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Preface

Signal processing has been playing an increasingly important role in remote sensing,
though most remote sensing literatures are concerned with remote sensing images. Many
data received by remote sensors such as microwave and geophysical sensors, are signals or
waveforms, which can be processed by analog and digital signal processing techniques.

This volume is a spin-off edition derived from Signal and Image Processing for Remote
Sensing. It focuses on signal processing for remote sensing, and presents for the first time a
comprehensive and up-to-date treatment of the subject. The progress in signal processing
itself has been enormous in the last 30 years, but signal processing application in remote
sensing has received more attention only in recent years. This volume covers important
signal processing topics like principal component analysis, projected principal compon-
ent analysis, Kalman adaptive filtering, prediction error filtering for interpolation, factor
analysis, time series analysis, neural network classification, neural network parameter
retrieval, blind source separation algorithm, independent component analysis, etc. The
book presents for the first time the use of Huang-Hilbert transform in remote sensing
data. As there are so many areas in remote sensing that can benefit from signal process-
ing, we hope the book can help to attract more talents in signal processing to work on
remote sensing problems that may involve environmental monitoring, resource manage-
ment and planning, as well as energy exploration, and many others with the use of
remotely sensed data.

Original Preface from Signal and Image Processing for Remote Sensing

Both signal processing and image processing have been playing increasingly important
roles in remote sensing. While most data from satellites are in image forms and thus
image processing has been used most often, signal processing can contribute significantly
in extracting information from the remotely sensed waveforms or time series data. In
contrast to other books in this field which deal almost exclusively with the image
processing for remote sensing, this book provides a good balance between the roles of
signal processing and image processing in remote sensing. The book covers mainly
methodologies of signal processing and image processing in remote sensing. Emphasis
is thus placed on the mathematical techniques which we believe will be less changed as
compared to sensor, software and hardware technologies. Furthermore, the term “remote
sensing’” is not limited to the problems with data from satellite sensors. Other sensors
which acquire data remotely are also considered. Thus another unique feature of the book
is the coverage of a broader scope of the remote sensing information processing problems
than any other book in the area.

The book is divided into two parts [now published as separate volumes under the
following titles]. Part I [comprising the present volume], Signal Processing for Remote
Sensing, has 12 chapters and Part II, Image Processing for Remote Sensing, has 16 chapters.
The chapters are written by leaders in the field. We are very fortunate, for example,
to have Dr. Norden Huang, inventor of the Huang-Hilbert transform, along with
Dr. Steven Long, to write a chapter on the application of the transform to remote sensing
problem, and Dr. Enders A. Robinson, who has made many major contributions to
geophysical signal processing for over half a century, to write a chapter on the basic
problem of constructing seismic images by ray tracing.
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In Part I, following Chapter 1 by Drs. Long and Huang, and my short Chapter 2 on the
roles of statistical pattern recognition and statistical signal processing in remote sensing,
we start from a very low end of the electromagnetic spectrum. Chapter 3 considers the
classification of infrasound at a frequency range of 0.001 Hz to 10 Hz by using a parallel
bank neural network classifier and a 11-step feature selection process. The >90% correct
classification rate is impressive for this kind of remote sensing data. Chapter 4 through
Chapter 6 deal with seismic signal processing. Chapter 4 provides excellent physical
insights on the steps for construction of digital seismic images. Even though the seismic
image is an image, this chapter is placed in Part I as seismic signals start as waveforms.
Chapter 5 considers the singular value decomposition of a matrix data set from scalar-
sensors arrays, which is followed by independent component analysis (ICA) step to relax
the unjustified orthogonality constraint for the propagation vectors by imposing a
stronger constraint of fourth-order independence of the estimated waves. With an initial
focus of the use of ICA in seismic data and inspired by Dr. Robinson’s lecture on seismic
deconvolution at the 4th International Symposium, 2002, on Computer Aided Seismic
Analysis and Discrimination, Mr. Zhenhai Wang has examined approaches beyond ICA
for improving seismic images. Chapter 6 is an effort to show that factor analysis, as an
alternative to stacking, can play a useful role in removing some unwanted components in
the data and thereby enhancing the subsurface structure as shown in the seismic images.
Chapter 7 on Kalman filtering for improving detection of landmines using electromag-
netic signals, which experience severe interference, is another remote sensing problem of
higher interest in recent years. Chapter 8 is a representative time series analysis problem
on using meteorological and remote sensing indices to monitor vegetation moisture
dynamics. Chapter 9 actually deals with the image data for digital elevation model but
is placed in Part I mainly because the prediction error (PE) filter is originated from the
geophysical signal processing. The PE filter allows us to interpolate the missing parts of
an image. The only chapter that deals with the sonar data is Chapter 10, which shows that
a simple blind source separation algorithm based on the second-order statistics can be
very effective to remove reverberations in active sonar data. Chapter 11 and Chapter 12
are excellent examples of using neural networks for retrieval of physical parameters from
the remote sensing data. Chapter 12 further provides a link between signal and image
processing as the principal component analysis and image sharpening tools employed are
exactly what are needed in Part IL

With a focus on image processing of remote sensing images, Part II begins with Chapter
13 [Chapter 1 of the companion volume] that is concerned with the physics and math-
ematical algorithms for determining the ocean surface parameters from synthetic aperture
radar (SAR) images. Mathematically Markov random field (MRF) is one of the most useful
models for the rich contextual information in an image. Chapter 14 [now Chapter 2]
provides a comprehensive treatment of MRF-based remote sensing image classification.
Besides an overview of previous work, the chapter describes the methodological issues
involved and presents results of the application of the technique to the classification of
real (both single-date and multitemporal) remote sensing images. Although there are
many studies on using an ensemble of classifiers to improve the overall classification
performance, the random forest machine learning method for classification of hyperspec-
tral and multisource data as presented in Chapter 15 [now Chapter 3] is an excellent
example of using new statistical approaches for improved classification with the remote
sensing data. Chapter 16 [now Chapter 4] presents another machine learning method,
AdaBoost, to obtain robustness property in the classifier. The chapter further considers
the relations among the contextual classifier, MRF-based methods, and spatial boosting.
The following two chapters are concerned with different aspects of the change detection
problem. Change detection is a uniquely important problem in remote sensing as the
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images acquired at different times over the same geographical area can be used in the
areas of environmental monitoring, damage management, and so on. After discussing
change detection methods for multitemporal SAR images, Chapter 17 [now Chapter 5]
examines an adaptive scale-driven technique for change detection in medium resolution
SAR data. Chapter 18 [now Chapter 6] evaluates the Wiener filter-based method, Maha-
lanobis distance, and subspace projection methods of change detection, with the change
detection performance illustrated by receiver operating characteristics (ROC) curves. In
recent years, ICA and related approaches have presented many new potentials in remote
sensing information processing. A challenging task underlying many hyperspectral im-
agery applications is decomposing a mixed pixel into a collection of reflectance spectra,
called endmember signatures, and the corresponding abundance fractions. Chapter 19
[now Chapter 7] presents a new method for unsupervised endmember extraction called
vertex component analysis (VCA). The VCA algorithms presented have better or com-
parable performance as compared to two other techniques but require less computational
complexity. Other useful ICA applications in remote sensing include feature extraction,
and speckle reduction of SAR images. Chapter 20 [now Chapter 8] presents two different
methods of SAR image speckle reduction using ICA, both making use of the FastICA
algorithm. In two-dimensional time series modeling, Chapter 21 [now Chapter 9] makes
use of a fractionally integrated autoregressive moving average (FARIMA) analysis to
model the mean radial power spectral density of the sea SAR imagery. Long-range
dependence models are used in addition to the fractional sea surface models for the
simulation of the sea SAR image spectra at different sea states, with and without oil slicks
at low computational cost.

Returning to the image classification problem, Chapter 22 [now Chapter 10] deals with
the topics of pixel classification using Bayes classifier, region segmentation guided by
morphology and split-and-merge algorithm, region feature extraction, and region classi-
fication.

Chapter 23 [now Chapter 11] provides a tutorial presentation of different issues of data
fusion for remote sensing applications. Data fusion can improve classification and for the
decision level fusion strategies, four multisensor classifiers are presented. Beyond the
currently popular transform techniques, Chapter 24 [now Chapter 12] demonstrates that
Hermite transform can be very useful for noise reduction and image fusion in remote
sensing. The Hermite transform is an image representation model that mimics some of the
important properties of human visual perception, namely local orientation analysis and
the Gaussian derivative model of early vision. Chapter 25 [now Chapter 13] is another
chapter that demonstrates the importance of image fusion to improving sea ice classifi-
cation performance, using backpropagation trained neural network and linear discrimin-
ation analysis and texture features. Chapter 26 [now Chapter 14] is on the issue of
accuracy assessment for which the Bradley-Terry model is adopted. Chapter 27 [now
Chapter 15] is on land map classification using support vector machine, which has been
increasingly popular as an effective classifier. The land map classification classifies the
surface of the Earth into categories such as water area, forests, factories or cities. Finally,
with lossless data compression in mind, Chapter 28 [now Chapter 16] focuses on infor-
mation-theoretic measure of the quality of multi-band remotely sensed digital images.
The procedure relies on the estimation of parameters of the noise model. Results on image
sequences acquired by AVIRIS and ASTER imaging sensors offer an estimation of the
information contents of each spectral band.

With rapid technological advances in both sensor and processing technologies, a book
of this nature can only capture certain amount of current progress and results. However,
if past experience offers any indication, the numerous mathematical techniques presented
will give this volume a long lasting value.
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The sister volumes of this book are the other two books edited by myself. One is
Information Processing for Remote Sensing and the other is Frontiers of Remote Sensing
Information Processing, both published by World Scientific in 1999 and 2003, respectively.
I am grateful to all contributors of this volume for their important contribution and, in
particular, to Dr. J.S. Lee, S. Serpico, L. Bruzzone and S. Omatu for chapter contributions
to all three volumes. Readers are advised to go over all three volumes for a more complete
information on signal and image processing for remote sensing.

C. H. Chen
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On the Normalized Hilbert Transform
and Its Applications in Remote Sensing

Steven R. Long and Norden E. Huang
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1.1 Introduction

The development of this new approach was motivated by the need to describe non-
linear distorted waves in detail, along with the variations of these signals that occur
naturally in nonstationary processes (e.g., ocean waves). As has been often noted, natural
physical processes are mostly nonlinear and nonstationary. Yet, there have historically
been very few options in the available analysis methods to examine data from such
nonlinear and nonstationary processes. The available methods have usually been
for either linear but nonstationary, or nonlinear but stationary, and statistically deter-
ministic processes. The need to examine data from nonlinear, nonstationary, and sto-
chastic processes in the natural world is due to the nonlinear processes which require
special treatment. The past approach of imposing a linear structure (by assumptions)
on the nonlinear system is not adequate. Other than periodicity, the detailed dynamics
in the processes from the data also need to be determined. This is needed because one
of the typical characteristics of nonlinear processes is its intrawave frequency mo-
dulation (FM), which indicates the instantaneous frequency (IF) changes within one
oscillation cycle.

In the past, when the analysis was dependent on linear Fourier analysis, there was no
means of depicting the frequency changes within one wavelength (the intrawave fre-
quency variation) except by resorting to the concept of harmonics. The term “bound
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harmonics” was often used in this connection. Thus, the distortions of any nonlinear
waveform have often been referred to as “harmonic distortions.” The concept of har-
monic distortion is a mathematical artifact resulting from imposing a linear structure
(through assumptions) on a nonlinear system. The harmonic distortions may thus have
mathematical meaning, but there is no physical meaning associated with them, as dis-
cussed by Huang et al. [1,2]. For example, in the case of water waves, such harmonic
components do not have any of the real physical characteristics of a water wave as it
occurs in nature. The physically meaningful way to describe such data should be in terms
of its IF, which will reveal the intrawave FMs occurring naturally.

It is reasonable to suggest that any such complicated data should consist of numerous
superimposed modes. Therefore, to define only one IF value for any given time is not
meaningful (see Ref. [3], for comments on the Wigner—Ville distribution). To fully con-
sider the effects of multicomponent data, a decomposition method should be used to
separate the naturally combined components completely and nearly orthogonally. In the
case of nonlinear data, the orthogonality condition would need to be relaxed, as discussed
by Huang et al. [1]. Initially, Huang et al. [1] proposed the empirical mode decomposition
(EMD) approach to produce intrinsic mode functions (IMF), which are both monocom-
ponent and symmetric. This was an important step toward making the application truly
practical. With the EMD satisfactorily determined, an important roadblock to truly non-
linear and nonstationary analysis was finally removed. However, the difficulties resulting
from the limitations stated by the Bedrosian [4] and Nuttall [5] theorems must also be
addressed in connection with this approach. Both limitations have firm theoretical foun-
dations and must be considered; IMFs satisfy only the necessary condition, but not the
sufficient condition. To improve the performance of the processing as proposed by Huang
et al. [1], the normalized empirical mode decomposition (NEMD) method was developed
as a further improvement on the earlier processing methods.

1.2 Review of Processing Advances
1.2.1 The Normalized Empirical Mode Decomposition

The NEMD method was developed to satisfy the specific limitations set by the Bedrosian
theorem while also providing a sharper measure of the local error when the quadrature
differs from the Hilbert transform (HT) result.

From an example data set of a natural process, all the local maxima of the data are first
determined. These local maxima are then connected with a cubic spline curve, which
gives the local amplitude of the data, A(t), as shown together in Figure 1.1. The envelope
obtained through spline fitting is used to normalize the data by

_a(t)cosO(t)  (a(t)
O=""Aw <M

) cos 6(1). (1.1)
Here A(t) represents the cubic spline fit of all the maxima from the example data, and thus
a(t)/A(t) should normalize y(t) with all maxima then normalized to unity, as shown in
Figure 1.2. As is apparent from Figure 1.2, a small number of the normalized data points
can still have an amplitude in excess of unity. This is because the cubic spline is through
the maxima only, so that at locations where the amplitudes are changing rapidly, the line
representing the envelope spline can pass under some of the data points. These occasional
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Example data and splined envelope
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FIGURE 1.1

The best possible cubic spline fit to the local maxima of the example data. The spline fit forms an envelope as an
important first step in the process. Note also how the frequency can change within a wavelength, and that the
oscillations can occur in groups.

misses are unavoidable, yet the normalization scheme has effectively separated the
amplitude from the carrier oscillation. The IF can then be computed from this normalized
carrier function y(t), just obtained. Owing to the nearly uniform amplitude, the limitations
set by the Bedrosian theorem are effectively satisfied. The IF computed in this way from
the normalized data from Figure 1.2 is shown in Figure 1.3, together with the original
example data. With the Bedrosian theorem addressed, what of the limitations set by the
Nuttall theorem?

If the HT can be considered to be the quadrature, then the absolute value of the HT
performed on the perfectly normalized example data should be unity. Then any deviation
from the absolute value of the HT from unity would be an indication of a difference
between the quadrature and the HT results. An error index can thus be defined simply as

E(t) = [abs(Hilbert transform (y(t))) — 1]*. (1.2)

This error index would be not only an energy measure as given in the Nuttall theorem but
also a function of time as shown in Figure 1.4. Therefore, it gives a local measure of the
error resulting from the IF computation. This local measure of error is both logically and
practically superior to the integrated error bound established by the Nuttall theorem. If
the quadrature and the HT results are identical, then it follows that the error should be
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Example data and normalized carrier
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FIGURE 1.2

Normalized example data of Figure 1.1 with the cubic spline envelope. The occasional value beyond unity is due
to the spline fit slightly missing the maxima at those locations.

zero. Based on experience with various natural data sets, the majority of the errors
encountered here result from two sources. The first source is due to an imperfect nor-
malization occurring at locations close to rapidly changing amplitudes, where the envel-
ope spline-fitting is unable to turn sharply or quickly enough to cover all the data points.
This type of error is even more pronounced when the amplitude is also locally small, thus
amplifying any errors. The error index from this condition can be extremely large. The
second source is due to nonlinear waveform distortions, which will cause corresponding
variations of the phase function 6(t). As discussed by Huang et al. [1], when the phase
function is not an elementary function, the differentiation of the phase determined by the
HT is not identical to that determined by the quadrature. The error index from this
condition is usually small (see Ref. [6]).

Overall, the NEMD method gives a more consistent, stable IF. The occasionally large
error index values offer an indication where the method failed simply because the spline
misses and cuts through the data momentarily. All such locations occur at the minimum
amplitude with a resulting negligible energy density.

1.2.2  Amplitude and Frequency Representations

In the initial methods [1,2,6], the main result of Hilbert spectral analysis (HSA) always
emphasized the FM. In the original methods, the data were first decomposed into IMFs, as
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Example data and instantaneous frequency
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FIGURE 1.3
The instantaneous frequency determined from the normalized carrier function is shown with the example data.
Data is about zero, and the instantaneous frequency varies about the horizontal 0.5 value.

defined in the initial work. Then, through the HT, the IF and the amplitude of each IMF
were computed to form the Hilbert spectrum. This continues to be the method, especially
when the data are normalized. The information on the amplitude or envelope variation is
not examined. In the NEMD and HSA approach, it is justifiable not to pay too much
attention to the amplitude variations. This is because if there is a mode mixing, the
amplitude variation from such mixed mode IMFs does not reveal any true underlying
physical processes. However, there are cases when the envelope variation does contain
critical information. An example of this is when there is no mode mixing in any given
IMF, when a beating signal representing the sum of two coexisting sinusoidal ones is
encountered. In an earlier paper, Huang et al. [1] attempted to extract individual com-
ponents out of the sum of two linear trigonometric functions such as

x(t) = cosat + cos bt. (1.3)

Two seemingly separate components were recovered after over 3000 sifting steps. Yet the
obtained IMFs were not purely trigonometric functions anymore, and there were obvious
aliases in the resulting IMF components as well as in the residue. The approach proposed
then was unnecessary and unsatisfactory. The problem, in fact, has a much simpler
solution: treating the envelope as an amplitude modulation (AM), and then processing
just the envelope data. The function x(t), as given in Equation 1.3, can then be rewritten as
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Offset example data and error measures
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FIGURE 1.4
The error index as it changes with the data location in time. The original example data offset by 0.3 vertically for
clarity is also shown. The quadrature result is not visible on this scale.

bt) cos <a ; bt). (1.4)

There is no difference between the sum of the individual components and the modulating
envelope form; they are trigonometric identities. If both the frequency of the carrier wave,
(a+b)/2, and the frequency of the envelope, (a—b)/2, can be obtained, then all the
information in the signal can be extracted. This indicates the reason to look for a new
approach to extracting additional information from the envelope. In this example, how-
ever, the envelope becomes a rectified cosine wave. The frequency would be easier to
determine from the simple period counting than from the Hilbert spectral result. For a
more general case when the amplitudes of the two sinusoidal functions are not equal, the
modulation is not simple anymore. For even more complicated cases, when there are
more than two coexisting sinusoidal components with different amplitudes and frequen-
cies, there is no general expression for the envelope and carrier. The final result could be
represented as more than one frequency-modulated band in the Hilbert spectrum. It is
then impossible to describe the individual components under this situation. In such cases,
representing the signal as a carrier and envelope, variation should still be meaningful, for

a
x(t) = cosat + cos bt = 2cos< i
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the dual representations of frequency arise from the different definitions of frequency.
The Hilbert-inspired view of amplitude and FMs still renders a correct representation of
the signal, but this view is very different from that of Fourier analysis. In such cases, if one
is sure of the stationarity and regularity of the signal, Fourier analysis could be used,
which will give more familiar results as suggested by Huang et al. [1]. The judgment for
these cases is not on which one is correct, as both are correct; rather, it is on which one is
more familiar and more revealing.

When more complicated data are present, such as in the case of radar returns, tsunami
wave records, earthquake data, speech signals, and so on (representing a frequency
““chirp”’), the amplitude variation information can be found by processing the envelope
and treating the data as an approximate carrier. When the envelope of frequency chirp
data, such as the example given in Figure 1.5, is decomposed through the NEMD process,
the IMF components are obtained as shown in Figure 1.6. Using these components (or
IMFs), the Hilbert spectrum can be constructed as given in Figure 1.7, together with its FM
counterpart. The physical meaning of the AM spectrum is not as clearly defined in this
case. However, it serves to illustrate the AM contribution to the variability of the local
frequency.

1.2.3 Instantaneous Frequency

It must be emphasized that IF is a very different concept from the frequency content of
the data derived from Fourier-based methods, as discussed in great detail by Huang

Example of frequency chirp data
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0.6 =

Magnitude
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Time (sec)
FIGURE 1.5

A typical example of complex natural data, illustrating the concept of frequency “chirps.”

© 2007 by Taylor & Francis Group, LLC.



Components of frequency chirp data
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The eight IMF components obtained by processing the frequency chirp data of Figure 1.5, offset vertically from
C1 (top) to C8 (bottom).

et al. [1]. The IF, as discussed here, is based on the instantaneous variation of the phase
function from the HT of a data-adaptive decomposition, while the frequency content in
the Fourier approach is an averaged frequency on the basis of a convolution of data with
an a priori basis. Therefore, whenever the basis changes, the frequency content also
changes. Similarly, when the decomposition changes, the IF also has to change. How-
ever, there are still persistent and common misconceptions on the IF computed in this
manner.

One of the most prevailing misconceptions about IF is that, for any data with a discrete
line spectrum, IF can be a continuous function. A variation of this misconception is that IF
can give frequency values that are not one of the discrete spectral lines. This dilemma can
be resolved easily. In the nonlinear cases, when the IF approach treats the harmonic
distortions as continuous intrawave FMs, the Fourier-based methods treat the frequency
content as discrete harmonic spectral lines. In the case of two or more beating waves, the
IF approach treats the data as AM and FM modulation, while the frequency content from
the Fourier method treats each constituting wave as a discrete spectral line, if the process
is stationary. Although they appear perplexingly different, they represent the same data.

Another misconception is on negative IF values. According to Gabor’s [7] approach, the
HT is implemented through two Fourier transforms: the first transforms the data into
frequency space, while the second performs an inverse Fourier transform after discarding
all the negative frequency parts [3]. Therefore, according to this argument, all the negative
frequency content has been discarded, which then raises the question, how can there still
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FIGURE 1.7
The AM and FM Hilbert spectral results from the frequency chirp data of Figure 1.5.

be negative frequency values? This question arises due to a misunderstanding of the
nature of negative IF from the HT. The direct cause of negative frequency in the HT is the
consequence of multiple extrema between two zero-crossings. Then, there are local loops
not centered at the origin of the coordinate system, as discussed by Huang et al. [1].
Negative frequency can also occur even if there are no multiple extrema. For example, this
would happen when there are large amplitude fluctuations, which cause the Hilbert-
transformed phase loop to miss the origin. Therefore, the negative frequency does not
influence the frequency content in the process of the HT through Gabor’s [7] approach.
Both these causes are removed by the NEMD and the normalized Hilbert transform
(NHT) methods presented here.

The latest versions of these methods (NEMD/NHT) consistently give more stable IF
values. They satisfy the limitation set by the Bedrosian theorem and offer a local measure
of error sharper than the Nuttall theorem. Note here that in the initial spline of the
amplitude done in the NEMD approach, the end effects again become important. The
method used here is just to assign the end points as a maximum equal to the very last
value. Other improvements using characteristic waves and linear predictions, as dis-
cussed in Ref. [1], can also be employed. There could be some improvement, but the
resulting fit will be very similar.

Ever since the introduction of the EMD and HSA by Huang et al. [1,2,8], these methods
have attracted increasing attention. Some investigators, however, have expressed certain
reservations. For example, Olhede and Walden [9] suggested that the idea of computing
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IF through the Hilbert transform is good, but that the EMD approach is not rigorous.
Therefore, they have introduced the wavelet projection as the method for decomposition
and adopt only the IF computation from the Hilbert transform. Flandrin et al. [10],
however, suggest that the EMD is equivalent to a bank of dyadic filters, but refrain
from using the HT. From the analysis presented here, it can be concluded that caution
when using the HT is fully justified. The limitations imposed by Bedrosian and Nuttall
certainly have solid theoretical foundations. The normalization procedure shown
here will remove any reservations about further applications of the improved HT
methods in data analysis. The method offers relatively little help to the approach ad-
vanced by Olhede and Walden [9] because the wavelet decomposition definitely removes
the nonlinear distortions from the waveform. The consequence of this, however, is that
their approach should also be limited to nonstationary, but linear, processes. It only
serves the limited purpose of improving the poor frequency resolution of the continuous
wavelet analysis.

As clearly shown in Equation 1.1, to give a good representation of actual wave data
or other data from natural processes by means of an analytical wave profile, the
analytical profile will need to have IMFs, and also obey the limitations imposed by
the Bedrosian and Nuttall theorems. In the past, such a thorough examination of the
data has not been done. As reported by Huang et al. [2,8], most of the actual wave data
recorded are not composed of single components. Consequently, the analytical represen-
tation of a given wave profile in the form of Equation 1.1 poses a challenging problem
theoretically.

1.3 Application to Image Analysis in Remote Sensing

Just as much of the data from natural phenomena are either nonlinear or nonstationary, or
both, so it is also with the data that form images of natural processes. The methods of
image processing are already well advanced, as can be seen in reviews such as by
Castleman [11] or Russ [12]. The NEMD/NHT methods can now be added to the
available tools for producing new and unique image products. Nunes et al. [13] and
Linderhed [14-16], among others, have already done significant work in this new area.
Because of the nonlinear and nonstationary nature of natural processes, the NEMD/NHT
approach is especially well suited for image data, giving frequencies, inverse distances, or
wave numbers as a function of time or distance, along with the amplitudes or energy
values associated with these, as well as a sharp identification of imbedded structures. The
various possibilities and products of this new analysis approach include, but are not
limited to, joint and marginal distributions, which can be viewed as isosurfaces, contour
plots, and surfaces that contain information on frequency, inverse wavelength, ampli-
tude, energy and location in time, space, or both. Additionally, the concept of component
images representing the intrinsic scales and structures imbedded in the data is now
possible, along with a technique for obtaining frequency variations of structures within
the images.

The laboratory used for producing the nonlinear waves, used as an example here, is the
NASA Air-Sea Interaction Research Facility (NASIRF) located at the NASA Goddard
Space Flight Center/Wallops Flight Facility, at Wallops Island, Virginia, within the Ocean
Sciences Branch. The test section of the main wave tank is 18.3m long and 0.9 m wide,
filled to a depth of 0.76 m of water, leaving a height of 0.45m over the water for airflow,
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FIGURE 1.8
The NASA Air-Sea Interaction Research Facility’s (NASIRF) main wave tank at Wallops Island, VA. The new
coils shown were used to provide cooling and humidity control in the airflow overheated water.

if needed. The facility can produce wind and paddle-generated waves over a water
current in either direction, and its capabilities, instruments and software have been
described in detail by Long and colleagues [17-21]. The basic description is shown with
an additional new feature indicated as new coil in Figure 1.8. These were recently installed
to provide cold air of controlled temperature and humidity for experiments using cold air
overheated water during the Flux Exchange Dynamics Study of 2004 (FEDS4) experi-
ments, a joint experiment involving the University of Washington/Applied Physics
Laboratory (UW/APL), The University of Alberta, the Lamont-Doherty Earth Observa-
tory of Columbia University, and NASA GSFC/Wallops Flight Facility. The cold airflow
overheated water optimized conditions for the collection of infrared (IR) video images.

1.3.1 The IR Digital Camera and Setup

The camera used to acquire the laboratory image presented here as an example was
provided by UW/APL as part of FEDS4. The experimental setup is shown in Figure 1.9.
For the example shown here, the resolution of the IR image was 640 x 512 pixels.
The camera was mounted to look upwind at the water surface, so that its pixel
image area covered a physical rectangle on the water surface on the order of 10 cm per
side. The water within the wave tank was heated by four commercial spa heaters, while
the air in the airflow was cooled and humidity controlled by NASIRF’s new cooling and
reheating coils. This produced a very thin layer of surface water that was cooled, so that
whenever wave spilling and breaking occurred, it could be immediately seen by the IR
camera.

1.3.2 Experimental IR Images of Surface Processes

With this imaging system in place, steps were taken to acquire interesting images of wave
breaking and spilling due to wind and wave interactions. One such image is illustrated in
Figure 1.10. To help the eyes visualize the image data, the IR camera intensity levels have
been converted to a grey scale.

Using a horizontal line that slices through the central area of the image at the value of 275,
Figure 1.11 illustrates the details contained in the actual array of data values obtained from
the IR camera. This gives the IR camera intensity values stored in the pixels along the
horizontal line. These can then be converted to actual temperatures when needed.
A complex structure is evident here. Breaking wave fronts are evident in the crescent-
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FIGURE 1.9
The experimental arrangement of FEDS4 (Flux Exchange Dynamics Study of 2004) used to capture IR images of

surface wave processes. (Courtesy of A. Jessup and K. Phadnis of UW/APL.)
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FIGURE 1.10
Surface IR image from the FEDS4 experiment. Grey bar gives the IR camera intensity levels. (Data courtesy of

A. Jessup and K. Phadnis of UW/APL.)
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shaped structures, where spilling and breaking brings up the underlying warmer water.
After processing, the resulting components produced from the horizontal row of Figure
1.11 are shown in Figure 1.12. As can be seen, the component with the longest scale, C9,
contains the bulk of the intensity values. The shorter, riding scales are fluctuations about
the levels shown in component C9. The sifting was done via the extrema approach
discussed in the foundation articles, and produced a total of nine components.

Using this approach, the IR image was first divided into 640 horizontal rows of 512
values each. The rows were then processed to produce the components, each of the 640
rows producing a component set similar to that shown in Figure 1.12. From these basic
results, component images can be assembled. This is done by taking the first component
representing the shortest scale from each of the 640 component sets. These first com-
ponents are then assembled together to produce an array that is also 640 rows by 512
columns and can also be visualized as an image. This is the first component image. This
production of component images is then continued in a similar fashion with the remain-
ing components representing progressively longer scales. To visualize the shortest
component scales, component images 1 through 4 were added together, as shown in
Figure 1.13. Throughout the image, streaks of short wavy structures can be seen to line
up in the wind direction (along the vertical axis). Even though the image is formed in
the IR camera by measuring heat at many different pixel locations over a rectangular
area, the surface waves have an effect that can be thus remotely sensed in the image,
either as streaks of warmer water exposed by breaking or as more wavelike structures. If
the longer scale components are now combined using the 5th and 6th component
images, a composite image is obtained as shown in Figure 1.14. Longer scales can be
seen throughout the image area where breaking and mixing occur. Other wavelike

190 Row 275 of IR image of water wave surface
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FIGURE 1.11
A horizontal slice of the raw IR image given in Figure 1.10, taken at row 275. Note the details contained in the IR
image data, showing structures containing both short and longer length scales.
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Components of row 275 of IR image
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FIGURE 1.12

Components obtained by processing data from the slice shown in Figure 1.11. Note that component C9 carries
the bulk of the intensity scale, while the other components with shorter scales record the fluctuations about these
base levels.

structures of longer wavelengths are also visible. To produce a true wave number from
images like these, one only has to convert using

k=2m/A, (1.5)

where k is wave number (in 1/cm) and A is wavelength (in cm). This would only require
knowing the physical size of the image in centimeters or some other unit and its equiva-
lent in pixels from the array analyzed.

Another approach to the raw image of Figure 1.10 is to separate the original image into
columns instead of rows. This would make the analysis more sensitive to structures that
were better aligned with that direction, and also with the direction of wind and waves. By
repeating the steps leading to Figure 1.13, the shortest scale component images in compon-
ent images 3 to 5 can be combined to form Figure 1.15. Component images 1 and 2
developed from the vertical column analysis were not included here, after they were
found to contain results of such a short scale uniformly spread throughout the image,
and without structure. Indeed, they had the appearance of uniform noise. It is apparent that
more structures at these scales can be seen by analyzing along the column direction. Figure
1.16 represents the longer scale in component image 6. By the 6th component image, the
lamination process starts to fail somewhat in reassembling the image from the components.
Further processing is needed to better match the results at these longer scales.
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FIGURE 1.13 (See color insert following page 178.)
Component images 1 to 4 from the horizontal rows used to produce a composite image representing the

shortest scales.

Horizontal IR components 5 to 6
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FIGURE 1.14 (See color insert following page 178.)
Component images 5 to 6 from the horizontal rows used to produce a composite image representing the longer scales.
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Vertical IR components 3 to 5

100

200

I
S
©

Vertical pixels

400¢

500§

600 ft L I SRk W

50 100 150 200 250 300 350 400 450 500
Horizontal pixels

FIGURE 1.15 (See color insert following page 178.)
Component images 3 to 5 from the vertical rows here combined to produce a composite image representing the
midrange scales.

When the original data are a function of time, this new approach can produce the IF and
amplitude as functions of time. Here, the original data are from an IR image, so that any
slice through the image (horizontal or vertical) would be a set of camera values (ultim-
ately temperature) representing the temperature variation over a physical length. Thus,
instead of producing frequency (inverse time scale), the new approach here initially
produces an inverse length scale. In the case of water surface waves, this is the familiar
scale of the wave number, as given in Equation 1.5. To illustrate this, consider Figure 1.17,
which shows the changes of scale along the selected horizontal row 400. The largest
measures of IR energy can be seen to be at the smaller inverse length scales, which
imply that it came from the longer scales of components 3 and 4. Figure 1.18 repeats
this for the even longer length scales in components 5 and 6.

Returning to the column-wise processing at column 250 of Figure 1.15 and Figure 1.16,
further processing gives the contour plot of Figure 1.19, for components 3 through 5, and
Figure 1.20, for components 4 through 6.

1.3.3 Volume Computations and Isosurfaces

Many interesting phenomena happen in the flow of time, and thus it is interesting to note
how changes occur with time in the images. To include time in the analysis, a sequence of
images taken at uniform time steps can be used.

By starting with a single horizontal or vertical line from the image, a contour plot can be
produced, as was shown in Figure 1.7 through Figure 1.20. Using a set of sequential
images covering a known time period and a pixel line of data from each (horizontal or
vertical), a set of numerical arrays can be obtained from the NEMD/NHT analysis. Each
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FIGURE 1.16 (See color insert following page 178.)
Component image 6 from the vertical row used to produce a composite image representing the longer scale.

array can be visualized by means of a contour plot, as already shown. The entire set of
arrays can also be combined in sequence to form an array volume, or an array of
dimension 3. Within the volume, each element of the array contains the amplitude or
intensity of the data from the image sequence. The individual element location within the
three-dimensional array specifies values associated with the stored data. One axis (call it x)
of the volume can represent horizontal or vertical distance down the data line taken from
the image. Another axis (call it y) can represent the resulting inverse length scale associ-
ated with the data. The additional axis (call it z) is produced by laminating the arrays
together, and represents time, because each image was acquired in repetitive time steps.
Thus, the position of the element in the volume gives location x along the horizontal or
vertical slice, inverse length along the y-axis, and time along the z-axis.

Isosurface techniques would be needed to visualize this. This could be compared to
peeling an onion, except that the different layers, or spatial contour values, are not bound
in spherical shells. After a value of data intensity is specified, the isosurface visualization
makes all array elements transparent outside of the level of the value chosen, while
shading in the chosen value so that the elements inside that level (or behind it) cannot
be seen. Some examples of this procedure can be seen in Ref. [21].

Another approach with the analysis of images is to reassemble lines from the image
data using a different format. A sequence of images in units of time is needed, and using
the same horizontal or vertical line from each image in the time sequence, each line can
be laminated to its predecessor to build up an array that is the image length along the
chosen line along one edge, and the number of images along the other axis, in units of
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Horizontal row 400: components 1 to 4
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FIGURE 1.17 (See color insert following page 178.)
The results from the NEMD/NHT computation on horizontal row 400 for components 1 to 4, which resulted
from Figure 1.13. Note the apparent influence of surface waves on the IR information. The most intense IR

radiation can be seen at the smaller values of inverse length scale, denoting the longer scales in components 3 and
4. A wavelike influence can be seen at all scales.

Horizontal row 400: components 5 to 6
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FIGURE 1.18 (See color insert following page 178.)
The results from the NEMD/NHT computation on horizontal row 400 for components 5 to 6, which resulted

from Figure 1.14. Even at the longer scales, an apparent influence of surface waves on the IR information can still
be seen.
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FIGURE 1.19
The contour plot developed from the vertical slice at column 250, using the components 3 to 5. The larger IR
values can be seen at longer length scales.

time. Once complete, this two-dimensional array can be split into slices along the time
axis. Each of these time slices, representing the variation in data values with time at a
single-pixel location, can then be processed with the new NEMD/NHT technique. An
example of this can also be seen in Ref. [21]. The NEMD/NHT techniques can thus
reveal variations in frequency or time in the data at a specific location in the image
sequence.

1.4 Conclusion

With the introduction of the normalization procedure, one of the major obstacles for
NEMD/NHT analysis has been removed. Together with the establishment of the confi-
dence limit [6] through the variation of stoppage criterion, and the statistically significant
test of the information content for IMF [10,22], and the further development of the concept
of IF [23], the new analysis approach has indeed approached maturity for applications
empirically, if not mathematically (for a recent overview of developments, see Ref. [24]).
The new NEMD/NHT methods provide the best overall approach to determine the IF for
nonlinear and nonstationary data. Thus, a new tool is available to aid in further under-
standing and gaining deeper insight into the wealth of data now possible by remote
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FIGURE 1.20
The contour plot developed from the vertical slice at column 250, using the components 4 through 6, as in

Figure 1.19.

sensing and other means. Specifically, the application of the new method to data images
was demonstrated.

This new approach is covered by several U.S. Patents held by NASA, as discussed by
Huang and Long [25]. Further information on obtaining the software can be found at the
NASA authorized commercial site: http: //www.fuentek.com/technologies/hht.htm
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2.1 Introduction

Basically, statistical pattern recognition deals with the correct classification of a
pattern into one of several available pattern classes. Basic topics in statistical pattern
recognition include: preprocessing, feature extraction and selection, parametric or non-
parametric probability density, decision-making processes, performance evaluation, post-
processing as needed, supervised and unsupervised learning, or training, and cluster
analysis.

The large amount of data available makes remote-sensing data uniquely suitable
for statistical pattern recognition. Signal processing is needed not only to reduce the
undesired noises and interferences but also to extract desired information from the data
as well as to perform the preprocessing task for pattern recognition.

Remote-sensing data considered include those from multispectral, hyperspectral,
radar, optical, and infrared sensors. Statistical signal-processing methods, as used in
remote sensing, include transform methods such as principal component analysis
(PCA), independent component analysis (ICA), factor analysis, and the methods using
high-order statistics.

This chapter is presented as a brief overview of the statistical pattern recognition and
statistical signal processing in remote sensing. The views and comments presented,
however, are largely those of this author. The chapter introduces the pattern recognition
and signal-processing topics dealt in this book. The readers are highly recommended to
refer the book by Landgrebe [1] for remote-sensing pattern classification issues and the
article by Duin and Tax [2] for a survey on statistical pattern recognition.
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Although there are many applications of statistical pattern recognition, its theory has
been developed only during the last half century. A list of some major theoretical
developments includes the following:

¢ Formulation of pattern recognition as a Bayes decision theory problem [3]

¢ Nearest neighbor decision rules (NNDRs) and density estimation [4]

¢ Use of Parzen density estimate in nonparametric pattern recognition [5]

¢ Leave-one-out method of error estimation [6]

¢ Use of statistical distance measures and error bounds in feature evaluation [7]
» Hidden Markov models as one way to deal with contextual information [8]

¢ Minimization of the perceptron criterion function [9]

e Fisher linear discriminant and multicategory generlizations [10]

e Link between backpropagation trained neural networks and the Bayes dis-
criminant [11]

e Cover’s theorem on the separability of patterns [12]

» Unsupervised learning by decomposition of mixture densities [13]

¢ K-mean algorithm [14]

e Self-organizing map (SOM) [15]

e Statistical learning theory and VC dimension [16,17]

 Support vector machine for pattern recognition [17]

¢ Combining classifiers [18]

¢ Nonlinear mapping [19]

o Effect of finite sample size (e.g., [13])
In the above discussion, the role of artificial neural networks on statistical classification
and clustering has been taken into account. The above list is clearly not complete and is
quite subjective. However, these developments clearly have a significant impact on

information processing in remote sensing.
We now examine briefly the performance measures in statistical pattern recognition.

e Error probability. This is most popular as the Bayes decision rule is optimum for
minimum error probability. It is noted that an average classification accuracy
was proposed by Wilkinson [20] for remote sensing.

e Ratio of interclass distance to within-class distance. This is most popular for discrim-
inant analysis that seeks to maximize such a ratio.

e Mean square error. This is most popular mainly in error correction learning and in
neural networks.

e ROC (receiver operating characteristics) curve, which is a plot of the probability of
correct decision versus the probability of false alarm, with other parameters given.

Other measures, like error-reject tradeoff, are often used in character recognition.

2.2 Introduction to Statistical Pattern Recognition in Remote Sensing

Feature extraction and selection is still a basic problem in statistical pattern recognition
for any application. Feature measurements constructed from multiple bands of the
remote-sensing data as a vector are still most commonly used in remote-sensing pattern
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recognition. Transform methods are useful to reduce the redundancy in vector measure-
ments. The dimensionality reduction has been a particularly important topic in remote
sensing in view of the hyperspectral image data, which normally has several hundred
spectral bands.

The parametric classification rules include the Bayes or maximum likelihood decision
rule and discriminant analysis. The nonparametric (or distribution free) method of clas-
sification includes NNDR and its modifications, and the Parzen density estimation. In the
early 1970s, the multivariate Gaussian assumption was most popular in the multispectral
data classification problem. It was demonstrated that the empirical data follows the
Gaussian distribution reasonably well [21]. Even with the use of new sensors and the
expanded application of remote sensing, the Gaussian assumption remains to be a good
approximation. The traditional multivariate analysis still plays a useful role in remote-
sensing pattern recognition [22] and, because of the importance of covariance matrix,
methods to use unsupervised samples to “‘enhance” the data statistics have also been
considered. Indeed, for good classification, data statistics must be carefully examined. An
example is the synthetic aperture radar (SAR) image data. Chapter 1 of the companion
volume (Image Processing for Remote Sensing) presents a discussion on the physical and
statistical characteristics of the SAR image data.

Without making use of the Gaussian assumption, the NNDR is the most popular
nonparametric classification method. It works well even with a moderate size data set
and promises an error rate that is upper-bounded by twice the Bayes error rate.
However, its performance is limited in remote-sensing data classification, while neural
networks—based classifiers can reach the performance nearly equal to that of the Bayes
classifier. Extensive study has been done in the statistical pattern recognition community
to improve the performance of NNDR. We would like to mention the work of Grabowski
et al. [23] here, which introduces the k-near surrounding neighbor (k-NSN) decision rule
with application to remote-sensing data classification.

Some unique problem areas of statistical pattern recognition in remote sensing are the
use of contextual information and the ““Hughes phenomenon.” The use of Markov random
field model for contextual information is presented in Chapter 2 of the companion volume.
While the classification performance generally improves with increases in the feature
dimension, the performance reaches a peak without a proportional increase in the training
sample size, beyond which the performance degrades. This is the so-called “Hughes
phenomenon.” Methods to reduce this phenomenon are well presented in Ref. [1].

Data fusion is important in remote sensing as different sensors, which have different
strengths, are often used. The subject is treated in Chapter 11 of the companion
volume. Though the approach is not limited to statistical methodology [24], the
approaches in combining classifiers in statistical pattern recognition and neural networks
can be quite useful in providing effective utilizations of information from different
sensors or sources to achieve the best-available classification performance. Chapter 3
and Chapter 4 of the companion volume present two approaches in statistical combing
of classifiers.

The recent development in support vector machine appears to present an ultimate
classifier that may provide the best classification performance. Indeed, the design of the
classifier is fundamental to the classification performance. There is, however, a basic
question: “Is there a best classifier?”” [25]. The answer is ““No’” as, among other reasons, it
is evident that the classification process is data-dependent. Theory and practice are often
not consistent in pattern recognition. The preprocessing and feature extraction and selec-
tion are important and can influence the final classification performance. There are no clear
steps to be taken in preprocessing, and the optimal feature extraction and selection is still an
unsolved problem. A single feature derived from the genetic algorithm may perform better
than several original features. There is always a choice to be made between using a complex
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feature set followed by a simple classifier and a simple feature set followed by a complex
classifier. Chapter 15 of the companion volume deals with the classification by support
vector machine. Among many other publications on the subject, Melgani and Bruzzone [26]
provide an informative comparison of the performance of several support vector machines.

2.3 Using Self-Organizing Maps and Radial Basis Function Networks
for Pixel Classification

In this section, some experimental results are presented to illustrate the importance of
preprocessing before classification. The data set, which is now available at the IEEE
Geoscience and Remote Sensing Society database, consists of 250 x 350 pixel images.
They were acquired by two imaging sensors installed on a Daedalus 1268 Airborne
Thematic Mapper (ATM) scanner and a PLC-band, fully polarimetric NASA/JPL SAR
sensor of an agricultural area near the village of Feltwell, U.K. The original SAR images
include nine channels. Figure 2.1 shows the original nine channels of image data.

The radial basis function (RBF) neural network is used for classification [27]. However,
preprocessing is performed by the SOM that performs preclustering. The weights of the
SOM are chosen as centers for RBF neurons. RBF has five output nodes for five pattern
classes on the image data considered (SAR and ATM images in an agricultural area).
Weights of the “n”” most-frequently-fired neurons, when each class was presented to the
SOM, were separately taken as the center for the 5 x n RBF neurons.

The weights between the hidden-layer neurons and the output-layer neurons were
computed by a procedure for a generalized radial-basis function networks. Pixel classifi-
cation using SOM alone (unsupervised) is 62.7% correct. Pixel classification using RBF
alone (supervised) is 89.5% correct, at best. Pixel classification using both SOM and RBF is
95.2% correct. This result is better than the reported results on the same data set using RBF
[28] at 90.5% correct or ICA-based features with nearest neighbor classification rule [29] at
86% correct.

2.4 Introduction to Statistical Signal Processing in Remote Sensing

Signal and image processing is needed in remote-sensing information processing to
reduce the noise and interference with the data, to extract the desired signal and image
component, or to derive useful measurements for input to the classifier. The classification
problem is, in fact, very closely linked to signal and image processing [30,31].
Transform methods have been most popular in signal and image processing [32]. Though
the popular wavelet transform method for remote sensing is treated elsewhere [33], we have
included Chapter 1 in this volume, which presents the popular Hilbert-Huang transform;
Chapter 12 of the companion volume, which deals with the use of Hermite transform in the
multispectral image fusion; and Chapter 10 of this volume, Chapter 7, and Chapter 8 of the
companion volume, which make use of the methods of ICA. Although there is a constant need
for better sensors, the signal-processing algorithm such as the one presented in Chapter 7 of
this volume demonstrates well the role of Kalman filtering in weak signal detection. Time
series modeling as used in remote sensing is the subject of Chapter 8 of this volume and
Chapter 9 of the companion volume. Chapter 6 of this volume makes use of the factor analysis.
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FIGURE 2.1
A nine-channel SAR image data set.
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In spite of the numerous efforts with the transform methods, the basic method of PCA
always has its useful role in remote sensing [34]. Signal decomposition and the use
of high-order statistics can potentially offer new solutions to the remote-sensing informa-
tion processing problems. Considering the nonlinear nature of the signal and image
processing problems, it is necessary to point out the important roles of artificial neural
networks in signal processing and classification, as presented in Chapter 3, Chapter 11,
and Chapter 12 of this volume.

A lot of effort has been made in the last two decades to derive effective features in signal
classification through signal processing. Such efforts include about two dozen mathemat-
ical features for use in exploration seismic pattern recognition [35], multi-dimensional
attribute analysis that includes both physically and mathematically significant features or
attributes for seismic interpretation [36], time domain, frequency domain, and time-
frequency domain extracted features for transient signal analysis [37] and classification,
and about a dozen features for active sonar classification [38]. Clearly, the feature extrac-
tion method for one type of signal cannot be transferred to other signals. To use a large
number of features derived from signal processing is not desirable as there is significant
information overlap among features and the resulting feature selection process can be
tedious. It has not been verified that features extracted from the time—frequency repre-
sentation can be more useful than the features from time-domain analysis and frequency
domain alone. Ideally, a combination of a small set of physically significant and math-
ematically significant features should be used. Instead of looking for the optimal feature
set, a small, but effective, feature set should be considered. It is doubtful that an optimal
feature set for any given pattern recognition application can be developed in the near
future in spite of many advances in signal and image processing.

2.5 Conclusions

Remote-sensing sensors have been able to deliver abundant information [39]. The many
advances in statistical pattern recognition and signal processing can be very useful in
remote-sensing information processing, either to supplement the capability of sensors or
to effectively utilize the enormous amount of sensor data. The potentials and opportun-
ities of using statistical pattern recognition and signal processing in remote sensing are
thus unlimited.
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3.1 Overview of Infrasound and Why Classify Infrasound Events?

Infrasound is a longitudinal pressure wave [1-4]. The characteristics of these waves are
similar to audible acoustic waves but the frequency range is far below what the human
ear can detect. The typical frequency range is from 0.01 to 10 Hz (Figure 3.1). Nature is an
incredible creator of infrasonic signals that can emanate from sources such as volcano
eruptions, earthquakes, severe weather, tsunamis, meteors (bolides), gravity waves,
microbaroms (infrasound radiated from ocean waves), surf, mountain ranges (mountain
associated waves), avalanches, and auroral waves to name a few. Infrasound can also
result from man-made events such as mining blasts, the space shuttle, high-speed aircraft,
artillery fire, rockets, vehicles, and nuclear events. Because of relatively low atmospheric
absorption at low frequencies, infrasound waves can travel long distances in the Earth’s
atmosphere and can be detected with sensitive ground-based sensors.

An integral part of the comprehensive nuclear test ban treaty (CTBT) international
monitoring system (IMS) is an infrasound network system [3]. The goal is to have 60
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infrasound arrays operational worldwide over the next several years. The main objective
of the infrasound monitoring system is the detection and verification, localization, and
classification of nuclear explosions as well as other infrasonic signals-of-interest (SOI).
Detection refers to the problem of detecting an SOI in the presence of all other unwanted
sources and noises. Localization deals with finding the origin of a source, and classifica-
tion deals with the discrimination of different infrasound events of interest. This chapter
concentrates on the classification part only.

3.2 Neural Networks for Infrasound Classification

Humans excel at the task of classifying patterns. We all perform this task on a daily basis.
Do we wear the checkered or the striped shirt today? For example, we will probably select
from a group of checkered shirts versus a group of striped shirts. The grouping process is
carried out (probably at a near subconscious level) by our ability to discriminate among all
shirts in our closet and we group the striped ones in the striped class and the checkered ones
in the checkered class (that is, without physically moving them around in the closet, only in
our minds). However, if the closet is dimly lit, this creates a potential problem and
diminishes our ability to make the right selection (that is, we are working in a “noisy”
environment). In the case of using an artificial neural network for classification of patterns
(or various “events’’) the same problem exists with noise. Noise is everywhere.

In general, a common problem associated with event classification (or detection and
localization for that matter) is environmental noise. In the infrasound problem, many
times the distance between the source and the sensors is relatively large (as opposed to
region infrasonic phenomena). Increases in the distance between sources and sensors
heighten the environmental dependence of the signals. For example, the signal of an
infrasonic event that takes place near an ocean may have significantly different charac-
teristics as compared to the same event that occurs in a desert. A major contributor of
noise for the signal near an ocean is microbaroms. As mentioned above, microbaroms are
generated in the air from large ocean waves. One important characteristic of neural
networks is their noise rejection capability [5]. This, and several other attributes, makes
them highly desirable to use as classifiers.
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3.3 Details of the Approach

Our approach of classifying infrasound events is based on a parallel bank neural network
structure [6-10]. The basic architecture is shown in Figure 3.2. There are several reasons for
using such an architecture; however, one very important advantage of dedicating one
module to perform the classification of one event class is that the architecture is fault
tolerant (i.e., if one module fails, the rest of the individual classifiers will continue to
function). However, the overall performance of the classifier is enhanced when the parallel
bank neural network classifier (PBNNC) architecture is used. Individual banks (or mod-
ules) within the classifier architecture are radial basis function neural networks (RBF NNs)
[5]. Also, each classifier has its own dedicated preprocessor. Customized feature vectors are
computed optimally for each classifier and are based on cepstral coefficients and a subset of
their associated derivatives (differences) [11]. This will be explained in detail later. The
different neural modules are trained to classify one and only one class; however, for the
requisite module responsible for one of the classes, it is also trained not to recognize all
other classes (negative reinforcement). During the training process, the output is set toa “1”
for a correct class and a ““0” for all the other signals associated with all the other classes.
When the training process is complete the final output thresholds will be set to an optimal
value based on a three-dimensional receiver operating characteristic (3-D ROC) curve for
each one of the neural modules (see Figure 3.2).
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Basic parallel bank neural network classifier (PBNNC) architecture.
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3.3.1 Infrasound Data Collected for Training and Testing

The data used for training and testing the individual networks are obtained from multiple
infrasound arrays located in different geographical regions with different geometries. The
six infrasound classes used in this study are shown in Table 3.1, and the various array
geometries are shown in Figure 3.3(a) through Figure 3.3(e) [12,13]. Table 3.2 shows the
various classes, along with the array numbers where the data were collected, and the
associated sampling frequencies.

3.3.2 Radial Basis Function Neural Networks

As previously mentioned, each of the neural network modules in Figure 3.2 is an RBF NN.
A brief overview of RBF NNs will be given here. This is not meant to be an exhaustive
discourse on the subject, but only an introduction to the subject. More details can be found
in Refs. [5,14].

Earlier work on the RBF NN was carried out for handling multivariate interpolation
problems [15,16]. However, more recently they have been used for probability density
estimation [17-19] and approximations of smooth multivariate functions [20]. In prin-
ciple, the RBF NN makes adjustments of its weights so that the error between the actual
and the desired responses is minimized relative to an optimization criterion through a
defined learning algorithm [5]. Once trained, the network performs the interpolation in
the output vector space, thus the generalization property.

Radial basis functions are one type of positive-definite kernels that are extensively used
for multivariate interpolation and approximation. Radial basis functions can be used for
problems of any dimension, and the smoothness of the interpolants can be achieved to
any desirable extent. Moreover, the structures of the interpolants are very simple. How-
ever, there are several challenges that go along with the aforementioned attributes of RBF
NNs. For example, many times an ill-conditioned linear system must be solved, and the
complexity of both time and space increases with the number of interpolation points. But
these types of problems can be overcome.

The interpolation problem may be formulated as follows. Assume M distinct data
points X = {x1,..., xp}. Also assume the data set is bounded in a region ) (for a specific
class). Each observed data point x € ®" (u corresponds to the dimension of the input
space) may correspond to some function of x. Mathematically, the interpolation problem
may be stated as follows. Given a set of M points, ie., {x; € R"li = 1, 2,..., M} and a
corresponding set of M real numbers {d; € R|i = 1, 2,..., M} (desired outputs or the
targets), find a function F:@M — @ that satisfies the interpolation condition

Fax)=di, i=1,2,...,M 3.1)

TABLE 3.1
Infrasound Classes Used for Training and Testing
No. SOI Used for No. SOI Used for
Class Number Event No. SOI (n=574) Training (n=351) Testing (n=223)
1 Vehicle 8 4 4
2 Artillery fire (ARTY) 264 132 132
3 Jet 12 8 4
4 Missile 24 16 8
5 Rocket 70 45 25
6 Shuttle 196 146 50
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Five different array geometries.
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TABLE 3.2

Array Numbers Associated with the Event Classes and the Sampling Frequencies Used to Collect
the Data

Class Number Event Array Sampling Frequency, Hz

1 Vehicle K8201 100

2 Artillery fire (ARTY) K8201; K8203 (K8201: Sites 1 and 100;
(K8201: Sites 1 and 2) Sites 2 and 50); 50

3 Jet K8201 50

4 Missile K8201; K8203 50; 50

5 Rocket BP1; BP2 100; 100

6 Shuttle BP2; BP103* 100; 50

?Array geometry not available.

Thus, all the points must pass through the interpolating surface. A radial basis function
may be a special interpolating function of the form

M
F() =) widy((lx —xil,) (32)

i=1

where ¢(¢) is known as the radial basis function and ||¢||, denotes the Euclidean norm. In
general, the data points x; are the centers of the radial basis functions and are frequently
written as c;.

One of the problems encountered when attempting to fit a function to data points is
over-fitting of the data, that is, the value of M is too large. However, generally speaking,
this is less a problem the RBF NN that it is with, for example, a multi-layer perceptron
trained by backpropagation [5]. The RBF NN is attempting to construct the hyperspace for
a particular problem when given a limited number of data points.

Let us take another point of view concerning how an RBF NN performs its construction
of a hypersurface. Regularization theory [5,14] is applied to the construction of the
hypersurface. A geometrical explanation follows.

Consider a set of input data obtained from several events from a single class. The input
data may be from temporal signals or defined features obtained from these signals using
an appropriate transformation. The input data would be transformed by a nonlinear
function in the hidden layer of the RBF NN. Each event would then correspond to a
point in the feature space. Figure 3.4 depicts a two-dimensional (2-D) feature set, that is,
the dimension of the output of the hidden layer in the RBF NN is two. In Figure 3.4, “(a)”,
“(b)”, and “/(c)”” correspond to three separate events. The purpose here is to construct a
surface (shown by the dotted line in Figure 3.4) such that the dotted region encompasses
events of the same class. If the RBF network is to classify four different classes, there must
be four different regions (four dotted contours), one for each class. Ideally, each of these
regions should be separate with no overlap. However, because there is always a limited
amount of observed data, perfect reconstruction of the hyperspace is not possible and it is
inevitable that overlap will occur.

To overcome this problem it is necessary to incorporate global information from (1 (i.e.,
the class space) in approximating the unknown hyperspace. One choice is to introduce a
smoothness constraint on the targets. Mathematical details will not be given here, but for
an in-depth development see Refs. [5,14].

Let us now turn our attention to the actual RBF NN architecture and how the network
is trained. In its basic form, the RBF NN has three layers: an input layer, one hidden
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FIGURE 3.4
Feature 1 Example of a two-dimensional feature set.

layer, and one output layer. Referring to Figure 3.5, the source nodes (or the input
components) make up the input layer. The hidden layer performs a nonlinear trans-
formation (i.e., the radial basis functions residing in the hidden layer perform this
transformation) of the input to the network and is generally of a higher dimension than
the input. This nonlinear transformation of the input in the hidden layer may be viewed
as a basis for the construction of the input in the transformed space. Thus, the term radial

basis function.
In Figure 3.5, the output of the RBF NN (i.e., at the output layer) is calculated

according to
N N
yi = fix) =Y wadp(rer) = > widi(|x — cll), i=1,2,..., m (no. outputs)  (3.3)
k=1 k=1

where x € %! is the input vector, ¢(*) is a (RBF) function that maps ®" (set of all
positive real numbers) to R (field of real numbers), ||¢||» denotes the Euclidean norm, w;
are the weights in the output layer, N is the number of neurons in the hidden layer, and ¢,
€ ®"*! are the RBF centers that are selected based on the input vector space. The
Euclidean distance between the center of each neuron in the hidden layer and the input
to the network is computed. The output of the neuron in a hidden layer is a nonlinear

FIGURE 3.5
Input layer Hidden layer Output layer RBF NN architecture.
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function of this distance, and the output of the network is computed as a weighted sum of
the hidden layer outputs.
The functional form of the radial basis function, ¢(e), can be any of the following:

¢ Linear function: ¢(x) = x

¢ Cubic approximation: ¢(x) = ¥’

¢ Thin-plate-spline function: ¢(x) = x% In(x)

¢ Gaussian function: ¢(x) = exp(—xz/oz)

¢ Multi-quadratic function: ¢(x) = Va2 + o2

¢ Inverse multi-quadratic function: ¢(x) =1/ (VA% + d?)

The parameter o controls the “width” of the RBF and is commonly referred to as the
spread parameter. In many practical applications the Gaussian RBF is used. The centers,
¢x, of the Gaussian functions are points used to perform a sampling of the input vector
space. In general, the centers form a subset of the input data.

3.4 Data Preprocessing
3.4.1 Noise Filtering

Microbaroms, as previously defined, are a persistently present source of noise that
resides in most collected infrasound signals [21-23]. Microbaroms are a class of infrasonic
signals characterized by narrow-band, nearly sinusoidal waveforms, with a period
between 6 and 8sec. These signals can be generated by marine storms through a non-
linear interaction of surface waves [24]. The frequency content of the microbaroms often
coincides with that of small-yield nuclear explosions. This could be bothersome in many
applications; however, simple band-pass filtering can alleviate the problem in many
cases. Therefore, a band-pass filter with a pass band between 1 and 49 Hz (for signals
sampled at 100 Hz) is used here to eliminate the effects of the microbaroms. Figure 3.6
shows how band-pass filtering can be used to eliminate the microbaroms problem.

3.4.2 Feature Extraction Process

Depicted in each of the six graphs in Figure 3.7 is a collection of eight signals from
each class, that is, y;i(t) fori = 1,2,..., 6 (classes) and j = 1, 2,..., 8 (number of signals)
(see Table 3.1 for total number of signals in each class). A feature extraction process is
desired that will capture the salient features of the signals in each class and at the same
time be invariant relative to the array geometry, the geographical location of the array, the
sampling frequency, and the length of the time window. The overall performance of
the classifier is contingent on the data that is used to train the neural network in each of
the six modules shown in Figure 3.2. Moreover, the neural network’s ability to distinguish
between the various events (presented the neural networks as feature vectors) is the
distinctiveness of the features between the classes. However, within each class it is
desirable to have the feature vectors as similar to each other as possible.

There are two major questions to be answered: (1) What will cause the signals in one
class to have markedly different characteristics? (2) What can be done to minimize these
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FIGURE 3.6
Results of band-pass filtering to eliminate the effects of microbaroms (an artillery signal).

differences and achieve uniformity within a class and distinctively different feature vector
characteristics between classes?

The answer to the first question is quite simple—noise. This can be noise associated
with the sensors, the data acquisition equipment, or other unwanted signals that are not
of interest. The answer to the second question is also quite simple (once you know the
answer)—using a feature extraction process based on computed cepstral coefficients and
a subset of their associated derivatives (differences) [10,11,25-28].

As mentioned in Section 3.3, each classifier has its own dedicated preprocessor (see
Figure 3.2). Customized feature vectors are computed optimally for each classifier (or
neural module) and are based on the aforementioned cepstral coefficients and a subset of
their associated derivatives (or differences). The preprocessing procedure is as follows.

Each time-domain signal is first normalized and then its mean value is computed and
removed. Next, the power spectral density (PSD) is calculated for each signal, which is a
mixture of the desired component and possibly other unwanted signals and noise.
Therefore, when the PSDs are computed for a set of signals in a defined class there will
be spectral components associated with noise and other unwanted signals that need to be
suppressed. This can be systematically accomplished by first computing the average PSD
(i-e., PSD,,,) over the suite of PSDs for a particular class. The spectral components are
defined as w; for i = 1, 2,...for PSD,,,. The maximum spectral component, pmax, of
PSD,, is then determined. This is considered the dominant spectral component within a
particular class and its value is used to suppress selected components in the resident PSDs
for any particular class according to the following:

if w; > e1pmay (typically &1 = 0.001)
then p; — p;
else &, «— u; (typically & = 0.00001)
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FIGURE 3.7 (See color insert following page 178.)
Infrasound signals for six classes.

To some extent, this will minimize the effects of any unwanted components that may
reside in the signals and at the same time minimize the effects of noise. However, another
step can be taken to further minimize the effects of any unwanted signals and noise that
may reside in the data. This is based on a minimum variance criterion applied to the
spectral components of the PSDs in a particular class after the previously described step is
completed. The second step is carried out by taking the first 90% of the spectral compon-
ents that are rank-ordered according to the smallest variance. The rest of the components
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in the power spectral densities within a particular class are set to a small value, that is, &3
(typically 0.00001). Therefore, the number of spectral components greater than &3 will
dictate the number of components in the cepstral domain (i.e., the number of cepstral
coefficients and associated differences). Depending on the class, the number of coeffi-
cients and differences will vary. For example, in the simulations that were run, the largest
number of components was 2401 (artillery class) and the smallest number was 543
(vehicle class). Next, the mel-frequency scaling step is carried out with defined values
for @ and B [10], then the inverse discrete cosine transform is taken and the derivatives
(differences) are computed.

From this set of computed cepstral coefficients and differences, it is desired to select
those components that will constitute a feature vector that is consistent within a particular
class. That is, there is minimal variation among similar components across the suite of
feature vectors. So the approach taken here is to think in terms of minimum variance of
these similar components within the feature set.

Recall, the time-domain infrasound signals are assumed to be band-pass filtered to
remove any effects of microbaroms as described previously. For each discrete-time
infrasound signal, y(k), where k is the discrete time index (an integer), the specific
preprocessing steps are (dropping the time dependence k):

(1) Normalize (i.e., divide each sample in the signal y(k) by the absolute value of
the maximum amplitude, |ymax|, and also divide by the square root of the
computed variance of the signal, cry2, and then remove the mean:

Y= ]//{|ymax|/0'y} (3.4)
Yy <y —mean(y) (3.5)

(2) Compute the PSD, S, (k,,), of the signal y:
Syy(kw) =Y Ryy(r)e (3.6)
=0

where R,,(7) is the autocorrelation of the infrasound signal y.

(3) Find the average of the entire set of PSDs in the class, i.e., PSD,

(4) Retain only those spectral components whose contributions will maximize the
overall performance of the global classifier:

if u; > e1pmay (typically &1 = 0.001)
then u; — w;
else & «— u; (typically & = 0.00001)

(5) Compute variances of the components selected in Step (4). Then take the first
90% of the spectral components that are rank-ordered according to the smallest
variance. Set the remaining components to a small value, ie., g3 (typically
0.00001).

(6) Apply mel-frequency scaling to S,,(k,):
Smel(ko) = alog, [BSyy(k.)] (3.7)

where ¢« = 11.25, 8 = 0.03.
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(7) Take the inverse discrete cosine transform:

Xmel(n) = . Sm(k,)cos@mk,n/N) forn=0,1,2,..., N—1 (3.8)
k=0

(8) Take the consecutive differences of the sequence xme (1) to obtain X (1).

(9) Concatenate the sequence of differences, x¥ie1(1), with the cepstral coefficient
sequence, Xmq (1), to form the augmented sequence:

Xmel = [%inet (1) %mel ()] (3.9)

where i and j are determined experimentally. As mentioned previously, i =400
and j =600.

(10) Take the absolute value of the elements in the sequence x5, yielding:

x?nel,abs = |x?nel| (310)
(11) Take the log. of x7,, ., from the previous step to give:
xfnel,abs,log = loge [x?nel, abs] (311)

Applying this 11-step feature extraction process to the infrasound signals in the six
different classes results in the feature vectors shown in Figure 3.8. The length of each
feature vector is 34. This will be explained in the next section. If these sets of feature
vectors are compared to their time-domain signal counterparts (see Figure 3.7), it is
obvious that the feature extraction process produces feature vectors that are much more
consistent than the time-domain signals. Moreover, comparing the feature vectors be-
tween classes reveals that the different sets of feature vectors are markedly distinct. This
should result in improved classification performance.

3.4.3 Useful Definitions

Before we go on, let us define some useful quantities that apply to the assessment of
performance for classifiers. The confusion matrix [29] for a two-class classifier is shown in
Table 3.3.

In Table 3.3 we have the following:

p: number of correct predictions that an occurrence is positive

g: number of incorrect predictions that an occurrence is positive

r: number of incorrect of predictions that an occurrence is negative
s: number of correct predictions that an occurrence is negative

With this, the correct classification rate (CCR) is defined as

No. correct predictions — No. x classifications
No. predictions

CCR =

_ p+s—No. multiple classifications (3.12)
pt+q+r+s
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FIGURE 3.8 (See color insert following page 178.)
Infrasound signals for six class different classes.

Multiple classifications refer to more than one of the neural modules showing a ““posi-
tive” at the output of the RBF NN indicating that the input to the global classifier belongs

to more than one class (whether this is true or not). So there could be double, triple,
quadruple, etc., classifications for one event.

The accuracy (ACC) is given by

No. correct predictions ~ p+s

ACC= No predictions T ptqtrts

(3.13)
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TABLE 3.3

Confusion Matrix for a Two-Class Classifier

Predicted Value

Actual Value Positive Negative
Positive p q
Negative r s

As seen from Equation 3.12 and Equation 3.13, if multiple classifications occur, the CCR is
a more conservative performance measure than the ACC. However, if no multiple
classifications occur, the CCR = ACC.

The true positive (TP) rate is the proportion of positive cases that are correctly identi-
fied. This is computed using

- P (3.14)
p+q
The false positive (FP) rate is the proportion of negative cases that are incorrectly
classified as positive occurrences. This is computed using
r

FP = —
r+s

(3.15)

3.4.4 Selection Process for the Optimal Number of Feature Vector Components

From the set of computed cepstral coefficients and differences generated using the
feature extraction process given above, an optimal subset of these is desired that will
constitute the feature vectors used to train and test the PBNNC shown in Figure 3.2.
The optimal subset (i.e., the optimal feature vector length) is determined by taking a
minimum variance approach. Specifically, a 3-D graph is generated that plots the
performance; that is, CCR versus the RBF NN spread parameter and the feature vector
number (see Figure 3.9). From this graph, mean values and variances are computed
across the range of spread parameters for each of the defined number of components in
the feature vector. The selection criterion is defined as simultaneously maximizing
the mean and at the same time minimizing the variance. Maximization of the mean
ensures maximum performance; that is, maximizing the CCR and at the same time
minimizing the variance to minimize variation in the feature set within each of the
classes. The output threshold at each of the neural modules (i.e., the output of the single
output neuron of each RBF NN) is set optimally according to a 3-D ROC curve. This will
be explained next.

Figure 3.10 shows the two plots used to determine the maximum mean and the
minimum variance. The table insert between the two graphs shows that even though
the mean value for 40 elements in the feature vector is (slightly) larger than that for
34 elements, the variance for 40 is nearly three times that for 34 elements. Therefore, a
length of 34 elements for the feature vectors is the best choice.

3.4.5 Optimal Output Threshold Values and 3-D ROC Curves

At the output of the RBF NN for each of the six neural modules, there is a single output
neuron with hard-limiting binary values used during the training process (see Figure 3.2).
After training, to determine whether a particular SOI belongs to one of the six classes, the
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FIGURE 3.9 (See color insert following page 178.)

Performance plot used to determine the optimal number components in the feature vector. Ill conditioning
occurs for the feature number less than 10, and for the feature number greater than 60, the CCR dramatically
declines.

threshold value of the output neurons is optimally set according to an ROC curve [30-32]
for that individual neural module (i.e., one particular class). Before an explanation of the
3-D ROC curve is given, let us first review 2-D ROC curves and see how they are used to
optimally set threshold values.

An ROC curve is a plot of the TP rate versus the FP rate, or the sensitivity versus
(1 — specificity); a sample ROC curve is shown in Figure 3.11. The optimal threshold
value corresponds to a point nearest the ideal point (0, 1) on the graph. The point (0, 1)
is considered ideal because in this case there would be no false positives and only true
positives. However, because of noise and other undesirable effects in the data, the
point closest to the (0, 1) point (i.e., the minimum Euclidean distance) is the best that
we can do. This will then dictate the optimal threshold value to be used at the output of
the RBF NN.

Since there are six classifiers, that is, six neural modules in the global classifier, six ROC
curves must be generated. However, using 2-D ROC curves to set the thresholds at the
outputs of the six RBF NN classifiers will not result in optimal thresholds. This is because
misclassifications are not taken into account when setting the threshold for a particular
neural module that is responsible for classifying a particular set of infrasound signals.
Recall that one neural module is associated with one infrasonic class, and each neural
module acts as its own classifier. Therefore, it is necessary to account for the misclassifica-
tions that can occur and this can be accomplished by adding a third dimension to the ROC
curve. When the misclassifications are taken into account the (0, 1, 0) point now becomes
the optimal point, and the smallest Euclidean distance to this point is directly related to
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of the feature vector.
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the optimal threshold value for each neural module. Figure 3.12 shows the six 3-D ROC
curves associated with the classifiers.

3.5 Simulation Results

The four basic parameters that are to be optimized in the process of training the neural
network classifier (i.e., the bank of six RBF NNs) are the RBF NN spread parameters, the
output thresholds of each neural module, the combination of 34 components in the feature
vectors for each class (note again in Figure 3.2, each neural module has its own custom
preprocessor) and of course the resulting weights of each RBF NN. The MATLAB neural
networks toolbox was used to design the six RBF NNs [33].

Table 3.1 shows the specific classes and the associated number of signals used to
train and test the RBF NNs. Of the 574 infrasound signals, 351 were used for training
the remaining 223 were used for testing. The criterion used to divide the data between
the training and testing sets was to maintain independence. Hence, the four array
signals from any one event are always kept together, either in the training set or the
test set.

After the optimal number components for each feature vector was determined, i.e., 34
elements, and the optimal combination of the 34 components for each preprocessor, the
optimal RBF spread parameters are determined along with the optimal threshold value
(the six graphs in Figure 3.12 were used for this purpose). For both the RBF spread
parameters and the output thresholds, the selection criterion is based on maximizing
the CCR of the local network and the overall (global) classifier CCR.

The RBF spread parameter and the output threshold for each neural module was
determined one by one by fixing the spread parameter, i.e., o, for all other neural modules
to 0.3, and holding the threshold value at 0.5. Once the first neural module’s spread
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parameter and threshold is determined, then the spread parameter and output threshold
of the second neural module is computed while holding all other neural modules’ (except
the first one) spread parameters and output thresholds fixed at 0.3 and 0.5, respectively.

Table 3.4 gives the final values of the spread parameter and the output threshold for the
global classifier. Figure 3.13 shows the classifier architecture with the final values indi-
cated for the RBF NN spread parameters and the output thresholds.

Table 3.5 shows the confusion matrix for the six-classifier. Concentrating on the 6 x 6
portion of the matrix for each of the defined classes, the diagonal elements correspond to
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TABLE 3.4
Spread Parameter and Threshold of Six-Class Classifier

Spread Parameter Threshold Value True Positive False Positive
Vehicle 0.2 0.3144 0.5 0
Artillery 2.2 0.6770 0.9621 0.0330
Jet 0.3 0.6921 0.5 0
Missile 1.8 0.9221 1 0
Rocket 0.2 0.4446 0.9600 0.0202
Shuttle 0.3 0.6170 0.9600 0.0289

the correct predictions. The trace of this 6 x6 matrix divided by the total number of signals
tested (i.e., 223) gives the accuracy of the global classifier. The formula for the accuracy is
given in Equation 3.13, and here ACC = 94.6%. The off-diagonal elements indicate the
misclassifications that occurred and those in parentheses indicate double classifications
(i.e., the actual class was identified correctly, but there was another one of the output
thresholds for another class that was exceeded). The off-diagonal element that is in square

/ 01=02 Optimum threshold
A setby ROC curve
0.3144
.| Infragound class 1 4 1[: ( )
»| Pre-processor 1 > .
neural network 5
/"2 =22 Optimum threshold
set by ROC curve
»| Pre-processor 2 »| Infrésound class 2 1 (0.6770)
P neural network ™ 4 —>
03=0.3 Optimum threshold
/ set by ROC curve
(0.6921)
»| Pre-processor 3 »| Inirasound class 3 e 1
P feural network _‘:o ™
Infrasound _ o,=1.8 Optimum threshold
signal - / set by ROC curve
(0.9221)
| InfraSound class 4 1
»| Pre-processor 4 »> feural network | _OE .
05=0.2 Optimum threshold
/ set by ROC curve
(0.4446)
»| Pre-processor 5 _ Infrasound class 5 1
" P - neural network - .
0
/06 =0.3 Optimum threshold
set by ROC curve
(0.6170)
N Infrasound class 6 1
*| Pre-processor 6 neural network Bt _O[: —>
FIGURE 3.13

Parallel bank neural network classifier architecture with the final values for the RBF spread parameters and
the output threshold values.
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TABLE 3.5

Confusion Matrix for the Six-Class Classifier

Predicted Value

Vehicle Artillery Jet Missile Rocket Shuttle Unclassified Total (223)

Vehicle 2 1) 0 0 0 0 2 4
Artillery 0 127 0 0 0 0 5 132
Actual Jet 0 0 2 0 0 0 2 4
Value Missile 0 0 0 8 0 0 0 8
Rocket 0 0 0 0 24 5) 1 25
Shuttle 0 DI[1] 0 0 1(3) 48 1 50

brackets is a double misclassification, that is, this event is misclassified along with another
misclassified event (this is a shuttle event that is misclassified as both a ““rocket”” event as
well as an “artillery” event).

Table 3.6 shows the final global classifier results giving both the CCR (see Equation
3.12) and the ACC (see Equation 3.13). Simulations were also run using ‘‘bi-polar”
outputs instead of binary outputs. For the case of bi-polar outputs, the output is bound
between —1 and +1 instead of 0 and 1. As can be seen from the table, the binary case
yielded the best results. Finally, Table 3.7 shows the results for the case where the
threshold levels on the outputs of the individual RBF NNs are ignored and only the
output with this largest value is taken as the “winner,” that is, “winner-takes-all”’; this is
considered to be the class that the input SOI belongs to. It should be noted that even
though the CCR shows a higher level of performance for the winner-takes-all approach,
this is probably not a viable method for classification. The reason being that if there were
truly multiple events occurring simultaneously, they would never be indicated as such
using this approach.

TABLE 3.6

Six-Class Classification Result Using a Threshold Value for Each
Network

Performance Type Binary Outputs (%) Bi-Polar Outputs (%)
CCR 90.1 88.38

ACC 94.6 92.8

TABLE 3.7

Six-Class Classification Result Using “Winner-Takes-All”
Performance Type Binary Method (%) Bi-Polar Method (%)
CCR 93.7 92.4

ACC 93.7 92.4
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3.6 Conclusions

Radial basis function neural networks were used to classify six different infrasound
events. The classifier was built with a parallel structure of neural modules that individu-
ally are responsible for classifying one and only one infrasound event, referred to as
PBNNC architecture. The overall accuracy of the classifier was found to be greater than
90%, using the CCR performance criterion. A feature extraction technique was employed
that had a major impact toward increasing the classification performance over most other
methods that have been tried in the past. Receiver operating characteristic curves were
also employed to optimally set the output thresholds of the individual neural modules in
the PBNNC architecture. This also contributed to increased performance of the global
classifier. And finally, by optimizing the individual spread parameters of the RBF NN, the
overall classifier performance was increased.
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4.1 Introduction

Reflection seismology is a method of remote imaging used in the exploration of petrol-
eum. The seismic reflection method was developed in the 1920s. Initially, the source was a
dynamite explosion set off in a shallow hole drilled into the ground, and the receiver was
a geophone planted on the ground. In difficult areas, a single source would refer to an
array of dynamite charges around a central point, called the source point, and a receiver
would refer to an array of geophones around a central point, called the receiver point.
The received waves were recorded on a photographic paper on a drum. The developed
paper was the seismic record or seismogram. Each receiver accounted for a single wiggly
line on the record, which is called a seismic trace or simply a trace. In other words, a seismic
trace is a signal (or time series) received at a specific receiver location from a specific
source location. The recordings were taken for a time span starting at the time of the shot
(called time zero) until about three or four seconds after the shot. In the early days, a
seismic crew would record about 10 or 20 seismic records per day, with a dozen or two
traces on each record. Figure 4.1 shows a seismic record with wiggly lines as traces.
Seismic crew number 23 of the Atlantic Refining Company shot the record on October 9,
1952. As written on the record, the traces were shot with a source that was laid out as a
36-hole circular array. The first circle in the array had a diameter of 130 feet with 6 holes,
each hole loaded with 101lbs of dynamite. The second circle in the array had a diameter of
215 feet with 11 holes (which should have been 12 holes, but one hole was missing), each
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FIGURE 4.1

Seismic record taken in 1952.

hole loaded with 10 Ibs of dynamite. The third circle in the array had a diameter of 300 feet
with 18 holes, each hole loaded with 51bs of dynamite. Each charge was at a depth of 20
feet. The total charge was thus 2601bs of dynamite, which is a large amount of dynamite
for a single seismic record. The receiver for each trace was made up of a group of 24
geophones (also called seismometers) in a circular array with 6 geophones on each of
4 circles of diameters 50 feet, 150 feet, 225 feet, and 300 feet, respectively. There was a
300-feet gap between group centers (i.e., receiver points). This record is called an NR
seismogram. The purpose of the elaborate source and receiver arrays was an effort to bring
out visible reflections on the record. The effort was fruitless. Regions where geophysicists
can see no reflections on the raw records are termed as no record or no reflection (NR)
areas. The region in which this record was taken, as the great majority of possible oil-
bearing regions in the world, was an NR area. In such areas, the seismic method (before
digital processing) failed, and hence wildcat wells had to be drilled based on surface
geology and a lot of guess work. There was a very low rate of discovery in the NR regions.
Because of the tremendous cost of drilling to great depths, there was little chance that any
oil would ever be discovered. The outlook for oil was bleak in the 1950s.

4.2 Acquisition and Interpretation

From the years of its inception up to about 1965, the seismic method involved two steps,
namely acquisition and interpretation. Acquisition refers to the generation and recording of
seismic data. Sources and receivers are laid out on the surface of the Earth. The objective is
to probe the unknown structure below the surface. The sources are made up of vibrators
(called vibroseis), dynamite shots, or air guns. The receivers are geophones on land and
hydrophones at sea. The sources are activated one at a time, not all together. Suppose a
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single source is activated, the resulting seismic waves travel from the source into the
Earth. The waves pass down through sedimentary rock strata, from which the waves are
reflected upward. A reflector is an interface between layers of contrasting physical
properties. A reflector might represent a change in lithology, a fault, or an unconformity.
The reflected energy returns to the surface, where it is recorded. For each source acti-
vated, there are many receivers surrounding the source point. Each recorded signal,
called a seismic trace, is associated with a particular source point and a particular receiver
point. The traces, as recorded, are referred to as the raw traces. A raw trace contains all the
received events. These events are produced by the subsurface structure of the Earth. The
events due to primary reflections are wanted; all the other events are unwanted.

Interpretation was the next step after acquisition. Each seismic record was examined
through the eye and the primary reflections that could be seen were marked by a pencil. A
primary reflection is an event that represents a passage from the source to the depth point,
and then a passage directly back to the receiver (Figure 4.2). At a reflection, the traces
become coherent; that is, they come into phase with each other. In other words, at a
reflection, the crests and troughs on adjacent traces appear to fit into one another. The
arrival time of a reflection indicates the depth of the reflecting horizon below the surface,
while the time differential (the so-called step-out time) in the arrivals of a given peak or
trough at successive receiver positions provides information on the dip of the reflecting
horizon. In favorable areas, it is possible to follow the same reflection over a distance
much greater than that covered by the receiver spread for a single record. In such cases,
the records are placed side-by-side. The reflection from the last trace of one record
correlates with the first trace of the next record. Such a correlation can be continued on
successive records as long as the reflection persists. In areas of rapid structural change,
the ensemble of raw traces is unable to show the true geometry of subsurface structures.
In some cases, it is possible to identify an isolated structure such as a fault or a syncline on
the basis of its characteristic reflection pattern. In NR regions, the raw record section does
not give a usable image of the subsurface at all.

Seismic wave propagation in three dimensions is a complicated process. The rock
layers absorb, reflect, refract, or scatter the waves. Inside the different layers, the waves
propagate at different velocities. The waves are reflected and refracted at the interfaces
between the layers. Only elementary geometries can be treated exactly in three dimen-
sions. If the reflecting interfaces are horizontal (or nearly so), the waves going straight
down will be reflected nearly straight up. Thus, the wave motion is essentially vertical.
If the time axes on the records are placed in the vertical position, time appears in the same
direction as the raypaths. By using the correct wave velocity, the time axis can be
converted into the depth axis. The result is that the primary reflections show the locations

Source point Receiver point
S R

D FIGURE 4.2
Depth point Primary reflection.
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of the reflecting interfaces. Thus, in areas that have nearly level reflecting horizons, the
primary reflections, as recorded, essentially show the correct depth positions of the
subsurface interfaces. However, in areas that have a more complicated subsurface struc-
ture, the primary reflections as recorded in time do not occur at the correct depth
positions in space. As a result, the primary reflections have to be moved (or migrated)
to their proper spatial positions.

In areas of complex geology, it is necessary to move (or migrate) the energy of each
primary reflection to the spatial position of the reflecting point. The method is similar to
that used in Huygens'’s construction. Huygens articulated the principle that every point of a
wavefront can be regarded as the origin of a secondary spherical wave, and the envelope
of all these secondary waves constitutes the propagated wavefront. In the predigital days,
migration was carried out by straightedge and compass or by a special-purpose hand-
manipulated drawing machine on a large sheet of a graph paper. The arrival times of the
observed reflections were marked on the seismic records. These times are the two-way
traveltimes from the source point to the receiver point. If the source and the receiver were
at the same point (i.e., coincident), then the raypath down would be the same as the
raypath up. In such a case, the one-way time is one half of the two-way time. From the
two-way traveltime data, such a one-way time was estimated for each source point. This
one-way time was multiplied by an estimated seismic velocity. The travel distance to the
interface was thus obtained. A circle was drawn with the surface point as center and the
travel distance as radius. This process was repeated for the other source points. In
Huygens’s construction, the envelope of the spherical secondary waves gives the new
wavefront. In a similar manner, in the seismic case, the envelope of the circles gives the
reflecting interface. This method of migration was done in 1921 in the first reflection
seismic survey ever taken.

4.3 Digital Seismic Processing

Historically, most seismic work fell under the category of two-dimensional (2D) imaging.
In such cases, the source positions and the receiver positions are placed on a horizontal
surface line called the x-axis. The time axis is a vertical line called the t-axis. Each source
would produce many traces—one trace for each receiver position on the x-axis. The
waves that make up each trace take a great variety of paths, each requiring a different
time to travel from the source to receiver. Some waves are refracted and others scattered.
Some waves travel along the surface of the Earth, and others are reflected upward from
various interfaces. A primary reflection is an event that represents a passage from the
source to the depth point, and then a passage directly back to the receiver. A multiple
reflection is an event that has undergone three, five, or some other odd number of
reflections in its travel path. In other words, a multiple reflection takes a zig-zag course
with the same number of down legs as up legs. Depending on their time delay from the
primary events with which they are associated, multiple reflections are characterized as
short-path, implying that they interfere with the primary reflection, or as long-path, where
they appear as separate events. Usually, primary reflections are simply called reflections or
primaries, whereas multiple reflections are simply called multiples. A water-layer reverber-
ation is a type of multiple reflection due to the multiple bounces of seismic energy back
and forth between the water surface and the water bottom. Such reverberations are
common in marine seismic data. A reverberation re-echoes (i.e., bounces back and forth)
in the water layer for a prolonged period of time. Because of its resonant nature, a
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reverberation is a troublesome type of multiple. Reverberations conceal the primary
reflections. The primary reflections (i.e., events that have undergone only one reflection)
are needed for image formation. To make use of the primary reflected signals on the record,
it is necessary to distinguish them from the other type of signals on the record. Random
noise, such as wind noise, is usually minor and, in such cases, can be neglected. All the
seismic signals, except primary reflections, are unwanted. These unwanted signals are due
to the seismic energy introduced by the seismic source signal; hence, they are called signal-
generated noise. Thus, we are faced with the problem of (primary reflected) signal enhance-
ment and (signal-generated) noise suppression. In the analog days (approximately up to
about 1965), the separation of signal and noise was done through the eye.

In the 1950s, a good part of the Earth’s sedimentary basins, including essentially all
water-covered regions, were classified as NR areas. Unfortunately, in such areas, the
signal-generated noise overwhelms the primary reflections. As a result, the primary
reflections cannot be picked up visually. For example, water-layer reverberations as a
rule completely overwhelm the primaries in the water-covered regions such as the Gulf of
Mexico, the North Sea, and the Persian Gulf. The NR areas of the world could be explored
for oil in a direct way by drilling, but not by the remote detection method of reflection
seismology. The decades of the 1940s and 1950s were replete with inventions, not the least
of which was the modern high-speed electronic stored-program digital computer. In the
years from 1952 to 1954, almost every major oil company joined the MIT Geophysical
Analysis Group to use the digital computer to process NR seismograms (Robinson, 2005).
Historically, the additive model (trace = s+#n) was used. In this model, the desired
primary reflections were the signal s and everything else was the noise n. Electric filers
and other analog methods were used, but they failed to give the desired primary reflec-
tions. The breakthrough was the recognition that the convolutional model (trace = sxn) is
the correct model for a seismic trace. Note that the asterisk denotes convolution. In this
model, the signal-generated noise is the signal s and the unpredictable primary reflections
are the noise n. Deconvolution removes the signal-generated noise (such as instrument
responses, ground roll, diffractions, ghosts, reverberations, and other types of multiple
reflections) so as to yield the underlying primary reflections. The MIT Geophysical
Analysis Group demonstrated the success of deconvolution on many NR seismograms,
including the record shown in Figure 4.1. However, the o0il companies were not ready to
undertake digital seismic processing at that time. They were discouraged because an
excursion into digital seismic processing would require new effort that would be expen-
sive, and still the effort might fail because of the unreliability of the existing computers.
It is true that in 1954 the available digital computers were far from suitable for geophys-
ical processing. However, each year from 1946 onward, there was a constant stream of
improvements in computers, and this development was accelerating every year. With
patience and time, the oil and geophysical companies would convert to digital processing.
It would happen when the need for hard-to-find oil was great enough to justify the
investment necessary to turn NR seismograms into meaningful data. Digital signal
processing was a new idea to the seismic exploration industry, and the industry shied
away from converting to digital methods until the 1960s. The conversion of the seismic
exploration industry to digital was in full force by about 1965, at which time transistor-
ized computers were generally available at a reasonable price. Of course, a reasonable
price for one computer then would be in the range from hundreds of thousands of dollars
to millions of dollars. With the digital computer, a whole new step in seismic exploration
was added, namely digital processing. However, once the conversion to digital was
undertaken in the years around 1965, it was done quickly and effectively. Reflection
seismology now involves three steps, namely acquisition, processing, and interpretation.
A comprehensive presentation of seismic data processing is given by Yilmaz (1987).
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4.4 Imaging by Seismic Processing

The term imaging refers to the formation of a computer image. The purpose of seismic
processing is to convert the raw seismic data into a useful image of the subsurface structure
of the Earth. From about 1965 onward, most of the new oil fields discovered were the result
of the digital processing of the seismic data. Digital signal processing deconvolves the data
and then superimposes (migrates) the results. As a result, seismic processing is divided
into two main divisions: the deconvolution phase, which produces primaries-only traces
(as well as possible), and the migration phase, which moves the primaries to their true
depth positions (as well as possible). The result is the desired image. The first phase of
imaging (i.e., deconvolution) is carried out on the traces, either individually by means of
single-channel processing or in groups by means of multi-channel processing. Ancillary
signal-enhancement methods typically include such things as the analyses of velocities and
frequencies, static and dynamic corrections, and alternative types of deconvolution.
Deconvolution is performed on one or a few traces at a time; hence, the small capacity
of the computers of the 1960s was not a severely limiting factor.

The second phase of imaging (i.e., migration) is the movement of the amplitudes of the
primary-reflection events to their proper spatial locations (the depth points). Migration
can be implemented by a Huygens-like superposition of the deconvolved traces. In a
mechanical medium, such as the Earth, forces between the small rock particles transmit
the disturbance. The disturbance at some regions of rock acts locally on nearby regions.
Huygens imagined that the disturbance on a given wavefront is made up of many
separate disturbances, each of which acts like a point source that radiates a spherically
symmetric secondary wave, or wavelet. The superposition of these secondary waves
gives the wavefront at a later time. The idea that the new wavefront is obtained by
superposition is the crowning achievement of Huygens. See Figure 4.3. In a similar
way, seismic migration uses superposition to find the subsurface reflecting interfaces.

FIGURE 4.3
Huygens’s construction.
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Ground surface

FIGURE 4.4
Construction of a reflecting interface.

See Figure 4.4. In the case of the migration, there is an added benefit of superposition,
namely, superposition is one of the most effective ways to accentuate signals and sup-
press noise. The superposition used in migration is designed to return the primary
reflections to their proper spatial locations. The remnants of the signal-generated noise
on the deconvolved traces are out of step with the primary events. As a result, the
remaining signal-generated noise tends to be destroyed by the superposition. The super-
position used in migration provides the desired image of the underground structure
of the Earth.

Historically, migration (i.e., the movement of reflected events to their proper locations
in space) was carried out manually, sometimes making use of elaborate drawing instru-
ments. The transfer of the manual processes to a digital computer involved the manipu-
lation of a great number of traces at once. The resulting digital migration schemes all
relied heavily on the superposition of the traces. This tremendous amount of data
handling had a tendency to overload the limited capacities of the computers made in
the 1960s and 1970s. As a result, it was necessary to simplify the migration problem and to
break it down into smaller parts. Thus, migration was done by a sequence of approximate
operations, such as stacking, followed by normal moveout, dip moveout, and migration
after stack. The process known as time migration was often used, which improved the
records in time, but stopped short of placing the events in their proper spatial positions.
All kinds of modifications and adjustments were made to these piecemeal operations, and
seismic migration in the 1970s and 1980s was a complicated discipline—an art as much as
a science. The use of this art required much skill. Meanwhile, great advances in technol-
ogy were taking place. In the 1990s, everything seemed to come together. Major improve-
ments in instrumentation and computers resulted in light compact geophysical field
equipment and affordable computers with high speed and massive storage. Instead of
the modest number of sources and receivers used in 2D seismic processing, the tremen-
dous number required for three-dimensional (3D) processing started to be used on a
regular basis in field operations. Finally, the computers were large enough to handle the
data for 3D imaging. Event movements (or migration) in three dimensions can now be
carried out economically and efficiently by time-honored superposition methods such
as those used in the Huygens’s construction. These migration methods are generally
named as prestack migration. This name is a relic, which implies that stacking and all the
other piecemeal operations are no longer used in the migration scheme. Until the 1990s,
3D seismic imaging was rarely used because of the prohibitive costs involved. Today, 3D
methods are commonly used, and the resulting subsurface images are of extraordinary
quality. Three-dimensional prestack migration significantly improves seismic inter-
pretation because the locations of geological structures, especially faults, are given
much more accurately. In addition, 3D migration collapses diffractions from secondary
sources such as reflector terminations against faults and corrects bow ties to form
synclines. Three-dimensional seismic work gives beautiful images of the underground
structure of the Earth.
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4.5 Iterative Improvement

Let (x, y) represent the surface coordinates and z represent the depth coordinate. Migra-
tion takes the deconvolved records and moves (i.e., migrates) the reflected events to depth
points in the 3D volume (x, y, z). In this way, seismic migration produces an image of the
geologic structure g(x, y, z) from the deconvolved seismic data. In other words, migration
is a process in which primary reflections are moved to their correct locations in space.
Thus, for migration, we need the primary reflected events. What else is required?
The answer is the complete velocity function v(x, y, z), which gives the wave velocity at
each point in the given volume of the Earth under exploration.

At this point, let us note that the word velocity is used in two different ways. One way is
to use the word velocity for the scalar that gives the rate of change of position in relation
to time. When velocity is a scalar, the terms speed or swiftness are often used instead. The
other (and more correct) way is to use the word velocity for the vector quantity that
specifies both the speed of a body and its direction of motion. In geophysics, the word
velocity is used for the (scalar) speed or swiftness of a seismic wave. The reciprocal of
velocity v is slowness, n = 1/v. Wave velocity can vary vertically and laterally in isotropic
media. In anisotropic media, it can also vary azimuthally. However, we consider only
isotropic media; therefore, at a given point, the wave velocity is the same in all directions.
Wave velocity tends to increase with depth in the Earth because deep layers suffer more
compaction from the weight of the layers above. Wave velocity can be determined from
laboratory measurements, acoustic logs, and vertical seismic profiles or from velocity
analysis of seismic data. Often, we say velocity when we mean wave velocity. Over the
years, various methods have been devised to obtain a sampling of the velocity distribu-
tion within the Earth. The velocity functions so determined vary from method to method.
For example, the velocity measured vertically from a check-shot or vertical seismic profile
(VSP) differs from the stacking velocity derived from normal moveout measurements of
ommon depth point gathers. Ideally, we would want to know the velocity at each and
every point in the volume of Earth of interest. In many areas, there are significant and
rapid lateral or vertical changes in the velocity that distort the time image. Migration
requires an accurate knowledge of vertical and horizontal seismic velocity variations.
Because the velocity depends on the types of rocks, a complete knowledge of the velocity
is essentially equivalent to a complete description of the geologic structure g(x, y, z).
However, as we have stated above, the velocity function is required to get the geologic
structure. In other words, to get the answer (the geologic structure) g(x, y, z), we must
know the answer (the velocity function) v(x, y, z).

Seismic interpretation takes the images generated as representatives of the physical
Earth. In an iterative improvement scheme, any observable discrepancies in the image
are used as forcing functions to correct the velocity function. Sometimes, simple adjust-
ments can be made, and, at other times, the whole imaging process has to be redone
one or more times before a satisfactory solution can be obtained. In other words, there
is interplay between seismic processing and seismic interpretation, which is a manifestation
of the well-accepted exchange between the disciplines of geophysics and geology. Iterative
improvement is a well-known method commonly used in those cases where you must know
the answer to find the answer. By the use of iterative improvement, the seismic inverse
problem is solved. In other words, the imaging of seismic data requires a model of seismic
velocity. Initially, a model of smoothly varying velocity is used. If the results are not
satisfactory, the velocity model is adjusted and a new image is formed. This process is
repeated until a satisfactory image is obtained. To get the image, we must know the
velocity; the method of iterative improvement deals with this problem.
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4.6 Migration in the Case of Constant Velocity

Consider a primary reflection. Its two-way traveltime is the time it takes for the seismic
energy to travel down from the source S = (xs, ys) to depth point D = (xp, yp, zp) and
then back up to the receiver R = (xg, yg).- The deconvolved trace f(S, R, t) gives the
amplitude of the reflected signal as a function of two-way traveltime ¢, which is given
in milliseconds from the time that the source is activated. We know S, R, t, and f(S, R, t).
The problem is to find D, which is the depth point at refection.

An isotropic medium is a medium whose properties at a point are the same in all
directions. In particular, the wave velocity at a point is the same in all directions. Fresnel’s
principle of least time requires that in an isotropic medium the rays are orthogonal
trajectories of the wavefronts. In other words, the rays are normal to the wavefronts.
However, in an anisotropic medium, the rays need not be orthogonal trajectories of the
wavefronts. A homogeneous medium is a medium whose physical properties are the same
throughout. For ease of exposition, let us first consider the case of a homogenous isotropic
medium. Within a homogeneous isotropic material, the velocity v has the same value at all
points and in all directions. The rays are straight lines since by symmetry they cannot bend
in any preferred direction, as there are none. The two-way traveltime ¢ is the elapsed time
for a seismic wave to travel from its source to a given depth point and return to a receiver at
the surface of the Earth. The two-way traveltime t is thus equal to the one-way traveltime t,
from the source point S to the depth point D plus the one-way traveltime t, from the depth
point D to the receiver point R. Note that the traveltime from D to R is the same as the
traveltime from R to D. We may write f = t; + t,, which in terms of distance is

ot = \/(XD —x5)* + (yp — ys)* + (20 — z5)* + \/(XD —xr)* + (Yo — ¥r)* + (20 — 2r)’

We recall that an ellipse can be drawn with two pins, a loop of string, and a pencil. The
pins are placed at the foci and the ends of the string are attached to the pins. The pencil is
placed on the paper inside the string, so the string is taut. The string forms a triangle. If
the pencil is moved around so that the string stays taut, the sum of the distances from the
pencil to the pins remains constant, and the curve traced out by the pencil is an ellipse.
Thus, if vt is the length of the string, then any point on the ellipse could be the depth point
D that produces the reflection for that source S, receiver R, and traveltime t. We therefore
take that event and move it out to each point on the ellipse.

Suppose we have two traces with only one event on each trace. Suppose both
events come from the same reflecting surface. In Figure 4.5, we show the two ellipses.
In the spirit of Huygens’s construction, the reflector must be the common tangent to
the ellipses. This example shows how migration works. In practice, we would take

Ellipse with possible reflector  Ejlipse with possible reflector
points for event on one trace  points for event on another trace

Surface of earth

FIGURE 4.5

Tangent to the ellipses Reflecting interface as a tangent.
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the amplitude at each digital time instant ¢ on the trace, and scatter the amplitude on the
constructed ellipsoid. In this way, the trace is spread out into a 3D volume. Then we repeat
this operation for each trace, until every trace is spread out into a 3D volume. The next
step is superposition. All of these volumes are added together. (In practice, each trace
would be spread out and cumulatively added into one given volume.) Interference tends
to destroy the noise, and we are left with the desired 3D image of the Earth.

4.7 Implementation of Migration

A raypath is a course along which wave energy propagates through the Earth. In isotropic
media, the raypath is perpendicular to the local wavefront. The raypath can be calculated
using ray tracing. Let the point P = (xp, yp) be either a source location or a receiver location.
The subsurface volume is represented by a 3D grid (x, y, z) of depth points D. To minimize
the amount of ray tracing, we first compute a traveltime table for each and every surface
location, whether the location be a source point or a receiver point. In other words, for each
surface location P, we compute the one-way traveltime from P to each depth point D in the 3D
grid. We put these one-way traveltimes into a 3D table that is labeled by the surface location P.

The traveltime for a primary reflection is the total two-way (i.e., down and up) time for
a path originating at the source point S, reflected at the depth point D, and received at the
receiver point R. Two identification numbers are associated with each trace: one for the
source S and the other for the receiver R. We pull out the respective tables for these two
identification numbers. We add the two tables together, element by element. The result is
a 3D table for the two-way traveltimes for that seismic trace.

Let us give a 2D example. We assume that the medium has a constant velocity, which
we take to be 1. Let the subsurface grid for depth points D be given by (z, x), where depth
is given by z =1, 2, ..., 10 and horizontal distance is given by x =1, 2, ..., 15. Let the
surface locations P be (z = 1, x), where x = 1, 2, ..., 15. Suppose the source is S = (1, 3).
We want to construct a table of one-way traveltimes, where depth z denotes the row and
horizontal distance x denotes the column. The one-way traveltime from the source to the

depth point (z, x) is t(z, x) = \/ (z—1)* + (x — 3)>. For example, the traveltime from source
to depth point (z, x) = (4, 6) is

K4, 6) = /(4 — 17 + (6 - 3)* = VI8 = 4.24

This number (rounded) appears in the fourth row, sixth column of the table below. The
computed table (rounded) for the source is

2.0 1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
22 1.4 1.0 1.4 22 3.2 4.1 5.1 6.1 7.1 8.1 9.1 10.0 11.0 12.0
2.8 22 2.0 22 2.8 3.6 45 54 6.3 7.3 8.2 9.2 10.2 11.2 12.2
3.6 3.2 3.0 3.2 3.6 4.2 5.0 5.8 6.7 7.6 8.5 9.5 10.4 11.4 12.4
45 4.1 4.0 41 45 5.0 57 6.4 7.2 8.1 8.9 9.8 10.8 11.7 12.6
5.4 5.1 5.0 5.1 5.4 5.8 6.4 7.1 7.8 8.6 9.4 10.3 11.2 12.1 13.0
6.3 6.1 6.0 6.1 6.3 6.7 7.2 7.8 8.5 9.2 10.0 10.8 11.7 12.5 13.4
73 7.1 7.0 7.1 73 7.6 8.1 8.6 9.2 9.9 10.6 11.4 12.2 13.0 13.9
8.2 8.1 8.0 8.1 8.2 8.5 8.9 9.4 10.0 10.6 11.3 12.0 12.8 13.6 14.4
9.2 9.1 9.0 9.1 9.2 9.5 9.8 10.3 10.8 11.4 12.0 12.7 13.5 14.2 15.0
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Next, let us compute the traveltime for the receiver point. Note that the traveltime from
the depth point to the receiver is the same as the traveltime from the receiver to the depth
point. Suppose the receiver is R = (11, 1). Then the one-way traveltime from the receiver

to the depth point (z, x) is t(z, x) = \/ (z —1)* + (x — 11)* For example, the traveltime from

source to depth point (z, x) = (4, 6) is t(4, 6) = \/ (4 —1)*> + (6 — 11)*> = 5.85. This number
(rounded) appears in the fourth row, sixth column of the table below. The computed
table (rounded) for the receiver is

10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 1.0 2.0 3.0 4.0
10.0 9.1 8.1 7.1 6.1 51 41 32 22 14 1.0 1.4 2.2 3.2 4.1
10.2 9.2 8.2 7.3 6.3 54 45 3.6 2.8 22 2.0 22 2.8 3.6 45
10.4 9.5 8.5 7.6 6.7 5.8 5.0 4.2 3.6 3.2 3.0 3.2 3.6 4.2 5.0
10.8 9.8 8.9 8.1 72 6.4 5.7 5.0 4.5 41 4.0 41 4.5 5.0 5.7
11.2 10.3 9.4 8.6 7.8 7.1 6.4 5.8 54 5.1 5.0 5.1 54 58 6.4
11.7 10.8 10.0 9.2 8.5 7.8 7.2 6.7 6.3 6.1 6.0 6.1 6.3 6.7 7.2
12.2 11.4 10.6 9.9 9.2 8.6 8.1 7.6 7.3 7.1 7.0 7.1 73 7.6 8.1
12.8 12.0 11.3 10.6 10.0 9.4 8.9 8.5 8.2 8.1 8.0 8.1 8.2 8.5 8.9
13.5 12.7 12.0 11.4 10.8 10.3 9.8 9.5 9.2 9.1 9.0 9.1 9.2 9.5 9.8

The addition of the above two tables gives the two-way traveltimes. For example, the
traveltime from source to depth point (z,x) = (4,6) and back to receiver is
t(4, 6) = 4.24+5.85 = 10.09. This number (rounded) appears in the fourth row, sixth col-
umn of the two-way table below. The two-way table (rounded) for source and receiver is

12 10 8 8 8 8 8 8 8 8 8 10 12 14 16
12 10 9 8 8 8 8 8 8 8 9 10 12 14 16
13 11 10 10 9 9 9 9 9 10 10 11 13 15 17

14 13 12 11 10 10 10 10 10 11 12 13 14 16 17
15 14 13 12 12 11 11 11 12 12 13 14 15 17 18
17 15 14 14 13 13 13 13 13 14 14 15 17 18 19
18 17 16 15 15 15 14 15 15 15 16 17 18 19 21
19 18 18 17 16 16 16 16 16 17 18 18 19 21 22
21 20 19 19 18 18 18 18 18 19 19 20 21 22 23
23 22 21 20 20 20 20 20 20 20 21 22 23 24 25

Figure 4.6 shows a contour map of the above table. The contour lines are elliptic curves of
constant two-way traveltime for the given source and receiver pair.
Let the deconvolved trace (i.e., the trace with primary reflections only) be

Time 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Trace o o o0 o0 o o 0o 0 0 0 -1 0 0 2 0 0 0 0 3 0
Sample

The next step is to place the amplitude of each trace at depth locations, where the
traveltime of the trace sample equals the traveltime as given in the above two-way
table. The trace is zero for all times except 10,13, and 18. We now spread the trace
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FIGURE 4.6
Elliptic contour lines.

out as follows. In the above two-way table, the entries with 10, 13, and 18 are replaced by
the trace values —1, 2, 3, respectively. All other entries are replaced by zero. The result is

0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0
2 0 -1 -1 0 0 0 0 0 -1 -1 0 2 0 0
0 2 0 0 -1 -1 -1 -1 -1 0 0 2 0 0 0
0 0 2 0 0 0 0 0 0 0 2 0 0 0 3
0 0 0 0 2 2 2 2 2 0 0 0 0 3 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 3 0 0 0 0 0 0 0 3 3 0 0 0
0 0 0 0 3 3 3 3 3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This operation is repeated for all traces in the survey, and the resulting tables are added
together. The final image appears by the constructive and destructive interference among
the individual trace contributions. The above procedure for a constant velocity is the same
as with a variable velocity, except now the traveltimes are computed according to the
velocity function v(x, y, z). The eikonal equation can provide the means; hence, for the rest
of this paper we will develop the properties of this basic equation.

4.8 Seismic Rays

To move the received reflected events back into the Earth and place their energy at the
point of reflection, it is necessary to have a good understanding of ray theory. We assume
the medium is isotropic. Rays are directed curves that are always perpendicular to the
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wavefront at any given time. The rays point along the direction of the motion of
the wavefront. As time progresses, the disturbance propagates, and we obtain a family
of wavefronts. We will now describe the behavior of the rays and wavefronts in media
with a continuously varying velocity.

In the treatment of light as wave motion, there is a region of approximation in which the
wavelength is small in comparison with the dimensions of the components of the optical
system involved. This region of approximation is treated by the methods of geome-
trical optics. When the wave character of the light cannot be ignored, then the methods of
physical optics apply. Since the wavelength of light is very small compared to ordinary
objects, geometrical optics can describe the behavior of a light beam satisfactorily in many
situations. Within the approximation represented by geometrical optics, light travels along
lines called rays. The ray is essentially the path along which most of the energy is transmit-
ted from one point to another. The ray is a mathematical device rather than a physical
entity. In practice, one can produce very narrow beams of light (e.g., a laser beam), which
may be considered as physical manifestations of rays. When we turn to a seismic wave, the
wavelength is not particularly small in comparison with the dimensions of geologic layers
within the Earth. However, the concept of a seismic ray fulfills an important need. Geo-
metric seismics is not nearly as accurate as geometric optics, but still ray theory is used to
solve many important practical problems. In particular, the most popular form of prestack
migration is based on tracing the raypaths of the primary reflections.

In ancient times, Archimedes defined the straight line as the shortest path between two
points. Heron explained the paths of reflected rays of light based on a principle of least
distance. In the 17th century, Fermat proposed the principle of least time, which let him
account for refraction as well as reflection. The Mississippi River has created most of
Louisiana with sand and silt. The river could not have deposited these sediments by
remaining in one channel. If it had remained in one channel, southern Louisiana would be
a long narrow peninsula reaching into the Gulf of Mexico. Southern Louisiana exists in its
present form because the Mississippi River has flowed here and there within an arc of
about two hundred miles wide, frequently and radically changing course, surging over
the left or the right bank to flow in a new direction. It is always the river’s purpose to get
to the Gulf in the least time. This means that its path must follow the steepest way down.
The gradient is the vector that points in the direction of the steepest ascent. Thus, the
river’s path must follow the direction of the negatives gradient, which is the path of
steepest descent. As the mouth advances southward and the river lengthens, the steep-
ness of the path declines, the current slows, and sediment builds up the bed. Eventually,
the bed builds up so much that the river spills to one side to follow what has become the
steepest way down. Major shifts of that nature have occurred about once in a millennium.
The Mississippi’s main channel of three thousand years ago is now Bayou Teche. A few
hundred years later, the channel shifted abruptly to the east. About two thousand years
ago, the channel shifted to the south. About one thousand years ago, the channel shifted
to the river’s present course. Today, the Mississippi River has advanced past New
Orleans and out into the Gulf that the channel is about to shift again to the Atchafalaya.
By the route of the Atchafalaya, the distance across the delta plain is 145 miles, which is
about half the length of the route of the present channel. The Mississippi River intends
changing its course to this shorter and steeper route.

The concept of potential was first developed to deal with problems of gravitational
attraction. In fact, a simple gravitational analogy is helpful in explaining potential. We do
work in carrying an object up a hill. This work is stored as potential energy, and it can be
recovered by descending in any way we choose. A topographic map can be used to
visualize the terrain. Topographic maps provide information about the elevation of the
surface above sea level. The elevation is represented on a topographic map by contour
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lines. Each point on a contour line has the same elevation. In other words, a contour line
represents a horizontal slice through the surface of the land. A set of contour lines tells
you the shape of the land. For example, hills are represented by concentric loops, whereas
stream valleys are represented by V-shapes. The contour interval is the elevation differ-
ence between adjacent contour lines. Steep slopes have closely spaced contour lines, while
gentle slopes have very widely spaced contour lines.

In seismic theory, the counterpart of gravitational potential is the wavefront t(x, v,
z) = constant. A vector field is a rule that assigns a vector, in our case the gradient

Vi, y, 2) — (8t ot 8t)

v By’ oz

to each point (x, y, z). In visualizing a vector field, we imagine there is a vector extending
from each point. Thus, the vector field associates a direction to each point. If a hypothet-
ical particle moves in such a manner that its direction at any point coincides with the
direction of the vector field at that point, then the curve traced out is called a flow line. In
the seismic case, the wavefront corresponds to the equipotential surface and the seismic
ray corresponds to the flow line.

In 3D space, let r be the vector from the origin (0, 0, 0) to an arbitrary point (x, y, z). A
vector is specified by its components. A compact notation is to write r as r = (x, y, z). We
call r the radius vector. A more explicit way is to write r as r = xX+ y¥ +zZ, where X, ¥,
and Z are the three orthogonal unit vectors. These unit vectors are defined as the vectors
that have magnitude equal to one and have directions lying along the x, y, z axes,
respectively. They are referred to as “x-hat”” and so on.

Now, let the vector r = (x, y, z) represent a point on a given ray (Figure 4.7). Let s denote
arc length along the ray. Let r4 dr = (x + dx, y 4+ dy, z+ dz) give an adjacent point on the
same ray. The vector dr = (dx, dy, dz) is (approximately) the tangent vector to the ray. The

length of this vector is 1/(dx2 + dy? + dz2) which is approximately equal to the increment
ds of the arc length on the ray. As a result the unit vector tangent to the ray is

dr dx, dy,. dz,
=—=—x+-2 —Z

YT T ds ds” " ds

The unit tangent vector can also be written as

_(dx dy g
U= 45 ds’ ds
The velocity along the ray is v = ds/dt so dt = ds/v = n ds, where n(r) = 1/v(r) is the

slowness and ds is an increment of path length along the given ray. Thus, the seismic
traveltime field is

Unit tangent u

Ray

Wavefront

FIGURE 4.7

Raypath and wavefronts. Radius vector r
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Hr) = Jn(r) ds

It is understood, of course, that the path of integration is along the given ray. The above
equation holds for any ray. A wavefront is a surface of constant traveltime. The time
difference between two wavefronts is a constant independent of the ray used to calculate
the time difference.

A wave as it travels must follow the path of least time. The wavefronts are like contour
lines on a hill. The height of the hill is measured in time. Take a point on a contour line. In
what direction will the ray point? Suppose the ray points along the contour line (that is,
along the wavefront). As the wave travels a certain distance along this hypothetical ray, it
takes time. But, all time is the same along the wavefront. Thus, a wave cannot travel along
a wavefront. It follows that a ray must point away from a wavefront. Suppose a ray points
away from the wavefront. The wave wants to take the least time to travel to the new
wavefront. By isotropy, the wave velocity is the same in all directions. Since the traveltime
is velocity multiplied by distance, the wave wants to take the raypath that goes the
shortest distance. The shortest distance is along the path that has no component along
the wavefront; that is, the shortest distance is along the normal to the wavefront. In other
words, the ray’s unit tangent vector u must be orthogonal to the wavefront. By definition,
the gradient is a vector that points in the direction orthogonal to the wavefront. Thus, the
ray’s unit tangent vector u and the gradient Vt of the wavefront must point in the same
direction.

If the given wavefront is at time ¢ and the new wavefront is at time ¢+ dt, then the
traveltime along the ray is dt. If s measures the path length along the given ray, then
the travel distance in time dtf is ds. Along the raypath, the increments dt and ds are related
by the slowness, that is, dt = # ds. Thus, the slowness is equal to the directional derivative
in the direction of the raypath, that is, n = dt/ds. In other words, the swiftness along the
raypath direction is v = ds/dt, and the slowness along the raypath direction is n = dt/ds. If
we write the directional derivative in terms of its components, this equation becomes

L dt_ordx ordy ords__ dr
~ds Oxds dyds dzds = ds

Because dr/ds = u, it follows that the above equation is n = Vt - u. Since u is a unit vector
in the same direction of the gradient, it follows that

n = |Vt| [u|cos0 = | V¢
In other words, the slowness is equal to the magnitude of the gradient. Since gradient V¢

and the raypath each have the same direction u, and the gradient has magnitude 7, and u
has magnitude unity, it follows that

Vit =nu

This equation is the vector eikonal equation. The vector eikonal equation written in terms

of its components is
o o ory _ (de dy de
ox" oy’ 0z) \ds’ ds’ ds

If we take the squared magnitude of each side, we obtain the eikonal equation
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The left-hand side involves the wavefront and the right-hand side involves the ray. The
connecting link is the slowness. In the eikonal equation, the function f(x, y, z) is the
traveltime (also called the eikonal) from the source to the point with the coordinates (x,
¥, z), and n(x, y, z) = 1/v(x, y, z) is the slowness (or reciprocal velocity) at that point. The
eikonal equation describes the traveltime propagation as an isotropic medium. To obtain
a well-posed initial value problem, it is necessary to know the velocity function v(x, y, z) at
all points in space. Moreover, as an initial condition, the source or some particular
wavefront must be specified. Furthermore, one must choose one of the two branches of
the solutions (namely, either the wave going from the source or else the wave going to the
source). The eikonal equation then yields the traveltime field t(x, y, z) in the heteroge-
neous medium, as required for migration.

What does the eikonal equation Vt = nu say? It says that, because of Fermat’s principle
of least time, the raypath direction must be orthogonal to the wavefront. The eikonal
equation is the fundamental equation that connects the ray (which corresponds to the
fuselage of the airplane) to the wavefront (which corresponds to the wings of the
airplane). The wings let the fuselage feel the effects of points removed from the path of
the fuselage. The eikonal equation makes a traveling wave (as envisaged by Huygens)
fundamentally different from a traveling particle (as envisaged by Newton). Hamilton
perceived that there is a wave—particle duality, which provides the mathematical foun-
dation of quantum mechanics.

4.9 The Ray Equations

In this section, the position vector r always represents a point on a specific raypath, and
not any arbitrary point in space. As time increases, r traces out the particular raypath in
question. The seismic ray at any given point follows the direction of the gradient of the
traveltime field #(r). As before, let u be the unit vector along the ray. The ray, in general,
follows a curved path, and nu is the tangent to this curved raypath. We now want to
derive an equation that will tell us how nu changes along the curved raypath. The vector
eikonal equation is written as

nu =Vt

We now take the derivative of the vector eikonal equation with respect to distance s along
the raypath. We obtain the ray equation

d d
as (na) = as (V)

Interchange V and (d/ds) and use dt/ds = n. Thus, the right-hand side becomes

dvit dt

Thus, the ray equation becomes
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This equation, together with the equation for the unit tangent vector

dr
ds "
are called the ray equations.

We need to understand how a single ray, say a seismic ray, moving along a particular path
can know what is an extremal path in the variational sense. To illustrate the problem,
consider a medium whose slowness 1 decreases with vertical depth, but is constant laterally.
Thus, the gradient of the slowness at any location points straight up (Figure 4.8). The vertical
line on the left depicts a raypath parallel to the gradient of the slowness. This ray undergoes
no refraction. However, the path of the ray on the right intersects the contour lines of
slowness at an angle. The right-hand ray is refracted and follows a curved path, even though
the ray strikes the same horizontal contour lines of slowness as did the left-hand ray, where
there was no refraction. This shows that the path of a ray cannot be explained solely in terms
of the values of the slowness on the path. We must also consider the transverse values of the
slowness along neighboring paths, that is, along paths not taken by that particular ray.

The classical wave explanation, proposed by Huygens, resolves this problem by saying
that light does not propagate in the form of a single ray. According to the wave inter-
pretation, light propagates as a wavefront possessing transverse width. Think of an
airplane traveling along the raypath. The fuselage of the airplane points in the direction
of the raypath. The wings of the aircraft are along the wavefront. Clearly, the wavefront
propagates more rapidly on the side where the slowness is low (i.e., where the velocity is
high) than on the side where the slowness is high. As a result, the wavefront naturally
turns in the direction of the gradient of slowness.

4.10 Numerical Ray Tracing

Computer technology and seismic instrumentation have experienced great advances in
the past few years. As a result, exploration geophysics is in a state of transition from
computer-limited 2D processing to computer-intensive 3D processing. In the past, most
seismic surveys were along surface lines, which yield 2D subsurface images. The wave
equation acts nicely in one dimension, and in three dimensions, but not in two dimen-
sions. In one dimension, waves (as on a string) propagate without distortion. In three
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dimensions, waves (as in the Earth) propagate in an undistorted way except for a
spherical correction factor. However, in two dimensions, wave propagation is compli-
cated and distorted. By its very nature, 2D processing can never account for events
originating outside of the plane. As a result, 2D processing is broken up into a large
number of approximate partial steps in a sequence of operations. These steps are ingeni-
ous, but they can never give a true image. However, 3D processing accounts for all of
the events. It is now cost effective to lay out seismic surveys over a surface area and to do
3D processing. The third dimension is no longer missing, and, consequently, the need
for a large number of piecemeal 2D approximations is gone. Prestack depth migration is
a 3D imaging process that is computationally extensive, but mathematically simple.
The resulting 3D images of the interior of the Earth surpass all expectations in utility
and beauty.

Let us now consider the general case in which we have a spatially varying velocity
function v(x, y, z) = v(r). This velocity function represents a velocity field. For a fixed
constant vy, the equation v(r) = v, specifies those positions, r, where velocity has this
fixed value. The locus of such positions makes up an isovelocity surface. The gradient

ot = (2, 2, 2)
ox" Oy’ Oz

is normal to the isovelocity surface and points in the direction of the greatest increase in
velocity. Similarly, the equation n(r) = n, for a fixed value of slowness n, specifies an
isoslowness sutface. The gradient

V() = (811 on 8n>

o’ By’ oz

is normal to the isoslowness surface and points in the direction of greatest increase in
slowness. The isovelocity and isoslowness surfaces coincide, and

Vo =-n2Vn

so the respective gradients point in the opposite direction, as we would expect.

A seismic ray makes its way through the slowness field. As the wavefront progresses in
time, the raypath is bent according to the slowness field. For example, suppose we have a
stratified Earth in which the slowness decreases with depth, a vertical raypath does not
bend, as it is pulled equally in all lateral directions. However, a nonvertical ray drags on
its slow side, therefore it curves away from the vertical and bends toward the horizontal.
This is the case of a diving wave, whose raypath eventually curves enough to reach the
Earth’s surface again. Certainly, the slowness field, together with the initial direction of
the ray, determines the entire raypath. Except in special cases, however, we must deter-
mine such raypaths numerically.

Assume that we know the slowness function rn(r) and that we know the ray direction u,
at point r;. We now want to derive an algorithm for finding the ray direction u, at point r,.
We choose a small, but finite, change in path length As. Then we use the first ray equation,
which we recall is

ar_
as U

to compute the change Ar = r, — r;. The required approximation is

Ar = u;As
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or
I =11 +wmAs

We have thus found the first desired quantity r,. Next, we use the second ray equation,
which we recall is

d(nu) _

s Vn

in the form
d(nu) = Vn ds
The required approximation is
A(nu) = (Vn) As
or
n(rp)uy — n(r1)uy = Vn As

For accuracy, Vn may be evaluated by differentiating the known function n(r) midway
between r; and r,. Thus, the desired u, is given as

_ n(r) As
=)™ T V"

Note that the vector u, is pulled in the direction of V# in forming u,, that is, the ray drags
on the slow side, and so is bent in the direction of increasing slowness. The special case of
no bending occurs when u; and Vn are parallel. As we have seen, a vertical wave in a
horizontally stratified medium is an example of such a special case. We have thus found
how to advance the wave along the ray by an incremental raypath distance. We can repeat
the algorithm to advance the wave by any desired distance.

4.11 Conclusions

The acquisition of seismic data in many promising areas yields raw traces that cannot be
interpreted. The reason is that signal-generated noise conceals the desired primary
reflections. The solution to this problem was found in the 1950s with the introduction of
the first commercially available digital computers and the signal-processing method of
deconvolution. Digital signal-enhancement methods, and, in particular, the various
methods of deconvolution, are able to suppress signal-generated noise on seismic records
and bring out the desired primary-reflected energy. Next, the energy of the primary
reflections must be moved to the spatial positions of the subsurface reflectors. This
process, called migration, involves the superposition of all the deconvolved traces accord-
ing to a scheme similar to Huygens’s construction. The result gives the reflecting horizons
and other features that make up the desired image. Thus, digital processing, as it is
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currently done, is roughly divided into two main parts, namely signal enhancement and
event migration. The day is not far off, provided that research actively continues in the
future as it has in the past, when the processing scheme will not be divided into two parts,
but will be united as a whole. The signal-generated noise consists of physical signals that
future processing should not destroy, but utilize. When all the seismic information is used
in an integrated way, then the images produced will be even more excellent.
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5.1 Introduction

This chapter describes multi-dimensional seismic data processing using the higher order
singular value decomposition (HOSVD) and partial (unimodal) independent component
analysis (ICA). These techniques are used for wavefield separation and enhancement of the
signal-to-noise ratio (SNR) in the data set. The use of multi-linear methods such as the
HOSVD is motivated by the natural modeling of a multi-dimensional data set using multi-
way arrays. In particular, we present a multi-way model for signals recorded on arrays of
vector-sensors acquiring seismic vibrations in different directions of the 3D space. Such
acquisition schemes allow the recording of the polarization of waves and the proposed
multi-way model ensures the effective use of polarization information in the processing.
This leads to a substantial increase in the performances of the separation algorithms.

Before introducing the multi-way model and processing, we first describe the classical
subspace method based on the SVD and ICA techniques for 2D (matrix) seismic data sets.
Using a matrix model for these data sets, the SVD-based subspace method is presented
and it is shown how an extra ICA step in the processing allows better wavefield separ-
ation. Then, considering signals recorded on vector-sensor arrays, the multi-way model is
defined and discussed. The HOSVD is presented and some properties detailed. Based on
this multi-linear decomposition, we propose a subspace method that allows separation of
polarized waves under orthogonality constraints. We then introduce an ICA step in the
process that is performed here uniquely on the temporal mode of the data set, leading to
the so-called HOSVD-unimodal ICA subspace algorithm. Results on simulated and real
polarized data sets show the ability of this algorithm to surpass a matrix-based algorithm
and subspace method using only the HOSVD.

Section 5.2 presents matrix data sets and their associated model. In Section 5.3, the well-
known SVD is detailed, as well as the matrix-based subspace method. Then, we present
the ICA concept and its contribution to subspace formulation in Section 5.3.2. Applica-
tions of SVD-ICA to seismic wavefield separation are discussed by way of illustrations.
Section 5.4 exposes how signal mixtures recorded on vector-sensor arrays can be
described by a multi-way model. Then, in Section 5.5, we introduce the HOSVD and
the associated subspace method for multi-way data processing. As in the matrix data set
case, an extra ICA step is proposed leading to a HOSVD-unimodal ICA subspace method
in Section 5.5.2. Finally, in Section 5.5.3 and Section 5.5.4, we illustrate the proposed
algorithm on simulated and real multi-way polarized data sets. These examples empha-
size the potential of using both HOSVD and ICA in multi-way data set processing.

5.2 Matrix Data Sets

In this section, we show how the signals recorded on scalar-sensor arrays can be modeled
as a matrix data set having two modes or diversities: time and distance. Such a model allows
the use of subspace-based processing using a SVD of the matrix data set. Also, an
additional ICA step can be added to the processing to relax the unjustified orthogonality
constraint for the propagation vectors by imposing a stronger constraint of (fourth-order)
independence of the estimated waves. [llustrations of these matrix algebra techniques are
presented on a simulated data set. Application to a real ocean bottom seismic (OBS) data
set can be found in Refs. [1,2].
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5.2.1 Acquisition

In geophysics, the most commonly used method to describe the structure of the earth is
seismic reflection. This method provides images of the underground in 2D or 3D,
depending on the geometry of the network of sensors used. Classical recorded data sets
are usually gathered into a matrix having a time diversity describing the time or depth
propagation through the medium at each sensor and a distance diversity related to the
aperture of the array. Several methods exist to gather data sets and the most popular are
common shotpoint gather, common receiver gather, or common midpoint gather [3]. Seismic
processing consists in a series of elementary processing procedures used to transform
field data, usually recorded in common shotpoint gather into a 2D or 3D common
midpoint stacked 2D signals. Before stacking and interpretation, part of the processing
is used to suppress unwanted coherent signals like multiple waves, ground-roll (surface
waves), refracted waves, and also to cancel noise.

To achieve this goal, several filters are classically applied on seismic data sets. The SVD
is a popular method to separate an initial data set into signal and noise subspaces. In some
applications [4,5] when wavefield alignment is performed, the SVD method allows
separation of the aligned wave from the other wavefields.

5.2.2 Matrix Model

Consider a uniform linear array composed of N, omni-directional sensors recording the
contributions of P waves, with P < N.. Such a record can be written mathematically using
a convolutive model for seismic signals first suggested by Robinson [6]. Using the
superposition principle, the discrete-time signal xi(m) (m is the time index) recorded on
sensor k is a linear combination of the P waves received on the array together with an
additive noise n(m):

P
xi(m) =Y agsi(m — my) + ni(im) (5.1)

i=1

where si(m) is the ith source waveform that has been propagated through the transfer
function supposed here to consist in a delay my; and a factor attenuation a;. The noises on
each sensor n(m) are supposed centered, Gaussian, spatially white, and independent of
the sources.

In the sequel, the use of the SVD to separate waves is only of significant interest if the
subspace occupied by the part of interest contained in the mixture is of low rank. Ideally,
the SVD performs well when the rank is 1. Thus, to ensure good results of the process, a
preprocessing is applied on the data set. This consists of alignment (delay correction) of a
chosen high amplitude wave. Denoting the aligned wave by s;(m), the model becomes
after alignment:

P
yelm) = apsi(m) + > agsi(m — mig) + n(m) (5.2)
i=2

where yi(m) = x(m +my), M= My — myq and m(m) = n(m + my).
In the following we assume that the wave s;(m) is independent from the others and
therefore independent from s;(m — my;).
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Considering the simplified model of the received signals (Equation 5.2) and supposing N
time samples available, we define the matrix model of the recorded data set Y € R™ * Nt as

Y= {ykm = yk(m)| 1 < k < NX/ 1 <m< Nt} (53)

That is, the data matrix Y has rows that are the N signals y(m) given in Equation 5.2. Such a
model allows the use of matrix decomposition, and especially the SVD, for its processing.

5.3 Matrix Processing

We now present the definition of the SVD of such a data matrix that will be of use for its
decomposition into orthogonal subspaces and in the associated wave separation technique.

5.3.1 SVD

As the SVD is a widely used matrix algebra technique, we only recall here theoretical
remarks and redirect readers interested in computational issues to the Golub and Van
Loan book [7].

5.3.1.1 Definition

RNX X N;

Any matrix Y € can be decomposed into the product of three matrices as follows:

Y = UAVT (5.4)

where U is a N, x N, matrix, A is an N, x N; pseudo-diagonal matrix with singular
values {A1, A5, ..., AN} onits diagonal, satisfying A1 > A, > ... > An >0, (with N = min(N,,
Ny), and V is an N; x N; matrix. The columns of U (respectively of V) are called the left
(respectively right) singular vectors, u; (respectively v;), and form orthonormal bases.
Thus U and V are orthogonal matrices. The rank r (with r < N) of the matrix Y is given
by the number of nonvanishing singular values.

Such a decomposition can also be rewritten as

r
Y=> Auv] (5.5)
j=1

where u; (respectively v;) are the columns of U (respectively V). This notation shows that
the SVD allows any matrix to be expressed as a sum of r rank-1 matrices'.

5.3.1.2  Subspace Method

The SVD has been widely used in signal processing [8] because it gives the best rank
approximation (in the least squares sense) of a given matrix [9]. This property allows
denoising if the signal subspace is of relatively low rank. So, the subspace method consists
of decomposing the data set into two orthogonal subspaces with the first one built from
the p singular vectors related to the p highest singular values being the best rank
approximation of the original data. This can be written as follows, using the SVD notation
used in Equation 5.5, for a data matrix Y with rank r:

! Any matrix made up of the product of a column vector by a row vector is a matrix whose rank is equal to 1 [7].
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P r
Y — YSignal | yNoise _ ZA],ujv]T + Z )\jujv]-T (5.6)
j=1 j=p+1

Orthogonality between the subspaces spanned by the two sets of singular vectors is
ensured by the fact that left and right singular vectors form orthonormal bases.

From a practical point of view, the value of p is chosen by finding an abrupt change of
slope in the curve of relative singular values (relative meaning percentile representation
of) contained in the matrix A defined in Equation 5.4. For some cases where no “visible”
change of slope can be found, the value of p can be fixed at 1 for a perfect alignment of
waves, or at 2 for an imperfect alignment or for dispersive waves [10].

5.3.2 SVD and ICA

The motivation to relax the unjustified orthogonality constraint for the propagation
vectors is now presented. ICA is the method used to achieve this by imposing a fourth-
order independence on the estimated waves. This provides a new subspace method based
on SVD-ICA.

5.3.2.1 Motivation

The SVD of the data matrix Y in Equation 5.4 provides two orthogonal matrices composed
by the left u; (respectively right v;) singular vectors. Note here that v; are called estimated
waves because they give the time dependence of received signals by the array sensor and
u; propagation vectors because they give the amplitude of v{’s on sensors [2].

As SVD provides orthogonal matrices, these vectors are also orthogonal. Orthogonality
of the vj’s means that the estimated waves are decorrelated (second-order independence).
Actually, this supports the usual cases in geophysical situations, in which recorded waves
are supposed decorrelated. However, there is no physical reason to consider the ortho-
gonality of propagation vectors u;. Why should we have different recorded waves with
orthogonal propagation vectors? Furthermore, imposing the orthogonality of ujs, the
estimated waves v; are forced to be a mixture of recorded waves [1].

One way to relax this limitation is to impose a stronger criterion for the estimated
waves, that is, to be fourth-order statistically independent, and consequently to drop the
unjustified orthogonality constraint for the propagation vectors. This step is motivated by
cases encountered in geophysical situations, where the recorded signals can be approxi-
mated as an instantaneous linear mixture of unknown waves supposed to be mutually
independent [11]. This can be done using ICA.

5.3.2.2  Independent Component Analysis

ICA is a blind decomposition of a multi-channel data set composed of an unknown linear
mixture of unknown source signals, based on the assumption that these signals are
mutually statistically independent. It is used in blind source separation (BSS) to re-
cover independent sources (modeled as vectors) from a set of recordings containing
linear combinations of these sources [12-15]. The statistical independence of sources
means that the cross-cumulants of any order vanish. Generally, the third-order cumu-
lants are discarded because they are generally close to zero. Therefore, here we will
use fourth-order statistics, which have been found to be sufficient for instantaneous
mixtures [12,13].
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ICA is usually resolved by a two-step algorithm: prewhitening followed by high-order
step. The first one consists in extracting decorrelated waves from the initial data set. The
step is carried out directly by an SVD as the v/s are orthogonal.

The second step consists in finding a rotation matrix B, which leads to fourth-order
independence of the estimated waves. We suppose here that the nonaligned waves in the
data set Y are contained in a subspace of dimension R — 1, smaller than the rank r of Y.
Assuming this, only the first R estimated waves [vy,..., yr]rotation — yR ¢ N>R are
taken into account [2]. As the recorded waves are supposed mutually independent, this
second step can be written as

VRB = VR = [¥4,...,%] € RN>R (5.7)

with B € IR® * X the rotation (unitary) matrix having the property BB” = B'B = I. The
new estimated waves v; are now independent at the fourth order.

There are different methods of finding the rotation matrix: joint approximate diagona-
lization of eigenmatrices (JADE) [12], maximal diagonality (MD) [13], simultaneous third-
order tensor diagonalization (STOTD) [14], fast and robust fixed-point algorithms for
independent component analysis (FastICA) [15], and so on. To compare some cited ICA
algorithms, Figure 5.1 shows the relative error (see Equation 5.12) of the estimated signal
subspace versus the SNR (see Equation 5.11) for the data set presented in Section 5.3.3. For
SNRs greater than —7.5 dB, FastICA using a “tanh” nonlinearity with the parameter
equal to 1 in the fixed-point algorithm provides the smallest relative error, but with some
erroneous points at different SNR. Note that the ““tan h”” nonlinearity is the one which
gives the smallest error for this data set, compared with “pow3”, “gauss” with the
parameter equal to 1, or “‘skew”” nonlinearities. MD and JADE algorithms are approxi-
mately equivalent according to the relative error. For SNRs smaller than —7.5 dB, MD
provides the smallest relative error. Consequently, the MD algorithm was employed in
the following.

Now, considering the SVD decomposition in Equation 5.5 and the ICA step in Equation
5.7, the subspace described by the first R estimated waves can be rewritten as

— JADE
....... FastiICA-tan h
----- MD

Error (%) of the estimated signal subspace

—20 -15 -10 -5 0 5 10 15
SNR (dB) of the dataset

FIGURE 5.1
ICA algorithms—comparison.
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R R R
Y Ay = URAR(VR) = URARB(VR) = S " gad] = S ] (5.8)
=1 :

j=1 i=1

where UX = [uy, ..., ug] is made up of the first R vectors of the matrix U and A® = diag
(A1,..., Ag) is the R x R truncated version of A containing the greatest values of A;. The
second equality is obtained using Equation 5.7. For the third equality, the u; are the new
propagation vectors obtained as the normalized® vectors (columns) of the matrix URARB
and B; are the ““modified singular values’ obtained as the ¢* -norm of the columns of the
matrix URARB.

The elements B; are usually not ordered. For this reason, a permutation between the
vectors u; as well as between the vectors v; is performed to order the modified singular
values. Denoting with o(-) this permutation and with i = o(j), the last equality of
Equation 5.8 is obtained.

In this decomposition, which is similar to that given by Equation 5.5, a stronger
criterion for the new estimated waves v; has been imposed, that is, to be independent at
the fourth order, and, at the same time, the condition of orthogonality for the new
propagation vectors u; has been relaxed.

In practical situations, the value of R becomes a parameter. Usually, it is chosen to
completely describe the aligned wave by the first R estimated waves given by the SVD.

5.3.2.3 Subspace Method Using SVD-ICA
After the ICA and the permutation steps, the signal subspace is given by

s P
Yo = N " g (5.9)
i=1

where p is the number of the new estimated waves necessary to describe the aligned wave.
The noise subspace Y\ ¢ is obtained by subtraction of the signal subspace Y*#"* from
the original data set Y:

YNoise -Y— YSignal (510)

From a practical point of view, the value of p is chosen by finding an abrupt change of
slope in the curve of relative modified singular values. For cases with low SNR, no
“visible” change of slope can be found and the value of p can be fixed at 1 for a perfect
alignment of waves, or at 2 for an imperfect alignment or for dispersive waves.

Note here that for very small SNR of the initial data set, (for example, smaller than —6.2
dB for the data set presented in Section 5.3.3, the aligned wave can be described by a less
energetic estimated wave than by the first one (related to the highest singular value). For
these extreme cases, a search must be done after the ICA and the permutation steps to
identify the indexes for which the corresponding estimated waves v; give the aligned
wave. So the signal subspace Y*'8" in Equation 5.9 must be redefined by choosing the
index values found in the search. For example, applying the MD algorithm to the data set
presented in Section 5.3.3 for which the SNR was modified to —9 dB, the aligned wave is
described by the third estimated wave vs. Note also that using SVD without ICA in the
same conditions, the aligned wave is described by the eighth estimated wave vs.

%Vectors are normalized by their £>-norm.
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5.3.3 Application

An application to a simulated data set is presented in this section to illustrate the behavior
of the SVD-ICA versus the SVD subspace method. Application to a real data set obtained
during an acquisition with OBS can be found in Refs. [1,2].

The preprocessed recorded signals Y on an 8-sensor array (N, = 8) during N; = 512 time
samples are represented in Figure 5.2c. This synthetic data set was obtained by the addition
of an original signal subspace S (Figure 5.2a) made up by a wavefront having infinite celerity
(velocity), consequently associated with the aligned wave s;(m), and an original noise sub-
space N (Figure 5.2b) made up by several nonaligned wavefronts. These nonaligned waves
are contained in a subspace of dimension 7, smaller than the rank of Y, which equals 8.

The SNR ratio of the presented data set is SNR = —3.9 dB. The SNR definition used
here is’:

ISl

SNR:zZObgm—Eﬂ[ (5.11)

Normalization to unit variance of each trace for each component was done before
applying the described subspace methods. This ensures that even weak picked arrivals
are well represented within the input data. After the computation of signal subspaces, a
denormalization was applied to find the original signal subspace.

Firstly, the SVD subspace method was tested. The subspace method given by Equation
5.6 was employed, keeping only one singular vector (respectively one singular value).
This choice was made by finding an abrupt change of slope after the first singular value
(Figure 5.6) in the relative singular values for this data set. The obtained signal subspace
Y582l and noise subspace YN are presented in Figure 5.3a and Figure 5.3b. It is clear
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Synthetic data set.

A = ,/25:12]]-:1115 is the Frobenius norm of the matrix A = {a;} € R' */
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Results obtained using the SVD subspace method.

from these figures that the classical SVD implies artifacts in the two estimated subspaces
for a wavefield separation objective. Moreover, the estimated waves v; shown in Figure
5.3c are an instantaneous linear mixture of the recorded waves.

The signal subspace Y*'8 and noise subspace YN obtained using the SVD-ICA
subspace method given by Equation 5.9 are presented in Figure 5.4a and Figure 5.4b.
This improvement is due to the fact that using ICA we have imposed a fourth-order
independence condition stronger than the decorrelation used in classical SVD. With this
subspace method we have also relaxed the nonphysically justified orthogonality of the
propagation vectors.

The dimension R of the rotation matrix B was chosen to be eight because the aligned
wavelight is projected on all eight estimated waves v; shown in Figure 5.3c. After the ICA
and the permutation steps, the new estimated waves v; are presented in Figure 5.4c. As
we can see, the first one describes the aligned wave “perfectly”’. As no visible change of
slope can be found in the relative modified singular values shown in Figure 5.6, the value
of p was fixed at 1 because we are dealing with a perfectly aligned wave.

To compare the results qualitatively, the stack representation is usually employed [5].
Figure 5.5 shows, from left to right, the stacks on the initial data set Y, the original signal
subspace S, and the estimated signal subspaces obtained with SVD and SVD-ICA sub-
space methods, respectively. As the stack on the estimated signal subspace Y*8" is very
close to the stack on the original signal subspace S, we can conclude that the SVD-ICA
subspace method enhances the wave separation results.

To compare these methods quantitatively, we use the relative error ¢ of the estimated
signal subspace defined as

HS _ YSignalHZ
E=—"75— 5.12
Is|? 12
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where ||-|| is the matrix Frobenius norm defined above, S is the original signal subspace
and Y*'8"?! represents either the estimated signal subspace Y*'8"* obtained using SVD or
the estimated signal subspace Y*'8"! obtained using SVD-ICA. For the data set presented
in Figure 5.2, we obtain ¢ = 55.7% for classical SVD and ¢ = 0.5% for SVD-ICA.

The SNR of this data set was modified by keeping the initial noise subspace constant
and by adjusting the energy of the initial signal subspace. The relative errors of the
estimated signal subspaces versus the SNR are plotted in Figure 5.7. For SNRs greater
than 17 dB, the two methods are equivalent. For smaller SNR, the SVD-ICA subspace
method is obviously better than the SVD subspace method. It provides a relative error
lower than 1% for SNRs greater than —10 dB.

Note here that for other data sets, the SVD-ICA performance can be degraded by the
unfulfilled independence assumption supposed for the aligned wave. However, for small
SNR of the data set, the SVD-ICA usually gives better performances than SVD.

The ICA step leads to a fourth-order independence of the estimated waves and relaxes
the unjustified orthogonality constraint for the propagation vectors. This step in the
process enhances the wave separation results and minimizes the error on the estimated
signal subspace, especially when the SNR ratio is low.

5.4 Multi-Way Array Data Sets

We now turn to the modelization and processing of data sets having more than two modes
or diversities. Such data sets are recorded by arrays of vector-sensors (also called multi-
component sensors) collecting, in addition to time and distance information, the polarization
information. Note that there exist other acquisition schemes that output multi-way (or
multi-dimensional, multi-modal) data sets, but they are not considered here.
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5.4.1 Multi-Way Acquisition

In seismic acquisition campaigns, multi-component sensors have been used for more than
ten years now. Such sensors allow the recording of the polarization of seismic waves.
Thus, arrays of such sensors provide useful information about the nature of the propa-
gated wavefields and allow a more complete description of the underground structures.
The polarization information is very useful to differentiate and characterize waves in
signal, but the specific (multi-component) nature of the data sets has to be taken into
account in the processing. The use of vector-sensor arrays provides data sets with time,
distance, and polarization modes, which are called trimodal or three-mode data sets. Here we
propose to use a multi-way model to model and process them.

5.4.2 Multi-Way Model

To keep the trimodal (multi-dimensional) structure of data sets originated from vector-
sensor arrays in their processing, we propose a multi-way model. This model is an
extension of the one proposed in Section 5.2.2 Thus, a three-mode data set is modeled
as a multi-way array of size N. x N, x N;, where N, is the number of components of
each sensor used to recover the vibrations of the wavefield in the three directions of the 3D
space, N, is the number of sensors of the vector-sensor array, and N; is the number of time
samples.

Note that the number of components is defined by the vector-sensor configuration. As an
example, for the illustration shown in Section 5.5.3, N. = 2 because one geophone and one
hydrophone were used, while N, = 3 in Section 5.5.4 because three geophones were used.

Supposing that the propagation of waves only introduces delay and attenuation, the
signal recorded on the cth component (c = 1,...,N,) of the kth sensor (k = 1,...,N,),
using the superposition principle and assuming that P waves impinge on the array of
vector-sensors, can be written as

P
Xek(m) = ackisi(m — 1) + nee(m) (5.13)
i=1

where a; represents the attenuation of the ith wave on the cth component of the kth
sensor of the array. s,(m) is the ith wave and my, is the delay observed at sensor k. The time
index is m.

ng(my) is the noise, supposed Gaussian, centered, spatially white, and independent of the
waves. As in the matrix processing approach, preprocessing is needed to ensure low rank of
the signal subspace and to ensure good results for a subspace-based processing method.

Thus, a velocity correction applied on the dominant waveform (compensation of 1)
leads for the signal recorded on component ¢ of sensor k to:

P

Yek(m) = agasi(m) + > acsi(m — mj) + nly (m) (5.14)
P

where yu(m) = xqg(m—+myy), mg; = my; — myq, and ng(m) = ng(m +myq). In the sequel,
the wave si(m) is considered independent from other waves and from the noise.
The subspace method developed thereafter will intend to isolate and estimate correctly
this wave.

Thus, three-mode data sets recorded during N; time samples on vector-sensor arrays
made up by N, sensors each one having N. components can be modeled as multi-way
arrays Y € IRNe * Ne > N,
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Y = {Yekm = yak(m)|1 < ¢ <N, 1 <k <N, 1 <m <Ny} (5.15)

This multi-way model can be used for extension of subspace method separation to multi-
component data sets.

5.5 Multi-Way Array Processing

Multi-way data analysis arose firstly in the field of psychometrics with Tucker [16]. It is still
an active field of research and it has found applications in many areas such as chemometrics,
signal processing, communications, biological data analysis, food industry, etc.

It is an admitted fact that there exists no exact extension of the SVD for multi-way
arrays of dimension greater than 2. Instead of such an extension, there exist mainly two
decompositions: PARAFAC [17] and HOSVD [14,16]. The first one is also known as
CANDECOMP as it gives a canonical decomposition of a multi-way array, that is, it
expresses the multi-way array into a sum of rank-1 arrays. Note that the rank-1 arrays in
the PARAFAC decomposition may not be orthogonal, unlike in the matrix case. The
second multi-way array decomposition, HOSVD, gives orthogonal bases in the three
ways of the array but is not a canonical decomposition as it does not express the original
array into a sum of rank-1 arrays. However, in the sequel, we will make use of the
HOSVD because of the orthogonal bases that allow extension of well-known subspace
methods based on SVD to multi-way datasets.

5.5.1 HOSVD

We now introduce the HOSVD that was formulated and studied in detail in Ref. [14]. We give
particular attention to the three-mode case because we will process such data in the sequel,
but an extension to the multi-dimensional case exists [14]. One must notice that in the trimodal
case the HOSVD is equivalent to the TUCKER3 model [16]; however, the HOSVD has a
formulation thatis more familiar in the signal processing community as its expression s given
in terms of matrices of singular vectors just as in the SVD in the matrix case.

5.5.1.1 HOSVD Definition
Consider a multi-way array Y € IR * N« * Nt the HOSVD of Y is given by

Y=C X1 V(C) X2 V(x) X3 V(t) (516)

where C € RN * N« * Niig called the core array and Vi, = [V, --., Vi, --., Vil € RV T
are matrices containing the singular vectors v(;; € IR™ of Y in the three modes (i = ¢, x, t).
These matrices are orthogonal, V(3V(;," = 1, just as in the matrix case. A schematic
representation of the HOSVD is given in Figure 5.8.

The core array C is the counterpart of the diagonal matrix A in the SVD case in Equation
5.4, except that it is not hyperdiagonal but fulfils the less restrictive property of being all-
orthogonal. All-orthogonality is defined as

(Ci=Ci=) =0 wherei=c, x, tand a # B

/ (5.17)
[Cizall = [Ciza|| = -+ = [|Cizy| = O, Vi
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FIGURE 5.8 [
HOSVD of a three-mode data set Y. N;

where (.,.) is the classical scalar product between matrices* and |- is the matrix Frobenius
norm defined in Section 5.2 (because here we deal with three-mode data and the ““slices”
Ci — o define matrices). Thus, (C; — ,, C; _ g) = 0 corresponds to orthogonality between
slices of the core array.

Clearly, the all-orthogonality property consists of orthogonality between two slices
(matrices) of the core array cut in the same mode and ordering of the norm of these slices.
This second property is the counterpart of the decreasing arrangement of the singular
values in the SVD [7], with the special property of being valid here for norms of slices of
C and in its three modes. As a consequence, the ““energy’’ of the three-mode data set Y is
concentrated at the (1,1,1) corner of the core array C.

The notation x, in Equation 5.16 is called the n-mode product and there are three such
products (namely X4, X5, and x3), which can be defined for the three-mode case. Given a
multi-way array A € IR" * 2 * 5 then the three possible n-mode products of A with
matrices are:

(A x1B)jiyi, = > aiiyis b
n

(Ax2C)ji, = D Aiinis Gy
1

(A x3 D)ilizj = Zai1i2i3dji3 (5.18)
13

whereBe IR *5, Ce R/ * 2 and D € R/ * % This is a general notation in (multi-)linear

algebra and even the SVD of a matrix can be expressed with such a product. For example,

the SVD given in Equation 5.4 can be rewritten, using n-mode products, as Y = A x;
U x, V [10].

5.5.1.2 Computation of the HOSVD

The problem of finding the elements of a three-mode decomposition was originally
solved using alternate least square (ALS) techniques (see Ref. [18] for details). It was
only in Ref. [14] that a technique based on unfolding matrix SVDs was proposed. We
present briefly here a way to compute the HOSVD using this approach.

From a multi-way array Y € RN * M * N it is possible to build three unfolding
matrices, with respect to the three modes c, x, and ¢, in the following way:

Yo € TRNeXN:N;
Y e RNCXN.YXNt = Y(x) E :IRNXXNth (519)
Y(t) c RN:XN[NX

YA, B) = sEg j]: 14;bj; is the scalar product between the matrices A = {a;} € R/ and B = {bj} € R
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A schematic representation of these unfolding matrices is presented in Figure 5.9.
Then, these three unfolding matrices admit the following SVD decompositions:

Y() sv0 UpA Vi, (5.20)

where each matrix V; (i = ¢, x, t) in Equatlon 5.16 is the right matrix given by the SVD of
each transposed unfolding matrix Y(y. The choice of the transpose was made to keep a
homogeneous notation between matrix and multi-way processmg The matrices Vg,
define orthonormal bases in the three modes of the vector space IR™ * ™= * Nt The core
array is then directly obtained using the formula:

C=Yx1 Vi x2 Vi x3 Vi, (5.21)

The singular values contained in the three matrices A,y (i = ¢, x, t) in Equation 5.20 are
called three-mode singular values.

Thus, the HOSVD of a multi-way array can be easily obtained from the SVDs of the
unfolding matrices, which makes computing of this decomposition easy using already
existing algorithms.

5.5.1.3 The (r., ry, r)-rank

Given a three-mode data Y € IRNe * N+ Nt gpe gets three unfolded matrices Yy, Y (v, and Y,
with respective ranks 7, 1, and r;. That is, the 1j 's are given as the number of nonvanishing
singular values contained in the matrices A, in Equation 5.20, withi = ¢, x, t.

As mentioned before, the HOSVD is not a canonical decomposition and so is not related
to the generic rank (number of rank-1 arrays that lead to the original array by linear
combination). Nevertheless, the HOSVD gives other information named, in the three-
mode case, the three-mode rank. The three-mode rank consists of a triplet of ranks: the
(t¢, 7y, rp)-rank, which is made up of the ranks of matrices Y, Y(y), and Y in the HOSVD.
In the sequel, the three-mode rank will be of use for determination of subspace dimen-
sions, and so will be the counterpart of the classical rank used in matrix processing
techniques.
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5.5.1.4 Three-Mode Subspace Method

As in the matrix case, it is possible, using the HOSVD, to define a subspace method
that decomposes the original three-mode data set into orthogonal subspaces. Such a
technique was first proposed in Ref. [10] and can be stated as follows. Given a three-
mode data set Y € IRNNN it is possible to decompose it into the sum of a signal and a
noise subspace as

Y = YSignal + YNoise (522)

with a weaker constraint than in the matrix case (orthogonality), which is a mode ortho-
gonality, that is, orthogonality in the three modes [10] (between subspaces defined using
the unfolding matrices). Just as in the matrix case, the signal and noise subspaces are
formed by different vectors obtained from the decomposition of the data set. In the three-
mode case, the signal subspace Y5 is built using the first p. < r. singular vectors in the
first mode, p, < r, in the second, and p; < r; in the third:

Signal
Y-8 =Y X1 PVT;) X2 PV‘&‘) X3 Pvi)tf) (523)

with Py» the projectors given by
@

. .T
Pv;g) = Vi Vi (5.24)

where Vi = [ vy, ..., V()] are the matrices containing the first p; singular vectors (i = ¢,
x, t). Then after estimation of the signal subspace, the noise subspace is simply obtained
by subtraction, that is, yNoise _ y _ ySignal

The estimation of the signal subspace consists in finding a triplet of values p,, p, p; that
allows recovery of the signal part by the (p., px, pr)-rank truncation of the original data set
Y. This truncation is obtained by classical matrix truncation of the three SVDs of the
unfolding matrices. However, it is important to note that such a truncation is not the best
(p1, p2, p3)-rank truncation of the data [10]. Nevertheless, the decomposition of the original
three-mode data set is possible and leads, under some assumptions, to the separation of
the recorded wavefields.

From a practical point of view, the choice of p, py, p: values is made by finding abrupt
changes of the slope in the curves of relatives of three-mode singular values (the three
sets of singular values contained in the matrices A(;)). For some special cases for which no
“visible” change of slope can be found, the value of p. can be fixed at 1 for a linear
polarization of the aligned wavefield (denoted by s;(m) ), or at 2 for an elliptical polariza-
tion [10]. The value of p, can be fixed at 1 and the value of p; can be fixed at 1 for a perfect
alignment of waves, or at 2 for not an imperfect alignment or for dispersive waves.

As in the matrix case, the HOSVD-based subspace method decomposes the original
space of the data set into orthogonal subspaces, and so following the ideas developed in
Section 5.3.2, it is possible to add an ICA step to modify the orthogonal constraint in the
temporal mode.

5.5.2 HOSVD and Unimodal ICA

To enhance wavefield separation results, we now introduce a unimodal ICA step follow-
ing the HOSVD-based subspace decomposition.
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5.5.2.1 HOSVD and ICA

The SVD of the unfolded matrix Y in Equation 5.20 provides two orthogonal matrices
U and V(y made up by the left and right singular vectors u); and v;. As for the SVD,
the v(;s" are the estimated waves and uy,,’s are the propagation vectors.

Based on the same motivations as in the SVD case, the unjustified orthogonality
constraint for the propagation vectors can be relaxed by imposing a fourth-order in-
dependence for the estimated waves. Assuming the recorded waves are mutually
independent, we can write:

VEB =V, = [V, - Vel (5.25)

with B € IR® * ® the rotation (unitary) matrix given by one of the algorithms presented in
Section 5.3.2 and V(If) = [viyr,---.Voyr] € RN * R made up by the first R vectors of V.
Here we also suppose that the nonaligned waves in the unfolded matrix Y are
contained in a subspace of dimension R — 1, smaller than the rank r; of Y.
After the ICA step, a new matrix can be computed:

\J 7R . yyNi—R
Vi = VB Vi (5.26)

This matrix is made up of the R vectors ¥,; of the matrix V(§, which are independent at
the fourth order, and by the last N;— R vectors v(; of the matrix V), which are kept
unchanged.

The HOSVD-unimodal ICA decomposition is defined as

Y= C X1 V(C) X2 V(x) X3 V(t) (527)
with
C =Y X1 V(TC) X2 V(Y;C) X3 \75) (528)

Unimodal ICA implies here that ICA is only performed on one mode (the temporal mode).

As in the SVD case, a permutation o(.) between the vectors of V), V(y, respectively, V,
must be performed for ordering the Frobenius norms of the subarrays (obtained by fixing
one index) of the new core array C. Hence, we keep the same decomposition structure as
in relations given in Equation 5.16 and Equation 5.21, the only difference is that we have
modified the orthogonality into a fourth-order independence constraint for the first R
estimated waves on the third mode. Note that the (7.,7,,7;)-rank of the three-mode data set
Y is unchanged.

5.5.2.2 Subspace Method Using HOSVD-Unimodal ICA

On the temporal mode, a new projector can be computed after the ICA and the permu-
tation steps:

Py = V”' V’" (5.29)

Vo
where Vfj = [V, ... ,Vppt] is the matrix containing the first p; estimated waves, which
are the columns of V; defined in Equation 5.26. Note that the two projectors on the first
two modes PvpL and Pvpv given by Equation 5.24, must be recomputed after the

permutation step

© 2007 by Taylor & Francis Group, LLC.



The signal subspace using the HOSVD-unimodal ICA is thus given as

Y5183l — Yy Pype x Pyse x3 Py (5.30)
(0) (x) ()

and the noise subspace Yo'

the original three-mode data:

is obtained by the subtraction of the signal subspace from

yNoise __ y~_ y/Signal (5.31)

In practical situations, as in the SVD-ICA subspace case, the value of R becomes a
parameter. It is chosen to fully describe the aligned wave by the first R estimated waves
v(»; obtained while using the HOSVD.

The choice of the p,, px, and p; values is made by finding abrupt changes of the slope in
the curves of modified three-mode singular values, obtained after the ICA and the
permutation steps. Note that in the HOSVD-unimodal ICA subspace method, the rank
for the signal subspace in the third mode, p; is not necessarily equal to the rank p;
obtained using only the HOSVD.

For some special cases for which no “visible” change of slope can be found, the value of p;
can be fixed at 1 for a perfect alignment of waves, or at 2 for an imperfect alignment or for
dispersive waves. As in the HOSVD subspace method, p, can be fixed at 1 and p, can be fixed
at 1 for a linear polarization of the aligned wavefield, or at 2 for an elliptical polarization.

Applications to simulated and real data are presented in the following sections to
illustrate the behavior of the HOSVD-unimodal ICA method in comparison with com-
ponent-wise SVD (SVD applied on each component of the multi-way data separately) and
HOSVD subspace methods.

5.5.3 Application to Simulated Data

This simulation represents a multi-way data set Y € IR**'®***® composed of N, = 18
sensors each recording two directions (N, = 2) in the 3D space for a duration of N, = 256
time samples. The first component is related to a geophone Z and the second one to a
hydrophone Hy. The Z component was scaled by 5 to obtain the same amplitude range.

This data set shown in Figure 5.10c and Figure 5.11c has polarization, distance, and time
as modes. It was obtained by the addition between an original signal subspace S with the
two components shown in Figure 5.10a and Figure 5.11a, respectively, and an original
noise subspace N (Figure 5.10b and Figure 5.11b respectively) obtained from a real
geophysical acquisition after subtraction of aligned waves.

The original signal subspace is made of several wavefronts having infinite apparent
velocity, associated with the aligned wave. The relation between Z and Hy is a linear
relation, which is assimilated to the wave polarization (polarization mode) in the sense
that it consists of phase and amplitude relations between the two components. Wave
amplitudes vary along the sensors, simulating attenuation along the distance mode. The
noise is uncorrelated from one sensor to the other (spatially white) and also unpolarized.
The SNR ratio of this data setis SNR = —3 dB, where the SNR definition is:

151

SNR = 20 loglo m

(5.32)

where ||-|| is the multi-way array Frobenius norm®, S, and N the original signal and noise
subspaces.

®For any multi-way array X = {xiu € IR"*K his Frobenius norm is ||X|| = 21:12§:125:1x§jk.
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Simulated data: the Z component.

Our aim is to recover the original signal (Figure 5.10a and Figure 5.11a) from the
mixture, which is, in practice, the only data available. Note that normalization to unit
variance of each trace for each component was done before applying the described
subspace methods. This ensures that even weak peaked arrivals are well represented
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FIGURE 5.12
Signal subspace using component-wise SVD.

within the input data. After computation of signal subspaces, a denormalization was
applied to find the original signal subspace.

Firstly, the SVD subspace method (described in Section 5.3) was applied separately on
Z and Hy components of the mixture. The signal subspace components obtained keeping
only one singular value for the two components are presented in Figure 5.12. This choice
was made by finding an abrupt change of slope after the first singular value in the relative
singular values shown in Figure 5.13 for each seismic 2D signal. The waveforms are not
well recovered in respect of the original signal components (Figure 5.10a and Figure 5.11a).
One can also see that the distinction between different wavefronts is not possible.
Furthermore, no arrival time estimation is possible using this technique. Low signal
level is a strong handicap for a component-wise process.

Applied on each component separately, the SVD subspace method does not find the
same aligned polarized wave. The results depend therefore on the characteristics of each
matrix signal. Using the SVD-ICA subspace method, the estimated aligned waves may be
improved, but we can be confronted with the same problem.

FIGURE 5.13
Relative singular values. Top: Z component.
Bottom: Hy component.
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Results obtained using the HOSVD subspace method.

Using the HOSVD subspace method, the components of the estimated signal subspace
Y5ignal are presented in Figure 5.14a and Figure 5.14b. In this case, the number of singular
vectors kept are: one on polarization, one on distance, and one on time mode, giving a
(1,1,1)-rank truncation for the signal subspace. This choice is motivated here by the linear
polarization of the aligned wave. For the other two modes the choice was made by finding
an abrupt change of slope after the first singular value (Figure 5.17a).

There still remain some ““oscillations” between the different wavefronts for the two
components of the estimated signal subspace, that may induce some detection errors.
An ICA step is required in this case to obtain a better signal separation and to cancel
parasitic oscillations. }

In Figure 5.15a and Figure 5.15b, the wavefronts of the estimated signal subspace Y>'"!
obtained with the HOSVD-unimodal ICA technique are very close to the original signal
components.

Here, the ICA method was applied on the first R = 5 estimated waves shown in
Figure 5.14c. These waves describe the aligned waves of the original signal subspace S.
After the ICA step, the estimated waves v(;); are shown in Figure 5.15c. As we can see, the
first one v(;; describes more precisely the aligned wave of the original subspace S than the
first estimated wave v;; before the ICA step (Figure 5.14c). The estimation of signal
subspace is more accurate and the aligned wavelet can be better estimated with our
proposed procedure.

After the permutation step, the relative singular values on the three modes in the
HOSVD-unimodal ICA case are shown in Figure 5.17b. This figure justifies the choice
of a (1,1,1)-rank truncation for the signal subspace, due to the linear polarization and the
abrupt changes of the slopes for the other two modes.

As for the bidimensional case, to compare these methods quantitatively, we use the
relative error ¢ of the estimated signal subspace defined as
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Results obtained using the HOSVD-unimodal ICA subspace method.

s - Y=
E=—"— 5.33
ISP o
where ||-|| is the multi-way array Frobenius norm defined above, S is the original signal
subspace, and Y*8"! represents the estimated signal subspaces obtained with the SVD,
HOSVD, and HOSVD-unimodal ICA methods, respectively. For this data set we obtain
e = 21.4% for the component-wise SVD, ¢ = 12.4% for HOSVD, and ¢ = 3.8% for
HOSVD-unimodal ICA. We conclude that the ICA step minimizes the error on the
estimated signal subspace.

To compare the results qualitatively, the stack representation is employed. Figure 5.16
shows for each component, from left to right, the stacks on the initial data set Y,

the original signal subspace S, and the estimated signal subspaces obtained with the
component-wise SVD, HOSVD, and HOSVD-unimodal ICA subspace methods, respectively.

o o
[ % [4))
o o
= =
33 38
n 0
) 0
32 32
) 3[ =) 3
n n
8l 8
FIGURE 5.16
Stacks. From left to right: initial data set Y, original o o
signal subspace S, SVD, HOSVD, and HOSVD-unim- gr g
odal ICA estimated subspaces, respectively. (a) Z component (b) Hy component
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(b) Using HOSVD-unimodal ICA Relative three-mode singular values.

As the stack on the estimated signal subspace Y*8" is very close to the stack on the
original signal subspace S, we conclude that the HOSVD-unimodal ICA subspace method
enhances the wave separation results.

5.5.4 Application to Real Data

We consider now a real vertical seismic profile (VSP) geophysical data set. This 3C data
set was recorded by N, = 50 sensors with the depth sampling 10 m, each one made up by
N. = 3 geophones recording three directions in the 3D space: X, Y, and Z, respectively.
The recording time was 700 msec, corresponding to N; = 175 time samples. The Z
component was scaled seven times to obtain the same amplitude range.

After the preprocessing step (velocity correction based on the direct downgoing wave),
the obtained data set Y € IR*****!”® is shown in Figure 5.18.

As in the simulation case, normalization and denormalization of each trace for each
component were done before and after applying the different subspace methods.

From the original data set we have constructed three seismic 2D matrix signals repre-
senting the three components of the data set Y. The SVD subspace method presented in
Section 5.3.1 was applied on each matrix signal, keeping only one singular vector (re-
spectively one singular value) for each one, due to an abrupt change of slope after the first
singular value in the curves of relative singular values. As remarked in the simulation
case, the SVD-ICA subspace method may improve the estimated aligned waves, but we
will not find the same aligned polarized wave for all seismic matrix signals.

For the HOSVD subspace method, the estimated signal subspace Y*#"® can be defined
as a (2,1,1)-rank truncation of the data set. This choice is motivated here by the elliptical
polarization of the aligned wave. For the other two modes the choice was made by finding
an abrupt change of slope after the first singular value (Figure 5.20a).

Using the HOSVD-unimodal ICA, the ICA step was applied here on the first R =
9 estimated waves v(;); shown in Figure 5.19a. As suggested, R becomes a parameter
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Real VSP geophysical data Y.

(b) Y component

(c) Z component

while using real data. However, the estimated waves v(,; shown in Figure 5.19b are
more realistic (shorter wavelet and no side lobes) than those obtained without ICA.
Due to the elliptical polarization and the abrupt change of slope after the first
singular value for the other two modes (Figure 5.20b), the estimated signal subspace
Y5ienal i defined as a (2,1,1)-rank truncation of the data set. This step enhances
the wave separation results, implying a minimization of the error on the estimated

signal subspace.

When we deal with a real data set, only a qualitative comparison is possible. This is
allowed by a stack representation. Figure 5.21 shows the stacks for the X, Y, and
Z components, respectively, on the initial trimodal data Y and on the estimated signal

FIGURE 5.19
The first 9 estimated waves.
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subspaces given by the component-wise SVD, HOSVD, and HOSVD-unimodal ICA
methods, respectively.

The results on simulated and real data suggest that the three-dimensional subspace
methods are more robust than the component-wise techniques because they exploit
the relationship between the components directly in the process. Also, the fourth-order
independence constraint of the estimated waves enhances the wave separation results
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Stacks. From left to right: initial data set Y, SVD, HOSVD, and HOSVD-unimodal ICA estimated subspaces,
respectively.
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and minimizes the error on the estimated signal subspace. This emphasizes the potential
of the HOSVD subspace method associated with a unimodal ICA step for vector-sensor
array signal processing.

5.6 Conclusions

We have presented a subspace processing technique for multi-dimensional seismic data sets
based on HOSVD and ICA. It is an extension of well-known subspace separation techniques
for 2D (matrix) data sets based on SVD and more recently on SVD and ICA. The proposed
multi-way technique can be used for the denoising and separation of polarized waves
recorded on vector-sensor arrays. A multi-way (three-mode) model of polarized signals
recorded on vector-sensor arrays allows us to take into account the additional polarization
information in the processing and thus to enhance the separation results.

A decomposition of three-mode data sets into all-orthogonal subspaces has been pro-
posed using HOSVD. An extra unimodal ICA step has been introduced to minimize the
error on the estimated signal subspace and to improve the separation result. Also, we
have shown on simulated and real data sets that the proposed approach gives better
results than the component-wise SVD subspace method.

The use of multi-way array and associated decompositions for multi-dimensional data
set processing is a powerful tool and ensures the extra dimension is fully taken into
account in the process. This approach could be generalized to any multi-dimensional
signal modelization and processing and could take advantage of recent work on tensors
and multi-way array decomposition and analysis.
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6.1 Introduction to Seismic Signal Processing

Formed millions of years ago from plants and animals that died and decomposed beneath
soil and rock, fossil fuels, namely, coal and petroleum, due to their low cost availabi-
lity, will remain the most important energy resource for at least another few decades.
Ongoing petroleum research continues to focus on science and technology needs for
increased petroleum exploration and production. The petroleum industry relies heavily
on subsurface imaging techniques for the location of these hydrocarbons.

6.1.1 Data Acquisition

Many geophysical survey techniques exist, such as multichannel reflection seismic pro-
filing, refraction seismic survey, gravity survey, and heat flow measurement. Among
them, reflection seismic profiling method stands out because of its target-oriented cap-
ability, generally good imaging results, and computational efficiency. These reflectivity
data resolve features such as faults, folds, and lithologic boundaries measured in 10s
of meters, and image them laterally for 100s of kilometers and to depths of 50 kilometers
or more. As a result, seismic reflection profiling becomes the principal method by which
the petroleum industry explores for hydrocarbon-trapping structures.

The seismic reflection method works by processing echoes of seismic waves
from boundaries between different Earth’s subsurfaces that characterize different
acoustic impedances. Depending on the geometry of surface observation points and
source locations, the survey is called a 2D or a 3D seismic survey. Figure 6.1 shows a
typical 2D seismic survey, during which, a cable with attached receivers at regular
intervals is dragged by a boat. The source moves along the predesigned seismic
lines and generates seismic waves at regular intervals such that points in the subsurfaces
are sampled several times by the receivers, producing a series of seismic traces. These
seismic traces are saved on magnetic tapes or hard disks in the recording boat for
future processing.

Receivers Source

Water

Bottom

Subsurface 1

Subsurface 2

FIGURE 6.1
A typical 2D seismic survey.

© 2007 by Taylor & Francis Group, LLC.



6.1.2 Data Processing

Seismic data processing has been regarded as having a flavor of interpretive character;
it is even considered as an art [1]. However, there is a well-established sequence
for standard seismic data processing. Deconvolution, stacking, and migration are the
three principal processes that make up the foundation. Besides, some auxiliary processes
can also help improve the effectiveness of the principal processes. In the following
subsections, we briefly discuss the principal processes and some auxiliary processes.

6.1.2.1 Deconvolution

Deconvolution can improve the temporal resolution of seismic data by compress-
ing the basic seismic wavelet to approximately a spike and suppressing reverberations
on the field data [2]. Deconvolution usually applied before stack is called prestack
deconvolution. It is also a common practice to apply deconvolution to stacked data,
which is named poststack deconvolution.

6.1.2.2 Normal Moveout

Consider the simplest case where the subsurfaces of the Earth are horizontal, and within
this layer, the velocity is constant.

Here x is the distance (offset) between the source and the receiver positions, and v is
the velocity of the medium above the reflecting interface. Given the midpoint location
M, let t(x) be the traveltime along the raypath from the shot position S to the depth
point D, then back to the receiver position G. Let t(0) be twice the traveltime along
the vertical path MD. Utilizing the Pythagorean theorem, the traveltime equation as a
function of offset is

£2(x) = £2(0) + x*/0* (6.1)

Note that the above equation describes a hyperbola in the plane of two-way time vs.
offset. A common-midpoint (CMP) gather are the traces whose raypaths associated with
each source-receiver pair reflect from the same subsurface depth point D. The difference
between the two-way time at a given offset #(x) and the two-way zero-offset time #(0) is
called NMO. From Equation 6.1, we see that velocity can be computed when offset x and
the two-way times f(x) and #(0) are known. Once the NMO velocity is estimated, the
travletimes can be corrected to remove the influence of offset.

Atnmo = H(x) — £(0)

Traces in the NMO-corrected gather are then summed to obtain a stack trace at the
particular CMP location. The procedure is called stacking.

Now consider the horizontally stratified layers, with each layer’s thickness
defined in terms of two-way zero-offset time. Given the number of layers N, interval
velocities are represented as (vy, vy, ..., vy). Considering the raypath from source S to
depth D, back to receiver R, associated with offset x at midpoint location M, Equation 6.1
becomes

£2(x) = 13(0) + x*/ v* (6.2)

rms

where the relation between the rms velocity and the interval velocity is represented by
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where At is the vertical two-way time through the ith layer and #(0) = > A.
k=1

6.1.2.3 Velocity Analysis

Effective correction for normal moveout depends on the use of accurate velocities. In CMP
surveys, the appropriate velocity is derived by computer analysis of the moveout in the
CMP gathers. Dynamic corrections are implemented for a range of velocity values and the
corrected traces are stacked. The stacking velocity is defined as the velocity value that
produces the maximum amplitude of the reflection event in the stack of traces, which
clearly represents the condition of successful removal of NMO.

In practice, NMO corrections are computed for narrow time windows down the entire
trace, and for a range of velocities, to produce a velocity spectrum. The validity for each
velocity value is assessed by calculating a form of multitrace correlation between the corrected
traces of the CMP gathers. The values are shown contoured such that contour peaks occur at
times corresponding to reflected wavelets and at velocities that produce an optimum stacked
wavelet. By picking the location of the peaks on the velocity spectrum plot, a velocity function
defining the increase of velocity with depth for that CMP gather can be derived.

6.1.2.4 NMO Stretching

After applying NMO correction, a frequency distortion appears, particularly for shallow
events and at large offsets. This is called NMO stretching. The stretching is a frequency
distortion where events are shifted to lower frequencies, which can be quantified as

Af/f = Atnmo/H0) (6.3)

where f is the dominant frequency, Af is change in frequency, and Atnvo is given by
Equation 6.2. Because of the waveform distortion at large offsets, stacking the NMO-
corrected CMP gather will severely damage the shallow events. Muting the stretched
zones in the gather can solve this problem, which can be carried out by using the
quantitative definition of stretching given in Equation 6.3. An alternative method for
optimum selection of the mute zone is to progressively stack the data. By following the
waveform along a certain event and observing where changes occur, the mute zone is
derived. A trade-off exists between the signal-to-noise (SNR) ratio and mute, that is, when
the SNR is high, more can be muted for less stretching; otherwise, when the SNR is low, a
large amount of stretching is accepted to catch events on the stack.

6.1.2.5 Stacking

Among the three principal processes, CMP stacking is the most robust of all. Utilizing
redundancy in CMP recording, stacking can significantly suppress uncorrelated noise,
thereby increasing the SNR ratio. It also can attenuate a large part of the coherent noise in
the data, such as guided waves and multiples.

6.1.2.6 Migration

On a seismic section such as that illustrated in Figure 6.2, each reflection event is mapped
directly beneath the midpoint. However, the reflection point is located beneath the
midpoint only if the reflector is horizontal. With a dip along the survey line the actual
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FIGURE 6.2
The NMO geometry of a single horizontal
reflector.

Reflector

reflection point is displaced in the up-dip direction; with a dip across the survey line
the reflection point is displaced out of the plane of the section. Migration is a process that
moves dipping reflectors into their true subsurface positions and collapses diffractions,
thereby depicting detailed subsurface features. In this sense, migration can be viewed as a
form of spatial deconvolution that increases spatial resolution.

6.1.3 Interpretation

The goal of seismic processing and imaging is to extract the reflectivity function of the
subsurface from the seismic data. Once the reflectivity is obtained, it is the task of
the seismic interpreter to infer the geological significance of a certain reflectivity pattern.

6.2 Factor Analysis Framework

Factor analysis (FA), a branch of multivariate analysis, is concerned with the in-
ternal relationships of a set of variates [3]. Widely used in psychology, biology,
chemometrics' [4], and social science, the latent variable model provides an important
tool for the analysis of multivariate data. It offers a conceptual framework within which
many disparate methods can be unified and a base from which new methods can be
developed.

6.2.1 General Model
In FA the basic model is

x=As+n (6.4)

where x = (xq1, X2, ..., xig)T is a vector of observable random variables (the test scores),
s = (51,5, ..., 5, isa vector r < p unobserved or latent random variables (the common
factor scores), Aisa (p x r) matrix of fixed coefficients (factor loadings), n = (1,1, ..., n,,)T
is a vector of random error terms (unique factor scores of order p). The means are usually
set to zero for convenience so that E(x) = E(s) = E(n) =0. The random error term consists

!Chemometrics is the use of mathematical and statistical methods for handling, interpreting, and predicting
chemical data.
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of errors of measurement and the unique individual effects associated with each variable x;,
j=1,2,...,p. For the present model we assume that A is a matrix of constant parameters
and s is a vector of random variables.

The following assumptions are usually made for the factor model [5]:

erank (A) =r<p
e E(x|s) = As
e Exx") = 3, E(ss’) = Q and

¥ =E(nn") = . (6.5)

That is, the errors are assumed to be uncorrelated. The common factors however are
generally correlated, and () is therefore not necessarily diagonal. For the sake of conveni-
ence and computational efficiency, the common factors are usually assumed to be uncor-
related and of unit variance, so that ) = [

¢ E(sn") = 0 so that the errors and common factors are uncorrelated.
From the above assumptions, we have

E(xxT) =3 = E[(As + n)(As + n)T}
=E(Ass"A"T + Asn” +ns"AT + nn')
= AE(ss")A" + AE(sn") + E(ns")A" + E(nn")
=AQAT + E(nnT)
=I'+v (6.6)

whereT' = AQAT and ¥ = E(nn") are the true and error covariance matrices, respectively.
In addition, postmultiplying Equation 6.4 by s', considering the expectation, and using
assumptions (6.3) and (6.4), we have

E(xs") = E(Ass" +ns')
= AE(ss") + E(ns")
— AQ ©6.7)

For the special case of )} = I, the covariance between the observation and the latent
variables simplifies to E(xs') = A.

A special case is found when x is a multivariate Gaussian; the second moments of
Equation 6.6 will contain all the information concerning the factor model. The factor
model Equation 6.4 will be linear, and given the factors s the variables x are conditionally
independent. Let s € N(0, I), the conditional distribution of x is

xX|s € N(As, V) (6.8)
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or
p(x|s) = (2m) /2| w| /2 exp{—%(x —As)" 0 (x — As)} (6.9)

with conditional independence following from the diagonality of . The common factors
s therefore reproduce all covariances (or correlations) between the variables, but account
for only a portion of the variance.

The marginal distribution for x is found by integrating the hidden variables s, or

P00 = jp<x|s>p<s> ds

= (217)7p/2|\11 + AAT|71/2 exp{— %XT (¥ + AAT)lx} (6.10)

The calculation is straightforward because both p(s) and p(x|s) are Gaussian.

6.2.2 Within the Framework

Many methods have been developed for estimating the model parameters for the special case
of Equation 6.8. Unweighted least square (ULS) algorithm [6] is based on minimizing the sum
of squared differences between the observed and estimated correlation matrices, not counting
the diagonal. Generalized least square (GLS) [6] algorithm is adjusting ULS by weighting the
correlations inversely according to their uniqueness. Another method, maximum likelihood
(ML) algorithm [7], uses a linear combination of variables to form factors, where the param-
eter estimates are those most likely to have resulted in the observed correlation matrix. More
details on the ML algorithm can be found in Appendix 6.B. These methods are all of second
order, which find the representation using only the information contained in the covariance
matrix of the test scores. In most cases, the mean is also used in the initial centering. The
reason for the popularity of the second-order methods is that they are computationally
simple, often requiring only classical matrix manipulations.

Second-order methods are in contrast to most higher order methods that try to find a
meaningful representation. Higher order methods use information on the distribution of x
that is not contained in the covariance matrix. The distribution of fx must not be assumed
to be Gaussian, because all the information of Gaussian variables is contained in the first
two-order statistics from which all the high order statistics can be generated. However,
for more general families of density functions, the representation problem has more
degrees of freedom, and much more sophisticated techniques may be constructed for
non-Gaussian random variables.

6.2.2.1 Principal Component Analysis

Principal component analysis (PCA) is also known as the Hotelling transform or the Karhu-
nen-Loéve transform. It is widely used in signal processing, statistics, and neural computing
to find the most important directions in the data in the mean-square sense. It is the solution of
the FA problem with minimum mean-square error and an orthogonal weight matrix.

The basic idea of PCA is to find the r < p linearly transformed components that provide
the maximum amount of variance possible. During the analysis, variables in x are trans-
formed linearly and orthogonally into an equal number of uncorrelated new variables in e.
The transformation is obtained by finding the latent roots and vectors of either the covariance
or the correlation matrix. The latent roots, arranged in descending order of magnitude, are

© 2007 by Taylor & Francis Group, LLC.



equal to the variances of the corresponding variables in e. Usually the first few components
account for a large proportion of the total variance of x, accordingly, may then be used to
reduce the dimensionality of the original data for further analysis. However, all components
are needed to reproduce accurately the correlation coefficients within x.

Mathematically, the first principal component e; corresponds to the line on which the
projection of the data has the greatest variance

T
e; = arg max (eTx)2 (6.11)
lal=1 £

The other components are found recursively by first removing the projections to the
previous principal components:

k-1 2
T T
e, — arg max e [ x— E eje; X 6.12
e l ( e )] (612

In practice, the principal components are found by calculating the eigenvectors of the
covariance matrix % of the data as in Equation 6.6. The eigenvalues are positive and they
correspond to the variances of the projections of data on the eigenvectors.

The basic task in PCA is to reduce the dimension of the data. In fact, it can be proven that
the representation given by PCA is an optimal linear dimension reduction technique in the
mean-square sense [8,9]. The kind of reduction in dimension has important benefits [10].
First, the computational complexity of the further processing stages is reduced. Second,
noise may be reduced, as the data not contained in the components may be mostly due to
noise. Third, projecting into a subspace of low dimension is useful for visualizing the data.

6.2.2.2 Independent Component Analysis

The independent component analysis (ICA) model originates from the multi-input and
multi-output (MIMO) channel equalization [11]. Its two most important applications are
blind source separation (BSS) and feature extraction. The mixing model of ICA is similar
to that of the FA, but in the basic case without the noise term. The data have been
generated from the latent components s through a square mixing matrix A by

x = As (6.13)

In ICA, all the independent components, with the possible exception of one compon-
ent, must be non-Gaussian. The number of components is typically the same as the
number of observations. Such an A is searched for to enable the components s = A~ 'x
to be as independent as possible.

In practice, the independence can be maximized, for example, by maximizing non-
Gaussianity of the components or minimizing mutual information [12]. ICA can be
approached from different starting points. In some extensions the number of independent
components can exceed the number of dimensions of the observations making the basis
overcomplete [12,13]. The noise term can be taken into the model. ICA can be viewed as
a generative model when the 1D distributions for the components are modeled with, for
example, mixtures of Gaussians (MoG).

The problem with ICA is that it has the ambiguities of scaling and permutation [12];
that is, the indetermination of the variances of the independent components and the order
of the independent components.
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6.2.2.3 Independent Factor Analysis

Independent factor analysis (IFA) is formulated by Attias [14]. It aims to describe p generally
correlated observed variables x in terms of r < p independent latent variables s and an
additive noise term n. The proposed algorithm derives from the ML and more specifically
from the expectation-maximization (EM) algorithm.

IFA model differs from the classic FA model in that the properties of the latent variables
it involves are different. The noise variables n are assumed to be normally distributed, but
not necessarily uncorrelated. The latent variables s are assumed to be mutually inde-
pendent but not necessarily normally distributed; their densities are indeed modeled as
mixtures of Gaussians. The independence assumption allows modeling the density of
each s; in the latent space separately.

There are some problems with the EM-MoG algorithm. First, approximating source
densities with MoGs is not so straightforward because the number of Gaussians has to be
adjusted. Second, EM-MoG is computationally demanding where the complexity of
computation grows exponentially with the number of sources [14]. Given a small number
of sources the EM algorithm is exact and all the required calculations can be done
analytically, whereas it becomes intractable as the number of sources in the model
increases.

6.3 FA Application in Seismic Signal Processing
6.3.1 Marmousi Data Set

Marmousi is a 2D synthetic data set generated at the Institut Frangis du Pétrole (IFP). The
geometry of this model is based on a profile through the North Quenguela trough in the
Cuanza basin [15,16]. The geometry and velocity model was created to produce complex
seismic data, which requires advanced processing techniques to obtain a correct Earth
image. Figure 6.3 shows the velocity profile of the Marmousi model.

Based on the profile and the geologic history, a geometric model containing 160 layers
was created. Velocity and density distributions were defined by introducing realistic
horizontal and vertical velocities and density gradients. This resulted in a 2D density—
velocity grid with dimensions of 3000 m in depth by 9200 m in offset.

Marmousi velocity model

—~ 1000

(m

Dept

1000 2000 3000 4000 5000 6000 7000 8000 9000
Offset (m)

FIGURE 6.3
Marmousi velocity model.

© 2007 by Taylor & Francis Group, LLC.



Data were generated by a modeling package that can simulate a seismic line by
computing successively the different shot records. The line was “shot” from west to
east. The first and last shot points were, respectively, 3000 and 8975m from the west
edge of the model. Distance between shots was 25m. Initial offset was 200m and the
maximum offset was 2575 m.

6.3.2 Velocity Analysis, NMO Correction, and Stacking

Given the Marmousi data set, after some conventional processing steps described in Section
6.2, the results of velocity analysis and normal moveout are shown in Figure 6.4.

The left-most plot is a CMP gather. There are totally 574 CMP gathers in the Marmousi
data set; each includes 48 traces.

On the second plot, velocity spectrum is generated after the CMP gather is NMO-
corrected and stacked using a range of constant velocity values, and the resultant stack
traces for each velocity are placed side by side on a plane of velocity vs. two-way zero-
offset time. By selecting the peaks on the velocity spectrum, an initial rms velocity can
be defined, shown as a curve on the left of the second plot. The interval velocity can be
calculated by using Dix formula [17] and shown on the right side of the plot.

Given the estimated velocity profile, the real moveout correction can be carried out,
shown in the third plot. As compared with the first plot, we can see the hyperbolic curves
are flattened out after NMO correction. Usually another procedure called muting will be
carried out before stacking because as we can see in the middle of the third plot, there are

CMP gather Velocity spectrum NMO-corrected  Optimum muting

0.5

Time (sec)
[6)]

Offset (m) 1000 2000 3000 4000 5000 6000 Offset (m) Offset (m)
Velocity (m/sec)

FIGURE 6.4
Velocity analysis and stacking of Marmousi data set.
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great distortions because of the approximation. That part will be eliminated before
stacking all the 48 traces together.

The fourth plot just shows a different way of highlighting the muting procedure.
For details, see Ref. [1]. After we complete the velocity analysis, NMO correction, and
stacking for the 56 of the CMPs, we get the following section of the subsurface image as on
the left of Figure 6.5. There are two reasons that only 56 out of 574 of the CMPs are stacked.
One reason is that the velocity analysis is too time consuming on a personal computer and
the other is that although 56 CMPs are only one tenths of the 574 CMPs, it indeed covers
nearly 700m of the profile. It is enough to compare processing difference.

The right plot is the same image as the left one except that it is after the automatic
amplitude adjustment, which is to stress the vague events so that both the vague events
and strong events in the image are shown with approximately the same amplitude. The
algorithm includes three easy steps:

1. Compute Hilbert envelope of a trace.

2. Convolve the envelope with a triangular smoother to produce the smoothed
envelope.

3. Divide the trace by the smoothed envelope to produce the amplitude-adjusted
trace.

By comparing the two plots, we can see that vague events at the top and bottom of the
image are indeed stressed. In the following sections, we mainly use automatic amplitude-
adjusted image to illustrate results.

It needs to be pointed out that due to NMO stretching and lack of data at small offset
after muting, events before 0.2 sec in Figure 6.5 are shown as distorted and do not provide

Stacking Automatic amplitude adjustment

0.5

Time (sec)

3
3000 3200 3400 3000 3200 3400
CDP (m) CDP (m)

FIGURE 6.5
Stacking of 56 CMPs.
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useful information. In the following sections, when we compare the result, we mainly
consider events after 0.2 sec.

6.3.3 The Advantage of Stacking

Stacking is based on the assumption that all the traces in a CMP gather correspond to one
single depth point. After they are NMO-corrected, the zero-offset traces should contain
the same signal embedded in different random noises, which are caused by the different
raypaths. The process of adding them together in this manner can increase the SNR ratio
by adding up the signal components while canceling the noises among the traces. To see
what stacking can do to improve the subsurface image quality, let us compare the image
obtained from a single trace and that from stacking the 48 muted traces.

In Figure 6.6, the single trace result without stacking is shown in the right plot. For
every CMP (or CDP) gather, only the trace of smallest offset is NMO-corrected and placed
side by side together to produce the image, while in the stack result in the left plot, 48
NMO-corrected and muted traces are stacked and placed side by side. Clearly, after
stacking, the main events at 0.5, 1.0, and 1.5sec are stressed, and the noise in between is
canceled out. Noise at 0.2 is effectively removed. Noise caused by multiples from 2.0 to
3.0 sec is significantly reduced. However, due to NMO stretching and muting, there are
not enough data to depict events at 0 to 0.25 sec on both plots.

6.3.4 Factor Analysis vs. Stacking

Now we suggest an alternative way of obtaining the subsurface image by using FA
instead of stacking. As presented in Appendix 6.A, FA can extract one unique common
factor from the traces with maximum correlation among them. It fits well with what is

Stacking Without stacking

Time (sec)
Time (sec)
[9)]

3
3000 3200 3400 3000 3200 3400
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FIGURE 6.6
Comparison of stacking and single trace images.
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expected of zero-offset traces in that after NMO correction they contain the same signal
embedded in different random noises.

There are two reasons that FA works better than stacking. First, FA model considers
scaling factor A as in Equation 6.14, while stacking assumes no scaling as in Equation 6.15.

Factor analysis: x = As+n (6.14)
Stacking: x =s+n (6.15)

When the scaling information is lost, simple summation does not necessarily increase
the SNR ratio. For example, if one scaling factor is 1 and the other is —1, summation will
simply cancel out the signal component completely, leaving only the noise component.
Second, FA makes use of the second-order statistics explicitly as the criterion to extract the
signal while stacking does not. Therefore, SNR ratio will improve more in the case of FA
than in the case of stacking.

To illustrate the idea, x(t) are generated using the following equation:

x(t) = As(t) + n(t)
= A cos (27t) + n(t)
where s(t) is the sinusoidal signal, n(f) are 10 independent noise terms with Gaussian
distribution. The matrix of factor loadings A is also generated randomly. Figure 6.7 shows
the result of stacking and FA. The top plot is one of the ten observations x(t). The middle
plot is the result of stacking and the bottom plot is the result of FA using ML algorithm as

presented in Appendix 6.B. Comparing the two plots suggests that FA outperforms
stacking in improving the SNR ratio.

Observable variable

Result of stacking

Result of factor analysis

FIGURE 6.7
Comparison of stacking and FA.
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Factor analysis of Scheme no. 1.

6.3.5 Application of Factor Analysis

The simulation result in Section 6.3.4 suggests that FA can be applied to the NMO-
corrected seismic data. One problem arises, however, when we inspect the zero-offset
traces. They need to be muted because of the NMO stretching, which means almost all the
traces will have a segment set to zero (mute zone), as is shown in Figure 6.8. Is it possible
to just apply FA to the muted traces? Is it possible to have other schemes that make full
use of the information at hand? In the following sections, we try to answer these questions
by discussing different schemes to carry out FA.

6.3.5.1 Factor Analysis Scheme No. 1

Let us start with the easiest one. The scheme is illustrated in Figure 6.8. We will set the
mute zone to zero and apply FA to a CMP gather using ML algorithm. Extracting one
single common factor from the 48 traces, and placing all the resulting factors from 56 CMP
gathers side by side, the right plot in Figure 6.9 is obtained.

Compared with the result of stacking shown on the left, events from 2.2 to 3.0 sec are
more smoothly presented instead of the broken dashlike events after stacking. However,
at near offset, from 0 to 0.7 sec, the image is contaminated with some vertical stripes.

6.3.5.2 Factor Analysis Scheme No. 2

In this scheme, the muted segments in each trace are replaced by segments of the nearest
neighboring traces as is illustrated by Figure 6.10. Trace no. 44 borrows Segment 1
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Comparison of stacking and FA result of Scheme no. 1.
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FIGURE 6.10

Factor analysis of Scheme no. 2.
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FIGURE 6.11
Comparison of stacking and FA result of Scheme no. 2.

from Trace no. 45 to fill out its muted segment. Trace no. 43 borrows Segments 1 and
2 from Trace no. 44 to fill out its muted segment and so on. As a result, Segment 1
from Trace no. 45 is copied to all the muted traces, from Trace no. 1 to 44. Segment 2 from
Trace no. 44 is copied to traces from Trace no. 1 to 43. After the mute zone is filled out, FA
is carried out to produce the result shown in Figure 6.11.

Compared to stacking shown on the left, there is no improvement in the obtained
image. Actually, the result is worse. Some events are blurred. Therefore, Scheme no. 2 is
not a good scheme.

6.3.5.3 Factor Analysis Scheme No. 3

In this scheme, instead of copying the neighboring segments to the mute zone, the
segments obtained from applying FA to the traces included in the nearest neighboring
box are copied. In Figure 6.12, we first apply FA to traces in Box 1 (Trace no. 45 to 48), then
Segment 1 is extracted from the result and copied to Trace no. 44. Segment 2 obtained
from applying FA to traces in Box 2 (Trace no. 44 to 48) will be copied to Trace no. 43.
When done, the image obtained is shown in Figure 6.13.

Compared with Scheme no. 2, the result is better. But compared to stacking, there is still
some contamination from 0 to 0.7 sec.

6.3.5.4 Factor Analysis Scheme No. 4

In the scheme, as is illustrated in Figure 6.14, Segment 1 will be extracted from applying
FA to all the traces in Box 1 (traces from Trace no. 1 to 48), and Segment 2 will be extracted
from applying FA to trace segments in Box 2 (traces from Trace no. 2 to 48). Note that the
data are not muted before FA. In this manner, for every segment, all the data points
available are fully utilized.
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Factor analysis of Scheme no. 3.

Factor analysis of Scheme no. 3
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Comparison of stacking and FA result of Scheme no. 3.
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Factor analysis of Scheme no. 4.

In the result generated, we noticed that events from 0 to 0.16sec are distorted. The
amplitude is so large that it overshadows the other events. Comparing all the results
obtained above, we conclude that both stacking and FA are unable to extract useful
information from 0 to 0.16sec. To better illustrate the FA result, we will mute the result
from the distorted trace segments, and the final result is shown in Figure 6.15. Compare the
results of FA and stacking; we can see that events at around 1 and 1.5 sec are strengthened.
Events from 2.2 to 3.0sec are more smoothly presented instead of the broken dashlike
events in the stacked result. Overall, the SNR ratio of the image is improved.

6.3.6 Factor Analysis vs. PCA and ICA

The results of PCA and ICA (discussed in subsections 6.2.2.1 and 6.2.2.2) are placed side
by side with the result of FA for comparison in Figure 6.16 and Figure 6.17. As we can see
from both plots on the right side of the figures, important events are missing and the
subsurface images are distorted.

The reason is that the criteria used in PCA and ICA to extract the signals are improper
to this particular scenario. In PCA, traces are transformed linearly and orthogonally into
an equal number of new traces that have the property of being uncorrelated, where the
first component having the maximum variance is used to produce the image. In ICA, the
algorithm tries to extract components that are as independent to each other as possible,
where the obtained components suffer from the problems of scaling and permutation.
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Comparison of stacking and FA result of Scheme no. 4.
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FIGURE 6.16
Comparison of FA and PCA results.
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FIGURE 6.17
Comparison of FA and ICA results.

6.4 Conclusions

Stacking is one of the three most important and robust processing steps in seismic signal
processing. By utilizing the redundancy of the CMP gathers, stacking can effectively
remove noise and increase the SNR ratio. In this chapter we propose to use FA to replace
stacking to obtain better subsurface images after applying FA algorithm to the synthetic
Marmousi data set. Comparisons with PCA and ICA show that FA indeed has advantages
over other techniques in this scenario.

It is noted that the conventional seismic processing steps adopted here are very basic
and for illustrative purposes only. Better results may be obtained in velocity analysis and
stacking if careful examination and iterative procedures are incorporated as is often the
case in real situations.
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Appendices

6.A Upper Bound of the Number of Common Factors

Suppose that there is a unique ¥, matrix X—¥ must be of rank r. This is the covariance
matrix for x where each diagonal element represents the part of the variance that is due to
the r common factors instead of the total variance of the corresponding variate. This is
known as communality of the variate.

When r=1, A reduces to a column vector of p elements. It is unique, apart from a
possible change of sign of all its elements.

With 1 < r < p common factors, it is not generally possible to determine A and s
uniquely, even in the case of a normal distribution. Although every factor model specified
by Equation 6.8 leads to a multivariate normal, the converse is not necessarily true when
1 < r < p. The difficulty is known as the factor identification or factor rotation problem.

Let H be any (r x r) orthogonal matrix, so that HH' = H'H =1, then

x = AHH"s + n
= A%*+n
Thus, s and s* have the same statistical properties since
E(s5) — HTE(s)
COV(SS) =H' cov(s H=H'H=1

Assume there exist 1 < < p common factors such that I'= AQAT and ¥ is Grammian
and diagonal. The covariance matrix X has

1
C(Z) tp=5pp+1)

distinct elements, which equals the total number of normal equations to be solved.
However, the number of solutions is infinite, as can be seen from the following derivation.
Since () is Grammian, its Cholesky decomposition exists. That is, there exists a nonsin-
gular (v x r) matrix U, such that Q= U™l and

S =AQAT + ¥
= AUTUAT + ¥
= (AU") (AUT) +w
= APAST 1 (6A.1)

122
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Apparently both factorization Equation 6.6 and Equation 6A.1 leave the same residual
error ¥ and therefore must represent equally valid factor solutions. Also, we can substitute
A*=AB and Q*=B~'Q (B") ™!, which again yields a factor model that is indistinguishable
from Equation 6.6. Therefore, no sample estimator can distinguish between such an infinite
number of transformations. The coefficients A and A® are thus statistically equivalent and
cannot be distinguished from each other or identified uniquely; that is, both the trans-
formed and untransformed coefficients, together with ¥, generate % in exactly the same
way and cannot be differentiated by any estimation procedure without the introduction of
additional restrictions.

To solve the rotational indeterminacy of the factor model we require restrictions on (2,
the covariance matrix of the factors. The most straightforward and common restriction is
to set {} =1. The number m of free parameters implied by the equation

S =AAT 4+ U (6A.2)

is then equal to the total number pr + p for unknown parameters in A and ¥, minus the
number of zero restrictions placed on the off-diagonal elements of (), which is equal to
1/ 2(7’2—7’) since () is symmetric. We then have

_ _ 2
m = (pr+p) — 1/2(r" — 1) (6A.3)
=p(r+1)— 1/2(1’2 —7)

where the columns of A are assumed to be orthogonal. The number of degrees of freedom
d is then given by the number of equations implied by Equation 6A.2, that is, the number
of distinct elements in 3 minus the number of free parameters m. We have

d=1/2p(p+1) — [pr + 1) — 1/2(* — 1))
=1/2[(p -1~ (p— 1) (6A.4)

which for a meaningful (i.e., nontrivial) empirical application must be strictly posi-
tive. This places an upper bound on the number of common factors r, which may be
obtained in practice, a number which is generally somewhat smaller than the number of
variables p.

6.B Maximum Likelihood Algorithm

The maximum likelihood (ML) algorithm presented here is proposed by Joreskog [7]. The
algorithm uses an iterative procedure to compute a linear combination of variables to
form factors. Assume that the random vector x has a multivariate normal distribution
as defined in Equation 6.9. The elements of A, (), and ¥ are the parameters of the model
to be estimated from the data. From a random sample of N observations of x we can find
the mean vector and the estimated covariance matrix 3, whose elements are the usual
estimates of variances and covariances of the components of x.
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The distribution of % is the Wishart distribution [3]. The log-likelihood function is
given by

_ 1 -1
logL = _E(N — 1){log|2| +tr(22 )}
However, it is more convenient to minimize
F(A, , 9) = log[s| + tr(337") ~ log|3| — p

instead of maximizing log L [7]. They are equivalent because log L is a constant minus
1(N —1) times F. The function F is regarded as a function of A and ¥. Note that if H is
any nonsingular (k x k) matrix, then

F(AH™!, HOH', ¥) = F(4, Q, ¥)

which means that the parameters in A and () are not independent of one another, and to
make the ML estimates of A and () unique, k* independent restrictions must be imposed
on A and .

To find the minimum of F we shall first find the conditional minimum for a given ¥
and then find the overall minimum. The partial derivative of F with respect to A is

OF o1 syw-l
8—Af22 E-2)3A

See details in Ref. [7]. For a given W, the minimization of A is to be found in the solution of
3E-53A=0
Premultiplying with X gives
E-33'A=0
Using the following expression for the inverse 3" [3]
ST=u Tt —w A+ AT A) AT ! (6B.2)
whose left side may be further simplified [7] so that

S =T TAI+ATT AT =0
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Postmultiplying by I + AT 'A gives
C-TTA=0 (6B.3)
which after substitution of 3 from Equation 6A.2 and rearrangement of terms gives

SUTIA = A+ ATO1A)

Premultiplying by ¥ '/2

finally gives
(U202 (B 24) = (UT2A)I + ATUTA) (6B.4)

From Equation 6B.4, we can see that it is convenient to take A"W ' A to be diagonal, since F
is unaffected by postmultiplication of A by an orthogonal matrix and A™¥ A can be
reduced to diagonal form by orthogonal transformations [18]. In this case, Equation 6B.4
is a standard eigen decomposition form. The columns of ¥~ '/?A are latent vectors of ¥~'/2
20 12 and the diagonal elements of I + AT 'Aare the correspondmg latent roots. Let A,
> )\2 - > )\ be the latent roots of U ~1/2 E\I!_l/ 2and letey, ey, - -, e be aset of latent vectors
correspondmg to the k largest roots. Let Ak be the dlagonal matrix with )\1, )\2, . )\k as
diagonal elements and let E; be the matrix with ey, e,, ..., ¢ as columns. Then

P24 = Ek(Avk — 1)1/2
Premultiplying by ¥'/? gives the conditional ML estimate of A as
A= UL A — D'V (6B.5)

Up to now, we have considered the minimization of F with respect to A for a given V.
Now let us examine the partial derivative of F with respect to ¥ [3],

g—m—dlag[E (O 2)}

Substituting 3! with Equation 6B.2 and using Equation 6B.3 gives

OF T -1 S -1
which by Equation 6.6 becomes

OF _ 3 ~1/A AT S -1
Minimizing it, we will get,

U = diag(S — AAT) (6B.6)

By iterating Equation 6B.5 and Equation 6B.6, the ML estimation of the FA model of
Equation 6.4 can be obtained.
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Remote sensing often involves probing a region of interest with a transmitted electro-
magnetic signal, and then analyzing the returned signal to infer characteristics of the
investigated region. It is not uncommon for the measured signal to be relatively weak or
for ambient noise to interfere with the sensor’s ability to isolate and measure only the
desired return signal. Although there are potential hardware solutions to these obstacles,
such as increasing the power in the transmit signal to strengthen the return signal, or
altering the transmit frequency, or shielding the system to eliminate the interfering ambient
noise, these solutions are not always viable. For example, regulatory constraints on the
amount of power that may be radiated by the sensor or the trade-off between the transmit
power and the battery life for a portable sensor may limit the power in the transmitted
signal, and effectively shielding a system in the field from ambient electromagnetic signals
is very difficult. Thus, signal processing is often utilized to improve signal detectability
in situations such as these where a hardware solution is not sufficient.

Adaptive filtering is an approach that is frequently employed to mitigate interference.
This approach, however, relies on the ability to measure the interference on auxiliary
reference sensors. The signals measured on the reference sensors are utilized to estimate
the interference, and then this estimate is subtracted from the signal measured by the
primary sensor, which consists of the signal of interest and the interference. When
the interference measured by the reference sensors is completely correlated with the
interference measured by the primary sensor, the adaptive filtering can completely
remove the interference from the primary signal. When there are limitations in the
ability to measure the interference, that is, the signals from the reference sensors are not
completely correlated with the interference measured by the primary sensor, this ap-
proach is not completely effective. Since some residual interference remains after the
adaptive interference cancellation, signal detection performance is adversely affected.
This is particularly true when the signal of interest is weak. Thus, methods to improve
signal detection when there is residual interference would be useful.

The Kalman filter (KF) is an important development in linear estimation theory. It is the
statistically optimal estimator when the noise is Gaussian-distributed. In addition, the
Kalman filter is still the optimal linear estimator in the minimum mean square error
(MMSE) sense even when the Gaussian assumption is dropped [1]. Here, Kalman filters
are applied to improve detection of weak harmonic signals. The emphasis in this chapter
is not on developing new Kalman filters but, rather, on applying them in novel ways for
improved weak harmonic signal detection. Both direct estimation and indirect estimation
of the harmonic signal of interest are considered. Direct estimation is achieved by
applying Kalman filters in the conventional manner; the state of the system is equal to
the signal to be estimated. Indirect estimation of the harmonic signal of interest is
achieved by reversing the usual application of the Kalman filter so the background
noise is the system state to be estimated, and the signal of interest is the observation
noise in the Kalman filter problem statement.

This approach to weak signal estimation is evaluated through application to quadru-
pole resonance (QR) signal estimation for landmine detection. Mine detection technolo-
gies and systems that are in use or have been proposed include electromagnetic induction
(EMI) [2], ground penetrating radar (GPR) [3], and QR [4,5]. Regardless of the technology
utilized, the goal is to achieve a high probability of detection, Pp, while maintaining a low
probability of false alarm, Pra. This is of particular importance for landmine detection
since the nearly perfect Pp required to comply with safety requirements often comes at
the expense of a high Pg,, and the time and cost required to remediate contaminated areas
is directly proportional to Pra. In areas such as a former battlefield, the average ratio of
real mines to suspect objects can be as low as 1:100, thus the process of clearing the area
often proceeds very slowly.
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QR technology for explosive detection is of crucial importance in an increasing
number of applications. Most explosives, such as RDX, TNT, PETN, etc., contain
nitrogen (N). Some of its isotopes, such as '*N, possess electric quadrupole moments.
When compounds with such moments are probed with radio-frequency (RF) signals,
they emit unique signals defined by the specific nucleus and its chemical environment.
The QR frequencies for explosives are quite specific and are not shared by other
nitrogenous materials. Since the detection process is specific to the chemistry of the
explosive and therefore is less susceptible to the types of false alarms experienced by
sensors typically used for landmine detection, such as EMI or GPR sensors, the pure
QR of "N nuclei supports a promising method for detecting explosives in the quan-
tities encountered in landmines. Unfortunately, QR signals are weak, and thus vulner-
able to both the thermal noise inherent in the sensor coil and external radio-frequency
interference (RFI). The performance of the Kalman filter approach is evaluated on both
simulated data and measured field data collected by Quantum Magnetics, Inc. (QM).
The results show that the proposed algorithm improves the performance of landmine
detection.

7.1 Signal Models

In this chapter, it is assumed that the sensor operates by repeatedly transmitting excita-
tion pulses to investigate the potential target and acquires the sensor response after each
pulse. The data acquired after each excitation pulse are termed a segment, and a group of
segments constitutes a measurement. In general, for each potential target there are
multiple measurements with each measurement containing many segments.

7.1.1 Harmonic Signal Model

The discrete-time harmonic signal of interest, at frequency fo, in a single segment can be
represented by

s(n) = Agcos 2mfon +¢y), n=0,1,...,N—-1 (7.1)

The measured signal may be demodulated at the frequency of the desired harmonic
signal, fo, to produce a baseband signal, 5(n),

§(n) = Age®, n=0,1,...,N—1 (7.2)

Assuming the frequency of the harmonic signal of interest is precisely known, the signal
of interest after demodulation and subsequent low-pass filtering to remove any aliasing
introduced by the demodulation is a DC constant.

7.1.2 Interference Signal Model

A source of interference for this type of signal detection problem is ambient harmonic
signals. For example, sensors operating in the RF band could experience interference due to
other transmitters operating in the same band, such as radio stations. Since there may be
many sources transmitting harmonic signals operating simultaneously, the demodulated
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interference signal measured in each segment may be modeled as the sum of the contribu-
tion from M different sources, each operating at its own frequency f,,

M
1= A,n)e@mtén) 3y —=0,1,...,N—1 (7.3)
=1

m

where the superscript ~ denotes a complex value and we assume the frequencies are
distinct, meaning f; # f; for i # j. The amplitudes A,,(n) from a discrete time series.
Although the amplitudes are not restricted to constant values in general, they are as-
sumed to remain essentially constant over the short time intervals during which each data
segment is collected. For time intervals on this order, it is reasonable to assume A1) is
constant for each data segment, but may change from segment to segment. Therefore, the
interference signal model may be expressed as

M

—
Il

ApeCfunten) o —0, . N-—1 (7.4)

m=1

This model represents all frequencies even though the harmonic signal of interest exists in
a very narrow band. In practice, only the frequency corresponding to the harmonic signal
of interest needs to be considered.

7.2 Interference Mitigation

Adaptive filtering is a widely applied approach for noise cancellation [6]. The basic
approach is illustrated in Figure 7.1. The primary signal consists of both the harmonic
signal of interest and the interference. In contrast, the signal measured on each auxiliary
antenna or sensor consists of only the interference. Adaptive noise cancellation utilizes
the measured reference signals to estimate the noise present in the measured primary
signal. The noise estimate is then subtracted from the primary signal to find the signal of
interest.

Adaptive noise cancellation, such as the least mean square (LMS) algorithm, is well
suited for those applications in which one or more reference signals are available [6].

. + )
S_lgnal of o + Slgnal
interest Primary estimate

antenna

Y

/

Adaptive
signal Reference filter
antenna /
FIGURE 7.1

Interference mitigation based on adaptive noise cancellation.
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In this application, the adaptive noise cancellation is performed in the frequency domain
by applying the normalized LMS algorithm to each frequency component of the fre-
quency domain representation of the measured primary signal. The primary measured
signal at time 7 may be denoted by d(n) and the measured reference signal with u(n). The
tap input vector may be represented by u(n) = [u(n) u(n — 1) --- u(n — M + D]' and
the tap weight vector may be given by w(#). Both the tap input and tap weight vectors are
of length M. Given these definitions, the filter output at time #, e(n), is

e(n) = d(n) — w(n)u(n) (7.5)

The quantity w''(n)u(n) represents the interference estimate. The tap weights are updated
according to

w(n + 1) = w(n) + uoP L (n)u(n)e* (n) (7.6)

where the parameter u, is an adaptation constant that controls the convergence rate and
P(n) is given by

P(n) = BP(n — 1) + (1 — B)|u(m)|’ (7.7)

with 0 < 8 < 1 [7]. The extension of this approach to utilize multiple reference signals is
straightforward.

7.3 Postmitigation Signal Models

Under perfect circumstances the interference present in the primary signal is completely
correlated with the reference signals and all interference can be removed by the adaptive
noise cancellation, leaving only Gaussian noise associated with the sensor system. Since
the interference often travels over multiple paths and the sensing systems are not perfect,
however, the adaptive interference mitigation rarely removes all the interference. Thus,
there is residual interference that remains after the adaptive noise cancellation. In add-
ition, the adaptive interference cancellation process alters the characteristics of the signal
of interest.

The real-valued observed data prior to interference mitigation may be represented by

x(n) =s(n) +I(n) + wn), n=0,1,..., N—-1 (7.8)

where s(n) is the signal of interest, I(n) is the interference, and w(n) is Gaussian noise
associated with the sensor system. The baseband signal after demodulation becomes

x(n) = &(n) + I(n) + @(n) (7.9)
where I(n) is the interference, which is reduced but not completely eliminated by adaptive

filtering.
The signal remaining after interference mitigation is

y(n)=smn)+on), n=01,..., N—-1 (7.10)
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where 5(n) is now the altered signal of interest and o(n) is the background noise
remaining after interference mitigation, both of which are described in the following
sections.

7.3.1 Harmonic Signal Model

Due to the nonlinear phase effects of the adaptive filter, the demodulated harmonic signal
of interest is altered by the interference mitigation; it is no longer guaranteed to be a DC
constant. The postmitigation harmonic signal is modeled with a first-order Gaussian—
Markov model,

§(n+1) = 3n) + &(n) (7.11)

where (1) is zero mean white Gaussian noise with variance o2.

7.3.2 Interference Signal Model

Although interference mitigation can remove most of the interference, some residual
interference remains in the postmitigation signal. The background noise remaining
after interference mitigation, o(r), consists of the residual interference and the remaining
sensor noise, which is altered by the mitigation. Either an autoregressive (AR) model or
an autoregressive moving average (ARMA) model is appropriate for representing the
sharp spectral peaks, valleys, and roll-offs in the power spectrum of (7). An AR model is
a causal, linear, time-invariant discrete-time system with a transfer function containing
only poles, whereas an ARMA model is a causal, linear, time-invariant discrete-time
system with a transfer function containing both zeros and poles. The AR model has a
computational advantage over the ARMA model in the coefficient computation. Specif-
ically, the AR coefficient computation involves solving a system of linear equations
known as Yule-Walker equations, whereas the ARMA coefficient computation is signifi-
cantly more complicated because it requires solving systems of nonlinear equations.
Estimating and identifying an AR model for real-valued time series is well understood
[8]. However, for complex-valued AR models, few theoretical and practical identification
and estimation methods could be found in the literature. The most common approach is
to adapt methods originally developed for real-valued data to complex-valued data. This
strategy works well only when the the complex-valued process is the output of a linear
system driven by white circular noise whose real and imaginary parts are uncorrelated
and white [9]. Unfortunately, circularity is not always guaranteed for most complex-
valued processes in practical situations. Analysis of the postmitigation background
noise for the specific QR signal detection problem considered here showed that it is not
a pure circular complex process. However, since the cross-correlation between the real
and imaginary parts is small compared to the autocorrelation, we assume that the noise is
a circular complex process and can be modeled as a P-th order complex AR process. Thus,

P
o(n) = = _a,0(n —p) + &n) (7.12)
p=1

where the driving noise &(n) is white and complex-valued.

Conventional modeling methods extended from real-valued time series are used for
estimating the complex AR parameters. The Burg algorithm, which estimates the AR
parameters by determining reflection coefficients that minimize the sum of forward and
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backward residuals, is the preferred estimator among various estimators for AR param-
eters [10]. Furthermore, the Burg algorithm has been reformulated so that it can be used to
analyze data containing several separate segments [11]. The usual way of combining the
information across segments is to take the average of the models estimated from the
individual segments [12], such as average AR parameters (AVA) and average reflection
coefficient (AVK). We found that for this application, the model coefficients are stable
enough to be averaged. Although this will reduce the estimate variance, it still contains a
bias that is proportional to 1/N, where N is the number of observations [13]. Another
novel extension of the Burg algorithm to segments, the segment Burg algorithm (SBurg),
proposed in [14], estimates the reflection coefficients by minimizing the sum of the
forward and backward residuals of all the segments taken together. This means a single
model is fit to all the segments simultaneously.

An important aspect of AR modeling is choosing the appropriate order P. Although
there are several criteria to determine the order for a real AR model, no formal criterion
exists for a complex AR model. We adopt the Akaike information criterion (AIC) [15] that
is a common choice for real AR models. The AIC is defined as

AICG) = In(@2() + 2, p=123,... (7.13)

where 62(p) is the prediction error power at P-th order and T is the total number of
samples. The prediction error power for a given value of P is simply the variance in the
difference between the true signal and the estimate for the signal using a model of order
P. For signal measurements consisting of multiple segments, i.e. S segments and N
samples/segment, T=N x S. The model order for which the AIC has the smallest value
is chosen. The AIC method tends to overestimate the order [16] and is good for short data
records.

7.4 Kalman Filters for Weak Signal Estimation

Kalman filters are appropriate for discrete-time, linear, and dynamic systems whose
output can be characterized by the system state. To establish notation and terminology,
this section provides a brief overview consisting of the problem statement and the recursive
solution of the Kalman filter variants applied for weak harmonic signal detection.

Two approaches to estimate a weak signal in nonstationary noise, both employing
Kalman filter approaches, are proposed [17]. The first approach directly estimates the
signal of interest. In this approach, the Kalman filter is utilized in a traditional manner, in
that the signal of interest is the state to be estimated. The second approach indirectly
estimates the signal of interest. This approach utilizes the Kalman filter in an unconven-
tional way because the noise is the state to be estimated, and then the noise estimate is
subtracted from the measured signal to obtain an estimate of the signal of interest. The
problem statements and recursive Kalman filter solutions for each of the Kalman filters
considered are provided with their application to weak signal estimation.

These approaches have an advantage over the more intuitive approach of simply sub-
tracting a measurement of the noise recorded in the field because the measured background
noise is nonstationary, and the residual background noise after interference mitigation
is also nonstationary. Due to the nonstationarity of the background noise, it must be
measured and subtracted in real time. This is exactly what the adaptive frequency-domain
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interference mitigation attempts to do, and the interference mitigation does significantly
improve harmonic signal detection. There are, however, limitations to the accuracy with
which the reference background noise can be measured, and these limitations make the
interference mitigation insufficient for noise reduction. Thus, further processing, such as
the Kalman filtering proposed here, is necessary to improve detection performance.

7.4.1 Direct Signal Estimation

The first approach assumes the demodulated harmonic signal is the system state to be
estimated. The conventional Kalman filter was designed for white noise. Since the meas-
urement noise in this application is colored, it is necessary to investigate modified Kalman
filters. Two modifications are considered: utilizing an autoregressive (AR) model for the
colored noise and designing a Kalman filter for colored noise, which can be modeled as a
Markov process.

In applying each of the following Kalman filter variants to directly estimate the
demodulated harmonic signal, the system is assumed to be described by

state equation: 5p = 81 + & (7.14)

observation equation: iy = 5§ + U (7.15)

where 3§ is the postmitigation harmonic signal, modeled using a first-order Gaussian—
Markov model, and o is the postmitigation background noise.

7.4.1.1 Conventional Kalman Filter

The system model for the conventional Kalman filter is described by two equations: a state
equation and an observation equation. The state equation relates the current system
state to the previous system state, while the observation equation relates the observed
data to the current system state. Thus, the system model is described by

state equation: x; = Fixy_1 + Gywy (7.16)

observation equation: z; = H,I:ka + ug (7.17)

where the M-dimensional parameter vector x; represents the state of the system at time k,
the M x M matrix Fy is the known state transition matrix relating the states of the system
at time k and k — 1, and the N-dimensional parameter vector z, represents the measured
data at time k. The M x 1 vector wy represents process noise, and the N x 1 vector u is
measurement noise. The M x M diagonal coefficient matrix G, modifies the variances of
the process noise. If both u; and wy are independent, zero mean, white noise processes
with E{uyull} = Ry and E{w,wi} = Qy, then the initial system state x; is a random vector,
with mean X, and covariance 2, independent of u; and wy.

The Kalman filter determines the estimates of the system state, Xix—1 = E{X(|z_1} and
Xk = E{xk|zi}, and the associated error covariance matrices 2yx_1 and 2. The recursive
solution is achieved in two steps. The first step predicts the current state and the error
covariance matrix using the previous data,

Xik—1 = Fro1Xe_1jk—1 (7.18)

Sik-1 = Fo S g1 By + Ge1Q 1Gy (7.19)
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The second step first determines the Kalman gain, K, and then updates the state and the
error covariance prediction using the current data,

Ky = S HeHP Sgeor + Re) ™! (7.20)
X = Xek—1 + Ki(zi — Hy'%Xe_1) (7.21)
Sie = I — KeH) S (7.22)

The initial conditions on the state estimate and error covariance matrix are X;p = Xo and
21\0 = 20.

In general, the system parameters F, G, and H are time-varying, which is denoted in the
preceding discussion by the subscript k. In the discussions of the Kalman filters imple-
mented for harmonic signal estimation, the system is assumed to be time-invariant. Thus,
the subscript k is omitted and the system model becomes

state equation: x; = Fx;_1 + Gwg (7.23)

observation equation: z; = H%%; + u (7.24)

7.4.1.2 Kalman Filter with an AR Model for Colored Noise

A Kalman filter for colored measurement noise, based on the fact that colored noise can
often be simulated with sufficient accuracy by a linear dynamic system driven by white
noise, is proposed in [18]. In this approach, the colored noise vector is included in an
augmented state variable vector, and the observations now contain only linear combin-
ations of the augmented state variables.

The state equation is unchanged from Equation 7.23; however, the observation equation
is modified so the measurement noise is colored, thus the system model is

state equation: x; = Fx;_1 + Gwg (7.25)

observation equation: z; = H%; + (7.26)

where 7y is colored noise modeled by the complex-valued AR process in Equation 7.12.
Expressing the P-th order AR process vy in state space notion yields

state equation: vy = Fyvi_1 + Gyé& (7.27)
observation equation: vy = Hglvk (7.28)
where -
ok—P+1)
ok — P +2)
Vi = ) (7.29)
o(k) Px1
0 1 0 0 0
0 0 1 0 0
F,=1 : : : RN : (7.30)
0 0 0 0 1
—ap —dp_1 —dp_ —a —a1]pyp
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G, =H,=|: (7.31)
0
1 Px1

and & is the white driving process in Equation 7.12 with zero mean and variance 7.
Combining Equation 7.25, Equation 7.26, and Equation 7.28, yields a new Kalman filter
expression whose dimensions have been extended,

state equation: X, = Fx;_1 + Gwy (7.32)

observation equation: zy = ﬁHik (7.33)

where

xk:{xk} Wk:{‘ivk} H =[H! HI],

:[F o} nd Ez[g (?v] (7.34)

In estimation literature, this is termed the noise-free [19] or perfect measurement [20]
problem. The process noise, wy, and colored noise state process noise, &, are assumed to
be uncorrelated, so
0 - Efww!!) = [% 02} (7.35)
0
Since there is no noise in Equation 7.33, the covariance matrix of the observation noise
R = 0. The recursive solution for this problem, defined in Equation 7.32 and Equation
7.33, is the same as for the conventional Kalman filter given in Equation 7.18 through
Equation 7.22.
When estimating the harmonic signal with the traditional Kalman filter with an AR
model for the colored noise, the coefficient matrices are

x(k) .
o(k— P +1) 0
%= |0k-P+2)| H=|. (7.36)
: 1
’Z)(k) P+1
1 0 0 0 0
0 1 0 0 0
F = : (7.37)
0O O 0 0 1
0 —ap —ap_ —az —a
1 0
7 _ 00
Wi = [“ﬂ G-= : (7.38)

01 (P+1)x2
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and

2
0 o3

Q = Efww!l} = [0%, 0 } (7.39)

Since the theoretical value R = 0 turns off the Kalman filter it does not track the signal, R
should be set to a positive value.

7.4.1.3 Kalman Filter for Colored Noise

The Kalman filter has been generalized to systems for which both the process noise and
measurement noise are colored and can be modeled as Markov processes [21]. A Markov
process is a process for which the probability density function of the current sample
depends only on the previous sample, not the entire process history. Although the Markov
assumption may not be accurate in practice, this approach remains applicable. The system
model is

state equation: x; = Fxx_1 + Guwy (7.40)

observation equation: z; = HE'x + 1 (7.41)

where the process noise wy and the measurement noise uy are both zero mean and colored
with arbitrary covariance matrices at time k, Q, and R, so
Q;; = cov(w;, wj),i,j=0,1,2,...

R = cov(u;, uj),i,j =0,1,2,...

The initial state x is a random vector with mean Xy and covariance matrix Py, and xo, wy,
and u;, are independent.
The prediction step of the Kalman filter solution is

Xik—1 = FXp_1j—1 (7.42)

Sike1 = FS 1+ GQu_ G + F¥ 4 + (FU, )" (7.43)

where W, | = k- %\k _;and W — %\k _ 1 is given recursively by
Wi = F¥ + GQiq G (7.44)
Wi =i - KHPWE (7.45)

ili

with the initial value ‘Ifg‘o = 0and Qp = 0. The k in the superscript denotes time k.
The subsequent update step is

X = Xek—1 + Ki(ze — H 1) (7.46)
S = i1 — KeSiKy! (7.47)
where K and Sy are given by

Ky = Spp_1H + Q)S; ! (7.48)
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S = H'S 1 H + H1Qy + (HTQ)™ + Ry (7.49)
Y = Qfj _ 1 is given recursively by

Q]z’(\ifl = FQ]z‘(—l\i—lﬂf’(i = Qﬁi—l + Ki(—Rjx — HHQﬁH) (7.50)
with—Ry being the new “data’ and the initial value QO‘Ok = 0.
When the noise is white & = 0 and W = 0, and this Kalman filter reduces to the
conventional Kalman filter. It is worth noting that this filter is optimal only when E{wy}
and E{u;} are known.

7.4.2 Indirect Signal Estimation

A central premise in Kalman filter theory is that the underlying state-space model is
accurate. When this assumption is violated, the performance of the filter can deteri-
orate appreciably. The sensitivity of the Kalman filter to signal modeling errors has
led to the development of robust Kalman filtering techniques based on modeling the
noise.

The conventional point of view in applying Kalman filters to a signal detection
problem is to assign the system state, x;, to the signal to be detected. Under this
paradigm, the hypotheses “‘signal absent”” (Hp) and “‘signal present” (H;) are repre-
sented by the state itself. When the conventional point of view is applied for this
particular application, the demodulated harmonic signal (a DC constant) is the system
state to be estimated. Although a model for the desired signal can be developed from a
relatively pure harmonic signal obtained in a shielded lab environment, that signal
model often differs from the harmonic signal measured in the field, sometimes substan-
tially, because the measured signal may be a function of system and environmental
parameters, such as temperature. Therefore the harmonic signal measured in the field
may deviate from the assumed signal model and the Kalman filter may produce a poor
state estimate due to inaccuracies in the state equation. However, the background noise
in the field can be measured, from which a reliable noise model can be developed, even
though the measured noise is not exactly the same as the noise corrupting the meas-
urements.

The background noise in the postmitigation signal (Equation 7.10), (), can be modeled
as a complex-valued AR process as previously described. The Kalman filter is applied to
estimate the background noise in the postmitigation signal and then the background noise
estimate is subtracted from the postmitigation signal to indirectly estimate the postmiti-
gation harmonic signal (a DC constant). Thus, the state in the Kalman filter, x;, is the
background noise v(n),

3k —P+1)
ok — P +2)
Xp = : (7.51)
a(k)

and the measurement noise in the observation, ui, is the demodulated harmonic
signal 5(n),

uy =S¢ (7.52)
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The other system parameters are

0 1 0 0 0
0 0 1 0 0
F=1| : : : R : (7.53)
0 0 0 0 1
—ap —ap-1 —ap —ay —o
0
0
G-—H-|: (7.54)
0
1 Px1

and wy = &. Therefore, the measurement equation becomes
Zx = U + Sk (7.55)

where z is the measured data corresponding to y(k) in Equation 7.10.

A Kalman filter assumes complete a priori knowledge of the process and measurement
noise statistics Q and R. These statistics, however, are inexactly known in most practical
situations. The use of incorrect a priori statistics in the design of a Kalman filter can lead to
large estimation errors, or even to a divergence of errors. To reduce or bound these errors,
an adaptive filter is employed by modifying or adapting the Kalman filter to the real data.
The approaches to adaptive filtering are divided into four categories: Bayesian, maximum
likelihood, correlation, and covariance matching [22]. The last technique has been sug-
gested for the situations when Q is known but R is unknown. The covariance matching
algorithm ensures that the residuals remain consistent with the theoretical covariance.
The residual, or innovation, is defined by

Ok = Z) — HH)A(k|k,1 (7.56)
which has a theoretical covariance of
Efovl} = H'S ;H+ R (7.57)

If the actual covariance of vy is much larger than the covariance obtained from the
Kalman filter, R should be increased to prevent divergence. This has the effect of
increasing ji_1, thus bringing the actual covariance of v, closer to that given in
Equation 7.57. In this case, R is estimated as

b, 1 H H
Rk = E ; vk,]»kaj —H Ek|k71H (758)

Here, a two-step adaptive Kalman filter using the covariance matching method is pro-
posed. First, the covariance matching method is applied to estimate R. Then, the conven-
tional Kalman filter is implemented with R = R to estimate the background noise. In this
application, there are several measurements of data, with each measurement containing
tens to hundreds of segments. For each segment, the covariance matching method is
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(yn) = 8(n) + v(n)
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Block diagram of the two-step adap-
tive Kalman filter strategy. (From Tan v
et al., IEEE Transactions on Geoscience <p—> Hy
and Remote Sensing 43(7), 1507-1516, Decision > B
2005. With permission.) > H

employed to estimate Ry, where the subscript k denotes the sample index. Since it is an
adaptive procedure, only the steady-state values of Ry (k > m) are retained and averaged
to find the value of R, for each segment,

Ri=—— > R (7.59)

where the subscript s denotes the segment index. Then, the average is taken over all the
segments in each measurement. Thus,

L
R=-)"R, (7.60)
s=1

=

is used in the conventional Kalman filter in this two-step process. A block diagram
depicting the two-step adaptive Kalman filter strategy is shown in Figure 7.2.

7.5 Application to Landmine Detection via Quadrupole Resonance

Landmines are a form of unexploded ordnance, usually emplaced on or just under the
ground, which are designed to explode in the presence of a triggering stimulus such as
pressure from a foot or vehicle. Generally, landmines are divided into two categories:
antipersonnel mines and antitank mines. Antipersonnel (AP) landmines are devices
usually designed to be triggered by a relatively small amount of pressure, typically
401bs, and generally contain a small amount of explosive so that the explosion aims or
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kills the person who triggers the device. In contrast, antitank (AT) landmines
are specifically designed to destroy tanks and vehicles. They explode only if compressed
by an object weighing hundreds of pounds. AP landmines are generally small (less
than 10cm in diameter) and are usually more difficult to detect than the larger AT
landmines.

7.5.1 Quadrupole Resonance

When compounds with quadrupole moments are excited by a properly designed EMI
system, they emit unique signals characteristic of the compound’s chemical structure. The
signal for a compound consists of a set of spectral lines, where the spectral lines corres-
pond to the QR frequencies for that compound, and every compound has its own set of
resonant frequencies. This phenomenon is similar to nuclear magnetic resonance (NMR).
Although there are several subtle distinctions between QR and NMR, in this context it is
sufficient to view QR as NMR without the external magnetic field [4].

The QR phenomenon is applicable for landmine detection because many explosives,
such as RDX, TNT, and PETN, contain nitrogen, and some of nitrogen’s isotopes,
namely "N, have electric quadrupole moments. Because of the chemical specificity
of QR, the QR frequencies for explosives are unique and are not shared with other
nitrogenous materials. In summary, landmine detection using QR is achieved by
observing the presence, or absence, of a QR signal after applying a sequence of RF
pulses designed to excite the resonant frequency of frequencies for the explosive of
interest [4].

RFI presents a problem since the frequencies of the QR response fall within the
commercial AM radio band. After the QR response is measured, additional processing
is often utilized to reduce the RFI, which is usually a non-Gaussian colored noise process.
Adaptive filtering is a common method for cancelling RFI when RFI reference signals
are available. The frequency-domain LMS algorithm is an efficient method for extracting
the QR signal from the background RFI. Under perfect circumstances, when the RFI
measured on the main antenna is completely correlated with the signals measured on
the reference antennas, all RFI can be removed by RFI mitigation, leaving only Gaussian
noise associated with the QR system. Since the RFI travels over multiple paths and the
antenna system is not perfect, however, the RFI mitigation cannot remove all of the non-
Gaussian noise. Consequently, more sophisticated signal processing methods must be
employed to estimate the QR signal after the RFI mitigation, and thus improve the QR
signal detection. Figure 7.3 shows the basic block diagram for QR signal detection.

The data acquired during each excitation pulse are termed a segment, and a group of
segments constitutes a measurement. In general, for each potential target there are
multiple measurements, with each measurement containing several hundred segments.
The measurements are demodulated at the expected QR resonant frequency. Thus, if the
demodulated frequency equals the QR resonant frequency, the QR signal after demodu-
lation is a DC constant.

7.5.2 Radio-Frequency Interference

Although QR is a promising technology due to its chemical specificity, it is limited by the
inherently weak QR signal and susceptibility to RFL. TNT is one of the most prevalent
explosives in landmines, and also one of the most difficult explosives to detect. TNT
possesses 18 resonant frequencies, 12 of which are clustered in the range of 700-900 kHz.
Consequently, AM radio transmitters strongly interfere with TNT-QR detection in the
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FIGURE 7.3

Signal processing block diagram for QR signal detection. F is the resonant QR frequency for the explosive of
interest and ~ denotes a complex-valued signal. (From Tan et al., IEEE Transactions on Geoscience and Remote
Sensing 43(7), 1507-1516, 2005. With permission.)

field, and are the primary source of RFL Since there may be several AM radio transmitters
operating simultaneously, the baseband (after demodulation) RFI signal measured by the
QR system in each segment may be modeled as

M
I(n) = 3" Ap(m)e@hmtdn) -y =0, .., N1 (7.61)
m=1

where the superscript ~ denotes a complex value and we assume the frequencies are
distinct, meaning f; # f; for i # j. For the RFI, A, (n) is the discrete time series of the
message signal from an AM transmitter, which may be a nonstationary speech or music
signal from a commercial AM radio station. The statistics of this signal, however, can be
assumed to remain essentially constant over the short time intervals during which data
are collected. For time intervals of this order, it is reasonable to assume A,,(n) is constant
for each data segment, but may change from segment to segment. Therefore, Equation
7.61 may be expressed as

M
I(n)=>_ Ao, n=0,. ., N-1 (7.62)

m=1

This model represents all frequencies even though each of the QR signals exists in a very
narrow band. In practice, only the frequencies corresponding to the QR signals need be
considered.

7.5.3 Postmitigation Signals

The applicability of the postmitigation signal models described previously is demon-
strated by examining measured QR and RFI signals.
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7.5.3.1 Postmitigation Quadrupole Resonance Signal

An example simulated QR signal before and after RFI mitigation is shown in Figure 7.4.
Although the QR signal is a DC constant prior to RFI mitigation, that is no longer true
after mitigation. The first-order Gaussian-Markov model introduced previously is an
appropriate model for postmitigation QR signal. The value of o7 = 0.1 is estimated
from the data.

7.5.3.2  Postmitigation Background Noise

Although RFI mitigation can remove most of the RFI, some residual RFI remains in the
postmitigation signal. The background noise remaining after RFI mitigation, (), consists
of the residual RFI and the remaining sensor noise, which is altered by the mitigation. An
example power spectrum of 9(n) derived from experimental data is shown in Figure 7.5.
The power spectrum contains numerous peaks and valleys. Thus, the AR and ARMA
models discussed previously are appropriate for modeling the residual background noise.

7.5.4 Kalman Filters for Quadrupole Resonance Detection

7.5.4.1 Conventional Kalman Filter

For the system described by Equation 7.14 and Equation 7.15, the variables in the
conventional Kalman filter are x; = 5(k), wy = w(k), ux = 0(k), and z; = y(k), and the
coefficient and covariance matrices in the Kalman filter are F = [1], G = [1], H = [1], and
Q = [0,2]. The covariance R is estimated from the data, and the off-diagonal elements are
set to 0.

12 T T T T - T T T T T
10—t e ]
\,_ -
\\’ ‘‘‘‘ “\ _____________ ""'\,_’ ~\
8t i
o ol — Pre RFI-MIT: Real Part
S == Post RFI-MIT: Real Part
é_ - - Pre RFI-MIT: Imag Part
<4+ Post RFI-MIT: Imag Part
ol J
0__4"_"_"-----———---:: --------------- i
-2 1 1 ! 1 1 1 L L L !

Samples

FIGURE 7.4
Example realization of the the simulated QR signal before and after RFI mitigation. (From Tan et al., IEEE
Transactions on Geoscience and Remote Sensing 43(7), 1507-1516, 2005. With permission.)
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Power spectrum of the remaining background noise #(n) after RFI mitigation. The x-axis units are normalized

frequency ([—m,]). (From Tan et al., IEEE Transactions on Geoscience and Remote Sensing 43(7), 1507-1516, 2005.
With permission.)

7.5.4.2 Kalman Filter with an Autoregressive Model for Colored Noise

The multi-segment Burg algorithms are used to estimate the AR parameters, and the
simulation results do not show significant differences between AVA, AVK, and SBurg
algorithms. The AVA algorithm was chosen to estimate the AR coefficients @, and error
power o describing the background noise for each measurement. The optimal order, as
determined by the AIC, is 6.

7.5.4.3 Kalman Filter for Colored Noise

For this Kalman filter, the coefficient and covariance matrices are the same as for the
conventional Kalman filter, with the exception of the observation noise covariance R. In
this filter, all elements of R are retained, as opposed to the conventional Kalman filter in
which only the diagonal elements are retained.

7.5.4.4 Indirect Signal Estimation

For the adaptive Kalman filter in the first step, all coefficient and covariance matrices,
F,G,H,Q,R, and X, are the same under both H; and H,. The practical value of xq is
given by

[70) y(1) -y - DI (7.63)

where P is the order of the AR model representing v(n). For the conventional Kalman filter
in the second step, F, G, H, Q, and 3 are the same under both H; and Hy; however, the
estimated observation noise covariance, R, depends on the postmitigation signal and
therefore is different under the two hypotheses.
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7.6 Performance Evaluation

The proposed Kalman filter methods are evaluated on experimental data collected in the
field by QM. A typical OR signal consists of multiple sinusoids where the amplitude and
frequency of each resonant line are the parameters of interest. Usually, the amplitude of
only one resonant line is estimated at a time, and the frequency is known a priori. For the
baseband signal demodulated at the desired resonant frequency, adaptive RFI mitigation
is employed. A 1-tap LMS mitigation algorithm is applied to each frequency component
of the frequency-domain representation of the experimental data [23].

First, performance is evaluated for synthetic QR data. In this case, the RFI data are
measured experimentally in the absence of an explosive material, and an ideal QR signal
(complex-valued DC signal) is injected into the measured RFI data. Second, performance
is evaluated for experimental QR data. In this case, the data are measured for both
explosive and nonexplosive samples in the presence of RFL. The matched filter is
employed for the synthetic QR data, while the energy detector is utilized for the measured
OR data.

7.6.1 Detection Algorithms

After an estimate of the QR signal has been obtained, a detection algorithm must be
applied to determine whether or not the QR signal is present. For this binary decision
problem, both an energy detector and a matched filter are applied. .

The energy detector simply computes the energy in the QR signal estimate, 5(1)

N—

£

n=0

_

s(n)|? (7.64)

As it is a simple detection algorithm that does not incorporate any prior knowledge of the
OR signal characteristics, it is easy to compute.
The matched filter computes the detection statistic

N-1 . -
A= RE{Z §(n)5} (7.65)

n=0

where § is the reference signal, which, in this application, is the known QR signal. The
matched filter is optimal only if the reference signal is precisely known a priori. Thus, if
there is uncertainty regarding the resonant frequency of the QR signal, the matched filter
will no longer be optimal. QR resonant frequency uncertainty may arise due to variations
in environmental parameters, such as temperature.

7.6.2 Synthetic Quadrupole Resonance Data

Prior to detection using the matched filter, the QR signal is estimated directly. Three
Kalman filter approaches to estimate the QR signal are considered: the conventional Kalman
filter, the extended Kalman filter, and the Kalman filter for arbitrary colored noise.
Each of these filters requires the initial value of the system state, xo, and the selection
of the initial value may affect the estimate of x. The sample mean of the observation
y(n) is used to set xq. Since only the steady-state output of the Kalman filter is reliable,
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the first 39 points are removed from the data used for detection to ensure the system has
reached steady state.

Although the measurement noise is known to be colored, the conventional Kalman
filter (conKF) designed for white noise is applied to estimate the QR signal. This algo-
rithm has the benefits of being simpler with lower computational burden than either of
the other two Kalman filters proposed for direct estimation of the QR signal. Although its
assumptions regarding the noise structure are recognized as inaccurate, its performance
can be used as a benchmark for comparison. For a given process noise covariance Q, the
covariance of the intial state xo, 2, affects the speed with which 3 reaches steady state in
the conventional Kalman filter. As Q increases, it takes less time for % to converge.
However, the steady-state value of 3 also increases. In these simulations, 2y = 10 in
the conventional Kalman filter.

The second approach applied to estimate the QR signal is the Kalman filter with an AR
model for the colored noise (extKF). Since R = 0 shuts down the Kalman filter it does
not track the signal, we set R = 10. It is shown that the detection performance does not
decrease when Q increases.

Finally, the Kalman filter for colored noise (arbKF) is applied to the synthetic data.
Compared to the conventional Kalman filter, the Kalman filter for arbitrary noise has a
smaller Kalman gain, and therefore, slower convergence speed. Consequently, the error
covariances for the Kalman filter for arbitrary noise are larger. Since only the steady state
is used for detection, ¥, = 50 is chosen for Q = 0.1 and X, = 100is chosen for Q = 1 and
Q = 10.

Results for each of these Kalman filtering methods for different values of Q are
presented in Figure 7.6. When Q is small (Q = 0.1 and Q = 1), all three methods
have similar detection performance. However, when greater model error is introduced
in the state equation (Q = 10) both the conventional Kalman filter and the Kalman filter
for colored noise have poorer detection performance than the Kalman filter with an AR
model for the noise. Thus, the Kalman filter with an AR model for the noise shows robust
performance. Considering the computational efficiency, the Kalman filter for colored
noise is the poorest because it recursively estimates W and (2 for each k. In this applica-
tion, although the measurement noise oy is colored, the diagonal elements of the covar-
iance matrix dominate. Therefore, the conventional Kalman filter is preferable to the
Kalman filter for colored noise.

7.6.3 Measured Quadrupole Resonance Data

Indirect estimation of the QR signal is validated using two groups of real data collected
both with and without an explosive present. The two explosives for which measured QR
data are collected, denoted Type A and Type B, are among the more common explosives
found in landmines. It is well known that the Type B explosive is the more challenging of
the two explosives to detect. The first group, denoted Data II, has Type A explosive, and
the second group, denoted Data III, has both Type A and Type B explosives.

For each data group, a 50-50% training—testing strategy is employed. Thus, 50% of the
data are used to estimate the coefficient and covariance matrices, and the remaining 50%
of the data are used to test the algorithm. The AVA algorithm is utilized to estimate the
AR parameters from the training data. Table 7.1 lists the four training—testing strategies
considered. For example, if there are 10 measurements and measurements 1-5 are used
for training and measurements 6-10 are used for testing, then this is termed “first 50%
training, last 50% testing.”” If the training—testing strategy measurements 1,3,5,7,9 are
used for training, and the other measurements for testing, this is termed “odd 50%
training, even 50% testing.”
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FIGURE 7.6

Direct estimation of QR signal tested on Data I (synthetic data) with different noise model variance Q. (From Tan

et al., IEEE Transactions on Geoscience and Remote Sensing 43(7), 1507-1516, 2005. With permission.)

Figure 7.7 and Figure 7.8 present the performance of indirect QR signal estimation
followed by an energy detector. The data are measured for both explosive and nonexplo-
sive samples in the presence of RFL. The two different explosive compounds are referred
to as Type A explosive and Type B explosive. Data II and Data III-1 are Type A explosive
and Data III-2 is Type B explosive. Indirect QR signal estimation provides almost perfect

TABLE 7.1

Training-Testing Strategies for Data II and Data III

Training Testing
First 50% Last 50%
Last 50% First 50%
Odd 50% Even 50%
Even 50% Odd 50%

© 2007 by Taylor & Francis Group, LLC.



(a) Data II-1 (b) Data Il-2

1 ' ' : : 1
0.9 1 0.9t
5§08 1 8%%
807 { 8oz}
) ol
206 { ©0.6f
° k)
205 1 20.5¢
3 3
g 04 -~ 2 Step KF: First/Last 1 8041 -~ 2 Step KF: First/Last
Q03 — 2 Step KF: Last/First | n% 0.3} — 2 Step KF: Last/First
“““ 2 Step KF: Odd/Even «+ 2 Step KF: Odd/Even
0.2 -- 2 Step KF: Even/Odd 1 02f - - 2 Step KF: Even/Odd
0.1 -~ Pre KF | 01l - Pre KF
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Probability of false alarm Probability of false alarm
(c) Data II-3
1r T
0.9f
c 08¢
kel
© 0.7¢
2
S 0.6}
ks
> 05¢
E 0.4y -~ 2 Step KF: First/Last
° 03l — 2 Step KF: Last/First
R IV S KR 2 Step KF: Odd/Even
0.2} - - 2 Step KF: Even/Odd
01l —— Pre KF
0
0 0.2 0.4 0.6 0.8 1
Probability of false alarm
FIGURE 7.7

Indirect estimation of QR signal tested on Data II (true data). Four different training—testing strategies are plotted
together. (From Tan et al., IEEE Transactions on Geoscience and Remote Sensing 43(7), 1507-1516, 2005. With
permission.)

detection for the Type A explosive. Although detection is not near-perfect for the Type B
explosive, the detection performance following the application of the Kalman filter is
better than the performance prior to applying the Kalman filter.

7.7 Summary

The detectability of weak signals in remote sensing applications can be hindered by
the presence of interference signals. In situations where it is not possible to record the
measurement without the interference, adaptive filtering is an appropriate method to
mitigate the interference in the measured signal. Adaptive filtering, however, may
not remove all the interference from the measured signal if the reference signals are not
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Indirect estimation of QR signal tested on Data III (true data). Four different training—testing strategies are
plotted together. (From Tan et al., IEEE Transactions on Geoscience and Remote Sensing 43(7), 1507-1516, 2005. With
permission.)

completely correlated with the primary measured signal. One approach for subsequent
processing to detect the signal of interest when residual interference remains after the
adaptive noise cancellation is Kalman filtering.

An accurate signal model is necessary for Kalman filters to perform well. It is so critical
that even small deviations may cause very poor performance. The harmonic signal of
interest may be sensitive to the external environment, which may then restrict the signal
model accuracy. To overcome this limitation, an adaptive two-step algorithm, employing
Kalman filters, is proposed to estimate the signal of interest indirectly.

The utility of this approach is illustrated by applying it to QR signal estimation for
landmine detection. QR technology provides promising explosive detection efficiency
because it can detect the “fingerprint” of explosives. In applications such as humanitarian
demining, QR has proven to be highly effective if the QR sensor is not exposed to RFL
Although adaptive RFI mitigation removes most of RFI, additional signal processing
algorithms applied to the postmitigation signal are still necessary to improve landmine
detection. Indirect signal estimation is compared to direct signal estimation using Kalman
filters and is shown to be more effective. The results of this study indicate that indirect QR
signal estimation provides robust detection performance.
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8.1 Introduction

The repeated occurrence of severe wildfires, which affect various fire-prone ecosystems of
the world, has highlighted the need to develop effective tools for monitoring fire-related
parameters. Vegetation water content (VWC), which influences the biomass burning
processes, is an example of one such parameter [1-3]. The physical definitions of VWC
vary from water volume per leaf or ground area (equivalent water thickness) to water
mass per mass of vegetation [4]. Therefore, VWC could also be used to infer vegetation
water stress and to assess drought conditions that linked with fire risk [5]. Decreases in
VWC due to the seasonal decrease in available soil moisture can induce severe fires in
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most ecosystems. VWC is particularly important for determining the behavior of fires in
savanna ecosystems because the herbaceous layer becomes especially flammable during
the dry season when the VWC is low [6,7].

Typically, VWC in savanna ecosystems is measured using labor-intensive vegetation
sampling. Several studies, however, indicated that VWC can be characterized temporally
and spatially using meteorological or remote sensing data, which could contribute to the
monitoring of fire risk [1,4]. The meteorological Keetch-Byram drought index (KBDI) was
selected for this study. This index was developed to incorporate soil water content in the
root zone of vegetation and is able to assess the seasonal trend of VWC [3,8]. The KBDI is a
cumulative algorithm for the estimation of fire potential from meteorological information,
including daily maximum temperature, daily total precipitation, and mean annual pre-
cipitation [9,10]. The KBDI also has been used for the assessment of VWC for vegetation
types with shallow rooting systems, for example, the herbaceous layer of the savanna
ecosystem [8,11].

The application of drought indices, however, presents specific operational challenges.
These challenges are due to the lack of meteorological data for certain areas, as well as
spatial interpolation techniques that are not always suitable for use in areas with complex
terrain features. Satellite data provide sound alternatives to meteorological indices in
this context. Remotely sensed data have significant potential for monitoring vegetation
dynamics at regional to global scale, given the synoptic coverage and repeated temporal
sampling of satellite observations (e.g., SPOT VEGETATION or NOAA AVHRR) [12,13].
These data have the advantage of providing information on remote areas where ground
measurements are impossible to obtain on a regular basis.

Most research in the scientific community using optical sensors (e.g., SPOT VEGETA-
TION) to study biomass burning has focused on two areas [4]: (1) the direct estimation of
VWC and (2) the estimation of chlorophyll content or degree of drying as an alternative to
the estimation of VWC. Chlorophyll-related indices are related to VWC based on the
hypothesis that the chlorophyll content of leaves decreases proportionally to the VWC
[4]. This assumption has been confirmed for selected species with shallow rooting systems
(e.g., grasslands and understory forest vegetation) [14-16], but cannot be generalized to all
ecosystems [4]. Therefore, chlorophyll-related indices, such as the normalized difference
vegetation index (NDVI), only can be used in regions where the relationship among
chlorophyll content, degree of curing, and water content has been established.

Accordingly, a remote sensing index that is directly coupled to the VWC is used to
investigate the potential of hyper-temporal satellite imagery to monitor the seasonal
vegetation moisture dynamics. Several studies [4,16-18] have demonstrated that VWC
can be estimated directly through the normalized difference of the near infrared reflect-
ance (NIR, 0.78-0.89 um) pnir, influenced by the internal structure and the dry matter,
and the shortwave infrared reflectance (SWIR, 1.58-1.75 um) pswir, influenced by plant
tissue water content:

NDWI = PNIR — PSWIR 8.1)
PNIR T PswIR

The NDWTI or normalized difference infrared index (NDII) [19] is similar to the global
vegetation moisture index (GVMI) [20].

The relationship between NDWI and KBDI time-series, both related to VWC dynamics,
is explored. Although the value of time-series data for monitoring vegetation moisture
dynamics has been firmly established [21], only a few studies have taken serial correlation
into account when correlating time-series [6,22-25]. Serial correlation occurs when data
collected through time contain values at time ¢, which are correlated with observations at
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time t—1. This type of correlation in time-series, when related to VWC dynamics, is
mainly caused by the seasonal variation (dry-wet cycle) of vegetation [26]. Serial correl-
ation can be used to forecast future values of the time-series by modeling the dependence
between observations but affects correlations between variables measured in time and
violates the basic regression assumption of independence [22]. Correlation coefficients of
serially correlated data cannot be used as indicators of goodness-of-fit of a model as the
correlation coefficients are artificially inflated [22,27].

The study of the relationship between NDWI and KBDI is a nontrivial task due to the
effect of serial correlation. Remedies for serial correlation include sampling or aggregat-
ing the data over longer time intervals, as well as further modeling, which can include
techniques such as weighted regression [25,28]. However, it is difficult to account for
serial correlation in time-series related to VWC dynamics using extended regression
techniques. The time-series related to VWC dynamics often exhibit high non-Gaussian
serial correlation and are more significantly affected by outliers and measurement errors
[28]. A sampling technique therefore is proposed, which accounts for serial correlation in
seasonal time-series, to study the relationship between different time-series. The serial
correlation effect in time-series is assumed to be minimal when extracting one metric
per season (e.g., start of the dry season). The extracted seasonal metrics are then utilized
to study the relationship between time-series at a specific moment in time (e.g., start of
the dry season).

The aim of this chapter is to address the effect of serial correlation when studying
the relationship between remote sensing and meteorological time-series related to VWC
by comparing nonserially correlated seasonal metrics from time-series. This chapter
therefore has three defined objectives. Firstly, an overview of time-series analysis tech-
niques and concepts (e.g., stationarity, autocorrelation, ARIMA, etc.) is presented and
the relationship between time-series is studied using cross-correlation and ordinary
least square (OLS) regression analysis. Secondly, an algorithm for the extraction of
seasonal metrics is optimized for satellite and meteorological time-series. Finally, the
temporal occurrence and values of the extracted nonserially correlated seasonal metrics
are analyzed statistically to define the quantitative relationship between NDWI and KBDI
time-series. The influence of serial correlation is illustrated by comparing results from
cross-correlation and OLS analysis with the results from the investigation of correlation
between extracted metrics.

8.2 Data
8.2.1 Study Area

The Kruger National Park (KNP), located between latitudes 23°S and 26°S and longitudes
30°E and 32°E in the low-lying savanna of the northeastern part of South Africa, was
selected for this study (Figure 8.1). Elevations range from 260 to 839 m above sea level,
and mean annual rainfall varies between 350 mm in the north and 750 mm in the south.
The rainy season within the annual climatic season can be confined to the summer
months (i.e., November to April), and over a longer period can be defined by alternating
wet and dry seasons [7]. The KNP is characterized by an arid savanna dominated by
thorny, fine-leafed trees of the families Mimosaceae and Burseraceae. An exception is the
northern part of the KNP where the Mopane, a broad-leafed tree belonging to the
Ceasalpinaceae, almost completely dominates the tree layer.
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FIGURE 8.1
The Kruger National Park (KNP) study area with the weather stations used in the analysis (right). South Africa is
shown with the borders of the provinces and the study area (top left).

8.2.2 Climate Data

Climate data from six weather stations in the KNP with similar vegetation types were
used to estimate the daily KBDI (Figure 8.1). KBDI was derived from daily precipitation
and maximum temperature data to estimate the net effect on the soil water balance [3].
Assumptions in the derivation of KBDI include a soil water capacity of approximately
20 cm and an exponential moisture loss from the soil reservoir. KBDI was initial-
ized during periods of rainfall events (e.g., rainy season) that result in soils with maxi-
mized field capacity and KBDI values of zero [8]. The preprocessing of KBDI was
done using the method developed by Janis et al. [10]. Missing daily maximum temperat-
ures were replaced with interpolated values of daily maximum temperatures, based on a
linear interpolation function [30]. Missing daily precipitation, on the other hand, was
assumed to be zero. A series of error logs were automatically generated to indicate
missing precipitation values and associated estimated daily KBDI values. This was
done because zeroing missing precipitation may lead to an increased fire potential
bias in KBDI. The total percentage of missing data gaps in rainfall and temperature
series was maximally 5% during the study period for each of the six weather stations.
The daily KBDI time-series were transformed into 10-daily KBDI series, similar to
the SPOT VEGETATION 510 dekads (i.e., 10-day periods), by taking the maximum of
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The temporal relationship between NDWI and —KBDI time-series for the ““Satara” weather station (Figure 8.1).

each dekad. The negative of the KBDI time-series (i.e., -KBDI) was analyzed in this
chapter such that the temporal dynamics of KBDI and NDWI were related (Figure 8.2).
The -KBDI and NDWI are used throughout this chapter. The Satara weather station,
centrally positioned in the study area, was selected to represent the temporal vegetation
dynamics. The other weather stations in the study area demonstrate similar temporal
vegetation dynamics.

8.2.3 Remote Sensing Data

The data set used is composed of 10-daily SPOT VEGETATION (SPOT VGT) composites
(510 NDVI maximum value syntheses) acquired over the study area for the period April
1998 to December 2002. SPOT VGT can provide local to global coverage on a regular
basis (e.g., daily for SPOT VGT). The syntheses result in surface reflectance in the blue
(0.43-0.47 um), red (0.61-0.68 um), NIR (0.78-0.89 pm), and SWIR (1.58-1.75 pm) spectral
regions. Images were atmospherically corrected using the simplified method for atmos-
pheric correction (SMAC) [30]. The geometrically and radiometrically corrected S10
images have a spatial resolution of 1km.

The S10 SPOT VGT time-series were preprocessed to detect data that erroneously
influence the subsequent fitting of functions to time-series, necessary to define and extract
metrics [6]. The image preprocessing procedures performed were:

 Data points with a satellite viewing zenith angle (VZA) above 50° were masked
out as pixels located at the very edge of the image (VZA > 50.5°) swath are
affected by re-sampling methods that yield erroneous spectral values.

 The aberrant SWIR detectors of the SPOT VGT sensor, flagged by the status mask
of the SPOT VGT 510 synthesis, also were masked out.

A data point was classified as cloud-free if the blue reflectance was less than 0.07
[31]. The developed threshold approach was applied to identify cloud-free pixels
for the study area.

NDWTI time-series were derived by selecting savanna pixels, based on the land cover
map of South Africa [32], for a 3 x 3 pixel window centered at each of the meteorological
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stations to reduce the effect of potential spatial misregistration (Figure 8.1). Median values
of the 9-pixel windows were then retained instead of single pixel values [33]. The median
was preferred to average values as it is less affected by extreme values and therefore is
less sensitive to potentially undetected data errors.

8.3 Serial Correlation and Time-Series Analysis

Serial correlation affects correlations between variables measured in time, and violates the
basic regression assumption of independence. Techniques that are used to recognize
serial correlation therefore are discussed by applying them to the NDWI and -KBDI
time-series. Cross-correlation analysis is illustrated and used to study the relationship
between time-series of -KBDI and NDWI. Fundamental time-series analysis concepts
(e.g., stationarity and seasonality) are introduced and a brief overview is presented of
the most frequently used method for time-series analysis to account for serial correlation,
namely autoregression(AR).

8.3.1 Recognizing Serial Correlation

This chapter focuses on discrete time-series, which contain observations made at discrete
time intervals (e.g., 10 daily time steps of -KBDI and NDWTI time-series). Time-series
are defined as a set of observations, x;, recorded at a specific time, ¢ [26]. Time-series of —
KBDI and NDWI contain a seasonal variation which is illustrated in Figure 8.2 by
a smooth increase or decrease of the series related to vegetation moisture dynamics.
The gradual increase or decrease of the graph of a time-series is generally indicative
of the existence of a form of dependence or serial correlation among observations.

The presence of serial correlation systematically biases regression analysis when study-
ing the relationship between two or more time-series [25]. Consider the OLS regression
line with a slope and an intercept:

Y(t) = ap + a1 X(t) + e(t) (8.2)

where t is time, ag and a; are the respective OLS regression intercept and slope param-
eter, Y(t) the dependent variable, X(t) the independent variable, and e(t) the random
error term. The standard error(SE) of each parameter is required for any regression
model to define the confidence interval(CI) and derive the significance of parameters in
the regression equation. The parameters 4y, 4;, and the CIs, estimated by minimizing the
sum of the squared “‘residuals” are valid only if certain assumptions related to the
regression and e(t) are met [25]. These assumptions are detailed in statistical textbooks
[34] but are not always met or explicitly considered in real-world applications. Figure 8.3
illustrates the biased Cls of the OLS regression model at a 95% confidence level. The SE
term of the regression model is underestimated due to serially correlated residuals and
explains the biased confidence interval, where CI =mean + 1.96 x SE.

The Gauss-Markov theorem states that the OLS parameter estimate is the best
linear unbiased estimate (BLUE); that is, all other linear unbiased estimates will have a
larger variance, if the error term, e(t), is stationary and exhibits no serial correlation. The
Gauss-Markov theorem consequently points to the error term and not to the time-series
themselves as the critical consideration [35]. The error term is defined as stationary when
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FIGURE 8.3
Result of the OLS regression fit between —KBDI and NDWI as dependent and independent variables, respectively,

for the Satara weather station (n = 157). Confidence intervals (- - -) at a 95% confidence level are shown, but are
“narrowed”” due to serial correlation in the residuals.

it does not present a trend and the variance remains constant over time [27]. It is possible
that the residuals are serially correlated if one of the dependent or independent variables
also is serially correlated, because the residuals constitute a linear combination of both
types of variables. Both dependent and independent variables of the regression model are
serially correlated (KBDI and NDWI), which explains the serial correlation observed in
the residuals.

A sound practice used to verify serial correlation in time-series is to perform multi-
ple checks by both graphical and diagnostic techniques. The autocorrelation function
(ACF) can be viewed as a graphical measure of serial correlation between variables or
residuals. The sample ACF is defined when xy,..., x,, are observations of a time-series.
The sample mean of x3, ..., x, is [26]:

1 n
x==>x (8.3)
n t=1

The sample autocovariance function with lag / and time ¢ is

n—|h|
Yy =n" " (xp —X) (i —X),—n<h<n (8.4)
=1
The sample ACF is
- y(h)
=——Z,—n<h<n 8.5
P=20) (8.5)

Figure 8.4 illustrates the ACF for time-series of -KBDI and NDWI presented from
the Kruger park data. The ACF clearly indicates a significant autocorrelation in the
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FIGURE 8.4
The autocorrelation function (ACF) for (a) —KBDI and (b) NDWI time-series for the Satara weather station.
The horizontal lines on the graph are the bounds = +1.96//n (n = 157).

time-series, as more than 5% of the sample autocorrelations fall outside the significance
bounds = +1.96/+/n [26]. There are also formal tests available to detect autocorrelation
such as the Ljung-Box test statistic and the Durbin—-Watson statistic [25,26].

8.3.2 Cross-Correlation Analysis

The cross-correlation function (CCF) can be derived between two time-series utilizing a
technique similar to the ACF applied for one time-series [27]. Cross-correlation is a
measure of the degree of linear relationship existing between two data sets and can be
used to study the connection between time-series. The CCF, however, can only be used if
the time-series is stationary [27]. For example, when all variables are increasing in value
over time, cross-correlation results will be spurious and subsequently cannot be used to
study the relationship between time-series.

Nonstationary time-series can be transformed to stationary time-series by implement-
ing one of the following techniques:

¢ Differencing the time-series by a period d can yield a series that satisfies the
assumption of stationarity (e.g., x;—x;; for d=1). The differenced series will
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contain one point less than the original series. Although a time-series can be
differenced more than once, one difference is usually sufficient.

» Lower order polynomials can be fitted to the series when the data contains a
trend or seasonality that needs to be subtracted from the original series. Seasonal
time-series can be represented as the sum of a specified trend, and seasonal
and random terms. For example, for statistical interpretation results, it is import-
ant to recognize the presence of seasonal components and remove them to
avoid confusion with long-term trends. Figure 8.5 illustrates the seasonal
trend decompositioning method using locally weighted regression for the
NDWI time-series [36].

¢ The logarithm or square root of the series may stabilize the variance in the case of
a nonconstant variance.

Figure 8.6 illustrates the cross-correlation plot for stationary series of -KBDI and NDWL
-KBDI and NDWI time-series became stationary after differencing with 4 = 1. The
stationarity was confirmed using the “augmented Dickey—Fuller” test for stationarity
[26,29] at a confidence level of 95% (p < 0.01; with stationarity as the alternative hypo-
thesis). Note that approximately 95% confidence limits are shown for the autocorrelation
plots of an independent series. These limits must be regarded with caution, since there
exists an a priori expectation of serial correlation for time-series [37].
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The results of the seasonal trend decomposition (STL) technique for NDWI time-series of Satara weather station.
The original series can be reconstructed by summing the seasonal, trend, and remainder. In the y-axes the NDWI
values are indicated. The gray bars at the right-hand side of the plots illustrate the relative data range of the
time-series.
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Table 8.1 illustrates the coefficients of determination (i.e., multiple R?) of the OLS
regression analysis with serially correlated residuals -KBDI as dependent and NDWI as
independent variable for all six weather stations in the study area. The Durbin—-Watson
statistic indicated that the residuals were serially correlated at a 95% confidence level
(p < 0.01). These results will be compared with the method presented in Section 8.5. Table
8.1 also indicates the time lags at which correlation between time-series was maximal, as
derived from the cross-correlation plot. A negative lag indicates that -KBDI reacts prior to
NDWI, for example, in the cases of Punda Maria and Shingwedzi weather stations, and
subsequently can be used to predict NDWI. This is logical since weather conditions, for
example, rainfall and temperature, change before vegetation reacts. NDWI, which is related
to the amount of water in the vegetation, consequently lags behind the -KBDI. The major
vegetation type in savanna vegetation is the herbaceous layer, which has a shallow rooting
system. This explains why the vegetation in the study area quickly follows climatic changes
and NDWTI did not lag behind —KBDI for the other four weather stations.

8.3.3 Time-Series Analysis: Relating Time-Series and Autoregression

A remedy for serial correlation, apart from applying variations in sampling strategy, is
modeling of the time dependence in the error structure by AR. AR most often is used for

TABLE 8.1

Coefficients of Determination of the OLS Regression Model between —KBDI and NDWI (n = 157).
Station R? Time Lag
Punda Maria 0.74 -1
Letaba 0.88 0
Onder Sabie 0.72 0
Pretoriuskop 0.31 0
Shingwedzi 0.72 -1
Satara 0.81 0

Note: The time expressed in dekads of maximum correlation of the cross-correlation between —-KBDI and NDWI
is also indicated.
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purposes of forecasting and modeling of a time-series [25]. The simplest AR model for
Equation 8.2, where p is the result of the sample ACF at lag 1, is

e = pei—1 + & (8.6)

where ¢, is a series of serially independent numbers with mean zero and constant
variance. The Gauss—-Markov theorem cannot be applied and therefore OLS is not an
efficient estimator of the model parameters if p is not zero [35].

Many different AR models are available in statistical software systems that incorporate
time-series modules. One of the most frequently used models to account for serial
correlation is the autoregressive-integrated-moving-average model (ARIMA) [26,37].
Briefly stated, ARIMA models can have an AR term of order p, a differencing (integrating)
term (I) of order d, and a moving average (MA) term of order q. The notation for specific
models takes the form of (p,d,q) [27]. The order of each term in the model is determined by
examining the raw data and plots of the ACF of the data. For example, a second-order AR
(p = 2) term in the model would be appropriate if a series has significant autocorrelation
coefficients between x;, and x;_;, and x;_,. ARIMA models that are fitted to time-series data
using AR and MA parameters, p and g, have coefficients @ and 6 to describe the serial
correlation. An underlying assumption of ARIMA models is that the series being modeled
is stationary [26-27].

8.4 Methodology

The TIMESAT program is used to extract nonserially correlated metrics from remote
sensing and meteorological time-series [38,39]. These metrics are utilized to study the
relationship between time-series at specific moments in time. The relationship bet-
ween time-series, in turn, is evaluated using statistical analysis of extracted nonserially
correlated seasonal metrics from time-series (-KBDI and NDWTI).

8.4.1 Data Smoothing

It often is necessary to generate smooth time-series from noisy satellite sensors or meteoro-
logical data to extract information on seasonality. The smoothing can be achieved by
applying filters or by function fitting. Methods based on Fourier series [40-42] or least-
square fits to sinusoidal functions [43—45] are known to work well in most instances.
These methods, however, are not capable of capturing a sudden, steep rise or decrease of
remote sensing or meteorological data values that often occur in arid and semiarid
environments. Alternative smoothing and fitting methods have been developed to over-
come these problems [38]. An adaptive Savitzky—Golay filtering method, implemented in
the TIMESAT processing package developed by Jonsson and Eklundh [39], is used in this
chapter. The filter is based on local polynomial fits. Suppose we have a time-series (t;, i),
i =1,2,..., N. For each point i, a quadratic polynomial

f(t) = c1 + caot + c3t? (8.7)
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is fit to all 2k+1 points for a window from n = i — k to m = i + k by solving the system of
normal equations

ATAc=A"p (8.8)
where
w, Wity wnté Wyl
A Wny1 Wyaibpe1  Weatky g and b— wn+1.yn+1 8.9)
W wn;tm Wy t?, w,,;ym

The filtered value is set to the value of the polynomial at point i. Weights are designated
as w in the above expression, with weights assigned to all of the data values in the
window. Data values that were flagged in the preprocessing are assigned weight
““zero” in this application and thus do not influence the result. The clean data values all
have weights “one.” Residual negatively biased noise (e.g., clouds) may occur for the
remote sensing data and accordingly the fitting was performed in two steps [6]. The first
fit was conducted using weights obtained from the preprocessing. Data points above the
resulting smoothed function from the first fit are regarded more important, and in the
second step the normal equations are solved using the weight of these data values, but
increased by a factor 2. This multistep procedure leads to a smoothed function that is
adapted to the upper envelope of the data (Figure 8.7). Similarly, the ancillary metadata of
the meteorological data from the preprocessing also were used in the iterative fitting to
the upper envelope of the -KBDI time-series [6].

The width of the fitting window determines the degree of smoothing, but it also
affects the ability to follow a rapid change. It is sometimes necessary to locally tighten
the window even when the global setting of the window performs well. A typical
situation occurs in savanna ecosystems where vegetation, associated remote sensing,
and meteorological indices respond rapidly to vegetation moisture dynamics. A small
fitting window can be used to capture the corresponding sudden rise in data values.
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The Savitzky—Golay filtering of NDWI (

) is performed in two steps. Firstly, the local polynomials are fitted

using the weights from the preprocessing (a). Data points above the resulting smoothed function (- - -) from the
first fit are attributed a greater importance. Secondly, the normal equations are solved with the weights of these

data values increased by a factor 2 (b).
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The filtering of NDWI (—) in (a) is done with a window that is too large to allow the filtered data (- — -) to
follow sudden increases and decreases of underlying data values. The data in the window are scanned and if
there is a large increase or decrease, an automatic decrease in the window size will result. The filtering is then
repeated using the new locally adapted size (b). Note the improved fit at rising edges and narrow peaks.

The data in the window are scanned and if a large increase or decrease is observed,
the adaptive Savitzky-Golay method applied an automatic decrease in the window size.
The filtering is then repeated using the new locally adapted size. Savitzky—Golay filtering
with and without the adaptive procedure is illustrated in Figure 8.8. In the figure it is
shown that the adaptation of the window improves the fit at the rising edges and at
narrow seasonal peaks.

8.4.2 Extracting Seasonal Metrics from Time-Series and Statistical Analysis

Four seasonal metrics were extracted for each of the rainy seasons. Figure 8.9 illustrates
the different metrics per season for NDWI and KBDI time-series. The beginning of a
season, that is, 20% left of the rainy season, is defined from the final function fit as the
point in time for which the index value has increased by 20% of the distance between the
left minimum level and the maximum. The end of the season is defined in a similar way
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The final fit of the Savitzky—Golay function (- — —) to the NDWI (a) and —-KBDI (b) series (——), with the four
defined metrics, that is, 20% left and right, and 80% left and right (m), overlaid on the graph. Points with flagged
data errors (+) were assigned weights of zero and did not influence the fit. A dekad is defined as a 10-day period.
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as the point 20% right of the rain season. The 80% left and right points are defined as the
points for which the function fit has increased to 80% of the distance between, respect-
ively, the left and right minimum levels and the maximum. The current technique used to
define metrics also is used by Verbesselt et al. [6] to define the beginning of the fire
season.

The temporal occurrence and the value of each metric were extracted for further
exploratory statistical analysis to study the relationship between time-series. The SPOT
VGT S10 time-series consisted of four seasons (1998-2002) from which four occurrences
and values per metric type were extracted. Twenty-four occurrence-value combinations
per metric type ultimately were available for further analysis since six weather stations
were used.

Serial correlation that occurs in remote sensing and climate-based time-series invali-
dates inferences made by standard parametric tests, such as the Student’s t-test or the
Pearson correlation. All extracted occurrence-value combinations per metric type were
tested for autocorrelation using the Ljung—-Box autocorrelation test [26]. Robust non-
parametric techniques, such as the Wilcoxon’s signed rank test were used in case of
non-normally distributed data. The normality of the data was verified using the
Shapiro-Wilkinson normality test [29].

Firstly, the distribution of the temporal occurrence of each metric was visualized and
evaluated based on whether or not there was a significant difference between the tem-
poral occurrence of the four metric types extracted from -KBDI and NDWI time-series.
Next, the strength and significance of the relationship between -KBDI and NDWI values
of the four metric types were assessed with an OLS regression analysis.

8.5 Results and Discussion

Figure 8.9 illustrates the optimized function fit and the defined metrics for the -KBDI and
NDWTI. Notice that the Savitzky—Golay function could properly define the behavior of the
different time-series. The function was fitted to the upper envelope of the data by using
the uncertainty information derived during the preprocessing step. The results of the
statistical analysis based on the extracted metrics for -KBDI and NDWI are presented.
The Ljung-Box statistic indicated that the extracted occurrences and values were not
significantly autocorrelated at a 95% confidence level. All p-values were greater than 0.1,
failing to reject the null hypothesis of independence.

8.5.1 Temporal Analysis of the Seasonal Metrics

Figure 8.10 illustrates the temporal distribution of temporal occurrence of extracted
metrics from time-series of -KBDI and NDWI. The occurrences of extracted metrics
were significantly non-normally distributed at a 95% confidence level (p > 0.1), indicating
that the Wilcoxon’s signed rank can be used. The Wilcoxon’s signed rank test showed that
—-KBDI and NDWTI occurrences of the 80% left and right, and 20% right were not signi-
ficantly different from each other at a 95% confidence level (p > 0.1). This confirmed that
-KBDI and NDWI were temporally related. It also corroborated the results of Burgan [11]
and Ceccato et al. [4] who found that both -KBDI and NDWI were related to the seasonal
vegetation moisture dynamics, as measured by VWC.

Figure 8.10, however, illustrates that the start of the rainy season (i.e., 20% left occur-
rence), derived from the -KBDI and NDWI time-series, was different. The Wilcoxon’s
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Box plots of the temporal occurrence of the four defined metrics, that is, 20% left and right, and 80% left and
right, extracted from time-series of —KBDI and NDWI. The dekads (10-day period) are shown on the y-axis
and are indicative of the temporal occurrence of the metric. The upper and lower boundaries of the boxes
indicate upper and lower quartiles. The median is indicated by the solid line (—) within each box. The
whiskers connect the extremes of the data, which were defined as 1.5 times the inter-quartile range. Outliers
are represented by (o).

signed rank test confirmed that the -KBDI and NDWI differed significantly from each
other at a 95% confidence level (p < 0.01). This phenomenon can be explained by the fact
that vegetation in the study area starts growing before the rainy season starts, due to an
early change in air temperature (N. Govender, Scientific Service Kruger National Park,
South Africa, personal communication). This explained why the NDWI reacted before the
change in climatic conditions as measured by the -KBD], given that the NDWI is directly
related to vegetation moisture dynamics [4].

8.5.2 Regression Analysis Based on Values of Extracted Seasonal Metrics

The assumptions of the OLS regression models between values of metrics extracted
from -KBDI and NDWI time-series were verified. The Wald test statistic showed
nonlinearity to be not significant at a 95% confidence level (p > 0.15). The Shapiro-
Wilkinson normality test confirmed that the residuals were normally distributed at a
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95% confidence level (p < 0.01) [6,29]. Table 8.2 illustrates the results of the OLS
regression analysis between values of metrics extracted from -KBDI and NDWI time-
series. The values extracted at the ““20% right”” position of the -KBDI and NDWI
time-series showed a significant relationship at a 95% confidence level (p < 0.01).
The other extracted metrics did not exhibit significant relationships at a 95%
confidence level (p > 0.1). A significant relationship between the -KBDI and NDWI
time-series was observed only at the moment when savanna vegetation was com-
pletely cured (i.e., 20% right-hand side). The savanna vegetation therefore reacted
differently to changes in climate parameters such as rainfall and temperature, as
measured by KBDI, depending on the phenological growing cycle. This phenomenon
could be explained because a living plant uses defense mechanisms to protect itself
from drying out, while a cured plant responds to climatic conditions [46]. These
results consequently indicated that the relationship between extracted values of
-KBDI and NDWI was influenced by seasonality. This is in corroboration with the
results of Ji and Peters [23], who indicated that seasonality had a significant effect on
the relationship between vegetation as measured by a remote sensing index and
drought index. These results further illustrated that the seasonal effect needs to be
taken into account when regression techniques are used to quantify the relationship
between time-series related to vegetation moisture dynamics. The seasonal effect also
can be accounted for by utilizing autoregression models with seasonal dummy
variables, which take the effect of serial correlation and seasonality into account
[23,26]. However, the proposed method to account for serial correlation by sampling
at specific moments in time had an additional advantage; the influence of seasonality
could be studied by extracting metrics at the specified moments, besides the fact that
serial correlation was taken into account.

Furthermore, it was shown that serial correlation caused an overestimation of the
correlation coefficient is when results from Table 8.1 and Table 8.2 were compared. All
the coefficients of determination (R®) of Table 8.1 were significant with an average value
of 0.7, while in Table 8.2 only the correlation coefficient at the end of the rainy season
(20% right-hand side) was significant (R*> = 0.49). This confirmed the importance of
accounting for serial correlation and seasonality in the residuals of a regression model,
when studying the relationship between two time-series.

8.5.3 Time-Series Analysis Techniques

Time-series analysis models most often are used for purposes of describing current
conditions and forecasting [25]. The models use the serial correlation in time-series as a

TABLE 8.2

Coefficients of Determination of the OLS Regression Models (NDWI
~ —KBDI) for the Four Extracted Seasonal Metric Values between
-KBDI and NDWI Time-Series (1 = 24 per Metric)

NDWI ~ —~KBDI R? p-Values
20% left 0.01 0.66
20% right 0.49 <0.01
80% left 0.00 0.97
80% right 0.01 0.61

© 2007 by Taylor & Francis Group, LLC.



tool to relate temporal observations. Future observations can be predicted by modeling
the serial correlation structure of a time-series [26]. Time-series analysis techniques
(e.g., ARIMA) can be used to model a time-series by using other, independent time-
series [27]. ARIMA subsequently can be used to study the relationship between ~-KBDI
and NDWI. However, there are constraints that have to be considered before
ARIMA models can be applied to a time-series (e.g., drought index) by using other
predictor time-series (e.g., satellite index).

Firstly, the goodness-of-fit of an ARIMA model will not be significant when changes in
the satellite index precede or coincide with those in the drought index. The CCF can be
used in this context to verify how time-series are related to each other. Time lag results in
Table 8.1 indicate that the -KBDI (drought index) precedes or coincides with the NDWI
time-series. This illustrates that ARIMA models cannot directly be used to predict the
KBDI, with NDWTI as the predictor variable. Consequently, other more advanced time-
series analysis techniques are needed to model vegetation dynamics because they will
precede or coincide with the dynamics monitored by remote sensing indices in most of
the cases. Such more advanced time-series analysis techniques, however, are not dis-
cussed since they are outside the scope of this chapter.

Secondly, availability of data is limited for time-series analysis, namely, from 1998 to
2002. This is an important constraint because two separate data sets are needed to
parameterize and evaluate an ARIMA model. One set is needed for parameterization,
while the other is used to forecast and validate the ARIMA model through comparison of
the observed and expected values. Accordingly, it is necessary to interpolate missing
satellite data that were masked out during preprocessing to ensure adequate data are
available for parameterization.

Thirdly, the proposed sampling strategy made investigation of the time lag and correl-
ation at a defined instant in time possible, as opposed to ARIMA or cross-correlation
analysis, through which only the overall relationship between time-series can be studied
[25]. The applied sampling strategy is thus ideally suited to study the relationship
between time-series of climate and remote sensing data, characterized by seasonality
and serial correlation. The sampling of seasonal metrics minimized the influence of serial
correlation, thereby making the study of seasonality possible.

8.6 Conclusions

Serial correlation problems are not unknown in the field of statistical or general
meteorology. However, the presence of serial correlation, found during analysis of a
variable sampled sequentially at regular time intervals, seems to be disregarded by
many agricultural meteorologists and remote sensing scientists. This is true des-
pite abundant documentation available in the traditional meteorological and statistical
literature. Therefore, an overview of the most important time-series analysis techni-
ques and concepts was presented, namely, stationarity, autocorrelation, differencing,
decomposition, autoregression, and ARIMA.

A method was proposed to study the relationship between a meteorological drought
index (KBDI) and remote sensing index (NDWI), both related to vegetation moisture
dynamics, by accounting for the serial correlation effect. The relationship between -KBDI
and NDWI was studied by extracting nonserially correlated seasonal metrics, for
example, 20% and 80% left- and right-hand side metrics of the rainy season, based on a
Savitzky—Golay fit to the upper envelope of the time-series. Serial correlation between the
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extracted metrics was shown to be minimal and seasonality was an important factor
influencing the relationship between NDWI and —KBDI time-series. Statistical analysis
using the temporal occurrence of the extracted metrics revealed that NDWI and —-KBDI
time-series are temporally connected, except at the beginning of the rainy season.
The fact that the savanna vegetation starts re-greening before the start of the rainy season
explains this inability to detect the beginning of the rainy season. The values of the
extracted seasonal metrics of NDWI and —-KBDI were significantly related only at
the end of the rainy season, namely, at the 20% right-hand side value of the fitted
curve. The savanna vegetation at the end of the rainy season was cured and responded
strongly to changes in climatic conditions monitored by the —-KBDI, such as rain and
temperature. The relationship between -KBDI and NDWI consequently changes during
the season, which indicates that seasonality is an important factor that needs to be taken
into account. Moreover, it was shown that correlation coefficients estimated by OLS
regression analysis were overestimated due to the influence of serial correlation in the
residuals. This confirmed the importance of taking serial correlation of the residuals
into account by sampling nonserially correlated seasonal metrics when studying the
relationship between time-series.

The serial correlation effect consequently was taken into account by the extraction of
seasonal metrics from time-series. The seasonal metrics in turn could be used to study the
relationship between remote sensing and ground-based time-series, such as meteoro-
logical or field measurements. A better understanding of the relationship between remote
sensing and in situ observations at regular time intervals will contribute to the use of
remotely sensed data for the development of an index that represents seasonal vegetation
moisture dynamics.
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A prediction-error (PE) filter is an array of numbers designed to interpolate missing parts
of data such that the interpolated parts have the same spectral content as the existing
parts. The data can be a one-dimensional time series, two-dimensional image, or a three-
dimensional quantity such as subsurface material property. In this chapter, we discuss the
application of a PE filter to recover missing parts of an image when a low-resolution
image of the missing parts is available.

One of the research issues on PE filter is improving the quality of image interpolation
for nonstationary images, in which the spectral content varies with position. Digital
elevation models (DEMs) are in general nonstationary. Thus, PE filter alone cannot
guarantee the success of image recovery. However, the quality of the image recovery of
a high-resolution image can be improved with independent data set such as a low-
resolution image that has valid pixels for the missing regions of the high-resolution
image. Using a DEM as an example image, we introduce a systematic method to use a
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PE filter incorporating the low-resolution image as an additional constraint, and show the
improved quality of the image interpolation.

High-resolution DEMs are often limited in spatial coverage; they also may possess
systematic artifacts when compared to comprehensive low-resolution maps. We correct
artifacts and interpolate regions of missing data in topographic synthetic aperture radar
(TOPSAR) DEMs using a low-resolution shuttle radar topography mission (SRTM) DEM.
Then PE filters are to interpolate and fill missing data so that the interpolated regions
have the same spectral content as the valid regions of the TOPSAR DEM. The SRTM DEM
is used as an additional constraint in the interpolation. Using cross-validation methods
one can obtain the optimal weighting for the PE filter and the SRTM DEM constraints.

9.1 Image Descriptions

InSAR is a powerful tool for generating DEMs [1]. The TOPSAR and SRTM sensors are
primary sources for the academic community for DEMs derived from single-pass inter-
ferometric data. Differences in system parameters such as altitude and swath width
(Table 9.1) result in very different properties for derived DEMs. Specifically, TOPSAR
DEMSs have better resolution, while SRTM DEMs have better accuracy over larger areas.
TOPSAR coverage is often not spatially complete.

9.1.1 TOPSAR DEM

TOPSAR DEMs are produced from cross-track interferometric data acquired with
NASA’s AIRSAR system mounted on a DC-§ aircraft. Although the TOPSAR DEMs
have a higher resolution than other existing data, they sometimes suffer from artifacts
and missing data due to roll of the aircraft, layover, and flight planning limitations. The
DEMs derived from the SRTM have lower resolution, but fewer artifacts and missing data
than TOPSAR DEMs. Thus, the former often provides information in the missing regions
of the latter.

We illustrate joint use of these data sets using DEMs acquired over the Galapagos
Islands. Figure 9.1 shows the TOPSAR DEM used in this study. The DEM covers Sierra
Negra volcano on the island of Isabela. Recent INSAR observations reveal that the volcano
has been deforming relatively rapidly [2,3]. InSAR analysis can require use of a DEM to
produce a simulated interferogram required to isolate ground deformation. The effect of
artifact elimination and interpolation for deformation studies is discussed later in this
chapter.

TABLE 9.1

TOPSAR Mission versus SRTM Mission

Mission TOPSAR SRTM
Platform DC-8 aircraft Space shuttle
Nominal Altitude 9 km 233 km
Swath width 10km 225km
Baseline 2.583m 60m

DEM resolution 10m 90m

DEM coord. system None Lat/Long
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FIGURE 9.1

The original TOPSAR DEM of Sierra Negra volcano in Galapagos Islands (inset for location). The pixel spacing of
the image is 10m. The boxed areas are used for illustration later in this paper. Note that there are a number of
regions of missing data with various shapes and sizes. Artifacts are not identifiable due to the variation in
topography. (From Yun, S.-H., Ji, J., Zebker, H., and Segall, P., IEEE Trans. Geosci. Rem. Sens., 43(7), 1682, 2005.
With permission.)

The TOPSAR DEMs have a pixel spacing of about 10 m, sufficient for most geodetic
applications. However, regions of missing data are often encountered (Figure 9.1), and
significant residual artifacts are found (Figure 9.2). The regions of missing data are
caused by layover of the steep volcanoes and flight planning limitations. Artifacts are
large-scale and systematic and most likely due to uncompensated roll of the DC-8
aircraft [4]. Attempts to compensate this motion include models of piecewise linear
imaging geometry [5] and estimating imaging parameters that minimize the difference
between the TOPSAR DEM and an independent reference DEM [6]. We use a nonpar-
ameterized direct approach by subtracting the difference between the TOPSAR and
SRTM DEMs.

9.1.2 SRTM DEM

The recent SRTM mission produced nearly worldwide topographic data at 90 m posting.
SRTM topographic data are in fact produced at 30 m posting (1 arcsec); however, high-
resolution data sets for areas outside of the United States are not available to the public at
this time. Only DEMs at 90 m posting (3 arcsec) are available to download.

For many analyses, finer scale elevation data are required. For example, a typical pixel
spacing in a spaceborne SAR image is 20 m. If the SRTM DEMs are used for topography
removal in spaceborne interferometry, the pixel spacing of the final interferograms would
be limited by the topography data to at best 90 m. Despite the lower resolution, the SRTM
DEM is useful because it has fewer motion-induced artifacts than the TOPSAR DEM. It
also has fewer data holes.

The merits and demerits of the two DEMs are in many ways complementary to each
other. Thus, a proper data fusion method can overcome the shortcomings of each and
produce a new DEM that combines the strengths of the two data sets: a DEM that has a
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FIGURE 9.2 (See color insert following page 178.)

(a) TOPSAR DEM and (b) SRTM DEM. The tick labels are pixel numbers. Note the difference in pixel spacing
between the two DEMs. (c) Artifacts obtained by subtracting the SRTM DEM from the TOPSAR DEM. The flight
direction and the radar look direction of the aircraft associated with the swath with the artifact are indicated with
long and short arrows, respectively. Note that the artifacts appear in one entire TOPSAR swath, while they are not
as serious in other swaths.

resolution of the TOPSAR DEM and large-scale reliability of the SRTM DEM. In this
chapter, we present an interpolation method that uses both TOPSAR and SRTM DEMs
as constraints.

9.2 Image Registration

The original TOPSAR DEM, while in ground-range coordinates, is not georeferenced.
Thus, we register the TOPSAR DEM to the SRTM DEM, which is already registered in a
latitude-longitude coordinate system. The image registration is carried out between
the DEM data sets using an affine transformation. Although the TOPSAR DEM is not
georeferenced, it is already on the ground coordinate system. Thus, scaling and rotation
are the two most important components. We have seen that skewing component
was negligible. Any higher order transformation between the two DEMs would also be
negligible. The affine transformation is as follows:
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respectively. Since [a b e] and [c d f] are estimated separately, at least three tie points
are required to uniquely determine them. We picked 10 tie points from each DEM based
on topographic features and solved for the six unknowns in a least-square sense.

Given the six unknowns, we choose new georeferenced sample locations that are
uniformly spaced; every ninth sample location corresponds to the sample location of

SRTM DEM. Those sample locations from [;“} and {XT] are calculated. Then, the

S T
nearest TOPSAR DEM value is selected and put into the corresponding new georefer-

enced sample location. The intermediate values are filled in from the TOPSAR map to
produce the georeferenced 10-m data set.

It should be noted that it is not easy to determine the tie points in DEM data sets.
Enhancing the contrast of the DEMs facilitated the process. In general, fine registration is
important for correctly merging different data sets. The two DEMs in this study have
different pixel spacings. It is difficult to pick tie points with higher precision than the pixel
spacing of the coarser image. In our method, however, the SRTM DEM, the coarser image,
is treated as an averaged image of the TOPSAR DEM, the finer image. In our inversion,
only the 9-by-9 averaged values of the TOPSAR DEM are compared with the pixel values
of the SRTM DEM. Thus, the fine registration is less critical in this approach than in the
case where a one-to-one match is required.

9.3 Artifact Elimination

Examination of the georeferenced TOPSAR DEM (Figure 9.2a) shows motion arti-
facts when compared to the SRTM DEM (Figure 9.2b). The artifacts are not clearly
discernible in Figure 9.2a because their magnitude is small in comparison to the overall
data values. The artifacts are identified by downsampling the registered TOPSAR DEM
and subtracting the SRTM DEM. Large-scale anomalies that periodically fluctuate over an
entire swath are visible in Figure 9.2c. The periodic pattern is most likely due to uncom-
pensated roll of the DC-8 aircraft. The spaceborne data are less likely to exhibit similar
artifacts, because the spacecraft is not greatly affected by the atmosphere. Note that the
width of the anomalies corresponds to the width of a TOPSAR swath. Because the SRTM
swath is much larger than that of the TOPSAR system (Table 9.1), a larger area is covered
under consistent conditions, reducing the number of parallel tracks required to form an
SRTM DEM.

The maximum amplitude of the motion artifacts in our study area is about 20 m. This
would result in substantial errors in many analyses if not properly corrected. For ex-
ample, if this TOPSAR DEM is used for topography reduction in repeat-pass INSAR using
ERS-2 data with a perpendicular baseline of about 400m, the resulting deformation
interferogram would contain one fringe (= 2.8 cm) of spurious signal.

To remove these artifacts from the TOPSAR DEM, we up-sample the difference
image with bilinear interpolation by a factor of 9 so that its pixel spacing matches the
TOPSAR DEM. The difference image is subtracted from the TOPSAR DEM. This
process is described with a flow diagram in Figure 9.3. Note that the lower branch
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FIGURE 9.3
The flow diagram of the artifact elimination. (From Yun, S.-H., Ji, J., Zebker, H., and Segall, P., IEEE Trans. Geosci.
Rem. Sens., 43(7), 1682, 2005. With permission.)

undergoes two low-pass filter operations when averaging and bilinear interpolation are
implemented, while the upper branch preserves the high frequency contents of the TOP-
SAR DEM. In this way we can eliminate the large-scale artifacts while retaining details in
the TOPSAR DEM.

9.4 Prediction-Error (PE) Filter

The next step in the DEM process is to fill in missing data. We use a PE filter operating on
the TOPSAR DEM to fill these gaps. The basic idea of the PE filter constraint [7,8]
is that missing data can be estimated so that the restored data yield minimum energy
when the PE filter is applied. The PE filter is derived from training data, which are normally
valid data surrounding the missing regions. The PE filter is selected so that the missing data
and the valid data share the same spectral content. Hence, we assume that the spectral
content of the missing data in the TOPSAR DEM is similar to that of the regions with valid
data surrounding the missing regions.

9.4.1 Designing the Filter

We generate a PE filter such that it rejects data with statistics found in the valid regions of the

TOPSAR DEM. Given this PE filter, we solve for data in the missing regions such that the

interpolated data are also nullified by the PE filter. This concept is illustrated in Figure 9.4.
The PE filter, fpg, is found by minimizing the following objective function,

|[£pE * Xe||” 9.2)
where x, is the existing data from the TOPSAR DEM, and = represents convolution.
This expression can be rewritten in a linear algebraic form using the following matrix
operation:

[Fpe x| (9.3)
or equivalently

Xe frg|? (9.4)

where Fpg and X, are the matrix representations of fpg and x. for convolution operation.
These matrix and vector expressions are used to indicate their linear relationship.
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FIGURE 9.4

Concept of PE filter. The PE filter is estimated by solving an inverse
fee | X =0+ problem constrained with the remaining part, and the missing part is
estimated by solving another inverse problem constrained with the filter.
The &; and ¢, are white noise with small amplitude.

9.4.2 1D Example

The procedure of acquiring the PE filter can be explained with a 1D example. Suppose
that a data set, x =[x, ..., x,,] (Where n > 3) is given, and we want to compute a PE filter of
length 3, fpg = [1 f1 fo]. Then we form a system of linear equations as follows:

X3 X2 X1

X4 X3 X2 1

fi|=0 (9.5)
f

Xn  Xp-1 Xp-2

The first element of the PE filter should be equal to one to avoid the trivial solution, fpg =
0. Note that Equation 9.5 is the convolution of the data and the PE filter. After simple
algebra and with

X3 X2 X1
d=| : and D=
Xn Xn—1 Xn-2

we get

D[ 1] ~ —d (9.6)

2

and its normal equation becomes

H;] — (D"D) 'D(~ d) ©.7)

Note that Equation 9.7 minimizes Equation 9.2 in a least-square sense. This procedure can
be extended to 2D problems, and more details are described in Refs. [7] and [8].

9.4.3 The Effect of the Filter

Figure 9.5 shows the characteristics of the PE filter in the spatial and Fourier domains.
Figure 9.5a is the sample DEM chosen from Figure 9.1 (numbered box 1) for demonstra-
tion. It contains various topographic features and has a wide range of spectral content
(Figure 9.5d). Figure 9.5b is the 5-by-5 PE filter derived from Figure 9.5a by solving the
inverse problem in Equation 9.3. Note that the first three elements in the first column
of the filter coefficients are 0 0 1. This is the PE filter’s unique constraint that ensures the
filtered output to be white noise [7]. In the filtered output (Figure 9.5¢) all the variations
in the DEM were effectively suppressed. The size (order) of the PE filter is based on the
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FIGURE 9.5

The effect of a PE filter. (a) original DEM; (b) a 2D PE filter found from the DEM; (c) DEM filtered with the PE
filter; and (d), (e), and (f) the spectra of (a), (b), and (c), respectively, plotted in dB. (a) and (c) are drawn with the
same color scale. Note that in (c) the variation of image (a) was effectively suppressed by the filter. The standard
deviations of (a) and (c) are 27.6 m and 2.5m, respectively. (From Yun, S.-H., Ji, J., Zebker, H., and Segall, P., IEEE
Trans. Geosci. Rem. Sens., 43(7), 1682, 2005. With permission.)

complexity of the spectrum of the DEM. In general, as the spectrum becomes more
complex, a larger size filter is required. After testing various sizes of the filter, we
found a 5-by-5 size appropriate for the DEM used in our study. Figure 9.5d and Figure
9.5e show the spectra of the DEM and the PE filter, respectively. These illustrate the
inverse relationship of the PE filter to the corresponding DEM in the Fourier domain, such
that their product is minimized (Figure 9.5f). This PE filter constrains the interpolated
data in the DEM to similar spectral content to the existing data.

All inverse problems in this study were derived using the conjugate gradient method,
where forward and adjoint functional operators are used instead of the explicit inverse
operators [7], saving computer memory space.

9.5 Interpolation
9.5.1 PE Filter Constraint

Once the PE filter is determined, we next estimate the missing parts of the image. As
depicted in Figure 9.4, interpolation using the PE filter requires that the norm of the
filtered output be minimized. This procedure can be formulated as an inverse computa-
tion minimizing the following objective function:

|Fpe x| (9.8)
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where Fpg is the matrix representation of the PE filter convolution, and x represents
the entire data set including the known and the missing regions. In the inversion pro-
cess we only update the missing region, without changing the known region. This
guarantees seamless interpolation across the boundaries between the known and
missing regions.

9.5.2 SRTM DEM Constraint

As previously stated, 90-m posting SRTM DEMs were generated from 30-m posting data.
This downsampling was done by calculating three “looks” in both the easting and
northing directions. To use the SRTM DEM as a constraint to interpolate the TOPSAR
DEM, we posit the following relationship between the two DEMs: each pixel value in a 90-
m posting SRTM DEM can be considered equivalent to the averaged value of a 9-by-9
pixel window in a 10-m posting TOPSAR DEM centered at the corresponding pixel in the
SRTM DEM.

The solution using the constraint of the SRTM DEM to find the missing data points in
the TOPSAR DEM can be expressed as minimizing the following objective function:

ly — Axil|? 9.9)

where y is an SRTM DEM expressed as a vector that covers the missing regions of the
TOPSAR DEM, and A is an averaging operator generating nine looks, and x,, represents
the missing regions of the TOPSAR DEM.

9.5.3 Inversion with Two Constraints

By combining two constraints, one derived from the statistics of the PE filter and one from
the SRTM DEM, we can interpolate the missing data optimally with respect to both
criteria. The PE filter guarantees that the interpolated data will have the same spectral
properties as the known data. At the same time the SRTM constraint forces the interpol-
ated data to have average height near the corresponding SRTM DEM. We formulate the
inverse problem as a minimization of the following objective function:

A Eee xnl” + lly — Axul|* (9.10)

where A set the relative effect of each criterion. Here x,,, has the dimensions of the TOPSAR
DEM, while y has the dimensions of the SRTM DEM. If regions of missing data are localized in
an image, the entire image does not have to be used for generating a PE filter. We implement
interpolation in subimages to save time and computer memory space. An example of such a
subimage is shown in Figure 9.6. The image is a part of Figure 9.1 (numbered box 2). Figure 9.6a
and Figure 9.6b are examples of x, in Equation 9.3 and y, respectively.

The multiplier A determines the relative weight of the two terms in the objective
function. As A — oo, the solution satisfies the first constraint only, and if A = 0, the
solution satisfies the second constraint only.

9.5.4 Optimal Weighting

We used cross-validation sum of squares (CVSS) [9] to determine the optimal weights for the
two terms in Equation 9.10. Consider a model x,, that minimizes the following quantity:
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FIGURE 9.6

Example subimages of (a) TOPSAR DEM showing regions of missing data (black), and (b) SRTM DEM of the same
area. These subimages are engaged in one implementation of the interpolation. The grayscale is altitude in meters.
(From Yun, S.-H.,Ji,]., Zebker, H., and Segall, P., IEEE Trans. Geosci. Rem. Sens., 43(7), 1682,2005. With permission.)

A Fpg x® + ly® — A® x> (k=1,...,N) (9.11)

where y® and A® are the y and the A in Equation 9.10 with the k-th element and the k-th
row omitted, respectively, and N is the number of elements in y that fall into the missing
region. Denote this model x{§’ (A). Then we compute the CVSS defined as follows:

N
CVSS() = 1 D (3 — A ) 9.12)
k=1

where y is the omitted element from the vector y and Ay is the omitted row vector from
the matrix A when the x’(\) was estimated. Thus, A x®(1) is the prediction based on the
other N — 1 observations. Finally, we minimize CVSS(A) with respect to A to obtain the
optimal weight (Figure 9.7).

In the case of the example shown in Figure 9.6, the minimum CVSS was obtained for A
= 0.16 (Figure 9.7). The effect of varying A is shown in Figure 9.8. It is apparent (see
Figure 9.8) that the optimal weight is a more ““plausible’”” result than either of the end
members, preserving aspects of both constraints.

In Figure 9.8a the interpolation uses only the PE filter constraint. This interpolation
does not recover the continuity of the ridge running across the DEM in north-south
direction, which is observed in the SRTM DEM (Figure 9.6b). This follows from a PE
filter obtained such that it eliminates the overall variations in the image. The variations
include not only the ridge but also the accurate topography in the DEM.

The other end member, Figure 9.8c, shows the result for applying zero weight to the
PE filter constraint. Since the averaging operator A in Equation 9.10is applied independently
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FIGURE 9.7
Cross-validation sum of squares. The minimum occurs when A = 0.16. (From Yun, S.-H., Ji, J., Zebker, H., and
Segall, P., IEEE Trans. Geosci. Rem. Sens., 43(7), 1682, 2005. With permission.)

for each 9-by-9 pixel group, it is equivalent to simply filling the regions of missing data with
9-by-9 identical values that are the same as the corresponding SRTM DEM (Figure 9.6b).

9.5.5 Simulation of the Interpolation

The quality of cross-validation in this study is itself validated by simulating the interpol-
ation process with known subimages that do not contain missing data. For example, if a
known subimage is selected from Figure 9.1 (numbered box 3), we can remove some data
and apply our recovery algorithm. The subimage is similar in topographic features to the
area shown in Figure 9.6. The process is illustrated in Figure 9.9. We introduce a hole as
shown in Figure 9.9b and calculate the CVSS (Figure 9.9d) for each A ranging from 0 to 2.
Then we use the estimated A, which minimizes the CVSS, for the interpolation process to
obtain the image in Figure 9.9c. For each value of A we also calculate the RMS error between
the known and the interpolated images. The RMS error is plotted against A in Figure 9.9.
The CVSS is minimized for A = 0.062, while the RMS error has a minimum at A = 0.065.
This agreement suggests that minimizing the CVSS is a useful method to balance the
constraints. Note that the minimum RMS error in Figure 9.9e is about 5m. This value is
smaller than the relative vertical height accuracy of the SRTM DEM, which is about 10 m.

9.6 Interpolation Results

The method presented in the previous section was applied to the entire image of Figure
9.1. The registered TOPSAR DEM contains missing data in regions of various sizes.
Small subimages were extracted from the DEM. Each subimage is interpolated, and the
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FIGURE 9.8

The results of interpolation applied to DEMs in Figure 9.6, with various weights. (a) A—o0, (b) A = 0.16, and
(c) A = 0. Profiles along A-A’ are shown in the plot (d). (From Yun, S.-H., Ji, J., Zebker, H., and Segall, P., IEEE
Trans. Geosci. Rem. Sens., 43(7), 1682, 2005. With permission.)

results are reinserted into the large DEM. The locations and sizes of the sub-
images are indicated with white boxes in Figure 9.10a. Note the largest region of
missing data in the middle of the caldera. This region is not only a simple large gap but
also a gap between two swaths. The interpolation is an iterative process and fills up
regions of missing data starting from the boundary. If valid data along the boundary
(boundaries of a swath for example) contain edge effects, error tends to propagate
through the interpolation process. In this case, expanding the region of missing data by
a few pixels before interpolation produces better results. If there is a large region of
missing data, the spectral content information of valid data can fade out as the inter-
polation proceeds toward the center of the gap. In this case, sequentially applying
the interpolation to parts of the gap is one solution. Due to edge effects along the
boundary of the large gap, the interpolation result does not produce topography
that matches the surrounding terrain well. Hence, we expand the gap by three pixels to
eliminate edge effects. We divided the gap into multiple subimages, and each subimage
was interpolated individually.
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The quality of the CVSS, (a) a sample image that does not have a hole, (b) a hole was made, (c) interpolated image
with an optimal weight, (d) CVSS as a function of A. The CVSS has a minimum when A = 0.062, and (e) RMS
error between true image (a) and the interpolated image (c). The minimum occurs when A = 0.065. (From Yun,
S.-H., Ji, J., Zebker, H., and Segall, P., IEEE Trans. Geosci. Rem. Sens., 43(7), 1682, 2005. With permission.)

9.7 Effect on InSAR

Finally, we can investigate the effect of the artifact elimination and the interpolation on
simulated interferograms. It is often easier to see differences in elevation in simulated
interferograms than in conventional contour plots. In addition, simulated interferograms
provide a measure of how sensitive the interferogram is to the topography. Figure 9.11
shows georeferenced simulated interferograms from three DEMs: the registered TOPSAR
DEM, the TOPSAR DEM after the artifact elimination, and the TOPSAR DEM after the
interpolation. In all interferograms, a C-band wavelength is used, and we assume a 452 m
perpendicular baseline between two satellite positions. This perpendicular baseline is
realistic [2]. The fringe lines in the interferograms are approximately height contour lines.
The interval of the fringe lines is inversely proportional to the perpendicular baseline [10],
and in this case one color cycle of the fringes represents about 20 m. Note in Figure 9.11a
that the fringe lines are discontinuous across the long region of missing data inside the
caldera. This is due to artifacts in the original TOPSAR DEM. After eliminating these
artifacts the discontinuity disappears (Figure 9.11b). Finally, the missing data regions are
interpolated in a seamless manner (Figure 9.11c).
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The original TOPSAR DEM (a) and the reconstructed DEM (b) after interpolation with PE filter and SRTM DEM
constraints. The grayscale is altitude in meters, and the spatial extent is about 12 km across the image. (From Yun,
S.-H., Ji, J., Zebker, H., and Segall, P., IEEE Trans. Geosci. Rem. Sens., 43(7), 1682, 2005. With permission.)
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FIGURE 9.11

Simulated interferograms from (a) the original regis-
tered TOPSAR DEM, (b) the DEM after the artifact was
removed, and (c) the DEM interpolated with PE filter
and the SRTM DEM. All the interferograms were
simulated with the C-band wavelength (5.6cm) and a
perpendicular baseline of 452 m. Thus, one color cycle
represents 20 m height difference. (From Yun, S-H., Ji,
J., Zebker, H., and Segall, P., IEEE Trans. Geosci. Rem.
Sens., 43(7), 1682, 2005. With permission.)

9.8 Conclusion

The aircraft roll artifacts in the TOPSAR DEM were eliminated by subtracting the differ-
ence between the TOPSAR and SRTM DEMs. A 2D PE filter derived from the existing
data and the SRTM DEM for the same region are then used as interpolation constraints.
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Solving the inverse problem constrained with both the PE filter and the SRTM DEM
produces a high-quality interpolated map of elevation. Cross-validation works well to
select optimal constraint weighting in the inversion. This objective criterion results in less
biased interpolation and guarantees the best fit to the SRTM DEM. The quality of many
other TOPSAR DEMs can be improved similarly.
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10.1 Introduction

Under heavy oceanic reverberation, it can be difficult to detect a target echo accurately with
an active sonar. To resolve the problem, researchers apply two methods that use reverber-
ation models and specialized processing techniques [1]. For the first method, receivers
with differing range resolutions may encounter different statistics for a given waveform.
Furthermore, a given receiver may encounter different statistics at different ranges [2].
Researchers have used Weibull, log-normal, Rician, multi-modal Rayleigh, and non-
Rayleigh distributions to describe sonar reverberations [3,4]. For the second method, it is
usually assumed that reverberation is a sum of returns issued from the transmitted signal.
Under this assumption, a data matrix is first generated from the data received by the active
sonar data [5,6]. The principal component inverse (PCI) [7-13] is primarily used to separate
reverberation and target echoes from the data matrix. However, important prior knowledge
such as the target power should be provided [11]. In Refs. [11-13], PCI and other methods
have performed very well in Doppler cases, and the authors have also shown that PCI still
performs well when the Doppler effect is not introduced. Provided that prior knowledge is
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hard to obtain and the Doppler effect does not exist, it becomes very desirable to cancel
reverberation with easily obtainable but minimal prior knowledge even in more compli-
cated undersea situations. The chapter focuses on this case.

The essence of PCI is separation by rank reduction. Nevertheless, the problem of
separation is an old one in electrical engineering and many algorithms exist depending
on the nature of signals. Blind signal separation (BSS) [14] is a significant statistical signal
processing method that has been developed in the past 15 years. The advantage of BSS is
that it does not need much prior knowledge and makes full use of the simple and
apparent statistical properties, such as non-Gaussianity, nonstationarity, colored charac-
ter, uncorrelatedness, independence, and so on. We studied BSS on canceling reverber-
ation in Ref. [15]. From the perspective of BSS, the data received by active sonar is the
convolutive mixture [16], while the instantaneous mixture model was only discussed in
Ref. [15]. Consequently, we perform blind separation of convolutive mixtures (BSCM) to
nullify oceanic reverberation in this contribution. In Ref. [15], the data waveform is only
described in time-domain, and here, we will provide more illustrations on the matched
filter outputs under different signal-to-reverberation ratios (SRR). We provide more
examples for better explanation.

The rest of this chapter is organized as follows: Section 10.2 presents the problem
description; Section 10.3 introduces the BSCM algorithm, which is based on the reverber-
ation characters; Section 10.4 provides examples of canceling real sea reverberation as the
main content; and finally, Section 10.5 summarizes the above contents.

10.2 Problem Description

In this chapter, we assume that reverberation is a sum of returns generated from the
transmitted signal. In Ref. [16], the active sonar data series d(t) is expressed as

K
d(t) = h(t — m1) xe(t) + Y Iyt — i) xe(t) + n(t) (10.1)
T~ = ~
arge reverberatuon noise

where 7, is the propagation delay, h(t) is the path impulse response, and e(t) is the
transmitted signal. In the reverberation dominant circumstance, we can decompose the
active sonar data into the target echo component d(t) and the reverberation component
r(t), as defined in Equation 10.2. Extracting the target and nullifying the reverberation are
done simultaneously

d(t) = hi(t — 1) x e(t) + n(t)

~~
target noise
K
r(t) = It — ) x e(t) + n(t) (10.2)
k=2 reverberation noise

It is apparent that El(t) and r(t) are of different non-Gaussianity. Next, we show an
example of real sea reverberation.

For simplicity, we do not introduce the experimental detail in this section. The transmit-
ted signal is sinusoid with a frequency of 1750 Hz, a duration of 200 msec, and a sampling
frequency of 6000 Hz. Figure 10.1 contains only the target echo and the background noise,
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Target echo waveform.

and most reverberation generated by a sine wave is included in Figure 10.2 where no target
echo exists and the background noise is embedded. The two waveforms in Figure 10.1 and
Figure 10.2 are the time-domain descriptions of d(f) and r(t) with corresponding standard
kurtosis [17] 4.1 and 1.6, respectively. Here, the time-domain non-Gaussianity is enough
to discriminate d(t) and r(t). It may appear that detection for d(t) must be evident. However,
in the real world problem, it is not simple to cancel the reverberation to the degree as in
Figure 10.1. To explore different effects of reverberation on detection in different SRRs, we
give several examples of real sea reverberation as follows.

In Figure 10.3, the first upper plot is reverberation, and in the remaining three plots,
different targets are simulated and added to the reverberation with the SRR = 0 dB, -7
dB, and —14 dB, respectively, from the upper to lower plots. The target echo is located
between the 9,000th and 11,000th samples. The target does not move, hence no Doppler
effect is produced. The matched filter outputs follow in the next figure.

In Figure 10.4, the middle two plots show that the matched filter results are satisfactory
even in the case that the SRR is quite small, and the lowest plot gives too many false alarms.
The task for us is to cancel the reverberation to the degree that the detection is possible, similar
to the middle two plots. In Equation 10.2, d(t) does not contain any reverberation and just
covers only the target echo and the background noise. In real world case, that is impossible.
However, it does not harm the detection. Figure 10.4 also reminds us that even if

d(t) = I (t — 71) xe(t) + Z It — 71) X e(t) + n(t) (10.3)
N—— — N——
target reverberation n01se

where K < K, and as long as the reverberation is reduced to some satisfactory level, the
detection can also be reliable. After comparing the first and the third plots in Figure 10.3
and Figure 10.4, respectively, we find that Figure 10.3 shows that the reverbera-
tion waveform with small SRR target added is nearly identical to the waveform of

0.8
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0.4
0.2

-0.2
-0.4
—0.6
-0.8

Normalized amplitude
o

N
)

0 0.5 1 1.5 2
Samples %
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o
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FIGURE 10.2
Reverberation waveform.
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FIGURE 10.3
Real reverberation with different simulated targets.

reverberation, but Figure 10.4 implies that the corresponding matched filter outputs are
definitely of different non-Gaussianity. This information is useful to our method for
distinguishing the target echoes from the reverberation echoes.

10.3 BSCM Algorithm

In the past several years, different researchers developed several BSCM algorithms
according to signal properties. Generally speaking, for a given source-receiver pair, the
waveform arrives at different travel times, owing to varying path lengths [18]. All of
these make reverberations nonstationary. The transmitted signal is sinusoid here, so the
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Outputs of matched filter on the data in Figure 10.3.

reverberations must retain the colored feature. Therefore, we say reverberations are
nonstationary and colored. In this section, we will give only a brief introduction on the
BSCM algorithm.

Consider a speech scenario, where | microphones receive multiple filtered copies of
statistically uncorrelated or independent signals. Mathematically, the received signals can
be expressed as a convolution, that is,

P—

S hipsit—p), j=1,...,J0; t=1,...,L (10.4)

=0

[y

I
x]'(t) =
i=1

=

where h;;(p) models the P-point impulse response from source to microphone and L is the
length of the received signal. In a more compact matrix—vector notation, Equation 10.4 can
be stated as

P-1

x(t) =Y H(p)s(t —p)
p=0
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FIGURE 10.5
Specific (2 x 2) blind separation of convolutive mixtures problem.
= H(p) = s(t) (10.5)

where x(t) = [x(f),..., xI(if)]T is the received signal vector, s(t) = [s1(%), ... ,si(H)]T is the
source vector, H(p) is the mixing filter matrix, = denotes the convolution, and [¢]T means
the transpose operation. Without loss of generality, we assume | = I in this chapter. With
this problem setup, the objective of the BSCM techniques is to find an unmixing filter W(g)
of length Q for deconvolution, that is,

§(t) = W(q) * x(t) (10.6)

where §(f) denotes the estimated sources. Figure 10.5 is a block diagram for J=1=2.
For nonstationary sources, a moving block is usually performed on received signals

x(t,m) = H(p) «8(t,m), t=1,...,.N,m=1,...,.M (10.7)

where m is the index for blocks, M is the total number of blocks, and N is the length of
each block. After the fast Fourier transform (FFT) is applied on the three components in
Equation 10.7, we obtain

X(w,m) = Hw)S(w,m), w=1,...,N (10.8)

where w denotes the frequency bin. Thus, the convolutive mixtures in time-domain turn
into the instantaneous mixtures in frequency domain. This is the basic idea of the
frequency method for BSCM. Then, the separation is done in each frequency bin for the
unmixed filters,

Y (w,m) = W(w)X(w,m) (10.9)

where W(w) andY(w,m) are the unmixed filter and unmixed signals in frequency bin w,
respectively.

Since the envelope of the signal spectrum is correlated, X;(w,m) must be a colored
signal. Under the independence assumption of signals in the time and frequency
domains, we apply the cost function as follows:

T—
O = 31 Z; W (w,r)Gg(w,7 YW (w,r) — 1||* (10.10)
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The algorithm for the unmixing matrix is given by

T-1
W(w,r+1) = Ww,n) + pw) Y [Ww,nNGuw, W (w,) — [ W(w,)Gs(w,m)  (10.11)
7=0

where p is the learning rate, r is the iteration time, T is the total number of delayed
samples, []" is the conjugate transpose operation, I is the identity matrix, and with
7 samples delayed, Gx(w,7) is the autocorrelation matrix of X(w,m). BSS may introduce
two indeterminacies including the permutation and scaling problems [14,17]. We apply
the method in Ref. [19] to resolve the permutation. More methods may be found in
Refs. [20-32]. Also, the scaling ambiguity is a nearly open problem to deal with. Some
methods to deal with this problem are provided in Refs. [33,34]. Generally, to normal-
ize the permuted estimated matrix is a fast and effective way. This is helpful in
maintaining a stable convergence too [35]. We do not discuss this much here. After
the inverse FFT is applied on W(w) we get W(g), and then BSCM is performed
according to Equation 10.6. For more information about BSCM, please refer to the
literatures mentioned above.

10.4 Experiments and Analysis
10.4.1 Backward Matrix of Active Sonar Data for Approximating the BSCM Model

In Section 10.3, BSCM is introduced with some assumptions. However, in applications
like speech enhancement, remote sensing, communication systems, geophysics, and
biomedical engineering, conditions may not meet the basic theoretical requirements of
BSCM. Interestingly, as long as algorithms are converged, BSCM still performs signal
deconvolution effectively after some approximations are made [14,17]. For active sonar,
the target echo and the oceanic reverberation are all generated by the same transmitted
signal, so they must be somewhat correlated nevertheless. Principal component analysis
[36] is the method for decorrelation, and PCI has been applied in separating the target
echo and reverberation with some prior knowledge provided [5-13]. As Neumann and
Krawczyk have pointed out, the forward matrix model used is not a principal issue of the
PCI algorithm, and any other forward model can be used [37]. Approximation implies
that the processing result must be discounted under the comparison to the corresponding
theory. Fortunately, as we pointed out in Section 10.2 the detection in the presence of
reverberation may also be reliable with the matched filter even when the reverberation is
not absolutely canceled, but the SRR should be within a certain limit. So, the approxima-
tion to BSCM is possible by the one-dimensional active sonar data. Intuitively, we
generate the backward data matrix from active sonar data d(f) as the received signals
x(t) to approximate the classical BSCM model:

T

X(i’) = [Xl(i'), ceey X](t)]
xi(t) = d[t +j(B—1) — 1] (10.12)

where x(t) is the so-called jth received signal, | is the total number of received signals, and
B is the size of a moving block, and it is an empirical parameter. By adjusting | and B, we
may produce a different backward matrix. Also, x;(t) will not miss the target because the
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two numbers ] and B are relatively small in comparison to the whole length of d(t). The
losses of xj(t) are at the beginning of the received reverberation and are often not useful.
These make the approximation entirely reasonable.

10.4.2 Examples of Canceling Real Sea Reverberation

To simplify the discussion in this chapter, we only outline briefly the experimental
setup here. Further details are in Ref. [11] about the underwater acoustic data and
experiments. The transmitted signal is sinusoid with a frequency of 1750 Hz, the duration
is 200 msec, and the sampling frequency is 6000 Hz. The examples are all with different
targets simulated and added into the real sea reverberation. Before the targets are
added, the reverberation is through the band-pass filter from 1500 to 2000 Hz. The
reverberation we use is over 6sec. For an enlarged plot, we show only the first 4sec,
which has no effect on the result as the reverberation is very light in the last 2sec.
The block size is N = 200 for Equation 10.7, and the total number of delayed samples
is T = M for Equation 10.9. Since the energy varies in different frequency bins, the
learning rate u(w) is supposed to correspond to the various frequency bins, and then it
is defined as in Ref. [38]:

0.6

w(w) = ————
T-1 5
\/ Z:O |G (w,7)]

10.4.2.1 Example 1: Simulation 1

We take the example of the last plot in Figure 10.3. The corresponding part in Figure 10.4
shows that the detection is no good. A sinusoid target echo of 1750 Hz is simulated and
added to the reverberation with SRR = —14 dB. The target echo is located between the
9,001st and 11,000th samples. No Doppler effect is produced, and ] = 38 and B = 1. After
BSCM is performed on the backward matrix, | deconvolved signals are given, and then,
all signals pass through the matched filter. We compute the kurtosis of all the outputs of
the matched filter and choose the 18th deconvolved signal that has the highest kurtosis in
Figure 10.6 as the BSCM result d(t). In the next simulations, the BSCM results follow this
rule. Figure 10.7 is the matched filter on the BSCM result d(t). By contrast to the fourth plot
in Figure 10.4, it is apparent that the detection is more reliable after BSCM. Next, we show
an example with Doppler effect.

(10.13)

10.4.2.2 Example 2: Simulation 2

A sinusoid target echo of 1745 Hz is simulated and added to the reverberation with SRR
= —19 dB. The target echo is located between the 12,001st and 14,000th samples. Doppler
effect exists, and ] = 20 and B = 1. Figure 10.8 is the matched filter on d(t) and the BSCM
result d(#). Figure 10.8 indicates that the BSCM is more effective when the Doppler effect is
introduced because the reverberation and the target echo are more different. Figure 10.7
and Figure 10.8 show that the SRR is improved to the degree that the detection is more
reliable than before. Since the transmitted signal and the target echo are all sinusoids of a
single frequency or with very small bandwidth, obvious changes in frequency domain
between the original d(f) and the BSCM result d(t) are not found. So, we perform the third
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FIGURE 10.6
Kurtosis of outputs from the matched filter on the deconvoluted signals.

simulation. Although it is not very reasonable, it does help to show the validation of
BSCM algorithm.

10.4.2.3 Example 3: Simulation 3

A hyperbolic frequency modulated (HFM) target echo is simulated and added to the
reverberation with the SRR = —28 dB. The center frequency is 1750 Hz and the band-
width is 500 Hz. The target echo is located between the 12,001st and 18,000th samples, and
J = 30 and B = 2. Figure 10.9 is the matched filter on d(t) and the BSCM result d(t). In
Figure 10.9, it is amazing that the detection is improved greatly after BSCM. To compare
the changes in frequency domain, we take out 6000 samples as the target echo from the
12,001st to 18,000th samples d(t) and d(t), respectively, and then, FFT is applied on the two
groups of data. Figure 10.10 shows the changes. It is apparent that the SRR has improved
a lot after BSCM was applied.
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FIGURE 10.7
Output of matched filter on the BSCM result on reverberation with a sinusoid simulated target (SRR = —14 dB,
no Doppler effect exists).
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10.4.2.4 Example 4: Real Target Experiment

To simplify the discussion in this paper, we only outline briefly the experimental setup
here. Further details on the underwater acoustic data and experimental results are in Ref.
[11]. The transmitted signal is HFM, the duration is 1sec, and the bandwidth is 500 Hz.
The target speed is about 2.0 m/sec, the range is about 2500 m. The sampling frequency
is also 6000 Hz. The data we use is after beamforming. Figure 10.11 shows the matched
filter output of the original data and the BSCM output signals. The figure reveals the
effect in canceling oceanic reverberation by BSCM without any expensive prior know-
ledge.

10.4.2.5 Example 5: Simulation 4

The above examples are all reverberations in shallow water. In this simulation, we give an
example for canceling deep reverberation. The sea depth is beyond 4000 m. The sampling
frequency is also 20,000 Hz. The transmitted signal is HFM and the bandwidth is 100 Hz.
In deep sea, more than one target echo may occur within the reverberation issued by one
ping; that is, Equation 10.1 is now written as

K1 KZ
d(t) = it — ) xe(t) + > it —76) x e(t) + n(t) (10.14)
[ o k=Kl ~~
target 177 reverberation noise
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Waveforms of deep sea reverberation with two simulated targets and BSCM output—overlap between the target
echoes.

In this example two target echoes are simulated. The SRR is 0 dB. The first case is shown
in Figure 10.12. The two echoes do not overlap, and the duration is 0.05sec. The second
overlaps at the rate of 66.7% as shown in Figure 10.13 and the duration is 0.3 sec. Both
Figure 10.12 and Figure 10.13 show that SRR has improved. This simulation implies that
BSCM is also effective in canceling deep sea reverberation.

In all simulations, we do not use BSS, but it does not imply that BSS is not useful.
Compared to BSCM, BSS needs larger | and B, so the computation is more expensive.
Sometimes, BSS cannot provide sound results, but BSCM can be used because it is much
closer to the convolutive model of the active sonar data.

10.5 Conclusions

In this chapter we applied three useful and easily obtainable statistical characteristics to
remove reverberation by deconvolving and distinguishing the target echoes from the
reverberation echoes. They are the nonstationarity and the colored features of reverber-
ation, and the non-Gaussianity of outputs of the matched filter on BSCM results. Except
for statistical information, BSCM usually does not need other expensive prior knowledge,
such as the target echo energy or the Doppler shift, and so on. This is the advantage of our
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method. Though the active sonar data used in this paper is one-dimensional convolutive
mixtures, the elimination of real sea reverberation proves that the approximation to the
BSCM model is effective through backward data matrix. Examples show that BSCM
results can improve the SRR to a degree of satisfactory detection.

Finding a good criterion for choosing the appropriate data matrix, as in Ref. [15], is

open for exploration.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

T.J. Barnard and F. Khan, Statistical normalization of spherically invariant non-Gaussian clutter,
IEEE Journal of Oceanic Engineering, 29(2), 303-309, 2004.

JM. Fialkowski, R.C. Gauss, and D.M. Drumheller, Measurements and modeling of low-
frequency near-surface scattering statistics, IEEE Journal of Oceanic Engineering, 29(2), 197-214, 2004.

. K.D. LePage, Statistics of broad-band bottom reverberation predictions in shallow-water wave-

guides, IEEE Journal of Ocean Engineering, 29(2), 330-346, 2004.

. JR. Preston and D.A. Abraham, Non-Rayleigh reverberation characteristics near 400 Hz

observed on the New Jersey shelf, IEEE Journal of Oceanic Engineering, 29(2), 215-235, 2004.

. LP. Kirsteins and D.W. Tufts, Adaptive detection using low rank approximation to a data

matrix, IEEE Transactions on Aerospace and Electronic Systems, 30(1), 55-67, 1994.

. LP. Kirsteins and D.W. Tufts, Rapidly adaptive nulling of interference, IEEE International

Conference on Systems Engineering, pp. 269272, 24-26 August 1989.

. B.E. Freburger and D.W. Tufts, Case study of principal component inverse and cross spectral

metric for low rank interference adaptation, in Proceedings of ICASSP '98, Vol. 4, pp. 1977-1980,
12-15 May 1998.

. B.E. Freburger and D.W. Tufts, Adaptive detection performance of principal components

inverse, cross spectral metric and the partially adaptive multistage Wiener filter, Conference
Record of the Thirty-Second Asilomar Conference on Signals, Systems & Computers, Vol. 2, pp. 1522—
1526, 1-4 November 1998.

. B.E. Freburger and D.W. Tufts, Rapidly adaptive signal detection using the principal compon-

ent inverse (PCI) method, Conference Record of the Thirty-First Asilomar Conference on Signals,
Systems & Computers, Vol. 1, pp. 765-769, 2-5 November 1997.

T.A. Palka and D.W. Tufts, Reverberation characterization and suppression by means of prin-
cipal components, in OCEANS ’98 Conference Proceedings, Vol. 3, pp. 1501-1506, 28 September—1
October 1998.

G. Ginolhac and G. Jourdain, Principal component inverse algorithm for detection in the
presence of reverberation, IEEE Journal of Oceanic Engineering, 27(2), 310-321, 2002.

G. Ginolhac and G. Jourdain, Detection in presence of reverberation, OCEANS 2000 MTS/IEEE
Conference and Exhibition, Vol. 2, pp. 1043-1046, 11-14 September 2000.

V. Carmillet, P.O. Amblard, and G. Jourdain, Detection of phase- or frequency-modulated
signals in reverberation noise, JASA, 105(6), 3375-3389, 1999.

A. Cichocki and S. Amari, Adaptive Blind Signal Image Processing: Learning Algorithm and Appli-
cation, John Wiley & Sons, New York, 2002.

F. Cong et al., Blind signal separation and reverberation canceling with active sonar data, in
Proceedings of ISSPA, Australia 2005.

G.S. Edelson and I.P. Kirsteins, Modeling and suppression of reverberation components,
IEEE Seventh SP Workshop on Statistical Signal and Array Processing, pp. 437—440, 26-29
June 1994

A. Hyvirinen, J. Karhunen, and E. Oja, Independent Component Analysis, Wiley Interscience, New
York, 2001.

D.A. Abraham and A.P. Lyons, Simulation of non-Rayleigh reverberation and clutter, IEEE
Journal of Oceanic Engineering, 29(2), 347-362, 2004.

© 2007 by Taylor & Francis Group, LLC.



19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

F. Cong et al., Approach based on colored character to blind deconvolution for speech signals, in
Proceedings of ICIMA, pp. 396-399, 2004.

S. Amari, S.C. Douglas, A. Cichocki, and H.H. Yang, Multichannel blind deconvolution and
equalization using the natural gradient, in Proceedings of IEEE Workshop Signal Processing Ad-
vances Wireless Communications, pp. 101-104, April 1997.

M. Kawamoto, K. Matsuoka, and N. Ohnishi, A method of blind separation for convolved
nonstationary signals, Neurocomputing, 22, 157-171, 1998.

S.C. Douglas and X. Sun, Convolutive blind separation of speech mixtures using the natural
gradient, Speech Communications, 39, 65-78, 2003.

P. Smaragdis, Blind separation of convolved mixtures in the frequency domain, Neurocomputing,
22, 21-34, 1998.

H. Sawada, R. Mukai, S. Araki, and S. Makino, Polar coordinate based nonlinear function
for frequency domain blind source separation, IEICE Transactions Fundamentals, E86-A(3), 590—
596, 2003.

L. Schobben and W. Sommen, A frequency domain blind signal separation method based on
decorrelation, IEEE Transactions on Signal Processing, 50, 1855-1865, 2002.

H. Sawada, R. Mukai, S. Araki, and S. Makino, A robust and precise method for solving the
permutation problem of frequency-domain blind source separation, IEEE Transactions on Speech
and Audio Processing, 12(5), 530-538, 2004.

W. Lu and ].C. Rajapakse, Eliminating indeterminacy in ICA, Neurocomputing, 50, 271-290, 2003.
S. Araki, R. Mukai, S. Makino, T. Nishikawa, and H. Saruwatari, The fundamental limitation of
frequency domain blind source separation for convolutive mixtures of speech, IEEE Transactions
on Speech and Audio Processing, 11(2), 109-116, 2003.

M.Z. Ikram and D.R. Morgan, Permutation inconsistency in blind speech separation: investiga-
tion and solutions, IEEE Transactions on Speech and Audio Processing, 13(1), 1-13, 2005.

A. Dapena and L. Castedo, A novel frequency domain approach for separating convolutive
mixtures of temporally white signals, Digital Signal Processing, 13(2), 301-316, 2003.

A. Dapena, M.F. Bugallo, and L. Catcdo, Separation of convolutive mixtures of temporally-
white signals: a novel frequency-domain approach, in Proceedings of Third ICA, San Diego,
California, pp. 179-184, 2001.

C. Mejuto, A. Dapena, and L. Casteda, Frequency-domain infomax for blind source separation
of convolutive mixtures, in Proceedings of ICA 2000, pp. 315-320, Helsinki, 2000.

K. Matsuoka and S. Nakashima, Minimal distortion principle for blind source separation, in
Proceedings of ICA, pp. 722-727, December 2001.

N. Murata, S. Ikeda, and A. Ziehe, An approach to blind source separation based on temporal
structure of speech signals, Neurocomputing, 41(1), 1-24, 2001.

W. Lu and J.C. Rajapakse, Eliminating indeterminacy in ICA, Neurocomputing, 50, 271-290, 2003.
K.I. Diamantaras and S.Y. Kung, Principal Component and Neural Network Theory and Application,
John Wiley & Sons, New York, 1996.

A. Neumann and H. Krawczyk, Principal Component Inversion, Training Course on Remote
Sensing of Ocean Color, Ahmedabad, India, February 2001.

M.Z. Tkram, Multichannel Blind Separation of Speech Signals in a Reverberant Environment, Ph.D
thesis, Georgia Institute of Technology, 2001.

© 2007 by Taylor & Francis Group, LLC.



© 2007 by Taylor & Francis Group, LLC.



11

Neural Network Retrievals of Atmo;pheric

Temperature and Moisture Profiles fr

om High-

Resolution Infrared and Microwave Sounding Data

William J. Blackwell

CONTENTS
111 INEPOAUCHON .ttt s 204
11.2 A Brief Overview of Spaceborne Atmospheric Remote Sensing..........c.cccccceuneeee. 205
11.2.1 Geophysical Parameter Retrieval .........ccoooooiviiiiiiiiiiiiiiiiiiccne 207
11.2.2 The Motivation for Computationally Efficient Algorithms....................... 208
11.3 Principal Components Analysis of Hyperspectral Sounding Data........................ 208
11.3.1 The PC Transformi. ...ttt 209
11.3.2  The NAPC TransfOrm .......cccocoiiiiriiiiiiiiiiiciciiecceeeesc s 209
11.3.3 The Projected PC Transform............ccooeioioiiieiiiiieiiicecccc 209
11.3.4 Evaluation of Compression Performance Using
Two Different MEtricCs .....c.cocoveueriririeieiirieecctreece e 210
11.3.4.1 PC FIeTing ....cccoviiviiiiiiiiiiiiiiiciciicccciccccee 210
11.3.4.2 PC ReGIeSSION .....coveviuiiieieiiiciieietcceeicce s 211
11.3.5 NAPC of Clear and Cloudy Radiance Data.........c.cccooeeriioiiiiiininiieine. 212
11.3.6  NAPC of Infrared Cloud Perturbations............cccccoevviiiiiiinniiiinnes 212
11.3.7 PPC of Clear and Cloudy Radiance Data .........cccoceeereriiccinininiccciicnes 214
114 Neural Network Retrieval of Temperature and Moisture Profiles......................... 216
1141 An Introduction to Multi-Layer Neural Networks...........ccccceeviiiinanes 216
11.4.2 The PPC-NN AIZOTrithim........cccoooviviniiiiiiiiiiiiiiieseeces 217
11.4.2.1 Network Topology ..o 218
11.4.2.2 Network Training........ccocooeiviiiiiiiiiiiiic 218
11.4.3 Error Analyses for Simulated Clear and Cloudy Atmospheres............... 218
11.4.4 Validation of the PPC-NN Algorithm with AIRS/AMSU
Observations of Partially Cloudy Scenes over Land and Ocean .............. 220
11.4.4.1 Cloud Clearing of AIRS Radiances...........ccccccoeoeiiiiiiiiinnnns 220
11.4.4.2 The AIRS/AMSU/ECMWFE Data Set.......ccccovuvniiiviniinirniinnn, 221
11.44.3 AIRS/AMSU Channel Selection ............cccccevveveuecrenerecrnnnerccnnen 221
11.4.44 PPC-NN Retrieval Enhancements for Variable Sensor
Scan Angle and Surface Pressure.........c.cccooooeieiiiicniniccceinnne, 223
11.4.4.5 Retrieval Performance ... 223
11.4.4.6 Retrieval Sensitivity to Cloud Amount ...........ccccceviiiiiiinnnnn. 223
11.4.5 Discussion and Future Work ..........ccccocovviiiiniiccces 224

© 2007 by Taylor & Francis Group, LLC.



11.5  SUMIMATY ..cvviiiiiiii st 225

AcKNOWIedZMENtS ........c.coiiiiiiiiiii s 228
REFETENCES ... 228
I

11.1 Introduction

Modern atmospheric sounders measure radiance with unprecedented resolution and
accuracy in spatial, spectral, and temporal dimensions. For example, the Atmospheric
Infrared Sounder (AIRS), operational on the NASA EOS Aqua satellite since 2002, pro-
vides a spatial resolution of ~15 km, a spectral resolution of v/Av ~ 1200 (with 2,378
channels from 650 to 2675 cm_l), and a radiometric accuracy on the order of +0.2 K.
Typical polar-orbiting atmospheric sounders measure approximately 90% of the Earth’s
atmosphere (in the horizontal dimension) approximately every 12 h. This wealth of data
presents two major challenges in the development of retrieval algorithms, which estimate
the geophysical state of the atmosphere as a function of space and time from upwelling
spectral radiances measured by the sensor. The first challenge concerns the robustness of
the retrieval operator and involves maximal use of the geophysical content of the radiance
data with minimal interference from instrument and atmospheric noise. The second is to
implement a robust algorithm within a given computational budget. Estimation tech-
niques based on neural networks (NNs) are becoming more common in high-resolution
atmospheric remote sensing largely because their simplicity, flexibility, and ability to
accurately represent complex multi-dimensional statistical relationships allow both of
these challenges to be overcome.

In this chapter, we consider the retrieval of atmospheric temperature and moisture
profiles (quantity as a function of altitude) from radiance measurements at microwave
and thermal infrared wavelengths. A projected principal components (PPC) transform is
used to reduce the dimensionality of and optimally extract geophysical information from
the spectral radiance data, and a multi-layer feedforward NN is subsequently used to
estimate the desired geophysical profiles. This algorithm is henceforth referred to as the
“PPC-NN"" algorithm. The PPC-NN algorithm offers the numerical stability and effi-
ciency of statistical methods without sacrificing the accuracy of physical, model-based
methods.

The chapter is organized as follows. First, the physics of spaceborne atmospheric
remote sensing is reviewed. The application of principal components transforms to
hyperspectral sounding data is then presented and a new approach is introduced,
where the sensor radiances are projected into a subspace that reduces spectral redun-
dancy and maximizes the resulting correlation to a given parameter. This method is
very similar to the concept of canonical correlations introduced by Hotelling over
70 years ago [1], but its application in the hyperspectral sounding context is new.
Second, the use of multi-layer feedforward NNs for geophysical parameter retrieval
from hyperspectral measurements (first proposed in 1993 [2]) is reviewed, and an
overview of the network parameters used in this work is given. The combination of
the PPC radiance compression operator with an NN is then discussed, and per-
formance analyses comparing the PPC-NN algorithm to traditional retrieval methods
are presented.
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11.2 A Brief Overview of Spaceborne Atmospheric Remote Sensing

The typical measurement scenario for spaceborne atmospheric remote sensing is
shown in Figure 11.1. A sensor measures upwelling spectral radiance (intensity as a
function of frequency) at various incidence angles. The sensor data is usually cali-
brated to remove measurement artifacts such as gain drift, nonlinearities, and noise.
The spectral radiances measured by the sensor are related to geophysical quantities,
such as the vertical temperature profile of the atmosphere, and therefore must be
converted into a geophysical quantity of interest through the use of an appropriate
retrieval algorithm.

The radiative transfer equation describing the radiation intensity observed at altitude L,
viewing angle 6, and frequency v can be formulated by including reflected atmospheric
and cosmic contributions and the radiance emitted by the surface as follows [3,4]:

L L
k,(2)]L[T(z)] exp (—J sec 0k, (z') dz’) secdz

z

R = |

0
L Z

+p e T sl J k() [T(2)] exp <—J sec Ok, (Z') dz’) secf dz
0 0

+ pve—Zr" sec OIV(TC)
+ ave—r*sece]v(Ts) (111)
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FIGURE 11.1

Typical measurement scenario for spaceborne atmospheric remote sensing. Electromagnetic radiation that
reaches the sensor is emitted by the sun, cosmic background, atmosphere, surface, and clouds. This radiation
can also be reflected or scattered by the surface, atmosphere, or clouds. The spectral radiances measured by the
sensor are related to geophysical quantities, such as the vertical temperature profile of the atmosphere, and
therefore must be converted into a geophysical quantity of interest through the use of an appropriate retrieval
algorithm.
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where ¢, is the surface emissivity, p, is the surface reflectivity, T; is the surface tempera-
ture, k,(z) is the atmospheric absorption coefficient, 7* is the atmospheric zenith opacity,
T. is the cosmic background temperature (2.736 + 0.017 K), and J,(T) is the radiance
intensity emitted by a blackbody at temperature T, which is given by the Planck equation:

hv? 1

],,(T) = CT WW . m72 . Ster71 . H271 (112)

The first term in Equation 11.1 can be recast in terms of a transmittance function T,(z):

L
Ru(L) = L LIT)] <dT£Z(Z)) dz (11.3)

The derivative of the transmittance function with respect to altitude is often called the
temperature weighting function

dT,(2)

W@ =g

(11.4)

and gives the relative contribution of the radiance emanating from each altitude. The
temperature weighting functions for the Advanced Microwave Sounding Unit (AMSU)
are shown in Figure 11.2.
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FIGURE 11.2

AMSU-A temperature profile (left) and AMSU-B water vapor profile (right) weighting functions
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11.2.1 Geophysical Parameter Retrieval

The objective of the geophysical parameter retrieval algorithm is to estimate the state of
the atmosphere (represented by parameter matrix X, say), given observations of spectral
radiance (represented by radiance matrix R, say). There are generally two approaches to
this problem, as shown in Figure 11.3. The first approach, referred to here as the vari-
ational approach, uses a forward model (for example, the transmittance and radiative
transfer models previously discussed) to calculate the sensor radiance that would be
measured given a specific atmospheric state. Note that the inverse model typically does
not exist, as there are generally an infinite number of atmospheric states that could give
rise to a particular radiance measurement. In the variational approach, a ““guess’ of the
atmospheric state is made (this is usually obtained through a forecast model or historical
statistics), and this guess is propagated through the forward models thereby producing
an estimate of the at-sensor radiance. The measured radiance is compared with this
estimated radiance, and the state vector is adjusted so as to reduce the difference between
the measured and estimated radiance vectors. Details on this methodology are discussed
at length by Rodgers [5], and the interested reader is referred there for a more thorough
treatment of the methodology and implementation of variational retrieval methods. The
second approach, referred to here as the statistical, or regression-based, approach, does
not use the forward model explicitly to derive the estimate of the atmospheric state vector.
Instead, an ensemble of radiance—state vector pairs is assembled, and a statistical charac-
terization (p(X), p(R), and p(X,R)) is sought. In practice, it is difficult to obtain these
probability density functions (PDFs) directly from the data, and alternative methods are
often used. Two of these methods are linear least-squares estimation (LLSE), or linear
regression, and nonlinear least-squares estimation (NLLSE). NNs are a special class of
NLLSEs, and will be discussed later.

Variational approach:

A forward model relates the X=[T(rt), W(rt), O(rt),...]
geophysical state of the _ surface reflectivity, solar illumination, etc. |, .
atmosphere to the radiances ~ ' |observing system (bandwidth, resolution, etc.)

measured by the sensor.

Observation noise

« A“guess’ of the atmospheric 7 = ||R = R, || + h(X)
state is adjusted iteratively N
until modeled radiance p-— Regularization” term

“matches” observed radiance.
Statistical (regression-based) approach:

* An ensemble of radiance—state
vector pairs is assembled, and  y _ gR
a statistical relationship obs
between the two is dervied g()
empirically.

), where g(-) is argmin ||Xens - g(Fv’ens)”

Examples of g(-) include LLSE and neural network

FIGURE 11.3

Variational and statistical approaches to geophysical parameter retrieval. In the variational approach, a forward
model is used to predict at-sensor radiances based on atmospheric state. In the statistical approach, an empirical
relationship between at-sensor radiances and atmospheric state is derived using an ensemble of radiance-state
vectors.
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11.2.2 The Motivation for Computationally Efficient Algorithms

The principal advantage of regression-based methods is their simplicity—once the coef-
ficients are derived from “training’”’ data, the calculation of atmospheric state vectors is
relatively easy. The variational approaches require multiple calls to the forward models,
which can be computationally prohibitive. The computational complexity of the forward
models is usually nonlinearly related (often O(n?) or more) to the number of spectral
channels. As shown in Figure 11.4, the spectral and spatial resolution of infrared sounders
has increased dramatically over the last 35 years, and the required computation
needed for real-time operation with variational algorithms has outpaced Moore’s Law.
There is, therefore, a motivation to reduce the computational burden of current and
next-generation retrieval algorithms to allow real-time ingestion of satellite-derived
geophysical products into numerical weather forecast models.

11.3 Principal Components Analysis of Hyperspectral Sounding Data

Principal components (PC) transforms can be used to represent radiance measurements in
a statistically compact form, enabling subsequent retrieval operators to be substantially
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Improvements in sensor spectral and spatial resolution over the last 35 years is shown. The recent increases in
the spectral resolutions afforded by infrared sensors has far surpassed that available from microwave sensors.
The trends in spatial resolution are similar for infrared and microwave sensors.
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more efficient and robust (see Ref. [6], for example). Furthermore, measurement noise can
be dramatically reduced through the use of PC filtering [7,8], and it has also been shown
[9] that PC transforms can be used to represent variability in high-spectral-resolution
radiances perturbed by clouds. In the following sections, several variants of the PC
transform are briefly discussed, with emphasis focused on the ability of each to extract
geophysical information from the noisy radiance data.

11.3.1 The PC Transform

The PC transform is a linear, orthonormal operator' Q/, which projects a noisy
m-dimensional radiance vector, R = R+ ¥, into an r-dimensional (r < m) subspace. The
additive noise vector ¥ is assumed to be uncorrelated with the radiance vector R, and is
characterized by the noise covariance matrix Cyy. The “PC"” of R, thatis, P = Q[ R have
two desirable properties: (1) the components are statistically uncorrelated and (2) the
reduced-rank reconstruction error.

o) = E[R, — R R, - R)] (11.5)

where R, A G,R for some linear operator G, with rank r, is minimized when G, = Q, Qr.
The rows of Q; contain the r most-significant (ordered by descending eigenvalue) eigen-
vectors of the noisy data covariance matrix Czgz = Cgg + Cyg.

11.3.2 The NAPC Transform

Cost criteria other than in Equation 11.5 are often more suitable for typical hyperspectral
compression applications. For example, it might be desirable to reconstruct the noise-free
radiances and filter the noise. The cost equation thus becomes

() = E[(R, — R (R, — R)] (11.6)

where R,2H,R for some linear operator H, with rank r. The noise-adjusted principal
components (NAPC) transform [10], where H, = CyZ W, W! Cyi/? and W contains the
r most-significant eigenvectors of the whitened noisy covariance matrix Czg = Cod/?
(Crr + C\I/\I;)Ci&/ 2 maximizes the signal-to-noise ratio of each component, and is superior
to the PC transform for most noise-filtering applications where the noise statistics are
known a priori.

11.3.3 The Projected PC Transform

It is often unnecessary to require that the PC be uncorrelated, and linear operators can be
derived that offer improved performance over PC transforms for minimizing cost func-
tions such as in Equation 11.6. It can be shown [11] that the optimal linear operator with
rank r that minimizes Equation 11.6 is

L, = E,ETCrr(Crr + Cyw) ' (11.7)
where E, = [E; | E; |...|E,] are the r most-significant eigenvectors of Crg (Crr +

C\M,)*lCRR. Examination of Equation 11.7 reveals that the Wiener-filtered radiances are
projected onto the r-dimensional subspace spanned by E,. It is this projection that

The following mathematical notation is used in this chapter: ()T denotes the transpose, (*) denotes a noisy
random vector, and (-) denotes an estimate of a random vector. Matrices are indicated by bold upper case,
vectors by upper case, and scalars by lower case.
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motivates the name “PPC.” An orthonormal basis for this r-dimensional subspace of the
original m-dimensional radiance vector space R is given by the r most-significant right
eigenvectors, V,, of the reduced-rank linear regression matrix, L,, given in Equation 11.7.
We then define the PPC of R as

P=V'R (11.8)

Note that the elements of P are correlated, as VrT(CRR+ Cyw)V, is not a diagonal matrix.

Another useful application of the PPC transform is the compression of spectral
radiance information that is correlated with a geophysical parameter, such as the tem-
perature profile. The r-rank linear operator that captures the most radiance informa-
tion, which is correlated to the temperature profile, is similar to Equation 11.7 and is
given below:

L, = E,E/ Crg(Cgg + Cyw) ' (11.9)

where E, =[E; | E;| - - - | E,] are the r most-significant eigenvectors of Crr(Cgrr + qu\p)_lCRT,
and Crpr is the cross-covariance of the temperature profile and the spectral radiance.

11.3.4 Evaluation of Compression Performance Using Two Different Metrics

The compression performance of each of the PC transforms discussed previously was
evaluated using two performance metrics. First, we seek the transform that yields the best
(in the sum-squared sense) reconstruction of the noise-free radiance spectrum given a
noisy spectrum. Thus, we seek the optimal reduced-rank linear filter. The second per-
formance metric is quite different and is based on the temperature retrieval performance
in the following way. A radiance spectrum is first compressed using each of the PC
transforms for a given number of coefficients. The resulting coefficients are then used in a
linear regression to estimate the temperature profile.

The results that follow were obtained using simulated, clear-air radiance intensity
spectra from an AIRS-like sounder. Approximately, seven thousand and five-hundred
1750-channel radiance vectors were generated with spectral coverage from approximately
4 to 15 pm using the NOAA88b radiosonde set. The simulated intensities were expressed
in spectral radiance units (mW m 2sr Y(em H7h.

11.3.4.1 PC Filtering

Figure 11.5a shows the sum-squared radiance distortion (Equation 11.5) as a function of
the number of components used in the various PC decomposition techniques. The a priori
level indicates the sum-squared error due to sensor noise. Results from two variants of the
PC transform are plotted, where the first variant (the “PC" curve) uses eigenvectors of
Ciz as the transform basis vectors, and the second variant (the “‘noise-free PC" curve)
uses eigenvectors of Cgg as the transform basis vectors. It is shown in Figure 11.5a that the
PPC reconstruction of noise-free radiances (PPC[R]) yields lower distortion than both
the PC and NAPC transforms for any number of components (r). It is noteworthy that the
“PC” and ““noise-free PC"" curves never reach the theoretically optimal level, defined by
the full-rank Wiener filter. Furthermore, the PPC distortion curves decrease monotonic-
ally with coefficient number, while all the PC distortion curves exhibit a local minimum,
after which the distortion increases with coefficient number as noisy, high-order terms are
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Performance comparisons of the PC (where the components are derived from both noisy and noise-free
radiances), NAPC, and PPC transforms for a hypothetical 1750-channel infrared (4-15 pm) sounder. Two
projected principal components transforms were considered, PPC(R) and PPC(T), which are, respectively: (a)
maximum representation of noise-free radiance energy, and (b) maximum representation of temperature profile
energy. The first plot shows the sum-squared error of the reduced-rank reconstruction of the noise-free spectral
radiances. The second plot shows the temperature profile retrieval error (trace of the error covariance matrix)
obtained using linear regression with » components.

included. The noise in the high-order PPC terms is effectively zeroed out, because it is
uncorrelated with the spectral radiances.

11.3.4.2 PC Regression

The PC coefficients derived in the previous example are now used in a linear regression to
estimate the temperature profile. Figure 11.5b shows the temperature profile error (inte-
grated over all altitude levels) as a function of the number of coefficients used in the linear
regression, for each of the PC transforms. To reach the theoretically optimal value
achieved by linear regression with all channels requires approximately 20 PPC coeffi-
cients, 200 NAPC coefficients, and 1000 PC coefficients. Thus, the PPC transform results
in a factor of ten improvement over the NAPC transform when compressing temperature-
correlated radiances (20 versus 200 coefficients required), and approximately a factor of
100 improvement over the original spectral radiance vector (20 versus 1750). Note that the
first guess in the AIRS Science Team Level-2 retrieval uses a linear regression derived
from approximately 60 of the most-significant NAPC coefficients of the 2378-channel
AIRS spectrum (in units of brightness temperature) [6]. Results for the moisture profile

© 2007 by Taylor & Francis Group, LLC.



are similar, although more coefficients (typically 35 versus 25 for temperature) are needed
because of the higher degree of nonlinearity in the underlying physical relationship
between atmospheric moisture and the observed spectral radiance. This substantial
compression enables the use of relatively small (and thus very stable and fast) NN
estimators to retrieve the desired geophysical parameters.

It is interesting to consider the two variants of the PPC transform shown in Figure 11.5,
namely PPC(R), where the basis for the noise-free radiance subspace is desired, and PPC(T),
where the basis for only the temperature profile information is desired. As shown in
Figure 11.5a, the PPC(T) transform poorly represents the noise-free radiance space, because
there is substantial information that is uncorrelated with temperature (and thus ignored
by the PPC(T) transform) but correlated with the noise-free radiance. Conversely, the
PPC(R) transform offers a significantly less compact representation of temperature
profile information (see Figure 11.5b), because the transform is representing information
that is not correlated with temperature and thus superfluous when retrieving the tempera-
ture profile.

11.3.5 NAPC of Clear and Cloudy Radiance Data

In the following sections we compute the NAPC (and associated eigenvalues) of clear and
cloudy radiance data, the NAPC of the infrared radiance perturbations due to clouds, and
the projected (temperature) principal components of clear and cloudy radiance data. The
2378 AIRS radiances were converted from spectral intensities to brightness temperatures
using Equation 11.2, and were concatenated with the 20 microwave brightness temperat-
ures from AMSU-A and AMSU-B into a single vector R of length 2398. The NAPC were
computed as follows:

Pnarc = Q'R (11.10)

where Q are the eigenvectors of Cyyw, sorted in descending order by eigenvalue. Cyyy is
the prewhitened covariance matrix discussed in Section 11.3. The eigenvalues corre-
sponding to the top 100 NAPC are shown in Figure 11.6 for simulated clear-air and
cloudy data. Also shown are scatterplots of the first three NAPC.

The eigenvalues of the 90 lowest order terms are very similar. The principal differences
occur in the three highest order terms, which are dominated by channels with weighting
function peaks in the lower part of the atmosphere. The eigenvalues associated with the clear-
air and cloudy NAPC cluster into roughly five groups: 1, 2-3,4-9,10-11, and 12-100. The first
11 NAPC capture 99.96% of the total radiance variance for both the clear-air and cloudy data.
The top three NAPCs of both clear-air and cloudy data appear to be jointly Gaussian to a close
approximation, with the exception of clear-air NAPC #1 versus NAPC #2.

11.3.6 NAPC of Infrared Cloud Perturbations

We define the infrared cloud perturbation AR as

ARR A RF - R (11.11)

where R{¥ is the clear-air infrared brightness temperature and Rfg" is the cloudy infrared
brightness temperature. The NAPC of ARz were calculated using the method described
above. The results are shown in Figure 11.7.
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FIGURE 11.6

Noise-adjusted principal components transform analysis of clear and cloudy simulated AIRS/AMSU data. The
top plot shows the eigenvalues of each NAPC coefficient for clear and cloudy data. The middle row presents
scatterplots of the three clear-air NAPC coefficients with the largest variance (shown normalized to unit
variance). The bottom row presents scatterplots of the three cloudy NAPC coefficients with the largest variance
(shown normalized to unit variance).

The six highest order NAPC of AR capture approximately 99.96% of the total cloud
perturbation variance, which suggests that there are more degrees of freedom in the
atmosphere than there are in the clouds. Furthermore, there is significant crosstalk
between the cloud perturbation and the underlying atmosphere, and this crosstalk is
highly nonlinear and non-Gaussian. Evidence of this can be seen in the scatterplot of
NAPC #1 versus NAPC #2, shown in the lower left corner of Figure 11.7.
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FIGURE 11.7

Noise-adjusted principal components transform analysis of the cloud impact (clear radiance—cloudy radi-
ance) for simulated AIRS data. The top plot shows the eigenvalue of each NAPC coefficient of cloud
impact, along with the NAPC coefficients of clear-air data (shown in Figure 11.6). The bottom row presents
scatterplots of the three cloud-impact NAPC coefficients with the largest variance (shown normalized to
unit variance).

The temperature weighting functions of NAPC #1 and NAPC #2 are shown in Fig-
ure 11.8. NAPC #1 consists primarily of surface channels and NAPC #2 consists primarily
of channels that peak near 3-6 km and channels that peak near the surface. Therefore,
NAPC #1 is sensitive principally to the overall cloud amount, while NAPC #2 is also
sensitive to cloud altitude.

11.3.7 PPC of Clear and Cloudy Radiance Data

The PPC transform discussed previously was used to identify temperature information
contained in the clear and cloudy radiances. Figure 11.9 shows the mean temperature
profile retrieval error for the reduced-rank regression operator given in Equation 11.9 as a
function of rank (the number of PPC coefficients retained) for clear-air and cloudy
radiance data.

Both curves have asymptotes near 15 coefficients, and clouds degrade the temperature
retrieval by an average of approximately 0.3 K RMS.
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FIGURE 11.9

Projected principal components transform analysis of clear and cloudy simulated AIRS/AMSU data. The mean
temperature profile retrieval error (K RMS) is shown as a function of the number of PPC coefficients used in a
linear regression for simulated clear and cloudy data.
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11.4 Neural Network Retrieval of Temperature and Moisture Profiles

An NN is an interconnection of simple computational elements, or nodes, with activation
functions that are usually nonlinear, monotonically increasing, and differentiable. NNs
are able to deduce input—output relationships directly from the training ensemble without
requiring underlying assumptions about the distribution of the data. Furthermore, an NN
with only a single hidden layer of a sufficient number of nodes with nonlinear activation
functions is capable of approximating any real-valued continuous scalar function to a
given precision over a finite domain [12,13].

11.4.1 An Introduction to Multi-Layer Neural Networks

Consider a multi-layer feedforward NN consisting of an input layer, an arbitrary number
of hidden layers (usually one or two), and an output layer (see Figure 11.10). The hidden
layers typically contain sigmoidal activation functions of the form z; = tanh(a;), where
a; = delw], x; + bj. The output layer is typically linear. The weights (w;;) and biases (b))
for the j™ neuron are chosen to minimize a cost function over a set of P training patterns.
A common choice for the cost function is the sum-squared error, defined as

E(w) = Z Z (t(” (”)2 (11.12)

where 1) and £’ denote the network outputs and target responses, respectively, of each
output node k given a pattern p, and w is a vector containing all the weights and biases of
the network. The “training’” process involves iteratively finding the weights and biases
that minimize the cost function through some numerical optimization procedure. Second-
order methods are commonly used, where the local approximation of the cost function by
a quadratic form is given by

(a) Neural network topology (b) Perceptron

IASAN
R

Input First ~ Second  Output
layer hidden hidden layer
layer layer

FIGURE 11.10
The structure of the multi-layer feedforward NN (specifically, the multi-layer perceptron) is shown in (a), and
the perceptron (or node) is shown in (b).
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E(w + dw) ~ E(w) + VE(w)" dw + %dwTVZE(w) dw (11.13)

where VE(w) and V2E(w) are the gradient vector and the Hessian matrix of the cost
function, respectively. Setting the derivative of Equation 11.13 to zero and solving for the
weight update vector dw yields

dw = —[V2E(w)] ' VE(w) (11.14)

Direct application of Equation 11.14 is difficult in practice, because computation of the
Hessian matrix (and its inverse) is nontrivial, and usually needs to be repeated at each
iteration. For sum-squared error cost functions, it can be shown that

VE(w) =]JTe (11.15)
V2Ew) =JJ+5 (11.16)

where J is the Jacobian matrix that contains first derivatives of the network errors with
respect to the weights and biases, e is a vector of network errors, and S = Y, _1 e, V e}.
The Jacobian matrix can be computed using a standard backpropagation technique [14]
that is significantly more computationally efficient than direct calculation of the Hessian
matrix [15]. However, an inversion of a square matrix with dimensions equal to the total
number of weights and biases in the network is required. For the Gauss—-Newton method,
it is assumed that S is zero (a reasonable assumption only near the solution), and the
updated Equation 11.14 becomes

dw = —[J7]] 'Je (11.17)
The Levenberg-Marquardt modification [16] to the Gauss—Newton method is
dw = —[JT] + uI] 'Je (11.18)

As p varies between zero and oo, dw varies continuously between the Gauss—Newton
step and the steepest descent. The Levenberg-Marquardt method is thus an example of a
model-trust-region approach in which the model (in this case the linearized approxima-
tion of the error function) is trusted only within some region around the current search
point [17]. The size of this region is governed by the value w.

The use of multi-layer feedforward NNs, such as the multi-layer perceptron (MLP), to
retrieve temperature profiles from hyperspectral radiance measurements has been ad-
dressed by several investigators (see Refs. [18,19], for example). NN retrieval of moisture
profiles from hyperspectral data is relatively new [20], but follows the same methodology
used to retrieve temperature.

11.4.2 The PPC-NN Algorithm

A first attempt to combine the properties of both NN estimators and PC transforms for the
inversion of microwave radiometric data to retrieve atmospheric temperature and mois-
ture profiles is reported in Ref. [21], and a more recent study with hyperspectral data is
presented in Ref. [20]. A conceptually similar approach is taken in this work by combining
the PPC compression technique described in Section 11.3.3 with the NN estimator
discussed in the previous section. PPC compression offers substantial performance
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advantages over traditional principal components analysis (PCA) and is the cornerstone
of the present work.

11.4.2.1 Network Topology

All MLPs used in the PPC-NN algorithm are composed of one or two hidden layers of
nonlinear (hyperbolic tangent) nodes and an output layer of linear nodes. For the tem-
perature retrieval, 25 PPC coefficients are input to six NNs, each with a single hidden
layer of 15 nodes. Separate NNs are used for different vertical regions of the atmosphere;
a total of six networks are used to estimate the temperature profile at 65 points from the
surface to 50 mbar. For the water vapor retrieval, 35 PPC coefficients are input to nine
NNs, each with a single hidden layer of 25 nodes. The water vapor profile (mass mixing
ratio) is estimated at 58 points from the surface to 75 mbar. These network parameters
were determined largely through empirical analyses. Work is underway to dynamically
optimize these parameters as the NN is trained. Separate training and testing data sets are
used and are discussed in more detail in Section 11.4.2.2.

11.4.2.2 Network Training

The weights and biases were initialized using the Nguyen-Widrow method [22]. This
method reduces the training time by initializing the weights so that each node is ““active”
(in the linear region of the activation function) over the input range of interest. The NN
was trained using the Levenberg-Marquardt backpropagation algorithm discussed in
Section 11.4.1. For each epoch, the u parameter was initialized to 0.001. If a successful
step was taken (i.e., E(w + dw) < E(w)), then u was decreased by a factor of ten. If the
current step was unsuccessful, the value of u was increased by a factor of ten until a
successful step could be found (or until u reached 10'). The network training was
stopped when the error on a separate data set did not decrease for 10 consecutive epochs.
The sensor noise was changed on each training epoch to desensitize the network to
radiance measurement errors.

11.4.3 Error Analyses for Simulated Clear and Cloudy Atmospheres

AIRS and AMSU-A/B clear and cloudy radiances were simulated for an ensemble of
approximately 10,000 profiles. These profiles were produced using a numerical weather
prediction (NWP) model, and are substantially smoother (vertically) than the NOAA88b
profile set that is used in the following sections. The profiles were separated into mutually
exclusive sets for training and testing of the PPC-NN algorithm. The RMS errors for the
LLSE and NN temperature retrievals are shown in Figure 11.11 for clear and cloudy
atmospheres. The NN estimator significantly outperforms the LLSE in both cases.

The sensitivity of the retrieval to instrument noise is examined by repeating the
retrieval with instrument noise set to zero. The difference in retrieval errors (with and
without noise) is shown in the first panel of Figure 11.12. The atmospheric contribution to
the retrieval error (i.e., the noise-free retrieval error) is shown in the second panel of
Figure 11.12. Finally, the differences (net minus LLSE) in error contributions for the two
methods are shown in the third panel of Figure 11.12. It is noteworthy that the NN is a
much better filter of instrument noise than is the LLSE.

As a final test of sensitivity to instrument noise, the LLSE and NN retrievals were
repeated while varying the instrument noise between 10% and 1000% of its nominal
value. The resulting retrieval errors are shown in Figure 11.13. The NN retrieval is
significantly less sensitive to instrument noise than is the LLSE retrieval.
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and LLSE estimators.
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Sensitivity of temperature profile retrieval to measurement noise. The mean RMS error over 15 km is shown as a
function of the noise amplification factor.

11.4.4 Validation of the PPC-NN Algorithm with AIRS/AMSU Observations of Partially
Cloudy Scenes over Land and Ocean

In this section, the performance of the PPC-NN algorithm is evaluated using
cloud-cleared AIRS observations (not simulations, as were used in the previous section)
and colocated ECMWEF (European Center for Medium-range Weather Forecast-
ing) forecast fields. The cloud clearing is performed using both AIRS and AMSU data.
The PPC-NN retrieval performance is compared with that obtained using the AIRS
Level-2 algorithm. Both ocean and land cases are considered, including elevated
surface terrain, and retrievals at all sensor scan angles (out to +48°) are derived. Finally,
sensitivity analyses of PPC-NN retrieval performance are presented with respect to
scan angle, orbit type (ascending or descending), cloud amount, and training set
comprehensiveness.

11.4.4.1 Cloud Clearing of AIRS Radiances

The cloud-clearing approach discussed in Susskind et al. [23] was applied to the
AIRS data by the AIRS Science Team. Version 3.x of the algorithm was used in this
work (see Table 11.1 for a detailed listing of the software version numbers). The
algorithm seeks to estimate a clear-column radiance (the radiance that would have been
measured if the scene were cloud-free) from a number of adjacent cloud-impacted
fields of view.
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TABLE 11.1
AIRS Software Version Numbers for the Seven Days Used in the Match-Up Data Set
6 Sep 2002 25 Jan 2003 8 Jun 2003 21 Aug 2003 3 Sep 2003 12 Oct 2003 5 Dec 2003

Cloud clearing 3.7.0 3.7.0 3.7.0 3.1.9 3.1.9 3.1.9 3.7.0
Level-2 3.0.8 3.0.8 3.0.8 3.0.8 3.0.8 3.0.8 3.0.10

11.4.4.2 The AIRS/AMSU/ECMWF Data Set

The performance of the PPC-NN algorithm was evaluated using 352,903 AIRS/AMSU
observations and colocated ECMWF atmospheric fields collected on seven days through-
out 2002 and 2003 (see Table 11.1). Various software version changes were made over
the course of this work (see Table 11.1 for details), but these changes were primarily with
regard to quality control and do not significantly affect the results presented here.
However, the version 4.x release of the AIRS software, which was not available in time
to be included in this work, should offer many enhancements over version 3.x, including
improved cloud clearing, retrieval accuracies, quality control, and retrieval yield [24].
Reanalyses of the results presented in this section are therefore planned with the new
AIRS software release.

The 352,903 observations were randomly divided into a training set of 302,903 obser-
vations (206,061 of which were over ocean) and a separate validation set of 50,000
observations (40,000 of which were over ocean). The a priori RMS variation of the
temperature and water vapor (mass mixing ratio) profiles contained in the validation
set are shown in Figure 11.14. The observations in the validation set were matched with
AIRS Level-2 retrievals obtained from the Earth Observing System (EOS) Data Gateway
(EDG). As advised in the AIRS Version 3.0 L2 Data Release Documentation, only
retrievals that met certain quality standards (specifically, RetQAFlag = 0 for ocean
and RetQAFlag = 256 for land) were included in the analyses. There were 17,856 AIRS
Level-2 retrievals (all within +40° latitude) that met this criterion. Re-analysis with
AIRS Level-2 version 4.x software is planned, as the version 4.x products have been
validated over both ocean and land at near-polar latitudes.

To facilitate comparison with results published in the AIRS v3.0 Validation Report [25],
layer error statistics are calculated as follows. First, layer averages are calculated in layers
of approximately (but not exactly) 1-km width—the exact layer widths can be found in
Appendix III in the AIRS v3.0 Validation Report. Second, weighted water vapor errors in
each layer are calculated by dividing the RMS mass mixing ratio error by the RMS
variation of the true mass mixing ratio (as opposed to dividing the mass mixing ratio
error of each profile by the true mass mixing ratio for that profile and computing the RMS
of the resulting ensemble).

11.4.4.3 AIRS/AMSU Channel Selection

Thirty-seven percent (888 of the 2378) of the AIRS channels were discarded for the
analysis, as the radiance values for these channels frequently were flagged as invalid by
the AIRS calibration software. A simulated AIRS brightness temperature spectrum is
shown in Figure 11.15, which shows the original 2378 AIRS channels and the 1490
channels that were selected for use with the PPC-NN algorithm. All 15 AMSU-A channels
were used. The algorithm automatically discounts channels that are excessively corrupted
by sensor noise (for example, AMSU-A channel 7 on EOS Aqua) or other interfering
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Temperature and water vapor profile statistics for the validation data set used in the analysis. See the text for
details on how the statistics are computed at each layer.
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A typical AIRS spectrum (simulated) is shown. 1490 out of 2378 AIRS channels were selected.
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signals (for example, the effects of nonlocal thermodynamic equilibrium) because the
corruptive signals are largely uncorrelated with the geophysical parameters that are to be
estimated.

11.4.4.4 PPC-NN Retrieval Enhancements for Variable Sensor Scan Angle
and Surface Pressure

When dealing with global AIRS/AMSU data, a variety of scan angles and surface pres-
sures must be accommodated. Therefore, two additional inputs were added to the NNs
discussed previously: (1) the secant of the scan angle and (2) the forecast surface pressure
(in mbar) divided by 1013.25. The resulting temperature and water vapor profile esti-
mates were reported on a variable pressure grid anchored by the forecast surface
pressure.

Because the number of inputs to the NNs increased, the number of hidden nodes in
NNs used for temperature retrievals was increased from 15 to 20. For water vapor
retrievals, the number of hidden nodes in the first hidden layer was maintained at 25,
but a second hidden layer of 15 hidden nodes was added.

11.4.4.5 Retrieval Performance

We now compare the retrieval performance of the PPC-NN, linear regression, and AIRS
Level-2 methods. For both the ocean and land cases, the PPC-NN and linear regression
retrievals were derived using the same training set, and the same validation set was used
for all methods.

The temperature profile retrieval performance over ocean for the linear regression
retrieval, the PPC-NN retrieval, and the AIRS Level-2 retrieval is shown in Figure
11.16, and the water vapor retrieval performance is shown in Figure 11.17. The error
statistics were calculated using the 13,156 (out of 40,000) AIRS Level-2 retrievals that
converged successfully. A bias of approximately 1 K near 100 mbar was found between
the AIRS Level-2 temperature retrievals and the ECMWEF data (ECMWF was colder). This
bias was removed prior to computation of the AIRS Level-2 retrieval error statistics,
which are shown in Figure 11.16.

The temperature profile retrieval performance over land for the linear regression retrieval,
the PPC-NN retrieval, and the AIRS Level-2 retrieval is shown in Figure 11.18, and the water
vapor retrieval performance is shown in Figure 11.19. The error statistics were calculated
using the 4,700 (out of 10,000) AIRS Level-2 retrievals that converged successfully.

There are several features in Figure 11.16 through Figure 11.19 that are worthy of note.
First, for all retrieval methods, the performance over land is worse than that over ocean,
as expected. The cloud-clearing problem is significantly more difficult over land, as
variations in surface emissivity can be mistaken for cloud perturbations, thus resulting
in improper radiance corrections. Second, the magnitude of the temperature profile error
degradation for land versus ocean is larger for the PPC-NN algorithm than for the AIRS
Level-2 algorithm. In fact, the temperature profile retrieval performance of the
AIRS Level-2 algorithm is superior to that of the PPC-NN algorithm throughout most
of the lower troposphere over land. Further analyses of this discrepancy suggest that the
performance of the PPC-NN method over elevated terrain is suboptimal, and could be
improved. This work is currently underway.

11.4.4.6 Retrieval Sensitivity to Cloud Amount

A plot of the temperature retrieval error in the layer closest to the surface as a function
of the cloud fraction retrieved by the AIRS Level-2 algorithm is shown in Figure 11.20.
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FIGURE 11.16
Temperature retrieval performance of the PPC-NN, linear regression, and AIRS Level-2 methods over ocean.
Statistics were calculated over 13,156 fields of regard.

Similar curves for the water vapor retrieval performance are shown in Figure 11.21. Both
methods produce temperature and moisture retrievals with RMS errors near 1 K and
15%, respectively, even in cases with large cloud fractions. The figures show that the
PPC-NN temperature and moisture retrievals are less sensitive than the AIRS Level-2
retrievals to cloud amount. Furthermore, it has been shown that the PPC-NN retrieval
technique is relatively insensitive to sensor scan angle, orbit type, and training set
comprehensiveness [26].

11.4.5 Discussion and Future Work

Although the PPC-NN performance results presented in the previous section are very
encouraging, several caveats must be mentioned. The ECMWF fields used for ““ground
truth” contain errors, and the NN will tune to these errors as part of its training pro-
cess. Therefore, the PPC-NN RMS errors shown in the previous section may be
underestimated, and the AIRS Level-2 RMS errors may be overestimated, as the ECMWF
data is not an accurate representation of the true state of the atmosphere. Therefore, the
“true” spread between the performance of the PPC-NN and AIRS Level-2 algorithms is

© 2007 by Taylor & Francis Group, LLC.



100 T T T J
=== Linear regression
AIRS v3.0 Level-2
algorithm

200 H ‘ PPC—NN .......................
g 300 .......................................
E
[0)
5
g 400 F - - - c s e e e
Q
o

500 .........................................

600 .........................................

700 ..........................................

800 ......................................

900 ....... Y ........ ........ ....... -

1000 ) ; ) )
0 10 20 30 40 50
Percent RMS mass mixing ratio error
(RMS error/RMS true * 100)
FIGURE 11.17

Water vapor (mass mixing ratio) retrieval performance of the PPC-NN, linear regression, and AIRS Level-2
methods over ocean. Statistics were calculated over 13,156 fields of regard.

almost certainly smaller than that shown here. Work is currently underway to test the
performance of both the PPC-NN and AIRS Level-2 algorithms with additional ground-
truth data, including radiosonde data, and ground- and aircraft-based measurements. It
should be noted that the PPC-NN algorithm as implemented in this work is currently not a
stand-alone system, as both AIRS cloud-cleared radiances and quality flags produced by
the AIRS Level-2 algorithm are required. Future work is planned to adapt the PPC-NN
algorithm for use directly on cloudy AIRS/AMSU radiances and to produce quality
assessments of the retrieved products. Finally, assimilation of PPC-NN-derived atmos-
pheric parameters into NWP models is planned, and the resulting impact on forecast
accuracy will be an excellent indicator of retrieval quality.

11.5 Summary

The PPC-NN temperature and moisture profile retrieval technique combines a linear
radiance compression operator with an NN estimator. The PPC transform was shown to
be well suited for this application because information correlated to the geophysical

© 2007 by Taylor & Francis Group, LLC.



10’ ; ; ; ;

=== Linear regression

AIRS v3.0 Level-2 |
algorithm

sl PPC-NN

Pressure (mbar)

RMS temperature error (K)

FIGURE 11.18
Temperature retrieval performance of the PPC-NN, linear regression, and AIRS Level-2 methods over land.
Statistics were calculated over 4,700 fields of regard.

quantity of interest is optimally represented with only a few dozen components. This
substantial amount of radiance compression (approximately a factor of 100) allows
relatively small NNs to be used thereby improving both the stability and computational
efficiency of the algorithm. Test cases with observed partially cloudy AIRS/AMSU data
demonstrate that the PPC-NN temperature and moisture retrievals yield accuracies
commensurate with those of physical methods at a substantially reduced computational
burden. Retrieval accuracies (defined as agreement with ECMWF fields) near 1 K for
temperature and 25% for water vapor mass mixing ratio in layers of approximately 1-km
thickness were obtained using the PPC-NN retrieval method with AIRS/AMSU data in
partially cloudy areas. PPC-NN retrievals with partially cloudy AIRS/AMSU data over
land were also performed. The PPC-NN retrieval technique is relatively insensitive to
cloud amount, sensor scan angle, orbit type, and training set comprehensiveness. These
results further suggest the AIRS Level-2 algorithm that produced the cloud-cleared
radiances and quality flags used by the PPC-NN retrieval is performing well.

The high level of performance achieved by the PPC-NN algorithm suggests it would
be a suitable candidate for the retrieval of geophysical parameters other than temperature
and moisture from high resolution spectral data. Potential applications include the
retrieval of ozone profiles and trace gas amounts. Future work will involve further
evaluation of the algorithm with simulated and observed partially cloudy data, including
global radiosonde data and ground- and aircraft-based observations.
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methods over land. Statistics were calculated over 4,700 fields of regard.
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12.1 Introduction

Global estimation of precipitation is important to studies in areas such as atmospheric
dynamics, hydrology, climatology and meteorology. Improvements in methods for

*The material in this chapter is taken from Refs. [66] and [67].
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satellite-based estimation of precipitation can lead to improvements in weather forecast-
ing, climate studies, and climate models.

Precipitation presents many challenges because of its complicated physics and statistics.
Existing models of clouds do not adequately account for all of the possible variations in
clouds and precipitation that can be encountered. Instead of a physics-based approach,
Chen and Staelin developed a method using a statistics-based approach. This method was
developed for the Advanced Microwave Sounding Unit (AMSU) instruments AMSU-A/B
on the NOAA-15, NOAA-16, and NOAA-17 satellites. The development process made use
of the fact that although satellite-based passive microwave data cannot completely charac-
terize the observed clouds and precipitation, the data can still yield useful information
relevant to precipitation. This chapter discusses the methods used by Chen and Staelin to
extract from the data information related to atmospheric state variables that are highly
correlated with precipitation. Principal component analysis for signal separation and data
compression, data fusion for resolution sharpening, neural nets, and regional filtering are
among the signal and image processing methods used.

AMSU-A/B and the corresponding instruments AMSU/HSB (Humidity Sounder for
Brazil) collect data near 23.8, 31.4, 54, 89, and 183 GHz. These frequency bands provide
useful information about precipitation. In this chapter, the precipitation estimation algo-
rithm developed by Chen and Staelin is discussed with an emphasis on the signal process-
ing employed to sense important parameters about precipitation. Section 12.2 explains why
it is possible to use the data on AMSU-A/B to estimate precipitation. Section 12.3 provides a
more detailed description of AMSU-A/B and AMSU/HSB. Section 12.4 describes the Chen-—
Staelin algorithm. Section 12.7 provides concluding remarks.

12.2 Physical Basis of Passive Microwave Precipitation Sensing

Matter radiates thermal energy depending on its physical temperature and characteristic
properties. When a spaceborne radiometer observes a location on the Earth, the amount of
energy it receives depends on contributions from the various atmospheric and topograph-
ical constituents within its field of view (Figure 12.1). One useful quantity describing the
amount of thermal radiation emitted by a body is spectral brightness. Spectral brightness
is a measure of how much energy a body radiates at a specified frequency per unit
receiving area, per transmitting solid angle, and per unit frequency. The spectral bright-
ness of a blackbody (W-ster "m >Hz ') is a function of its physical temperature T (K)
and frequency f (Hz) and is given by the following formula

2nf3

where ) is Planck’s constant (J's), c is the speed of light (m/s), and k is Boltzmann’s
constant (J/K). For this chapter, f never exceeds 200 GHz, and T never falls below 100K, so
hf/kT < 0.1. Then, the Taylor series expansion for exponential functions is used to simplify

Equation 12.1
B\ 1 (hf\?
1+<kT>+i (kT) A

~ (12.3)

e/l _ 1= -1 (12.2)
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FIGURE 12.1
The major components of the radiative transfer equation (nofe: 6 # ¢ since the surface of the Earth is spherical).

B(f,T)="4 (12.4)

where A is the wavelength (m) associated with the frequency f.
For blackbodies, given an observation of spectral brightness, one can calculate the
physical temperature of a blackbody as follows:

_ B(f, HA?
T=="r— (12.5)

Unlike blackbodies, gray bodies reflect some of the energy incident on them, so the
intrinsic spectral brightness of a gray body is not equal to that of a blackbody. For a gray
body,

B T=e 2y (12.6)

where ¢ is the emissivity of the gray body. This equation is rewritten as follows:
2k
B(f'T):PgT (12.7)

The quantity &T is called the brightness temperature of an unilluminated gray body; that
is, the temperature of a blackbody radiating the same brightness. Another useful property
of a gray body is its reflectivity p, the fraction of incident energy that is reflected. A body
in thermal equilibrium emits the same amount of energy that it absorbs. Therefore, p + &
= 1. For a blackbody, ¢ = 1 and p = 0.

In an atmosphere without hydrometeors, the brightness temperature observed by an
Earth-observing spaceborne radiometer can be divided into four components (Figure
12.1):

1. T,, the brightness temperature due to radiation emitted by atmospheric gases
that is not reflected off the surface
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2. Ty, the brightness temperature due to radiation emitted by the surface

3. T, the brightness temperature due to radiation that is emitted by atmospheric
gases that is reflected off the surface

4. T4, the brightness temperature due to cosmic background radiation that passes
through the atmosphere twice and is reflected off the surface

Thermal radiation can be attenuated through absorption or reflected off the surface
before being received by a radiometer. The observed brightness temperature is, therefore,
a function of several variables such as the atmospheric temperature profile, water vapor
profile, the emissivity of the surface (as a function of satellite zenith angle), and the
absorption coefficients of atmospheric gases (as a function of altitude z). Given the atmos-
pheric absorption coefficients k,(z) (in Np per unit length), the reflectivity of the surface
p(0), the altitude of the satellite H, the cosmic background temperature Toosmic (in K), and
the satellite zenith angle 6, the brightness temperature components can be computed as
follows (assuming specular surface reflection and the absence of hydrometeors):

H
T.=sech J T(Z )ka(z)e 7@ et g7/ (12.8)
20
To=[1 — p(6)]T(z)e "0 sec? (12.9)
H
T.=p(0) sec § - e o) sectd J T(2 )ka(z)e 702500 45/ (12.10)
20
Ta=p(0) Teosmice 270 sect (12.11)

Then, the brightness temperature Tg measured by the radiometer is the sum of T,, Ty, T,
and Tg4.

H
Tg=sec J T(2)ka(2')e TE 0 47/ L1 — p(6)])T(z)e oM sec?
20

H
+p(0) sec - efr(zo,H)sece J T(Z’)Ka(Z,)eiT(ZO’Z/) sec dZ’+p(0)TCOSmiCe727(ZOIH) sec6  (12.12)
2o

where zj is the altitude of the surface and 7(z;,25) is the integrated atmospheric absorption

of the atmosphere between altitudes z; and zj.
2

7(21,22)= J Ka(z)dz (12.13)

21

Equation 12.12 can be rewritten as follows (assuming that the contribution of thermal
radiation from altitudes above H to T. is negligible):

H
Tp = [ T(2YW(2') dz'+[1 — p(6)|T(zo)e "% 4p(0) Teosmice™ 270/ 5ec? (12.14)

20

© 2007 by Taylor & Francis Group, LLC.



) ) ) )
10° i [ — 1976 Standard Atmosphere | E
| ==~ Water vapor removed F 3
118-GHz 183-GHz ]
’ O, band i H,0 band ]
— 10 2
m pEmmmEpRmmimipaiiniis R 3
o 1 ]
° 1 ]
2 } ]
g
g 10 l[ 3
5 / ]
< 7 ]
£ . A ]
N 10 5] s
107" Bt fm -\-‘->~~.=-J;-f o 3
100 150 200 250 300 350 400 450 500
Frequency (GHz)
FIGURE 12.2
Zenith opacity for the microwave spectrum.
where
W(z)=sec 8 - k,(z')e @t h9)sec - e TCoDsect (51 7(z0,2) sechd (12.15)

W(z) is called the weighting function or Jacobian.

Equation 12.12 shows that the relationship between the thermal energy radiated and
the physical temperature of a body is linear; that is, the brightness temperature can be
expressed as a linear integral of physical temperatures in the field of view, where these
radiated signals are uncorrelated and superimposed [1].

The previous section shows that the brightness temperatures seen by a satellite-borne
radiometer depend on many variables in a highly complex and nonlinear fashion, so
retrievals of temperature and water vapor profiles by direct inversion would be very
difficult. However, the physics of the atmosphere still allows the extraction of useful
information about the atmosphere from microwave frequency bands.

Two of the most important determinants of precipitation rate are the temperature and
water vapor profiles. The presence of oxygen and water vapor resonance frequencies in
the microwave spectrum and the presence of oxygen and water vapor in the atmosphere
result in frequency bands that are sensitive primarily to a specific range of altitudes.
Figure 12.2 shows the zenith opacity as a function of frequency for the range from 10 to
500 GHz for a ground-based zenith-observing radiometer. There are absorption spikes
around oxygen resonance frequencies such as those in the neighborhood of 54, 118.75,
and 424.76 GHz and at water vapor resonance frequencies such as 183.31 GHz. A satellite-
borne radiometer observing at these frequencies would sense only the highest layers of
the atmosphere. On the other hand, a satellite-borne radiometer observing at frequencies
away from the spikes would be sensitive to the surface. By observing at frequency bands
that are near the resonance frequencies, but still on the sides of the spikes, one can capture
information on conditions at specific layers of the atmosphere.

The AMSU focuses primarily on the 54-GHz oxygen band and the 183-GHz water
vapor band. Figure 12.3 shows the weighting functions of the channels on AMSU.

Opaque microwave channels were used with great success to retrieve atmospheric con-
ditions. Rosenkranz used AMSU-A and AMSU-B data from NOAA satellites to estimate
temperature and water vapor profiles [2,3]. Shi used AMSU-A to estimate temperature
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FIGURE 12.3
Weighting functions of AMSU-A and AMSU-B channels.

profiles [4]. Blackwell et al. used the 54-GHz and 118-GHz bands aboard the National Polar-
Orbiting Environmental Satellite System (NPOESS) Aircraft Sounder Testbed-Microwave
(NAST-M) [5]. Leslie et al. added the 183-GHz and 425-GHz bands to NAST-M [6,7,8].

Clouds and precipitation result from humid air that rises, cools, and condenses. Pre-
cipitation typically occurs in two forms: convective and stratiform. Stratiform precipita-
tion occurs when one air mass slides under or over another, as in a cold or warm front,
causing the upper air mass to cool and the water vapor within it to condense. Such
precipitation is spread out. Convective precipitation is initiated by instabilities in the
atmosphere caused by cold, dense air supported by warm, humid, and less dense air.
Such instabilities result in the warm, humid air escaping upward and cooling. Water
vapor in this ascending air mass condenses and releases latent heat. The latent heat
warms the surrounding air, which pushes the air mass and the water and ice particles
that have formed further upward. This cycle continues until the original warm humid air
mass has cooled to the temperature of the surrounding cooler air [9,10]. The tops of
convective clouds spew forth ice particles and can reach more than 10 km above sea level
[11]. Convective precipitation often occurs within stratiform precipitation.

Several factors affect the precipitation rate. Higher degrees of instability caused by large
vertical temperature gradients force ice particles higher in the atmosphere, causing such
particles to pick up more moisture and grow. Precipitation amounts are limited by the
water vapor available in the atmosphere; therefore, higher concentrations of water vapor
result in higher precipitation rates. Warmer surface air contributes to higher precipitation
rates because warmer air holds more water vapor.

Channels in the 54-GHz and 183-GHz bands provide important clues about factors
such as cloud-top altitude, temperature profile, water vapor profile, and particle size
distribution. Because each channel is sensitive to a specific layer of the atmosphere
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(Figure 12.3), it is possible to extract information about the cloud-top altitude. Precipi-
tating clouds exhibit perturbations in channels whose weighting functions have signifi-
cant values in the range of altitudes occupied by the cloud. For example, one would not
expect to detect low-lying clouds below 3km in the AMSU-A channel 14 because the
weighting function of channel 14 peaks at ~40km, far above the tops of nearly all
precipitating clouds.

The 54-GHz and 183-GHz bands together provide information about particle size
distribution through their sensitivities to different ranges of ice particle diameters. The
scattering of electromagnetic waves by spherical ice particles is described by Mie scatter-
ing coefficients. For a single spherical particle with radius 7, given the power scattered by
the particle P, and the power density of the incident plane wave 5;, the scattering cross-
sectional area Qs of the particle is defined as follows:

P
Q=3 (12.16)

1

Then, the Mie scattering coefficient is defined as the ratio of Qg of the particle to the
geometric cross-sectional area of the particle

g (12.17)

S

where r is the radius of the particle. Figure 12.4 shows the Mie scattering coefficients for
fresh-water ice spheres at 54 GHz and 183.31 GHz as a function of diameter. The
permittivities of ice were calculated using formulas developed by Hufford [12], and
the Mie scattering coefficients were calculated using an iterative computational procedure
developed by Deirmendjian [1,13]. At 183.31 GHz, the diameter of a particle can
increase to about 0.7 mm before its diameter can no longer be uniquely determined by
the Mie scattering coefficient curve. At 54 GHz, this limit is about 2.4 mm. For diameters
less than 0.7 mm, &; for 54 GHz is smaller than that for 183.31 GHz by a factor of at least
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FIGURE 12.4
Mie scattering coefficients for 54 GHz and 183.31 GHz at a temperature of —55°C.
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100. These differences make it possible to use both bands together to extract information
about particle size distributions. The Mie scattering coefficients in Figure 12.4 were
calculated for a temperature of —55°C (218 K), near the temperature at an altitude of
10 km for the 1962 U.S. Standard Atmosphere [1]. Corresponding values for —10°C (263 K)
were also calculated, but did not differ from those for —55°C by more than 7.2%.

In addition to particle size distribution, the 54-GHz and 183-GHz bands can also
provide information about particle abundance. While the particle size distribution can
be sensed from a comparison of the Mie scattering efficiencies in both bands, particle
abundance can be sensed from absolute scattering over volumes.

The cloud-top altitude is another important variable in precipitation. This is correlated
with particle size density because only higher updraft velocities are able to support larger
particles and reach higher altitudes. The sensitivities of the 54-GHz and 183-GHz chan-
nels to specific layers of the atmosphere suggest that these channels are able to provide
information about cloud-altitude. Spina et al. used data from the opaque 118-GHz band to
estimate cloud-top altitudes [14].

Gasiewski showed that the 54-GHz and 118-GHz bands together could be used to
estimate cell-top altitude and hydrometeor density (in terms of mass per volume) [15,16].

Window channels contribute information about precipitation through their sensitivity
to the warm emission signatures of precipitating clouds against a sea background and
their sensitivity to scattering. In addition to opaque channels, AMSU also includes
window channels at 23.8 GHz, 31.4 GHz, 89.0 GHz, and 150 GHz. Weng et al. and
Grody et al. have developed a precipitation-retrieval algorithm for AMSU that relies
primarily on these channels [17,18]. Some of the recent passive microwave instruments
that have focused on windows channels and have been used to study precipitation
include the following:

1. The Special Sensor Microwave Imager (SSM/I) for the Defense Meteorological
Satellite Program (DMSP) [19-21]

2. The Advanced Microwave Sounding Radiometer (AMSR-E) for the Earth
Observing System aboard the NASA Aqua satellite [22,23]

3. The Tropical Rainfall Measurement Mission (TRMM) microwave imager (TMI)
aboard the TRMM satellite [24,25]

One weakness of window channels is that they tend to be sensitive to the surface. Over
land, surface signatures can obscure the emission signatures of precipitation. Also, win-
dow-channel-based precipitation-rate retrieval algorithms tend to use one method over
ocean and another over land [26,27]. The opaque channels aboard AMSU enable the
development of an algorithm that uses the same method over both land and sea.

12.3 Description of AMSU-A/B and AMSU/HSB

The AMSU has been aboard the NOAA-15, NOAA-16, and NOAA-17 satellites launched
in May 1998, September 2000, and June 2002, respectively. They are each equipped with
the instruments AMSU-A and AMSU-B. AMSU-A has 15 channels: one each at 23.8 GHz,
31.4 GHz, and 89.0 GHz, and 12 channels in the 54-GHz oxygen absorption band (Table
12.1). AMSU-B has 5 channels at the following frequencies: 89.0 GHz, 150 GHz, 183.31 + 1
GHz, 183.31 + 3 GHz, and 183.31 + 7 GHz (Table 12.2). AMSU-A and AMSU-B measure
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TABLE 12.1
AMSU-A Channel Frequencies

Channel Center Frequencies (MHz) Bandwidth (MHz)
1 23,800 + 72.5 2x125
2 31,400 + 50 2x80
3 50,300 + 50 2x80
4 52,800 + 105 2x190
5 53,596 + 115 2x168
6 54,400 + 105 2x190
7 54,940 + 105 2x190
8 55,500 + 87.5 2x155
9 57,290.344 + 87.5 2x155

10 57,290.344 + 217 2x77

11 57,290.344 + 322.2 + 48 4x35

12 57,290.344 + 322.2 + 22 4x15

13 57,290.344 + 322.2 + 10 4%8

14 57,290.344 + 322.2 + 4.5 4x3

15 89,000 + 900 2x1000

brightness temperatures at 50 and 15 km nominal resolutions at nadir, respectively. AMSU-
A has a 3.33°-diameter 3-dB beamwidth and observes at 30° angles spaced at 3.33° intervals
up to 48.33° from nadir every 8.00sec. AMSU-B has a 1.1°-diameter beamwidth and
observes at 90° angles spaced at 1.1° intervals up to 48.95° from nadir every 2.67 sec (Figure
12.5b) [28-30]. AMSU covers a swath width of ~2200km. NOAA-15, NOAA-16, and
NOAA-17 are sun-synchronous polar-orbiting satellites with equatorial crossing times of
about 7 AM./PM, 2 AM./PM, and 10 AM./PM., respectively, so together they observe most
locations approximately six times a day (Figure 12.6). The ascending local equatorial
crossing times are 7 M., 2 PM. 10 PM. for NOAA-16 and NOAA-17, respectively.

The 15-km, 89.0-GHz channel on AMSU-B was not used in this research in order that
the algorithm developed for AMSU-A/B could also be used with AMSU/HSB with
minimal adjustment.

We also use data from the NASA Aqua satellite that was launched in May 2002. It is
equipped with AMSU and is identical to AMSU-A aboard the NOAA satellites, and the
HSB, which is identical to AMSU-B, but without the 89.0-GHz channel [31]. The nominal
resolutions of AMSU and HSB are 40.5 and 13.5 km, respectively. Aqua has an equatorial
crossing time of about 1:30 Am./p.M. (Figure 12.6) [31-33]. The scan pattern of AMSU/HSB
is slightly different from that of AMSU-A/B on the NOAA satellites in that the path traced
during one AMSU scan is more parallel to that traced by a nearly coincident HSB scan
(Figure 12.5).

TABLE 12.2

AMSU-B Channel Frequencies

Channel Center Frequencies (GHz) Bandwidth (GHz)
1 150 + 0.9 2x1

2 183.31 + 1 2x0.5

3 183.31 +3 2x1

4 183.31 +7 2x2
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FIGURE 12.5
Scan patterns of (a) Aqua AMSU/HSB and (b) AMSU-A/B on NOAA-15, NOAA-16, and NOAA-17. AMSU and
AMSU-A spots are labeled with +’s and HSB and AMSU-B spots with dots.

12.4 Signal Processing

The preceding section provides an overview of the types of information available in data
from AMSU-A/B. While developing an algorithm for estimating precipitation, it is im-
portant to process the data in a way that makes the information relevant to precipitation
stand out as much as possible. This section provides an overview of the signal-processing
methods used in the Chen and Staelin algorithm.

12.4.1 Regional Laplacian Filtering

Laplacian filtering is useful for clearing the effects of clouds over regions that are
identified as cloudy. This enables computation of not only cloud-cleared brightness
temperatures but also the perturbation due to precipitation.

Laplacian filtering gives the Chen and Staelin algorithm a spatial filtering component
not found in other algorithms that process data in a manner that treats each pixel
independently of any other pixel.

Laplacian filtering of a rectangular field ® is done by first determining the region over
which filtering is to be done. Using this region, a set of boundary conditions is deter-
mined. Then, using these boundary conditions, values for pixels in the region of interest
are computed so that the discrete Laplace’s equation is satisfied. In a continuous two-
dimensional (2D) domain, Laplace’s equation is as follows:

V2P=0 (12.18)
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FIGURE 12.6
Orbital patterns of the NOAA-15, NOAA-16, NOAA-17, and Aqua satellites.

12.4.2 Principal Component Analysis

Signal separation is an important concept in this chapter. Although precipitation is very
complex, nonstationary, and sporadic, one can process the data in a way that adequately
separates the different degrees of freedom that affect precipitation.

Principal component analysis (PCA) is a linear method for reducing the dimensionality
of a data set of interrelated variables. PCA transforms the data into a set of uncorrelated
random variables that capture all of the variance of the original data set and assign
as much variance as possible to the fewest number of variables. PCA is also known
by other names such as singular value decomposition (SVD) and Karhunen-Loéve
transform (KLT).

PCA is useful for data compression. This feature can be critical in problems related to
the compression of satellite data where a large amount of data must be downloaded from
a satellite using a communications link with limited bandwidth and in situations where
computational resources are limited. Blackwell used projected principal component
transform, a variant of PCA, to compress data for use in estimating atmospheric tem-
perature profiles. This reduced the number of inputs and, as a result, simplified the neural
net, created a more stable neural net, and reduced the training time [34,35]. Cabrera-
Mercader used noise-adjusted principal components (NAPC) to compress simulated
NASA Atmospheric Infrared Sounder (AIRS) data [36].
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PCA is also used to filter out noise in data. Several different versions or extensions of
PCA have been used to eliminate various types of noise. A variant of PCA has been used
to remove signatures of the surface from passive microwave data for the purpose of
detecting and characterizing precipitating clouds [37]. PCA is also an important part of
blind multivariate noise estimation and filtering algorithms such as iterative order and
noise (ION) estimation and an extension of ION that is capable of estimating mixing
matrices [38—-40].

12.4.2.1 Basic PCA

Here, a definition of basic PCA is presented. For a random vector x of p random variables,
the principal components of x can be defined inductively. The first principal component is
the product ai x, where a; is a unit-length vector that maximizes the variance of ol x.

aj=arg mlzg Var(a'x) (12.19)

where Var(-) denotes the variance of a random variable. Each of the other principal
components are defined as follows: the nth principal component is the product a;, x,
where a,, is a unit-length vector that is orthogonal to a1, @, ..., and «,_; and maximizes
the variance of ;. x.

ay=arg | Var(a®x) (12.20)

maxXx
[la||=1, aLla;, Vie(l, 2, ..., n—

@y, @, ..., and a, are derived in Ref. [41]. The nth principal component is the product a,x
where «,, is the eigenvector associated with the nth highest eigenvalue of the covariance
matrix A, of x.

In this chapter, the definitions of PCA and the term principal component follow the
convention of Ref. [41].

12.4.2.2 Constrained PCA

In addition to the basic PCA, the algorithm developed in this chapter uses a variation of
PCA known as constrained PCA. This form of PCA finds principal components that are
constrained to be orthogonal to a given subspace [41]. It can be used to filter out noise in
remote-sensing data. Constrained PCA has been used to filter out signatures of surface
variations from microwave remote-sensing data [42].

Filtering out unwanted signatures involves the following steps:

1. Select a set of data that captures a good representation of the type of noise to be
filtered without capturing too much of the variation of the signal of interest

2. Apply basic PCA to the resulting subset of data

3. Examine the resulting principal components for sensitivity to the type of noise
to be filtered out

4. Project the data onto the subspace orthogonal to the noise-sensitive principal
components

5. Apply basic PCA to the data resulting from the projection

The principal components resulting from steps (2) and (5) are called preconstraint
principal components and postconstraint principal components, respectively, as in Ref. [37].
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12.4.3 Data Fusion

Data fusion is a very broad area involving the combination of information from different
sources. A working group set up by the European Association of Remote Sensing La-
boratories and the French Society for Electricity and Electronics has adopted the following
definition of data fusion [42]:

Data fusion is a formal framework in which are expressed means and tools for
the alliance of data originating from different sources. It aims at obtaining information
of greater quality; the exact definition of ‘greater quality” will depend upon the appli-
cation.

Review papers have referred to three levels of data fusion: measurement, feature, and
decision [43-45]. The measurement level is sometimes called the pixel level [44]. The
algorithm described in Section 12.5 involves the measurement and decision levels. In
this chapter, nontrivial uses of data fusion occur only at the measurement level.

Some of the applications of image fusion (or data fusion applied to 2D data) include
image sharpening or enhancement [45], feature enhancement, and replacement of missing
or faulty data [44]. For this research, nonlinear data fusion is applied to sharpen images.
Rosenkranz developed a method for nonlinear geophysical parameter estimation through
multi-resolution data fusion [46—48].

12.4.4 Neural Nets

Neural nets are computational structures that were developed to mimic the way bio-
logical neural nets learn from their environment and are useful for pattern recognition
and classification. Neural nets can be used to learn and compute functions for which the
relationships between inputs and outputs are unknown or computationally complex.

There are a variety of neural nets such as feedforward neural nets (sometimes called
multilayer perceptrons [49]), Kohonen self-organizing feature maps, and Hopfield nets
[50,51]. The feedforward neural net is used in this chapter.

The basic structural element of feedforward neural nets is called a perceptron. It com-
putes a function of the weighted sum of inputs and a bias, as shown in Figure 12.7.

y—f (Z w,-xi+b> (1221)
i=1

where x; is the ith input, w; is the weight associated with the ith input, b is the bias, f is the
transfer function of the perceptron, and y is the output.

FIGURE 12.7
The structure of a perceptron.
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FIGURE 12.8
A two-layer feedforward neural net with one output node.

Perceptrons can be combined to form a multi-layer network, as shown in Figure 12.8. In
Figure 12.8, x; is the ith input, n is the number of inputs, w;; is the weight associated with
the connection from the ith input to the jth node in the hidden layer, b; is the bias of the ith
node, m is the number of nodes in the hidden layer, f is the transfer function of the
perceptrons in the hidden layer, v; is the weight between the ith node and the output
node, c is the bias of the output node, g is the transfer function of the output node, and y is
the output. Then,

1

n
wi]-x,-—i—bj) +c (12.22)
1

y=8 Zm:v;f<

=1
In this chapter, f and g are defined as follows:

et —e™*
= hxy=—— 12.2
f(x)=tanhx prape (12.23)

g(x)=x (12.24)

The function tanh x is approximately linear in the range —0.6 < x < 0.6, and approaches 1
as x tends to 1 and —1 as x tends to —1, so it has a nonlinearity that is not too complex
(Figure 12.9). This neural net topology is good for situations in which one wants to
develop a simple nonlinear estimator whose output depends approximately monotonic-
ally on each input.
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FIGURE 12.9
Neural net transfer functions.

The neural nets for this chapter were trained using the Levenberg-Marquardt training
algorithm. Marquardt developed an efficient algorithm (called the Marquardt—Levenberg
algorithm in Ref. [51]) for nonlinear least-square parameter estimation [52]. Hagan and
Menhaj incorporated this algorithm into a backpropagation training algorithm for feedfor-
ward neural nets [52]. The weights of the neural net were initialized using the Nguyen-—
Widrow method to facilitate convergence of the neural net weights during training [53]. The
vectors used to train and evaluate the neural nets were divided into three disjoint sets:

1. The training set, the set used to determine how the weights of the neural net
should be adjusted during the training

2. The validation set, the set used to determine when the training should stop

3. The testing set, the set used to evaluate the resulting neural net

These definitions are from Ref. [54].

One of the challenges encountered in the course of developing an estimator involved
dealing with an output range that covered several orders of magnitude. Chapter 4 in this
volume describes how this was accomplished.

12.5 The Chen-Staelin Algorithm

The basic structure of the algorithm includes some signal-processing components and a
neural net, as shown in Figure 12.10. The signal processing components process the data
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FIGURE 12.10
Basic structure of the algorithm.

into forms that characterize the most important degrees of freedom related to the pre-
cipitation rate such as atmospheric temperature profile, water vapor profile, cloud-top
altitude, particle size distribution, and vertical updraft velocity. The neural net is trained
to learn the nonlinear dependencies of precipitation rate on these variables. The depend-
ence of the precipitation rate on these variables should be monotonic, so the neural
net does not need to be complicated. A feedforward neural net with one hidden layer
of tangent sigmoid nodes (with transfer function f(x) = tanh x) and one linear output node
should be sufficient (Figure 12.8) [49].

The Chen-Staelin algorithm uses the signal-processing methods in the previous section
to extract the most relevant information from AMSU data. Figure 12.11 shows a block
diagram of the first part of the algorithm and Figure 12.12 shows the final part of the
algorithm with a neural net. A neural net that takes the following sets of inputs is at the
heart of the algorithm:

1. Inferred 15-km-resolution perturbations at 52.8 GHz, 53.6 GHz, 54.4 GHz, 54.9
GHz, and 55.5 GHz.

2. 183 + 1-, 183 + 3-, and 183 + 7-GHz 15-km HSB data.

HSB Compute Filterto| z
—| 183 +7 GHz > i —>z<0?
183 +7 GHz perturbations 53 km ,_—_I §
53.6-GHz © Compute |« 5
Compute switch scaling factor 3
HSB | 1833 GHz }H i ’ 5
183+ 3 GHz | perturbations |Z< 0? Extend =W|—> =
ie]
»{to 50-km 1 =
>
Surface Elevation ? © Form valid £
elevation —*__flag > interpolation =Y
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HSB 4, Out of bounds ~NOT v 2 é
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FIGURE 12.11
Block diagram of the algorithm, part 1.
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FIGURE 12.12

Block diagram of the algorithm, part 2.

3. The leading three principal components characterizing the original five cor-
rected 50-km AMSU-A temperature radiances.

4. Two surface-insensitive principal components that characterize the window
channels at 23.8 GHz, 31.4 GHz, 50 GHz, and 89 GHz, along with the four
HSB channels.

5. The secant of the satellite zenith angle 6.

Each of these sets provides the neural net with information that is relevant to pre-
cipitation. The three principal components characterizing AMSU-A temperature radi-
ances provide information on the atmospheric temperature profile, which is important
because it determines how much water vapor can be precipitated. The secant of the
satellite zenith angle 6 allows the neural net to account for variations in the data due to
the scan angle. The 15-km cloud-induced perturbations provide information on the
cloud-top altitude.

The current AMSU/HSB precipitation retrieval algorithm is based on NOAA-15 AMSU
comparisons with NEXRAD over the eastern United States during 38 orbits that exhibited
significant precipitation and were distributed throughout the year. These orbits are listed
in Table 12.3. The primary precipitation-rate retrieval products of AMSU/HSB are ~15-
and ~50-km-resolution contiguous retrievals over the viewing positions of HSB and
AMSU, respectively, within 43° of nadir. The two outermost 50-km and six outermost
15-km viewing positions on each side of the swath are omitted due to their grazing angles.
The algorithm architectures for these two retrieval methods and the derivation of the
numerical coefficients characterizing the neural network are described and presented
below.

12.5.1 Limb-Correction of Temperature Profile Channels

AMSU observes at angles up to 49° away from the nadir. For angles further away from
nadir, the electromagnetic energy originating from a given altitude and atmospheric state
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TABLE 12.3

List of Rainy Orbits Used for Training, Validation, and Testing

October 16, 1999, 0030 UTC
October 31, 1999, 0130 UTC
November 2, 1999, 0045 UTC
December 4, 1999, 1445 UTC
December 12, 1999, 0100 UTC
January 28, 2000, 0200 UTC
January 31, 2000, 0045 UTC
February 14, 2000, 0045 UTC
February 27, 2000, 0045 UTC
March 11, 2000, 0100 UTC
March 17, 2000, 0015 UTC
March 17, 2000, 0200 UTC
March 19, 2000, 0115 UTC
April 2, 2000, 0100 UTC
April 4, 2000, 0015 UTC
April 8, 2000, 0030 UTC

April 30, 2000, 1430 UTC
May 14, 2000, 0030 UTC
May 19, 2000, 0015 UTC
May 19, 2000, 0145 UTC
May 20, 2000, 0130 UTC
May 25, 2000, 0115 UTC
June 10, 2000, 0200 UTC
June 16, 2000, 0130 UTC
June 30, 2000, 0115 UTC
July 4, 2000, 0115 UTC
July 15, 2000, 0030 UTC
August 1, 2000, 0045 UTC
August 8, 2000, 0145 UTC
August 18, 2000, 0115 UTC
August 23, 2000, 1315 UTC
September 23, 2000, 1315 UTC

April 12, 2000, 0045 UTC
April 12, 2000, 0215 UTC
April 20, 2000, 0100 UTC

October 5, 2000, 0130 UTC
October 6, 2000, 0100 UTC
October 14, 2000, 0130 UTC

has to travel longer paths before reaching the radiometer and, therefore, is subject to
more absorption and scattering effects. This results in scan-angle-dependent effects
in brightness temperature images, as shown in Figure 12.13a. A limb and surface correc-
tion method for AMSU-A channels 4-8 brightness temperatures is needed to make
precipitation-induced perturbations more apparent and for extracting information
about atmospheric conditions. AMSU-A channels 4 and 5 are corrected for surface
variations, as they are sensitive to the surface. For these two channels, the brightness
temperature for pixels over ocean is corrected to what might be observed for the same
atmospheric conditions over land. AMSU-A channels 9-14 brightness temperatures are
not corrected because they are not significantly perturbed by clouds and therefore are not
used for anything other than limb correction.

Limb and surface correction was done by training a neural net of the type shown in
Figure 12.8 to estimate nadir-viewing brightness temperatures. For each pixel, the neural
net used brightness temperatures from several channels at that pixel to estimate the
brightness temperature seen at the pixel closest to nadir at a nearly identical latitude
and at nearly the same time. It is assumed that the temperature field does not vary
significantly over one scan. Limb and surface correction was done for AMSU-A channels
4-8. The data used to correct each of these channels are listed in Table 12.4. No attempt
has been made to correct for the scan-angle-dependent asymmetry in the brightness
temperatures. These neural nets were trained using data between 55°N and 55°S from
seven orbits spaced over 1 year. Channels 4 and 5 are surface sensitive, so they were
trained to estimate brightness temperatures that would be seen over land.

Figure 12.13 shows a sample of (a) uncorrected and (b) limb and surface corrected 54.4-
GHz brightness temperatures. The shapes of precipitation systems over Texas and the
Mexico-Guatemala border are more apparent after the limb correction. In Figure 12.13(a),
the difference between brightness temperatures at nadir and the swath edge is as high as
18 K. In Figure 12.13(b), the angle-dependent variation is less than 3 K.

One limitation of the training is that one cannot really know what the nadir-viewing
brightness temperature is supposed to be when there is precipitation.
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FIGURE 12.13 (See color insert following page 178.)
NOAA-15 AMSU-A 54.4-GHz brightness temperatures for a northbound track on September 13, 2000. (a)
Uncorrected and (b) limb and surface corrected.

12.5.2 Detection of Precipitation

The 15-km-resolution precipitation-rate retrieval algorithm, summarized in Figure 5.2,
and Figure 5.3 begins with the identification of potentially precipitating pixels. The
neural net operates on data from only FOVs labeled as potentially precipitating. This
choice eliminates the need to exhaustively learn all of the conditions where the precipi-
tation rate is exactly zero. The neural net is also likely to have difficulty forcing precipi-
tation rates in nonprecipitating FOVs to be exactly zero. This choice also reduces the time
needed to train the neural net since, at any given time, precipitation falls over less than
10% of the Earth’s surface. All 15-km pixels with brightness temperatures at 183 + 7 GHz
that are below a threshold T7 are flagged as potentially precipitating, where
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TABLE 12.4
Data Used in Limb and Surface Correction of AMSU-A Channels

AMSU-A Channel Inputs Used for Limb and Surface Correction
4 AMSU-A channels 4-12, land/sea flag, cos ¢

5 AMSU-A channels 5-12, land/sea flag, cos ¢

6 AMSU-A channels 6-12, cos ¢

7 AMSU-A channels 6-12, cos ¢

8 AMSU-A channels 6-12, cos ¢

T;=0.667(Ts5.6 — 248)+262+6 cos (12.25)

and where 6 is the satellite zenith angle and Ts3 is the spatially filtered 53.6-GHz
brightness temperature obtained by selecting the warmest brightness temperature within
a 7x7 array of AMSU-B pixels. If, however, T34 is below 248K, then the brightness
temperature at 183 + 3 GHz is compared, instead, to a different threshold T3, where

T3=242.5+5cos 0 (12.26)

The 183 + 3-GHz band is used to flag potential precipitation when the 183 + 7-GHz flag
could be erroneously set by low-surface emissivity in very cold and dry atmospheres, as
indicated by Ts3¢. These thresholds T; and T; are slightly colder than a saturated
atmosphere would be, implying the presence of a microwave-absorbing cloud. If the
locally filtered Ts34 is less than 242 K, then the pixel is assumed not to be precipitating.

12.5.3 Cloud-Clearing by Regional Laplacian Interpolation

Within regions flagged as potentially precipitating, strong precipitation is generally
characterized by cold, cloud-induced perturbations of the AMSU-A tropospheric tem-
perature sounding channels in the range of 52.5-55.6 GHz. Brightness temperature
images approximately satisfy Laplace’s equation in the absence of precipitation. When
the potentially precipitating FOVs have been identified, Laplacian interpolation can be
performed to clear the brightness temperature image of the effects of precipitation, and
the perturbations due to precipitation can be computed. Examples of 183 + 7-GHz data
and the corresponding 50-km cold perturbations at 52.8 GHz are illustrated in Figure
12.14a and Figure 12.14c. Physical considerations and aircraft data show that convective
cells near 54 GHz typically appear slightly off-center and less extended relative to the
183-GHz images [55,56].

12.5.4 Image Sharpening

The small interpolation errors in converting 54-GHz perturbations to 15-km contribute to
the total errors and discrepancies discussed in Section 12.3. These 50-km-resolution 52.8-
GHz perturbations ATsp55 are then used to infer the perturbations AT;ss5,5 [Figure
12.14d]. These might have been observed at 52.8 GHz with a 15-km resolution had
those perturbations been distributed spatially in the same way as the cold perturbations
observed at either 183 + 7 or 183 + 3 GHz, the choice between these two channels being
the same as described above. This requires the bilinearly interpolated 50-km AMSU data
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FIGURE 12.14 (See color insert following page 178.)
Frontal system on September 13, 2000, 0130 UTC. (a) Brightness temperatures (K) near 183 + 7 GHz. (b)

Brightness temperatures (K) near 183 + 3 GHz. (c) Brightness temperature perturbations (K) near 52.8 GHz.
(d) Inferred 15-km-resolution brightness temperature perturbations (K) near 52.8 GHz.

to be resampled at the HSB beam positions. These inferred 15-km perturbations are
computed for five AMSU-A channels using

AT15,54 =20 tan h <M> AT50 54 (1227)
3

The perturbation AT;s5153 near 183 GHz is defined to be the difference between the
observed radiance and the appropriate threshold given by (12.25) or (12.26). The perturb-
ation ATsg 54 near 54 GHz is defined to be the difference between the observed radiance
and the Laplacian-interpolated radiance based on those pixels surrounding the flagged
region [58]. Any warm perturbations in the images of AT;5153 and ATsg54 are set to zero.
Limb and surface-emissivity corrections to nadir for the five 54-GHz channels are pro-
duced by neural networks for each channel; they operate on nine AMSU-A channels
above 52 GHz, the cosine of the viewing angle ¢ from nadir, and a land-sea flag (Figure
12.12). They were trained on seven orbits spaced over 1 year for latitudes up to +55°.
Inferred 50- and 15-km precipitation-induced perturbations at 52.8 GHz are shown in
Figure 12.14c and Figure 12.14d for a frontal system. Such estimates of 15-km perturba-
tions near 54 GHz help characterize heavily precipitating small cells.
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12.5.5 Temperature and Water Vapor Profile Principal Components

One important determinant of precipitation is the temperature profile. Warmer atmo-
spheres can hold more water vapor and result in higher vertical updraft velocities.
Therefore, inputs to the neural net in Figure 12.10 should include some that have
information about the temperature profile. For each of AMSU-A channels 4-8, the bright-
ness temperatures were corrected for limb and surface effects and then processed to
eliminate precipitation signatures with the methods described in Section 12.4.1 through
Section 12.4.3. The corrected brightness temperatures from all five of these channels could
have been inputs to the neural net in Figure 12.10, but it was determined that a more
compact representation of these channels was sufficient. PCA was applied to these five
channels, and the first three principal components were found to be sufficient for char-
acterizing the temperature profile. Adding the fourth and fifth principal components did
not significantly improve the training of the neural net.

The water vapor profile is another important determinant of precipitation. Higher
concentrations of water vapor can result in higher precipitation rates. The water vapor
principal components are computed using AMSU-A channels 1-3, and 15, and the AMSU-B
150-, 183 + 7-, 183 + 3-, and 183 + 1-GHz channels. Some of these channels are sensitive to
surface variations. Therefore, it is necessary to project the vector of these observations onto
a subspace that is not significantly sensitive to surface variations. Constrained PCA, which
was described in Section 12.4.2.2, was used to compute the water vapor principal compon-
ents. A set of pixels without precipitation and with different types of surfaces was selected
to compute surface-sensitive eigenvectors using PCA. The surface-sensitive eigenvectors
were determined by visual inspection of the preconstraint principal components for cor-
relation with surface features (e.g., land and sea boundaries). Then, a set of data that also
included precipitation was selected. The observations over this set were projected onto a
linear subspace that was orthogonal to the subspace spanned by the surface-sensitive
eigenvectors. Then, PCA was done on the resulting data set to determine the water vapor
principal components. It was found that two water vapor principal components were
adequate for characterizing the eight channels.

12.5.6 The Neural Net

All 13 of the variables listed at the beginning of this section are fed into the neural net
used for 15-km precipitation-rate retrievals, as shown in Figure 12.12. The relative in-
sensitivity of these inputs to surface emissivity is important to the success of this tech-
nique over land, ice, and snow.

This network was trained to minimize the rms value of the difference between
the logarithms of the (AMSU+1 mm/h) and (NEXRAD+1 mm/h) retrievals; the use of
logarithms reduced the emphasis on the heaviest rain rates, which were roughly three
orders of magnitude greater than the lightest rates. Adding 1 mm/h reduced the emphasis
on the lightest rain rates, which were more noise-dominated. These intuitive choices
clearly impact the retrieval error distribution, and therefore further studies should enable
algorithm improvements. However, retrievals with training optimized for low rain rates
did not markedly improve that regime. NEXRAD precipitation retrievals with a 2-km
resolution were smoothed to approximate Gaussian spatial averages that were centered
on and approximated the view-angle-distorted 15- or 50-km antenna beam patterns. The
accuracy of NEXRAD precipitation observations is known to vary with distance; there-
fore, only points beyond 30km, but within 110km, of each NEXRAD radar site were
included in the data used to train and test the neural nets. Eighty different networks were
trained using the Levenberg-Marquardt algorithm, each with different numbers of nodes
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and water vapor principal components. A network with nearly the best performance over
the testing dataset was chosen; it used two surface-blind water vapor principal compon-
ents, and a slightly better performance was achieved with five water vapor principal
components with increased surface sensitivity. The final network had one hidden layer
with five nodes that used the tanh sigmoid function. These neural networks were similar
to those described in Ref. [57]. The resulting 15-km-resolution precipitation retrievals
were then smoothed to yield 50-km retrievals.

The 15-km retrieval neural network was trained using precipitation data from the 38
orbits listed in Table 12.3. During this period, the radio interference to AMSU-B was
negligible relative to other sources of retrieval error. Each 15-km pixel flagged as poten-
tially precipitating using 183 + 7- or 183 + 3-GHz radiances (see Figure 12.11 and
Figure 12.12) was used for training, validation, or testing of the neural network. For
these 38 orbits over the United States, 15 one-hundred and sixty 15-km pixels were
flagged and considered suitable for training, validation, and testing; half were used for
training and one quarter were used for each of validation and testing, where the valid-
ation pixels were used to determine when the training of the neural network should cease.
On the basis of the final AMSU and NEXRAD 15-km retrievals, approximately 14 and
38%, respectively, of the flagged 15-km pixels appeared to have been precipitating less
than 0.1 mm/h for the test set.

12.6 Retrieval Performance Evaluation

This section presents three forms of evaluation for this initial precipitation-rate retrieval
algorithm: (1) representative qualitative comparisons of AMSU and NEXRAD precipita-
tion rate images, (2) quantitative comparisons of AMSU and NEXRAD retrievals stratified
by NEXRAD rain rate, and (3) representative precipitation images at more extreme
latitudes beyond the NEXRAD training zone.

12.6.1 Image Comparisons of NEXRAD and AMSU-A/B Retrievals

Each NEXRAD comparison at 15-km resolution occurred within 8 min of satellite over-
pass; such coincidence is needed to characterize single-pixel retrievals because convective
precipitation evolves rapidly on this spatial scale. Although comparison with instruments
such as TRMM and SSM/I would be useful, their orbits unfortunately overlap those of
AMSU within 8 min so infrequently (if ever) that comparisons over precipitation are too
rare to be useful until several years of data have been analyzed. This challenge of
simultaneity and the sporadic character of rain have restricted most prior instrument
comparisons (passive microwave satellites, radar, rain gauges) to dimensions over 100 km
and to periods of an hour to a month [58-60]. The uniformity and extent of the NEXRAD
network offer a unique degree of simultaneity on 15- and 50-km scales and also the ability
to match the Gaussian shape of the AMSU antenna beams.

Although these AMSU/HSB-NEXRAD comparisons are encouraging because they
involve single pixels and independent physics and facilities, further extensive analyses
are required for real validation. For example, comparisons of precipitation averages and
differences over the same time/space units used to validate other precipitation measure-
ment systems (e.g., SSM/I [61], ATOVS, TRMM, rain gauges) are needed to characterize
variances and systematic biases based on the precipitation rate, type, location, or season.
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These biases include any present in the NEXRAD data used to train the AMSU/HSB
algorithm; once characterized, they can be diminished. Any excess variance experienced
for rain cells too small to be resolved by AMSU/HSB can also eventually be better
characterized, although it is believed to be modest for cells with microwave signatures
larger than 10 km. Smaller cells contribute little to the total rainfall.

12.6.2 Numerical Comparisons of NEXRAD and AMSU-A/B Retrievals

Figure 12.15a and Figure 12.15b present 15-km-resolution precipitation retrieval images for
September 13, 2000, obtained from NEXRAD and AMSU, respectively. On this occasion, both
sensors yielded rain rates over 50 mm/h at similar locations and lower rain rates down to
0.5mm/h over comparable areas. The revealed morphology is thus very similar, even though
AMSU observes 6 min before NEXRAD, and it senses altitudes that are separated by several
kilometers; rain falling at a nominal rate of 10 m/s takes 10 min to fall 6 km.

Figure 12.16 shows the scatter between the 15-km AMSU and NEXRAD rain-rate
retrievals for the test pixels not used for training or validation. Figure 12.17 shows the
scatter between the 50-km AMSU and NEXRAD rain-rate retrievals over all points
flagged as precipitating.

94°W 92°W 90°W 88°W 86°W 94°W 92°W 90°W 88°W 86°W

34N L — 3 BN s —

(b)

94w 92°W 94°W  92°W  90°W  88°W  86°W

(c) (d)

FIGURE 12.15 (See color insert following page 178.)

Precipitation rates (mm/h) above 0.5 mm/h observed on September 13, 2000, 0130 UTC. (a) 15-km-resolution
NEXRAD retrievals, (b) 15-km-resolution AMSU retrievals, (c) 50-km-resolution NEXRAD retrievals, and (d) 50-
km-resolution AMSU retrievals.
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FIGURE 12.16
Comparison of AMSU and NEXRAD estimates of rain rate at 15-km resolution.
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FIGURE 12.17
Comparison of AMSU and NEXRAD estimates of rain rate at 50-km resolution.
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The relative sensitivity of AMSU and NEXRAD to light and heavy rain can be seen in
Figure 12.17. In general, these figures suggest that AMSU responds less to the highest
radar rain rates, perhaps because AMSU is less sensitive to the bright-band or hail
anomalies that affect the radar. They also suggest that the risk of false rain detections
increases for AMSU retrievals below 0.5 mm/h at a 50-km resolution, although further
study is required. Greater accuracy at these low rates requires more space-time averaging
and careful calibration. The risk of overestimating rain rate also appears to be limited.
Only 3.3% of the total AMSU-derived rainfall was in areas where AMSU saw more than 1
mm/h and NEXRAD saw less than 1 mm/h. Only 7.6% of the total NEXRAD-derived
rainfall was in areas where NEXRAD saw more than 1 mm/h and AMSU saw less
than 1 mm/h. These percentages were compared with the total percentages of AMSU
and NEXRAD rain that fell at rates above 1 mm/h, which were 94 and 97%, respectively.
It is also interesting to see to what degree does each sensor retrieve rain when the
other does not, and how much rain does each sensor miss. For example, of the 73
NEXRAD 15-km rain-rate retrievals in Figure 12.16 above 54 mm/h, none were found
by AMSU to be below 3 mm/h, and of the 61 AMSU 15-km retrievals above 45 mm/h,
none were found by NEXRAD to be below 16 mm/h. Also, of the 69 NEXRAD 50-km rain-
rate retrievals in Figure 12.17 above 30 mm/h, none were found by AMSU to be below 5
mm/h, and of the 102 AMSU 50-km retrievals above 16 mm/h, none were found by
NEXRAD to be below 10 mm/h.

Perhaps the most significant AMSU precipitation performance metric is the rms differ-
ence between the NEXRAD and AMSU rain-rate retrievals; these are grouped by re-
trieved NEXRAD rain rates in octaves. The central 26 AMSU-A scan angles and central 78
AMSU-B scan angles were included in these evaluations; only the outermost two AMSU-
A angles on each side were omitted. These comparisons used all 50-km pixels and only
the 15-km pixels were not used for training or validation. The results are listed in Table
12.5. The smoothing of the 15-km NEXRAD and AMSU results to a nominal 50-km
resolution was consistent with an AMSU-A Gaussian beamwidth of 3.3°.

The rms agreement between these two very different precipitation-rate sensors appears
surprisingly good, particularly since a single AMSU neural network is used over all
angles, seasons, and latitudes. The 3-GHz radar retrievals respond most strongly to the
largest hydrometeors, especially those below the bright band near the freezing level,
while AMSU interacts with the general population of hydrometeors in the top few
kilometers of the precipitation cell, which may lie several kilometers above the freezing
level. Much of the agreement between AMSU and NEXRAD rain-rate retrievals must
therefore result from the statistical consistency of the relations between rain rate and its
various electromagnetic signatures. It is difficult to say how much of the observed

TABLE 12.5

RMS AMSU/NEXRAD Discrepancies (mm/h)

NEXRAD Range 15-km Resolution 50-km Resolution
<0.5 mm/h 1.0 0.5
0.5-1 mm/h 2.0 0.9
1-2 mm/h 23 1.1
2-4 mm/h 2.7 1.8
4-8 mm/h 3.5 3.2
8-16 mm/h 6.9 6.6
16-32 mm/h 19.0 12.9
>32 mm/h 429 221
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discrepancy is due to each sensor or how well each correlates with precipitation reaching
the ground.

Furthermore, this study provided an opportunity for evaluation of radar data. The rms
discrepancies between AMSU and NEXRAD retrievals were separately calculated over all
points at ranges from 110 to 230 km from any radar. For NEXRAD precipitation rates
below 16 mm/h, these rms discrepancies were approximately 40% greater than those
computed for test points at the 30- to 110-km range. At rain rates greater than 16 mm/h,
the accuracies beyond 110 km were more comparable. Most points in the eastern United
States are more than 110 km from any NEXRAD radar site.

12.6.3 Global Retrievals of Rain and Snow

Figure 12.18 illustrates precipitation-rate retrievals at points around the globe where
radar confirmation data are scarce. Figure 12.18a shows precipitation retrievals in the
tropics over a mix of land and sea, while Figure 12.18b shows a more intense tropical
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45°N:
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FIGURE 12.18

AMSU precipitation-rate retrievals (mm/h) with 15-km resolution. (a) Philippines, April 16, 2000; (b) Indochina,
July 5, 2000; (c) Canada, August 2, 2000; and (d) New England snowstorm, March 5, 2001. Precipitation-rate
retrievals exceed 0.5 mm/h in the shaded regions, and contours are drawn for 0.5 mm/h, 2 mm/h, 8 mm/h, 32
mm/h, and 128 mm/h. The peak retrieved values are 47 mm/h, 143 mm/h, 30 mm/h, and 1.5 mm/h in (a), (b), (c),
and (d), respectively
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event. Figure 12.18c illustrates strong precipitation near 72°N to 74°N, again over both
land and sea. Finally, Figure 12.18d illustrates the March 5, 2001, New England snow-
storm that deposited roughly a foot of snow within a few hours: an accumulation
somewhat greater than is indicated by the retrieved rain rates of ~1.2 mm/h. This
applicability of the algorithm to snowfall rate should be expected because the observed
radio emission originates exclusively at high altitudes. Whether the hydrometeors are
rain or snow on impact depends only on air temperatures near the surface—far below
those altitudes being probed. For essentially all of the pixels shown in Figure 12.18, the
adjacent clear air exhibited temperature and humidity profiles (inferred from AMSU)
within the range of the training set. Nonetheless, regional biases are expected and will
require evaluation. For example, polar stratiform precipitation is expected to exhibit
relatively weaker radiometric signatures in winter when the temperature lapse rates are
lower, and snow-covered mountains in cold polar air can produce false detections.

12.7 Conclusions

In this chapter, the precipitation estimation method for microwave radiometric data from
Chen and Staelin and the role of signal processing methods were described. The devel-
opment of the Chen-Staelin algorithm shows that signal processing can play a useful role
in satellite-based precipitation estimation. In this algorithm, which was developed for
AMSU-A/B and AMSU/HSB, PCA was used to reduce the dimensionality of selected sets
of channels and to separate the effects of surface variations from atmospheric variations.
Data fusion was used to sharpen 50-km data from AMSU-A so that 15-km precipitation
retrievals could be done. Laplacian filtering was applied to data from the 54-GHz band to
quantify the effects of clouds, and neural nets were trained to learn the mathematical
relationships between precipitation and the information resulting from the signal pro-
cessing. The signal processing components of the algorithm were designed to process the
brightness temperature measurements in a way that extracts the most relevant informa-
tion, and the neural net was trained to learn the relationship between precipitation rate
and the inputs.

This Chen-Staelin algorithm represents a step in the ongoing development of micro-
wave precipitation retrieval algorithms. The algorithm of Chen and Staelin likely can be
improved by choosing more general signal processing methods or fine-tuning the ones
already being used. For example, variations or extensions of PCA such as independent
component analysis (ICA) could be used [63,64]. Additionally, methods like PCA and
ICA can be improved by incorporating components from physics-based methods. Add-
itional improvements can be made by making better use of the data from window
channels.

Future instruments also present opportunities for better precipitation retrievals. The
Advanced Technology Microwave Sounder (ATMS) to be launched aboard the NPOESS
preparatory project (NPP) and NPOESS satellite series could be considered a more
advanced version of AMSU-A/B and AMSU/HSB because it has a set of channels very
similar to that of AMSU-A/B and offers finer resolution and sampling for most channels
[65,66]. Because of the similarity of channel sets, the algorithm of Chen and Staelin can be
a starting point for the development of an algorithm for ATMS. The finer resolution and
sampling of ATMS will likely lead to better image-sharpening methods and temperature
and water vapor profile characterization.
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