form of statistic, it cannot increase as the model is 
made more complex. This feature makes it useful for comparing models.” 
The G 2 statistic is also well‐suited for maximum likelihood estimation (Bishop, 
Fienberg, and Holland 1975).

Table 4.1 contains goodness‐of‐fit statistics for the four types of log‐linear 
models discussed in the previous section, beginning with homogenous associa-
tion and moving to conditional, joint, and mutual independence, respectively. 
Model 1, the homogenous association model, does not fit the data. In this 
model, which contains three main effects and three interactions, the G 2 value 
of 9.683 (df = 4) is significant at p < .05. This indicates a difference between 
observed and expected frequencies.
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Models 2, 3, and 4 test conditional independence, with Model 2 offering an 
acceptable fit. Model 2 suggests that associations between sex and race are the 
same at each level of political leaning, with Models 3 and 4 indicating, or  moving 
toward, differences between observed and expected frequencies. Models 5, 6, 
and 7 test joint independence, with Model 5 fitting the data and indicating an 
association between race and political leaning at each level of sex. Models 6 and 
7 do not fit the data and indicate differences between observed and expected 
frequencies. Likewise, Model 8, the mutual independence model, does not fit 
the data, also showing differences.

At this point, the researcher has two models to consider. Model 5 contains one 
less interaction than Model 2 and appears to offer a more parsimonious represen-
tation of variable relationships. To assess model parsimony empirically, one can 
examine differences in G 2 values and associated differences in degrees of freedom. 
Because the difference in two G 2 values is a G 2 value itself, it can be used to test 
the significance of potential parameters. In this case, the G 2 difference between 
Models 2 and 5 is 2.453 with 2 degrees of freedom. The chi‐square distribution 
indicates this difference is not statistically significant, and therefore, from a 
 statistical standpoint, Model 5 would be considered the most parsimonious.

It is important to emphasize here that empirical model fitting can and should 
be driven conceptually. As with other statistical techniques, log‐linear analysis 
should be theoretically informed and not used for quantitative “fishing expedi-
tions.” Post‐hoc explanations for variable relationships should be avoided as 
much as possible, as they tend to contribute little to theory development.

Descriptive Statistics and Residuals for the Fitted Model

Table 4.2 contains descriptive statistics and residual values for Model 5. Moving 
from left to right, the table identifies three categorical variables along with observed 
and expected frequencies. Had the table contained observed and expected values 

Table 4.1 General log‐linear analyses of sex, race, and political leaning

Model Likelihood Ratio df Significance

1. {S}{R}{P}{SR}{SP}{RP} 9.683 4 .046
2. {S}{R}{P}{SP}{RP} 9.945 6 .127
3. {S}{R}{P}{SR}{RP} 12.107 6 .060
4. {S}{R}{P}{SR}{SP} 20.774 8 .008
5. {S}{R}{P}{RP} 12.398 8 .134
6. {S}{R}{P}{SP} 21.065 10 .021
7. {S}{R}{P}{SR} 23.227 10 .010
8. {S}{R}{P} 23.519 12 .024
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from the saturated log‐linear model, the two columns would contain identical 
frequencies. A reduced model produced statistically acceptable expected counts, as 
evidenced by a nonsignificant likelihood ratio statistic (p = .134).

Four types of residual values appear in Table  4.2, which is based on SPSS 
 analyses of the 2008 ANES data. The first value, the raw residual, reflects the basic 
difference in observed and expected frequencies. As an example, 59 White males 
described themselves as liberal, with Model 5 showing an expected value of 
64.347; when one subtracts the expected value from the observed, one arrives at 
a residual value of −5.347. However, because variable categories can vary widely 
in frequency counts, researchers should also examine standardized residuals. 
Standardized residuals, also known as Pearson residuals, can be calculated by 
dividing the raw residual by an estimate of its standard deviation. In this case, the 
raw residual −5.347 has a standardized value of −.691. This value does not appear 
exceptional.

Lawal (2003, 154) suggested researchers examine standardized residuals 
greater than 2.0 for lack of fit. Examining Table 4.2, no values exceed 2.0, but 
the standardized values for Black males and Black females identifying themselves 
as liberal do approach that threshold. For Black males, the expected count is 
substantially lower than the observed value, but for Black females, the opposite 
pattern appears. A researcher might note such patterns for future scholarship. 
A  researcher also might note adjusted residuals, which divide standardized 
 values by estimates of their standard errors, as well as deviance statistics, which 
reflect the signed square root of a given cell contribution to G 2. Table 4.2 shows 
how differing forms of residuals move in similar patterns.

Parameter Estimation

Table 4.3 contains parameter estimates for Model 5. Recalling that a log‐linear 
analysis models the natural logs of expected frequencies, parameter estimates 
require exponentiation prior to substantive interpretation. Exponentiated main 
effects indicate the odds of appearing in a given variable category versus the odds 
of appearing in a variable reference category. Statistical software packages gener-
ally use the last category of a variable as the reference, but in most cases, users can 
either choose the reference category or reassign category numbers (which are 
simply labels for nominal measures). In Table 4.3, reference  categories include 
females, members of a race apart from White or Black, and political moderates; as 
shown in the table, these categories do not contain parameter estimates.

Regarding interpretation, main effects often prove inconsequential in the 
general log‐linear model, as the general model does not contain a substantive 
dependent variable. Interactions supply more useful information, and the joint 
independence model fitted to the ANES data included an interaction between 
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race and political leaning. As indicted, the joint independence model suggests 
associations between two variables are equal at each level of a third measure. 
Here, this implies associations between race and political leaning are equal at 
each level of sex, meaning the data can be collapsed.

Table  4.4 contains a 3 × 3 cross‐tabulation of race × political leaning. 
Frequencies included in the table inform the exponentiation of parameter 
 estimates from Table  4.3. For example, exponentiations of White × liberal 
(.026)  and White × conservative (.603) equal 1.03 and 1.83, respectively. 
Recalling that other race and moderate served as reference categories in the 
log‐linear analysis, one can apply cross‐product ratios to confirm exponentiated 
values, as shown here:

 OR ORl c

163 31
107 46

1 03
246 31
107 39

1 83. .  

Table  4.3 Parameter estimates for  log‐linear model containing sex, race, political 
 leaning, and interaction of race and political leaning

95% Confidence 
Interval

Parameter Estimate
Standard 

Error Z Sig.
Lower 
Bound

Upper 
Bound

Constant 2.932

Male −.427 .068 −6.325 .000 −.560 −.295
Female

White 1.239 .204 6.073 .000 .839 1.639
Black .815 .216 3.775 .000 .392 1.237
Other Race

Liberal .395 .232 1.698 ns −.061 .850
Conservative .230 .241 .954 ns −.242 .701
Moderate

White × Liberal .026 .264 .100 ns −.490 .543
White × Conservative .603 .267 2.258 .024  .080 1.126
White × Moderate

Black × Liberal .011 .279 .039 ns −.536 .558
Black × Conservative .222 .285 .780 ns −.336 .781
Black × Moderate

Other Race × Liberal
Other Race × Conservative
Other Race × Moderate
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The first of the two odds ratios (1.03) shows independence between White 
respondents and members of other races in regard to liberal political leaning. 
The second odds ratio (1.83) shows a greater likelihood of White respondents 
indicating conservative, consistent with its statistically significant parameter 
 estimate in Table 4.3. The following two odds ratios apply to Black respondents 
relative to members of other races:

 
OR ORl c

105 31
70 46

1 01
110 31
70 39

1 25. .
 

As with the odds ratios for White respondents, the first of the two odds ratios 
(1.01) shows independence between Black respondents and members of other 
races who indicated liberal relative to moderate. The second odds ratio (1.25) 
indicates a slightly higher likelihood of Black respondents indicating conserva-
tive. Overall, the most apparent differences in Table 4.4 indeed occur in the 
conservative column, with nearly one in two White respondents indicating 
 conservative compared to fewer than 4 in 10 Black respondents and one in three 
members of other races.

Generalized Linear Models

As indicated at the beginning of this chapter, log‐linear models belong to a special class of 
Generalized Linear Models (GLMs). In 1972 Nelder and Wedderburn generalized classic 
linear models to include procedures containing nonnormal dependent variables. In doing 
so, Agresti (1990, 83) noted, the authors advanced “a unified theory that encompasses 
important models for continuous and categorical variables.” Scholars had long used 
 ordinary least squares (OLS) regression to test the effects of multiple predictors, and 
Nelder and Wedderburn offered scholars a similar approach for categorical data.

Generalized linear models contain three components: systematic and random 
 components as well as a link function. Independent variables form the systematic 
 component, with researchers “fixing” these measures toward the observation of a 

Table 4.4 Cross‐tabulation of race and political leaning

Political Leaning

Race Liberal Conservative Moderate Totals

White 163 (31.6%) 246 (47.7%) 107 (20.7%) 516
Black 105 (36.8%) 110 (38.6%) 70 (24.6%) 285
Other Race 46 (39.7%) 39 (33.6%) 31 (26.7%) 116
Totals 314 395 208 917

Note: These data were gathered in the 2008 ANES and were made available by the ICPSR.
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 random component, a response variable containing an exponential distribution 
(e.g., binomial, multinomial, Poisson, gamma).

Regarding the link function, which connects the systematic and random components, OLS 
regression uses an identity link in modeling effects of explanatory measures on a continuous 
dependent variable, while techniques such as logistic regression use a logit link to transform 
the dependent variable, such that it can be modeled in a linear fashion. As suggested by their 
name, log‐linear models use a log link function to model expected frequencies (see, for 
 discussion, Dunteman and Ho 2006, Lawal 2003, 27–36, McCullagh and Nelder 1989).

In “linearizing” models for procedures containing nonnormal response variables, 
Nelder and Wedderburn (1972) moved from least squares estimation, the standard esti-
mation procedure for OLS regression, to maximum likelihood estimation. As Dunteman 
and Ho (2006, 5) explained, “When the distribution of the dependent variable is non-
normal and its variance is a function of its mean, least squares estimates are no longer 
equal to maximum likelihood estimates as they are for the normal distribution.”

Procedurally, statisticians differ on the extent to which researchers should view tech-
niques such as log‐linear modeling through a GLM lens, as Fienberg (2000, 643–644) 
explained in the context of software:

It is true that computer programs for GLM often provide convenient and relatively 
efficient ways of implementing basic estimation and goodness‐of‐fit assessment. 
But adopting such a GLM approach leads the researcher to ignore the special 
features of log‐linear models relating to interpretation in terms of cross‐product 
ratios and their generalizations, crucial aspects of estimability and existence associ-
ated with patterns of zero cells, and the many innovative representations that flow 
from the basic results of linking sample schemes.

SPSS fits log‐linear and logistic regression models through its GLM procedure and also 
contains separate procedures for the two techniques. For purposes of communication 
research, either approach will generate reliable results but, as Fienberg (2007) noted, the 
procedures designed for specific techniques offer more information.

Ordinal Log‐linear Analysis

Up to this point in the chapter, the discussion of log‐linear analysis has focused on 
associations among nominal variables. The general log‐linear model often proves 
the most useful at this level, indicating how unordered categorical variables relate 
to one another. But log‐linear models can also measure association at the ordinal 
level (see, for discussion, Agresti 1981, 1983, 1989, Clogg 1982a, 1982b, 
Goodman 1979, 1981, 1984, Haberman 1974a, Ishii‐Kuntz 1994), revealing 
patterns that ordinal tests such as Goodman and Kruskal’s gamma, Kendall’s tau, 
and Somers’ d may not capture. Agresti (1984) reviewed a series of ordinal 
 techniques, and this section of the chapter focuses on the uniform association 
model as well as an extension of that procedure.
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As a brief review, two‐dimensional contingency tables containing nominal 
variables are limited to independence and saturated models. But as Agresti 
(1984, 76) explained, “If one or both variables are ordinal…simple models exist 
that are more complex and realistic than the independence model yet are 
 unsaturated.” Using notation from Agresti, one can assign known scores {ui} 
and {vi} to respective rows and columns, assuming u1 < u2 < … < ur and 
v1 < v2 < … < vc. As indicated below, in making provision for these scores, the 
uniform association model includes an additional parameter (β); however, unlike 
models containing nominal variables, the ordinal model does not require 
 additional association parameters as variable categories increase. The uniform 
association model is thus expressed as:

 log ij i
X

j
Y

i iu u v v  

where i
X

j
Y 0, and degrees of freedom equal (r − 1)(c − 1) − 1 (for the 

added parameter).
To demonstrate the uniform association model, the chapter draws on data 

gathered in the 2012 Monitoring the Future study of twelfth‐grade students in 
the United States (Johnston et al. 2012). In this survey, students (N = 2,276) were 
asked about the frequency with which they read a newspaper as well as the level of 
risk they perceived to be associated with taking four to five drinks of alcohol per 
day. One might expect students exposed to the news at higher levels to estimate 
greater levels of risk given information about accidents, crimes, and so forth. 
Response options for newspaper exposure included never, a few times per year, 
once or twice a month, once a week, and almost daily, while risk estimates included 
none, slight, moderate, and great, with a skew toward the high end.

Given a predetermined sample and two ordinal variables, a log‐linear analysis 
assuming a multinomial distribution first tested the model of independence, 
resulting in a poor fit (G 2 = 20.744, df = 12, p = .054). However, a second model, 
which contained the extra association parameter, fit the data, with a G 2 value of 
14.997 (df = 11) and a p‐value of .18. For comparative purposes, Table  4.5 
 contains parameter estimates for the independence model, and Table  4.6 
 contains estimates for the ordinal association model.

As indicated in Table 4.6, the parameter estimate for the ordered  relationship 
between newspaper use and estimations of alcohol risk showed significance, in 
this case indicating slightly higher risk estimates among those who read the 
newspaper more frequently. Exponentiating the parameter estimate for the 
association (.057) results in a constant odds ratio of 1.06, and when one expo-
nentiates the log odds for the 95% confidence interval, it appears the true 
 population score ranges between 1.01 and 1.11. Although the odds ratio does 
not include the value 1.0, a researcher would want to consider potential 
 differences between statistical and substantive significance.
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Three Ordinal Measures

In certain research contexts, scholars may be interested in analyzing associations 
among three ordinal variables, and as a guide to such analyses, this section of the 
chapter focuses on an extension of the linear‐by‐linear association model. The 
“homogenous uniform association model,” Agresti (1984: 90) noted, contains 
just three more parameters than the independence model. Degrees of freedom 

Table  4.5 Parameter estimates for  log‐linear model containing newspaper use and 
alcohol risk

95% Confidence Interval

Parameter Estimate SE Z Sig. Lower Bound Upper Bound

Constant 4.403

NP Never 1.870 .101 18.501 .000 1.672 2.068
NP Year 1.748 .102 17.149 .000 1.548 1.948
NP Month 1.357 .105 12.865 .000 1.150 1.564
NP Week 1.107 .109 10.206 .000 .895 1.320
NP Day

No Risk −3.129 .120 −25.991 .000 −3.365 −2.893
Slight Risk −2.464 .088 −27.993 .000 −2.637 −2.292
Moderate Risk −1.371 .055 −25.026 .000 −1.478 −1.263
Great Risk

Table 4.6 Parameter estimates for log‐linear model containing newspaper use, alcohol 
risk, and ordinal association parameter

95% Confidence Interval

Parameter Estimate SE Z Sig. Lower Bound Upper Bound

Constant 3.317

NP Never 2.697 .365 7.381 .000 1.981 3.413
NP Year 2.371 .284 8.337 .000 1.813 2.928
NP Month 1.774 .207 8.563 .000 1.368 2.180
NP Week 1.317 .141 9.350 .000 1.041 1.593
NP Day

No Risk −2.747 .196 −13.984 .000 −3.132 −2.362
Slight Risk −2.205 .139 −15.898 .000 −2.477 −1.933
Moderate Risk −1.239 .078 −15.883 .000 −1.391 −1.086
Great Risk

NP × Risk .057 .024 2.369 .018 .010 .104
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are calculated as (rcl − r − c − l − 1), and the model can be tested and reduced as 
necessary. Absent the three‐way interaction, it is expressed as:

 

log ijk i
X

j
Y

k
Z XY

i j

XZ
i k

YZ

u u v v

u u w w vjj kv w w  

As an example of how this model might be applied, a researcher may be 
 interested in studying associations between newspaper use, perceptions of the 
risks associated with anabolic‐steroid use in amateur and professional sports, and 
participation in school‐sponsored athletics. One might expect adolescents 
exposed to newspaper reports at higher levels to estimate greater risk associated 
with performance‐enhancing substances, given news items on hazardous side 
effects, failed drug tests, and so forth. One also might expect sports  participation 
to affect this association, as adolescent athletes often communicate among 
themselves about issues such as drugs in sports. Additionally, athletes read the 
newspaper to stay abreast of the competition and to follow developments in 
professional athletics.

Drawing on the 2012 Monitoring the Future data (Johnston et al. 2012), a 
three‐variable ordinal log‐linear analysis included the five‐level newspaper‐use 
measure from the earlier example, perceptions of steroid risk (no risk, slight risk, 
moderate risk, great risk), and the extent to which respondents participated in 
school‐sponsored athletics (not at all, slight extent, moderate extent,  considerable 
extent, great extent). Table 4.7 includes a series of models testing newspaper 
exposure (N), perceived steroid risk (S), and participation in athletics (P).

As Agresti (1984) explained, the homogenous uniform association model 
(see Model 1 in Table 4.7) contains three more parameters than the  independence 
model (Model 8). Just 3 degrees of freedom separate the most complex from the 
simplest representation of variable relationships. For purposes of this chapter, 
the models in Table 4.7 are instructive in that several fit the data, and what 

Table 4.7 General log‐linear analyses of newspaper use, steroid risk 
perceptions, and participation in school‐sponsored athletics

Model Likelihood Ratio df Sig.

1. {N}{S}{P}{NS}{NP}{SP} 91.558 85 .294
2. {N}{S}{P}{NS}{NP} 93.839 86 .264
3. {N}{S}{P}{NS}{SP} 126.652 86 .003
4. {N}{S}{P}{NP}{SP} 95.453 86 .228
5. {N}{S}{P}{NS} 129.106 87 .002
6. {N}{S}{P}{NP} 98.043 87 .196
7. {N}{S}{P}{SP} 133.868 87 .001
8. {N}{S}{P} 136.543 88 .001
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would appear the most parsimonious representation (Model 6) does not neces-
sarily offer the best fit. Generally, in a log‐linear analysis, a model containing 
more parameters needs to offer a significantly better fit than one with fewer 
parameters, and in this case, Model 2, which contains two interactions, fits the 
data better than Model 6. The G 2 difference, 4.204 with 1 degree of freedom, 
is significant at p < .05. In other G 2 comparisons, Model 1 did not offer a better 
fit than Model 2, and Model 4 did not offer a better fit than Models 6 and 2. 
Inspection of the data reveals that perceptions of steroid risk and sports partici-
pation were indeed independent of one another, given newspaper use. Those 
who participated in athletics to a greater extent tended to read the newspaper 
more frequently, and those who read the newspaper more frequently estimated 
marginally higher levels of risk.

Table 4.8 contains parameter estimates from Model 2. Exponentiating the 
interaction parameter estimates of .043 and .059 results in constant odds ratios 
of 1.04 and 1.06, neither of which suggests great substantive importance. Again, 
in an applied setting, a researcher would want to discuss both statistical and 
substantive associations, informing readers of whether quantitative findings 
offer insight into media use and perceptions of risk.

Table 4.8 Parameter estimates for ordinal log‐linear model containing newspaper use, 
steroid risk, sports participation, and two interactions

95% Confidence Interval

Parameter Estimate SE Z Sig. Lower Bound Upper Bound

Constant 1.099

NP Never 3.082 .329 9.357 .000 2.437 3.728
NP Year 2.682 .259 10.355 .000 2.174 3.189
NP Month 1.968 .193 10.208 .000 1.590 2.346
NP Week 1.398 .136 10.258 .000 1.130 1.665
NP Day

No Risk −2.709 .193 −14.068 .000 −3.086 −2.331
Slight Risk −1.870 .128 −14.590 .000 −2.121 −1.619
Moderate Risk −.727 .071 −10.285 .000 −.865 −.588
Great Risk

No Participation .887 .108 8.230 .000 .676 1.099
Slight Extent −.927 .114 −8.146 .000 −1.150 −.704
Moderate Extent −.982 .098 −10.069 .000 −1.173 −.791
Considerable Extent −.919 .082 −11.220 .000 −1.080 −.759
Great Extent

NP × Steroid Risk .043 .022 2.010 .044 .001 .085
NP × Participation .059 .010 5.888 .000 .039 .079
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More Complex Models

Log‐linear models can be applied to analyses containing more than three 
 categorical variables, and this section of the chapter uses a 2 × 3 × 3 × 3 model 
with a single covariate to demonstrate the processes involved. It also includes 
instructions for conducting a log‐linear analysis in SPSS. Grounded in identity 
politics, the section includes ANES variables addressing sex, race, personal 
 optimism, and national optimism, with survey respondents indicating attitudes of 
optimistic, pessimistic, or neither optimistic nor pessimistic. Additionally, a con-
tinuous  covariate indicates the average number of days per week that respondents 
talked about politics with family and friends during the 2008 election campaigns. 
In  certain research settings, scholars may have theoretical reasons for anticipating 
covariation. In this case, scholars of political communication might expect 
responses about personal and national optimism to vary across race, and possibly 
sex, with frequency of discussion influencing the relationships.

Figure 4.1 contains a screenshot of log‐linear options in SPSS (Analyze > General 
Loglinear Analysis).4 In this window, the researcher can choose between Poisson 
and multinomial distributions; because ANES researchers used a predetermined 
sample in gathering data, the current analysis uses the multinomial option. 
As indicated in the figure, the analysis included four categorical factors,  including 

Figure  4.1 SPSS screenshot of general log‐linear options. Source: SPSS® Reprints 
Courtesy of International Business Machines Corporation, © 2014 International Business 
Machines Corporation
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sex (S), race (R), personal optimism (P), and national optimism (N), as well as 
the covariate measuring frequency of political discussion (D).

Looking to the Options window, one should select, at a minimum, 
Frequencies, Residuals, and Estimates, while also including a 95% confidence 
interval as well as a value for delta should zero‐count cells appear. Customarily, 
researchers using log‐linear models set delta at .5 (Knoke and Burke 1980), 
although there is not an absolute standard. Delta should be set to 0 when there 
are no empty cells. As indicated in the window, plots are also available as part of 
a log‐linear analysis in SPSS, and the default values for maximum iterations and 
convergence (i.e., 20 and .001) are generally acceptable.

In addition to selecting options shown in Figure 4.1, a researcher also must 
establish a model to test. In this regard, Figure 4.2 contains the SPSS Model 
window, and as indicated, one can choose between saturated and custom models. 
The model constructed in Figure  4.2 includes all terms except a four‐way 
 interaction. Designed in a hierarchical manner, the model contains four three‐
way interactions, six two‐way associations, four main effects, and one covariate.5

In Table 4.9, Model 1 includes the main effects, interactions, and covariate just 
described; with a p‐value of .217, the model offers a strong fit to the data, yet it 
includes just 7 degrees of freedom. Proceeding from a perspective in  identity 
politics, a researcher might begin eliminating terms that do not involve race 
and ethnicity, as reflected in Models 2, 3, and 4. These models examine fit with 

Figure 4.2 SPSS screenshot of log‐linear model construction Source: SPSS® Reprints 
Courtesy of International Business Machines Corporation, © 2014 International Business 
Machines Corporation
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three‐factor interactions systematically removed. As indicated by the significance 
levels, none of the resulting models fit the data, although Model 2 appears close.  
The significance levels for Models 3 and 4 suggest over‐parameterization, calling 
for reduced complexity.

Models 5 through 10 vary in their inclusion of two‐factor associations. 
Continuing with the conceptualized strategy for removing terms, the first three 
models in the section appear slightly over‐parameterized, but a key difference 
emerges in moving from Model 7 to Model 8. Removing the association 
between personal and national optimism results in significant differences 
between observed and expected frequencies. These differences continue through 
the independence model (Model 11), and the task then becomes one of  
re‐entering theoretically and statistically meaningful associations. In that regard, 
Model 13 offers a  parsimonious explanation of the data and includes just two 
two‐factor  interactions in addition to main effects and the communication 
covariate. While Model 1 contained just 7 degrees of freedom, Model 13 
 contains 39, and the G 2 difference between the two, 38.619 with 32 degrees of 
freedom, is not statistically significant; therefore, the simpler model is  preferred, 
provided it fits theoretical expectations.

Table 4.10 contains goodness‐of‐fit statistics from the SPSS analysis of Model 
13. As the table shows, the G 2 value of 48.147 with 39 degrees of freedom 

Table  4.9 General log‐linear analyses of  sex, race, personal optimism, and  national 
optimism with frequency of political discussion as covariate

Model Likelihood Ratio df Sig.

 1.  {SRP}{SRN}{SPN}{RPN}{SR}{SP}{SN}{RP}
{RN}{PN}{S}{R}{P}{N}{D}

9.528 7 .217

 2.  {SRP}{SRN}{RPN}{SR}{SP}{SN}{RP}{RN}
{PN}{S}{R}{P}{N}{D}

11.607 11 .394

 3.  {SRP}{RPN}{SR}{SP}{SN}{RP}{RN}{PN}{S}
{R}{P}{N}{D}

12.891 15 .611

 4.  {RPN}{SR}{SP}{SN}{RP}{RN}{PN}{S}{R}
{P}{N}{D}

14.030 19 .782

 5. {SR}{SP}{SN}{RP}{RN}{PN}{S}{R}{P}{N}{D} 27.958 27 .413
 6. {SR}{SN}{RP}{RN}{PN}{S}{R}{P}{N}{D} 28.220 29 .506
 7. {SR}{RP}{RN}{PN}{S}{R}{P}{N}{D} 29.006 31 .569
 8. {SR}{RP}{RN}{S}{R}{P}{N}{D} 307.313 35 .000
 9. {SR}{RP}{S}{R}{P}{N}{D} 326.127 39 .000
10. {SR}{S}{R}{P}{N}{D} 336.458 43 .000
11. {S}{R}{P}{N}{D} 348.828 45 .000
12. {PN}{S}{R}{P}{N}{D} 53.857 41 .086
13. {SR}{PN}{S}{R}{P}{N}{D} 48.147 39 .150
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shows an acceptable fit (p = .15), and the table also confirms the model design as 
well as the multinomial distribution. Following that table, Table 4.11a contains 
descriptive statistics and residuals for male respondents. As indicated earlier, 
SPSS provides four indicators of differences between observed and expected 
frequencies, and in this case, no standardized residuals reached 2.0. Examining 
Table  4.11b, which contains descriptive statistics for female respondents, 
 outlying values did not reach 2.0, but like Black males, Black females appeared 
more optimistic than (statistically) expected.

Table 4.12 contains parameter estimates for Model 13. Main effects essen-
tially reproduced basic descriptive statistics, indicating, for example, that males 
were (exp).111 = 1.11 times as likely as females to appear, while Whites were 
(exp)1.840 = 6.3 times as likely as individuals from other races to appear. 
Regarding interactions, the referent category for both optimism measures was 
the third option, in which respondents indicated neither optimism nor pessi-
mism. Parameter estimates show that individuals who indicated personal 
 optimism were (exp)2.078 = 8.0 times as likely to indicate national optimism, 
and they were (exp).882 = 2.41 times as likely to indicate national pessimism. 
Those who appeared personally pessimistic were (exp).312 = 1.37 times as likely 
to express national optimism, and they were (exp)2.392 = 10.94 times as likely to 
express national pessimism. Thus, overall, the two variables measuring personal 
and national optimism tended to move in similar directions, helping to explain 
cell frequencies in the multidimensional table.

Visual Displays

As log‐linear models become increasingly complex, visualizing relationships in a 
full multidimensional contingency table can become difficult. To facilitate inter-
pretation, researchers sometimes draw on elements of mathematical graph theory. 

Table  4.10 SPSS goodness‐of‐fit display for log‐linear 
model containing sex, race,  personal optimism, national 
optimism, and political discussion covariate

Goodness‐of‐Fit Tests a,b

Value df Sig.

Likelihood Ratio 48.147 39 .150
Pearson Chi‐Square 41.566 39 .360

a Model: Multinomial
b Design: Constant + V081101 + V081102 + V085061 + V085062 + 
V085109 + V085061 * V085062 + V081101 * V081102
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Table 4.12 SPSS parameter estimates for log‐linear model containing sex, race, personal 
optimism, national optimism, and political discussion covariate

95% Confidence Interval

Parameter Estimate SE Z Sig. Lower Bound Upper Bound

Constant 1.888
Male .111 .180 .616 .538 −.241 .463
Female

White 1.840 .141 13.018 .000 1.563 2.117
Black .773 .161 4.788 .000 .456 1.089
Other Race

Personal Optimism −.365 .133 −2.751 .006 −.626 −1.050
Personal Pessimism −1.920 .233 −8.223 .000 −2.377 −1.462
Personal Neither

National Optimism −.689 .141 −4.876 .000 −.966 −.412
National Pessimism −1.526 .191 −7.975 .000 −1.901 −1.151
National Neither

Political discussion .191 .063 3.043 .002 .068 .314
Personal Optimism ×
National Optimism 2.078 .174 11.948 .000 1.738 2.419

Personal Optimism ×
National Pessimism .882 .239 3.686 .000 .413 1.351

Personal Optimism ×
National Neither

Personal Pessimism ×
National Optimism .312 .360 .867 .386 −.393 1.017
Personal Pessimism ×
National Pessimism 2.392 .312 7.670 .000 1.780 3.003

Personal Pessimism ×
National Neither

Personal Neither ×
National Optimism

Personal Neither ×
National Pessimism

Personal Neither ×
National Neither

Male × White −.433 .194 −2.228 .026 −.813 −.052
Male × Black −.496 .225 −2.204 .028 −.938 −.055
Male × Other Race

Female × White
Female × Black
Female × Other Race
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Applied to log‐linear analysis, graph vertices refer to the categorical  variables 
under study, and edges, or lines, represent first‐order interactions (Khamis 2011). 
Darroch, Lauritzen, and Speed (1980) used an edge  connecting two vertices to 
indicate a direct association and the absence of an edge to  indicate either inde-
pendence or conditional independence. Given their approach, Khamis (2011, 
34–36) offered the following examples of three‐variable models, addressed 
 earlier in the current chapter:

(X) (X) (X) (X)

(Y) (Z) (Y) (Z) (Y) (Z) (Y) (Z)
Mutual Joint Conditional Homogenous
Independence Independence Independence Association
[X][Y][Z] [X][YZ] [XY][YZ] [XY][XZ][YZ]

•• • • • • • •

••••

As shown in the figures, edges connecting vertices indicate associations 
among the respective variables, while the absence of an edge indicates inde-
pendence or conditional independence. As Darroch, Lauritzen, and Speed 
(1980, 537) explained, graphs can become especially useful in analyses containing 
more than three variables, where it may be “difficult a priori to have very 
 precise ideas about the relevant models and where one initially is looking for 
possible conditional independence among factors.” Ideally, a conceptual 
 framework will offer insight on a priori ideas, but in some cases, little is known 
about associations among the variables in a model.

Khamis (2011, 37–38) and Everitt (1992, 94) illustrated the graphing 
approach with the following examples involving four categorical variables:

(V) (X)

(Y) (Z)

[VXY][XZ][YZ]

(V) (X)

(Y) (Z)

[VXY][XZ]

(V) (X)

(Y) (Z)

[XY][YZ]

These examples illustrate two‐ and three‐factor associations in four‐dimensional 
contingency tables. In the first case, one observes a single three‐factor association 
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along with two two‐factor associations. In the second example, the two‐factor 
association YZ drops out, and in the third case, no three‐factor associations appear. 
In this example, variable V is independent of all other measures, whereas variable 
X is independent of variable Z, contingent on the level of variable Y.

Chapter Summary

This chapter has focused on log‐linear analysis as a multivariate statistical 
technique. General log‐linear analysis treats all variables as outcomes and 
models the natural logs of cell frequencies. The chapter began with a brief 
history of log‐linear modeling and identified a limited number of studies in 
communication. It reviewed models for two and three nominal measures in 
addition to models for two and three ordinal variables. The chapter included 
SPSS instructions in discussing more complex models, in this case those con-
taining four nominal variables and a continuous covariate. It also offered 
examples of graphical representations.

Chapter Exercises

1. Based on the material covered in this chapter, use the General Loglinear 
Analysis program in SPSS to analyze relationships among the following 
 categorical variables: sex (Male, Female), race (White, Black, Other Race), 
and presidential approval (Approve, Disapprove). The first task is to select 
the appropriate model, beginning with all two‐factor interactions and then 
simplifying. After selecting a model, report its parameter estimates and 
standard errors in addition to Z values, significance levels, and 95% confidence 
intervals. Exponentiate the parameter estimates and report the associated odds 
ratios, offering a brief summary of what the findings suggest about sex, race, 
and presidential approval.

Males Females

Race Approval Freq. Race Approval Freq.

White Approve 206 White Approve 227
Disapprove 408 Disapprove 551

Black Approve 12 Black Approve 18
Disapprove 221 Disapprove 314

Other Approve 26 Other Approve 25
Disapprove 104 Disapprove 125
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 The data for this exercise, gathered in the 2008 ANES, will need to be 
entered in grouped frequencies, as shown in the figure below. Data can be 
entered directly in SPSS or can be entered in an Excel spreadsheet and then 
imported into SPSS. In either case, categories will need to be assigned 
numeric labels and weighted (Data > Weight Cases), as shown in the figure. 
Variables can then be entered in the General Loglinear Analysis program 
and modeled, as shown in the chapter.

 
  SPSS screenshot of grouped frequencies Source: SPSS® Reprints Courtesy of 

International Business Machines Corporation, © 2014 International Business 
Machines Corporation

2. Use the General Loglinear Analysis program in SPSS to analyze relation-
ships among the following categorical variables: read about campaign in 
newspaper (Yes, No), discussed politics with family or friends (Yes, No), and 
attitude toward the United States (Optimistic, Pessimistic, Neither 
Optimistic nor Pessimistic). As with the previous question, data will need to 
be grouped in SPSS. After weighting, select the appropriate model, begin-
ning with all two‐factor interactions and then simplifying. After selecting a 
model, report its parameter estimates and standard errors in addition to Z 
values, significance levels, and 95% confidence intervals. Exponentiate the 
parameter estimates and report the associated odds ratios, offering a brief 
summary of what the findings suggest about communication and attitudes 
toward the United States.
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Read Newspaper Did Not Read Newspaper

Discussed Politics Attitude Freq. Discussed Politics Attitude Freq.

Yes Optimistic 257 Yes Optimistic 99
Pessimistic 61 Pessimistic 25
Neither 84 Neither 47

No Optimistic 28 No Optimistic 30
Pessimistic 12 Pessimistic 5
Neither 36 Neither 34

Notes

1 Goodman did not accomplish this task alone, of course, as scholars such as Bishop 
(1969), Fienberg (1970a, 1970b), and Haberman (1973) made ongoing contribu-
tions to the literature. In the physical sciences, work by Grizzle and Williams (1972) 
also focused on log‐linear modeling. Statistics texts on categorical data analysis 
emerged in the mid‐seventies (see Bishop, Fienberg, and Holland 1975, Haberman 
1974b, 1978, Plackett 1974), pulling together ideas generated in published research.

2 In statistics, Agresti (1990) added a general text to his previous volume on ordinal 
data analysis. Additional texts came from Andersen (1990) and Christensen (1990), 
with a more recent book from Von Eye and Mun (2013).

3 The chapter recognizes that political leaning might be treated as an ordinal variable 
by moving “moderate” to the center value, but for instructional purposes the variable 
is retained as a three‐level nominal measure.

4 The procedures HILOGLINEAR and LOGLINEAR (syntax only) are also available 
in SPSS for Windows. Readers should note that HILOGLINEAR and LOGLINEAR 
differ from GENLOG by producing parameter estimates based on comparisons of 
observed and expected frequencies. GENLOG uses a reference category.

5 In SPSS, a researcher can create interaction terms by pressing Control‐C and clicking 
on the variables of interest. In the case of ordinal log‐linear modeling, an interaction 
term can be created by clicking on the Transform menu and selecting Compute 
Variable. For two variables, A and B, an interaction term C can be created by (1) 
entering variable A in the computation window, (2) clicking on *, (3) entering vari-
able B, and (4) clicking Okay. The interaction term C will appear at the bottom of the 
variable list. It should be entered as a covariate in the log‐linear model containing 
factors A and B. One can also test models for nominal‐ordinal association and ordinal‐
nominal association. In these models, one can create an ordinal term C by using the 
Compute Variable option and simply defining ordinal variable B (or ordinal variable A) 
as C, and then entering C as a covariate with A and B as factors. Doing so takes advan-
tage of the ordinal level.
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Chapter 4 addressed the general log‐linear model, a statistical technique used 
in examining associations among multiple categorical variables. As discussed in 
the chapter, the general model does not draw distinctions between independ-
ent and dependent measures and yields log expected frequencies as a function 
of associations and interactions. The current chapter moves from symmetrical 
to asymmetrical in addressing the logit log‐linear model, which Knoke and 
Burke (1980, 24) characterized as an “analog” of ordinary least squares (OLS) 
regression. Logit analysis models the log odds of a categorical dependent vari-
able as a function of explanatory measures; that is, it models the log of the odds 
that a given observation will appear in one category of a response variable rela-
tive to another (see Borooah 2002, DeMaris 1992, Liao 1994, Powers and Xie 
2000). For communication researchers, the technique may prove useful insofar 
as the preponderance of multivariate analyses involve predicting the behavior of 
a dependent variable based on a series of independent measures. As the current 
chapter demonstrates, the logit model also allows more than one response 
 variable to be modeled as a function of categorical factors and continuous 
covariates.

The chapter begins with a review of studies that have used logit log‐linear 
analysis, and it then covers the fundamental components of logit models. Many 
of these components resemble those in the general log‐linear model and can be 
interpreted in line with that technique. Regarding examples, the chapter first 
draws on data from the 2008 American National Election Study (ANES) in 
examining a logit model containing one categorical response variable. The chap-
ter then uses data from the 2012 Monitoring the Future (MTF) study to ana-
lyze a model containing two response measures. Finally, the chapter draws on 

5
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data from the 2011 National Survey on Drug Use and Health (NSDUH) in 
explaining how to conduct logit log‐linear analyses in SPSS.

Examples of Published Research

In a study involving sports broadcasting, Coventry (2004) used logit log‐linear 
analysis to examine organizational roles as a function of gender and race. 
A nominal response measure contained seven categories: anchor, reporter, studio 
host, play‐by‐play announcer, game analyst, studio analyst, and competition‐
level reporter. Gender and race predicted organizational roles in the media out-
lets Coventry analyzed, with women and members of racial minorities assigned 
to lower‐level, or less prominent, positions. In an earlier study, Mulder (1981) 
examined the effects of three categorical (or categorized) measures – sex, educa-
tion level, and age – on perceptions of media credibility. In the context of health 
communication, Siminoff, Traino, and Gordon (2011) used a hierarchical log‐
linear model to assess predictors of consent to tissue donation, and in nonverbal 
research Patterson and Tubbs (2005) as well as Patterson et al. (2007) examined 
explanatory effects of pedestrian interactions.

In a slightly different context, Denham (2009) used logit log‐linear analysis 
along with logistic regression techniques in a study addressing risk perceptions 
of anabolic steroid use. In that study, logistic regression identified significant 
predictors of a three‐level ordinal risk measure; however, in addition to identify-
ing measures that could be present in predicting risk attitudes, the research 
sought to identify the explanatory measures that needed to be present in order 
to explain cell frequencies. The study therefore included logit log‐linear analysis 
in addition to logistic regression. Explanatory factors included sex, race, ease of 
obtaining the substance, friends who used the substance, newspaper use, and 
drug spot exposure, while continuous covariates measured sensation seeking, 
depression, and self‐esteem. Denham (2009) found that risk perceptions associ-
ated with steroids could be explained with relatively simple log‐linear models, as 
could perceptions of the risks associated with using MDMA (i.e., “ecstasy”). 
But when the factors and covariates were tested in models involving risk percep-
tions of marijuana use, it became more difficult to explain cell frequencies in the 
response measure, likely the result of greater marijuana use among adolescents. 
As an example, while the depression covariate combined with differing categor-
ical factors to explain risk perceptions associated with steroids and ecstasy, no 
depression‐related models explained perceived risks of marijuana use. Thus, 
although analyses treated a three‐level ordinal variable as nominal, logit models 
offered a degree of insight absent in logistic regression models. In fact, as 
explained in the chapter addressing ordinal logistic regression, situations arise 
when ordinal data need to be treated as nominal.
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Logit Log‐linear Analysis: Fundamental Components

Since the point at which Joseph Berkson (1944) applied the term “logit” to the 
log of the odds, statisticians have developed models for testing the effects of 
multiple predictor variables on the behavior of dichotomous, polytomous, and 
ordinal response measures (see, e.g., Bishop 1969, McFadden 1973; see also 
Agresti 1990, 91–97, Fienberg 2007, 95–109, Haberman 1978, 292–353). 
The present chapter considers logit models in the context of log‐linear analyses 
(i.e., analyses of contingency tables), where Goodman (1970) focused much of 
his work. Goodman and his contemporaries first developed a “modified regres-
sion approach” that offered researchers an alternative to using ordinary least 
squares regression in analyses containing dichotomous response variables. Many 
quantitative researchers had used OLS procedures in modeling binary depend-
ent variables; Aldrich and Nelson (1984, 30) summarized the methodological 
problems associated with that approach while recommending logit techniques 
as alternatives to linear probability models:

The incorrect assumption of linearity will lead to least squares estimates which (1) 
have no known distributional properties, (2) are sensitive to the range of the data, 
(3) may grossly underestimate the magnitude of the true effects, (4) systematically 
yield probability predictors outside the range of 0 to 1, and (5) get worse as stand-
ard statistical practices for improving estimates are employed.

The logit model offers comparably stable parameter estimates and, as DeMaris 
(1992) explained, produces those estimates while controlling the effects of 
other predictors. Recalling the discussion of odds from Chapter 2 (and notation 
from Chapter 4), a logit model describing the effects of a single factor on a 
dichotomous response variable is expressed as:
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where the log of the odds of appearing in a given category of the response vari-
able is a function of a constant plus a single parameter. A logit model containing 
two categorical explanatory factors (I × J × 2 table) is expressed as:
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In a logit model, the log odds have a theoretical range of minus infinity to 
plus infinity (DeMaris 1992), and the dependent measure is assumed to follow 
a multinomial distribution. Parameter estimates are similar to regression coeffi-
cients in OLS models (Knoke and Burke 1980, 28), with positive values increas-
ing the odds on a dependent variable and negative values lowering the odds (see 
also Allison 1999). While main effects in the general log‐linear model offer 
limited information, their presence in the logit model can prove substantively 
important, as can interactive effects (Huang and Shields 2000).

In an “exegesis” of the Goodman system, Davis (1978) noted the centrality 
of three terms: odds ratios, effects, and models. Odds ratios, he explained, func-
tioned as operational components of abstract effects, and researchers using the 
system generally sought the most parsimonious representation of variable rela-
tionships. The observations Davis made in 1978 continue to hold true, as the 
best‐fitting model is assumed to be one in which the fewest parameters repro-
duce response frequencies in a statistically acceptable manner. The Knoke and 
Burke (1980) suggestion of locating a G 2 p‐value between .10 and .35 applies to 
both general and logit log‐linear models (see also Hagle and Mitchell 1992). In 
the latter, models may include dichotomous as well as polytomous dependent 
measures.

Commenting on the Goodman system, Magidson (1978) identified four cri-
teria for choosing a model, stressing the importance of both theory and method: 
(1) Parameters should represent substantively meaningful quantities; (2) param-
eters should be expressed in units that can be interpreted without difficulty; (3) 
parameter estimates should lend themselves to appropriate statistical tests; and 
(4) a model should provide a parsimonious explanation of the data. The follow-
ing section examines a logit model containing one dependent variable.

Logit Model with One Response Measure

Drawing on data gathered in the 2008 American National Election Study 
(The American National Election Studies 2008), the first example of a logit 
log‐linear model uses variables analyzed earlier, in a general log‐linear analysis. 
Variables include sex (S), race (R), personal optimism (P), national optimism 
(N), and a covariate measuring (average) frequency of political discussion (D) 
among family and friends (previous analyses contained a dichotomous discus-
sion variable). In this analysis, national optimism has been positioned as a 
three‐level response variable (Optimistic, Pessimistic, Neither Optimistic nor 
Pessimistic), with sex, race, and personal optimism included as explanatory 
factors.

Table  5.1 contains eight logit models estimated with statistical software. 
Applying criteria recommended by Knoke and Burke (1980), Model 1 offers an 
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acceptable fit to the data; however, the model also comes close to suggesting 
differences between observed and expected frequencies (p = .107). Models 2, 3, 
and 4 each contain two two‐way interactions, with Model 4 fitting the data and 
offering an increase in degrees of freedom over Model 2, which also offers an 
acceptable fit. In comparing Model 3 with Models 2 and 4, it appears the two‐
way interaction between race and personal optimism could be absent in the 
data. Model 5, the first of three models containing just one interaction, supports 
that possibility, as it does not offer an acceptable fit, at least according to the 
Knoke and Burke (1980) criteria. Models 6 and 7 do fit the data and increase 
available degrees of freedom from 13 to 17. But Model 8 also offers an accept-
able fit, indicating independence among the explanatory measures and increas-
ing degrees of freedom to 21. In this case, one could predict national optimism 
by knowing the sex, race, and level of personal optimism among respondents, as 
well as an average amount of political discussion per week. No interactions 
proved necessary.

Tables 5.2a and 5.2b contain frequency data for males and females, respec-
tively. The tables are similar to those describing data in the general log‐linear 
model, offering observed and expected frequencies as well as four indicators of 
differences between the two. Examining standardized residuals for males, none 
reached 2.0, which Lawal (2003) identified as a threshold for outliers. Studying 
Table 5.2b, however, it appears that Black females who were neither pessimistic 
nor optimistic about their personal futures indicated slightly more national opti-
mism than expected. As a rule, researchers should examine frequency data in a 
selected model before moving to an interpretation of parameter estimates.

Table 5.1 Logit log‐linear models including sex, race, personal optimism, and 
frequency of political discussion as explanatory measures of national optimism

Dependent
Variable

Independent
Variables Covariate G 2 df Sig.

1. {N} {SR}{SP}{RP}
{S}{R}{P}

{D} 9.065 5 .107

2. {N} {SR}{RP}{S}{R}
{P}

{D} 10.313 9 .326

3. {N} {SP}{RP}{S}{R}
{P}

{D} 9.701 9 .375

4. {N} {SR}{SP}{S}{R}
{P}

{D} 18.568 13 .137

5. {N} {RP}{S}{R}{P} {D} 11.406 13 .577
6. {N} {SR}{S}{R}{P} {D} 22.115 17 .180
7. {N} {SP}{S}{R}{P} {D} 21.256 17 .215
8. {N} {S}{R}{P} {D} 24.264 21 .280
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Logit analyses produce values for constants, as indicated in Table 5.3. Constants 
are not parameters and therefore do not contain standard errors, Z‐values, 
 significance levels, or confidence intervals. As a matter of practice, however, the 
values should be reported as part of a logit log‐linear analysis. While published 
logit tables generally do not contain reference categories, Table 5.3 includes them 
for purposes of discussion.

Table 5.4 contains parameter estimates for the independence model reported 
in Table 5.1. Each explanatory measure contains at least one estimate as well as 
a reference category. To calculate odds ratios, one can exponentiate parameter 
estimates and then interpret the resulting figures in relation to 1.0, which indi-
cates independence. As an example, the estimate for males and optimism, −.007, 
exponentiates to .993, indicating similar response patterns for males and females.

At the level of national pessimism, differences did not emerge between 
males and females, but in analyses of race, White respondents did differ from 
members of other races (the reference category for the independent variable). 
The table shows a parameter value of .757, which exponentiates to 2.13. Thus, 
for a White respondent, the odds of expressing a pessimistic attitude to a nei-
ther optimistic nor pessimistic attitude were approximately twice those same 
odds for an individual from another race. Returning to Tables 5.2a and 5.2b, 

Table 5.3 Constant estimates for logit log‐linear model including 
sex, race, personal optimism, and frequency of political discussion as 
explanatory measures of national optimism

Constant Estimate

Male, White, Personally Optimistic 2.654
Male, White, Personally Pessimistic 1.382
Male, White, Neither Optimistic nor Pessimistic 3.090
Male, Black, Personally Optimistic 1.564
Male, Black, Personally Pessimistic .520
Male, Black, Neither Optimistic nor Pessimistic 2.154
Male, Other Race, Personally Optimistic 1.439
Male, Other Race, Personally Pessimistic −.088
Male, Other Race, Neither Optimistic nor Pessimistic 1.967
Female, White, Personally Optimistic 2.957
Female, White, Personally Pessimistic 1.636
Female, White, Neither Optimistic nor Pessimistic 3.442
Female, Black, Personally Optimistic 2.050
Female, Black, Personally Pessimistic .273
Female, Black, Neither Optimistic nor Pessimistic 2.499
Female, Other Race, Personally Optimistic 1.360
Female, Other Race, Personally Pessimistic −1.266
Female, Other Race, Neither Optimistic nor Pessimistic 1.523
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collapsing the data across personal attitudes as well as sex indicates that while 
19.5% of White respondents expressed pessimism, just 9.4% of those from 
other races indicated the same. Among Black respondents, 10.1% expressed 
pessimism, slightly higher than individuals from other races. The parameter 
estimate for Black respondents, .083, exponentiates to 1.09, indicating that 
the odds of a Black respondent expressing a pessimistic attitude to a neither 
pessimistic nor optimistic attitude were approximately 1.09 times the same 
odds for members of other races. With 1.0 indicating independence, the two 
groups did not differ significantly.

Personal optimism also explained attitudes at the national level. For example, 
for an individual who expressed personal optimism, the odds of expressing 
national optimism to neither optimism nor pessimism were exp(2.133) = 8.44 
times the same odds for an individual who indicated neither (personal) opti-
mism nor pessimism. For an individual who expressed personal pessimism, the 
odds of expressing national pessimism to neither optimism or pessimism were 
exp(2.296) = 9.93 times the same odds for an individual who indicated neither 
(personal) optimism nor pessimism. Interestingly, individuals expressing per-
sonal optimism also appeared more likely to indicate national pessimism.

Parameter estimates for the relationship between the continuous covariate, 
frequency of political discussion, and the three levels of national optimism, 
appear at the bottom of Table 5.4. In this case, the covariate, included for 
didactic purposes, did not show significance as a control measure. Notably, 
one of the primary differences between the logit log‐linear model and logistic 
regression analysis involves the treatment of continuous measures; in log‐ 
linear analyses, such measures must be treated as covariates, but as subse-
quent chapters in the current text demonstrate, logistic regression models 
accommodate interval‐level explanatory measures. The logit log‐linear model 
accommodates more than one response measure, though, as discussed in the 
following example.

Logit Model with Two Response Measures

Drawing on data gathered in the 2012 Monitoring the Future study (Johnston 
et al. 2012), this section of the chapter reviews a logit log‐linear model con-
taining two dependent variables. The analysis examines the explanatory effects 
of three categorical factors – sex (S), race (R), and whether respondents had 
ever been suspended from school (P) –  in addition to a covariate measuring 
frequency of exposure to televised antidrug advertisements (V), on disapproval 
of alcohol consumption (A), and disapproval of marijuana use (M). White, 
Black, and Hispanic respondents indicated whether (1) they did not disap-
prove, (2) they disapproved, or (3) they strongly disapproved of individuals 
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over 18 consuming one to two drinks of alcohol per day and smoking mari-
juana on a regular basis. Of the models contained in Table 5.5, just two fit the 
data based on the Knoke and Burke (1980) criteria. Model 3 contains interac-
tions between sex and race as well as sex and school suspension, and Model 8 
indicates main effects only. The difference between the two models, 28.247 
with 24 degrees of freedom, is not significant, and therefore the simpler model 
is preferred. Table 5.6 contains constants for Model 8, and Tables 5.7a and 
5.7b contain parameter estimates.

Table 5.6 Constant estimates for logit log‐linear model 
containing sex, race, school suspension, and exposure to 
antidrug advertising as  explanatory measures of alcohol 
and marijuana disapproval

Constant Estimate

Male × White × No Suspension 1.115
Male × White × Suspension 0.333
Male × Black × No Suspension 3.075
Male × Black × Suspension 1.361
Male × Hispanic × No Suspension 1.470
Male × Hispanic × Suspension 0.364
Female × White × No Suspension 1.709
Female × White × Suspension 0.782
Female × Black × No Suspension 3.516
Female × Black × Suspension 0.843
Female × Hispanic × No Suspension 2.097
Female × Hispanic × Suspension 0.032

Table 5.5 Logit log‐linear models including sex, race, school suspension, and exposure 
to antidrug advertising as explanatory measures of alcohol and marijuana disapproval

Dependent 
Variables Independent Variables Covariate G 2 df Sig.

1. {A}{M} {SR}{SP}{RP}{S}{R}{P} {V} 7.367 7 .498
2. {A}{M} {SP}{RP}{S}{R}{P} {V} 17.731 23 .772
3. {A}{M} {SR}{SP}{S}{R}{P} {V} 28.656 23 .192
4. {A}{M} {SR}{RP}{S}{R}{P} {V} 15.588 15 .410
5. {A}{M} {SR}{S}{R}{P} {V} 32.078 31 .413
6. {A}{M} {RP}{S}{R}{P} {V} 25.748 31 .733
7. {A}{M} {SP}{S}{R}{P} {V} 53.298 39 .063
8. {A}{M} {S}{R}{P} {V} 56.903 47 .153
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As evidenced in these tables, the introduction of a second dependent variable 
increases the number of parameter estimates substantially. In Table 5.7a (which, 
like Table 5.7b, does not include reference categories), two sets of associations 
between the two dependent variables appear. The first set shows individuals who 
did not disapprove of alcohol consumption at each level of the marijuana meas-
ure, and the second set shows individuals who disapproved of alcohol use at 
each level of the marijuana variable. In this analysis, for an individual who did 
not disapprove of alcohol use, the odds of not disapproving of marijuana use 
were exp(1.693) = 5.44 times the same odds for an individual who strongly dis-
approved of alcohol use; however, as indicated in the table, this association was 
not statistically significant. Additional odds ratios concerning the dependent 
variables can be calculated by exponentiating parameter estimates in the two sets 
of associations.

Regarding sex and marijuana use, the odds of a male indicating no disap-
proval to strong disapproval were exp(.703) = 2.02 times the same odds for a 
female, and the relationship showed significance at p < .05. Concerning race and 
attitudes toward marijuana use, the odds of a White respondent indicating dis-
approval to strong disapproval were exp(−1.247) = .29 times the same odds for 
an Hispanic respondent. In analyses addressing alcohol use, the odds of a Black 
respondent not disapproving to strongly disapproving were exp(1.247) = 3.48 
times the same odds for Hispanics.

Looking to Table  5.7b, one observes a significant three‐way interaction 
among White respondents, those who disapproved of alcohol use, and those 
who disapproved of marijuana use. This interaction indicates that for a White 
respondent, the odds of disapproving to strongly disapproving of alcohol 
use  and the odds of disapproving to strongly disapproving of marijuana use, 
were exp(1.791) = 6.0 times the same odds for Hispanic respondents. Toward the 
bottom of Table 5.7b, one observes parameter estimates for the two dependent 
measures and the covariate measuring exposure to antidrug campaigns. The odds 
of an individual exposed to antidrug communications strongly disapproving of 
alcohol use were exp(.562) = 1.75 times the same odds for an individual strongly 
disapproving of marijuana use (the reference category).

SPSS Example

This section of the chapter offers instructions for conducting a logit log‐linear 
analysis in SPSS (Norusis 2005: 25–42). In doing so, the chapter draws on data 
gathered in the 2011 National Survey on Drug Use and Health (N = 17,721), 
with four categorical factors predicting attitudes toward peer alcohol consump-
tion. Explanatory measures included dichotomous indictors of (1) sex, (2) 
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whether students had discussed the dangers of drugs and alcohol with their 
parents, (3) whether parents had limited the amount of time in which students 
could watch television, and (4) whether students had received positive feedback 
from teachers. NSDUH researchers had created a dichotomous variable asking 
respondents about peers consuming 1–2 drinks each day, with Disapprove and 
Strongly Disapprove collapsed to form one level and Neither Approve nor 
Disapprove collapsed to form a second category. For this analysis, then, all vari-
ables are dichotomous.

Figure 5.1 contains a screenshot of logit log‐linear options in SPSS. To begin 
a logit analysis, a researcher should click on the Analysis menu, select Loglinear, 
and then Logit. Doing so opens a window in which the researcher can choose 
independent and dependent variables as well as covariates. As with general log‐
linear analysis in SPSS, the Model window allows one to fit both saturated and 
custom models to the data; the window in Figure 5.1 shows a main‐effects 
model based on independent and dependent measures selected at the previous 
step. As it happens, this model offered an acceptable fit to the data, with a  
log‐likelihood value of 12.328 and 11 degrees of freedom yielding a p‐value 
of .340. The Options window allows a researcher to select parameter estimates 
as well as any plots that might inform a study.

Figure  5.1 Screenshot of SPSS Logit Loglinear Analysis. Source: SPSS® Reprints 
Courtesy of International Business Machines Corporation, © 2014 International 
Business Machines Corporation
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Table 5.8 contains goodness‐of‐fit statistics from the SPSS output. The table 
shows similar values for G 2 and χ2 and confirms a multinomial logit model has 
been fit to the data. The Design shows a main‐effects model has been tested.

Table 5.9 contains cell counts and residuals for the main‐effects model, as 
presented in SPSS. As Table 5.9 illustrates, categories for explanatory measures 
begin at the left margin and move across to the dichotomous response variable. 
Observed and expected values appear relatively close, and no standardized 
 residuals exceed 2.0. Table 5.10 contains constants for the model.

Table  5.11 contains parameter estimates for the main‐effects model. 
Relative to the tables shown earlier in the chapter, this table does not display 
as many estimates because the explanatory and response measures were all 
dichotomous. Concerning the latter, respondents were exp(1.313) = 3.72 
times as likely to indicate disapproval of alcohol use as they were to indicate 
neither approval nor disapproval. Regarding the explanatory factors, for a 
male respondent, the odds of indicating disapproval to neither approval nor 
disapproval were exp(−.318) = .73 times the same odds for a female. For 
a  respondent who received scholastic encouragement from a teacher, the 
odds of indicating disapproval to neither approval nor disapproval were 
exp(.553) = 1.74 times the same odds for a respondent who did not receive 
teacher encouragement. For a respondent whose parents limited television 
viewing, the odds of disapproving to neither approving nor disapproving 
were exp(.638) = 1.89 times the same odds for respondents whose parents 
did not limit television viewing. Lastly, for an individual who had discussed 
the dangers of drugs and alcohol with parents, the odds of disapproving to 
neither approving nor disapproving were exp(.473) = 1.60 times the same 
odds for an individual who had not discussed the dangers with parents. As 
indicated in Table 5.11, each explanatory factor showed statistical signifi-
cance, and the odds ratios just reviewed indicate the strength of variable 
associations.

Table 5.8 SPSS goodness‐of‐fit display for logit log‐linear model contain-
ing sex, parental communication, limited television viewing, and  teacher 
encouragement as predictors of attitudes toward peer alcohol consumption

Goodness‐of‐Fit Tests a,b

Value df Sig.

Likelihood Ratio 12.328 11 .340
Pearson Chi‐Square 12.201 11 .349

a Model: Multinomial Logit
b Design: Constant + YFLADLY2 + YFLADLY2 * IRSEX + YFLADLY2 * TCHGJOB +  
YFLADLY2 * PRLMTTV2 + YFLADLY2 * PRTALK3
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Correspondence Analysis

In recent years, communication scholars have used correspondence analysis to 
graph and display categorical data (see Brito 2012, Hovden 2014, Sonnet 
2010). Developed and widely used in France (Benzécri 1973), correspondence 
analysis serves as an effective complement to general and logit log‐linear mod-
eling (see Van der Heijden and de Leeuw 1985, Van der Heijden, de Falguerolles, 
and de Leeuw 1989), transforming values in a contingency table into coordi-
nates for mapping in conceptual space (Greenacre 1984). Basic correspondence 
analysis includes an X and a Y measure, and multiple correspondence analysis 
includes more than two variables. Categories with similar distributions tend to 
cluster in conceptual space, whereas categories with dissimilar patterns appear 
comparatively dispersed (Clausen 1998). In this regard, correspondence analysis 
resembles computer‐assisted concept‐mapping procedures (see, e.g., Miller, 
Andsager, and Riechert 1998).

Statisticians regard correspondence analysis as a special form of canonical cor-
relation, with coordinates considered analogous to values derived in a principal 
components analysis (Everitt 1992, 48–53). In fact, statisticians often discuss 
correspondence analysis in the context of multidimensional scaling, which also 
resembles factor analysis and describes variable structures (Nunnally and 
Bernstein 1994, 621–622). In SPSS, correspondence analysis requires an add‐
on module, but to provide readers with a similar representation, Figure  5.2 
contains an SPSS map of 11 ordinal and discrete interval measures extracted 
from the 2011 National Survey on Drug Use and Health (United States 
Department of Health and Human Services 2011). This map, produced in the 
SPSS multidimensional scaling program, includes variables addressing the extent 
to which adolescents had argued with their parents, argued with or fought with 
students at school, received positive feedback from a teacher, received positive 
feedback from a parent, and received homework assistance from a parent. 
Variables also indicated the frequency with which adolescents had been asked to 
complete chores, how often schoolwork appeared meaningful, how students felt 
about attending school, and how many school‐, community‐, and faith‐based 
activities adolescents had participated in during the previous year.

As shown in Figure 5.2, the lower left section contains the three variables 
measuring activity participation, with faith‐based activities not as closely related 
as school and community activities. The lower right section indicates that argu-
ing with parents did not associate with any measure, while most of the other 
variables clustered toward the top of the figure. Although this map came from 
the SPSS multidimensional scaling program, it resembles the type of figure pro-
duced for correspondence analysis in the add‐on module for categorical data. 
The map allows a researcher to visually inspect the data and consider the struc-
ture of variable relationships.
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Chapter Summary

This chapter has addressed the logit log‐linear model, which functions as a cat-
egorical analog to ordinary least squares regression. The model allows research-
ers to examine the explanatory effects of categorical factors and continuous 
covariates on one or more categorical dependent variables. Like the general 
log‐linear model, logit analysis produces parameter estimates in the form of log 
odds, which can be exponentiated to form odds ratios. Logit log‐linear analyses 
can be conducted in SPSS, which offers both general and logit programs, and an 
SPSS add‐on module facilitates correspondence analysis and data visualization.

Chapter Exercises

1. Based on the material covered in the chapter as well as the horse‐racing study 
(Denham 2014), use the Logit Loglinear Analysis program in SPSS to ana-
lyze the explanatory effects of time period (Before/After investigative report) 
and news outlet (Los Angeles Times, The New York Times, Washington Post, 
aggregated broadcast outlets) on whether news reports referenced an injured 
or deceased horse. Report first on whether the two‐factor model fits based on 

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2 20 4

YEFAIACT

YECOMACT

YESCHACT
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Figure 5.2 SPSS map of eleven ordinal variables. Source: SPSS® Reprints Courtesy of 
International Business Machines Corporation, © 2014 International Business Machines 
Corporation
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the Knoke and Burke (1980) criteria, and then report the parameter estimates 
and standard errors in addition to Z values, significance levels, and 95% con-
fidence intervals. Exponentiate the parameter estimates and report the associ-
ated odds ratios, offering a brief summary of what the findings suggest about 
time period, news outlet, and references to injured or deceased horses. (See 
instructions for SPSS weighting procedure in Chapter 4 exercises.)

News Outlet
Reference to Injured/

Deceased Horse Frequency

Period 1 Los Angeles Times Yes 13
No 60

The New York Times Yes 38
No 139

Washington Post Yes 20
No 34

Broadcasts Yes 3
No 35

Period 2 Los Angeles Times Yes 32
No 64

The New York Times Yes 52
No 91

Washington Post Yes 14
No 38

Broadcasts Yes 16
No 50

2. Use the Logit Loglinear Analysis program in SPSS to analyze the explanatory 
effects of sex (Male, Female) and whether adolescents had attended a school 
lecture or film about substance abuse (Yes, No) on whether adolescents had 
discussed the dangers of alcohol and drug abuse with their parents (Yes, No). 
Report first on whether the two‐factor model fits based on the Knoke and 
Burke (1980) criteria, and then report the parameter estimates and standard 
errors in addition to Z values, significance levels, and 95% confidence intervals. 
Exponentiate the parameter estimates and report the associated odds ratios, 
offering a brief summary of what the findings suggest about sex, school‐based 
antidrug efforts, and communication with parents about substance abuse.

Sex
Attend Film or  

Lecture
Talked with Parent(s) 
about Substance Use Frequency

Male Yes Yes 3,706
No 2,088

No Yes 1,629
No 1,720
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Sex
Attend Film or  

Lecture
Talked with Parent(s) 
about Substance Use Frequency

Female Yes Yes 3,716
No 2,007

No Yes 1,438
No 1,490
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Up to this point the discussion of modeling techniques has focused on general 
and logit log‐linear analysis. The general log‐linear model examines associations 
among categorical variables in a symmetrical manner, while the asymmetrical 
logit model draws distinctions between explanatory and response measures. 
The text now turns to logistic regression analysis, a technique that, unlike the 
c ontingency‐table approach, allows interval‐level explanatory measures to be 
modeled as main effects.1 Logistic regression models containing continuous 
explanatory variables analyze data at the individual level (DeMaris 1992), thus 
resembling ordinary least squares (OLS) regression, which fits a straight line 
through individual observations. With the logistic model, the OLS straight 
line  becomes an S‐shaped sigmoid, and maximum likelihood replaces least 
squares as an estimation technique (Hosmer and Lemeshow 2000, Kleinbaum 
1992, Menard 2002; see, earlier, Cox 1970, Theil 1970).

The present chapter focuses on binary logistic regression, a technique used 
when a dependent variable contains two categories. Chapter 7 addresses multi
nomial logistic regression, a procedure applied when a response measure contains 
more than two nominal categories or when the procedure addressed in Chapter 8, 
ordinal logistic regression, does not meet statistical assumptions. As its name 
implies, ordinal regression examines the effects of one or more explanatory variables 
on an ordered response measure, and the model assumes consistent effects across 
categories. But before addressing models containing polytomous response meas
ures, the text necessarily covers the fundamentals of binary logistic regression. 
In doing so, the current chapter uses examples based on the horse‐racing data as 
well as the 2008 American National Election Study and the 2012 Monitoring the 
Future study. The chapter begins with a review of communication studies that 
have used logistic regression to test variable relationships.

6

Binary Logistic Regression
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Examples of Published Research

Of the modeling techniques addressed in this text, communication scholars 
have used binary logistic regression the most frequently. Most of the research 
has examined issues in health communication, with scholarship also focusing on 
research methods, media content and effects, politics and policy matters, and 
interpersonal communication. Beginning with studies addressing behavioral 
intentions in health and politics, Agarwal (2011) analyzed factors associated 
with whether women intended to schedule mammograms (see also Harada et al. 
2013), while Avery and Lariscy (2014) analyzed whether individuals planned to 
receive flu vaccinations. Kim and Shanahan (2003) examined predictors of 
whether individuals intended to quit smoking and, in political research, 
Kleinnijenhuis et  al. (2007) studied voting intentions. Researchers in health 
communication have used logistic regression in studies of information seeking 
(Dobransky and Hargittai 2012, Dunleavy, Crandall, and Metsch 2005, Kim 
and Kwon 2010, Niederdeppe, Frosch, and Hornik 2008), and in analyses of 
information disclosure (Aldeis and Afifi 2013, Darst et al. 2014, Koskan et al. 
2014). Scholars have examined advertising recall and attitudes toward media 
health campaigns (Audrain‐McGovern et  al. 2003, Berry et  al. 2011, Davis 
et al. 2013, Dunlop, Wakefield, and Kashima 2008, Faulkner et al. 2011, Kwak, 
Fox, and Zinkhan 2002) as well as communication problems occurring during 
public‐health disasters (Taylor‐Clark, Viswanath, and Blendon 2010).

In the context of research methods, scholars have used logistic regression in 
studies of media exposure (Collins 2008), measurement of political participa
tion (Dylko 2010), health‐literacy assessment (Haun et al. 2012), and predictive 
validity in standardized testing (Feeley, Williams, and Wise 2005). In gaming 
research, Chang, Lee, and Kim (2006) examined factors associated with online 
game adoption, while Beullens and Van den Bulck (2013) studied whether driving‐
related game participation predicted youth involvement in car accidents. 
Beullens, Roe, and Van den Bulck (2013) investigated associations between 
driving‐game participation and driving without a license. Fairlie et al. (2010) 
examined more general predictors of impaired driving (see also Kenney, LaBrie, and 
Lac 2013), while Miller et al. (2006) examined predictors of tobacco use. Relatedly, 
Dunlop, Cotter, and Perez (2014) studied associations among anti smoking 
advertising, interpersonal pressure, and outcomes related to smoking cessation.

In studies of media effects, Dixon et al. (2014) investigated public attitudes 
about tanning and skin cancer; Witting et al. (2012) studied the influence of 
message framing on parental decisions to participate in ultrasound screening for 
developmental hip dysplasia; and Young (2006) examined the effects of late‐
night television exposure on whether interviewees mentioned caricatured candi
date traits. Martin and Wilson (2011) analyzed parental communication about 
kidnapping reports and, in a content analysis, Lee and Joo (2005) studied the 
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portrayal of Asians in magazine advertisements. In studies involving interper
sonal communication, Meyer and Rothenberg (2004) examined message repair 
strategies, Morgan (2004) investigated family communication about organ 
donation, and Moorman (2011) studied factors associated with end‐of‐life 
health care. Deutsch, Frese, and Sandholzer (2014) also examined issues in fam
ily communication, while Mello et al. (2013) used logistic regression to study 
whether cancer survivors had experienced anxiety or depression during a 12‐month 
period (see also Robinson and Tian 2009). Finally, in the context of legal 
c ommunication, Napoli (2000) used logistic regression in a study investigating 
pro‐regulatory versus deregulatory broadcast policies.

As this overview of published research demonstrates, communication scholars 
have used binary logistic regression in multiple contexts. The model accommo
dates categorical and continuous explanatory measures, making it more flexible 
than the logit log‐linear model. The following section reviews the fundamental 
components of binary logistic regression, comparing and contrasting it with 
ordinary least squares regression.

Binary Logistic Regression: Fundamentals

Communication scholars frequently use ordinary least squares regression to 
a nalyze the effects of dichotomous and continuous explanatory measures on the 
behavior of a continuous response variable. The procedure uses a global F test to 
determine whether a given model fits the data in a statistically acceptable manner. 
An OLS model identifies significant predictors as well as the percentage of system 
variance the predictors explain. Statistically, the OLS model is expressed as:

 Y X X Xo k k1 1 2 2   

where each β estimate represents a change in Y, the dependent variable, when a 
value for X, an independent measure, increases by one unit. The intercept term 
βo represents the value of Y when the value of X equals 0, and error ε represents 
the arithmetic difference in what a model predicts and the dependent variable. 
Social scientists have used OLS regression in analyses containing binary response 
measures, but as Aldrich and Nelson (1984, 14) explained, “even in the best of 
circumstances, OLS regression estimates of a dichotomous dependent variable 
are, although unbiased, not very desirable.” A review of model assumptions 
helps to elucidate differences between OLS and binary logistic regression, offer
ing insight on why the latter is preferable for analyses containing dichotomous 
dependent variables.

Menard (2002, 4–5) discussed eight assumptions of OLS regression, beginning 
with measurement expectations. Independent variables should be dichotomous, 
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interval, or ratio measures, and a dependent variable should be measured at 
the interval or ratio level. Regarding model specification, all relevant  explanatory 
measures should be included with irrelevant measures excluded. The mean of the 
errors should be 0, and error variance should be consistent across independent 
variables. Menard noted that error variance should be distributed normally with 
no correlation among error terms produced at different levels of the explanatory 
measures. Finally, error terms should not correlate with independent variables, 
and multicollinearity should be absent (see also Berry 1993).

In the social sciences, even the most careful studies may not meet all eight 
assumptions, but the logistic regression model has assisted scholars in reducing 
problems associated with measurement expectations. As Hosmer and Lemeshow 
(2000) explained, regression models, in general, are concerned with the 
expected value of a dependent measure given the value of an independent 
v ariable. The response‐measure quantity is termed the conditional mean. In an 
OLS model, the conditional mean of an interval or ratio response variable is not 
bound in its value, but, as indicated, when a dependent variable takes on two 
levels (0, 1) – and two levels only – it becomes inherently nonlinear. In such a 
case, the conditional mean π(X) is the proportion of cases scoring 1 on the 
dependent variable; an OLS model (i.e., a linear probability model) cannot 
ensure such a value, but a curvilinear logistic regression model can (see Agresti 
1990, 84–85, Aldrich and Nelson 1984, Menard 2002).2 Logistic regression 
estimates the probability of a dependent variable showing a success (or occurrence) 
relative to a non‐success (or non‐occurrence) as a function of one (or more) 
explanatory variable(s). The model is expressed as:
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Where OLS models contain an identity link and assume a standard normal error 
distribution, logistic regression models use a logit (or probit) link and a bino
mial distribution.3 The logit g(X ) is linear in its parameters (DeMaris 1992, 
Hosmer and Lemeshow 2000, 6, Pampel 2000) and allows researchers using 
the logistic regression model to conceptualize studies in a manner similar to 
those using ordinary least squares. The logit, or log odds, is expressed as:
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“It is important to understand that the probability, the odds, and the logit 
are three different ways to express exactly the same thing,” Menard (2002, 13) 
explained. “Of the three measures, the probability or the odds is probably the most 
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easily understood. Mathematically, however, the logit form of the probability best 
helps us to analyze dichotomous dependent variables.”

Simple Logistic Regression Analysis

To demonstrate how logistic regression generates parameter estimates, one 
might consider the data shown in Table 6.1. This data, extracted from the horse‐
racing study (Denham 2014), shows drug‐use references in the Albuquerque 
Journal before and after The New York Times began its investigative series. In its 
initial report, The New York Times focused heavily on problems occurring in 
quarter horse racing in New Mexico, and the horse‐racing study therefore 
examined content in the largest newspaper in that state. As indicated in Table 6.1, 
just 2 (6.5%) of 31 articles published prior to the first investigative report men
tioned equine drug use, compared to 20 (55.6%) of 36 articles published after 
the initial report.

A simple logistic regression analysis containing time period as the explanatory 
measure and drug‐use mention as a response variable produced parameter 
e stimates shown in Table 6.2. The table shows a parameter estimate of 2.897, 
which exponentiates to 18.125, the odds ratio. Recalling that logistic regression 
estimates the probability of an observation taking on the higher of two values 
(i.e., the value 1 in a binary model containing scores 0 and 1), one would con
clude that the odds of a report published in the second period containing a drug 
mention were 18.125 the same odds for an article published in the first period. 
Returning to Table 6.1, if one reversed the two row categories, such that period 
two appeared in the top row, a cross‐product calculation of (20)(29)/(16)
(2) = 580/32 = 18.125 confirms the odds ratio.

Next, the Wald test, a value for which is indicated in Table 6.2, is analogous 
to an OLS t‐test in that it examines the effect an individual parameter on the 
dependent variable (Azen and Walker 2011, 189). The null hypothesis anticipates 

Table 6.1 Cross‐tabulation of time period by drug‐use mentions in horse‐racing reports

Equine Drug‐Use Mentions in the 
Albuquerque Journal

Time Frame Mention No Mention Totals

Before First Investigative Report a b
2 (6.5%) 29 (93.5%) 31

After First Investigative Report c d
20 (55.6%) 16 (44.4%) 36

Totals 22 45 67
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no relationship between an explanatory measure and a response variable, which 
suggests, statistically, that a parameter estimate will not differ from 0. Once 
calculated, a Wald value is compared to a chi‐square distribution value, and if 
it exceeds the table value, the Wald result is considered statistically significant. 
The test takes the following form:
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where the value 0 is subtracted from a given parameter estimate, the resulting value 
is divided by the standard error, and the quantity is then squared. For the values 
in Table 6.2, the following equation would be used to calculate a Wald value:
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As Table 6.2 indicates, this value is statistically significant, and the odds ratio 
of 18.125 offers a measure of association. Substantively, one would conclude 
that the Albuquerque Journal included the drug‐use attribute in significantly 
more news reports following the initial investigative report published in 
The New York Times.

Multiple Logistic Regression Analysis

In most instances, researchers seek to examine more than the effect of a single 
explanatory measure on a given response variable. Drawing on data gathered in 
the 2008 American National Election Study (The American National Election 
Studies 2008) (N = 993), the chapter now addresses multiple logistic regression 
analysis. Independent variables include the categorical measures sex, race, and 
party identification, and continuous variables include age and exposure to radio 
news. Operationally, the three‐category race measure included Whites, Blacks, 
and members of other races, while a four‐category party ID variable included 

Table 6.2 Logistic regression model testing time period as determinant 
of drug‐use mentions in Albuquerque Journal

Variable B SE Wald df Significance Exp(B)

Period 2.897 .804 12.975 1 .000 18.125
Constant −.223 .335 .443 1 .506 .800
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Democrats, Republicans, Independents, and members of other political parties. 
Age was measured in years, and radio exposure was measured by the number of 
days a respondent listened to radio news during the previous week. A dichoto
mous dependent variable focused on attitudes toward economic regulation. 
Specifically, ANES respondents indicated whether they believed a strong gov
ernment presence is necessary for handling complex economic matters (N = 746) 
or whether the free market should be allowed to operate without government 
intervention (N = 247).

In building OLS regression models, researchers often begin with demographic 
variables such as sex, race, and age. Entering those variables first requires other 
independent variables to explain system variance beyond the fundamental char
acteristics of research participants. As Table 6.3 illustrates, binary logistic regres
sion models accommodate the OLS approach for both categorical (sex, race) 
and continuous (age) explanatory measures. For categorical predictors, the 
logistic model reports an overall Wald score, as well as individual estimates and 
standard errors, for measures containing more than two options; an overall value 
does not appear for dichotomous predictor variables. For instance, in Table 6.3,
sex is a dichotomous variable, and it therefore does not show an overall Wald 
statistic. Race, however, contains three categories, and it includes an overall 
significance test, as well as tests for individual estimates. Age, a continuous 
measure, contains just one parameter estimate.

Regarding effects, a positive parameter estimate increases the odds on the 
dependent variable (i.e., makes observations in the higher of two values, 0 and 
1, more likely), while a negative estimate decreases the odds. As an example, the 
first demographic variable entered in Table 6.3, sex, showed significance as an 
independent measure. Specifically, its parameter estimate of .573 exponentiated 
to an odds ratio of 1.774, indicating that the odds of males showing support for 
free markets were approximately 1.774 times the same odds for females (the 
reference category). The opposite pattern emerged for Black respondents and 
individuals from other races relative to Whites; the odds of Black respondents 

Table 6.3 Logistic regression model testing sex, race, and  age as  determinants of 
economic attitudes

Variable B SE Wald df Sig. Exp(B)

Sex 
(Males)

.573 .152 14.209 1 .000 1.774

Race 37.906 2 .000
Black −1.189 .207 32.969 1 .000 .304
Other Race −.810 .268 9.105 1 .003 .445

Age .010 .004 5.544 1 .019 1.010
Constant −2.189 .246 78.877 1 .000 .112
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indicating support for free markets were just .304 times the same odds for 
Whites (selected as the reference category), and the odds of members of other 
races supporting free markets were just .445. Had the overall Wald test not 
shown significance, interpretation of these parameter estimates would not have 
been appropriate. Lastly, the continuous variable, age, showed significance, with 
older respondents slightly more inclined to support free markets.

Depending on the objectives of a study, researchers may choose to enter 
v ariables in “blocks,” examining whether the addition of one or more variables 
in a second block improves a model containing variables entered initially, 
whether a third block of measures offers an improvement on the second, and so 
forth. Table 6.4 contains variables from Table 6.3 but also includes a second 
block containing a variable indicating political party identification. As indicated 
in Table  6.4, party ID showed significance as an explanatory measure, with 
Democrats less likely to support the free market than Republicans. The table 
also indicates that Independents did not differ from the reference category, 
other party. Inclusion of the party ID variable resulted in ‘other race’ losing 
significance as a parameter estimate, while sex and age retained significance as 
predictors. Relative to the statistics in Table 6.3, sex showed a slightly lower 
Wald score and age showed a slightly higher value.

To illustrate a model containing three blocks, Table 6.5 contains the continu
ous measure exposure to radio news, adding to the variables shown in Table 6.4. 
As indicated by the positive parameter estimate, an increase in days per week 
listening to radio news increased the odds of supporting free markets. Other 
explanatory variables continued to show significance as well, ultimately allowing 
a researcher to conclude that each of the five explanatory measures predicted 

Table 6.4 Logistic regression model testing sex, race, and age, as well as political party 
identification, as determinants of economic attitudes

Variable B SE Wald df Sig. Exp(B)

Block 1
Sex (Males) .491 .158 9.611 1 .002 1.634
Race 8.199 2 .017

Black −.591 .228 6.725 1 .010 .554
Other Race −.476 .279 2.910 1 .088 .621

Age .012 .005 6.687 1 .010 1.012

Block 2
Party ID 55.485 3 .000

Democrat −.940 .316 8.855 1 .003 .391
Republican .723 .312 5.374 1 .020 2.061
Independent −.315 .302 1.091 1 .296 .730

Constant −1.951 .256 58.148 1 .000 .142
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attitudes toward economic regulation. Had it made conceptual sense, the 
researcher could have entered additional variables in any of the regression blocks.

Interactions

In some cases, the relationship between an independent and a dependent vari
able differs based on the level of a third measure (i.e., a moderating variable). 
Jaccard (2001) has discussed interactions for both categorical and continuous 
predictors in logistic regression analysis, focusing on hierarchically well‐formulated 
(HWF) models; such models contain not only interactive terms but also lower‐
order terms on which interactions are based (see also Huang and Shields 2000). 
As an example, Table 6.5 may have included an interaction between sex and 
race, provided the researcher had a theoretical reason for testing its effects on 
the response measure. Perhaps White males, in particular, could be expected to 
support a free market more than other respondents (in this analysis they did 
not). The interaction term would have been inserted just below the sex and race 
main‐effect variables in the first block.

Statistical software packages allow researchers to create interaction terms 
quickly and efficiently. Stokes, Davis, and Koch (2012, 221–227) offer instruc
tion for SAS and Norusis (2005) discusses how to incorporate interactions using 
SPSS programs. In general, interactions can improve logistic regression models, 
but like main‐effect measures, their inclusion should be based on sound theory.

Table 6.5 Logistic regression model testing sex, race, and age, as well as political party 
identification and exposure to radio news, as determinants of economic attitudes

Variable B SE Wald df Sig. Exp(B)

Block 1
Sex (Males) .448 .160 7.854 1 .005 1.565
Race 8.123 2 .017

Black −.592 .229 6.704 1 .010 .553
Other Race −.472 .280 2.838 1 .092 .624

Age .013 .005 7.278 1 .007 1.013

Block 2
Party ID 50.661 3 .000

Democrat −.939 .318 8.740 1 .003 .391
Republican .669 .314 4.535 1 .033 1.953
Independent −.302 .304 .988 1 .320 .740

Block 3
Radio News Exp. .083 .029 8.027 1 .005 1.086

Constant −2.163 .270 64.231 1 .000 .115
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Model Assessment

Just as the Wald test in logistic regression functions as an analog to the OLS t‐
test, the likelihood ratio chi‐squared test statistic (also called model chi‐squared) 
serves as an analog to the global F statistic (DeMaris 1992, 47).4 In a logistic 
regression model, the null hypothesis suggests that all parameter estimates will 
equal 0 (statistically), and the alternative hypothesis suggests that at least one 
estimate will not. An initial log‐likelihood value, Do, is based on a model 
c ontaining only the intercept, while a model log‐likelihood value, Dm, contains 
all predictors (notation from Menard 2002).

To determine whether a given model fits better than one containing only the 
intercept, one first subtracts Dm from Do, establishing a model chi‐squared 
value. Because such a calculation results in a negative number, statisticians and 
statistical software packages multiply both Do and Dm by −2; thus, the equation 
−2 log(Do) − [−2 log(Dm)] yields a value for model chi‐squared. The value is 
then compared to a chi‐square distribution table based on available degrees of 
freedom (i.e., the total number of parameters, intercept excluded). Table 6.6 
contains log‐likelihood estimates for the three ANES models. Examining 
Table 6.6, the first block shows a −2 log‐likelihood score of 1047.487 and a 
model chi‐squared value of 66.556 with 4 degrees of freedom. The model is 
significantly different from a model containing only the intercept. Block 2 shows 
a −2 log‐likelihood score of 989.639 and a model chi‐squared value of 124.404 
with 7 degrees of freedom. Because the difference between the first and second 
models, 57.848 with 3 degrees of freedom, showed significance, the second 
model is statistically preferable. The five‐variable model represented in Block 3 
also showed significance, and therefore a researcher would be justified in selecting 
that model to report as a final representation of variable relationships.

Additional Statistics

Up to this point the chapter has addressed parameter estimates and standard 
errors, Wald statistics, log‐likelihood measures, and values for model chi‐squared. 
Two additional statistics, Nagelkerke as well as Cox and Snell pseudo‐R2 measures, 

Table 6.6 Log‐likelihood estimates for three binary logistic regression models

Block −2LL Model Chi‐Square df Sig. Difference in Models

1 1047.487 66.556 4 .001
2 989.639 124.404 7 .001 57.848 (3 df, p < .001)
3 981.699 132.344 8 .001 7.940 (1 df, p < .01)
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and the Hosmer and Lemeshow goodness‐of‐fit test, also offer insight into 
s tatistical models and variable relationships. In OLS regression models, R2 indi
cates an amount of system variance explained by the independent variables, and 
that is essentially the case with logistic regression; however, some important 
differences exist between OLS and logistic models. For instance, Allen and Le 
(2008) noted that R2 analogs are not invariant to base rates and therefore 
m odels cannot be compared across differing data sets. Consequently, authors 
who use logistic regression must be careful in noting the limitations of R2 analogs, 
perhaps reporting that while the Cox and Snell as well as Nagelkerke measures 
offer general estimations of explained variance, the statistics should not be 
c ompared with one another across studies (see, for additional discussion, Denk 
and Finkel 1992, Hagle and Mitchell 1992).5

In the current chapter, −2 log‐likelihood values and associated chi‐square 
statistics have shown whether models containing certain blocks of variables 
offered improvements on models containing the intercept only as well as models 
containing fewer measures. Technically, the model chi‐squared statistic is not a 
goodness‐of‐fit test, even though researchers effectively use it as one. In binary 
logistic regression, the Hosmer and Lemeshow goodness‐of‐fit test (see Hosmer 
and Lemeshow 2000) indicates whether specific models fit the data; as with  
G 2 in log‐linear modeling, a non‐significant p‐value indicates an acceptable fit. 
The calculations for the test are somewhat complex, and statisticians have iden
tified limitations for nearly all goodness‐of‐fit tests associated with logistic 
regression (see Allison 2013, Simonoff 1998). Still, the Hosmer and Lemeshow 
test can offer researchers information about the extent to which statistical 
 models fit the data. As the current chapter shows, the test is available in SPSS.

Diagnostic Considerations

Commenting on problems that may occur in logistic regression modeling, 
Menard (2002, 67) followed up on initial work from Pregibon (1981) as well as 
Hosmer and Lemeshow (2000) in identifying bias, inefficiency, and invalid 
s tatistical inference as points of concern. Bias refers to systematic misestimations, 
inefficiency refers to large standard errors relative to corresponding parameter 
estimates, and invalid statistical inference reflects inaccurate significance testing. 
Menard also mentioned high‐leverage instances, where independent variables 
may contain unusually high or low values, such that they become influential 
cases in regression equations.

As with OLS regression, Menard (2002, 67) explained, correct model speci
fication is a key assumption in the binary logistic model. When analyses include 
irrelevant variables, a model may become relatively inefficient, and when 
researchers eliminate relevant variables, parameter estimates may become biased. 
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As Menard noted, problems with model specification often occur because the 
theoretical framework guiding a study has not been adequately developed.

The assumption of linearity in the logit transformation is also an important 
consideration. A change in the log of the odds should reflect a consistent one‐
unit change in the independent variable. When linearity is in question, statisticians 
frequently use a Box‐Tidwell test (see Box and Tidwell 1962, Box and Cox 
1964) to detect problems. With this approach, a researcher creates a variable 
containing an explanatory measure multiplied by its natural log and enters the 
resulting measure in a regression equation. If the variable shows significance, 
linearity may be lacking (see Menard 2002, 70).

In OLS regression models, problems arise when explanatory measures corre
late with one another, and the same is true for logistic regression. Menard 
(2002) explained that while low levels of collinearity may not compromise a 
logistic regression model, variables that correlate at .8 or higher will almost 
certainly increase standard errors. In statistical software programs, logistic 
regression techniques typically lack a formal test for collinearity; to address this 
problem, Menard advised entering explanatory and response measures into an 
OLS model and examining tolerance statistics. Functional forms of variable 
r elationships, he noted, are not relevant to the detection of highly correlated 
predictors. In other words, one can use OLS models to test for collinearity.

Researchers should also consider influential cases in data analyses. One 
approach to gauging influential cases is to examine Studentized residuals in 
logistic regression output. Menard (2002, 84) noted that values less than −2 or 
greater than +2 may indicate poor fit. Most statistical software programs also 
allow researchers to assess outliers and influential cases using charts and graphs. 
But before eliminating cases that appear to offer undue influence, researchers 
should consider whether such cases appear for a substantive reason.

Lastly, scholars who work with large datasets containing rare events should 
review scholarship that addresses potential problems in regression equations 
(see, for discussion, Allison 2012). King and Zeng (2001) observed that logistic 
regression analysis can substantially underestimate the probability of rare events, 
also explaining that data collection methods can cause problems. Researchers 
who work with large public datasets that contain rare occurrences would want 
to consider strategies advised by King and Zeng (2001) before analyzing data. 
The chapter now addresses logistic regression analysis in SPSS, drawing on data 
gathered in the 2012 Monitoring the Future study (Johnston et al. 2012).

Binary Logistic Regression in SPSS

Health communication scholars often study patterns of substance use among 
adolescents, and the current chapter draws on data gathered in the 2012 
Monitoring the Future study (N = 1,775) to examine sex, race, drug‐spot exposure, 
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and frequency of alcohol consumption as determinants of narcotic use. Separate 
statistical models include an index measuring sensation‐seeking, also an impor
tant construct in health research. Operationally, the MTF survey asked respond
ents to indicate the frequency with which they had seen anti‐drug spots on 
television, with categories including not at all, once a month, 1 to 3 times a 
month, 1 to 3 times a week, and daily or almost daily. The survey also asked 
respondents to indicate the number of times they had consumed alcohol, 
beyond a few sips, in their lives. Response intervals included the following: 0, 
1–2, 3–5, 6–9, 10–19, 20–39, and 40 or more times. The MTF data included 
a  three‐category race measure (Black, White, Hispanic), and for purposes of 
illustration, a collapsed dependent variable indicated whether respondents had 
ever tried a narcotic substance.

Figure 6.1 displays two logistic regression windows in SPSS. On the left is the 
first window a researcher encounters after selecting Analyze > Regression > Binary 
Logistic. The window allows the researcher to enter a dichotomous dependent 
variable as well as multiple independent measures. In analyses containing cate
gorical predictors, a researcher must define them as such prior to fitting statistical 
models. Looking to the window on the right in Figure 6.1, this step involves 
defining dichotomous measures as indicator (i.e., “dummy”) variables and multi‐
category predictors as simple categorical measures. For the latter, the researcher 
can establish as a reference category the first or the last variable option. SPSS 
considers categorical predictors as indicators by default, and a researcher there
fore must select an alternative when necessary, clicking Change when complete. 

Figure 6.1 SPSS windows for binary logistic regression and variable definition. Source: 
SPSS® Reprints Courtesy of International Business Machines Corporation, © 2014 
International Business Machines Corporation
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In the current example, Black respondents, those who had not seen anti‐drug 
spots, and those who had not consumed alcohol serve as r eference categories.

In addition to selecting independent and dependent variables, and defining 
categorical measures, researchers need to select a modeling strategy. The first 
window in Figure 6.1 contains a drop‐down menu, next to Method. This menu 
allows the researcher to choose an approach for entering explanatory measures, 
just as in OLS regression analysis. One can choose backward, forward, and 
s tepwise approaches, among others. Additionally, one can choose to enter variables 
in blocks to fit a research design. The current example uses that approach for 
purposes of demonstration.

Figure 6.2 contains the main window for binary logistic regression as well as 
an Options window on the right side. In the Options window, the researcher 
can (and should) select the Hosmer‐Lemeshow goodness‐of‐fit test, a 95% con
fidence interval for each exponentiated parameter estimate, and a correlation 
matrix for variables in the equation. Each of these items can prove useful for 
evaluating variable relationships and possible instances of collinearity as well as 
overall fit. In analyses that might contain influential cases, researchers can select 
a casewise listing of residuals; doing so is especially important when working 
with small samples.

Table 6.7 contains output corresponding to the menu selections shown in 
Figures 6.1 and 6.2. Starting at the top of the table, the Dependent Variable 
Coding box shows internal values for the binary outcome measure. As shown, 
0 denoted no narcotic use and 1 denoted one or more instances of use.

Figure 6.2 SPSS windows for binary logistic regression and analysis options. Source: 
SPSS® Reprints Courtesy of International Business Machines Corporation, © 2014 
International Business Machines Corporation
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Table 6.7 SPSS output for binary logistic regression model containing categorical 
p redictors

Dependent Variable Coding

Original Value Internal Value

0 OCCAS: (1) 0

1+ (2) 1

Categorical Variable Codings

Parameter Coding

Frequency (1) (2) (3) (4) (5) (6)

126B22A:
#X ALC/
LIF SIPS

0 OCCAS: (1) 509 −.143 −.143 −.143 −.143 −.143 −.143
1–2X: (2) 128 .857 −.143 −.143 −.143 −.143 −.143
3–5X: (3) 156 −.143 .857 −.143 −.143 −.143 −.143
6–9X: (4) 167 −.143 −.143 .857 −.143 −.143 −.143

10–19X: (5) 248 −.143 −.143 −.143 .857 −.143 −.143
20–39X: (6) 235 −.143 −.143 −.143 −.143 .857 −.143
40+OCCAS: (7) 332 −.143 −.143 −.143 −.143 −.143 .857

126D08:
#X SEE
DRG SPTS

NOT@ALL: (1) 454 −.200 −.200 −.200 −.200
<ONCE/MO: (2) 428 .800 −.200 −.200 −.200
1–3/MO: (3) 476 −.200 .800 −.200 −.200
1–3/WK: (4) 281 −.200 −.200 .800 −.200
DAILY: (5) 136 −.200 −.200 −.200 .800

126C04®:
Rs RACE
B/W/H

BLACK: (1) 170 .000 .000
WHITE: (2) 1332 1.000 .000
HISPANIC: (3) 273 .000 1.000

126C03:
Rs SEX

MALE: (1) 892 1.000
FEMALE: (2) 883 .000

Block 0: Beginning Block
Classification Tablea,b

Predicted

126B35A: #X NARC/
LIFETIME

Percentage

Observed 0 OCCAS: (1) 1+: (2) Correct

Step 0 126B35A: #X 
NARC/LIFETIME

0 OCCAS: (1) 1561 0 100.0
1+: (2)  214 0 .0

Overall Percentage 87.9

a Constant included in the model.
b The cut value is .500



Variables in the Equation

B SE Wald df Sig. Exp(B)

Step 0 Constant −1.987 .073 743.122 1 .000 .137

Variables Not in the Equation

Score df Sig.

Step 0 Variables Sex (Males) 5.757 1 .016
Race 10.637 2 .005
White 6.737 1 .009
Hispanic .347 1 .556

Overall Statistics 14.920 3 .002

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

Chi‐Square df Sig.

Step 1 Step 17.199 3 .001
Block 17.199 3 .001
Model 17.199 3 .001

Model Summary

Step −2 Log Likelihood Cox & Snell R Square Nagelkerke R Square

1 1289.364a .010 .019

Hosmer and Lemeshow Test

Step Chi‐Square df Sig.

1 1.271 3 .736

Contingency Table for Hosmer and Lemeshow Test

126B35A: #X NARC/
LIFETIME = 0 OCCAS

126B35A: #X NARC/LIFETIME = 
1+ OCCAS

Observed Expected Observed Expected Total

Step 1 1 162 162.000 8 8.000 170
2 129 126.652 11 13.348 140
3 556 560.023 76 71.977 632
4 114 116.348 19 16.652 133
5 600 595.977 100 104.023 700

a Estimation terminated at iteration number 5 because parameter estimates changed by 
less than .001.

Table 6.7 (Continued)



Classification Tablea

Predicted

126B35A: #X NARC/
LIFETIME Percentage

Observed 0 OCCAS: (1) 1+: (2) Correct

Step 1 126B35A: #X 
NARC/LIFETIME

0 OCCAS: (1) 1561 0 100.0
1+: (2) 214 0 .0

Overall Percentage 87.9

Variables in the Equation

95% CI for 
Exp(B)

B SE Wald df Sig. Exp(B) Lower Upper

Step 1a V6150(1) .306 .148 4.264 1 .039 1.358 1.016 1.816
V6151 8.797 2 .012
V6151(1) 1.073 .372 8.306 1 .004 2.923 1.409 6.062
V6151(2) .874 .411 4.515 1 .034 2.397 1.070 5.368
Constant −3.124 .367 72.282 1 .000 .044

Block 2: Method = Enter

Omnibus Tests of Model Coefficients

Chi‐Square df Sig.

Step 1 Step 1.950 4 .745
Block 1.950 4 .745
Model 19.149 7 .008

Model Summary

Step −2 Log Likelihood Cox & Snell R Square Nagelkerke R Square

1 1287.414a .011 .021

Hosmer and Lemeshow Test

Step Chi‐Square df Sig.

1 2.010 8 .981

Table 6.7 (Continued)

a Estimation terminated at iteration number 6 because parameter estimates changed by less than .001.

(Continued )

a The cut value is .500



a The cut value is .500

Contingency Table for Hosmer and Lemeshow Test

126B35A: #X NARC/
LIFETIME = 0 OCCAS

126B35A: #X NARC/
LIFETIME = 1+ OCCAS

Observed Expected Observed Expected Total

Step 1 1 162 162.000 8 8.000 170
2 206 205.274 21 21.726 227
3 97 97.549 12 11.451 109
4 170 168.045 19 20.955 189
5 104 107.068 18 14.932 122
6 164 164.639 24 23.361 188
7 149 148.750 22 22.250 171
8 203 206.245 37 33.755 240
9 145 141.278 23 26.722 168

10 161 160.152 30 30.848 191

Classification Tablea

Predicted

126B35A: #X NARC/
LIFETIME Percentage

Observed 0 OCCAS: (1) 1+: (2) Correct

Step 1 126B35A: #X 
NARC/LIFETIME

0 OCCAS: (1) 1561 0 100.0
1+: (2) 214 0 .0

Overall Percentage 87.9

Variables in the Equation

95% CI for 
Exp(B)

B SE Wald df Sig. Exp(B) Lower Upper

Step 1a V6150(1) .306 .149 4.237 1 .040 1.358 1.015 1.816
V6151 8.467 2 .014
V6151(1) 1.059 .375 7.983 1 .005 2.884 1.383 6.013
V6151(2) .858 .413 4.321 1 .038 2.358 1.050 5.293
V6575 1.925 4 .750
V6575(1) .108 .216 .251 1 .617 1.114 .729 1.703
V6575(2) .253 .206 1.513 1 .219 1.288 .861 1.927
V6575(3) .231 .235 .960 1 .327 1.259 .794 1.998
V6575(4) .248 .311 .634 1 .426 1.281 .696 2.356
Constant −3.097 .368 70.876 1 .000 .045

Table 6.7 (Continued)



Block 3: Method = Enter

Omnibus Tests of Model Coefficients

Chi‐Square df Sig.

Step 1 Step 201.423 6 .000
Block 201.423 6 .000
Model 220.572 13 .000

Model Summary

Step −2 Log Likelihood Cox & Snell R Square Nagelkerke R Square

1 1085.991a .117 .224

Hosmer and Lemeshow Test

Step Chi‐Square df Sig.

1 2.509 8 .961

Contingency Table for Hosmer and Lemeshow Test

126B35A: #X NARC/
LIFETIME = 0 OCCAS

126B35A: #X NARC/ 
LIFETIME = 1+ OCCAS

Observed Expected Observed Expected Total

Step 1 1 174 174.513 2 1.487 176
2 170 170.463 3 2.537 173
3 180 177.541 1 3.459 181
4 178 178.192 5 4.808 183
5 172 171.676 12 12.324 184
6 158 159.765 22 20.235 180
7 162 161.176 27 27.824 189
8 139 137.185 33 34.815 172
9 117 118.983 48 46.017 165

10 111 111.507 61 60.493 172

Classification Tablea

Predicted

126B35A: #X NARC/LIFETIME Percentage

Observed 0 OCCAS: (1) 1+: (2) Correct

Step 
1

126B35A: #X 
NARC/LIFETIME

0 OCCAS: (1) 1561 0 100.0
1+: (2) 214 0 .0

Overall Percentage 87.9

Table 6.7 (Continued)

(Continued )

a Estimation terminated at iteration number 8 because parameter estimates changed 
by less than .001.

a The cut value is .500
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With use taking on the higher value, logistic regression models estimated the 
probability of respondents having experimented at least once with a narcotic 
substance. The next section, Categorical Variable Codings, shows both frequen
cies and internal coding for explanatory measures. Following that descriptive 
information, Block 0, often referred to as the “null hypothesis block,” contains 
output based on a model containing the intercept only. The null hypothesis sug
gests that explanatory measures will not differ from 0, and the statistics in this 
block inform that prediction. The Classification Table shows overall predictabil
ity, and in this case, 87.9% of cases (an unusually high percentage) could be 
predicted based on the model. The Variables in the Equation box shows an 
estimate, standard error, Wald value, and exponentiated estimate for the con
stant. Lastly, the Variables Not in the Equation box indicates whether measures 
not included might contribute to subsequent models. Here it appears they will.

In Block 1, the Omnibus Tests of Model Coefficients section indicates 
whether variables contained in the first block improved the regression model. 
The model chi‐squared value, 17.199 with 3 degrees of freedom, shows signi
ficance and indicates improvement; however, as indicated in the Model Summary, 
sex and race accounted for less than 2% of the variation in the dependent variable. 

Variables in the Equation

95% CI for 
Exp(B)

B SE Wald df Sig. Exp(B) Lower Upper

Step 1a V6150(1) .175 .159 1.225 1 .268 1.192 .873 1.626
V6151 3.210 2 .201
V6151(1) .502 .393 1.632 1 .201 1.652 .765 3.568
V6151(2) .198 .433 .209 1 .648 1.219 .522 2.847
V6575 2.716 4 .606
V6575(1) .095 .229 .172 1 .679 1.100 .702 1.724
V6575(2) .302 .217 1.935 1 .164 1.353 .844 2.072
V6575(3) .298 .251 1.418 1 .234 1.348 .825 2.202
V6575(4) .273 .330 .686 1 .407 1.314 .688 2.510
V6104 127.230 6 .000
V6104(1) −.787 1.059 .552 1 .458 .455 .057 3.630
V6104(2) .847 .536 2.491 1 .114 2.332 .815 6.670
V6104(3) 1.875 .424 19.534 1 .000 6.521 2.839 14.975
V6104(4) 2.067 .388 28.382 1 .000 7.897 3.692 16.892
V6104(5) 2.562 .376 46.351 1 .000 12.967 6.201 27.116
V6104(6) 3.221 .358 80.916 1 .000 25.056 12.420 50.549
Constant −3.118 .406 58.878 1 .000 .044

Table 6.7 (Continued)
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The Hosmer‐Lemeshow Test indicates a good fit to the data, and the 
Contingency Table for [the] Hosmer‐Lemeshow Test shows small differences 
between observed and expected frequencies. Although the Classification Table 
shows little change between Blocks 0 and 1, the Variables in the Equation 
s ection nevertheless shows significant effects for sex and race. Here, the odds of 
a male using a narcotic substance were 1.358 times the same odds for a female. 
Recalling that Black respondents served as the reference group for race, the 
odds of a White adolescent trying a narcotic substance were nearly three times 
the odds of a Black respondent doing so, with the odds of an Hispanic respondent 
using a narcotic substance more than twice those of a Black adolescent.

The next block includes exposure to anti‐drug spots on television, and as 
indicated by the Omnibus Tests of Model Coefficients section, this variable 
added little to the model. The block was not significant, which the Variables 
Not in the Equation section suggested. Looking to the Variables in the Equation 
section, and specifically to the 95% confidence intervals, each category in the 
drug‐spot exposure variable passed through 1.0, indicating independence, or no 
effect. Thus, with sex and race controlled, exposure to drug‐spots did not serve 
as a significant determinant of narcotic experimentation.

Block 3 contains lifetime alcohol consumption as an explanatory measure, 
and unlike drug‐spot exposure, it shows significance as a predictor. With alco
hol consumption in the model, explained variance increased from approxi
mately 2% to 22.4%, and both sex and race became non‐significant as 
predictors. The relationship between alcohol consumption and narcotic use 
moved in the kind of linear pattern one would expect; that is, the more fre
quently an individual consumed alcohol, the more likely he or she was to 
experiment with a narcotic substance. As examples, the odds of those who had 
consumed alcohol between 10 and 19 times experimenting with a narcotic 
substance were 7.897 times the same odds for those who had not consumed 
alcohol. The odds for those who had consumed alcohol between 20 and 39 
times were 12.967, and the odds for those who had consumed alcohol on 40 
or more occasions were 25.056. Notably, with the drug‐spot exposure varia
ble retained in the model, standard errors appeared larger than they would 
have otherwise.

Table 6.8 displays the explanatory effects of sex and race, as well as a six‐item, 
30‐point index measuring sensation‐seeking, on narcotic experimentation. The 
purpose of this example is to demonstrate how continuous variables may appear 
in the same regression equation as categorical measures – and how a continuous 
variable can affect explanatory power. Although the samples between analyses 
shown in Tables 6.7 and 6.8 showed slight variation, initial results were similar: 
Block 1, which contained sex and race, offered an improvement on the model 
containing the intercept only (Block 0). In Block 1, the sex measure did not  
show statistical significance (p = .062), but White and Hispanic adolescents again 



Table 6.8 SPSS output for binary logistic regression model containing categorical and 
continuous predictors

Dependent Variable Coding

Original Value Internal Value
0 OCCAS: (1) 0
1+ (2) 1

Categorical Variable Codings

Parameter Coding

Frequency (1) (2)

126C04®: Rs RACE B/W/H BLACK: (1) 173 .000 .000
WHITE: (2) 1304 1.000 .000
HISPANIC: (3) 272 .000 1.000

126C03: Rs SEX MALE: (1) 876 1.000
FEMALE: (2) 873 .000

Block 0: Beginning Block

Classification Tablea,b

Predicted

126B35A: #X NARC/
LIFETIME Percentage

Observed 0 OCCAS: (1) 1+: (2) Correct

Step 0 126B35A: #X 
NARC/LIFETIME

0 OCCAS: (1) 1543 0 100.0
1+: (2) 206 0 .0

Overall Percentage 88.2

a Constant included in the model.
b The cut value is .500

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 0 Constant –2.014 .074 736.874 1 .000 .134

Variables Not in the Equation

Score df Sig.

Step 0 Variables Sex (Males) 4.836 1 .028
Race 12.268 2 .002
White 7.814 1 .005
Hispanic .386 1 .534

Overall Statistics 15.773 3 .001
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Block 1: Method = Enter

Omnibus Tests of Model Coefficients

Chi‐Square df Sig.

Step 1 Step 18.724 3 .001
Block 18.724 3 .001
Model 18.724 3 .001

Model Summary

Step –2 Log Likelihood Cox & Snell R Square Nagelkerke R Square

1 1249.237a .011 .021

a Estimation terminated at iteration number 5 because parameter estimates changed 
by less than .001.

Hosmer and Lemeshow Test

Step Chi‐Square df Sig.

1 1.314 3 .726

Contingency Table for Hosmer and Lemeshow Test

126B35A: #X NARC/
LIFETIME = 0 OCCAS

126B35A: #X NARC/
LIFETIME = 1+ OCCAS

Observed Expected Observed Expected Total

Step 1 1 166 166.000 7 7.000 173
2 124 121.525 10 12.475 134
3 552 555.561 75 71.439 627
4 119 121.475 19 16.525 138
5 582 578.439 95 98.561 677

Classification Tablea

Predicted

126B35A: #X NARC/
LIFETIME

Percentage

Observed 0 OCCAS: (1) 1+: (2) Correct

Step 1 126B35A: #X 
NARC/LIFETIME

0 OCCAS: (1) 1543 0 100.0
1+: (2) 206 0 .0

Overall Percentage 88.2

a The cut value is .500

Table 6.8 (Continued)

(Continued )



Variables in the Equation

95% C.I. for 
Exp(B)

B S.E. Wald df Sig. Exp(B) Lower Upper

Step 1a V6150(1) .281 .151 3.496 1 .062 1.325 .987 1.780
V6151 10.217 2 .006
V6151(1) 1.223 .395 9.562 1 .002 3.396 1.565 7.372
V6151(2) .997 .434 5.288 1 .021 2.711 1.159 6.345
Constant ‐3.274 .391 70.113 1 .000 .038

Block 2: Method = Enter

Omnibus Tests of Model Coefficients

Chi‐Square df Sig.

Step 1 Step 50.488 1 .000
Block 50.488 1 .000
Model 69.212 4 .000

Model Summary

Step –2 Log Likelihood Cox & Snell R Square Nagelkerke R Square

1 1198.749a .039 .075

a Estimation terminated at iteration number 6 because parameter estimates 
changed by less than .001.

Hosmer and Lemeshow Test

Step Chi‐Square df Sig.

1 8.089 8 .425

Contingency Table for Hosmer and Lemeshow Test

126B35A: #X NARC/LIFETIME = 0 
OCCAS

126B35A: #X NARC/LIFETIME = 
1+ OCCAS

Observed Expected Observed Expected Total

Step 1 1 168 166.215  3  4.785 171
2 163 165.230 11  8.770 174
3 157 154.495  9 11.505 166
4 160 161.165 16 14.835 176
5 140 138.866 14 15.134 154
6 161 155.426 14 19.574 175
7 141 142.687 23 21.313 164
8 131 134.659 27 23.341 158
9 140 148.201 40 31.799 180
10 182 176.056 49 54.944 231

Table 6.8 (Continued)
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differed significantly from Black respondents. The odds of a White respondent 
experimenting with a narcotic substance were 3.396 times the same odds for a 
Black respondent, with odds for an Hispanic adolescent slightly less, at 2.711.

Looking to Block 2, adding the sensation‐seeking index increased the model 
chi‐squared value significantly, from 18.724 with 3 degrees of freedom to 69.212 
with 4 degrees of freedom. Including the index also moved the Nagelkerke R‐
square measure from 2.1% to 7.5%. This addition did not prove as notable as the 
addition of the alcohol‐consumption variable in Table 6.7, but like the alcohol 
measure, it affected the demographic variables already in the model. The variables 
in the Equation section for Block 2 indicates that gender moved from a p‐value 
approaching significance (p = .062) to .651 with the sensation‐seeking index 
included. Race categories remained significant, although the odds appeared 
slightly lower. The sensation‐seeking index itself did not appear especially notable 
in terms of odds, but such a value is typical of continuous variables. Although they 
may not appear important when viewed in isolation, continuous measures do 

Classification Tablea

Predicted

126B35A: #X NARC/
LIFETIME

Percentage

Observed 0 OCCAS: (1) 1+: (2) Correct

Step 1 126B35A: #X 
NARC/LIFETIME

0 OCCAS: (1) 1543 0 100.0
1+: (2) 206 0 .0

Overall Percentage 88.2

a The cut value is .500

Variables in the Equation

95% C.I. for 
Exp(B)

B S.E. Wald df Sig. Exp(B) Lower Upper

Step 1a V6150(1) .070 .156 .204 1 .651 1.073 .791 1.455
V6151 8.957 2 .011
V6151(1) 1.126 .399 7.980 1 .005 3.083 1.412 6.732
V6151(2) .863 .437 3.892 1 .049 2.379 1.006 5.584
Sensation .105 .015 45.890 1 .000 1.110 1.077 1.145
Constant −5.350 .514 108.211 1 .000 .005

Table 6.8 (Continued)
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stand to affect explained variation in the dependent variable as well as the indi
vidual relationships between explanatory and response measures.

Chapter Summary

This chapter has addressed binary logistic regression, a procedure used to  analyze 
the effects of categorical and continuous explanatory measures on a dichotomous 
response variable. In terms of generalized linear models, where OLS analyses 
contain an identity link and assume a standard normal error distribution, logistic 
regression models use a logit link and assume a binomial distribution. OLS models 
are based on least squares estimation techniques, while estimates in the logistic 
regression model are based on maximum likelihood. In addition to binary logistic 
regression, communication scholars also can apply multinomial and ordinal 
logistic regression, both of which are covered in the current text.

Chapter Exercises

1. Journalists sometimes grant anonymity to news sources, protecting suppli
ers of sensitive information from professional and/or personal repercus
sions. Denham (2012) examined the prevalence of anonymous attribution 
in The New York Times, specifically in reports addressing the convergence of 
the US war on drugs and the US war on terror. The study also examined 
other types of sources used in news reports, including those representing 
the Office of National Drug Control Policy (ONDCP).

Given the raw data that follow (gathered for the study described above), 
use binary logistic regression to examine the effects of time period (Before/
After September 11, 2001), article placement on the front page (Yes/No), 
and dateline (US/International origin) on whether articles contained anony
mous attribution. As part of your report, include the −2 log likelihood value, 
the Cox and Snell R‐squared statistic, the Nagelkerke R‐squared s tatistic, and 
the Hosmer and Lemeshow goodness‐of‐fit statistic. Additionally, include 
parameter estimates and their standard errors as well significance levels and 
95% confidence intervals. What might be concluded about the effects of the 
three explanatory measures on the use of anonymous attribution?

2. Use binary logistic regression to examine the effects of time period, article 
placement on the front page, and dateline on whether articles referenced a 
source from the Office of National Drug Control Policy. As part of your 
report, include the −2 log likelihood value, the Cox and Snell R‐squared 
statistic, the Nagelkerke R‐squared statistic, and the Hosmer and Lemeshow 
goodness‐of‐fit statistic. Additionally, include parameter estimates and their 
standard errors as well significance levels and 95% confidence intervals. 
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What might be concluded about the effects of the three explanatory measures 
on ONDCP sourcing? How did the results of this analysis differ from the 
results of the analysis of anonymous attribution?

ID AP F D O ID AP F D O ID AP F D O ID AP F D O ID AP F D O

001 0 1 2 1 0 034 0 1 2 1 0 067 12 2 2 0 100 1 2 2 2 0 133 0 1 2 2 0
002 1 1 1 1 0 035 1 1 2 1 1 068 12 2 1 0 101 1 2 2 1 0 134 0 1 2 2 1
003 0 1 2 1 0 036 0 1 2 1 1 069 12 2 2 0 102 1 2 2 1 0 135 1 1 1 1 0
004 1 1 1 1 0 037 0 1 2 2 0 070 12 2 1 0 103 1 2 2 1 0
005 0 1 2 1 1 038 1 1 2 1 0 071 12 2 1 0 104 1 2 2 1 0
006 1 1 1 1 1 039 0 1 2 1 0 072 12 1 1 0 105 1 1 2 1 0
007 0 1 2 1 0 040 1 1 2 1 0 073 02 2 1 0 106 0 1 2 1 0
008 1 1 2 2 0 041 0 1 2 1 0 074 12 2 2 0 107 0 1 2 1 0
009 1 1 2 1 0 042 1 1 2 1 0 075 02 2 2 0 108 0 1 2 2 0
010 0 1 2 1 0 043 1 1 2 1 1 076 02 2 1 0 109 0 1 2 1 0
011 1 1 2 2 0 044 1 1 2 2 1 077 12 2 1 0 110 0 1 2 1 0
012 0 1 2 1 0 045 1 1 2 2 1 078 02 2 1 0 111 0 1 2 1 0
013 1 1 2 1 0 046 0 1 1 1 0 079 12 2 2 0 112 1 1 2 1 1
014 1 1 2 2 0 047 1 1 1 1 1 080 12 1 1 0 113 1 1 2 2 0
015 1 1 1 1 1 048 0 1 2 1 1 081 12 2 2 0 114 0 1 2 2 1
016 1 1 1 2 0 049 0 1 2 1 1 082 12 2 2 0 115 1 1 1 2 0
017 1 1 2 1 1 050 1 1 1 1 0 083 12 2 1 0 116 1 1 1 1 0
018 0 1 2 1 0 051 1 1 1 1 1 084 12 2 1 0 117 1 1 2 1 0
019 1 1 1 2 0 052 1 1 2 2 0 085 12 1 1 1 118 0 1 2 1 0
020 1 1 1 2 1 053 0 1 2 1 0 086 12 2 1 0 119 1 1 2 1 0
021 1 1 2 2 0 054 1 2 2 2 0 087 12 2 1 0 120 0 1 2 1 1
022 1 1 1 2 1 055 0 2 2 1 0 088 02 2 1 0 121 0 1 2 1 1
023 1 1 1 2 0 056 0 2 2 1 0 089 12 1 1 0 122 0 1 2 1 0
024 1 1 1 1 1 057 1 2 1 1 0 090 12 2 2 0 123 1 1 2 2 0
025 0 1 2 1 0 058 1 2 1 2 0 091 12 2 2 0 124 1 1 2 2 1
026 0 1 2 1 0 059 1 2 2 2 0 092 12 2 2 0 125 1 1 2 2 0
027 1 2 2 1 0 060 0 2 1 1 0 093 12 2 2 1 126 0 1 2 1 1
028 0 1 2 2 1 061 0 2 2 1 0 094 12 2 1 1 127 1 1 2 2 1
029 1 1 1 2 0 062 0 2 1 2 0 095 02 2 2 0 128 0 1 2 1 0
030 0 1 2 1 0 063 1 2 2 2 0 096 02 2 2 0 129 1 1 2 1 0
031 0 1 2 1 0 064 0 2 2 1 1 097 12 1 1 0 130 1 1 2 2 0
032 0 1 2 2 0 065 1 2 2 2 0 098 02 2 1 0 131 0 1 2 1 1
033 1 1 2 2 0 066 0 2 2 1 0 099 12 2 2 0 132 0 1 2 1 0

Note: Excel file containing data available on companion website.

Category codes:
Anonymous attribution present (A): 0 = No, 1 = Yes
Period (P): 1 = Before 9/11, 2 = After 9/11
Front page news report (F): 1 = Yes, 2 = No
Dateline (D): 1 = US, 2 = International
Office of National Drug Control Policy source present (O): 0 = No, 1 = Yes
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Notes

1. As indicated in Chapters 4 and 5, although log‐linear models accommodate continuous 
covariates, they do not apply them on a case‐by‐case basis. Additional discussion on 
similarities and differences between log‐linear modeling and logistic regression can 
be found in Imrey, Koch, and Stokes (1981, 1982). Tansey et al. (1996) compared 
the techniques through scholarship in organizational management.

2. As Menard (2002, 6–7) explained, “Coding the values of the variable as 0 and 1 
produces the result that the mean of the variable is the proportion of cases in the 
higher of the two categories of the variable, and the predicted value for the dependent 
variable … can be interpreted as the predicted probability that a case falls into the 
higher of the two categories … given its value on the independent variable.”

3. Fienberg (2007) discussed the use of discriminant analysis versus logistic regression, 
noting that, in the former, explanatory variables need to follow the multivariate 
n ormal distribution. Logistic regression does not require normally distributed data, 
and as Fienberg explained, the logistic regression model may actually prove more 
effective for both classification and prediction. Regarding the logit and probit link 
functions, the former refers to the log of the odds and the latter to the inverse of the 
cumulative normal distribution (see, e.g., Allison 1999, Bliss 1935, Caffo and 
Griswold 2006, Liao 1994).

4. Scholars sometimes consider model chi‐squared a measure of goodness of fit, but as 
DeMaris (1992, 47) explained, it actually is not such an indicator: “It should be 
emphasized that the model chi‐squared test is quite different from G2, the goodness 
of fit measure used in contingency‐table analyses. Whereas G2 assesses the fit of the 
model to the data, the model chi‐squared in logistic regression tests only whether any 
of the predictors are linearly related to the log odds of the event of interest.”

5. Richard Williams offers a discussion of R2 analogs at http://www3.nd.edu/~rwilliam/
stats3/L05.pdf.
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Chapter 6 addressed binary logistic regression, a technique used in analyses 
containing a dichotomous response variable. The current chapter addresses 
multinomial logistic regression, used when a nominal response measure contains 
more than two categories (Hosmer and Lemeshow 2000, Liao 1994, Menard 
2002; see, earlier, Theil 1969, 1970). As an example of an unordered polyto-
mous variable, a researcher analyzing news photographs of political leaders 
might classify facial expressions as positive, negative, or neutral, reporting on 
whether valance varies across news organizations as well as individuals pictured. 
A survey researcher might ask respondents about a primary news source, with 
outcome categories including print media, television news, the Internet, radio, 
or another type of source. In a sports setting, a scholar conducting a field study 
of communication between coaches and athletes might code utterances as 
task‐specific, non‐task‐specific, or as communication unrelated to athletic 
 competition, as defined in the study.

As explained in the chapter, in addition to analyses containing nominal outcome 
measures, the multinomial model often proves useful in studies containing 
ordinal dependent variables, as some analyses do not meet the assumptions of 
ordinal logistic regression (discussed in Chapter  8). In discussing regression 
models containing multi‐category response measures, the chapter draws on 
data gathered in the 2008 American National Election Study and the 2012 
Monitoring the Future study. The following section reviews multinomial regres-
sion applications in published communication research.

7

Multinomial Logistic Regression
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Examples of Published Research

Relatively few scholars have used multinomial logistic regression analyses in 
communication studies. Of those who have, nearly all have analyzed processes 
in health communication. Jones, Denham, and Springston (2007), for instance, 
analyzed the influence of mass and interpersonal communication on whether 
respondents underestimated, estimated correctly, or overestimated their risk of 
developing breast cancer. Pilgrim and her colleagues (2014) tested the explana-
tory power of scales such as Clinician‐Client Centeredness and Clinic Discomfort 
on perceptions of care and satisfaction with services in healthcare settings. Chou 
et al. (2010) applied multinomial analyses in a study of healthcare satisfaction 
ratings, while Kelly and her colleagues (2009) used the multinomial model in 
research involving information seeking among underserved populations. 
Mathur, Levy, and Royne (2013) used multinomial regression to test the effects 
of demographic variables and smoking status on trust in doctors and family 
members as sources of cancer information, while Denham (2014) analyzed 
the effects of sex, race, student activity levels, and parental communication on 
alcohol risk perceptions among adolescents. In non‐health‐related research, 
Ji, Ha, and Sypher (2014) analyzed demographic variables and media‐use 
measures as predictors of information overload, with respondents indicating 
whether they frequently experienced a sense of overload, sometimes experienced 
such a sense, or did not feel overloaded by information at any point. Earlier, in 
a study of public opinion, Schmitt‐Beck (1996) used the multinomial model 
to examine effects of communication on vote choice. The following section 
discusses the fundamental components of multinomial logistic regression.

Multinomial Logistic Regression: Fundamentals

The previous chapter discussed the logit, or log of the odds, as a link function 
in binary logistic regression. Using notation from Norusis (2005, 44), the 
binary model can be expressed as:

 
log ...

P event
P noevent

X X Xo p p1 1 2 2

 

where βo represents the intercept, β1 to βp represent logistic regression coefficients, 
and X1 to Xp refer to independent variables. For practical purposes, one can view 
multinomial logistic regression as an extension of the binary model, with cate-
gories of the response measure analyzed simultaneously in reference to a baseline 
category (see Agresti 1990, 306–317, DeMaris 2004, 294–302, Long 1997, 
148–186).1 Where the binary model produces one set of parameter estimates, the 
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multinomial model produces separate log odds for each set of relationships 
 analyzed. If, for example, a response measure contains three categories, the 
multinomial model will calculate log odds and a distinct intercept for category 1 
relative to category 3 and for category 2 relative to category 3. Thus, if a depend-
ent variable contains J categories, a multinomial model will contain J − 1 logits 
yielding distinct parameter estimates and intercept values.2 Given those processes, 
the multinomial logistic regression model is expressed as:

 
log ...

P category i

P category J
X Xio i i i1 1 2 2 pp pX

 

where J serves as the baseline category for the ith response option. In this model 
the first subscript value identifies the corresponding logit and the second the 
variable (Norusis 2005, 44).

While the binary model follows a binomial distribution (see Chapter  1), 
 polytomous regression models follow a multinomial distribution, with a model 
estimating the log odds of an observation appearing in a specific category of the 
response measure. In the multinomial model, maximum likelihood establishes 
parameter estimates, and a generalized logit serves as the link function. As with 
other procedures addressed in this text, the multinomial model assumes response 
categories are mutually exclusive and exhaustive, with every observation assigned 
to one – and only one – category of the dependent variable. The following section 
demonstrates parameter estimation in a model containing one three‐category 
explanatory measure and one three‐category response variable.

Simple Multinomial Logistic Regression Analysis

Table 7.1 contains cross‐tabulated data gathered in the 2008 American National 
Election Study (The American National Election Studies 2008). In this table, 
three categories of race (White, Black, Other Race) appear in the rows and three 
categories of political party affiliation (Democrat, Republican, Independent) 
appear in the columns. Row percentages indicate that Black respondents and 
members of other races identified more frequently as Democrats, just as Whites 
identified more frequently as both Republicans and Independents. Relatively 
few Black respondents and members of other races identified as Republicans.

Table 7.2 contains a simple multinomial logistic regression analysis, with race 
entered as an explanatory measure and political party affiliation entered as a 
response variable. As shown in the table, separate logits appear for Democrats and 
Republicans with Independents as the reference, or baseline, category. The third 
category in the race measure, Other Race, served as a reference category for White 
and Black respondents. Examining estimates in Democrat categories, the parameter 
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value of  − .707 for White respondents exponentiated to .493, indicating the odds 
of  White respondents identifying themselves as Democrats relative to Independents 
were about half the same odds for members of another race, apart from Blacks. To 
observe those odds, one can calculate cross‐product ratios based on corresponding 
cell frequencies in Table 7.1. Specifically, one can multiply counts in cells a (193) 
and i (44) and divide by the product of counts in cells c (257) and g (67). Thus, 
(193)(44)/(257)(67) = 8,492/17,219 = .493. Similarly, in observing an odds ratio 
of 2.017 for Black respondents relative to individuals from other races, one can 
multiply counts in cells d (215) and i (44) and divide by the product of counts in 
cells f (70) and g (67). Thus, (215)(44)/(70)(67) = 9,460/4,690 = 2.017. Given 
the estimates appearing in Table 7.2, linear models would be expressed as:

 
log

P democrat
P independent

. . .421 707 702
 

 
log

P republican
P independent

1 299 992 1 563. . .
 

Table 7.1 Cross‐tabulation of race by political party affiliation

Political Party Affiliation

Race Democrat Republican Independent Totals

White a b c
193 (30.2%) 189 (29.6%) 257 (40.2%) 639

Black d e f
215 (74.4%) 4 (1.4%) 70 (24.2%) 289

Other Race g h i
67 (54.5%) 12 (9.8%) 44 (35.8%) 123

Totals 475 205 371 1,051

Table 7.2 Simple multinomial logistic regression model testing race as a determinant 
of political party affiliation

Response 
Categories

Explanatory 
Categories B SE Wald df Sig. Exp(B)

Democrat Intercept .421 .194  4.696 1 .030
White −.707 .216 10.694 1 .001 .493
Black .702 .238  8.699 1 .003 2.017

Republican Intercept −1.299 .326 15.917 1 .001
White .992 .339  8.538 1 .003 2.696
Black −1.563 .609  6.596 1 .010 .210
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As with binary logistic regression, the multinomial model produces likelihood 
values that inform researchers of (a) whether a model containing explanatory 
measures performs better than one containing only the intercept, and (b) whether 
each explanatory measure makes a significant contribution. In the current 
example, the −2 log likelihood value of a model containing the intercept only 
was 396.010, and with the addition of race, the value moved to 177.172. The 
chi‐square difference, 218.838 with 4 degrees of freedom, showed significance 
at p < .001, and thus the model containing race performed better than a model 
containing only the intercept.

In addition to likelihood values, multinomial logistic regression reports three 
types of pseudo R‐square measures (Cox and Snell, Nagelkerke, McFadden) as 
well as the Hosmer and Lemeshow goodness‐of‐fit test. In the present example, 
a non‐significant p‐value for the Hosmer and Lemeshow test indicated an accept-
able fit to the data, and pseudo R‐square values ranged from .100 for McFadden 
to .214 for Nagelkerke. As indicated in Chapter 6, one limitation of pseudo 
R‐squared measures is that one cannot compare them across samples (Mood 2010). 
Overall, though, race appears to have made both statistically significant and 
conceptually substantive contributions to notions of political party affiliation.

Multiple Multinomial Logistic Regression Analysis

Building on the ANES example from the previous section, Table 7.3 contains 
estimates for a multinomial regression model that includes three categorical 
measures, sex, race, and military service, as well as one continuous measure, 

Table  7.3 Multiple multinomial logistic regression model testing sex, race, military 
service, and newspaper exposure as determinants of political party affiliation

Response  
Categories

Explanatory  
Categories B SE Wald df Sig. Exp(B)

Democrat Intercept .542 .211 6.582 1 .010
Newspaper .053 .028 3.539 1 .060 1.054
Male −.612 .155 15.475 1 .001 .542
White −.726 .219 10.975 1 .001 .484
Black .709 .241 8.645 1 .003 2.031
Military .185 .219 .713 1 .398 1.203

Republican Intercept −1.491 .344 18.815 1 .000
Newspaper .092 .032 7.987 1 .005 1.096
Male −.111 .190 .344 1 .558 .895
White .931 .341 7.444 1 .006 2.537
Black −1.609 .610 6.961 1 .008 .200
Military .397 .248 2.558 1 .110 1.487
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newspaper exposure, as determinants of political party affiliation. In addition 
to the sex and race measures, the ANES asked respondents to indicate the 
number of days they had read a newspaper during the previous week, and the 
military item indicated whether individuals had not served or had served/
were currently serving.

Examining Table  7.3, the continuous explanatory measure, newspaper 
exposure, appears first in both lists of estimates. An important assumption in 
logistic regression is that continuous explanatory variables show linearity in 
the log odds (DeMaris 2004, 287). In this case, one might expect political 
partisans to read the newspaper more frequently than other individuals, 
meaning parameter estimates would move in a linear direction for each day of 
the week. One approach for testing the linearity assumption is to enter a con-
tinuous explanatory measure as a categorical variable and examine resulting 
parameter estimates. If they do not show a specific pattern (e.g., move from 
lower to higher values), then the variable should be treated as categorical 
instead of continuous. In the current analysis, newspaper exposure satisfied 
the linearity assumption and appears in Table 7.3 as a continuous predictor. 
While it missed showing significance in the first series of estimates, it appeared 
significant in the second, with newspaper reading increasing the odds of indi-
viduals identifying themselves as Republicans.

Looking to the categorical determinants in Table 7.3, the odds of males 
identifying as Democrats relative to Independents were .542 times the 
same odds for females. Race measures changed very little, with Whites 
 significantly less likely to identify as Democrats and Black respondents 
 significantly more likely to do so. Military service did not prove significant 
as a determinant. In the second logit analysis, differences did not emerge 
across males and females nor did military service show significance. Race 
again proved significant, though, with the odds of White respondents iden-
tifying as Republicans relative to Independents 2.537 times the same odds 
for members of other races. The odds of Blacks identifying as Republicans 
relative to Independents were .200 times the same odds for members of 
other races.

Regarding fit, a multinomial model containing the intercept only showed 
a −2 log likelihood score of 629.293, with the final model reducing that 
score to 381.160. The chi‐squared difference, 248.133 with 10 degrees of 
freedom, showed significance at p < .001. Individual likelihood tests showed 
significance for sex, race, and newspaper exposure; military service did 
prove significant and added little to the multinomial model. Pseudo 
R‐square measures ranged from .113 for McFadden to .240 for Nagelkerke, 
and in examining model statistics as a whole, race clearly played the most 
important role.
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Conditional Logit Modeling

Closely related to multinomial logistic regression is the conditional logit, or 
discrete‐choice, model. Developed by McFadden (1973), conditional logit 
analysis considers as explanatory measures the characteristics of choice options 
as opposed to (or in addition to) the characteristics of individuals making a 
choice (see Glasgow 2004, Hoffman and Duncan 1988, 415). “In the standard 
multinomial model,” Powers and Xie (2000, 239) explained, “explanatory 
variables are invariant within outcome categories, but their parameters vary with 
outcome. In the conditional logit model, explanatory variables vary by outcome 
as well as by the individual, whereas their parameters are assumed constant over 
all outcome categories.”

In public opinion research, the conditional logit model has proven useful in 
analyses of panel data, which often contain more than one response from the 
same individual. As an example, Yanovitzky and Capella (2001) studied the 
effects of political talk radio on listener attitudes during the 1996 US presiden-
tial election. The conditional logit model helped to determine whether (a) radio 
programming affected attitudes or (b) individuals with existing political biases 
chose certain programs. The authors pooled multiple responses from individuals 
into one sample, resulting in a series of “person‐time” units for each wave in the 
study. As Yanovitzky and Capella (2001, 386) explained, “Since information 
on fixed characteristics such as age, gender, race, and political affiliation is 
duplicated for each individual in each wave, all fixed characteristics (observed 
and unobserved) that may account for attitude change across waves are controlled 
for and the model can only be estimated from time‐dependent variables…” 
The conditional logit model, the authors noted, eliminated concerns about 
spuriousness of causal relationships between exposure to political talk radio 
and attitude change.

In political science, Baumgartner (2012) used the conditional logit model to 
forecast the selection of vice‐presidential candidates, 1960 to 2008. In each 
election cycle, multiple candidates emerged in both major parties, with one 
Democrat and one Republican ultimately selected. Baumgartner positioned 
“nominated” as a dependent variable, using conditional logit analysis to identify 
media exposure, political experience, having served in the military, age, and 
gender/racial/ethnic diversity as factors associated with being nominated. The 
characteristics of choices, rather than individuals making the selections, proved 
central to the analysis.

In communication, the conditional logit model may prove beneficial to scholars 
who work with panel data gathered during political and health campaigns. 
Dating back to the election research of Lazarsfeld and his colleagues, panel data has 
been used in analyses involving media use as well as interpersonal communication. 
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By considering differences in the values assigned to choice options across time, the 
technique can detect changes in attitudes following substantive events.3 To date, 
the procedure has been used in political science more frequently than in commu-
nication, where no studies apart from public opinion analyses have emerged.

Multinomial Logistic Regression in SPSS

This section of the chapter uses data gathered in the 2012 Monitoring the 
Future study (Johnston et al. 2012) to demonstrate multinomial logistic regres-
sion analysis in SPSS. A three‐category dependent variable indicated whether 
MTF respondents did not disapprove, disapproved, or strongly disapproved of 
individuals 18 or over trying the illicit substance MDMA (i.e., “ecstasy”). 
MDMA is considered a “club drug” and is often used by individuals attending 
raves, or all‐night dance parties. Three categorical factors served as determinants 
of attitudes toward the substance: sex of respondents, the perceived ease with 
which MDMA could be obtained, and exposure to anti‐drug spots on televi-
sion. Respondents indicated whether it was probably impossible, very difficult, 
fairly difficult, fairly easy, or very easy to obtain MDMA, also indicating whether 
they had not seen anti‐drug spots or had seen them less than once per month, 
one to three times per month, one to three times per week, or daily.

To begin a multinomial analysis in SPSS, a researcher should first click on 
Analyze, followed by Regression and Multinomial. At that point SPSS allows 
the analyst to enter explanatory and response variables, as shown in Figure 7.1. 
For the response measure, a researcher can select a baseline category for logit 
analyses; the last category serves as the default, but one can also choose the first 
category or customize the analysis. Categorical explanatory variables should be 
entered as Factors and continuous determinants as Covariates. In general, ordi-
nal measures should be entered first as Factors, as one cannot assume linearity in 
the respective logits and equal intervals between observation points.4 When 
linearity is satisfied and a measure contains at least four categories, then it may 
be tested as a Covariate.

Figure 7.1 also contains a window for model construction. Here one can 
choose from Main effects, Full factorial, and Custom/Stepwise. Main effects 
models contain no interactions, while a Full factorial model contains all 
potential interactions among explanatory variables. In many cases, a researcher 
may seek to customize a multinomial analysis by entering one interactive 
term instead of every potential interaction, or examine model estimates with 
variables added at different points; in such cases the Custom/Stepwise option 
may prove useful.

Figure 7.2 contains output options for multinomial logistic regression. As the 
window on the right indicates, the procedure includes multiple options, and 
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especially important are parameter estimates, likelihood ratio tests, goodness‐ of‐
fit tests, pseudo R‐square measures, and the 95% confidence interval. A researcher 
should select and review these statistics with each analysis. Step summaries can also 
prove useful for identifying the relative importance of explanatory factors.

Figure 7.1 SPSS screenshots for variables to be included in multinomial logistic regres-
sion model. Source: SPSS® Reprints Courtesy of International Business Machines 
Corporation, © 2014 International Business Machines Corporation

Figure  7.2 SPSS screenshots for output options in multinomial logistic regression 
model. Source: SPSS® Reprints Courtesy of International Business Machines Corporation, 
© 2014 International Business Machines Corporation
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Although the current chapter does not include separate screenshots for the 
Criteria, Options, and Save windows – default settings generally perform well 
and do not need adjustment – it should be noted that in a multivariate analysis, 
the number of cells can grow rapidly, introducing potential problems with 
empty cells. In the Options window, a researcher should set the value of Delta 
at .5 when zero‐count cells emerge. SPSS will then add .5 to each cell, ideally 
adding stability to parameter estimates. Empty cells are especially common in 
analyses with small samples.

Table 7.4 contains SPSS output for the multinomial model testing sex, ease of 
obtaining MDMA, and exposure to anti‐drug spots as predictors of attitudes 
toward MDMA experimentation. The first set of statistics compares the model 
containing all three explanatory measures to a model containing the intercept 
only, and as indicated by the significance of chi‐square, the three‐variable 
model offers an improvement. The goodness‐of‐fit statistics just below that 
information confirm the fit, with a nonsignificant chi‐square value showing no 
differences between observed frequencies and those produced by the main‐
effects multinomial model.

Continuing with Table 7.4, pseudo R‐square estimates range from .062 to .128 
and, examining the results of likelihood ratio tests, sex and ease of obtaining 
MDMA both made statistically significant contributions to the model; however, 
exposure to drug spots did not make a significant contribution and could be 
dropped in a subsequent analysis. Examining −2 log likelihood statistics and 
chi‐square values, it appears ease of obtaining MDMA made an especially strong 
contribution, as the model would have shown a −2 log likelihood value of 605.898 
without its inclusion. Without sex included, the −2 log likelihood score would 
have equaled 429.062, also a significant departure from the final model.

Table  7.5 contains parameter estimates for two levels of the dependent 
variable – Do Not Disapprove of MDMA experimentation and Disapprove of 
experimentation  –  with Strongly Disapprove serving as a reference category. 
Examining the estimates for those who did not disapprove, the odds of males 
not disapproving to strongly disapproving were 1.789 times the same odds for 
females. Similarly, the odds for males disapproving to strongly disapproving 
were 1.455, and thus one might conclude that females showed greater disap-
proval of MDMA experimentation. Perceived accessibility of MDMA appears 
after sex in the two lists of parameter estimates, and as indicated by the log odds 
among those who did not disapprove, perceived ease/difficulty in obtaining 
MDMA served as a significant determinant of attitudes toward the substance. 
The odds of those who considered MDMA probably impossible to obtain not 
disapproving of experimentation were just .079 times the same odds for those 
who considered MDMA easy to obtain. Similar odds emerged for those who 
considered MDMA very difficult to obtain. Among those who disapproved of 
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Table 7.4 SPSS output for multinomial logistic regression model 
containing categorical predictors

Model Fitting Information

Model
Fitting
Criteria Likelihood Ratio Tests

Model −2 Log  
Likelihood

Chi‐Square df Sig.

Intercept Only 643.825
Final 404.928 238.896 18 .000

Goodness‐of‐Fit

Chi‐Square df Sig.

Pearson 80.215 80 .472
Deviance 84.988 80 .330

Pseudo R‐Square

Cox and Snell .108
Nagelkerke .128
McFadden .062

Likelihood Ratio Tests

Model
Fitting
Criteria Likelihood Ratio Tests

Model −2 Log 
Likelihood Chi‐Square df Sig.

Intercept 404.928a .000 0
Sex 429.062 24.134 2 .000
Ease of Getting MDMA 605.898 200.970 8 .000
Exposure to Drug Spots 413.305 8.377 8 .397

The chi‐square statistic is the difference in −2 log likelihood between the final 
model and a reduced model.
The reduced model is formed by omitting an effect from the final model. The 
null hypothesis is that all parameters of that effect are 0.
a This reduced model is equivalent to the final model because omitting the 
effect does not increase the degrees of freedom.
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Table 7.5 SPSS output for multinomial logistic regression model containing categorical 
predictors

Parameter Estimates

95% Confidence 
Interval for 

Exp(B)

B SE Wald df Sig. Exp(B) Lower Upper

DNT DISP.
Intercept −1.155 .311 13.788 1 .000
Males .582 .142 16.863 1 .000 1.789 1.355 2.362
MDMA Impossible −2.539 .297 73.109 1 .000 .079 .044 .141
MDMA Very Difficult −2.466 .271 82.736 1 .000 .085 .050 .145
MDMA Fairly Difficult −1.563 .208 56.428 1 .000 .210 .139 .315
MDMA Fairly Easy −.580 .190 9.313 1 .002 .560 .386 .813
Never See Drug Spots .645 .308 4.370 1 .037 1.906 1.041 3.489
<ONCE/MO .559 .315 3.145 1 .076 1.749 .943 3.244
1–3/MO .691 .310 4.957 1 .026 1.995 1.086 3.665
1–3/WK .553 .337 2.689 1 .101 1.738 .898 3.366

DISAPPRV.
Intercept −1.145 .249 21.208 1 .000
Males .375 .105 12.801 1 .000 1.455 1.185 1.786
MDMA Impossible −.802 .219 13.358 1 .000 .448 .292 .689
MDMA Very Difficult −.350 .200 3.049 1 .081 .705 .476 1.044
MDMA Fairly Difficult −.087 .193 .206 1 .650 .916 .628 1.337
MDMA Fairly Easy .246 .196 1.570 1 .210 1.279 .870 1.880
Never See Drug Spots .238 .219 1.181 1 .277 1.268 .826 1.947
<ONCE/MO .279 .219 1.621 1 .203 1.322 .860 2.031
1–3/MO .262 .217 1.455 1 .228 1.300 .849 1.990
1–3/WK .413 .213 3.185 1 .074 1.511 .960 2.378

Classification

Predicted

Observed DNT DISP. DISAPPRV. STRG. DIS. Percentage Correct

DNT DISP. 30 0 250 10.7%
DISAPPRV. 16 0 523 .0%
STRG. DIS. 34 0 1245 97.3%
Overall percent 3.8% .0% 96.2% 60.8%
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experimentation, odds were not as pronounced, but they did move in a consistent 
pattern, supporting the notion of perceived access as an important determinant 
of attitudes toward use.

Examining parameter estimates for exposure to anti‐drug spots, significant 
relationships emerged at the Do Not Disapprove response level. Here, the odds 
of an individual who saw no anti‐drug spots not disapproving of MDMA use 
(compared to strongly disapproving) were 1.906 times the same odds for those 
who saw anti‐drug spots on a daily basis. Log odds for those who saw anti‐drug 
spots less than once per month approached significance, and the odds of those 
who saw between one and three spots per month not disapproving of MDMA 
use were 1.995 the same odds for those who saw anti‐drug spots on a daily basis. 
No relationships showed significance at the Disapprove level of the response 
measure, and thus a researcher would conclude that while anti‐drug spot expo-
sure showed potential as an explanatory measure, especially at the Do Not 
Disapprove level, relationships proved inconsistent.

Lastly, the classification table located beneath the section on parameter esti-
mates revealed that, overall, the model resulted in 60.8% of cases correctly clas-
sified. This figure is somewhat modest, but just three variables appeared in the 
equation, and two of those measures showed consistency as explanatory varia-
bles. With additional measures included, predicted percentages would have 
increased.

Chapter Summary

This chapter addressed multinomial logistic regression analysis, a technique used 
when a nominal response measure contains more than two categories. The proce-
dure can be viewed as an extension of the binary logistic regression model, with 
categories of the response measure analyzed simultaneously in reference to a base-
line category. In addition to the multinomial model, the chapter also summarized 
the conditional logit model, which uses characteristics of choice options as explan-
atory measures. The conditional logit model has proven useful in panel studies, 
with scholarship appearing in political science and public opinion journals.

Chapter Exercises

1. Use multinomial logistic regression to test the effects of sex and consumption 
of energy drinks (No Consumption, Less than One energy drink per day, One 
or More energy drinks per day) on adolescent use of amphetamines (No Use, 
1–2 Times, 3–9 Times, 10 or More Times). In your analysis, report −2 log 
likelihood values for the Intercept Only and Final models, as well as the 
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Pearson goodness‐of ‐fit test, three R‐squared estimates, and the likelihood 
ratio tests. Also report parameter estimates and their standard errors, in addi-
tion to Wald values, significance tests, exponentiated parameter estimates, and 
95% confidence intervals. The data for this exercise, drawn from the 2012 
Monitoring the Future study (Johnston et al. 2012), appear below.

Energy Drinks per Day Amphetamine Use Frequency

Males
None 0 596
None 1–2 Times 28
None 3–9 Times 27
None 10 or More Times 21
Less than One 0 219
Less than One 1–2 Times 16
Less than One 3–9 Times 20
Less than One 10 or More Times 18
One or More 0 87
One or More 1–2 Times 4
One or More 3–9 Times 6
One or More 10 or More Times 7

Females
None 0 721
None 1–2 Times 33
None 3–9 Times 25
None 10 or More Times 22
Less than One 0 129
Less than One 1–2 Times 14
Less than One 3–9 Times 11
Less than One 10 or More Times 7
One or More 0 71
One or More 1–2 Times 2
One or More 3–9 Times 5
One or More 10 or More Times 5

2. Use multinomial logistic regression to test the effects of sex, race (White, 
Black, Other Race), and exposure to the 2008 election campaign in the 
newspaper (Exposed, Not Exposed) on political party identification 
(Democrat, Republican, Independent). In your analysis, report −2 log like-
lihood values for the Intercept Only and Final models, as well as the Pearson 
goodness‐of ‐fit test, three R‐squared estimates, and the likelihood ratio 
tests. Also report parameter estimates and their standard errors, in addition 
to Wald values, significance tests, exponentiated parameter estimates, and 
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95% confidence intervals. The data for this exercise, drawn from the 2008 
American National Election Study (The American National Election Studies 
2008), appear below.

Race Exposure to Campaign in Newspaper Political Party ID Frequency

Males
White Yes Democrat 35
White Yes Republican 59
White Yes Independent 60
White No Democrat 9
White No Republican 10
White No Independent 29
Black Yes Democrat 8
Black Yes Republican 1
Black Yes Independent 9
Black No Democrat 20
Black No Republican 1
Black No Independent 12
Other Yes Democrat 8
Other Yes Republican 2
Other Yes Independent 7
Other No Democrat 6
Other No Republican 1
Other No Independent 5

Females
White Yes Democrat 62
White Yes Republican 49
White Yes Independent 52
White No Democrat 29
White No Republican 25
White No Independent 36
Black Yes Democrat 71
Black Yes Republican 1
Black Yes Independent 13
Black No Democrat 21
Black No Republican 0
Black No Independent 14
Other Yes Democrat 13
Other Yes Republican 5
Other Yes Independent 9
Other No Democrat 13
Other No Republican 2
Other No Independent 5
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Notes

1 Generally, statistical software programs establish the last variable category as a baseline, 
but most programs allow the researcher to switch a reference category to the initial 
option (see Norusis 2005, Stokes, Davis, and Koch 2012). Researchers can also recode 
data, scoring the preferred reference category as the highest value (i.e., category label).

2 Although multinomial logistic regression can use a probit link, calculations often 
prove complicated, and statisticians generally encourage use of the logit in most cir-
cumstances (for discussion, see Aldrich and Nelson 1984, 73, Borooah 2002, 
Campbell and Donner 1989, Dow and Endersby 2004). The probit is a viable option 
for binary and ordinal logistic regression modeling.

3 SPSS does not contain a menu option for conditional logit analysis, but researchers 
have tested such models through the Cox regression procedure. For details on how 
to structure the data, see Garson (2014). For texts that move beyond panel studies in 
addressing longitudinal analyses of categorical data, see Liang and Zeger (1986), 
Sutradhar (2014), and Von Eye and Niedermeier (1999).

4 While communication scholars and other social scientists often treat ordered 
explanatory and response measures as quasi‐interval, a benefit of the multinomial 
procedure is that it allows one to examine parameter estimates as each level of a 
predictor. Depending on the research area, such detail can prove important, 
offering greater information than a single coefficient for a continuous covariate 
can provide.
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Up to this point the discussion of logistic regression analysis has focused on 
binary and multinomial techniques, used in equations with dichotomous and 
polytomous response variables, respectively. The current chapter focuses on 
ordinal logistic regression, used when a dependent measure contains ordered 
categories (Agresti 1984, Anderson 1984, McCullagh 1980). In communication 
research, ordinal measures include items such as Likert attitude statements, 
semantic differential scales, grouped behavior frequencies, and self‐reported 
e stimates of media use. Likert statements are especially popular and measure atti
tudes by asking respondents whether they Strongly Agree, Agree, Neither Agree 
Nor Disagree, Disagree, or Strongly Disagree with specific assertions. Researchers 
typically assign scores 1 through 5 to the sequential response options, termed 
“vague quantifiers” (Schaeffer 1991, Griffin 2013). In some cases, researchers 
treat the scores as discrete, applying ordinal statistics, but in other instances schol
ars consider the values “quasi‐interval,” calculating means and standard deviations 
(see, for discussion, Hayes 2005, Hewes 1978, Norman 2010, Wilson 1971). 
The present chapter covers the advantages and disadvantages of both approaches.

In addition to individual survey items such as Likert statements, behavioral 
models also may contain ordered levels. O’Connell (2006) mentioned the Stages 
of Change model (Prochaska and DiClemente 1983), which includes the cate
gories precontemplation, contemplation, preparation, action, and maintenance. 
In carrying out a study grounded in this model, a researcher would need to 
operationalize each conceptual stage, such that the technique addressed in this 
chapter, ordinal logistic regression, might be used to analyze relationships. 
The  following section reviews communication studies that have used ordinal 
logistic regression. Following that review, the chapter addresses model fundamen
tals and offers instruction on the Polytomous Universal Model (PLUM) in SPSS.

8

Ordinal Logistic Regression
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Examples of Published Research

While research in health communication has accounted for most of the discip
linary scholarship reviewed in this text, scholars have applied ordinal logistic 
regression to studies involving new media, family communication, and sourcing 
dynamics in science communication, among other subjects. As an example, Chyi 
and colleagues (2010) used ordinal regression in examining Internet news site 
satisfaction, with an ordered dependent variable moving from Mostly Dissatisfied 
to Mostly Satisfied. Relatedly, Chyi and Yang (2009) drew on data gathered by 
the Pew Research Center in analyzing online news use, which the researchers 
operationalized along seven ordered levels. In the context of family commu
nication, Evans and his colleagues (2012) examined effects of media messages 
on parent–child communication about sex, while Strom and Boster (2011) 
a nalyzed family support as a determinant of educational attainment. Studying 
the extent to which scientists had communicated with media personnel, 
Dunwoody, Brossard, and Dudo (2009) created a three‐level ordinal variable 
consisting of No Contact, Modest Contact, and Frequent Contact. Stempel, 
Hargrove, and Stempel (2007) used ordinal regression in studying media use 
and beliefs in 9/11 conspiracy theories. The authors offered respondents three 
such theories, followed with the response options Very Likely, Somewhat Likely, 
and Not Likely.

In health‐related research, Denham (2010) used ordinal logistic regression in 
a study measuring risk perceptions of anabolic steroid use. Response options 
included Little Risk, Moderate Risk, and Great Risk, with explanatory measures 
including sex, race, newspaper exposure, anti‐drug spot exposure, athletic par
ticipation, estimated ease of obtaining steroids, perceived peer use of steroids, 
and estimated use of the drugs by professional athletes. Han, Moser, and Klein 
(2006) studied the effects of perceived ambiguity on ordinal measures of cancer 
preventability, risk and worry, and studying comparative risk for colon cancer, 
Hay, Coups, and Ford (2006) found higher risk estimates among younger 
respondents as well as those in poorer health and those with a history of cancer 
in the family, among other factors.

Ordinal Logistic Regression: Fundamentals

Binary logistic regression models estimate the probability of a “success” (i.e., the 
probability of an observation taking on the higher of two values). In a content 
analysis, a success may refer to a news report mentioning a specific issue attri bute, 
while in survey research, a success might consist of a participant discussing politics 
with a family member in the previous 24 hours. Just two possibilities exist when 
a dependent variable is dichotomous, and a success is therefore easy to define. 
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But as O’Connell (2006) explained, the term “success” can take on multiple 
meanings in the presence of an ordinal response measure. For example, in one 
study a researcher might be interested in the overall strength of an ordinal asso
ciation, and in another project the focus may shift to specific levels of ordered 
measures. Accordingly, statisticians have developed a series of logistic regression 
models for ordinal data, some of which include cumulative (or proportional) 
odds, adjacent categories, and continuation ratio (see, for discussion, Ananth 
and Kleinbaum 1997, Agresti 1984, 1989, Clogg and Shihadeh 1994, 
Holtbrugge and Schumacher 1991, Hosmer and Lemeshow 2000, Sobel 1997, 
Winship and Mare 1984).

The current chapter focuses on the most popular ordinal regression model, 
cumulative odds (McCullagh 1980), because it works well with the kinds of 
questions communication scholars ask, and because SPSS fits this model in its 
PLUM procedure (Norusis 2005). In SPSS a cumulative odds model indicates 
the odds of an observation appearing at or below a specific category of an ordinal 
dependent variable; the name of the model – cumulative odds – reflects the fact 
that odds accumulate across the categories of an ordered response measure.1 
With cases “sequentially partitioned into dichotomous groups” (O’Connell 
2006, 28), the cumulative odds model can be viewed as a series of binary l ogistic 
regression analyses (see also DeMaris 2004, 303–307, Stokes, Davis, and Koch 
2012, 260–274).

Discussing cumulative odds, O’Connell (2006, 31) used the following nota
tion to reflect the probability (π) of an observation appearing at or below the jth 
category of K possible outcomes (j = 1, 2,…K – 1) of an ordinal response meas
ure (Y) given a set of p covariates: π (Y ≤ j | X1, X2,…Xp) = πj (x). Cumulative 
probabilities, expressed as (cumulative) logits in the following model, can be 
exponentiated to observe the odds of an observation appearing at or below a 
specific category of the response variable:

 
ln lnY

x

x
X X Xj

j

j
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where Y’ represents the odds in a transformed dependent measure. To help 
clarify this model, the chapter draws on data gathered in the 2012 Monitoring 
the Future study (Johnston et al. 2012). Table 8.1 contains a cross‐tabulation 
of sex by perceived risk of marijuana use. Examining row percentages accompa
nying cell frequencies, it appears females tended to perceive greater risk. 
Approximately 18% of males estimated no risk, compared to 9.2% of females, 
and while 34.9% of males estimated great risk, nearly 50% of females did so.

Drawing structurally from O’Connell (2006, 32), Table 8.2 extends the fre
quency data to include proportions, cumulative proportions, cumulative odds, 
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and odds ratios for sex across perceptions of risk associated with regular 
m arijuana use. In this table, 199 of 1,102 males estimated no risk, resulting in 
a proportion of .1806, a cumulative proportion of .1806, and cumulative odds 
of .2204 (.1806/1 –  .1806). Next, 256 of 1,102 males indicated slight risk, 
resulting in a proportion of .2323, a cumulative proportion of .4129, and 
cumulative odds of .7033 (.4129/1 – .4129). At the third level of the ordinal 
measure, 262 of 1,102 males estimated moderate risk, resulting in a proportion 
of .2377, a  cumulative proportion of .6506, and cumulative odds of 1.862 
(.6506/1 – .6506). The cumulative proportion for the last category equals 1.0 
(as it always does), reflecting K – 1 cumulative odds calculations.

Table 8.1 Cross‐tabulation of sex by marijuana risk perceptions

     Perceived Risk Associated with Regular Marijuana Use

Sex None Slight Moderate Great Totals

Male a b c d
199 (18.1%) 256 (23.2%) 262 (23.8%) 385 (34.9%) 1,102

Female e f g h
99 (9.2%) 170 (15.8%) 276 (25.6%) 532 (49.4%) 1,077

Totals 298 426 538 917 2,179

Table  8.2 Observed data cross‐classification of  sex by four levels of  risk associated 
with regular marijuana use: frequency (f  ), proportion (p), cumulative proportion (cp), 
cumulative oddsa (co), and Odds Ratios (OR)

Perceived Risk Associated with Regular Marijuana Use

Category None Slight Moderate Great Totals (f)

Males
f 199 256 262 385 1,102
p .1806 .2323 .2377 .3494 1.000
cp .1806 .4129 .6506 1.000 —
co .2204 .7033 1.862 — —

Females
f 99 170 276 532 1,077
p .0919 .1578 .2563 .4940 1.000
cp .0919 .2498 .5060 1.000 —
co .1012 .3330 1.024 — —

OR 2.1779 2.112 1.8184 — —
Totals (f ) 298 426 538 917 2,179
cptotal .1368 .3323 .5792 1.000 —

a Cumulative odds = Odds(Yi  category j)
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With calculations for males complete, the next task is to determine the 
respective odds for females, as shown in Table 8.2, and then divide the cumu
lative odds for males by those for females at each level of the ordinal response 
m easure. The latter set of calculations results in odds ratios. As an example, 
looking to the first category, which contains responses for no risk, 
.2204/.1012 = 2.1779. At the level of slight risk, .7033/.3330 = 2.112, and at 
the level of moderate risk, 1.862/1.024 = 1.8184. Given those calculations, 
one is able to conclude that, on average, the odds of a male appearing at or 
below a given level of the dependent variable are about twice those same odds 
for females. In other words, males tended to estimate less risk associated with 
regular marijuana use.

A key assumption in the cumulative odds model is that explanatory effects will 
appear consistent across each level of a response variable (Long 1997, 140).2 
The assumption is often referred to as “parallel lines” or “parallel slopes.” In the 
preceding case, odds ratios of 2.1779, 2.112, and 1.8184 did not differ signifi
cantly from one another, thus justifying the use of ordinal regression analysis. 
Had significant differences emerged across levels of the response measure, then 
a multinomial regression analysis might have been a more appropriate technique. 
Multinomial analyses do not offer the parsimony that ordinal regression models 
do (see Campbell and Donner 1989), but they do inform instances of departure 
from statistical assumptions.

Simple Ordinal Logistic Regression Analysis

Table  8.3 contains a simple ordinal regression model based on the data 
included in Tables 8.1 and 8.2. Threshold values are equivalent to intercepts 
(see Norusis 2005, 73), and Location values offer information about explana
tory variables. As with binary and multinomial logistic regression models, the 
results of an ordinal regression analysis include parameter estimates and accom
panying standard errors, Wald values and accompanying degrees of freedom, 
as well as significance tests. In Table  8.3, the parameter estimate for males 
is − .669. In binary and multinomial logistic regression analyses, one would 
exponentiate − .669 to arrive at an odds ratio of .512. But the ordinal regres
sion model fit through the SPSS PLUM procedure estimates the cumulative 
logit by subtracting parameter estimates from appropriate thresholds 
(O’Connell 2006, 26).3 Thus, the negative of − .669 is exponentiated, e qualing 
1.952. Consistent with the calculations from Table 8.2, one would conclude 
that, on average, males were approximately two times as likely as females to 
estimate a lower level of risk associated with regular marijuana use. This difference 
was significant at p < .001.

As with logistic regression models discussed in Chapters 6 and 7, ordinal 
regression procedures use −2 log likelihood values to indicate whether a model 
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containing explanatory measures offers a better fit than a model containing the 
intercept only. In the present analysis, a model containing the intercept only 
showed a −2 log likelihood value of 116.477, and the final model showed a 
value of 44.577. The chi‐square difference, 71.900 with 1 degree of freedom, 
showed significance at p < .001, indicating a better fit for the model containing 
the sex determinant. In addition to log‐likelihood values, the ordinal regression 
procedure offers a goodness‐of‐fit statistic, with a non‐significant chi‐square 
value indicating an acceptable fit to the data. In the case of sex and marijuana 
risk perceptions, the test showed a chi‐square value of 3.540 with 2 degrees of 
freedom and a p‐value of .170, indicating an acceptable fit. For the data in 
Table 8.3, three pseudo R‐square measures ranged from .013 to .035, and the 
test of parallel lines (i.e., proportional odds) showed a non‐significant p‐value, 
thus satisfying the assumption.

Multiple Ordinal Logistic Regression Analysis

Table 8.4 expands the information from Table 8.3 to include three measures – 
sex, age, and the extent to which teachers had discussed the dangers of illicit 
substances  –  as determinants of marijuana risk perceptions. In this ordinal 
regression model, sex remained a significant predictor of perceived risk, but a 
dichotomous age indicator did not show significance. The ordinal variable 
measuring efforts of teachers to communicate drug risks began with Not 
Vigorous and concluded with Very Vigorous. Treated as a categorical factor, the 
measure showed significance at each level. The odds of an individual who indi
cated Not Vigorous perceiving a lower level of marijuana risk were 1.98 times 
the same odds of an individual who indicated Very Vigorous. The odds of a 
respondent who indicated Slightly Vigorous estimating a lower level of mari
juana risk were 1.91 times the same odds for an individual indicating Very 
Vigorous communication. Thus, it appears that teacher efforts to communicate 
the hazards of drug use related significantly to adolescent estimates of the risks 
of regular marijuana use.

Table 8.3 Ordinal logistic regression model testing sex as a predictor 
of marijuana risk perceptions

B SE Wald df Sig.

Threshold No Risk −2.219 .078 804.443 1 .000
Slight Risk −1.050 .063 275.282 1 .000
Moderate Risk −.005 .059 .007 1 .931

Location Males −.669 .079 71.006 1 .000
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Research on Vague Quantifiers and Ordinal Measurement

“Ordinal data are the most common form of data acquired in the social sciences,” 
Johnson and Albert (1999, v) explained, “but the analysis of such data is generally per
formed without regard to their ordinal nature.” That observation certainly holds true in 
communication research, where ordinal measures are plentiful. As an example, studying 
the influence of television news on voter attitudes during election campaigns, survey 
researchers frequently ask respondents to estimate attention to network news. In the 
American National Election Studies, response options typically include No Attention, 
Very Little Attention, Some Attention, Quite a Bit of Attention, or A Great Deal of 
Attention. Inquiring about political leanings, pollsters may ask voters to indicate Very 
Liberal, Somewhat Liberal, Moderate, Somewhat Conservative, or Very Conservative. In 
a study addressing the health risks of alcohol use, research participants may estimate 
Great Risk, Moderate Risk, Slight Risk, or No Risk. In each of these situations, a series 
of “vague quantifiers” serve as ordered response options.

Vague quantifiers allow individuals to estimate attitudes and behaviors in a conversa
tional manner while also allowing researchers to quantify responses systematically. But 
how should these response options be measured? Can equal intervals between observa
tion points be assumed, or is ordinal measurement the only acceptable approach? Since 
the point at which C. I. Mosier (1941) observed contextual effects on the meaning that 
individuals ascribed to attitudinal terms, scholars have discussed and debated measure
ment strategies for vague quantifiers and ordinal variables (see Borgers, Hox, and Sikkel 
2003, Bradburn and Miles 1979, Goocher 1965, Griffin 2013, Hakel 1969, Pepper and 
Prytulak 1974, Pracejus, Olsen, and Brown 2003, Schaeffer 1991, Wanke 2002, Wright, 
Gaskell, and O’Muircheartaigh 1994).

Generally, when a dependent variable contains at least four categories, with a normal 
distribution of error terms and equal variances, a “quasi‐interval” approach is acceptable 
(DeMaris 1992, 77). Such an approach facilitates the use of ordinary least squares regres
sion and the analysis of variance. But vague quantifiers can present methodological chal
lenges, due primarily to inconsistencies with interpretation. Kennamer (1992) observed 
differences in the meaning individuals assigned to terms such as Often, Sometimes, 
Rarely, and Never, while Schaeffer (1991) found that meaning ascribed to vague terms 
varied by race, education level, and age. Schwarz, Grayson, and Knauper (1998) found 
that respondents drew on the formal features of a questionnaire in assigning meaning to 
vague terms, while Wanke (2002) found that respondents constructed meaning based on 
who they perceived as a target audience for a survey. Wright, Gaskell, and O’Muircheartaigh 
(1994) noted that meaning ascribed to vague quantifiers depended on the experiences of 
those making the assignments as well as the close peer groups of those individuals.

Relatedly, observing research that had identified associations between media use and 
media credibility, Rimmer and Weaver (1987) found that such associations depended on 
the operationalization of media use. Some surveys included affective attitudinal q uestions, 
the authors noted, while others asked respondents to quantify specific behaviors. The 
authors found that attitudinal items correlated more consistently with media credibility, 
suggesting potential differences in numeric and semantic response options (see also 
Baghal 2011, Eveland, Hutchens, and Shen 2009). As Wanke (2002, 301) thus summarized, 
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“(P)eople with objectively equal behaviour frequencies may indicate different scale values 
and people giving equal responses may actually differ in their objective behaviour 
f requencies.”

A key point in this discussion is that when researchers use techniques such as ordinary 
least squares regression in analyses containing vague quantifiers, they make the implicit 
assumption that respondents assign the same meaning to ordered terms (Daykin and 
Moffatt 2002, 159). As the research cited above indicates, that assumption can be risky. 
One strength of the ordinal logistic regression model is that it allows for variation in 
meaning and interpretation of survey items (Anderson 1984). The model is thus uniquely 
suited for analyses involving vague quantifiers.

When working with vague quantifiers and discrete ordinal units, researchers might 
consider the following points in selecting a regression technique:

• Examine descriptive statistics and the distribution of scores. If a response measure is 
skewed, ordinal regression or a nonparametric ranks technique may perform better 
than ordinary least squares. Nussbaum (2015, 129–163) offers helpful strategies for 
selecting nonparametric tests, in particular.

• Note the number of categories in the response measure. If it contains fewer than four 
categories, an ordinal or multinomial regression procedure should be used ahead of 
ordinary least squares.

• Consider the nature of the research question. Will ordinal regression answer the 
question as well ordinary least squares?

• Compare the output of ordinary least squares and ordinal logistic regression. If 
marked differences occur, such that substantive conclusions stand to be affected, 
which output appears more reasonable given the data and the assumptions of the 
statistical procedures?

In the ordinal regression analysis displayed in Table 8.4, a model containing 
the intercept only showed a −2 log likelihood value of 421.010, and the final 
model showed a value of 312.241. The chi‐square difference, 108.770 with 6 
degrees of freedom, showed significance at p < .001, indicating a better fit for 
the model containing the three determinants. The goodness‐of‐fit test showed 
a chi‐square value of 53.902 with 51 degrees of freedom and a p‐value of .364, 
indicating an acceptable fit. Three pseudo R‐square measures ranged from .023 
to .063, but the multiple regression analysis did not meet the assumption of 
proportional odds. The null hypothesis  –  that slope coefficients would be 
the same across each level of the response measure – showed a −2 log likeli
hood value of 312.241. The “General” model showed a value of 290.887, 
revealing a chi‐square difference of 21.354 with 12 degrees of freedom and a 
p‐value of .045.

Given the lack of parallel slopes, a multinomial logistic regression model 
tested the explanatory effects of sex, age, and teacher communication on 
p erceived risk of regular marijuana use. Table 8.5 contains the results of the 
multinomial analysis, and examining the exponentiated parameter estimates for 
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Table  8.4 Multiple ordinal logistic regression model testing sex, age, and  teacher 
c ommunication about drugs as determinants of marijuana risk perceptions

B SE Wald df Sig.

Threshold No Risk −2.704 .124 474.455 1 .000
Slight Risk −1.443 .110 171.550 1 .000
Moderate Risk −.352 .105 11.245 1 .001

Location Males −.776 .088 77.523 1 .000
Less than 18 −.072 .088 .678 1 .410
Not Vigorous −.683 .142 23.027 1 .000
Slightly Vigorous −.646 .137 22.238 1 .000
Somewhat Vigorous −.293 .128 5.196 1 .023
Fairly Vigorous −.243 .123 3.909 1 .048

Table 8.5 Multiple multinomial logistic regression model testing sex, age, and teacher 
communication about drugs as determinants of marijuana risk perceptions

Response Explanatory
Categories Categories B SE Wald df Sig. Exp(B)

No Risk Intercept −2.257 .200 127.758 1 .000
Males 1.209 .162 55.904 1 .000 3.351
Less than 18 .148 .156 .903 1 .342 1.159
Not Vigorous 1.038 .232 20.035 1 .000 2.823
Slightly Vigorous .886 .237 13.980 1 .000 2.426
Somewhat Vigorous .301 .235 1.642 1 .200 1.351
Fairly Vigorous −.029 .239 .014 1 .904 .972

Slight Risk Intercept −1.544 .160 92.924 1 .000
Males .848 .132 41.521 1 .000 2.335
Less than 18 .057 .131 .190 1 .663 1.059
Not Vigorous .533 .218 5.980 1 .014 1.704
Slightly Vigorous .764 .208 13.543 1 .000 2.146
Somewhat Vigorous .376 .195 3.706 1 .054 1.456
Fairly Vigorous .526 .181 8.446 1 .004 1.691

Moderate Risk Intercept −.941 .138 46.363 1 .000
Males .356 .121 8.665 1 .003 1.427
Less than 18 .141 .121 1.368 1 .242 1.151
Not Vigorous .129 .209 .384 1 .536 1.138
Slightly Vigorous .509 .192 7.023 1 .008 1.664
Somewhat Vigorous .362 .172 4.465 1 .035 1.437
Fairly Vigorous .281 .166 2.891 1 .089 1.325
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the sex measure, it appears odds ratios for males and females might have differed 
across no risk, slight risk, and moderate risk. In the simple regression model, 
which contained the sex determinant only, differences across slopes did not 
emerge, but with two other explanatory variables present, relationships appeared 
to change. Given the reference category Great Risk, the odds of a male indicating 
no risk were 3.351 times the odds for females. Odds dropped to 2.335 at the 
level of Slight Risk and 1.427 in the category of Moderate Risk. Differences 
thus appeared most pronounced at No Risk.

Consistent with the ordinal regression analysis, age did not show signifi
cance as an explanatory measure, and it appears the strongest odds ratios for 
teacher communication occurred at the No Risk level of the dependent varia
ble. With Great Risk as the reference category, the odds of an individual who 
responded Not Vigorous estimating No Risk were nearly three times the same 
odds of a respondent indicting Very Vigorous. At 2.426, the odds ratio 
remained strong at the Slightly Vigorous level of the explanatory variable, 
before losing significance at Somewhat Vigorous and Fairly Vigorous. At the 
Slight Risk level of the response measure, odds ratios did not appear as nota
ble, but all four levels of the explanatory variable showed significance. At the 
third level of the dependent measure, Moderate Risk, relationships appeared 
comparatively weak.

So what should one make of the differences across results shown in the ordi
nal and multinomial logistic regression models? In this case, differences were 
not major, but the absence of parallel slopes did reveal potentially important 
information at the No Risk level of the dependent variable. Perhaps research in 
risk perceptions would reveal disparities among males and females at this level. 
Additionally, individuals who reported little communication on the part of 
teachers appeared especially likely to estimate No Risk associated with regular 
marijuana use. But beyond those patterns, a researcher would want to be careful 
about identifying differences across the two models. As O’Connell (2006, 29) 
explained, the test used to measure parallel slopes is not an especially powerful 
one and in the presence of multiple explanatory measures and/or large datasets, it 
might show statistically significant differences that have few practical implications. 
In general, a researcher would want to report statistical results in a conservative 
manner, identifying consistencies and inconsistencies in the models and with the 
theoretical framework guiding the analysis.

Interactions

As indicated in previous chapters, an interaction occurs when the effects of an 
explanatory measure on a response variable are influenced by a third measure, 
termed a moderator (Jaccard 2001). Interactions were tested in the logistic 
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regression models discussed in the previous paragraphs, but significant effects 
did not emerge. The important point, for purposes of this chapter, is that 
researchers can analyze interactions in equations with ordinal response meas
ures. In some cases, depending on conceptual development, hypotheses con
taining interactions can be tested.

Analyzing Source Attribution with Ordinal Measures

Sources define the news for mass audiences, Sigal (1973) suggested, and in the United 
States, public officials tend to dominate the conversation. As indicated in Chapter 6, 
journalists at prominent news agencies occassionally grant their sources anonymity, 
encouraging the sources to share information they otherwise might not. While anony
mous attribution can protect news sources from retaliation and is generally considered 
a necessary p ractice in journalism, excessive use of it can lead to exaggerations, inac
curacies, and personal attacks on political foes. It therefore is important to monitor 
veiled sourcing in the news.

Denham (1997) conducted a study of anonymous sourcing in the Associated Press, 
the Los Angeles Times and the Washington Post, focusing on coverage of the military con
flicts in Bosnia and Somalia from 1992 to 1994. The coding procedure in that study 
facilitated the use of ordinal logistic regression, and quantitative researchers may find the 
procedure useful for sourcing analyses in general. For each news report (N = 472), the 
author created a fraction in which the number of paragraphs citing a veiled source served 
as the numerator and the total number of paragraphs served as the denominator. The 
resulting decimal value was then rounded to lesser of two whole numbers. As an example, 
if a 27‐paragraph article contained 6 paragraphs citing an anonymous source, the fraction 
6/27 = .22 = 2. If a 30‐paragraph article contained 10 paragraphs citing an anonymous 
source, 10/30 = .33 = 3. Every article in the study thus received a discrete ordered value 
reflecting its use of anonymous attribution.

The study found that, in coverage of Bosnia and Somalia, anonymous attribution 
varied across news organizations, suggesting editorial discretion, as opposed to the 
dynamics of individual news events, as a conceptual determinant of veiled sourcing. 
The Associated Press appeared the most conservative in citing anonymous sources 
while the Washington Post used veiled sources more frequently. In terms of analytic 
assumptions, the coding procedure resolved issues with observation independence, as 
it used a whole number derived from paragraphs in an article to represent the presence 
of anonymous attribution. Paragraphs themselves could not be considered independent 
of one another, and therefore using the paragraph as a unit of measurement would not 
have been appropriate. Yet, coding news reports for the mere presence of a veiled 
source may have glossed over their use. For instance, while 75% of articles on a given 
topic may cite an anonymous source, 85% of all sources may be identified by name. 
Technically, Denham (1997) used news articles as the unit of measurement, but 
p aragraphs within the articles indicated the extent to which veiled sources appeared in 
the news. The current chapter includes an exercise on this sourcing measure, enhancing 
the approach taken in Chapter 6.
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Ordinal Logistic Regression in SPSS

This section of the chapter offers instruction on how to conduct an ordinal 
logistic regression analysis in SPSS. In doing so, the chapter draws on three 
categorical explanatory variables and one ordinal response measure from the 
2008 American National Election Study (The American National Election 
Studies 2008). Serving as a response measure was a discrete interval variable 
indicating the number of days (0 to 7) in a typical week respondents had dis
cussed politics with family members or friends. In this analysis, because the 
category indicating six days per week contained very few observations, it was 
combined with five days per week. Explanatory factors consisted of a sex measure, 
a three‐category variable indicating party identification (Democrat, Republican, 
Independent), and a five‐category variable measuring attention to politics on 
television news. ANES researchers introduced the attention variable, which 
included response options a great deal, a lot, a moderate amount, a little, and 
none, as a new measure in 2008, and only a portion of study participants were 
asked to respond to it. Because very few respondents indicated paying no attention, 
it was combined with a little. Analyses in this section are based on responses 
from 888 individuals.

Figure 8.1 contains screenshots for (a) beginning an ordinal regression ana lysis in 
SPSS and (b) selecting output options in the SPSS PLUM procedure. To begin an 
ordinal regression, a researcher should first select Analyze, followed by Regression, 
followed by Ordinal. At that point, a window will open allowing the researcher to 
enter explanatory and response measures. Categorical predictors should be entered 
as Factors and continuous determinants as Covariates. This is an important step in 
ordinal regression analysis, as continuous measures can increase the number of cells 
rapidly and potentially cause zero‐count cells to emerge. While the ordinal regres
sion procedure handles continuous measures effectively, the procedure does require 
a sufficiently large sample in the presence of metric covariates.

The same concern arises with nominal and ordinal predictors as well as ordi
nal response measures. If a given category contains few observations, empty 
cells will emerge quickly in a multivariate analysis, compromising otherwise 
s table parameter estimates. As with the multinomial model, a researcher can 
specify a value for Delta in the Options window of the SPSS ordinal regression 
procedure. Delta should be used only when empty cells appear, its value set 
between 0 and 1.4 Linking theory with method, a researcher should also con
sider why a category contains few observations. Does the category need to be 
present? What might be gained and what might be lost in collapsing categories?

The second window in Figure 8.1 contains output options for the ordinal 
regression procedure. As shown in the figure, multiple options exist, and the 
checked boxes indicate those selected for the current example. These options 
include goodness‐of‐fit statistics, summary statistics, parameter estimates, cell 
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information, and a test of parallel lines. Output will be reviewed after additional 
SPSS windows are discussed.

Figure 8.2 contains Location options in the ordinal regression procedure. 
The current example includes three categorical predictors and no interaction 
terms, thus analyzing main effects only. Prior to the main‐effects model, 
analyses included interactions, and as shown in the Location window, SPSS 
allows the researcher to build terms into the model in a specific order. One 
can test a single two‐way interaction in addition to main effects, or one can 
perform a hierarchical analysis including all interactions, provided the 
researcher has a theoretical reason for testing such a model. Norusis (2005) 
offers an excellent discussion of the SPSS ordinal logistic regression proce
dure, while Stokes, Davis, and Koch (2012) provide detailed information for 
analyses in SAS.

Table  8.6 contains statistical output corresponding to the SPSS displays in 
Figures 8.1 and 8.2. The first set of statistics contains −2 log likelihood values for 
the intercept‐only and final models. As shown in the table, the chi‐square differ
ence between the two, 101.203 with 6 degrees of freedom, proved significant, 
allowing one to conclude an improved fit for the final model. Next, goodness‐of‐fit 
statistics did not show significance, indicating a satisfactory fit, and Pseudo R‐
square measures ranged from .031 to .111. Examining parameter estimates, nei
ther sex nor political party predicted the number of days in a typical week that 
respondents discussed politics. However, the parameter estimate (1.692) i ndicated 

Figure 8.1 SPSS screenshots for output options in ordinal logistic regression analysis 
(PLUM). Source: SPSS® Reprints Courtesy of International Business Machines Corpo
ration, © 2014 International Business Machines Corporation
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that the odds of those who paid a great deal of attention to TV news discussing 
politics comparably few days per week were just .184 times the odds of those who 
paid little or no attention to TV news. Expontiating the negative of 1.326, one 
would conclude that odds of those who paid a lot of attention to TV news indicat
ing fewer days discussing politics were .266 times the odds of those who paid little 
or no attention. Thus, one observes a pattern in which those who paid more atten
tion to TV news discussed politics more frequently. Continuing with Table 8.6, 
the test of parallel lines did not show significance at p < .05, and therefore one may 
conclude that an ordinal regression model was the appropriate choice.5 Had the 
results shown significance, one could not have concluded p roportionate odds, and 
a multinomial model might have helped to clarify r elationships.

Lastly, Tables 8.7a and 8.7b contain observed and expected cell frequencies 
as well as Pearson residual values reflecting their differences. As indicated e arlier 
in the table, the model fit the data in a statistically acceptable manner, and to 
some extent, the residuals, which Norusis (2005, 77) explained reflect stand
ardized differences between observed and expected values, illustrate that fit.

Chapter Summary

This chapter has focused on ordinal logistic regression analysis, a technique used 
when a response measure contains a series of ordered categories. As with other 
logistic regression models, ordinal regression produces parameter estimates in 

Figure 8.2 SPSS screenshots for location options in ordinal logistic regression analysis 
(PLUM). Source: SPSS® Reprints Courtesy of International Business Machines 
Corporation, © 2014 International Business Machines Corporation
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Table  8.6 SPSS output for  ordinal logistic regression model containing categorical 
predictors

Model Fitting Information

Model
Fitting
Criteria Likelihood Ratio Tests

Model −2 Log 
Likelihood Chi‐Square df Sig.

Intercept Only 630.247
Final 529.045 101.203 6 .000

Goodness‐of‐Fit

Chi‐Square df Sig.

Pearson 130.696 132 .516
Deviance 136.058 132 .387

Pseudo R‐Square

Cox and Snell .108
Nagelkerke .111
McFadden .031

Parameter Estimates

95% Confidence 
Interval

B SE Wald df Sig. Lower Upper

Threshold
Discuss Politics 0 
Days / Week

−.558 .155 12.946 1 .000 −.861 −.354

Discuss Politics 1 Day 
/ Week

.643 .155 17.197 1 .000 .339 .947

Discuss Politics 2 
Days / Week

1.405 .161 76.555 1 .000 1.090 1.719

Discuss Politics 3 
Days / Week

2.192 .169 167.713 1 .000 1.860 2.523

Discuss Politics 4 
Days / Week

2.511 .174 208.296 1 .000 2.170 2.851

Discuss Politics 5/6 
Days / Week

3.129 .186 281.501 1 .000 2.763 3.494

(Continued )
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the form of log odds, and their exponentiation results in odds ratios. Ordinal 
regression assumes proportional odds across the categories of a response 
m easure, and lacking proportionality, or parallel slopes, a multinomial model 
should be considered. The chapter also included information concerning the 
measurement of vague quantifiers.

Chapter Exercises

1. Chapter 6 contained an exercise on anonymous attribution in the news, as 
examined in Denham (2012). This question pertains to the same subject, 
except the two‐level nominal measure of attribution used in Chapter 6 has 
been changed to an ordinal measure, as discussed in the sidebar “Analyzing 
Source Attribution with Ordinal Measures.” Changes are reflected in the 
first column of each data grouping below. Use these data and an ordinal logis
tic regression analysis to examine the effects of time period, front‐page place
ment, and dateline on the use of anonymous attribution in the news. In your 
analysis, report −2 log likelihood values for the Intercept Only and Final 
models, as well as the Pearson goodness‐of‐fit test and three R‐squared 

Table 8.6 (Continued)

Parameter Estimates

95% Confidence 
Interval

B SE Wald df Sig. Lower Upper

Location
Male .019 .121 .025 1 .874 −.218 .257
Democrat .086 .140 .375 1 .540 −.189 .361
Republican .121 .167 .528 1 .467 −.206 .449
A Great Deal of 
Attention

1.692 .194 76.136 1 .000 1.312 2.073

A Lot of Attention 1.326 .180 54.530 1 .000 .974 1.678
A Moderate Amount 
of Attention

.694 .158 19.255 1 .000 .384 1.004

Test of Parallel Lines a

Model −2 Log Likelihood Chi‐Square df Sig.
Null Hypothesis 529.045
General 488.283 40.761 30 .091

The null hypothesis states that the location parameters (slope coefficients) are the same across 
response categories.
a Link function: Logit.
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 estimates. Also report parameter estimates and their standard errors, in addi
tion to Wald values, significance tests, exponentiated parameter e stimates, and 
95% confidence intervals. Lastly, test for parallel lines in the model. Are the 
results of the ordinal analysis consistent with those reported in Chapter 6?

ID AP F DO ID A P F DO ID A P FDO ID AP F DO ID APF DO

001 0 1 2 1 0 034 0 1 2 1 0 067 2 2 2 2 0 100 1 2 2 2 0 133 0 12 2 0
002 1 1 1 1 0 035 1 1 2 1 1 068 2 2 2 1 0 101 1 2 2 1 0 134 0 12 2 1
003 0 1 2 1 0 036 0 1 2 1 1 069 1 2 2 2 0 102 1 2 2 1 0 135 3 11 1 0
004 1 1 1 1 0 037 0 1 2 2 0 070 1 2 2 1 0 103 1 2 2 1 0
005 0 1 2 1 1 038 1 1 2 1 0 071 2 2 2 1 0 104 1 2 2 1 0
006 1 1 1 1 1 039 0 1 2 1 0 072 1 2 1 1 0 105 1 1 2 1 0
007 0 1 2 1 0 040 2 1 2 1 0 073 0 2 2 1 0 106 0 1 2 1 0
008 1 1 2 2 0 041 0 1 2 1 0 074 1 2 2 2 0 107 0 1 2 1 0
009 1 1 2 1 0 042 1 1 2 1 0 075 0 2 2 2 0 108 0 1 2 2 0
010 0 1 2 1 0 043 1 1 2 1 1 076 0 2 2 1 0 109 0 1 2 1 0
011 3 1 2 2 0 044 2 1 2 2 1 077 2 2 2 1 0 110 0 1 2 1 0
012 0 1 2 1 0 045 1 1 2 2 1 078 0 2 2 1 0 111 0 1 2 1 0
013 1 1 2 1 0 046 0 1 1 1 0 079 1 2 2 2 0 112 1 1 2 1 1
014 3 1 2 2 0 047 1 1 1 1 1 080 1 2 1 1 0 113 1 1 2 2 0
015 1 1 1 1 1 048 0 1 2 1 1 081 1 2 2 2 0 114 0 1 2 2 1
016 3 1 1 2 0 049 0 1 2 1 1 082 1 2 2 2 0 115 1 1 1 2 0
017 1 1 2 1 1 050 1 1 1 1 0 083 2 2 2 1 0 116 1 1 1 1 0
018 0 1 2 1 0 051 1 1 1 1 1 084 3 2 2 1 0 117 1 1 2 1 0
019 1 1 1 2 0 052 1 1 2 2 0 085 3 2 1 1 1 118 0 1 2 1 0
020 3 1 1 2 1 053 0 1 2 1 0 086 3 2 2 1 0 119 3 1 2 1 0
021 1 1 2 2 0 054 3 2 2 2 0 087 2 2 2 1 0 120 0 1 2 1 1
022 3 1 1 2 1 055 0 2 2 1 0 088 0 2 2 1 0 121 0 1 2 1 1
023 1 1 1 2 0 056 0 2 2 1 0 089 1 2 1 1 0 122 0 1 2 1 0
024 1 1 1 1 1 057 1 2 1 1 0 090 1 2 2 2 0 123 1 1 2 2 0
025 0 1 2 1 0 058 3 2 1 2 0 091 1 2 2 2 0 124 1 1 2 2 1
026 0 1 2 1 0 059 1 2 2 2 0 092 1 2 2 2 0 125 3 1 2 2 0
027 2 2 2 1 0 060 0 2 1 1 0 093 1 2 2 2 1 126 0 1 2 1 1
028 0 1 2 2 1 061 0 2 2 1 0 094 1 2 2 1 1 127 1 1 2 2 1
029 1 1 1 2 0 062 0 2 1 2 0 095 0 2 2 2 0 128 0 1 2 1 0
030 0 1 2 1 0 063 2 2 2 2 0 096 0 2 22 0 129 1 1 2 1 0
031 0 12 1 0 064 0 2 2 1 1 097 1 2 11 0 130 2 1 2 2 0
032 0 12 2 0 065 1 2 2 2 0 098 0 2 21 0 131 0 1 2 1 1
033 1 12 2 0 066 0 2 2 1 0 099 1 2 22 0 132 0 1 2 1 0

Note: Excel file containing data available on companion website.
Category codes:
Anonymous attribution (A): Ordered values, 0 to 3
Period (P): 1 = Before 9/11, 2 = After 9/11
Front page news report (F): 1 = Yes, 2 = No
Dateline (D): 1 = US, 2 = International
Office of National Drug Control  
Policy source present (O): 0 = No, 1 = Yes
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2. Organizational practitioners frequently conduct market research, and this 
question contains information about interest in professional baseball among 
members of racial minorities, most of whom are African American. Interest in 
baseball is measured on three levels (Very Interested, Somewhat Interested, 
Not at all Interested), and additional measures include sex as well as level of 
education (High School Graduate or Less, Some College, College Graduate, 
Graduate School). Given these data, gathered in a CBS News poll (CBS News 
2008), use an ordinal logistic regression analysis to examine the effects of sex 
and education level on interest in professional baseball. In your analysis, report 
−2 log likelihood values for the Intercept Only and Final models, as well as the 
Pearson goodness‐of‐fit test and three R‐squared estimates. Also report 
parameter estimates and their standard errors, in addition to Wald values, sig
nificance tests, exponentiated parameter estimates, and 95% confidence inter
vals. Lastly, test for parallel lines in the model. What can one conclude about 
interest in baseball given the determinants of sex and level of education?

ID B S E ID B S E ID B S E ID B S E ID B S E ID B S E ID B S E

001 1 1 1 026 2 1 1 051 2 2 1 076 2 2 4 101 3 1 4 126 3 2 1 151 3 2 2
002 1 1 1 027 2 1 1 052 2 2 1 077 2 2 4 102 3 1 4 127 3 2 1 152 3 2 2
003 1 1 1 028 2 1 1 053 2 2 1 078 3 1 1 103 3 1 4 128 3 2 1 153 3 2 2
004 1 1 1 029 2 1 1 054 2 2 1 079 3 1 1 104 3 1 4 129 3 2 1 154 3 2 2
005 1 1 2 030 2 1 1 055 2 2 1 080 3 1 1 105 3 1 4 130 3 2 1 155 3 2 2
006 1 1 2 031 2 1 1 056 2 2 1 081 3 1 1 106 3 1 4 131 3 2 2 156 3 2 2
007 1 1 3 032 2 1 1 057 2 2 1 082 3 1 1 107 3 1 4 132 3 2 2 157 3 2 2
008 1 1 3 033 2 1 1 058 2 2 1 083 3 1 1 108 3 1 4 133 3 2 2 158 3 2 2
009 1 1 3 034 2 1 2 059 2 2 1 084 3 1 1 109 3 1 4 134 3 2 2 159 3 2 3
010 1 1 4 035 2 1 2 060 2 2 1 085 3 1 1 110 3 1 4 135 3 2 2 160 3 2 3
011 1 1 4 036 2 1 2 061 2 2 2 086 3 1 1 111 3 2 1 136 3 2 2 161 3 2 3
012 1 2 1 037 2 1 2 062 2 2 2 087 3 1 1 112 3 2 1 137 3 2 2 162 3 2 3
013 1 2 1 038 2 1 2 063 2 2 2 088 3 1 2 113 3 2 1 138 3 2 2 163 3 2 3
014 1 2 1 039 2 1 2 064 2 2 2 089 3 1 2 114 3 2 1 139 3 2 2 164 3 2 3
015 1 2 1 040 2 1 2 065 2 2 2 090 3 1 2 115 3 2 1 140 3 2 2 165 3 2 4
016 1 2 1 041 2 1 2 066 2 2 2 091 3 1 2 116 3 2 1 141 3 2 2 166 3 2 4
017 1 2 2 042 2 1 3 067 2 2 3 092 3 1 2 117 3 2 1 142 3 2 2 167 3 2 4
018 1 2 2 043 2 1 3 068 2 2 3 093 3 1 2 118 3 2 1 143 3 2 2 168 3 2 4
019 1 2 3 044 2 1 3 069 2 2 3 094 3 1 2 119 3 2 1 144 3 2 2 169 3 2 4
020 1 2 3 045 2 1 4 070 2 2 3 095 3 1 2 120 3 2 1 145 3 2 2 170 3 2 4
021 1 2 3 046 2 1 4 071 2 2 3 096 3 1 2 121 3 2 1 146 3 2 2 171 3 2 4
022 1 2 3 047 2 1 4 072 2 2 3 097 3 1 3 122 3 2 1 147 3 2 2 172 3 2 4
023 1 2 3 048 2 1 4 073 2 2 3 098 3 1 3 123 3 2 1 148 3 2 2 173 3 2 4
024 1 2 4 049 2 1 4 074 2 2 3 099 3 1 3 124 3 2 1 149 3 2 2 174 3 2 4
025 2 1 1 050 2 1 4 075 2 2 4 100 3 1 3 125 3 2 1 150 3 2 2 175 3 2 4

Note: Excel file containing data available on companion website.
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Category codes:
Interest in Baseball (B):  1 = Very Interested, 2 = Somewhat Interested, 3 = Not at all Interested
Sex (S): 1 = Males, 2 = Females
Level of Education (E): 1 = High School or Less, 2 = Some College, 3 = College Graduate,
 4 = Graduate School

Notes

1 While the cumulative odds model indicates the odds of an observation appearing at 
or below a specific level of the response measure, the adjacent categories model 
c ompares each response category with the next largest. Continuation‐ratio models 
compare a response category with all lower categories. For additional discussion, 
Hosmer and Lemeshow (2000, 288–308) discuss the adjacent categories and con
tinuation‐ratio models (see also Agresti 1984, 113 − 114, O’Connell 2006, 54–84, 
Powers and Xie 2000, 201–222).

2 Borooah (2002, 6) explained the parallel slopes assumption with a practical example: 
“(I)f there is a variable which affects the likelihood of a person being in the ordered 
categories (e.g., diet on health status), then it is assumed that the coefficients linking 
the variable value to the different outcomes will be the same across all the outcomes 
(a given diet will affect the likelihood of a person being in excellent health exactly the 
same as it will affect the likelihood of him or her being in poor health).”

3 Commenting on the subtraction process, Norusis (2005, 71) explained, “That is done so 
that larger coefficients indicate an association with larger scores. When you see a positive 
coefficient for a dichotomous factor, you know that higher scores are more likely for the first 
category. A negative score tells you that lower scores are more likely.” The SPSS approach 
thus helps to reconcile output across the three types of logistic regression analyses.

4 A choice of link functions also appears in the Options window. In addition to the 
logit, which serves as an effective link in the majority of cases, additional link f unctions 
include probit, addressed in Chapter 9 of the current text, as well as complementary 
log‐log, negative log‐log, and Cauchit. Norusis (2005, 84) explained that complementary 
log‐log is appropriate when the higher categories of a measure are more probable, 
while negative log‐log may prove useful when lower categories are more probable. 
Cauchit, Norusis explained, is useful when an outcome contains many extreme values.

5 Norusis (2005, 74) explained the test for parallel slopes in more specific detail: “The 
row labeled Null Hypothesis contains −2 log‐likelihood for the constrained model, the 
model that assumes the lines are parallel. The row labeled General is for the model 
with separate lines or planes. You want to know whether the general model results in 
a sizeable improvement in fit from the null hypothesis model.”
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Probit analysis originated in studies of biological assay (Bliss 1934), which 
Finney (1952, 1) defined as “the measurement of the potency of any stimulus, 
physical, chemical or biological, physiological or psychological, by means of the 
reactions which it produces in living matter.” As an example, a researcher might 
use the probit model in a study of toxicology, identifying the point at which a 
pesticide eliminates a certain type of insect (Agresti 1990, 102). In such a study, the 
researcher would increase doses of the pesticide until the desired effect – elimination 
of the pest – occurs. Like the binary logistic regression model, which uses the 
logit, or log of the odds, to transform a dependent variable into a linear function 
of explanatory measures (see Allison 2015), probit analysis uses the inverse of 
the cumulative normal distribution as a link function (see Aldrich and Nelson 
1984, Bishop, Fienberg, and Holland 1975, 367, Stokes, Davis, and Koch 
2012, 345–346). As Azen and Walker (2011, 121–124) explained, the probit 
model assumes a continuous scale underlying a binary response measure, and 
the assumption of a latent measure can prove useful when a variable lacks a 
conceptual dichotomy. Attitudes toward abortion, for example, may be some
what nuanced (e.g., affected by occurrences of incest or rape), and accordingly 
a statistical model should assume the potential for attitudinal distinctions while 
treating a variable as dichotomous. By using the inverse of the cumulative 
normal distribution, a probit model identifies a threshold at which attitudes 
shift (see Hanushek and Jackson 1977, 204, Long 1997, 40).1

As a generalized linear model (McCullagh and Nelder 1989), probit analysis 
contains ordinal (Daykin and Moffatt 2002, McKelvey and Zavoina 1975, 
Winship and Mare 1984) and multinomial (Dow and Endersby 2004) extensions. 
Computationally, these techniques are more complex than logit‐based models, 
and indeed this relative complexity helps to explain why probit analyses appear 
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less frequently in social science research. The multinomial probit model is 
e specially complex and is not discussed at length in the current chapter. In contrast, 
the binary and ordinal probit models have proven useful in certain types of 
communication studies and, as Daykin and Moffatt (2002) noted, the procedures 
perform especially well with survey data (see also Borooah 2002, Liao 1994). 
Tang, He, and Tu (2012, 157) added that probit models continue to be popular 
in analyses involving latent variables; the authors cited mixed‐effects models for 
longitudinal and clustered data as examples. The current chapter reviews published 
studies in communication and discusses the fundamentals of probit analysis with 
data from the 2008 American National Election Study. The chapter includes 
SPSS instruction for binary and ordinal probit analyses as part of this discussion.

Examples of Published Research

Scholars have used binary and polytomous probit models in studies of political 
and health communication, risk and strategic communication, as well as media 
economics and policy. In political communication, Freedman and Goldstein 
(1999) examined the impact of negative advertising on the probability of vot
ing. Jaeger (2008) studied whether a left–right political orientation predicted 
attitudes toward a welfare state, while Melgar, Rossi, and Smith (2010) used 
probit analysis in a study addressing perceptions of corruption. Mutz and Martin 
(2001) analyzed news media as a source of diverse political perspectives, while 
Fullerton, Dixon, and Borch (2007) modeled determinants of vote overreporting 
(i.e., false claims of voting among survey respondents). Miller and Krosnick 
(2000) studied factors associated with presidential evaluation, while Gunther 
(1992) determined that group membership plays an important role in assessments 
of how news media cover social groups.

In health communication, Babalola and Kincaid (2009) proposed a modified 
probit model for the evaluation of health communication programs, and 
Hutchinson et al. (2006) studied cost‐effectiveness in the Smiling Sun media 
campaign in rural Bangladesh. In a risk analysis, Smith and Desvousges (1990) 
analyzed whether individuals would pay for a licensed technician to examine 
potential radon problems in the home. Studying strategic communication, 
Sommerfeldt (2013) analyzed relationships between resource mobilization and 
activism strategies, while Vigderhous (1977) used a probit model to estimate 
the point at which individuals become aware of a product. Wirth and Bloch 
(1989) used the technique in a study addressing why groups of individuals pur
chase cable television, and Fu (2003) analyzed why media companies opt to 
publish (or not publish) a Sunday newspaper. Finally, Tillema, Dijst, and 
Schwanen (2010) used probit analysis in studying face‐to‐face and electronic 
communications.
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Probit Analysis: Fundamentals

Much of this text has focused on statistical techniques that transform an out
come measure using the logit, or log of the odds. In most instances, logit mod
els function very well, and statisticians such as Haberman (1978, 314) have 
questioned the need to depart from logistic regression techniques when work
ing with categorical response measures. But probit analysis can prove useful 
when a categorical outcome measure is thought to contain an underlying con
tinuous scale and a normal distribution. In survey research, questions about 
abortion, capital punishment, and gun control often contain binary response 
options, yet attitudes may vary considerably. By assuming the presence of a 
latent continuous scale (see DeMaris 2004, 251–260, Powers and Xie 2000, 
41–85), the probit model links substantive concerns with statistical estimation 
(McKelvey and Zavoina 1975).

As indicated in Chapter 4, generalized linear models consist of three compo
nents: random and systematic components as well as a link function (McCullagh 
and Nelder 1989). As one type of generalized linear model, probit analysis assumes 
a binomial distribution as its random component, one or more categorical or con
tinuous measures as the systematic component(s), and the inverse of the cumula
tive normal distribution (i.e., probit) as a link function. Like the logit model, probit 
analysis contains estimates based on maximum likelihood, but unlike the logit 
model, probit assumes an underlying quantitative measure associated with the nor
mal distribution. By assuming a qualitative variable, logit allows odds ratios to 
summarize associations, whereas a probit model reveals the extent to which a one‐
unit change in an explanatory variable affects the level of a response measure, given 
a normal distribution. In general, probit estimates do not contain the same 
magnitude as those produced in logit analyses, as Agresti (2007, 73) explained:

This is because their link functions transform probabilities to scores from stand
ard versions of the normal and logistic distribution, but those two d istributions 
have different spread. The standard normal distribution has a mean of 0 and stand
ard deviation of 1. The standard logistic distribution has a mean of 0 and standard 
deviation of 1.8. When both models fit well, parameter estimates in logistic regres
sion models are approximately 1.8 times those in probit models.

Statistically, Aldrich and Nelson (1984, 48) explained, the binary probit model 
focuses on the value of parameter P, or the probability that Y = 1, which is 
expressed as P = P(Y = 1). They further explained that Y depends on K observable 
variables Xk, k = 1,…, K. The assumption that explanatory variables account for 
variance in P can be expressed as P = P(Y = 1|X1,…, Xk), or P(Y |X), with X repre
senting the set of K explanatory measures. The probit model is then expressed as:

 P Y X|X  
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where Φ represents the cumulative distribution function of the standard normal 
distribution, and β indicates model parameters to be estimated with maximum 
likelihood. A key point for the current chapter is that a probit link transforms 
probabilities into z‐scores, which are based on the standard normal distribution. 
As Norusis (2005, 92) explained, “If half the subjects respond at a particular 
[level of a stimulus], the corresponding probit value is 0, since half of the area 
in a standard normal curve falls below a z score of 0. If the observed proportion 
is 0.95, the corresponding probit value is 1.64.”

Regarding goodness of fit, a probit analysis produces a likelihood ratio 
s tatistic, with a chi‐square value indicating whether a model containing the 
explanatory measure(s) fits better than a model containing only the intercept 
(Aldrich and Nelson 1984, 55). Probit analysis also informs researchers about 
the relative contribution of each explanatory measure. The following section 
addresses the binary probit model using two techniques in SPSS.

Binary Probit Analysis

The binary probit model analyzes the effects of categorical and continuous 
explanatory measures on a dichotomous response variable. In statistical p ackages 
such as SPSS, the model can be estimated through Generalized Linear Models 
or through one or more Regression procedures.2 This chapter uses data from 
the 2008 American National Election Study (The American National Election 
Studies 2008) to demonstrate binary probit analysis in SPSS, utilizing the 
Generalized Linear Models and PLUM procedures, respectively, and also covers 
ordinal probit analysis using the PLUM model.3 In the binary analyses, probit 
models contain a dependent measure indicating whether individuals had 
d iscussed politics with friends and family, with independent measures including 
sex, race, and attitudes toward the United States (i.e., Optimistic, Pessimistic, 
Neither Optimistic nor Pessimistic). For the ordinal probit model, a variable 
indicating the extent to which individuals trust media to report issues fairly (i.e., 
Almost Always, Most of the Time, Some of the Time, Almost Never) functioned 
as a response measure, with the same explanatory variables.

Figure  9.1 contains a screenshot for Generalized Linear Models in SPSS 
(Analyze > Generalized Linear Models > Generalized Linear Models). As shown 
in the figure, multiple procedures appear in the Type of Model window, includ
ing Binary probit. In Chapter 10, which focuses on Poisson regression, options 
under Counts (i.e., Poisson loglinear and Negative binomial with log link) will 
be utilized. One can also fit Binary logistic, ordinal and scale, and mixed and 
custom models.

In addition to Type of Model, tabs in the Generalized Linear Models 
p rocedure include Response, Predictors, Model, Estimation, Statistics, EM 
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Means, Save, and Export. A probit analysis requires the researcher to specify 
one response measure and one or more predictor measures in the respective 
windows.

After specifying variables, one can open the Model tab, shown in the window 
that appears in Figure  9.2. Here the researcher can choose to model Main 
effects, as in the current example, or select more advanced models containing 
variable interactions. The Estimation window allows the researcher to specify 
criteria for parameter estimation, iterations, and convergence. In most cases, 
default options function in a satisfactory manner, although researchers can make 
adjustments if necessary. The Statistics window allows the researcher to specify 
information to be included in the output, including confidence intervals, 
descriptive statistics, parameter estimates, and so forth. EM Means displays esti
mated marginal means for factors and factor interactions, while Save and Export 
allow the researcher to specify additional information to be included in analyses 
and statistical output.

Table  9.1 includes output for the current example. In this table, Model 
Information confirms the dependent variable and the level of the dependent 
variable modeled as well as the binomial distribution and the probit link func
tion. Then comes a series of goodness‐of‐fit statistics, and researchers should 
pay close attention to the Deviance and Pearson Chi‐Square values. In general, 
a suitable model will contain a Value/df ratio close to 1.0, and the current 
example offers a reasonably good fit given three explanatory variables. The 
Omnibus Test indicates that a model containing the three explanatory measures 

Figure 9.1 SPSS screenshot for Generalized Linear Models. Source: SPSS® Reprints 
Courtesy of International Business Machines Corporation, © 2014 International 
Business Machines Corporation
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Figure 9.2 SPSS screenshot for Model design in Generalized Linear Models. Source: 
SPSS® Reprints Courtesy of International Business Machines Corporation, © 2014 
International Business Machines Corporation

Table 9.1 SPSS output for binary probit model in Generalized Linear Models p rocedure

Model Information

Dependent Variable Ever discuss politics with family or friendsa

Probability Distribution Binomial
Link Function Probit

a The procedure models Yes as the response, treating No as the reference category.

Goodness of Fit b

Value df Value/df

Deviance 10.928 12 .911
Scaled Deviance 10.928 12
Pearson Chi‐Square 10.883 12 .907
Scaled Pearson Chi‐Square 10.883 12
Log Likelihoodc −38.606
Akaike’s Information Criterion (AIC) 89.212
Finite Sample Corrected AIC (AICC) 89.294
Bayesian Information Criterion (BIC) 118.835
Consistent AIC (CAIC) 124.835

b Information criteria are in small‐is‐better form.
c The full log likelihood function is displayed and used in computing information criteria.

(Continued)
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fits better than a model containing only the intercept, and the Test of Model 
Effects offers a glimpse of whether each predictor contributes in a statistically 
significant manner. In this case, the positive parameter estimate for males indi
cates they appeared more likely to respond “yes” to the question constituting 
the dependent variable; however, as indicated in Parameter Estimates, the differ
ence between males and females was not significant at p < .05. Additionally, 
d ifferences did not emerge across race categories, but the significant positive 
estimates for Optimistic and Pessimistic indicate that individuals in these two 
categories were more likely to discuss politics than individuals who stated they 
were Neither Optimistic nor Pessimistic about the United States. In addition to 
parameter estimates, the last section includes standard errors, confidence 
i ntervals, and the results of Wald chi‐square tests.

Table 9.1 (Continued)

Omnibus Test a

Likelihood Ratio Chi‐Square df Sig.

63.129 5 .000

a Compares the fitted model against the intercept‐only model.

Test of Model Effects

Type III

Source Wald Chi‐Square df Sig.

Intercept 120.851 1 .000
Sex 3.785 1 .052
Race .008 2 .996
Attitude about US 57.925 2 .000

Parameter Estimates

95% Wald 
Confidence 

Interval Hypothesis Test

Parameter B SE Lower Upper Wald Chi‐Square df Sig.

Intercept .151 .1395 −.122 .425 1.178 1 .278
Male .173 .0889 −.001 .347 3.785 1 .052
White −.006 .1372 −.275 .262 .002 1 .963
Black .002 .1514 −.294 .299 .000 1 .987
Optimistic .719 .0958 .531 .907 56.280 1 .000
Pessimistic .576 .1368 .308 .844 17.705 1 .000
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To inform the binary probit model estimated through the SPSS Generalized 
Linear Models procedure, Table  9.2 contains the same model estimated with 
SPSS PLUM.4 Beginning with Model Fitting Information, one might notice the 
Chi‐Square value under Likelihood Ratio Tests; as in the Omnibus Test from 
Table 9.1, the Chi‐Square value is 63.129 with 5 degrees of freedom and a p‐value 
of less than .001. This output confirms the model containing three explanatory varia
bles fits better than a model containing only the intercept. Next, the Chi‐Square values 

Table 9.2 SPSS output for binary probit model in PLUM procedure

Model Fitting Information

Model
Fitting
Criteria Likelihood Ratio Tests

−2 Log
Model Likelihood Chi‐Square df Sig.

Intercept Only 140.341
Final   77.212 63.129 5 .000

Goodness‐of‐Fit

Chi‐Square df Sig.

Pearson 10.883 12 .539
Deviance 10.928 12 .535

Pseudo R‐Square

Cox and Snell .059
Nagelkerke .088
McFadden .055

Parameter Estimates

95% Confidence 
Interval

B SE Wald df Sig. Lower Upper

Threshold
Discussed Politics .151 .140 1.174 1 .279 −.122 .425

Location
Male −.173 .089 3.779 1 .052 −.347 .001
White .006 .137 .002 1 .963 −.263 .275
Black −.002 .151 .000 1 .987 −.299 .294
Optimistic −.719 .096 56.308 1 .000 −.907 −.531
Pessimistic −.576 .137 17.743 1 .000 −.843 −.308
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for Pearson and Deviance agree with the statistics presented in Table 9.1, and also 
included in Table 9.2 are Pseudo R‐Square statistics indicating an amount of 
variance explained by three predictor variables (see Hagle and Mitchell 1992).

Lastly, one observes in Table 9.2 parameter estimates reflecting those shown 
in Table 9.1. It is important to recognize the difference in positive and negative 
estimates, which was to be expected given the manner in which PLUM reports 
predictor effects on a single response measure. The “order” of the dependent 
variable was yes and no, and the negative estimate for males shows their greater 
likelihood of indicating the initial value. The same applies to other variables and 
their categories. Additional statistics include standard errors, Wald chi‐square 
tests, and 95% confidence intervals, consistent with the PLUM‐based ordinal 
logistic regression analyses presented in Chapter 8.

Ordinal Probit Analysis

Ordinary least squares (OLS) regression assumes equal intervals between data 
points as well as homogeneity of variance and a normal distribution of error 
terms. In the social sciences, meeting each of these assumptions can prove chal
lenging, especially when studies treat ordinal response measures as continuous, 
quantitative variables. Like the ordinal logistic regression model, ordinal probit 
analysis solves some of the problems associated with OLS modeling. Probit 
analysis accommodates variation in the meaning respondents assign to vague 
quantifiers as well as potential differences in the size of intervals between data 
points (Daykin and Moffatt 2002, 159). Additionally, unlike OLS models, ordi
nal probit analyses do not model survey responses directly, and therefore the 
wording of a question is less likely to influence statistical results. As Daykin and 
Moffatt (2002, 159) suggested, “The distribution over the population of the 
underlying attitude, which is the focus of analysis, should be invariant to 
the wording of the question. Because the ordered probit model estimates the 
parameters of the underlying distribution, rather than the response itself, any 
such framing effects are likely to be avoided.”

Discussing the ordinal probit model, Hanushek and Jackson (1977, 211) 
explained how ordered categories result in additional thresholds, or breaks in the 
data. Regarding notation, the authors stated that when a dependent variable con
tains three levels, a model assumes two thresholds, Ut

1 and Ut
2. With units assigned 

to one of three groups (i.e., 1, 2, 3) and asterisks indicating standardized scores, 
Hanushek and Jackson (1977, 211) specified the classification of Yt as:

 

Yt

t t t

t t t t

t t t

U Z X
U Z X U
Z X U

3
2
1

2

1 2

1

:
:
:

* *

* * *

* *
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As Hanushek and Jackson (1977, 212) summarized, “The model, then, consid
ers all categories of the dependent variable to be aggregations of a range of the 
underlying variable, meaning they constitute ordered categories.”

Table 9.3 contains output for an ordinal probit analysis conducted with the 
PLUM procedure in SPSS. First, in Model Fitting Information, the −2 Log 
Likelihood values and Likelihood Ratio Test indicate that a model testing the 
effects of sex, race, and attitudes toward the United States on trust in media fits 
better than a model containing only the intercept. Pearson and Deviance statis
tics confirm the fit of this model, and three Pseudo R‐Square measures show an 
approximate amount of variance explained. Moving to Parameter Estimates, the 
last category for each variable serves as a reference for others, and in this exam
ple, the positive estimates for Males, Whites, and Pessimistic respondents indi
cate their tendency to move in the same direction as the dependent variable, 
meaning individuals in these categories were less trusting of the media than were 
respondents in other categories. Additional statistics include standard errors, 
Wald chi‐square statistics, and 95% confidence intervals.

In addition to the statistics reported in Table 9.3, SPSS produces observed 
and expected cell counts as well as residual values. Examining the values shown 
Tables 9.4a and 9.4b, the three‐variable probit model fit the data reasonably 
well, with relatively small differences between observed and expected counts. 

Table 9.3 SPSS output for ordinal probit regression model

Model Fitting Information

Model
Fitting
Criteria Likelihood Ratio Tests

Model −2 Log Likelihood Chi‐Square df Sig.

Intercept Only 324.801
Final 247.592 77.110 5 .000

Goodness‐of‐Fit

Chi‐Square df Sig.

Pearson 49.416 46 .338
Deviance 47.190 46 .424

Pseudo R‐Square

Cox and Snell .037
Nagelkerke .042
McFadden .018

(Continued)
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As indicated in previous chapters, reports of cell frequencies allow researchers to 
confirm the directionalities of parameter estimates, and residuals indicate where 
marked differences occur between observed and expected frequencies. The 
tables also allow researchers to consider the general dispersion of responses and 
whether categories have sufficient observations for analyses.

Multinomial Probit Analysis

Although the current chapter does not cover the multinomial probit model in detail, 
readers interested in this approach might begin by reviewing the work of Hausman 
and Wise (1978) as well as studies in transportation (Horowitz 1991), economics 
(Geweke, Keane, and Runkle 1994) and political science (Alvarez and Nagler 1995, 
Dow and Endersby 2004). Powers and Xie (2000, 248) noted that LIMDEP 7.0 
has proven useful in estimating multinomial probit models, but for purposes of com
munication research, multinomial logistic regression, covered in Chapter 7, generally 
proves satisfactory for most analyses containing multi‐level nominal variables.

Interactions

Like logistic regression models, probit analysis will test user‐specified inter
actions among explanatory variables (see Ai and Norton 2003, Brambor, Clark, 
and Golder 2006). As Huang and Shields (2000, 88) argued, “Interactions 

Parameter Estimates

95% Confidence 
Interval

B SE Wald df Sig. Lower Upper

Threshold
Trust Media Just About Always −1.586 .090 310.012 1 .000 −1.763 −1.410
Trust Media Most of the Time −.228 .083 7.634 1 .006 −.390 −.066
Trust Media Some of the Time 1.484 .088 283.765 1 .000 1.311 1.656

Location
Male .131 .049 7.093 1 .008 .035 .227
White .226 .076 8.740 1 .003 .076 .375
Black −.045 .085 .278 1 .598 −.211 .121
Optimistic −.260 .056 21.454 1 .000 −.370 −.150
Pessimistic .102 .078 1.730 1 .188 −.050 .255

Table 9.3 (Continued)
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assumed by an S‐shaped curve are not an evil to avoid but an approximation of 
the underlying data‐generation process of binary responses.” Interactions can 
also be tested in the ordinal probit model, and their inclusion should follow 
steps taken in ordinal logistic regression analyses (i.e., steps taken in the PLUM 
procedure). In the present chapter, interactive effects were tested but none 
showed statistical significance.

Chapter Summary

This chapter has focused on binary and ordinal probit models, which assume an 
underlying continuous variable and the inverse of the cumulative normal distri
bution as a link function. In SPSS, the binary probit model can be fit in the 
Generalized Linear Models procedure and can also be tested through PLUM. 
The binary probit model proves useful when dichotomous dependent variables 
are thought to contain a degree of internal variation, as in the case of support/
lack of support for social legislation. The ordinal probit model, fit through 
PLUM, is similarly flexible. Models containing multi‐level nominal response 
measures should be tested with multinomial logistic regression analyses.

Chapter Exercises

1. In Chapter 6, the first exercise question focused on time period, presence 
on the front page, and dateline as determinants of anonymous attribu
tion  in news reports. For the current question, use the data from that 
item in Chapter 6 to test a binary probit model for the same effects. Use 
the PLUM procedure in SPSS and report −2 log likelihood values for the 
Intercept Only and Final models, as well as the Pearson goodness‐of‐fit 
test and three R‐squared estimates. Also report parameter estimates and 
their standard errors, in addition to Wald values, significance tests, and 
95% confidence intervals. Are the probit and logit models similar, as one 
would anticipate?

2. Chapter 8 included an exercise based on data gathered in a CBS News poll 
(CBS News 2008), with a three‐level ordinal response measure indicating 
whether members of racial minorities were Very Interested, Somewhat 
Interested, or Not at All Interested in professional baseball. The current exer
cise contains sex and race as explanatory measures, as opposed to sex and 
education level. Use the SPSS PLUM procedure to fit an ordinal probit model 
to the data below, making certain to test the interaction between sex and race. 
Then report −2 log likelihood values for the Intercept Only and Final models, 
as well as the Pearson goodness‐of‐fit test and three R‐squared estimates. 
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Also  report parameter estimates and their standard errors, in addition to 
Wald values, significance tests, and 95% confidence intervals. What do the 
data reveal about sex and race as predictors of interest in baseball?

ID B SR ID B SR ID B S R ID B SR ID B SR ID B SR ID B S R

001 1 1 1 026 2 11 051 2 2 1 076 2 22 101 3 1 1 126 3 21 151 3 2 1
002 1 1 1 027 2 11 052 2 2 1 077 2 22 102 3 1 2 127 3 21 152 3 2 1
003 1 1 1 028 2 11 053 2 2 1 078 3 11 103 3 1 2 128 3 21 153 3 2 1
004 1 1 1 029 2 11 054 2 2 1 079 3 11 104 3 1 2 129 3 21 154 3 2 1
005 1 1 1 030 2 11 055 2 2 1 080 3 11 105 3 1 2 130 3 21 155 3 2 1
006 1 1 1 031 2 11 056 2 2 1 081 3 11 106 3 1 2 131 3 21 156 3 2 1
007 1 1 1 032 2 11 057 2 2 1 082 3 11 107 3 1 2 132 3 21 157 3 2 1
008 1 1 1 033 2 11 058 2 2 1 083 3 11 108 3 1 2 133 3 21 158 3 2 2
009 1 1 1 034 2 11 059 2 2 1 084 3 11 109 3 1 2 134 3 21 159 3 2 2
010 1 1 2 035 2 11 060 2 2 1 085 3 11 110 3 1 2 135 3 21 160 3 2 2
011 1 1 2 036 2 11 061 2 2 1 086 3 11 111 3 2 1 136 3 21 161 3 2 2
012 1 2 1 037 2 11 062 2 2 1 087 3 11 112 3 2 1 137 3 21 162 3 2 2
013 1 2 1 038 2 11 063 2 2 1 088 3 11 113 3 2 1 138 3 21 163 3 2 2
014 1 2 1 039 2 11 064 2 2 1 089 3 11 114 3 2 1 139 3 21 164 3 2 2
015 1 2 1 040 2 11 065 2 2 1 090 3 11 115 3 2 1 140 3 21 165 3 2 2
016 1 2 1 041 2 12 066 2 2 1 091 3 11 116 3 2 1 141 3 21 166 3 2 2
017 1 2 1 042 2 12 067 2 2 1 092 3 11 117 3 2 1 142 3 21 167 3 2 2
018 1 2 2 043 2 12 068 2 2 1 093 3 11 118 3 2 1 143 3 21 168 3 2 2
019 1 2 2 044 2 12 069 2 2 1 094 3 11 119 3 2 1 144 3 21 169 3 2 2
020 1 2 2 045 2 12 070 2 2 1 095 3 11 120 3 2 1 145 3 21 170 3 2 2
021 1 2 2 046 2 12 071 2 2 2 096 3 11 121 3 2 1 146 3 21 171 3 2 2
022 1 2 2 047 2 12 072 2 2 2 097 3 11 122 3 2 1 147 3 21 172 3 2 2
023 1 2 2 048 2 12 073 2 2 2 098 3 11 123 3 2 1 148 3 21 173 3 2 2
024 1 2 2 049 2 12 074 2 2 2 099 3 11 124 3 2 1 149 3 21 174 3 2 2
025 2 1 1 050 2 12 075 2 2 2 100 3 11 125 3 2 1 150 3 21 175 3 2 2

Note: Excel file containing data available on companion website.

Category codes:
Interest in Baseball (B): 1 = Very Interested, 2 = Somewhat Interested, 3 = Not at all Interested
Sex (S):  1 = Males, 2 = Females
Racial Minority (R): 1 = African Americans, 2 = Members of Other Racial Minority

Notes

1 As Finney (1952, 8) explained, “For any one subject, under controlled conditions, 
there will be a certain level of intensity below which the response does not occur and 
above which the response occurs; in psychology such a value is designated the thresh-
old or limen, but in pharmacology and toxicology the term tolerance seems more 
appropriate.”



Probit Analysis 213

2 SPSS offers a Probit model among its Regression choices, but the technique is 
designed specifically for grouped‐response dose analyses (e.g., toxicology studies 
identifying the level at which a chemical substance proves fatal). See Norusis (2005, 
91–101) for instruction.

3 Although the PLUM model is used primarily for ordinal logistic regression, as well as 
ordinal probit regression, it will also fit a binary probit model.

4 In the SPSS PLUM procedure, one can click on the Options tab and switch the 
analysis from Logit to Probit. Additional models such as Complementary log‐log are 
also available.
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Poisson and negative binomial regression techniques model count data as a 
 function of one or more independent variables (Frome 1983, Frome, Kutner, and 
Beauchamp 1973). Examples of counts, which King (1988, 838) defined as “the 
number of occurrences of an event in a fixed domain,” include the number of 
news reports published on a certain topic in a two‐week period, the number 
of  specific gestures made during a series of debates, and the number of press 
releases distributed during the management of a crisis. Counts also might include 
“tweets” sent out by audience members during a major sporting event, the num
ber of individuals “liking” a Facebook page designed to effect some sort of social 
change, or the number of individuals contacting a public official during a one‐
month interval. While researchers have used ordinary least squares (OLS) regres
sion to analyze count data, Gardner, Mulvey, and Shaw (1995) explained that 
OLS  procedures often produce negative predicted values when the lower bound 
of a count is actually zero, and that analyses with count data often violate the OLS 
assumption of equal variances (see also Tang, He, and Tu 2012, 173–200).

As a generalized linear model, Poisson regression contains a log link function, 
a Poisson random component, and one or more independent variables as 
 systematic components (Dunteman and Ho 2006). In the Poisson model, 
explanatory measures may be categorical factors or continuous covariates (Long 
1997, 217–230), and the exponentiation of parameter estimates results in 
 incidence rate ratios. As the chapter explains, the Poisson distribution contains 
one parameter, which represents both the mean and the variance; when the 
variance of a measure exceeds its mean (which is not unusual), data are considered 
overdispersed and in need of a different model.

Negative binomial analyses prove useful when the data in a Poisson model 
appear overdispersed (DeMaris 2004, Gardner, Mulvey, and Shaw 1995), largely 
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because the negative binomial model contains an extra parameter that allows the 
variance of a measure to exceed its mean (Long 1997, 230–238). As Gardner, 
Mulvey, and Shaw (1995, 399) explained, “The negative binomial can be viewed 
as a form of Poisson regression that includes a random component reflecting the 
uncertainty about the true rates at which events occur for individual cases.” 
Because the added parameter can result in a slight loss of power, though, the 
Poisson model should be used when data are not overdispersed.

The following section reviews communication studies utilizing Poisson and 
negative binomial regression models. The chapter then addresses the fundamental 
components of the two models as well as zero‐truncated and zero‐modified 
count models, before offering instructions for the SPSS Generalized Linear 
Models procedure.

Examples of Published Research

Communication scholars have used Poisson and negative binomial regression 
models to study elements of political and health communication, interpersonal 
and relational communication, as well as mass communication and society. 
In recent years the techniques have proven especially useful for studies involving 
computer‐mediated communication, where scholars often examine discrete obser
vations, or counts, across certain periods of time. As an example, in a study involving 
social media, Choi (2014) used negative binomial analyses to model counts of 
“retweets.” Valenzuela, Arriagada, and Scherman (2012) used a Poisson model 
in identifying an association between Facebook use and protest activity, while 
Jiang, Bazarova, and Hancock (2013) analyzed self‐disclosure counts in online 
communication.

In studies of broadcasting, Tsfati, Elfassi, and Waismel‐Manor (2010) used 
Poisson regression in testing the explanatory power of physical attractiveness on 
the number of times each member of the 16th Israeli Knesset appeared on 
national television news. Larson and Andrade (2005) used Poisson regression in 
addressing media coverage of US congresswomen, with explanatory measures 
including bill sponsorship, media market size, political party, and seniority. 
Additionally, Yan and Napoli (2006) studied counts of public‐affairs programs 
on broadcast television stations across a two‐week period.

In research involving substance abuse, Dasgupta, Mandl, and Brownstein 
(2009) used Poisson regression in observing an association between news 
reports and fatal opioid poisonings. Reasoning that community newspapers 
sometimes function as a macro‐level source of social control, Yamamoto and 
Ran (2013) used Poisson regression and negative binomial models in studying 
potential links between penetration of community newspapers and number of drug 
violations. Sorenson, Peterson Manz, and Berk (1998) analyzed determinants of 
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news reports published about homicide victims, and in a study testing cultivation 
theory, Diefenbach and West (2001) used Poisson regression to  analyze estimated 
crime rates.

Internationally, in a study of Chinese media, Wang (2009) observed significant 
increases in certain types of articles pertaining to intellectual property. Vliegent hart 
and Walgrave (2008) examined intermedia agenda‐setting  processes through a 
longitudinal analysis of 25 issues covered in Belgian news media, while 
Himelboim, Chang, and McCreery (2010) studied foreign news coverage in the 
digital era, observing through Poisson regression a continuation of existing hierar
chies. In the context of medicine, Mitchell et al. (2012) used the Poisson model 
in a study addressing health literacy, with counts of return trips to a hospital 
serving as a dependent variable. In a study of the heuristic‐systematic model, 
Griffin et al. (2002) used Poisson regression to analyze a dependent variable 
measuring counts of strongly held beliefs, and in research on group communica
tion, Bazarova and Hancock (2012) studied effects of attributions, using nega
tive binomial analyses to model counts of discussion units.

Methodologically, Tsfati and Peri (2006) analyzed the relationship between 
mainstream media skepticism and exposure to extranational news media, using 
the Poisson regression model to manage a severely skewed dependent variable. 
Analyzing knowledge gaps, Blanks Hindman (2012) also opted for the Poisson 
model because of problems with skewness and kurtosis. Lastly, researchers have 
used advanced Poisson techniques to examine communication processes. In 
research addressing economic news coverage, for instance, Fogarty (2005) used 
an autoregressive Poisson model, and in studying newspaper coverage of cancer 
prevention, Slater et al. (2009) developed a multilevel Poisson regression model.

Poisson Regression: Fundamentals

Researchers across the social sciences have analyzed count data with techniques 
such as ordinary least squares regression, but given the assumptions of parametric 
statistics and the propensity of linear models to predict negative values, OLS 
analyses often produce biased (or fundamentally impossible) estimates (DeMaris 
2004, 352). Additionally, as Gardner, Mulvey, and Shaw (1995) pointed out, 
collapsing counts into a limited set of categories may also prove problematic, as 
collapsing data reduces statistical power and also may result in a loss of information. 
Moreover, the authors noted, “cut points” in the data may be somewhat arbi
trary, eliminating the capacity of analyses to provide reliable answers to research 
questions. Poisson regression resolves issues associated with OLS models and 
eliminates the need to collapse or otherwise alter data.

The Poisson distribution itself is an approximation of the binomial distribu
tion and is especially useful for calculating probabilities of rare events in large 
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populations (Nussbaum 2015, 349). In the Poisson distribution, one parameter 
represents both the mean and the variance, indicating equidispersion. The distri
bution is expressed as:
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where y is the number of “hits” (Nussbaum 2015, 349) for a certain time period 
and λ is the average number of hits for all time periods (see also Dunteman and 
Ho 2006, 22–23). As an example, one might consider a researcher who moni
tors news content for 12 weeks and observes 30 articles addressing a certain 
subject. On average, 2.5 articles appear each week and, if so inclined, the 
researcher could use the Poisson distribution to calculate the probability that, 
say, five articles will appear in a given week:
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Based on the Poisson distribution, the probability of observing five articles 
in a given week is relatively modest, at .067. Using the same distribution, the 
probability of two articles appearing in a seven‐day period is considerably 
higher, at .256.

Thus, in the Poisson distribution, λ is the mean, or expected value, and is used in 
calculating count probabilities. In Poisson regression analysis, one examines poten
tial influences on λ in the form of explanatory measures and potential interactions. 
Poisson regression models a canonical link, lnλ, as a linear function of explanatory 
variables (lnλ = βο + β1X1 + … + βpXp). The canonical link, used in modeling exponen
tial relationships, ensures non‐negative estimates, consistent with a lower bound 
of zero for count data (Nussbaum 2015, 353). Because of the difficulties associated 
with interpreting log values, researchers generally exponentiate both sides of an 
additive log model (shown above) to form a  multiplicative model (Dunteman and 
Ho 2006, 23). Readers may recall this process from previous chapters.

As with other generalized linear models, Poisson regression produces output 
indicating goodness of fit as well as unstandardized parameter estimates, standard 
errors, confidence intervals, and significance tests. For each parameter estimate, 
the Poisson model indicates a Wald chi‐square value, and the exponentiation of 
each estimate produces an incident rate ratio. Hilbe (2011, 15) elaborated on 
this term through the concept of risk, which, he noted, is central to the modeling 
of counts. He defined risk as:

An exposure to the chance or probability of some outcome, typically thought of as 
a loss or injury … Relative risk is the ratio of the probability of disease for a given 
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risk factor compared with the probability of disease for those not having the risk 
factor. It is therefore a ratio of two ratios, and it is often referred to as the risk ratio, 
or, when referencing counts, the incidence rate ratio.

Hence, in log‐linear modeling and logistic regression analysis, the exponen
tiation of parameter estimates results in odds ratios, but in Poisson regression, 
which focuses on the analysis of counts, exponentiation produces incidence 
rate ratios. The chapter discusses the interpretation of exponentiated parameter 
estimates in its section on SPSS.

In Poisson (and negative binomial) regression, independence among obser
vations is essential (Frome, Kutner, and Beauchamp 1973). As Hilbe (2011, 2) 
pointed out, when counts lack independence, assumption violations compro
mise the Poisson probability distribution function, resulting in overdispersion. 
As noted earlier in the text, lack of independence among observations also leads 
to an artificial inflation of the sample, and statistical analyses based on the 
sample may therefore contain technical flaws.

Scholars who use Poisson regression techniques should also be aware of 
offset measures, which function as explanatory controls. As an example, if a 
communication scholar opted to study annual increases in electronic newspaper 
subscriptions over a 20‐year period, the researcher might add an offset measure 
indicating population increases across that time. Otherwise, statistical indicators 
of growth would disregard the fact that with more people may come more 
subscriptions. In this regard, Nussbaum (2015, 354) expressed the Poisson 
regression model as:

 i i
Xs e i

 

where λi is the predicted value of Yi for ith level of X, and si refers to the offset. 
In many cases, an offset measure is not necessary, and in those instances, si is 
equal to 1.0. Regarding SPSS analyses, Nussbaum (2015, 354) made the 
important point that a researcher entering an offset measure through the SPSS 
Generalized Linear Models procedure must create a separate variable for the 
logarithm of si. The chapter now discusses negative binomial regression analysis 
of count data.

Negative Binomial Regression: Fundamentals

As indicated in the previous section, analyses of count data sometimes result 
in overdispersion, with the variance of a measure exceeding its mean. When 
overdispersion occurs, researchers typically replace Poisson regression with 
the negative binomial model, which is derived from a Poisson‐gamma mixture 
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distribution (see Hilbe 2011). The negative binomial distribution, which does not 
assume equidispersion, gets its name from the fact that, as a discrete probability 
distribution, it focuses on the number of failures that occur before the rth success 
in a sequence of Bernoulli trials (Nussbaum 2015, 374). As DeMaris (2004, 351) 
explained, the negative binomial distribution contains two parameters, with p rep
resenting the probability of a success and r representing the desired number of 
successes. In the following formula, y refers to the number of failures encoun
tered before the rth success, and p represents the probability of a success.
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for y = 0, 1, 2, … Given the above formula, one might consider the administra
tion of a telephone survey the day after a presidential debate. Each student in a 
research methods course has been trained in survey techniques and is expected 
to complete four telephone interviews before adjourning for the day. The fac
ulty member supervising the survey knows from past experience that one in 
three individuals contacted by students will agree to participate. Given that 
information, what is the probability that a student will complete four interviews 
in eight calls to prospective respondents?
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A negative binomial analysis indicates that a student has less than an 8% chance 
of completing four interviews in eight attempts given a 33% success rate.

Regarding overdispersion in the negative binomial model, DeMaris (2004, 
351) advised inspecting the mean, or expected value of y, and the variance, given 
the following formulas:
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In this case, as the negative binomial model would assume, the variance of 24.6 
clearly exceeds the mean of 8.12 for the data involving student survey research.

In terms of expression, negative binomial regression takes the same general 
form as its Poisson counterpart (ln λ = βο + β1X1 + … + βpXp), and to facilitate 
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interpretation, researchers generally exponentiate log values to form a multipli
cative model. Negative binomial regression is a type of generalized linear model, 
and like Poisson regression, it is characterized by a log link function as well as a 
systematic component consisting of categorical and/or continuous explanatory 
variables. The random component is the negative binomial, which, as indicated, 
is derived from a Poisson–gamma mixture distribution (see Hilbe 2011). As 
with Poisson regression, offset measures can be entered to prevent spurious 
results. Before addressing SPSS techniques for Poisson and negative binomial 
analyses, the chapter summarizes additional models for count data.

Additional Techniques

In analyses of count data, observations sometimes become part of a sample only 
after the first count occurs. As an example, Long (1997, 239) noted that if one 
derived a sample of scientists based on individuals who had published their 
research in a certain journal, those who had not published their work in the 
journal would be excluded automatically. Tang, He, and Tu (2012, 196) noted 
that studies focusing on length of hospitalization for a certain disease typically 
include only those patients who have been hospitalized; individuals not admitted 
for treatment generally do not become part of the sample. Statisticians character
ize such samples (i.e., those that do not contain the value zero) as zero truncated. 
In such cases, Poisson and negative binomial models, as discussed in the present 
chapter, are not appropriate; however, extensions of the models do exist, and 
Long (1997) recommended the work of Grogger and Carson (1991) as well as 
Gurmu and Trivedi (1992) as starting points.

Situations also arise when zeros dominate sample distributions. Discussing 
zero modified count models, Tang, He, and Tu (2012, 190) referred to a sexual‐
health distribution indicating frequency of protected vaginal sex. The distribu
tion contained an excessive number of zeros, likely reflecting the fact that many 
individuals in the sample abstained from sex or practiced unprotected vaginal 
sex. In another context, Long (1997, 242) addressed the publication of scien
tific papers. While the Poisson and negative binomial models would assume 
positive probabilities for all scientists in the publication realm, many individuals 
work in environments where publication is not a possibility. As Long (1997, 
242) explained, “The probability differs across individuals according to their 
characteristics, but all scientists are at risk of not publishing and all scientists 
might publish.” Given differing expectations, Long explained that this assump
tion is not appropriate, and a researcher would want to consider a zero inflated 
model (Greene 1994, Lambert 1992), which Long discussed in some detail.1

The following section reviews output statistics for regression analyses of count 
data, as calculated in the SPSS Generalized Linear Models procedure.



Poisson and Negative Binomial Regression 223

SPSS Analyses

This section of the chapter uses data from the 2008 American National Election 
Study (The American National Election Studies 2008) to demonstrate both 
Poisson and negative binomial regression techniques in SPSS. In the examples, 
a dependent count variable indicates how many days in the previous week 
respondents (N = 1,152) watched national television news, with options ranging 
from 0 to 7. With this measure, no values below zero can emerge, and the dis
crete units represent “exposures” in a certain time period. Explanatory measures 
include sex, race, and attitudes toward the United States (i.e., Optimistic, 
Pessimistic, Neither Optimistic nor Pessimistic).

In SPSS, the Generalized Linear Models procedure fits both Poisson and nega
tive binomial regression models; to choose between the two, a researcher must 
determine whether a dependent measure is overdispersed. To check dispersion, 
one can select Analyze > Descriptive Statistics > Explore and receive a descriptive 
report similar to the one shown in Table 10.1. The statistics shown in this table 
indicate that, on average, individuals watched the national television news 3.62 
days in the previous week, with a variance of 7.543. These values indicate the data 
are overdispersed and that a negative binomial model is preferred over a Poisson 
analysis. For didactic purposes, the chapter covers the SPSS Poisson model first.

Recalling Figure 9.1 from the previous chapter, a Poisson regression analysis 
can be conducted through the SPSS Generalized Linear Models procedure 
(Analyze > Generalized Linear Models > Generalized Linear Models). To begin, 

Table 10.1 SPSS output for Explore analysis of television news exposure

Descriptives

Statistic SE

Days Past Week Watched Mean 3.62 .081
National News on TV 95% Confidence Interval for Mean Lower Bound 3.46

Upper Bound 3.78
5% Trimmed Mean 3.63
Median 3.00
Variance 7.543
Standard Deviation 2.746
Minimum 0
Maximum 7
Range 7
Interquartile Range 6
Skewness .008 .072
Kurtosis −1.558 .144
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one should select “Poisson log‐linear” under the Type of Model tab and then enter 
a dependent variable under Response as well as explanatory measures under 
Predictors. In the Model window, one can specify a main effects or interaction 
model and then proceed to the remaining tabs: Estimation, Statistics, EM Means, 
Save, and Export. As indicated in Chapter 9, the default options under these tabs 
function reasonably well, but researchers may wish to select additional statistics for 
the output. As an example, under the Save tab, one can examine dispersion by 
selecting standardized residuals and taking note of whether the values fall between 
−3.0 and +3.0. If residuals are consistently scattered beyond these lower and upper 
bounds, the model selected may need to be replaced with a better‐fitting one.

Table  10.2 displays the results of a Poisson regression analysis. Model 
Information confirms (a) the dependent variable of exposure to national televi
sion news, (b) the Poisson probability distribution, and (c) the log link function. 
Following that information, a series of goodness‐of‐fit statistics appear, with 
both the Deviance and Pearson Chi‐Square values indicating overdispersed 
data. Ideally, ratios of item values and their respective degrees of freedom will 
appear close to 1.0. In the current analysis, the Deviance Value/df ratio of 2.572 
and the Pearson Chi‐Square ratio of 1.993 suggest overdispersion. One can 
also observe a value for the full log‐likelihood function in addition to other 
goodness‐of‐fit indicators, notably the Bayesian Information Criterion (BIC). 
Generally, a better‐fitting model will contain a comparably low BIC value.

Next, under Omnibus Test, the value for Likelihood Ratio Chi‐Square 
(62.525) is statistically significant, indicating that a model containing the three 
explanatory measures fits better than a model containing only the intercept. 
In the section titled Test of Model Effects, the explanatory power of each 
predictor is tested independently of the others, and looking at the results, it 
appears both race and attitude toward the United States showed significance. 
On the other hand, sex did not appear significant. The statistics shown under 
Parameter Estimates reveal that with sex and attitude toward the United States 
included in the regression equation, race did not function as a significant predictor. 
Only the attitudinal item showed significant explanatory power.

As shown in Table 10.2, parameter estimates for those who indicated opti
mism (.266) as well as pessimism (.259) were positive and significant at p < .001, 
with both estimates exponentiating to approximately 1.30. In terms of incidence 
rate ratios, the exponentiated estimates reveal that individuals who were 
optimistic as well as those who were pessimistic watched national television 
news at higher rates than individuals who were neither optimistic nor pessimistic. 
An exponentiated estimate of 1.30 indicates that rates increased about 30%, 
on average, among optimistic and pessimistic individuals, given the presence 
of sex and race in the regression equation.

Table 10.3 displays the results of a negative binomial regression analysis. This 
model offered a better fit to the survey data, as indicated by the goodness‐of‐fit 



Table 10.2 SPSS output for Poisson regression model in Generalized Linear Models 
procedure

Model Information

Dependent Variable Days past week watched national news on TV
Probability Distribution Poisson
Link Function Log

Goodness of Fit b

Value df Value/df

Deviance 2626.188 1021 2.572
Scaled Deviance 2626.188 1021
Pearson Chi‐Square 2035.040 1021 1.993
Scaled Pearson Chi‐Square 2035.040 1021
Log Likelihooda −2653.478
Akaike’s Information Criterion (AIC) 5318.957
Finite Sample Corrected AIC (AICC) 5319.039
Bayesian Information Criterion (BIC) 5348.563
Consistent AIC (CAIC) 5354.563

a The full log likelihood function is displayed and used in computing information criteria.
b Information criteria are in small‐is‐better form.

Omnibus Test a

Likelihood Ratio Chi‐Square df Sig.

62.525 5 .000

a Compares the fitted model against the intercept‐only model.

Test of Model Effects

Type III

Source Wald Chi‐Square df Sig.

Intercept 3307.737 1 .000
Sex .701 1 .403
Race 11.230 2 .004
Attitude about US 48.062 2 .000

Parameter Estimates

95% Wald 
Confidence Interval Hypothesis Test

Parameter B SE Lower Upper Wald Chi‐Square df Sig.

Intercept 1.111 .0558 1.001 1.220 396.528 1 .000
Male .027 .0328 −.037 .092 .701 1 .403
White −.050 .0518 −.151 .052 .923 1 .337
Black .076 .0561 −.034 .186 1.824 1 .177
Optimistic .266 .0393 .188 .343 45.636 1 .000
Pessimistic .259 .0534 .155 .364 23.569 1 .000
(Scale) 1a

a Fixed at the displayed value.



Table 10.3 SPSS output for negative binomial model in Generalized Linear Models 
procedure

Model Information

Dependent Variable Days past week watched national news on TV
Probability Distribution Negative binomial
Link Function Log

Goodness of Fit b

Value df Value/df

Deviance 860.345 1021 .843
Scaled Deviance 860.345 1021
Pearson Chi‐Square 444.744 1021 .436
Scaled Pearson Chi‐Square 444.744 1021
Log Likelihooda −2491.699
Akaike’s Information Criterion (AIC) 4995.398
Finite Sample Corrected AIC (AICC) 4995.481
Bayesian Information Criterion (BIC) 5025.005
Consistent AIC (CAIC) 5031.005

a The full log likelihood function is displayed and used in computing information criteria.
b Information criteria are in small‐is‐better form.

Omnibus Test

Likelihood Ratio Chi‐Square df Sig.

13.919 5 .016

Test of Model Effects

Type III

Source Wald Chi‐Square df Sig.

Intercept 694.121 1 .000
Sex .139 1 .709
Race 2.602 2 .272
Attitude about US 11.603 2 .003

Parameter Estimates

95% Wald 
Confidence Interval Hypothesis Test

Parameter B SE Lower Upper Wald Chi‐Square df Sig.

Intercept 1.108 .1179 .876 1.339 88.179 1 .000
Male .027 .0715 −.113 .167 .139 1 .709
White −.052 .1124 −.272 .169 .212 1 .645
Black .082 .1230 −.159 .323 .442 1 .506
Optimistic .269 .0816 .109 .429 10.877 1 .001
Pessimistic .266 .1141 .042 .490 5.427 1 .020
(Scale) 1a

(Neg. binomial) 1

a Fixed at the displayed value.
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statistics. The Deviance Value/df ratio of .843 approached the ideal estimate of 
1.0, although the Pearson Chi‐Square ratio of .436 was not as close. In the 
Omnibus Test, the Likelihood Ratio Chi‐Square value of 13.919 showed signifi
cance at p < .05, indicating that a model containing the three explanatory measures 
fit better than a model containing only the intercept. Examining the Test of Model 
Effects, the negative binomial regression differed from the Poisson analysis in that 
the former did not report significant effects for race. Only the attitudinal measure 
contributed significantly and that pattern held in the full model, where sex and race 
did not show significance. As in the Poisson analysis, individuals who expressed 
optimism as well as those who expressed pessimism appeared to watch national 
television news at higher rates than survey respondents who indicated neither 
optimism nor pessimism. The parameter estimates .269 and .266 exponentiated to 
approximately 1.30, again suggesting higher rates of viewership.

Examining Table 10.3, one also observes a value for the dispersion coefficient 
in the negative binomial model. In the Poisson model, this coefficient is set to 
zero and is not reported. When this item is not constrained (as it is in the 
Poisson model), a value greater than zero indicates overdispersion. In rare cases, 
a value less than zero will emerge and indicate underdispersion, where the 
variance is less than the mean. In this case the value of 1.0 confirms that a nega
tive binomial model is the preferred technique for analyzing predictors of the 
number of days respondents reported watching national television news.

Chapter Summary

This chapter has addressed Poisson and negative binomial regression, two tech
niques used in analyzing count data. Poisson regression assumes equidispersion 
while the negative binomial model assumes overdispersion and includes an extra 
parameter. Explanatory measures for both types of regression may be categorical 
factors or continuous covariates, and exponentiated parameter estimates pro
duce incidence rate ratios for the categories of predictor variables. In some cases, 
Poisson and negative binomial models should include offset measures, as counts 
may vary as a result of factors not accounted for among explanatory variables. 
Additionally, certain situations may call for extended versions of the Poisson and 
negative binomial regression models.

Chapter Exercises

1. Violence against women is a significant social problem in the United States, 
and researchers have studied the issue from the standpoint of communica
tion (see Weathers and Hopson 2015, Yokotani 2015). The table below 
contains state data indicating the number of women killed by men in 2012 
(Violence Policy Center 2014). The most homicides per 100,000 women 



228 Categorical Statistics for Communication Research

occurred in the 10 states listed first, while the fewest took place in the 10 
states listed in the second group. Also listed is the female population for 
each state as well as the region of the country assigned to each state by the 
US Census Bureau. Using the Explore function in SPSS, determine whether 
a Poisson or negative binomial model would be the appropriate choice for 
analyzing the explanatory power of region on counts of female homicides. 
After making that determination, fit a model to the data, first without the 
female population figures and then with the figures entered as a covariate.2 
Note the differences in the two models as you report the findings. For the 
model that includes the covariate, provide goodness‐of‐fit statistics, results 
of the omnibus test, as well as tests of model effects. Also include parameter 
estimates, standard errors, 95% confidence intervals, and the results of 
hypothesis tests, as shown in SPSS output. Did counts vary by region?

2. Using additional data in the table, repeat the steps taken in the previous 
question and test the explanatory power of region on the number of 
aggravated assaults committed (against members of both sexes) in each 
state in 2012.3 Test the effects of region on its own and then include state 
populations as a covariate. Report all of the results listed in the previous 
question and interpret the findings on a substantive level.

State Female Female Aggravated
State Region Population Population Homicides Assaults

Alaska 9 731,449 351,096 9 3,169
South Carolina 5 4,723,723 2,427,993 50 19,905
Oklahoma 7 3,814,820 1,926,484 39 12,867
Louisiana 7 4,601,893 2,346,965 45 15,740
Mississippi 6 2,984,926 1,534,252 29 4,460
Nevada 8 2,758,931 1,365,670 25 10,790
Missouri 4 6,021,988 3,071,213 53 19,473
Arizona 8 6,553,255 3,296,287 56 18,087
Georgia 5 9,919,945 5,079,011 84 22,423
Tennessee 6 6,456,243 3,312,052 53 30,961
Minnesota 4 5,379,139 2,711,086 19 7,207
Utah 8 2,855,287 1,421,943 10 3,783
Connecticut 1 3,590,347 1,841,848 12 5,408
Hawaii 9 1,392,313 694,764 9 1,976
Iowa 4 3,074,186 1,552,463 9 6,234
Massachusetts 1 6,646,144 3,429,410 17 18,638
Vermont 1 626,011 318,013 1 652
Nebraska 4 1,855,525 935,184 3 2,920
New Hampshire 1 1,320,718 669,604 2 1,545
Illinois 3 12,875,255 6,552,504 16 29,618

Note: Excel file containing data available on companion website.
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Notes

1 Zero inflated models resemble the tobit model (Tobin 1958) insofar as both assume 
a cluster of nonnegative values, usually zero (McDonald and Moffitt 1980). However, 
the tobit model assumes an underlying continuous distribution, and although studies 
of count data have occasionally used this model, Poisson and negative binomial analyses, 
and their respective extensions, are more appropriate for discrete counts.

2 In SPSS, converting the populations to standardized Z‐scores and using the scores as 
a covariate will facilitate regression output. Using raw figures may result in undeter
mined estimates. To establish Z‐scores in SPSS, click on Descriptives and enter the 
variables of interest. Then check the box in the lower part of the window to request 
the calculation of standardized scores. A new column of Z‐scores will appear in the 
data window.

3 Data obtained from the FBI Uniform Crime Report, available at http://www.fbi.
gov/about‐us/cjis/ucr/crime‐in‐the‐u.s/2012/crime‐in‐the‐u.s.‐2012/tables/ 
5tabledatadecpdf. State populations based on 2012 US Census, available at http://
www.governing.com/gov‐data/state‐census‐population‐migration‐births‐deaths‐
estimates.html.

References

Bazarova, Natalya N., and Jeffrey T. Hancock. 2012. “Attributions After a Group Failure: 
Do They Matter? Effects of Attributions on Group Communication and Performance.” 
Communication Research, 39: 499–512. DOI:10.1177/0093650210397538.

Blanks Hindman, Douglas. 2012. “Knowledge Gaps, Belief Gaps, and Public Opinion 
about Health Care Reform.” Journalism & Mass Communication Quarterly, 89: 
585–605. DOI: 10.1177/1077699012456021.

Choi, Sujin. 2014. “Flow, Diversity, Form, and Influence of Political Talk in Social‐
Media‐Based Public Forums.” Human Communication Research, 40: 209–237. 
DOI:10.1111/hcre.12023.

Dasgupta, Nabarun, Kenneth D. Mandl, and John S. Brownstein. 2009. “Breaking the 
News or Fueling the Epidemic? Temporal Association Between News Media Report 
Volume and Opioid‐Related Mortality.” PLoS ONE, 4(11): e7758. DOI:10.1371/
journal.pone.0007758.

DeMaris, Alfred. 2004. Regression with Social Data: Modeling Continuous and Limited 
Response Variables. Hoboken, NJ: John Wiley & Sons.

Diefenbach, Donald L., and Mark D. West. 2001. “Violent Crime and Poisson Regression: 
A Method and a Measure for Cultivation Analysis.” Journal of Broadcasting and 
Electronic Media, 45: 432–445. DOI:10.1207/s15506878jobem4503_4.

Dunteman, George H., and Moon‐Ho R. Ho. 2006. An Introduction to Generalized 
Linear Models. Thousand Oaks, CA: Sage.

Fogarty, Brian J. 2005. “Determining Economic News Coverage.” International Journal 
of Public Opinion Research, 17: 149–172. DOI:10.1093/ijpor/edh051.

Frome, E. L. 1983. “The Analysis of Rates Using Poisson Regression Models.” Biometrics, 
39: 665–674.



230 Categorical Statistics for Communication Research

Frome, Edward L., Michael H. Kutner, and John J. Beauchamp. 1973. “Regression 
Analysis of Poisson‐Distributed Data.” Journal of the American Statistical Association, 
68: 935–940. DOI:10.1080/01621459.1973.10481449.

Gardner, William, Edward P. Mulvey, and Esther C. Shaw. 1995. “Regression Analyses of 
Counts and Rates: Poisson, Overdispersed Poisson, and Negative Binomial Models.” 
Psychological Bulletin, 118: 392–404. DOI:10.1037/0033–2909.118.3.392.

Greene, William H. 1994. “Accounting for Excess Zeros and Sample Selection in Poisson 
and Negative Binomial Regression Models.” Working Paper No. 94‐10. New York: 
Stern School of Business, New York University, Department of Economics.

Griffin, Robert J., Kurt Neuwirth, James Giese, and Sharon Dunwoody. 2002. “Linking 
the Heuristic‐Systematic Model and Depth of Processing.” Communication 
Research, 29: 705–732. DOI:10.1177/009365002237833.

Grogger, J. T., and R. T. Carson. 1991. “Models for Truncated Counts.” Journal of 
Applied Econometrics, 6: 225–238. DOI:10.1002/jae.3950060302.

Gurmu, Shiferaw, and Pravin K. Trivedi. 1992. “Overdispersion Tests for Truncated 
Poisson Regression Models.” Journal of Econometrics, 54: 347–370. DOI:10.1016/ 
0304–4076(92)90113–6.

Hilbe, Joseph M. 2011. Negative Binomial Regression, 2nd ed. Cambridge: Cambridge 
University Press.

Himelboim, Itai, Tsan‐Kuo Chang, and Stephen McCreery. 2010. “International Network 
of Foreign News Coverage: Old Global Hierarchies in a New Online World.” 
Journalism & Mass Communication Quarterly, 87: 297–314. DOI:10.1177/ 
107769901008700205.

Jiang, L. Crystal, Natalya N. Bazarova, and Jeffrey T. Hancock. 2013. “From 
Perception to Behavior: Disclosure Reciprocity and the Intensification of Intimacy 
in Computer‐Mediated Communication.” Communication Research, 40: 125–143. 
DOI:10.1177/0093650211405313.

King, Gary. 1988. “Statistical Models for Political Science Event Counts: Bias in 
Conventional Procedures and Evidence for the Exponential Poisson Regression 
Model.” American Journal of Political Science, 32: 838–863.

Lambert, Diane. 1992. “Zero‐inflated Poisson Regression with an Application to Defects 
in Manufacturing.” Technometrics, 34: 1–14. DOI:10.1080/00401706.1992.1048
5228.

Larson, Stephanie Greco, and Lydia M. Andrade. 2005. “Determinants of National 
Television News Coverage of Women in the House of Representatives, 1987–1998.” 
Congress & the Presidency, 32: 49–61. DOI:10.1080/07343460509507696.

Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. 
Thousand Oaks, CA: Sage.

McDonald, John F., and Robert A. Moffitt. 1980. “The Uses of Tobit Analysis.” The 
Review of Economics and Statistics, 62: 318–321.

Mitchell, Suzanne E., Ekaterina Sadikova, Brian W. Jack, and Michael K. Paasche‐Orlow. 
2012. “Health Literacy and 30‐day Postdischarge Hospital Utilization.” Journal 
of Health Communication, 17: 325–338. DOI:10.1080/10810730.2012.715233.

Nussbaum, E. Michael. 2015.Categorical and Nonparametric Data Analysis. New York: 
Routledge.



Poisson and Negative Binomial Regression 231

Slater, Michael D., Andrew F. Hayes, Jason B. Reineke, Marilee Long, and Edwin 
P. Bettinghaus. 2009. “Newspaper Coverage of Cancer Prevention: Multilevel 
Evidence for Knowledge‐Gap Effects.” Journal of Communication, 59: 514–533. 
DOI:10.1111/j.1460–2466.2009.01433.x.

Sorenson, Susan B., Julie G. Peterson Manz, and Richard A. Berk. 1998. “News Media 
Coverage and the Epidemiology of Homicide.” American Journal of Public Health, 
88: 1510–1514. DOI: 10.2105/AJPH.88.10.1510.

Tang, Wan, Hua He, and Xin M. Tu. 2012. Applied Categorical and Count Data 
Analysis. Boca Raton, FL: CRC Press.

The American National Election Studies. 2008. American National Election Study: 
ANES Pre‐ and Post‐Election Survey. ICPSR25383‐v2. Ann Arbor, MI: Inter‐
university Consortium for Political and Social Research [distributor], 2012–08–30. 
DOI:10.3886/ICPSR25383.v2.

Tobin, James. 1958. “Estimation of Relationships for Limited Dependent Variables.” 
Econometrica, 26: 24–36.

Tsfati, Yariv, Dana Markowitz Elfassi, and Israel Waismel‐Manor. 2010. “Exploring 
the Association Between Israeli Legislators’ Physical Attractiveness and Their 
Television News Coverage.” International Journal of Press/Politics, 15: 175–192. 
DOI:10.1177/1940161209361212.

Tsfati, Yariv, and Yoram Peri. 2006. “Mainstream Media Skepticism and Exposure to 
Sectorial and Extranational News Media: The Case of Israel.” Mass Communication 
& Society, 9: 165–187. DOI:10.1207/s15327825mcs0902_3.

Valenzuela, Sebastian, Arturo Arriagada, and Andres Scherman. 2012. “The Social Media 
Basis of Youth Protest Behavior: The Case of Chile.” Journal of Communication, 
62: 299–314. DOI:10.1111/j.1460‐2466.2012.01635.x.

Violence Policy Center. 2014. When Men Murder Women: An Analysis of the 2012 
Homicide Data. Foundation report available at http://www.vpc.org/studies/
wmmw2014.pdf.

Vliegenthart, Rens, and Stefaan Walgrave. 2008. “The Contingency of Intermedia Agenda 
Setting: A Longitudinal Study in Belgium.” Journalism & Mass Communication 
Quarterly, 85: 860–877. DOI:10.1177/107769900808500409.

Wang, Mian R. 2009. “An Analysis of Intellectual Property Discourse in Chinese Media.” 
China Media Research, 5: 64–74.

Weathers, Melinda, and Mark C. Hopson. 2015. “‘I Define What Hurts Me’: A Co‐
Cultural Theoretical Analysis of Communication Factors Related to Digital Dating 
Abuse.” Howard Journal of Communications, 26: 95–113.

Yamamoto, Masahiro, and Weina Ran. 2013. “Drug Abuse Violations in Communities: 
Community Newspapers as a Macro‐level Source of Social Control.” Journalism & 
Mass Communication Quarterly, 90: 629–651. DOI:10.1177/1077699013503164.

Yan, Michael Zhaoxu, and Philip M. Napoli. 2006. “Market Competition, Station 
Ownership, and Local Public Affairs Programming on Broadcast Television.” Journal 
of Communication, 56: 795–812. DOI:10.1111/j.1460–2466.2006.00320.x.

Yokotani, Kenji. 2015. “Links between Impolite Spousal Forms of Address and Intimate 
Partner Violence Against Women.” Journal of Language & Social Psychology, 34: 
213–221.



In addition to conducting experiments and administering surveys, communica
tion scholars often examine the content of media texts and conversation tran
scripts by quantifying occurrences of certain terms or characteristics. Bernard 
Berelson (1952, 18) described this type of investigation, content analysis, as 
“a research technique for the objective, systematic, and quantitative description 
of the manifest content of communication.” To conduct an objective and sys
tematic study of communication, a researcher must define content measures as 
precisely as materials allow. For truly objective variables, such as the name of 
a  newspaper or the date of an article, coding classifications are relatively 
straightforward. But when measures become subjective, calling for interpreta
tion, assigning numbers to content becomes more difficult. In such cases, the 
precision of operational definitions will determine the extent to which coding 
processes prove reliable.

This chapter focuses on measures of interrater agreement, which research
ers use to assess reliability in content analyses. Lacking indications of agree
ment, scholars cannot determine whether coding procedures will result in 
consistent content observations. As Hayes and Krippendorff (2007, 78) 
asked, “Are the data being made and subsequently used in analyses and deci
sion making the result of irreproducible human idiosyncrasies or do they 
reflect properties of the p henomena (units of analysis) of interest on which 
others could agree as well?” As an example, scholars often study valence, or 
implicit degree of attractiveness, in visual images, coding content as positive, 
negative, or neutral (see Lang et al. 2011, Rodriguez and Asoro 2012). In 
political communication, a researcher might be interested in whether photo
graphs of a public official vary in valence across news outlets, or whether 
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valence changes before and after a pivotal event. Prior to analyzing content, a 
researcher would need to operationalize Positive, Negative, and Neutral as 
content categories and then test interrater agreement to ensure consistent 
coding (see, for discussion, Hayes 2005, 118–129, Krippendorff 1980, 129–
154, Popping 2010, Potter and Levine‐Donnerstein 1999, Riffe, Lacy, and 
Fico 2005, 123–159).1

Although reliability is central to content analysis, research has found that 
communication scholars, in general, do not provide sufficient information about 
agreement in published studies (see Lombard, Snyder‐Duch, and Bracken 
2002). Some studies report no information about agreement, while others 
report basic indicators of percentage agreement and percentage‐agreement 
equivalents such as Holsti’s (1969) formula. A fundamental problem with 
these indicators is that they do not account for chance agreement among coders 
(see Mitchell 1979, Krippendorff 2004, 2008, 2011), and depending on the 
distribution of coded material, accounting for chance can prove integral to a 
content analysis.

Analysis of Nominal Data with Two Raters

This section of the chapter reviews three measures of interrater agreement for 
nominal data: Cohen’s kappa, Scott’s pi, and Krippendorff’s alpha. Calculations 
for these measures, each of which accounts for chance agreement among two 
raters, will be demonstrated based on data contained in Table 11.1. In a hypo
thetical study, two researchers have independently coded 83 news photographs 
for valence, classifying each image as positive, negative, or neutral. Numbers 
along the diagonal (in bold) indicate agreement on 3 + 51 + 3 = 57 (68.6%) of 83 
items. But a large number of ratings appear in a single cell, with coders agreeing 
on negative imagery in 51 (61.4%) of 83 instances. Such an imbalance can 
increase chance agreement, and thus, in this case, the researchers have two 
r easons for testing interrater reliability: the subjectivity of the valence measure 
as well as data distribution.

Table 11.1 Cell frequencies for interrater reliability calculations

Rater 1

Rater 2

Positive Negative Neutral Marginal

Positive 3 6 4 13
Negative 4 51 3 58
Neutral 3 6 3 12
Marginal 10 63 10 83
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The fundamental task in calculating all three measures of interrater reliability 
is to compare observed (Po) and expected (Pe) proportions of agreement, as 
shown in the following equation from Scott (1955), whose pi measure appeared 
prior to kappa and alpha in the scholarly literature:
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P
P1  

Applying Scott’s general formula to the data in Table 11.1, proportion of 
observed agreement has already been established (Po = .686). The next task is 
to calculate expected proportion of agreement, where n refers to the number 
of cases each researcher rates, ri to the marginal frequency total for the ith 
row, ci to the marginal frequency total for the ith column, and pi to the 
expected proportion in the ith cell along the diagonal, such that Pe = Σpi. Of 
the three interrater reliability measures discussed in this section, readers may 
find computations for kappa the most intuitive, primarily because calculations 
for the kappa statistic resemble those used in chi‐square analysis, covered in 
Chapter 2.

Cohen’s Kappa

Statisticians generally consider kappa (Cohen 1960) the most popular measure 
of agreement for categorical data (Agresti 2007, 264, Tang, He, and Tu 2012, 57). 
Its popularity is due, in part, to its availability in software packages such as SPSS. 
Kappa accounts for chance agreement and varies between −1 and +1, where +1 
equals perfect agreement, 0 equals chance agreement, and a negative number 
indicates less‐than‐chance agreement. Kappa assumes independence among 
coders as well as units of analysis, and it requires variable categories to be mutually 
exclusive and exhaustive.

In estimating an expected proportion for each diagonal cell in a cross‐ tabulation, 
kappa uses each coder’s frequencies to estimate each coder’s expected propor
tion, weighting one with the other to arrive at an expected value. For kappa, 
each coder’s expected proportion is taken as the number of times the coder 
judged a unit to be in a particular category divided by the number of 
 judgments. Thus:
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Recalling that Pe = Σpi, the following calculations produce expected proportions 
for Table 11.1:
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In this case, Pe = .019 + .530 + .017 = .566. One can then calculate Cohen’s kappa:
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In their frequently cited study addressing agreement with categorical data, 
Landis and Koch (1977a) established the following “benchmarks” for the kappa 
coefficient:

< 0.00 Poor
0.00–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Almost Perfect

Given those benchmarks, .276 would be considered “fair.” In this hypothetical 
situation, a modest kappa value was expected given that agreement on negative 
images accounted for more than 60% of all cases. Such an imbalance affects 
marginal totals, used in establishing expected cell proportions. In fact, one crit
icism of kappa (and pi) is that values can be influenced substantially by marginal 
distributions (Agresti 2007, 264, Banerjee et al. 1999, 6, Brennan and Prediger 
1981); in some cases, marginal counts result in overly conservative estimates 
(Neuendorf 2002, 151).2 Additionally, as a reminder, Scott (1955) and Cohen 
(1960) developed pi and kappa, respectively, for situations in which (only) two 
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raters intended to evaluate (only) nominal data (see, for discussion, Craig 1981, 
Fleiss, Levin, and Paik 2003, 598–626, Lawal 2003, 483–494, Stokes, Davis, 
and Koch 2012, 131–134).3

Scott’s Pi

Recognizing the inherent limitations of simple percentage agreement, Scott 
(1955) developed pi to account for chance agreement among raters. Like kappa, 
pi ranges between −1 and + 1, with 1 showing excellent agreement, 0 representing 
agreement by chance, and a negative value indicating less‐than‐chance agreement. 
In calculations for Scott’s pi, each coder’s expected proportion is estimated as 
the average of the two expected proportions computed for Cohen’s kappa. 
Expected proportions for Scott’s pi are calculated as follows:
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In terms of statistical reasoning, readers who have completed a course in finite 
mathematics are undoubtedly familiar with widgets and urns. In the present case, 
suppose that, for each unit judged, each coder labels a widget with the name of 
a category, and the coders then place all labeled widgets in an urn. The probabil
ity of drawing a widget labeled category i equals the number of widgets labeled 
i (i.e., ri + ci) divided by the number of widgets (2n). Thus, if one draws a widget 
labeled with a category, returns it to the urn, and then draws a second widget, 
the probability of both widgets indicating category i is precisely the probability 
shown in the above equation. Scott’s pi probabilities for each category are there
fore equivalent to sampling with replacement. Applying the formula to data in 
Table 11.1, the following calculations produce an expected proportion:
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In this case, Pe = .019 + .530 + .018 = .568. One can then calculate Scott’s pi:

 

P P
P

o e

e1
686 568
1 568

118
432

273
. .

.
.
.

.
 

For the data in Table 11.1, the value of pi is .273, an estimate close to the value 
for kappa (.276).

Krippendorff’s Alpha

In communication, Lombard, Snyder‐Duch, and Bracken (2004) called for a 
standard measure of reliability in content analysis. Their suggestion appeared 
shortly after their 2002 review of content studies showed inconsistencies in 
r eliability reporting. Hayes and Krippendorff (2007) responded to Lombard, 
Snyder‐Duch, and Bracken (2004) by proposing that alpha, an agreement 
measure developed by Krippendorff (1980), serve as the standard.4 Alpha differs 
from kappa and pi in that disagreements  –  not agreements  –  are of primary 
interest to the researcher. To accommodate direct comparisons with kappa and 
pi, however, the chapter transforms alpha to Scott’s general formula for calculat
ing pi.5 As indicated in the formula below, alpha probabilities are equivalent to 
sampling without replacement. In the formula, the first proportion is the same 
as one of the proportions used in calculating pi, and for the second proportion, 
one less widget appears in the urn; because it applies to category i, the number 
of widgets so labeled is also reduced by one. The equation indicates that as n 
grows large, the value for alpha will approach pi, but when n is small, alpha can 
be expected to be smaller than pi.

 
p

r c
n

r c
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i i i i

2
1

2 1  

For the data in Table 11.1, expected proportions for alpha would be c alculated 
in the following manner:
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In this case, Pe = .018 + .530 + .017 = .565. One can then calculate Krippendorff’s 
alpha:

 
. .

.
.
.

.
686 565
1 565

121
435

278
 

In this case, the Krippendorff alpha coefficient is a modest .278. Discussing alpha, 
Krippendorff (1980, 147) suggested that social scientists recognize alpha reliabil
ity estimates of .80 or greater as acceptable, with estimates between .67 and .80 
as useful in drawing “highly tentative and cautious” conclusions. In the example 
above, the alpha of .278 does not suggest acceptable agreement, and the research
ers would therefore want to reevaluate operational definitions before attempting 
an additional reliability analysis. The following section e xamines interrater relia
bility testing for nominal data when more than two raters are involved.

Analysis of Nominal Data with Multiple Raters

Fleiss’s Generalized Kappa

In many cases, more than two researchers participate in tests of interrater 
agreement with nominal data (Fleiss 1971, Light 1971). To facilitate tests 
with multiple observers, Fleiss (1971, 378) generalized the kappa procedure 
“to the measurement of agreement among any constant number of raters 
where there is no connection between the raters judging the various sub
jects.” Thus, like Cohen (1960), Fleiss (1971) assumed independence among 
raters as well as mutually exclusive and exhaustive variable categories. 
Conceptually, the formula for Fleiss’s generalized kappa coefficient is largely 
the same as the one used in calculating Scott’s pi, Cohen’s kappa, and 
Krippendorff ’s alpha. In generalized kappa calculations, which follow, N 
refers to the total number of subjects; n refers to the number of ratings per 
subject; and k indicates the number of categories to which assignments may 
be made. Subscript i denotes subjects (i = 1,…, N); subscript j indicates 
c ategories (j = 1,…, k); and nij refers to the number of raters assigned to ith 
subject in the jth category (Fleiss 1971).

To demonstrate generalized kappa, one might consider a hypothetical valence 
study in which n = 5 raters have evaluated N = 20 images, classifying each into 
one of k = 3 categories (positive, negative, neutral). Each row in Table  11.2, 
which displays the data for this analysis, indicates where each of the five raters 
classified an image. As an example, three raters considered the first image posi
tive, no raters considered it negative, and two saw it as neutral. Following Fleiss 
(1971), the first task is to calculate values for p1, p2, and p3, which will then 
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indicate the proportion of all assignments made to each variable category (i.e., 
positive, negative, and neutral). The formula follows:

 
p

Nn
nj i

N

ij

1
1  

Recalling the number of raters (5) and the number of subjects (20), a total of 
100 assignments (ratings) appear in Table 11.2, with 43 positive assignments, 
31 negative, and 26 neutral. As indicated in the table, the (column) totals result 
in the following proportions: p1 = .43, p2 = .31, and p3 = .26. As an example of 
proportion calculations, p1 resulted from the following equation:

 
p1

1
100

43 43.
 

In generalized kappa tests, calculations of row agreement proportions f ollow 
calculations for column agreement proportions. This series of calculations, 

Table 11.2 Hypothetical data for Fleiss kappa calculation

Categories

Image Positive ( j = 1) Negative (j = 2) Neutral (j =3) Pi

1 3 0 2 .40
2 4 1 0 .60
3 1 1 3 .30
4 3 1 1 .30
5 0 4 1 .60
6 5 0 0 1.0
7 2 1 2 .20
8 0 3 2 .40
9 1 0 4 .60
10 3 2 0 .40
11 0 5 0 1.0
12 2 2 1 .20
13 4 0 1 .60
14 1 1 3 .30
15 3 2 0 .40
16 2 0 3 .40
17 0 4 1 .60
18 4 1 0 .60
19 5 0 0 1.0
20 0 3 2 .40

ΣPi = 10.3
Total 43 31 26 100
pj .43 .31 .26 1.0
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represented by the formula below (Fleiss 1971, 379), results in a proportion 
of agreeing pairs given n (n − 1) possible pairs for each image:

 
P

n n
n n

n n
n ni i

k

ij ij j

k

ij

1
1

1
1

11 1
2

 

The calculation below applies to the first row of assigned ratings:

 

1
5 5 1

3 3 0 0 2 2
1
20

6 2 05 8 402 2 2 . .
 

Agreement proportions, shown in the right‐hand column of Table 11.2, reflect 
calculations made for each row. Proportions are then summed toward the 
 calculation of a mean value. The formula for calculating a mean value follows:

 
1

1N
P

i

N

i 

In Table  11.2, agreement proportions totaled 10.3, and therefore the mean 
would be calculated as:

 
1
20

10 3 515. .
 

As with the original kappa statistic, an expected mean must also be calculated, as 
follows:

 j

k

j
p

1
2

 

For the data in Table 11.2, the expected mean would be calculated by adding 
.432 + .312 + .262 = .3486. The calculation for generalized kappa is thus:

 
. .

.
.
.

.
515 3486
1 3486

1664
6514

255
 

Calculations for generalized kappa are tedious but not especially difficult. 
Unfortunately, while SPSS includes a measure for two‐rater kappa, it does not 
contain the Fleiss (1971) test for multiple observers. Fleiss kappa calculators are 
available on the Internet, but they should be used with caution, perhaps for the 
purpose of verifying “traditional” calculations completed with pencil and paper. 
The chapter now addresses the analysis of ordinal data with two raters.
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Analysis of Ordinal Data with Two Raters

Cohen’s Weighted Kappa

In 1968, Cohen extended his earlier conception of kappa (Cohen 1960) to a 
weighted approach through which ordinal agreement measures could be calcu
lated. Weighted kappa became an important measure in the social sciences, 
allowing researchers to move beyond unordered nominal categories to measures 
containing ordered observations. Given the capacity to weight observations, 
researchers could move from agreement‐based questions such as “Do children 
behave aggressively following exposure to a violent cartoon?” to “How aggressively 
do children behave following exposure to a violent cartoon?” Cohen (1968, 216) 
used the following formula in discussing weighted kappa:

 
1

v f

v f
ij oij

ij cij  

where vij represents an assigned cell weight, foij represents an observed cell 
f requency, and fcij represents chance‐expected frequency. To demonstrate 
weighted kappa, Table 11.3 contains data extending the three‐level unordered 
valence measure to a five‐level ordinal measure. As with nominal data, ordered 
categories for two raters can be situated in a square table, with agreement 
d isplayed along the diagonal.6

In Table 11.3, raters agreed on 39 (36.4%) of 107 cases, disagreeing on 68 
(63.6%). But to what extent did raters disagree, given ordered categories? 
Researchers can discover important clues by assigning weights to values based 
on the degree to which those values appear off the diagonal of complete 
agreement.

Writing in biostatistics, Norman and Streiner (2000) encouraged scholars to 
weight observations quadratically, as shown in Table  11.4. With quadratic 
weighting, values along the diagonal (i.e., values indicating complete agree
ment) receive no weight. Values located one level off the diagonal receive a 
weight of 12, while values located two levels off the diagonal receive a weight of 22. 
Values located three levels from agreement receive a weight of 32, and values 
removed by four levels receive a weight of 42. One thus observes weights of 0, 
1, 4, 9, and 16 in the five‐category agreement table.

To accommodate the focus on levels of disagreement, Norman and Streiner 
(2000, 220–221) observed the traditional formula for kappa:
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The statisticians then redefined kappa by substituting Q = (1 − P) for everything 
in the formula, thereby revising the equation as follows:

 

Q Q
Q

Q
Q

e o

e

o

e

1
 

Given that formula, one must calculate and sum weighted observed and 
expected disagreements. As with chi‐square, expected values can be calculated 
by multiplying related marginals and dividing by the table total. Formulas for 
the summation of weighted observed and expected disagreements follow:

 Q w Po ij oij  

 Q w Pe ij eij 

where i j refers to off‐diagonal cells and wij are the respective cell weights. 
Returning to Table 11.3, observed and expected weighted proportions can be 
calculated in the following manner:

Qo 1 5 107 4 3 107 9 2 107 16 1 107/ / / / .4 77
1 4 107 1 3 107 4 3 107 9 2 107/ / / / .345
4 3 107 1 6 107 1 6 107 4 2 107/ / / / .2 99
9 2 107 4 4 107 1 5 107 1 5 107/ / / / .412
16 1 107 9 2 107 4 4 107 1 5 107/ / / / .515

Qo
2 048.

Q e 1 4 44 107 4 3 91 107 9 4 08 107 16 3 37 107. / . / . / . / 1.034
1 3 36 107 1 4 11 107 4 4 30 107 9 3 55 107. / . / . / . / 0 529.
4 4 04 107 1 5 61 107 1 5 16 107 4 4 26 107. / . / . / . / 0 410.
9 3 87 107 4 5 37 107 1 4 73 107 1 4 08 107. / . / . / . / 0 609.
16 3 53 107 9 4 91 107 4 4 32 107 1 4 51 107. / . / . / . / 1 144.

Qe
3 726.

Table 11.4 Example of quadratic weights applied to cells

Very Negative
Somewhat 
Negative Neutral

Somewhat 
Positive

Very 
Positive

Very Negative 0 1 4 9 16
Somewhat Negative 1 0 1 4 9
Neutral 4 1 0 1 4
Somewhat Positive 9 4 1 0 1
Very Positive 16 9 4 1 0
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Having summed observed and expected disagreements over all cells, one can 
then calculate a value for weighted kappa: 1 − 2.048/3.726 = .450. As Norman 
and Streiner (2000) pointed out, weighted kappa usually shows a higher value 
than the more rigid kappa statistic, as the former recognizes “near agreement” 
and the latter does not. In this case, unweighted kappa equaled .163, well below 
the weighted coefficient.

In communication, weighted kappa can prove useful when raters seek to 
assess agreement on subjective variables with ordered categories. Weighted 
kappa offers “partial credit” for ratings based on levels of removal from the 
diagonal. The following section considers the intraclass correlation coefficient, 
which statisticians have linked with weighted kappa.

Intraclass Correlation Coefficient

Readers may be familiar with the Pearson Product Moment Coefficient of 
Correlation, which analyzes association between two continuous measures. 
Pearson’s R examines pairs of observations and indicates whether scores on one 
measure vary significantly with scores on another. A different type of measure, 
the intraclass correlation coefficient (ICC), developed by Fisher (1946), 
describes relationships among units within groups. While each variable in a 
Pearson analysis contains its own mean and standard deviation, the ICC statistic 
is based on pooled data (Bartko 1966, Muller and Buttner 1994).

Fisher (1946) explained the difference between intraclass and interclass cor
relations through a discussion of n’ pairs of brothers. One approach to assessing 
correlations between brothers would be to divide them into two groups based 
on age. “If we proceed in this manner,” Fisher (1946, 211–212) wrote, “we 
shall find the mean of the measurements of the elder brother, and separately that 
of the younger brother…The correlation so obtained, being that between two 
classes of measurements, is termed for distinctiveness an interclass correlation.” 
In such a case, the researcher is privy to the age of each participant and can form 
separate groups accordingly.

But in cases where the researcher lacks information about the age of participants, 
calculating a common mean (and standard deviation) becomes necessary. The 
researcher thus forms a single class consisting of observational pairs (i.e., x1, x’1, x2, 
x’2 …, xn, x’n). As Fisher (1946, 212) explained, “The intraclass correlation…may 
be expected to give a more accurate estimate of the true value than does any of the 
possible interclass correlations derived from the same material, for we have used 
estimates of the mean and standard deviation founded on 2n’ instead of n’ values.”

For purposes here, an ICC statistic can be used to describe how well the judg
ments of a sample of raters associate with the judgments of a larger population 
of observers. As Nunnally and Bernstein (1994, 279) noted, generalizability 
theory suggests that different measures of the same individual stand to vary 
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based on actual differences as well as random error: “Two judges may disagree 
with each other because their judgments contain random measurement error…
[but] they may also differ because they respond to different attributes.” 
Psychometrically, the intraclass correlation coefficient is expressed as:

 

2
2

2 2
ind

ind error  

Where ind
2  represents true variance and error

2  constitutes error variance (see, for 
discussion, Nunnally and Bernstein 1994, 280).

Fleiss and Cohen (1973) showed that a weighted kappa value can be inter
preted as an intraclass coefficient for a two‐way analysis of variance, given the 
assumption that subjects and raters have been randomly selected (see, for discus
sion, Banerjee et  al. 1999, 7). In fact, as Norman and Streiner (2000, 221) 
pointed out, when kappa has been weighted quadratically, as it has been in the 
present chapter, the two measures show exact equivalence (see also, Fletcher, 
Mazzi, and Nuebling 2011).7 Moreover, the ICC statistic is readily available in 
SPSS and other statistical software packages.

A key concern in using an intraclass correlation coefficient as a measure of 
agreement is the selection of the correct ICC statistic. Six different forms of the 
ICC exist (Shrout and Fleiss 1979, McGraw and Wong 1996), and researchers 
must carefully select among the options. As the current chapter will demonstrate 
in its section on SPSS, the ICC statistic based on a two‐way analysis of variance 
with random effects equals the value of a weighted kappa coefficient.

Analysis of Ordinal Data with Multiple Raters

Continuing from the previous section, the intraclass correlation coefficient 
serves as a viable option for testing agreement when more than two raters assess 
ordinal content. As Norman and Streiner (2000, 222) explained, the ICC can 
be reported as an average kappa score, eliminating the need to calculate weighted 
kappa coefficients two raters at a time. In addition to the ICC statistic, Kendall’s 
coefficient of concordance, a nonparametric test, examines agreement among 
more than two raters.

Kendall’s Coefficient of Concordance

When three or more individuals rank a set of items, Kendall’s coefficient of con
cordance, also referred to as Kendall’s W (Kendall and Smith 1939), can deter
mine the extent to which raters agree on observations (Nussbaum 2015, 198). 
As Norman and Streiner (2000, 233–234) noted, agreement relates to the 
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d ispersion of individual mean ranks relative to the average mean rank: “This is 
analogous to the intraclass correlation coefficient, where agreement [is] c aptured 
in the variance between subjects.”

Kendall’s W coefficients range between 0 and 1, with 0 indicating no agree
ment and 1 indicating perfect agreement. To demonstrate the technique, 
Table 11.5 contains hypothetical ranks from three individuals, asked to consider 
the relative importance of 10 issues facing the nation. Following a similar table 
structure from Norman and Streiner (2000, 233), Table 11.5 also contains the 
average rank for each issue and the total sum of squared ranks for each issue as 
well. The following formula is one of two equations that can be used to calculate 
Kendall’s coefficient of concordance:

 
W

R k N N

k N N
j12 3 1

1

2 2 2

2 2

 

where Rj refers to the summed rank, N the number of subjects, and k the num
ber of judges. The following equation contains data from Table 11.5; as indi
cated, it produces a W value of .230.

 
W

12 2893 3 3 10 11

3 10 10 1
34716 32670

8910
2046
8

2 2

2 2 9910
230.

 

Nonparametric statistics often focus on statistical significance, and Norman and 
Streiner (2000, 234) provided the following formula for calculating a chi‐square 
statistic associated with W:

 
2 1k N W  

Table 11.5 Data for calculation of Kendall’s W

Issue Voter 1 Voter 2 Voter 3 Mean Rank Squared Sum

Abortion 10 8 2 6.67 400
Deficit 8 6 4 6.00 324
Education 3 4 10 5.67 289
Gun Control 9 7 3 6.33 361
Health Care 1 3 9 4.33 169
Immigration 4 5 1 3.33 100
Income Tax 2 9 5 5.33 256
Trade 7 10 8 8.33 625
Transportation 6 2 7 5.00 225
Unemployment 5 1 6 4.00 144

2,893
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Applied to the current example, the formula calls for the following calculation: 
3 × 9 × .230. This calculation results in a chi‐square‐distributed value of 6.21 
with N − 1 = 9 degrees of freedom. One would conclude here that the rankings 
are not significant and, accordingly, not concordant.

SPSS will calculate Kendall’s W (Analyze > Nonparametric > k related meas
ures), and web‐based calculators are also available.8 As with other Internet‐based 
calculators, researchers should verify “reliability” with traditional calculations. 
The following section offers SPSS instructions for computing kappa and intra
class correlation coefficients.

Kappa Coefficient in SPSS

Like many statistical tests covered in this text, Cohen’s kappa coefficient is avail
able within the Crosstabs procedure in SPSS. As shown in Figure 11.1, data 
should be entered in column form, with units rated on the left margin and rater 
scores in columns to the right. After assigning row and column variables (i.e., 
raters), one should open the Statistics window and select Kappa. Once that 
selection is made, one should return to the Crosstabs window and click OK. 
Doing so will produce the statistical output shown in Table 11.6.

The Cases section in Table  11.6 reports the number of records analyzed 
(N = 83). That section is followed by a cross‐tabulation similar to the one shown 

Figure 11.1 Screenshots for SPSS kappa analysis. Source: SPSS® Reprints Courtesy of 
International Business Machines Corporation, © 2014 International Business Machines 
Corporation
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in Table 11.1. For descriptive purposes, the table contains row and column per
centages in addition to cell counts from the previous table. Following the cross‐
tabulation, a value for kappa appears (κ = .277), and its p‐value, p < .001, indicates 
that the kappa coefficient differs significantly from chance agreement. As men
tioned earlier, though, .27 is in the “fair” range, and its relative conservatism may 
be due, in part, to the number of observations in the cell containing agreement 
on negative images. SPSS does not calculate Scott’s pi or Krippendorff’s alpha, 
but macros for the latter are available via the Internet (see Hayes and Krippendorff 
2007). While kappa is widely used to measure rater agreement, it can be influ
enced by marginal distributions, and a second test can offer useful information.

Table 11.6 SPSS output for kappa coefficient

Cases

Valid Missing Total

Rater 2 * Rater 1 N Percent N Percent N Percent
83 100.0% 0 .0% 83 100.0%

Rater 2 * Rater 1 Crosstabulation

Rater 1

1 2 3 Total

Rater 2 1 Count 3 6 4 13
% within Rater 2 23.1% 46.2% 30.8% 100.0%
% within Rater 1 30.0% 9.5% 40.0% 15.7%

2 Count 4 51 3 58

% within Rater 2 6.9% 87.9% 5.2% 100.0%
% within Rater 1 40.0% 81.0% 30.0% 69.9%

3 Count 3 6 3 12

% within Rater 2 25.0% 50.0% 25.0% 100.0%
% within Rater 1 30.0% 9.5% 30.0% 14.5%

Total Count 10 63 10 83

% within Rater 2 12.0% 75.9% 12.0% 100.0%
% within Rater 1 100.0% 100.0% 100.0% 100.0%

Symmetric Measures

Asymp. Std.

Value Error a Approx. T b Approx. Sig.

Measure of Agreement Kappa .277 .088 3.379 .001
N of Valid Cases 83

a Not assuming the null hypothesis.
b Using the asymptotic standard error assuming the null hypothesis.
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Intraclass Correlation Coefficients in SPSS

Figure  11.2 contains screenshots for computing intraclass correlation 
c oefficients in SPSS. The procedure can be accessed by selecting 
Analyze > Scale > Reliability Analysis. As with kappa, one should first select the 
raters to be assessed and then click the Statistics tab. This step, which opens the 
window shown to the right in Figure  11.2, allows the researcher to request 
Intraclass correlation coefficient. Importantly, it also allows the researcher to 
select Two‐Way Random as the Model and Absolute Agreement as the Type; 
one should make certain these options are chosen before clicking Continue 
and then OK.

Table 11.7 contains output associated with the windows in Figure 11.2. The 
first section indicates that 107 cases were included in the analysis, consistent 
with the data shown earlier in Table 11.3. Next, although Cronbach’s Alpha is 
included in the reliability analysis, it is not pertinent in this particular case. 
Statistics located under the heading Intraclass Correlation Coefficient are of 
principal interest, and as one observes in the row for Single Measures, the ICC 
statistic of .453 is consistent with the value calculated in the section addressing 
weighted kappa. Also included in Table 11.7 is a 95% confidence interval as well 
as F tests and significance levels. In this case, the ICC statistic is significant, 
indicating (moderate) agreement between the two coders. Should more 
than two raters be tested for agreement, an ICC statistic is still applicable as an 
indicator of ordinal agreement.

Figure  11.2 Screenshots for SPSS intraclass correlation coefficient. Source: SPSS® 
Reprints Courtesy of International Business Machines Corporation, © 2014 International 
Business Machines Corporation



250 Categorical Statistics for Communication Research

Chapter Summary

This chapter has focused on techniques for testing interrater agreement. At the 
nominal level, Scott’s pi, Cohen’s kappa, and Krippendorff’s alpha test agree
ment between two raters, while Fleiss’s kappa tests agreement when more than 
two raters assess data. At the ordinal level, Cohen’s weighted kappa informs 
researchers of the extent to which two raters disagree. Intraclass correlation 
coefficients also provide indications of reliability with ordinal data, as does 
Kendal’s coefficient of concordance. SPSS computes kappa and intraclass 
c orrelation coefficients and will also calculate Kendall’s W.

Chapter Exercises

1. Using the following hypothetical data, which involves valence in photographic 
images, calculate Scott’s pi and Cohen’s kappa statistics. Then, use SPSS to 
calculate a kappa value, as shown in the chapter. Based on the Landis and Koch 
(1977a) benchmarks, how reliable were the observations of the two raters?

Table 11.7 SPSS output for intraclass correlation coefficient

Case Processing Summary

N %

Cases Valid 107 100.0
Excludeda 0 .0
Total 107 100.0

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach’s Alpha N of Items

.622 2

Intraclass Correlation Coefficient

Intraclass 
Correlationa

95% Confidence Interval F Test with True Value 0

Lower Bound Upper Bound Value df1 df2 Sig.

Single Measures .453b .289 .592 2.647 106 106 .000
Average Measures .624 .448 .744 2.647 106 106 .000

Two‐way random effects model where both people effects and measure effects are random.
a Type A intraclass correlation coefficients using an absolute agreement definition.
b The estimator is the same, whether the interaction effect is present or not.
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Observer 1

Observer 2

Positive Negative Neutral Marginal

Positive 7 4 6 17
Negative 5 40 5 50
Neutral 4 5 6 15
Marginal 16 49 17 82

2. Using the following hypothetical data, which extends the valence of pho
tographic images from three nominal levels to five ordinal categories, 
 calculate a weighted kappa value, as shown in the chapter. Then, use SPSS 
to  calculate an intraclass correlation coefficient. Are the two measures 
similar?

Observer 1

Observer 2

Very 
Negative

Somewhat 
Negative

Neutral Somewhat 
Positive

Very 
Positive

Marginal 
Totals

Very 
Negative

8 3 2 2 1 16

Somewhat 
Negative

3 9 3 2 2 19

Neutral 2 4 8 3 2 19
Somewhat 
Positive

3 4 3 7 2 19

Very  
Positive

2 2 3 3 7 17

Marginal 
Totals

18 22 19 17 14 90

Notes

1 Generally, communication researchers code between 10% and 15% of a given sample 
to determine whether a satisfactory level of agreement has been reached.

2 Additionally, as Zwick (1988) noted, Scott’s pi assumes homogeneity in rater 
m arginals, and lacking such, a second interrater test (kappa or alpha) should be 
considered.

3 Cohen (1968) and other statisticians eventually developed weighted versions of κ to 
assess agreement for ordinal measures in addition to nominal variables (see, for 
d iscussion, Nelson and Pepe 2000).

4 Hayes and Krippendorff (2007) discussed alpha macros designed for SPSS and SAS. 
Readers should refer to their article for URLs where macros can be obtained.

5 This algebraic transformation applies to situations involving two raters.
6 As Cohen (1968, 213) explained, “In an agreement matrix, high reliability dictates 

that the values observed in k cells of the leading or agreement diagonal be higher 
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than the chance expectation dictated by the marginal values, and that, conversely, the 
off‐diagonal cells representing disagreement have observed values which are smaller 
than those expected by chance.”

7 In the context of dichotomous nominal data, Bloch and Kraemer (1989) demonstrated 
that kappa can be understood as an ICC statistic in a one‐way analysis of variance 
equation. In proposing a different approach to kappa, the authors assumed raters 
followed the same underlying success rate (see also Landis and Koch 1977b).

8 One calculator appears at the following URL: https://www.statstodo.com/
KendallW_Exp.php.
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I consulted many scholarly journals while writing this text, and in the spirit of 
Communications in Statistics, I offer some concluding thoughts about the use of 
categorical statistics in communication research. As a brief review, this book began 
with an introduction to categorical statistics and then moved to chi‐square analy-
sis, covering both goodness of fit and independence testing, before addressing 
measures of association. Next came a discussion of contingency tables in three 
dimensions, followed by two chapters on log‐linear modeling and three chapters 
on logistic regression analysis. Additional chapters addressed probit models, 
Poisson and negative binomial regression, and interrater reliability analysis. 
A series of sidebars focused on measurement issues in categorical statistics.

Communication researchers have not used the techniques covered in this text 
as frequently as researchers in other social‐scientific disciplines have, even 
though communication research methods lend themselves directly to categori-
cal data analysis. Unlike the scholarly literature in disciplines such as political 
science, psychology, and sociology, communication research includes hundreds 
of studies based on content analysis (Riffe and Freitag 1997, Lovejoy et al. 2014), 
and with the emergence of social media (e.g., Facebook, Instagram, Twitter), 
content studies will almost certainly remain a popular form of research. In 
assigning numbers to texts – that is, in conducting content analyses – researchers 
typically create multiple categorical content measures, often using chi‐square 
analysis to compare observed and expected frequencies. Some of these studies 
might benefit from a more advanced approach. Log‐linear models, for instance, 
can reveal associations that may go unnoticed in bivariate analyses, and logit 
log‐linear analysis allows multiple categorical variables to predict cell frequencies 
in one or more categorical response measures. Logistic regression allows con-
tinuous measures to function as predictors, and Poisson and negative binomial 
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regression facilitate analyses of count data. These techniques help to control 
Type I error and, in the case of log‐linear models, the procedures assist research-
ers in locating the most parsimonious representation of variable relationships. 
Bivariate chi‐square tests generally lack this capacity, and like nonparametric 
techniques, in general, they do not produce parameter estimates.

Modeling techniques for categorical data do produce parameter estimates, 
and because they are designed specifically for nominal and ordinal measures, the 
procedures do not risk major assumption violations. In analyses with ordinal 
response measures, for instance, ordinal logistic regression allows researchers to 
avoid problems with unequal intervals, which can occur when individuals assign 
different meanings to vague quantifiers. Borrowing from Cliff (1996, 331), 
researchers can respond appropriately to “ordinal questions with ordinal data 
using ordinal statistics.” This is not to suggest that techniques such as ordinary 
least squares (OLS) regression and the analysis of variance (ANOVA) should 
never be used with ordinal dependent measures. As indicated in the text, OLS 
regression and ANOVA may function reasonably well when response variables 
contain at least four levels; however, when dependent measures contain fewer 
than four levels or do not meet assumptions of normality, ordinal and multino-
mial regression techniques may offer more reliable estimates – and more useful 
information.

Additionally, in analyses containing dichotomous dependent measures, binary 
logistic regression models (and binary probit models) allow researchers to avoid 
pitfalls associated with linear probability models (Aldrich and Nelson 1984), 
ensuring appropriate floor and ceiling restrictions, while Poisson and negative 
binomial regression techniques generally prove superior in analyses of count 
data; traditional regression analyses may predict negative values, which, of 
course, are fundamentally impossible for counts, as measured across time.

Like techniques designed for analyses of interval‐level data, tests and models 
developed for nominal and ordinal measures are also expected to meet certain 
assumptions. As this text suggested in its chapter on ordinal logistic regression, 
researchers should pay close attention to assumption violations, as statistical 
problems can inform research questions. If, for example, an ordinal logistic 
regression model does not show parallel lines, thus removing justification for a 
common odds ratio, what does the assumption violation reveal about the data 
at different variable levels? Is there a substantive reason for differential effects? 
Researchers should also monitor multivariate data analyses for the presence of 
zero‐count cells, using delta (in SPSS) when empty cells emerge. Problems with 
empty cells often appear when samples are too small for the number of variables 
included in a study.

As discussed in the chapter addressing interrater reliability measures, cell fre-
quencies can also play a role in analyses of agreement. When a given content 
measure does not contain a sufficient number of observations in each of its 



Concluding Communication 257

categories, with a preponderance of observations instead assigned to a single 
classification, agreement between coders may not exceed chance. Measures such 
as Cohen’s kappa, Scott’s pi, and Krippendorff’s alpha account for chance 
agreement, as do other measures addressed in the chapter on interrater reliabil-
ity. Researchers who analyze content should select one of these measures based 
on the level of data and the number of available coders.

As a final point of discussion, the first chapter in this text pointed out that 
research methodologist Paul Lazarsfeld, whose studies on voter behavior played 
a significant role in the development of communication theory and quantitative 
research methods, did not test relationships for statistical significance. 
Recognizing the potential influence of “correlated biases” (Selvin 1957), 
Lazarsfeld and his coauthors explained findings in terms of frequencies, using 
tables and figures to illustrate patterns. Had multivariate techniques for the 
analysis of categorical data been available, Lazarsfeld might have incorporated 
the procedures in his research.

In the twenty‐first century, “statistical significance” has become a virtual 
requirement for publication of quantitative research (Levine et al. 2008, Levine 
2013), even though attaining it often requires little more than a large sample 
(Leahey 2005). This is especially true of chi‐square analysis and is one reason 
why measures of association need to accompany indicators of statistical signifi-
cance. Techniques such as log‐linear modeling and logistic regression analysis 
use odds ratios as measures of association, and in analyses based on large sam-
ples, these measures offer information that significance tests do not. Odds ratios 
inform researchers of whether statistically significant findings offer a degree of 
practical significance, and associated confidence intervals inform scholars of 
whether perceived associations are actually independent (i.e., contain the value 
1.0). These indicators add a dose of conservatism to statistical analyses, making 
research more precise and informative. As this book has suggested, categorical 
statistics, in general, can add precision to quantitative research, informing schol-
ars about conceptual processes in communication.
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df

Right‐Tail Probability

.100 .050 .025 .010 .005 .001

1 2.706 3.841 5.024 6.635 7.879 10.828
2 4.605 5.991 7.378 9.210 10.597 13.816
3 6.251 7.815 9.348 11.345 12.838 16.266
4 7.779 9.488 11.143 13.277 14.860 18.467
5 9.236 11.070 12.833 15.086 16.750 20.515
6 10.645 12.592 14.449 16.812 18.548 22.458
7 12.017 14.067 16.013 18.475 20.278 24.322
8 13.362 15.507 17.535 20.090 21.955 26.124
9 14.684 16.919 19.023 21.666 23.589 27.877
10 15.987 18.307 20.483 23.209 25.188 29.588
11 17.275 19.675 21.920 24.725 26.757 31.264
12 18.549 21.026 23.337 26.217 28.300 32.909
13 19.812 22.362 24.736 27.688 29.819 34.528
14 21.064 23.685 26.119 29.141 31.319 36.123
15 22.307 24.996 27.488 30.578 32.801 37.697
16 23.542 26.296 28.845 32.000 34.267 39.252
17 24.769 27.587 30.191 33.409 35.718 40.790
18 25.989 28.869 31.526 34.805 37.156 42.312
19 27.204 30.144 32.852 36.191 38.582 43.820
20 28.412 31.410 34.170 37.566 39.997 45.315
21 29.615 32.671 35.479 38.932 41.401 46.797
22 30.813 33.924 36.781 40.289 42.796 48.268

(Continued)

Chi‐Square Table
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df

Right‐Tail Probability

.100 .050 .025 .010 .005 .001

23 32.007 35.172 38.076 41.638 44.181 49.728
24 33.196 36.415 39.364 42.980 45.559 51.179
25 34.382 37.652 40.646 44.314 46.928 52.620
26 35.563 38.885 41.923 45.642 48.290 54.052
27 36.741 40.113 43.195 46.963 49.645 55.476
28 37.916 41.337 44.461 48.278 50.993 56.892
29 39.087 42.557 45.722 49.588 52.336 58.301
30 40.256 43.773 46.979 50.892 53.672 59.703
40 51.805 55.758 59.342 63.691 66.766 73.402
50 63.167 67.505 71.420 76.154 79.490 86.661
60 74.397 79.082 83.298 88.379 91.952 99.607
70 85.527 90.531 95.023 100.425 104.215 112.317
80 96.578 101.879 106.629 112.329 116.321 124.839
90 107.565 113.145 118.136 124.116 128.299 137.208
100 118.498 124.342 129.561 135.807 140.169 149.449

(Continued)



Chapter 2: Goodness of Fit

*Nonparametric Tests: One Sample.
NPTESTS

/ONESAMPLE TEST (Sex) 
CHISQUARE(EXPECTED = CUSTOM(CATEGORIES = 1 2 
FREQUENCIES = 0.421 0.579))

/MISSING SCOPE = ANALYSIS USERMISSING = EXCLUDE
/CRITERIA ALPHA = 0.05 CILEVEL = 95.

Chapter 3: Three‐Way Contingency Table (Horseracing)

CROSSTABS
/TABLES = Period BY Drug BY NP
/FORMAT = AVALUE TABLES
/STATISTICS = CHISQ RISK CMH(1)
/CELLS = COUNT ROW
/COUNT ROUND CELL.

Chapter 3: Three‐Way Contingency Table

CROSSTABS
/TABLES = V081101 BY V085108 BY V081102
/FORMAT = AVALUE TABLES
/STATISTICS = RISK CMH(1)

SPSS Code for Selected Procedures
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/CELLS = COUNT ROW
/COUNT ROUND CELL.

Chapter 4: Three‐Factor Log‐linear Model

GENLOG V081101 V081102 V085084A
/MODEL = MULTINOMIAL
/PRINT = FREQ RESID ADJRESID ZRESID DEV ESTIM CORR COV
/PLOT = NONE
/CRITERIA = CIN(95) ITERATE(20) CONVERGE(0.001) DELTA(.5)
/DESIGN V081101 V081102 V085084A V081102*V085084A.

Chapter 4: Three‐Factor Ordinal Log‐linear Model 
(2 interactions)

GENLOG V6218 V6478 V6253 WITH A B
/MODEL = MULTINOMIAL
/PRINT = FREQ RESID ADJRESID ZRESID DEV ESTIM CORR COV
/PLOT = NONE
/CRITERIA = CIN(95) ITERATE(20) CONVERGE(0.001) DELTA(.5)
/DESIGN V6218 V6478 V6253 A B.

Chapter 4: Four‐Factor Log‐linear Model with Covariate

GENLOG V081101 V081102 V085061 V085062 WITH V085109
/MODEL = MULTINOMIAL
/PRINT = FREQ RESID ADJRESID ZRESID DEV ESTIM CORR COV
/PLOT = RESID(ADJRESID) NORMPROB(ADJRESID)
/CRITERIA = CIN(95) ITERATE(20) CONVERGE(0.001) DELTA(.5)
/DESIGN V081101 V081102 V085061 V085062 V085109 

V085061*V085062 V081101*V081102.

Chapter 5: Three‐Factor Logit Log‐linear Model 
with Covariate

GENLOG V085062 BY V081101 V081102 V085061 WITH V085109
/MODEL = MULTINOMIAL
/PRINT = FREQ RESID ADJRESID ZRESID DEV
/PLOT = NONE
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/CRITERIA = CIN(95) ITERATE(20) CONVERGE(0.001) DELTA(.5)
/DESIGN V085062 V085062*V081101 V085062*V081102 V085062 

*V085061 V085062*V085109.

Chapter 6: Binary Logistic Regression Model 
with Categorical Predictors

LOGISTIC REGRESSION VARIABLES V6142
/METHOD = ENTER V6150 V6151
/METHOD = ENTER V6575
/METHOD = ENTER V6104
/CONTRAST (V6104) = Simple(1)
/CONTRAST (V6575) = Simple(1)
/CONTRAST (V6150) = Indicator
/CONTRAST (V6151) = Indicator(1)
/PRINT = GOODFIT CORR CI(95)
/CRITERIA = PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Chapter 7: Multinomial Model with Categorical Predictors

NOMREG V6520 (BASE = LAST ORDER = ASCENDING) BY V6150 
V6345 V6575

/CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) 
CHKSEP(20) LCONVERGE(0) PCONVERGE(0.000001) 
SINGULAR(0.00000001)

/MODEL
/STEPWISE = PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) 

ENTRYMETHOD(LR) REMOVALMETHOD(LR)
/INTERCEPT = INCLUDE
/PRINT = CLASSTABLE FIT PARAMETER SUMMARY LRT CPS STEP 

MFI.

Chapter 8: Ordinal Regression Model with Categorical 
Predictors

PLUM V085109 BY V081101 V083097 V083024B
/CRITERIA = CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) 

MXSTEP(5) PCONVERGE(1.0E‐6) SINGULAR(1.0E‐8)
/LINK = LOGIT
/PRINT = CELLINFO FIT PARAMETER SUMMARY TPARALLEL.



264 Appendix B: SPSS Code for Selected Procedures

Chapter 9: Binary Probit Analysis

* Generalized Linear Models.
GENLIN V085108 (REFERENCE = LAST) BY V081101 V081102 

V085062 (ORDER = ASCENDING)
/MODEL V081101 V081102 V085062 INTERCEPT = YES
DISTRIBUTION = BINOMIAL LINK = PROBIT
/CRITERIA METHOD = FISHER(1) SCALE = 1 COVB = MODEL 

MAXITERATIONS = 100 MAXSTEPHALVING = 5 
PCONVERGE = 1E‐006(ABSOLUTE) SINGULAR = 1E‐012 
ANALYSISTYPE = 3(WALD) CILEVEL = 95 CITYPE = WALD 
LIKELIHOOD = FULL

/MISSING CLASSMISSING = EXCLUDE
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY 

SOLUTION.

Chapter 10: Poisson Regression

* Generalized Linear Models.
GENLIN V083019 BY V081101 V081102 V085062 

(ORDER = ASCENDING)
/MODEL V081101 V081102 V085062 INTERCEPT = YES
DISTRIBUTION = POISSON LINK = LOG
/CRITERIA METHOD = FISHER(1) SCALE = 1 COVB = MODEL 

MAXITERATIONS = 100 MAXSTEPHALVING = 5 
PCONVERGE = 1E‐006(ABSOLUTE) SINGULAR = 1E‐012 
ANALYSISTYPE = 3(WALD) CILEVEL = 95 CITYPE = WALD 
LIKELIHOOD = FULL

/EMMEANS TABLES = V081101 SCALE = ORIGINAL
/EMMEANS TABLES = V081102 SCALE = ORIGINAL
/EMMEANS TABLES = V085062 SCALE = ORIGINAL
/MISSING CLASSMISSING = EXCLUDE
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY 

SOLUTION
/SAVE MEANPRED STDDEVIANCERESID.

Chapter 11: Kappa Test

CROSSTABS
/TABLES = Rater2 BY Rater1
/FORMAT = AVALUE TABLES
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/STATISTICS = KAPPA
/CELLS = COUNT ROW COLUMN
/COUNT ROUND CELL.

Chapter 11: Intraclass Correlation Coefficient

GET
FILE = ’C:\Users\admin\Desktop\Weighted.data.sav’.
DATASET NAME DataSet1 WINDOW = FRONT.
RELIABILITY
/VARIABLES = Rater1 Rater2
/SCALE(’ALL VARIABLES’) ALL
/MODEL = ALPHA
/ICC = MODEL(RANDOM) TYPE(ABSOLUTE) CIN = 95 TESTVAL = 0.
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degrees of freedom
calculating, 14, 16, 44
defined, 14

dichotomous measures, examples of, 
1, 92

discordant pairs, defined, 26
discrete interval measures, examples of, 

1, 113

ecological fallacy, 43
estimator criteria, 10
exact tests for small samples, 17–18
exhaustive categories, as assumption, 5

generalized linear models, 4, 9, 58, 
69–70

Goodman and Kruskal’s gamma, 28, 70
grouped interval measures, examples 

of, 1

homogenous association, 43

independence among observations, as 
assumption, 4, 29

internal validity, 5
interrater agreement, 232–250

Cohen’s kappa, 234–236, 251–252
Cohen’s weighted kappa, 241–244
Fleiss’s generalized kappa, 238–240
Holsti’s formula, 233
independence among coders, as 

assumption, 234, 238
intraclass correlation coefficient, 

244–245
Kendall’s coefficient of concordance, 

245–247
Krippendorff’s alpha, 237–238
quadratic weights, 241, 243
Scott’s pi, 234–237, 251
in SPSS, 247–250

Kendall’s taub, 25–27, 70

least squares estimation, 5, 61
likelihood ratio statistic, 16–17
linear by linear association model, 38
linear probability models, 92
link function, as part of generalized linear 

model, 4, 69–70
logistic regression (see binary, 

multinomial, and ordinal logistic 
regression sections)

logit, identified as log of odds, 4, 90, 92
logit log-linear analysis 90–114
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log-linear analysis, 58–83
categorical factors, 60
complex models, 75–78
continuous covariates, 60
descriptive statistics, 65–67, 79–80
development of, 3–4, 59
examples of published research, 59–60
first order interactions, 59, 62, 63
as generalized linear model, 69–70
goodness of fit, 64–65, 78
likelihood ratio statistic, 61, 64–65
model selection, 64, 71–73–74
multinomial distribution, 61, 71, 75
odds ratios, 61, 68–69, 71, 78
ordinal models, 70–74
parameter estimation, 67, 71, 81
parsimonious model, 60
Poisson distribution, 61, 75
residuals, 65–67, 79–80
saturated model, 60
second order interactions, 59, 62
in SPSS, 67, 70, 75–81, 85
three-way models

conditional independence model, 
62–63, 65

homogenous association model, 
62–63

joint independence model, 62–63, 
65, 67–68

mutual independence model, 
62–63,  65

two-way tables
independence model, 61–62, 71
saturated model, 62, 71

visual displays, 78, 82–83
Yule cross-product equation, 59, 

68–69
zero-count cells, 61, 76
logit model, 90–114

constants, 97, 101, 111
covariates, 98
descriptive statistics, 94–96, 

109–112
examples of published research, 91
Goodman system, discussed, 93

linear probability model, in 
contrast, 92

logit model with one response 
measure, 93–98

logit model with two response 
measures, 98–106

model selection, 93–94, 101, 108
odds ratios, 92–93, 97–98, 

106, 108
parameter estimation, 97–98, 

101–106, 112
residuals, 94–96, 109–110
in SPSS, 106–112

log odds, explained, 46–48

Mantel-Haenszel estimate, 46, 53
marginal association, 42
marginal independence, 42
marginal tables, 42
maximum likelihood estimation, 5–7, 16, 

59, 61
McNemar’s test for correlated samples, 

18–19
multinomial distribution, 5
multinomial logistic regression, 153–165

–2 log likelihood value, 157, 158, 162
binary logistic regression, as 

introduction, 154–155
Cox and Snell pseudo-R2 

measure, 157
examples of published research, 154
as generalized linear model, 4
Hosmer and Lemeshow goodness- 

of-fit test, 157, 162
linearity in log odds, 158
link functions, 155, 168
McFadden pseudo-R2 measure, 

157, 158
multinomial distribution, 155
multiple multinomial model, 157
Nagelkerke pseudo-R2 measure, 

157, 158
odds ratios, 156, 158, 162, 165
parameter estimates, 155–156, 

157–158, 162, 165
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simple multinomial model, 155–157
in SPSS, 160–165, 168
zero-count cells, 162

mutually exclusive categories, as 
assumption, 5

negative binomial regression, 216–227
examples of published research, 

217–218
extra parameter, 221
as generalized linear model, 222
log link function, 222
negative binomial distribution, 221
negative binomial, as random 

component, 222
offset measures, 222
overdispersion, 220, 221
Poisson-gamma mixture distribution, 

220–221
in SPSS, 222–227, 229

nominal measures, examples of, 1
normal distribution, 5
null hypothesis, 12, 16, 18

odds ratio
calculation of, 19–21
as indicator of independence, 20–21, 

46, 53
interpretation of, 20–21, 42–43
use in studies with large samples, 20–21
Yule cross-product formula, 20, 59, 

68–69
ordinal logistic regression, 171–190

–2 log likelihood value, 175, 176, 178, 
183, 185

adjacent categories model, 173, 193
analyzing source attribution, 181
continuation-ratio model, 173, 193
Cox and Snell pseudo-R2 

measure, 185
cumulative (proportional) odds, 

173–175
descriptive statistics, 184, 187–190
examples of published research, 172
as generalized liner model, 4

goodness-of-fit statistic, 176, 178, 
183, 185

interactions, 180–181
link functions, 193
McFadden pseudo-R2 measure, 185
multinomial logistic regression, as 

alternative, 175
multiple ordinal logistic regression 

analysis, 176
Nagelkerke pseudo-R2 measure, 185
odds ratios, 175, 176, 180, 184
parallel lines, as assumption, 175, 176, 

178–180, 186, 193
parameter estimates, 175, 178–180, 

183, 185–186
research on vague quantifiers, 177–178
simple ordinal logistic regression 

analysis, 175–176
in SPSS, 171, 173, 175, 182–190, 193
zero-count cells, 182

ordinal measures, examples of, 1, 171

parameter estimation, 5
partial tables, 42
Pearson’s contingency coefficient, 24–25
phi coefficient, 22–23
Poisson distribution, 5
Poisson regression, 216–227

canonical link, 219
equidispersion, 219
examples of published research, 217–218
as generalized linear model, 216, 219, 

220, 222
incidence rate ratios (risk ratios), 216, 

219–220
independence among observations, as 

assumption, 220
likelihood ratio chi-square, 224
offset measures, 220
overdispersion, 220, 223, 224
parameter estimates, 224
Poisson distribution, as random 

component, 216, 218
residuals, 224
in SPSS, 220, 222–227, 229
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polytomous measures, examples of, 1, 
92, 153

probability distribution, function of, 5
probit analysis, 198–211

–2 log likelihood value, 207
assumption of latent measure, 198, 

199, 200
binary model, 200–206
binomial distribution, as random 

component, 200, 202
Cox and Snell pseudo-R2 measure, 

205, 207
descriptive statistics, 209–210
examples of published research, 199
as generalized linear model,  

198, 200
initial use of, 4
interactions, 208
inverse of cumulative normal 

distribution, as link function, 198, 
200–201

likelihood ratio statistic, 201,  
205, 207

logit, in comparison, 198, 200
McFadden pseudo R2 measure, 205, 

207
model fit, 205
multinomial model, 208
Nagelkerke pseudo R2 measure, 

205, 207
ordinal model, 206–208
parameter estimates, 200, 204, 

207, 208
in SPSS, 201–205, 207–211, 213
z-scores, 201

quasi-interval measurement 168, 171

random component, as part of 
generalized linear model, 4, 
69–70

relative risk, 21–22

The Significance Test Controversy – A 
Reader, 30

Simpson’s paradox, 42
Somers’ d, 28–29, 70
Stages of Change model, 171
standard errors, for log odds, 47
statistical significance, testing for, 2, 9, 

257
statistical software, discussion of, 7, 

31–35, 50–53
Survey Research Methods, 30
systematic component, as part of 

generalized linear model, 4, 69–70

tobit analysis, 229
Type I error, 4, 29, 30, 256
Type II error, 4

uncertainty coefficient, 33
United States Department of Education, 

13, 37
United States Department of Health and 

Human Services, 21
University of Georgia, 12–14

vague quantifiers, 171, 177–178, 206
Voting: A Study of Opinion Formation in 

a Presidential Campaign, 2–3

zero inflated models, 222, 229
zero modified count models, 222
zero truncated sample, 222
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