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Preface
Signal processing has been playing an increasingly important role in remote sensing,
though most remote sensing literatures are concerned with remote sensing images. Many
data received by remote sensors such as microwave and geophysical sensors, are signals or
waveforms, which can be processed by analog and digital signal processing techniques.

This volume is a spin-off edition derived from Signal and Image Processing for Remote
Sensing. It focuses on signal processing for remote sensing, and presents for the first time a
comprehensive and up-to-date treatment of the subject. The progress in signal processing
itself has been enormous in the last 30 years, but signal processing application in remote
sensing has received more attention only in recent years. This volume covers important
signal processing topics like principal component analysis, projected principal compon-
ent analysis, Kalman adaptive filtering, prediction error filtering for interpolation, factor
analysis, time series analysis, neural network classification, neural network parameter
retrieval, blind source separation algorithm, independent component analysis, etc. The
book presents for the first time the use of Huang–Hilbert transform in remote sensing
data. As there are so many areas in remote sensing that can benefit from signal process-
ing, we hope the book can help to attract more talents in signal processing to work on
remote sensing problems that may involve environmental monitoring, resource manage-
ment and planning, as well as energy exploration, and many others with the use of
remotely sensed data.

Original Preface from Signal and Image Processing for Remote Sensing
Both signal processing and image processing have been playing increasingly important
roles in remote sensing. While most data from satellites are in image forms and thus
image processing has been used most often, signal processing can contribute significantly
in extracting information from the remotely sensed waveforms or time series data. In
contrast to other books in this field which deal almost exclusively with the image
processing for remote sensing, this book provides a good balance between the roles of
signal processing and image processing in remote sensing. The book covers mainly
methodologies of signal processing and image processing in remote sensing. Emphasis
is thus placed on the mathematical techniques which we believe will be less changed as
compared to sensor, software and hardware technologies. Furthermore, the term ‘‘remote
sensing’’ is not limited to the problems with data from satellite sensors. Other sensors
which acquire data remotely are also considered. Thus another unique feature of the book
is the coverage of a broader scope of the remote sensing information processing problems
than any other book in the area.

The book is divided into two parts [now published as separate volumes under the
following titles]. Part I [comprising the present volume], Signal Processing for Remote
Sensing, has 12 chapters and Part II, Image Processing for Remote Sensing, has 16 chapters.
The chapters are written by leaders in the field. We are very fortunate, for example,
to have Dr. Norden Huang, inventor of the Huang–Hilbert transform, along with
Dr. Steven Long, to write a chapter on the application of the transform to remote sensing
problem, and Dr. Enders A. Robinson, who has made many major contributions to
geophysical signal processing for over half a century, to write a chapter on the basic
problem of constructing seismic images by ray tracing.
� 2007 by Taylor & Francis Group, LLC.



In Part I, following Chapter 1 by Drs. Long and Huang, and my short Chapter 2 on the
roles of statistical pattern recognition and statistical signal processing in remote sensing,
we start from a very low end of the electromagnetic spectrum. Chapter 3 considers the
classification of infrasound at a frequency range of 0.001 Hz to 10 Hz by using a parallel
bank neural network classifier and a 11-step feature selection process. The >90% correct
classification rate is impressive for this kind of remote sensing data. Chapter 4 through
Chapter 6 deal with seismic signal processing. Chapter 4 provides excellent physical
insights on the steps for construction of digital seismic images. Even though the seismic
image is an image, this chapter is placed in Part I as seismic signals start as waveforms.
Chapter 5 considers the singular value decomposition of a matrix data set from scalar-
sensors arrays, which is followed by independent component analysis (ICA) step to relax
the unjustified orthogonality constraint for the propagation vectors by imposing a
stronger constraint of fourth-order independence of the estimated waves. With an initial
focus of the use of ICA in seismic data and inspired by Dr. Robinson’s lecture on seismic
deconvolution at the 4th International Symposium, 2002, on Computer Aided Seismic
Analysis and Discrimination, Mr. Zhenhai Wang has examined approaches beyond ICA
for improving seismic images. Chapter 6 is an effort to show that factor analysis, as an
alternative to stacking, can play a useful role in removing some unwanted components in
the data and thereby enhancing the subsurface structure as shown in the seismic images.
Chapter 7 on Kalman filtering for improving detection of landmines using electromag-
netic signals, which experience severe interference, is another remote sensing problem of
higher interest in recent years. Chapter 8 is a representative time series analysis problem
on using meteorological and remote sensing indices to monitor vegetation moisture
dynamics. Chapter 9 actually deals with the image data for digital elevation model but
is placed in Part I mainly because the prediction error (PE) filter is originated from the
geophysical signal processing. The PE filter allows us to interpolate the missing parts of
an image. The only chapter that deals with the sonar data is Chapter 10, which shows that
a simple blind source separation algorithm based on the second-order statistics can be
very effective to remove reverberations in active sonar data. Chapter 11 and Chapter 12
are excellent examples of using neural networks for retrieval of physical parameters from
the remote sensing data. Chapter 12 further provides a link between signal and image
processing as the principal component analysis and image sharpening tools employed are
exactly what are needed in Part II.

With a focus on image processing of remote sensing images, Part II begins with Chapter
13 [Chapter 1 of the companion volume] that is concerned with the physics and math-
ematical algorithms for determining the ocean surface parameters from synthetic aperture
radar (SAR) images. Mathematically Markov random field (MRF) is one of the most useful
models for the rich contextual information in an image. Chapter 14 [now Chapter 2]
provides a comprehensive treatment of MRF-based remote sensing image classification.
Besides an overview of previous work, the chapter describes the methodological issues
involved and presents results of the application of the technique to the classification of
real (both single-date and multitemporal) remote sensing images. Although there are
many studies on using an ensemble of classifiers to improve the overall classification
performance, the random forest machine learning method for classification of hyperspec-
tral and multisource data as presented in Chapter 15 [now Chapter 3] is an excellent
example of using new statistical approaches for improved classification with the remote
sensing data. Chapter 16 [now Chapter 4] presents another machine learning method,
AdaBoost, to obtain robustness property in the classifier. The chapter further considers
the relations among the contextual classifier, MRF-based methods, and spatial boosting.
The following two chapters are concerned with different aspects of the change detection
problem. Change detection is a uniquely important problem in remote sensing as the
� 2007 by Taylor & Francis Group, LLC.



images acquired at different times over the same geographical area can be used in the
areas of environmental monitoring, damage management, and so on. After discussing
change detection methods for multitemporal SAR images, Chapter 17 [now Chapter 5]
examines an adaptive scale–driven technique for change detection in medium resolution
SAR data. Chapter 18 [now Chapter 6] evaluates the Wiener filter-based method, Maha-
lanobis distance, and subspace projection methods of change detection, with the change
detection performance illustrated by receiver operating characteristics (ROC) curves. In
recent years, ICA and related approaches have presented many new potentials in remote
sensing information processing. A challenging task underlying many hyperspectral im-
agery applications is decomposing a mixed pixel into a collection of reflectance spectra,
called endmember signatures, and the corresponding abundance fractions. Chapter 19
[now Chapter 7] presents a new method for unsupervised endmember extraction called
vertex component analysis (VCA). The VCA algorithms presented have better or com-
parable performance as compared to two other techniques but require less computational
complexity. Other useful ICA applications in remote sensing include feature extraction,
and speckle reduction of SAR images. Chapter 20 [now Chapter 8] presents two different
methods of SAR image speckle reduction using ICA, both making use of the FastICA
algorithm. In two-dimensional time series modeling, Chapter 21 [now Chapter 9] makes
use of a fractionally integrated autoregressive moving average (FARIMA) analysis to
model the mean radial power spectral density of the sea SAR imagery. Long-range
dependence models are used in addition to the fractional sea surface models for the
simulation of the sea SAR image spectra at different sea states, with and without oil slicks
at low computational cost.

Returning to the image classification problem, Chapter 22 [now Chapter 10] deals with
the topics of pixel classification using Bayes classifier, region segmentation guided by
morphology and split-and-merge algorithm, region feature extraction, and region classi-
fication.

Chapter 23 [now Chapter 11] provides a tutorial presentation of different issues of data
fusion for remote sensing applications. Data fusion can improve classification and for the
decision level fusion strategies, four multisensor classifiers are presented. Beyond the
currently popular transform techniques, Chapter 24 [now Chapter 12] demonstrates that
Hermite transform can be very useful for noise reduction and image fusion in remote
sensing. The Hermite transform is an image representation model that mimics some of the
important properties of human visual perception, namely local orientation analysis and
the Gaussian derivative model of early vision. Chapter 25 [now Chapter 13] is another
chapter that demonstrates the importance of image fusion to improving sea ice classifi-
cation performance, using backpropagation trained neural network and linear discrimin-
ation analysis and texture features. Chapter 26 [now Chapter 14] is on the issue of
accuracy assessment for which the Bradley–Terry model is adopted. Chapter 27 [now
Chapter 15] is on land map classification using support vector machine, which has been
increasingly popular as an effective classifier. The land map classification classifies the
surface of the Earth into categories such as water area, forests, factories or cities. Finally,
with lossless data compression in mind, Chapter 28 [now Chapter 16] focuses on infor-
mation-theoretic measure of the quality of multi-band remotely sensed digital images.
The procedure relies on the estimation of parameters of the noise model. Results on image
sequences acquired by AVIRIS and ASTER imaging sensors offer an estimation of the
information contents of each spectral band.

With rapid technological advances in both sensor and processing technologies, a book
of this nature can only capture certain amount of current progress and results. However,
if past experience offers any indication, the numerous mathematical techniques presented
will give this volume a long lasting value.
� 2007 by Taylor & Francis Group, LLC.



The sister volumes of this book are the other two books edited by myself. One is
Information Processing for Remote Sensing and the other is Frontiers of Remote Sensing
Information Processing, both published by World Scientific in 1999 and 2003, respectively.
I am grateful to all contributors of this volume for their important contribution and, in
particular, to Dr. J.S. Lee, S. Serpico, L. Bruzzone and S. Omatu for chapter contributions
to all three volumes. Readers are advised to go over all three volumes for a more complete
information on signal and image processing for remote sensing.

C. H. Chen
� 2007 by Taylor & Francis Group, LLC.
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1.1 Introduction

The development of this new approach was motivated by the need to describe non-
linear distorted waves in detail, along with the variations of these signals that occur
naturally in nonstationary processes (e.g., ocean waves). As has been often noted, natural
physical processes are mostly nonlinear and nonstationary. Yet, there have historically
been very few options in the available analysis methods to examine data from such
nonlinear and nonstationary processes. The available methods have usually been
for either linear but nonstationary, or nonlinear but stationary, and statistically deter-
ministic processes. The need to examine data from nonlinear, nonstationary, and sto-
chastic processes in the natural world is due to the nonlinear processes which require
special treatment. The past approach of imposing a linear structure (by assumptions)
on the nonlinear system is not adequate. Other than periodicity, the detailed dynamics
in the processes from the data also need to be determined. This is needed because one
of the typical characteristics of nonlinear processes is its intrawave frequency mo-
dulation (FM), which indicates the instantaneous frequency (IF) changes within one
oscillation cycle.

In the past, when the analysis was dependent on linear Fourier analysis, there was no
means of depicting the frequency changes within one wavelength (the intrawave fre-
quency variation) except by resorting to the concept of harmonics. The term ‘‘bound
� 2007 by Taylor & Francis Group, LLC.



har monics’ ’ was often used in this conn ection. Thus, the distorti ons of any nonlinear
wavef orm have often been referre d to as ‘‘harmo nic distor tions.’’ The concept of har-
monic distorti on is a mathemati cal artifa ct resu lting from imposing a linear struct ure
(throu gh ass umption s) on a nonlinear syst em. The har monic distor tions may thus have
math ematical meanin g, but there is no physic al me aning as sociated with them, as dis-
cus sed by Huan g et al. [1,2]. For exampl e, in the case of water waves, suc h har monic
comp onents do not have any of the real physical char acteristics of a water wave as it
occu rs in natur e. The ph ysically meanin gful way to desc ribe such data should be in terms
of its IF, which will reve al the in trawave FMs occu rring natur ally.

It is reas onable to suggest that any suc h compl icated data should co nsist of numerou s
superi mposed mo des. Therefor e, to defin e onl y one IF val ue for any given time is not
meani ngful (see Ref. [3], for co mmen ts on the Wigne r–Ville distr ibution) . To fully co n-
sider the effects of multic ompone nt data, a decom position method sho uld be used to
separ ate the natur ally co mbined compo nents comp letely and nearl y orthog onally. In the
case of nonli near data, the orthog onality condi tion would nee d to be relaxed , as discuss ed
by Huang et al. [1]. Initially , Huang et al. [1] propose d the empiric al mode decom position
(EMD ) appr oach to pro duce intrinsic mode function s (IMF), wh ich are both monocom -
pon ent and symme tric. This was an im portant step toward making the applicatio n truly
practica l. Wi th the EMD satisfact orily det ermined, an impor tant roadbl ock to trul y non-
linear and nonsta tionary analys is was finally remove d. However , the difficulti es resu lting
from the limitati ons sta ted by the Bedrosian [4] and Nu ttall [5] theo rems mu st also be
add ressed in conn ection with this appr oach. Bot h limita tions have firm theoretica l fou n-
dati ons and must be co nsidered ; IMFs sa tisfy onl y the necessary conditio n, but not the
suffici ent conditi on. To improve the perform ance of the pr ocessin g as pro posed by Huan g
et al. [1], the norm alized em pirical mode decom positio n (NEM D) method was devel oped
as a furthe r impro vement on the earlier process ing methods.
1. 2 Review o f Proces sing A dvances

1.2. 1 The Normal ized Empi rical Mode Decompo sition

The NEMD me thod was develo ped to sati sfy the specif ic limita tions set by the Bedro sian
theore m wh ile also pro viding a shar per measu re of the local error wh en the qua dratur e
differs from the Hil bert tran sform (HT) resu lt.

From an exampl e data set of a natur al proces s, all the local max ima of the da ta are first
det ermined. These local maxim a are then conn ected with a cubic spline curve, which
gives the local ampl itude of the da ta, A (t ), as shown to gether in Figure 1.1. The enve lope
obt ained through spline fitting is used to no rmalize the data by

y( t ) ¼ a( t ) cos u (t )

A( t )
¼ a ( t)

A ( t)

� �
cos u( t ): (1 :1)

Here A (t ) represe nts the cubic spli ne fit of all the max ima from the examp le da ta, and thus
a(t)/A(t) should normalize y(t) with all maxima then normalized to unity, as shown in
Figure 1.2. As is appar ent from Figu re 1.2, a sm all numbe r of the norm alized data point s
can still have an amplitude in excess of unity. This is because the cubic spline is through
the maxima only, so that at locations where the amplitudes are changing rapidly, the line
representing the envelope spline can pass under some of the data points. These occasional
� 2007 by Taylor & Francis Group, LLC.



Example data and splined envelope
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FIGURE 1.1
The best possible cubic spline fit to the local maxima of the example data. The spline fit forms an envelope as an
important first step in the process. Note also how the frequency can change within a wavelength, and that the
oscillations can occur in groups.
miss es are unavoid able, yet the norm alization sche me has effective ly separ ated the
ampl itude from the carri er oscillatio n. The IF can then be comp uted from this norm alized
carri er functi on y(t ), just obtaine d. Owi ng to the nearly un iform amplitude, the limitati ons
set by the Bedr osian theorem are effectivel y sa tisfied. The IF co mpute d in this way from
the norm alized data from Figure 1.2 is shown in Figure 1.3, together with the original
exampl e da ta. With the Bedr osian theorem addresse d, wh at of the limita tions set by the
Nutta ll theo rem?

If the HT can be conside red to be the quadratur e, then the abs olute val ue of the HT
perform ed on the perfectly normal ized exampl e da ta should be uni ty. Then any deviation
from the absolu te value of the HT from unity would be an indicati on of a differen ce
betwee n the quadratur e and the HT resu lts. An error index can thus be define d sim ply as

E( t) ¼ [abs (Hilbert tran sform ( y( t))) � 1] 2 : (1: 2)

This error in dex wo uld be not only an ene rgy measure as given in the Nu ttall theorem but
also a func tion of time as shown in Figure 1.4. The refore, it gives a local measure of the
error res ulting from the IF co mputatio n. This local measu re of error is bot h logi cally and
practica lly superio r to the integ rated error boun d estab lished by the Nutta ll theo rem. If
the quadrature and the HT results are identical, then it follows that the error should be
� 2007 by Taylor & Francis Group, LLC.



Example data and normalized carrier
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FIGURE 1.2
Normalized example data of Figure 1.1 with the cubic spline envelope. The occasional value beyond unity is due
to the spline fit slightly missing the maxima at those locations.
zero . Based on exp erience with various natur al data sets, the maj ority of the errors
encou ntered here result from two sour ces. The first sour ce is due to an im perfect nor-
mali zation occurr ing at locat ions close to rapi dly chang ing amplitudes , wh ere the envel-
ope spline-fi tting is unabl e to turn shar ply or quic kly enough to cover all the data point s.
This type of error is even mo re prono unced wh en the amplitude is also locally small, thus
ampl ifying any errors. The error index from this conditi on can be extrem ely lar ge. The
sec ond sour ce is due to nonli near wavef orm distortio ns, wh ich wil l cause corresp onding
variati ons of the ph ase func tion u( t). As discus sed by Huang et al. [1], wh en the phas e
func tion is not an ele mentary func tion, the dif ferentia tion of the phase determined by the
HT is not identi cal to that determined by the qua drature. The error inde x from this
condi tion is usuall y small (see Ref . [6]).

Over all, the NEMD method gives a more co nsistent, stabl e IF. The oc casionall y larg e
error inde x values offer an indicati on where the method fai led simply bec ause the spline
mis ses and cuts through the data moment arily. All suc h locat ions occu r at the minimum
ampl itude with a result ing negligibl e energy dens ity.
1.2. 2 Amplitude and Frequ ency Represent ations

In the init ial me thods [1,2,6], the mai n resu lt of Hilb ert spect ral analy sis (HSA ) always
emphasized the FM. In the original methods, the data were first decomposed into IMFs, as
� 2007 by Taylor & Francis Group, LLC.



Example data and instantaneous frequency
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FIGURE 1.3
The instantaneous frequency determined from the normalized carrier function is shown with the example data.
Data is about zero, and the instantaneous frequency varies about the horizontal 0.5 value.
defined in the initial work. Then, through the HT, the IF and the amplitude of each IMF
were computed to form the Hilbert spectrum. This continues to be the method, especially
when the data are normalized. The information on the amplitude or envelope variation is
not examined. In the NEMD and HSA approach, it is justifiable not to pay too much
attention to the amplitude variations. This is because if there is a mode mixing, the
amplitude variation from such mixed mode IMFs does not reveal any true underlying
physical processes. However, there are cases when the envelope variation does contain
critical information. An example of this is when there is no mode mixing in any given
IMF, when a beating signal representing the sum of two coexisting sinusoidal ones is
encountered. In an earlier paper, Huang et al. [1] attempted to extract individual com-
ponents out of the sum of two linear trigonometric functions such as

x(t) ¼ cos atþ cos bt: (1:3)

Two seemingly separate components were recovered after over 3000 sifting steps. Yet the
obtained IMFs were not purely trigonometric functions anymore, and there were obvious
aliases in the resulting IMF components as well as in the residue. The approach proposed
then was unnecessary and unsatisfactory. The problem, in fact, has a much simpler
solution: treating the envelope as an amplitude modulation (AM), and then processing
just the envelope data. The function x(t), as given in Equation 1.3, can then be rewritten as
� 2007 by Taylor & Francis Group, LLC.



Offset example data and error measures
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FIGURE 1.4
The error index as it changes with the data location in time. The original example data offset by 0.3 vertically for
clarity is also shown. The quadrature result is not visible on this scale.
x(t) ¼ cos atþ cos bt ¼ 2 cos
aþ b

2
t

� �
cos

a� b

2
t

� �
: (1:4)

There is no difference between the sum of the individual components and the modulating
envelope form; they are trigonometric identities. If both the frequency of the carrier wave,
(aþb)/2, and the frequency of the envelope, (a�b)/2, can be obtained, then all the
information in the signal can be extracted. This indicates the reason to look for a new
approach to extracting additional information from the envelope. In this example, how-
ever, the envelope becomes a rectified cosine wave. The frequency would be easier to
determine from the simple period counting than from the Hilbert spectral result. For a
more general case when the amplitudes of the two sinusoidal functions are not equal, the
modulation is not simple anymore. For even more complicated cases, when there are
more than two coexisting sinusoidal components with different amplitudes and frequen-
cies, there is no general expression for the envelope and carrier. The final result could be
represented as more than one frequency-modulated band in the Hilbert spectrum. It is
then impossible to describe the individual components under this situation. In such cases,
representing the signal as a carrier and envelope, variation should still be meaningful, for
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the dual repres entations of freque ncy arise from the differe nt defini tions of frequenc y.
The Hilber t-inspired view of amplit ude and FMs still rende rs a correc t rep resentat ion of
the signal , but this view is very differen t from that of Four ier analysi s. In such case s, if on e
is sure of the statio narity and regulari ty of the sign al, Fourier analy sis could be used,
whic h will give mo re famil iar results as sugge sted by Huan g et al. [1]. The judg ment for
these case s is not on wh ich one is correc t, as both are correc t; rath er, it is on which one is
more famili ar and more reveal ing.

When more compl icated da ta are pre sent, such as in the case of radar retu rns, tsu nam i
wave records, earth quak e data, speech signals, and so on (represe nting a freque ncy
‘‘chir p’’), the amplit ude variation inform ation can be found by process ing the envelope
and treating the data as an approximate carrier. When the envelope of frequency chirp
data, such as the example given in Figure 1.5, is decomposed through the NEMD process,
the IMF component s are obt ained as sho wn in Figure 1.6. Using these co mponent s (or
IMFs) , the Hil bert spect rum can be co nstructe d as given in Figu re 1.7, together with its FM
counterpart. The physical meaning of the AM spectrum is not as clearly defined in this
case. However, it serves to illustrate the AM contribution to the variability of the local
frequency.

1.2.3 Instantaneous Frequency

It must be emphasized that IF is a very different concept from the frequency content of
the data derived from Fourier-based methods, as discussed in great detail by Huang
Example of frequency chirp data
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A typical example of complex natural data, illustrating the concept of frequency ‘‘chirps.’’
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Components of frequency chirp data
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FIGURE 1.6
The eight IMF components obtained by processing the frequency chirp data of Figure 1.5, offset vertically from
C1 (top) to C8 (bottom).
et a l. [1]. The IF, as discus sed here , is ba sed on the instan taneous variation of the pha se
func tion from the HT of a data-a daptiv e decom positio n, wh ile the frequenc y conten t in
the Fourier appr oach is an average d freque ncy on the ba sis of a convo lution of data wi th
an a priori ba sis. Therefor e, wh enever the ba sis chang es, the frequ ency co ntent also
chang es. Simil arly, when the decom position change s, the IF also has to change . How-
ever , there are still persisten t and common mi sconceptio ns on the IF compute d in this
man ner.

One of the mo st pre vailin g mi sconceptio ns about IF is that , for any data wi th a discr ete
line spectrum, IF can be a contin uous func tion. A variatio n of this misconcep tion is that IF
can give frequenc y values that are not one of the discrete spect ral lines. This dile mma can
be resolved easil y. In the nonl inear cases, wh en the IF appro ach treats the har monic
distor tions as contin uous intrawave FMs , the Four ier-based me thods treat the frequenc y
conten t as discrete har monic spect ral lines. In the case of two or more beating waves, the
IF appr oach treats the data as AM and FM modu lation, wh ile the freque ncy content from
the Four ier me thod treats each constituti ng wave as a discr ete spect ral line, if the pro cess
is statio nary. Alth ough they appear per plexin gly differen t, they rep resent the same data.

Ano ther misconcep tion is on negative IF val ues. Accordi ng to Gab or’s [7] appr oach, the
HT is implemen ted through two Fourier tran sforms: the first transform s the data into
freque ncy space, wh ile the secon d per forms an inv erse Fourier tran sform after disca rding
all the negative frequenc y parts [3]. The refore, accordin g to this argu ment, all the negati ve
frequency content has been discarded, which then raises the question, how can there still
� 2007 by Taylor & Francis Group, LLC.



FM and AM Hilbert spectra
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FIGURE 1.7
The AM and FM Hilbert spectral results from the frequency chirp data of Figure 1.5.
be ne gative freque ncy v alues? This questio n arise s due to a misund erstan ding of the
natur e of negative IF from the HT. The direct cau se of negati ve freque ncy in the HT is the
consequ ence of multiple extrem a betwe en two zero-cr ossings. Then, there are local loop s
not center ed at the origin of the coordi nate syst em, as discus sed by Huan g et al. [1].
Negativ e freque ncy can also occur even if there are no multiple extrem a. For exa mple, this
would happ en when there are lar ge amp litude fluctu ations, wh ich cause the Hilbert-
transform ed phase loop to miss the origin . Therefor e, the negative frequenc y does not
influe nce the frequenc y conten t in the pro cess of the HT thr ough Gabor’ s [7] appr oach.
Both these caus es are remove d by the NEMD and the norm alized Hil bert transform
(NHT) methods pres ented here.

The latest ver sions of these methods (NEM D/NH T) consiste ntly give more stable IF
values. They sa tisfy the limita tion set by the Bedr osian theorem and offer a local measu re
of error shar per than the Nutta ll theorem. Note here that in the init ial spline of the
ampl itude done in the NEMD appro ach, the end effects ag ain becom e impor tant. The
method used he re is just to ass ign the end poi nts as a max imum equal to the very last
value. Oth er impro vements usin g char acteristic wave s and linear pred ictions, as dis-
cuss ed in Ref . [1], can also be em ployed. There could be som e improve ment, but the
resu lting fit wil l be very sim ilar.

Ever since the introduct ion of the EM D and HSA by Huan g et al. [1,2,8], these me thods
have attracted increasing attention. Some investigators, however, have expressed certain
reservations. For example, Olhede and Walden [9] suggested that the idea of computing
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IF through the Hil bert transform is good, but that the EMD a pproach is not rigorou s.
There fore, they have introduced the wavel et project ion as the method for decom position
and ad opt onl y the IF co mputatio n from the Hilbert tran sform . Flandrin et al. [10] ,
howeve r, sugges t that the EMD is equi valent to a bank of dyadic filter s, but re frain
from usin g the HT. From the analy sis pre sented here, it can be co nclude d that cau tion
wh en using the HT is fully justified . The limita tions impose d by Bedr osian and Nuttall
certain ly have solid theo retical foundati ons. The norm alizat ion proce dure sho wn
here wil l remove any res ervations about furthe r appli cations of the improve d HT
method s in data analys is. The me thod offers relative ly little hel p to the appr oach ad-
vanc ed by Olhede and Wald en [9] becau se the wavele t decomp osition definite ly remov es
the nonli near distorti ons from the wavef orm. The co nseque nce of this, howe ver, is that
their approach should also be limited to nonstationary, but linear, processes. It only
serves the limited purpose of improving the poor frequency resolution of the continuous
wavelet analysis.

As clearly sho wn in Equati on 1.1, to give a good repre sentation of actual wave data
or other data from natural processes by means of an analytical wave profile, the
analytical profile will need to have IMFs, and also obey the limitations imposed by
the Bedrosian and Nuttall theorems. In the past, such a thorough examination of the
data has not been done. As reported by Huang et al. [2,8], most of the actual wave data
recorded are not composed of single components. Consequently, the analytical represen-
tation of a given wave profile in the form of Equation 1.1 poses a challenging problem
theoretically.
1.3 Application to Image Analysis in Remote Sensing

Just as much of the data from natural phenomena are either nonlinear or nonstationary, or
both, so it is also with the data that form images of natural processes. The methods of
image processing are already well advanced, as can be seen in reviews such as by
Castleman [11] or Russ [12]. The NEMD/NHT methods can now be added to the
available tools for producing new and unique image products. Nunes et al. [13] and
Linderhed [14–16], among others, have already done significant work in this new area.
Because of the nonlinear and nonstationary nature of natural processes, the NEMD/NHT
approach is especially well suited for image data, giving frequencies, inverse distances, or
wave numbers as a function of time or distance, along with the amplitudes or energy
values associated with these, as well as a sharp identification of imbedded structures. The
various possibilities and products of this new analysis approach include, but are not
limited to, joint and marginal distributions, which can be viewed as isosurfaces, contour
plots, and surfaces that contain information on frequency, inverse wavelength, ampli-
tude, energy and location in time, space, or both. Additionally, the concept of component
images representing the intrinsic scales and structures imbedded in the data is now
possible, along with a technique for obtaining frequency variations of structures within
the images.

The laboratory used for producing the nonlinear waves, used as an example here, is the
NASA Air–Sea Interaction Research Facility (NASIRF) located at the NASA Goddard
Space Flight Center/Wallops Flight Facility, at Wallops Island, Virginia, within the Ocean
Sciences Branch. The test section of the main wave tank is 18.3 m long and 0.9 m wide,
filled to a depth of 0.76 m of water, leaving a height of 0.45 m over the water for airflow,
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FIGURE 1.8
The NASA Air–Sea Interaction Research Facility’s (NASIRF) main wave tank at Wallops Island, VA. The new
coils shown were used to provide cooling and humidity control in the airflow overheated water.
if need ed. The facility can produc e wind and paddle -genera ted waves over a water
curren t in eith er direc tion, and its cap abilities , instrum ents and softwa re have been
desc ribed in detail by Long and colle agues [17–21 ]. The ba sic descrip tion is shown with
an addit ional new feature ind icated as new coil in Figure 1.8. The se we re recent ly in stalled
to pro vide cold air of contro lled temp erature and humid ity for exper iments usin g cold air
overhea ted water dur ing the Flux Exch ange Dyn amics Study of 2004 (FEDS 4) exp eri-
ments, a joint exp eriment involv ing the Un iversity of Washin gto n/Appl ied Physics
Laborato ry (UW/APL), The Univers ity of Albe rta, the Lamont -Dohe rty Ea rth Observ a-
tory of Col umbia Univers ity, and NASA GSFC/ Wallops Flight Faci lity. The cold airflow
overhea ted water optim ized conditio ns for the co llection of infr ared (IR) video imag es.
1.3.1 The IR Di gital Camera and Setup

The camer a used to acqui re the laboratory im age pres ented here as an exampl e was
provided by UW/APL as part of FEDS4 . The exp erimenta l setup is sho wn in Figure 1.9.
For the examp le sho wn here, the res olution of the IR im age was 640 � 512 pix els.
The camer a was mounted to look upwind at the water surfac e, so that its pix el
image area covered a physical rectan gle on the water surfac e on the or der of 10 cm per
side. The water with in the wave tank was heated by four commer cial spa heaters, wh ile
the air in the airflow was cooled and humidi ty contro lled by NASI RF’s new cooling and
reheatin g coils. Thi s prod uced a very thin layer of surfac e water that was co oled, so that
whene ver wave spil ling and bre aking oc curred, it co uld be im mediate ly seen by the IR
camer a.
1.3.2 Experiment al IR Images of Surface Process es

With this im aging syst em in place, steps were tak en to acqu ire inte resting imag es of wave
breaki ng and spill ing due to wind and wave interac tions. One such image is illus trated in
Figure 1.10. To he lp the eyes visuali ze the image da ta, the IR camer a inte nsity levels have
been co nverted to a grey scal e.

Using a horizontal line that slices through the central area of the image at the value of 275,
Figure 1.11 illustrat es the details contain ed in the actual array of data val ues obtaine d from
the IR camera. This gives the IR camera intensity values stored in the pixels along the
horizontal line. These can then be converted to actual temperatures when needed.
A complex structure is evident here. Breaking wave fronts are evident in the crescent-
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NASA Air–Sea Interaction Research Facility, Wallops Island, Virginia

Instrumentation
IR Camera KH via ACFT, p (Tsurf)

Tskin, calibrated "LabRad"
Qnet, u*
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Twater, sub-skin profiles
Bulk KG

IR Radiometer
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SeaBird T sensors
Fast T sensors
Gas Chromatograph

Measurement
Q = rCPKH (Tb – Ts)

Use two method for Tb
• Direct measurement
• Infer from PDF

IR camera
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FIGURE 1.9
The experimental arrangement of FEDS4 (Flux Exchange Dynamics Study of 2004) used to capture IR images of
surface wave processes. (Courtesy of A. Jessup and K. Phadnis of UW/APL.)
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FIGURE 1.10
Surface IR image from the FEDS4 experiment. Grey bar gives the IR camera intensity levels. (Data courtesy of
A. Jessup and K. Phadnis of UW/APL.)
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shape d struct ures, wh ere spil ling and bre aking brings up the und erlying warmer water .
After proce ssing, the resulting co mponent s prod uced from the horizo ntal row of Figure
1.11 are shown in Figure 1.12. As can be seen , the co mponent with the longest scale, C9,
contain s the bulk of the intensity values. The shorter , riding scales are fluc tuations about
the levels shown in compo nent C9. The sifting was done via the extrem a appr oach
discusse d in the foundatio n article s, and prod uced a total of nine compo nents.

Using this appr oach, the IR image was first divide d into 640 horizo ntal rows of 512
values each. The rows were then proces sed to produc e the compo nents, each of the 640
rows prod ucing a comp onent set similar to that shown in Figure 1 .12. From these bas ic
resu lts, compo nent imag es can be assem bled. Thi s is done by taking the first co mponent
repres enting the shortest scale from each of the 640 compone nt sets. Thes e first com-
ponents are then assem bled tog ether to pro duce an array that is also 640 rows by 512
colum ns and can also be visuali zed as an image . This is the first compone nt im age. Thi s
prod uction of component image s is then contin ued in a similar fashio n with the remain -
ing co mponent s rep resenting pr ogressivel y lon ger scales. To visuali ze the shortest
compo nent scal es, compo nent imag es 1 thr ough 4 were added to gether, as sho wn in
Figure 1.1 3. Through out the im age, st reaks of short wavy struct ures can be seen to line
up in the wind dir ection (along the vertical axis). Ev en though the imag e is formed in
the IR camer a by me asuring heat at many differe nt pixel locat ions over a rectangu lar
area, the surfac e waves have an effect that can be thus re motely sens ed in the image ,
eithe r as streaks of warmer water exposed by bre aking or as mo re wavel ike struct ure s. If
the longer scale co mponent s are now combi ned using the 5th and 6th compo nent
image s, a compo site image is obt ained as shown in Figure 1.14. Longe r scales can be
seen throughout the image area where breaking and mixing occur. Other wavelike
Row 275 of IR image of water wave surface
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FIGURE 1.11
A horizontal slice of the raw IR image given in Figure 1.10, taken at row 275. Note the details contained in the IR
image data, showing structures containing both short and longer length scales.
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Components of row 275 of IR image
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FIGURE 1.12
Components obtained by processing data from the slice shown in Figure 1.11. Note that component C9 carries
the bulk of the intensity scale, while the other components with shorter scales record the fluctuations about these
base levels.
struct ures of lon ger wavel ength s are also visible . To prod uce a true wave number from
imag es like thes e, one on ly has to convert usin g

k ¼ 2p=l, (1:5)

wh ere k is wave nu mber (in 1/cm) and l is wavel ength (in cm). Thi s wou ld onl y requ ire
knowi ng the phys ical size of the image in ce ntimeter s or some other uni t and its equiva-
len t in pixels from the array anal yzed.

Ano ther appr oach to the raw im age of Figure 1.10 is to separ ate the origin al imag e into
colum ns instead of rows. This would make the analy sis mo re sensitiv e to struct ures that
were better aligned with that dir ection, and also with the direc tion of wind and waves. By
rep eating the steps leading to Figure 1.13, the shortest scale compone nt image s in compo n-
ent im ages 3 to 5 can be comb ined to form Figure 1.15. Componen t imag es 1 and 2
develo ped from the vertical column analy sis we re not inclu ded he re, after they were
fou nd to contain res ults of suc h a short scale uniform ly spre ad through out the imag e,
and without st ructure. Indee d, they had the appear ance of uni form noise. It is appare nt that
more struct ures at these scales can be seen by analy zing alon g the colum n directio n. Figure
1.16 repres ents the lon ger scale in compo nent image 6. By the 6th co mponent image, the
lami nation proce ss start s to fail somewh at in reass embling the image from the co mponent s.
Further pro cessing is ne eded to bet ter match the res ults at these lon ger scal es.
� 2007 by Taylor & Francis Group, LLC.



Horizantal IR components 1 to 4
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FIGURE 1.13 (See color insert following page 178.)
Component images 1 to 4 from the horizontal rows used to produce a composite image representing the
shortest scales.

Horizontal IR components 5 to 6
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FIGURE 1.14 (See color insert following page 178.)
Component images 5 to 6 from the horizontal rows used to produce a composite image representing the longer scales.
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Vertical IR components 3 to 5
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FIGURE 1.15 (See color insert following page 178.)
Component images 3 to 5 from the vertical rows here combined to produce a composite image representing the
midrange scales.
When the origina l data are a functi on of tim e, this new approach can pro duce the IF and
ampl itude as functions of time. Here, the origin al da ta are from an IR image , so that any
slice through the im age (horiz ontal or vertical) wo uld be a set of camer a values (ultim-
ately temp erature) repres enting the temp erature variati on over a physic al len gth. Thus,
inste ad of prod ucing frequenc y (inverse time scale), the new appr oach here initia lly
pro duces an inverse length scal e. In the case of water surfac e waves, this is the familiar
scal e of the wave number, as given in Equa tion 1.5. To illus trate this, consid er Figure 1.17,
wh ich shows the chan ges of scale alon g the selected horizo ntal row 400. The larg est
meas ures of IR energy can be seen to be at the smal ler inve rse len gth sc ales, which
imply that it came from the lon ger scales of compo nents 3 and 4. Figure 1.18 rep eats
this for the even lon ger length scales in comp onents 5 and 6.

Retur ning to the co lumn-wi se proces sing at colum n 250 of Figure 1.15 and Figure 1.16,
furthe r pro cessing gives the contour plot of Figure 1.19, for component s 3 through 5, and
Figure 1.20, for co mponent s 4 through 6.
1.3. 3 Volume Computat ions an d Isosur faces

Man y intere sting pheno mena happe n in the flow of time , and thus it is interesting to note
how chan ges occur with time in the imag es. To inclu de time in the analysi s, a seque nce of
imag es taken at uni form time steps can be used.

By sta rting with a sin gle ho rizonta l or vertical line from the image , a co ntour plot can be
pro duced, as was shown in Figure 1.7 through Figure 1.20. Using a set of seque ntial
imag es cov ering a known time per iod and a pixel line of data from each (horiz ontal or
vertical ), a set of nume rical arrays can be obt ained from the NEMD/NH T analysis . Each
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Vertical IR components image 6
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FIGURE 1.16 (See color insert following page 178.)
Component image 6 from the vertical row used to produce a composite image representing the longer scale.
array can be visualized by means of a contour plot, as already shown. The entire set of
arrays can also be combined in sequence to form an array volume, or an array of
dimension 3. Within the volume, each element of the array contains the amplitude or
intensity of the data from the image sequence. The individual element location within the
three-dimensional array specifies values associated with the stored data. One axis (call it x)
of the volume can represent horizontal or vertical distance down the data line taken from
the image. Another axis (call it y) can represent the resulting inverse length scale associ-
ated with the data. The additional axis (call it z) is produced by laminating the arrays
together, and represents time, because each image was acquired in repetitive time steps.
Thus, the position of the element in the volume gives location x along the horizontal or
vertical slice, inverse length along the y-axis, and time along the z-axis.

Isosurface techniques would be needed to visualize this. This could be compared to
peeling an onion, except that the different layers, or spatial contour values, are not bound
in spherical shells. After a value of data intensity is specified, the isosurface visualization
makes all array elements transparent outside of the level of the value chosen, while
shading in the chosen value so that the elements inside that level (or behind it) cannot
be seen. Some examples of this procedure can be seen in Ref. [21].

Another approach with the analysis of images is to reassemble lines from the image
data using a different format. A sequence of images in units of time is needed, and using
the same horizontal or vertical line from each image in the time sequence, each line can
be laminated to its predecessor to build up an array that is the image length along the
chosen line along one edge, and the number of images along the other axis, in units of
� 2007 by Taylor & Francis Group, LLC.



Horizontal row 400: components 1 to 4
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FIGURE 1.17 (See color insert following page 178.)
The results from the NEMD/NHT computation on horizontal row 400 for components 1 to 4, which resulted
from Figure 1.13. Note the apparent influence of surface waves on the IR information. The most intense IR
radiation can be seen at the smaller values of inverse length scale, denoting the longer scales in components 3 and
4. A wavelike influence can be seen at all scales.

Horizontal row 400: components 5 to 6
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FIGURE 1.18 (See color insert following page 178.)
The results from the NEMD/NHT computation on horizontal row 400 for components 5 to 6, which resulted
from Figure 1.14. Even at the longer scales, an apparent influence of surface waves on the IR information can still
be seen.
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Vertical column 250: components 3 to 5
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FIGURE 1.19
The contour plot developed from the vertical slice at column 250, using the components 3 to 5. The larger IR
values can be seen at longer length scales.
time. Once complete, this two-dimensional array can be split into slices along the time
axis. Each of these time slices, representing the variation in data values with time at a
single-pixel location, can then be processed with the new NEMD/NHT technique. An
example of this can also be seen in Ref. [21]. The NEMD/NHT techniques can thus
reveal variations in frequency or time in the data at a specific location in the image
sequence.
1.4 Conclusion

With the introduction of the normalization procedure, one of the major obstacles for
NEMD/NHT analysis has been removed. Together with the establishment of the confi-
dence limit [6] through the variation of stoppage criterion, and the statistically significant
test of the information content for IMF [10,22], and the further development of the concept
of IF [23], the new analysis approach has indeed approached maturity for applications
empirically, if not mathematically (for a recent overview of developments, see Ref. [24]).
The new NEMD/NHT methods provide the best overall approach to determine the IF for
nonlinear and nonstationary data. Thus, a new tool is available to aid in further under-
standing and gaining deeper insight into the wealth of data now possible by remote
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Vertical column 250: components 4 to 6
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FIGURE 1.20
The contour plot developed from the vertical slice at column 250, using the components 4 through 6, as in
Figure 1.19.
sens ing and other means. Sp ecifically, the appli cation of the new method to data imag es
was demo nstrated .

Thi s new appr oach is co vered by sever al U.S. Patents held by NASA, as discuss ed by
Huan g and Long [25]. Further inform ation on obt aining the softwa re can be fou nd at the
NASA aut horized comme rcial site: http://www.fue ntek.com /techn ologies/h ht.htm
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2.1 Introduction

Basically, statistical pattern recognition deals with the correct classification of a
pattern into one of several available pattern classes. Basic topics in statistical pattern
recognition include: preprocessing, feature extraction and selection, parametric or non-
parametric probability density, decision-making processes, performance evaluation, post-
processing as needed, supervised and unsupervised learning, or training, and cluster
analysis.

The large amount of data available makes remote-sensing data uniquely suitable
for statistical pattern recognition. Signal processing is needed not only to reduce the
undesired noises and interferences but also to extract desired information from the data
as well as to perform the preprocessing task for pattern recognition.

Remote-sensing data considered include those from multispectral, hyperspectral,
radar, optical, and infrared sensors. Statistical signal-processing methods, as used in
remote sensing, include transform methods such as principal component analysis
(PCA), independent component analysis (ICA), factor analysis, and the methods using
high-order statistics.

This chapter is presented as a brief overview of the statistical pattern recognition and
statistical signal processing in remote sensing. The views and comments presented,
however, are largely those of this author. The chapter introduces the pattern recognition
and signal-processing topics dealt in this book. The readers are highly recommended to
refer the book by Landgrebe [1] for remote-sensing pattern classification issues and the
article by Duin and Tax [2] for a survey on statistical pattern recognition.
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Although there are many applications of statistical pattern recognition, its theory has
been developed only during the last half century. A list of some major theoretical
developments includes the following:

. Formulation of pattern recognition as a Bayes decision theory problem [3]

. Nearest neighbor decision rules (NNDRs) and density estimation [4]

. Use of Parzen density estimate in nonparametric pattern recognition [5]

. Leave-one-out method of error estimation [6]

. Use of statistical distance measures and error bounds in feature evaluation [7]

. Hidden Markov models as one way to deal with contextual information [8]

. Minimization of the perceptron criterion function [9]

. Fisher linear discriminant and multicategory generlizations [10]

. Link between backpropagation trained neural networks and the Bayes dis-
criminant [11]

. Cover’s theorem on the separability of patterns [12]

. Unsupervised learning by decomposition of mixture densities [13]

. K-mean algorithm [14]

. Self-organizing map (SOM) [15]

. Statistical learning theory and VC dimension [16,17]

. Support vector machine for pattern recognition [17]

. Combining classifiers [18]

. Nonlinear mapping [19]

. Effect of finite sample size (e.g., [13])

In the above discussion, the role of artificial neural networks on statistical classification
and clustering has been taken into account. The above list is clearly not complete and is
quite subjective. However, these developments clearly have a significant impact on
information processing in remote sensing.

We now examine briefly the performance measures in statistical pattern recognition.

. Error probability. This is most popular as the Bayes decision rule is optimum for
minimum error probability. It is noted that an average classification accuracy
was proposed by Wilkinson [20] for remote sensing.

. Ratio of interclass distance to within-class distance. This is most popular for discrim-
inant analysis that seeks to maximize such a ratio.

. Mean square error. This is most popular mainly in error correction learning and in
neural networks.

. ROC (receiver operating characteristics) curve, which is a plot of the probability of
correct decision versus the probability of false alarm, with other parameters given.

Other measures, like error-reject tradeoff, are often used in character recognition.
2.2 Introduction to Statistical Pattern Recognition in Remote Sensing

Feature extraction and selection is still a basic problem in statistical pattern recognition
for any application. Feature measurements constructed from multiple bands of the
remote-sensing data as a vector are still most commonly used in remote-sensing pattern
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recogni tion. Tran sform me thods are useful to redu ce the redu ndancy in v ector me asure-
ments. The dim ensional ity red uction has been a par ticularly impor tant topic in remo te
sensing in view of the hyp erspec tral image data, which normal ly has sever al hundre d
spect ral ba nds.

The par ametric classific ation rul es incl ude the Bayes or max imum likeliho od dec ision
rule and discr iminan t analysis . The nonpar ametr ic (or distr ibution free) me thod of clas-
sificati on incl udes NN DR and its mod ifications, and the Parze n densit y estim ation. In the
early 1970s, the multivari ate Gau ssian assump tion was mos t popu lar in the mu ltispectra l
data classific ation problem . It was demo nstrated that the emp irical data follow s the
Gauss ian distri bution reasonabl y well [21]. Ev en with the use of new sensors and the
expande d appli cation of remote sen sing, the Gaussia n assump tion remai ns to be a good
appro ximat ion. The traditio nal multiv ariate analy sis still plays a useful role in remote-
sensing pat tern recog nition [22] and, because of the impor tance of covari ance matr ix,
methods to use uns uperv ised samp les to ‘‘enha nce’’ the data statistics have also been
consid ered. Indeed, for good class ificatio n, data statistics must be caref ully exami ned. An
exampl e is the synth etic aperture radar (SAR) image data. Ch apter 1 of the comp anion
volume (Im age Processin g for Remo te Se nsing) presents a discuss ion on the phy sical and
statisti cal charact eristics of the SAR imag e data.

Withou t making use of the Gaus sian assum ption, the NNDR is the mo st popu lar
nonpar ametr ic cl assificatio n method. It works we ll even with a mod erate size data set
and promis es an error rate that is upper- bound ed by twice the Bayes error rate.
Howeve r, its perform ance is limited in remote-sen sing da ta classifica tion, while neu ral
netw orks–bas ed clas sifiers can reach the perform ance nearly equal to that of the Bayes
class ifier. Exten sive stud y has been done in the st atistical pat tern reco gnitio n co mmunit y
to im prove the perform ance of NN DR. We wou ld like to me ntion the work of Grabow ski
et al. [23] here, wh ich introd uces the k -near surrou nding neighbo r ( k -NSN) decisio n rule
with appli cation to remote-sen sing da ta clas sificatio n.

Some uniqu e pr oblem areas of statistical pattern reco gnition in remote sens ing are the
use of co ntextu al informati on and the ‘‘Hugh es phe nomenon .’’ The use of Markov rand om
field mo del for contex tual inform ation is presente d in Chapte r 2 of the co mpanion volu me.
While the classifica tion per formance generall y im prove s with increase s in the featu re
dimens ion, the per formance rea ches a peak with out a pr oportion al increase in the train ing
sampl e size, beyon d whic h the perform ance degrad es. This is the so-call ed ‘‘Hugh es
phenome non.’’ Me thods to reduce this pheno menon are wel l presente d in Ref . [1].

Data fusion is important i n remote sensing as di fferent sensors, which h ave different
strengt h s, are o ften used. The su bject is treated i n Chapter 11 o f the comp anion
volume. Thou gh the ap proach is not limited to statistical m ethodol ogy [24], t he
appro aches in combining classifier s in statisti cal patte rn reco gnitio n and neural network s
can be quite useful in providin g effective utilizatio ns of informati on from dif ferent
sensors or sour ces to achiev e the best- availa ble classific ation per formance. Chapte r 3
and Ch apter 4 of the co mpanion volume pres ent two appr oaches in statisti cal comb ing
of classifiers.

The recent development in support vector machine appears to present an ultimate
classifier that may provide the best classification performance. Indeed, the design of the
classifier is fundamental to the classification performance. There is, however, a basic
question: ‘‘Is there a best classifier?’’ [25]. The answer is ‘‘No’’ as, among other reasons, it
is evident that the classification process is data-dependent. Theory and practice are often
not consistent in pattern recognition. The preprocessing and feature extraction and selec-
tion are important and can influence the final classification performance. There are no clear
steps to be taken in preprocessing, and the optimal feature extraction and selection is still an
unsolved problem. A single feature derived from the genetic algorithm may perform better
than several original features. There is always a choice to be made between using a complex
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feature set follow ed by a sim ple cl assifier and a simple feature set follow ed by a comp lex
clas sifier. Ch apter 15 of the comp anion volume deals wi th the clas sificatio n by support
vecto r mach ine. Among man y ot her publicatio ns on the subje ct, Melgani and Bruzzone [26]
pro vide an inform ative co mpariso n of the perform ance of several support vector machi nes.
2. 3 U sing Sel f-Organizi ng Maps a nd Radial Basi s Funct ion N et works

for Pixel Class ification

In this sec tion, som e experi mental resu lts a re pres ented to illus trate the impor tance of
pre process ing before classif ication. The data set, wh ich is now availa ble at the IEE E
Geosc ience and Remot e Sensing Society database , consists of 250 � 350 pixel image s.
They were acqui red by two imag ing sen sors install ed on a Daedal us 1268 Airbor ne
Themat ic Map per (AT M) scann er and a PLC-ban d, fully polarim etric NASA /JPL SA R
sens or of an agri cultural area near the village of Feltwell, U.K. The origin al SAR image s
inclu de nine channel s. Figure 2.1 sho ws the origin al nine channels of image data.

The radial basis func tion (RBF) neural network is used for classific ation [27]. However ,
pre process ing is perform ed by the SOM that perform s pre clusteri ng. The wei ghts of the
SOM are chosen as center s for RBF ne urons. RBF has five output node s fo r five patte rn
clas ses on the image data consid ered (SAR and ATM image s in an agricul tural area).
We ights of the ‘‘ n’’ most-f reque ntly-fired neu rons, wh en each cl ass was pre sented to the
SOM, were separ ately take n as the center for the 5 � n RBF neurons.

The wei ghts bet ween the hid den-laye r neurons and the outpu t-layer neurons were
comp uted by a pro cedure for a gen eralized radial -basis func tion networks . Pix el cl assifi-
catio n usin g SO M alon e (u nsupervi sed) is 62.7% correc t. Pix el class ificatio n using RBF
alon e (su pervised) is 89.5% correc t, at best. Pix el classific ation usin g bot h SOM and RBF is
95.2% correct. This res ult is bet ter than the rep orted resu lts on the sa me data set using RBF
[28] at 90.5% correc t or ICA- based features with nearest nei ghbor class ificatio n ru le [29] at
86% correct.
2. 4 Introduct ion to St atist ical S ignal P roc essi ng i n Remote Sensing

Signal and image process ing is needed in remote -sensing inform ation pro cessing to
redu ce the noi se and interfere nce with the data, to extract the desire d signal and imag e
comp onent, or to derive useful me asureme nts for input to the class ifier. The class ification
pro blem is, in fact , very cl osely linked to signal and image pr ocessin g [30,31].

Transform methods have been most popular in signal and image processing [32]. Though
the popular wavelet transform method for remote sensing is treated elsewhere [33], we have
included Chapter 1 in this volume, which presents the popular Hilbert–Huang transform;
Chapter 12 of the companion volume, which deals with the use of Hermite transform in the
multispectral image fusion; and Chapter 10 of this volume, Chapter 7, and Chapter 8 of the
companion volume, which make use of the methods of ICA. Although there is a constant need
for better sensors, the signal-processing algorithm such as the one presented in Chapter 7 of
this volume demonstrates well the role of Kalman filtering in weak signal detection. Time
series modeling as used in remote sensing is the subject of Chapter 8 of this volume and
Chapter 9 of the companion volume. Chapter 6 of this volume makes use of the factor analysis.
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FIGURE 2.1
A nine-channel SAR image data set.
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In spite of the numerou s effort s with the transform methods, the basic me thod of PC A
alway s has its useful role in remote sensing [34] . Signal decom positio n and the use
of hig h-order stati stics can poten tially offer new solu tions to the remote-sen sing informa-
tion pro cessing problem s. Conside ring the no nlinear nature of the sign al and image
pro cessing prob lems, it is nece ssary to point out the impor tant roles of artificial ne ural
netw orks in signal pr ocessin g and class ificatio n, as presente d in Cha pter 3, Cha pter 11,
and Chapt er 12 of this volume.

A lot of effort has been made in the last two decades to derive effective features in signal
classification through signal processing. Such efforts include about two dozen mathemat-
ical features for use in exploration seismic pattern recognition [35], multi-dimensional
attribute analysis that includes both physically and mathematically significant features or
attributes for seismic interpretation [36], time domain, frequency domain, and time–
frequency domain extracted features for transient signal analysis [37] and classification,
and about a dozen features for active sonar classification [38]. Clearly, the feature extrac-
tion method for one type of signal cannot be transferred to other signals. To use a large
number of features derived from signal processing is not desirable as there is significant
information overlap among features and the resulting feature selection process can be
tedious. It has not been verified that features extracted from the time–frequency repre-
sentation can be more useful than the features from time–domain analysis and frequency
domain alone. Ideally, a combination of a small set of physically significant and math-
ematically significant features should be used. Instead of looking for the optimal feature
set, a small, but effective, feature set should be considered. It is doubtful that an optimal
feature set for any given pattern recognition application can be developed in the near
future in spite of many advances in signal and image processing.
2.5 Conclusions

Remote-sensing sensors have been able to deliver abundant information [39]. The many
advances in statistical pattern recognition and signal processing can be very useful in
remote-sensing information processing, either to supplement the capability of sensors or
to effectively utilize the enormous amount of sensor data. The potentials and opportun-
ities of using statistical pattern recognition and signal processing in remote sensing are
thus unlimited.
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3.1 Overview of I nfrasound and Why C las sify Inf rasound Events?

Infrasound is a longitudinal pressure wave [1–4]. The characteristics of these waves are
similar to audible acoustic waves but the frequency range is far below what the human
ear can detect. The typical frequenc y ran ge is from 0.01 to 10 Hz (Figure 3 .1). Natur e is an
incredible creator of infrasonic signals that can emanate from sources such as volcano
eruptions, earthquakes, severe weather, tsunamis, meteors (bolides), gravity waves,
microbaroms (infrasound radiated from ocean waves), surf, mountain ranges (mountain
associated waves), avalanches, and auroral waves to name a few. Infrasound can also
result from man-made events such as mining blasts, the space shuttle, high-speed aircraft,
artillery fire, rockets, vehicles, and nuclear events. Because of relatively low atmospheric
absorption at low frequencies, infrasound waves can travel long distances in the Earth’s
atmosphere and can be detected with sensitive ground-based sensors.

An integral part of the comprehensive nuclear test ban treaty (CTBT) international
monitoring system (IMS) is an infrasound network system [3]. The goal is to have 60
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FIGURE 3.1
Infrasound spectrum.
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infrasound arrays operational worldwide over the next several years. The main objective
of the infrasound monitoring system is the detection and verification, localization, and
classification of nuclear explosions as well as other infrasonic signals-of-interest (SOI).
Detection refers to the problem of detecting an SOI in the presence of all other unwanted
sources and noises. Localization deals with finding the origin of a source, and classifica-
tion deals with the discrimination of different infrasound events of interest. This chapter
concentrates on the classification part only.
3.2 Neural Networks for Infrasound Classification

Humans excel at the task of classifying patterns. We all perform this task on a daily basis.
Do we wear the checkered or the striped shirt today? For example, we will probably select
from a group of checkered shirts versus a group of striped shirts. The grouping process is
carried out (probably at a near subconscious level) by our ability to discriminate among all
shirts in our closet and we group the striped ones in the striped class and the checkered ones
in the checkered class (that is, without physically moving them around in the closet, only in
our minds). However, if the closet is dimly lit, this creates a potential problem and
diminishes our ability to make the right selection (that is, we are working in a ‘‘noisy’’
environment). In the case of using an artificial neural network for classification of patterns
(or various ‘‘events’’) the same problem exists with noise. Noise is everywhere.

In general, a common problem associated with event classification (or detection and
localization for that matter) is environmental noise. In the infrasound problem, many
times the distance between the source and the sensors is relatively large (as opposed to
region infrasonic phenomena). Increases in the distance between sources and sensors
heighten the environmental dependence of the signals. For example, the signal of an
infrasonic event that takes place near an ocean may have significantly different charac-
teristics as compared to the same event that occurs in a desert. A major contributor of
noise for the signal near an ocean is microbaroms. As mentioned above, microbaroms are
generated in the air from large ocean waves. One important characteristic of neural
networks is their noise rejection capability [5]. This, and several other attributes, makes
them highly desirable to use as classifiers.
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3.3 Details of the Approach

Our approach of classifying infrasound events is based on a parallel bank neural network
structure [6–10]. The basic architecture is shown in Figure 3.2. There are several reasons for
using such an architecture; however, one very important advantage of dedicating one
module to perform the classification of one event class is that the architecture is fault
tolerant (i.e., if one module fails, the rest of the individual classifiers will continue to
function). However, the overall performance of the classifier is enhanced when the parallel
bank neural network classifier (PBNNC) architecture is used. Individual banks (or mod-
ules) within the classifier architecture are radial basis function neural networks (RBF NNs)
[5]. Also, each classifier has its own dedicated preprocessor. Customized feature vectors are
computed optimally for each classifier and are based on cepstral coefficients and a subset of
their associated derivatives (differences) [11]. This will be explained in detail later. The
different neural modules are trained to classify one and only one class; however, for the
requisite module responsible for one of the classes, it is also trained not to recognize all
other classes (negative reinforcement). During the training process, the output is set to a ‘‘1’’
for a correct class and a ‘‘0’’ for all the other signals associated with all the other classes.
When the training process is complete the final output thresholds will be set to an optimal
value based on a three-dimensional receiver operating characteristic (3-D ROC) curve for
each one of the neural modules (see Figure 3.2).
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FIGURE 3.2
Basic parallel bank neural network classifier (PBNNC) architecture.
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3.3. 1 Infras ound Data Colle cted fo r Traini ng and Testing

The data used for train ing and testing the individual network s are obt ained from mult iple
infr asound arr ays locate d in differen t geogr aphi cal regions with differen t geome tries. The
six infr asound classes used in this study are shown in Table 3.1, and the vari ous arr ay
geomet ries are shown in Figure 3.3(a) through Figu re 3.3(e) [12,13 ]. Table 3.2 sho ws the
vario us classes, along with the arr ay numbe rs where the data were collected , and the
ass ociated sa mpling freque ncies.

3.3. 2 Radial Basis Fu nction Neur al Networ ks

As previousl y mentioned , eac h of the neural netw ork modu les in Figure 3.2 is an RBF NN.
A brief overview of RBF NNs will be given here. This is not meant to be an exhaustive
discourse on the subject, but only an introduction to the subject. More details can be found
in Refs. [5,14].

Earlier work on the RBF NN was carried out for handling multivariate interpolation
problems [15,16]. However, more recently they have been used for probability density
estimation [17–19] and approximations of smooth multivariate functions [20]. In prin-
ciple, the RBF NN makes adjustments of its weights so that the error between the actual
and the desired responses is minimized relative to an optimization criterion through a
defined learning algorithm [5]. Once trained, the network performs the interpolation in
the output vector space, thus the generalization property.

Radial basis functions are one type of positive-definite kernels that are extensively used
for multivariate interpolation and approximation. Radial basis functions can be used for
problems of any dimension, and the smoothness of the interpolants can be achieved to
any desirable extent. Moreover, the structures of the interpolants are very simple. How-
ever, there are several challenges that go along with the aforementioned attributes of RBF
NNs. For example, many times an ill-conditioned linear system must be solved, and the
complexity of both time and space increases with the number of interpolation points. But
these types of problems can be overcome.

The interpolation problem may be formulated as follows. Assume M distinct data
points X ¼ {x1, . . . , xM}. Also assume the data set is bounded in a region V (for a specific
class). Each observed data point x 2 R

u (u corresponds to the dimension of the input
space) may correspond to some function of x. Mathematically, the interpolation problem
may be stated as follows. Given a set of M points, i.e., {xi 2 R

uji ¼ 1, 2, . . . , M} and a
corresponding set of M real numbers {di 2 R ji ¼ 1, 2, . . . , M} (desired outputs or the
targets), find a function F:R M ! R that satisfies the interpolation condition

F(xi) ¼ di, i ¼ 1, 2, . . . , M (3:1)
TABLE 3.1

Infrasound Classes Used for Training and Testing

Class Number Event No. SOI (n¼ 574)

No. SOI Used for

Training (n¼ 351)

No. SOI Used for

Testing (n¼ 223)

1 Vehicle 8 4 4
2 Artillery fire (ARTY) 264 132 132
3 Jet 12 8 4
4 Missile 24 16 8
5 Rocket 70 45 25
6 Shuttle 196 146 50
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TABLE 3.2

Array Numbers Associated with the Event Classes and the Sampling Frequencies Used to Collect
the Data

Class Number Event Array Sampling Frequency, Hz

1 Vehicle K8201 100
2 Artillery fire (ARTY)

(K8201: Sites 1 and 2)
K8201; K8203 (K8201: Sites 1 and 100;

Sites 2 and 50); 50
3 Jet K8201 50
4 Missile K8201; K8203 50; 50
5 Rocket BP1; BP2 100; 100
6 Shuttle BP2; BP103a 100; 50

aArray geometry not available.
Thus , all the point s must pass thr ough the interpol ating sur face. A radial basis func tion
may be a special inte rpolating func tion of the form

F( x) ¼
XM

i¼ 1

wi f i ( x� xik k2 ) (3:2)

wh ere f (. ) is kno wn as the radial basis functi on and k.k2 deno tes the Euc lidean norm . In
gene ral, the data point s xi are the center s of the radial ba sis func tions and are frequ ently
writt en as ci.

One of the problem s encounter ed when attempti ng to fit a func tion to da ta point s is
over -fitting of the data, that is, the value of M is too large. Howeve r, general ly speaking,
this is less a problem the RBF NN that it is with , for example , a multi-l ayer per ceptron
train ed by backpro pagation [5]. The RBF NN is attemptin g to constru ct the hype rspace for
a particul ar pro blem wh en given a limited number of da ta point s.

Let us take another point of view concer ning how an RBF NN per form s its constr uction
of a hype rsurface . Regul arization theo ry [5,14] is applied to the constr uction of the
hype rsurface . A geomet rical explanati on follo ws.

Consi der a set of input data obt ained from sever al events from a single cl ass. The inp ut
data may be from temp oral sign als or defined features obt ained from thes e sign als usin g
an appropriate transformation. The input data would be transformed by a nonlinear
function in the hidden layer of the RBF NN. Each event would then correspond to a
point in the featu re spac e. Figure 3.4 depicts a two- dimensi onal (2-D) feature set, that is,
the dimension of the output of the hidden layer in the RBF NN is two. In Figure 3.4, ‘‘(a)’’,
‘‘(b)’’, and ‘‘(c)’’ correspond to three separate events. The purpose here is to construct a
surface (shown by the dotted line in Figure 3.4) such that the dotted region encompasses
events of the same class. If the RBF network is to classify four different classes, there must
be four different regions (four dotted contours), one for each class. Ideally, each of these
regions should be separate with no overlap. However, because there is always a limited
amount of observed data, perfect reconstruction of the hyperspace is not possible and it is
inevitable that overlap will occur.

To overcome this problem it is necessary to incorporate global information from V (i.e.,
the class space) in approximating the unknown hyperspace. One choice is to introduce a
smoothness constraint on the targets. Mathematical details will not be given here, but for
an in-depth development see Refs. [5,14].

Let us now turn our attention to the actual RBF NN architecture and how the network
is trained. In its basic form, the RBF NN has three layers: an input layer, one hidden
� 2007 by Taylor & Francis Group, LLC.
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Example of a two-dimensional feature set.
layer, and one output layer. Referring to Figure 3.5, the source nodes (or the input
components) make up the input layer. The hidden layer performs a nonlinear trans-
formation (i.e., the radial basis functions residing in the hidden layer perform this
transformation) of the input to the network and is generally of a higher dimension than
the input. This nonlinear transformation of the input in the hidden layer may be viewed
as a basis for the construction of the input in the transformed space. Thus, the term radial
basis function.

In Figure 3.5, the output of the RBF NN (i.e., at the output layer) is calculated
according to

yi ¼ fi(x) ¼
XN

k¼1

wikfk(x,ck) ¼
XN

k¼1

wikfk( x� ckk k2), i ¼ 1, 2, . . . , m (no: outputs) (3:3)

where x 2 R
u�1 is the input vector, fk(.) is a (RBF) function that maps R

þ (set of all
positive real numbers) to R (field of real numbers), k.k2 denotes the Euclidean norm, wik

are the weights in the output layer, N is the number of neurons in the hidden layer, and ck

2 R
u�1 are the RBF centers that are selected based on the input vector space. The

Euclidean distance between the center of each neuron in the hidden layer and the input
to the network is computed. The output of the neuron in a hidden layer is a nonlinear
f1

f2

fN

W 
T ∈ ℜm × N
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FIGURE 3.5
RBF NN architecture.
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func tion of this dista nce, and the output of the network is compu ted as a wei ghted sum of
the hidde n layer outpu ts.

The func tional form of the radial ba sis func tion, fk( . ), can be any of the follow ing:

. Line ar func tion: f( x) ¼ x

. Cubi c appr oximatio n: f (x) ¼ x3

. Thin- plate-s pline function: f (x) ¼ x2 ln(x)

. Gaus sian function : f (x) ¼ exp(� x2/s2)

. Mult i-quadrat ic functi on: f ( x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ s 2
p

. Inv erse multi-qu adratic function : f (x) ¼ 1=(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ s  2
p

)

The parameter s contr ols the ‘‘width ’’ of the RBF and is common ly referr ed to as the
spre ad par ameter. In man y pr actical appl ications the Gaus sian RBF is used. The center s,
ck, of the Gau ssian func tions are points used to per form a sampl ing of the inp ut vector
spac e. In general , the center s form a subset of the inp ut data.
3. 4 D ata P reproc essi ng

3.4. 1 Noise Filtering

Microb aroms, a s pre viousl y def ined, are a persisten tly pres ent sour ce of noise that
resides in most collected infr asound sign als [21–23 ]. Mi crobarom s are a clas s of infr asonic
sign als charact eriz ed by narrow-b and, nearly sinu soidal wavef orms, with a period
bet ween 6 and 8 sec . These signal s can be gene rated by marin e sto rms through a non-
linear inte raction of surfac e waves [24]. The freque ncy conten t of the microbar oms often
coinci des with that of small-yi eld nuclea r ex plosions. This co uld be bothersome in man y
appli cations; howev er, simple band-pass filtering can allevi ate the pro blem in man y
case s. The refore, a band-pass filter with a pass band betwee n 1 and 49 Hz (for signal s
samp led at 100 Hz) is used here to elimi nate the effects of the microb aroms. Figure 3.6
shows how band-pass filteri ng can be used to elimina te the mi crobarom s problem .
3.4. 2 Featur e E xtractio n Process

Dep icted in eac h of the six graphs in Figure 3.7 is a collectio n of eight sign als from
each cl ass, that is, yij (t ) for i ¼ 1, 2, . . . , 6 (classe s) and j ¼ 1, 2, . . . , 8 (num ber of sign als)
(see Ta ble 3.1 for total number of signals in each class). A feature extra ction proces s is
desired that wil l captu re the salient features of the sign als in each class and at the same
time be invarian t relative to the arr ay geome try, the geog raphica l locat ion of the array , the
samp ling frequenc y, and the leng th of the time window . The overall per formance of
the cl assifier is co ntingen t on the data that is used to train the neural netw ork in each of
the six modu les shown in Figure 3.2. Moreo ver, the neu ral netw ork’s ability to distinguish
between the various events (presented the neural networks as feature vectors) is the
distinctiveness of the features between the classes. However, within each class it is
desirable to have the feature vectors as similar to each other as possible.

There are two major questions to be answered: (1) What will cause the signals in one
class to have markedly different characteristics? (2) What can be done to minimize these
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 3.6
Results of band-pass filtering to eliminate the effects of microbaroms (an artillery signal).
differen ces and achieve uni formit y with in a class and distin ctive ly dif ferent featu re vector
charact eristic s between class es?

The answer to the first questi on is quite simple—n oise. This can be noise as sociated
with the sensors, the data acquis ition equip ment, or other unwa nted sign als that are not
of interest. The answ er to the sec ond question is also quite sim ple (once you know the
answ er)—using a feature extra ction process ba sed on compu ted cepst ral co efficients and
a subset of thei r assoc iated der ivatives (di fferences ) [10,11 ,25 –28].

As me ntioned in Secti on 3.3, each cl assifier has its own dedicat ed pre process or (see
Figure 3.2). Customi zed feature vec tors are compute d optim ally for each clas sifier (or
neural module) and are based on the aforem entio ned cepst ral coefficie nts and a subset of
their associa ted deriva tives (or differen ces). The pr eprocessin g proce dure is as follow s.

Each time-do main signal is first norm alized and then its mean value is co mpute d and
remove d. Next , the power spect ral dens ity (P SD) is calcu lated for each signal, whic h is a
mixtur e of the desire d comp onent and possi bly other unwa nted signal s and noise.
Therefor e, when the PSDs are comp uted for a set of signal s in a defin ed class there will
be spect ral compo nents ass ociate d wi th noise and ot her unwa nted signal s that need to be
suppres sed. This can be systemati cally accomp lished by first compu ting the av erage PSD
(i.e., PSDavg ) over the suite of PSDs for a particul ar class . The spect ral co mponent s are
define d as mi for i ¼ 1, 2, . . . for PSD avg . The max imum spect ral compo nent, mmax , of
PSDavg is then deter mined. This is consi dered the dominan t spectral comp onent wi thin a
particul ar cl ass and its value is used to supp ress selected comp onents in the res ident PSDs
for any particu lar cl ass according to the follo wing:

if m i > «1 mmax (typ ically «1 ¼ 0: 001)

then mi  mi

else «2  mi (typically «2 ¼ 0:00001)
� 2007 by Taylor & Francis Group, LLC.



Raw time-domain 8 signals for vehicle
A

m
pl

itu
de

0.8

0.6

0.4

0.2

–0.2

–0.4

–0.6
0 100 200 300 400

Time (sec)
500 600 700

0

Raw time-domain 8 signals for missile

A
m

pl
itu

de

2

1.5

1

0.5

–0.5

–1

–1.5

–2

–2.5

–3
0 1000 2000 3000 4000

Time (sec)
5000 6000 7000 8000

0

Raw time-domain 8 signals for artillery

A
m

pl
itu

de

1.8

1.6

1.4

1.2

0.6

0.8

0.4

0.2

0
0 50 100 150 200

Time (sec)
250 300 350

1

Raw time-domain 8 signals for rocket

A
m

pl
itu

de

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 200 400 600 800

Time (sec)
1000 1200 1400 1600

Vehicle class Missile class

Artillery class

Rocket class

(a) (b)

(d)(c)

Raw time-domain 8 signals for jet

A
m

pl
itu

de

1.4

1.2

1

0.8

0.4

0.2

0

–0.4

–0.2

0 500 1000 1500 25002000
Time (sec)

3000 3500 4000 4500

0.6

Raw time-domain 8 signals for shuttle

A
m

pl
itu

de

1

0.9

0.8

0.7

0.5

0.4

0.3

0.2

0.1
0 100 200 300 400

Time (sec)
500 600 700 800 900 1000

0.6

Jet class Shuttle class

(e) (f)

FIGURE 3.7 (See color insert following page 178.)
Infrasound signals for six classes.
To some extent, this will minimize the effects of any unwanted components that may
reside in the signals and at the same time minimize the effects of noise. However, another
step can be taken to further minimize the effects of any unwanted signals and noise that
may reside in the data. This is based on a minimum variance criterion applied to the
spectral components of the PSDs in a particular class after the previously described step is
completed. The second step is carried out by taking the first 90% of the spectral compon-
ents that are rank-ordered according to the smallest variance. The rest of the components
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in the power spectral densities within a particular class are set to a small value, that is, «3

(typically 0.00001). Therefore, the number of spectral components greater than «3 will
dictate the number of components in the cepstral domain (i.e., the number of cepstral
coefficients and associated differences). Depending on the class, the number of coeffi-
cients and differences will vary. For example, in the simulations that were run, the largest
number of components was 2401 (artillery class) and the smallest number was 543
(vehicle class). Next, the mel-frequency scaling step is carried out with defined values
for a and b [10], then the inverse discrete cosine transform is taken and the derivatives
(differences) are computed.

From this set of computed cepstral coefficients and differences, it is desired to select
those components that will constitute a feature vector that is consistent within a particular
class. That is, there is minimal variation among similar components across the suite of
feature vectors. So the approach taken here is to think in terms of minimum variance of
these similar components within the feature set.

Recall, the time-domain infrasound signals are assumed to be band-pass filtered to
remove any effects of microbaroms as described previously. For each discrete-time
infrasound signal, y(k), where k is the discrete time index (an integer), the specific
preprocessing steps are (dropping the time dependence k):
� 200
(1) Normalize (i.e., divide each sample in the signal y(k) by the absolute value of
the maximum amplitude, jymaxj, and also divide by the square root of the
computed variance of the signal, sy

2, and then remove the mean:
y y={jymaxj,sy} (3:4)

y y�mean(y) (3:5)
(2) Compute the PSD, Syy(kv), of the signal y:
Syy(kv) ¼
X1

t¼0

Ryy(t)e�jkvt (3:6)

where Ryy(�) is the autocorrelation of the infrasound signal y.
(3) Find the average of the entire set of PSDs in the class, i.e., PSDavg

(4) Retain only those spectral components whose contributions will maximize the
overall performance of the global classifier:
if mi > «1mmax (typically «1 ¼ 0:001)

then mi  mi

else «2  mi (typically «2 ¼ 0:00001)
(5) Compute variances of the components selected in Step (4). Then take the first
90% of the spectral components that are rank-ordered according to the smallest
variance. Set the remaining components to a small value, i.e., «3 (typically
0.00001).

(6) Apply mel-frequency scaling to Syy(kv):
Smel(kv) ¼ a loge ½bSyy(kv)� (3:7)

where a ¼ 11.25, b ¼ 0.03.
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(7) Take the inverse discr ete cosin e transform :
xmel (n ) ¼ 1

n

XN� 1

kv¼ 0

Sm ( k v ) cos(2 pk v n=N ) for n ¼ 0, 1, 2, . . . , N � 1 (3:8)
(8) Take the consecu tive differen ces of the sequen ce xmel ( n) to obt ain x0mel ( n).

(9) Concate nate the sequen ce of differe nces, x0mel (n), with the ce pstral coefficie nt
sequen ce, xmel ( n), to form the augm ented sequen ce:
xa
mel ¼ [ x0mel ( i)j xmel (j )] (3 :9)

wh ere i and j are det ermined exp erimenta lly. As mentio ned previous ly, i¼ 400
and j¼ 600.
(10) Take the abs olute value of the elemen ts in the sequen ce xmel
a yiel ding:
xa
mel ,abs ¼ jxa

melj (3 :10)
(11) Take the loge of xa
mel ,abs from the previous step to give:
xa
mel ,abs,log ¼ log e ½ x

a
mel , abs� (3 :11)

Appl ying this 11-ste p feature extra ction proce ss to the infr asound signals in the six
differe nt cl asses resu lts in the featu re vectors shown in Figure 3.8. The leng th of each
feature vector is 34. This wi ll be exp lained in the next section. If these sets of feature
vecto rs are compare d to thei r tim e-domain sign al co unterpar ts (see Figure 3.7), it is
obviou s that the feature extractio n proce ss pro duces featu re vecto rs that are mu ch more
consi stent than the tim e-domain signals. More over, comparin g the feature vectors be-
tween classes re veals that the dif ferent sets of feature vectors are marked ly distinct. This
shou ld resu lt in im prove d cl assificati on per forma nce.
3.4. 3 Usefu l Defini tions

Before we go on, let us def ine som e useful qua ntities that apply to the assessm ent of
performance for classifiers. The confusion matrix [29] for a two-class classifier is shown in
Tab le 3.3.

In Table 3.3 we have the following:

p: number of correct predictions that an occurrence is positive
q: number of incorrect predictions that an occurrence is positive
r: number of incorrect of predictions that an occurrence is negative
s: number of correct predictions that an occurrence is negative

With this, the correct classification rate (CCR) is defined as

CCR ¼ No: correct predictions�No:� classifications

No: predictions

¼ pþ s�No: multiple classifications

pþ qþ rþ s
(3:12)
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(a)  Feature set for vehicle (b) Feature set for missile

(c) Feature set for artillery fire (d) Feature set for rocket

(e)  Feature set for jet (f)  Feature set for shuttle
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FIGURE 3.8 (See color insert following page 178.)
Infrasound signals for six class different classes.
Multiple classifications refer to more than one of the neural modules showing a ‘‘posi-
tive’’ at the output of the RBF NN indicating that the input to the global classifier belongs
to more than one class (whether this is true or not). So there could be double, triple,
quadruple, etc., classifications for one event.

The accuracy (ACC) is given by

ACC ¼ No: correct predictions

No predictions
¼ pþ s

pþ qþ rþ s
(3:13)
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TABLE 3.3

Confusion Matrix for a Two-Class Classifier

Predicted Value

Actual Value Positive Negative
Positive p q

Negative r s
As seen from Equa tion 3.12 and Equation 3.13, if mu ltiple class ifications occur, the CC R is
a more co nservativ e per formance meas ure than the ACC. However , if no multiple
clas sificatio ns oc cur, the CCR ¼ AC C.

The true posi tive (TP ) rate is the propor tion of positive cases that are co rrectly iden ti-
fied. This is compu ted usin g

TP ¼ p

pþ q 
(3 :14)

The false posi tive (FP) rate is the pro portion of negative case s that are incorre ctly
clas sified a s posi tive occu rrences. This is compute d using

FP ¼ r

rþ s 
(3 :15)
3.4. 4 Selec tion Process for the Optim al Num ber of F eature Vec tor Comp onents

From the set of computed cepstral coefficients an d d iff eren ce s gener a ted using th e
feature extractio n pro cess given a bove, a n optimal subset of these is desired that wi ll
constitute the feature vect ors used t o train an d t est t he PBNNC sh own in Fi gure 3.2.
The optimal su bset (i.e., the optimal feature v ector length) is dete rmined by taking a
minimum v ariance a pp roach. Sp ecificall y, a 3-D graph i s generated that plo ts the
performance; that is, CCR versus th e RBF NN spread parameter and the f eature vector
n umber (see Figu re 3.9) . From th is graph , m ean v alues a nd varian ces a re com puted
across th e r ange of spread param eter s f or each o f th e def ine d nu mber of c om pon ents in
the f eature vector. The selection criterion is define d a s simu ltaneously maximizing
the mean and at the same time minimizing the varian ce. Maximization of t he mean
ensures m aximum performance; that is, m axi mizing the CCR and at the same t ime
minimizing the v ariance t o m inimize v ariati on in the f eature set within each of the
classes. The output threshold a t each o f t he ne u ral modules (i.e., t he outp ut of the single
output neuron of each RBF N N) is set optimally accordi ng t o a 3-D RO C curve. This wi ll
be explained ne xt.

Figure 3.10 shows the two plots used to det ermine the max imum mean and the
minimu m varian ce. The table insert betwee n the two graphs shows that even though
the mean val ue for 40 elemen ts in the feature vector is (sl ightly) larger than that for
34 ele ments, the varian ce for 40 is nearly three time s that for 34 elemen ts. The refore, a
len gth of 34 elemen ts fo r the feature vectors is the best choice .
3.4. 5 Optim al Output Thr eshold Valu es and 3-D ROC Curves

At the output of the RBF NN for eac h of the six ne ural mod ules, there is a sin gle output
neu ron with har d-limi ting binary val ues used duri ng the train ing proce ss (see Figure 3.2).
Afte r train ing, to determi ne whet her a particul ar SO I belongs to on e of the six classes, the
� 2007 by Taylor & Francis Group, LLC.



Performance (CCR) 3-D plot using ROC curve
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FIGURE 3.9 (See color insert following page 178.)
Performance plot used to determine the optimal number components in the feature vector. Ill conditioning
occurs for the feature number less than 10, and for the feature number greater than 60, the CCR dramatically
declines.
thresho ld value of the output neurons is optim ally set accordi ng to an ROC curve [30–32 ]
for that individual neural modu le (i.e., one particu lar class ). Before an ex planatio n of the
3-D ROC cu rve is given, let us first revi ew 2-D ROC curves and see how they are used to
optim ally set threshold values.

An ROC curve is a plot of the TP rate versu s the FP rate, or the sensit ivity versu s
(1 – speci ficity); a sa mple ROC curve is shown in Figure 3.11. The optim al thr eshold
value correspo nds to a point nearest the ideal point (0, 1) on the grap h. The point (0, 1)
is consi dered ideal becau se in this case there would be no false positi ves and onl y true
positive s. Ho wever, bec ause of noise and ot her undes irable effects in the da ta, the
point cl osest to the (0, 1) point (i.e., the minimum Euclide an dista nce) is the best that
we can do. This will then dictate the optim al thresho ld val ue to be used at the output of
the RBF NN .

Since there are six classifier s, that is, six neural modules in the global clas sifier, six ROC
curves must be gene rated. Ho wever, usin g 2-D ROC curves to set the thresh olds at the
outputs of the six RBF NN clas sifiers wi ll not res ult in optim al thresho lds. Thi s is bec ause
miscla ssificati ons are not taken into accou nt wh en sett ing the thresh old for a parti cular
neural mod ule that is res ponsible for classifying a particul ar set of infrasoun d signal s.
Reca ll that one neural mo dule is assoc iated with one infras onic clas s, and each neu ral
modu le acts as its own classifier . The refore, it is nece ssary to accou nt for the misclas sifica-
tions that can occur and this can be accompli shed by adding a third dimensi on to the ROC
curve. When the misclass ificatio ns are taken into accou nt the (0, 1, 0) point now become s
the optimal point, and the smallest Euclidean distance to this point is directly related to
� 2007 by Taylor & Francis Group, LLC.
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Example ROC curve.
the optim al thresho ld value for each neu ral mod ule. Figure 3.12 shows the six 3-D ROC
curves ass ociated with the cl assifiers .
3.5 Simul ation R esults

The fou r basic parameter s that are to be optimized in the proce ss of training the neu ral
netw ork cl assifier (i.e ., the bank of six RBF NN s) are the RBF NN spr ead paramete rs, the
output thresho lds of each neural modu le, the combinat ion of 34 compo nents in the fe ature
vectors for each class (note again in Figure 3.2, each neural mod ule has its own cus tom
prepro cessor ) a nd of cours e the res ulting weights of each RBF NN . The MA TLAB neu ral
netw orks toolbox was used to desig n the six RBF NN s [33] .

Table 3.1 sho ws the specific clas ses and the assoc iated number of sign als used to
train and test the RBF NNs. Of the 57 4 infras ound sign als, 351 were used for train ing
the remain ing 2 23 were used for testing . The criterio n used to divide the data bet ween
the training a nd te sting sets was to maint ain indepen dence. Henc e, the four array
signal s from any one even t are always kept together, eithe r in the train ing set or the
test set.

After the optim al number compo nents for each feature vector was determi ned, i.e., 34
elemen ts, and the optim al combi nation of the 34 comp onents for each prepro cessor, the
optim al RBF spre ad parameter s are det ermined along with the optim al thresho ld value
(the six graphs in Figure 3.12 were used for this purpose). For both the RBF spread
paramete rs and the output thresho lds, the selection criterio n is based on max imiz ing
the CCR of the local netw ork and the over all (globa l) classifier CCR.

The RBF spre ad paramete r and the outpu t thr eshold for each neural mod ule was
determi ned one by one by fixing the spread parameter , i.e., s, for all other neural mod ules
to 0.3, and hold ing the thresh old value at 0.5. Once the first neural mod ule’s spre ad
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 3.12
3-D ROC curves for the six classes.
parame ter and threshold is determine d, then the spre ad par ameter and output thresho ld
of the secon d neural mod ule is comp uted wh ile holding all ot her neu ral modu les’ (except
the first one ) spre ad parameter s and output thresholds fixed at 0.3 and 0.5, resp ectively.

Tab le 3.4 gives the final val ues of the spre ad par ameter and the outpu t thresho ld for the
global classifier . Figure 3.13 shows the cl assifier arch itecture with the final values indi-
cated for the RBF NN spre ad parameter s and the output thresh olds.

Tab le 3.5 shows the confusio n matr ix for the six-classi fier. Concentr ating on the 6� 6
por tion of the matr ix for eac h of the define d clas ses, the diagon al elemen ts correspond to
� 2007 by Taylor & Francis Group, LLC.



TABLE 3.4

Spread Parameter and Threshold of Six-Class Classifier

Spread Parameter Threshold Value True Positive False Positive

Vehicle 0.2 0.3144 0.5 0
Artillery 2.2 0.6770 0.9621 0.0330
Jet 0.3 0.6921 0.5 0
Missile 1.8 0.9221 1 0
Rocket 0.2 0.4446 0.9600 0.0202
Shuttle 0.3 0.6170 0.9600 0.0289
the correct predic tions. The trace of this 6�6 matr ix divide d by the total numbe r of signal s
teste d (i.e ., 2 23) gives the accura cy of the global clas sifier. The formula for the accura cy is
given in Eq uation 3.13, and here ACC ¼ 94.6% . The off-diagon al eleme nts ind icate the
miscl assificati ons that occu rred and those in parenthe ses indicate doubl e cl assificati ons
(i.e., the actual class was iden tified correc tly, but there was another one of the output
thresho lds for ano ther class that was exce eded). The off-diagon al elemen t that is in squa re
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TABLE 3.5

Confusion Matrix for the Six-Class Classifier

Predicted Value

Vehicle Artillery Jet Missile Rocket Shuttle Unclassified Total (223)

Vehicle 2 (1) 0 0 0 0 2 4
Artillery 0 127 0 0 0 0 5 132

Actual Jet 0 0 2 0 0 0 2 4
Value Missile 0 0 0 8 0 0 0 8

Rocket 0 0 0 0 24 (5) 1 25
Shuttle 0 (1)[1] 0 0 1(3) 48 1 50
bracke ts is a doub le misclas sificatio n, that is, this even t is misclas sified alon g with anoth er
mis classified event (th is is a shuttle event that is mi sclassif ied as bot h a ‘‘rock et’’ even t as
wel l as an ‘‘artill ery’’ event).

Tab le 3.6 shows the final global cl assifier results giving both the CC R (se e Equa tion
3.12) and the ACC (see Eq uation 3.13). Simul ations were also run usin g ‘‘bi-polar ’’
outpu ts inste ad of binary outputs. For the case of bi-polar outputs, the outpu t is boun d
bet ween � 1 and þ1 inste ad of 0 and 1. As can be seen from the tabl e, the binary case
yield ed the best result s. Final ly, Table 3.7 sho ws the resu lts for the case where the
thresh old level s on the outputs of the ind ividual RBF NNs are ignored and only the
outpu t with this large st value is taken as the ‘‘winn er,’’ that is, ‘‘winner- takes-al l’’; this is
consi dered to be the clas s that the inp ut SOI belongs to. It shou ld be noted that even
thoug h the CCR shows a hig her level of perform ance for the winne r-take s-all approach,
this is prob ably not a via ble method for classificati on. The reas on bein g that if there were
truly multiple even ts occurr ing simulta neously, they wo uld neve r be indicate d as such
usin g this approach.
TABLE 3.6

Six-Class Classification Result Using a Threshold Value for Each
Network

Performance Type Binary Outputs (%) Bi-Polar Outputs (%)

CCR 90.1 88.38
ACC 94.6 92.8

TABLE 3.7

Six-Class Classification Result Using ‘‘Winner-Takes-All’’

Performance Type Binary Method (%) Bi-Polar Method (%)

CCR 93.7 92.4
ACC 93.7 92.4
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3.6 Conclusions

Radial basis function neural networks were used to classify six different infrasound
events. The classifier was built with a parallel structure of neural modules that individu-
ally are responsible for classifying one and only one infrasound event, referred to as
PBNNC architecture. The overall accuracy of the classifier was found to be greater than
90%, using the CCR performance criterion. A feature extraction technique was employed
that had a major impact toward increasing the classification performance over most other
methods that have been tried in the past. Receiver operating characteristic curves were
also employed to optimally set the output thresholds of the individual neural modules in
the PBNNC architecture. This also contributed to increased performance of the global
classifier. And finally, by optimizing the individual spread parameters of the RBF NN, the
overall classifier performance was increased.
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4.1 Intr odu ctio n

Reflect ion seismo logy is a method of remote ima ging used in the explora tion of petro l-
eum . The seismic reflectio n method was devel oped in the 1 920s. Initially , the sour ce was a
dynam ite exp losion set off in a shal low hole dri lled into the ground, and the rece iver was
a geophon e plan ted on the grou nd. In difficul t areas , a sin gle source wou ld refer to an
array of dynam ite char ges arou nd a centr al point, called the source point , and a recei ver
would refer to an arr ay of geophon es around a central point , called the receiver p oint .
The receive d wave s were recorded on a pho tographic pape r on a drum. The develo ped
paper was the seismi c record or seismo gram. Each receive r account ed for a sin gle wiggl y
line on the reco rd, wh ich is called a seismic trace or simply a trace . In other words, a seismic
trace is a signal (or time series) received at a specific receiver location from a specific
source location. The recordings were taken for a time span starting at the time of the shot
(called time zero) until about three or four seconds after the shot. In the early days, a
seismic crew would record about 10 or 20 seismic records per day, with a dozen or two
traces on each record. Figure 4.1 sho ws a seismic record with wiggly lines as traces.
Seismic crew number 23 of the Atlantic Refining Company shot the record on October 9,
1952. As written on the record, the traces were shot with a source that was laid out as a
36-hole circular array. The first circle in the array had a diameter of 130 feet with 6 holes,
each hole loaded with 10 lbs of dynamite. The second circle in the array had a diameter of
215 feet with 11 holes (which should have been 12 holes, but one hole was missing), each
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FIGURE 4.1
Seismic record taken in 1952.
hole loaded with 10 lbs of dynamite. The third circle in the array had a diameter of 300 feet
with 18 holes, each hole loaded with 5 lbs of dynamite. Each charge was at a depth of 20
feet. The total charge was thus 260 lbs of dynamite, which is a large amount of dynamite
for a single seismic record. The receiver for each trace was made up of a group of 24
geophones (also called seismometers) in a circular array with 6 geophones on each of
4 circles of diameters 50 feet, 150 feet, 225 feet, and 300 feet, respectively. There was a
300-feet gap between group centers (i.e., receiver points). This record is called an NR
seismogram. The purpose of the elaborate source and receiver arrays was an effort to bring
out visible reflections on the record. The effort was fruitless. Regions where geophysicists
can see no reflections on the raw records are termed as no record or no reflection (NR)
areas. The region in which this record was taken, as the great majority of possible oil-
bearing regions in the world, was an NR area. In such areas, the seismic method (before
digital processing) failed, and hence wildcat wells had to be drilled based on surface
geology and a lot of guess work. There was a very low rate of discovery in the NR regions.
Because of the tremendous cost of drilling to great depths, there was little chance that any
oil would ever be discovered. The outlook for oil was bleak in the 1950s.
4.2 Acquisition and Interpretation

From the years of its inception up to about 1965, the seismic method involved two steps,
namely acquisition and interpretation. Acquisition refers to the generation and recording of
seismic data. Sources and receivers are laid out on the surface of the Earth. The objective is
to probe the unknown structure below the surface. The sources are made up of vibrators
(called vibroseis), dynamite shots, or air guns. The receivers are geophones on land and
hydrophones at sea. The sources are activated one at a time, not all together. Suppose a
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single source is activated, the resulting seismic waves travel from the source into the
Earth. The waves pass down through sedimentary rock strata, from which the waves are
reflected upward. A reflector is an interface between layers of contrasting physical
properties. A reflector might represent a change in lithology, a fault, or an unconformity.
The reflected energy returns to the surface, where it is recorded. For each source acti-
vated, there are many receivers surrounding the source point. Each recorded signal,
called a seismic trace, is associated with a particular source point and a particular receiver
point. The traces, as recorded, are referred to as the raw traces. A raw trace contains all the
received events. These events are produced by the subsurface structure of the Earth. The
events due to primary reflections are wanted; all the other events are unwanted.

Interpretation was the next step after acquisition. Each seismic record was examined
through the eye and the primary reflections that could be seen were marked by a pencil. A
primary reflection is an event that represents a passage from the source to the depth point,
and then a passage directly back to the receiver (Figure 4.2). At a reflection, the traces
become coherent; that is, they come into phase with each other. In other words, at a
reflection, the crests and troughs on adjacent traces appear to fit into one another. The
arrival time of a reflection indicates the depth of the reflecting horizon below the surface,
while the time differential (the so-called step-out time) in the arrivals of a given peak or
trough at successive receiver positions provides information on the dip of the reflecting
horizon. In favorable areas, it is possible to follow the same reflection over a distance
much greater than that covered by the receiver spread for a single record. In such cases,
the records are placed side-by-side. The reflection from the last trace of one record
correlates with the first trace of the next record. Such a correlation can be continued on
successive records as long as the reflection persists. In areas of rapid structural change,
the ensemble of raw traces is unable to show the true geometry of subsurface structures.
In some cases, it is possible to identify an isolated structure such as a fault or a syncline on
the basis of its characteristic reflection pattern. In NR regions, the raw record section does
not give a usable image of the subsurface at all.

Seismic wave propagation in three dimensions is a complicated process. The rock
layers absorb, reflect, refract, or scatter the waves. Inside the different layers, the waves
propagate at different velocities. The waves are reflected and refracted at the interfaces
between the layers. Only elementary geometries can be treated exactly in three dimen-
sions. If the reflecting interfaces are horizontal (or nearly so), the waves going straight
down will be reflected nearly straight up. Thus, the wave motion is essentially vertical.
If the time axes on the records are placed in the vertical position, time appears in the same
direction as the raypaths. By using the correct wave velocity, the time axis can be
converted into the depth axis. The result is that the primary reflections show the locations
D
Depth point

Receiver point
R

Source point
S

FIGURE 4.2
Primary reflection.
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of the reflecting interfaces. Thus, in areas that have nearly level reflecting horizons, the
primary reflections, as recorded, essentially show the correct depth positions of the
subsurface interfaces. However, in areas that have a more complicated subsurface struc-
ture, the primary reflections as recorded in time do not occur at the correct depth
positions in space. As a result, the primary reflections have to be moved (or migrated)
to their proper spatial positions.

In areas of complex geology, it is necessary to move (or migrate) the energy of each
primary reflection to the spatial position of the reflecting point. The method is similar to
that used in Huygens’s construction. Huygens articulated the principle that every point of a
wavefront can be regarded as the origin of a secondary spherical wave, and the envelope
of all these secondary waves constitutes the propagated wavefront. In the predigital days,
migration was carried out by straightedge and compass or by a special-purpose hand-
manipulated drawing machine on a large sheet of a graph paper. The arrival times of the
observed reflections were marked on the seismic records. These times are the two-way
traveltimes from the source point to the receiver point. If the source and the receiver were
at the same point (i.e., coincident), then the raypath down would be the same as the
raypath up. In such a case, the one-way time is one half of the two-way time. From the
two-way traveltime data, such a one-way time was estimated for each source point. This
one-way time was multiplied by an estimated seismic velocity. The travel distance to the
interface was thus obtained. A circle was drawn with the surface point as center and the
travel distance as radius. This process was repeated for the other source points. In
Huygens’s construction, the envelope of the spherical secondary waves gives the new
wavefront. In a similar manner, in the seismic case, the envelope of the circles gives the
reflecting interface. This method of migration was done in 1921 in the first reflection
seismic survey ever taken.
4.3 Digital Seismic Processing

Historically, most seismic work fell under the category of two-dimensional (2D) imaging.
In such cases, the source positions and the receiver positions are placed on a horizontal
surface line called the x-axis. The time axis is a vertical line called the t-axis. Each source
would produce many traces—one trace for each receiver position on the x-axis. The
waves that make up each trace take a great variety of paths, each requiring a different
time to travel from the source to receiver. Some waves are refracted and others scattered.
Some waves travel along the surface of the Earth, and others are reflected upward from
various interfaces. A primary reflection is an event that represents a passage from the
source to the depth point, and then a passage directly back to the receiver. A multiple
reflection is an event that has undergone three, five, or some other odd number of
reflections in its travel path. In other words, a multiple reflection takes a zig-zag course
with the same number of down legs as up legs. Depending on their time delay from the
primary events with which they are associated, multiple reflections are characterized as
short-path, implying that they interfere with the primary reflection, or as long-path, where
they appear as separate events. Usually, primary reflections are simply called reflections or
primaries, whereas multiple reflections are simply called multiples. A water-layer reverber-
ation is a type of multiple reflection due to the multiple bounces of seismic energy back
and forth between the water surface and the water bottom. Such reverberations are
common in marine seismic data. A reverberation re-echoes (i.e., bounces back and forth)
in the water layer for a prolonged period of time. Because of its resonant nature, a
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reverbe ration is a troubl esome typ e of mult iple. Rever berations conceal the pri mary
reflectio ns. The pri mary reflections (i.e ., events that have und ergone onl y one re flection)
are nee ded for image form ation. To make use of the primary reflected signal s on the record,
it is neces sary to distin guish them from the other type of sign als on the reco rd. Rand om
noise, such as wind noise, is usuall y mi nor and, in suc h case s, can be negl ected. All the
seismic signal s, except primary reflectio ns, a re unwa nted. Thes e unwanted sign als are due
to the seismic energy in troduced by the seis mic source sign al; henc e, they are called signa l-
genera ted noise . Thus, we are faced with the pro blem of (primary refle cted) sign al en hance-
ment and (signal-ge nerated) noi se suppressi on. In the analog day s (app roxima tely up to
about 1965), the separ ation of sign al and noise was done thr ough the eye.

In the 1950s, a good part of the Earth ’s sedimen tary basins, includin g essent ially all
water -covered region s, were class ified as NR areas. Unfort unately , in such areas, the
signal -genera ted noi se over whelms the pr imary reflectio ns. As a resu lt, the pr imary
reflectio ns cann ot be picked up visuall y. For examp le, water -layer re verberatio ns as a
rule comp letely overwh elm the pri maries in the water -covered regions suc h as the Gulf of
Mexico , the Nort h Sea, and the Persian Gulf. The NR areas of the wo rld could be ex plored
for oil in a dir ect way by drilling, but no t by the remote detecti on method of refle ction
seismol ogy. The decad es of the 1940s and 1950s were replete with inve ntions, not the least
of which was the mo dern hig h-speed electr onic sto red-progr am digital compute r. In the
years from 1952 to 1 954, almos t ever y majo r oil company joined the MIT Geoph ysical
Anal ysis Group to use the digital comp uter to pro cess NR seis mogram s (Rob inson, 2005).
Historical ly, the add itive mo del (tr ace ¼ s þ n) was used. In this mod el, the desired
primary reflectio ns were the signal s and ever ything else was the no ise n. Elect ric filer s
and other analog me thods were used, but they fai led to give the desire d primary reflec-
tions. The breakth roug h was the reco gnitio n that the convol utional mode l (trace ¼ s �n ) is
the correc t mo del for a seismi c trace. Note that the asterisk deno tes convo lution. In this
model, the signal-generated noise is the signal s and the unpredictable primary reflections
are the noise n. Deconvolution removes the signal-generated noise (such as instrument
responses, ground roll, diffractions, ghosts, reverberations, and other types of multiple
reflections) so as to yield the underlying primary reflections. The MIT Geophysical
Analysis Group demonstrated the success of deconvolution on many NR seismograms,
inclu ding the record shown in Figure 4.1. Howeve r, the oil companie s we re not ready to
undertake digital seismic processing at that time. They were discouraged because an
excursion into digital seismic processing would require new effort that would be expen-
sive, and still the effort might fail because of the unreliability of the existing computers.
It is true that in 1954 the available digital computers were far from suitable for geophys-
ical processing. However, each year from 1946 onward, there was a constant stream of
improvements in computers, and this development was accelerating every year. With
patience and time, the oil and geophysical companies would convert to digital processing.
It would happen when the need for hard-to-find oil was great enough to justify the
investment necessary to turn NR seismograms into meaningful data. Digital signal
processing was a new idea to the seismic exploration industry, and the industry shied
away from converting to digital methods until the 1960s. The conversion of the seismic
exploration industry to digital was in full force by about 1965, at which time transistor-
ized computers were generally available at a reasonable price. Of course, a reasonable
price for one computer then would be in the range from hundreds of thousands of dollars
to millions of dollars. With the digital computer, a whole new step in seismic exploration
was added, namely digital processing. However, once the conversion to digital was
undertaken in the years around 1965, it was done quickly and effectively. Reflection
seismology now involves three steps, namely acquisition, processing, and interpretation.
A comprehensive presentation of seismic data processing is given by Yilmaz (1987).
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4.4 Imaging by Seismic Processing

The term imaging refers to the formation of a computer image. The purpose of seismic
processing is to convert the raw seismic data into a useful image of the subsurface structure
of the Earth. From about 1965 onward, most of the new oil fields discovered were the result
of the digital processing of the seismic data. Digital signal processing deconvolves the data
and then superimposes (migrates) the results. As a result, seismic processing is divided
into two main divisions: the deconvolution phase, which produces primaries-only traces
(as well as possible), and the migration phase, which moves the primaries to their true
depth positions (as well as possible). The result is the desired image. The first phase of
imaging (i.e., deconvolution) is carried out on the traces, either individually by means of
single-channel processing or in groups by means of multi-channel processing. Ancillary
signal-enhancement methods typically include such things as the analyses of velocities and
frequencies, static and dynamic corrections, and alternative types of deconvolution.
Deconvolution is performed on one or a few traces at a time; hence, the small capacity
of the computers of the 1960s was not a severely limiting factor.

The second phase of imaging (i.e., migration) is the movement of the amplitudes of the
primary-reflection events to their proper spatial locations (the depth points). Migration
can be implemented by a Huygens-like superposition of the deconvolved traces. In a
mechanical medium, such as the Earth, forces between the small rock particles transmit
the disturbance. The disturbance at some regions of rock acts locally on nearby regions.
Huygens imagined that the disturbance on a given wavefront is made up of many
separate disturbances, each of which acts like a point source that radiates a spherically
symmetric secondary wave, or wavelet. The superposition of these secondary waves
gives the wavefront at a later time. The idea that the new wavefront is obtained by
superposition is the crowning achievement of Huygens. See Figure 4.3. In a similar
way, seismic migration uses superposition to find the subsurface reflecting interfaces.
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Construction of a reflecting interface.
See Figure 4.4. In the case of the migration, there is an added benefit of superposition,
namely, superposition is one of the most effective ways to accentuate signals and sup-
press noise. The superposition used in migration is designed to return the primary
reflections to their proper spatial locations. The remnants of the signal-generated noise
on the deconvolved traces are out of step with the primary events. As a result, the
remaining signal-generated noise tends to be destroyed by the superposition. The super-
position used in migration provides the desired image of the underground structure
of the Earth.

Historically, migration (i.e., the movement of reflected events to their proper locations
in space) was carried out manually, sometimes making use of elaborate drawing instru-
ments. The transfer of the manual processes to a digital computer involved the manipu-
lation of a great number of traces at once. The resulting digital migration schemes all
relied heavily on the superposition of the traces. This tremendous amount of data
handling had a tendency to overload the limited capacities of the computers made in
the 1960s and 1970s. As a result, it was necessary to simplify the migration problem and to
break it down into smaller parts. Thus, migration was done by a sequence of approximate
operations, such as stacking, followed by normal moveout, dip moveout, and migration
after stack. The process known as time migration was often used, which improved the
records in time, but stopped short of placing the events in their proper spatial positions.
All kinds of modifications and adjustments were made to these piecemeal operations, and
seismic migration in the 1970s and 1980s was a complicated discipline—an art as much as
a science. The use of this art required much skill. Meanwhile, great advances in technol-
ogy were taking place. In the 1990s, everything seemed to come together. Major improve-
ments in instrumentation and computers resulted in light compact geophysical field
equipment and affordable computers with high speed and massive storage. Instead of
the modest number of sources and receivers used in 2D seismic processing, the tremen-
dous number required for three-dimensional (3D) processing started to be used on a
regular basis in field operations. Finally, the computers were large enough to handle the
data for 3D imaging. Event movements (or migration) in three dimensions can now be
carried out economically and efficiently by time-honored superposition methods such
as those used in the Huygens’s construction. These migration methods are generally
named as prestack migration. This name is a relic, which implies that stacking and all the
other piecemeal operations are no longer used in the migration scheme. Until the 1990s,
3D seismic imaging was rarely used because of the prohibitive costs involved. Today, 3D
methods are commonly used, and the resulting subsurface images are of extraordinary
quality. Three-dimensional prestack migration significantly improves seismic inter-
pretation because the locations of geological structures, especially faults, are given
much more accurately. In addition, 3D migration collapses diffractions from secondary
sources such as reflector terminations against faults and corrects bow ties to form
synclines. Three-dimensional seismic work gives beautiful images of the underground
structure of the Earth.
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4.5 Iterative Improvement

Let (x, y) represent the surface coordinates and z represent the depth coordinate. Migra-
tion takes the deconvolved records and moves (i.e., migrates) the reflected events to depth
points in the 3D volume (x, y, z). In this way, seismic migration produces an image of the
geologic structure g(x, y, z) from the deconvolved seismic data. In other words, migration
is a process in which primary reflections are moved to their correct locations in space.
Thus, for migration, we need the primary reflected events. What else is required?
The answer is the complete velocity function v(x, y, z), which gives the wave velocity at
each point in the given volume of the Earth under exploration.

At this point, let us note that the word velocity is used in two different ways. One way is
to use the word velocity for the scalar that gives the rate of change of position in relation
to time. When velocity is a scalar, the terms speed or swiftness are often used instead. The
other (and more correct) way is to use the word velocity for the vector quantity that
specifies both the speed of a body and its direction of motion. In geophysics, the word
velocity is used for the (scalar) speed or swiftness of a seismic wave. The reciprocal of
velocity v is slowness, n ¼ 1/v. Wave velocity can vary vertically and laterally in isotropic
media. In anisotropic media, it can also vary azimuthally. However, we consider only
isotropic media; therefore, at a given point, the wave velocity is the same in all directions.
Wave velocity tends to increase with depth in the Earth because deep layers suffer more
compaction from the weight of the layers above. Wave velocity can be determined from
laboratory measurements, acoustic logs, and vertical seismic profiles or from velocity
analysis of seismic data. Often, we say velocity when we mean wave velocity. Over the
years, various methods have been devised to obtain a sampling of the velocity distribu-
tion within the Earth. The velocity functions so determined vary from method to method.
For example, the velocity measured vertically from a check-shot or vertical seismic profile
(VSP) differs from the stacking velocity derived from normal moveout measurements of
ommon depth point gathers. Ideally, we would want to know the velocity at each and
every point in the volume of Earth of interest. In many areas, there are significant and
rapid lateral or vertical changes in the velocity that distort the time image. Migration
requires an accurate knowledge of vertical and horizontal seismic velocity variations.
Because the velocity depends on the types of rocks, a complete knowledge of the velocity
is essentially equivalent to a complete description of the geologic structure g(x, y, z).
However, as we have stated above, the velocity function is required to get the geologic
structure. In other words, to get the answer (the geologic structure) g(x, y, z), we must
know the answer (the velocity function) v(x, y, z).

Seismic interpretation takes the images generated as representatives of the physical
Earth. In an iterative improvement scheme, any observable discrepancies in the image
are used as forcing functions to correct the velocity function. Sometimes, simple adjust-
ments can be made, and, at other times, the whole imaging process has to be redone
one or more times before a satisfactory solution can be obtained. In other words, there
is interplay between seismic processing and seismic interpretation, which is a manifestation
of the well-accepted exchange between the disciplines of geophysics and geology. Iterative
improvement is a well-known method commonly used in those cases where you must know
the answer to find the answer. By the use of iterative improvement, the seismic inverse
problem is solved. In other words, the imaging of seismic data requires a model of seismic
velocity. Initially, a model of smoothly varying velocity is used. If the results are not
satisfactory, the velocity model is adjusted and a new image is formed. This process is
repeated until a satisfactory image is obtained. To get the image, we must know the
velocity; the method of iterative improvement deals with this problem.
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4.6 Migration in the Case of Constant Velocity

Consider a primary reflection. Its two-way traveltime is the time it takes for the seismic
energy to travel down from the source S ¼ (xS, yS) to depth point D ¼ (xD, yD, zD) and
then back up to the receiver R ¼ (xR, yR). The deconvolved trace f(S, R, t) gives the
amplitude of the reflected signal as a function of two-way traveltime t, which is given
in milliseconds from the time that the source is activated. We know S, R, t, and f(S, R, t).
The problem is to find D, which is the depth point at refection.

An isotropic medium is a medium whose properties at a point are the same in all
directions. In particular, the wave velocity at a point is the same in all directions. Fresnel’s
principle of least time requires that in an isotropic medium the rays are orthogonal
trajectories of the wavefronts. In other words, the rays are normal to the wavefronts.
However, in an anisotropic medium, the rays need not be orthogonal trajectories of the
wavefronts. A homogeneous medium is a medium whose physical properties are the same
throughout. For ease of exposition, let us first consider the case of a homogenous isotropic
medium. Within a homogeneous isotropic material, the velocity v has the same value at all
points and in all directions. The rays are straight lines since by symmetry they cannot bend
in any preferred direction, as there are none. The two-way traveltime t is the elapsed time
for a seismic wave to travel from its source to a given depth point and return to a receiver at
the surface of the Earth. The two-way traveltime t is thus equal to the one-way traveltime t1

from the source point S to the depth point D plus the one-way traveltime t2 from the depth
point D to the receiver point R. Note that the traveltime from D to R is the same as the
traveltime from R to D. We may write t ¼ t1þ t2, which in terms of distance is

vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xD � xS)2 þ (yD � yS)2 þ (zD � zS)2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xD � xR)2 þ (yD � yR)2 þ (zD � zR)2

q

We recall that an ellipse can be drawn with two pins, a loop of string, and a pencil. The
pins are placed at the foci and the ends of the string are attached to the pins. The pencil is
placed on the paper inside the string, so the string is taut. The string forms a triangle. If
the pencil is moved around so that the string stays taut, the sum of the distances from the
pencil to the pins remains constant, and the curve traced out by the pencil is an ellipse.
Thus, if vt is the length of the string, then any point on the ellipse could be the depth point
D that produces the reflection for that source S, receiver R, and traveltime t. We therefore
take that event and move it out to each point on the ellipse.

Suppose we have two traces with only one event on each trace. Suppose both
events come from the same reflecting surface. In Figure 4.5, we show the two ellipses.
In the spirit of Huygens’s construction, the reflector must be the common tangent to
the ellipses. This example shows how migration works. In practice, we would take
Surface of earth

Tangent to the ellipses

Ellipse with possible reflector
points for event on one trace

Ellipse with possible reflector
points for event on another trace

FIGURE 4.5
Reflecting interface as a tangent.
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the amplitude at each digital time instant t on the trace, and scatter the amplitude on the
constructed ellipsoid. In this way, the trace is spread out into a 3D volume. Then we repeat
this operation for each trace, until every trace is spread out into a 3D volume. The next
step is superposition. All of these volumes are added together. (In practice, each trace
would be spread out and cumulatively added into one given volume.) Interference tends
to destroy the noise, and we are left with the desired 3D image of the Earth.
4.7 Implementation of Migration

A raypath is a course along which wave energy propagates through the Earth. In isotropic
media, the raypath is perpendicular to the local wavefront. The raypath can be calculated
using ray tracing. Let the point P ¼ (xP, yP) be either a source location or a receiver location.
The subsurface volume is represented by a 3D grid (x, y, z) of depth points D. To minimize
the amount of ray tracing, we first compute a traveltime table for each and every surface
location, whether the location be a source point or a receiver point. In other words, for each
surface location P, we compute the one-way traveltime from P to each depth point D in the 3D
grid. We put these one-way traveltimes into a 3D table that is labeled by the surface location P.

The traveltime for a primary reflection is the total two-way (i.e., down and up) time for
a path originating at the source point S, reflected at the depth point D, and received at the
receiver point R. Two identification numbers are associated with each trace: one for the
source S and the other for the receiver R. We pull out the respective tables for these two
identification numbers. We add the two tables together, element by element. The result is
a 3D table for the two-way traveltimes for that seismic trace.

Let us give a 2D example. We assume that the medium has a constant velocity, which
we take to be 1. Let the subsurface grid for depth points D be given by (z, x), where depth
is given by z ¼ 1, 2, . . . , 10 and horizontal distance is given by x ¼ 1, 2, . . . , 15. Let the
surface locations P be (z ¼ 1, x), where x ¼ 1, 2, . . . , 15. Suppose the source is S ¼ (1, 3).
We want to construct a table of one-way traveltimes, where depth z denotes the row and
horizontal distance x denotes the column. The one-way traveltime from the source to the

depth point (z, x) is t(z, x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z� 1)2 þ (x� 3)2

q
. For example, the traveltime from source

to depth point (z, x) ¼ (4, 6) is

t(4, 6) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4� 1)2 þ (6� 3)2

q
¼

ffiffiffiffiffi
18
p

¼ 4:24

This number (rounded) appears in the fourth row, sixth column of the table below. The
computed table (rounded) for the source is
2.0
� 2007 b
1.0
y Taylor
0.0
& Francis
1.0
Group, L
2.0
LC.
3.0
 4.0
 5.0
 6.0
 7.0
 8.0
 9.0
 10.0
 11.0
 12.0

2.2
 1.4
 1.0
 1.4
 2.2
 3.2
 4.1
 5.1
 6.1
 7.1
 8.1
 9.1
 10.0
 11.0
 12.0

2.8
 2.2
 2.0
 2.2
 2.8
 3.6
 4.5
 5.4
 6.3
 7.3
 8.2
 9.2
 10.2
 11.2
 12.2

3.6
 3.2
 3.0
 3.2
 3.6
 4.2
 5.0
 5.8
 6.7
 7.6
 8.5
 9.5
 10.4
 11.4
 12.4

4.5
 4.1
 4.0
 4.1
 4.5
 5.0
 5.7
 6.4
 7.2
 8.1
 8.9
 9.8
 10.8
 11.7
 12.6

5.4
 5.1
 5.0
 5.1
 5.4
 5.8
 6.4
 7.1
 7.8
 8.6
 9.4
 10.3
 11.2
 12.1
 13.0

6.3
 6.1
 6.0
 6.1
 6.3
 6.7
 7.2
 7.8
 8.5
 9.2
 10.0
 10.8
 11.7
 12.5
 13.4

7.3
 7.1
 7.0
 7.1
 7.3
 7.6
 8.1
 8.6
 9.2
 9.9
 10.6
 11.4
 12.2
 13.0
 13.9

8.2
 8.1
 8.0
 8.1
 8.2
 8.5
 8.9
 9.4
 10.0
 10.6
 11.3
 12.0
 12.8
 13.6
 14.4

9.2
 9.1
 9.0
 9.1
 9.2
 9.5
 9.8
 10.3
 10.8
 11.4
 12.0
 12.7
 13.5
 14.2
 15.0



Next , let us compu te the travel time for the recei ver poi nt. Note that the traveltime from
the depth point to the recei ver is the same as the travel time from the receive r to the depth
point . Sup pose the re ceiver is R ¼ (11, 1). The n the one-w ay traveltime from the recei ver

to the depth point ( z, x) is t( z , x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z � 1) 2 þ ( x � 11)2

q
. For examp le, the traveltime from

sour ce to depth point (z , x) ¼ (4, 6) is t (4, 6) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4 � 1) 2 þ (6 � 11)2

q
¼ 5: 85. This number

(rounded ) appear s in the fourth row, sixth co lumn of the tabl e belo w. The co mpute d
table (rou nded) for the receive r is
10.0 
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9.0 
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8.0 
rancis Grou
7.0 
p, LLC.
6.0 
5.0 
4.0 
3.0 
2.0 
1.0 
0.0 
1.0 
2.0 
3.0 
4.0

10.0 
9.1 
8.1 
7.1 
6.1 
5.1 
4.1 
3.2 
2.2 
1.4 
1.0 
1.4 
2.2 
3.2 
4.1

10.2 
9.2 
8.2 
7.3 
6.3 
5.4 
4.5 
3.6 
2.8 
2.2 
2.0 
2.2 
2.8 
3.6 
4.5

10.4 
9.5 
8.5 
7.6 
6.7 
5.8 
5.0 
4.2 
3.6 
3.2 
3.0 
3.2 
3.6 
4.2 
5.0

10.8 
9.8 
8.9 
8.1 
7.2 
6.4 
5.7 
5.0 
4.5 
4.1 
4.0 
4.1 
4.5 
5.0 
5.7

11.2 
10.3 
9.4 
8.6 
7.8 
7.1 
6.4 
5.8 
5.4 
5.1 
5.0 
5.1 
5.4 
5.8 
6.4

11.7 
10.8 
10.0 
9.2 
8.5 
7.8 
7.2 
6.7 
6.3 
6.1 
6.0 
6.1 
6.3 
6.7 
7.2

12.2 
11.4 
10.6 
9.9 
9.2 
8.6 
8.1 
7.6 
7.3 
7.1 
7.0 
7.1 
7.3 
7.6 
8.1

12.8 
12.0 
11.3 
10.6 
10.0 
9.4 
8.9 
8.5 
8.2 
8.1 
8.0 
8.1 
8.2 
8.5 
8.9

13.5 
12.7 
12.0 
11.4 
10.8 
10.3 
9.8 
9.5 
9.2 
9.1 
9.0 
9.1 
9.2 
9.5 
9.8
The addition of the above two tables gives the two-way traveltime s. For examp le, the
traveltime from sour ce to depth point ( z , x) ¼ (4, 6) and ba ck to recei ver is
t (4, 6) ¼ 4.24 þ 5.85 ¼ 1 0.09. Thi s number (rounded) appear s in the fourth row, sixth col-
umn of the two- way tabl e below. The two- way table (rounded ) for sour ce and receive r is
12
 10
 8
 8
 8
 8
 8
 8
 8
 8
 8
 10
 12
 14
 16

12
 10
 9
 8
 8
 8
 8
 8
 8
 8
 9
 10
 12
 14
 16

13
 11
 10
 10
 9
 9
 9
 9
 9
 10
 10
 11
 13
 15
 17

14
 13
 12
 11
 10
 10
 10
 10
 10
 11
 12
 13
 14
 16
 17

15
 14
 13
 12
 12
 11
 11
 11
 12
 12
 13
 14
 15
 17
 18

17
 15
 14
 14
 13
 13
 13
 13
 13
 14
 14
 15
 17
 18
 19

18
 17
 16
 15
 15
 15
 14
 15
 15
 15
 16
 17
 18
 19
 21

19
 18
 18
 17
 16
 16
 16
 16
 16
 17
 18
 18
 19
 21
 22

21
 20
 19
 19
 18
 18
 18
 18
 18
 19
 19
 20
 21
 22
 23

23
 22
 21
 20
 20
 20
 20
 20
 20
 20
 21
 22
 23
 24
 25
Figure 4.6 shows a contou r map of the a bove tab le. The co ntour lines are elliptic cu rves of
constant two-way traveltime for the given source and receiver pair.
Let the deconvolved trace (i.e., the trace with primary reflections only) be
Time
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19

Trace

Sample

0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 �1
 0
 0
 2
 0
 0
 0
 0
 3
 0
The next step is to place the amplitude of each trace at depth locations, where the
traveltime of the trace sample equals the traveltime as given in the above two-way
table. The trace is zero for all times except 10, 13, and 18. We now spread the trace
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FIGURE 4.6
Elliptic contour lines.
out as follows. In the above two-way table, the entries with 10, 13, and 18 are replaced by
the trace values �1, 2, 3, respectively. All other entries are replaced by zero. The result is
0
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0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

0
 �1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 �1
 0
 0
 0

2
 0
 �1
 �1
 0
 0
 0
 0
 0
 �1
 �1
 0
 2
 0
 0

0
 2
 0
 0
 �1
 �1
 �1
 �1
 �1
 0
 0
 2
 0
 0
 0

0
 0
 2
 0
 0
 0
 0
 0
 0
 0
 2
 0
 0
 0
 3

0
 0
 0
 0
 2
 2
 2
 2
 2
 0
 0
 0
 0
 3
 0

3
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

0
 3
 3
 0
 0
 0
 0
 0
 0
 0
 3
 3
 0
 0
 0

0
 0
 0
 0
 3
 3
 3
 3
 3
 0
 0
 0
 0
 0
 0

0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
This operation is repeated for all traces in the survey, and the resulting tables are added
together. The final image appears by the constructive and destructive interference among
the individual trace contributions. The above procedure for a constant velocity is the same
as with a variable velocity, except now the traveltimes are computed according to the
velocity function v(x, y, z). The eikonal equation can provide the means; hence, for the rest
of this paper we will develop the properties of this basic equation.
4.8 Seismic Rays

To move the received reflected events back into the Earth and place their energy at the
point of reflection, it is necessary to have a good understanding of ray theory. We assume
the medium is isotropic. Rays are directed curves that are always perpendicular to the



wavefront at any given time. The rays point along the direction of the motion of
the wavefront. As time progresses, the disturbance propagates, and we obtain a family
of wavefronts. We will now describe the behavior of the rays and wavefronts in media
with a continuously varying velocity.

In the treatment of light as wave motion, there is a region of approximation in which the
wavelength is small in comparison with the dimensions of the components of the optical
system involved. This region of approximation is treated by the methods of geome-
trical optics. When the wave character of the light cannot be ignored, then the methods of
physical optics apply. Since the wavelength of light is very small compared to ordinary
objects, geometrical optics can describe the behavior of a light beam satisfactorily in many
situations. Within the approximation represented by geometrical optics, light travels along
lines called rays. The ray is essentially the path along which most of the energy is transmit-
ted from one point to another. The ray is a mathematical device rather than a physical
entity. In practice, one can produce very narrow beams of light (e.g., a laser beam), which
may be considered as physical manifestations of rays. When we turn to a seismic wave, the
wavelength is not particularly small in comparison with the dimensions of geologic layers
within the Earth. However, the concept of a seismic ray fulfills an important need. Geo-
metric seismics is not nearly as accurate as geometric optics, but still ray theory is used to
solve many important practical problems. In particular, the most popular form of prestack
migration is based on tracing the raypaths of the primary reflections.

In ancient times, Archimedes defined the straight line as the shortest path between two
points. Heron explained the paths of reflected rays of light based on a principle of least
distance. In the 17th century, Fermat proposed the principle of least time, which let him
account for refraction as well as reflection. The Mississippi River has created most of
Louisiana with sand and silt. The river could not have deposited these sediments by
remaining in one channel. If it had remained in one channel, southern Louisiana would be
a long narrow peninsula reaching into the Gulf of Mexico. Southern Louisiana exists in its
present form because the Mississippi River has flowed here and there within an arc of
about two hundred miles wide, frequently and radically changing course, surging over
the left or the right bank to flow in a new direction. It is always the river’s purpose to get
to the Gulf in the least time. This means that its path must follow the steepest way down.
The gradient is the vector that points in the direction of the steepest ascent. Thus, the
river’s path must follow the direction of the negatives gradient, which is the path of
steepest descent. As the mouth advances southward and the river lengthens, the steep-
ness of the path declines, the current slows, and sediment builds up the bed. Eventually,
the bed builds up so much that the river spills to one side to follow what has become the
steepest way down. Major shifts of that nature have occurred about once in a millennium.
The Mississippi’s main channel of three thousand years ago is now Bayou Teche. A few
hundred years later, the channel shifted abruptly to the east. About two thousand years
ago, the channel shifted to the south. About one thousand years ago, the channel shifted
to the river’s present course. Today, the Mississippi River has advanced past New
Orleans and out into the Gulf that the channel is about to shift again to the Atchafalaya.
By the route of the Atchafalaya, the distance across the delta plain is 145 miles, which is
about half the length of the route of the present channel. The Mississippi River intends
changing its course to this shorter and steeper route.

The concept of potential was first developed to deal with problems of gravitational
attraction. In fact, a simple gravitational analogy is helpful in explaining potential. We do
work in carrying an object up a hill. This work is stored as potential energy, and it can be
recovered by descending in any way we choose. A topographic map can be used to
visualize the terrain. Topographic maps provide information about the elevation of the
surface above sea level. The elevation is represented on a topographic map by contour
� 2007 by Taylor & Francis Group, LLC.



lines. Each point on a contour line has the same elevation. In other words, a contour line
represents a horizontal slice through the surface of the land. A set of contour lines tells
you the shape of the land. For example, hills are represented by concentric loops, whereas
stream valleys are represented by V-shapes. The contour interval is the elevation differ-
ence between adjacent contour lines. Steep slopes have closely spaced contour lines, while
gentle slopes have very widely spaced contour lines.

In seismic theory, the counterpart of gravitational potential is the wavefront t(x, y,
z) ¼ constant. A vector field is a rule that assigns a vector, in our case the gradient

rt(x, y, z) ¼ @t

@x
,
@t

@y
,
@t

@z

� �

to each point (x, y, z). In visualizing a vector field, we imagine there is a vector extending
from each point. Thus, the vector field associates a direction to each point. If a hypothet-
ical particle moves in such a manner that its direction at any point coincides with the
direction of the vector field at that point, then the curve traced out is called a flow line. In
the seismic case, the wavefront corresponds to the equipotential surface and the seismic
ray corresponds to the flow line.

In 3D space, let r be the vector from the origin (0, 0, 0) to an arbitrary point (x, y, z). A
vector is specified by its components. A compact notation is to write r as r ¼ (x, y, z). We
call r the radius vector. A more explicit way is to write r as r ¼ xx̂þ yŷþ zẑ, where x̂, ŷ,
and ẑ are the three orthogonal unit vectors. These unit vectors are defined as the vectors
that have magnitude equal to one and have directions lying along the x, y, z axes,
respectively. They are referred to as ‘‘x-hat’’ and so on.

Now, let the vector r ¼ (x, y, z) represent a point on a given ray (Figure 4.7). Let s denote
arc length along the ray. Let rþdr ¼ (xþdx, yþdy, zþdz) give an adjacent point on the
same ray. The vector dr ¼ (dx, dy, dz) is (approximately) the tangent vector to the ray. The

length of this vector is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dx2 þ dy2 þ dz2Þ

p
which is approximately equal to the increment

ds of the arc length on the ray. As a result the unit vector tangent to the ray is

u ¼ dr

ds
¼ dx

ds
x̂þ dy

ds
ŷþ dz

ds
ẑ

The unit tangent vector can also be written as

u ¼ dx

ds
,

dy

ds
,

dz

ds

� �

The velocity along the ray is v ¼ ds/dt so dt ¼ ds/v ¼ n ds, where n(r) ¼ 1/v(r) is the
slowness and ds is an increment of path length along the given ray. Thus, the seismic
traveltime field is
FIGURE 4.7
Raypath and wavefronts. Radius vector r

Unit tangent u

Ray

Wavefront
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t(r) ¼
ðr

r0

n(r) ds

It is understood, of course, that the path of integration is along the given ray. The above
equation holds for any ray. A wavefront is a surface of constant traveltime. The time
difference between two wavefronts is a constant independent of the ray used to calculate
the time difference.

A wave as it travels must follow the path of least time. The wavefronts are like contour
lines on a hill. The height of the hill is measured in time. Take a point on a contour line. In
what direction will the ray point? Suppose the ray points along the contour line (that is,
along the wavefront). As the wave travels a certain distance along this hypothetical ray, it
takes time. But, all time is the same along the wavefront. Thus, a wave cannot travel along
a wavefront. It follows that a ray must point away from a wavefront. Suppose a ray points
away from the wavefront. The wave wants to take the least time to travel to the new
wavefront. By isotropy, the wave velocity is the same in all directions. Since the traveltime
is velocity multiplied by distance, the wave wants to take the raypath that goes the
shortest distance. The shortest distance is along the path that has no component along
the wavefront; that is, the shortest distance is along the normal to the wavefront. In other
words, the ray’s unit tangent vector u must be orthogonal to the wavefront. By definition,
the gradient is a vector that points in the direction orthogonal to the wavefront. Thus, the
ray’s unit tangent vector u and the gradient rt of the wavefront must point in the same
direction.

If the given wavefront is at time t and the new wavefront is at time tþdt, then the
traveltime along the ray is dt. If s measures the path length along the given ray, then
the travel distance in time dt is ds. Along the raypath, the increments dt and ds are related
by the slowness, that is, dt ¼ n ds. Thus, the slowness is equal to the directional derivative
in the direction of the raypath, that is, n ¼ dt/ds. In other words, the swiftness along the
raypath direction is v ¼ ds/dt, and the slowness along the raypath direction is n ¼ dt/ds. If
we write the directional derivative in terms of its components, this equation becomes

n ¼ dt

ds
¼ @t

@x

dx

ds
þ @t

@y

dy

ds
þ @t

@z

dz

ds
¼ rt � dr

ds

Because dr/ds ¼ u, it follows that the above equation is n ¼ rt � u. Since u is a unit vector
in the same direction of the gradient, it follows that

n ¼ jrtj juj cos 0 ¼ jrtj

In other words, the slowness is equal to the magnitude of the gradient. Since gradient rt
and the raypath each have the same direction u, and the gradient has magnitude n, and u
has magnitude unity, it follows that

rt ¼ nu

This equation is the vector eikonal equation. The vector eikonal equation written in terms
of its components is

@t

@x
,
@t

@y
,
@t

@z

� �
¼ n

dx

ds
,

dy

ds
,

dz

ds

� �

If we take the squared magnitude of each side, we obtain the eikonal equation
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@t

@x

� �2

þ @t

@y

� �2

þ @t

@z

� �2

¼ n2

The left-hand side involves the wavefront and the right-hand side involves the ray. The
connecting link is the slowness. In the eikonal equation, the function t(x, y, z) is the
traveltime (also called the eikonal) from the source to the point with the coordinates (x,
y, z), and n(x, y, z) ¼ 1/v(x, y, z) is the slowness (or reciprocal velocity) at that point. The
eikonal equation describes the traveltime propagation as an isotropic medium. To obtain
a well-posed initial value problem, it is necessary to know the velocity function v(x, y, z) at
all points in space. Moreover, as an initial condition, the source or some particular
wavefront must be specified. Furthermore, one must choose one of the two branches of
the solutions (namely, either the wave going from the source or else the wave going to the
source). The eikonal equation then yields the traveltime field t(x, y, z) in the heteroge-
neous medium, as required for migration.

What does the eikonal equationrt ¼ nu say? It says that, because of Fermat’s principle
of least time, the raypath direction must be orthogonal to the wavefront. The eikonal
equation is the fundamental equation that connects the ray (which corresponds to the
fuselage of the airplane) to the wavefront (which corresponds to the wings of the
airplane). The wings let the fuselage feel the effects of points removed from the path of
the fuselage. The eikonal equation makes a traveling wave (as envisaged by Huygens)
fundamentally different from a traveling particle (as envisaged by Newton). Hamilton
perceived that there is a wave–particle duality, which provides the mathematical foun-
dation of quantum mechanics.
4.9 The Ray Equations

In this section, the position vector r always represents a point on a specific raypath, and
not any arbitrary point in space. As time increases, r traces out the particular raypath in
question. The seismic ray at any given point follows the direction of the gradient of the
traveltime field t(r). As before, let u be the unit vector along the ray. The ray, in general,
follows a curved path, and nu is the tangent to this curved raypath. We now want to
derive an equation that will tell us how nu changes along the curved raypath. The vector
eikonal equation is written as

nu ¼ rt

We now take the derivative of the vector eikonal equation with respect to distance s along
the raypath. We obtain the ray equation

d

ds
(nu) ¼ d

ds
(rt)

Interchange r and (d/ds) and use dt/ds ¼ n. Thus, the right-hand side becomes

drt

ds
¼ r dt

ds

� �
¼ rn

Thus, the ray equation becomes
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High slowness

Low slowness

FIGURE 4.8
Straight and curved rays.
d

ds
(nu) ¼ rn

This equation, together with the equation for the unit tangent vector

dr

ds
¼ u

are called the ray equations.
We need to understand how a single ray, say a seismic ray, moving along a particular path

can know what is an extremal path in the variational sense. To illustrate the problem,
consider a medium whose slowness n decreases with vertical depth, but is constant laterally.
Thus, the gradient of the slowness at any location points straight up (Figure 4.8). The vertical
line on the left depicts a raypath parallel to the gradient of the slowness. This ray undergoes
no refraction. However, the path of the ray on the right intersects the contour lines of
slowness at an angle. The right-hand ray is refracted and follows a curved path, even though
the ray strikes the same horizontal contour lines of slowness as did the left-hand ray, where
there was no refraction. This shows that the path of a ray cannot be explained solely in terms
of the values of the slowness on the path. We must also consider the transverse values of the
slowness along neighboring paths, that is, along paths not taken by that particular ray.

The classical wave explanation, proposed by Huygens, resolves this problem by saying
that light does not propagate in the form of a single ray. According to the wave inter-
pretation, light propagates as a wavefront possessing transverse width. Think of an
airplane traveling along the raypath. The fuselage of the airplane points in the direction
of the raypath. The wings of the aircraft are along the wavefront. Clearly, the wavefront
propagates more rapidly on the side where the slowness is low (i.e., where the velocity is
high) than on the side where the slowness is high. As a result, the wavefront naturally
turns in the direction of the gradient of slowness.
4.10 Numerical Ray Tracing

Computer technology and seismic instrumentation have experienced great advances in
the past few years. As a result, exploration geophysics is in a state of transition from
computer-limited 2D processing to computer-intensive 3D processing. In the past, most
seismic surveys were along surface lines, which yield 2D subsurface images. The wave
equation acts nicely in one dimension, and in three dimensions, but not in two dimen-
sions. In one dimension, waves (as on a string) propagate without distortion. In three
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dimensions, waves (as in the Earth) propagate in an undistorted way except for a
spherical correction factor. However, in two dimensions, wave propagation is compli-
cated and distorted. By its very nature, 2D processing can never account for events
originating outside of the plane. As a result, 2D processing is broken up into a large
number of approximate partial steps in a sequence of operations. These steps are ingeni-
ous, but they can never give a true image. However, 3D processing accounts for all of
the events. It is now cost effective to lay out seismic surveys over a surface area and to do
3D processing. The third dimension is no longer missing, and, consequently, the need
for a large number of piecemeal 2D approximations is gone. Prestack depth migration is
a 3D imaging process that is computationally extensive, but mathematically simple.
The resulting 3D images of the interior of the Earth surpass all expectations in utility
and beauty.

Let us now consider the general case in which we have a spatially varying velocity
function v(x, y, z) ¼ v(r). This velocity function represents a velocity field. For a fixed
constant v0, the equation v(r) ¼ v0 specifies those positions, r, where velocity has this
fixed value. The locus of such positions makes up an isovelocity surface. The gradient

rv(r) ¼ @v

@x
,
@v

@y
,
@v

@z

� �

is normal to the isovelocity surface and points in the direction of the greatest increase in
velocity. Similarly, the equation n(r) ¼ n0 for a fixed value of slowness n0 specifies an
isoslowness surface. The gradient

rn(r) ¼ @n

@x
,
@n

@y
,
@n

@z

� �

is normal to the isoslowness surface and points in the direction of greatest increase in
slowness. The isovelocity and isoslowness surfaces coincide, and

rv ¼ �n�2rn

so the respective gradients point in the opposite direction, as we would expect.
A seismic ray makes its way through the slowness field. As the wavefront progresses in

time, the raypath is bent according to the slowness field. For example, suppose we have a
stratified Earth in which the slowness decreases with depth, a vertical raypath does not
bend, as it is pulled equally in all lateral directions. However, a nonvertical ray drags on
its slow side, therefore it curves away from the vertical and bends toward the horizontal.
This is the case of a diving wave, whose raypath eventually curves enough to reach the
Earth’s surface again. Certainly, the slowness field, together with the initial direction of
the ray, determines the entire raypath. Except in special cases, however, we must deter-
mine such raypaths numerically.

Assume that we know the slowness function n(r) and that we know the ray direction u1

at point r1. We now want to derive an algorithm for finding the ray direction u2 at point r2.
We choose a small, but finite, change in path length Ds. Then we use the first ray equation,
which we recall is

dr

ds
¼ u

to compute the change Dr ¼ r2 � r1. The required approximation is

Dr ¼ u1Ds
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or

r2 ¼ r1 þ u1Ds

We have thus found the first desired quantity r2. Next, we use the second ray equation,
which we recall is

d(nu)

ds
¼ rn

in the form

d(nu) ¼ rn ds

The required approximation is

D(nu) ¼ (rn) Ds

or

n(r2)u2 � n(r1)u1 ¼ rn Ds

For accuracy, rn may be evaluated by differentiating the known function n(r) midway
between r1 and r2. Thus, the desired u2 is given as

u2 ¼
n(r1)

n(r2)
u1 þ

Ds

n(r2)
rn

Note that the vector u1 is pulled in the direction of rn in forming u2, that is, the ray drags
on the slow side, and so is bent in the direction of increasing slowness. The special case of
no bending occurs when u1 and rn are parallel. As we have seen, a vertical wave in a
horizontally stratified medium is an example of such a special case. We have thus found
how to advance the wave along the ray by an incremental raypath distance. We can repeat
the algorithm to advance the wave by any desired distance.
4.11 Conclusions

The acquisition of seismic data in many promising areas yields raw traces that cannot be
interpreted. The reason is that signal-generated noise conceals the desired primary
reflections. The solution to this problem was found in the 1950s with the introduction of
the first commercially available digital computers and the signal-processing method of
deconvolution. Digital signal-enhancement methods, and, in particular, the various
methods of deconvolution, are able to suppress signal-generated noise on seismic records
and bring out the desired primary-reflected energy. Next, the energy of the primary
reflections must be moved to the spatial positions of the subsurface reflectors. This
process, called migration, involves the superposition of all the deconvolved traces accord-
ing to a scheme similar to Huygens’s construction. The result gives the reflecting horizons
and other features that make up the desired image. Thus, digital processing, as it is
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currently done, is roughly divided into two main parts, namely signal enhancement and
event migration. The day is not far off, provided that research actively continues in the
future as it has in the past, when the processing scheme will not be divided into two parts,
but will be united as a whole. The signal-generated noise consists of physical signals that
future processing should not destroy, but utilize. When all the seismic information is used
in an integrated way, then the images produced will be even more excellent.
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5.1 Introduction

This chapter describes multi-dimensional seismic data processing using the higher order
singular value decomposition (HOSVD) and partial (unimodal) independent component
analysis (ICA). These techniques are used for wavefield separation and enhancement of the
signal-to-noise ratio (SNR) in the data set. The use of multi-linear methods such as the
HOSVD is motivated by the natural modeling of a multi-dimensional data set using multi-
way arrays. In particular, we present a multi-way model for signals recorded on arrays of
vector-sensors acquiring seismic vibrations in different directions of the 3D space. Such
acquisition schemes allow the recording of the polarization of waves and the proposed
multi-way model ensures the effective use of polarization information in the processing.
This leads to a substantial increase in the performances of the separation algorithms.

Befo re in troducing the mu lti-way mo del and process ing, we first describe the classic al
subsp ace method based on the SVD and ICA techn iques for 2D (mat rix) seismic data sets.
Using a matrix model for these data sets, the SV D-bas ed subsp ace me thod is pres ented
and it is shown how an extra ICA step in the pr ocessin g allows bette r wave field separ-
ation. Then, conside ring sign als recorded on vector- sensor arrays , the multi-wa y mode l is
define d and discusse d. The HOSVD is pre sented and som e proper ties det ailed. Bas ed on
this multi- linear decomp osition, we propose a subspace method that allows separ ation of
polarize d wave s unde r orthogo nality co nstrai nts. We then introduce an ICA step in the
pro cess that is perform ed here uni quely on the temp oral mode of the data set, leading to
the so-call ed HOSV D–unim odal ICA subsp ace algorit hm. Resul ts on sim ulated and real
polarize d data sets sho w the ability of this algorit hm to surpas s a matr ix-based algorithm
and subspace method usin g only the HOSVD.

Sectio n 5.2 pre sents matr ix da ta sets and their associa ted mod el. In Section 5.3, the well-
known SVD is detailed, as well as the matrix-base d subspace method. The n, we pr esent
the ICA co ncept and its contrib ution to subspace formulat ion in Section 5.3.2. App lica-
tions of SVD–ICA to seismic wave field separatio n are discussed by way of illu stration s.
Sectio n 5.4 exp oses how sign al mixtur es recorded on vecto r-sens or array s can be
desc ribed by a mult i-way mod el. Then, in Se ction 5.5, we introdu ce the HO SVD and
the associa ted subspace me thod for multi-wa y data proces sing. As in the matrix data set
case, an extra ICA step is proposed leading to a HOSVD–unimodal ICA subspace method
in Section 5.5.2. Final ly, in Sectio n 5.5.3 and Section 5.5 .4, we illustrat e the propose d
algorithm on simulated and real multi-way polarized data sets. These examples empha-
size the potential of using both HOSVD and ICA in multi-way data set processing.
5.2 Matrix Data Sets

In this section, we show how the signals recorded on scalar-sensor arrays can be modeled
as a matrix data set having two modes or diversities: time and distance. Such a model allows
the use of subspace-based processing using a SVD of the matrix data set. Also, an
additional ICA step can be added to the processing to relax the unjustified orthogonality
constraint for the propagation vectors by imposing a stronger constraint of (fourth-order)
independence of the estimated waves. Illustrations of these matrix algebra techniques are
presented on a simulated data set. Application to a real ocean bottom seismic (OBS) data
set can be found in Refs. [1,2].
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5.2.1 Acquisition

In geophysics, the most commonly used method to describe the structure of the earth is
seismic reflection. This method provides images of the underground in 2D or 3D,
depending on the geometry of the network of sensors used. Classical recorded data sets
are usually gathered into a matrix having a time diversity describing the time or depth
propagation through the medium at each sensor and a distance diversity related to the
aperture of the array. Several methods exist to gather data sets and the most popular are
common shotpoint gather, common receiver gather, or common midpoint gather [3]. Seismic
processing consists in a series of elementary processing procedures used to transform
field data, usually recorded in common shotpoint gather into a 2D or 3D common
midpoint stacked 2D signals. Before stacking and interpretation, part of the processing
is used to suppress unwanted coherent signals like multiple waves, ground-roll (surface
waves), refracted waves, and also to cancel noise.

To achieve this goal, several filters are classically applied on seismic data sets. The SVD
is a popular method to separate an initial data set into signal and noise subspaces. In some
applications [4,5] when wavefield alignment is performed, the SVD method allows
separation of the aligned wave from the other wavefields.
5.2.2 Matrix Model

Consider a uniform linear array composed of Nx omni-directional sensors recording the
contributions of P waves, with P < Nx. Such a record can be written mathematically using
a convolutive model for seismic signals first suggested by Robinson [6]. Using the
superposition principle, the discrete-time signal xk(m) (m is the time index) recorded on
sensor k is a linear combination of the P waves received on the array together with an
additive noise nk(m):

xk(m) ¼
XP

i¼1

akisi(m�mki)þ nk(m) (5:1)

where si(m) is the ith source waveform that has been propagated through the transfer
function supposed here to consist in a delay mki and a factor attenuation aki. The noises on
each sensor nk(m) are supposed centered, Gaussian, spatially white, and independent of
the sources.

In the sequel, the use of the SVD to separate waves is only of significant interest if the
subspace occupied by the part of interest contained in the mixture is of low rank. Ideally,
the SVD performs well when the rank is 1. Thus, to ensure good results of the process, a
preprocessing is applied on the data set. This consists of alignment (delay correction) of a
chosen high amplitude wave. Denoting the aligned wave by s1(m), the model becomes
after alignment:

yk(m) ¼ ak1s1(m)þ
XP

i¼2

akisi(m�m0ki)þ n0k(m) (5:2)

where yk(m) ¼ xk(mþmk1), mki
0 ¼ mki�mk1 and n0k(m) ¼ nk(mþmk1).

In the following we assume that the wave s1(m) is independent from the others and
therefore independent from si(m�mki

0 ).
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C onsider ing t he sim plifi ed model of th e re ceiv ed signa ls ( Equa tion 5 .2 ) a nd supposin g Nt

time samples available, we define the matrix model of the recorded data set Y 2 RNx � Nt as

Y ¼ {ykm ¼ yk(m)j 1 � k � Nx, 1 � m � Nt} (5:3)

That is, the data matrix Y has rows that are the Nx signals yk(m) given in Equation 5.2. Such a
model allows the use of matrix decomposition, and especially the SVD, for its processing.
5.3 Matrix Processing

We now present the definition of the SVD of such a data matrix that will be of use for its
decomposition into orthogonal subspaces and in the associated wave separation technique.
5.3.1 SVD

As the SVD is a widely used matrix algebra technique, we only recall here theoretical
remarks and redirect readers interested in computational issues to the Golub and Van
Loan book [7].
5.3.1.1 Definition

Any matrix Y 2 RNx � Nt can be decomposed into the product of three matrices as follows:

Y ¼ UDVT (5:4)

where U is a Nx � Nx matrix, D is an Nx � Nt pseudo-diagonal matrix with singular
values {l1, l2 , . . . , lN} on its diagonal, satisfying l1 � l2 � . . .� lN � 0, (with N ¼ min(Nx,
Nt)), and V is an Nt � Nt matrix. The columns of U (respectively of V) are called the left
(respectively right) singular vectors, uj (respectively vj), and form orthonormal bases.
Thus U and V are orthogonal matrices. The rank r (with r � N) of the matrix Y is given
by the number of nonvanishing singular values.

Such a decomposition can also be rewritten as

Y ¼
Xr

j¼1

ljujv
T
j (5:5)

where uj (respectively vj) are the columns of U (respectively V). This notation shows that
the SVD allows any matrix to be expressed as a sum of r rank-1 matrices1.
5.3.1.2 Subspace Method

The SVD has been widely used in signal processing [8] because it gives the best rank
approximation (in the least squares sense) of a given matrix [9]. This property allows
denoising if the signal subspace is of relatively low rank. So, the subspace method consists
of decomposing the data set into two orthogonal subspaces with the first one built from
the p singular vectors related to the p highest singular values being the best rank
approximation of the original data. This can be written as follows, using the SVD notation
used in Equation 5.5, for a data matrix Y with rank r:
1Any matrix made up of the product of a column vector by a row vector is a matrix whose rank is equal to 1 [7].
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Y ¼ YSignal þ Y Noise ¼
Xp

j ¼ 1

lj uj v
T
j þ

Xr

j ¼ pþ 1

lj uj v
T
j (5: 6)

Orthogo nality betwee n the subsp aces spanned by the two sets of singular vecto rs is
ensu red by the fact that left and rig ht singular v ectors form orthon ormal bases.

From a practica l point of view, the val ue of p is chosen by finding an abrup t chan ge of
slope in the cu rve of relativ e sin gular values (relative meani ng perce ntile repres entation
of) contain ed in the matrix D defined in Eq uation 5.4. For some case s wh ere no ‘‘visible ’’
change of slope can be found, the value of p can be fixed at 1 for a perfect alignment of
waves, or at 2 for an imperfect alignment or for dispersive waves [10].
5.3.2 SVD and ICA

The motivation to relax the unjustified orthogonality constraint for the propagation
vectors is now presented. ICA is the method used to achieve this by imposing a fourth-
order independence on the estimated waves. This provides a new subspace method based
on SVD–ICA.
5.3.2.1 Motivation

The SVD of the data matrix Y in Equation 5.4 provides two orthogonal matrices composed
by the left uj (respectively right vj) singular vectors. Note here that vj are called estimated
waves because they give the time dependence of received signals by the array sensor and
uj propagation vectors because they give the amplitude of vj

0s on sensors [2].
As SVD provides orthogonal matrices, these vectors are also orthogonal. Orthogonality

of the vj
0s means that the estimated waves are decorrelated (second-order independence).

Actually, this supports the usual cases in geophysical situations, in which recorded waves
are supposed decorrelated. However, there is no physical reason to consider the ortho-
gonality of propagation vectors uj. Why should we have different recorded waves with
orthogonal propagation vectors? Furthermore, imposing the orthogonality of uj

0s, the
estimated waves vj are forced to be a mixture of recorded waves [1].

One way to relax this limitation is to impose a stronger criterion for the estimated
waves, that is, to be fourth-order statistically independent, and consequently to drop the
unjustified orthogonality constraint for the propagation vectors. This step is motivated by
cases encountered in geophysical situations, where the recorded signals can be approxi-
mated as an instantaneous linear mixture of unknown waves supposed to be mutually
independent [11]. This can be done using ICA.
5.3.2.2 Independent Component Analysis

ICA is a blind decomposition of a multi-channel data set composed of an unknown linear
mixture of unknown source signals, based on the assumption that these signals are
mutually statistically independent. It is used in blind source separation (BSS) to re-
cover independent sources (modeled as vectors) from a set of recordings containing
linear combinations of these sources [12–15]. The statistical independence of sources
means that the cross-cumulants of any order vanish. Generally, the third-order cumu-
lants are discarded because they are generally close to zero. Therefore, here we will
use fourth-order statistics, which have been found to be sufficient for instantaneous
mixtures [12,13].
� 2007 by Taylor & Francis Group, LLC.



ICA is usuall y res olved by a two- step algor ithm: pre whiteni ng follow ed by high- order
step. The first one co nsists in extra cting decorrel ated waves from the initia l data set. The
step is carri ed out direc tly by an SV D as the vj

0s are orthogon al.
The second step consists in finding a rotatio n matrix B , whic h leads to fou rth-order

inde penden ce of the estimate d waves . We suppos e here that the nonaligne d waves in the
data set Y are containe d in a subspace of dim ension R � 1, smaller than the ran k r of Y.
Assumi ng this , on ly the first R estimate d waves [v1 , . . . , vR ] 

notation ¼ V R 2 R 
Nt � R are

take n into acco unt [2]. As the recorde d waves are suppo sed mu tually indepen dent, this
sec ond step can be writte n as

VR B ¼ ~VV R ¼ [ ~vv1 , . . .  , ~vv R ] 2 R 
Nt � R (5 :7)

with B 2 RR � R the rotatio n (unitar y) matr ix having the proper ty BB T ¼ BTB ¼ I . The
new estimate d waves ~vvj are no w inde pendent at the fou rth order.

The re are differen t me thods of findi ng the rotatio n matrix: joint appr oximate diago na-
lizat ion of eige nmatrices (JADE ) [12] , maxim al diagon ality (MD) [13], sim ultane ous third-
orde r tensor diago nalizatio n (STOTD ) [14], fast and robu st fixed -point algor ithms for
inde penden t co mponent analys is (FastI CA) [15], and so on. To compare som e ci ted ICA
algor ithms, Figure 5.1 sho ws the rela tive error (see Equa tion 5.12) of the estimate d sign al
subsp ace versu s the SN R (see Eq uation 5.11) for the data set pre sented in Section 5.3. 3. For
SN Rs gre ater than �7.5 dB, Fa stICA usin g a ‘‘ tan h’ ’ no nlinearity with the parameter
equal to 1 in the fixed-poi nt algor ithm pro vides the smallest relative er ror, but with som e
erroneo us points at differen t SNR. Note that the ‘‘tan h’’ nonli nearity is the one which
gives the smal lest error for this data set, co mpared with ‘‘pow3’ ’, ‘‘g auss’’ with the
parameter equal to 1, or ‘‘s kew’’ nonli nearities. MD and JA DE algorithm s are appr oxi-
matel y equi valent accordin g to the relati ve error. For SNRs smaller than � 7.5 dB, MD
pro vides the smallest relative error. Consequently, the MD algorithm was employed in
the following.

Now, consi dering the SV D dec ompositi on in Equa tion 5.5 and the ICA step in Equa tion
5.7, the subspace described by the first R estimated waves can be rewritten as
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XR

j ¼ 1

lj uj v Tj ¼ U R DR VR
� �T¼ UR D  

R B ~VV R
� �T¼

XR

j¼ 1

bj ~uuj ~vv
T
j ¼

XR

i¼ 1

bi ~uu i ~vv
T
i (5: 8)

where U R ¼ [ u1,  . . .  ,  uR ] is made up of the first R vectors of the matrix U and D 
R ¼ diag

( l1, .  . . ,  lR ) is the R � R trun cated version of D contain ing the gre atest values of lj. The
second equality is obta ined usin g Equa tion 5.7. For the third equality, the ~uuj are the new
propa gation vectors obtained as the norm alized 2 vec tors (col umns) of the matrix UR DR B
and bj are the ‘‘modi fied sing ular values’ ’ obt ained as the ‘ 

2 -nor m of the co lumns of the
matrix U R DR B.

The elemen ts bj are usual ly not ord ered. For this reason, a per mutation betwee n the
vectors ~uuj as wel l as bet ween the vectors ~vv j is per formed to order the modifi ed singular
values. Denotin g with s( � ) this permu tation and with i ¼ s( j), the last equali ty of
Equa tion 5.8 is obtaine d.

In this decom position, wh ich is similar to that given by Equa tion 5.5, a stronger
criterion for the new estim ated waves ~vvi has been im posed, that is, to be inde pendent at
the fou rth ord er, and, at the same time, the condi tion of orthogon ality for the new
propa gation vecto rs ~uui has been rela xed.

In practica l situation s, the value of R become s a parameter . Usual ly, it is chosen to
compl etely describ e the align ed wave by the first R estim ated waves given by the SVD.
5.3.2 .3 Su bspace Method Using SVD–IC A

After the ICA and the per mutatio n steps, the sign al subspace is given by

~YYSignal ¼
X~pp

i ¼ 1

bi ~uui ~vv
T
i (5: 9)

where ~pp is the number of the new estimated waves necessary to describe the aligned wave.
The noise subsp ace ~YYNoise is obt ained by subt raction of the sign al subspace ~YYSignal from

the original da ta set Y :

~YYNoise ¼ Y � ~YY Signal (5: 10)

From a practica l point of view , the value of ~pp is chosen by findi ng an ab rupt change of
slope in the curve of relati ve mo dified sin gular values. For case s with low SN R, no
‘‘visible ’’ change of slope can be found and the value of ~pp can be fixed at 1 for a perfect
align ment of waves, or at 2 for an imper fect align ment or for dispersive waves.

Note here that for ver y smal l SN R of the initial data set, (for ex ample, smaller than � 6.2
dB for the data set pre sented in Section 5.3.3, the align ed wave can be describ ed by a less
energe tic estim ated wave than by the first one (related to the highes t sin gular value) . For
these extrem e cases , a search mu st be done after the ICA and the per mutatio n steps to
iden tify the indexe s for which the corresp onding estim ated waves ~vvi give the aligned
wave. So the signal subsp ace ~YYSignal in Equati on 5.9 must be rede fined by choosing the
inde x values fo und in the search . For exampl e, applying the MD algor ithm to the data set
pres ented in Section 5.3.3 for which the SNR was mod ified to �9 dB, the align ed wave is
desc ribed by the third estim ated wave ~vv3. Note also that using SVD without ICA in the
same conditions, the aligned wave is described by the eighth estimated wave v8.
2Vectors are normalized by their ‘2-norm.
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5.3. 3 Applic ation

An applicati on to a sim ulated data set is pre sented in this secti on to illus trate the beh avior
of the SVD–I CA versu s the SVD subspace me thod. Applic ation to a real da ta set obtaine d
duri ng an acqui sition with OBS can be fou nd in Ref s. [1,2] .

The preprocessed recorded signals Y on an 8-sensor array (Nx ¼ 8) during Nt ¼ 512 time
samples are represented in Figure 5.2c. This synthetic data set was obtained by the addition
of an original signal subspace S (Figure 5.2a) made up by a wavefront having infinite celerity
(velocity), consequently associated with the aligned wave s1(m), and an original noise sub-
space N (Figure 5.2b) made up by several nonaligned wavefronts. These nonaligned waves
are contain ed in a subspace of dimens ion 7, sm aller than the rank of Y, whic h equals 8.

The SNR ratio of the pre sented da ta set is SNR ¼ �3.9 dB. The SNR definiti on used
here is 3:

SNR ¼ 20 log10

kSk
kNk (5 :11)

Norm alizat ion to unit varian ce of eac h trace for eac h compo nent was don e bef ore
apply ing the descri bed subspace methods . This ens ures that even weak picked arrivals
are well repre sented within the inp ut da ta. Afte r the comp utatio n of sign al subspaces, a
deno rmalizatio n was applie d to find the origin al signal subsp ace.

Firs tly, the SV D subspace me thod was teste d. The subsp ace method given by Equa tion
5.6 was emp loyed, keepi ng only one sin gular vec tor (resp ective ly one sin gular val ue).
This choice was mad e by finding an abrupt chan ge of slop e after the first singular value
(Fig ure 5.6) in the relati ve sing ular val ues for this da ta set. The obtain ed sign al subspace
Y Signal and noise subspace YNoise are presented in Figure 5.3a and Figure 5.3b . It is clear
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FIGURE 5.2
Synthetic data set.

3kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

I
i¼1S

J
j¼1a2

ij

q
is the Frobenius norm of the matrix A ¼ {aij} 2R

I � J
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FIGURE 5.3
Results obtained using the SVD subspace method.
from thes e figures that the classical SVD im plies artifa cts in the two estim ated subspace s
for a wavefield separ ation obje ctive. Moreove r, the estim ated waves vj shown in Figure
5.3c are an instan taneous linear mixture of the recorde d wave s.

Th e s ig na l s ubsp ac e ~YY Si gn al and noise subspace ~YY Noise obtained using the SVD–ICA
subspace method given by Equation 5.9 are presented in Figure 5.4a and Figure 5.4b.
This improvement is due to the fact that using ICA we have imposed a fourth-order
independence condition stronger than the decorrelation used in classical SVD. With this
subspace method we have also relaxed the nonphysically justified orthogonality of the
propagation vectors.

The dimen sion R of the rotati on matr ix B was chos en to be eight becau se the aligned
waveli ght is pro jected on all eight estimate d waves vj shown in Figure 5.3c. Afte r the ICA
and the permutatio n steps, the new estimate d waves ~vvi are pre sented in Figure 5.4c. As
we can see, the first one desc ribes the aligned wave ‘‘per fectly’ ’. As no visible chan ge of
slope can be found in the rela tive modified sing ular values sho wn in Figure 5.6, the value
of ~pp was fixed at 1 because we are deali ng with a per fectly aligned wave.

To compa re the res ults qualitat ively, the stack rep resentat ion is usually employe d [5].
Figure 5.5 sho ws, from left to right, the stacks on the initial da ta set Y, the origin al sign al
subspace S , and the estim ated sign al subsp aces obtain ed with SVD and SV D–ICA sub-
space me thods, respecti vely. As the stack on the estima ted signal subspace ~YYSig nal is very
close to the stack on the origin al sign al subspace S, we can co nclude that the SVD–I CA
subspace me thod enhan ces the wave separatio n res ults.

To comp are thes e methods quantitat ively, we use the relative error « of the estimate d
signal subspace define d as

« ¼ kS � �YYSi gnal k2

kSk2 
(5: 12)
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FIGURE 5.4
Results obtained using the SVD-ICA subspace method.

FIGURE 5.5
Stacks. From left to right: initial data set Y, original signal
subspace S, SVD, and SVD–ICA estimated subspaces.
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Relative singular values.
where k�k is the matrix Frob enius norm defin ed above, S is the origin al signal subsp ace
and �YYSignal repres ents eithe r the estimated signal subspace YSignal obt ained using SVD or
the estimate d signal subsp ace ~YYSignal obt ained usin g SVD–I CA. For the data set presente d
in Figure 5.2, we obt ain « ¼ 55.7% for clas sical SVD and « ¼ 0.5% for SVD–I CA.

The SNR of this data set was modif ied by keeping the initia l noise subspa ce constan t
and by adjustin g the energy of the in itial sign al subspace. The rela tive errors of the
estim ated signal subsp aces versus the SNR are plotted in Figure 5.7. For SNRs greater
than 17 dB, the two methods are equivale nt. For sm aller SN R, the SVD–I CA subsp ace
method is obvious ly bet ter than the SVD subspace me thod. It pro vides a relative error
lower than 1% for SNRs greater than �10 dB.

Note here that for other da ta sets, the SVD–ICA per formance can be degr aded by the
unfulfil led indepen dence as sumpti on suppos ed for the aligned wave. Howeve r, for small
SNR of the data set, the SVD–ICA usual ly gives better perform ances than SVD.

The ICA step leads to a fou rth-order ind ependen ce of the estim ated waves and rela xes
the unj ustified orthogo nality co nstrai nt for the pro paga tion vecto rs. This step in the
proce ss enhances the wave separ ation result s and minimi zes the error on the estimate d
signal subspace, especial ly when the SNR ratio is low.
5.4 Multi- Way A rray Data S ets

We now turn to the modelization and processing of data sets having more than two modes
or diversities. Such data sets are recorded by arrays of vector-sensors (also called multi-
component sensors) collecting, in addition to time and distance information, the polarization
information. Note that there exist other acquisition schemes that output multi-way (or
multi-dimensional, multi-modal) data sets, but they are not considered here.
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5.4. 1 Multi-Wa y Acqui sition

In seismi c acqu isition camp aigns, multi-co mponent sensors have been used for more than
ten year s now. Such sen sors allow the recordin g of the polarizat ion of seismi c waves.
Thus , array s of suc h sensors provide useful inform ation ab out the nature of the propa-
gate d wavef ields and allow a more compl ete desc ripti on of the und erground structure s.
The polarizat ion inform ation is very useful to differen tiate and charact erize waves in
sign al, but the specific (multi-c omp onent) natur e of the data sets has to be tak en into
accou nt in the proce ssing. The use of vector- sensor arrays pro vides da ta sets with time ,
distanc e , and p olarization mod es, whic h are cal led trimo dal or thre e-mode da ta sets. Here we
pro pose to use a multi-w ay mod el to model and pro cess them.
5.4. 2 Multi-Wa y Mod el

To keep the trimodal (mul ti-dime nsional) struct ure of data sets originated from vecto r-
sens or a rrays in their proces sing, we propose a mu lti-way model. This mode l is an
extensi on of the one proposed in Sectio n 5.2.2 Thus , a thr ee-mod e data set is mo deled
as a multi-wa y array of size Nc � N x � N t, where Nc is the numbe r of comp onents of
each sensor used to recover the vibr ations of the wavef ield in the three directi ons of the 3D
spac e, Nx is the numb er of sensors of the vec tor-sen sor arr ay, and N t is the numbe r of time
samp les.

Note that the number of components is defined by the vector-sensor configuration. As an
example, for the illustration shown in Section 5.5.3, Nc ¼ 2 because one geophone and one
hydrophone were used, while Nc ¼ 3 in Section 5.5.4 because three geophones were used.

Supposing that the propagation of waves only introduces delay and attenuation, the
signal recorded on the cth component (c ¼ 1, . . . ,Nc) of the kth sensor (k ¼ 1, . . . ,Nx),
using the superposition principle and assuming that P waves impinge on the array of
vector-sensors, can be written as

xck(m) ¼
XP

i¼1

ackisi(m�mki)þ nck(m) (5:13)

where acki represents the attenuation of the ith wave on the cth component of the kth
sensor of the array. si(m) is the ith wave and mki is the delay observed at sensor k. The time
index is m.

nck(m) is the noise, supposed Gaussian, centered, spatially white, and independent of the
waves. As in the matrix processing approach, preprocessing is needed to ensure low rank of
the signal subspace and to ensure good results for a subspace-based processing method.

Thus, a velocity correction applied on the dominant waveform (compensation of mk1)
leads for the signal recorded on component c of sensor k to:

yck(m) ¼ ack1s1(m)þ
XP

i¼2

ackisi(m�m0ki)þ n0ck(m) (5:14)

where yck(m) ¼ xck(mþmk1), mki
0 ¼ mki�mk1, and n0ck(m) ¼ nck(mþmk1). In the sequel,

the wave s1(m) is considered independent from other waves and from the noise.
The subspace method developed thereafter will intend to isolate and estimate correctly
this wave.

Thus, three-mode data sets recorded during Nt time samples on vector-sensor arrays
made up by Nx sensors each one having Nc components can be modeled as multi-way
arrays Y 2R

Nc � Nx � Nt:
� 2007 by Taylor & Francis Group, LLC.



Y ¼ yckm ¼ yck ( m) j1 � c � Nc , 1 � k � N x , 1 � m � N t gf (5: 15)

This multi-wa y mo del can be used fo r exte nsion of subsp ace method separa tion to mu lti-
compo nent data sets.
5.5 Multi- Way A rray Processing

Multi-way data analysis arose firstly in the field of psychometrics with Tucker [16]. It is still
an active field of research and it has found applications in many areas such as chemometrics,
signal processing, communications, biological data analysis, food industry, etc.

It is an admitted fact that there exi sts no exact extensio n of the SV D for mu lti-way
array s of dimens ion greater than 2. Inst ead of suc h an exte nsion, there exist mai nly two
decom positio ns: PARA FAC [17] and HOSV D [14,16 ]. The first one is also known as
CAND ECOMP as it gives a canon ical decomp osition of a mult i-way array, that is, it
expres ses the mu lti-way a rray into a sum of rank-1 arrays . Note that the ran k-1 arr ays in
the PAR AFAC decom position may not be orthogo nal, unl ike in the matr ix case . The
second mu lti-way array decom positio n, HOSV D, gives orthogo nal ba ses in the three
ways of the arra y but is not a canon ical decom positio n as it does not exp ress the origin al
array into a sum of ran k-1 arr ays. However , in the sequel , we will make use of the
HOSVD bec ause of the orthogon al bases that allow extensi on of well-k nown subsp ace
methods bas ed on SVD to mu lti-way datasets.
5.5.1 HOSVD

We now introduce the HOSVD that was formulated and studied in detail in Ref. [14]. We give
particular attention to the three-mode case because we will process such data in the sequel,
but an extension to the multi-dimensional case exists [14]. One must notice that in the trimodal
case the HOSVD is equivalent to the TUCKER3 model [16]; however, the HOSVD has a
formulation that is more familiar in the signal processing community as its expression is given
in terms of matrices of singular vectors just as in the SVD in the matrix case.
5.5.1 .1 HO SVD Defin ition

Conside r a mult i-way arr ay Y 2 R 
Nc � Nx � Nt, the HOSVD of Y is given by

Y ¼ C �1 V (c) �  2 V (x) � 3 V (t) (5: 16)

where C 2 R 
Nc � Nx � N t is called the core arra y and V(i) ¼ [ v(i)1 ,  .  . . ,  v (i)j,  .  . . ,  v (i)ri

] 2 RNi � r i

are matrice s contain ing the sin gular vectors v(i)j 2 R 
Ni of Y in the three modes ( i ¼ c, x, t ).

These matr ices are orthogo nal, V(i)V (i )
T ¼ I , just as in the matr ix case . A schema tic

repres entation of the HOSV D is given in Figu re 5.8.
The cor e arra y C is the counterpa rt of the diagon al matr ix D in the SV D cas e in Equa tion

5.4, exce pt that it is no t hyperdi agonal but fulf ils the less re strictive pr operty of bein g all-
orthogonal. All-orthogonality is defined as

hCi¼Ci¼i ¼ 0 where i ¼ c, x, t and a 6¼ b

kCi¼1k � kCi¼2k � � � � � kCi¼ri
k � 0,8i

(5:17)
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FIGURE 5.8
HOSVD of a three-mode data set Y.
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wh ere h .,. i is the clas sical scalar product betwee n matric es4 and k�k is the matrix Frobeni us
norm defined in Section 5.2 (because here we deal with thr ee-mode da ta and the ‘‘slices’ ’
Ci ¼ a  def ine matr ices). Thus, h C i ¼ a, C i � bi ¼ 0 co rresponds to orthogo nality between
slices of the core array.

Cle arly, the all-o rthogonal ity pro perty consi sts of orthog onality betwee n two slices
(mat rices) of the core array cut in the same mode and ordering of the norm of these slices.
This second pro perty is the counterpar t of the decreasi ng arrangeme nt of the sing ular
val ues in the SVD [7], with the speci al pro perty of bein g va lid here for norms of slices of
C and in its three mode s. As a conse quence, the ‘‘energy ’’ of the three- mode data set Y is
concen trated at the (1,1,1) corn er of the core arr ay C .

The notatio n �n in Equation 5.16 is called the n-m ode product and there are thr ee such
pro ducts (namely �1, � 2, and �  3), whic h can be def ined for the three-mo de case. Give n a
mult i-way a rray A 2 RI1 � I2 � I3, then the three poss ible n-mode pro ducts of A with
matr ices are:

(A �1 B) ji2 i 3 ¼
P
i1

ai1 i 2 i3 
b ji1

( A �2 C) i1 ji3 ¼
P
i2

ai1 i 2 i3 
c ji2

( A �3 D) i1 i2 j ¼
P
i3

ai1 i 2 i3 
dji3 (5 :18)

wh ere B 2 RJ � I1, C 2 R 
J � I2 , and  D 2 R 

J � I3. Thi s is a gene ral notation in (multi-) linear
algebr a and even the SVD of a matrix can be exp ressed with suc h a pro duct. For exampl e,
the SV D given in Equation 5.4 can be re written, usin g n -mode pro ducts, as Y ¼ D �1

U �2 V [10] .
5.5. 1.2 Computat ion of the HOSV D

The problem of finding the elemen ts of a thr ee-mod e dec ompositi on was origin ally
solved using alt ernate least sq uare (ALS) techni ques (see Ref . [18] for details) . It was
onl y in Ref. [14] that a te chnique based on unfoldi ng matrix SVDs was proposed . We
pre sent bri efly here a way to comp ute the HOSVD using this approach.

From a multi-way array Y 2 R
Nc � Nx � Nt, it is possible to build three unfolding

matrices, with respect to the three modes c, x, and t, in the following way:

Y 2R
Nc�Nx�Nt )

Y(c) 2R
Nc�NxNt

Y(x) 2R
Nx�NtNc

Y(t) 2R
Nt�NcNx

8<
: (5:19)
4hA, Bi ¼ Si ¼ 1
I Sj ¼ 1

J aijbij is the scalar product between the matrices A ¼ {aij} 2R
I � J and B ¼ {bij} 2R

I � J.
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FIGURE 5.9
Schematic representation of the unfolding
matrices.
A schema tic rep resentat ion of these unfoldi ng matr ices is presente d in Figure 5.9.
Then, these three unfoldi ng matr ices ad mit the follow ing SVD decomp ositions:

YT
(i ) SVD U(i ) D(i ) V T(i) (5: 20)

where each matrix V(i) (i ¼ c, x, t) in Equation 5.16 is the right matrix given by the SVD of
each transposed unfolding matrix Y(i)

T . The choice of the transpose was made to keep a
homogeneous notation between matrix and multi-way processing. The matrices V(i)

define orthonormal bases in the three modes of the vector space R
Nc � Nx � Nt. The core

array is then directly obtained using the formula:

C ¼ Y�1 VT
(c) �2 VT

(x) �3 VT
(t) (5:21)

The singular values contained in the three matrices D(i) (i ¼ c, x, t) in Equation 5.20 are
called three-mode singular values.

Thus, the HOSVD of a multi-way array can be easily obtained from the SVDs of the
unfolding matrices, which makes computing of this decomposition easy using already
existing algorithms.
5.5.1.3 The (rc, rx, rt)-rank

Given a three-mode data Y2R
Nc � Nx � Nt, one gets three unfolded matrices Y(c), Y(x), and Y(t),

with respective ranks rc, rx, and rt. That is, the rj
0
s are given as the number of nonvanishing

singular values contained in the matrices D(i) in Equation 5.20, with i ¼ c, x, t.
As mentioned before, the HOSVD is not a canonical decomposition and so is not related

to the generic rank (number of rank-1 arrays that lead to the original array by linear
combination). Nevertheless, the HOSVD gives other information named, in the three-
mode case, the three-mode rank. The three-mode rank consists of a triplet of ranks: the
(rc, rx, rt)-rank, which is made up of the ranks of matrices Y(c), Y(x), and Y(t) in the HOSVD.
In the sequel, the three-mode rank will be of use for determination of subspace dimen-
sions, and so will be the counterpart of the classical rank used in matrix processing
techniques.
� 2007 by Taylor & Francis Group, LLC.



5.5. 1.4 Three-M ode Subspace Method

As in the matrix case, it is possib le, using the HOSV D, to def ine a subspace method
that decom poses the origin al three-mo de da ta set in to orthogo nal subspaces . Such a
techn ique was first proposed in Ref. [10] and can be stated as follow s. Given a thr ee-
mod e data set Y 2 RNc � Nx� Nt, it is possib le to decom pose it into the sum of a signal and a
noi se subspace as

Y ¼ YSignal þ Y Noise (5 :22)

with a weake r co nstrai nt than in the matrix case (ortho gonality ), wh ich is a mode orth o-
gonal ity , that is, orthog onality in the three mode s [10] (betw een subsp aces define d usin g
the unfoldi ng matr ices). Just as in the matrix case , the signal and noise subspaces are
form ed by differen t vecto rs obtained from the decomp osition of the data set. In the thr ee-
mod e case , the signal subspace YSignal is buil t using the first pc � rc sin gular vec tors in the
first mode , px � r x in the sec ond, and p t � rt in the third:

Y Signal ¼ Y �1 PV 
pc
(c )
�2 PV

px
( x)
�3 PV

pt
( t)

(5 :23)

with PV
pi
(i )

the pro jectors given by

PV 
pi
(i )
¼ V 

pi

(i) V 
pi

T

(i) (5 :24)

wh ere V(i)
pi ¼ [ v(i)1 , . . . , v(i)pi 

] are the matr ices contain ing the first pi sin gular vectors ( i ¼ c,
x, t ). Then after estim ation of the sign al subsp ace, the noi se subspace is sim ply obtaine d
by subt raction , that is, YNois e ¼ Y � Y Signal .

The estim ation of the signal subsp ace consists in finding a tripl et of val ues pc , px, pt that
allows recovery of the signal part by the ( pc, px, p t)-rank trun cation of the origin al data set
Y . Thi s truncati on is obtaine d by clas sical matr ix truncatio n of the three SVDs of the
unfol ding matr ices. However , it is importan t to note that suc h a truncatio n is not the best
( p1, p2, p3)- rank truncation of the data [10]. Neverthe less, the dec ompositio n of the origin al
three- mode data set is possibl e and leads , under som e as sumpti ons, to the separati on of
the recorded wavef ields .

From a practica l point of view, the choice of pc , px, pt val ues is made by findi ng abrupt
chang es of the slop e in the curves of rela tives of three-mo de singular values (the three
sets of singular values containe d in the matr ices D(i)). For some special case s for wh ich no
‘‘visible’’ change of slope can be found, the value of pc can be fixed at 1 for a linear
polarization of the aligned wavefield (denoted by s1(m) ), or at 2 for an elliptical polariza-
tion [10]. The value of px can be fixed at 1 and the value of pt can be fixed at 1 for a perfect
alignment of waves, or at 2 for not an imperfect alignment or for dispersive waves.

As in the matrix case, the HOSVD-based subspace method decomposes the original
spac e of the data set into orthogon al subspaces, and so follow ing the ideas develo ped in
Sectio n 5.3.2, it is possibl e to add a n ICA step to modify the orthogo nal constrai nt in the
temporal mode.
5.5.2 HOSVD and Unimodal ICA

To enhance wavefield separation results, we now introduce a unimodal ICA step follow-
ing the HOSVD-based subspace decomposition.
� 2007 by Taylor & Francis Group, LLC.



5.5.2 .1 HO SVD an d ICA

The SVD of the unfold ed matrix Y(t) in Equa tion 5.20 provides two orthog onal matrice s
U(t) and V(t) mad e up by the left and rig ht sin gular vec tors u(t)j and v(t)j. As for the SVD,
the v(t)js

0  are the estim ated waves and u(t)j’s are the propag ation vectors.
Based on the sa me motivatio ns a s in the SVD case, the unjust ified orthog onality

constr aint for the propag ation vecto rs can be relaxed by im posing a fourth -order in-
depende nce for the estimate d waves . Assu ming the recorded waves are mu tually
inde pendent, we can write:

VR
(t ) B ¼ ~VV R(t) ¼ [ ~vv(t)1 , . . . , ~vv(t)R ] (5: 25)

with B 2 RR � R the rotatio n (unitary) matr ix given by one of the algorit hms presented in
Section 5.3.2 and V(t)

R ¼ [v(t)1 , .  . . ,v (t)R ] 2 R Nt � R made up by the first R vectors of V(t).
Here we also suppose that the nonaligned waves in the unfold ed matrix Y(t) are

contain ed in a subspace of dimensi on R � 1, smal ler than the rank r t of Y (t).
After the ICA step, a ne w matrix can be compu ted:

~VV (t) ¼ ~VVR
(t ) ; V Nt � R

(t)

h i  
(5: 26)

This matrix is made up of the R vecto rs ~vv(t)j of the matrix ~VV(t)
R , which are ind ependent at

the fourth orde r, and by the last Nt � R vectors v(t)j of the matrix V(t), whic h are kept
unch anged.

The HOSV D–unim odal ICA decom positio n is def ined as

Y ¼ ~CC � 1 V (c) �  2 V (x) � 3 
~VV (t) (5: 27)

with 

~CC ¼ Y � 1 V T(c) �  2 V T(x) � 3 
~VV T(t) (5: 28)

Unimodal ICA implies here that ICA is only performed on one mode (the temporal mode).
As in the SVD case , a permutatio n s(.) betwee n the vec tors of V(c ), V(x), respectively, ~VV (t)

must be perform ed for orde ring the Fro benius norms of the subar rays (obtained by fixing
one inde x) of the new core array ~CC . Henc e, we keep the same decom position struct ure as
in relations given in Equati on 5.16 and Eq uation 5.21, the only diffe rence is that we have
modifi ed the or thogonality into a fourth-orde r independence constraint for the first R
estimated waves on the third mode. Note that the (rc,rx,rt)-rank of the three-mode data set
Y is unchanged.
5.5.2.2 Subspace Method Using HOSVD–Unimodal ICA

On the temporal mode, a new projector can be computed after the ICA and the permu-
tation steps:

~PP~VV
~ppt
(t)

¼ ~VV
~ppt

(t)
~VV

~ppt
T

(t) (5:29)

where ~VV(t)
~ppt ¼ [~vv(t)1, . . . ,~vv(t)~ppt] is the matrix containing the first ~ppt estimated waves, which

are the columns of ~VV(t) defined in Equation 5.26. Note that the two projectors on the first
two modes Pv

pc

ðcÞ
and Pv

px

ðcÞ
, given by Equa tion 5.24, mu st be reco mpute d after the

permutation step.
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The sign al subspace usin g the HO SVD–un imodal ICA is thus given as

~YY Signal ¼ Y �1 PV 
pc
(c )
�2 PV

px
( x)
�3

~PP~VV
~ppt
( t)

(5 :30)

and the noise subspace ~YYNoise is obtain ed by the subt raction of the signal subspace from
the origina l three-mo de data:

~YYNoise ¼ Y � ~YYSignal (5 :31)

In practica l situat ion s, as in the SVD–I CA subspace case, the value of R become s a
parame ter. It is chosen to fully describe the align ed wave by the first R estim ated waves
v(t)j obt ained while usin g the HO SVD.

The choice of the pc, px, and ~ppt values is made by finding abrup t change s of the slop e in
the curve s of modif ied three-mod e sing ular val ues, obtaine d after the ICA and the
per mutation steps. Note that in the HO SVD–un imodal ICA subsp ace method, the ran k
for the sign al subspace in the third mo de, ~ppt, is not necessaril y equal to the ran k pt

obt ained usin g only the HOSVD.
For some special cases for which no ‘‘visible’’ change of slope can be found, the value of ~ppt

can be fixed at 1 for a perfect alignment of waves, or at 2 for an imperfect alignment or for
dispersive waves. As in the HOSVD subspace method, px can be fixed at 1 and pc can be fixed
at 1 for a linear polarization of the aligned wavefield, or at 2 for an elliptical polarization.

App lications to simulat ed and real data are presente d in the followin g sections to
illu strate the beh avior of the HO SVD–un imoda l ICA method in compari son with com-
pon ent-wis e SVD (SVD appli ed on each compo nent of the multi-wa y data separ ately) and
HOSV D subspa ce me thods.

5.5. 3 Applic ation to Simulated Dat a

This simulation represents a multi-way data set Y 2 R
2�18�256 composed of Nx ¼ 18

sensors each recording two directions (Nc ¼ 2) in the 3D space for a duration of Nt ¼ 256
time samples. The first component is related to a geophone Z and the second one to a
hydrophone Hy. The Z component was scaled by 5 to obtain the same amplitude range.

Thi s da ta set shown in Figure 5.10c and Figu re 5.11 c has polari zation , distan ce, and time
as modes. It was obtained by the addition between an original signal subspace S with the
two components shown in Figure 5.10a and Figure 5.11a, respectively, and an original
noise subspace N (Figure 5.10b and Figure 5.11b respectively) obtained from a real
geophysical acquisition after subtraction of aligned waves.

The original signal subspace is made of several wavefronts having infinite apparent
velocity, associated with the aligned wave. The relation between Z and Hy is a linear
relation, which is assimilated to the wave polarization (polarization mode) in the sense
that it consists of phase and amplitude relations between the two components. Wave
amplitudes vary along the sensors, simulating attenuation along the distance mode. The
noise is uncorrelated from one sensor to the other (spatially white) and also unpolarized.
The SNR ratio of this data set is SNR ¼ �3 dB, where the SNR definition is:

SNR ¼ 20 log10

kSk
kNk (5:32)

where k�k is the multi-way array Frobenius norm5, S, and N the original signal and noise
subspaces.
5For any multi-way array X ¼ {xijk} 2R
I�J�K, his Frobenius norm is kXk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

i
i¼1S

j
j¼1S

K
k¼1x2

ijk

q
.
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FIGURE 5.10
Simulated data: the Z component.
Our aim is to recover the original signal (Figure 5.10a and Figure 5.11a) from the
mixture, which is, in practice, the only data available. Note that normalization to unit
variance of each trace for each component was done before applying the described
subspace methods. This ensures that even weak peaked arrivals are well represented
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FIGURE 5.11
Simulated data: the Hy component.
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FIGURE 5.12
Signal subspace using component-wise SVD.
with in the inp ut data. After co mputatio n of sign al subspaces, a deno rmalizatio n was
appli ed to find the origin al signa l subspace.

Firs tly, the SVD subspace me thod (describe d in Section 5.3) was applied separatel y on
Z and Hy compone nts of the mi xture. The signa l subspace compone nts obt ained keep ing
onl y one singular v alue for the two co mponent s are presente d in Figu re 5.1 2. Thi s choice
was made by fi nding an abrupt chan ge of slope after the first sin gular val ue in the relati ve
sing ular val ues shown in Figure 5.13 for each seismic 2D sign al. The wavefor ms are not
wel l recovered in resp ect of the origin al signal compone nts (Fig ure 5.10a and Figure 5.11a) .
One can also see that the distin ction betwee n diffe rent wavef ronts is not poss ible.
Further more, no arriva l time estim ation is possi ble usin g this techniqu e. Low signa l
level is a strong han dicap for a co mponent -wise proce ss.

App lied on eac h comp onent separ ately, the SV D subsp ace method does not find the
same align ed polariz ed wave. The result s depe nd theref ore on the charact eristics of each
matr ix sign al. Using the SVD–ICA subsp ace method, the estimated a ligned wave s may be
impro ved, but we can be confront ed with the sa me problem .
FIGURE 5.13
Relative singular values. Top: Z component.
Bottom: Hy component.
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Results obtained using the HOSVD subspace method.
Using the HOSVD subsp ace me thod, the compone nts of the estim ated signa l subsp ace
YSignal are presente d in Figure 5.14a and Figure 5.14b. In this case, the number of singular
vectors kept are: one on pola rization , one on distanc e, and on e on time mod e, givin g a
(1,1,1)-r ank truncatio n for the signal subspace. This choi ce is mo tivated here by the linear
polarizat ion of the align ed wave. For the other two modes the choice was made by finding
an ab rupt change of slope after the first singular value (Fi gure 5.17a) .

There still remain som e ‘‘osc illations’ ’ betwee n the differen t wavef ronts for the two
compo nents of the estim ated sign al subsp ace, that may ind uce some det ection errors.
An ICA step is required in this case to obtain a bette r signal separati on and to cancel
parasi tic osc illatio ns.

In Figure 5.15a and Figu re 5.15b , the wavef ronts of the estim ated sign al subspace ~YYSignal

obtaine d wi th the HOSVD– uni modal ICA te chnique a re very close to the origin al signal
compo nents.

Here, the ICA method was applied on the first R ¼ 5 estimate d wave s sho wn in
Figure 5.14c. Thes e waves desc ribe the aligned waves of the origin al sign al subspace S.
After the ICA step, the estimated waves ~vv(t)j are shown in Figure 5.15c. As we can see, the
first one ~vv(t)1 describ es mo re preci sely the align ed wave of the origin al subsp ace S than the
first estim ated wave v(t)1 befo re the ICA step (Figure 5.14c) . The estim ation of signal
subspace is more accurate and the aligned wavele t can be better estima ted with our
propose d procedur e.

After the permu tation step, the relati ve sin gular values on the thr ee mode s in the
HOSVD– uni modal ICA case are sho wn in Figu re 5.17b. This figure justi fies the choi ce
of a (1,1,1) -rank truncatio n for the signal subspace, due to the linear polarizat ion and the
abrup t chan ges of the slop es for the other two mo des.

As for the bidimen siona l case , to compa re these me thods quantitat ively, we use the
relative error « of the estimated signal subspace defined as
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 5.15
Results obtained using the HOSVD–unimodal ICA subspace method.
« ¼ kS� Y
Signalk2

kSk2
(5:33)

where k�k is the multi-way array Frobenius norm defined above, S is the original signal
subspace, and �YYSignal represents the estimated signal subspaces obtained with the SVD,
HOSVD, and HOSVD–unimodal ICA methods, respectively. For this data set we obtain
« ¼ 21.4% for the component-wise SVD, « ¼ 12.4% for HOSVD, and « ¼ 3.8% for
HOSVD–unimodal ICA. We conclude that the ICA step minimizes the error on the
estimated signal subspace.

To compare the results qualitatively, the stack representation is employed. Figure 5.16
shows for each component, from left to right, the stacks on the initial data set Y,
the original signal subspace S, and the estimated signal subspaces obtained with the
component-wise SVD, HOSVD, and HOSVD–unimodal ICA subspace methods, respectively.
FIGURE 5.16
Stacks. From left to right: initial data set Y, original
signal subspace S, SVD, HOSVD, and HOSVD–unim-
odal ICA estimated subspaces, respectively.
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FIGURE 5.17
Relative three-mode singular values.
As the stack on the estim ated sign al subspace ~YYSignal is very close to the stack on the
origin al signal subsp ace S, we co nclude that the HOSV D–unim odal ICA subspace me thod
enhance s the wave separ ation result s.
5.5.4 Applic ation to Real Data

We conside r now a real vertical seismic pro file (VSP) geop hysical data set. This 3C data
set was recorded by Nx ¼ 50 sensors with the depth sampling 10 m, each one made up by
Nc ¼ 3 geophon es recordi ng three directio ns in the 3D spac e: X, Y, and Z, respec tively.
The recordi ng tim e was 700 msec, correspo nding to Nt ¼ 17 5 tim e sampl es. The Z
compo nent was scaled seven times to obt ain the same amp litude rang e.

After the prepro cessing step (vel ocity correc tion ba sed on the direct dow ngoing wave) ,
the obtained da ta set Y 2 R3� 50 � 175 is sho wn in Figure 5.18.

As in the sim ulation case , normal ization and deno rmalizatio n of each trace for each
compo nent were done bef ore and a fter applyi ng the differen t subsp ace methods.

From the origin al da ta set we have co nstructe d three seismic 2D matrix signals repre-
senting the thr ee compone nts of the data set Y . The SVD subsp ace method pr esented in
Section 5. 3.1 was appli ed on each matr ix signal , keepi ng only one singular vector (re-
spect ively one singular v alue) for eac h one , due to an abrup t change of slope after the first
singular value in the curves of rela tive sing ular values. As remar ked in the sim ulation
case, the SVD–I CA subspace me thod may improve the estim ated align ed waves , but we
will no t find the sa me aligned polarized wave for all seismic matrix sign als.

For the HOSV D subspace method, the estim ated sign al subspace YSignal can be define d
as a (2,1,1) -rank trun cation of the da ta set. This choice is motivate d here by the elliptical
polarizat ion of the align ed wave. For the other two modes the choice was made by finding
an ab rupt change of slope after the first singular value (Fi gure 5.20a) .

Using t he HO SV D–uni modal ICA, the ICA step was ap plied h ere on t he first R ¼
9 estimated waves v( t ) j shown in Figure 5.19a. As suggested, R bec o mes a par a met er
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 5.18
Real VSP geophysical data Y.
while using real d ata. Howeve r, the e stimated waves ~vv( t ) j shown in Figure 5.19b are
more realistic (shorter wavelet and no side lobe s) t han those o btained wi thout ICA.
Due to t he elli ptical polarization and t he abrup t change of sl ope a fter the first
singular v al ue for t he other two mo des ( Figure 5.20b), t he estimated signal subspace
~YY Sig n al is defined as a (2,1,1)- rank truncation of the data set. This step enhances
the wave separation r esults, impl ying a min imization of the e rro r on t he estimated
signal subspace.

When we deal with a re al data set, only a qualitat ive comp arison is possi ble. Thi s is
allowed by a stack rep resentat ion. Figure 5.21 shows the stack s fo r the X, Y, and
Z compo nents, resp ectively, on the initia l trimo dal data Y and on the estimate d sign al
FIGURE 5.19
The first 9 estimated waves.
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FIGURE 5.20
Relative three-mode singular values.
subspaces given by the component-wise SVD, HOSVD, and HOSVD–unimodal ICA
methods, respectively.

The results on simulated and real data suggest that the three-dimensional subspace
methods are more robust than the component-wise techniques because they exploit
the relationship between the components directly in the process. Also, the fourth-order
independence constraint of the estimated waves enhances the wave separation results
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Stacks. From left to right: initial data set Y, SVD, HOSVD, and HOSVD–unimodal ICA estimated subspaces,
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and minimizes the error on the estimated signal subspace. This emphasizes the potential
of the HOSVD subspace method associated with a unimodal ICA step for vector-sensor
array signal processing.
5.6 Conclusions

We have presented a subspace processing technique for multi-dimensional seismic data sets
based on HOSVD and ICA. It is an extension of well-known subspace separation techniques
for 2D (matrix) data sets based on SVD and more recently on SVD and ICA. The proposed
multi-way technique can be used for the denoising and separation of polarized waves
recorded on vector-sensor arrays. A multi-way (three-mode) model of polarized signals
recorded on vector-sensor arrays allows us to take into account the additional polarization
information in the processing and thus to enhance the separation results.

A decomposition of three-mode data sets into all-orthogonal subspaces has been pro-
posed using HOSVD. An extra unimodal ICA step has been introduced to minimize the
error on the estimated signal subspace and to improve the separation result. Also, we
have shown on simulated and real data sets that the proposed approach gives better
results than the component-wise SVD subspace method.

The use of multi-way array and associated decompositions for multi-dimensional data
set processing is a powerful tool and ensures the extra dimension is fully taken into
account in the process. This approach could be generalized to any multi-dimensional
signal modelization and processing and could take advantage of recent work on tensors
and multi-way array decomposition and analysis.
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6.1 Introduction to Seismic Signal Processing

Formed millions of years ago from plants and animals that died and decomposed beneath
soil and rock, fossil fuels, namely, coal and petroleum, due to their low cost availabi-
lity, will remain the most important energy resource for at least another few decades.
Ongoing petroleum research continues to focus on science and technology needs for
increased petroleum exploration and production. The petroleum industry relies heavily
on subsurface imaging techniques for the location of these hydrocarbons.
6.1.1 Data Acquisition

Many geophysical survey techniques exist, such as multichannel reflection seismic pro-
filing, refraction seismic survey, gravity survey, and heat flow measurement. Among
them, reflection seismic profiling method stands out because of its target-oriented cap-
ability, generally good imaging results, and computational efficiency. These reflectivity
data resolve features such as faults, folds, and lithologic boundaries measured in 10s
of meters, and image them laterally for 100s of kilometers and to depths of 50 kilometers
or more. As a result, seismic reflection profiling becomes the principal method by which
the petroleum industry explores for hydrocarbon-trapping structures.

The seismic reflection method works by processing echoes of seismic waves
from boundaries between different Earth’s subsurfaces that characterize different
acoustic impedances. Depending on the geometry of surface observation points and
source locations, the survey is called a 2D or a 3D seismic survey. Figure 6.1 shows a
typical 2D seismic survey, during which, a cable with attached receivers at regular
intervals is dragged by a boat. The source moves along the predesigned seismic
lines and generates seismic waves at regular intervals such that points in the subsurfaces
are sampled several times by the receivers, producing a series of seismic traces. These
seismic traces are saved on magnetic tapes or hard disks in the recording boat for
future processing.
Water

Bottom

Subsurface 1

Subsurface 2

Receivers Source

FIGURE 6.1
A typical 2D seismic survey.
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6.1.2 Data Processing

Seismic data processing has been regarded as having a flavor of interpretive character;
it is even considered as an art [1]. However, there is a well-established sequence
for standard seismic data processing. Deconvolution, stacking, and migration are the
three principal processes that make up the foundation. Besides, some auxiliary processes
can also help improve the effectiveness of the principal processes. In the following
subsections, we briefly discuss the principal processes and some auxiliary processes.
6.1.2.1 Deconvolution

Deconvolution can improve the temporal resolution of seismic data by compress-
ing the basic seismic wavelet to approximately a spike and suppressing reverberations
on the field data [2]. Deconvolution usually applied before stack is called prestack
deconvolution. It is also a common practice to apply deconvolution to stacked data,
which is named poststack deconvolution.
6.1.2.2 Normal Moveout

Consider the simplest case where the subsurfaces of the Earth are horizontal, and within
this layer, the velocity is constant.

Here x is the distance (offset) between the source and the receiver positions, and v is
the velocity of the medium above the reflecting interface. Given the midpoint location
M, let t(x) be the traveltime along the raypath from the shot position S to the depth
point D, then back to the receiver position G. Let t(0) be twice the traveltime along
the vertical path MD. Utilizing the Pythagorean theorem, the traveltime equation as a
function of offset is

t2(x) ¼ t2(0)þ x2=v2 (6:1)

Note that the above equation describes a hyperbola in the plane of two-way time vs.
offset. A common-midpoint (CMP) gather are the traces whose raypaths associated with
each source–receiver pair reflect from the same subsurface depth point D. The difference
between the two-way time at a given offset t(x) and the two-way zero-offset time t(0) is
called NMO. From Equation 6.1, we see that velocity can be computed when offset x and
the two-way times t(x) and t(0) are known. Once the NMO velocity is estimated, the
travletimes can be corrected to remove the influence of offset.

DtNMO ¼ t(x)� t(0)

Traces in the NMO-corrected gather are then summed to obtain a stack trace at the
particular CMP location. The procedure is called stacking.

Now consider the horizontally stratified layers, with each layer’s thickness
defined in terms of two-way zero-offset time. Given the number of layers N, interval
velocities are represented as (v1, v2, . . . , vN). Considering the raypath from source S to
depth D, back to receiver R, associated with offset x at midpoint location M, Equation 6.1
becomes

t2(x) ¼ t2(0)þ x2= v2
rms (6:2)

where the relation between the rms velocity and the interval velocity is represented by
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v2
rms ¼

1

t(0)

XN

i ¼1

v2
i Dt i(0)

where Dti is the vertical two-way time through the ith layer and t(0) ¼
Pi

k¼1

Dtk.

6.1. 2.3 Velocity Analysis

Effective correction for normal moveout depends on the use of accurate velocities. In CMP
surveys, the appropriate velocity is derived by computer analysis of the moveout in the
CMP gathers. Dynamic corrections are implemented for a range of velocity values and the
corrected traces are stacked. The stacking velocity is defined as the velocity value that
produces the maximum amplitude of the reflection event in the stack of traces, which
clearly represents the condition of successful removal of NMO.

In practice, NMO corrections are computed for narrow time windows down the entire
trace, and for a range of velocities, to produce a velocity spectrum. The validity for each
velocity value is assessed by calculating a form of multitrace correlation between the corrected
traces of the CMP gathers. The values are shown contoured such that contour peaks occur at
times corresponding to reflected wavelets and at velocities that produce an optimum stacked
wavelet. By picking the location of the peaks on the velocity spectrum plot, a velocity function
defining the increase of velocity with depth for that CMP gather can be derived.
6.1. 2.4 NMO S tretching

After applying NMO correction, a frequency distortion appears, particularly for shallow
events and at large offsets. This is called NMO stretching. The stretching is a frequency
distortion where events are shifted to lower frequencies, which can be quantified as

D f=f ¼ D tNMO =t(0) (6 :3)

where f is the dominant frequency, Df is change in frequency, and D tNMO is given by
Equation 6.2. Because of the waveform distortion at large offsets, stacking the NMO-
corrected CMP gather will severely damage the shallow events. Muting the stretched
zones in the gather can solve this problem, which can be carried out by using the
quantitative definition of stretching given in Equation 6.3. An alternative method for
optimum selection of the mute zone is to progressively stack the data. By following the
waveform along a certain event and observing where changes occur, the mute zone is
derived. A trade-off exists between the signal-to-noise (SNR) ratio and mute, that is, when
the SNR is high, more can be muted for less stretching; otherwise, when the SNR is low, a
large amount of stretching is accepted to catch events on the stack.
6.1. 2.5 Stacking

Among the three principal processes, CMP stacking is the most robust of all. Utilizing
redundancy in CMP recording, stacking can significantly suppress uncorrelated noise,
thereby increasing the SNR ratio. It also can attenuate a large part of the coherent noise in
the data, such as guided waves and multiples.

6.1. 2.6 Migration

On a seismic section such as that illustrated in Figure 6.2, each reflection event is mapped
directly beneath the midpoint. However, the reflection point is located beneath the
midpoint only if the reflector is horizontal. With a dip along the survey line the actual
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FIGURE 6.2
The NMO geometry of a single horizontal
reflector.
reflection point is displaced in the up-dip direction; with a dip across the survey line
the reflection point is displaced out of the plane of the section. Migration is a process that
moves dipping reflectors into their true subsurface positions and collapses diffractions,
thereby depicting detailed subsurface features. In this sense, migration can be viewed as a
form of spatial deconvolution that increases spatial resolution.
6.1.3 Interpretation

The goal of seismic processing and imaging is to extract the reflectivity function of the
subsurface from the seismic data. Once the reflectivity is obtained, it is the task of
the seismic interpreter to infer the geological significance of a certain reflectivity pattern.
6.2 Factor Analysis Framework

Factor analysis (FA), a branch of multivariate analysis, is concerned with the in-
ternal relationships of a set of variates [3]. Widely used in psychology, biology,
chemometrics1 [4], and social science, the latent variable model provides an important
tool for the analysis of multivariate data. It offers a conceptual framework within which
many disparate methods can be unified and a base from which new methods can be
developed.
6.2.1 General Model

In FA the basic model is

x ¼ Asþ n (6:4)

where x ¼ (x1, x2, . . . , xp)T is a vector of observable random variables (the test scores),
s ¼ (s1, s2, . . . , sr)

T is a vector r < p unobserved or latent random variables (the common
factor scores), A is a (p� r) matrix of fixed coefficients (factor loadings), n ¼ (n1, n2, . . . , np)T

is a vector of random error terms (unique factor scores of order p). The means are usually
set to zero for convenience so that E(x)¼E(s)¼E(n)¼ 0. The random error term consists
1Chemometrics is the use of mathematical and statistical methods for handling, interpreting, and predicting
chemical data.
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of errors of measurement and the unique individual effects associated with each variable xj,
j ¼ 1, 2, . . . , p. For the present model we assume that A is a matrix of constant parameters
and s is a vector of random variables.

The following assumptions are usually made for the factor model [5]:

. rank ( A) ¼ r < p

. E( xj s) ¼ A s

. E( xxT) ¼ S, E( ssT) ¼ V and

� ¼ E nnT
� �

¼

s2
1 0

s2
2

. .
.

0 s2
p

26664
37775 

(6 :5)

That is, the errors are assumed to be uncorrelated. The common factors however are
generally correlated, and V is therefore not necessarily diagonal. For the sake of conveni-
ence and computational efficiency, the common factors are usually assumed to be uncor-
related and of unit variance, so that V ¼ I.

. E( snT) ¼ 0 so that the errors and common factors are uncorrelated.

From the above assumptions, we have

E xxT
� �

¼ S ¼ E ( As þ n)(A s þ n)T
� �

¼ E AssT AT þ AsnT þ nsT AT þ nnT
� �

¼ AE ssT
� �

AT þ AE snT
� �

þ E nsT
� �

AT þ E nnT
� �

¼ AVAT þ E nnT
� �

¼ Gþ� (6:6)

where G ¼ AVAT and � ¼ E(nnT) are the true and error covariance matrices, respectively.
In addition, postmultiplying Equation 6.4 by sT, considering the expectation, and using

assumptions (6.3) and (6.4), we have

E xsT
� �

¼ E AssT þ nsT
� �

¼ AE ssT
� �

þ E nsT
� �

¼ AV (6:7)

For the special case of V ¼ I, the covariance between the observation and the latent
variables simplifies to E(xsT) ¼ A.

A special case is found when x is a multivariate Gaussian; the second moments of
Equation 6.6 will contain all the information concerning the factor model. The factor
model Equation 6.4 will be linear, and given the factors s the variables x are conditionally
independent. Let s 2 N(0, I), the conditional distribution of x is

xjs 2 N(As, �) (6:8)
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or

p(xj s) ¼ (2 p) � p=2 �j j�1 =2 exp � 1

2 
( x � As)T ��1(x � A s)

� �
(6:9)

with conditional independence following from the diagonality of �. The common factors
s therefore reproduce all covariances (or correlations) between the variables, but account
for only a portion of the variance.

The marginal distribution for x is found by integrating the hidden variables s, or

p( x) ¼
ð

p( xj s)p( s) ds

¼ (2p) � p=2 �þ AAT
�� ���1 =2

exp � 1

2 
xT �þ AAT
� ��1

x

� �
(6:10)

The calculation is straightforward because both p( s) and p( xjs) are Gaussian.

6.2.2 Within the Fram ewor k

Many methods have been developed for estimating the model parameters for the special case
of Equation 6.8. Unweighted least square (ULS) algorithm [6] is based on minimizing the sum
of squared differences between the observed and estimated correlation matrices, not counting
the diagonal. Generalized least square (GLS) [6] algorithm is adjusting ULS by weighting the
correlations inversely according to their uniqueness. Another method, maximum likelihood
(ML) algorithm [7], uses a linear combination of variables to form factors, where the param-
eter estimates are those most likely to have resulted in the observed correlation matrix. More
details on the ML algorithm can be found in Appendix 6.B. These methods are all of second
order, which find the representation using only the information contained in the covariance
matrix of the test scores. In most cases, the mean is also used in the initial centering. The
reason for the popularity of the second-order methods is that they are computationally
simple, often requiring only classical matrix manipulations.

Second-order methods are in contrast to most higher order methods that try to find a
meaningful representation. Higher order methods use information on the distribution of x
that is not contained in the covariance matrix. The distribution of f x must not be assumed
to be Gaussian, because all the information of Gaussian variables is contained in the first
two-order statistics from which all the high order statistics can be generated. However,
for more general families of density functions, the representation problem has more
degrees of freedom, and much more sophisticated techniques may be constructed for
non-Gaussian random variables.

6.2.2 .1 Princi pal Com ponent Analysis

Principal component analysis (PCA) is also known as the Hotelling transform or the Karhu-
nen–Loève transform. It is widely used in signal processing, statistics, and neural computing
to find the most important directions in the data in the mean-square sense. It is the solution of
the FA problem with minimum mean-square error and an orthogonal weight matrix.

The basic idea of PCA is to find the r � p linearly transformed components that provide
the maximum amount of variance possible. During the analysis, variables in x are trans-
formed linearly and orthogonally into an equal number of uncorrelated new variables in e.
The transformation is obtained by finding the latent roots and vectors of either the covariance
or the correlation matrix. The latent roots, arranged in descending order of magnitude, are
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equal to the variances of the corresponding variables in e. Usually the first few components
account for a large proportion of the total variance of x, accordingly, may then be used to
reduce the dimensionality of the original data for further analysis. However, all components
are needed to reproduce accurately the correlation coefficients within x.

Mathematically, the first principal component e1 corresponds to the line on which the
projection of the data has the greatest variance

e1 ¼ arg max
k a k¼1

XT

t¼1

eT x
� �2

(6 :11)

The other components are found recursively by first removing the projections to the
previous principal components:

ek ¼ arg max
k e k¼1

X
eT x �

Xk�1

i ¼1

ei e
T
i x

 !" #2

(6 :12)

In practice, the principal components are found by calculating the eigenvectors of the
covariance matrix S of the data as in Equation 6.6. The eigenvalues are positive and they
correspond to the variances of the projections of data on the eigenvectors.

The basic task in PCA is to reduce the dimension of the data. In fact, it can be proven that
the representation given by PCA is an optimal linear dimension reduction technique in the
mean-square sense [8,9]. The kind of reduction in dimension has important benefits [10].
First, the computational complexity of the further processing stages is reduced. Second,
noise may be reduced, as the data not contained in the components may be mostly due to
noise. Third, projecting into a subspace of low dimension is useful for visualizing the data.

6.2.2.2 Independent Component Analysis

The independent component analysis (ICA) model originates from the multi-input and
multi-output (MIMO) channel equalization [11]. Its two most important applications are
blind source separation (BSS) and feature extraction. The mixing model of ICA is similar
to that of the FA, but in the basic case without the noise term. The data have been
generated from the latent components s through a square mixing matrix A by

x ¼ As (6:13)

In ICA, all the independent components, with the possible exception of one compon-
ent, must be non-Gaussian. The number of components is typically the same as the
number of observations. Such an A is searched for to enable the components s ¼ A�1x
to be as independent as possible.

In practice, the independence can be maximized, for example, by maximizing non-
Gaussianity of the components or minimizing mutual information [12]. ICA can be
approached from different starting points. In some extensions the number of independent
components can exceed the number of dimensions of the observations making the basis
overcomplete [12,13]. The noise term can be taken into the model. ICA can be viewed as
a generative model when the 1D distributions for the components are modeled with, for
example, mixtures of Gaussians (MoG).

The problem with ICA is that it has the ambiguities of scaling and permutation [12];
that is, the indetermination of the variances of the independent components and the order
of the independent components.
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6.2.2.3 Independent Factor Analysis

Independent factor analysis (IFA) is formulated by Attias [14]. It aims to describe p generally
correlated observed variables x in terms of r < p independent latent variables s and an
additive noise term n. The proposed algorithm derives from the ML and more specifically
from the expectation–maximization (EM) algorithm.

IFA model differs from the classic FA model in that the properties of the latent variables
it involves are different. The noise variables n are assumed to be normally distributed, but
not necessarily uncorrelated. The latent variables s are assumed to be mutually inde-
pendent but not necessarily normally distributed; their densities are indeed modeled as
mixtures of Gaussians. The independence assumption allows modeling the density of
each si in the latent space separately.

There are some problems with the EM–MoG algorithm. First, approximating source
densities with MoGs is not so straightforward because the number of Gaussians has to be
adjusted. Second, EM–MoG is computationally demanding where the complexity of
computation grows exponentially with the number of sources [14]. Given a small number
of sources the EM algorithm is exact and all the required calculations can be done
analytically, whereas it becomes intractable as the number of sources in the model
increases.
6.3 FA Application in Seismic Signal Processing

6.3.1 Marmousi Data Set

Marmousi is a 2D synthetic data set generated at the Institut Françis du Pétrole (IFP). The
geometry of this model is based on a profile through the North Quenguela trough in the
Cuanza basin [15,16]. The geometry and velocity model was created to produce complex
seismic data, which requires advanced processing techniques to obtain a correct Earth
image. Figure 6.3 shows the velocity profile of the Marmousi model.

Based on the profile and the geologic history, a geometric model containing 160 layers
was created. Velocity and density distributions were defined by introducing realistic
horizontal and vertical velocities and density gradients. This resulted in a 2D density–
velocity grid with dimensions of 3000 m in depth by 9200 m in offset.
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FIGURE 6.3
Marmousi velocity model.
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Data were generated by a modeling package that can simulate a seismic line by
computing successively the different shot records. The line was ‘‘shot’’ from west to
east. The first and last shot points were, respectively, 3000 and 8975 m from the west
edge of the model. Distance between shots was 25 m. Initial offset was 200 m and the
maximum offset was 2575 m.
6.3. 2 Veloci ty Analysi s, NMO Correct ion, and Stackin g

Given the Marmousi data set, after some conventional processing steps described in Section
6.2, the results of velocity analysis and normal moveout are shown in Figure 6.4.

The left-most plot is a CMP gather. There are totally 574 CMP gathers in the Marmousi
data set; each includes 48 traces.

On the second plot, velocity spectrum is generated after the CMP gather is NMO-
corrected and stacked using a range of constant velocity values, and the resultant stack
traces for each velocity are placed side by side on a plane of velocity vs. two-way zero-
offset time. By selecting the peaks on the velocity spectrum, an initial rms velocity can
be defined, shown as a curve on the left of the second plot. The interval velocity can be
calculated by using Dix formula [17] and shown on the right side of the plot.

Given the estimated velocity profile, the real moveout correction can be carried out,
shown in the third plot. As compared with the first plot, we can see the hyperbolic curves
are flattened out after NMO correction. Usually another procedure called muting will be
carried out before stacking because as we can see in the middle of the third plot, there are
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FIGURE 6.4
Velocity analysis and stacking of Marmousi data set.
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great distortions because of the approximation. That part will be eliminated before
stacking all the 48 traces together.

The fourth plot just shows a different way of highlighting the muting procedure.
For details, see Ref. [1]. After we complete the velocity analysis, NMO correction, and
stacking for the 56 of the CMPs, we get the following section of the subsurface image as on
the left of Figure 6.5. There are two reasons that only 56 out of 574 of the CMPs are stacked.
One reason is that the velocity analysis is too time consuming on a personal computer and
the other is that although 56 CMPs are only one tenths of the 574 CMPs, it indeed covers
nearly 700 m of the profile. It is enough to compare processing difference.

The right plot is the same image as the left one except that it is after the automatic
amplitude adjustment, which is to stress the vague events so that both the vague events
and strong events in the image are shown with approximately the same amplitude. The
algorithm includes three easy steps:
FIGU
Stack

� 200
1. Compute Hilbert envelope of a trace.

2. Convolve the envelope with a triangular smoother to produce the smoothed
envelope.

3. Divide the trace by the smoothed envelope to produce the amplitude-adjusted
trace.
By comparing the two plots, we can see that vague events at the top and bottom of the
image are indeed stressed. In the following sections, we mainly use automatic amplitude-
adjusted image to illustrate results.

It needs to be pointed out that due to NMO stretching and lack of data at small offset
after muting, events before 0.2 sec in Figure 6.5 are shown as distorted and do not provide
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useful information. In the following sections, when we compare the result, we mainly
consider events after 0.2 sec.

6.3. 3 The Adva ntage of Stacki ng

Stacking is based on the assumption that all the traces in a CMP gather correspond to one
single depth point. After they are NMO-corrected, the zero-offset traces should contain
the same signal embedded in different random noises, which are caused by the different
raypaths. The process of adding them together in this manner can increase the SNR ratio
by adding up the signal components while canceling the noises among the traces. To see
what stacking can do to improve the subsurface image quality, let us compare the image
obtained from a single trace and that from stacking the 48 muted traces.

In Figure 6.6, the single trace result without stacking is shown in the right plot. For
every CMP (or CDP) gather, only the trace of smallest offset is NMO-corrected and placed
side by side together to produce the image, while in the stack result in the left plot, 48
NMO-corrected and muted traces are stacked and placed side by side. Clearly, after
stacking, the main events at 0.5, 1.0, and 1.5 sec are stressed, and the noise in between is
canceled out. Noise at 0.2 is effectively removed. Noise caused by multiples from 2.0 to
3.0 sec is significantly reduced. However, due to NMO stretching and muting, there are
not enough data to depict events at 0 to 0.25 sec on both plots.
6.3.4 Factor Analysis vs. Stacking

Now we suggest an alternative way of obtaining the subsurface image by using FA
instead of stacking. As presented in Appendix 6.A, FA can extract one unique common
factor from the traces with maximum correlation among them. It fits well with what is
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expected of zero-offset traces in that after NMO correction they contain the same signal
embedded in different random noises.

There are two reasons that FA works better than stacking. First, FA model considers
scaling factor A as in Equation 6.14, while stacking assumes no scaling as in Equation 6.15.

Factor analysis : x ¼ As þ n (6:14)

Stacking : x ¼ s þ n (6:15)

When the scaling information is lost, simple summation does not necessarily increase
the SNR ratio. For example, if one scaling factor is 1 and the other is �1, summation will
simply cancel out the signal component completely, leaving only the noise component.
Second, FA makes use of the second-order statistics explicitly as the criterion to extract the
signal while stacking does not. Therefore, SNR ratio will improve more in the case of FA
than in the case of stacking.

To illustrate the idea, x( t) are generated using the following equation:

x( t) ¼ As( t) þ n( t)

¼ A cos (2 pt) þ n( t)

where s( t) is the sinusoidal signal, n( t) are 10 independent noise terms with Gaussian
distribution. The matrix of factor loadings A is also generated randomly. Figure 6.7 shows
the result of stacking and FA. The top plot is one of the ten observations x(t). The middle
plot is the result of stacking and the bottom plot is the result of FA using ML algorithm as
presented in Appendix 6.B. Comparing the two plots suggests that FA outperforms
stacking in improving the SNR ratio.
Observable variable

Result of stacking

Result of factor analysis

FIGURE 6.7
Comparison of stacking and FA.
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6.3. 5 Applic ation of Factor Analysis

The simulation result in Section 6.3.4 suggests that FA can be applied to the NMO-
corrected seismic data. One problem arises, however, when we inspect the zero-offset
traces. They need to be muted because of the NMO stretching, which means almost all the
traces will have a segment set to zero (mute zone), as is shown in Figure 6.8. Is it possible
to just apply FA to the muted traces? Is it possible to have other schemes that make full
use of the information at hand? In the following sections, we try to answer these questions
by discussing different schemes to carry out FA.
6.3. 5.1 Factor Analysi s Sch eme No. 1

Let us start with the easiest one. The scheme is illustrated in Figure 6.8. We will set the
mute zone to zero and apply FA to a CMP gather using ML algorithm. Extracting one
single common factor from the 48 traces, and placing all the resulting factors from 56 CMP
gathers side by side, the right plot in Figure 6.9 is obtained.

Compared with the result of stacking shown on the left, events from 2.2 to 3.0 sec are
more smoothly presented instead of the broken dashlike events after stacking. However,
at near offset, from 0 to 0.7 sec, the image is contaminated with some vertical stripes.
6.3. 5.2 Factor Analysi s Sch eme No. 2

In this scheme, the muted segments in each trace are replaced by segments of the nearest
neighboring traces as is illustrated by Figure 6.10. Trace no. 44 borrows Segment 1
� 2007 by Taylor & Francis Group, LLC.



3000 3200 3400
CDP (m)

3000 3200 3400
CDP (m)

3

2.5

1.5

0.5

2

1

FA result of Scheme no. 1

T
im

e 
(s

ec
)

3

2.5

1.5

0.5

2

1

T
im

e 
(s

ec
)

Stack

FIGURE 6.9
Comparison of stacking and FA result of Scheme no. 1.

Segment 1
Segment 2
Segment 3

0
3

2.5

2

1.5

0.5

1

5 10 15 20 30 40 4525 35

T
im

e 
(s

ec
)

Trace number

FIGURE 6.10
Factor analysis of Scheme no. 2.

� 2007 by Taylor & Francis Group, LLC.



3000
3

2

1

0.5

1.5

2.5

3200 3400

T
im

e 
(s

ec
)

CDP (m)
3000

3

2

1

0.5

1.5

2.5

3200 3400

T
im

e 
(s

ec
)

CDP (m)

Stack FA result of Scheme no. 2

FIGURE 6.11
Comparison of stacking and FA result of Scheme no. 2.
from Trace no. 45 to fill out its muted segment. Trace no. 43 borrows Segments 1 and
2 from Trace no. 44 to fill out its muted segment and so on. As a result, Segment 1
from Trace no. 45 is copied to all the muted traces, from Trace no. 1 to 44. Segment 2 from
Trace no. 44 is copied to traces from Trace no. 1 to 43. After the mute zone is filled out, FA
is carried out to produce the result shown in Figure 6.11.

Compared to stacking shown on the left, there is no improvement in the obtained
image. Actually, the result is worse. Some events are blurred. Therefore, Scheme no. 2 is
not a good scheme.
6.3. 5.3 Factor Analysi s Sch eme No. 3

In this scheme, instead of copying the neighboring segments to the mute zone, the
segments obtained from applying FA to the traces included in the nearest neighboring
box are copied. In Figure 6.12, we first apply FA to traces in Box 1 (Trace no. 45 to 48), then
Segment 1 is extracted from the result and copied to Trace no. 44. Segment 2 obtained
from applying FA to traces in Box 2 (Trace no. 44 to 48) will be copied to Trace no. 43.
When done, the image obtained is shown in Figure 6.13.

Compared with Scheme no. 2, the result is better. But compared to stacking, there is still
some contamination from 0 to 0.7 sec.
6.3. 5.4 Factor Analysi s Sch eme No. 4

In the scheme, as is illustrated in Figure 6.14, Segment 1 will be extracted from applying
FA to all the traces in Box 1 (traces from Trace no. 1 to 48), and Segment 2 will be extracted
from applying FA to trace segments in Box 2 (traces from Trace no. 2 to 48). Note that the
data are not muted before FA. In this manner, for every segment, all the data points
available are fully utilized.
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Factor analysis of Scheme no. 3.
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Comparison of stacking and FA result of Scheme no. 3.
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Factor analysis of Scheme no. 4.
In the result generated, we noticed that events from 0 to 0.16 sec are distorted. The
amplitude is so large that it overshadows the other events. Comparing all the results
obtained above, we conclude that both stacking and FA are unable to extract useful
information from 0 to 0.16 sec. To better illustrate the FA result, we will mute the result
from the distorted trace segments, and the final result is shown in Figure 6.15. Compare the
results of FA and stacking; we can see that events at around 1 and 1.5 sec are strengthened.
Events from 2.2 to 3.0 sec are more smoothly presented instead of the broken dashlike
events in the stacked result. Overall, the SNR ratio of the image is improved.
6.3. 6 Factor Anal ysis vs. PCA an d ICA

The results of PCA and ICA (discussed in subsections 6.2.2.1 and 6.2.2.2) are placed side
by side with the result of FA for comparison in Figure 6.16 and Figure 6.17. As we can see
from both plots on the right side of the figures, important events are missing and the
subsurface images are distorted.

The reason is that the criteria used in PCA and ICA to extract the signals are improper
to this particular scenario. In PCA, traces are transformed linearly and orthogonally into
an equal number of new traces that have the property of being uncorrelated, where the
first component having the maximum variance is used to produce the image. In ICA, the
algorithm tries to extract components that are as independent to each other as possible,
where the obtained components suffer from the problems of scaling and permutation.
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FIGURE 6.15
Comparison of stacking and FA result of Scheme no. 4.
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Comparison of FA and PCA results.
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Comparison of FA and ICA results.
6.4 Conclusions

Stacking is one of the three most important and robust processing steps in seismic signal
processing. By utilizing the redundancy of the CMP gathers, stacking can effectively
remove noise and increase the SNR ratio. In this chapter we propose to use FA to replace
stacking to obtain better subsurface images after applying FA algorithm to the synthetic
Marmousi data set. Comparisons with PCA and ICA show that FA indeed has advantages
over other techniques in this scenario.

It is noted that the conventional seismic processing steps adopted here are very basic
and for illustrative purposes only. Better results may be obtained in velocity analysis and
stacking if careful examination and iterative procedures are incorporated as is often the
case in real situations.
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Appendices
6. A U pper Bound o f the Number of Common F actors

Suppose that there is a unique �, matrix S�� must be of rank r. This is the covariance
matrix for x where each diagonal element represents the part of the variance that is due to
the r common factors instead of the total variance of the corresponding variate. This is
known as communality of the variate.

When r ¼ 1, A reduces to a column vector of p elements. It is unique, apart from a
possible change of sign of all its elements.

With 1 < r < p common factors, it is not generally possible to determine A and s
uniquely, even in the case of a normal distribution. Although every factor model specified
by Equation 6.8 leads to a multivariate normal, the converse is not necessarily true when
1 < r < p. The difficulty is known as the factor identification or factor rotation problem.

Let H be any (r � r) orthogonal matrix, so that HHT ¼ HTH ¼ I, then

x ¼ AHHT s þ n

¼ Aa8 sa8 þ n

Thus, s and så have the same statistical properties since

E sa8
	 


¼ HT E( s)

cov sa8
	 


¼ HT cov sð ÞH ¼ HT H ¼ I

Assume there exist 1 < r < p common factors such that G¼ A VAT and � is Grammian
and diagonal. The covariance matrix S has

C
p
2

� �
þ p ¼ 1

2 
p(p þ 1)

distinct elements, which equals the total number of normal equations to be solved.
However, the number of solutions is infinite, as can be seen from the following derivation.
Since V is Grammian, its Cholesky decomposition exists. That is, there exists a nonsin-
gular (r � r) matrix U, such that V¼UTU and

S ¼ AVAT þ�

¼ AUTUAT þ�

¼ AUT
� �

AUT
� �Tþ�

¼ Aa8Aa8 T þ� (6A:1)
122
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Apparently both factorization Equation 6.6 and Equation 6A.1 leave the same residual
error � and therefore must represent equally valid factor solutions. Also, we can substitute
Aå ¼ AB and Vå ¼ B�1V (BT)�1, which again yields a factor model that is indistinguishable
from Equation 6.6. Therefore, no sample estimator can distinguish between such an infinite
number of transformations. The coefficients A and Aå are thus statistically equivalent and
cannot be distinguished from each other or identified uniquely; that is, both the trans-
formed and untransformed coefficients, together with �, generate S in exactly the same
way and cannot be differentiated by any estimation procedure without the introduction of
additional restrictions.

To solve the rotational indeterminacy of the factor model we require restrictions on V,
the covariance matrix of the factors. The most straightforward and common restriction is
to set V¼ I. The number m of free parameters implied by the equation

S ¼ AAT þ� (6A :2)

is then equal to the total number pr þ p for unknown parameters in A and �, minus the
number of zero restrictions placed on the off-diagonal elements of V, which is equal to
1/2(r2 � r) since  V is symmetric. We then have

m ¼ (pr þ p) � 1=2(r2 � r)

¼ p(r þ 1) � 1=2(r2 � r) 
(6A :3)

where the columns of A are assumed to be orthogonal. The number of degrees of freedom
d is then given by the number of equations implied by Equation 6A.2, that is, the number
of distinct elements in S minus the number of free parameters m. We have

d ¼ 1=2p( p þ 1) � p(r þ 1) � 1=2(r2 � r)
� �

¼ 1=2 (p � r)2 � (p � r)
� �

(6A :4)

which for a meaningful (i.e., nontrivial) empirical application must be strictly posi-
tive. This places an upper bound on the number of common factors r, which may be
obtained in practice, a number which is generally somewhat smaller than the number of
variables p.
6.B Maximum L ikelihood Algorit hm

The maximum likelihood (ML) algorithm presented here is proposed by Jöreskog [7]. The
algorithm uses an iterative procedure to compute a linear combination of variables to
form factors. Assume that the random vector x has a multivariate normal distribution
as defined in Equation 6.9. The elements of A, V, and � are the parameters of the model
to be estimated from the data. From a random sample of N observations of x we can find
the mean vector and the estimated covariance matrix S, whose elements are the usual
estimates of variances and covariances of the components of x.
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mx ¼
1

N

XN

i¼1

xi

S ¼ 1

N � 1

XN

i¼1

(x�mx)(x�mx)T

¼ 1

N � 1

XN

i¼1

xxT �Nmxmx
T

 !
: (6B:1)

The distribution of S is the Wishart distribution [3]. The log-likelihood function is
given by

log L ¼ � 1

2
(N � 1) logjSj þ tr SS

�1
	 
h i

However, it is more convenient to minimize

F(A, V, �) ¼ logjSj þ tr SS
�1

	 

� logjSj � p

instead of maximizing log L [7]. They are equivalent because log L is a constant minus
1
2 (N � 1) times F. The function F is regarded as a function of A and �. Note that if H is
any nonsingular (k � k) matrix, then

F(AH�1, HVHT, �) ¼ F(A, V, �)

which means that the parameters in A and V are not independent of one another, and to
make the ML estimates of A and V unique, k2 independent restrictions must be imposed
on A and V.

To find the minimum of F we shall first find the conditional minimum for a given �
and then find the overall minimum. The partial derivative of F with respect to A is

@F

@A
¼ 2S

�1(S� S)S�1A

See details in Ref. [7]. For a given �, the minimization of A is to be found in the solution of

S
�1(S� S)S�1A ¼ 0

Premultiplying with S gives

(S� S)S�1A ¼ 0

Using the following expression for the inverse S�1 [3]

S
�1 ¼ ��1 ���1A(I þ AT��1A)�1AT��1 (6B:2)

whose left side may be further simplified [7] so that

(S� S)��1A(I þ AT��1A)�1 ¼ 0
� 2007 by Taylor & Francis Group, LLC.



Postmultiplying by I þ AT��1A gives

( S� S) ��1 A ¼ 0 (6B :3)

which after substitution of S from Equation 6A.2 and rearrangement of terms gives

S��1 A ¼ A( I þ AT ��1 A)

Premultiplying by ��1/2 finally gives

(��1 =2 S��1=2)( ��1=2 A) ¼ (��1 =2 A)( I þ AT ��1 A) (6B :4)

From Equation 6B.4, we can see that it is convenient to take AT��1A to be diagonal, since F
is unaffected by postmultiplication of A by an orthogonal matrix and AT��1A can be
reduced to diagonal form by orthogonal transformations [18]. In this case, Equation 6B.4
is a standard eigen decomposition form. The columns of ��1/2 A are latent vectors of ��1/2

S��1/2, and the diagonal elements of I þ AT��1A are the corresponding latent roots. Let e��1

� e��2 � � � � � e��  p be the latent roots of ��1/2 S��1/2 and leteee1,eee2,� � �,eee k be a set of latent vectors
corresponding to the k largest roots. Let eLLk be the diagonal matrix with e��1, e��2, . . . , e�� k as
diagonal elements and let Ek be the matrix with eee1,eee2, . . . , eee k as columns. Then

��1 =2eAA ¼ Ek( eLLk � I)1=2

Premultiplying by �1/2 gives the conditional ML estimate of A as

eAA ¼ �1=2 Ek( eLL k � I)1 =2 (6B :5)

Up to now, we have considered the minimization of F with respect to A for a given �.
Now let us examine the partial derivative of F with respect to � [3],

@ F

@�
¼ diag S

�1(S� eSS)
h i

S
�1

Substituting eSS�1 with Equation 6B.2 and using Equation 6B.3 gives

@ F

@�
¼ diag ��1(S� eSS)

h i
��1

which by Equation 6.6 becomes

@ F

@�
¼ diag ��1(eAAeAAT þ�� eSS)

h i
��1

Minimizing it, we will get,

� ¼ diag(eSS� eAAeAAT) (6B :6)

By iterating Equation 6B.5 and Equation 6B.6, the ML estimation of the FA model of
Equation 6.4 can be obtained.
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Remote sensing often involves probing a region of interest with a transmitted electro-
magnetic signal, and then analyzing the returned signal to infer characteristics of the
investigated region. It is not uncommon for the measured signal to be relatively weak or
for ambient noise to interfere with the sensor’s ability to isolate and measure only the
desired return signal. Although there are potential hardware solutions to these obstacles,
such as increasing the power in the transmit signal to strengthen the return signal, or
altering the transmit frequency, or shielding the system to eliminate the interfering ambient
noise, these solutions are not always viable. For example, regulatory constraints on the
amount of power that may be radiated by the sensor or the trade-off between the transmit
power and the battery life for a portable sensor may limit the power in the transmitted
signal, and effectively shielding a system in the field from ambient electromagnetic signals
is very difficult. Thus, signal processing is often utilized to improve signal detectability
in situations such as these where a hardware solution is not sufficient.

Adaptive filtering is an approach that is frequently employed to mitigate interference.
This approach, however, relies on the ability to measure the interference on auxiliary
reference sensors. The signals measured on the reference sensors are utilized to estimate
the interference, and then this estimate is subtracted from the signal measured by the
primary sensor, which consists of the signal of interest and the interference. When
the interference measured by the reference sensors is completely correlated with the
interference measured by the primary sensor, the adaptive filtering can completely
remove the interference from the primary signal. When there are limitations in the
ability to measure the interference, that is, the signals from the reference sensors are not
completely correlated with the interference measured by the primary sensor, this ap-
proach is not completely effective. Since some residual interference remains after the
adaptive interference cancellation, signal detection performance is adversely affected.
This is particularly true when the signal of interest is weak. Thus, methods to improve
signal detection when there is residual interference would be useful.

The Kalman filter (KF) is an important development in linear estimation theory. It is the
statistically optimal estimator when the noise is Gaussian-distributed. In addition, the
Kalman filter is still the optimal linear estimator in the minimum mean square error
(MMSE) sense even when the Gaussian assumption is dropped [1]. Here, Kalman filters
are applied to improve detection of weak harmonic signals. The emphasis in this chapter
is not on developing new Kalman filters but, rather, on applying them in novel ways for
improved weak harmonic signal detection. Both direct estimation and indirect estimation
of the harmonic signal of interest are considered. Direct estimation is achieved by
applying Kalman filters in the conventional manner; the state of the system is equal to
the signal to be estimated. Indirect estimation of the harmonic signal of interest is
achieved by reversing the usual application of the Kalman filter so the background
noise is the system state to be estimated, and the signal of interest is the observation
noise in the Kalman filter problem statement.

This approach to weak signal estimation is evaluated through application to quadru-
pole resonance (QR) signal estimation for landmine detection. Mine detection technolo-
gies and systems that are in use or have been proposed include electromagnetic induction
(EMI) [2], ground penetrating radar (GPR) [3], and QR [4,5]. Regardless of the technology
utilized, the goal is to achieve a high probability of detection, PD, while maintaining a low
probability of false alarm, PFA. This is of particular importance for landmine detection
since the nearly perfect PD required to comply with safety requirements often comes at
the expense of a high PFA, and the time and cost required to remediate contaminated areas
is directly proportional to PFA. In areas such as a former battlefield, the average ratio of
real mines to suspect objects can be as low as 1:100, thus the process of clearing the area
often proceeds very slowly.
� 2007 by Taylor & Francis Group, LLC.



QR technology for explosive detection is of crucial importance in an increasing
number of applications. Most explosives, such as RDX, TNT, PETN, etc., contain
nitrogen (N). Some of its isotopes, such as 14N, possess electric quadrupole moments.
When compounds with such moments are probed with radio-frequency (RF) signals,
they emit unique signals defined by the specific nucleus and its chemical environment.
The QR frequencies for explosives are quite specific and are not shared by other
nitrogenous materials. Since the detection process is specific to the chemistry of the
explosive and therefore is less susceptible to the types of false alarms experienced by
sensors typically used for landmine detection, such as EMI or GPR sensors, the pure
QR of 14N nuclei supports a promising method for detecting explosives in the quan-
tities encountered in landmines. Unfortunately, QR signals are weak, and thus vulner-
able to both the thermal noise inherent in the sensor coil and external radio-frequency
interference (RFI). The performance of the Kalman filter approach is evaluated on both
simulated data and measured field data collected by Quantum Magnetics, Inc. (QM).
The results show that the proposed algorithm improves the performance of landmine
detection.
7.1 Signal Models

In this chapter, it is assumed that the sensor operates by repeatedly transmitting excita-
tion pulses to investigate the potential target and acquires the sensor response after each
pulse. The data acquired after each excitation pulse are termed a segment, and a group of
segments constitutes a measurement. In general, for each potential target there are
multiple measurements with each measurement containing many segments.
7.1.1 Harmonic Signal Model

The discrete-time harmonic signal of interest, at frequency f0, in a single segment can be
represented by

s(n) ¼ A0 cos (2pf0nþ f0), n ¼ 0, 1, . . . , N � 1 (7:1)

The measured signal may be demodulated at the frequency of the desired harmonic
signal, f0, to produce a baseband signal, ~ss(n),

~ss(n) ¼ A0ejf0 , n ¼ 0, 1, . . . , N � 1 (7:2)

Assuming the frequency of the harmonic signal of interest is precisely known, the signal
of interest after demodulation and subsequent low-pass filtering to remove any aliasing
introduced by the demodulation is a DC constant.
7.1.2 Interference Signal Model

A source of interference for this type of signal detection problem is ambient harmonic
signals. For example, sensors operating in the RF band could experience interference due to
other transmitters operating in the same band, such as radio stations. Since there may be
many sources transmitting harmonic signals operating simultaneously, the demodulated
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interference signal measured in each segment may be modeled as the sum of the contribu-
tion from M different sources, each operating at its own frequency fm,

~II ¼
XM
m¼1

~AAm(n)ej(2pfmnþfm), n ¼ 0, 1, . . . , N � 1 (7:3)

where the superscript � denotes a complex value and we assume the frequencies are
distinct, meaning fi 6¼ fj for i 6¼ j. The amplitudes Ãm(n) from a discrete time series.
Although the amplitudes are not restricted to constant values in general, they are as-
sumed to remain essentially constant over the short time intervals during which each data
segment is collected. For time intervals on this order, it is reasonable to assume Ãm(n) is
constant for each data segment, but may change from segment to segment. Therefore, the
interference signal model may be expressed as

~II ¼
XM
m¼1

~AAmej(2pfmnþfm), n ¼ 0, . . . , N � 1 (7:4)

This model represents all frequencies even though the harmonic signal of interest exists in
a very narrow band. In practice, only the frequency corresponding to the harmonic signal
of interest needs to be considered.
7.2 Interference Mitigation

Adaptive filtering is a widely applied approach for noise cancellation [6]. The basic
approach is illustrated in Figure 7.1. The primary signal consists of both the harmonic
signal of interest and the interference. In contrast, the signal measured on each auxiliary
antenna or sensor consists of only the interference. Adaptive noise cancellation utilizes
the measured reference signals to estimate the noise present in the measured primary
signal. The noise estimate is then subtracted from the primary signal to find the signal of
interest.

Adaptive noise cancellation, such as the least mean square (LMS) algorithm, is well
suited for those applications in which one or more reference signals are available [6].
Signal of
interest

Interference
signal Reference

antenna

Primary
antenna

Adaptive
filter

Signal
estimate

+
+

−

FIGURE 7.1
Interference mitigation based on adaptive noise cancellation.
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In this application, the adaptive noise cancellation is performed in the frequency domain
by applying the normalized LMS algorithm to each frequency component of the fre-
quency domain representation of the measured primary signal. The primary measured
signal at time n may be denoted by d(n) and the measured reference signal with u(n). The
tap input vector may be represented by u(n) ¼ [u(n) u(n � 1) � � � u(n � M þ 1)]T and
the tap weight vector may be given by ŵw(n). Both the tap input and tap weight vectors are
of length M. Given these definitions, the filter output at time n, e(n), is

e(n) ¼ d(n)� ŵwH(n)u(n) (7:5)

The quantity ŵwH(n)u(n) represents the interference estimate. The tap weights are updated
according to

ŵw(nþ 1) ¼ ŵw(n)þ m0P�1(n)u(n)e�(n) (7:6)

where the parameter m0 is an adaptation constant that controls the convergence rate and
P(n) is given by

P(n) ¼ bP(n� 1)þ (1� b)ju(n)j2 (7:7)

with 0 < b < 1 [7]. The extension of this approach to utilize multiple reference signals is
straightforward.
7.3 Postmitigation Signal Models

Under perfect circumstances the interference present in the primary signal is completely
correlated with the reference signals and all interference can be removed by the adaptive
noise cancellation, leaving only Gaussian noise associated with the sensor system. Since
the interference often travels over multiple paths and the sensing systems are not perfect,
however, the adaptive interference mitigation rarely removes all the interference. Thus,
there is residual interference that remains after the adaptive noise cancellation. In add-
ition, the adaptive interference cancellation process alters the characteristics of the signal
of interest.

The real-valued observed data prior to interference mitigation may be represented by

x(n) ¼ s(n)þ I(n)þ w(n), n ¼ 0, 1, . . . , N � 1 (7:8)

where s(n) is the signal of interest, I(n) is the interference, and w(n) is Gaussian noise
associated with the sensor system. The baseband signal after demodulation becomes

~xx(n) ¼ ~ss(n)þ ~II(n)þ ~ww(n) (7:9)

where ~II(n) is the interference, which is reduced but not completely eliminated by adaptive
filtering.

The signal remaining after interference mitigation is

~yy(n) ¼ ~ss(n)þ ~vv(n), n ¼ 0, 1 , . . . , N � 1 (7:10)
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where ~ss(n) is now the altered signal of interest and ~vv(n) is the background noise
remaining after interference mitigation, both of which are described in the following
sections.
7.3.1 Harmonic Signal Model

Due to the nonlinear phase effects of the adaptive filter, the demodulated harmonic signal
of interest is altered by the interference mitigation; it is no longer guaranteed to be a DC
constant. The postmitigation harmonic signal is modeled with a first-order Gaussian–
Markov model,

~ss(nþ 1) ¼ ~ss(n)þ ~««(n) (7:11)

where ~««(n) is zero mean white Gaussian noise with variance s~««
2.
7.3.2 Interference Signal Model

Although interference mitigation can remove most of the interference, some residual
interference remains in the postmitigation signal. The background noise remaining
after interference mitigation, ~vv(n), consists of the residual interference and the remaining
sensor noise, which is altered by the mitigation. Either an autoregressive (AR) model or
an autoregressive moving average (ARMA) model is appropriate for representing the
sharp spectral peaks, valleys, and roll-offs in the power spectrum of ~vv(n). An AR model is
a causal, linear, time-invariant discrete-time system with a transfer function containing
only poles, whereas an ARMA model is a causal, linear, time-invariant discrete-time
system with a transfer function containing both zeros and poles. The AR model has a
computational advantage over the ARMA model in the coefficient computation. Specif-
ically, the AR coefficient computation involves solving a system of linear equations
known as Yule–Walker equations, whereas the ARMA coefficient computation is signifi-
cantly more complicated because it requires solving systems of nonlinear equations.

Estimating and identifying an AR model for real-valued time series is well understood
[8]. However, for complex-valued AR models, few theoretical and practical identification
and estimation methods could be found in the literature. The most common approach is
to adapt methods originally developed for real-valued data to complex-valued data. This
strategy works well only when the the complex-valued process is the output of a linear
system driven by white circular noise whose real and imaginary parts are uncorrelated
and white [9]. Unfortunately, circularity is not always guaranteed for most complex-
valued processes in practical situations. Analysis of the postmitigation background
noise for the specific QR signal detection problem considered here showed that it is not
a pure circular complex process. However, since the cross-correlation between the real
and imaginary parts is small compared to the autocorrelation, we assume that the noise is
a circular complex process and can be modeled as a P-th order complex AR process. Thus,

~vv(n) ¼ �
XP

p¼1

~aap~vv(n� p)þ ~««(n) (7:12)

where the driving noise ~««(n) is white and complex-valued.
Conventional modeling methods extended from real-valued time series are used for

estimating the complex AR parameters. The Burg algorithm, which estimates the AR
parameters by determining reflection coefficients that minimize the sum of forward and
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backward residuals, is the preferred estimator among various estimators for AR param-
eters [10]. Furthermore, the Burg algorithm has been reformulated so that it can be used to
analyze data containing several separate segments [11]. The usual way of combining the
information across segments is to take the average of the models estimated from the
individual segments [12], such as average AR parameters (AVA) and average reflection
coefficient (AVK). We found that for this application, the model coefficients are stable
enough to be averaged. Although this will reduce the estimate variance, it still contains a
bias that is proportional to 1=N, where N is the number of observations [13]. Another
novel extension of the Burg algorithm to segments, the segment Burg algorithm (SBurg),
proposed in [14], estimates the reflection coefficients by minimizing the sum of the
forward and backward residuals of all the segments taken together. This means a single
model is fit to all the segments simultaneously.

An important aspect of AR modeling is choosing the appropriate order P. Although
there are several criteria to determine the order for a real AR model, no formal criterion
exists for a complex AR model. We adopt the Akaike information criterion (AIC) [15] that
is a common choice for real AR models. The AIC is defined as

AIC(p) ¼ ln (ŝs2
«(p))þ 2p

T
, p ¼ 1, 2, 3, . . . (7:13)

where �̂�«
2(p) is the prediction error power at P-th order and T is the total number of

samples. The prediction error power for a given value of P is simply the variance in the
difference between the true signal and the estimate for the signal using a model of order
P. For signal measurements consisting of multiple segments, i.e. S segments and N
samples=segment, T¼N � S. The model order for which the AIC has the smallest value
is chosen. The AIC method tends to overestimate the order [16] and is good for short data
records.
7.4 Kalman Filters for Weak Signal Estimation

Kalman filters are appropriate for discrete-time, linear, and dynamic systems whose
output can be characterized by the system state. To establish notation and terminology,
this section provides a brief overview consisting of the problem statement and the recursive
solution of the Kalman filter variants applied for weak harmonic signal detection.

Two approaches to estimate a weak signal in nonstationary noise, both employing
Kalman filter approaches, are proposed [17]. The first approach directly estimates the
signal of interest. In this approach, the Kalman filter is utilized in a traditional manner, in
that the signal of interest is the state to be estimated. The second approach indirectly
estimates the signal of interest. This approach utilizes the Kalman filter in an unconven-
tional way because the noise is the state to be estimated, and then the noise estimate is
subtracted from the measured signal to obtain an estimate of the signal of interest. The
problem statements and recursive Kalman filter solutions for each of the Kalman filters
considered are provided with their application to weak signal estimation.

These approaches have an advantage over the more intuitive approach of simply sub-
tracting a measurement of the noise recorded in the field because the measured background
noise is nonstationary, and the residual background noise after interference mitigation
is also nonstationary. Due to the nonstationarity of the background noise, it must be
measured and subtracted in real time. This is exactly what the adaptive frequency-domain
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interference mitigation attempts to do, and the interference mitigation does significantly
improve harmonic signal detection. There are, however, limitations to the accuracy with
which the reference background noise can be measured, and these limitations make the
interference mitigation insufficient for noise reduction. Thus, further processing, such as
the Kalman filtering proposed here, is necessary to improve detection performance.
7.4.1 Direct Signal Estimation

The first approach assumes the demodulated harmonic signal is the system state to be
estimated. The conventional Kalman filter was designed for white noise. Since the meas-
urement noise in this application is colored, it is necessary to investigate modified Kalman
filters. Two modifications are considered: utilizing an autoregressive (AR) model for the
colored noise and designing a Kalman filter for colored noise, which can be modeled as a
Markov process.

In applying each of the following Kalman filter variants to directly estimate the
demodulated harmonic signal, the system is assumed to be described by

state equation: ~ssk ¼ ~ssk�1 þ ~««k (7:14)

observation equation: ~yyk ¼ ~ssk þ ~vvk (7:15)

where ~ssk is the postmitigation harmonic signal, modeled using a first-order Gaussian–
Markov model, and ~vvk is the postmitigation background noise.
7.4.1.1 Conventional Kalman Filter

The system model for the conventional Kalman filter is described by two equations: a state
equation and an observation equation. The state equation relates the current system
state to the previous system state, while the observation equation relates the observed
data to the current system state. Thus, the system model is described by

state equation: xk ¼ Fkxk�1 þGkwk (7:16)

observation equation: zk ¼ HH
k xk þ uk (7:17)

where the M-dimensional parameter vector xk represents the state of the system at time k,
the M �M matrix Fk is the known state transition matrix relating the states of the system
at time k and k � 1, and the N-dimensional parameter vector zk represents the measured
data at time k. The M � 1 vector wk represents process noise, and the N � 1 vector uk is
measurement noise. The M � M diagonal coefficient matrix Gk modifies the variances of
the process noise. If both uk and wk are independent, zero mean, white noise processes
with E{ukuk

H} ¼ Rk and E{wkwk
H} ¼ Qk, then the initial system state x0 is a random vector,

with mean �xx0 and covariance S0, independent of uk and wk.
The Kalman filter determines the estimates of the system state, x̂xkjk�1 ¼ E{xkjzk�1} and

x̂xkjk ¼ E{xkjzk}, and the associated error covariance matrices Skjk�1 and Skjk. The recursive
solution is achieved in two steps. The first step predicts the current state and the error
covariance matrix using the previous data,

x̂xkjk�1 ¼ Fk�1x̂xk�1jk�1 (7:18)

Skjk�1 ¼ Fk�1Sk�1jk�1FH
k�1 þGk�1Qk�1GH

k�1 (7:19)
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The second step first determi nes the Kalm an gain, Kk, and then updat es the state and the
error co varian ce predicti on usin g the current data,

Kk ¼ S  kjk� 1 H k (H Hk S kjk � 1 þ Rk ) 
� 1 (7: 20)

x̂xkjk ¼ x̂xkjk � 1 þ Kk ( zk � H Hk x̂xkj k� 1 ) (7: 21)

Sk jk ¼ ( I � Kk H Hk ) S kjk� 1 (7: 22)

The in itial conditio ns on the state estim ate and erro r covarian ce matr ix are x̂x1j 0 ¼ �xx0 and
S1j 0 ¼ S0.

In gene ral, the system parame ters F , G , and H are time -varyin g, wh ich is denoted in the
prece ding discus sion by the subscr ipt k. In the discussio ns of the Kalm an filters imple-
mented for harmonic sign al estim ation, the system is a ssumed to be time -invari ant. Thu s,
the subscrip t k is om itted and the syst em model become s

state equat ion : xk ¼ Fx k� 1 þ Gw k (7: 23)

observ ation equation : zk ¼ HH xk þ uk (7: 24)
7.4.1 .2 Ka lman Filter with an AR Model for Colored Noise

A Kalm an fi lter for color ed meas urement noise, based on the fact that co lored noi se can
often be simulat ed wi th sufficie nt accura cy by a linear dynam ic system dri ven by white
noise, is proposed in [18]. In this appr oach, the color ed noi se vec tor is incl uded in an
augme nted state variable vector, a nd the observ ations now co ntain onl y linear combin-
ations of the augmented state varia bles.

The state equation is unchanged from Equation 7.23; however, the observation equation
is modified so the measurement noise is colored, thus the system model is

state equation: xk ¼ Fxk�1 þGwk (7:25)

observation equation: zk ¼ HHxk þ ~vvk (7:26)

where ~vvk is color ed noise mode led by the co mplex-val ued AR pro cess in Equa tion 7.12.
Expressing the P-th order AR process ~vvk in state space notion yields

state equation: vk ¼ Fvvk�1 þGv~««k (7:27)

observation equation: ~vvk ¼ HH
v vk (7:28)

where

vk ¼

~vv(k� Pþ 1)
~vv(k� Pþ 2)

..

.

~vv(k)

2
6664

3
7775

P�1

(7:29)

Fv ¼

0 1 0 � � � 0 0
0 0 1 � � � 0 0
..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 � � � 0 1
�~aaP �~aaP�1 �~aaP�2 � � � �~aa2 �~aa1

2
66664

3
77775

P�P

(7:30)
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Gv ¼ H v ¼

0
0
..
.

0
1

2
66664

3
77775

P � 1

(7 :31)

and ~««k is the whit e driving pro cess in Equati on 7.12 wi th zero mean and varian ce s~««
2.

Combi ning Equa tion 7.2 5, Equa tion 7.26, and Eq uation 7.28, yield s a new Kalm an filter
exp ression wh ose dim ensions have been extended,

state equat ion : �xxk ¼ F�xxk� 1 þG �wwk (7 :32)

observ ation equat ion : zk ¼ H 
H 

�xxk (7 :33)

wh ere

�xxk ¼
xk

vk

� �
, wk ¼

wk

~««k

� �
, H 

H ¼ HH HH
v

� �
,

�FF ¼ F 0
0 Fv

� �
, and G ¼ G 0

0 Gv

� �
(7 :34)

In estim ation litera ture, this is termed the noi se-free [19] or perfect me asureme nt [20]
pro blem. The proce ss noi se, wk, and colored noise state process noise, ~««k, are as sumed to
be un correlated, so

Q ¼ E {wkw Hk } ¼
Q 0
0 s 

2
~««

� �
(7 :35)

Since t here is no noise in Equation 7.33, the c ovariance matrix of the observation no ise
R ¼ 0 . T he re cursive solu tion f or this p roblem, define d in E quatio n 7 .32 a nd Equation
7.33, i s t he sam e as for t he co nvention al Ka lman filter given in Equation 7.18 through
Equation 7.22.

When estimating the harmonic signal with the traditional Kalman filter with an AR
model for the colored noise, the coefficient matrices are

�xxk ¼

~xx(k)
~vv(k� Pþ 1)
~vv(k� Pþ 2)

..

.

~vv(k)

2
666664

3
777775, H ¼

1
0
..
.

1

2
664
3
775

Pþ1

(7:36)

F ¼

1 0 0 � � � 0 0
0 1 0 � � � 0 0
..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 � � � 0 1
0 �aP �aP�1 � � � �a2 �a1

2
66664

3
77775 (7:37)

wk ¼
~wwk

~««k

� �
, G ¼

1 0
0 0
..
. ..

.

0 1

2
664

3
775

(Pþ1)�2

(7:38)
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and

Q ¼ E{wkwH
k } ¼ s2

~ww 0
0 s2

~««

� �
(7:39)

Since the theoretical value R ¼ 0 turns off the Kalman filter it does not track the signal, R
should be set to a positive value.
7.4.1.3 Kalman Filter for Colored Noise

The Kalman filter has been generalized to systems for which both the process noise and
measurement noise are colored and can be modeled as Markov processes [21]. A Markov
process is a process for which the probability density function of the current sample
depends only on the previous sample, not the entire process history. Although the Markov
assumption may not be accurate in practice, this approach remains applicable. The system
model is

state equation: xk ¼ Fxk�1 þGwk (7:40)

observation equation: zk ¼ HH
k xþ uk (7:41)

where the process noise wk and the measurement noise uk are both zero mean and colored
with arbitrary covariance matrices at time k, Q, and R, so

Qij ¼ cov(wi, wj), i, j ¼ 0, 1, 2, . . .

Rij ¼ cov(ui, uj), i, j ¼ 0, 1, 2, . . .

The initial state x0 is a random vector with mean �xx0 and covariance matrix P0, and x0, wk,
and uk are independent.

The prediction step of the Kalman filter solution is

x̂xkjk�1 ¼ Fx̂xk�1jk�1 (7:42)

Skjk�1 ¼ FSk�1jk�1FH þGQk�1GH þ FCk�1 þ (FCk�1)H (7:43)

where Ck � 1 ¼ Ck � 1jk � 1
k � 1 and Ck � 1jk � 1

k � 1 is given recursively by

Ck�1
iji�1 ¼ FCk�1

i�1ji�1 þGQi�1,k�1GH (7:44)

Ck�1
iji ¼ Ck�1

iji�1 �KiH
HCk�1

iji�1 (7:45)

with the initial value C0j0
k ¼ 0 and Q0 ¼ 0. The k in the superscript denotes time k.

The subsequent update step is

x̂xkjk ¼ x̂xkjk�1 þKk(zk �HHx̂xkjk�1) (7:46)

Skjk ¼ Skjk�1 �KkSkKH
k (7:47)

where Kk and Sk are given by

Kk ¼ (Skjk�1HþVk)S�1
k (7:48)
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Sk ¼ H H Skj k� 1 H þ HH V k þ ( H H V k )
H þ Rk (7 :49)

Vk ¼ Vk
k jk � 1 is given recursive ly by

Vk
i j i� 1 ¼ FV 

k
i� 1 ji � 1 V 

k
i ji ¼ Vk

i ji � 1 þ K i ( � Ri ,k � HH Vk
i j i� 1 ) (7:50)

with � Rk bein g the new ‘‘data’’ and the initia l value V  0j 0
k ¼ 0.

When the noi se is wh ite V ¼ 0 and C ¼ 0, and this Kalm an filt er red uces to the
conve ntional Kalma n filter. It is wort h noting that this filter is optim al only wh en E{ wk}
and E{ uk} are kno wn.
7.4. 2 Indirect Signal Estima tion

A c entral p remise in K alman f ilter theory is that the underlying state-space model is
accurate. W hen this a ssump tion is violated, t he pe rfo rmance of t he filter can d eteri-
orate appreciably.  The sensitivity of  the Kalman fil ter to signal mode ling errors has
led t o t he de vel opme nt of r obust Kalman filtering t echni que s based o n modeling the
noise.

The c onventio nal p oint of view in applying Kalman filters to a signal detection
problem is t o a ssi gn t he system state, xk , t o t he signal to be detected. Under this
paradigm, t he hypotheses ‘‘signal a bsent’’ (H0 ) a nd ‘‘signal present’’ ( H 1 ) are repre-
sented by the state i tself. W hen the conventi onal po int of v iew i s applied f or this
particular appli cation, t he demodulated har moni c signal ( a DC c onstant) i s the sys tem
state t o be e stimated. Altho ugh a model f or the d esired signal can be d evelo ped fro m a
relatively pure h armonic si gnal o btaine d in a shielded lab environment, t hat signal
model often differs from t he harmonic signal measured in the field, some times su bstan-
tially, because the me asured signal m ay be a f unction of sy stem and enviro nmental
parameters, such as temperature. Therefo re the harmonic signal m easure d in the field
may deviate from the assumed signal model and the Kalman filter may produce a poor
state estimate due to inaccuracies in the state equation. However, the background noise
in the field can be measured, from which a reliable noise model can be developed, even
though the measured noise is not exactly the same as the noise corrupting the meas-
urements.

The backgrou nd noise in the postm itigat ion sign al (Equa tion 7.10), ~vv( n), can be mo deled
as a complex-valued AR process as previously described. The Kalman filter is applied to
estimate the background noise in the postmitigation signal and then the background noise
estimate is subtracted from the postmitigation signal to indirectly estimate the postmiti-
gation harmonic signal (a DC constant). Thus, the state in the Kalman filter, xk, is the
background noise ~vv(n),

xk ¼

~vv(k� Pþ 1)
~vv(k� Pþ 2)

..

.

~vv(k)

2
6664

3
7775 (7:51)

and the measurement noise in the observation, uk, is the demodulated harmonic
signal ~ss(n),

uk ¼ ~ssk (7:52)
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The other system paramete rs are

F ¼

0 1  0 � � �  0 0
0 0  1 � � �  0 0
..
. ..

. ..
. . .

. ..
. ..

.

0 0  0 � � �  0 1
�~aaP �~aa P� 1 �~aa P � 2 � � � �~aa 2 �~aa 1

2
66664

3
77775 (7: 53)

G ¼ H ¼

0
0
..
.

0
1

2
66664

3
77775

P� 1

(7: 54)

and wk ¼ ~««k. Therefor e, the measu rement equat ion becom es

zk ¼ ~vvk þ ~ss k (7: 55)

where zk is the meas ured data correspo nding to ~yy(k ) in Eq uation 7.10.
A Kalman filter assumes complete a priori knowledge of the process and measurement

noise statistics Q and R. These statistics, however, are inexactly known in most practical
situations. The use of incorrect a priori statistics in the design of a Kalman filter can lead to
large estimation errors, or even to a divergence of errors. To reduce or bound these errors,
an adaptive filter is employed by modifying or adapting the Kalman filter to the real data.
The approaches to adaptive filtering are divided into four categories: Bayesian, maximum
likelihood, correlation, and covariance matching [22]. The last technique has been sug-
gested for the situations when Q is known but R is unknown. The covariance matching
algorithm ensures that the residuals remain consistent with the theoretical covariance.
The residual, or innovation, is defined by

vk ¼ zk �HHx̂xkjk�1 (7:56)

which has a theoretical covariance of

E{vkvH
k } ¼ HHSkjk�1Hþ R (7:57)

If the actual covariance of vk is much larger than the covariance obtained from the
Kalman filter, R should be increased to prevent divergence. This has the effect of
increasing Skjk�1, thus bringing the actual covariance of vk closer to that given in
Equation 7.57. In this case, R is estimated as

R̂Rk ¼
1

m

Xm

j¼1

vk�jv
H
k�j �HHSkjk�1H (7:58)

Here, a two-step adaptive Kalman filter using the covariance matching method is pro-
posed. First, the covariance matching method is applied to estimate R̂R. Then, the conven-
tional Kalman filter is implemented with R ¼ R̂R to estimate the background noise. In this
application, there are several measurements of data, with each measurement containing
tens to hundreds of segments. For each segment, the covariance matching method is
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FIGURE 7.2
Block diagram of the two-step adap-
tive Kalman filter strategy. (From Tan
et al., IEEE Transactions on Geoscience

and Remote Sensing 43(7), 1507–1516,
2005. With permission.)
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(yn) = s(n) + v(n)

Detector

Decision
H0

H1

< b
> b

Conventional
Kalman filter +

Rs
+

v(n)

s(n)

Estimate R
employed to estimate R̂Rk, where the subscript k denotes the sample index. Since it is an
adaptive procedure, only the steady-state values of R̂Rk (k � m) are retained and averaged
to find the value of R̂Rs for each segment,

R̂Rs ¼
1

N �m

XN�1

k¼m

R̂Rk (7:59)

where the subscript s denotes the segment index. Then, the average is taken over all the
segments in each measurement. Thus,

R̂R ¼ 1

L

XL

s¼1

R̂Rs (7:60)

is used in the conventional Kalman filter in this two-step process. A block diagram
depicting the two-step adaptive Kalman filter strategy is shown in Figure 7.2.
7.5 Application to Landmine Detection via Quadrupole Resonance

Landmines are a form of unexploded ordnance, usually emplaced on or just under the
ground, which are designed to explode in the presence of a triggering stimulus such as
pressure from a foot or vehicle. Generally, landmines are divided into two categories:
antipersonnel mines and antitank mines. Antipersonnel (AP) landmines are devices
usually designed to be triggered by a relatively small amount of pressure, typically
40 lbs, and generally contain a small amount of explosive so that the explosion aims or
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kills the person who triggers the device. In contrast, antitank (AT) landmines
are specifically designed to destroy tanks and vehicles. They explode only if compressed
by an object weighing hundreds of pounds. AP landmines are generally small (less
than 10 cm in diameter) and are usually more difficult to detect than the larger AT
landmines.
7.5.1 Quadrupole Resonance

When compounds with quadrupole moments are excited by a properly designed EMI
system, they emit unique signals characteristic of the compound’s chemical structure. The
signal for a compound consists of a set of spectral lines, where the spectral lines corres-
pond to the QR frequencies for that compound, and every compound has its own set of
resonant frequencies. This phenomenon is similar to nuclear magnetic resonance (NMR).
Although there are several subtle distinctions between QR and NMR, in this context it is
sufficient to view QR as NMR without the external magnetic field [4].

The QR phenomenon is applicable for landmine detection because many explosives,
such as RDX, TNT, and PETN, contain nitrogen, and some of nitrogen’s isotopes,
namely 14N, have electric quadrupole moments. Because of the chemical specificity
of QR, the QR frequencies for explosives are unique and are not shared with other
nitrogenous materials. In summary, landmine detection using QR is achieved by
observing the presence, or absence, of a QR signal after applying a sequence of RF
pulses designed to excite the resonant frequency of frequencies for the explosive of
interest [4].

RFI presents a problem since the frequencies of the QR response fall within the
commercial AM radio band. After the QR response is measured, additional processing
is often utilized to reduce the RFI, which is usually a non-Gaussian colored noise process.
Adaptive filtering is a common method for cancelling RFI when RFI reference signals
are available. The frequency-domain LMS algorithm is an efficient method for extracting
the QR signal from the background RFI. Under perfect circumstances, when the RFI
measured on the main antenna is completely correlated with the signals measured on
the reference antennas, all RFI can be removed by RFI mitigation, leaving only Gaussian
noise associated with the QR system. Since the RFI travels over multiple paths and the
antenna system is not perfect, however, the RFI mitigation cannot remove all of the non-
Gaussian noise. Consequently, more sophisticated signal processing methods must be
employed to estimate the QR signal after the RFI mitigation, and thus improve the QR
signal detection. Figure 7.3 shows the ba sic block diagram for QR signal det ection.

The data acquired during each excitation pulse are termed a segment, and a group of
segments constitutes a measurement. In general, for each potential target there are
multiple measurements, with each measurement containing several hundred segments.
The measurements are demodulated at the expected QR resonant frequency. Thus, if the
demodulated frequency equals the QR resonant frequency, the QR signal after demodu-
lation is a DC constant.
7.5.2 Radio-Frequency Interference

Although QR is a promising technology due to its chemical specificity, it is limited by the
inherently weak QR signal and susceptibility to RFI. TNT is one of the most prevalent
explosives in landmines, and also one of the most difficult explosives to detect. TNT
possesses 18 resonant frequencies, 12 of which are clustered in the range of 700–900 kHz.
Consequently, AM radio transmitters strongly interfere with TNT-QR detection in the
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FIGURE 7.3
Signal processing block diagram for QR signal detection. F0 is the resonant QR frequency for the explosive of
interest and � denotes a complex-valued signal. (From Tan et al., IEEE Transactions on Geoscience and Remote

Sensing 43(7), 1507–1516, 2005. With permission.)
field, and are the primary source of RFI. Since there may be several AM radio transmitters
operating simultaneously, the baseband (after demodulation) RFI signal measured by the
QR system in each segment may be modeled as

~II(n) ¼
XM
m¼1

~AAm(n)ej(2pfmnþfm), n ¼ 0, . . . , N � 1 (7:61)

where the superscript � denotes a complex value and we assume the frequencies are
distinct, meaning fi 6¼ fj for i 6¼ j. For the RFI, Am(n) is the discrete time series of the
message signal from an AM transmitter, which may be a nonstationary speech or music
signal from a commercial AM radio station. The statistics of this signal, however, can be
assumed to remain essentially constant over the short time intervals during which data
are collected. For time intervals of this order, it is reasonable to assume Am(n) is constant
for each data segment, but may change from segment to segment. Therefore, Equation
7.61 may be expressed as

~II(n) ¼
XM
m¼1

~AAmej(2pfmnþfm), n ¼ 0, . . . , N � 1 (7:62)

This model represents all frequencies even though each of the QR signals exists in a very
narrow band. In practice, only the frequencies corresponding to the QR signals need be
considered.
7.5.3 Postmitigation Signals

The applicability of the postmitigation signal models described previously is demon-
strated by examining measured QR and RFI signals.
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7.5.3 .1 Pos tmitigat ion Quadrup ole Reson ance Signal

An examp le simulat ed QR sign al bef ore and after RFI mitigatio n is sho wn in Figu re 7.4.
Altho ugh the QR signal is a DC constant prior to RFI mi tigation, that is no longer true
after mitigati on. The first- order Gaus sian–Ma rkov mo del introduced previous ly is an
appro priate mode l for postm itigat ion QR sign al. The val ue of s~««

2 ¼ 0.1 is estim ated
from the data.
7.5.3 .2 Pos tmitigat ion Back ground Noise

Altho ugh RFI mitigatio n can remo ve mo st of the RFI, som e res idual RFI remai ns in the
postm itigation signal . The backg round noise remain ing after RFI mi tigation, ~vv( n), consi sts
of the residual RFI and the remain ing sensor noise, wh ich is altered by the mitig ation. An
exampl e pow er spectrum of ~vv(n ) der ived from exp erime ntal data is sho wn in Figu re 7.5.
The power spectrum contain s nume rous peaks a nd valleys. Thus, the AR and ARMA
mode ls discussed previousl y are appropri ate for mod eling the residual backgrou nd noise.
7.5.4 Kalman Filter s fo r Quadrup ole Reson ance Detection

7.5.4 .1 Conve ntiona l Ka lman Filter

For the syst em describ ed by Equation 7.14 and Equation 7 .15, the variable s in the
conven tional Kalm an filter are xk ¼ ~ss (k ), wk ¼ ~ww( k ), uk ¼ ~vv( k ), and zk ¼ ~yy( k ), and the
coefficie nt and covarian ce matrice s in the Kalm an filter are F ¼ [1], G ¼ [1], H ¼ [1], and
Q ¼ [ sw

2]. The co varian ce R is estimate d from the data, and the off- diagonal elemen ts are
set to 0.
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Example realization of the the simulated QR signal before and after RFI mitigation. (From Tan et al., IEEE
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Power spectrum of the remaining background noise ~nn(n) after RFI mitigation. The x-axis units are normalized
frequency ([�p,p]). (From Tan et al., IEEE Transactions on Geoscience and Remote Sensing 43(7), 1507–1516, 2005.
With permission.)
7.5.4.2 Kalman Filter with an Autoregressive Model for Colored Noise

The multi-segment Burg algorithms are used to estimate the AR parameters, and the
simulation results do not show significant differences between AVA, AVK, and SBurg
algorithms. The AVA algorithm was chosen to estimate the AR coefficients ãp and error
power s~««

2 describing the background noise for each measurement. The optimal order, as
determined by the AIC, is 6.
7.5.4.3 Kalman Filter for Colored Noise

For this Kalman filter, the coefficient and covariance matrices are the same as for the
conventional Kalman filter, with the exception of the observation noise covariance R. In
this filter, all elements of R are retained, as opposed to the conventional Kalman filter in
which only the diagonal elements are retained.
7.5.4.4 Indirect Signal Estimation

For the adaptive Kalman filter in the first step, all coefficient and covariance matrices,
F, G, H, Q, R, and S0, are the same under both H1 and H0. The practical value of x0 is
given by

[~yy(0) ~yy(1) � � � ~yy(P� 1)]T (7:63)

where P is the order of the AR model representing ~vv(n). For the conventional Kalman filter
in the second step, F, G, H, Q, and S0 are the same under both H1 and H0; however, the
estimated observation noise covariance, R̂R, depends on the postmitigation signal and
therefore is different under the two hypotheses.
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7.6 Performance Evaluation

The proposed Kalman filter methods are evaluated on experimental data collected in the
field by QM. A typical QR signal consists of multiple sinusoids where the amplitude and
frequency of each resonant line are the parameters of interest. Usually, the amplitude of
only one resonant line is estimated at a time, and the frequency is known a priori. For the
baseband signal demodulated at the desired resonant frequency, adaptive RFI mitigation
is employed. A 1-tap LMS mitigation algorithm is applied to each frequency component
of the frequency-domain representation of the experimental data [23].

First, performance is evaluated for synthetic QR data. In this case, the RFI data are
measured experimentally in the absence of an explosive material, and an ideal QR signal
(complex-valued DC signal) is injected into the measured RFI data. Second, performance
is evaluated for experimental QR data. In this case, the data are measured for both
explosive and nonexplosive samples in the presence of RFI. The matched filter is
employed for the synthetic QR data, while the energy detector is utilized for the measured
QR data.
7.6.1 Detection Algorithms

After an estimate of the QR signal has been obtained, a detection algorithm must be
applied to determine whether or not the QR signal is present. For this binary decision
problem, both an energy detector and a matched filter are applied.

The energy detector simply computes the energy in the QR signal estimate, ~̂ss~ss(n)

Es ¼
XN�1

n¼0

ĵ~ss~ss(n)j2 (7:64)

As it is a simple detection algorithm that does not incorporate any prior knowledge of the
QR signal characteristics, it is easy to compute.

The matched filter computes the detection statistic

l ¼ Re

XN�1

n¼0

~̂ss~ss(n)~SS
�

( )
(7:65)

where ~SS is the reference signal, which, in this application, is the known QR signal. The
matched filter is optimal only if the reference signal is precisely known a priori. Thus, if
there is uncertainty regarding the resonant frequency of the QR signal, the matched filter
will no longer be optimal. QR resonant frequency uncertainty may arise due to variations
in environmental parameters, such as temperature.
7.6.2 Synthetic Quadrupole Resonance Data

Prior to detection using the matched filter, the QR signal is estimated directly. Three
Kalman filter approaches to estimate the QR signal are considered: the conventional Kalman
filter, the extended Kalman filter, and the Kalman filter for arbitrary colored noise.
Each of these filters requires the initial value of the system state, x0, and the selection
of the initial value may affect the estimate of x. The sample mean of the observation
~yy(n) is used to set x0. Since only the steady-state output of the Kalman filter is reliable,
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the first 39 point s are removed from the data used for detec tion to ensu re the syst em has
reach ed stea dy state.

Alth ough the measu rement noise is known to be color ed, the conven tional Kalman
filter (con KF) desig ned for wh ite noise is appli ed to estim ate the QR sign al. This algo-
rithm has the bene fits of being simpler wi th lower computati onal bur den than eithe r of
the other two Kalm an filters pro posed for direc t estim ation of the QR signal. Although its
ass umption s regardi ng the noise struct ure are recogni zed as inaccur ate, its perform ance
can be used as a bench mark for comp arison. For a given proce ss noi se covarian ce Q , the
covari ance of the inti al state x0, S  0, affects the speed with wh ich S reaches stead y state in
the conven tional Kalman filter. As Q increase s, it takes less time for S to co nverge.
Howeve r, the steady -state value of S also increases . In these simulat ions, S0 ¼ 10 in
the conven tional Kalm an filt er.

The second appro ach applie d to estim ate the QR signal is the Kalm an filt er with an AR
mod el for the colored noise (extKF) . Since R ¼ 0 shuts dow n the Kalm an filter it does
not track the sign al, we set R ¼ 10. It is shown that the det ection perform ance does not
dec rease when Q increases.

Fina lly, the Kalman filter for co lored noi se (arbKF) is applie d to the synth etic data.
Comp ared to the conve ntional Kalm an filter , the Kalm an filter for arbitra ry noi se has a
smal ler Kalman gain, and theref ore, slow er co nvergen ce speed. Consequ ently, the error
covari ances fo r the Kalman filter for arbitra ry noi se are large r. Since only the stea dy state
is used for detecti on, S0 ¼ 50 is chosen for Q ¼ 0.1 and S 0 ¼ 10 0 is chosen fo r Q ¼ 1 and
Q ¼ 10.

Resu lts for each of these Kalma n filteri ng method s for differen t values of Q are
pre sented in Figure 7.6. When Q is sma ll (Q ¼ 0.1 a nd Q ¼ 1), all three method s
have similar det ection perform ance. Howev er, wh en greate r mode l error is introdu ced
in the st ate equat ion ( Q ¼ 10) both the conven tional Kalm an filter a nd the Kalman filter
for colored noise have poorer detecti on perform ance than the Kalm an filter with an AR
mod el for the noi se. Thu s, the Kalman filt er with an AR mod el for the noi se shows rob ust
per formance. Conside ring the compu tational efficie ncy, the Kalm an filt er for colored
noi se is the poo rest because it recursi vely estimates C and V for each k . In this applica-
tion, although the me asureme nt noi se ~vvk is color ed, the diagonal elemen ts of the co var-
iance matrix dominate . Therefor e, the conve ntional Kalm an filter is preferabl e to the
Kalm an filt er for colored noise.
7.6. 3 Measur ed Quadrupol e Resonance Data

Indir ect estim ation of the QR signal is validat ed using two grou ps of real data co llected
bot h wi th and with out an explosive presen t. The two explosi ves fo r wh ich measu red QR
data are colle cted, den oted Type A and Type B, are a mong the mo re commo n explosiv es
fou nd in landmin es. It is wel l known that the Type B exp losive is the more chall enging of
the two exp losives to detect. The first grou p, den oted Data II, has Type A ex plosive , and
the second group, denoted Data III, has both Type A and Type B explosives.

For each data group, a 50–50% training–testing strategy is employed. Thus, 50% of the
data are used to estimate the coefficient and covariance matrices, and the remaining 50%
of the data are used to test the algorithm. The AVA algorithm is utilized to estimate the
AR parameter s from the trainin g da ta. Tab le 7.1 lists the four training –testing strat egies
considered. For example, if there are 10 measurements and measurements 1–5 are used
for training and measurements 6–10 are used for testing, then this is termed ‘‘first 50%
training, last 50% testing.’’ If the training–testing strategy measurements 1, 3, 5, 7, 9 are
used for training, and the other measurements for testing, this is termed ‘‘odd 50%
training, even 50% testing.’’
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FIGURE 7.6
Direct estimation of QR signal tested on Data I (synthetic data) with different noise model variance Q. (From Tan
et al., IEEE Transactions on Geoscience and Remote Sensing 43(7), 1507–1516, 2005. With permission.)
Figure 7.7 and Figure 7.8 presen t the per formance of ind irect QR signal estima tion
follow ed by an en ergy det ector. The data are measure d for bot h explosive and nonex plo-
sive samp les in the pre sence of RFI. The two diffe rent exp losive compo unds are referre d
to as Type A explosive and Type B explosive . Data II and Data III-1 are Type A explosi ve
and Data III-2 is Type B explosi ve. Indir ect QR sign al estimatio n provides almos t perfect
TABLE 7.1

Training–Testing Strategies for Data II and Data III

Training Testing

First 50% Last 50%
Last 50% First 50%
Odd 50% Even 50%
Even 50% Odd 50%
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FIGURE 7.7
Indirect estimation of QR signal tested on Data II (true data). Four different training–testing strategies are plotted
together. (From Tan et al., IEEE Transactions on Geoscience and Remote Sensing 43(7), 1507–1516, 2005. With
permission.)
detection for the Type A explosive. Although detection is not near-perfect for the Type B
explosive, the detection performance following the application of the Kalman filter is
better than the performance prior to applying the Kalman filter.
7.7 Summary

The detectability of weak signals in remote sensing applications can be hindered by
the presence of interference signals. In situations where it is not possible to record the
measurement without the interference, adaptive filtering is an appropriate method to
mitigate the interference in the measured signal. Adaptive filtering, however, may
not remove all the interference from the measured signal if the reference signals are not
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 7.8
Indirect estimation of QR signal tested on Data III (true data). Four different training–testing strategies are
plotted together. (From Tan et al., IEEE Transactions on Geoscience and Remote Sensing 43(7), 1507–1516, 2005. With
permission.)
completely correlated with the primary measured signal. One approach for subsequent
processing to detect the signal of interest when residual interference remains after the
adaptive noise cancellation is Kalman filtering.

An accurate signal model is necessary for Kalman filters to perform well. It is so critical
that even small deviations may cause very poor performance. The harmonic signal of
interest may be sensitive to the external environment, which may then restrict the signal
model accuracy. To overcome this limitation, an adaptive two-step algorithm, employing
Kalman filters, is proposed to estimate the signal of interest indirectly.

The utility of this approach is illustrated by applying it to QR signal estimation for
landmine detection. QR technology provides promising explosive detection efficiency
because it can detect the ‘‘fingerprint’’ of explosives. In applications such as humanitarian
demining, QR has proven to be highly effective if the QR sensor is not exposed to RFI.
Although adaptive RFI mitigation removes most of RFI, additional signal processing
algorithms applied to the postmitigation signal are still necessary to improve landmine
detection. Indirect signal estimation is compared to direct signal estimation using Kalman
filters and is shown to be more effective. The results of this study indicate that indirect QR
signal estimation provides robust detection performance.
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8.1 Introduction

The repeated occurrence of severe wildfires, which affect various fire-prone ecosystems of
the world, has highlighted the need to develop effective tools for monitoring fire-related
parameters. Vegetation water content (VWC), which influences the biomass burning
processes, is an example of one such parameter [1–3]. The physical definitions of VWC
vary from water volume per leaf or ground area (equivalent water thickness) to water
mass per mass of vegetation [4]. Therefore, VWC could also be used to infer vegetation
water stress and to assess drought conditions that linked with fire risk [5]. Decreases in
VWC due to the seasonal decrease in available soil moisture can induce severe fires in
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most ecosystems. VWC is particularly important for determining the behavior of fires in
savanna ecosystems because the herbaceous layer becomes especially flammable during
the dry season when the VWC is low [6,7].

Typically, VWC in savanna ecosystems is measured using labor-intensive vegetation
sampling. Several studies, however, indicated that VWC can be characterized temporally
and spatially using meteorological or remote sensing data, which could contribute to the
monitoring of fire risk [1,4]. The meteorological Keetch–Byram drought index (KBDI) was
selected for this study. This index was developed to incorporate soil water content in the
root zone of vegetation and is able to assess the seasonal trend of VWC [3,8]. The KBDI is a
cumulative algorithm for the estimation of fire potential from meteorological information,
including daily maximum temperature, daily total precipitation, and mean annual pre-
cipitation [9,10]. The KBDI also has been used for the assessment of VWC for vegetation
types with shallow rooting systems, for example, the herbaceous layer of the savanna
ecosystem [8,11].

The application of drought indices, however, presents specific operational challenges.
These challenges are due to the lack of meteorological data for certain areas, as well as
spatial interpolation techniques that are not always suitable for use in areas with complex
terrain features. Satellite data provide sound alternatives to meteorological indices in
this context. Remotely sensed data have significant potential for monitoring vegetation
dynamics at regional to global scale, given the synoptic coverage and repeated temporal
sampling of satellite observations (e.g., SPOT VEGETATION or NOAA AVHRR) [12,13].
These data have the advantage of providing information on remote areas where ground
measurements are impossible to obtain on a regular basis.

Most research in the scientific community using optical sensors (e.g., SPOT VEGETA-
TION) to study biomass burning has focused on two areas [4]: (1) the direct estimation of
VWC and (2) the estimation of chlorophyll content or degree of drying as an alternative to
the estimation of VWC. Chlorophyll-related indices are related to VWC based on the
hypothesis that the chlorophyll content of leaves decreases proportionally to the VWC
[4]. This assumption has been confirmed for selected species with shallow rooting systems
(e.g., grasslands and understory forest vegetation) [14–16], but cannot be generalized to all
ecosystems [4]. Therefore, chlorophyll-related indices, such as the normalized difference
vegetation index (NDVI), only can be used in regions where the relationship among
chlorophyll content, degree of curing, and water content has been established.

Accordingly, a remote sensing index that is directly coupled to the VWC is used to
investigate the potential of hyper-temporal satellite imagery to monitor the seasonal
vegetation moisture dynamics. Several studies [4,16–18] have demonstrated that VWC
can be estimated directly through the normalized difference of the near infrared reflect-
ance (NIR, 0.78–0.89 mm) rNIR, influenced by the internal structure and the dry matter,
and the shortwave infrared reflectance (SWIR, 1.58–1.75 mm) rSWIR, influenced by plant
tissue water content:

NDWI ¼ rNIR � rSWIR

rNIR þ rSWIR

(8:1)

The NDWI or normalized difference infrared index (NDII) [19] is similar to the global
vegetation moisture index (GVMI) [20].

The relationship between NDWI and KBDI time-series, both related to VWC dynamics,
is explored. Although the value of time-series data for monitoring vegetation moisture
dynamics has been firmly established [21], only a few studies have taken serial correlation
into account when correlating time-series [6,22–25]. Serial correlation occurs when data
collected through time contain values at time t, which are correlated with observations at
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time t – 1. This type of correlati on in time-se ries, when relate d to VWC dynam ics, is
mainly cau sed by the seasonal variation (dry–w et cycle) of vegeta tion [26]. Seria l correl-
ation can be used to forecast future values of the tim e-series by modeling the depe ndence
betwee n observ ations but affects correlati ons between variabl es measu red in time and
violates the bas ic reg ression assump tion of inde pendence [22]. Corre lation coefficie nts of
seria lly correlated da ta cannot be used as ind icators of goodn ess-of -fit of a mo del as the
correlati on co efficients are artificially infl ated [22,27 ].

The stu dy of the rela tionship betwee n NDWI and KBDI is a nontrivi al task due to the
effect of ser ial correlati on. Rem edies for serial correlation inclu de sampl ing or aggregat-
ing the data over longer tim e interva ls, as well as further mod eling, which can include
techni ques such as weighted reg ression [25,28 ]. However , it is dif ficult to accou nt for
seria l co rrelation in time -series relate d to VWC dynam ics usin g exte nded regressi on
techni ques. The time-serie s rela ted to VWC dyn amics often ex hibit hig h non-Gaus sian
seria l correlation and are more signifi cantly affec ted by outlie rs and measureme nt errors
[28]. A samp ling te chnique theref ore is pro posed, wh ich account s for seria l correlati on in
season al time-serie s, to stud y the rela tionship bet ween differe nt tim e-series. The serial
correlati on effect in time-serie s is as sumed to be minimal wh en extracting one metric
per seaso n (e.g ., start of the dry season). The extracted seasonal metrics are then utilize d
to study the relati onship betwee n time -series at a specif ic mome nt in tim e (e.g., st art of
the dry seaso n).

The aim of this chapte r is to address the effect of seria l correlatio n wh en study ing
the rela tionship betwee n remote sensing and mete orological time-se ries related to VWC
by comp aring nonse rially co rrelated season al metrics from time -series . Thi s chapter
theref ore has three defin ed obje ctives. Firstl y, an over view of time -series analysi s te ch-
nique s and concepts (e.g ., stationar ity, auto correlatio n, ARIM A, etc.) is presente d and
the rela tionship betwee n tim e-series is studied usin g cros s-correla tion and or dinary
least squa re (OLS) regres sion anal ysis. Secondly , an algorit hm fo r the extractio n of
season al metrics is optimized for sa tellite and mete orological time -series. Final ly, the
tempo ral occu rrence and values of the extra cted nonse rially correlate d season al metrics
are analyzed statistically to define the quantitative relationship between NDWI and KBDI
time-series. The influence of serial correlation is illustrated by comparing results from
cross-correlation and OLS analysis with the results from the investigation of correlation
between extracted metrics.
8.2 Data

8.2.1 Study Area

The Kruger National Park (KNP), located between latitudes 238S and 268S and longitudes
308E and 328E in the low-lying savanna of the northeastern part of South Africa, was
selected for this study (Figure 8.1). Elevat ions ran ge from 26 0 to 839 m abov e sea level ,
and mean annual rainfall varies between 350 mm in the north and 750 mm in the south.
The rainy season within the annual climatic season can be confined to the summer
months (i.e., November to April), and over a longer period can be defined by alternating
wet and dry seasons [7]. The KNP is characterized by an arid savanna dominated by
thorny, fine-leafed trees of the families Mimosaceae and Burseraceae. An exception is the
northern part of the KNP where the Mopane, a broad-leafed tree belonging to the
Ceasalpinaceae, almost completely dominates the tree layer.
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FIGURE 8.1
The Kruger National Park (KNP) study area with the weather stations used in the analysis (right). South Africa is
shown with the borders of the provinces and the study area (top left).
8.2.2 Climate Data

Climate data from six weather stations in the KNP with similar vegetation types were
used to estimate the daily KBDI (Figure 8.1). KBDI was derived from daily precipitation
and maximum temperature data to estimate the net effect on the soil water balance [3].
Assumptions in the derivation of KBDI include a soil water capacity of approximately
20 cm and an exponential moisture loss from the soil reservoir. KBDI was initial-
ized during periods of rainfall events (e.g., rainy season) that result in soils with maxi-
mized field capacity and KBDI values of zero [8]. The preprocessing of KBDI was
done using the method developed by Janis et al. [10]. Missing daily maximum temperat-
ures were replaced with interpolated values of daily maximum temperatures, based on a
linear interpolation function [30]. Missing daily precipitation, on the other hand, was
assumed to be zero. A series of error logs were automatically generated to indicate
missing precipitation values and associated estimated daily KBDI values. This was
done because zeroing missing precipitation may lead to an increased fire potential
bias in KBDI. The total percentage of missing data gaps in rainfall and temperature
series was maximally 5% during the study period for each of the six weather stations.
The daily KBDI time-series were transformed into 10-daily KBDI series, similar to
the SPOT VEGETATION S10 dekads (i.e., 10-day periods), by taking the maximum of
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FIGURE 8.2
The temporal relationship between NDWI and �KBDI time-series for the ‘‘Satara’’ weather station (Figure 8.1).
each dekad. The negative of the KBDI time-se ries (i.e. , –KBD I) was analyzed in this
chapter such that the tempo ral dynam ics of KBDI and NDWI were related (Fi gure 8.2).
The –KBD I and ND WI are used through out this chapter . The Satara weathe r stati on,
central ly posi tioned in the st udy area, was sele cted to rep resent the tempo ral vegeta tion
dynam ics. The other weath er statio ns in the study area demonstr ate similar tempo ral
vegeta tion dynam ics.
8.2.3 Remot e Sen sing Data

The data set used is compo sed of 10-dai ly SPO T VEGE TATION (SPO T VGT) comp osites
(S10 NDVI maximum value syn theses) acqui red over the stu dy area for the period April
1998 to December 2002. SP OT VG T can provide local to global coverage on a regu lar
basis (e.g., daily for SPOT VGT). The synth eses result in sur face reflectan ce in the blue
(0.43– 0.47 m m), red (0.61– 0.68 mm), NIR (0.78– 0.89 m m), and SWI R (1.58– 1.75 m m) spect ral
region s. Images were atmospher ically correc ted usin g the sim plified method for atmos-
pheric correc tion (SM AC) [30]. The geome trically and radio metrica lly correc ted S10
image s have a spat ial resolu tion of 1 km.

The S10 SPOT VGT tim e-series were pre proce ssed to det ect data that erroneo usly
influe nce the subseq uent fitting of function s to tim e-series, neces sary to def ine and extract
metrics [6]. The imag e preproce ssing pro cedures per formed were:

. Data points with a sa tellite view ing zenith angle (VZA) above 50 8 were maske d
out as pixels locat ed at the very edge of the im age (V ZA > 50 .5 8) swath are
affec ted by re-sam pling me thods that yield erroneo us spect ral val ues.

. The ab errant SWIR detec tors of the SPO T VGT sensor, flag ged by the status mask
of the SPO T VGT S10 synthesis , also were masked out.

. A data point was cl assified as cloud- free if the blue refle ctance was less than 0.07
[31]. The develop ed thr eshold appro ach was appl ied to identi fy cloud-free pixels
for the study area.

NDWI time-series were derived by selecting savanna pixels, based on the land cover
map of South Africa [32], for a 3 � 3 pixel window centered at each of the meteorological
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statio ns to redu ce the effect of potenti al spatia l mis registratio n (Fi gure 8.1). Med ian values
of the 9-pi xel window s were then retained in stead of sing le pix el v alues [33]. The median
was pre ferred to ave rage values as it is less affecte d by ex treme values and theref ore is
less sensit ive to poten tially undete cted data errors.
8. 3 Serial C orrelation and Ti me-Series A nalysis

Serial correl ation affec ts correlatio ns bet ween variab les meas ured in tim e, a nd violates the
bas ic reg ression assum ption of ind ependen ce. Tec hniques that are used to recogniz e
seria l correlati on theref ore are discuss ed by apply ing them to the NDW I and –KBDI
time -series. Cross-co rrelation analy sis is illu strated and used to study the relations hip
bet ween time -series of –KBDI and NDWI. Fun dament al time-serie s analysis concep ts
(e.g., stati onarity and seasona lity) are introduce d and a bri ef overvi ew is pres ented of
the mos t frequ ently used me thod for time-serie s analys is to acco unt for ser ial co rrelation,
nam ely aut oregres sion(AR) .
8.3. 1 Recogn izing Serial Cor relatio n

This chapter focuse s on discre te time -serie s, wh ich contain observ ations made at discr ete
time interva ls (e.g., 10 daily time steps of –KBD I and NDWI time -series). Tim e-series
are defined as a set of observati ons, xt, recorded at a specif ic tim e, t [26]. Tim e-seri es of –
KBDI and NDW I contain a seaso nal variatio n whic h is illustrat ed in Figu re 8.2 by
a smo oth increas e or decrease of the ser ies rela ted to vegeta tion mo isture dynam ic s.
The gradual increase or dec rease of the graph of a time-serie s is gen erally indicati ve
of the existence of a form of dependen ce or serial co rrelation among observ ations.

The presence of seria l correlati on system atically biases reg ression analysi s when study-
ing the rela tionship between two or more time -series [25]. Consid er the OLS regress ion
line with a slope and an inte rcept:

Y (t ) ¼ a0 þ a 1 X ( t ) þ e ( t) (8:2)

wh ere t is tim e, a0 and a 1 are the resp ective OLS regress ion interc ept and slope para m-
eter, Y( t ) the depende nt va riable, X( t ) the inde penden t variable , and e( t ) the ran dom
error term. The standar d erro r(SE) of each parameter is require d for any regress ion
mod el to define the conf idence inte rval(CI) and deriv e the significanc e of parameter s in
the regre ssion equat ion . The paramete rs a0, a 1, and the CIs, estim ated by minimi zing the
sum of the squared ‘‘residuals’’ are valid only if certain assumptions related to the
regression and e(t) are met [25]. These assumptions are detailed in statistical textbooks
[34] but a re not always me t or explicitly co nsidere d in real -world a pplications. Figure 8.3
illustrates the biased CIs of the OLS regression model at a 95% confidence level. The SE
term of the regression model is underestimated due to serially correlated residuals and
explains the biased confidence interval, where CI¼mean+ 1.96� SE.

The Gauss–Markov theorem states that the OLS parameter estimate is the best
linear unbiased estimate (BLUE); that is, all other linear unbiased estimates will have a
larger variance, if the error term, e(t), is stationary and exhibits no serial correlation. The
Gauss–Markov theorem consequently points to the error term and not to the time-series
themselves as the critical consideration [35]. The error term is defined as stationary when
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 8.3
Result of the OLS regression fit between�KBDI and NDWI as dependent and independent variables, respectively,
for the Satara weather station (n ¼ 157). Confidence intervals (- - -) at a 95% confidence level are shown, but are
‘‘narrowed’’ due to serial correlation in the residuals.
it does not pre sent a trend and the varian ce remain s co nstant over time [27]. It is poss ible
that the residuals are serially correlated if one of the dependen t or inde pend ent variable s
also is seria lly correl ated, bec ause the re siduals constitute a linear combi nation of both
types of variab les. Bot h depende nt and ind ependen t variabl es of the regre ssion mode l are
seria lly correlate d (KBDI and NDWI), whic h explain s the ser ial correlatio n observ ed in
the residuals.

A soun d practice used to veri fy seria l correlatio n in time-serie s is to perform mu lti-
ple checks by both graphica l and diagno stic techn iques. The aut ocorrelati on functi on
(ACF) can be view ed as a grap hical me asure of ser ial correlatio n betwee n variabl es or
residual s. The sample ACF is defined when x1, . .  . ,  xn are observ ations of a tim e-series.
The sampl e mean of x1,  . . .  ,  xn is [26] :

�xx ¼ 1

n

Xn

t¼ 1

xt (8: 3)

The sampl e auto covarian ce function with lag h and time t is

ĝg (h) ¼ n� 1 
Xn� hj j

t¼ 1

xtþ hj j � �xx
� �

(xt � �xx), � n < h < n (8: 4)

The sampl e ACF is

r̂r ¼ ĝg ( h)

ĝg(0)
,�n < h < n (8:5)

Figure 8.4 illus trates the ACF fo r time -series of –KBDI and NDWI presen ted from
the Kruger park data. The ACF clearly indicates a significant autocorrelation in the
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 8.4
The autocorrelation function (ACF) for (a) �KBDI and (b) NDWI time-series for the Satara weather station.
The horizontal lines on the graph are the bounds ¼ �1:96=

ffiffiffi
n
p

(n ¼ 157).
time-series, as more than 5% of the sample autocorrelations fall outside the significance
bounds ¼ �1:96=

ffiffiffi
n
p

[26]. There are also formal tests available to detect autocorrelation
such as the Ljung–Box test statistic and the Durbin–Watson statistic [25,26].
8.3.2 Cross-Correlation Analysis

The cross-correlation function (CCF) can be derived between two time-series utilizing a
technique similar to the ACF applied for one time-series [27]. Cross-correlation is a
measure of the degree of linear relationship existing between two data sets and can be
used to study the connection between time-series. The CCF, however, can only be used if
the time-series is stationary [27]. For example, when all variables are increasing in value
over time, cross-correlation results will be spurious and subsequently cannot be used to
study the relationship between time-series.

Nonstationary time-series can be transformed to stationary time-series by implement-
ing one of the following techniques:

. Differencing the time-series by a period d can yield a series that satisfies the
assumption of stationarity (e.g., xt�xt–1 for d¼ 1). The differenced series will
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contain one point less than the original series. Alth ough a time-se ries can be
differen ced more than once , one dif ference is usually suf ficient.

. Lowe r order pol ynomials can be fitted to the series when the data co ntains a
trend or season ality that nee ds to be subtract ed from the original ser ies. Seas onal
time-se ries can be rep resented as the sum of a speci fied trend, and season al
and ran dom terms. For exampl e, for stati stical in terpretat ion res ults, it is import-
ant to recog nize the presence of season al component s and remove them to
avoid confusio n with lon g-term trends. Figure 8.5 illustrat es the season al
trend decom positioni ng method usin g locally weighted regressi on for the
NDWI time-series [36].

. The logarithm or square root of the series may stabilize the variance in the case of
a nonconstant variance.

Figure 8.6 illu strates the cross-c orrelati on plot for stationar y series of – KBDI and NDWI.
–KBDI and NDWI time-series became stationary after differencing with d ¼ 1. The
stationarity was confirmed using the ‘‘augmented Dickey–Fuller’’ test for stationarity
[26,29] at a confidence level of 95% ( p < 0.01; with stationarity as the alternative hypo-
thesis). Note that approximately 95% confidence limits are shown for the autocorrelation
plots of an independent series. These limits must be regarded with caution, since there
exists an a priori expectation of serial correlation for time-series [37].
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The results of the seasonal trend decomposition (STL) technique for NDWI time-series of Satara weather station.
The original series can be reconstructed by summing the seasonal, trend, and remainder. In the y-axes the NDWI
values are indicated. The gray bars at the right-hand side of the plots illustrate the relative data range of the
time-series.
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FIGURE 8.6
The cross-correlation plot between sta-
tionary �KBDI and NDWI time-series of
the Satara weather station, where CCF
indicates results of the cross-correlation
function. The horizontal lines on the
graph are the bounds (¼ �1:96=

ffiffiffi
n
p

) of
the approximate 95% confidence interval.
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Tab le 8.1 illus trates the coefficie nts of determi nation (i.e ., multiple R 2) of the OLS
regres sion analys is with seria lly correlated residual s –KBDI as depe ndent and NDWI as
inde penden t variabl e fo r all six weathe r statio ns in the stud y area. The Durbin –Watson
statis tic indicate d that the residuals were seria lly correlated at a 95% confiden ce level
( p < 0.01). These resu lts will be compared with the method pr esented in Section 8.5. Table
8.1 also indicates the time lags at which correlation between time-series was maximal, as
derived from the cross-correlation plot. A negative lag indicates that –KBDI reacts prior to
NDWI, for example, in the cases of Punda Maria and Shingwedzi weather stations, and
subsequently can be used to predict NDWI. This is logical since weather conditions, for
example, rainfall and temperature, change before vegetation reacts. NDWI, which is related
to the amount of water in the vegetation, consequently lags behind the –KBDI. The major
vegetation type in savanna vegetation is the herbaceous layer, which has a shallow rooting
system. This explains why the vegetation in the study area quickly follows climatic changes
and NDWI did not lag behind –KBDI for the other four weather stations.
8.3.3 Time-Series Analysis: Relating Time-Series and Autoregression

A remedy for serial correlation, apart from applying variations in sampling strategy, is
modeling of the time dependence in the error structure by AR. AR most often is used for
TABLE 8.1

Coefficients of Determination of the OLS Regression Model between �KBDI and NDWI (n ¼ 157).

Station R2 Time Lag

Punda Maria 0.74 �1
Letaba 0.88 0
Onder Sabie 0.72 0
Pretoriuskop 0.31 0
Shingwedzi 0.72 �1
Satara 0.81 0

Note: The time expressed in dekads of maximum correlation of the cross-correlation between –KBDI and NDWI
is also indicated.
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purpose s of forecast ing and mo deling of a tim e-series [25]. The simples t AR mod el for
Equa tion 8.2, wh ere r is the result of the sample ACF at lag 1, is

et ¼ ret�1 þ «t (8:6)

where «t is a series of serially independent numbers with mean zero and constant
variance. The Gauss–Markov theorem cannot be applied and therefore OLS is not an
efficient estimator of the model parameters if r is not zero [35].

Many different AR models are available in statistical software systems that incorporate
time-series modules. One of the most frequently used models to account for serial
correlation is the autoregressive-integrated-moving-average model (ARIMA) [26,37].
Briefly stated, ARIMA models can have an AR term of order p, a differencing (integrating)
term (I) of order d, and a moving average (MA) term of order q. The notation for specific
models takes the form of (p,d,q) [27]. The order of each term in the model is determined by
examining the raw data and plots of the ACF of the data. For example, a second-order AR
(p ¼ 2) term in the model would be appropriate if a series has significant autocorrelation
coefficients between xt, and xt–1, and xt–2. ARIMA models that are fitted to time-series data
using AR and MA parameters, p and q, have coefficients F and u to describe the serial
correlation. An underlying assumption of ARIMA models is that the series being modeled
is stationary [26–27].
8.4 Methodology

The TIMESAT program is used to extract nonserially correlated metrics from remote
sensing and meteorological time-series [38,39]. These metrics are utilized to study the
relationship between time-series at specific moments in time. The relationship bet-
ween time-series, in turn, is evaluated using statistical analysis of extracted nonserially
correlated seasonal metrics from time-series (–KBDI and NDWI).
8.4.1 Data Smoothing

It often is necessary to generate smooth time-series from noisy satellite sensors or meteoro-
logical data to extract information on seasonality. The smoothing can be achieved by
applying filters or by function fitting. Methods based on Fourier series [40–42] or least-
square fits to sinusoidal functions [43–45] are known to work well in most instances.
These methods, however, are not capable of capturing a sudden, steep rise or decrease of
remote sensing or meteorological data values that often occur in arid and semiarid
environments. Alternative smoothing and fitting methods have been developed to over-
come these problems [38]. An adaptive Savitzky–Golay filtering method, implemented in
the TIMESAT processing package developed by Jönsson and Eklundh [39], is used in this
chapter. The filter is based on local polynomial fits. Suppose we have a time-series (ti, yi),
i ¼ 1, 2, . . . , N. For each point i, a quadratic polynomial

f (t) ¼ c1 þ c2tþ c3t2 (8:7)
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is fit to all 2kþ1 points for a window from n ¼ i � k to m ¼ i þ k by solving the system of
normal equations

ATAc ¼ ATb (8:8)

where

A ¼

wn wntn wnt2
n

wnþ1 wnþ1tnþ1 wnþ1t2
nþ1

..

.

wm wmtm wmt2
m

0
BBB@

1
CCCA and b ¼

wnyn

wnþ1ynþ1

..

.

wmym

0
BBB@

1
CCCA (8:9)

The filtered value is set to the value of the polynomial at point i. Weights are designated
as w in the above expression, with weights assigned to all of the data values in the
window. Data values that were flagged in the preprocessing are assigned weight
‘‘zero’’ in this application and thus do not influence the result. The clean data values all
have weights ‘‘one.’’ Residual negatively biased noise (e.g., clouds) may occur for the
remote sensing data and accordingly the fitting was performed in two steps [6]. The first
fit was conducted using weights obtained from the preprocessing. Data points above the
resulting smoothed function from the first fit are regarded more important, and in the
second step the normal equations are solved using the weight of these data values, but
increased by a factor 2. This multistep procedure leads to a smoothed function that is
adapted to the upper envelope of the data (Figure 8.7). Similarly, the ancillary metadata of
the meteorological data from the preprocessing also were used in the iterative fitting to
the upper envelope of the –KBDI time-series [6].

The width of the fitting window determines the degree of smoothing, but it also
affects the ability to follow a rapid change. It is sometimes necessary to locally tighten
the window even when the global setting of the window performs well. A typical
situation occurs in savanna ecosystems where vegetation, associated remote sensing,
and meteorological indices respond rapidly to vegetation moisture dynamics. A small
fitting window can be used to capture the corresponding sudden rise in data values.
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FIGURE 8.7
The Savitzky–Golay filtering of NDWI (——) is performed in two steps. Firstly, the local polynomials are fitted
using the weights from the preprocessing (a). Data points above the resulting smoothed function (– – –) from the
first fit are attributed a greater importance. Secondly, the normal equations are solved with the weights of these
data values increased by a factor 2 (b).

� 2007 by Taylor & Francis Group, LLC.



0 20 40 60
Time (dekad)

80 100
−0.4

−0.3

−0.2

−0.1

0.1

0

0.2

0.3

N
D

W
I

0 20 40 60
Time (dekad)

80 100
130

135

140

145

155

150

160

165

N
D

W
I

(a) (b)

FIGURE 8.8
The filtering of NDWI (——) in (a) is done with a window that is too large to allow the filtered data (– – –) to
follow sudden increases and decreases of underlying data values. The data in the window are scanned and if
there is a large increase or decrease, an automatic decrease in the window size will result. The filtering is then
repeated using the new locally adapted size (b). Note the improved fit at rising edges and narrow peaks.
The data in the window are scanned and if a large increase or decrease is observed,
the adaptive Savitzky–Golay method applied an automatic decrease in the window size.
The filtering is then repeated using the new locally adapted size. Savitzky–Golay filtering
with and without the adaptive procedure is illustrated in Figure 8.8. In the figure it is
shown that the adaptation of the window improves the fit at the rising edges and at
narrow seasonal peaks.
8.4.2 Extracting Seasonal Metrics from Time-Series and Statistical Analysis

Four seasonal metrics were extracted for each of the rainy seasons. Figure 8.9 illustrates
the different metrics per season for NDWI and KBDI time-series. The beginning of a
season, that is, 20% left of the rainy season, is defined from the final function fit as the
point in time for which the index value has increased by 20% of the distance between the
left minimum level and the maximum. The end of the season is defined in a similar way
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as the point 2 0% right of the rain season . The 80% left and right points are def ined as the
point s for wh ich the func tion fit has increas ed to 80% of the dista nce betwee n, respect-
ively, the left and right minimum levels and the max imum. The curren t te chnique used to
define metrics also is used by Verbe sselt et al. [6] to define the beginn ing of the fire
season .

The temp oral occurr ence and the val ue of each metric were extra cted for furth er
exp loratory stati stical anal ysis to stud y the rela tionship between time -series . The SPO T
VG T S10 time -series consiste d of fou r seasons (1998– 2002) from which fou r occurr ences
and values per metric type were extra cted. Twent y-four occurr ence–val ue combi nations
per metric type ultima tely were availa ble for further analysi s sin ce six weath er sta tions
were used.

Serial co rrelation that occurs in remote sens ing and cl imate-base d tim e-series in vali-
date s inferen ces made by standard par ametric tests, such as the Student ’s t-test or the
Pear son correlati on. All extra cted occu rrence–val ue co mbinat ions per metric type were
teste d fo r autoco rrelation using the Ljun g–Box auto correlatio n test [26]. Robust non-
parame tric te chniques, suc h as the Wi lcoxon’ s signed rank test were used in case of
non- normal ly distri buted da ta. The norm ality of the data was verifie d using the
Sha piro–W ilkinson no rmality test [29].

Firs tly, the distri bution of the tempo ral occu rrence of each me tric was visual ized and
eva luated ba sed on wh ether or not there was a signifi cant differen ce betwee n the tem-
por al occurr ence of the four metric types extra cted from –KBD I and NDWI time-serie s.
Next , the strengt h a nd sign ificanc e of the relati onship bet ween –KBD I and NDWI values
of the four me tric typ es were assessed with an OLS regre ssion analys is.
8. 5 Resul ts and D iscussion

Figure 8.9 illus trates the optim ized func tion fit and the define d metrics for the –KBDI and
ND WI. Notice that the Savi tzky–Gol ay func tion co uld proper ly define the behavio r of the
differe nt tim e-series. The functi on was fitted to the upper enve lope of the data by usin g
the uncert ainty inform ation deriv ed during the pre proces sing step. The result s of the
statis tical a nalysis based on the extra cted me trics for –KBDI and NDWI are pres ented.
The Ljung–B ox statistic ind icated that the extra cted occurr ences and val ues were not
sign ificantly aut ocorrelate d at a 95% confiden ce level. All p-value s were greater than 0.1,
failing to reject the null hypothesis of independence.
8.5.1 Temporal Analysis of the Seasonal Metrics

Figure 8.10 illu strates the tempo ral distribut ion of temp oral occurr ence of extra cted
metrics from time-series of –KBDI and NDWI. The occurrences of extracted metrics
were significantly non-normally distributed at a 95% confidence level (p > 0.1), indicating
that the Wilcoxon’s signed rank can be used. The Wilcoxon’s signed rank test showed that
–KBDI and NDWI occurrences of the 80% left and right, and 20% right were not signi-
ficantly different from each other at a 95% confidence level (p > 0.1). This confirmed that
–KBDI and NDWI were temporally related. It also corroborated the results of Burgan [11]
and Ceccato et al. [4] who found that both –KBDI and NDWI were related to the seasonal
vegetation moisture dynamics, as measured by VWC.

Figure 8.10, however, illustrates that the start of the rainy season (i.e., 20% left occur-
rence), derived from the –KBDI and NDWI time-series, was different. The Wilcoxon’s
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FIGURE 8.10
Box plots of the temporal occurrence of the four defined metrics, that is, 20% left and right, and 80% left and
right, extracted from time-series of �KBDI and NDWI. The dekads (10-day period) are shown on the y-axis
and are indicative of the temporal occurrence of the metric. The upper and lower boundaries of the boxes
indicate upper and lower quartiles. The median is indicated by the solid line (—) within each box. The
whiskers connect the extremes of the data, which were defined as 1.5 times the inter-quartile range. Outliers
are represented by (o).
signed rank test confirmed that the –KBDI and NDWI differed significantly from each
other at a 95% confidence level (p < 0.01). This phenomenon can be explained by the fact
that vegetation in the study area starts growing before the rainy season starts, due to an
early change in air temperature (N. Govender, Scientific Service Kruger National Park,
South Africa, personal communication). This explained why the NDWI reacted before the
change in climatic conditions as measured by the –KBDI, given that the NDWI is directly
related to vegetation moisture dynamics [4].
8.5.2 Regression Analysis Based on Values of Extracted Seasonal Metrics

The assumptions of the OLS regression models between values of metrics extracted
from –KBDI and NDWI time-series were verified. The Wald test statistic showed
nonlinearity to be not significant at a 95% confidence level (p > 0.15). The Shapiro–
Wilkinson normality test confirmed that the residuals were normally distributed at a
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95% confidence level (p < 0.01) [6,29]. Table 8.2 illustrates the results o f t he OLS
regression analysis between values of m et rics ex tr acted f rom – KBD I an d N DWI t ime-
series. The values extracted at the ‘ ‘20% right’’ position of t he –KBDI and NDWI
time-series showed a significant r elationship at a 95% confidence level (p < 0.01).
The other extracted m etrics did n ot exhi bi t significant relationships at a 9 5%
conf idence level (p > 0.1). A significan t r elations hi p between the – KBDI and NDWI
time-series w as observed only at the m ome nt when savanna vegetatio n was c om-
ple tely cured (i.e., 20% right-hand side ). The savanna vegetati on therefo re r eacted
differently to c hanges in climate paramet ers such as rainfall a nd temperature, as
measured by KBDI, d ependi ng on the p henological growing cycle. Thi s phenomenon
could be expl ained because a living plant uses defense m echanisms t o protect i tself
from drying out, while a c ured plant respon ds to cl imatic conditio ns [46]. T he se
results c onsequently indi cated that the r elati onship between extracted v alues of
–KBDI and NDWI was influenced by seasonality. This i s in corroboration w ith the
results of Ji and P eters [23], who indicate d that seasonality had a sign ificant effect on
the relationship betwee n vegetatio n as measured by a remote sensing index and
drought inde x. These results fu rther illustrated that the se asonal effect n eeds t o be
taken into account when regressio n techniques are used to q uantify t he relati onship
betwee n t ime -seri es related to vege tation m oisture dynamics. The seasonal effect a lso
can be accounted for by utilizing autoregression models with seasonal dummy
variables, which t ake the e ffe ct of serial correlation and seasonal ity into account
[23,26]. However, the propo se d metho d to a ccount for serial correl ation by sampling
at specific moments in time had an additional advantage; the influence of seasonality
could be studied by extracting metrics at the specified moments, besides the fact that
serial correlation was taken into account.

Furthermore, it was shown that serial correlation caused an overestimation of the
correl ation coef ficient is wh en resu lts from Ta ble 8.1 and Table 8 .2 were compared. All
the coefficients of determination (R2) of Table 8.1 were significant with an average value
of 0.7, while in Table 8.2 only the correlation coefficient at the end of the rainy season
(20% right-hand side) was significant (R2 ¼ 0.49). This confirmed the importance of
accounting for serial correlation and seasonality in the residuals of a regression model,
when studying the relationship between two time-series.
8.5.3 Time-Series Analysis Techniques

Time-series analysis models most often are used for purposes of describing current
conditions and forecasting [25]. The models use the serial correlation in time-series as a
TABLE 8.2

Coefficients of Determination of the OLS Regression Models (NDWI
� –KBDI) for the Four Extracted Seasonal Metric Values between
–KBDI and NDWI Time-Series (n ¼ 24 per Metric)

NDWI � �KBDI R2 p-Values

20% left 0.01 0.66
20% right 0.49 <0.01
80% left 0.00 0.97
80% right 0.01 0.61
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tool to relate tempo ral observ ations. Future obse rvation s can be pre dicted by mo deling
the seria l correlati on structur e of a time -series [26] . Time-s eries analysis techni ques
(e.g., ARIMA ) can be used to mo del a time-seri es by using other, indepen dent time-
series [27]. ARIMA subse quently can be used to study the relations hip betwee n –KBDI
and NDWI. Howev er, there are constr aints that have to be conside red befo re
ARIMA mod els can be appli ed to a time-serie s (e.g., drought inde x) by using other
pred ictor tim e-series (e .g., satellite inde x).

Firstl y, the goodn ess- of-fit of an ARIM A mod el wil l not be signifi cant when chang es in
the sa tellite index pr ecede or coincide with thos e in the dro ught ind ex. The CCF can be
used in this context to verify how time-series are related to each other. Time lag results in
Table 8.1 indica te that the –KBDI (drought index) preced es or coinci des with the NDWI
time-series. This illustrates that ARIMA models cannot directly be used to predict the
KBDI, with NDWI as the predictor variable. Consequently, other more advanced time-
series analysis techniques are needed to model vegetation dynamics because they will
precede or coincide with the dynamics monitored by remote sensing indices in most of
the cases. Such more advanced time-series analysis techniques, however, are not dis-
cussed since they are outside the scope of this chapter.

Secondly, availability of data is limited for time-series analysis, namely, from 1998 to
2002. This is an important constraint because two separate data sets are needed to
parameterize and evaluate an ARIMA model. One set is needed for parameterization,
while the other is used to forecast and validate the ARIMA model through comparison of
the observed and expected values. Accordingly, it is necessary to interpolate missing
satellite data that were masked out during preprocessing to ensure adequate data are
available for parameterization.

Thirdly, the proposed sampling strategy made investigation of the time lag and correl-
ation at a defined instant in time possible, as opposed to ARIMA or cross-correlation
analysis, through which only the overall relationship between time-series can be studied
[25]. The applied sampling strategy is thus ideally suited to study the relationship
between time-series of climate and remote sensing data, characterized by seasonality
and serial correlation. The sampling of seasonal metrics minimized the influence of serial
correlation, thereby making the study of seasonality possible.
8.6 Conclusions

Serial correlation problems are not unknown in the field of statistical or general
meteorology. However, the presence of serial correlation, found during analysis of a
variable sampled sequentially at regular time intervals, seems to be disregarded by
many agricultural meteorologists and remote sensing scientists. This is true des-
pite abundant documentation available in the traditional meteorological and statistical
literature. Therefore, an overview of the most important time-series analysis techni-
ques and concepts was presented, namely, stationarity, autocorrelation, differencing,
decomposition, autoregression, and ARIMA.

A method was proposed to study the relationship between a meteorological drought
index (KBDI) and remote sensing index (NDWI), both related to vegetation moisture
dynamics, by accounting for the serial correlation effect. The relationship between –KBDI
and NDWI was studied by extracting nonserially correlated seasonal metrics, for
example, 20% and 80% left- and right-hand side metrics of the rainy season, based on a
Savitzky–Golay fit to the upper envelope of the time-series. Serial correlation between the
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extracted metrics was shown to be minimal and seasonality was an important factor
influencing the relationship between NDWI and –KBDI time-series. Statistical analysis
using the temporal occurrence of the extracted metrics revealed that NDWI and –KBDI
time-series are temporally connected, except at the beginning of the rainy season.
The fact that the savanna vegetation starts re-greening before the start of the rainy season
explains this inability to detect the beginning of the rainy season. The values of the
extracted seasonal metrics of NDWI and –KBDI were significantly related only at
the end of the rainy season, namely, at the 20% right-hand side value of the fitted
curve. The savanna vegetation at the end of the rainy season was cured and responded
strongly to changes in climatic conditions monitored by the –KBDI, such as rain and
temperature. The relationship between –KBDI and NDWI consequently changes during
the season, which indicates that seasonality is an important factor that needs to be taken
into account. Moreover, it was shown that correlation coefficients estimated by OLS
regression analysis were overestimated due to the influence of serial correlation in the
residuals. This confirmed the importance of taking serial correlation of the residuals
into account by sampling nonserially correlated seasonal metrics when studying the
relationship between time-series.

The serial correlation effect consequently was taken into account by the extraction of
seasonal metrics from time-series. The seasonal metrics in turn could be used to study the
relationship between remote sensing and ground-based time-series, such as meteoro-
logical or field measurements. A better understanding of the relationship between remote
sensing and in situ observations at regular time intervals will contribute to the use of
remotely sensed data for the development of an index that represents seasonal vegetation
moisture dynamics.
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A prediction-error (PE) filter is an array of numbers designed to interpolate missing parts
of data such that the interpolated parts have the same spectral content as the existing
parts. The data can be a one-dimensional time series, two-dimensional image, or a three-
dimensional quantity such as subsurface material property. In this chapter, we discuss the
application of a PE filter to recover missing parts of an image when a low-resolution
image of the missing parts is available.

One of the research issues on PE filter is improving the quality of image interpolation
for nonstationary images, in which the spectral content varies with position. Digital
elevation models (DEMs) are in general nonstationary. Thus, PE filter alone cannot
guarantee the success of image recovery. However, the quality of the image recovery of
a high-resolution image can be improved with independent data set such as a low-
resolution image that has valid pixels for the missing regions of the high-resolution
image. Using a DEM as an example image, we introduce a systematic method to use a
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PE filter incorp orating the low-reso lution image as an addition al co nstraint, and show the
impro ved qua lity of the image interpo lation .

Hig h-resolutio n DEMs are ofte n limited in spatial cove rage; they also may posse ss
syst ematic artifacts when compared to compre hensive low-reso lution map s. We co rrect
artifa cts and interpo late regions of missin g da ta in topogra phic synth etic aper ture radar
(TO PSAR) DEMs usin g a low-reso lution shuttle radar topogr aphy mission (SRTM ) DEM.
Then PE filters are to interpo late and fill missing data so that the interpo lated region s
have the same spect ral co ntent as the v alid region s of the TOPS AR DEM. The SRT M DEM
is used as an add itional constrai nt in the in terpola tion. Using cross-v alidat ion me thods
one can obtain the optimal we ighting for the PE filter and the SR TM DEM constr aints.
9. 1 Image Descriptions

InSA R is a pow erful tool for gene rating DEMs [1]. The TOPS AR and SRTM sens ors are
pri mary sour ces for the acad emic commu nity for DEMs derived from single- pass inte r-
ferome tric data. Differe nces in syst em paramete rs suc h as altitude and swath width
(Tabl e 9.1) res ult in very differen t pro perties for deriv ed DEMs. Speci fically , TOPS AR
DEMs have bet ter res olution, wh ile SR TM DEMs have bet ter accura cy over larger areas.
TOPS AR coverage is often not spatia lly co mplete.
9.1. 1 TOPSAR DEM

TOPS AR DEMs are pro duced from cross-t rack interf erometric data acquired with
NASA ’s AIRSA R syst em mounted on a DC-8 aircr aft. Altho ugh the TOPS AR DEMs
have a higher resolutio n than other existing da ta, they som etimes suf fer from artifa cts
and missing data due to roll of the aircr aft, layover , and flight planning limita tions. The
DEMs derived from the SRTM have lower resolution, but fewer artifacts and missing data
than TOPSAR DEMs. Thus, the former often provides information in the missing regions
of the latter.

We illustrate joint use of these data sets using DEMs acquired over the Galápagos
Islands. Figure 9.1 shows the TOPSAR DEM used in this study. The DEM covers Sierra
Negra volcano on the island of Isabela. Recent InSAR observations reveal that the volcano
has been deforming relatively rapidly [2,3]. InSAR analysis can require use of a DEM to
produce a simulated interferogram required to isolate ground deformation. The effect of
artifact elimination and interpolation for deformation studies is discussed later in this
chapter.
TABLE 9.1

TOPSAR Mission versus SRTM Mission

Mission TOPSAR SRTM

Platform DC-8 aircraft Space shuttle
Nominal Altitude 9 km 233 km
Swath width 10 km 225 km
Baseline 2.583 m 60 m
DEM resolution 10 m 90 m
DEM coord. system None Lat/Long
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FIGURE 9.1
The original TOPSAR DEM of Sierra Negra volcano in Galápagos Islands (inset for location). The pixel spacing of
the image is 10 m. The boxed areas are used for illustration later in this paper. Note that there are a number of
regions of missing data with various shapes and sizes. Artifacts are not identifiable due to the variation in
topography. (From Yun, S.-H., Ji, J., Zebker, H., and Segall, P., IEEE Trans. Geosci. Rem. Sens., 43(7), 1682, 2005.
With permission.)
The T OPSAR D EMs h ave a p ixel spacing of about 1 0 m , su ffi cient f or most geodetic
applications. However, regio ns of missing data are often encountered (Figure 9.1), and
signi ficant resi du al a rtifacts are f ound (Figure 9 .2). The regio ns of missing data are
cause d by layover of the steep volcanoe s and flight planning limitations. A rtifacts are
large-scale and systematic and m ost likely due to uncompensated rol l of the DC-8
aircraft [4]. Attempts to comp ensate this motion inclu de m odels of pi ecewise linear
im agi ng g eom et ry [ 5] a nd est im at in g i ma gin g parameters th at minimize the difference
between the TOPSAR D EM and an indep endent reference D EM [6]. We use a nonpar-
ame terized direct ap proach by subtracting t he difference between the TO PSA R and
SR TM DEM s.
9.1.2 SRTM DEM

The recent SRTM mi ssion pro duced ne arly worldw ide to pograp hic data at 90 m postin g.
SRTM topogr aphi c data are in fact produc ed at 30 m postin g (1 arcsec) ; however , high-
resoluti on data sets for areas outsi de of the Un ited States are not availa ble to the publi c at
this time. Only DEMs at 90 m postin g (3 arcsec) are avai lable to downlo ad.

For many analyse s, finer scal e elevati on data are require d. For example , a typ ical pixel
spacing in a spac eborne SA R image is 20 m. If the SRTM DEMs are used for topogra phy
removal in spacebor ne interf erometry, the pix el spacing of the final interfero grams would
be limited by the to pograp hy data to at best 90 m. Desp ite the low er resoluti on, the SRTM
DEM is useful becau se it has fewer moti on-induc ed artifa cts than the TOPS AR DEM. It
also has fewer data holes.

The merits and demerits of the two DEMs are in many ways complementary to each
other. Thus, a proper data fusion method can overcome the shortcomings of each and
produce a new DEM that combines the strengths of the two data sets: a DEM that has a
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 9.2 (See color insert following page 178.)
(a) TOPSAR DEM and (b) SRTM DEM. The tick labels are pixel numbers. Note the difference in pixel spacing
between the two DEMs. (c) Artifacts obtained by subtracting the SRTM DEM from the TOPSAR DEM. The flight
direction and the radar look direction of the aircraft associated with the swath with the artifact are indicated with
long and short arrows, respectively. Note that the artifacts appear in one entire TOPSAR swath, while they are not
as serious in other swaths.
resolution of the TOPSAR DEM and large-scale reliability of the SRTM DEM. In this
chapter, we present an interpolation method that uses both TOPSAR and SRTM DEMs
as constraints.
9.2 Image Registration

The original TOPSAR DEM, while in ground-range coordinates, is not georeferenced.
Thus, we register the TOPSAR DEM to the SRTM DEM, which is already registered in a
latitude–longitude coordinate system. The image registration is carried out between
the DEM data sets using an affine transformation. Although the TOPSAR DEM is not
georeferenced, it is already on the ground coordinate system. Thus, scaling and rotation
are the two most important components. We have seen that skewing component
was negligible. Any higher order transformation between the two DEMs would also be
negligible. The affine transformation is as follows:
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are tie point s in the SR TM and TOPS AR DEM co ordinate system s,

resp ectively. Since [ a b e] and [ c d f] are estimate d separ ately, a t least thr ee tie point s
are require d to uniquely det ermine them. We picke d 1 0 tie points from each DEM based
on topogr aphic features and solved for the six unknow ns in a least- square sens e.

Give n the six unk nowns, we choose new geor eferenc ed samp le location s that are
uniform ly spaced; ever y ninth sample locat ion corresp onds to the samp le location of

SRTM DEM. Those sampl e locat ions from
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S
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S
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and

x
T
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are calcul ated. The n, the

nearest TOPS AR DEM value is selected and put into the co rrespondi ng new geor efer-
enced samp le locat ion. The interm ediate values are filled in from the TOPS AR map to
prod uce the georefe renced 10-m data set.

It should be noted that it is not easy to determi ne the tie points in DEM data sets.
Enha ncing the contras t of the DEMs facil itated the proces s. In general, fine regist ration is
impor tant for correctl y merging differen t data sets. The two DEMs in this stud y have
differen t pix el spacings . It is dif ficult to pick tie point s with higher pre cision than the pixel
spacing of the co arser image . In our me thod, howeve r, the SRTM DEM, the coarser imag e,
is treated as an av eraged image of the TOPS AR DEM, the finer image . In our inversi on,
only the 9-by -9 ave raged val ues of the TOP SAR DEM are comp ared with the pix el values
of the SRT M DEM. Thus, the fine registratio n is less criti cal in this approach than in the
case wh ere a on e-to-on e match is requir ed.
9.3 Artifact Elimination

Exam ination of the geor efere nced TOP SAR DEM (Figure 9.2a) shows motio n arti-
facts wh en co mpared to the SRTM DEM (Fi gure 9.2b). The artifa cts are not clearly
discer nible in Figure 9.2a bec ause thei r magn itude is small in comparis on to the overall
data values. The artifacts are identified by downsampling the registered TOPSAR DEM
and subtracting the SRTM DEM. Large-scale anomalies that periodically fluctuate over an
entire swath are visible in Figure 9.2c. The periodic pattern is most likely due to uncom-
pensated roll of the DC-8 aircraft. The spaceborne data are less likely to exhibit similar
artifacts, because the spacecraft is not greatly affected by the atmosphere. Note that the
width of the anomalies corresponds to the width of a TOPSAR swath. Because the SRTM
swath is much larger than that of the TOPSAR system (Table 9.1), a larger area is covered
under consistent conditions, reducing the number of parallel tracks required to form an
SRTM DEM.

The max imum ampl itude of the mo tion artifa cts in our st udy area is about 20 m. Thi s
would res ult in substa ntial errors in man y analyse s if not proper ly correc ted. For ex-
ampl e, if this TOPS AR DEM is used for to pograp hy red uction in repeat-pas s InSA R usin g
ERS-2 data with a perpen dicular baseline of about 40 0 m, the result ing defo rmation
interf erogram would co ntain one frin ge ( ¼ 2.8 cm) of spur ious signal.

To remo ve these artifa cts from the TOP SAR DEM, we up- sampl e the dif ference
image wi th bilinear in terpola tion by a fact or of 9 so that its pixel spacing matches the
TOPSAR DEM. The difference image is subtracted from the TOPSAR DEM. This
proce ss is desc ribed with a flow diagr am in Figure 9.3. Note that the lower bran ch
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 9.3
The flow diagram of the artifact elimination. (From Yun, S.-H., Ji, J., Zebker, H., and Segall, P., IEEE Trans. Geosci.
Rem. Sens., 43(7), 1682, 2005. With permission.)
unde rgoes two low -pass filter opera tions wh en averaging and bilinear interpol ation are
imple mented, wh ile the uppe r branch pres erves the high frequenc y contents of the TOP-
SAR DEM. In this way we can elimina te the larg e-scale artifacts wh ile retainin g det ails in
the TOPS AR DEM.
9. 4 Prediction-Error ( PE) Filter

The next step in the DEM proces s is to fill in mi ssing da ta. We use a PE filt er opera ting on
the TOPS AR DEM to fill these ga ps. The basic idea of the PE filter constrai nt [7,8]
is that mi ssing data can be estim ated so that the restore d data yield minimum en ergy
wh en the PE filter is appli ed. The PE filter is deriv ed from train ing data, which are no rmally
val id data surroundi ng the miss ing regions . The PE filter is selected so that the mi ssing data
and the valid da ta shar e the same spect ral conten t. Henc e, we as sume that the spect ral
conten t of the mis sing da ta in the TOPS AR DEM is sim ilar to that of the regions with val id
data surro unding the miss ing regions .
9.4. 1 Designi ng the Filter

We generate a PE filter such that it rejects data with statistics found in the valid regions of the
TOPSAR DEM. Given this PE filter, we solve for data in the missing regions such that the
interpolated data are also nullified by the PE filter. This concept is illustrated in Figure 9.4.

The PE filter, fPE , is fou nd by mi nimizing the follow ing objective func tion,

kfPE � xe k2 (9 :2)

wh ere xe is the ex isting data from the TOPSAR DEM, and * represe nts co nvolu tion.
This expression can be rewritte n in a linear algeb raic form usin g the fo llowing matr ix
operation:

kFPE xek2 (9:3)

or equivalently

kXe fPEk2 (9:4)

where FPE and Xe are the matrix representations of fPE and xe for convolution operation.
These matrix and vector expressions are used to indicate their linear relationship.
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FIGURE 9.4
Concept of PE filter. The PE filter is estimated by solving an inverse
problem constrained with the remaining part, and the missing part is
estimated by solving another inverse problem constrained with the filter.
The «1 and «2 are white noise with small amplitude.
9.4.2 1D Exampl e

The pro cedure of acqui ring the PE filter can be exp lained with a 1D exampl e. Suppose
that a da ta set, x ¼ [ x1, . . ., xn ] (where n � 3) is given, and we wan t to compu te a PE filter of
leng th 3, fPE ¼ [1 f1 f 2]. The n we form a system of linear equat ions as follow s:

x3 x2 x1

x4 x3 x2
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. ..
. ..
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The first elemen t of the PE filter sho uld be equal to one to avoid the trivial solu tion, fPE ¼
0. Note that Equation 9.5 is the convo lution of the da ta and the PE filter. After sim ple
algebr a and with
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.
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2
64

3
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we get
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f1

f2

� �
� �d (9: 6)

and its normal equation bec omes

f1

f2

� �
¼ ( D T D ) � 1 D T ( � d) (9: 7)

Note that Eq uation 9.7 minimi zes Equa tion 9.2 in a least- square sen se. This pro cedure can
be exte nded to 2D pro blems, and more deta ils are desc ribed in Refs . [7] and [8].

9.4.3 The Effect of the Filter

Figure 9.5 shows the charact eristics of the PE filter in the spat ial and Four ier doma ins.
Figure 9.5a is the samp le DEM chosen from Figure 9.1 (num bere d box 1) for demo nstra-
tion. It contain s variou s topogr aphic features and has a wide range of spect ral conten t
(Figure 9.5d). Figure 9.5b is the 5-by-5 PE filter der ived from Figure 9.5a by solving the
inverse prob lem in Equation 9.3. Note that the first thr ee elemen ts in the first colum n
of the filter co efficients are 0 0 1. This is the PE filt er’s un ique constrai nt that ensu res the
filtere d output to be white noise [7]. In the filtered output (Fig ure 9.5c) all the variati ons
in the DEM were effectivel y suppress ed. The size (order) of the PE filter is based on the
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 9.5
The effect of a PE filter. (a) original DEM; (b) a 2D PE filter found from the DEM; (c) DEM filtered with the PE
filter; and (d), (e), and (f) the spectra of (a), (b), and (c), respectively, plotted in dB. (a) and (c) are drawn with the
same color scale. Note that in (c) the variation of image (a) was effectively suppressed by the filter. The standard
deviations of (a) and (c) are 27.6 m and 2.5 m, respectively. (From Yun, S.-H., Ji, J., Zebker, H., and Segall, P., IEEE
Trans. Geosci. Rem. Sens., 43(7), 1682, 2005. With permission.)
comp lexity of the spect rum of the DEM. In gene ral, as the spectrum bec omes mo re
comp lex, a larger size filter is req uired. After te sting vario us sizes of the filter, we
fou nd a 5 -by-5 size appr opriate for the DEM used in our study . Figu re 9.5d and Figure
9.5e sho w the spect ra of the DEM and the PE filter , res pectively. Thes e illustrat e the
inve rse relati onship of the PE filter to the correspo nding DEM in the Four ier dom ain, such
that thei r pro duct is minimi zed (Fig ure 9.5f). This PE filter constr ains the interpol ated
data in the DEM to similar spectral conten t to the existin g da ta.

All inve rse problem s in this study were deriv ed usin g the conjugate grad ient method,
wh ere forward and ad joint functi onal opera tors are used instead of the ex plicit inve rse
opera tors [7], saving comp uter memory space.

9. 5 Interpolat ion

9.5. 1 PE Filter Cons traint

Once the PE filter is det ermined, we next estimate the mis sing parts of the image. As
depicte d in Figure 9.4, interpol ation using the PE filter require s that the norm of the
filtere d output be minimi zed. This pro cedure can be form ulated as an inve rse computa-
tion minimizing the following objective function:

kFPE xk2 (9:8)
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where FPE is the matrix rep resentat ion of the PE filter co nvoluti on, and x repres ents
the enti re data set includin g the known and the mi ssing region s. In the in version pro-
cess we only updat e the missing reg ion, without changing the known region . Thi s
guaran tees seaml ess interpol ation acros s the boun daries betwee n the known and
miss ing regions.
9.5.2 SRTM DEM Cons traint

As pr eviousl y stated, 90-m postin g SRTM DEMs were generated from 30-m postin g data.
This dow nsampli ng was done by calcu lating three ‘‘looks’ ’ in bot h the east ing and
northi ng dir ections. To use the SR TM DEM as a co nstraint to interpo late the TOPS AR
DEM, we posit the followin g relations hip betwee n the two DEMs: each pixel val ue in a 90-
m postin g SRTM DEM can be conside red equival ent to the ave raged value of a 9-by-9
pixel windo w in a 10-m postin g TOPS AR DEM center ed at the co rrespondi ng pixel in the
SRTM DEM.

The solu tion usin g the constr aint of the SRTM DEM to fi nd the missing data points in
the TOPSAR DEM can be exp ressed as mi nimizing the followin g obje ctive func tion:

ky � Axm k2 (9: 9)

where y is a n SRTM DEM exp ressed as a vector that cove rs the mis sing reg ions of the
TOPS AR DEM, and A is an averagi ng operato r gen erating nine looks, and xm rep resents
the missing region s of the TOPS AR DEM.
9.5.3 Inversion with Two Cons traints

By co mbining two co nstraints, one deriv ed from the stati stics of the PE filter and one from
the SRTM DEM, we can interp olate the missin g da ta optim ally with resp ect to both
criteria. The PE filter guar antees that the interpo lated data will have the same spect ral
proper ties as the known data. At the same time the SRTM constr aint forces the interpo l-
ated data to have average height near the correspo nding SRTM DEM. We fo rmulate the
inverse pro blem as a minimi zation of the follow ing objective fu nction:

l2 kFPE xm k  
2 þ ky � Axm k2 (9: 10)

where l set the relative effect of each criterion. Here xm has t he dimension s of the TOPSAR
DEM, while y has the dim ensions of the SRTM DEM. If regions of missing data are localized in
an  image,  the entire image does not have to be used for generating  a PE filter. We implement
interpolation in subimages to save time an d c omputer memory space. An example of such a
subimage is sh ow n in Figure 9.6. T he image is a part of Figure 9.1 (numbered box 2 ). Figure 9.6a
and F igur e 9 .6b are examples of xe in Equa tion 9.3 and y, respectively.

The multipli er l det ermines the relative wei ght of the two terms in the objective
func tion. As l ! 1, the solutio n satisfies the first constr aint only, and if l ¼ 0, the
solutio n sati sfies the second co nstraint only.
9.5.4 Optim al Weigh ting

We used cross-validation sum of squares (CVSS) [9] to determine the optimal weights for the
two terms in Equation 9.10. Consider a model xm that minimizes the following quantity:
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 9.6
Example subimages of (a) TOPSAR DEM showing regions of missing data (black), and (b) SRTM DEM of the same
area. These subimages are engaged in one implementation of the interpolation. The grayscale is altitude in meters.
(From Yun, S.-H., Ji, J., Zebker, H., and Segall, P., IEEE Trans. Geosci. Rem. Sens., 43(7), 1682, 2005. With permission.)
l2 kFPE xm k2 þ ky(k) � A(k ) xm k2 ( k ¼ 1, . . . , N ) (9:11)

wh ere y(k) and A(k) are the y and the A in Equa tion 9.10 with the k -th elemen t a nd the k -th
row om itted, respec tively, and N is the number of elemen ts in y that fall into the mis sing
region . Denote this model xm

(k) ( l). Then we compu te the CVSS defined as follow s:

CVSS( l) ¼ 1

N

XN

k¼ 1

( yk � Ak x
(k)
m ( l))2 (9 :12)

wh ere yk is the omitted eleme nt from the vecto r y and Ak is the om itted row vector from
the matrix A when the xm

(k)( l) was estimate d. Thus, Ak xm
(k )( l) is the pre diction based on the

other N � 1 observ ations . Finally, we minimize CVSS( l) with re spect to l to obtain the
optim al wei ght (Figur e 9.7).

In the case of the exampl e shown in Figure 9.6, the minimu m CVSS was obtaine d for l
¼ 0.16 (Figure 9.7). The effect of varying l is sho wn in Figure 9. 8. It is appare nt (se e
Figure 9.8) that the optim al weig ht is a more ‘‘plausib le’’ resu lt than eith er of the end
memb ers, preservi ng aspect s of both co nstrai nts.

In Figure 9.8a the interpol ation uses only the PE filter constr aint. Thi s interpol ation
does not recove r the contin uity of the rid ge running across the DEM in north–s outh
direc tion, whic h is observ ed in the SRT M DEM (Fi gure 9.6b ). Thi s follow s from a PE
filter obtaine d suc h that it elimina tes the overal l va riations in the im age. The vari ations
inclu de not only the ridge but also the accura te topograp hy in the DEM.

The other end member, Figure 9.8c, shows the result for applying zero weight to the
PE filter constraint. Since the averaging operator A in Equation 9.10 is applied independently
� 2007 by Taylor & Francis Group, LLC.
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Cross-validation sum of squares. The minimum occurs when l ¼ 0.16. (From Yun, S.-H., Ji, J., Zebker, H., and
Segall, P., IEEE Trans. Geosci. Rem. Sens., 43(7), 1682, 2005. With permission.)
for each 9-by-9 pixel group, it is equivalent to simply filling the regions of missing data with
9- by-9 identical v alues t hat are the same as the corresponding SRTM DEM (Figure 9.6b).

9.5.5 Simulation of the Interpo lation

The qua lity of cross-v alidat ion in this study is itsel f val idated by simulat ing the interpo l-
ation process with known subima ges that do not co ntain missing data. For exampl e, if a
known subima ge is sele cted from Figure 9.1 (number ed box 3), we can remove some data
and a pply our re covery algorit hm. The subima ge is similar in topogr aphic features to the
area sho wn in Figu re 9.6. The proces s is illustrat ed in Figure 9.9. We introd uce a hole as
shown in Figure 9.9b and calcu late the CV SS (Figure 9.9d) for each l ran ging from 0 to 2.
Then we use the estim ated l, wh ich minimi zes the CV SS, fo r the interpo lation proce ss to
obtain the image in Figure 9.9c. For each value of l we also calculate the RMS error bet ween
the known and the interpol ated im ages. The RM S error is plotted ag ainst l in Figure 9.9e .
The CVSS is minimize d for l ¼ 0.062, wh ile the RMS error has a minimum at l ¼ 0.065.
This agreeme nt sugge sts that minimiz ing the CVSS is a useful method to balance the
constr aints. Note that the minimum RMS error in Figure 9.9e is ab out 5 m. This val ue is
smaller than the relati ve vertical hei ght a ccuracy of the SRT M DEM, wh ich is about 10 m.
9.6 Interpolati on Results

The method presented in the previous section was applied to the entire image of Figure
9.1. The registered TOPSAR DEM contains missing data in regions of various sizes.
Small subimages were extracted from the DEM. Each subimage is interpolated, and the
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 9.8
The results of interpolation applied to DEMs in Figure 9.6, with various weights. (a) l!1, (b)  l ¼ 0.16, and
(c) l ¼ 0. Profiles along A–A0 are shown in the plot (d). (From Yun, S.-H., Ji, J., Zebker, H., and Segall, P., IEEE

Trans. Geosci. Rem. Sens., 43(7), 1682, 2005. With permission.)
results a re reinserte d into the large DEM. The locatio ns and si zes of the sub-
images are indicated with white boxes in Figure 9.10a. No te the largest region of
missing data in the m iddle of t he caldera. This regio n is not only a si mple large gap but
also a gap be tween two swaths. The interp ola tion is an iterative process and fil ls up
regions of m issing data starting fr om the boundary. If valid data along t he boundary
(boundari es of a swath f or example) c ontain edge effects, error t ends to propagate
through t he interpolatio n process. In this case, e xpanding the r egion of m issing data by
a few pixe ls be fore interpo lation produces better resul ts. If there is a large r egion of
missing data, t he spectral content information of valid da ta can f ade out as the inter-
pol ation procee ds to ward the c enter of the gap. In this case, se qu entially applying
the inte rpolation to parts of t he gap i s o ne solution. Due t o edge effects along t he
boundary of the l arge gap, the i nterpol ation resu lt do es not produce topography
that matches the su rro unding terrain well. Hence, we expand the gap by three pixe ls t o
eliminate e dge effects. W e divided the gap into mul tipl e subimage s, a nd each subimage
was inte rpolated individuall y.
� 2007 by Taylor & Francis Group, LLC.



80

85

90

95

100

105

110

115

120

125

130

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5
ll

0.6 0.7 0.8 0.9 1
4.5

5

5.5

6

6.5

7

(e)(d)

C
V

S
S

(l
)

R
M

S
 e

rr
or

20 40 60 80 100 120 140

20

60

80

100

120

40

(a)
20 40 60 80 100 120 140

20

60

80

100

120

40

(b)
20 40 60 80 100 120 140

20

60

80

100

120

40

(c)

FIGURE 9.9
The quality of the CVSS, (a) a sample image that does not have a hole, (b) a hole was made, (c) interpolated image
with an optimal weight, (d) CVSS as a function of l. The CVSS has a minimum when l ¼ 0.062, and (e) RMS
error between true image (a) and the interpolated image (c). The minimum occurs when l ¼ 0.065. (From Yun,
S.-H., Ji, J., Zebker, H., and Segall, P., IEEE Trans. Geosci. Rem. Sens., 43(7), 1682, 2005. With permission.)
9.7 Eff ect o n InSAR

Final ly, we can investi gate the effect of the artifa ct elimina tion and the interpo lation on
simulat ed interf erogram s. It is often easier to see dif ference s in elevatio n in sim ulated
interf erogram s than in conven tional co ntour plots. In ad dition , sim ulated interfero grams
provide a measu re of how sensitiv e the in terferogram is to the topogr aphy. Figure 9.11
shows georefe renced simulat ed interf erogram s from three DEMs: the regist ered TOPS AR
DEM, the TOPSAR DEM after the artifa ct elimina tion, and the TOP SAR DEM after the
interpo lation. In all interf erogram s, a C-band wavele ngth is used , and we assum e a 452 m
perpen dicular baseline bet ween two sa tellite positi ons. This per pendicular baseline is
realist ic [2]. The frin ge lines in the interf erogram s are appr oximatel y height contour lines.
The interva l of the fringe lines is inverse ly propor tional to the perpen dicular ba seline [10] ,
and in this case one co lor cycle of the frin ges rep resents about 20 m. Note in Figure 9.11a
that the frin ge lines are discon tinuous across the long reg ion of miss ing data inside the
caldera . This is due to artifa cts in the origin al TOPSAR DEM. After eli minating these
artifa cts the discon tinuity disapp ears (Figure 9.11b ). Final ly, the missing da ta region s are
interpo lated in a seaml ess man ner (Fig ure 9.11c).
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FIGURE 9.10
The original TOPSAR DEM (a) and the reconstructed DEM (b) after interpolation with PE filter and SRTM DEM
constraints. The grayscale is altitude in meters, and the spatial extent is about 12 km across the image. (From Yun,
S.-H., Ji, J., Zebker, H., and Segall, P., IEEE Trans. Geosci. Rem. Sens., 43(7), 1682, 2005. With permission.)
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(a)

(b)

(c)

FIGURE 9.11
Simulated interferograms from (a) the original regis-
tered TOPSAR DEM, (b) the DEM after the artifact was
removed, and (c) the DEM interpolated with PE filter
and the SRTM DEM. All the interferograms were
simulated with the C-band wavelength (5.6 cm) and a
perpendicular baseline of 452 m. Thus, one color cycle
represents 20 m height difference. (From Yun, S.-H., Ji,
J., Zebker, H., and Segall, P., IEEE Trans. Geosci. Rem.
Sens., 43(7), 1682, 2005. With permission.)
9.8 Conclusion

The aircraft roll artifacts in the TOPSAR DEM were eliminated by subtracting the differ-
ence between the TOPSAR and SRTM DEMs. A 2D PE filter derived from the existing
data and the SRTM DEM for the same region are then used as interpolation constraints.
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Sol ving the inverse prob lem constrai ned with both the PE filter and the SR TM DEM
pro duces a high-qu ality interpo lated map of elevati on. Cross- val idation works well to
select optim al constrai nt weig hting in the inversio n. This objecti ve criterion results in less
biased interpol ation and guaran tees the best fit to the SRT M DEM. The qua lity of man y
other TOPS AR DEMs can be improve d similar ly.
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10.1 Introduction

Under heavy oceanic reverberation, it can be difficult to detect a target echo accurately with
an active sonar. To resolve the problem, researchers apply two methods that use reverber-
ation models and specialized processing techniques [1]. For the first method, receivers
with differing range resolutions may encounter different statistics for a given waveform.
Furthermore, a given receiver may encounter different statistics at different ranges [2].
Researchers have used Weibull, log-normal, Rician, multi-modal Rayleigh, and non-
Rayleigh distributions to describe sonar reverberations [3,4]. For the second method, it is
usually assumed that reverberation is a sum of returns issued from the transmitted signal.
Under this assumption, a data matrix is first generated from the data received by the active
sonar data [5,6]. The principal component inverse (PCI) [7–13] is primarily used to separate
reverberation and target echoes from the data matrix. However, important prior knowledge
such as the target power should be provided [11]. In Refs. [11–13], PCI and other methods
have performed very well in Doppler cases, and the authors have also shown that PCI still
performs well when the Doppler effect is not introduced. Provided that prior knowledge is
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hard to obtain and the Doppler effect does not exist, it becomes very desirable to cancel
reverberation with easily obtainable but minimal prior knowledge even in more compli-
cated undersea situations. The chapter focuses on this case.

The essenc e of PCI is separ ation by ran k red uction. Ne vertheles s, the pro blem of
separ ation is an old one in electri cal enginee ring and man y algorit hms exi st dependin g
on the natur e of sign als. Blind sign al separ ation (BSS) [14] is a signif icant statisti cal sign al
pro cessing me thod that has been develop ed in the past 15 years. The a dvantag e of BSS is
that it does not need mu ch pri or knowle dge and make s full use of the simple and
appar ent statis tical proper ties, such as non- Gaussia nity, nonstati onarity, co lored charac-
ter, uncorr elatedne ss, inde pendence , and so on. We stu died BSS on canceling reverbe r-
ation in Ref . [15] . From the per spectiv e of BSS, the data receive d by active sonar is the
convo lutive mi xture [16] , wh ile the instan taneous mixtur e mode l was onl y discus sed in
Ref . [15]. Consequ ently, we perfo rm blind separati on of convolu tive mixtur es (BSCM) to
nul lify ocea nic reve rberat ion in this contrib ution. In Ref . [15], the data wave form is onl y
desc ribed in time -domain , and here, we will provide mo re illustrat ions on the matc hed
filter outpu ts un der differen t sign al-to-re verberatio n ratio s (SRR). We pro vide more
examp les for better explanatio n.

The rest of this chapter is organi zed as follo ws: Se ction 10.2 presents the pr oblem
desc ription ; Section 10.3 introduces the BSCM algor ithm, which is bas ed on the reverbe r-
ation charact ers; Sectio n 10 .4 provides exa mples of canc eling real sea reverbe ration as the
main conten t; and finall y, Se ction 10.5 sum marizes the above co ntents.
10.2 Problem D escription

In this chapter , we assum e that re verberatio n is a sum of returns generated from the
trans mitted signal . In Ref. [16], the active sonar data ser ies d( t ) is exp ressed as

d( t) ¼ h1 ( t � t 1 )|fflfflfflfflfflffl{zfflfflfflfflfflffl}
targ et

� e( t ) þ
XK

k¼ 2

hk (t � t k )|fflfflfflfflfflffl{zfflfflfflfflfflffl}
reverbera tion

�e ( t ) þ n( t )|{z}
noise

(10 :1)

wh ere tk is the pro pagation delay, hk( t ) is the pat h impul se resp onse, and e (t ) is the
trans mitted signal. In the reverbe ration dom inant circumst ance, we can decomp ose the
active sonar data into the target echo comp onent ~dd( t) and the reverberat ion component
r ( t), as define d in Equation 10.2. Extr acting the targe t and nullifyin g the reverbe ration are
done simulta neously

~dd( t) ¼ h1 ( t � t 1 )|fflfflfflfflfflffl{zfflfflfflfflfflffl}
tar get

� e( t ) þ n (t )|{z}
noise

r( t ) ¼
XK

k¼ 2

hk ( t � t k )|fflfflfflfflfflffl{zfflfflfflfflfflffl}
reverberatio n

� e (t ) þ n(t )|{z}
noise

(10 :2)

It is appare nt that ~dd( t ) and r ( t) are of differe nt no n-Gauss ianity. Ne xt, we show an
examp le of real sea reve rberat ion.

For simplicity, we do not introduce the experimental detail in this section. The transmit-
ted signal is sinusoid with a frequency of 1750 Hz, a duration of 200 msec, and a sampling
frequency of 6000 Hz. Figure 10.1 contains only the target echo and the background noise,
� 2007 by Taylor & Francis Group, LLC.
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Target echo waveform.
and most reverberation generated by a sine wave is included in Figure 10.2 where no target
echo exists and the background noise is embedded. The two waveforms in Figure 10.1 and
Figure 10.2 are the time-domain descriptions of ~dd(t) and r(t) with corresponding standard
kurtosis [17] 4.1 and 1.6, respectively. Here, the time-domain non-Gaussianity is enough
to discriminate ~dd(t) and r(t). It may appear that detection for ~dd (t) m us t b e e vi de nt . H ow ev er ,
in the real world problem, it is not simple to cancel the reverberation to the degree as in
Figure 10.1. To explore different effects of reverberation on detection in different SRRs, we
give several examples of real sea reverberation as follows.

In Figure 10.3 , the first upp er plot is reve rberat ion, and in the remain ing thr ee plots,
differen t targets are sim ulated and ad ded to the reverbe ration with the SR R ¼ 0 dB, � 7
dB, and � 14 dB, respec tively, from the uppe r to low er plots. The target ec ho is locate d
betwee n the 9,00 0th and 11,000th samp les. The target does not mo ve, hence no Doppler
effect is produc ed. The matc hed filter outputs follow in the next figure .

In Figure 10.4, the middle two plots show that the matched filter results are satisfactory
even in the case that the SRR is quite small, and the lowest plot gives too many false alarms.
The task for us is to cancel the reverberation to the degree that the detection is possible, similar
to the middle two plots. In Equation 10.2, ~dd(t) does not contain any reverberation and just
covers only the target echo and the background noise. In real world case, that is impossible.
However, it does not harm the detection. Figure 10.4 also reminds us that even if

~dd( t) ¼ h1 ( t � t 1 )|fflfflfflfflfflffl{zfflfflfflfflfflffl}
tar get

� e (t ) þ
X~KK

k¼ 2

hk (t � t k )|fflfflfflfflfflffl{zfflfflfflfflfflffl}
rev erberation

� e (t ) þ n( t)|{z}
noise

(10: 3)

where ~KK < K , and as long as the reverbe ration is redu ced to some sati sfactory level, the
detec tion can also be reliable. Af ter co mparin g the first and the third plots in Figure 10.3
and Figure 10.4, resp ectively, we find that Figu re 10.3 sho ws that the reverbera-
tion wavef orm with small SRR target add ed is nearly iden tical to the wavefor m of
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Waveform: reverberation only
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FIGURE 10.3
Real reverberation with different simulated targets.
reve rberation , but Figu re 10.4 implie s that the correspo nding matched filter outputs are
defini tely of dif ferent non-Gau ssianity. This informati on is useful to our method for
distin guishin g the target echoe s from the reverberat ion echoe s.
10 .3 BSCM Algorit hm

In the past sever al years , differen t research ers develo ped sever al BSCM algor ithms
accordi ng to sign al pro perties. Genera lly speaking, for a given sour ce–recei ver pair, the
wavef orm arr ives at dif ferent travel time s, ow ing to varying pat h lengths [18] . All of
these make reve rberat ions nonsta tionary. The transmi tted signal is sin usoid here, so the
� 2007 by Taylor & Francis Group, LLC.
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reverbe rations must retai n the co lored feature. There fore, we say reve rberat ions are
nonsta tionary and colored. In this section, we will give onl y a bri ef introduct ion on the
BSCM algor ithm.

Consid er a speech scenar io, wh ere J microp hones recei ve mult iple filter ed copie s of
statisti cally uncorr elated or ind ependen t sign als. Mathe matically , the receive d signals can
be exp ressed as a convol ution, that is,

xj (t ) ¼
XI

i¼ 1

XP � 1

p ¼ 0

hji ( p)s i (t � p), j ¼ 1, . . . , J 0; t ¼ 1, . . . , L (10: 4)

where hji( p) mod els the P-po int impulse resp onse from source to mi crophon e and L is the
leng th of the recei ved sign al. In a mo re co mpact matr ix–vector notation, Equati on 10 .4 can
be state d as

x( t ) ¼
XP � 1

p ¼ 0

H( p) s (t � p)
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¼ H(p) � s(t) (10:5)

where x(t) ¼ [x1(t), . . . , xJ(t)]
T is the received signal vector, s(t) ¼ [s1(t), . . . , sI(t)]

T is the
source vector, H(p) is the mixing filter matrix, * denotes the convolution, and [.]T means
the transpose operation. Without loss of generality, we assume J ¼ I in this chapter. With
this problem setup, the objective of the BSCM techniques is to find an unmixing filter W(q)
of length Q for deconvolution, that is,

Ðs(t) ¼W(q) � x(t) (10:6)

where ŝs(t) denotes the estimated sources. Figure 10.5 is a block diagram for J¼ I¼ 2.
For nonstationary sources, a moving block is usually performed on received signals

Ðx(t,m) ¼ H(p) � Ðs(t,m), t ¼ 1, . . . , N, m ¼ 1, . . . , M (10:7)

where m is the index for blocks, M is the total number of blocks, and N is the length of
each block. After the fast Fourier transform (FFT) is applied on the three components in
Equation 10.7, we obtain

ÐX(w,m) ¼ H(w) ÐS(w,m), w ¼ 1, . . . , N (10:8)

where w denotes the frequency bin. Thus, the convolutive mixtures in time-domain turn
into the instantaneous mixtures in frequency domain. This is the basic idea of the
frequency method for BSCM. Then, the separation is done in each frequency bin for the
unmixed filters,

ÐY(w,m) ¼W(w)X̂X(w,m) (10:9)

where W(w) and ÐY(w,m) are the unmixed filter and unmixed signals in frequency bin w,
respectively.

Since the envelope of the signal spectrum is correlated, ÐXj(w,m) must be a colored
signal. Under the independence assumption of signals in the time and frequency
domains, we apply the cost function as follows:

F ¼ 1

4

XT�1

t¼0

kW(w,r)G Ðx(w,t)WH(w,r)� Ik2 (10:10)
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The algor ithm for the unmi xing matr ix is given by

W ( w,r þ 1) ¼ W ( w,r ) þ m( w)
XT � 1

t¼ 0

W (w ,r )G Ðx ( w,t ) W H (w ,r ) � I
� �

W (w ,r ) G Ðx (w ,t ) (10: 11)

where m is the lear ning rate, r is the iter ation time, T is the to tal nu mber of delaye d
sampl es, [ .] H is the conjug ate tran spose opera tion, I is the iden tity matrix, and with
t samp les delay ed, G Ðx(w ,t ) is the auto correlatio n matr ix of Ðx( w,m ). BSS may introdu ce
two inde terminaci es incl uding the per mutatio n and scal ing prob lems [14,17 ]. We apply
the method in Ref . [19] to res olve the permu tation. More methods may be found in
Refs . [20–32 ]. Also, the scaling ambigu ity is a nearly open pro blem to deal with. Some
methods to deal with this pro blem are pro vided in Refs. [33,34 ]. Ge nerally, to norm al-
ize the per muted estim ated matr ix is a fast and effecti ve way. This is hel pful in
maint aining a stable converge nce too [35]. We do not discuss this much here. After
the in verse FFT is appli ed on W (w ) we get W ( q), and then BSCM is perform ed
accordin g to Equa tion 10.6. For mo re in formatio n about BSCM, please refe r to the
litera tures me ntioned above.
10 .4 Ex pe riment s an d Analy sis

10.4. 1 Backw ard Matrix of Activ e Sonar Data for Approxim ating the BSCM Model

In Secti on 10.3, BSCM is introdu ced with some assump tions. Ho wever, in applicati ons
like spee ch en hancement , remo te sensing , commun ication systems , geophysi cs, and
biomedi cal engi neering, condi tions may not meet the bas ic theoretica l require ments of
BSCM. Intere stingly , as long as algor ithms are converge d, BSCM still per forms signal
deconv olution effective ly after some appro ximat ions are made [14,17 ]. For active sonar,
the target echo and the oceani c reverberat ion are all generated by the same transmi tted
signal , so they must be som ewhat co rrelated nev ertheless . Princip al comp onent analysi s
[36] is the method for decorrelati on, and PCI has been applied in separ ating the target
echo and reve rberat ion with some prior kno wledge provided [5–13]. As Neuman n and
Krawc zyk have point ed out, the forward matrix mode l used is no t a principal issue of the
PCI algor ithm, and any other forward mo del can be used [37]. Approx imati on implie s
that the proce ssing result must be discou nted unde r the comparis on to the correspo nding
theory. Fortunat ely, as we poi nted out in Section 10 .2 the detec tion in the pre sence of
reverbe ration may also be reliable with the matched filter even when the reve rberation is
not absolutely canceled, but the SRR should be within a certain limit. So, the approxima-
tion to BSCM is possible by the one-dimensional active sonar data. Intuitively, we
generate the backward data matrix from active sonar data d(t) as the received signals
x(t) to approximate the classical BSCM model:

x(t) ¼ x1(t), . . . , xJ(t)
� �T

xj(t) ¼ d tþ j(B� 1)� 1½ � (10:12)

where xj(t) is the so-called jth received signal, J is the total number of received signals, and
B is the size of a moving block, and it is an empirical parameter. By adjusting J and B, we
may produce a different backward matrix. Also, xj(t) will not miss the target because the
� 2007 by Taylor & Francis Group, LLC.



two numbers J and B are relati vely smal l in comparis on to the wh ole len gth of d( t ). The
losse s of xj( t ) are at the beginn ing of the receive d reverbe ration and are ofte n not useful.
Thes e make the approximat ion enti rely reaso nable.
10.4. 2 Exampl es of Canc eling Real Sea Reve rberation

To simplify the discussio n in this chapter , we only outline bri efly the experi mental
setup he re. Further details are in Ref. [11] about the und erwater a coustic data and
exp eriments. The trans mitted sign al is sin usoid with a frequenc y of 1750 Hz, the dur ation
is 200 ms ec, and the samp ling freque ncy is 60 00 Hz. The exampl es are all with differen t
targets simulat ed and ad ded into the real sea re verberation . Bef ore the targets are
add ed, the reve rberation is thr ough the band- pass filt er from 1500 to 2000 Hz. The
reve rberation we use is over 6 sec. For an enl arged plot, we show onl y the first 4 sec,
wh ich has no effect on the result as the reverberat ion is very light in the last 2 sec .
The block size is N ¼ 200 fo r Equa tion 1 0.7, and the to tal number of delaye d samples
is T ¼ M for Equa tion 10.9. Since the energy varie s in differen t freque ncy bin s, the
lear ning rate m( w) is suppo sed to corresp ond to the various frequenc y bin s, and then it
is def ined as in Ref. [38]:

m (w ) ¼ 0: 6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT � 1

t¼ 0

j G Ðx (w ,t ) j 2
s (10 :13)
10.4. 2.1 Example 1: Simulation 1

We take the exampl e of the last plot in Figure 10.3. The correspondi ng part in Figure 10.4
shows that the detecti on is no good . A sinu soid target ec ho of 1750 Hz is simulat ed and
add ed to the reverbe ration with SRR ¼ �14 dB. The target echo is locat ed betwe en the
9,001s t and 11,0 00th samp les. No Dopp ler effect is produced, and J ¼ 38 and B ¼ 1. After
BSCM is perform ed on the backwa rd matr ix, J deconvo lved signal s are given , and then ,
all sign als pass through the matc hed filt er. We compu te the kur tosis of all the outpu ts of
the matc hed filt er and choos e the 18th decon volved sign al that has the highes t kurtosi s in
Figure 10.6 as the BSCM re sult ~dd( t). In the next simulat ions, the BSCM result s fo llow this
rul e. Figure 10.7 is the matc hed filter on the BSCM res ult ~dd( t). By contr ast to the fourth plot
in Figure 1 0.4, it is appare nt that the det ection is more reliable after BSCM . Next , we show
an example wi th Dopp ler effect.
10.4. 2.2 Example 2: Simulation 2

A sinusoid target echo of 1745 Hz is sim ulated and ad ded to the reverbe ration with SRR
¼ �19 dB. The target echo is locate d betwe en the 12,001st and 14,00 0th samp les. Dopp ler
effect exi sts, and J ¼ 20 and B ¼ 1. Figure 10.8 is the matche d filter on d( t ) and the BSCM
resu lt ~dd( t ). Figure 10.8 indicates that the BSCM is mo re effective when the Dopp ler ef fect is
introdu ced bec ause the re verberatio n and the target echo are mo re differen t. Figure 10.7
and Figure 10.8 show that the SRR is impro ved to the degre e that the detec tion is more
reliabl e than bef ore. Since the transmi tted signal and the target echo are all sinusoid s of a
single frequency or with very small bandwidth, obvious changes in frequency domain
between the original d(t) and the BSCM result ~dd(t) are not found. So, we perform the third
� 2007 by Taylor & Francis Group, LLC.



3
0 5 10 15 20

Components number

C
om

po
ne

nt
s 

ku
rt

os
is

25 30 35 40

3.5

4

4.5

5

5.5

6

FIGURE 10.6
Kurtosis of outputs from the matched filter on the deconvoluted signals.
simulat ion. Alth ough it is not very reasonable , it does hel p to show the validat ion of
BSCM algor ithm.
10.4. 2.3 Example 3: Sim ulation 3

A hyp erbolic freque ncy mo dulated (HFM) target echo is sim ulated and added to the
reverbe ration with the SRR ¼ �28 dB. The center frequenc y is 1750 Hz and the band-
width is 500 Hz. The target echo is locate d betwee n the 12,0 01st and 18,000th sa mples, and
J ¼ 30 and B ¼ 2. Figure 10. 9 is the matc hed filter on d(t ) a nd the BSCM resu lt ~dd(t ). In
Figure 10.9, it is amazin g that the detec tion is impro ved greatly after BSCM. To co mpare
the change s in freque ncy dom ain, we take out 6000 sa mples as the target echo from the
12,001st to 18 ,000th samp les d(t ) and ~dd(t ), resp ectively, and then , FFT is applie d on the two
grou ps of da ta. Figure 10.10 shows the chan ges. It is appar ent that the SRR has improve d
a lot after BSCM was applied.
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Outputs of matched filter on a real reverberation with a sinusoid simulated target (SRR ¼ �19 dB, Doppler
effect exists).
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10.4. 2.4 Example 4: Real Target Experiment

To simplify the discussio n in this paper , we onl y outline briefly the experime ntal setup
here. Further det ails on the unde rwater acousti c data and experi menta l results a re in Ref.
[11] . The trans mitted signal is HFM, the duration is 1 sec , and the bandw idth is 500 Hz.
The t arget spe ed is about 2.0 m/sec, the range is about 2500 m . The samp ling frequency
is also 6000 Hz. The data we use is after beamforming. Fi gure 10.11 shows t he matched
filte r output of the original data and the BSCM output signals. The f igure r eveals the
effect in canceling oceanic reverbe ratio n by BSCM witho ut any expensive prior know-
ledge.
10.4. 2.5 Example 5: Simulation 4

The abov e ex amples are all reve rberation s in shall ow water . In this sim ulation , we give an
examp le for canceling deep reverbe ration. The sea depth is beyo nd 4000 m. The sampl ing
freque ncy is also 20,000 Hz. The transmi tted signal is HFM and the bandw idth is 100 Hz.
In deep sea, mo re than one target echo may oc cur with in the reverbe ration issu ed by one
pin g; that is, Equa tion 10.1 is now writt en as

d( t ) ¼
XK1

k¼ 1

hk (t � t k )|fflfflfflfflfflffl{zfflfflfflfflfflffl}
target

� e ( t) þ
XK2

k¼ K1 þ 1

hk ( t � t k )|fflfflfflfflfflffl{zfflfflfflfflfflffl}
reverberatio n

� e ( t ) þ n( t)|{z}
noise

(10:14)
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FIGURE 10.13
Waveforms of deep sea reverberation with two simulated targets and BSCM output—overlap between the target
echoes.
In this ex ample two target echoes are simulat ed. The SRR is 0 dB. The first case is shown
in Figure 10.12. The two echoe s do not over lap, and the durati on is 0.05 sec. The sec ond
overla ps at the rate of 66. 7% as shown in Figu re 10.13 and the durati on is 0.3 sec . Both
Figure 10.12 and Figure 10.13 show that SRR has improve d. This simulat ion implie s that
BSCM is also effective in canc eling deep sea reverberat ion.

In all sim ulation s, we do not use BSS, but it does not imply that BSS is not useful .
Compar ed to BSCM, BSS needs large r J and B, so the comp utation is more exp ensive.
Sometime s, BSS cann ot provide soun d result s, but BSCM can be used bec ause it is much
closer to the convol utive model of the active sonar data.
10 .5 Conc lusi ons

In this chapter we applie d three useful and easil y obtainab le statis tical charact eristic s to
remove reve rberat ion by decon volving and distin guishin g the target echoe s from the
reverbe ration echoe s. They are the nonsta tionarity and the color ed features of reverber-
ation, and the non- Gaussia nity of outputs of the matc hed filter on BSCM result s. Exce pt
for statisti cal inform ation, BSCM usuall y does not need other expens ive prior kno wledge,
such as the target ec ho en ergy or the Dop pler shi ft, and so on. This is the ad vantage of our
� 2007 by Taylor & Francis Group, LLC.



method. Though the active sonar data used in this paper is one-dimensional convolutive
mixtures, the elimination of real sea reverberation proves that the approximation to the
BSCM model is effective through backward data matrix. Examples show that BSCM
results can improve the SRR to a degree of satisfactory detection.

Finding a good criterion for choosing the appropriate data matrix, as in Ref. [15], is
open for exploration.
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11.1 Introduction

Modern atmospheric sounders measure radiance with unprecedented resolution and
accuracy in spatial, spectral, and temporal dimensions. For example, the Atmospheric
Infrared Sounder (AIRS), operational on the NASA EOS Aqua satellite since 2002, pro-
vides a spatial resolution of �15 km, a spectral resolution of n=Dn � 1200 (with 2,378
channels from 650 to 2675 cm�1), and a radiometric accuracy on the order of+0.2 K.
Typical polar-orbiting atmospheric sounders measure approximately 90% of the Earth’s
atmosphere (in the horizontal dimension) approximately every 12 h. This wealth of data
presents two major challenges in the development of retrieval algorithms, which estimate
the geophysical state of the atmosphere as a function of space and time from upwelling
spectral radiances measured by the sensor. The first challenge concerns the robustness of
the retrieval operator and involves maximal use of the geophysical content of the radiance
data with minimal interference from instrument and atmospheric noise. The second is to
implement a robust algorithm within a given computational budget. Estimation tech-
niques based on neural networks (NNs) are becoming more common in high-resolution
atmospheric remote sensing largely because their simplicity, flexibility, and ability to
accurately represent complex multi-dimensional statistical relationships allow both of
these challenges to be overcome.

In this chapter, we consider the retrieval of atmospheric temperature and moisture
profiles (quantity as a function of altitude) from radiance measurements at microwave
and thermal infrared wavelengths. A projected principal components (PPC) transform is
used to reduce the dimensionality of and optimally extract geophysical information from
the spectral radiance data, and a multi-layer feedforward NN is subsequently used to
estimate the desired geophysical profiles. This algorithm is henceforth referred to as the
‘‘PPC–NN’’ algorithm. The PPC–NN algorithm offers the numerical stability and effi-
ciency of statistical methods without sacrificing the accuracy of physical, model-based
methods.

The chapter is organized as follows. First, the physics of spaceborne atmospheric
remote sensing is reviewed. The application of principal components transforms to
hyperspectral sounding data is then presented and a new approach is introduced,
where the sensor radiances are projected into a subspace that reduces spectral redun-
dancy and maximizes the resulting correlation to a given parameter. This method is
very similar to the concept of canonical correlations introduced by Hotelling over
70 years ago [1], but its application in the hyperspectral sounding context is new.
Second, the use of multi-layer feedforward NNs for geophysical parameter retrieval
from hyperspectral measurements (first proposed in 1993 [2]) is reviewed, and an
overview of the network parameters used in this work is given. The combination of
the PPC radiance compression operator with an NN is then discussed, and per-
formance analyses comparing the PPC–NN algorithm to traditional retrieval methods
are presented.
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11.2 A Brief Overview of Spaceborne Atmospheric Remote Sensing

The typical measurement scenario for spaceborne atmospheric remote sensing is
shown in Figure 11.1. A sensor measures upwelling spectral radiance (intensity as a
function of frequency) at various incidence angles. The sensor data is usually cali-
brated to remove measurement artifacts such as gain drift, nonlinearities, and noise.
The spectral radiances measured by the sensor are related to geophysical quantities,
such as the vertical temperature profile of the atmosphere, and therefore must be
converted into a geophysical quantity of interest through the use of an appropriate
retrieval algorithm.

The radiative transfer equation describing the radiation intensity observed at altitude L,
viewing angle u, and frequency n can be formulated by including reflected atmospheric
and cosmic contributions and the radiance emitted by the surface as follows [3,4]:

Rn(L) ¼
ðL

0

kn(z)Jn[T(z)] exp �
ðL

z

sec ukn(z0) dz0
� �

sec u dz

þ rne�t* sec u

ðL

0

kn(z)Jn[T(z)] exp �
ðz

0

sec ukn(z0) dz0
� �

sec u dz

þ rne�2t* sec uJn(Tc)

þ «ne�t* sec uJn(Ts) (11:1)
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FIGURE 11.1
Typical measurement scenario for spaceborne atmospheric remote sensing. Electromagnetic radiation that
reaches the sensor is emitted by the sun, cosmic background, atmosphere, surface, and clouds. This radiation
can also be reflected or scattered by the surface, atmosphere, or clouds. The spectral radiances measured by the
sensor are related to geophysical quantities, such as the vertical temperature profile of the atmosphere, and
therefore must be converted into a geophysical quantity of interest through the use of an appropriate retrieval
algorithm.
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wh ere «n is the surfac e em issivity, rn is the sur face re flectivity, T s is the surfac e tempe ra-
ture, kn( z ) is the atmosphe ric absorp tion coef ficient, t * is the atmospher ic zenith opac ity,
Tc is the cos mic ba ckground tempe rature (2.736 + 0.017 K), and J n(T ) is the radi ance
intensi ty em itted by a black body at temperatur e T, which is given by the Planck equat ion:

Jn(T) ¼ hn3

c2

1

ehn=kT � 1
W �m�2 � ster�1 �Hz�1 (11:2)

The first term in Equa tion 11.1 can be recast in terms of a transmi ttance func tion Tn(z):

Rn(L) ¼
ðL

0

Jn[T(z)]
dTn(z)

dz

� �
dz (11:3)

The derivative of the transmittance function with respect to altitude is often called the
temperature weighting function

Wn(z)
dTn(z)

dz
(11:4)

and gives the relative contribution of the radiance emanating from each altitude. The
temperature weighting functions for the Advanced Microwave Sounding Unit (AMSU)
are shown in Figure 11.2.
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AMSU-A temperature profile (left) and AMSU-B water vapor profile (right) weighting functions
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11.2.1 Geophysical Parameter Retrieval

The objective of the geophysical parameter retrieval algorithm is to estimate the state of
the atmosphere (represented by parameter matrix X, say), given observations of spectral
radiance (represented by radiance matrix R, say). There are generally two approaches to
this problem, as shown in Figure 11.3. The first approach, referred to here as the vari-
ational approach, uses a forward model (for example, the transmittance and radiative
transfer models previously discussed) to calculate the sensor radiance that would be
measured given a specific atmospheric state. Note that the inverse model typically does
not exist, as there are generally an infinite number of atmospheric states that could give
rise to a particular radiance measurement. In the variational approach, a ‘‘guess’’ of the
atmospheric state is made (this is usually obtained through a forecast model or historical
statistics), and this guess is propagated through the forward models thereby producing
an estimate of the at-sensor radiance. The measured radiance is compared with this
estimated radiance, and the state vector is adjusted so as to reduce the difference between
the measured and estimated radiance vectors. Details on this methodology are discussed
at length by Rodgers [5], and the interested reader is referred there for a more thorough
treatment of the methodology and implementation of variational retrieval methods. The
second approach, referred to here as the statistical, or regression-based, approach, does
not use the forward model explicitly to derive the estimate of the atmospheric state vector.
Instead, an ensemble of radiance–state vector pairs is assembled, and a statistical charac-
terization (p(X), p(R), and p(X,R)) is sought. In practice, it is difficult to obtain these
probability density functions (PDFs) directly from the data, and alternative methods are
often used. Two of these methods are linear least-squares estimation (LLSE), or linear
regression, and nonlinear least-squares estimation (NLLSE). NNs are a special class of
NLLSEs, and will be discussed later.
Variational approach:

• A forward model relates the
  geophysical state of the
  atmosphere to the radiances
  measured by the sensor.

• A “guess” of the atmospheric
  state is adjusted iteratively
  until modeled radiance
  “matches” observed radiance.

• An ensemble of radiance−state
  vector pairs is assembled, and
  a statistical relationship
  between the two is dervied
  empirically.

Examples of g(·) include LLSE and neural network

Statistical (regression-based) approach:

“Regularization” term

Observation noise

R = f + e

g = ||R – Robs|| + h(X )

X ≡ [T (r,t ), W (r,t ), O (r,t ),…]
surface reflectivity, solar illumination, etc.

observing system (bandwidth, resolution, etc.)

X = g(Robs),  where g(·) is argmin ||Xens – g(Rens)||ˆ
g(·)

FIGURE 11.3
Variational and statistical approaches to geophysical parameter retrieval. In the variational approach, a forward
model is used to predict at-sensor radiances based on atmospheric state. In the statistical approach, an empirical
relationship between at-sensor radiances and atmospheric state is derived using an ensemble of radiance–state
vectors.
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11.2.2 The Motivation for Computationally Efficient Algorithms

The principal advantage of regression-based methods is their simplicity—once the coef-
ficients are derived from ‘‘training’’ data, the calculation of atmospheric state vectors is
relatively easy. The variational approaches require multiple calls to the forward models,
which can be computationally prohibitive. The computational complexity of the forward
models is usually nonlinearly related (often O(n2) or more) to the number of spectral
channels. As shown in Figure 11.4, the spectral and spatial resolution of infrared sounders
has increased dramatically over the last 35 years, and the required computation
needed for real-time operation with variational algorithms has outpaced Moore’s Law.
There is, therefore, a motivation to reduce the computational burden of current and
next-generation retrieval algorithms to allow real-time ingestion of satellite-derived
geophysical products into numerical weather forecast models.
11.3 Principal Components Analysis of Hyperspectral Sounding Data

Principal components (PC) transforms can be used to represent radiance measurements in
a statistically compact form, enabling subsequent retrieval operators to be substantially
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the spectral resolutions afforded by infrared sensors has far surpassed that available from microwave sensors.
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more efficient and robust (see Ref. [6], for example). Furthermore, measurement noise can
be dramatically reduced through the use of PC filtering [7,8], and it has also been shown
[9] that PC transforms can be used to represent variability in high-spectral-resolution
radiances perturbed by clouds. In the following sections, several variants of the PC
transform are briefly discussed, with emphasis focused on the ability of each to extract
geophysical information from the noisy radiance data.
11.3.1 The PC Transform

The PC transform is a linear, orthonormal operator1 Qr
T, which projects a noisy

m-dimensional radiance vector, ~RR ¼ Rþ�, into an r-dimensional (r�m) subspace. The
additive noise vector � is assumed to be uncorrelated with the radiance vector R, and is
characterized by the noise covariance matrix C��. The ‘‘PC’’ of ~RR, that is, ~PP ¼ Qr

T ~RR have
two desirable properties: (1) the components are statistically uncorrelated and (2) the
reduced-rank reconstruction error.

c1(�) ¼ E[( ~̂RR~RRr � ~RR)T( ~̂RR~RRr � ~RR)] (11:5)

where ~̂RR~RRr
D
¼Gr

~RR for some linear operator Gr with rank r, is minimized when Gr ¼ Qr Qr
T.

The rows of Qr
T contain the r most-significant (ordered by descending eigenvalue) eigen-

vectors of the noisy data covariance matrix C~RR~RR ¼ CRR þ C��.
11.3.2 The NAPC Transform

Cost criteria other than in Equation 11.5 are often more suitable for typical hyperspectral
compression applications. For example, it might be desirable to reconstruct the noise-free
radiances and filter the noise. The cost equation thus becomes

c2(�) ¼ E[(R̂Rr � R)T(R̂Rr � R)] (11:6)

where R̂Rr
D
¼Hr

~RR for some linear operator Hr with rank r. The noise-adjusted principal
components (NAPC) transform [10], where Hr ¼ C��

1=2 Wr Wr
T C��
�1=2 and Wr

T contains the
r most-significant eigenvectors of the whitened noisy covariance matrix C~ww~ww ¼ C��

�1=2

(CRR þ C��)C��
�1=2, maximizes the signal-to-noise ratio of each component, and is superior

to the PC transform for most noise-filtering applications where the noise statistics are
known a priori.
11.3.3 The Projected PC Transform

It is often unnecessary to require that the PC be uncorrelated, and linear operators can be
derived that offer improved performance over PC transforms for minimizing cost func-
tions such as in Equation 11.6. It can be shown [11] that the optimal linear operator with
rank r that minimizes Equation 11.6 is

Lr ¼ ErE
T
r CRR(CRR þ CCC)�1 (11:7)

where Er ¼ [E1 j E2 j . . . jEr] are the r most-significant eigenvectors of CRR (CRR þ
C��)�1CRR. Examination of Equation 11.7 reveals that the Wiener-filtered radiances are
projected onto the r-dimensional subspace spanned by Er. It is this projection that
1The following mathematical notation is used in this chapter: (�)T denotes the transpose, (~�� ) denotes a noisy
random vector, and (�) denotes an estimate of a random vector. Matrices are indicated by bold upper case,
vectors by upper case, and scalars by lower case.
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moti vates the nam e ‘‘PPC.’’ An orthono rmal bas is for this r -dimensio nal subsp ace of the
origin al m -dimensio nal radi ance v ector spac e R is given by the r mos t-signif icant right
eigenve ctors, Vr , of the re duced-ran k linear regre ssion matr ix, Lr , given in Equa tion 11.7.
We then define the PPC of ~RR as

~PP ¼ VT
r

~RR (11 :8)

Note that the elemen ts of ~PP are co rrelated, as VT
r ðC RR þ C CCÞ Vr is not a diagon al matrix.

Ano ther useful appli cation of the PPC tran sform is the co mpressi on of spect ral
radianc e informati on that is co rrelated with a geop hysical parameter , suc h as the tem-
per ature profile. The r -rank linear operato r that captures the mos t radi ance informa-
tion, whic h is correlate d to the te mperatur e profile, is similar to Equa tion 11.7 and is
given below:

Lr ¼ Er E Tr CTR ( CRR þ C CC ) 
� 1 (11 :9)

where Er ¼ [E1 j E2 j � � � j  Er] are  the  r mo st - s ign i fi ca nt e igen v e c to rs of CTR ( CRR þ C CC  ) 
� 1 C RT ,

and CTR is the cross-c ovarianc e of the temp erature profile and the spect ral radi ance.
11.3. 4 Evalua tion of Com pression Perform ance Using Two Different Metr ics

The compres sion perform ance of each of the PC tran sforms discusse d pre viously was
eva luated usin g two perform ance metrics. First, we seek the transform that yield s the best
(in the sum-squar ed sense) reconst ructio n of the noise- free radianc e spect rum given a
noi sy spectrum. Thus, we seek the optim al redu ced-ra nk linear filter. The second per-
form ance me tric is quite diffe rent and is based on the tempe rature retrieval perfo rmance
in the follow ing way. A radi ance spect rum is first comp ressed using eac h of the PC
trans forms fo r a given numbe r of co efficients. The res ulting co efficients are then used in a
linear reg ression to estim ate the te mperatur e pro file.

The results that follo w were obtaine d usin g simulat ed, clear-air radianc e inte nsity
spect ra from an AIRS-lik e sounder. Approx imate ly, seven thous and and five-hun dred
1750-c hannel radiance vectors were generated with spectral co verage from a pproximate ly
4 to 15  mm using the NO AA88b radi osond e set. The sim ulated inte nsities were express ed
in spect ral radi ance uni ts (mW m � 2 sr � 1(cm � 1) �1).
11.3. 4.1 PC Filter ing

Figure 11.5a sho ws the sum -squared radiance distor tion (Equation 11.5) as a functi on of
the numbe r of comp onents used in the various PC decomp osition techni ques. The a prio ri
level indica tes the sum-squar ed error due to sensor noise. Results from two variants of the
PC tran sform are plotted, wh ere the first variant (the ‘‘PC’’ curve) uses eige nvector s of
C R̂R R̂R as the transform ba sis vecto rs, and the sec ond vari ant (the ‘‘noise-free PC’’ curve)
uses eigenvectors of CRR as the transform basis vectors. It is shown in Figure 11.5a that the
PPC reconstruction of noise-free radiances (PPC[R]) yields lower distortion than both
the PC and NAPC transforms for any number of components (r). It is noteworthy that the
‘‘PC’’ and ‘‘noise-free PC’’ curves never reach the theoretically optimal level, defined by
the full-rank Wiener filter. Furthermore, the PPC distortion curves decrease monotonic-
ally with coefficient number, while all the PC distortion curves exhibit a local minimum,
after which the distortion increases with coefficient number as noisy, high-order terms are
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 11.5
Performance comparisons of the PC (where the components are derived from both noisy and noise-free
radiances), NAPC, and PPC transforms for a hypothetical 1750-channel infrared (4–15 mm) sounder. Two
projected principal components transforms were considered, PPC(R) and PPC(T), which are, respectively: (a)
maximum representation of noise-free radiance energy, and (b) maximum representation of temperature profile
energy. The first plot shows the sum-squared error of the reduced-rank reconstruction of the noise-free spectral
radiances. The second plot shows the temperature profile retrieval error (trace of the error covariance matrix)
obtained using linear regression with r components.
included. The noise in the high-order PPC terms is effectively zeroed out, because it is
uncorrelated with the spectral radiances.
11.3.4.2 PC Regression

The PC coefficients derived in the previous example are now used in a linear regression to
estimate the temperature profile. Figure 11.5b shows the temperature profile error (inte-
grated over all altitude levels) as a function of the number of coefficients used in the linear
regression, for each of the PC transforms. To reach the theoretically optimal value
achieved by linear regression with all channels requires approximately 20 PPC coeffi-
cients, 200 NAPC coefficients, and 1000 PC coefficients. Thus, the PPC transform results
in a factor of ten improvement over the NAPC transform when compressing temperature-
correlated radiances (20 versus 200 coefficients required), and approximately a factor of
100 improvement over the original spectral radiance vector (20 versus 1750). Note that the
first guess in the AIRS Science Team Level-2 retrieval uses a linear regression derived
from approximately 60 of the most-significant NAPC coefficients of the 2378-channel
AIRS spectrum (in units of brightness temperature) [6]. Results for the moisture profile
� 2007 by Taylor & Francis Group, LLC.



are similar , although more coefficie nts (typi cally 35 versu s 25 for tempe rature) are need ed
bec ause of the higher degre e of nonli nearity in the unde rlying phys ical rela tionship
bet ween atmosphe ric moisture and the observed spect ral radianc e. This substantial
comp ression enables the use of relative ly small (and thus very stab le and fast) NN
estim ators to retrieve the desired geophysi cal parameter s.

It is interesting to consider the two variants of the PPC transform shown in Figure 11.5,
namely PPC(R), where the basis for the noise-free radiance subspace is desired, and PPC(T),
where the basis for only the temperature profile information is desired. As shown in
Figure 11.5a, the PPC(T) transform poorly represents the noise-free radiance space, because
there is substantial information that is uncorrelated with temperature (and thus ignored
by the PPC(T) transform) but correlated with the noise-free radiance. Conversely, the
PPC(R) transform offers a significantly less compact representation of temperature
profile information (see Figure 11.5b), because the transform is representing information
that is not correlated with temperature and thus superfluous when retrieving the tempera-
ture profile.
11.3. 5 NAPC of Clear and Cloudy Rad iance Dat a

In the follow ing sections we compu te the NA PC (an d associa ted eigenva lues) of clear and
cloudy radianc e data, the NA PC of the infrared radianc e per turbations due to clouds, and
the project ed (tempe rature) princip al compo nents of clear and cloudy radianc e data. The
2378 AIRS radianc es were conve rted from spect ral intensitie s to brig htness temp eratures
usin g Equati on 11.2 , and were conca tenated with the 20 microw ave brightne ss tempe rat-
ure s from AM SU-A and AMSU-B into a sin gle vector R of length 2398. The NAP C were
comp uted as follow s:

PNAP C ¼ Q T R (11 :10)

wh ere Q are the eige nvectors of C ~WW ~WW , sor ted in desc endi ng ord er by eige nvalue. C ~WW ~WW is
the pre whitene d covarian ce matr ix discusse d in Section 11.3. The eigenva lues corre-
spon ding to the top 100 NAP C are sho wn in Figure 11.6 for sim ulated cl ear-air and
cloudy data. Also sho wn are scatterplo ts of the first three NAP C.

The eigenvalues of the 90 lowest order terms are very similar. The principal differences
occur in the three highest order terms, which are dominated by channels with weighting
function peaks in the lower part of the atmosphere. The eigenvalues associated with the clear-
air and cloudy NAPC cluster into roughly five groups: 1, 2–3, 4–9, 10–11, and 12–100. The first
11 NAPC capture 99.96% of the total radiance variance for both the clear-air and cloudy data.
The top three NAPCs of both clear-air and cloudy data appear to be jointly Gaussian to a close
approximation, with the exception of clear-air NAPC #1 versus NAPC #2.
11.3. 6 NAPC of Infrar ed Cloud Pertur batio ns

We def ine the infr ared cloud perturbati on D RIR as

DRIR
D¼ Rclr

IR � R cld
IR (11 :11)

wh ere RIR
clr is the clear-air infrared brightn ess temp erature and RIR

cld is the cl oudy infr ared
brig htness temperatur e. The NAPC of DRIR were cal culate d using the me thod described
abov e. The resu lts are sho wn in Figure 11.7.
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 11.6
Noise-adjusted principal components transform analysis of clear and cloudy simulated AIRS=AMSU data. The
top plot shows the eigenvalues of each NAPC coefficient for clear and cloudy data. The middle row presents
scatterplots of the three clear-air NAPC coefficients with the largest variance (shown normalized to unit
variance). The bottom row presents scatterplots of the three cloudy NAPC coefficients with the largest variance
(shown normalized to unit variance).
The six highes t order NA PC of DRIR capture appr oximatel y 99.96% of the total cloud
pertu rbation v ariance , wh ich sugge sts that there are more degre es of freedom in the
atmosp here than there are in the clouds. Fur thermo re, there is signifi cant crosstalk
betwee n the cloud per turbatio n and the unde rlying atmosp here, and this crosstalk is
highly nonli near and non-Gau ssian. Eviden ce of this can be seen in the scatter plot of
NAP C #1 versus NA PC # 2, sho wn in the low er left co rner of Figure 11 .7.
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FIGURE 11.7
No is e - ad j u st ed p r in c ip a l c o mp o ne n ts tr a ns f o r m a na ly si s of th e c l ou d im p ac t ( c le ar r a di an c e – c lo u d y r ad i-
a nc e ) f or si m u la te d A I R S d at a. T he to p p l ot s ho ws t he eigenvalue of each NAPC coefficient of cloud
im p a c t, al on g wi th th e NA P C c o ef f ic ie nt s of c le ar - a ir d at a ( sh ow n in F ig u r e 11 .6 ) . Th e b ot to m r o w p r e se n ts
scatterplots of the three cloud-impact NAPC coefficients with the largest variance (shown normalized to
unit variance).
The te mperatur e weig hting func tions of NAP C #1 and NAP C #2 are shown in Fig-
ure 11.8. NAP C #1 co nsists pri marily of sur face channels and NAPC #2 co nsists pri marily
of channels that peak near 3–6 km and channel s that peak near the surfac e. Therefor e,
NAP C #1 is sensit ive princip ally to the overal l cloud amo unt, wh ile NA PC #2 is also
sens itive to cloud altit ude.
11.3. 7 PPC of Clear and Clou dy Radiance Dat a

The PPC tran sform discusse d previousl y was used to iden tify te mperatur e inform ation
contain ed in the clear and cl oudy radi ances. Figure 11.9 shows the mean temp erature
pro file re trieval error for the redu ced-ra nk regressi on opera tor given in Eq uation 11.9 as a
func tion of rank (th e number of PPC co efficients retained) for clear-air and cloudy
radianc e data.

Bot h cu rves have asympto tes near 15 coefficie nts, and clouds degr ade the temp erature
retriev al by an ave rage of appr oximate ly 0.3 K RMS.
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11.4 Neural Network Retrieval of Temperature and Moisture Profiles

An NN is an interconnection of simple computational elements, or nodes, with activation
functions that are usually nonlinear, monotonically increasing, and differentiable. NNs
are able to deduce input–output relationships directly from the training ensemble without
requiring underlying assumptions about the distribution of the data. Furthermore, an NN
with only a single hidden layer of a sufficient number of nodes with nonlinear activation
functions is capable of approximating any real-valued continuous scalar function to a
given precision over a finite domain [12,13].
11.4.1 An Introduction to Multi-Layer Neural Networks

Consider a multi-layer feedforward NN consisting of an input layer, an arbitrary number
of hidden layers (usually one or two), and an output layer (see Figure 11.10). The hidden
layers typically contain sigmoidal activation functions of the form zj ¼ tanh(aj), where
aj ¼

P
i¼ 1
d wji xi þ bj. The output layer is typically linear. The weights (wji) and biases (bj)

for the jth neuron are chosen to minimize a cost function over a set of P training patterns.
A common choice for the cost function is the sum-squared error, defined as

E(w) ¼ 1

2

X
p

X
k

t
(p)
k � y

(p)
k

� �2
(11:12)

where yk
(p) and tk

(p) denote the network outputs and target responses, respectively, of each
output node k given a pattern p, and w is a vector containing all the weights and biases of
the network. The ‘‘training’’ process involves iteratively finding the weights and biases
that minimize the cost function through some numerical optimization procedure. Second-
order methods are commonly used, where the local approximation of the cost function by
a quadratic form is given by
(a) Neural network topology (b) Perceptron

Input
layer

Output
layer

First
hidden
layer

Second
hidden
layer

wj,i

wj,d

bj

zjaj

x1

x2

x3

xd

F(aj)Σ
.
.
.

FIGURE 11.10
The structure of the multi-layer feedforward NN (specifically, the multi-layer perceptron) is shown in (a), and
the perceptron (or node) is shown in (b).
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E( w þ dw ) � E( w) þrE( w) T dw þ 1

2 
dw T r  

2 E( w ) dw (11: 13)

where r E (w ) and r 
2E( w) are the gradie nt vector and the Hessia n matr ix of the cost

func tion, resp ective ly. Setting the deriv ative of Equa tion 11.13 to zero and solvi ng for the
weig ht updat e vector dw yiel ds

dw ¼ �[r 
2 E(w )] � 1 r E( w ) (11: 14)

Direct applicatio n of Equation 1 1.14 is difficu lt in practice, bec ause compu tation of the
Hessia n matrix (and its inve rse) is nontrivi al, and usually needs to be rep eated at each
iteratio n. For sum -squared error cost function s, it can be shown that

r E( w ) ¼ JT e (11: 15)

r 
2 E (w ) ¼ J T J þ S (11: 16)

where J is the Jacob ian matr ix that contain s first derivati ves of the network errors with
resp ect to the weights and biase s, e is a vecto r of network errors, and S ¼

P
p ¼ 1
P ep r ep

2.
The Jacobi an matrix can be compute d usin g a standar d backp ropagati on techni que [14]
that is sign ificant ly more comp utational ly efficient than direct calcul ation of the Hes sian
matrix [15]. Howe ver, an inversi on of a sq uare matr ix with dimens ions equal to the to tal
number of weights and biases in the ne twork is re quired. For the Gaus s–Newt on me thod,
it is assum ed that S is zero (a reasonable as sumpti on onl y near the solu tion), and the
updat ed Equa tion 11.14 become s

dw ¼ �[ J T J ]� 1 Je (11: 17)

The Leven berg–Mar quardt modifi cation [16] to the Gau ss–Newt on me thod is

dw ¼ �[J T J þ mI ] � 1 Je (11: 18)

As m varie s bet ween zero a nd 1 , dw varies contin uously between the Gau ss–Newt on
step and the steep est descent. The Levenb erg–Marqu ardt me thod is thus an ex ample of a
mode l-trust-re gion approach in whic h the mode l (in this case the linear ized appr oxima-
tion of the error func tion) is trusted only with in som e region around the curren t search
point [17] . The size of this region is gover ned by the value m.

The use of mu lti-lay er fee dforward NNs , suc h as the multi-l ayer percept ron (MLP) , to
retrieve temp erature profiles from hype rspectra l radianc e measureme nts has been ad-
dress ed by sever al inve stigato rs (see Ref s. [18,19 ], for exampl e). NN retrieval of moisture
profiles from hype rspectra l da ta is relati vely new [20] , but follow s the same methodo logy
used to retrieve temperature.
11.4.2 The PPC–NN Algorithm

A first attempt to combine the properties of both NN estimators and PC transforms for the
inversion of microwave radiometric data to retrieve atmospheric temperature and mois-
ture profiles is reported in Ref. [21], and a more recent study with hyperspectral data is
presented in Ref. [20]. A conceptually similar approach is taken in this work by combining
the PPC co mpressi on techni que describ ed in Sectio n 11.3.3 with the NN estim ator
discussed in the previous section. PPC compression offers substantial performance
� 2007 by Taylor & Francis Group, LLC.



advant ages over traditio nal pri ncipal compone nts analysi s (PCA) and is the corn erstone
of the present work.

11.4. 2.1 Networ k Topol ogy

All MLP s used in the PPC –NN algor ithm are co mposed of one or two hidde n layer s of
nonli near (hyperbol ic tangen t) nodes and an output layer of linear no des. For the tem-
per ature retrieval , 25 PPC coefficie nts are inp ut to six NNs, eac h with a sin gle hi dden
layer of 15 node s. Sep arate NNs are used for differen t vertical region s of the atmos phere;
a total of six netw orks are used to estimate the temp erature profile at 65 point s from the
surfac e to 50 mbar. For the water vapor retrieval , 35 PPC co efficients are input to nine
NN s, each with a sin gle hi dden layer of 25 nodes . The water vapor pro file (mass mixing
ratio) is estimate d at 5 8 point s from the surfac e to 75 mbar. These netw ork parameter s
were determined large ly through emp irical analyses . Work is underw ay to dynam ically
optim ize these parame ters as the NN is trained. Sep arate train ing and testing data sets are
used and are discus sed in more detail in Section 11.4.2.2.

11.4. 2.2 Networ k Tr aining

The weights and biases were in itialized using the Nguye n–Widr ow method [22]. This
method redu ces the train ing tim e by init ializing the weig hts so that each nod e is ‘‘active’ ’
(in the linear reg ion of the activatio n func tion) over the input ran ge of interest. The NN
was train ed usin g the Leven berg –Marqu ardt back propag ation algorit hm discusse d in
Sectio n 11.4. 1. For each epoch, the m parameter was initia lized to 0.001. If a success ful
step was taken (i.e., E( w þ dw ) < E( w)), then m was dec reased by a factor of ten. If the
curren t st ep was unsucces sful, the value of m was increas ed by a factor of ten until a
suc cessful step co uld be fou nd (or unti l m reach ed 10 10 ). The netw ork training was
sto pped wh en the error on a separ ate da ta set did no t decrease for 10 consecutiv e epoch s.
The sen sor noise was chan ged on each trainin g epoch to desen sitize the network to
radianc e meas urement errors.

11.4. 3 Error Analyse s for Simu lated Clear an d Clo udy Atmos pheres

AIRS and AMSU-A = B clear and cloudy radiance s were sim ulated for an ense mble of
appr oximatel y 10,000 profiles. The se profiles were prod uced using a nume rical weath er
pre diction (NW P) mod el, a nd are substa ntially smoother (vert ically) than the NO AA88b
pro file set that is used in the follow ing section s. The pro files were separ ated into mutual ly
exclu sive sets for trainin g and testing of the PPC –NN a lgorithm. The RMS errors for the
LLSE and NN temperatur e retrievals are shown in Figure 11.11 for clear a nd cloudy
atmos pheres. The NN estim ator sign ificant ly outperf orms the LLSE in bot h cases .

The sen sitivity of the retrieval to instrum ent noi se is ex amined by repeat ing the
retriev al with instrum ent noi se set to zer o. The differen ce in retrie val errors (with and
with out noise) is sho wn in the first panel of Figu re 11.12. The atmosp heric contri bution to
the re trieval error (i.e., the noise- free retrieval error) is shown in the second panel of
Figure 11.12. Finally, the diffe rences (net minus LLSE) in error contrib utions for the two
method s are shown in the third pan el of Figure 11.12. It is notewor thy that the NN is a
much better filter of instrum ent noi se than is the LLSE.

As a final test of sens itivity to instrum ent noi se, the LLSE and NN retrieval s were
rep eated while varying the instrum ent noise bet ween 10% and 1000% of its nomi nal
val ue. The resu lting retrieva l errors are sho wn in Figure 11.13. The NN retrieval is
significantly less sensitive to instrument noise than is the LLSE retrieval.
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 11.13
Sensitivity of temperature profile retrieval to measurement noise. The mean RMS error over 15 km is shown as a
function of the noise amplification factor.
11.4. 4 Vali dation of the PPC–NN Algori thm with AIRS=AMSU Observati ons of Partially
Cloud y Scen es ov er Land an d Ocean

In this sec tion, the perform ance of the PPC–NN a lgorithm is eva luated using
cloud- cleare d AI RS observ ations (not simulat ions, as were used in the pr evious section)
and coloca ted ECMW F (Europ ean Center for Medium -range Weather Forecast-
ing) forecast fields. The cloud clearing is perform ed usin g both AIRS and AM SU data.
The PPC –NN retrieval per formance is co mpared with that obtained usin g the AIRS
Level-2 algor ithm. Bot h ocea n and land case s a re co nsidered , in cluding eleva ted
surfac e terrain, and re trievals at all sen sor scan angle s (ou t to +488) are der ived. Final ly,
sens itivity analys es of PPC–NN retriev al per formance are pre sented with respect to
scan angle , or bit type (ascend ing or descen ding), cloud amount, and training set
comp rehen siveness.

11.4. 4.1 Cloud Clearin g of AIR S Ra diances

The cloud-clearing approach discussed in Susskind et al. [23] was applied to the
AIRS data by the AIRS Science Team. Version 3.x of the algorithm was used in this
work (see Table 11.1 for a detailed listing of the softwa re version numb ers). The
algorithm seeks to estimate a clear-column radiance (the radiance that would have been
measured if the scene were cloud-free) from a number of adjacent cloud-impacted
fields of view.
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TABLE 11.1

AIRS Software Version Numbers for the Seven Days Used in the Match-Up Data Set

6 Sep 2002 25 Jan 2003 8 Jun 2003 21 Aug 2003 3 Sep 2003 12 Oct 2003 5 Dec 2003

Cloud clearing 3.7.0 3.7.0 3.7.0 3.1.9 3.1.9 3.1.9 3.7.0
Level-2 3.0.8 3.0.8 3.0.8 3.0.8 3.0.8 3.0.8 3.0.10
11.4. 4.2 The AIRS=AMSU=ECMWF Data Set

The per formance of the PPC –NN algorithm was evaluat ed using 352,903 AIRS=AM SU
observ ations and coloca ted ECMW F atmos pheric fields collected on seven day s thr ough-
out 2002 and 2003 (see Table 11.1). Various softwa re versi on chan ges were mad e over
the co urse of this work (se e Ta ble 11.1 for details) , but these changes were primaril y with
regard to q uality co ntrol and do not sign ificant ly affect the resu lts presen ted he re.
Howeve r, the ver sion 4.x release of the AIRS sof tware, wh ich was not avai lable in time
to be incl uded in this work, shou ld offer many enhance ments over version 3.x, includ ing
impro ved cloud clear ing, retrie val a ccuraci es, quality contr ol, and retrie val yiel d [24] .
Reanal yses of the resu lts presente d in this sec tion are therefo re plan ned with the new
AIRS softwa re release.

The 352,903 observ ations were ran domly divided into a training set of 302,903 obser-
vatio ns (206,0 61 of wh ich were over ocean) and a separ ate val idation set of 50,000
observ ations (40,000 of whic h were over ocean). The a priori RM S variation of the
tempe rature and water vapor (mass mixing ratio) profi les contain ed in the validation
set are shown in Figu re 11.1 4. The obse rvation s in the val idation set we re matc hed with
AIRS Level-2 re trievals obtain ed from the Ea rth Obse rving Syste m (EO S) Data Gatew ay
(EDG). As advi sed in the AIRS Version 3.0 L2 Data Rele ase Do cument ation, only
retrieval s that me t certain quality sta ndards (spec ifically, RetQ AFlag ¼ 0 for oc ean
and RetQA Flag ¼ 256 for land) were inclu ded in the analys es. There were 17,8 56 AI RS
Level-2 retrie vals (al l with in +40 8 latitude) that met this criterion . Re- analysi s with
AIRS Level -2 vers ion 4.x softwa re is plan ned, as the vers ion 4.x prod ucts have been
validat ed over bot h ocea n and land at near-polar latitudes.

To facil itate comparis on wi th resu lts publis hed in the AIRS v3.0 Valid ation Report [25] ,
layer error statistics are cal culate d as follow s. Fir st, layer ave rages are calculate d in layer s
of approximat ely (but no t exactly) 1-km width —the exact layer width s can be found in
Appe ndix III in the AIRS v3.0 Validatio n Report. Second, we ighted water vap or errors in
each layer are calcul ated by dividi ng the RMS mass mixing ratio error by the RM S
variatio n of the true mass mixing ratio (as oppo sed to dividi ng the mass mixing ratio
error of eac h pro file by the true mass mixing ratio for that profile and co mputi ng the RMS
of the res ulting ense mble).
11.4.4.3 AIRS=AMSU Channel Selection

Thirty-seven percent (888 of the 2378) of the AIRS channels were discarded for the
analysis, as the radiance values for these channels frequently were flagged as invalid by
the AIRS calibration software. A simulated AIRS brightness temperature spectrum is
shown in Figure 11.15, which shows the origin al 2378 AIRS channe ls and the 1490
channels that were selected for use with the PPC–NN algorithm. All 15 AMSU-A channels
were used. The algorithm automatically discounts channels that are excessively corrupted
by sensor noise (for example, AMSU-A channel 7 on EOS Aqua) or other interfering
� 2007 by Taylor & Francis Group, LLC.
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signal s (for exa mple, the ef fects of nonlocal therm odynami c equi librium) because the
corrupti ve sign als are largely unco rrelated with the geop hysical paramete rs that are to be
estim ated.

11.4. 4.4 PPC–NN Retri eval Enhan cements for Variable Sensor Scan Angle
and Surface Pressur e

When dealing with global AIRS=AMSU data, a varie ty of scan angle s and surfac e pr es-
sure s must be accomm odat ed. The refore, two ad ditional input s were ad ded to the NN s
discusse d previousl y: (1) the sec ant of the scan angle a nd (2) the forecast surfac e pressur e
(in mbar) divided by 101 3.25. The re sulting tempe rature and water vap or profile esti-
mates were reported on a variable pressur e grid anchored by the forecast sur face
pres sure.

Becau se the numbe r of inp uts to the NN s increase d, the number of hidden nodes in
NNs used for te mperatur e retrieval s was increase d from 15 to 20. For water vapor
retrieval s, the numbe r of hid den node s in the first hidde n layer was maint ained at 25,
but a second hid den layer of 15 hi dden nodes was added.
11.4. 4.5 Retrieval Perfo rmance

We now compare the retrieval perform ance of the PPC –NN, linear regres sion, and AIRS
Level-2 me thods. For both the ocean and lan d case s, the PPC –NN and linear regressi on
retrieval s were der ived usin g the same train ing set, and the same val idation set was used
for all methods.

The te mperatur e pro file retrie val per formance over ocean for the linear reg ression
retrieval , the PPC–NN retrieval, and the AIRS Level-2 retrieval is sho wn in Figu re
11.16, and the water vapor retrieval per forma nce is shown in Figure 11.17 . The error
statisti cs were cal culated using the 13,156 (o ut of 40,000) AI RS Level-2 retrie vals that
converge d suc cessfully. A bias of appr oximatel y 1 K near 100 mbar was fou nd bet ween
the AIRS Level -2 temp erature retrieva ls and the ECMW F data (ECM WF was colder ). Thi s
bias was re moved pri or to compu tation of the AIRS Level-2 retrieval error statis tics,
whic h are shown in Figure 11.16.

The temperature profile retrieval performance over land for the linear regression retrieval,
the PPC–NN retrieval, and the AIRS Level-2 retrieval is shown in Figure 11.18, and the water
vapor retrieval performance is shown in Figure 11.19. The error statistics were calculated
using the 4,700 (out of 10,000) AIRS Level-2 retrievals that converged successfully.

There a re several features in Figure 11.16 thr ough Figure 11.19 that are worthy of note.
First, for all retrieval me thods, the perform ance over land is worse than that over oc ean,
as exp ected. The cloud- cleari ng problem is sign ificant ly more diffi cult over land , as
variatio ns in surfac e emissivi ty can be mi staken for cloud pertu rbations, thus result ing
in improp er radiance correcti ons. Second, the magn itude of the temperatur e pro file error
degrad ation for land vers us ocean is larg er for the PPC –NN algor ithm than for the AIRS
Level-2 algor ithm. In fact, the tempe rature pro file retrieval perform ance of the
AIRS Level-2 algorithm is superior to that of the PPC–NN algor ithm thr oughout mo st
of the low er trop osphere over land. Further anal yses of this discr epancy suggest that the
perform ance of the PPC –NN method over elevated terra in is suboptimal , and co uld be
impro ved. This work is curren tly unde rway.

11.4.4.6 Retrieval Sensitivity to Cloud Amount

A plot of the temperature retrieval error in the layer closest to the surface as a function
of the cloud fractio n retrieved by the AIRS Level -2 algor ithm is shown in Figure 11.20.
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 11.16
Temperature retrieval performance of the PPC–NN, linear regression, and AIRS Level-2 methods over ocean.
Statistics were calculated over 13,156 fields of regard.
Simil ar curves for the water vap or retrieval perform ance are shown in Figure 11.21. B o t h
methods produce temperature and moisture retrievals wi th RMS errors near 1 K and
15%, r espectively, even in cases with large cloud f ractio ns. The figure s sho w that the
PPC–NN t emperature and m oisture r etrievals are l ess sensitive t han t he A IRS Le vel -2
retrievals to cl oud a mo unt. Furthe rmore, it has been shown t hat t he PPC–NN r etrieval
techni que is relatively insensiti ve to sensor scan angle, orbit t ype, and t raini ng set
comprehensiveness [ 26].
11.4. 5 Discuss ion and Future Work

Although the PPC–NN performance results presented in the previous section are very
encouraging, several caveats must be mentioned. The ECMWF fields used for ‘‘ground
truth’’ contain errors, and the NN will tune to these errors as part of its training pro-
cess. Therefore, the PPC–NN RMS errors shown in the previous section may be
underestimated, and the AIRS Level-2 RMS errors may be overestimated, as the ECMWF
data is not an accurate representation of the true state of the atmosphere. Therefore, the
‘‘true’’ spread between the performance of the PPC–NN and AIRS Level-2 algorithms is
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 11.17
Water vapor (mass mixing ratio) retrieval performance of the PPC–NN, linear regression, and AIRS Level-2
methods over ocean. Statistics were calculated over 13,156 fields of regard.
almost certainly smaller than that shown here. Work is currently underway to test the
performance of both the PPC–NN and AIRS Level-2 algorithms with additional ground-
truth data, including radiosonde data, and ground- and aircraft-based measurements. It
should be noted that the PPC–NN algorithm as implemented in this work is currently not a
stand-alone system, as both AIRS cloud-cleared radiances and quality flags produced by
the AIRS Level-2 algorithm are required. Future work is planned to adapt the PPC–NN
algorithm for use directly on cloudy AIRS=AMSU radiances and to produce quality
assessments of the retrieved products. Finally, assimilation of PPC–NN-derived atmos-
pheric parameters into NWP models is planned, and the resulting impact on forecast
accuracy will be an excellent indicator of retrieval quality.
11.5 Summary

The PPC–NN temperature and moisture profile retrieval technique combines a linear
radiance compression operator with an NN estimator. The PPC transform was shown to
be well suited for this application because information correlated to the geophysical
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 11.18
Temperature retrieval performance of the PPC–NN, linear regression, and AIRS Level-2 methods over land.
Statistics were calculated over 4,700 fields of regard.
quantity of interest is optimally represented with only a few dozen components. This
substantial amount of radiance compression (approximately a factor of 100) allows
relatively small NNs to be used thereby improving both the stability and computational
efficiency of the algorithm. Test cases with observed partially cloudy AIRS=AMSU data
demonstrate that the PPC–NN temperature and moisture retrievals yield accuracies
commensurate with those of physical methods at a substantially reduced computational
burden. Retrieval accuracies (defined as agreement with ECMWF fields) near 1 K for
temperature and 25% for water vapor mass mixing ratio in layers of approximately 1-km
thickness were obtained using the PPC–NN retrieval method with AIRS=AMSU data in
partially cloudy areas. PPC–NN retrievals with partially cloudy AIRS=AMSU data over
land were also performed. The PPC–NN retrieval technique is relatively insensitive to
cloud amount, sensor scan angle, orbit type, and training set comprehensiveness. These
results further suggest the AIRS Level-2 algorithm that produced the cloud-cleared
radiances and quality flags used by the PPC–NN retrieval is performing well.

The high level of performance achieved by the PPC–NN algorithm suggests it would
be a suitable candidate for the retrieval of geophysical parameters other than temperature
and moisture from high resolution spectral data. Potential applications include the
retrieval of ozone profiles and trace gas amounts. Future work will involve further
evaluation of the algorithm with simulated and observed partially cloudy data, including
global radiosonde data and ground- and aircraft-based observations.
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FIGURE 11.19
Water vapor (mass mixing ratio) retrieval performance of the PPC–NN, linear regression, and AIRS Level-2
methods over land. Statistics were calculated over 4,700 fields of regard.
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FIGURE 11.20
Cumulative RMS temperature error in the layer closest to the surface. Pixels were ranked in order of increasing
cloudiness according to the retrieved cloud fraction from the AIRS Level-2 algorithm. No retrievals were
attempted by the AIRS Level-2 algorithm if the retrieved cloud fraction exceeded 80%.
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FIGURE 11.21
Cumulative RMS water vapor error in the layer closest to the surface. Pixels were ranked in order of increasing
cloudiness, according to the retrieved cloud fraction from the AIRS Level-2 algorithm. No retrievals were
attempted by the AIRS Level-2 algorithm if the retrieved cloud fraction exceeded 80%.
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12.1 Introduction

Global estimation of precipitation is important to studies in areas such as atmospheric
dynamics, hydrology, climatology and meteorology. Improvements in methods for
*The material in this chapter is taken from Refs. [66] and [67].

� 2007 by Taylor & Francis Group, LLC.



sate llite-based estima tion of pre cipitation can lead to improve ments in weath er forecas t-
ing, clim ate studies, and climate mode ls.

Precipitation presents many challenges because of its complicated physics and statistics.
Existing models of clouds do not adequately account for all of the possible variations in
clouds and precipitation that can be encountered. Instead of a physics-based approach,
Chen and Staelin developed a method using a statistics-based approach. This method was
developed for the Advanced Microwave Sounding Unit (AMSU) instruments AMSU-A/B
on the NOAA-15, NOAA-16, and NOAA-17 satellites. The development process made use
of the fact that although satellite-based passive microwave data cannot completely charac-
terize the observed clouds and precipitation, the data can still yield useful information
relevant to precipitation. This chapter discusses the methods used by Chen and Staelin to
extract from the data information related to atmospheric state variables that are highly
correlated with precipitation. Principal component analysis for signal separation and data
compression, data fusion for resolution sharpening, neural nets, and regional filtering are
among the signal and image processing methods used.

AMSU-A/B and the corresponding instruments AMSU/HSB (Humidity Sounder for
Brazil) collect data near 23.8, 31.4, 54, 89, and 183 GHz. These frequency bands provide
useful information about precipitation. In this chapter, the precipitation estimation algo-
rithm developed by Chen and Staelin is discussed with an emphasis on the signal process-
ing employed to sense important parameters about precipitation. Section 12.2 explains why
it is possible to use the data on AMSU-A/B to estimate precipitation. Section 12.3 provides a
more detailed description of AMSU-A/B and AMSU/HSB. Section 12.4 describes the Chen–
Staelin algorithm. Section 12.7 provides concluding remarks.
12 .2 Phys ical Bas is of Pas sive Microwave Precipitation Sensing

Matt er radiates therm al ene rgy dependin g on its physical temperatur e and char acteristic
pro perties. When a spacebor ne radi omete r observ es a location on the Earth , the amo unt of
ene rgy it rece ives depends on contri bution s from the variou s atmos pheric and to pograp h-
ical constitue nts with in its field of view (Figure 12.1). On e useful quantity desc ribing the
amount of thermal radiation emitted by a body is spectral brightness. Spectral brightness
is a measure of how much energy a body radiates at a specified frequency per unit
receiving area, per transmitting solid angle, and per unit frequency. The spectral bright-
ness of a blackbody (W�ster�1�m�2�Hz�1) is a function of its physical temperature T (K)
and frequency f (Hz) and is given by the following formula

B(f ,T) ¼ 2hf 3

c2(ehf=kT � 1)
(12:1)

where h is Planck’s constant (J�s), c is the speed of light (m/s), and k is Boltzmann’s
constant (J/K). For this chapter, f never exceeds 200 GHz, and T never falls below 100 K, so
hf/ kT < 0.1. Then, the Taylor series expansion for exponential functions is used to simplify
Equation 12.1

ehf=kT � 1¼ 1þ hf

kT

� �
þ 1

2!

hf

kT

� �2

þ � � �
" #

� 1 (12:2)

� hf

kT
(12:3)
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FIGURE 12.1
The major components of the radiative transfer equation (note: u 6¼ w since the surface of the Earth is spherical).
B( f ,T)¼ 2kT

l2
(12:4)

where l is the wavelength (m) associated with the frequency f.
For blackbodies, given an observation of spectral brightness, one can calculate the

physical temperature of a blackbody as follows:

T ¼ B( f , t)l2

2k
(12:5)

Unlike blackbodies, gray bodies reflect some of the energy incident on them, so the
intrinsic spectral brightness of a gray body is not equal to that of a blackbody. For a gray
body,

B( f ,T)¼«
2kT

l2
(12:6)

where « is the emissivity of the gray body. This equation is rewritten as follows:

B( f ,T)¼ 2k

l2
«T (12:7)

The quantity «T is called the brightness temperature of an unilluminated gray body; that
is, the temperature of a blackbody radiating the same brightness. Another useful property
of a gray body is its reflectivity r, the fraction of incident energy that is reflected. A body
in thermal equilibrium emits the same amount of energy that it absorbs. Therefore, r þ «

¼ 1. For a blackbody, « ¼ 1 and r ¼ 0.
In an atmosphere without hydrometeors, the brightness temperature observed by an

Earth-observing spaceborne radiometer can be divided into four components (Figure
12.1):
� 200
1. Ta, the brightness temperature due to radiation emitted by atmospheric gases
that is not reflected off the surface
7 by Taylor & Francis Group, LLC.



� 200
2. Tb, the brightness temperature due to radiation emitted by the surface

3. Tc, the brightness temperature due to radiation that is emitted by atmospheric
gases that is reflected off the surface

4. Td, the brightness temperature due to cosmic background radiation that passes
through the atmosphere twice and is reflected off the surface
Thermal radiation can be attenuated through absorption or reflected off the surface
before being received by a radiometer. The observed brightness temperature is, therefore,
a function of several variables such as the atmospheric temperature profile, water vapor
profile, the emissivity of the surface (as a function of satellite zenith angle), and the
absorption coefficients of atmospheric gases (as a function of altitude z). Given the atmos-
pheric absorption coefficients ka(z) (in Np per unit length), the reflectivity of the surface
r(u), the altitude of the satellite H, the cosmic background temperature Tcosmic (in K), and
the satellite zenith angle u, the brightness temperature components can be computed as
follows (assuming specular surface reflection and the absence of hydrometeors):

Ta¼ sec u

ðH
z0

T(z0)ka(z0)e�t(z0,H) sec u dz0 (12:8)

Tb¼ 1� r(u)½ �T(z0)e�t(z0,H) sec u (12:9)

Tc¼r(u) sec u � e�t(z0,H) sec u

ðH
z0

T(z0)ka(z0)e�t(z0,z0) sec u dz0 (12:10)

Td¼r(u)Tcosmice�2t(z0,H) sec u (12:11)

Then, the brightness temperature TB measured by the radiometer is the sum of Ta, Tb, Tc,
and Td.

TB¼ sec u

ðH
z0

T(z0)ka(z0)e�t(z0,H) sec u dz0þ 1� r(u)½ �T(z0)e�t(z0,H) sec u

þr(u) sec u � e�t(z0,H) sec u

ðH
z0

T(z0)ka(z0)e�t(z0,z0) sec u dz0þr(u)Tcosmice�2t(z0,H) sec u (12:12)

where z0 is the altitude of the surface and t(z1,z2) is the integrated atmospheric absorption
of the atmosphere between altitudes z1 and z2.

t(z1,z2)¼
ðz2

z1

ka(z) dz (12:13)

Equation 12.12 can be rewritten as follows (assuming that the contribution of thermal
radiation from altitudes above H to Tc is negligible):

TB �
ðH
z0

T(z0)W(z0) dz0þ 1� r(u)½ �T(z0)e�t(z0,H) sec uþr(u)Tcosmice�2t(z0,H) sec u (12:14)
7 by Taylor & Francis Group, LLC.



1976 Standard Atmosphere
Water vapor removed

50 100 150 200 300 350 400 450 500250

10−1

100

101

102

103
Z

en
ith

 o
pa

ci
ty

 (
dB

)

Frequency (GHz)

54-GHz
O2 band

118-GHz
O2 band

183-GHz
H2O band

425-GHz
O2 band

FIGURE 12.2
Zenith opacity for the microwave spectrum.
where

W (z ) ¼ sec u � ka ( z 0 )e �t (z,H ) sec uþr ( u) sec u � e �t (z0 ,H ) sec uka ( z 0 )e �t (z0 ,z) sec u  (12: 15)

W ( z) is called the weighting function or Jacob ian.
Equa tion 12.12 shows that the rela tionship bet ween the therm al ene rgy radi ated and

the physic al temp erature of a body is linear ; that is, the brightn ess temperatur e can be
expres sed a s a linear in tegral of phy sical te mperatur es in the field of view, wh ere these
radiated sign als are uncorr elated and supe rimposed [1].

The prev ious section shows that the brightne ss tempe ratures seen by a satelli te-borne
radio meter depend on many variab les in a hig hly complex and nonli near fashio n, so
retrieval s of temp erature and water vapor pr ofiles by dir ect inversi on would be v ery
difficul t. However , the phys ics of the atmos phere still allows the ex traction of useful
inform ation about the atmosp here from microw ave frequenc y bands.

Two of the mos t impor tant determi nants of pre cipitat ion rate are the te mperatur e and
water vap or profiles. The presen ce of oxy gen and water vapor resonan ce freque ncies in
the microw ave spectrum and the pre sence of oxygen a nd water vapor in the atmosp here
resu lt in freque ncy bands that are sensit ive primaril y to a specif ic range of altit udes.
Figure 12.2 sho ws the zen ith opac ity as a functi on of frequenc y for the ran ge from 10 to
500 GHz for a grou nd-ba sed zeni th-obser ving radio meter. There are absor ption spike s
around oxyge n res onance freque ncies such as those in the nei ghborho od of 54, 118.75,
and 424.76 GHz and at water vapor resonan ce freque ncies suc h as 183.31 GHz. A sa tellite-
borne radi ometer observ ing at these frequ encies wou ld sen se onl y the highest layer s of
the atmosp here. On the other han d, a sa tellite-born e radi ometer observ ing at frequenc ies
away from the spike s wou ld be sensit ive to the surfac e. By observ ing at frequenc y bands
that are near the resonan ce frequ encies, but still on the sides of the spik es, on e can cap ture
inform ation on co nditio ns at specif ic layers of the atmospher e.

The AM SU focus es pri marily on the 54-G Hz oxyge n ba nd and the 183-GHz water
vapor band. Figure 12.3 shows the wei ghting func tions of the channels on AMSU .

Opaque microwave channels were used with great success to retrieve atmospheric con-
ditions. Rosenkranz used AMSU-A and AMSU-B data from NOAA satellites to estimate
temperature and water vapor profiles [2,3]. Shi used AMSU-A to estimate temperature
� 2007 by Taylor & Francis Group, LLC.
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Weighting functions of AMSU-A and AMSU-B channels.
profiles [4]. Blackwell et al. used the 54-GHz and 118-GHz bands aboard the National Polar-
Orbiting Environmental Satellite System (NPOESS) Aircraft Sounder Testbed-Microwave
(NAST-M) [5]. Leslie et al. added the 183-GHz and 425-GHz bands to NAST-M [6,7,8].

Clouds and precipitation result from humid air that rises, cools, and condenses. Pre-
cipitation typically occurs in two forms: convective and stratiform. Stratiform precipita-
tion occurs when one air mass slides under or over another, as in a cold or warm front,
causing the upper air mass to cool and the water vapor within it to condense. Such
precipitation is spread out. Convective precipitation is initiated by instabilities in the
atmosphere caused by cold, dense air supported by warm, humid, and less dense air.
Such instabilities result in the warm, humid air escaping upward and cooling. Water
vapor in this ascending air mass condenses and releases latent heat. The latent heat
warms the surrounding air, which pushes the air mass and the water and ice particles
that have formed further upward. This cycle continues until the original warm humid air
mass has cooled to the temperature of the surrounding cooler air [9,10]. The tops of
convective clouds spew forth ice particles and can reach more than 10 km above sea level
[11]. Convective precipitation often occurs within stratiform precipitation.

Several factors affect the precipitation rate. Higher degrees of instability caused by large
vertical temperature gradients force ice particles higher in the atmosphere, causing such
particles to pick up more moisture and grow. Precipitation amounts are limited by the
water vapor available in the atmosphere; therefore, higher concentrations of water vapor
result in higher precipitation rates. Warmer surface air contributes to higher precipitation
rates because warmer air holds more water vapor.

Channels in the 54-GHz and 183-GHz bands provide important clues about factors
such as cloud-top altitude, temperature profile, water vapor profile, and particle size
distribution. Because each channel is sensitive to a specific layer of the atmosphere
� 2007 by Taylor & Francis Group, LLC.



(Figu re 1 2.3), it is possible t o extract information a bout the clou d- t op altitude. P recipi-
tating clouds exhibit perturbations in channels whose weighting functions have signifi-
cant values in the range of altitudes occupied by the cloud. For example, one would not
expect to detect low-lying clouds below 3 km in the AMSU-A channel 14 because the
weighting function of channel 14 peaks at �40 km, far above the tops of nearly all
precipitating clouds.

The 54-GHz and 183-GHz bands together provide information about particle size
distribution through their sensitivities to different ranges of ice particle diameters. The
scattering of electromagnetic waves by spherical ice particles is described by Mie scatter-
ing coefficients. For a single spherical particle with radius r, given the power scattered by
the particle Ps and the power density of the incident plane wave Si, the scattering cross-
sectional area Qs of the particle is defined as follows:

Qs¼
Ps

Si
(12:16)

Then, the Mie scattering coefficient is defined as the ratio of Qs of the particle to the
geometric cross-sectional area of the particle

js¼
Qs

pr2
(12:17)

where r is the radius of the particle. Figure 12.4 shows the Mie scattering coefficients for
fresh-water ice spheres at 54 GHz and 183.31 GHz as a function of diameter. The
permittivities of ice were calculated using formulas developed by Hufford [12], and
the Mie scattering coefficients were calculated using an iterative computational procedure
developed by Deirmendjian [1,13]. At 183.31 GHz, the diameter of a particle can
increase to about 0.7 mm before its diameter can no longer be uniquely determined by
the Mie scattering coefficient curve. At 54 GHz, this limit is about 2.4 mm. For diameters
less than 0.7 mm, js for 54 GHz is smaller than that for 183.31 GHz by a factor of at least
Drop size diameter (m)
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FIGURE 12.4
Mie scattering coefficients for 54 GHz and 183.31 GHz at a temperature of �558C.
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100. Thes e differen ces make it poss ible to use bot h ba nds together to extract inform ation
about particle size distri bution s. The Mie scatter ing coefficie nts in Figure 12.4 were
calcu lated for a te mperatur e of � 55 8 C (218 K), near the tempe rature at an altit ude of
10 km fo r the 1962 U.S. Standard Atmo sphere [1]. Corr espondin g values for �10 8C (263 K)
were also calcul ated, but did not differ from those for � 55 8C by more than 7.2% .

In ad dition to parti cle size distri bution, the 54-G Hz and 183-G Hz bands can also
pro vide inform ation about particle ab undance . While the particle size distri bution can
be sen sed from a compariso n of the Mi e sc attering efficie ncies in both bands , particl e
abund ance can be sensed from abs olute scatterin g over volumes.

The cloud-to p altit ude is anoth er impor tant variab le in pr ecipitat ion. This is co rrelated
with particle size densit y becau se only hig her updr aft velociti es are able to support larger
particl es and reach hig her altitudes. The sensit ivities of the 54-GHz and 183 -GHz chan-
nel s to specific layer s of the atmosphe re sugge st that these channe ls are able to provide
inform ation about cloud- altitude. Spina et al. used data from the opaque 118-GHz band to
estim ate cloud- top altitudes [14] .

Gasi ewski sho wed that the 54-GHz and 118-GHz bands tog ether co uld be used to
estim ate cell-t op alt itude and hydrom eteor density (in te rms of mass per volu me) [15,16].

Wi ndow channels contrib ute inform ation ab out pre cipitation through their sensitiv ity
to the war m emissi on sign atures of pre cipitating clouds agains t a sea backgrou nd and
their sen sitivity to scatterin g. In addition to opaqu e chan nels, AM SU also includes
windo w channel s at 23.8 GHz, 31.4 GHz , 89.0 GHz , and 150 GHz. Weng et al. and
Grody et al. have devel oped a pre cipitation -retriev al algorit hm for AM SU that relies
pri marily on these chan nels [17,18]. Some of the rece nt passi ve microw ave instrum ents
that have focuse d on windo ws channe ls and have been used to study pre cipitation
inclu de the follow ing:
� 200
1 . The Spe cial Sensor Microwav e Image r (SSM/I) for the Defen se Meteo rological
Satellite Program (DMSP) [19–21 ]

2 . The Advanced Microwav e Sounding Radio meter (AMSR- E) for the Earth
Observ ing System aboard the NA SA Aqua sa tellite [22,23 ]

3 . The Tropical Rain fall Meas urement Mission (TR MM) microw ave image r (TMI )
aboard the TRM M satellite [24,25 ]
One wea kness of windo w channel s is that they tend to be sensitiv e to the surfac e. Over
land, surface signatu res can obscure the emission sign atures of pre cipitat ion. Also, win-
dow-c hanne l-based precipita tion-r ate retrieval algorithm s te nd to use one method over
ocea n and another over land [26,27]. The opaque chan nels ab oard AMSU enable the
develo pment of an algor ithm that uses the same method over bot h land and sea.
12.3 Description of AMSU-A/B and AMSU/HSB

The AM SU has been ab oard the NOAA- 15, NOAA- 16, and NOAA- 17 satellites laun ched
in May 1998, Septembe r 2000, and June 2002, respecti vely. They are eac h equipped with
the ins truments AMSU-A and AMSU -B. AMSU-A has 15 channe ls: one each at 23.8 GHz ,
31.4 GHz , and 89.0 GHz, and 12 chan nels in the 54-G Hz oxy gen absorpti on ba nd (Tabl e
12.1). AM SU-B has 5 channe ls at the follow ing frequenc ies: 89.0 GHz , 150 GHz , 183.31 + 1
GHz , 183.31 + 3 GHz, and 183.31 + 7 GHz (Tab le 12.2). AMSU -A and AMSU-B meas ure
7 by Taylor & Francis Group, LLC.



TABLE 12.1

AMSU-A Channel Frequencies

Channel Center Frequencies (MHz) Bandwidth (MHz)

1 23,800+ 72.5 2�125
2 31,400+ 50 2�80
3 50,300+ 50 2�80
4 52,800+ 105 2�190
5 53,596+ 115 2�168
6 54,400+ 105 2�190
7 54,940+ 105 2�190
8 55,500+ 87.5 2�155
9 57,290.344+ 87.5 2�155

10 57,290.344+ 217 2�77
11 57,290.344+ 322.2+ 48 4�35
12 57,290.344+ 322.2+ 22 4�15
13 57,290.344+ 322.2+ 10 4�8
14 57,290.344+ 322.2+ 4.5 4�3
15 89,000+ 900 2�1000
brightn ess tempe ratures at 50 and 15 km nomi nal resoluti ons at nadir, resp ectively. AM SU-
A has a 3.33 8 -diameter 3-dB beamwidth and observ es at 30 8 angles spac ed at 3.33 8 inte rvals
up to 48.33 8 from nadir every 8.00 sec . AMSU-B has a 1.1 8 -diameter beam width a nd
observ es at 9 08 angle s spaced at 1.1 8 inte rvals up to 48.95 8 from nadir ever y 2 .67 sec (Figur e
12.5b) [28–30 ]. AM SU cove rs a swath width of � 2200 km. NOAA- 15, NOAA- 16, and
NOAA- 17 are sun-syn chro nous pol ar-orbitin g satellites with equat orial crossing time s of
about 7 A.M./P.M. , 2 A.M./P.M. , and 10 A.M./P.M ., respecti vely, so toget her they obse rve most
location s appr oximatel y six times a day (Fi gure 12 .6). The ascendi ng local equat orial
crossing times are 7 P.M., 2 P.M. 10 P.M. for NOAA–16 and NOAA–17, respectively.

The 15-km, 89.0-GHz channel on AMSU-B was not used in this research in order that
the algorithm developed for AMSU–A/B could also be used with AMSU/HSB with
minimal adjustment.

We also use data from the NASA Aqua satellite that was launched in May 2002. It is
equipped with AMSU and is identical to AMSU-A aboard the NOAA satellites, and the
HSB, which is identical to AMSU-B, but without the 89.0-GHz channel [31]. The nominal
resolutions of AMSU and HSB are 40.5 and 13.5 km, respectively. Aqua has an equatorial
crossing time of about 1:30 A.M./P.M. (Figure 12.6) [31–33]. The scan pattern of AMSU/HSB
is slightly different from that of AMSU-A/B on the NOAA satellites in that the path traced
during one AMSU scan is more parallel to that traced by a nearly coincident HSB scan
(Figure 12.5).
TABLE 12.2

AMSU-B Channel Frequencies

Channel Center Frequencies (GHz) Bandwidth (GHz)

1 150+ 0.9 2�1
2 183.31+ 1 2�0.5
3 183.31+ 3 2�1
4 183.31+ 7 2�2

� 2007 by Taylor & Francis Group, LLC.



21�N

22�N

23�N

24�N

25�N

26�N

27�N

19�N

20�N

21�N

22�N

23�N

24�N

178�W 176�W 174�W 172�W 170�W 168�W 166�W 164�W 162�W 160�W 158�W 156�W

16�E 18�E 20�E 22�E 24�E 26�E 28�E 30�E 32�E 34�E

Aqua AMSU/HSB, Southbound

Aqua AMSU/HSB, Northbound

(a)

(b)

FIGURE 12.5
Scan patterns of (a) Aqua AMSU/HSB and (b) AMSU-A/B on NOAA-15, NOAA-16, and NOAA-17. AMSU and
AMSU-A spots are labeled with þ’s and HSB and AMSU-B spots with dots.
12.4 Signal Processing

The preceding section provides an overview of the types of information available in data
from AMSU-A/B. While developing an algorithm for estimating precipitation, it is im-
portant to process the data in a way that makes the information relevant to precipitation
stand out as much as possible. This section provides an overview of the signal-processing
methods used in the Chen and Staelin algorithm.
12.4.1 Regional Laplacian Filtering

Laplacian filtering is useful for clearing the effects of clouds over regions that are
identified as cloudy. This enables computation of not only cloud-cleared brightness
temperatures but also the perturbation due to precipitation.

Laplacian filtering gives the Chen and Staelin algorithm a spatial filtering component
not found in other algorithms that process data in a manner that treats each pixel
independently of any other pixel.

Laplacian filtering of a rectangular field F is done by first determining the region over
which filtering is to be done. Using this region, a set of boundary conditions is deter-
mined. Then, using these boundary conditions, values for pixels in the region of interest
are computed so that the discrete Laplace’s equation is satisfied. In a continuous two-
dimensional (2D) domain, Laplace’s equation is as follows:

r2F¼0 (12:18)
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 12.6
Orbital patterns of the NOAA-15, NOAA-16, NOAA-17, and Aqua satellites.
12.4.2 Principal Component Analysis

Signal separation is an important concept in this chapter. Although precipitation is very
complex, nonstationary, and sporadic, one can process the data in a way that adequately
separates the different degrees of freedom that affect precipitation.

Principal component analysis (PCA) is a linear method for reducing the dimensionality
of a data set of interrelated variables. PCA transforms the data into a set of uncorrelated
random variables that capture all of the variance of the original data set and assign
as much variance as possible to the fewest number of variables. PCA is also known
by other names such as singular value decomposition (SVD) and Karhunen–Loève
transform (KLT).

PCA is useful for data compression. This feature can be critical in problems related to
the compression of satellite data where a large amount of data must be downloaded from
a satellite using a communications link with limited bandwidth and in situations where
computational resources are limited. Blackwell used projected principal component
transform, a variant of PCA, to compress data for use in estimating atmospheric tem-
perature profiles. This reduced the number of inputs and, as a result, simplified the neural
net, created a more stable neural net, and reduced the training time [34,35]. Cabrera-
Mercader used noise-adjusted principal components (NAPC) to compress simulated
NASA Atmospheric Infrared Sounder (AIRS) data [36].
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PCA is also used to filter out noise in data. Several different versions or extensions of
PCA have been used to eliminate various types of noise. A variant of PCA has been used
to remove signatures of the surface from passive microwave data for the purpose of
detecting and characterizing precipitating clouds [37]. PCA is also an important part of
blind multivariate noise estimation and filtering algorithms such as iterative order and
noise (ION) estimation and an extension of ION that is capable of estimating mixing
matrices [38–40].

12.4.2.1 Basic PCA

Here, a definition of basic PCA is presented. For a random vector x of p random variables,
the principal components of x can be defined inductively. The first principal component is
the product a1

T x, where a1 is a unit-length vector that maximizes the variance of a1
T x.

a1¼ arg max
kak¼1

Var(aTx) (12:19)

where Var(�) denotes the variance of a random variable. Each of the other principal
components are defined as follows: the nth principal component is the product an

T x,
where an is a unit-length vector that is orthogonal to a1, a2, . . . , and an�1 and maximizes
the variance of an

T x.

an¼ arg max
kak¼1; a?ai; 8i2{1; 2; ...; n�1}

Var(aTx) (12:20)

a1, a2, . . . , and ap are derived in Ref. [41]. The nth principal component is the product an
Tx

where an is the eigenvector associated with the nth highest eigenvalue of the covariance
matrix Lx of x.

In this chapter, the definitions of PCA and the term principal component follow the
convention of Ref. [41].

12.4.2.2 Constrained PCA

In addition to the basic PCA, the algorithm developed in this chapter uses a variation of
PCA known as constrained PCA. This form of PCA finds principal components that are
constrained to be orthogonal to a given subspace [41]. It can be used to filter out noise in
remote-sensing data. Constrained PCA has been used to filter out signatures of surface
variations from microwave remote-sensing data [42].

Filtering out unwanted signatures involves the following steps:
� 200
1. Select a set of data that captures a good representation of the type of noise to be
filtered without capturing too much of the variation of the signal of interest

2. Apply basic PCA to the resulting subset of data

3. Examine the resulting principal components for sensitivity to the type of noise
to be filtered out

4. Project the data onto the subspace orthogonal to the noise-sensitive principal
components

5. Apply basic PCA to the data resulting from the projection
The principal components resulting from steps (2) and (5) are called preconstraint
principal components and postconstraint principal components, respectively, as in Ref. [37].
7 by Taylor & Francis Group, LLC.



12.4. 3 Data Fusion

Data fusion is a very broad area involv ing the co mbinat ion of informati on from differen t
sour ces. A workin g gro up set up by the European Associati on of Rem ote Sensing La-
boratori es and the Fre nch Soci ety for Electri city and Electroni cs has ad opted the follow ing
defini tion of da ta fus ion [42]:
xn

x2

x1

� 2007 b
Data fusion is a formal framework in which are expressed means and tools for
the alliance of data originating from different sources. It aims at obtaining information
of greater quality; the exact definition of ‘greater quality’ will depend upon the appli-
cation.
Revie w paper s have referr ed to thr ee levels of data fus ion: measure ment, feature, and
decision [43–45]. The measurement level is sometimes called the pixel level [44]. The
algor ithm desc ribed in Section 12.5 involv es the measu rement and decision levels . In
this chapter, nontrivial uses of data fusion occur only at the measurement level.

Some of the applications of image fusion (or data fusion applied to 2D data) include
image sharpening or enhancement [45], feature enhancement, and replacement of missing
or faulty data [44]. For this research, nonlinear data fusion is applied to sharpen images.
Rosenkranz developed a method for nonlinear geophysical parameter estimation through
multi-resolution data fusion [46–48].
12.4.4 Neural Nets

Neural nets are computational structures that were developed to mimic the way bio-
logical neural nets learn from their environment and are useful for pattern recognition
and classification. Neural nets can be used to learn and compute functions for which the
relationships between inputs and outputs are unknown or computationally complex.

There are a variety of neural nets such as feedforward neural nets (sometimes called
multilayer perceptrons [49]), Kohonen self-organizing feature maps, and Hopfield nets
[50,51]. The feedforward neural net is used in this chapter.

The basic structural element of feedforward neural nets is called a perceptron. It com-
putes a function of the weighted sum of inputs and a bias, as shown in Figure 12.7.

y¼f
Xn

i¼1

wixiþb

 !
(12:21)

where xi is the ith input, wi is the weight associated with the ith input, b is the bias, f is the
transfer function of the perceptron, and y is the output.
f (·)

b
wn

w2

w1

y

FIGURE 12.7
The structure of a perceptron.
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FIGURE 12.8
A two-layer feedforward neural net with one output node.
Per ceptrons can be combined to form a mult i-layer networ k, as shown in Figure 12.8. In
Figure 12.8, xi is the ith input, n is the numbe r of inp uts, wij is the wei ght ass ociate d wi th
the conn ection from the i th input to the j th node in the hidd en layer, bi is the bias of the i th
node , m is the number of nodes in the hi dden layer , f is the trans fer function of the
per ceptrons in the hidden layer , vi is the weight betwee n the ith node and the output
node , c is the bias of the output nod e, g is the trans fer func tion of the output node , and y is
the output. Then,

y¼g
Xm

j ¼ 1

vj f
Xn

i ¼ 1

wij xi þ bj

 !
þ c

0
@

1
A (12 :22)

In this chapter , f and g are defin ed as follow s:

f (x) ¼ tanh x¼ ex � e � x

ex þ e� x 
(12 :23)

g( x)¼ x (12 :24)

The functi on tanh x is appr oximatel y linear in the range � 0.6 � x � 0.6, and appro aches 1
as x tends to 1 and �1 as x tends to � 1, so it has a nonlinear ity that is not too comp lex
(Fig ure 12.9). Thi s neu ral net topol ogy is good for situation s in wh ich one wan ts to
develop a simple nonlinear estimator whose output depends approximately monotonic-
ally on each input.
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FIGURE 12.9
Neural net transfer functions.
The neural nets for this chapter were trained using the Levenberg–Marquardt training
algorithm. Marquardt developed an efficient algorithm (called the Marquardt–Levenberg
algorithm in Ref. [51]) for nonlinear least-square parameter estimation [52]. Hagan and
Menhaj incorporated this algorithm into a backpropagation training algorithm for feedfor-
ward neural nets [52]. The weights of the neural net were initialized using the Nguyen–
Widrow method to facilitate convergence of the neural net weights during training [53]. The
vectors used to train and evaluate the neural nets were divided into three disjoint sets:
� 200
1. The traini ng set, the set used to det ermine how the wei ghts of the neural net
sho uld be adjusted duri ng the training

2. The validat ion set , the set used to determi ne wh en the train ing shou ld stop

3. The testing set, the set used to evaluat e the res ulting neu ral net
These definitio ns are from Ref. [54].
One of the challenge s encou ntered in the cours e of develop ing an estim ator invo lved

dealing with an output range that covered sever al orde rs of magn itude. Chapte r 4 in this
volume desc ribes how this was accomp lished.
12.5 The C hen–Staelin Algorithm

The basic struct ure of the algor ithm inclu des some sign al-process ing co mponent s and a
neural net, as shown in Figure 12.10. The signal pro cessin g compone nts pro cess the data
7 by Taylor & Francis Group, LLC.
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FIGURE 12.10
Basic structure of the algorithm.
into form s that char acterize the mos t im portant degr ees of freedom rela ted to the pre-
cipitat ion rate such as atmosphe ric tempe rature profile, water vap or pro file, cloud-to p
altit ude, par ticle size distri bution , and verti cal updraft velocity. The neu ral net is train ed
to lear n the nonlinear dependen cies of pre cipitation rate on these variab les. The depend-
ence of the preci pitation rate on these variab les sho uld be monoton ic, so the neu ral
net does no t ne ed to be comp licated. A feedforw ard neural net with one hidde n layer
of tange nt sigm oid node s (with tran sfer func tion f( x) ¼ tanh x) and one linear output nod e
shou ld be suf ficient (Figure 12.8) [49].

The Chen –Staelin algor ithm uses the signal-pro cessing methods in the pre vious sec tion
to extra ct the most releva nt informati on from AM SU data. Figure 12.11 shows a block
diagr am of the first part of the algor ithm and Figure 12.12 shows the final part of the
algor ithm with a neural net. A neural net that take s the follow ing sets of inp uts is at the
heart of the algor ithm:
S
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� 200
1. Inferred 15-km-resolution perturbations at 52.8 GHz, 53.6 GHz, 54.4 GHz, 54.9
GHz, and 55.5 GHz.

2. 183+ 1-, 183+ 3-, and 183+ 7-GHz 15-km HSB data.
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Block diagram of the algorithm, part 2.

� 200
3. The leading three princip al comp onents charact erizing the or iginal five cor-
rected 50-km AMSU -A tempe rature radi ances.

4. Two sur face-inse nsitive pri ncipal comp onents that char acterize the window
chan nels at 23.8 GHz , 31.4 GHz, 50 GHz , and 89 GHz, along with the four
HS B channels .

5. The sec ant of the satellite zenith angle u.
Each of these sets provides t he neural net with information that is relevant to pre-
cipitation. The t hree principal components characterizi ng AMSU-A t empe ratu re radi-
ances provide inf orm ati on on t he atm osph eri c t emperature profi le, which is imp ortant
becau se it determines how much water v apor can be precipitated. The secant of the
satel lite z enith a ngle u allows the n eural n et to account f or variations in the data due to
the scan angle. Th e 15-km clou d-induced perturbations provide information on the
cloud-top a lti tude.

The curren t AMSU/HSB pre cipitation retrieval algor ithm is bas ed on NOAA -15 AM SU
comparisons with NEXRAD over the eastern United States during 38 orbits that exhibited
significant precipitation and were distributed throughout the year. These orbits are listed
in Ta ble 12.3. The primary pre cipitation -rate retrieval produc ts of AM SU/HS B are � 15-
and �50-km-resolution contiguous retrievals over the viewing positions of HSB and
AMSU, respectively, within 438 of nadir. The two outermost 50-km and six outermost
15-km viewing positions on each side of the swath are omitted due to their grazing angles.
The algorithm architectures for these two retrieval methods and the derivation of the
numerical coefficients characterizing the neural network are described and presented
below.
12.5.1 Limb-Correction of Temperature Profile Channels

AMSU observes at angles up to 498 away from the nadir. For angles further away from
nadir, the electromagnetic energy originating from a given altitude and atmospheric state
7 by Taylor & Francis Group, LLC.



TABLE 12.3

List of Rainy Orbits Used for Training, Validation, and Testing

October 16, 1999, 0030 UTC April 30, 2000, 1430 UTC
October 31, 1999, 0130 UTC May 14, 2000, 0030 UTC
November 2, 1999, 0045 UTC May 19, 2000, 0015 UTC
December 4, 1999, 1445 UTC May 19, 2000, 0145 UTC
December 12, 1999, 0100 UTC May 20, 2000, 0130 UTC
January 28, 2000, 0200 UTC May 25, 2000, 0115 UTC
January 31, 2000, 0045 UTC June 10, 2000, 0200 UTC
February 14, 2000, 0045 UTC June 16, 2000, 0130 UTC
February 27, 2000, 0045 UTC June 30, 2000, 0115 UTC
March 11, 2000, 0100 UTC July 4, 2000, 0115 UTC
March 17, 2000, 0015 UTC July 15, 2000, 0030 UTC
March 17, 2000, 0200 UTC August 1, 2000, 0045 UTC
March 19, 2000, 0115 UTC August 8, 2000, 0145 UTC
April 2, 2000, 0100 UTC August 18, 2000, 0115 UTC
April 4, 2000, 0015 UTC August 23, 2000, 1315 UTC
April 8, 2000, 0030 UTC September 23, 2000, 1315 UTC
April 12, 2000, 0045 UTC October 5, 2000, 0130 UTC
April 12, 2000, 0215 UTC October 6, 2000, 0100 UTC
April 20, 2000, 0100 UTC October 14, 2000, 0130 UTC
has to travel lon ger pat hs before reaching the radio meter and, theref ore, is subje ct to
more absorpti on and scatter ing effects. This results in scan-angl e-depen dent effects
in brightne ss tempe rature imag es, as shown in Figu re 12.13a. A limb and surfac e correc-
tion method for AM SU-A channel s 4–8 brig htness temp eratures is need ed to make
pre cipitation -induced pertu rbations mo re appar ent and for extracting informati on
about atmosp heric co nditio ns. AM SU-A chan nels 4 and 5 are correc ted for sur face
variati ons, as they are sensit ive to the surface. For these two chan nels, the brightne ss
temp erature for pix els over oc ean is correcte d to wh at might be observ ed fo r the same
atmos pheric conditio ns over land . AM SU-A channel s 9–14 brig htness temp eratures are
not correc ted because they are not signifi cantly per turbed by clouds and therefo re are not
used for a nything other than limb correc tion.

Lim b and surface correcti on was don e by train ing a neural net of the type sho wn in
Figure 12.8 to estim ate nadir-vi ewing brig htness tempe ratures. For each pixel, the neural
net used brightn ess tempe ratures from sever al channel s at that pix el to estim ate the
brig htness te mperatur e seen at the pix el closest to nadir at a nearly identi cal latitude
and at nearly the same time. It is ass umed that the temperatur e field does not vary
sign ificantly over one scan. Lim b and sur face correc tion was done for AMSU -A channe ls
4–8. The data used to correc t each of these channe ls are listed in Table 1 2.4. No attempt
has been made to correct for the scan-angle -depen dent asy mmetry in the brig htness
temp eratures. The se neural nets were train ed usin g da ta betwee n 55 8N and 55 8S from
seven orbits spaced over 1 year . Ch annels 4 and 5 are surfac e sensitiv e, so they were
train ed to estim ate brightne ss tempe ratures that would be seen over lan d.

Figure 12.13 shows a sample of (a) uncorr ected and (b) limb and sur face correc ted 54.4-
GHz brightne ss tempe ratures. The shapes of preci pitation syst ems over Texas and the
Mexico –Guatema la borde r are mo re appar ent after the limb correcti on. In Figure 1 2.13(a),
the differen ce betwee n brig htness te mperatur es at nadir a nd the swath edge is as high as
18 K. In Figure 12.13( b), the angle -depende nt variatio n is less than 3 K.

One limita tion of the train ing is that one cann ot really know wh at the nadir-vi ewing
brig htness te mperatur e is supp osed to be when there is precipita tion.
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 12.13 (See color insert following page 178.)
NOAA-15 AMSU-A 54.4-GHz brightness temperatures for a northbound track on September 13, 2000. (a)
Uncorrected and (b) limb and surface corrected.
12.5. 2 Detectio n of Pr ecipitation

The 15-km -resolut ion precipita tion-r ate retrie val algorit hm, summar ized in Figure 5.2,
and Figure 5.3 begins with the iden tification of poten tially precipita ting pixels. The
neural net opera tes on data from onl y FOVs labele d as potential ly pre cipitating . Thi s
choice elimina tes the nee d to exhausti vely learn all of the conditio ns wher e the precipi-
tation rate is exactly zero. The neural net is also like ly to have difficulty forcin g precipi-
tation rates in nonpr ecipitat ing FOVs to be exactly zero . Thi s choi ce also redu ces the tim e
need ed to train the neural ne t sin ce, at any given time , precipita tion fall s over less than
10% of the Ea rth’s sur face. All 15-km pix els with bri ghtness tempe ratures at 18 3 + 7 GHz
that are below a thr eshold T7 a re flag ged as poten tially precipita ting, where
� 2007 by Taylor & Francis Group, LLC.



TABLE 12.4

Data Used in Limb and Surface Correction of AMSU-A Channels

AMSU-A Channel Inputs Used for Limb and Surface Correction

4 AMSU-A channels 4–12, land/sea flag, cos w

5 AMSU-A channels 5–12, land/sea flag, cos w

6 AMSU-A channels 6–12, cos w

7 AMSU-A channels 6–12, cos w

8 AMSU-A channels 6–12, cos w
T7 ¼ 0: 667(T 53:6 � 248) þ 262 þ 6 cos u (12 :25)

and where u is the satellite zeni th angle and T53.6 is the spat ially filtered 53 .6-GHz
brig htness tempe rature obtaine d by sele cting the warme st brightn ess te mperatur e with in
a 7� 7 array of AM SU-B pixels. If, howeve r, T53.6 is below 248 K, then the brightne ss
temp erature at 183 + 3 GHz is compared, inste ad, to a dif ferent thresho ld T3, wher e

T3 ¼ 242 : 5þ 5 cos u (12 :26)

The 183 + 3-GHz ba nd is used to flag poten tial pre cipitation when the 183 + 7-GHz flag
could be erroneo usly set by low -surface emissivi ty in very cold and dry atmos pheres, as
indic ated by T53.6 . The se thresho lds T7 and T3 are slightly co lder than a satu rated
atmos phere wo uld be, implying the pres ence of a microw ave -absorbing cloud. If the
locally filt ered T53.6 is less than 242 K, then the pixel is assume d not to be precipita ting.
12.5. 3 Cloud -Clearing by Regional Laplac ian Inter polat ion

Wi thin reg ions fla gged as poten tially pre cipitating, strong preci pitation is gen erally
charact eriz ed by cold, cl oud-indu ced pertu rbations of the AMSU -A trop ospheri c tem-
per ature soun ding channe ls in the ran ge of 52.5–5 5.6 GHz. Bri ghtness tempe rature
imag es appro ximately satis fy Laplac e’s equat ion in the abs ence of pre cipitation . When
the potential ly precipita ting FOVs have been iden tified, Laplac ian interpol ation can be
per formed to clear the bri ghtness temp erature image of the effects of preci pitation , and
the perturbati ons due to pre cipitation can be comp uted. Exam ples of 183 + 7-GHz data
and the correspo nding 50-km cold perturbati ons at 52.8 GHz are illustrat ed in Figure
12.14a and Figure 12.14c. Ph ysical consid erations and a ircraft data sho w that conve ctive
cells near 54 GHz typ ically appear slight ly off-center and less extende d rela tive to the
183-G Hz im ages [55,56 ].
12.5. 4 Ima ge Sh arpenin g

The small inte rpolation errors in convert ing 54-G Hz perturbati ons to 15-km contr ibute to
the total errors and discrep ancies discus sed in Section 12.3. Thes e 50-km -resol ution 52.8-
GHz pertu rbations D T50,52.8 are then used to infer the per turbatio ns DT15,52.8 [Fig ure
12.14d ]. The se mi ght have been observ ed at 52.8 GHz with a 15-km resoluti on had
those perturbati ons been distrib uted spatially in the same way as the cold perturbations
observed at either 183+ 7 or 183+ 3 GHz, the choice between these two channels being
the same as described above. This requires the bilinearly interpolated 50-km AMSU data
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 12.14 (See color insert following page 178.)
Frontal system on September 13, 2000, 0130 UTC. (a) Brightness temperatures (K) near 183 + 7 GHz. (b)
Brightness temperatures (K) near 183 + 3 GHz. (c) Brightness temperature perturbations (K) near 52.8 GHz.
(d) Inferred 15-km-resolution brightness temperature perturbations (K) near 52.8 GHz.
to be resample d at the HSB beam positio ns. Thes e infe rred 15-km per turbations are
compu ted for fiv e AMSU-A chan nels usin g

DT15,54 ¼ 20 tan h
DT15,183

DT50,183

� �
DT50,54 (12: 27)

The pertu rbation DT15,183 near 183 GHz is def ined to be the dif ference bet ween the
observ ed radi ance and the appro priate thr eshold given by (12.25 ) or (12.26 ). The perturb-
ation D T50,54 near 5 4 GHz is defined to be the dif ference between the observ ed radiance
and the La placian-in terpo lated radi ance ba sed on those pix els sur rounding the flagge d
region [58] . Any warm perturbati ons in the imag es of D T15,183 and D T50,54 are set to zero .
Limb and surfac e-emis sivity co rrection s to nadi r for the five 54-G Hz chan nels are pro-
duced by neural netw orks for each channel; they opera te on nine AM SU-A channel s
abov e 52 GHz , the co sine of the viewing angle w from nadir, and a land –sea fl ag (Figure
12.12) . They were train ed on seven orb its spac ed over 1 year for latitudes up to +55 8 .
Inferr ed 50- and 15-km precipita tion-induc ed perturbati ons at 52.8 GHz are shown in
Figure 12 .14c and Figure 12.14d for a frontal system. Such estimates of 15-km perturba-
tions near 54 GHz help char acterize heavil y precipita ting small ce lls.
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12.5. 5 Temper ature and Water Vapor Profile Principal Compone nts

One impor tant determina nt of pre cipitation is the te mperatur e profile. Warm er atmo-
sphe res can hold more water vap or and result in hi gher vertical updr aft velocities .
There fore, inputs to the neural net in Figure 12.10 shou ld incl ude some that have
inform ation about the tempe rature pro file. For each of AM SU-A channels 4–8, the bri ght-
ness temperatur es were correc ted for limb and sur face effects a nd then proce ssed to
elimina te precipita tion sign atures with the methods desc ribed in Sectio n 12.4.1 through
Sectio n 12.4.3. The co rrected brightn ess te mperatur es from all five of these channel s could
have been inp uts to the neu ral net in Figure 12.10, but it was det ermined that a more
comp act repres entation of these channels was suf ficient. PCA was applied to these five
channe ls, and the first three principa l compo nents were found to be sufficie nt for char-
acterizi ng the tempe rature profile. Adding the fou rth and fifth pri ncipal compone nts did
not signifi cantly im prove the train ing of the neural net.

The water vapor profile is another important determinant of precipitation. Higher
concentrations of water vapor can result in higher precipitation rates. The water vapor
principal components are computed using AMSU-A channels 1–3, and 15, and the AMSU-B
150-, 183 + 7-, 183 + 3-, and 183 + 1-GHz channels. Some of these channels are sensitive to
surface variations. Therefore, it is necessary to project the vector of these observations onto
a subspace that is not significantly sensitive to surface variations. Constrained PCA, which
was described in Section 12.4.2.2, was used to compute the water vapor principal compon-
ents. A set of pixels without precipitation and with different types of surfaces was selected
to compute surface-sensitive eigenvectors using PCA. The surface-sensitive eigenvectors
were determined by visual inspection of the preconstraint principal components for cor-
relation with surface features (e.g., land and sea boundaries). Then, a set of data that also
included precipitation was selected. The observations over this set were projected onto a
linear subspace that was orthogonal to the subspace spanned by the surface-sensitive
eigenvectors. Then, PCA was done on the resulting data set to determine the water vapor
principal components. It was found that two water vapor principal components were
adequate for characterizing the eight channels.
12.5. 6 The Neur al Net

All 13 of the va riables listed at the beginni ng of this sec tion are fed into the neural net
used for 15-km precipita tion-ra te retrievals , as shown in Figure 12.12. The rela tive in-
sensitivity of these inputs to surface emissivity is important to the success of this tech-
nique over land, ice, and snow.

This network was trained to minimize the rms value of the difference between
the logarithms of the (AMSUþ1 mm/h) and (NEXRADþ1 mm/h) retrievals; the use of
logarithms reduced the emphasis on the heaviest rain rates, which were roughly three
orders of magnitude greater than the lightest rates. Adding 1 mm/h reduced the emphasis
on the lightest rain rates, which were more noise-dominated. These intuitive choices
clearly impact the retrieval error distribution, and therefore further studies should enable
algorithm improvements. However, retrievals with training optimized for low rain rates
did not markedly improve that regime. NEXRAD precipitation retrievals with a 2-km
resolution were smoothed to approximate Gaussian spatial averages that were centered
on and approximated the view-angle-distorted 15- or 50-km antenna beam patterns. The
accuracy of NEXRAD precipitation observations is known to vary with distance; there-
fore, only points beyond 30 km, but within 110 km, of each NEXRAD radar site were
included in the data used to train and test the neural nets. Eighty different networks were
trained using the Levenberg–Marquardt algorithm, each with different numbers of nodes
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and water vapor principal co mponent s. A network with nearly the best perform ance over
the testing da taset was chosen; it used two sur face-b lind water vapor pr incipal compon-
ents, and a slightly bette r per forma nce was achieved with five water vapor principal
compo nents with increased sur face sen sitivity. The fi nal netw ork had one hidde n layer
with five node s that used the tanh sigmoid func tion. The se neu ral network s were similar
to those desc ribed in Ref. [57] . The resu lting 15-km -reso lution preci pitation retrieval s
were then smo othed to yield 50-km retrievals .

The 15-km retrie val neu ral networ k was train ed usin g pre cipitation data from the 38
orbits listed in Table 12.3. Durin g this period, the radi o in terference to AMSU-B was
negl igible rela tive to ot her sour ces of retrie val error. Each 1 5-km pix el flag ged as poten -
tially pre cipitat ing usin g 183 + 7- or 183 + 3-GH z radianc es (see Figure 12.11 and
Figure 12.12) was used for train ing, validat ion, or te sting of the neural ne twork. For
these 38 orbits over the United States, 15 one-hundred and sixty 15-km pixels were
flagged and considered suitable for training, validation, and testing; half were used for
training and one quarter were used for each of validation and testing, where the valid-
ation pixels were used to determine when the training of the neural network should cease.
On the basis of the final AMSU and NEXRAD 15-km retrievals, approximately 14 and
38%, respectively, of the flagged 15-km pixels appeared to have been precipitating less
than 0.1 mm/h for the test set.
12.6 Retrieval Performance Evaluation

This section presents three forms of evaluation for this initial precipitation-rate retrieval
algorithm: (1) representative qualitative comparisons of AMSU and NEXRAD precipita-
tion rate images, (2) quantitative comparisons of AMSU and NEXRAD retrievals stratified
by NEXRAD rain rate, and (3) representative precipitation images at more extreme
latitudes beyond the NEXRAD training zone.
12.6.1 Image Comparisons of NEXRAD and AMSU-A/B Retrievals

Each NEXRAD comparison at 15-km resolution occurred within 8 min of satellite over-
pass; such coincidence is needed to characterize single-pixel retrievals because convective
precipitation evolves rapidly on this spatial scale. Although comparison with instruments
such as TRMM and SSM/I would be useful, their orbits unfortunately overlap those of
AMSU within 8 min so infrequently (if ever) that comparisons over precipitation are too
rare to be useful until several years of data have been analyzed. This challenge of
simultaneity and the sporadic character of rain have restricted most prior instrument
comparisons (passive microwave satellites, radar, rain gauges) to dimensions over 100 km
and to periods of an hour to a month [58–60]. The uniformity and extent of the NEXRAD
network offer a unique degree of simultaneity on 15- and 50-km scales and also the ability
to match the Gaussian shape of the AMSU antenna beams.

Although these AMSU/HSB–NEXRAD comparisons are encouraging because they
involve single pixels and independent physics and facilities, further extensive analyses
are required for real validation. For example, comparisons of precipitation averages and
differences over the same time/space units used to validate other precipitation measure-
ment systems (e.g., SSM/I [61], ATOVS, TRMM, rain gauges) are needed to characterize
variances and systematic biases based on the precipitation rate, type, location, or season.
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Thes e biases include any pres ent in the NEXRAD data used to train the AM SU/HS B
algor ithm; once charact erized, they can be diminis hed. Any exces s varian ce experi enced
for rain cells too small to be resolved by AMSU/HSB can also even tually be bet ter
charact eriz ed, althoug h it is beli eved to be mode st for cells with microw ave sign atures
large r than 10 km. Sma ller cells co ntribute little to the total rai nfall.
12.6. 2 Num erical Com parisons of NEXRAD and AMSU -A/B Re trievals

Figure 12.15a and Figure 12.15b present 15-km-resolution precipitation retrieval images for
September 13, 2000, obtained from NEXRAD and AMSU, respectively. On this occasion, both
sensors yielded rain rates over 50 mm/h at similar locations and lower rain rates down to
0.5 mm/h over comparable areas. The revealed morphology is thus very similar, even though
AMSU observes 6 min before NEXRAD, and it senses altitudes that are separated by several
kilometers; rain falling at a nominal rate of 10 m/s takes 10 min to fall 6 km.

Figure 12.16 sho ws the scatter betwe en the 15-km AM SU and NEXRAD rain- rate
retriev als for the test pixels not used fo r train ing or validat ion. Figure 12 .17 shows the
scatter between the 50-km AMSU and NEXRAD rain-rate retrievals over all points
flagged as precipitating.
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Precipitation rates (mm/h) above 0.5 mm/h observed on September 13, 2000, 0130 UTC. (a) 15-km-resolution
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Comparison of AMSU and NEXRAD estimates of rain rate at 15-km resolution.
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Comparison of AMSU and NEXRAD estimates of rain rate at 50-km resolution.
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The rela tive sensit ivity of AMSU and NEXR AD to light and he avy rain can be seen in
Figure 12.17. In general, these figures sugge st that AM SU respond s less to the highest
radar rain rates, per haps bec ause AMSU is less sensitiv e to the bright- band or hail
anomal ies that affect the radar. They also suggest that the risk of false rain detec tions
increase s for AM SU retrieval s below 0.5 mm/h at a 50-km resolutio n, althou gh further
stu dy is requ ired. Greater accura cy at these low rates requ ires more spac e-time ave raging
and caref ul calibrati on. The ris k of over estima ting rain rate also appear s to be limited.
Only 3.3 % of the to tal AM SU-derive d rainf all was in areas where AMSU saw more than 1
mm/h and NEXRAD saw less than 1 mm/h. Only 7.6% of the total NEXR AD-derive d
rainf all was in areas wh ere NEX RAD saw more than 1 mm/h and AM SU sa w less
than 1 mm/h. These per centages were co mpared with the total per centages of AM SU
and NEX RAD rain that fell at rates ab ove 1 mm/h, wh ich were 94 and 97%, resp ective ly.
It is also interesting to see to what degree does each sensor retrieve rain when the
other does not, and how much rain does each sensor miss. For example, of the 73
NEXR AD 15-km rain- rate retrievals in Figure 12.16 abov e 54 mm/h, none we re found
by AMSU to be below 3 mm/h, and of the 61 AMSU 15-km retrievals above 45 mm/h,
none were found by NEXRAD to be below 16 mm/h. Also, of the 69 NEXRAD 50-km rain-
rate retrievals in Figure 12.17 above 30 mm/h, none were found by AMSU to be below 5
mm/h, and of the 102 AMSU 50-km retrievals above 16 mm/h, none were found by
NEXRAD to be below 10 mm/h.

Perhaps the most significant AMSU precipitation performance metric is the rms differ-
ence between the NEXRAD and AMSU rain-rate retrievals; these are grouped by re-
trieved NEXRAD rain rates in octaves. The central 26 AMSU-A scan angles and central 78
AMSU-B scan angles were included in these evaluations; only the outermost two AMSU-
A angles on each side were omitted. These comparisons used all 50-km pixels and only
the 15-km pixels were not used for training or validation. The results are listed in Table
12.5. The smoothing of the 15-km NEXRAD and AMSU results to a nominal 50-km
resolution was consistent with an AMSU-A Gaussian beamwidth of 3.38.

The rms agreement between these two very different precipitation-rate sensors appears
surprisingly good, particularly since a single AMSU neural network is used over all
angles, seasons, and latitudes. The 3-GHz radar retrievals respond most strongly to the
largest hydrometeors, especially those below the bright band near the freezing level,
while AMSU interacts with the general population of hydrometeors in the top few
kilometers of the precipitation cell, which may lie several kilometers above the freezing
level. Much of the agreement between AMSU and NEXRAD rain-rate retrievals must
therefore result from the statistical consistency of the relations between rain rate and its
various electromagnetic signatures. It is difficult to say how much of the observed
TABLE 12.5

RMS AMSU/NEXRAD Discrepancies (mm/h)

NEXRAD Range 15-km Resolution 50-km Resolution

<0.5 mm/h 1.0 0.5
0.5–1 mm/h 2.0 0.9
1–2 mm/h 2.3 1.1
2–4 mm/h 2.7 1.8
4–8 mm/h 3.5 3.2
8–16 mm/h 6.9 6.6
16–32 mm/h 19.0 12.9
>32 mm/h 42.9 22.1
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discrepancy is due to each sensor or how well each correlates with precipitation reaching
the ground.

Furthermore, this study provided an opportunity for evaluation of radar data. The rms
discrepancies between AMSU and NEXRAD retrievals were separately calculated over all
points at ranges from 110 to 230 km from any radar. For NEXRAD precipitation rates
below 16 mm/h, these rms discrepancies were approximately 40% greater than those
computed for test points at the 30- to 110-km range. At rain rates greater than 16 mm/h,
the accuracies beyond 110 km were more comparable. Most points in the eastern United
States are more than 110 km from any NEXRAD radar site.
12.6.3 Global Retrievals of Rain and Snow

Figure 12.18 illustrates precipitation-rate retrievals at points around the globe where
radar confirmation data are scarce. Figure 12.18a shows precipitation retrievals in the
tropics over a mix of land and sea, while Figure 12.18b shows a more intense tropical
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FIGURE 12.18
AMSU precipitation-rate retrievals (mm/h) with 15-km resolution. (a) Philippines, April 16, 2000; (b) Indochina,
July 5, 2000; (c) Canada, August 2, 2000; and (d) New England snowstorm, March 5, 2001. Precipitation-rate
retrievals exceed 0.5 mm/h in the shaded regions, and contours are drawn for 0.5 mm/h, 2 mm/h, 8 mm/h, 32
mm/h, and 128 mm/h. The peak retrieved values are 47 mm/h, 143 mm/h, 30 mm/h, and 1.5 mm/h in (a), (b), (c),
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even t. Figure 12.18 c illu strates strong precipita tion near 72 8N to 74 8 N, ag ain over both
land and sea. Finally, Figure 12.18d illustrates the March 5, 2001, New England snow-
storm that deposited roughly a foot of snow within a few hours: an accumulation
somewhat greater than is indicated by the retrieved rain rates of �1.2 mm/h. This
applicability of the algorithm to snowfall rate should be expected because the observed
radio emission originates exclusively at high altitudes. Whether the hydrometeors are
rain or snow on impact depends only on air temperatures near the surface—far below
those altitudes being probed. For essentially all of the pixels shown in Figure 12.18, the
adjacent clear air exhibited temperature and humidity profiles (inferred from AMSU)
within the range of the training set. Nonetheless, regional biases are expected and will
require evaluation. For example, polar stratiform precipitation is expected to exhibit
relatively weaker radiometric signatures in winter when the temperature lapse rates are
lower, and snow-covered mountains in cold polar air can produce false detections.
12.7 Conclusions

In this chapter, the precipitation estimation method for microwave radiometric data from
Chen and Staelin and the role of signal processing methods were described. The devel-
opment of the Chen–Staelin algorithm shows that signal processing can play a useful role
in satellite-based precipitation estimation. In this algorithm, which was developed for
AMSU-A/B and AMSU/HSB, PCA was used to reduce the dimensionality of selected sets
of channels and to separate the effects of surface variations from atmospheric variations.
Data fusion was used to sharpen 50-km data from AMSU-A so that 15-km precipitation
retrievals could be done. Laplacian filtering was applied to data from the 54-GHz band to
quantify the effects of clouds, and neural nets were trained to learn the mathematical
relationships between precipitation and the information resulting from the signal pro-
cessing. The signal processing components of the algorithm were designed to process the
brightness temperature measurements in a way that extracts the most relevant informa-
tion, and the neural net was trained to learn the relationship between precipitation rate
and the inputs.

This Chen–Staelin algorithm represents a step in the ongoing development of micro-
wave precipitation retrieval algorithms. The algorithm of Chen and Staelin likely can be
improved by choosing more general signal processing methods or fine-tuning the ones
already being used. For example, variations or extensions of PCA such as independent
component analysis (ICA) could be used [63,64]. Additionally, methods like PCA and
ICA can be improved by incorporating components from physics-based methods. Add-
itional improvements can be made by making better use of the data from window
channels.

Future instruments also present opportunities for better precipitation retrievals. The
Advanced Technology Microwave Sounder (ATMS) to be launched aboard the NPOESS
preparatory project (NPP) and NPOESS satellite series could be considered a more
advanced version of AMSU-A/B and AMSU/HSB because it has a set of channels very
similar to that of AMSU-A/B and offers finer resolution and sampling for most channels
[65,66]. Because of the similarity of channel sets, the algorithm of Chen and Staelin can be
a starting point for the development of an algorithm for ATMS. The finer resolution and
sampling of ATMS will likely lead to better image-sharpening methods and temperature
and water vapor profile characterization.
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