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PREFACE

How big is big? How small is small? How wide is wide? How tall is tall?1

Scaling analysis as defined in this book involves a systematic method for nondimen-
sionalizing the dependent and independent variables as well as their derivatives in a
set of describing equations for a physical process. The unique aspect of this nondi-
mensionalization is that it is done to ensure that the variables and their derivatives
are bounded of order one; this implies that the magnitude of the dimensionless vari-
ables and their derivatives can range between zero and more-or-less 1. When this
order-of-one scaling is done, the magnitude of the resulting dimensionless groups
permits assessing the relative importance of the various terms in the describing
equations; this in turn has many applications. The magnitude of the dimensionless
groups appearing in the resulting dimensionless describing equations can be used to
assess possible simplifying approximations. Order-of-one scaling analysis results
in the minimum parametric representation of the describing equations. As such,
this systematic method of scaling offers many advantages relative to dimensional
analysis using the Pi theorem, which does not necessarily result in the minimum
number of dimensionless groups. A particular advantage of scaling analysis is that
it permits assessing the usefulness of a process or technology without the need
for prior bench- or pilot-scale data. It also provides a template for the design of
experiments to explore a new process or to validate a mathematical model.

The motivation for developing the approach to scaling analysis presented in this
book extends back over 40 years, to when the author was a graduate student in the
Department of Chemical Engineering at the University of California at Berkeley.
The author had difficulty in grasping constructs such as hydrodynamic boundary-
layer theory that were introduced using rather intuitive arguments such as those
found in Schlichting’s classic book.2 The author strongly believed that boundary-
layer theory as well as approximations such as creeping and lubrication flows, film
theory, penetration theory, quasi-steady-state, and so on, which were introduced
using intuitive arguments, could in fact be developed systematically. During this
time the author rather serendipitously became aware of the work of Hellums and
Churchill, who used a type of scaling analysis for systematically arriving at the

1Anonymous—attributed to an inquisitive young child!
2H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York, 1960.
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form of dimensionless variables that permitted similarity solutions to partial dif-
ferential equations.3 The book by Hansen, who used the Lie group of uniform
magnifications and contractions to explore the spectrum of differential equations
and associated boundary and initial conditions that would permit similarity solu-
tions, was invaluable for establishing the mathematical basis for scaling analysis.4

The pioneering books of van Dyke5 and Nayfeh,6 which focused on the use of
perturbation expansions for solving differential equations, were particularly helpful
in developing the concepts of ordering and multiple scales. Development of the
microscale–macroscale modeling concept for modeling heterogeneous systems was
strongly influenced by the book Mass Transfer with Chemical Reaction by Astarita.7

Since the author was a product of the “transport phenomena” generation of engi-
neering students, many of the examples and problems in this book were inspired
by his perceived need to justify the assumptions underlying material presented in
the classic textbook Transport Phenomena by Bird, Stewart, and Lightfoot.8 The
confluence of these influences led the author to develop the approach to scaling
analysis presented in this book. Whereas this systematic method for scaling analysis
borrows liberally from these prior mathematical developments, the author believes
this to be an original contribution that he proffers to the community of scholars in
science and engineering as both a teaching and a research tool.

When the author began his academic career in the Department of Chemical
Engineering at the University of Colorado in 1968, he introduced the use of scal-
ing analysis in the courses he taught involving fluid dynamics, heat transfer, mass
transfer, and reactor design. The use of scaling analysis was very well received by
the many engineering students who passed through the courses the author taught
during his 38 years in academia. In particular, it helped his students by provid-
ing a systematic method for understanding subtle concepts such as creeping and
boundary-layer flows in fluid dynamics, the Boussinesq approximation for ther-
mally driven free convection, Taylor dispersion in mass transfer, and the various
reaction regimes in mass transfer with chemical reaction. Scaling analysis was also
helpful to students because it provided a unified approach to teaching transport and
reaction processes. For example, scaling analysis provides a systematic method of
illustrating the analogous roles played by the Reynolds number in fluid dynamics
and the Peclet number in heat or mass transfer, or the Biot number in heat transfer
and the Damköhler number in mass transfer with chemical reaction. The effec-
tive use of scaling analysis as a pedagogical tool in his courses contributed in no
small way to the author being recognized by many teaching awards, including life-
time designation as a President’s Teaching Scholar of the University of Colorado
and several awards from the American Society for Engineering Education. The

3J. D. Hellums and S. W. Churchill, A.I.Ch.E.J., 10, 110 (1964).
4A. G. Hansen, Similarity Analysis of Boundary Value Problems in Engineering, Prentice-Hall, Engle-
wood Cliffs, NJ 1964.
5M. Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford, CA, 1975.
6A. H. Nayfeh, Perturbation Methods, Wiley, New York, 1973.
7G. Astarita, Mass Transfer with Chemical Reaction, Elsevier, New York, 1967.
8R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 1960.
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favorable response the author received from his students to the use of scaling anal-
ysis in his courses led him to present and publish several papers on this subject. This
national as well as international exposure for this systematic approach to scaling
analysis catalyzed a response from the academic community whose encouragement
motivated the author to write this book.

Whereas scaling analysis clearly is invaluable as a pedagogical tool, it also has
application in research and development. For example, scaling analysis allows one
to assess the value of a new process by providing order-of-magnitude estimates of
the anticipated performance. It also can be used to establish the process parameters
in the design of both numerical and laboratory experiments to explore new tech-
nologies. For this reason, timely examples drawn from the author’s experience are
included that effectively illustrate how scaling analysis was used to design a novel
membrane–lung oxygenator,9 to assess the use of pulsed pressure-swing adsorption
in producing oxygen from air,10 to develop a model for polymeric membrane fab-
rication,11 and to explore the potential of a novel process for producing hydrogen
from methane using solar energy.12 Hence, the book has been written to serve as
both a textbook and as a reference book for researchers.

The book includes 62 examples that are worked in some detail to illustrate the
scaling method as well as 165 unworked problems that can be assigned when the
book is used as a textbook. Many of these problems are open ended; as such, they
provide excellent material to stimulate creative thinking for students. The author
has used selected chapters of this book complemented either with an appropriate
textbook or his lecture notes to teach courses in transport phenomena, fluid dynam-
ics, heat transfer, mass transfer, and reactor design. Whether one intends to use this
as a reference book or a textbook, it is necessary to read Chapters 1 and 2, which
provide an overview of the systematic approach to scaling analysis. A course in
fluid dynamics can easily cover Chapters 1 through 3, including working nearly all
the problems at the end of the Chapter 3. A course in heat transfer would cover
Chapters 1, 2, and 4, and a course in mass transfer would cover Chapters 1, 2,
and 5. For both courses, parts of Chapter 3 would be required to consider con-
vective heat or mass transfer. A course in mass transfer with chemical reaction
would cover Chapters 1, 2, and 6 as well as the parts of Chapters 3 and 5 needed
to consider convective mass transfer. A course in modeling transport and reac-
tion processes necessarily would involve all the chapters. The author used a draft
version of this book to teach a course on process modeling to graduate students
whose pre- or corequisites included at least a graduate-level course in transport
phenomena; this one-semester course covered all the chapters, at least in part.

The author conscientiously tried to ferret out the errors in the book. but, a
few more were found with each rereading. Unfortunately, perfection is a quality

9R. R. Bilodeau, R. J. Elgas, W. B. Krantz, and M. E. Voorhees, U.S. patent 5,626,759, issued
May 6, 1997.
10E. M. Kopaygorodsky, V. V. Guliants, and W. B. Krantz, A.I.Ch.E. J., 50(5), 953 (2004).
11D. Li, A. R. Greenberg, W. B. Krantz, and R. L. Sani, J. Membrane Sci., 279, 50 (2006).
12J. K. Dahl, A. W. Weimer, and W. B. Krantz, Int. J. Hydrogen Energy, 29, 57 (2004).
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accorded only to the gods! The author would greatly appreciate receiving correc-
tions and suggestions for improving the book. In particular, he welcomes contribu-
tions of new examples and problems that will possibly be included in subsequent
editions of the book, with due credit given to contributors.
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1 Introduction

Through and through the world is infested with quantity: To talk sense is to talk

quantities. It is no use saying the nation is large . . . How large?

It is no use saying the radium is scarce . . . How scarce?

You cannot evade quantity. You may fly to poetry and music, and quantity and

number will face you in your rhythms and your octaves.1

1.1 MOTIVATION FOR USING SCALING ANALYSIS

This book is directed to a broad spectrum of readers since modeling transport and
reaction processes is common to many fields of pure and applied science. The
book should be useful to educators who are seeking effective pedagogical tools for
introducing their students to an ever-expanding body of knowledge in the field of
transport phenomena and reactor design. It should also be of value to engineers and
scientists who need to apply and develop mathematical models for transport and
reaction processes. It will be helpful to students who are seeking ways to better
understand the broad range of subjects encompassed by transport and reaction
processes.

As defined in this book, the subject of scaling analysis, deals with a system-
atic method for nondimensionalizing a system of describing equations for transport
or reaction processes. The resulting dimensionless system of equations represents
the minimum parametric representation of the process. By this we mean that the
solution for any quantity that can be obtained from these equations will be at
most a function of the dimensionless independent variables and the dimensionless
groups generated by the scaling process. For example, scaling a heat-conduction
process will lead to a set of dimensionless equations whose solution for the dimen-
sionless temperature will be a function of the dimensionless spatial and temporal

1Alfred North Whitehead (1861–1947), in The World of Mathematics, J. R. Newman, ed., Simon &
Schuster, New York, 1956.

Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach
to Model Building and the Art of Approximation, By William B. Krantz
Copyright  2007 John Wiley & Sons, Inc.

1



2 INTRODUCTION

independent variables and dimensionless parameters such as the Prandtl number
(Cpµ/k, in which µ is the shear viscosity, Cp the heat capacity, and k the thermal
conductivity). Quantities that are obtained by evaluating the solution to the
dimensionless equations at fixed values of the spatial and temporal variables or
by integrating a dimensionless dependent variable over the spatial or temporal
domain will be functions of a reduced set of dimensionless spatial or temporal
variables and the relevant dimensionless groups. In some cases the dimension-
less dependent variable of interest might be a function of only the dimensionless
groups. For example, in a steady-state heat-conduction process, the dimension-
less heat-transfer coefficient (Nusselt number) will be a function of the relevant
dimensionless groups, such as the Prandtl number and geometric aspect ratios. This
minimum parametric representation of a transport or reaction process is useful since
it identifies the dimensionless variables and groups that can be used to correlate
data from either laboratory or numerical experiments (i.e., computer simulations).
The resulting dimensionless groups can also be used for scale-up or scale-down
analyses by invoking the principles of geometric and dynamic similarity.

There is no unique set of dimensionless dependent and independent variables and
associated dimensionless groups for a system of equations describing a transport
or reaction process. For any system of describing equations, one set of dimension-
less dependent and independent variables and corresponding dimensionless groups
can always be obtained from any other set. However, one can scale a system of
describing equations in a unique way to ensure that the relevant dependent and
independent variables and their derivatives are bounded of order one. By this we
mean that the magnitude of the particular dimensionless variable or its derivative
is bounded between zero and more-or-less 1. For those familiar with formal order-
ing arguments, we are bounding our variables to be little oh of 1 [i.e., ◦(1)] as
opposed to big oh of 1 [i.e., ◦(1)], which means that the quantity is essentially 1.
Note that by of order one we do not mean exactly 1. In ◦(1) scaling, one can say,
for example, that 0.8 ∼= 1 or 3 ∼= 1; that is, the quantity is well within an order of
magnitude of 1. In this book this special application of scaling that leads to unique
dimensionless variables and groups is referred to as ◦(1) scaling.

The nondimensionalization associated with ◦(1) scaling is indeed unique. How-
ever, arriving at this unique scaling often involves a process of trial and error. That
is, one has to assume that a particular transport or reaction process is dominated by
some mechanism(s) (e.g., heat conduction in a particular direction for a multidi-
mensional heat-transfer process) and then has to nondimensionalize the describing
equations by comparing the other terms to the one that embodies this mechanism.
After obtaining a system of dimensionless describing equations, one evaluates the
resulting dimensionless groups for the relevant geometric and physical parameters
of interest. If all the dimensionless groups are bounded of order one [i.e., ◦(1)],
the original assumption as to the controlling mechanism(s) was correct. However,
if any of the dimensionless groups is much larger than 1, it can indicate that the
scaling was not correct for the geometric and physical parameters of interest or
that there is a region of influence or boundary layer in which a temporal or spa-
tial derivative becomes very large. In either case one has to repeat the scaling
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analysis with a different set of assumptions as to the controlling mechanism(s).
The possibility also exists that proper scaling will yield a dimensionless group that
is much larger than 1, which multiplies some grouping that involves the difference
between two dimensionless quantities each of which is bounded of ◦(1). In this
case the large dimensionless group implies that the grouping it multiplies is much
less than 1. We will see that scaling analysis is forgiving in that, when done cor-
rectly, all terms in the relevant equations will be bounded of order one; that is, the
product of any dimensionless group and the grouping of dimensionless dependent
and/or independent variables that it multiplies is ◦(1).

The utility of ◦(1) scaling is that when all the relevant dependent and inde-
pendent variables and their derivatives are bounded of order one in the resulting
dimensionless describing equations, one can assess the importance of various terms
on the basis of the values of the dimensionless groups that multiply them. If all
the dimensionless dependent variables and their derivatives and the independent
variables are bounded of ◦(1), the dimensionless groups should also be bounded
between 0 and 1. Hence, if a dimensionless group is of order 0.01 or less, the term
that it multiplies can be ignored in developing a model for the particular trans-
port or reaction process while incurring only a very small (∼1%) error. Hence, by
using ◦(1) scaling, one can appropriately simplify the describing equations for a
transport or reaction process. For example, the equations of motion can be nondi-
mensionalized appropriately using ◦(1) scaling to determine the condition required
to neglect the inertia terms; that is, a very small Reynolds number, which is the
familiar creeping-flow approximation.

The trial-and-error process involved in arriving at the proper ◦(1) scaling is
of particular value in designing experiments. In the absence of solving model
equations, ◦(1) scaling permits determining the values of the geometric and pro-
cess parameters that are required to achieve certain experimental conditions. For
example, ◦(1) scaling permits determining the adsorbent bed properties required to
ensure that an adsorption process is controlled by equilibrium considerations rather
than intraparticle diffusion.

Scaling analysis is also useful for developing perturbation expansion solutions
to the describing equations. Scaling will identify dimensionless parameters whose
limiting values (i.e., very large or very small) permit making certain approximations
in solving the describing equations. For example, when the Reynolds number is very
small, one can develop an analytical solution for the flow around a sphere falling
at its terminal velocity in a Newtonian fluid with constant physical properties;
the result is the familiar Stokes flow solution for creeping flow over a sphere.
However, one can account for the neglected inertia terms in the equations of motion
by considering a perturbation expansion solution to the describing equations in
terms of the small Reynolds number. The zeroth-order term in this perturbation
expansion corresponds to the Stokes solution for creeping flow. The first-order
term that accounts for some effects of the inertia terms was first worked out by
Proudman and Pearson.2 Perturbation solutions that are well behaved in the limit

2I. Proudman and J. R. A. Pearson, J. Fluid Mech., 2, 237 (1957).
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of the perturbation parameter becoming very small or very large are referred to as
regular perturbation expansions. Perturbation expansions that are not well behaved
in the limit of a perturbation parameter becoming very small or very large are
referred to as singular perturbation expansions. An example of the latter is very
high Reynolds number flows. If one tries to solve the equations of motion in the
limit of very large Reynolds numbers by attempting a perturbation expansion in the
(small) reciprocal Reynolds number, one cannot properly account for the neglected
viscous terms. This is a direct consequence of the reduction in the order of the
describing equations when one develops the zeroth-order solution in the reciprocal
Reynolds number. To solve singular perturbation expansion problems, one needs
to use the method of multiple scales, whereby different scales are used in the inner
region, the outer region, and the overlap region between them. Scaling analysis
is an invaluable tool for determining when perturbation solutions are possible and
in determining the proper scales for the various regions. This book complements
classical references on perturbation expansion methods.3,4

For the same reason that scaling analysis is useful in determining the scales and
expansion parameters in perturbation analyses, it is useful in assessing potential
problems that can occur in solving a system of describing equations numerically.
That is, when certain dimensionless groups become very small or very large, prob-
lems can be encountered in solving the resulting system of describing equations
numerically. For example, when the Reynolds number becomes very large, the
viscous effects will be confined to a very thin region in the vicinity of the solid
boundaries. If one uses a coarse mesh or does not employ a numerical routine with a
remeshing capability, the numerical routine will not provide sufficient resolution in
the vicinity of the solid boundaries and thereby either will not run or will provide
erroneous results. Scaling analysis can be used to identify these boundary-layer
regions so that a proper numerical method can be employed to solve the problem.

Scaling analysis is particularly useful to an educator who is faced with explain-
ing seemingly unrelated topics such as creeping flows, boundary-layer flows, film
theory, and penetration theory. Topics such as these often are developed in text-
books in a rather intuitive manner. Scaling analysis provides a systematic way to
arrive at these model approximations that eliminates guesswork; that is, scaling
analysis provides an invaluable pedagogical tool for teachers. Disparate topics in
transport and reaction processes can be presented in a unified and integrated man-
ner. For example, a region of influence in scaling provides a means for presenting
a unified approach to boundary-layer theory in fluid dynamics, penetration theory
in heat and mass transfer, and the wall region for confined porous media.

Scaling analysis also provides a very effective learning tool for students. Text-
books on transport and reaction processes generally justify simplifying assumptions
leading to the creeping-flow, boundary-layer, penetration theory, and plug-flow
reactor equations and others through ad hoc arguments rather than by a system-
atic approach such as that provided by scaling analysis. Hence, a student might

3M. Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford, CA, 1975.
4A. H. Nayfeh, Perturbation Methods, Wiley, New York, 1973.
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not see the interrelationship between the various approximations made in describ-
ing transport and reaction processes, such as the analogy between boundary-layer
theory in fluid dynamics and penetration theory in heat or mass transfer. Moreover,
the ad hoc approach to simplifying the equations describing transport and reaction
processes does not provide students with a basis for simplifying more complex
problems not described in textbooks.

1.2 ORGANIZATION OF THE BOOK

Scaling analysis is used by many pure and applied scientists at least in some
form; for example, in dimensional analysis. Many textbooks use order-of-magnitude
arguments to simplify the describing equations for transport and reaction processes.
However, what is lacking is a systematic treatment of scaling analysis that can be
used reliably without the need for the intuition that is either an inherent talent or has
been learned through years of practical experience. Hence, in Chapter 2 we present
scaling analysis in general terms as a series of steps to be followed. We distinguish
between the steps used in scaling for the purpose of dimensional analysis, which
leads to nonunique dimensionless groups, and those to be followed for the special
case of ◦(1) scaling, which leads to a unique minimum parametric representation.

Since this is intended to serve as both a reference book and as a textbook
for a course in mathematical modeling, the subject matter covered by Chapters 3
through 5 is organized according to the conventional topics in transport phenomena:
fluid dynamics, heat transfer, and mass transfer. The rationale for this organization
is that one needs to know how to scale the fluid dynamics to handle scaling of
convective heat and mass transfer. The latter is a necessary precursor to treating the
special topic of mass transfer with chemical reaction, which is covered in Chapter 6.

Chapter 7 is an integrating chapter in which we consider the application of
scaling to process design, which can involve coupled fluid flow, heat and mass
transfer, and chemical reactions. In particular, we illustrate how scaling can be used
to assess a new process or to design experiments (e.g., the sizing of equipment) to
ensure that desired conditions are met.

We presume that the reader has a basic knowledge of transport and reaction
processes; the book is not intended to replace textbooks that treat these subjects in
depth. A basic knowledge of the language of continuum mechanics (i.e., vector and
tensor mathematics) is assumed. However, the appendices summarize useful back-
ground material relevant to modeling transport and reaction processes. Since there
is no general agreement in the literature on the sign convention in the constitutive
equations or surface forces in the equations of motion, the appendices include a
brief review of the sign convection used in the book. The appendices also summa-
rize the forms of the continuity, equations of motion for both conventional fluid
flow and flow through porous media, and energy- and species-balance equations
in generalized vector–tensor notation as well as in rectangular, cylindrical, and
spherical coordinates. Useful integral relationships for scalars, vectors, and tensors
are also included in the appendices.



6 INTRODUCTION

The format in Chapters 3 through 5 is designed to illustrate the application of
scaling analysis by means of problems drawn from fluid dynamics, heat transfer,
and mass transfer. These problems are organized to illustrate how scaling can be
used to develop basic concepts such as creeping flows, boundary-layer theory,
film theory, and penetration theory. The format is to begin by indicating what
the problem is supposed to demonstrate. For example, analysis of an impulsively
oscillated plate is presented to illustrate both how to handle time scaling and to
show what is meant by a region of influence. Several problems are illustrated in
detail, followed by a comparable number of example problems that are outlined in
less detail.

Chapter 6 is organized somewhat differently since it considers problems in mass
transfer with chemical reaction that require scaling analysis on both the micro- and
macroscales: for example, on the scale of a small adsorbent particle and on the
much larger scale of the contacting device that contains these particles. Hence, after
introducing the concepts of micro- and macroscaling, the problems in this chapter
focus on the use of scaling to identify the various reaction regimes that can be
encountered in mass transfer with chemical reaction.

Whereas scaling analysis is used in Chapters 3 through 6 to justify classical
approximations made in fluid dynamics, heat and mass transfer, and mass transfer
with chemical reaction, in Chapter 7 we use scaling analysis to design and assess
novel technologies. The four examples considered in this chapter are considerably
more complex since they involve coupled transport and in some cases chemical
reaction as well. These examples were chosen because scaling analysis contributed
significantly to the process design and technology development.

Chapters 3 through 7 end with a summary that emphasizes the principles of
scaling analysis that were illustrated in the worked problems. Unworked practice
problems included at the end of each chapter explore in more detail the examples
considered in the chapter and apply scaling analysis to related problems.



2 Systematic Method for
Scaling Analysis

At its best, physics eliminates complexity by revealing underlying simplicity. . .

The beauty of the Standard Model (of particle physics) is in its symmetry;

mathematicians describe its symmetries with objects known as Lie groups.”1

2.1 INTRODUCTION

In this chapter, scaling analysis is presented as a stepwise procedure. The proce-
dure differs depending on whether one seeks to obtain the minimum parametric
representation for dimensional analysis or to do ◦(1) scaling to simplify a set
of describing equations or to design an experiment. We begin by considering
◦(1) scaling since this is the primary focus of the book. Scaling as an alterna-
tive method for dimensional analysis is included for completeness at the end of the
chapter. Implementation of the stepwise procedure for either scaling or dimensional
analysis in modeling transport and reaction processes is the subject of subsequent
chapters. We begin by providing a brief overview of the mathematical basis for
scaling analysis.

2.2 MATHEMATICAL BASIS FOR SCALING ANALYSIS

Scaling analysis has its mathematical foundation in Lie group theory, specifically
the continuous group of uniform magnifications and contractions.2 The proper-
ties of the latter group are useful when considering the operations involved when

1C. Seife, Can the laws of physics be unified? Science, 309, 82 (2005).
2A review of group theory is given in A. G. Hansen, Similarity Analysis of Boundary Value Problems
in Engineering, Prentice-Hall, Englewood Cliffs, NJ, 1964, Chap. 4.

Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach
to Model Building and the Art of Approximation, By William B. Krantz
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we change the units on the quantities that appear in dimensional equations. For
example, when converting the length unit of centimeters to meters, all quanti-
ties expressed either totally or partially in terms of length units (heights, widths,
velocities, accelerations, densities, etc.) experience a uniform magnification or con-
traction; that is, all heights become smaller when expressed in terms of meters rather
than centimeters, whereas all densities become larger.

The connection between uniform magnifications and contractions and scaling
analysis might not be clear in view of the fact that one is not changing units
when one nondimensionalizes a system of equations. When one nondimensionalizes
a quantity, it involves dividing the quantity by another quantity or combination
of quantities that have the same units. Quantities are broadly classified as either
primary or secondary. Primary quantities are measured in terms of units of their
own kind: for example, a length quantity measured in terms of meters or a force
quantity measured in terms of Newtons. Secondary quantities are measured in
terms of the units used for primary quantities: for example, velocity measured in
terms of a length divided by a time, or force measured in terms of kilograms
multiplied by meters divided by seconds squared. Note that any secondary quantity
can be converted to a primary quantity merely by measuring it in terms of units
of its own kind. Indeed, in the preceding examples, force was considered as both
a primary and a secondary quantity. However, the same could be done with a
quantity such as velocity; for example, we could define 1 Vel to be the velocity
associated with a moving a distance of 1 meter in 1 second. Scaling analysis is
equivalent to considering every scaled quantity to be a primary quantity since when
we nondimensionalize a quantity, we are dividing it by something that has the same
units. Hence, the properties of the group of uniform magnifications and contractions
also underlie the operations that we use in scaling analysis. More could be said
and done with group theory in exploring the full implications of scaling analysis.
However, this would not serve the purpose of this book, which is to show how
scaling analysis can be used to model transport and reaction processes.

2.3 ORDER-OF-ONE SCALING ANALYSIS

The procedure that is involved in ◦(1) scaling analysis can be reduced to the
following eight steps:

1. Write the dimensional describing equations and their initial, boundary, and
auxiliary conditions appropriate to the transport or reaction process being
considered.

2. Define unspecified scale factors for each dependent and independent vari-
able as well as appropriate derivatives appearing explicitly in the describing
equations and their initial, boundary, and auxiliary conditions.

3. Define unspecified reference factors for each dependent and independent vari-
able that is not referenced to zero in the initial, boundary, and auxiliary
conditions.
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4. Form dimensionless variables by introducing the unspecified scale factors
and reference factors for the dependent and independent variables and the
appropriate derivatives.

5. Introduce these dimensionless variables into the describing equations and
their initial, boundary, and auxiliary conditions.

6. Divide through by the dimensional coefficient of one term (preferably one
that will be retained) in each of the describing equations and their initial,
boundary, and auxiliary conditions.

7. Determine the scale and reference factors by ensuring that the principal terms
in the describing equations and initial, boundary, and auxiliary conditions are
◦(1) (i.e., they are bounded between zero and of order one).

8. The preceding steps result in the minimum parametric representation of the
problem (i.e., in terms of the minimum number of dimensionless groups);
appropriate simplification of the describing equations may now be explored.

The dimensional describing equations involved in step 1 for transport and
reaction processes are usually differential equations with prescribed initial and/or
boundary conditions as well as auxiliary conditions to determine the location of
moving boundaries or free surfaces. These describing equations incorporate any
simplifications that one is certain are justified; for example, assuming an incom-
pressible flow for a liquid. However, one cannot eliminate any of the terms whose
magnitude scaling analysis is being used to assess; for example, the inertia terms
when one is seeking to justify the creeping-flow approximation. In implementing
this step, one must write down at least formally all the differential and algebraic
equations necessary to solve the particular problem. For example, one might have
an elliptic differential equation that requires a downstream boundary condition that
is not known; indeed, one might be using scaling analysis to determine when the
elliptic equation can be simplified to a parabolic equation that obviates the need
to specify this problematic boundary condition. Nonetheless, one needs to spec-
ify this unknown boundary condition at least formally. One also needs to include
appropriate equations of state, kinetic relationships, and so on, required to ensure
that the problem is determined completely.

In step 2 one defines scale factors for each dependent and independent variable
that appears explicitly in the describing equations and their initial, boundary, and
auxiliary conditions. However, in addition, one might have to define scale fac-
tors for certain derivatives of the dependent variables that appear explicitly in the
describing equations and their initial, boundary, and auxiliary conditions. One sees
that this procedure in step 2 is a dramatic departure from that used in conventional
dimensional analysis. The reason for introducing scale factors on derivatives as
well as dependent and independent variables is to ensure that the resulting dimen-
sionless derivatives are ◦(1). This is a critical step since one would like to have
every relevant dimensionless variable as well as their derivatives be of ◦(1) so that
the magnitude of the dimensionless groups multiplying the dimensionless variables
and/or their derivatives indicates the relative importance of the particular term in
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the describing equations. Often, the derivatives will scale with the same scale fac-
tors as those used for the dependent and independent variables. This occurs when
the particular dependent variable experiences its characteristic change over a dis-
tance or time that corresponds to the characteristic length or time. However, this is
not always the proper way to scale derivatives. For example, in moving boundary
problems, one usually does not scale the time derivative of the location of the
moving boundary with the characteristic length scale divided by the characteristic
time scale. The proper way to scale derivatives can best be illustrated by means of
the problems discussed in subsequent chapters.

Step 3 introduces reference factors for any dependent or independent variable
that is not naturally referenced to zero. In fluid dynamics, dependent variables
such as velocities are often naturally referenced to zero because of the no-slip and
impermeable boundary conditions at solid surfaces. However, this is generally not
true for heat- and mass-transfer problems. For example, a one-dimensional heat-
conduction problem might have boundary conditions that involve different constant
temperatures at two planar surfaces. If one wants the dimensionless temperature
to be bounded between zero and 1, it is clearly necessary to introduce a refer-
ence temperature, which scaling will naturally determine to be the lowest known
temperature for the process. Note that reference factors are sometimes needed for
independent variables as well. For example, in solving a fluid-flow problem in an
annulus the zero for the radial coordinate should be referenced to the inner wall
of the annulus, not to the axis of symmetry for the cylindrical coordinate system.
Introducing a reference factor for variables not naturally referenced to zero is crit-
ical in achieving ◦(1) scaling. If this is not done for a variable that is not naturally
referenced to zero, the parametric representation of the problem will involve an
additional unnecessary dimensionless group.

In step 4 we form dimensionless variables for all dependent and independent
variables and their relevant derivatives. These are defined by dividing the dimen-
sional value of the particular variable relative to the unspecified reference factor
(for those variables not naturally referenced to zero) by the unspecified scale factor.

Step 5 involves using the chain rule of differentiation to recast the dimensional
describing equations in terms of the dimensionless variables. This is generally
quite straightforward since the scale and reference factors are considered to be
constants in scaling analysis. In some problems involving a region of influence
such as boundary-layer flows, the scale factor might be a function of one of the
independent variables. However, in such cases we are considering “local scaling”
at a fixed value of the independent variable. Hence, the scale factors involving
the region of influence are still treated as constants in the change of variables
involved in the nondimensionalization. This will become clearer when the example
problems involving a variable region of influence (e.g., boundary-layer flows) are
considered. However, to reference a spatial variable to zero in some problems,
(e.g., when a moving boundary is involved), the new scaled spatial variable will
be a function of time through a reference factor that defines the location of the
boundary. In these cases the chain rule of differentiation must be applied with
caution since time derivatives in a fixed reference frame do not transfer as simple
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time derivatives with respect to the moving reference frame. An additional term is
generated that involves the velocity of the moving boundary. This situation arises in
problems involving moving boundaries, due to phase transition, net mass addition
or removal from a system, and dissolution or precipitation of a phase.

In step 6 we divide through by the dimensional coefficient of one term in each
differential and algebraic equation involved in the describing equations for the par-
ticular transport or reaction process. These dimensional coefficients will consist
of known parameters of the process, such as the density, viscosity, thermal con-
ductivity, and so on, as well as the unspecified scale and reference factors used
to nondimensionalize the variables in the describing equations. In implementing
this step, one should try to divide through by the dimensional coefficient of a
term that must be retained in each of the describing equations, to retain physical
significance. For example, to satisfy certain boundary conditions, one might need
to retain the highest-order spatial derivative in a coordinate direction. Another
example is the force that causes flow in a fluid dynamics problem, such as the
axial pressure gradient. However, in some cases one might not know which terms
must be retained. In such cases one divides through by the dimensional coeffi-
cient of some chosen term. If, in fact, the term chosen is not a significant term
for the particular conditions being considered, other terms in the same describing
equation will be multiplied by dimensionless groups that are significantly greater
than 1, indicating that the latter terms are the most important in the equation being
considered.

Step 7 is the most subtle step in scaling analysis. In this step one determines
the unspecified scale and reference factors by demanding that the dimensionless
dependent and independent variables and their relevant derivatives in the describing
equations be ◦(1). To accomplish this, one sets appropriate dimensionless groups
containing the unspecified scale and reference factors equal to 1 (for scale factors)
or zero (for reference factors). In some cases the scale factor for one dependent
variable (e.g., a particular velocity component in a fluid dynamics problem) might
be obtained by integrating the scale factor for another variable (e.g., the derivative
of this same velocity component). The manner in which this step is implemented
is best learned by example, which is why most of the book is devoted to applying
scaling analysis to a variety of problems in fluid dynamics, heat transfer, mass
transfer, and reaction processes.

Step 8 is the desired end result of the scaling analysis: the unique minimum
parametric representation of the describing equations for the process that ensures
◦(1) scaling. Since all the dimensionless dependent and independent variables and
their relevant derivatives are ◦(1), the magnitude of each term in the describing
equations is determined by the magnitude of the dimensionless group that multi-
plies this term. One dimensionless term in each describing equation will have a
coefficient of unity since in step 6 we divided through by the dimensional coef-
ficient of one term in each of these equations. Hence, one is comparing to 1 the
magnitude of each term in each describing equation. How one proceeds in this
step depends on what information is being sought in the scaling analysis. If one is
seeking to determine the conditions required to ignore a particular term or terms



12 SYSTEMATIC METHOD FOR SCALING ANALYSIS

in the describing equations, one merely demands that the dimensionless coefficient
of the term be much less than 1 [e.g., ◦(0.1) or ◦(0.01)]. If one is seeking to
determine what approximations are allowed for a particular problem for which the
process parameters are known, one evaluates all the dimensionless groups in the
describing equations to assess their magnitude. If the scaling analysis is correct for
the particular process conditions, the magnitudes of all the dimensionless groups
must be ◦(1). If any of the dimensionless groups are much greater than ◦(1), one
of the following is indicated: (1) the term containing this group should have been
the one whose dimensional coefficient was divided through to form the dimensional
groups in step 6; (2) there is a region of influence or boundary layer in which a
temporal or spatial derivative becomes very large; or (3) the group of dimension-
less dependent variables and/or their derivatives that the large dimensionless group
multiplies is very small. In the first two situations one has to rescale the describing
equations either by dividing through by the appropriate dimensional coefficient in
each equation or by introducing a region of influence. The third situation will be
discussed in more detail shortly. One sees that scaling analysis is “forgiving” in
that if one makes an incorrect assumption, it will lead to an apparent contradiction
which indicates that the scaling was incorrect. When one has arrived at the cor-
rect scaling indicated by having all the dimensionless terms bounded of ◦(1), one
can determine allowable assumptions from the magnitude of those dimensionless
groups that are ◦(0.1). For example, if the dimensionless group (i.e., Reynolds
number) multiplying the inertia terms in the equations of motion is ◦(0.1), the
error incurred in dropping these terms typically will be approximately 10%. If this
dimensionless group is ◦(0.01), the error typically will be approximately 1%. This
will be illustrated in several of the example problems by comparing the approximate
solution justified by scaling analysis with the solution to the full set of describing
equations.

A particular advantage of an ◦(1) scaling analysis is that it also yields the
minimum parametric representation of the dimensionless describing equations.
Moreover, if the scaling analysis has been done correctly, the dimensionless groups
usually are of ◦(1) as well. However, in some cases a proper scaling analysis will
yield dimensionless groups that are much larger than ◦(1). Since each term in
the describing equations must be bounded of ◦(1), this can occur only when a
large dimensionless group multiplies a dimensionless term that can become very
small. For example, a dimensionless group that is a measure of the reaction rate
might multiply a term of the form 1 − Xc, where Xc is the fractional conversion
of the reactant. A large dimensionless group in this case would mean that 1 − Xc

is quite small; that is, the large dimensionless group would imply nearly complete
conversion.

Although scaling analysis can be described in terms of the eight steps described
above, its use can best be explained through detailed examples. This constitutes the
subject matter in the remaining chapters. However, before discussing the application
of ◦(1) scaling analysis to transport and reaction processes, it is useful to consider
the special application of scaling analysis as an alternative to the Buckingham Pi
theorem for dimensional analysis.
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2.4 SCALING ALTERNATIVE FOR DIMENSIONAL ANALYSIS

In ◦(1) scaling analysis we arrive at a unique minimum parametric representation
that permits assessing the relative magnitudes of the various terms in the describing
equations. However, in some cases we seek to obtain a minimum parametric repre-
sentation of the describing equations that is optimal for correlating experimental or
numerical data, extrapolating known empirical equations, or scaling-up or scaling-
down some transport or reaction process; the latter procedure is usually referred to
as dimensional analysis. The conventional procedure for dimensional analysis is to
use the Pi theorem, which involves the following steps:

1. List all quantities on which the phenomenon depends.

2. Write the dimensional formula for each quantity.

3. Demand that these quantities be combined into a functional relation that
remains true independent of the size of the units.

In step 3, one invokes the Pi theorem, which states that n − m dimensionless
groups are formed from n quantities expressed in terms of m units. A proof of
the Pi theorem and discussion of the special case n = m is given in Bridgman.3

Unfortunately, using the Pi theorem approach is not always straightforward. For
example, how do we select the quantities? When do we include dimensional con-
stants such as gc (the Newton’s law constant) or R (the gas constant)? How are
dimensionless quantities such as angles involved? How many units must be con-
sidered? For example, force can be considered to be a primary quantity expressed
in units of its own kind (e.g., Newtons) or a secondary quantity expressed in terms
of mass, length, and time (e.g., kg·m/s2). This problem also arises with quanti-
ties involving energy or temperature units since both can be considered as either
primary or secondary quantities. The Pi theorem also does not identify quantities
that always appear in combination; for example, a problem might involve the kine-
matic viscosity ν, but the Pi theorem approach would introduce the shear viscosity
µ and the mass density ρ (i.e., ν = µ/ρ) as separate quantities, thereby generating
an additional dimensionless group that in fact is not needed. The aforementioned
difficulties in using the Pi theorem approach can preclude obtaining the minimum
parametric representation, as illustrated in Chapter 3.

Scaling analysis can be used to circumvent the difficulties encountered in using
the Pi theorem for dimensional analysis. The ◦(1) scaling analysis procedure out-
lined in Section 2.3 leads to the minimum parametric representation for a set of
describing equations; that is, to identifying the minimum number of dimensionless
groups required for dimensional analysis. However, carrying out an ◦(1) scaling
analysis can be somewhat complicated and time consuming. Moreover, the dimen-
sionless groups obtained from an ◦(1) scaling analysis often are not optimal for
correlating experimental or numerical data, for extrapolating empirical correla-
tions, or for scale-up or scale-down analyses. The scaling analysis approach to

3P. W. Bridgman, Dimensional Analysis, Yale University Press, New Haven, CT, 1922.



14 SYSTEMATIC METHOD FOR SCALING ANALYSIS

dimensional analysis illustrated in this section is much easier and quicker to imple-
ment. However, it does not provide as much information as ◦(1) scaling analysis
for achieving the minimum parametric representation. In particular, it does not lead
to groups whose magnitude can be used to assess the relative importance of partic-
ular terms in the describing equations. It also does not identify regions of influence
or boundary layers, whose identification in some cases can reduce the number of
dimensionless groups. In this section we outline the stepwise procedure for using
scaling analysis for dimensional analysis, which includes systematic methods for
reducing the number of dimensionless groups and for casting them into alternative
forms that are optimal for correlating data.

The stepwise procedure in implementing scaling analysis for dimensional anal-
ysis consists of the following 11 steps:

1. Write the dimensional describing equations and their initial, boundary, and
auxiliary conditions appropriate to the transport or reaction process being
considered.

2. Define unspecified scale factors for each dependent variable and its deriva-
tives and each independent variable appearing explicitly in the describing
equations and their initial, boundary, and auxiliary conditions.

3. Define unspecified reference factors for each dependent and independent
variable that is not referenced to zero in the initial, boundary, and auxiliary
conditions.

4. Form dimensionless variables by introducing the unspecified scale factors
and relevant reference factors for each dependent variable and its derivatives
and each independent variable.

5. Introduce these dimensionless variables into the describing equations and
their initial, boundary, and auxiliary conditions.

6. Divide through by the dimensional coefficient of one term in each of the
describing equations and their initial, boundary, and auxiliary conditions.

7. Determine the scale and reference factors by setting dimensionless groups
equal to 1 (for scale factors) or zero (for reference factors); this yields the
minimum parametric representation in the form

f (�1, �2, . . . , �k) = 0 (2.4-1)

where �i denotes a dimensionless group. These �i’s include dimensionless
groups formed from combinations of the physical and geometric quantities
and any dimensionless independent variables.

8. The dimensionless groups in step 7 are not unique; it might be advantageous
to isolate two or more dimensional quantities into one group (if possible) to
determine their interdependence; this is done by forming a new group from
the k dimensionless groups via the operation

�p = φ · �a
1, �b

2, . . . , �
j

k (2.4-2)
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where φ is a dimensionless constant and a, b, . . . , j are constants chosen
to isolate the desired quantities into the new dimensionless group �p; one
can then use this new group along with any k − 1 of the original groups;
however, this operation cannot result in eliminating a dimensional quantity
from the analysis.

9. The number of groups can be reduced further when a �i is either very large
or very small by expanding equation 2.4-1 in a Taylor series in the small
(or reciprocal of a large) �i :

f (�1, �2, . . . , �k) = f

∣
∣
∣
∣
�i=0

+ ∂f

∂�i

∣
∣
∣
∣
�i=0

�i + ◦(�2
i ) (2.4-3)

If equation 2.4-3 can be truncated at the first term, the minimum parametric
representation will involve k − 1�i’s.

10. Any dimensionless group that contains the sum or difference of two dimen-
sional quantities γ and δ, either of which appears individually in any other
dimensionless group, can be redefined to exclude this particular quantity;
that is,

if �p ≡ αaβb(γ − δ)c, it can be replaced by �′
p ≡ αaβbγ c

when δ is contained in another of the dimensionless groups
(2.4-4)

11. Any dimensionless group that contains one or more of the dimensionless
groups that appear in the dimensional analysis can be redefined to exclude
these redundant dimensionless groups; that is,

If �p = f (�1, �2, . . . , �k) and �j contains one or more of
the other �i’s, it can be redefined to exclude the redundant �i’s.

(2.4-5)

Step 1 in the scaling analysis procedure for dimensional analysis is the same as
that used for ◦(1) scaling. In dimensional analysis it is essential to begin by writing
the appropriate equation for the quantity that one seeks to correlate. For example,
one might be seeking to correlate the drag force on a particle immersed in a fluid;
one must then write the appropriate integral equation for the total drag; the latter
will, in turn, require the solution to the appropriate form of the equations of motion,
which then must also enter into the dimensional analysis. It is important to empha-
size in implementing step 1 that one must write all the algebraic and differential
equations along with the appropriate initial, boundary, and auxiliary conditions
needed to solve the problem. One must also use all the available information to
simplify these describing equations appropriately; for example, one eliminates the
inertia terms if it is a creeping flow. However, it is sufficient to write the appro-
priately simplified equations of motion, energy-conservation equation, or species
balances in generalized vector–tensor notation; that is, it is not necessary to expand
any of these equations in a particular coordinate system.
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Steps 2 through 6 are similar to those used in ◦(1) scaling analysis with one
exception. In step 2, one scales only the dependent and independent variables; one
does not scale any of the derivatives. The reason for this is that we are merely
seeking to achieve a minimum parametric representation. We are not trying to scale
to ensure that all the dimensionless variables and their derivatives are ◦(1).

The �i’s obtained in step 7 constitute dimensionless groups formed from the
physical properties, geometric and process parameters, and dimensionless depen-
dent and independent variables. Note that some of the dimensionless dependent
and/or independent variables will not appear in the �i’s if they are integrated out
or evaluated at fixed spatial or temporal conditions. For example, one might seek a
correlation for the total drag force at the surface of a sphere falling at its terminal
velocity. The total drag force involves integrating the local shear stress and pres-
sure over the surface of the sphere. Hence, although the dimensionless local shear
stress and pressure depend on the dimensionless spatial coordinates, the total drag
force on the sphere does not depend on these quantities, due to integration over
the surface. This will become clearer when representative problems are considered
in subsequent chapters.

Step 8 is the procedure whereby one obtains the dimensionless groups that are
optimal for the desired correlation. This step states merely that one can form a new
set of dimensionless groups by multiplying two or more of the groups obtained
in step 7 raised to arbitrary powers and multiplied by arbitrary constants. One
does this to isolate certain quantities into just one dimensionless group. The only
precaution to be observed here is that the resulting dimensionless groups must be
independent and equal in number to the original set of groups. In addition, this
procedure cannot result in eliminating any quantity from the dimensional analysis.
For example, one might want to correlate the average velocity for fully developed
laminar flow in a smooth cylindrical tube as a function of the relevant parameters.
Steps 1 through 7 will result in two dimensionless groups. One possible set of
dimensionless groups is the conventional friction factor and the Reynolds number.
However, both of these groups contain the average velocity. This implies that a
correlation for the friction factor as a function of Reynolds number would require
a trial-and-error solution to obtain the average velocity. However, step 8 indicates
that one can multiply the friction factor by the square of the Reynolds number to
obtain a new dimensionless group that is independent of the average velocity. One
can then plot the Reynolds number as a function of this new dimensionless group
to obtain a correlation that is optimal for determining the average velocity.

Step 9 provides the formalism necessary to reduce the number of dimensionless
groups when one or more of the �i’s is either very small or very large. If one can
assume that the dimensionless correlation has continuous derivatives with respect
to the particular small �i (or reciprocal large �i), the correlation can be expanded
in a Taylor series in the small �i (or reciprocal large �i). For a sufficiently small
�i this Taylor series can be truncated at the first term, thereby formally eliminating
this small dimensionless group from the correlation. For example, the friction fac-
tor (dimensionless drag force) for flow over a sphere is a function of the Reynolds
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number. However, at very small reciprocal Reynolds numbers the friction
factor becomes independent of the Reynolds number and approaches a constant
value.

Step 10 is a consequence of the fact that the set of dimensionless groups involved
in a minimum parametric representation of the describing equations is not unique.
If two quantities appear in the describing equations only as a sum or difference,
the number of dimensionless groups can be reduced by using the sum or difference
as a single dimensional quantity. However, if either of the quantities appearing in
a sum or difference appears individually in any other dimensionless group, there is
no advantage to considering the sum or difference as a separate dimensional quan-
tity. Step 10 is particularly useful when one is trying to isolate particular quantities
into just one dimensionless group in order to correlate experimental or numerical
data. For example, a dimensional analysis correlation for the heat-transfer coef-
ficient might involve the temperature difference Tw − T∞, where Tw and T∞ are
the wall and bulk-fluid temperatures, respectively. However, if a heterogeneous
chemical reaction is occurring at the wall, Tw might enter the dimensional analysis
separately, due to the dependence of the reaction rate constant on temperature. In
this case the quantity Tw − T∞ can be replaced by Tw and T∞ as separate quanti-
ties. Doing this might be advantageous if one is trying to isolate Tw into just one
dimensionless group to study its effect on the performance. Sums or differences of
dimensional quantities are often encountered when one obtains the minimum para-
metric representation of a set of describing equations by invoking ◦(1) scaling; for
example, the characteristic temperature scale might be Tw − T∞. This temperature
difference is appropriate for the scaling analysis to assess what approximations
might be justified. However, it might be inconvenient for a dimensional analy-
sis correlation if one is seeking to isolate Tw or T∞ into a single dimensionless
group.

Step 11 also follows from that fact that the set of dimensionless groups involved
in a minimum parametric representation of the describing equations is not unique.
If a particular dimensionless group contains one or more of the other of the dimen-
sionless groups in the dimensional analysis, this group can be redefined to exclude
these redundant dimensionless groups. For example, in convective heat-transfer
problems the Reynolds number, Peclet number, and Prandtl number can arise.
However, the Peclet number is the product of the Reynolds and Prandtl numbers.
If the Reynolds and Prandtl numbers appear independently in the dimensional anal-
ysis, one can eliminate the Peclet number. Dimensionless groups containing other
dimensionless groups are more often encountered when one obtains the minimum
parametric representation of a set of describing equations by invoking ◦(1) scaling.
For example, describing equations for mass transfer with chemical reaction might
involve a dimensionless group containing the characteristic reaction-rate parame-
ter, which in turn is a function of a characteristic temperature ratio that appears
as an independent dimensionless group. Incorporating the temperature ratio into
the definition of the characteristic reaction-rate parameter is critical to carrying out
accurate scaling analysis. However, it will be very inconvenient for a dimensional
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analysis correlation if one is seeking to isolate either of the temperatures in this
ratio into just one dimensionless group.

2.5 SUMMARY

An eight-step procedure was outlined whereby all the dependent and independent
variables and their derivatives are bounded to be ◦(1). This procedure results in
the minimum parametric representation of the describing equations; that is, the
dimensionless describing equations involve the minimum number of dimensionless
groups. The ◦(1) scaling procedure permits assessing the relative importance of
each term in the describing equations, which then suggests possible approximations
that can be made. Scaling analysis is forgiving in that it indicates if variables and/or
their derivatives have been scaled incorrectly. This is usually indicated by one or
more terms that are not bounded of ◦(1).

Although ◦(1) scaling analysis always leads to the minimum parametric repre-
sentation of the describing equations, implementing this procedure can be tedious
and time consuming. When one just seeks to do dimensional analysis without
assessing the relative importance of the various terms in the describing equations,
one can implement the scaling approach to dimensional analysis in the absence
of any effort to bound the variables and their derivatives to be ◦(1). The lat-
ter procedure is straightforward and quick to implement. However, the resulting
dimensionless groups do not provide nearly as much information on the physics
and chemistry of the transport and reaction processes as would be obtained from
an ◦(1) scaling analysis. An 11-step procedure was outlined for implementing
the scaling approach to dimensional analysis. However, only the first seven steps
are essential in implementing this procedure. The remaining four steps involve
manipulations that permit recasting the dimensionless groups into a form that is
optimal for correlating data or process scale-up. Using either ◦(1) scaling analysis
or the alternative simpler scaling analysis approach to dimensional analysis offers
many advantages relative to using the Pi theorem. In particular, natural groupings
of the variables are identified, and complications related to choosing the proper
dimensions and the need to introduce dimensional constants are avoided.



3 Applications in Fluid Dynamics

To simplify the Navier–Stokes equations within the boundary layer,

we can then utilize the fact that the thickness of this layer is

very small compared to its length along the body.1

3.1 INTRODUCTION

In this chapter we consider the application of scaling analysis to fluid dynamics.
This will serve not only to illustrate how scaling analysis is implemented but will
also provide a systematic means for introducing somewhat abstract concepts in fluid
dynamics, such as creeping, lubrication, boundary-layer, quasi-steady-state, quasi-
parallel, incompressible, and other flows. The material in this chapter thus provides
a useful supplement to a foundation course in fluid dynamics. No attempt is made in
this chapter or elsewhere in the book to provide a detailed derivation of the describ-
ing equations that are used in scaling analysis. However, the reader is referred to
the appendices, which summarize the continuity equations and equations of motion
along with the corresponding forms of Newton’s constitutive equation in gener-
alized vector–tensor notation as well as in rectangular, cylindrical, and spherical
coordinates. These equations serve as the starting point for each example problem.

In this chapter we use the two ordering symbols introduced in Chapter 2:
◦(1) and ◦(1). The symbol ◦(1) implies that the magnitude of the quantity can
range between 0 and more-or-less 1. The symbol ◦(1) implies that the magnitude
of the quantity is more-or-less 1; that is, it is never much less than 1. In the prob-
lems in Sections 3.2 through 3.10 on ◦(1) scaling and dimensional analysis, the
steps involved in each of these scaling procedures are discussed in detail. In the
subsequent example problems, less detail is given; however, the steps involved are
noted parenthetically.

We begin by considering the use of ◦(1) scaling to simplify laminar flow prob-
lems. We then use ◦(1) scaling to justify classical approximations made in fluid

1V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ 1962, p. 14.
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to Model Building and the Art of Approximation, By William B. Krantz
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dynamics, specifically creeping, lubrication, boundary-layer, and quasi-steady-state
flows. We then apply ◦(1) scaling to show how it can be used to justify ignoring
end and sidewall effects. We also consider the application of ◦(1) scaling in simpli-
fying more complex flows, such as those involving free surfaces, porous media, and
compressible fluids. In Section 3.10 we consider the use of scaling in dimensional
analysis. The methodology used in this chapter is to illustrate the use of scaling by
considering detailed examples. Additional worked example problems followed by
several unworked practice problems are included at the end of the chapter.

3.2 FULLY DEVELOPED LAMINAR FLOW

Our first example of scaling analysis will consider a straightforward flow problem
for which an exact analytical solution is available. Of course, one would not need to
scale a problem that can be solved exactly analytically. However, this will permit us
to assess the error made when particular assumptions are invoked based on scaling
analysis. This example illustrate, use of the ◦(1) scaling analysis procedure. It also
illustrates region of influence scaling, whereby we seek to determine the thickness
of a region in which some important effect is concentrated. Region of influence
scaling is particularly important since it forms the basis of hydrodynamic boundary-
layer theory, considered in Section 3.4, and penetration theory in heat and mass
transfer, considered in Chapters 4 and 5, respectively. Finally, this problem is used
to illustrate the forgiving nature of scaling analysis. By this we mean that if an
incorrect assumption is made concerning scaling, proper analysis will indicate the
contradiction when values of the physical and geometric properties are substituted
into the relevant dimensionless groups that emanate from the scaling.

Consider the steady-state fully developed laminar flow of a viscous Newtonian
fluid having constant physical properties between two infinitely wide parallel plates
as shown in Figure 3.2-1. The lower plate is stationary and the upper plate moves
at a constant velocity U0. This flow is also subject to a constant axial pressure driv-
ing force �P ≡ P0 − PL > 0 applied over the length L. Note that the conditions
required to ensure that any of the aforementioned assumptions are reasonable could
be assessed using scaling analysis; we merely invoke these assumptions so that we

x
y

L

HP0

U0

PL

Figure 3.2-1 Steady-state fully developed laminar flow of a viscous Newtonian fluid that
has constant physical properties between two infinitely wide parallel flat plates due to a
pressure driving force �P ≡ P0 − PL applied over length L; the lower plate is stationary
and the upper plate moves at constant velocity U0.
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can focus on assessing the applicability of just one assumption: when the effect of
the upper plate velocity U0 can be neglected. We invoke the stepwise ◦(1) scaling
analysis procedure outlined in Chapter 2. In this first example of ◦(1) scaling anal-
ysis, we show all the steps in detail and provide a discussion of the rationale for
each step.

Step 1 involves writing the describing equations, in this case the equations
of motion and their boundary conditions simplified appropriately for this prob-
lem statement. Equations (D.1-10) and (D.1-11) in Appendix D simplify to the
following for the flow conditions specified:

0 = −∂P

∂x
+ µ

d2ux

dy2
(3.2-1)

0 = −∂P

∂y
+ ρg (3.2-2)

ux = U0 at y = 0 (3.2-3)

ux = 0 at y = H (3.2-4)

Equation (3.2-2) can be integrated and combined with equation (3.2-1) to obtain

0 = �P

L
+ µ

d2ux

dy2
(3.2-5)

Step 2 involves introducing arbitrary scale factors for each dependent and inde-
pendent variable. Step 3 is unnecessary in this problem since both the velocity and
spatial coordinate are naturally referenced to zero. Step 4 involves defining the
following dimensionless variables:

u∗
x ≡ ux

uxs

and y∗ ≡ y

ys

(3.2-6)

One might reasonably ask why a separate scale factor is not introduced for the
second derivative in equation (3.2-5). Indeed, one could introduce a scale fac-
tor for the second derivative. If this were done, one would find that there was
no dimensionless group to determine the appropriate scale factor for the veloc-
ity. However, the latter could be obtained by integrating the scale for the second
derivative of the velocity, in which case one would obtain the same scale for the
velocity that will be obtained here by introducing its scale factor directly. Alter-
natively, one could introduce a scale factor for the first derivative of the velocity.
Integrating the resulting scale factor again gives the same scale factor for the
velocity within a multiplicative factor of ◦(1). This is explored further in Practice
Problem 3.P.1.
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In step 5 these dimensionless variables are substituted into the describing
equations (3.2-3), (3.2-4), and (3.2-5):

0 = �P

L
+ µuxs

y2
s

d2u∗
x

dy∗2
(3.2-7)

uxsu
∗
x = U0 at y∗ = 0 (3.2-8)

uxsu
∗
x = 0 at ysy

∗ = H (3.2-9)

Step 6 involves dividing through by the dimensional coefficient of the viscous
term in equation (3.2-7) since this term must be retained in order to satisfy the two
no-slip conditions at the solid boundaries. Similarly, in the two boundary conditions
we divide through by the dimensional coefficient of the dimensionless dependent
variable, which yields

0 = y2
s �P

µuxsL
+ d2u∗

x

dy∗2
(3.2-10)

u∗
x = U0

uxs

at y∗ = 0 (3.2-11)

u∗
x = 0 at y∗ = H

ys

(3.2-12)

Step 7 involves determining the scale factors to ensure that the dimensionless
term causing the flow (i.e., the pressure term) balances the term resisting the flow
(i.e., the viscous term) and ensuring that the relevant dimensionless dependent and
independent variables are ◦(1) for the region of the flow that is of interest, in this
case all the fluid between the two flat plates. When considering any problem in
fluid dynamics, it is important to ask the question “What causes the flow?” since in
scaling, the term or terms causing the flow must balance the term or terms resisting
the flow. The former might constitute a pressure gradient, a moving boundary, or
body forces such as a gravitational, centrifugal, electric, or magnetic field; the latter
might constitute viscous forces, inertia effects, pressure effects, or body forces (note
that pressure and body forces can resist as well as cause flow). Balancing what
causes the flow with the principal term(s) that resist flow generally determines
one or more of the scales. Since we are scaling this problem for conditions such
that the flow is caused principally by the pressure gradient, we ensure that the
dimensionless viscous force and pressure terms balance by demanding that the
dimensionless group in equation (3.2-10) be equal to 1; that is,

y2
s �P

µuxsL
= 1 (3.2-13)

Since our region of interest spans the entire fluid between the two flat plates,
an appropriate scale for the spatial coordinate is obtained by demanding that the
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dimensionless group in equation (3.2-12) be equal to 1; that is,

H

ys

= 1 ⇒ ys = H (3.2-14)

Hence by combining equations (3.2-13) and (3.2-14), we obtain our velocity scale,
which is given by

uxs = H 2 �P

µL
(3.2-15)

Note that this velocity scale is directly proportional to the maximum velocity for
flow between two flat plates driven only by a pressure gradient. This scaling,
ensures that the dimensionless velocity goes through a change of order one over a
dimensionless distance of order one. Note that a change of order one implies that the
dimensionless variable goes from its minimum value of zero to its maximum value,
which has magnitude of order one. Note that in this case our dimensionless velocity
will always be less than 1 since equation (3.2-15) overestimates the maximum
velocity (by a factor of 8 when the motion of the upper plate can be neglected). In
this case we know the exact value of the scale required to bound the dimensionless
velocity between 0 and 1 since we can solve this particular problem analytically.
However, in general we would not know any of the scales beforehand; indeed,
determining these scales is one of the goals of the systematic scaling method. The
dimensionless groups emanating from the scaling analysis that contain this velocity
scale (�1 for the problem being considered here) could be eight times smaller (for
this problem) or larger (if the reciprocal of �1 were used as the dimensionless
group in this problem) than that obtained when the relevant dimensional physical
and geometric properties are substituted to evaluate them. Hence, we see that the
criteria expressed in terms of dimensionless groups that emanate from scaling
analysis are generally within an order of magnitude. For this reason it is good
practice to demand that the dimensionless groups emanating from a particular
scaling analysis be at least two orders of magnitude less than 1, denoted by ◦(0.01),
to justify the particular assumption being considered.

Our dimensionless equations now become

0 = 1 + d2u∗
x

dy∗2
(3.2-16)

u∗
x = U0 µL

H 2 �P
at y∗ = 0 (3.2-17)

u∗
x = 0 at y∗ = 1 (3.2-18)

Step 8 then involves using our scaled dimensionless describing equations to assess
the criterion for which we can ignore the effect of the motion of the upper plate.
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Equation (3.2-17) indicates that the motion of the upper plate will have an insignif-
icant influence on the fluid flow if the following condition holds:

U0 µL

H 2 �P
≡ �1 � 1 (3.2-19)

Note that the criterion that has emerged from our scaling analysis for ignoring
the effect of the moving upper plate on the flow is in terms of a dimension-
less group �1. The physical significance of this dimensionless group is that it is
the ratio of the magnitude of the velocity of the upper plate to the magnitude
of the characteristic velocity due to the applied pressure gradient. The dimen-
sionless groups that emerge from scaling analysis will always have a physical
significance that can be determined by examining how a particular group was
formed: in this case, by dividing the velocity of the upper plate by the charac-
teristic velocity determined by balancing the pressure and viscous forces in the
equations of motion.

The question arises as to how small �1 has to be for the assumption of ignoring
the upper plate motion to be reasonable. The answer to this question depends
of course, on the error that one can tolerate in their answer. Since ◦(1) scaling
involves order-of-magnitude analysis, one can project that if the dimensionless
group in equation (3.2-17) is ◦(0.1), the error will be approximately 10 to 100%;
if this group is ◦(0.01), the error will be approximately 1 to 10%. For example, the
dimensionless velocity profile obtained from solving equations (3.2-16), (3.2-17),
and (3.2-18) while retaining the effect of the moving upper plate is given by

u∗
x = �1 +

(
1

2
− �1

)

y∗ − 1

2
y∗2 (3.2-20)

The corresponding value of the dimensionless average velocity is given by inte-
grating the foregoing velocity profile across the flow to obtain

〈u∗
x〉 = �1

2
+ 1

12
(3.2-21)

One now can access the error in determining the dimensionless average velocity
when the motion of the upper plate is ignored (i.e., when �1 � 1). For example,
when �1 = 0.1, the error in determining the average velocity when the upper plate
velocity is ignored is 38%. However, when �1 = 0.01, the error is reduced to 5.7%.
This demonstrates clearly that proper scaling analysis provides results within an
order of magnitude. If one wants to be certain that some assumption can be invoked
with confidence, two orders of magnitude should be demanded for any “much less
than” or “much greater than” condition.

Note, however, that the error encountered in making an approximation, such
as assuming that �1 � 1, depends not only on the magnitude of �1 but also on
the quantity that is being determined from the solution. The average velocity is
an integral quantity whose value is not particularly sensitive to small errors in the
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velocity profile near the upper plate. However, if one is interested in determining
the point or local velocity anywhere in the flowing fluid, the error is 100% at the
upper moving plate irrespective of the value of �1 ! One might reasonably suspect
that this large error in the point or local velocity is encountered only very near
the upper moving plate. But the question arises: How near the upper plate is a
significant error encountered in determining the point velocity? Scaling analysis
can also address this question by considering region-of-influence scaling used to
determine the thickness of a region within which some effect is important: in
this case, the thickness of the region near the wall where the moving plate has a
significant effect on determining the point velocity.

To carry out region of influence scaling, the unspecified length scale factor
in fact becomes the thickness of the region of influence, which we denote by
the symbol δm to emphasize its particular physical significance. By this we mean
that the relevant dependent variable, in this case the velocity, is ◦(1) within this
region. Let us rescale this problem to determine the magnitude of δm. Since we
are considering the region near the upper wall, equations (3.2-10) through (3.2-12)
remain the same. However, our velocity scale is no longer given by equation (3.2-
15), which characterizes the velocity across the entire flow. Rather, in the region
near the upper wall, the velocity scale is determined by the dimensionless group
in the boundary condition at the upper wall:

u∗
x = U0

uxs

= 1 ⇒ uxs = U0 (3.2-22)

However, since the pressure force must still balance the viscous term near the upper
wall, the dimensionless group in equation (3.2-13) must again be set equal to 1.
When equation (3.2-22) is substituted into this dimensionless group, one obtains a
measure of δm, the thickness of the region of influence within which one cannot
ignore the influence of the moving plate on the point velocity:

δ2
m �P

µU0L
= 1 ⇒ δ2

m = µU0L

�P
⇒ δ2

m

H 2
= µU0L

H 2 �P
= �1 (3.2-23)

One sees from equation (3.2-23) that
√

�1 is a measure of the fractional distance
between the two plates, within which the effect of the moving plate on the point
velocity is significant. Hence, if �1 = ◦(0.01), the moving plate has a significant
effect on the local velocity across 10% of the distance between the two plates. This
will seriously affect determining the point velocity through a significant portion of
the flow but will have a relatively minor effect on integral quantities such as the
average velocity.

One can conclude from this scaling analysis that the solution obtained for
equations (3.2-1) through (3.2-4) when one assumes that U0

∼= 0 will be reason-
ably accurate for determining integral quantities such as the average velocity when
�1 = ◦(0.01) and that it will provide an accurate estimate for the local velocity
when

√
�1 < y∗ � 1, where y∗ ≡ y/H .

Before leaving this example it is instructive to see the forgiving nature of scaling
analysis. For the purpose of illustration, let us assume that we set the dimensionless
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group in equation (3.2-22) incorrectly as our velocity scale; that is, we used the
velocity of the upper plate as our velocity scale. Note that this is a gross under-
estimate of the proper scale for the dimensionless velocity when the effect of the
motion of the upper plate has a negligible effect on the overall flow. However, if
we had chosen U0 as our velocity scale, equation (3.2-10) would have assumed the
following dimensionless form:

0 = H 2 �P

µU0L
+ d2u∗

x

dy∗2
= 1

�1
+ d2u∗

x

dy∗2
(3.2-24)

Note that if we have scaled the dimensionless velocity and spatial coordinate prop-
erly, the dimensionless second-order derivative in equation (3.2-24) should be ◦(1).
We see from the above that if �1 � 1, as would be the case if the motion of the
upper plate were negligible compared to the flow caused by the pressure gradient,
equation (3.2-24) would be a statement that the sum of a very large term and a
term of ◦(1) is equal to zero; this is clearly impossible. As a result of our incorrect
scaling of the dimensionless velocity, we have encountered a contradiction. This
indicates that we need to consider another scaling; this is, of course, the scaling
wherein the velocity scale factor is given by equation (3.2-15). Hence, we see that
scaling analysis is indeed forgiving in that improper scaling leads to a contradic-
tion, which indicates that scaling needs to be repeated. When the proper scaling is
found for the known physical and geometric properties of the problem, all terms
will be bounded of ◦(1).

In carrying out this ◦(1) scaling analysis, we were seeking to determine the cri-
terion for neglecting the motion of the upper plate on the fluid flow. We saw that the
conditions required to assure minimal error in neglecting this term depended on
the quantity that one sought to determine from the describing equations. In general,
the criterion is less demanding for integral quantities such as the average velocity,
volumetric flow rate, total drag force, and the like, than for quantities such as the
velocity or shear stress at some point in the continuum. We could also have carried
out ◦(1) scaling to determine when the pressure force could be neglected relative
to the fluid motion caused by the moving boundary. This is left as an exercise in
Practice Problem 3.P.2.

3.3 CREEPING- AND LUBRICATION-FLOW APPROXIMATIONS

Now that the procedure for ◦(1) scaling analysis has been illustrated in detail,
we use this method to explore the various approximations made in classical fluid
dynamics. We begin by using ◦(1) scaling analysis to explore the creeping- and
lubrication-flow approximations . The latter is particularly important for flows invol-
ving very narrow gaps, such as journal bearings and fluid couplings. The problem
that we consider is steady-state one-dimensional uniform or plug flow of a vis-
cous Newtonian fluid having constant physical properties and constant velocity U0

impinging on two nonparallel infinitely wide flat plates, as shown in Figure 3.3-1.
This creates a developing flow with nonzero x- and y-velocity components.
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Figure 3.3-1 Steady-state developing laminar flow of a viscous Newtonian fluid that has
constant physical properties between two infinitely wide nonparallel flat plates; only the
local axial velocity profile is shown.

To appreciate the utility of scaling analysis, it is instructive to write the describ-
ing equations before we consider the approximations that we might use to simplify
these equations. Indeed, one utility of scaling analysis is that it allows exploring the
approximations that might be made to obtain a tractable solution to a problem. The
continuity equation and equations of motion given by equations (C.1-1), (D.1-10),
and (D.1-11) simplify to the following for the assumed flow conditions (step 1):

ρux

∂ux

∂x
+ ρuy

∂ux

∂y
= −∂P

∂x
+ µ

(
∂2ux

∂x2
+ ∂2ux

∂y2

)

(3.3-1)

ρux

∂uy

∂x
+ ρuy

∂uy

∂y
= −∂P

∂y
+ µ

(
∂2uy

∂x2
+ ∂2uy

∂y2

)

− ρg (3.3-2)

∂ux

∂x
+ ∂uy

∂y
= 0 (3.3-3)

The appropriate boundary conditions for this flow are given by

ux = U0, uy = 0 at x = 0 (3.3-4)

ux = f1(y), uy = f2(y) at x = L (3.3-5)

ux = 0, uy = 0 at y = 0 (3.3-6)

ux = 0, uy = 0 at y = H0 − H0 − HL

L
x (3.3-7)

Equation (3.3-5) prescribes the downstream boundary conditions in terms of two
functions, f1(y) and f2(y), which might be unknown. The tangential and normal
velocity components to the sloped plate must be zero, due to the no-slip and
impermeable wall boundary conditions. Equation (3.3-7) for the x- and y-velocity
components follows directly from the aforementioned conditions. Note that we
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do not need to put any boundary conditions on the pressure since the average
velocity U0 is known, which permits determining the pressure driving force over
the length L.

Note that this is a nontrivial problem to solve. As a result of the developing
flow, there is strong bidirectional coupling between equations (3.3-1), (3.3-2), and
(3.3-3) through the velocity components and pressure. Moreover, the presence of
the inertia terms in equations (3.3-1) and (3.3-2) make both equations nonlinear. A
further complexity is introduced by the elliptic nature of the describing equations.
The presence of the second-order axial derivatives requires that downstream bound-
ary conditions be specified. In many problems such as this, these downstream
conditions are not known, which precludes solving the describing equations either
analytically or numerically. Clearly, one would like to know how and when these
describing equations might be simplified to permit a tractable solution. In particu-
lar, one would like to know when the inertia terms and axial viscous terms might
be neglected. We use ◦(1) scaling to determine these conditions.

We begin by defining dimensionless variables involving unspecified scale factors
(steps 2, 3, and 4):

u∗
x ≡ ux

uxs

; u∗
y ≡ uy

uys

; P ∗ ≡ P

Ps

; x∗ ≡ x

xs

; y∗ ≡ y

ys

(3.3-8)

Note that we do not need to introduce any reference factors since all the dependent
and independent variables are naturally referenced to zero.

We then introduce these dimensionless variables into the describing equations
and divide through by the coefficient of one term in each of these equations that
we believe should be retained (steps 5 and 6):

ρuxsy
2
s

µxs

u∗
x

∂u∗
x

∂x∗ + ρuysys

µ
u∗

y

∂u∗
x

∂y∗ = − Psy
2
s

µuxsxs

∂P ∗

∂x∗ + y2
s

x2
s

∂2u∗
x

∂x∗2
+ ∂2u∗

x

∂y∗2
(3.3-9)

ρuxsuysys

Psxs

u∗
x

∂u∗
y

∂x∗ + ρu2
ys

Ps

u∗
y

∂u∗
y

∂y∗ = −∂P ∗

∂y∗ + µuysys

Psx2
s

∂2u∗
y

∂x∗2
+ µuys

Psys

∂2u∗
y

∂y∗2
− ρgys

Ps

(3.3-10)

∂u∗
x

∂x∗ + uysxs

uxsys

∂u∗
y

∂y∗ = 0 (3.3-11)

u∗
x = U0

uxs

, u∗
y = 0 at x∗ = 0 (3.3-12)

u∗
x = f ∗

1 (y∗), u∗
y = f ∗

2 (y∗) at x∗ = L

xs

(3.3-13)

u∗
x = 0, u∗

y = 0 at y∗ = 0 (3.3-14)

u∗
x = 0, u∗

y = 0 at y∗ = H0

ys

− (H0 − HL)xs

Lys

x∗ (3.3-15)
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Note that in implementing step 6 for equation (3.3-9), we have elected to divide
through by the dimensional coefficient of the principal viscous term since it must
be retained to satisfy the no-slip boundary conditions at the two flat plates. In
equation (3.3-10) we have elected to divide through by the dimensional coefficient
of the pressure term since it causes the flow in the y-direction.

Now let us proceed to determine the scale factors (step 7). The axial velocity
scale is obtained from the dimensionless group in equation (3.3-12). We choose
the dimensionless group in equation (3.3-15) that gives the larger scale for ys since
we want to bound y∗ to always be less than or equal to 1. The dimensionless
group in equation (3.3-13) provides the axial length scale. Since pressure causes
flow in the axial direction, we set the coefficient of the dimensionless pressure
term in equation (3.3-9) equal to 1 to determine the pressure scale. Finally, we set
the dimensionless group in equation (3.3-11) equal to 1 since the two terms in the
continuity equation have to balance for a developing flow. Hence, we obtain the
following scale factors:

uxs = U0; uys = H0

L
U0; Ps = µU0L

H 2
0

; xs = L; ys = H0 (3.3-16)

Note that the scale for the y-component of velocity is dependent on the aspect ratio;
for long closely spaced plates, the scale factor for uy will be considerably smaller
than that for ux . This is perfectly reasonable since uy arises from a need for the
velocity profile to be rearranged to accommodate the change in spacing between
the two plates. Less rearrangement is required for relatively closely spaced long
plates. Note also that the scale factor for the pressure is a measure of the viscous
drag stress multiplied by an aspect ratio. This also is reasonable since we have
balanced the pressure force with the principal viscous stress, which indeed is τyx .

Substitution of the scale factors defined in equation (3.3-16) into equations
(3.3-9) through (3.3-15) yields

Re
H0

L
u∗

x

∂u∗
x

∂x∗ + Re
H0

L
u∗

y

∂u∗
x

∂y∗ = −∂P ∗

∂x∗ + H 2
0

L2

∂2u∗
x

∂x∗2
+ ∂2u∗

x

∂y∗2
(3.3-17)

Re
H 3

0

L3
u∗

x

∂u∗
y

∂x∗ + Re
H 3

0

L3
u∗

y

∂u∗
y

∂y∗ = −∂P ∗

∂y∗ + H 3
0

L3

∂2u∗
y

∂x∗2
+ H 2

0

L2

∂2u∗
y

∂y∗2
− Re

Fr

H0

L

(3.3-18)

∂u∗
x

∂x∗ + ∂u∗
y

∂y∗ = 0 (3.3-19)

u∗
x = 1, u∗

y = 0 at x∗ = 0 (3.3-20)

u∗
x = f ∗

1 (y∗), u∗
y = f ∗

2 (y∗) at x∗ = 1 (3.3-21)

u∗
x = 0, u∗

y = 0 at y∗ = 0 (3.3-22)

u∗
x = 0, u∗

y = 0 at y∗ = 1 −
(

1 − HL

H0

)

x∗ (3.3-23)
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where Re ≡ ρU0H0/µ is the Reynolds number, a measure of the ratio of the kinetic
energy per unit volume of the flow to the principal viscous stress, and Fr ≡ U 2

0 /gH0

is the Froude number, a measure of the ratio of the kinetic energy to the gravita-
tional potential energy of the flow.

Now let us consider how we might be able to simplify the set of dimensionless
equations above to obtain a tractable solution (step 8). If Re � 1, say Re = ◦(0.01),
we see that we can safely neglect the nonlinear inertia terms in equations (3.3-17)
and (3.3-18) provided that H0/L = ◦(1). This simplification is referred to as the
creeping-flow or Stokes’ flow approximation or simply the low Reynolds number
approximation. The creeping-flow approximation is very important for flow through
porous media, microporous membranes, and packed beds, and for the flow of small
particles such as dusts and mists. If, in addition, we can assume that the aspect
ratio H 2

0 /L2 � 1, say H 2
0 /L2 = ◦(0.01), we can neglect the second-order axial

derivative in equation (3.3-17) as well as both viscous terms in equation (3.3-
18). When both Re � 1 and H 2

0 /L2 � 1, it is referred to as the lubrication-flow
approximation; that is, all lubrication flows are also creeping flows, but not all
creeping flows are lubrication flows. Lubrication flows are very important in the
design of journal bearings and fluid couplings as well as in the drainage of viscous
films. Hence, in summary, the conditions for the applicability of the creeping-or
Stokes’ flow and lubrication-flow approximations are

Re � 1 ⇒ creeping- or Stokes’ flow approximation (3.3-24)

Re � 1 and
H 2

0

L2
� 1 ⇒ lubrication-flow approximation (3.3-25)

Note in the criteria for the lubrication-flow approximation that H0 denotes a trans-
verse length scale and L denotes a length scale in the principal direction of flow.

If we make the lubrication-flow approximation, our dimensionless describing
equations for the flow shown in Figure 3.3-1 become

0 = −∂P ∗

∂x∗ + ∂2u∗
x

∂y∗2
(3.3-26)

0 = −∂P ∗

∂y∗ (3.3-27)

u∗
x = 1 at x∗ = 0 (3.3-28)

u∗
x = 0 at y∗ = 1 −

(

1 − HL

H0

)

x∗ (3.3-29)

Equation (3.3-27) implies that there is a negligible pressure drop in the y-direction.
Note that we ensured that the axial pressure gradient was ◦(1) because we
bounded the pressure and axial distance scales to be ◦(1). However, we did
not do anything in our scaling to ensure that the y-derivative of the pressure
was ◦(1); indeed, equation (3.3-18) indicates that the transverse pressure gradi-
ent is ◦(H 2

0 /L2), which is considerably less than 1 for this lubrication flow. The



CREEPING- AND LUBRICATION-FLOW APPROXIMATIONS 31

lubrication-flow approximation has permitted us to eliminate the strong coupling
between the equations of motion and to convert our complex system of elliptic
differential equations into a set of differential equations that obviates the need
to satisfy the boundary conditions given by equation (3.3-21). Indeed, equations
(3.3-26) through (3.3-29) can be solved analytically in closed form. That is,
equation (3.3-27) implies that the axial pressure gradient is a function of only
the axial coordinate x. This in turn implies that equation (3.3-26) can be integrated
directly. Note that the dependence of ux on x enters indirectly through the boundary
condition given by equation (3.3-29). The axial pressure profile can be obtained
from the axial velocity profile and the known average velocity U0.

Before leaving this example it is important to realize the limitations implied
by the creeping-and lubrication-flow approximations. Our ◦(1) scaling analysis
indicated that the creeping-flow assumption is reasonable when Re � 1. However,
inspection of equation (3.3-17) indicates that an additional condition required to
ignore the inertia terms is that

Re
H0

L
� 1 (3.3-30)

That is, it is not sufficient in this case that just the Reynolds number be very
small; in addition, the aspect ratio cannot be too large. Note, however, that the
length L was arbitrary in that L could denote any value of the axial coordi-
nate in the principal direction of flow. This is the principle of local scaling,
whereby we scale the problem for a fixed but arbitrary value of some coordi-
nate, usually that in the principal direction of flow. Note that both the creeping-
and lubrication-flow approximations break down near the leading edge of the
two plates. The creeping-flow approximation breaks down when equation
(3.3-30) is not satisfied. The lubrication-flow approximation breaks down when
either equation (3.3-30) or (3.3-25) is not satisfied. This is explored in Practice
Problem 3.P.5.

It is again instructional to illustrate the forgiving nature of scaling for this
example. Let us assume that we incorrectly balanced the pressure term with the
inertial terms in equation (3.3-9), which leads to Ps = ρu2

xs as our (incorrect) pres-
sure scale; note that this pressure scale is a measure of the kinetic energy per unit
volume. If we use this pressure scale in equation (3.4-9), we obtain the following
dimensionless x-component of the equations of motion:

Re
H0

L
u∗

x

∂u∗
x

∂x∗ + Re
H0

L
u∗

y

∂u∗
x

∂y∗ = −Re
H0

L

∂P ∗

∂x∗ + H 2
0

L2

∂2u∗
x

∂x∗2
+ ∂2u∗

x

∂y∗2
(3.3-31)

If we now consider the lubrication-flow approximation, (i.e., Re � 1 and H 2
0 /L2 �

1), equation (3.3-31) simplifies to

0 = ∂2u∗
x

∂y∗2
(3.3-32)
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However, equation (3.3-32) is not a physically realistic result since there is no
mechanism to cause the flow; that is, equation (3.3-32) states that there is no
force to counteract the principal viscous stress. This indicates that the scaling was
improper and that new scales need to be determined to achieve a proper balance
between the relevant terms in the describing equations. Of course, we know that this
error was due to using an improper pressure scale; the pressure force must balance
the principal viscous term, not the inertia terms that drop out in the creeping-or
lubrication-flow limit.

3.4 BOUNDARY-LAYER-FLOW APPROXIMATION

The next example is the complement of the creeping-flow approximation consid-
ered in Section 3.3: the boundary-layer-flow approximation, which is applicable
in the limit of large Reynolds numbers. In this introductory example we con-
sider the classical problem of a uniform plug flow of a viscous Newtonian liquid
having constant physical properties intercepting a stationary semi-infinitely long
infinitely wide horizontal flat plate, as shown in Figure 3.4-1. Boundary-layer
flows are also examples of region of influence scaling, for which we use scal-
ing to determine the thickness of a region wherein some effect is confined, in
this case the effect of the flat plate that is propagated into the fluid by the action
of viscosity. This example also illustrates the principle of local scaling, in which
we carry out the scaling at some arbitrary but fixed value of one of the spa-
tial coordinates.

The traditional approach to introducing hydrodynamic boundary-layer theory
is to begin by assuming the existence of the boundary layer. This can be very
confusing, especially for students, since the boundary layer is an abstract concept.
Here we arrive at the need to define some region of influence (e.g., the boundary
layer) by being faced with a paradox due to incorrect scaling. That is, we are
going to scale this problem initially without assuming the existence of a boundary
layer. This will lead to a contradiction since the scaling analysis was improper.
However, by virtue of the forgiving nature of scaling analysis, we naturally arrive
at the concept of a hydrodynamic boundary layer without the need to introduce the
boundary layer initially.

In view of the preceding discussion, the continuity equation and equations of
motion given by equations (C.1-1), (D.1-10), and (D.1-11) simplify to the following
for the assumed flow conditions (step 1):

ρux

∂ux

∂x
+ ρuy

∂ux

∂y
= −∂P

∂x
+ µ

(
∂2ux

∂x2
+ ∂2ux

∂y2

)

(3.4-1)

ρux

∂uy

∂x
+ ρuy

∂uy

∂y
= −∂P

∂y
+ µ

(
∂2uy

∂x2
+ ∂2uy

∂y2

)

− ρg (3.4-2)

∂ux

∂x
+ ∂uy

∂y
= 0 (3.4-3)
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L

x

y

U∞

dm(x)

Figure 3.4-1 Uniform plug flow of velocity U∞ for a viscous Newtonian fluid that has
constant physical properties, intercepting a stationary semi-infinitely long infinitely wide
horizontal flat plate.

The corresponding boundary conditions for this flow are given by

ux = U∞, uy = 0 at x = 0 (3.4-4)

ux = f1 (y) , uy = f2 (y) at x = L (3.4-5)

ux = 0, uy = 0 at y = 0 (3.4-6)

ux = U∞, uy = 0 at y = ∞ (3.4-7)

where f1(y) and f2(y) are unspecified functions. Equations (3.4-1) through (3.4-3),
as well as the boundary conditions given by equations (3.4-4), (3.4-5), and (3.4-6),
are identical to equations (3.3-1) through (3.3-3) for the lubrication-flow problem
considered in Section 3.3. This is, of course, because both the present example
and that considered in Section 3.3 are developing flows. However, the similarity
ends here because here we are going to consider the limit of a very large Reynolds
number; we thus consider the limit at the other end of the Reynolds number spec-
trum. Note also that the remaining boundary conditions differ in the two problems.
Equation (3.4-7) states that the axial velocity becomes equal to the initial plug-
flow velocity and that the transverse velocity becomes zero infinitely far above the
flat plate.

Keep in mind that at least initially, we are going to scale this problem incorrectly
to prove the point that scaling analysis can be used to arrive at the boundary-layer
approximation systematically. We begin by defining dimensionless dependent and
independent variables (steps 2, 3, and 4):

u∗
x ≡ ux

uxs

; u∗
y ≡ uy

uys

; P ∗ ≡ P

Ps

; x∗ ≡ x

xs

; y∗ ≡ y

ys

(3.4-8)

Introduce these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of one term in each equation that should be
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retained to maintain physical significance (steps 5 and 6):

u∗
x

∂u∗
x

∂x∗ + uysxs

uxsys

u∗
y

∂u∗
x

∂y∗ = − Ps

ρu2
xs

∂P ∗

∂x∗ + µ

ρuxsxs

∂2u∗
x

∂x∗2
+ µxs

ρuxsy2
s

∂2u∗
x

∂y∗2
(3.4-9)

u∗
x

∂u∗
y

∂x∗ + uysxs

uxsys

u∗
y

∂u∗
y

∂y∗ =− Psxs

ρuxsuysys

∂P ∗

∂y∗ + µ

ρuxsxs

∂2u∗
y

∂x∗2
+ µxs

ρuxsy2
s

∂2u∗
y

∂y∗2
− gxs

uxsuys

(3.4-10)

∂u∗
x

∂x∗ + uysxs

uxsys

∂u∗
y

∂y∗ = 0 (3.4-11)

u∗
x = U∞

uxs

, u∗
y = 0 at x∗ = 0 (3.4-12)

u∗
x = f ∗

1 (y∗), u∗
y = f ∗

2 (y∗) at x∗ = L

xs

(3.4-13)

u∗
x = 0, u∗

y = 0 at y∗ = 0 (3.4-14)

u∗
x = U∞

uxs

, u∗
y = 0 at y∗ = ∞ (3.4-15)

Note that we have divided equations (3.4-9) and (3.4-10) through by the dimen-
sional coefficient of the axial inertia term since we are considering a large Reynolds
number flow for which the inertia terms must be retained.

The dimensionless groups in equations (3.4-11), (3.4-12) or (3.4-15), and (3.4-
13) are set equal to 1 to determine the following scales (step 7):

uxs = U∞; xs = L; uys = ys

L
U∞ (3.4-16)

Moreover, since pressure causes the flow in the y-direction, we set the dimension-
less coefficient of the pressure term in equation (3.4-10) equal to 1 to determine
the pressure scale:

Ps = ρU 2
∞

y2
s

L2
(3.4-17)

The immediate problem we see is that there is no dimensionless group to determine
ys . In view of this, let us set the transverse length scale equal to the axial length
scale; that is, ys = xs = L.

Now let us substitute these scales into equations (3.4-9) through (3.4-15) to
obtain

u∗
x

∂u∗
x

∂x∗ + u∗
y

∂u∗
x

∂y∗ = −∂P ∗

∂x∗ + 1

ReL

∂2u∗
x

∂x∗2
+ 1

ReL

∂2u∗
x

∂y∗2
(3.4-18)

u∗
x

∂u∗
y

∂x∗ + u∗
y

∂u∗
y

∂y∗ = −∂P ∗

∂y∗ + 1

ReL

∂2u∗
y

∂x∗2
+ 1

ReL

∂2u∗
y

∂y∗2
− 1

Fr
(3.4-19)
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∂u∗
x

∂x∗ + ∂u∗
y

∂y∗ = 0 (3.4-20)

u∗
x = 1, u∗

y = 0 at x∗ = 0 (3.4-21)

u∗
x = f ∗

1 (y∗), u∗
y = f ∗

2 (y∗) at x∗ = 1 (3.4-22)

u∗
x = 0, u∗

y = 0 at y∗ = 0 (3.4-23)

u∗
x = 1, u∗

y = 0 at y∗ = ∞ (3.4-24)

where ReL ≡ U∞ρL/µ is the Reynolds number based on the local axial distance
as the characteristic length and Fr ≡ U 2∞/gL is the Froude number.

Now consider the limit of very large ReL (Reynolds number) (step 8). One sees
that the principal viscous term (i.e., the second-order derivative with respect to y)
drops out in both equations (3.4-18) and (3.4-19); this means that it is not possible
to satisfy both boundary conditions given by equations (3.4-23) and (3.4-24). This,
indeed, is a contradiction since if equation (3.4-24) is not satisfied, there is no
mechanism to cause the flow; that is, in this case it is the free stream velocity that
“pulls” along the fluid whose motion is being impeded by the presence of the flat
plate. However, if equation (3.4-23) is not satisfied, the no-slip condition will be
violated at the surface of the flat plate. What we have arrived at is d’Alembert’s
paradox 2; that is, in the limit of large Reynolds numbers, the equations of motion
appear unable to admit any restraining drag force since in this limit the inertia
terms overwhelm the viscous terms. The conclusion we must come to here is that
there must be some region of influence near the flat plate within which the effects
of viscosity are important regardless of how large the Reynolds number is. We
seek to use ◦(1) scaling to determine the thickness of this region and to arrive at
a minimum parametric representation of the describing equations that circumvents
d’Alembert’s paradox.

The contradiction that we encountered in the above incorrect scaling arose
because we arbitrarily chose ys = L. This scale implies that the velocity goes from
a minimum value of 0 to a maximum value of U∞ over a length that goes from
a minimum value of 0 to a maximum value of L. However, since L can be quite
large, this scaling implies that the second derivative of ux with respect to y could be
grossly underestimated. For a large Reynolds number flow for which the action of
viscosity is confined to the vicinity of the boundaries, the transverse length scale in
general should be considerably smaller than L. Let us refer to this region of influ-
ence for the effect of the viscosity by the symbol δm; that is, we say that ys = δm.

Now let us rescale equations (3.4-1) through (3.4-7) and again introduce the
dimensionless variables defined by equation (3.4-8) with the proviso that we replace

2Jean Le Rond d’Alembert (1717–1783) studied experimentally the drag force on a sphere in a flow-
ing fluid. He expected that the force would approach zero as the viscosity of the fluid approached
zero. However, the drag force observed converged on a nonzero value as the viscosity became very
small. The disappearance of the viscous drag force for very high Reynolds number flows is known as
d’Alembert’s paradox.
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ys by δm. We again obtain the scale factors given in equations (3.4-16) and (3.4-17),
where we have replaced ys everywhere by δm. However, in view of the fact that
the principal viscous term in equation (3.4-9) has to be important at least within
some small region in the vicinity of the flat plate, we set the dimensionless group
in front of this term equal to 1 to ensure that this term is of the same size as the
inertia terms that are being retained. This yields the following equation for the
thickness of the region of influence or hydrodynamic boundary layer:

δ2
m = µL

ρU∞
⇒ δm = L√

ReL

(3.4-25)

where ReL ≡ LρU∞/µ is the Reynolds number based on the arbitrary downstream
length along the plate. We see that the boundary layer becomes thinner for larger
Reynolds numbers, but also becomes thicker with increasing distance L along the
flat plate. Note that L is arbitrary in that it can be any fixed value of the axial length
coordinate; that is, our scaling was done for an arbitrary length L of a semi-infinite
flat plate, which is what is meant by the concept of local scaling. The general
behavior of δm(x) is shown in Figure 3.4-1. It should not be surprising that the
above estimate of boundary-layer thickness is within a multiplicative constant of◦(1) of the value obtained via analytical solutions to the boundary-layer equations.3

If we now rewrite our dimensionless describing equations in terms of the scales
defined by equations (3.4-16), (3.4-17), and (3.4-25), we obtain

u∗
x

∂u∗
x

∂x∗ + u∗
y

∂u∗
x

∂y∗ = − 1

ReL

∂P ∗

∂x∗ + 1

ReL

∂2u∗
x

∂x∗2
+ ∂2u∗

x

∂y∗2
(3.4-26)

u∗
x

∂u∗
y

∂x∗ + u∗
y

∂u∗
y

∂y∗ = −∂P ∗

∂y∗ + 1

ReL

∂2u∗
y

∂x∗2
+ ∂2u∗

y

∂y∗2
−

√
ReL

Fr
(3.4-27)

∂u∗
x

∂x∗ + ∂u∗
y

∂y∗ = 0 (3.4-28)

u∗
x = 1, u∗

y = 0 at x∗ = 0 (3.4-29)

u∗
x = f ∗

1

(

y∗) , u∗
y = f ∗

2

(

y∗) at x∗ = 1 (3.4-30)

u∗
x = 0, u∗

y = 0 at y∗ = 0 (3.4-31)

u∗
x = 1, u∗

y = 0 at y∗ = ∞ (3.4-32)

The system of equations above is difficult to solve, for two reasons. First, these are
elliptic differential equations that require specifying some downstream boundary
conditions that in practice are generally not known. Second, equations (3.4-26) and
(3.4-27) are coupled, owing to the pressure appearing in both equations; note that
coupling through the velocity components does not cause any problems since the

3R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, Hoboken, NJ,
2002, p. 137.
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continuity equation given by equation (3.4-28) permits defining a new dependent
variable, the stream function, that can be used to eliminate the two velocity com-
ponents. Hence, we seek to explore the conditions required to eliminate these two
complications.

Note that in the limit of a very large Reynolds number, the system of equations
above reduces to

u∗
x

∂u∗
x

∂x∗ + u∗
y

∂u∗
x

∂y∗ = ∂2u∗
x

∂y∗2
(3.4-33)

∂u∗
x

∂x∗ + ∂u∗
y

∂y∗ = 0 (3.4-34)

u∗
x = 1 at x∗ = 0 (3.4-35)

u∗
x = 0, u∗

y = 0 at y∗ = 0 (3.4-36)

u∗
x = 1 at y∗ = ∞ (3.4-37)

Equations (3.4-33) through (3.4-37) are the classical boundary-layer equations for
flow over a flat plate. Note that by showing that the pressure term in equation
(3.4-26) is negligible in the limit of a large Reynolds number, we have elim-
inated the coupling between this equation and equation (3.4-27). Moreover, we
have shown that the axial viscous term in equation (3.4-26) is negligible in the
limit of a large Reynolds number and thereby have converted the system of ellip-
tic differential equations into a parabolic differential equation that requires only
an upstream boundary condition. By introducing a stream function and similarity
variable, equations (3.4-33) and (3.4-34) can be transformed into a nonlinear ordi-
nary differential equation that can be solved via approximate techniques such as
the Blasius series solution or numerically.4

Note that the criterion for applicability of the hydrodynamic boundary-layer
approximation is

ReL ≡ U∞ρL

µ
� 1 hydrodynamic boundary-layer flow (3.4-38)

Since L is merely some fixed value of the axial coordinate x, the criterion above
always breaks down in the vicinity of the leading edge of the flat plate. Hence,
if one is seeking to determine an integral quantity such as the total drag on the
flat plate, the error will not be significant if equation (3.4-38) is satisfied over
most of the plate. However, the error incurred by invoking the boundary-layer
approximation can be quite large in the vicinity of the leading edge of the plate
for point quantities such as the local velocity components or local shear stress.
Note that for 90% of the flat plate to satisfy the condition that ReL � ◦(100), the
Reynolds number at the end of the plate must be 1000. Our scaling analysis results
for assessing the error incurred in making the boundary-layer approximation are

4H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York, 1960, pp. 116–124.
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consistent with the results obtained from numerical solutions. For example, Janssen
found that the error in the drag coefficient was 40% at ReL = 100 and negligible
at ReL = 1000.5

3.5 QUASI-STEADY-STATE-FLOW APPROXIMATION

Thus far, the three examples that we have considered have involved steady-state
flows. Here we consider how to use ◦(1) scaling to analyze unsteady-state prob-
lems, in particular how to determine when the quasi-steady-state approximation is
applicable. The latter implies that the unsteady-state term does not appear explic-
itly in the describing equations; however, the time dependence enters through the
boundary conditions. In this example we see that there are several possible time
scales. Choosing the proper time scale depends on the conditions being considered.
In particular, we will see that for studying transient phenomena, the proper time
scale is the instantaneous observation time.

Consider the unsteady-state two-dimensional flow of a viscous Newtonian fluid
with constant physical properties between two infinitely wide parallel flat plates.
The upper plate is stationary, whereas the lower plate is initially at rest and then set
into oscillatory motion as shown in Figure 3.5-1. We use ◦(1) scaling to address
three different approximations that we might make in modeling this flow: (1) when
we can ignore the transient startup effect on the flow, (2) when we can assume

Oscillating plate with velocity ux = U0 cos wt

Stationary plate

x

y

H

Figure 3.5-1 Unsteady-state two-dimensional flow of a viscous Newtonian fluid that has
constant physical properties between two infinitely wide parallel flat plates; the upper plate
is stationary, whereas the lower plate is initially at rest and then set into oscillatory motion
with a velocity given by ux = U0 cos ωt , where U0 is the amplitude and ω is the angular
frequency; the velocity profiles shown by the solid and dashed lines correspond to two
different times during the oscillatory motion.

5F. Janssen, J. Fluid Mech., 3, 329 (1958).
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that this flow is quasi-steady-state, and (3) when we can consider the effect of the
oscillating plate to be confined to a region of influence.

The describing equations are obtained by appropriately simplifying equations
(C.1-1), (D.1-10), and (D.1-11) in the Appendices (step 1):

ρ
∂ux

∂t
= µ

∂2ux

∂y2
(3.5-1)

0 = −dP

dy
− ρg (3.5-2)

∂ux

∂x
= 0 (3.5-3)

ux = 0 at t = 0 (3.5-4)

ux = U0 cos ωt at y = 0 (3.5-5)

ux = 0 at y = H (3.5-6)

Equation (3.5-4) states that the fluid is initially stationary. Equations (3.5-5) and
(3.5-6) are the no-slip conditions applied at the oscillated lower and stationary
upper boundaries, respectively.

Introduce the following scale factors and dimensionless variables (steps 2, 3,
and 4):

u∗
x ≡ ux

uxs

; t∗ ≡ t

ts
; y∗ ≡ y

ys

(3.5-7)

Note that we do not have to scale the pressure since equation (3.5-2) indicates
that it is purely hydrostatic and not coupled with equation (3.5-1). Introduce these
dimensionless variables into the describing equations and divide each equation
through by the dimensional coefficient of a term that must be retained to ensure
that the problem has physical significance (steps 5 and 6):

ρy2
s

µts

∂u∗
x

∂t∗
= ∂2u∗

x

∂y∗2
(3.5-8)

u∗
x = 0 at t∗ = 0 (3.5-9)

u∗
x = U0

uxs

cos ωtst
∗ at y∗ = 0 (3.5-10)

u∗
x = 0 at y∗ = H

ys

(3.5-11)

Now let us set appropriate dimensionless groups in equations (3.5-8) through
(3.5-11) equal to 1 to ensure that our dimensionless variables are ◦(1) (step 7).
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The dimensionless groups in equations (3.5-10) and (3.5-11) determine the follow-
ing scale factors:

uxs = U0; ys = H (3.5-12)

One might be tempted to set the dimensionless group in equation (3.5-8) equal to 1
to determine the time scale. However, this choice implies that our time scale is equal
to the time required for the motion of the lower oscillating plate to be felt at the
upper stationary plate by the action of viscosity since this implies that ts = H 2/ν,
where ν ≡ µ/ρ is the kinematic viscosity; if this is the appropriate time scale,
quasi-steady-state can never be achieved for this flow. Alternatively, one could
obtain the time scale from the dimensionless group in equation (3.5-10). However,
this time scale, ts = 2π/ω, would characterize the oscillatory motion, which again
might not be proper for the conditions being considered.6 The latter would certainly
not be the correct time scale to characterize the transient period during which the
fluid is accelerated from rest. The latter time scale is the instantaneous time at
which we “observe” the flow; we call this the observation time, to. Hence, we have
three possible time scales:

tst = to time scale corresponding to the observation time

tsv = H 2

ν
time scale characterizing the viscous penetration (3.5-13)

tsp = 2π

ω
time scale characterizing the periodic motion

Clearly, 0 � tst < ∞, since this scale is the actual time beginning at the inception
of unsteady-state flow. In contrast, the time scales tsv and tsp have fixed values
that depend on the values of the parameters in equation (3.5-13). If tsv < tsp, the
effect of the oscillatory plate motion will penetrate across the entire fluid to the
upper stationary plate. If tsv > tsp, the effect of the plate motion will be con-
fined to a region of influence whose thickness is less than H . We can determine
the thickness of this region of influence using ◦(1) scaling analysis, as will be
shown.

The time scales defined in equation (3.5-13) permit us to determine the crite-
rion for assuming that the transients associated with fluid motion induced during
startup of the oscillatory motion have died out. This criterion is merely that tst
must be much greater than the characteristic time for the oscillatory motion;
that is,

tst = to � 2π

ω
⇒ ωto

2π
� 1 condition to ignore transient flow effects (3.5-14)

6Note that we choose ts = 2π/ω rather than 1/ω since the oscillatory motion is characterized by the
time it takes to complete one cycle.
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Now let us assume that the transient effects have died out [i.e., that the con-
dition defined in equation (3.5-14) is satisfied]. We now seek to determine when
quasi-steady-state can be assumed, that is, when the unsteady-state term in
equation (3.5-8) can be neglected. When the velocity and length scales defined by
equation (3.5-12) and the time scale tsp defined in equation (3.5-13) are substituted
into equations (3.5-8) through (3.5-11), we obtain

ωρH 2

2πµ

∂u∗
x

∂t∗
= ∂2u∗

x

∂y∗2
(3.5-15)

u∗
x = 0 at t∗ = 0 (3.5-16)

u∗
x = cos 2πt∗ at y∗ = 0 (3.5-17)

u∗
x = 0 at y∗ = 1 (3.5-18)

We can now assess when the set of describing equations above can be simpli-
fied (step 8). In particular, we see from equation (3.5-15) that this flow can be
considered to be quasi-steady-state when the following condition holds:

ωρH 2

2πµ
= H 2/ν

2π/ω
= tsv

tsp
� 1 ⇒ quasi-steady-state (3.5-19)

For quasi-steady-state, the system of equations above can be solved quite simply
analytically to obtain the following solution:

u∗
x = (1 − y∗) cos 2πt∗ (3.5-20)

The physical implication of the above is that the viscous time scale must be suf-
ficiently short so that the motion of the lower plate can penetrate across the entire
fluid to the upper stationary plate within a time that is much shorter than that char-
acterizing the periodic motion of the plate. Another way to state this is that if the
motion of the lower plate is sufficiently slow, its effect can penetrate all the way
to the upper plate. Under such conditions, the acceleration of the fluid is relatively
insignificant.

In the scaling analysis that led to the criterion for assuming quasi-steady-state
given by equation (3.5-19), we have assumed that the effect of the lower oscillating
plate penetrates the entire cross-section; that is, we have assumed that the velocity
goes from its minimum to maximum value over a length scale on the order of the
spacing between the two plates. This may not necessarily be true; that is, there
may be a region of influence whose thickness we again denote by ys = δm. Using
this length scale then recasts equation (3.5-15) into the form

ωρδ2
m

2πµ

∂u∗
x

∂t∗
= ∂2u∗

x

∂y∗2
(3.5-21)
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Since there is insufficient time for the effect of the oscillating plate to penetrate
through the entire fluid layer, this is inherently an unsteady-state flow. Hence, the
two terms in equation (3.5-21) must balance; this implies the following:

ωρδ2
m

2πµ
= 1 ⇒ δ2

m = 2πµ

ωρ
⇒ δm

H
=

√

2π/ω

H 2/ν
=

√
tsp

tsv
(3.5-22)

We see that the thickness of the region of influence relative to the spacing between
the two plates is proportional to the square root of the ratio of the characteristic
time for the periodic plate motion to that for viscous penetration. Smaller values
of tsp correspond to higher-frequency oscillations and hence to a thinner region
of influence or boundary-layer thickness. Note that when tsp = tsv , the region of
influence penetrates across the entire fluid layer. For values of tsp > tsv , this is
no longer a region of influence or boundary-layer problem but an unsteady-state-
state flow for which the oscillating plate affects the entire fluid layer. For values of
tsp � tsv , we achieve the quasi-steady-state condition defined by equation (3.5-19).

Note that when tsp � tsv , the describing equations simplify to

∂u∗
x

∂t∗
= ∂2u∗

x

∂y∗2
(3.5-23)

u∗
x

∣
∣
t∗ = u∗

x

∣
∣
t∗+1 for t∗ > 0 (3.5-24)

u∗
x = cos 2πt∗ at y∗ = 0 (3.5-25)

u∗
x = 0 at y∗ = H

δm

=
√

tsv

tsp

∼= ∞ (3.5-26)

Note also that for this region of influence scaling, for which we are assuming
that the transients have died out (ωto � 1), we have replaced the initial condition
with the periodic flow condition given by equation (3.5-24). The solution to this
simplified set of describing equations is straightforward. We know that u∗

x must
be periodic at all values of y∗; however, u∗

x will lag u∗
x at the lower plate by an

increasing amount as y∗ increases. We also note that u∗
x must damp out as y∗ → ∞.

Hence, we assume a solution of the form

u∗
x = e−αy∗

cos[2πt∗ − g(y∗)] (3.5-27)

where α and g(y∗) are an undetermined constant and function, respectively. Sub-
stituting equation (3.5-27) into equations (3.5-23) through (3.5-26) then gives the
following values for these unknown quantities:

α = 1√
2
, g(y∗) = y∗

√
2

(3.5-28)

In summary, we see that the scaling of unsteady-state problems can be compli-
cated by several time scales. It is important that the implications of each time scale
be considered carefully when using scaling analysis to simplify such problems.
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3.6 FLOWS WITH END AND SIDEWALL EFFECTS

The examples considered in Sections 3.2 through 3.5 involved flows that were
assumed to be infinitely wide in the lateral direction. In this example we use
◦(1) scaling to determine a criterion for ignoring sidewall effects; that is, to permit
one to assume that the flow is infinitely wide in the lateral direction. The same type
of scaling arguments used to justify ignoring sidewall effects can also be used to
justify ignoring end effects. We also seek to determine the thickness of the region
of influence within which one cannot ignore the effect of the sidewalls on point or
local quantities such as the velocity profile or drag at the sidewalls.

Consider the steady-state fully developed gravity-driven flow of a Newtonian
liquid film having thickness H and constant physical properties down a channel
inclined at an angle θ to the horizontal and having width W as shown in Figure
3.6-1. The describing equations are obtained by appropriately simplifying equations
(C.1-1), (D.1-10), (D.1-11), (D.1-12) in the Appendices for a flow that is caused
by a gravitational body force (step 1):

0 = µ
∂2uz

∂x2
+ µ

∂2uz

∂y2
+ ρg sin θ (3.6-1)

0 = −∂P

∂y
+ ρg cos θ (3.6-2)

0 = −∂P

∂z
(3.6-3)

∂uz

∂z
= 0 (3.6-4)

uz = 0 at x = ±1

2
W (3.6-5)

∂uz

∂y
= 0 at y = 0 (3.6-6)

uz = 0 at y = H (3.6-7)

z

y Gas

Liquid H

x

y
1
2 Wg q

Figure 3.6-1 Steady-state fully developed gravity-driven flow of a Newtonian liquid film
of thickness H and constant physical properties flowing down a flat plate inclined at an
angle θ to the horizontal; this flow is bounded laterally by two parallel flat plates spaced a
distance W apart.
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Equations (3.6-5) and (3.6-7) are no-slip conditions at the solid boundaries.
Equation (3.6-6) is the implication of assuming negligible drag by the gas on the
liquid–gas interface. Equations (3.6-2) and (3.6-3) imply that the pressure is purely
hydrostatic and need not be considered further in the scaling analysis.

Introduce the following scale factors and dimensionless variables (steps 2, 3,
and 4):

u∗
z ≡ uz

uzs

; x∗ ≡ x

xs

; y∗ ≡ y

ys

(3.6-8)

Substitute these variables into the describing equations and divide through by the
dimensional coefficient of a term that must be retained to obtain the following set
of dimensionless describing equations (steps 5 and 6):

0 = y2
s

x2
s

∂2u∗
z

∂x∗2
+ ∂2u∗

z

∂y∗2
+ ρgy2

s

µuzs

sin θ (3.6-9)

u∗
z = 0 at x∗ = ±1

2

W

xs

(3.6-10)

∂u∗
z

∂y∗ = 0 at y∗ = 0 (3.6-11)

u∗
z = 0 at y∗ = H

ys

(3.6-12)

To bound our dimensionless variables to be ◦(1), we set the dimensionless group
in equation (3.6-9) that is a measure of the ratio of the gravitational body force to
the principal viscous drag force equal to 1 since gravity causes the flow. The lateral
and vertical length scales over which the velocity goes from its minimum to its
maximum value are obtained by setting the dimensionless groups in equations (3.6-
10) and (3.6-12) equal to 1. This yields the following values for the length and
velocity scales (step 7):

xs = W

2
, ys = H,

ρgy2
s sin θ

µuzs

= ρgH 2 sin θ

µuzs

= 1 ⇒ uzs = ρgH 2 sin θ

µ

(3.6-13)

Note that the velocity scale in equation (3.6-13) is within a multiplicative constant
of ◦(1) of the surface velocity for fully developed laminar film flow down an
inclined plate.

When the velocity and length scales defined by equation (3.6-13) are substituted
into equations (3.6-9) through (3.6-12), we obtain

0 = 4H 2

W 2

∂2u∗
z

∂x∗2
+ ∂2u∗

z

∂y∗2
+ 1 (3.6-14)

u∗
z = 0 at x∗ = ±1 (3.6-15)



FREE SURFACE FLOW 45

∂u∗
z

∂y∗ = 0 at y∗ = 0 (3.6-16)

u∗
z = 0 at y∗ = 1 (3.6-17)

Note in the set of describing equations above that the dimensionless dependent and
independent variables are bounded of ◦(1). We see from the above that we can
ignore the term in equation (3.6-14) that accounts for the effect of the sidewalls if
the following dimensionless group is very small; that is (step 8),

4H 2

W 2
� 1 ⇒ sidewall effects can be neglected (3.6-18)

The condition in equation (3.6-18) will be satisfied if 4H 2/W 2 = ◦(0.01). If this
condition is satisfied, the solution to the appropriately simplified form of equation
(3.6-14) and the boundary conditions given by equations (3.6-16) and (3.6-17) can
be obtained quite simply analytically. This solution will be accurate for predicting
any quantities for which H and W are the appropriate length scales; that is, integral
quantities that depend on the velocity profile across the entire cross section of the
flow, such as the average velocity, volumetric flow rate, and overall drag force.

If one seeks to determine the drag force or velocity in the vicinity of the side-
walls, the simplified form of equation (3.6-14) cannot be used. Clearly, there is a
region of influence within which the effect of the sidewalls on the flow cannot be
ignored. Within this region of influence, the viscous stress term in equation (3.6-14)
arising from the drag at the sidewalls is just as important as the principal viscous
term; that is, τzx is approximately the same magnitude as τyz. This means that
the dimensionless group multiplying the term arising from τzx in equation (3.6-14)
must be set equal to 1. This provides a measure of the thickness of the region of
influence within which one cannot ignore the effect of the sidewalls; that is,

4H 2

x2
s

= 4H 2

δ2
m

= 1 ⇒ δm = 2H (3.6-19)

In summary, the effect of the sidewalls on the flow can be ignored if the flow
channel is much wider than the depth of the liquid film. Ignoring the sidewall
effects is a reasonable approximation under such conditions provided that one is
not interested in predicting some quantity in the immediate vicinity of the sidewalls.
Scaling analysis provides both the criterion for ignoring the sidewall effects as well
as an estimate of the region in which these effects will be important.

3.7 FREE SURFACE FLOW

The flow considered in Section 3.6 involved a free surface, the liquid–gas interface.
However, the complications introduced were minimal in that example because this
free surface was planar. In this example we consider a nonplanar two-dimensional
free surface flow involving the unsteady-state draining of a viscous Newtonian
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g

z

x

GasLiquid

∆z

t

n

q

h

Figure 3.7-1 Draining of a two-dimensional viscous Newtonian liquid film that has constant
physical properties due to a gravitational body force; the liquid film has a free surface at
which the effects of both viscous drag and surface-tension forces are assumed to be negligible.

liquid film having constant physical properties due to a gravitational body force,
as shown in Figure 3.7-1; we assume that the effects of viscous drag and surface-
tension forces at the free surface can be neglected. We use ◦(1) scaling to determine
when the describing equations can be simplified; in particular, when the effects of
surface curvature can be ignored.

The describing equations are obtained by appropriately simplifying equations
(C.1-1), (D.1-10), and (D.1-12) in the Appendices for a flow that is caused by a
gravitational body force (step 1):

ρ
∂uz

∂t
+ ρuz

∂uz

∂z
+ ρux

∂uz

∂x
= −∂P

∂z
+ µ

∂2uz

∂z2
+ µ

∂2uz

∂x2
+ ρg (3.7-1)

ρ
∂ux

∂t
+ ρuz

∂ux

∂z
+ ρux

∂ux

∂x
= −∂P

∂x
+ µ

∂2ux

∂z2
+ µ

∂2ux

∂x2
(3.7-2)

∂uz

∂z
+ ∂ux

∂x
= 0 (3.7-3)

uz = 0, ux = 0, η = ∞ at t = 0 (3.7-4)

uz = 0, ux = 0 at x = 0 (3.7-5)

4
∂uz

∂z
sin θ cos θ −

(
∂ux

∂z
+ ∂uz

∂x

)

cos 2θ = 0

−Patm + P + 2µ
∂uz

∂z
cos 2θ − 2µ

(
∂ux

∂z
+ ∂uz

∂x

)

sin θ cos θ = 0







at x = η(z, t) (3.7-6)

uz = 0, ux = 0, η = 0 at z = 0 (3.7-7)

uz = f1(x, t), ux = f2(x, t) at z = L (3.7-8)
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Note that pressure terms are included in both equations (3.7-1) and (3.7-2) even
though we are ignoring surface-tension effects. These pressure terms must be
included because this is a developing flow; that is, flow in the x-direction is caused
by an induced pressure force. The first of equations (3.7-6) is a statement that the
adjacent gas phase does not exert any viscous drag force on the liquid interface;
that is, t · nσ = 0 at x = η(z, t), where n and t are the local normal and tangential
unit vectors at the free surface, respectively, and σ = Pδ + τ is the total stress ten-
sor in which δ is the identity tensor and τ is the viscous stress tensor defined for a
Newtonian fluid by equations (D.1-4) through (D.1-9) in the Appendices. For the
coordinate system shown in Figure 3.7-1, the normal and tangential unit vectors are
expressed in terms of the unit vectors in the x- and z-coordinate directions, δx and
δz, respectively, as follows: n = δx cos θ − δz sin θ and t = δx sin θ + δz cos θ . The
functions f1(x, t) and f2(x, t) in equation (3.7-8) merely indicate that to solve this
system of differential equations we would need to specify some downstream bound-
ary conditions; often, these are unknown, which precludes solving these equations.
This downstream boundary condition is applied at z = L, where L can be any
specified value of z; hence, this is another example of local scaling.

Equations (3.7-1) through (3.7-8) constitute three differential equations and their
associated initial and boundary conditions to determine four unknown dependent
variables: uz, ux, P, and η. Hence, an auxiliary equation is needed to determine the
location of the interface η. This is obtained via an integral mass balance over a differ-
ential length of the film �z having local thickness η(z, t), as shown in Figure 3.7-1.
The following development of this auxiliary condition employs Leibnitz’s rule for
differentiating an integral given by equation (H.1-2) in the Appendices:

(∫ η

0
ρuz dx

)∣
∣
∣
∣
z

−
(∫ η

0
ρuz dx

)∣
∣
∣
∣
z+�z

= d

dt

∫ η

0
ρ dx�z⇒− d

dz

∫ η

0
uz dx = ∂η

∂t

⇒ −
∫ η

0

∂uz

∂z
dx − uz

∂η

∂z
=

∫ η

0

∂ux

∂x
dx − uz

∂η

∂z

= ux − uz

∂η

∂z
= ∂η

∂t
at x = η(z, t) (3.7-9)

Equation (3.7-9) is referred to as the kinematic surface condition. Note that the
solution of the kinematic surface condition requires both an initial and a boundary
condition for η; these are included in equations (3.7-4) and (3.7-7). The former
states that the film is infinitely thick prior to the inception of draining; the latter
states that the film thins to zero thickness at its leading edge as soon as draining
begins.

Introduce the following scale factors and dimensionless variables (steps 2, 3,
and 4):

u∗
z ≡ uz

uzs

; u∗
x ≡ ux

uxs

; P ∗ ≡ P − Pr

Ps

;
(

∂η

∂t

)∗
≡ 1

ηts

∂η

∂t
;

(
∂η

∂z

)∗
≡ 1

ηzs

∂η

∂z
; η∗ ≡ η

ηs

; z∗ ≡ z

zs

; x∗ ≡ x

xs

; t∗ ≡ t

ts
(3.7-10)
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Note that we allow for a reference pressure Pr in our definition of the dimensionless
pressure since the dimensional pressure is not naturally referenced to zero. In
addition, we have introduced separate scale factors denoted by ηts and ηzs for
the temporal and spatial derivatives, respectively, of the film thickness η since
these do not necessarily scale with xs/ts and xs/zs . Substitute these variables into
the describing equations and divide through by the dimensional coefficient of a
term that must be retained to obtain the following set of dimensionless describing
equations (steps 5 and 6):

ρx2
s

µts

∂u∗
z

∂t∗
+ ρuzsx

2
s

µzs

u∗
z

∂u∗
z

∂z∗ + ρuxsxs

µ
u∗

x

∂u∗
z

∂x∗

= − Psx
2
s

µuzszs

∂P ∗

∂z∗ + x2
s

z2
s

∂2u∗
z

∂z∗2
+ ∂2u∗

z

∂x∗2
+ ρgx2

s

µuzs

(3.7-11)

ρx2
s

µts

∂u∗
x

∂t∗
+ ρuzsx

2
s

µzs

u∗
z

∂u∗
x

∂z∗ + ρuxsxs

µ
u∗

x

∂u∗
x

∂x∗ = − Psxs

µuxs

∂P ∗

∂x∗ + x2
s

z2
s

∂2u∗
x

∂z∗2
+ ∂2u∗

x

∂x∗2

(3.7-12)

∂u∗
z

∂z∗ + uxszs

uzsxs

∂u∗
x

∂x∗ = 0 (3.7-13)

u∗
z = 0, u∗

x = 0, η∗ = ∞ at t∗ = 0 (3.7-14)

u∗
z = 0, u∗

x = 0 at x∗ = 0 (3.7-15)

4xs

zs

∂u∗
z

∂z∗ sin θ cos θ −
(

uxsxs

uzszs

∂u∗
x

∂z∗ + ∂u∗
z

∂x∗

)

cos 2θ = 0

−Patmxs

µuzs

+ Psxs

µuzs

P ∗ + Prxs

µuzs

+ 2
xs

zs

∂u∗
z

∂z∗ cos 2θ

− 2

(
uxsxs

uzszs

∂u∗
x

∂z∗ + ∂u∗
z

∂x∗

)

sin θ cos θ = 0







at x∗ = η(z, t)

xs

(3.7-16)

u∗
z = 0, u∗

x = 0, η∗ = 0 at z∗ = 0
(3.7-17)

u∗
z = f ∗

1 (x∗, t∗), u∗
x = f ∗

2 (x∗, t∗) at z∗ = L

zs

(3.7-18)

uxs

uzsηzs

u∗
x − u∗

z

(
∂η

∂z

)∗
= ηts

uzsηzs

(
∂η

∂t

)∗
at x∗ = η(z, t)

xs

(3.7-19)

Since the gravitational body force causes the flow, we balance the latter term
with the principal viscous term by setting the dimensionless group that constitutes
the last term in equation (3.7-11) equal to 1; this determines the axial velocity scale
uzs . The axial and transverse length scales, zs and xs , are determined by setting
the appropriate dimensionless groups in equations (3.7-16) and (3.7-18) equal to 1.
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Since this is a developing flow, the transverse velocity scale uxs is determined by
setting the dimensionless group in equation (3.7-13) equal to 1. Since pressure
causes the flow in the transverse direction, the pressure scale Ps is determined
by setting the dimensionless group multiplying the pressure term in equation (3.7-
12) equal to 1. The first and third terms in the surface normal stress boundary
condition given by equation (3.7-16) indicate that the dimensionless pressure can
be referenced to zero if we set Pr = Patm. Since this is inherently an unsteady-state
flow, the time scale ts is equal to the observation time to, that is, the arbitrary time
at which the flow is “observed”; setting the time scale to be the observation time is
the time-scaling analog of local scaling for spatial variables. Finally, since all three
terms in equation (3.7-19) should be of equal magnitude, we set the dimensionless
groups multiplying the first and third terms equal to 1 in order to determine the
ηzs and ηts scales, respectively. These considerations then determine the following
scale and reference factors (step 7):

uzs = ρgη2

µ
; uxs = ρgη3

µL
; Ps = ρgη2

L
; Pr = Patm;

ηts = ρgη3

µL
; ηzs = η

L
; zs = L; xs = η; ts = to (3.7-20)

Note that the z-velocity scale in equation (3.7-20) is within a multiplicative constant
of ◦(1) of the surface velocity for fully developed laminar film flow down a vertical
plate. Note also that we found that ∂η/∂z scales with η/L, which is the ratio of
the transverse and longitudinal length scales. That is, although we introduced ηzs

as the scale for ∂η/∂z to allow for the possibility that the latter might not scale
with the ratio of the length scales, scaling analysis justified what might appear
to be an obvious choice for this scale. However, scaling analysis also indicated
that the proper scale for ∂η/∂t is ρgη3/µL rather than η/to, which would be the
intuitive choice. In fact, one could introduce separate scales for all the derivatives
in the describing equations and then use the systematic scaling method to determine
these. However, this is cumbersome in practice for the more complex describing
equations encountered in scientific research and engineering practice. Hence, if a
more limited set of scales confined to the dependent and independent variables but
not their derivatives is chosen, one can rely on the forgiving nature of scaling to
discern that separate scales might need to be introduced on one or more derivatives
in order to achieve ◦(1) scaling.

When the scales defined by equation (3.7-20) are substituted into equations (3.7-
11) through 3.7-19), we obtain

η2

νto

∂u∗
z

∂t∗
+ Re

η

L
u∗

z

∂u∗
z

∂z∗ + Re
η

L
u∗

x

∂u∗
z

∂x∗ = − η2

L2

∂P ∗

∂z∗ + η2

L2

∂2u∗
z

∂z∗2
+ ∂2u∗

z

∂x∗2
+ 1

(3.7-21)

η2

νto

∂u∗
x

∂t∗
+ Re

η

L
u∗

z

∂u∗
x

∂z∗ + Re
η

L
u∗

x

∂u∗
x

∂x∗ = −∂P ∗

∂x∗ + η2

L2

∂2u∗
x

∂z∗2
+ ∂2u∗

x

∂x∗2
(3.7-22)
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∂u∗
z

∂z∗ + ∂u∗
x

∂x∗ = 0 (3.7-23)

u∗
z = 0, u∗

x = 0, η∗ = ∞ at t∗ = 0 (3.7-24)

u∗
z = 0, u∗

x = 0 at x∗ = 0 (3.7-25)

4η

L

∂u∗
z

∂z∗ sin θ cos θ −
(

η2

L2

∂u∗
x

∂z∗ + ∂u∗
z

∂x∗

)

cos 2θ = 0

η

L
P ∗ + 2

η

L

∂u∗
z

∂z∗ cos 2θ − 2

(
η2

L2

∂u∗
x

∂z∗ + ∂u∗
z

∂x∗

)

sin θ cos θ = 0







at x∗ = 1

(3.7-26)

u∗
z = 0, u∗

x = 0, η∗ = 0 at x∗ = 0
(3.7-27)

u∗
z = f ∗

1 (x∗, t∗), u∗
x = f ∗

2 (x∗, t∗) at z∗ = 1 (3.7-28)

u∗
x − u∗

z

(
∂η

∂z

)∗
=

(
∂η

∂t

)∗
at x∗ = 1 (3.7-29)

where ν ≡ µ/ρ is the kinematic viscosity and Re ≡ ρuzsη/µ = ρ2gη3/µ2 is the
Reynolds number. The dimensionless group η2/νto is a measure of the ratio of
the characteristic time for the diffusion of vorticity7 to the observation time. We
see from the above that our describing equations can be simplified significantly
if we can make the creeping-flow approximation; that is, if Re = ◦(0.01), we
can ignore the nonlinear inertia terms in equations (3.7-21) and (3.7-22). These
equations can be further simplified if we can make the lubrication-flow approxima-
tion; that is, if η2/L2 = ◦(0.01) as well as Re = ◦(0.01), we can ignore the axial
diffusion of vorticity terms in equations (3.7-21) and (3.7-22). If η2/L2 = ◦(0.01),
the tangential and normal stress boundary conditions given by equation (3.7-26)
also simplify somewhat. If the aspect ratio satisfies the condition η/L = ◦(0.01)
(a more demanding condition than that required for lubrication flow), the quasi-
parallel-flow approximation can be made; that is, the effect of surface curvature
on the flow can be ignored. Finally, if η2/νto = ◦(0.01), which implies that the
observation time is long in comparison to the characteristic time for the diffu-
sion of vorticity, the quasi-steady-state assumption can be made. In summary, the
following conditions justify simplifying the describing equations for this flow:

Re = ρ2gη3

µ2
� 1 ⇒ creeping-flow approximation (3.7-30)

Re � 1 and
η2

L2
� 1 ⇒ lubrication-flow approximation (3.7-31)

7The vorticity is defined to be the curl of the velocity field, ∇ × u; if the curl of the equations of motion is
taken, the vorticity appears as a diffused quantity, the transport coefficient being the kinematic viscosity;
for this reason we refer to the diffused quantity in the equations of motion as the vorticity.
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η

L
� 1 ⇒ quasi-parallel-flow approximation (3.7-32)

η2

νto
� 1 ⇒ quasi-steady-state approximation (3.7-33)

If the conditions in equations (3.7-30) through (3.7-33) apply, equations (3.7-21)
through (3.7-29) simplify to (step 8)

0 = ∂2u∗
z

∂x∗2
+ 1 (3.7-34)

∂u∗
z

∂z∗ + ∂u∗
x

∂x∗ = 0 (3.7-35)

η∗ = ∞ at t∗ = 0 (3.7-36)

u∗
z = 0, u∗

x = 0 at x∗ = 0 (3.7-37)

∂u∗
z

∂x∗ = 0 at x∗ = 1 (3.7-38)

u∗
x − u∗

z

(
∂η

∂z

)∗
=

(
∂η

∂t

)∗
at x∗ = 1 (3.7-39)

An estimate of the instantaneous local film thickness η can be obtained from ηts ,
the scale for ∂η/∂t ; that is,

ηts
∼= ∂η

∂t
∼= −ρgη3

µL
⇒ η2 ∼= µL

2ρgt
(3.7-40)

Note that the negative sign was inserted in equation (3.7-40) because η decreases
with increasing t ; that is, only magnitudes are involved in scaled variables. This
estimate for η can be used in evaluating the criteria described by equations (3.7-30)
through (3.7-33) to assess the applicability of the various assumptions that can be
invoked to simplify the describing equations for this flow. Note that the estimate
for η given by equation (3.7-40) is within a multiplicative constant of ◦(1) of that
obtained by actually solving the describing equations. This is a particular advantage
of scaling analysis; that is, it can provide an estimate of the answer we seek by
solving the describing equations.

Let us assume that the approximations indicated by equations (3.7-30) through
(3.7-33) are justified, at least over a reasonable range of to and L. The solu-
tion to the resulting simplified describing equations given by equations (3.7-34)
through (3.7-39) is straightforward. One can integrate equation (3.7-34) analyti-
cally subject to the boundary conditions given by equations (3.7-37) and (3.7-38).
The resulting solution for axial velocity u∗

z is the same as that for fully developed
film flow down a vertical plate, but with the local film thickness η(z∗, t∗) replac-
ing the constant film thickness; hence, the t∗− and z∗− dependence of u∗

z enters
implicitly through the boundary conditions. The transverse velocity u∗

x can then be
obtained by substituting this solution for u∗

z into the continuity equation given by
equation (3.7-35) and integrating across the flow. The solutions for u∗

z and u∗
x then
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can be substituted into the kinematic surface condition given by equation (3.7-39)
to obtain a partial differential equation in terms of only one dependent variable,
η(z∗, t∗). This can be solved for the instantaneous local film thickness η(z∗, t∗)
either by the method of separation of variables or via the method of combination
of variables (i.e., a similarity solution).

An ad hoc solution to this flow problem was developed by van Rossum8 and
is given by Bird et al.9 Van Rossum assumes quasi-parallel flow and hence uses
the axial velocity profile for fully developed film flow down a vertical plate. He
then carries out an integral mass balance on a control volume that consists of a
differential axial length and the entire cross-section of the film in which he uses the
average axial velocity. The solution he obtains for η(z, t) is within a multiplicative
constant of ◦(1) of that obtained via scaling analysis given by equation (3.7-40).
The scaling analysis developed here provides a systematic method for justifying
the assumptions used in the ad hoc solution of van Rossum. Moreover, scaling
analysis leads to an improved solution since the exact form of the kinematic surface
condition (integral mass balance) is solved that incorporates contributions from both
the axial and transverse velocity components.

3.8 POROUS MEDIA FLOW

Thus far, all the flows that we have considered have involved homogeneous media,
that is, media consisting of a single phase. Here we consider steady-state fully
developed pressure-driven flow of a Newtonian fluid with constant physical prop-
erties through a heterogeneous medium consisting of a microporous solid contained
within a cylindrical tube of radius R, as shown in Figure 3.8-1.

Flow through a porous medium is described by a modified form of the equations
of motion in order to accommodate the heterogeneity introduced by the microporous

r

z

R
porous medium 

L

P0 PL

dp

Figure 3.8-1 Steady-state fully developed pressure-driven flow of a viscous Newtonian
fluid with constant physical properties through a heterogeneous medium consisting of a
microporous solid contained within a cylindrical tube of radius R; the axial profile is shown
that satisfies the no-slip condition at the tube wall, whose region of influence is δp .

8J. J. van Rossum, Appl. Sci. Res., A7, 121–144 (1958).
9Bird et al., Transport Phenomena, 2nd ed., Wiley, Hoboken, NJ, 2002, Problem 2D.2, pp. 73–74.
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solid. The local Reynolds number that characterizes flow through the pores is
well into the creeping-flow regime, due to the small pore size; hence, one can
safely ignore the inertia terms in the equations of motion. Moreover, the resistance
to flow offered by the pore walls within the porous medium is generally much
greater than that of the solid walls that bound the entire porous medium (the
wall of the cylindrical tube in the present problem); the former can be described
by Darcy’s law, whereas the latter is usually neglected. However, the effect of
the boundaries of the porous medium cannot be ignored within some region of
influence adjacent to the boundaries. We seek to use scaling analysis to determine
the criterion for when the effect of the lateral boundaries on the flow through the
porous medium can be neglected and to determine the thickness of the region of
influence within which the effect of drag on the lateral boundaries on the flow must
be considered.

The appropriately simplified form of equations (E.2-1) and (E.2-3) in the Appen-
dices for steady-state creeping flow through a porous medium are given by (step 1)

0 = −∂P

∂z
− µ

kp

�uz + µ
1

r

d

dr

(

r
d�uz

dr

)

(3.8-1)

0 = −∂P

∂r
(3.8-2)

�uz = 0 at r = R (3.8-3)

d�uz

dr
= 0 at r = 0 (3.8-4)

P = P0 at z = 0 (3.8-5)

where �uz is the superficial flow velocity through the porous medium (i.e., the
flow velocity averaged over a differential cross-sectional area of the heterogeneous
medium in contrast to the flow velocity through a pore) and kp is the Darcy
permeability of the microporous solid. Note that we have ignored any effect of
hydrostatic pressure in equation (3.8-2). Equations (3.8-1) and (3.8-2) imply that
the axial pressure gradient is a constant. Hence, our describing equations sim-
plify to

0 = �P

L
− µ

kp

�uz + µ
1

r

d

dr

(

r
d�uz

dr

)

(3.8-6)

�uz = 0 at r = R (3.8-7)

d�uz

dr
= 0 at r = 0 (3.8-8)

where �P ≡ P0 − PL, in which P0 and PL are the pressures at z = 0 and z = L,
respectively. The equations above differ from the conventional equations of motion
by the inclusion of the Darcy term, which accounts for the resistance to flow offered
by the porous medium.
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Introduce the following scale factors and dimensionless variables (steps 2, 3,
and 4):

�u∗
z ≡ �uz

�uzs

; r∗ ≡ r

rs

(3.8-9)

Substitute these variables into the describing equations and divide through by the
dimensional coefficient of a term that must be retained to obtain the following set
of dimensionless describing equations (steps 5 and 6):

0 = 1 − µL�uzs

kp�P
�u∗

z + µL�uzs

�P rs

1

r∗
d

dr∗

(

r∗ d�u∗
z

dr∗

)

(3.8-10)

�u∗
z = 0 at r∗ = R

rs

(3.8-11)

d�u∗
z

dr∗ = 0 at r∗ = 0 (3.8-12)

The radial length scale rs is determined by setting the dimensionless group in
equation (3.8-11) equal to 1. Since pressure causes the flow and the porous medium
is assumed to offer the primary resistance to flow, the velocity scale �uzs is deter-
mined by setting the dimensionless group in the Darcy term in equation (3.8-10)
equal to 1. These considerations then determine the following scale and reference
factors (step 7):

rs = R; �uzs = kp �P

µL
(3.8-13)

Note that the velocity scale in equation (3.8-13) is the axial velocity that would
be predicted if just the pressure and Darcy flow terms were retained in equation
(3.8-10).

When the scales defined by equation (3.8-13) are substituted into equations
(3.8-10) through (3.8-12), we obtain

0 = 1 − �u∗
z + kp

R2

1

r∗
d

dr∗

(

r∗ d�u∗
z

dr∗

)

(3.8-14)

�u∗
z = 0 at r∗ = 1 (3.8-15)

d�u∗
z

dr∗ = 0 at r∗ = 0 (3.8-16)

Hence, we see that the effects of viscous drag at the inner wall of the cylindrical
tube can be neglected if the following condition is satisfied (step 8):
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kp

R2
� 1 ⇒ viscous drag at boundary of porous medium can be neglected

(3.8-17)

The velocity obtained by solving equation (3.8-14) while dropping the last
term will be accurate provided that the condition indicated in equation (3.8-17)
is satisfied; that is, if kp/R2 = ◦(0.01) and provided that one is not interested
in predicting the velocity very close to the tube wall or the viscous drag at the
wall. It is of interest to determine the region of influence δp , wherein the effect
of the tube wall cannot be ignored. To do this it is necessary to translate the
coordinate system to the tube wall via the transformation r̃ ≡ R − r . Since we
are considering a region of influence, r̃s = δp; the velocity scale still is given by
equation (3.8-13). The resulting transformed dimensionless describing equations
are given by

0 = 1 − �u∗
z + kp

δ2
p

1

R/δp − r̃∗
d

dr∗

[(
R

δp

− r̃∗
)

d�u∗
z

dr̃∗

]

(3.8-18)

�u∗
z = 0 at r̃∗ = 0 (3.8-19)

d�u∗
z

dr∗ = 0 at r̃∗ = R

δp

(3.8-20)

Within the region of influence the last term in equation (3.8-18) cannot be ignored;
hence, we set the dimensionless group multiplying this term equal to 1 to determine
the thickness of the region of influence:

kp

δ2
p

= 1 ⇒ δp = √

kp (3.8-21)

For typical Darcy permeabilities, δp is on the order of 10 to 100 pore diame-
ters. Hence, in most cases one can ignore the effect of the system boundaries
on the relationship between the average superficial velocity through the porous
medium and the pressure gradient used. The curvature effects can be ignored
within the region of influence near the wall if the following criterion is satis-
fied:

R

δp

� 1 ⇒ curvature effects can be ignored (3.8-22)

in which case the describing equations simplify to

0 = 1 − �u∗
z + d2�u∗

z

dr∗2
(3.8-23)
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�u∗
z = 0 at r̃∗ = 0 (3.8-24)

d�u∗
z

dr∗ = 0 as r̃∗ → ∞ (3.8-25)

3.9 COMPRESSIBLE FLUID FLOW

In the examples we have considered thus far, we have assumed that the flowing fluid
was incompressible. This is certainly a tenuous assumption for gas flows and can
be questioned even for complex liquid flows.10 In this example we use systematic
scaling analysis to assess when a flow can be considered to be incompressible.
This example will again involve introducing separate scale factors for a spatial
derivative rather than assuming that it scales with the ratio of the characteristic
value for the dependent variable divided by the characteristic length.

Consider the steady-state pressure-driven flow in a cylindrical tube of a com-
pressible gas whose other physical properties will be assumed to be constant as
shown in Figure 3.9-1. Due to the compressibility, the density of the gas will
decrease due to the pressure drop in the axial direction; it also changes in the
radial direction, however, this effect is usually quite small (although it will be
included in this scaling analysis). Correspondingly, there will be an increase in the
axial velocity, thereby implying that this is a developing flow with both nonzero
axial and radial velocity components. Hence, we must use the appropriate form of
the steady-state equations of motion that allow for a compressible flow. We use
scaling analysis to determine the conditions for which this flow can be considered
to be incompressible and fully developed. Although we allow only for a variable
density in this problem, the manner in which we use scaling to assess when this

r

z

R

L

PH PL

Figure 3.9-1 Steady-state pressure-driven flow in a cylindrical tube of radius R and length
L of a compressible gas for which the other physical properties are assumed to be constant.

10Examples of complex fluids include the flow of microemulsions, proteins, micellar solutions, and
suspensions, as well as other nonhomogeneous liquids.
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property can be assumed to be constant can be used to handle other variable
properties, such as the viscosity.

The describing equations in terms of the components of the viscous stress tensor
are obtained by appropriately simplifying the continuity equations and equations
of motion given by equations (C.2-1), (D.2-1), and (D.2-3) in the Appendices:

ρur

∂uz

∂r
+ ρuz

∂uz

∂z
= −∂P

∂z
− 1

r

∂

∂r
(rτrz) − ∂τzz

∂z
(3.9-1)

ρur

∂ur

∂r
+ ρuz

∂ur

∂z
= −∂P

∂r
− 1

r

∂

∂r
(rτrr ) − τθθ

r
− ∂τrz

∂z
(3.9-2)

1

r

∂

∂r
(ρrur) + ∂

∂z
(ρuz) = 0 (3.9-3)

where τij is the viscous shear stress associated with the transfer of j -momentum in
the i-direction. These equations have been given in terms of the components of the
viscous stress tensor to emphasize that the term τθθ is not zero even though this is
an axisymmetric flow. To complete the specification of the describing equations,
we need to provide an equation of state that relates the density to the pressure (the
temperature is assumed to be constant) and need to specify appropriate boundary
conditions; this will be done after we have rearranged the equations above into a
more convenient form.

When the appropriate components of the viscous stress tensor given by equations
(D.2-4) through (D.2-9) in the Appendices are substituted into equations (3.9-1) and
(3.9-2) and the resulting equations simplified using the continuity equation given
by equation (3.9-3), we obtain

ρur

∂uz

∂r
+ ρuz

∂uz

∂z
= −∂P

∂z
+ µ

r

∂

∂r

(

r
∂uz

∂r

)

− µ

3

∂

∂z

(
ur

ρ

∂ρ

∂r
+ uz

ρ

∂ρ

∂z

)

+ µ
∂2uz

∂z2

(3.9-4)

ρur

∂ur

∂r
+ρuz

∂ur

∂z
=−∂P

∂r
+µ

∂

∂r

[
1

r

∂

∂r
(rur)

]

− µ

3

∂

∂r

(
ur

ρ

∂ρ

∂r
+ uz

ρ

∂ρ

∂z

)

+µ
∂2ur

∂z2

(3.9-5)

The derivatives of the density can be expressed in terms of derivatives of the
pressure as follows:

∂ρ

∂r
= ∂ρ

∂P

∣
∣
∣
∣
T

∂P

∂r
= γ

c2

∂P

∂r
; ∂ρ

∂z
= ∂ρ

∂P

∣
∣
∣
∣
T

∂P

∂z
= γ

c2

∂P

∂z
(3.9-6)

in which c is the speed of sound in the gas and γ is the ratio of the heat capacity at
constant pressure to that at constant volume. To assess the effect of pressure on the
density, we represent the density in terms of a Taylor series expansion about some
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reference density ρ0, which is chosen to be at the downstream low pressure PL:

ρ = ρ0 + ∂ρ

∂P

∣
∣
∣
∣
T

(P − PL) + ◦(P − PL)2 = ρ0 + γ

c2
(P − PL) +◦(P − PL)2

(3.9-7)

Note that it is sufficient to represent the density as a Taylor series truncated at
the second term since we need consider only small variations in the density. That
is, because we seek to determine the conditions for which incompressible flow
can be assumed, we need explore only small variations in the density since large
variations in the density most certainly will be associated with compressible flow.
Hence, our describing equations and associated boundary conditions are given by
(step 1)

ρur

∂uz

∂r
+ ρuz

∂uz

∂z
= −∂P

∂z
+ µ

r

∂

∂r

(

r
∂uz

∂r

)

− µ

3

∂

∂z

(
γ ur

ρc2

∂P

∂r
+ γ uz

ρc2

∂P

∂z

)

+ µ
∂2uz

∂z2
(3.9-8)

ρur

∂ur

∂r
+ ρuz

∂ur

∂z
= −∂P

∂r
+ µ

∂

∂r

[
1

r

∂

∂r
(rur)

]

− µ

3

∂

∂r

(
γ ur

ρc2

∂P

∂r
+ γ uz

ρc2

∂P

∂z

)

+ µ
∂2ur

∂z2
(3.9-9)

1

r

∂

∂r
(ρrur) + ∂

∂z
(ρuz) = 0 (3.9-10)

ρ = ρ0 + γ

c2
(P − PL) (3.9-11)

∂uz

∂r
= 0, ur = 0, P = p(z) at r = 0 (3.9-12)

uz = 0, ur = 0 at r = R (3.9-13)

uz = f1(r), ur = f2(r), P = PH at z = 0 (3.9-14)

uz = g1(r), ur = g2(r) at z = L (3.9-15)

in which p(z), f1(r), g1(r), f2(r), and g2(r) are unspecified functions that in prin-
ciple would need to be known in order to integrate the full set of describing
equations. If the conditions that we seek to determine for assuming fully devel-
oped incompressible flow are satisfied, it will not be necessary to know these
unspecified functions.
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Introduce the following scale factors, reference factors, and dimensionless vari-
ables (steps 2, 3, and 4):

u∗
z ≡ uz

uzs

; u∗
r ≡ ur

urs

; P ∗ ≡ P − Pr

Ps

;
(

∂P

∂r

)∗
≡ 1

Prs

∂P

∂r
;

ρ∗ ≡ ρ

ρs

; r∗ ≡ r

rs

; z∗ ≡ z

zs

(3.9-16)

We again allow for a reference pressure Pr in our definition of the dimensionless
pressure since the latter is not naturally referenced to zero. Note that we must also
scale the density in this problem since it is one of the dependent variables. How-
ever, we do not need to introduce a reference factor for the density even though it
is not referenced to zero. The reason for this is that we are considering only small
variations in density; that is, the density does not vary significantly in either coordi-
nate direction. We have introduced a scale for the radial derivative of the pressure
denoted by Prs since we do not anticipate that this will scale in the same way as
the axial pressure gradient. The question might arise as to how one knows whether
to scale a derivative as the ratio of some dependent variable scale divided by some
independent variable scale or to introduce a separate scale for the entire derivative.
The answer is contained simply in the forgiving nature of scaling. That is, if we
were to assume that the radial pressure derivative scales as the pressure scale Ps

divided by the radial length scale rs , we would find that the dimensionless group in
front of the dimensionless radial pressure derivative was much larger than that of
any other term in the r-component of the equations of motion. This clearly would
indicate that we scaled incorrectly. Hence, determining whether a derivative needs
its own scale is often a matter of trial and error. If any term is scaled incorrectly,
the forgiving nature of scaling will indicate a contradiction in the dimensionless
equations. One then rescales until a self-consistent set of dimensionless equations
is obtained; that is, a system of equations for which balancing terms are of ◦(1)
and all other terms, including those multiplied by dimensionless groups, are of
◦(1). The consequence of not introducing a separate scale for the radial pressure
derivative is explored in Practice Problem 3.P.31.

Substitute the variables defined in equation (3.9-16) into the describing equations
and divide through by the dimensional coefficient of a term that must be retained
to obtain the following set of dimensionless describing equations (steps 5 and 6):
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(3.9-17)
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ρsursrs

µ
ρ∗u∗

r

∂u∗
r

∂r∗ + ρsuzsr
2
s

µzs

ρ∗u∗
z

∂u∗
r

∂z∗ = −Prsr
2
s

µurs

(
∂P

∂r

)∗
+ ∂

∂r∗

[
1

r∗
∂

∂r∗ (r∗u∗
r )

]

− 1

3

γPrsrs

ρoc2

∂

∂r∗

[
u∗

r

ρ∗

(
∂P

∂r

)∗]
− 1

3

γ uzsPsrs

ρoc2urszs

∂

∂r∗

(
u∗

z

ρ∗
∂P ∗

∂z∗

)

+ r2
s

z2
s

∂2u∗
r

∂z∗2

(3.9-18)

1

r∗
∂

∂r∗ (ρ∗r∗u∗
r ) + uzsrs

urszs

∂

∂z∗ (ρ∗u∗
z) = 0 (3.9-19)

ρ∗ = ρ0

ρs

+ γPs

c2ρs

(

P ∗ + Pr − PL

Ps

)

(3.9-20)

∂u∗
z

∂r∗ = 0, u∗
r = 0, P ∗ = p(z∗) − Pr

Ps

at r∗ = 0 (3.9-21)

u∗
z = 0, u∗

r = 0 at r∗ = R

rs

(3.9-22)

u∗
z = f ∗

1 (r∗), u∗
r = f ∗

2 (r∗), P ∗ = PH − Pr

Ps

at z∗ = 0 (3.9-23)

u∗
z = g∗

1(r∗), u∗
r = g∗

2(r∗) at z∗ = L

zs

(3.9-24)

The radial and axial length scales, rs and zs , can be bounded between zero and 1
by setting the dimensionless groups in equations (3.9-22) and (3.9-24) equal to 1.
The dimensionless pressure can be bounded between zero and 1 by setting the
dimensionless group containing the reference pressure in equation (3.9-20) equal
to zero and the dimensionless group containing the pressure scale in equation (3.9-
23) equal to 1. Since pressure causes the axial flow and the principal viscous term
(i.e., involving the second-order radial derivative) must be retained, the velocity
scale uzs is determined by setting the dimensionless group multiplying the pressure
term in equation (3.9-17) equal to 1. Since compressibility implies a developing
flow, the dimensionless group in the continuity equation given by (3.9-19) must be
equal to 1. The density scale is obtained by setting the dimensionless group in the
principal term in equation (3.9-20) equal to 1. Since the radial pressure gradient
causes the flow in the radial direction, the radial pressure gradient scale Prs is
determined by setting the dimensionless group multiplying the pressure term in
equation (3.9-18) equal to 1. These considerations then determine the following
scale and reference factors (step 7):

rs = R; zs = L; Pr = PL; Ps = PH − PL ≡ �P ; uzs = R2 �P

µL
;

urs = R3 �P

µL2
; ρs = ρ0; Prs = R�P

L2
(3.9-25)
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Note that the axial velocity scale uzs is within a multiplicative constant of ◦(1)
of the value for the maximum velocity in fully developed incompressible flow in
a cylindrical tube.

When the scales defined by equation (3.9-25) are substituted into equations
(3.9-17) through (3.9-24), we obtain
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1

r∗
∂

∂r∗ (ρ∗r∗u∗
r ) + ∂

∂z∗ (ρ∗u∗
z) = 0 (3.9-28)

ρ∗ = 1 + γ
Ma2

Re

L

R
P ∗ (3.9-29)

∂u∗
z

∂r∗ = 0, u∗
r = 0, P ∗ = p∗(z∗) − PL

�P
at r∗ = 0 (3.9-30)

u∗
z = 0, u∗

r = 0 at r∗ = 1 (3.9-31)

u∗
z = f ∗

1 (r∗), u∗
r = f ∗

2 (r), P ∗ = 1 at z∗ = 0 (3.9-32)

u∗
z = g∗

1(r∗), u∗
r = g∗

2(r∗) at z∗ = 1 (3.9-33)

where Re ≡ Rρsvzs/µ is the Reynolds number and Ma ≡ uzs/c is the Mach num-
ber; the latter is the ratio of the characteristic velocity of the fluid divided by
the speed of sound in the medium. We see that equations (3.9-26), (3.9-27), and
(3.9-29) can be simplified significantly if we can make the incompressible flow
approximation, which requires that the Mach number be very small; that is, Ma �
1. Note that the size of the Mach number required to ensure incompressible flow
depends on both the Reynolds number and the aspect ratio. These equations can
be further simplified if we can assume fully developed flow, which requires that
Re(R/L) � 1; this condition is ensured if Re(R/L) = ◦(0.01). In summary, the
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following conditions justify simplifying the describing equations for this flow:

Ma = uzs

c
= R2 �P

µLc
� 1 ⇒ incompressible flow approximation (3.9-34)

Re
R

L
� 1 ⇒ L = 100

ρuzsR
2

µ
⇒ fully developed flow approximation (3.9-35)

If the conditions in equations (3.9-34) and (3.9-35) apply, equations (3.9-26)
through (3.9-33) simplify to (step 8)

0 = 1 + 1

r∗
d

dr∗

(

r∗ du∗
z

dr∗

)

(3.9-36)

du∗
z

dr∗ = 0 at r∗ = 0 (3.9-37)

u∗
z = 0 at r∗ = 1 (3.9-38)

Of course, these are just the describing equations for fully developed flow of a
Newtonian fluid with constant physical properties in a cylindrical tube.

3.10 DIMENSIONAL ANALYSIS CORRELATION FOR THE
TERMINAL VELOCITY

In dimensional analysis we seek to determine the dimensionless groups required
to correlate data or to scale a process up or down. These dimensionless groups
can always be determined by means of ◦(1) scaling analysis since this procedure
leads to the minimum parametric representation for a set of describing equations.
However, in the preceding sections we indicated that carrying out an ◦(1) scaling
analysis can be somewhat complicated and time consuming. In contrast, the scal-
ing analysis approach to dimensional analysis illustrated in this section is much
easier and quicker to implement. Note, however, that it does not provide as much
information as does ◦(1) scaling analysis for achieving the minimum parametric
representation. In particular, it does not lead to groups whose magnitude can be used
to assess the relative importance of particular terms in the describing equations. It
also does not identify regions of influence or boundary layers, whose identification
in some cases can reduce the number of dimensionless groups. This first example
of the use of scaling for dimensional analysis in fluid-dynamics applications will
provide more details on the steps involved. We also compare the results of scaling
analysis to those obtained from using the Pi theorem, underscore the advantages
of using the former to achieve the minimum parametric representation. The steps
referred to here are those outlined in Section 2.4 for the scaling approach to dimen-
sional analysis; these differ from those used in Sections 3.2 through 3.9 since no
attempt is made to achieve ◦(1) scaling.
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Figure 3.10-1 Solid sphere of radius R falling at its terminal velocity Ut through a viscous
Newtonian fluid with constant physical properties.

In this first example of the use of scaling analysis for dimensional analysis in
fluid dynamics, we consider developing a correlation for the terminal velocity Ut

of a spherical particle having radius R and density ρp falling due to gravitational
acceleration g through an incompressible Newtonian liquid having density ρ and
viscosity µ as shown in Figure 3.10-1. We begin by writing the equation that in
principle would have to be solved to obtain the terminal velocity. This constitutes
a force balance on the sphere involving form drag due to the pressure, viscous drag
on the sphere boundaries, and a net gravitational force that causes the flow:

−
∫∫

S

δz · δr

[

Pδ − µ(∇u + ∇u†)
]∣
∣
∣
r=R

dS + (ρp − ρ)g
4

3
πR3 = 0 (3.10-1)

where δi is the unit vector in the i-direction, S the surface area, δ the identity
tensor, P the dynamic pressure, u the fluid velocity, and † denotes the transpose
of a second-order tensor. The sign convention employed in arriving at equation
(3.10-1) is consistent with defining the force on a fluid particle as described by
equation (A.1-1) in the Appendices. To carry out the integration in equation (3.10-
1), one would have to solve the axisymmetric equations of motion in spherical
coordinates with boundary conditions consisting of no-slip at the sphere surface
and a far-field velocity condition, which are given by

ρ u · ∇ u = −∇P + µ∇2 u (3.10-2)

u = 0 at r = R (3.10-3)

u · δr = −Ut cos θ, u · δθ = −Ut sin θ as r → ∞ (3.10-4)

where r and θ denote the radial and circumferential coordinates, respectively. Since
there is no need to achieve ◦(1) scaling in dimensional analysis, it is sufficient
to express the describing differential equations in the generalized vector–tensor
form given by equation (3.10-2), which is the appropriately simplified form of
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equation (B.2-3) in the Appendices. Equations (3.10-1) through (3.10-4) constitute
step 1 in the procedure for dimensional analysis outlined in Section 2.4.

Define the following dimensionless variables (steps 2, 3, and 4):

u∗ ≡ u
us

; P ∗ ≡ P

Ps

; ∇∗ ≡ Ls∇; S∗ ≡ S

L2
s

(3.10-5)

where ∗ denotes a dimensionless variable and us, Ps , and Ls denote velocity,
pressure, and length scales, respectively, that will be chosen to obtain the mini-
mum parametric representation. Introducing these into equations (3.10-1) through
(3.10-4) and dividing through by the dimensional coefficient of one term in each
equation yields (steps 5 and 6)

−
∫∫

S∗

δz · δn

[
PsLs

µsus

P ∗δ − (∇∗u∗ + ∇∗u∗†
)

]∣
∣
∣
∣
r∗= R

Ls

dS∗ + 4(ρp − ρ)gπR3

3µusLs

= 0

(3.10-6)

ρusLs

µ
u∗ · ∇∗u∗ = −PsLs

µus

∇P ∗ + ∇∗2 u∗ (3.10-7)

u∗ = 0 at r∗ = R

Ls

(3.10-8)

u∗ · δr = −Ut

us

cos θ, u∗ · δθ = −Ut

us

sin θ as r∗ → ∞ (3.10-9)

One possible set of scale factors is obtained by setting the following dimen-
sionless groups equal to 1; note that no attempt is made to ensure that any of
the dimensionless variables are ◦(1) since we are merely seeking to determine the
minimum parametric representation rather than to assess what assumptions might
be made to simplify the describing equations (step 7):

R

Ls

= 1 ⇒ Ls = R; Ut

us

= 1 ⇒ us = Ut ; PsLs

µus

= 1 ⇒ Ps = µUt

R

(3.10-10)

When these scale factors are substituted into equations (3.10-6) through (3.10-9),
the latter assume the form

−
∫∫

S∗

δz · δn[P ∗δ − (∇∗u∗ + ∇∗u∗†
)]

∣
∣
∣
∣
r∗=1

dS∗ + 4(ρp − ρ)gπR2

3µUt

= 0

(3.10-11)

ρUtR

µ
u∗ · ∇∗u∗ = −∇P ∗ + ∇∗2 u∗ (3.10-12)

u∗ = 0 at r∗ = 1 (3.10-13)

u∗ · δr = − cos θ, u∗ · δθ = − sin θ as r∗ → ∞ (3.10-14)
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Equations (3.10-11) through (3.10-14) represent the minimum parametric rep-
resentation of the describing equations. Hence, the solution to equation (3.10-12)
for the dimensionless velocity u∗ will depend on r∗, θ , and the dimensionless
group ρUtR/µ, which is seen to be the Reynolds number. When this solution
is substituted into equation (3.10-11), evaluated at r∗ = 1 and integrated over the
surface area S∗, the resulting solution for the dimensionless terminal velocity can
be correlated in terms of the following two dimensionless groups:

�1 ≡ (ρp − ρ)gR2

µUt

and �2 ≡ ρUtR

µ
(a Reynolds number) (3.10-15)

Hence, either data or a numerical solution for Ut can be correlated in terms of
�1 and �2; that is, the correlation for the terminal velocity involves only two
dimensionless parameters and is of the general form

f1(�1, �2) = 0 ⇒ ρUtR

µ
= f2

[
(ρp − ρ)gR2

µUt

]

(3.10-16)

The two dimensionless groups appearing in equation (3.10-16) are not optimal
if one is seeking a correlation for Ut since it appears in both groups; that is,
determining Ut from known values of the physical properties and sphere radius
would require a trial-and-error solution. By invoking the transformation in step
8 with a = 1 and b = 1 in equation (2.4-2), a new dimensionless group �3 not
containing Ut can be obtained:

�3 = �1 × �2 = (ρp − ρ)gR2

µUt

ρUtR

µ
= (ρp − ρ)ρgR3

µ2
(3.10-17)

Hence, data or numerical results for Ut can be correlated in terms of �3 and either
�1 or �2; that is, our correlation for the terminal velocity can be expressed in the
general form

f3(�2, �3) = 0 ⇒ ρUtR

µ
= f4

[
(ρp − ρ)ρgR3

µ2

]

(3.10-18)

It is instructive to rework this problem in dimensional analysis using the Pi
theorem approach. A naive application of the Pi theorem with n = 6 quantities
and m = 3 units (mass, length, and time) to be considered in the dimensional
analysis indicates that the correlation for Ut requires n − m = 3 rather than two
dimensionless groups. Note that if force is also considered as a unit, n = 7, but
then m = 4 because the dimensional constant gc in Newton’s law of motion must
also be included since this law interrelates force, mass, length, and time units;
hence, the Pi theorem would still predict three dimensionless groups rather than
two. Hence, it would appear that the Pi theorem gives a less general result than
does the scaling approach to dimensional analysis. To obtain the most general
result from the Pi theorem, one must recognize that the gravitational acceleration
g appears as the product g(ρp − ρ), and hence n is really only 5; hence, with
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m = 3 the Pi theorem will also predict two dimensionless groups. In contrast, the
scaling approach naturally generates the grouping g(ρp − ρ) and does not require
addressing the subtleties associated with choosing the correct number of units and
dimensional constants.

Standard references11 suggest that Ut can be correlated in terms of �1 alone;
that is,

Ut = 2R2g(ρp − ρ)

9µ
⇒ �1 = (ρp − ρ)gR2

µUt

= 9

2
(3.10-19)

However, this is for the special case of creeping or very low Reynolds number flow
for which the inertia terms can be neglected.12 Hence, �2 (or equivalently, �3)

no longer appears in the correlation. The correlation given by equation (3.10-19)
can be obtained (to within a multiplicative constant) by invoking the formalism
in step 9 in the systematic scaling analysis method for dimensional analysis; that
is, equation (3.10-16) can be expanded in a Taylor series in the parameter �2, the
Reynolds number, which is a small parameter for creeping flow:

f1(�1, �2) = f

∣
∣
∣
∣
�2=0

+ ∂f

∂�2

∣
∣
∣
∣
�2=0

�2 +◦(�2
2) (3.10-20)

Truncating the expansion in equation (3.10-20) at the first term implies that the
terminal velocity Ut can be correlated in terms of only the dimensionless group
�1. Note that this same result could have been obtained by making the creeping-
flow approximation in equation (3.10-2), in which case the Reynolds number would
not have appeared as a dimensionless group.

A correlation in terms of just one group for the special case of creeping flow can
also be obtained from the Pi theorem; however, it requires some subtle reasoning
to achieve this result. In using the Pi theorem for creeping flow, as stated earlier,
one must recognize that the quantities g, ρp, and ρ appear only as the product
g(ρp − ρ) and not individually. One must also be aware that creeping flow con-
stitutes a problem in statics since there is no acceleration of the fluid. This implies
that force must be introduced as a unit in addition to mass, length, and time. How-
ever, for problems in statics, one does not introduce the dimensional constant gc

since Newton’s law of motion is not involved; that is, there is no fundamental
relationship between force, mass, length, and time units. These considerations then
infer that n = 4 and m = 4, thereby suggesting zero dimensionless groups. How-
ever, n = m is a degenerate case of the Pi theorem that can be shown to imply
one dimensionless group in this case. Again one sees that scaling analysis obviates
the need to understand these subtle concepts in achieving the minimum number of
dimensionless parameters via the Pi theorem approach.

11See Bird et al., Transport Phenomena, 2nd ed. p. 186.
12See Section 3.3 for determining the conditions required for creeping flow.
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3.11 SUMMARY

The example in Section 3.2 provided an introduction to several features of scaling
analysis. In this problem, scaling was used to assess under what conditions the
flow could be assumed to be caused either by the applied pressure or by the upper
moving boundary. It also introduced region of influence scaling by determining the
thickness of the zone wherein the effects of the upper moving plate could never
be ignored when predicting certain quantities; that is, thin boundary-layer regions
might be safely ignored when predicting integral quantities such as the volumetric
flow rate or average velocity but must be considered when predicting local quanti-
ties such as the drag at the upper moving plate. This example provided a means for
estimating the error incurred when the assumptions suggested by scaling analysis
are invoked since an analytical solution was available for this flow. Demanding
that a quantity be one order of magnitude smaller in order to ignore some term
in the describing equations typically results in an error of 40 to 50%; demanding
two orders of magnitude reduces the error to less than 10%. However, the error
that is encountered also depends on the quantity being considered; for example,
point quantities within a region of influence might incur very large errors even
when the relevant dimensionless group is several orders of magnitude less than 1.
Finally, this example illustrated the forgiving nature of scaling; that is, if an incor-
rect assumption is made in determining one or more of the scales, a contradiction
will emerge in the final dimensionless describing equations. This usually takes the
form of having one term much larger than any of the others, thus implying that
there is no term to balance it.

In Section 3.3 we introduced the creeping- and lubrication-flow approximations.
The former requires that the Reynolds number be small, whereas the latter requires
that in addition, some aspect ratio be small. This example illustrated that the dimen-
sionless groups that emerge from scaling analysis have a physical interpretation in
that they provide a measure of relative effects. For example, the Reynolds number
is seen to be a measure of the ratio of the convection of momentum to the principal
viscous stress. In this example it was necessary to prescribe unspecified downstream
boundary conditions, due to the elliptic nature of the describing equations. Scal-
ing provided a means for assessing when these troublesome terms can be ignored;
that is, in practice these downstream conditions might not be known, which would
preclude obtaining a solution to the describing equations. Finally, this example
introduced the concept of local scaling, whereby one considers the flow at some
arbitrary distance in the principal direction of flow that is considered to be constant
during the scaling analysis.

Hydrodynamic boundary-layer theory, which is a special case of region of influ-
ence scaling, was considered in Section 3.4. The need for considering a region of
influence arose naturally in scaling this problem. Indeed, when the problem was
scaled without introducing any small transverse length scale over which the depen-
dent variables experienced a characteristic change, a contradiction resulted in that
the viscous terms dropped out of the dimensionless describing equations. A proper
scaling analysis that introduces a region of influence or boundary layer provides
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a straightforward way to resolve this classical problem known as d’Alembert’s
paradox. This example also involved local scaling in which one of the scales is
the local axial distance in the direction of flow, which is considered to be a con-
stant in the change of variables involved in scaling analysis. We found that the
boundary-layer approximation is reasonable when the Reynolds number based on
the local axial length scale becomes large (i.e., Re ≡ LρU∞/µ �1). However, it
is clear that the boundary-layer approximation must break down in the vicinity of
the leading edge where L becomes small. This limitation of boundary-layer theory,
which emerges from scaling analysis, is not mentioned in some transport and fluid
mechanics textbooks.

In Section 3.5, scaling analysis was applied to an unsteady-state flow problem
in order to ascertain when the quasi-steady-state approximation can be invoked. In
this problem we found that there were several possible time scales, depending on
the conditions being considered. If the transient effects associated with initiating
this flow were important, the appropriate time scale was the observation time, the
particular time from the start of the process at which the flow was being observed.
This particular flow was still time-dependent even after the transient flow effects
died out, owing to the periodic oscillation of the lower plate. Scaling analysis led
to the condition required to assume quasi-steady-state, whereby the unsteady-state
term could be ignored in the describing equations. However, the flow was still
unsteady-state since the time dependence entered implicitly through the boundary
conditions. If the time scale for the viscous penetration of vorticity was much
longer than the time scale for the oscillating plate motion, the effects of the latter
on the flow were confined to a region of influence near the oscillating plate.

Scaling analysis was used in Section 3.6 to determine when end and sidewall
effects could be ignored. When the appropriate aspect ratio is sufficiently small,
the corresponding sidewall or end effects can be ignored when determining the
maximum velocity or integral quantities, such as the average flow rate. However,
there is always some region of influence that can be assessed by scaling wherein
one cannot ignore the effect of the lateral boundaries on quantities such as the local
velocity or drag at the boundary.

In Section 3.7 we considered free surface flows, flows for which the location
of some interface between adjacent phases is unknown initially and must be deter-
mined by solving the describing equations. The latter require an additional equation,
referred to as the kinematic surface condition, to relate the location of the free
surface to the local velocity components; this is obtained from an integral mass
balance. This was the first problem we considered that required introducing a scale
factor for a derivative: the time derivative of the film thickness. This was nec-
essary because this derivative did not scale with the characteristic length scale
divided by the characteristic time scale. If one did not recognize this, the forgiving
nature of scaling would have led to a contradiction in the dimensionless describing
equations. Scaling analysis indicated that the curvature effects could be ignored if
the quasi-parallel-flow approximation was applicable; this is the spatial analog to
the quasi-steady-state approximation considered in Section 3.5, whereby the effects
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of the nonconstant film thickness enter only through the boundary conditions. How-
ever, scaling analysis indicated that the quasi-parallel-flow approximation always
breaks down sufficiently close to the leading edge of the flow. This was the first
problem in which it was necessary to introduce a reference factor, since in this
case the pressure was not naturally referenced to zero.

Porous media flows were considered in Section 3.8 for which the flow was
described by the Darcy flow equation incorporating the Brinkman term to allow
satisfying the no-slip condition at the solid boundaries. Scaling analysis was used
to determine the conditions for which the effect of the bounding walls on the flow
through the porous media could be ignored. Scaling again indicated that there was
a region of influence wherein the effect of the bounding walls could not be ignored
on quantities such as the local velocity or drag on these boundaries.

In Section 3.9, scaling was applied to a compressible flow for which an equation
of state is required to relate the density to the state variables, in this case the
nonconstant pressure. This problem also required introducing a separate scale for a
derivative, the radial pressure gradient. However, if one did not recognize this, the
forgiving nature of scaling would have led to a contradiction in the dimensionless
describing equations. This is explored further in Practice Problem 3.P.31. Scaling
indicated that this flow could be assumed to be incompressible if the dimensionless
group known as the Mach number was much less than 1; the Mach number is the
ratio of the velocity of the fluid divided by the speed of sound in the medium. The
effects of compressibility were explored in this problem by expanding the density
in a Taylor series about some mean value characteristic of the flow. This same
technique can be used in conjunction with scaling to explore the effects of other
nonconstant physical and transport properties, such as surface tension and viscosity.
This is considered in more depth in Chapter 4 when we consider the application of
scaling to heat transfer and allow for the variation of the viscosity with temperature.

Scaling was applied to dimensional analysis in Section 3.10. The critical dif-
ference between ◦(1) scaling and dimensional analysis is that in the latter there
is no attempt to define dimensional variables that are bounded of ◦(1). The goal
in dimensional analysis is to arrive at the minimum parametric representation of
the problem; that is, to obtain a set of dimensionless describing equations in terms
of the minimum number of dimensionless parameters. Whereas ◦(1) scaling leads
to a unique set of dimensionless groups for a prescribed set of physical variables
and system parameters, dimensional analysis does not. However, any one set of
dimensionless groups can be converted into any other set of dimensionless groups
by defining new dimensionless groups that are obtained by multiplying products
of the original groups raised to appropriate positive or negative powers. In some
cases it is advantageous to use this property of dimensional analysis to isolate one
or more dimensional quantities into a particular dimensionless group; for example,
by isolating all the quantities that are varied in an experiment into one dimen-
sionless group, the dependence of the phenomenon being studied on this particular
group can be determined since all the other dimensionless groups will be con-
stant. Isolating certain dimensional quantities into one group is also advantageous
when developing correlations for experimental data since it allows determining
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that particular dimensional quantity directly rather than by means of a trial-and-
error procedure. The systematic scaling procedure offers several advantages relative
to the Pi theorem approach for dimensional analysis. The problem considered in
Section 3.10 demonstrated that scaling analysis led to the minimum parametric rep-
resentation directly, whereas obtaining it using the Pi theorem required considerable
intuitive knowledge. The scaling procedure naturally groups variables that always
appear in some combination, whereas the Pi theorem requires that one somehow
recognize this intuitively. Scaling also obviates the need to know which dimen-
sional variables need to be considered as primary and secondary quantities and
when dimensional constants need to be introduced into the dimensional analysis.

3.E EXAMPLE PROBLEMS

3.E.1 Gravity-Driven Laminar Film Flow down a Vertical Wall

A film of an incompressible viscous Newtonian liquid that has constant physi-
cal properties is in fully developed laminar flow down a vertical wall, due to
a gravitational body force in the presence of an insoluble gas phase as shown
in Figure 3.E.1-1. Scaling analysis will be used to determine when the effect of
the drag exerted by the gas phase on the velocity profile in the liquid film can
be neglected.

The describing equations obtained by appropriately simplifying equation
(D.1-10) in the Appendices (step 1)

µ1
d2ux

dy2
+ ρ1g = 0 for 0 ≤ y ≤ h1 (3.E.1-1)

x

Gas

g

Liquid

y

h1 h2

Figure 3.E.1-1 Fully developed laminar flow of an incompressible viscous Newtonian
liquid film with constant physical properties down a vertical wall under the influence of
gravity in the presence of a viscous gas phase.
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d2ux

dy2
= 0 for h1 ≤ y ≤ h1 + h2 (3.E.1-2)

ux = 0 at y = 0 (3.E.1-3)

ux |h−
1

= ux |h+
1

at y = h1 (3.E.1-4)

µ1
dux

dy

∣
∣
∣
∣
h−

1

= µ2
dux

dy

∣
∣
∣
∣
h+

1

at y = h1 (3.E.1-5)

ux = 0 at y = h1 + h2 (3.E.1-6)

Introduce the following scale factors, reference factor, and dimensionless variables
(steps 2, 3, and 4):

u∗
x1 ≡ ux1

us1
; u∗

x2 ≡ ux2

us2
; y∗

1 ≡ y

ys1
; y∗

2 ≡ y − yr2

ys2
(3.E.1-7)

where ys1 is the length scale in the liquid film and yr2 and ys2 are the reference and
length scales in the gas phase; these are introduced to ensure that we can achieve
◦(1) scaling for the spatial coordinates in both phases. A reference length scale
is needed in the gas phase because y is not naturally referenced to zero in this
phase. Substitute these dimensionless variables into the describing equations and
divide through by the dimensional coefficient of a term that must be retained in
each equation (steps 5 and 6):

d2u∗
x1

dy∗2
1

+ ρ1gy2
s1

µ1us1
= 0 for 0 ≤ y∗

1 ≤ h1

ys1
(3.E.1-8)

d2u∗
x2

dy∗2
2

= 0 for
h1 − yr2

ys2
≤ y∗

2 ≤ h1 + h2 − yr2

ys2
(3.E.1-9)

u∗
x1 = 0 at y∗

1 = 0 (3.E.1-10)

u∗
x1 = us2

us1
u∗

x2 at y∗
1 = h1

ys1
(3.E.1-11)

du∗
x1

dy∗
1

= µ2us2ys1

µ1us1ys2

du∗
x2

dy∗
2

at y∗
1 = h1

ys1
(3.E.1-12)

u∗
x2 = 0 at y∗

2 = h1 + h2 − yr2

ys2
(3.E.1-13)

Since gravity causes the flow in the liquid film, the dimensionless group in
equation (3.E.1-8) provides us1. Since the drag at the interface causes the flow in
the gas phase, the dimensionless group in equation (3.E.1-11) gives us2. We bound
the dimensionless spatial variables in the liquid and gas phases to be ◦(1) by setting
the dimensionless geometric ratio groups in equations (3.E.1-8) and (3.E.1-9) equal
to zero (for determining yr2) or 1 (for determining ys1 and ys2). This results in the
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following scale and reference factors (step 7):

us1 = us2 = ρ1gh2
1

µ1
; ys1 = h1; ys2 = h2; yr2 = h1 (3.E.1-14)

The resulting scaled dimensionless describing equations then are given by

d2u∗
x1

dy∗2
1

+ 1 = 0 for 0 ≤ y∗
1 ≤ 1 (3.E.1-15)

d2u∗
x2

dy∗2
2

= 0 for 0 ≤ y∗
2 ≤ 1 (3.E.1-16)

u∗
x1 = 0 at y∗

1 = 0 (3.E.1-17)

u∗
x1 = u∗

x2 at y∗
1 = 1 (3.E.1-18)

du∗
x1

dy∗
1

= µ2h1

µ1h2

du∗
x2

dy∗
2

at y∗
1 = 1 (3.E.1-19)

u∗
x2

= 0 at y∗
2 = 1 (3.E.1-20)

We see that the effect of the gas phase drag on the liquid film will be negligible if
the following condition is satisfied (step 8):

µ2h1

µ1h2
� 1 ⇒ µ2h1

µ1h2
= ◦(0.01) (3.E.1-21)

3.E.2 Flow Between Two Approaching Parallel Circular Flat Plates

Consider the unsteady-state laminar flow of an incompressible Newtonian liquid
having constant physical properties between two parallel circular flat plates that
slowly approach each other with an axial velocity given by

U = U0e
−βt (3.E.2-1)

where U0 is the initial axial velocity and β is a time constant; a schematic of
this flow is shown in Figure 3.E.2-1. We use scaling to simplify the describing
equations for this relatively complex flow.

The describing equations are obtained by appropriately simplifying equations
(C.2-1), (D.2-10), and (D.2-12) in the Appendices (step 1):

1

r

∂

∂r
(rur) + ∂uz

∂z
= 0 (3.E.2-2)

ρ
∂ur

∂t
+ ρur

∂ur

∂r
+ ρuz

∂ur

∂z
= −∂P

∂r
+ µ

∂

∂r

[
1

r

∂

∂r
(rur)

]

+ µ
∂2ur

∂z2
(3.E.2-3)

ρ
∂uz

∂t
+ ρur

∂uz

∂r
+ ρuz

∂uz

∂z
= −∂P

∂z
+ µ

∂

∂r

[
1

r

∂

∂r

(

r
∂uz

∂r

)]

+ µ
∂2uz

∂z2

(3.E.2-4)
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R
U = U0e−bt

z
r

Figure 3.E.2-1 Laminar flow of an incompressible Newtonian liquid that has constant
physical properties between two parallel circular plates that are approaching each other
slowly.

ur =0, uz = −1

2
U(t)=−1

2
U0e

−βt at z=H(t) (3.E.2-5)

ur =0, uz = 1

2
U(t) = 1

2
U0e

−βt at z=−H(t) (3.E.2-6)

∫ H

−H

ur ·2πr dz = − d

dt
(πr2H) = −2πr2 dH

dt
= πr2U0e

−βt , uz = f1(z, t)

at r = R (3.E.2-7)

ur = 0,
∂uz

∂r
= 0 at r = 0 (3.E.2-8)

P = Patm at r = R (3.E.2-9)

The boundary condition given by equation (3.E.2-7) is a statement that the mass
squeezed out by the plates moving together must flow out the periphery of the
circular plates. The function f1 merely denotes that to solve these differential
equations, one would need to specify a boundary condition for uz at the periphery
of the circular plates. The simplifications justified by scaling analysis will obviate
the need to know f1.

Introduce the following scale factors, reference factor, and dimensionless vari-
ables (steps 2, 3, and 4):

u∗
r ≡ ur

urs

; u∗
z ≡ uz

uzs

; P ∗ ≡ P − Pr

Ps

; z∗ ≡ z

zs

; r∗ ≡ r

rs

;

t∗ ≡ t

ts
(3.E.2-10)

Substitute these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of a term that must be retained in each
equation to obtain (steps 5 and 6)

1

r∗
∂

∂r∗ (r∗u∗
r ) + uzsrs

urszs

∂u∗
z

∂z∗ = 0 (3.E.2-11)



74 APPLICATIONS IN FLUID DYNAMICS

ρz2
s

µts

∂u∗
r

∂t∗
+ ρursz

2
s

µrs

u∗
r

∂u∗
r

∂r∗ + ρuzszs

µ
u∗

z

∂u∗
r

∂z∗

= − Psz
2
s

µursrs

∂P ∗

∂r∗ + z2
s

r2
s

∂

∂r∗

[
1

r∗
∂

∂r∗ (r∗u∗
r )

]

+ ∂2u∗
r

∂z∗2
(3.E.2-12)

ρz2
s

µts

∂u∗
z

∂t∗
+ ρursz

2
s

µrs

u∗
r

∂u∗
z

∂r∗ + ρuzszs

µ
u∗

z

∂u∗
z

∂z∗

= − Pszs

µuzs

∂P ∗

∂z∗ + z2
s

r2
s

∂

∂r

[
1

r∗
∂

∂r∗

(

r∗ ∂u∗
z

∂r∗

)]

+ ∂2u∗
z

∂z∗2
(3.E.2-13)

u∗
r = 0, u∗

z = −1

2

U0

uzs

e−βts t ∗ at z∗ = H(t)

zs

(3.E.2-14)

u∗
r = 0, u∗

z = 1

2

U0

uzs

e−βts t∗ at z∗ = −H(t)

zs

(3.E.2-15)

∫ H/zs

−H/zs

u∗
r dz∗ = U0rs

2urszs

r∗e−βts t
∗
, u∗

z = f ∗
1 (z∗, t∗) at r∗ = R

rs

(3.E.2-16)

u∗
r = 0,

∂u∗
z

∂r∗ = 0 at r∗ = 0 (3.E.2-17)

P ∗ = Patm − Pr

Ps

at r∗ = R

rs

(3.E.2-18)

The dimensionless group in equation (3.E.2-14) is set equal to 1 to obtain the
axial velocity scale uzs . The geometric ratio groups in equations (3.E.2-14) and
(3.E.2-16), when set equal to 1, provide the axial and radial length scales zs and
rs . Equation (3.E.2-11) then provides the radial velocity scale urs . Since pressure
causes the radial flow, Ps is obtained by setting the dimensionless group multiply-
ing the pressure term in equation (3.E.2-12) equal to 1. The reference pressure Pr

is obtained from equation (3.E.2-18). Finally, the time scale ts is dictated by the
approach velocity of the two parallel plates and is obtained by setting the dimen-
sionless group in the argument of the exponential in equation (3.E.2-14) equal to 1.
This results in the following scale and reference factors (step 7):

urs = RU0

2H
; uzs = U0

2
; Ps = µU0R

2

2H 3
; Pr = Patm; zs = H ;

rs = R; t∗ = 1

β
(3.E.2-19)

Note in this case that several of our scales are time-dependent, owing to the presence
of H in their definition.

The resulting scaled dimensionless describing equations then are given by

1

r∗
∂

∂r∗ (r∗u∗
r ) + ∂u∗

z

∂z∗ = 0 (3.E.2-20)
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ρβH 2

µ

∂u∗
r

∂t∗
+ Reu∗

r

∂u∗
r

∂r∗ + Reu∗
z

∂u∗
r

∂z∗ = −∂P ∗

∂r∗ + H 2

R2

∂

∂r∗

[
1

r∗
∂

∂r∗ (r∗u∗
r )

]

+ ∂2u∗
r

∂z∗2

(3.E.2-21)

ρβH 2

µ

∂u∗
z

∂t∗
+ Reu∗

r

∂u∗
z

∂r∗ + Reu∗
z

∂u∗
z

∂z∗ = − R2

H 2

∂P ∗

∂z∗

+ H 2

R2

∂

∂r

[
1

r∗
∂

∂r∗

(

r∗ ∂u∗
z

∂r∗

)]

+ ∂2u∗
z

∂z∗2

(3.E.2-22)

u∗
r = 0, u∗

z = − e−t∗ at z∗ = 1 (3.E.2-23)

u∗
r = 0, u∗

z =e−t∗ at z∗ = −1 (3.E.2-24)
∫ 1

−1
u∗

r dz∗ = r∗e−t∗ , u∗
z = f ∗

1 (z∗, t∗) at r∗ = 1 (3.E.2-25)

u∗
r = 0,

∂u∗
z

∂r∗ = 0 at r∗ = 0 (3.E.2-26)

P ∗ = 0 at r∗ = 1 (3.E.2-27)

where Re≡ρU0H/2µ is the Reynolds number. We see that equations (3.E.2-20)
through (3.E.2-27) can be greatly simplified if the following conditions hold (step 8):

Re = ρU0H

2µ
� 1 ⇒ creeping flow (3.E.2-28)

H 2

R2
� 1 ⇒ lubrication flow if Re � 1 as well (3.E.2-29)

ρβH 2

µ
� 1 ⇒ quasi-steady-state flow (3.E.2-30)

All of these conditions are satisfied for sufficiently close approach distances H

between the two plates. Note that our scaling ensured that the dimensionless radial
pressure gradient was ◦(1); this scaling does not necessarily ensure that the axial
pressure derivative is also ◦(1). In fact, the condition given by equation (3.E.2-29)
implies that the dimensionless axial pressure gradient in equation (3.E.2-22) is of
the following order:

∂P ∗

∂z∗
∼= H 2

R2

∂2u∗
z

∂z∗2
= ◦(

H 2

R2

)

� 1 (3.E.2-31)

This implies that the axial pressure gradient is essentially zero for the case of
lubrication flow; this in turn implies that the radial pressure gradient is not a
function of z.
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If the conditions given by equations (3.E.2-28) through (3.E.2-30) are satisfied,
equations (3.E.2-20) through (3.E.2-27) simplify to

0 = −∂P ∗

∂r∗ + ∂2u∗
r

∂z∗2
(3.E.2-32)

∂P ∗

∂z∗
∼= 0 (3.E.2-33)

u∗
r = 0, u∗

z = −e−t∗ at z∗ = 1 (3.E.2-34)

u∗
r = 0, u∗

z = e−t ∗ at z∗ = −1 (3.E.2-35)
∫ 1

−1
u∗

r dz∗ = r∗e−t∗, u∗
z = f ∗

1 (z∗, t∗) at r∗ = 1 (3.E.2-36)

P ∗ = 0 at r∗ = 1 (3.E.2-37)

Equations (3.E.2-36) and (3.E.2-37) are required to obtain the radial pressure dis-
tribution. This simplified set of describing equations can be solved analytically in
closed form.

3.E.3 Design of a Hydraulic Ram

Consider the operation of a hydraulic ram shown in Figure 3.E.3-1. This device
consists of a piston of radius R1 that is free to slide within a cylinder of inner
radius R2 containing a viscous oil that can be assumed to be an incompressible
Newtonian liquid with constant physical properties. An applied force causes the
piston to be pushed into the cylinder, which in turn causes a high pressure P0 to be
generated within the oil confined between the closed end of the cylinder and the
piston head. The difference between this high pressure and the ambient pressure
Patm then causes oil to flow in the gap between the piston and the cylinder. The
force that must be applied to push the piston into the cylinder is equal to the sum
of the force exerted by P0 on the piston head and the drag force caused by the

r

U0

Patm

R2

R1
P0

z

Figure 3.E.3-1 Hydraulic ram consisting of a cylindrical piston of radius R1 that slides
within a cylindrical housing of radius R2; the cylindrical housing and piston assembly
contains a viscous oil that can be considered to be an incompressible Newtonian liquid with
constant physical properties; a time-dependent force is applied to the piston, causing it to
move into the cylindrical housing at a constant velocity U0; the instantaneous axial velocity
profile in the annular gap is sketched in the figure.
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oil being pushed through the annular gap. Let us assume that the piston is being
pushed in at a constant velocity U0. We ignore any end effects and assume that the
lubrication-flow approximation can be made for the flow in the thin annular gap.13

We employ scaling analysis to determine when curvature effects in the describing
equations for the flow in the annular gap can be neglected; that is, the conditions
for which the describing equations in cylindrical coordinates reduce to those in
rectangular coordinates.

The describing equations are obtained by simplifying appropriately the equations
of motion in cylindrical coordinates given by equations (C.2-1), (D.2-10), and
(D.2-12) in the Appendices (step 1). In writing these describing equations we
place our coordinate system on the moving piston. In doing so, it appears that the
cylinder is moving in the direction opposite to that of the piston.

0 = −∂P

∂z
+ µ

1

r

d

dr

(

r
duz

dr

)

(3.E.3-1)

uz = 0 at r = R1 (3.E.3-2)

uz = U0 at r = R2 (3.E.3-3)

P = Patm at z = L(t) (3.E.3-4)

where Patm is the prevailing atmospheric pressure and L(t) is the wetted length of
the piston; that is, the instantaneous length of the piston that is in contact with the
flowing oil. Note that we retain the partial derivative ∂P/∂z in equation (3.E.3-1)
because the pressure gradient is also a function of time, since the wetted length
increases as the piston is pushed into the cylinder.

Introduce the following scale factors and dimensionless variables (steps 2, 3,
and 4):

u∗
z ≡ uz

uzs

; P ∗ ≡ P − Pr

Ps

; r∗ ≡ r − rr

rs

; z∗ ≡ z

zs

(3.E.3-5)

Note that we have introduced a reference factor for the radial coordinate since it
is not naturally referenced to zero within the region wherein the flow is occurring;
that is, within the annular gap. We have also introduced a reference pressure since
the pressure is also not naturally referenced to zero at either end of the annular gap.
Substitute these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of a term that must be retained in each
equation to obtain (steps 5 and 6)

0 = − Psr
2
s

µuzszs

∂P ∗

∂z∗ + 1
(

rs

rr

r∗ + 1

)
d

dr∗

[(
rs

rr

r∗ + 1

)
du∗

z

dr∗

]

(3.E.3-6)

13The lubrication-flow approximation for this flow can also be justified using scaling analysis; this is
considered in practice Problem 3.P.11.
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u∗
z = 0 at r∗ = R1 − rr

rs

(3.E.3-7)

u∗
z = U0

uzs

at r∗ = R2 − rr

rs

(3.E.3-8)

P ∗ = Patm − Pr

Ps

at z∗ = L

zs

(3.E.3-9)

The dimensionless radial coordinate can be bounded between zero and 1 if
we set the dimensionless group in equation (3.E.3-7) equal to zero and that in
equation (3.E.3-8) equal to 1, thereby obtaining rr = R1 and rs = R2 − R1. The
velocity scale is obtained by setting the dimensionless group in equation (3.E.3-8)
equal to 1 to obtain uzs = U0. The axial length scale can be obtained by setting
the dimensionless group in equation (3.E.3-9) equal to 1 to obtain zs = L(t). The
dimensionless pressure can be referenced to zero by setting the dimensionless group
in equation (3.E.3-9) equal to zero to obtain Pr = Patm. Finally, since pressure
causes the flow in the axial direction, Ps can be obtained by setting the dimen-
sionless group in equation (3.E.3-6) equal to 1 to obtain Ps = µU0L/(R2 − R1)

2

(step 7).
The resulting scaled dimensionless describing equations then are given by

0 = −∂P ∗

∂z∗ + 1

[(R2 − R1)/R1]r∗ + 1

d

dr∗

[(
R2 − R1

R1
r∗ + 1

)
du∗

z

dr∗

]

(3.E.3-10)

u∗
z = 0 at r∗ = 0 (3.E.3-11)

u∗
z = 1 at r∗ = 1 (3.E.3-12)

P ∗ = 0 at z∗ = 1 (3.E.3-13)

We see that if the dimensionless group (R2 − R1)/R1 = ◦(0.01), equation
(3.E.3-10) reduces to (step 8)

0 = −∂P ∗

∂z∗ + d2u∗
z

dr∗2
(3.E.3-14)

This is the same equation that would apply to steady-state pressure-driven lubri-
cation flow between two parallel flat plates. Hence, we conclude that curvature
effects can be ignored in problems such as that considered here if the following
condition is satisfied:

R2 − R1

R1
� 1 ⇒ curvature effects can be neglected (3.E.3-15)

A closed-form analytical solution for the axial velocity profile can easily be
obtained for equation (3.E.3-14) subject to the boundary conditions given by
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equations (3.E.3-11) through (3.E.3-13). The unknown axial pressure gradient in
the solution for the velocity profile can be obtained from the known volumetric
flow rate corresponding to the volume swept out by the piston moving in at a
constant velocity U0. The force required to push the piston in at a constant velocity
can be obtained by a force balance on the piston that includes the pressure force
at each end of the piston and the drag force exerted by the flowing oil.

3.E.4 Rotating Disk Flow

Consider a disk rotating at a constant angular frequency ω (radians per second) in
an infinite fluid having constant physical properties, as shown in Figure 3.E.4-1.
The rotation of the disk causes both an angular fluid velocity and flow in the radial
direction. This in turn causes flow toward the disk in the axial direction. Infinitely
far into the fluid the velocity must be purely axial toward the disk. This flow
geometry is of considerable practical value since the rotating disk is referred to
as a uniformly accessible surface. By this we mean that the heat- or mass-transfer
flux to the surface of a rotating disk is invariant with position along its surface. For
example, this makes the rotating disk an ideal geometry for determining reaction
kinetics in electrochemical systems for which the rotating disk can serve as one
of the electrodes.14 The rotating disk was first analyzed by von Kármán15; a more

z

−U∞

r

w

q

Figure 3.E.4-1 Flow created by a flat disk rotating at an angular velocity ω (rad/s) in an
unbounded fluid; the rotational motion of the disk draws fluid toward the disk; the axial
velocity infinitely far removed from the disk is U∞.

14The rotating disk electrode apparatus was first exhibited at the Brussels World’s Fair in 1958. The
application of scaling analysis for using the rotating disk to study mass transfer is considered in
Chapter 5.
15T. von Kármán, Z. Angew. Math. Mech., 1, 244–247 (1921).
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complete analysis was done by Cochran16; an overview of the analysis and use
of this instrument is given by Levich.17 This problem can be solved analytically
for laminar flow conditions in the absence of free convection effects. However,
under proper operating conditions, the hydrodynamics take on a boundary-layer
character such that the change in velocity components occurs within a thin region
of influence near the rotating disk. Establishing a thin boundary layer is important
for heat- or mass-transfer characterization using this apparatus since it ensures that
container boundary effects are minimized. We use scaling analysis to ascertain the
conditions for which the boundary layer will be thin.

A surprising aspect of laminar rotating disk flow is that there is no radial pressure
gradient and the radial and angular velocities are directly proportional to the radial
position, whereas the axial velocity depends only on the axial position. Classical
treatments of this flow begin by recognizing these considerations intuitively and
then proceeding to develop the rigorous analytical solution for this flow. However,
these considerations can be ascertained via simple integral mass and momentum
balances. Consider a mass balance on a control volume of arbitrary radius r extend-
ing from the surface of the disk far into the fluid, where there is only an axial
velocity component given by uz = −U∞. Note that in practice U∞ is unknown;
however, it can be determined from the solution for the hydrodynamics and a
specified disk rotation rate. A mass balance on this control volume then yields

U∞πr2 = 2πr

∫ ∞

0
ur dz ⇒ U∞ = 2

r

∫ ∞

0
ur dz ⇒ ur = rf1(z) (3.E.4-1)

If the general form of the radial velocity profile given by equation (3.E.4-1) is sub-
stituted into the continuity equation given by equation (C.2-1), we can conclude
that the axial velocity is independent of r:

1

r

∂

∂r
(rur)+ ∂uz

∂z
=0 ⇒ 2f1(z)+ ∂uz

∂z
=0 ⇒ uz =−2

∫ z

0
f1(z̃) dz̃=f2(z)

(3.E.4-2)

where z̃ denotes a dummy integration variable. Hence, we conclude that uz is a
function only of z. We can now prove that there is no radial pressure gradient
by considering an integral z-momentum balance on a control volume of arbitrary
radius r extending from an arbitrary height z into the fluid far from the rotating
disk where uz = −U∞:

ρU 2
∞πr2 −

(∫ r

0
ρu2

z · 2πr̃ dr̃

)∣
∣
∣
∣
z

− P∞πr2 +
(∫ r

0
P · 2πr̃ dr̃

)∣
∣
∣
∣
z

+
(∫ ∞

z

τrz · 2πrdz̃

)∣
∣
∣
∣
z

−
(∫ r

0
τzz · 2πr̃ dr̃

)∣
∣
∣
∣
z

= 0 (3.E.4-3)

16W. G. Cochran, Proc. Cambridge Philos. Soc., 30, 365–375 (1934).
17V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ 1962, pp. 60–78.
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where r̃ and z̃ again denote dummy integration variables. When the components
of Newton’s constitutive equation given by equations (D.2-6) and (D.2-9) in the
Appendices are substituted, we obtain

ρU 2
∞r2 −

(∫ r

0
ρu2

z · 2r̃ dr̃

)∣
∣
∣
∣
z

− P∞r2 +
(∫ r

0
P · 2r̃ dr̃

)∣
∣
∣
∣
z

−
(∫ ∞

z

µ
∂ur

∂z̃
· 2rdz̃

)∣
∣
∣
∣
z

+
(∫ r

0
µ

∂uz

∂z
· 4r̃ dr̃

)∣
∣
∣
∣
z

= 0

(3.E.4-4)

Substitute the functional forms for ur and uz into equation (3.E.4-4) to obtain

ρU 2
∞r2 − ρf 2

2 r2 − P∞r2 + 2

(∫ r

0
P · r̃ dr̃

)∣
∣
∣
∣
z

+ 2µr2f1 + 2µ
df2

dz
r2 = 0

(3.E.4-5)

Hence, we conclude that

2

r2

∫ r

0
P · r̃ dr̃ = − ρU 2

∞ + ρf 2
2 + P∞ − 2µf1 − 2µ

df2

dz
⇒ P = f3(z)

(3.E.4-6)

When the functional forms for ur, uz, and P given by equations (3.E.4-1),
(3.E.4-2), and (3.E.4-6) are substituted into the radial component of the equations
of motion given by equation (D.2-10) in the Appendices, we can conclude that
uθ = rf4(z); that is,

ρrf 2
1 − u2

θ

r
+ f2r

df1

dz
= − df3

dr
︸︷︷︸

=0

+µ
∂

∂r

[
1

r

∂

∂r
(r2f1)

]

︸ ︷︷ ︸

=0

+r
d2f1

dz2
⇒ uθ = rf4(z)

(3.E.4-7)

Hence, we conclude that for rotating disk laminar flow, uz, P, rur , and uθ/r are
functions only of the axial coordinate z.

The prior considerations are rigorous for a rotating disk, causing laminar flow in
an infinite fluid. However, in practice the rotating disk is placed in a finite container,
which implies that the velocity might not be purely axial far above the rotating disk,
due to recirculation. When one is using the rotating disk to characterize some heat-
or mass-transfer process, one would like to minimize this finite container effect.
This will be minimized when there is a thin boundary layer adjacent to the rotating
disk across which the radial and angular velocities components decay. Hence, we
use scaling to ascertain the criteria required to assure that this boundary layer is thin.

In view of the considerations for a rotating disk in an infinite fluid, the equations
of motion in cylindrical coordinates given by equations (C.2-1), (D.2-10), (D.2-11),
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and (D.2-12) in the Appendices simplify to (step 1)

ρur

∂ur

∂r
− ρ

u2
θ

r
+ ρuz

∂ur

∂z
= µ

∂2ur

∂z2
(3.E.4-8)

ρur

∂uθ

∂r
+ ρ

uruθ

r
+ ρuz

∂uθ

∂z
= µ

∂2uθ

∂z2
(3.E.4-9)

ρuz

duz

dz
= −dP

dz
+ µ

d2uz

dz2
(3.E.4-10)

1

r

∂

∂r
(rur) + ∂uz

∂z
= 0 (3.E.4-11)

The corresponding boundary conditions are given by

ur = 0, uz = 0, uθ = ωr at z = 0 (3.E.4-12)

uz = −U∞, ur = 0, uθ = 0, P = P∞ as z → ∞ (3.E.4-13)

ur = 0, uθ = 0 at r = 0 (3.E.4-14)

Note that equations (3.E.4-8) through (3.E.4-14) are rigorous for a rotating disk in
an unbounded fluid.

Introduce the following dimensionless variables containing appropriate reference
and scale factors (steps 2, 3, and 4):

u∗
r ≡ ur

urs

; u∗
z ≡ uz

uzs

; u∗
θ ≡ uθ

uθs

; P ∗ ≡ P − Pr

Ps

; r∗ ≡ r

rs

;

z∗ ≡ z

zs

(3.E.4-15)

Substituting these dimensionless variables into equations (3.E.4-8) through
(3.E.4-14) and dividing through by the dimensional coefficient of one of the prin-
cipal terms in each equation then yields the following dimensionless describing
equations (steps 5 and 6):

ρursz
2
s

µrs

u∗
r

∂u∗
r

∂r∗ − ρu2
θsz

2
s

µursrs

u∗2
θ

r∗ + ρuzszs

µ
u∗

z

∂u∗
r

∂z∗ = ∂2u∗
r

∂z∗2

(3.E.4-16)

ρursz
2
s

µrs

u∗
r

∂u∗
θ

∂r∗ + ρursz
2
s

µrs

u∗
r u

∗
θ

r∗ + ρuzszs

µ
u∗

z

∂u∗
θ

∂z∗ = ∂2u∗
θ

∂z∗2

(3.E.4-17)

ρuzszs

µ
u∗

z

du∗
z

dz∗ = − Pszs

µuzs

dP ∗

dz∗ + d2u∗
z

dz∗2
(3.E.4-18)
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urszs

uzsrs

1

r∗
∂

∂r∗ (r∗u∗
r ) + ∂u∗

z

∂z∗ = 0 (3.E.4-19)

u∗
r = 0, u∗

z = 0, u∗
θ = ωrs

uθs

r∗ at z∗ = 0 (3.E.4-20)

u∗
z = −U∞

uzs

, u∗
r = 0, u∗

θ = 0, P ∗ = P∞ − Pr

Ps

as z∗ → ∞ (3.E.4-21)

u∗
r = 0, u∗

θ = 0 at r∗ = 0 (3.E.4-22)

We now apply step 7 to achieve ◦(1) scaling. Since we seek to describe the flow
at any arbitrary position along the disk, we set rs = R, the local radial coordinate;
that is, we are considering a local scaling analysis. The appropriate dimension-
less groups in equations (3.E.4-20) and (3.E.4-21) suggest the following scale and
reference factors:

uθs

ωrs

= uθs

ωR
= 1 ⇒ uθs = ωR; P∞ − Pr

Ps

= 0 ⇒ Pr = P∞ (3.E.4-23)

Since this is a developing flow, the continuity equation given by (3.E.4-19) implies
that

urszs

uzsrs

= urszs

uzsR
= 1 ⇒ uzs = urszs

R
(3.E.4-24)

The scale for ur is obtained from equation (3.E.4-16) since the inertia and viscous
terms must balance:

ρu2
θsz

2
s

µursrs

= ρRω2z2
s

µurs

= 1 ⇒ urs = ρRω2z2
s

µ
⇒ uzs = ρω2z3

s

µ
(3.E.4-25)

Similarly, the inertia and viscous terms in equation (3.E.4-18) must balance, which
provides the axial length scale:

ρuzszs

µ
= ρ2 ω2z4

s

µ2
= 1 ⇒ zs ≡ δm =

√
µ

ρω
=

√
ν

ω
(3.E.4-26)

where ν is the kinematic viscosity. The axial length scale zs has been identified with
the momentum boundary-layer thickness δm, the region of influence within which
the fluid is affected by the rotating disk. Note that in contrast to most boundary-
layer problems in fluid dynamics, δm is constant over the entire surface of the
rotating disk. Finally, the pressure scale is also obtained from equation (3.E.4-18):

Pszs

µuzs

= PsR

µurs

= PsR

ρω2δ3
m

= PsR

ρω1/2ν3/2
= 1 ⇒ Ps = ρω1/2ν3/2

R
(3.E.4-27)
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Substitution of the scale and reference factors then yields the following set of
dimensionless describing equations:

u∗
r

∂u∗
r

∂r∗ − u∗2
θ

r∗ + u∗
z

∂u∗
r

∂z∗ = ∂2u∗
r

∂z∗2
(3.E.4-28)

u∗
r

∂u∗
θ

∂r∗ + u∗
r u

∗
θ

r∗ + u∗
z

∂u∗
θ

∂z∗ = ∂2u∗
θ

∂z∗2
(3.E.4-29)

u∗
z

du∗
z

dz∗ = −dP ∗

dz∗ + d2u∗
z

dz∗2
(3.E.4-30)

1

r∗
∂

∂r∗ (r∗u∗
r ) + ∂u∗

z

∂z∗ = 0 (3.E.4-31)

u∗
r = 0, u∗

z = 0, u∗
θ = r∗ at z∗ = 0 (3.E.4-32)

u∗
z = − U∞√

ων
, u∗

r =, 0, u∗
θ = 0, P ∗ = 0 as z∗ → ∞ (3.E.4-33)

u∗
r = 0, u∗

θ = 0 at r∗ = 0 (3.E.4-34)

Equations (3.E.4-28) through (3.E.4-34) have been solved via a series-expansion
method (see footnote 17). The resulting series can be truncated at the first term if
δm � 1 corresponding to a very thin momentum boundary layer. The resulting solu-
tion indicates that δm = 3.6

√
ν/ω and U∞ = 0.88447

√
νω. These agree to within

a constant of ◦(1) with the estimates obtained for δm given by equation (3.E.4-26)
and for U∞ obtained by setting the dimensionless group in equation (3.E.4-33)
equal to 1. Note that scaling has provided reliable estimates of both the momentum
boundary-layer thickness δm and the far-field axial velocity U∞ without the need
to actually solve the describing equations.

To assume that the rotating disk is effectively in an unbounded fluid, it is nec-
essary for the boundary layer to be very thin; that is, the following criterion must
be satisfied (step 8):

δm

H
=

√
ν

ωH 2
� 1 or

√
ν

ωH 2
= ◦(0.01) (3.E.4-35)

where H denotes the distance of the rotating disk from the nearest parallel bound-
ary. This condition will be satisfied when the kinematic viscosity is low, the angular
rotation rate is high, or the boundary is far removed from the rotating disk.

3.E.5 Entry Region Flow Between Parallel Plates

Figure 3.E.5-1 shows a schematic of pressure-driven steady-state laminar entry-
region flow of an incompressible Newtonian fluid with constant physical properties
between two parallel flat plates spaced a distance 2H apart. The constant flow
velocity at the entrance is U0. This is assumed to be a high Reynolds number
laminar flow for which the inertia or convection terms cannot be ignored in the entry
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y

2H
x

U0

dm (x)

Figure 3.E.5-1 High Reynolds number steady-state pressure-driven entry region flow of
an incompressible Newtonian fluid with constant physical properties between two parallel
flat plates spaced a distance 2H apart.

region. We will use scaling to estimate the entry length required to achieve fully
developed laminar flow. Note that this flow differs somewhat from the boundary-
layer flow considered in Section 3.4 in that this is a confined boundary-layer flow.
Hence, owing to the deceleration of the flow within the boundary layer at the walls,
the uniform or plug flow in the center must accelerate. Moreover, in contrast to the
boundary-layer flow considered in Section 3.4 that was caused by the velocity of
the flow external to the boundary layer, the flow in the present example is caused
by an applied pressure gradient.

The describing equations are obtained by simplifying equations (C.1-1),
(D.1-10), and (D.1-11) in the Appendices appropriately (step 1):

ρux

∂ux

∂x
+ ρuy

∂ux

∂y
= −∂P

∂x
+ µ

∂2ux

∂x2
+ µ

∂2ux

∂y2
(3.E.5-1)

ρux

∂uy

∂x
+ ρuy

∂uy

∂y
= −∂P

∂y
+ µ

∂2uy

∂x2
+ µ

∂2uy

∂y2
(3.E.5-2)

∂ux

∂x
+ ∂uy

∂y
= 0 (3.E.5-3)

ux = U0, uy = 0, P = P0 at x = 0 (3.E.5-4)

ux = f1(y), uy = f2(y) at x = L (3.E.5-5)

ux = 0, uy = 0 at y = ±H (3.E.5-6)

ux = f3(x), uy = f4(x) at y = ±(H − δm) (3.E.5-7)

where f1(y) and f2(y) are unspecified functions of y and f3(x) and f4(x) are
unspecified functions of x that in principle would have to be known in order to
integrate the set of differential equations above. Note that we have introduced a
region of influence δm(x) within which the effect of the viscous shear induced by
the presence of each wall is confined. The rationale for introducing this region of
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influence or hydrodynamic boundary-layer thickness was discussed in Section 3.4.
The set of equations above also introduces the pressure P0 that would have to be
specified at the entry region in order to integrate the system of equations above.

Introduce the following scale factors, reference factors, and dimensionless vari-
ables (steps 2, 3, and 4):

u∗
x ≡ ux

uxs

; u∗
y ≡ uy

uys

; P ∗ ≡ P

Ps

; x∗ ≡ x

xs

; y∗ ≡ y − yr

ys

(3.E.5-8)

We have introduced a reference factor yr in the definition of y∗ to force this dimen-
sionless variable to zero at the wall. Note that the symmetry of this problem permits
considering only the region −H ≤ y ≤ 0. Substituting these dimensionless variables
into equations (3.E.5-1) through (3.E.5-7) and dividing through by the dimensional
coefficient of one of the principal terms in each equation then yields the following
equations that describe the flow in the region −H ≤ y ≤ 0 (steps 5 and 6):

u∗
x

∂u∗
x

∂x∗ + uysxs

uxsys

u∗
y

∂u∗
x

∂y∗ = − Ps

ρu2
xs

∂P ∗

∂x∗ + µ

ρuxsxs

∂2u∗
x

∂x∗2
+ µxs

ρuxsy2
s

∂2u∗
x

∂y∗2
(3.E.5-9)

u∗
x

∂u∗
y

∂x∗ + uysxs

uxsys

u∗
y

∂u∗
y

∂y∗ = − Psxs

ρuxsuysys

∂P ∗

∂y∗ + µ

ρuxsxs

∂2u∗
y

∂x∗2
+ µxs

ρuxsy2
s

∂2u∗
y

∂y∗2

(3.E.5-10)

∂u∗
x

∂x∗ + uysxs

uxsys

∂u∗
y

∂y∗ = 0 (3.E.5-11)

u∗
x = U0

uxs

, u∗
y = 0, P ∗ = P0

Ps

at x∗ = 0 (3.E.5-12)

u∗
x = f ∗

1 (y∗), u∗
y = f ∗

2 (y∗) at x∗ = L

xs

(3.E.5-13)

u∗
x = 0, u∗

y = 0 at y∗ = −H − yr

ys

(3.E.5-14)

u∗
x = f ∗

3 (x∗), u∗
y = f ∗

4 (x∗) at y∗ = −H − δm − yr

ys

(3.E.5-15)

We now apply step 7 to bound the variables to be ◦(1). We can bound y∗ to be
between 0 and 1 by setting the dimensionless groups in equations (3.E.5-14) and
(3.E.5-15) equal to zero and 1, respectively, to obtain yr = H and ys = δm. The
axial length scale can be bounded to be between 0 and 1 by setting the dimen-
sionless group in equation (3.E.5-13) equal to 1, thereby obtaining xs = L. The
axial velocity can be bounded to be between 0 and 1 by setting the dimensionless
group in equation (3.E.5-12) equal to 1, thereby obtaining uxs = U0. Since this is a
developing flow, both terms in the dimensionless continuity equation should be of
the same order; hence, we require that the dimensionless group in equation (3.E.5-
11) be equal to 1, thereby obtaining uys = U0δm/L. Since this is a pressure-driven
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high Reynolds number flow, the dimensionless pressure term should be of the same
order as the inertia terms; hence, we require that dimensionless group multiplying
the pressure term in equation (3.E.5-9) be equal to 1, thereby obtaining Ps = ρU 2

0 .
The resulting scaled dimensionless describing equations are given by

u∗
x

∂u∗
x

∂x∗ + u∗
y

∂u∗
x

∂y∗ = −∂P ∗

∂x∗ + 1

Re

δm

L

∂2u∗
x

∂x∗2
+ 1

Re

L

δm

∂2u∗
x

∂y∗2
(3.E.5-16)

u∗
x

∂u∗
y

∂x∗ + u∗
y

∂u∗
y

∂y∗ = −L2

δ2
m

∂P ∗

∂y∗ + 1

Re

δm

L

∂2u∗
y

∂x∗2
+ 1

Re

L

δm

∂2u∗
y

∂y∗2
(3.E.5-17)

∂u∗
x

∂x∗ + ∂u∗
y

∂y∗ = 0 (3.E.5-18)

u∗
x = 1, u∗

y = 0, P ∗ = P0

ρU 2
0

at x∗ = 0 (3.E.5-19)

u∗
x = f ∗

1 (y∗), u∗
y = f ∗

2 (y∗) at x∗ = 1 (3.E.5-20)

u∗
x = 0, u∗

y = 0 at y∗ = 0 (3.E.5-21)

u∗
x = f ∗

3 (x∗), u∗
y = f ∗

4 (x∗) at y∗ = 1 (3.E.5-22)

where Re ≡ δmρU0/µ is the Reynolds number. The principal viscous term in
equation (3.E.5-16) must be of the same size as the pressure and inertia terms
within the region of influence (hydrodynamic boundary layer) if we are to sat-
isfy the boundary conditions given by equations (3.E.5-21) and (3.E.5-22). Hence,
we require that the dimensionless group multiplying the principal viscous term in
equation (3.E.5-16) be equal to 1, which provides an estimate of the boundary-layer
thickness δm(x∗):

1

Re

L

δm

= 1 ⇒ δm =
√

µL

ρU0
(3.E.5-23)

When the boundary layer thickness δm = H , the flow is fully developed. Hence,
we can use equation (3.E.5-23) evaluated at δm = H to obtain an estimate of the
entrance length Le:

Le
∼= ρU0H

2

µ
(3.E.5-24)

This agrees to within a multiplicative constant of order 1 with the entrance length
required to achieve fully developed flow obtained from solving the boundary-layer
equations that yields18

Le = 0.16
ρU0H

2

µ
(3.E.5-25)

18See H. Schlichting, Boundary Layer Theory, 4th ed., McGraw-Hill, New York, 1980, p. 168.
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Whereas for this well-studied flow, an equation is available to predict the entrance
length that obviates the need to use scaling analysis, the latter provides an invaluable
tool for estimating the entry region for flows for which no such results are available.

Equations (3.E.5-16) through (3.E.5-23) can be greatly simplified if δ2
m/L2 =

◦(0.01) (step 8). This permits ignoring the axial diffusion of vorticity term in
equation (3.E.5-16), thereby obviating the need to satisfy any downstream boundary
condition. Moreover, in view of equation (3.E.5-17), this condition implies that the
dimensionless derivative ∂P ∗/∂y∗ is very small. Note that we have not scaled the
dimensionless derivative ∂P ∗/∂y∗ in equation (3.E.5-17) to be ◦(1) since there is
no reason for this derivative to scale as Ps/ys . However, since we have scaled
u∗

x∂u∗
y/∂x∗ to be of order ◦(1), equation (3.E.5-17) implies that ∂P ∗/∂y∗ is of◦(δ2

m/L2) and hence that it is very small. This decouples the solution of equation
(3.E.5-16) from equation (3.E.5-17) and implies that the dimensionless describing
equations for the entry-region flow problem can be reduced to

u∗
x

∂u∗
x

∂x∗ + u∗
y

∂u∗
x

∂y∗ = −dP ∗

dx∗ + ∂2u∗
x

∂y∗2
(3.E.5-26)

∂u∗
x

∂x∗ + ∂u∗
y

∂y∗ = 0 (3.E.5-27)

u∗
x = 1, u∗

y = 0, P ∗ = P0

ρU 2
0

at x∗ = 0 (3.E.5-28)

u∗
x = 0, u∗

y = 0 at y∗ = 0 (3.E.5-29)

u∗
x = f ∗

3 (x∗) at y∗ = 1 (3.E.5-30)

To solve equations (3.E.5-26) through (3.E.5-30), it is necessary to know the unspe-
cified function f ∗

3 (x∗) in equation (3.E.5-30). This is obtained by solving the ideal
flow (inviscid) flow equations19 outside the boundary-layer region for which vis-
cous effects can be ignored, due to the high Reynolds number. In doing this, one
carries out integral mass and momentum balances that account for the acceler-
ation of the flow due to the thinning of the inviscid core region that is caused
by the growing boundary layer at each wall. These equations can then be solved
analytically to determine the unspecified function f ∗

3 (x∗) in equation (3.E.5-30).
Equations (3.E.5-26) and (3.E.5-27) can then be solved numerically. The resulting
solution will yield the entrance length given by equation (3.E.5-25).

3.E.6 Rotating Flow in an Annulus with End Effects

Consider the steady-state flow of an incompressible Newtonian liquid with con-
stant physical properties in the annular region between two concentric cylinders
of length L, shown in Figure 3.E.6-1. The inner cylinder has radius R1 and is

19The ideal or inviscid flow equations correspond to an infinite Reynolds number, which implies no
viscous effects whatsoever; in the case of hydrodynamic boundary-layer flows, the flow region outside
the boundary layer is described by the ideal flow equations.
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Figure 3.E.6-1 Steady-state incompressible laminar flow of a Newtonian liquid with con-
stant physical properties in the annular region between a stationary inner and a rotating outer
cylinder.

stationary. The outer cylinder has radius R2 and rotates at a constant angular veloc-
ity ω (radians per second). The flow is caused primarily by the rotation of the outer
cylinder. However, the bottom of the outer cylinder is also rotating and dragging
the adjacent liquid with it, causing an end effect. We neglect any effect of the
small gap between the bottom of the stationary inner cylinder and the rotating
outer cylinder. We use scaling analysis to derive criteria for ignoring the end effect
on the primary rotational flow in the annulus.

The describing equations for this flow are obtained by appropriately simplifying
the equations of motion in cylindrical coordinates given by equations (D.2-10)
through (D.2-12) in the Appendices (step 1):

ρu2
θ

r
= ∂P

∂r
(3.E.6-1)

0 = ∂

∂r

[
1

r

∂

∂r
(ruθ )

]

+ ∂2uθ

∂z2
(3.E.6-2)

0 = ∂P

∂z
+ ρg (3.E.6-3)

uθ = 0 at r = R1 (3.E.6-4)

uθ = ωR2 at r = R2 (3.E.6-5)

uθ = ωr at z = 0 (3.E.6-6)

∂uθ

∂z
= 0 at z = f1(r) (3.E.6-7)
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The boundary condition given by equation (3.E.6-7) allows for the fact that the
rotation causes a centrifugal pressure force that increases with the radius. At any
point in the liquid the centrifugal pressure has to be balanced by the hydrostatic
pressure. Hence, the liquid depth will increase with increasing radius. The location
of this interface can be determined from the solution to the pressure profile. The
function f1(r) must satisfy the integral conservation of mass for an incompressible
liquid given by

∫ R2

R1

2πrf1(r) dr = π(R2
2 − R2

1)L0 (3.E.6-8)

where L0 is the liquid depth in the absence of any rotation.
Introduce the following scale factors, reference factor, and dimensionless vari-

ables (steps 2, 3, and 4):

u∗
θ ≡ uθ

us

; P ∗ ≡ P

Ps

; r∗ ≡ r − rr

rs

; z∗ ≡ z

zs

(3.E.6-9)

We have introduced a reference factor for the dimensionless radial coordinate since
r is not naturally referenced to zero within the region where flow is occurring.
Substitute these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of a term that must be retained (steps 5 and 6):

u∗2
θ

r∗ + rr/rs

= Ps

ρu2
s

∂P ∗

∂r∗ (3.E.6-10)

0 = ∂

∂r∗

{
1

r∗ + rr/rs

∂

∂r∗

[(

r∗ + rr

rs

)

u∗
θ

]}

+ r2
s

z2
s

∂2u∗
θ

∂z∗2
(3.E.6-11)

0 = Ps

ρgzs

∂P ∗

∂z∗ + 1 (3.E.6-12)

u∗
θ = 0 at r∗ = R1 − rr

rs

(3.E.6-13)

u∗
θ = ωR2

us

at r∗ = R2 − rr

rs

(3.E.6-14)

u∗
θ = ωrsr

∗ + rr/rs

us

at z∗ = 0 (3.E.6-15)

∂u∗
θ

∂z∗ = 0 at z∗ = f ∗
1 (r∗) (3.E.6-16)

∫ R2−rr
rs

R1−rr
rs

2

(

r∗ + rr

rs

)

f ∗
1

(

r∗) dr∗ =
(

R2
2 − R2

1

)

L0

r2
s zs

(3.E.6-17)

We now apply step 7 to bound the variables to be ◦(1). We can bound r∗ to
be between zero and 1 by setting the dimensionless group in equation (3.E.6-13)
equal to zero and that in equation (3.E.6-14) equal to 1, thereby obtaining rr = R1
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and rs = R2 − R1. Our dimensionless axial coordinate can be bounded between
zero and 1 by setting the dimensionless group L0/zs that appears in equation
(3.E.6-17) equal to 1, thereby obtaining zs = L0. Our velocity scale is obtained
from the dimensionless group in equation (3.E.6-14) to obtain us = ωR2. Finally,
our pressure scale is obtained from the dimensionless group in equation (3.E.6-10)
to obtain Ps = ρω2R2

2. When these scale and reference factors are substituted in
equations (3.E.6-10) through (3.E.6-17), we obtain the following set of dimension-
less describing equations:

u∗2
θ

r∗ + R1/(R2 − R1)
= ∂P ∗

∂r∗ (3.E.6-18)

0 = ∂

∂r∗

{
1

r∗ + R1/(R2 − R1)

∂

∂r∗

[(

r∗ + R1

R2 − R1

)

u∗
θ

]}

+ (R2 − R1)
2

L2
0

∂2u∗
θ

∂z∗2
(3.E.6-19)

0 = ω2R2
2

gL

∂P ∗

∂z∗ + 1 (3.E.6-20)

u∗
θ = 0 at r∗ = 0 (3.E.6-21)

u∗
θ = 1 at r∗ = 1 (3.E.6-22)

u∗
θ = R2 − R1

R2

(

r∗ + R1

R2 − R1

)

at z∗ = 0 (3.E.6-23)

∂u∗
θ

∂z∗ = 0 at z∗ = f ∗
1 (r∗) (3.E.6-24)

∫ 1

0
2

(

r∗ + R1

R2 − R1

)

f ∗
1

(

r∗) dr∗ = R2 + R1

R2 − R1
(3.E.6-25)

We see that if the dimensionless group (R2 − R1)
2/L2

0 = ◦(0.01) the end effect
can be ignored in equation (3.E.6-19) (step 8). The resulting simplified set of
describing equations can be solved analytically.20 A further simplification is possi-
ble if the group (R2 − R1)/R1 = ◦(0.01), in which case the describing equations
reduce to

0 = ∂P ∗

∂r∗ (3.E.6-26)

0 = d2u∗
θ

dr∗2
(3.E.6-27)

0 = ω2R2
2

gL0

∂P ∗

∂z∗ + 1 (3.E.6-28)

20This simplified set of describing equations has been solved in Bird et al., Transport Phenomena, 2nd
ed., pp. 93–95; however, no attempt is made to justify when these simplified equations are applicable.
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u∗
θ = 0 at r∗ = 0 (3.E.6-29)

u∗
θ = 1 at r∗ = 1 (3.E.6-30)

∫ 1

0
f ∗

1

(

r∗) dr∗ = 1 (3.E.6-31)

This simplified set of describing equations also admits an analytical solution.
The integral mass-balance condition is retained in the form given by equation
(3.E.6-31), which permits obtaining the liquid depth profile in the annular region.

3.E.7 Impulsively Initiated Pressure-Driven Laminar Tube Flow

Consider an incompressible Newtonian liquid with constant physical properties
contained in a semi-infinitely long cylindrical tube having radius R. Initially, the
liquid in the tube is at rest. At time t = 0, a constant pressure drop �P ≡ P0 − PL

is applied across some length L of the tube to initiate continuous flow, as shown
in Figure 3.E.7-1. We will ignore any entrance effects, in which case this is an
interesting example of an unsteady-state fully developed flow. Figure 3.E.7-1 shows
the axial velocity profiles at times t1 and t2, where t2 > t1. If the entrance effects are
neglected, the velocity profile at any time applies along the entire length of the tube.
The unsteady-state acceleration of the flow is suggested by the increased area under
the velocity profile at t2 relative to t1. We use scaling analysis to determine the
criterion for assuming that this impulsively initiated flow has achieved steady-state
conditions.

The describing equations for this flow are obtained by appropriately simpli-
fying the unsteady-state equations of motion in cylindrical coordinates given by
equation (D.2-12) in the Appendices to obtain (step 1)

ρ
∂uz

∂t
= �P

L
+ µ

1

r

∂

∂r

(

r
∂uz

∂r

)

(3.E.7-1)

r

z

R

L

P0 PL

uz(r, t1) uz(r, t2)

Figure 3.E.7-1 Laminar flow of an incompressible Newtonian liquid with constant physical
properties in a circular tube of radius R due to an impulsively applied pressure difference
�P ≡ P0 − PL, showing the axial velocity profiles at times t1 and t2, where t2 > t1.
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uz = 0 at t = 0 (3.E.7-2)

uz = 0 at r = R (3.E.7-3)

∂uz

∂r
= 0 at r = 0 (3.E.7-4)

In writing equation (3.E.7-1) we have used the fact that uz = f1(r, t) and that the
radial component of the equations of motion establishes that ∂P/∂r = 0, which in
turn implies that P = f2(z, t). In view of these considerations, the axial component
of the equations of motion then implies that ∂P/∂z = −�P/L.

Introduce the following dimensionless variables (steps 2, 3, and 4):

u∗
z ≡ uz

us

; r∗ ≡ r

rs

; t∗ ≡ t

ts
(3.E.7-5)

Substitute these dimensionless variables into equations (3.E.7-1) through (3.E.7-4)
and divide through by the dimensional coefficient of a term that must be retained
to obtain (steps 5 and 6)

ρr2
s

µts

∂u∗
z

∂t∗
= �Pr2

s

Lµus

+ 1

r∗
∂

∂r∗

(

r∗ ∂u∗
z

∂r∗

)

(3.E.7-6)

u∗
z = 0 at t∗ = 0 (3.E.7-7)

u∗
z = 0 at r∗ = R

rs

(3.E.7-8)

∂u∗
z

∂r∗ = 0 at r∗ = 0 (3.E.7-9)

We can bound our radial coordinate between zero and 1 by setting the dimen-
sionless group in equation (3.E.7-8) equal to 1 thereby obtaining rs = R (step 7).
Since pressure causes this flow, we obtain our velocity scale by setting the dimen-
sionless group in equation (3.E.7-6) equal to 1 thereby obtaining us = �PR2/Lµ.
Our time scale in this case is the observation time to; that is, the arbitrary time at
which we chose to observe this flow after it is impulsively initiated. When these
scale factors are substituted into equations (3.E.7-6) through (3.E.7-9), we obtain

ρR2

µto

∂u∗
z

∂t∗
= 1 + 1

r∗
∂

∂r∗

(

r∗ ∂u∗
z

∂r∗

)

(3.E.7-10)

u∗
z = 0 at t∗ = 0 (3.E.7-11)

u∗
z = 0 at r∗ = 1 (3.E.7-12)

∂u∗
z

∂r∗ = 0 at r∗ = 0 (3.E.7-13)
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We see from equation (3.E.7-10) that the unsteady-state term becomes insignif-
icant when the condition ρR2/µto = ◦(0.01) applies (step 8). This in turn implies
that steady-state will be achieved for observation times that satisfy the condition

to � ρR2

µ
⇒ steady-state is achieved (3.E.7-14)

The unsteady-state flow problem described by equations (3.E.7-1) through (3.E.7-4)
has been solved analytically21; the solution indicates that the centerline (maximum)
velocity will be within 10% of its steady-state value when

to = 0.45
ρR2

µ
⇒

{

velocity is within 10%
of its steady-state value

(3.E.7-15)

It is surprising that the criterion that we derived from scaling analysis for achieving
steady-state conditions is far more demanding than that obtained from an exact solu-
tion to the describing equations. However, the criterion given by equation (3.E.7-
14) is based on the condition required for the pressure force to exactly balance the
viscous force in equation (3.E.7-6). The latter is proportional to the derivative of
the velocity profile. When the centerline (maximum) velocity is within 10% of its
steady-state value, the slope of the velocity profile at the wall, which is propor-
tional to the pressure applied, is nowhere near 10% of its steady-state value. Our
more demanding criterion ensures that we predict not only the maximum velocity
accurately via a steady-state solution, but also the drag at the wall.

3.E.8 Laminar Cylindrical Jet Flow

Consider the steady-state laminar flow of an incompressible Newtonian liquid jet
with constant physical properties issuing from a circular orifice of initial velocity
U0 falling vertically under the influence of gravity in an inviscid gas as shown
in Figure 3.E.8-1. We assume that curvature and surface-tension effects can be
ignored in the tangential and normal stress boundary conditions at the interface
between the liquid jet and ambient gas phase.22 We use scaling analysis to explore
the conditions for which quasi-parallel flow can be assumed; that is, when the axial
velocity profile can be assumed to depend only on the axial coordinate.

The appropriately simplified equations of motion in cylindrical coordinates given
by equations (C.2-1), (D.2-10), and (D.2-12) in the Appendices along with the
boundary and kinematic conditions are given by (step 1)

ρur

∂ur

∂r
+ ρuz

∂ur

∂z
= −∂P

∂r
+ µ

∂

∂r

[
1

r

∂

∂r
(rur)

]

+ µ
∂2ur

∂z2
(3.E.8-1)

21R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 1960 pp.
126–130.
22Note that scaling analysis could be used to determine when surface-tension and curvature effects can
be neglected; the latter were considered in Section 3.7.
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Viscous liquid

z

h(z)

h(z + ∆z)

r

R

L

Ambient gas phase 

Figure 3.E.8-2 Steady-state flow of an incompressible Newtonian liquid that has constant
physical properties issuing as a jet from a circular orifice of radius R with an initial velocity
U0 into an inviscid ambient gas phase.

ρur

∂uz

∂r
+ ρuz

∂uz

∂z
= −∂P

∂z
+ µ

r

∂

∂r

(

r
∂uz

∂r

)

+ µ
∂2ur

∂z2
+ ρg (3.E.8-2)

1

r

∂

∂r
(rur) + ∂uz

∂z
= 0 (3.E.8-3)

uz = U0, ur = 0, P = Patm, η = R at z = 0 (3.E.8-4)

uz = f1(r), ur = f2(r) at z = L (3.E.8-5)

∂uz

∂r
= 0, ur = 0 at r = 0 (3.E.8-6)

τrz = −µ

(
∂uz

∂r
+ ∂ur

∂z

)

= 0

σrr = P − 2µ
∂ur

∂r
= Patm

∂P

∂z
− 2µ

∂2ur

∂z ∂r
= 0







at r = η(z) (3.E.8-7)

dη

dz
= ur

uz

at r = η(z) (3.E.8-8)

where f1 and f2 are unknown functions of r that are included for completeness
since in principle downstream boundary conditions are required for the veloc-
ity components. Equation (3.E.8-7) encompasses three boundary conditions at the
interface between the liquid jet and the ambient gas phase required for the three
dependent variables: pressure and the two velocity components. The first two of
these equations are the no-drag and continuity of the normal stress, respectively.
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The third of these equations is obtained by differentiating the normal stress balance
with respect to z; this provides an independent condition interrelating the pressure
and velocity at the interface. Equation (3.E.8-8) is the kinematic surface condition
that is obtained by an integral mass balance on a differential volume element over
an arbitrary cross section of the jet. This is needed as an auxiliary condition to
obtain the location of the surface at which the no-slip and continuity of normal
stress boundary conditions must be applied.

Introduce the following scale factors, reference factors, and dimensionless vari-
ables (steps 2, 3, and 4):

u∗
z ≡ uz − uzr

uzs

; u∗
r ≡ ur

urs

; P ∗ ≡ P − Pr

Ps

; η∗ ≡ η

ηs

;
(

∂uz

∂r

)∗
≡ 1

βs

∂uz

∂r
; z∗ ≡ z

zs

; r∗ ≡ r

rs

(3.E.8-9)

We have introduced reference factors for both the axial velocity and pressure since
neither of these variables is naturally referenced to zero. Note that we have also
introduced a scale βs for ∂uz/∂r since this derivative does not scale as uzs/rs . If we
had used the latter to scale this derivative, the forgiving nature of scaling would have
indicated a contradiction. However, we anticipate the need to scale this derivative
with its own scale since uz does not change significantly across the jet. Introduce
these dimensionless variables into the describing equations and divide through by
the dimensional coefficient of a term that must be retained to obtain (steps 5 and 6)

u∗
r

∂u∗
r

∂r∗ + uzsrs

urszs

(

u∗
z + uzr

uzs

)
∂u∗

r

∂z∗

= − Ps

ρu2
rs

∂P ∗

∂r∗ + µ

ρursrs

∂

∂r∗

[
1

r∗
∂

∂r∗ (r∗u∗
r )

]

+ µrs

ρursz2
s

∂2u∗
r

∂z∗2

(3.E.8-10)

ursβszs

u2
zs

u∗
r

∂u∗
z

∂r∗ +
(

u∗
z + uzr

uzs

)
∂u∗

z

∂z∗

= − Ps

ρu2
zs

∂P ∗

∂z∗ + µβszs

ρu2
zsrs

1

r∗
∂

∂r∗

[

r∗
(

∂uz

∂r

)∗]
+ µ

ρuzszs

∂2u∗
z

∂z∗2
+ gzs

u2
zs

(3.E.8-11)

1

r∗
∂

∂r∗ (r∗u∗
r ) + uzsrs

urszs

∂u∗
z

∂z∗ = 0 (3.E.8-12)

u∗
z = U0 − uzr

uzs

, u∗
r = 0, P ∗ = Patm − Pr

Ps

, η∗ = R

ηs

at z∗ = 0

(3.E.8-13)

u∗
z = f ∗

1 (r∗), u∗
r = f ∗

2 (r∗) at z∗ = L

zs

(3.E.8-14)

∂u∗
z

∂r∗ = 0, u∗
r = 0 at r∗ = 0 (3.E.8-15)
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(
∂uz

∂r

)∗
+ urs

βszs

∂u∗
r

∂z∗ = 0

P ∗ = 2
µurs

Psrs

∂u∗
r

∂r∗ + Patm − Pr

Ps

∂P ∗

∂z∗ − 2
µurs

Psrs

∂2u∗
r

∂z∗∂r∗ = 0







at r∗ = ηs

rs

η∗ (3.E.8-16)

dη∗

dz∗ = urszs

uzsηs

u∗
r

u∗
z

at r∗ = ηs

rs

η∗ (3.E.8-17)

Note ∂2uz/∂r2 scales as βs/rs since ∂uz/∂r goes from its minimum value of zero
at r = 0 to its maximum value of βs at r = η(z).

We now apply step 7 to bound the variables to be ◦(1). The dimensionless
groups consisting of geometric ratios in equations (3.E.8-13), (3.E.8-14), and
(3.E.8-16), when set equal to 1, imply that ηs = rs = R and zs = L. The dimension-
less groups in equation (3.E.8-13) containing the reference velocity and pressure,
when set equal to zero, imply that uzr = U0 and Pr = Patm. Since gravity causes
flow in the axial direction, the dimensionless group that is a measure of the ratio
of the gravity force to the axial acceleration must be set equal to 1, thereby
obtaining the axial velocity scale uzs = √

gL. Since this is a developing flow,
the dimensionless group in the continuity equation must be set equal to 1, thereby
obtaining the radial velocity scale urs = R

√
gL/L. Since the two remaining terms

in the normal stress balance in equation (3.E.8-16) must balance, the dimension-
less group in this equation must be set equal to 1, thereby obtaining the pressure
scale Ps = µ

√
gL/L. Finally, since the two terms in the zero-drag condition in

equation (3.E.8-16) must balance, the dimensionless group in this equation must be
set equal to 1, thereby obtaining the derivative scale βs = R

√
gL/L2. When these

values for the scale and reference factors are substituted into equations (3.E.8-10)
through (3.E.8-17), we obtain the following minimum parametric representation of
the describing equations:

u∗
r

∂u∗
r

∂r∗ +
(

u∗
z + U0√

gL

)
∂u∗

r

∂z∗

= − 1

Re

L

R

∂P ∗

∂r∗ + 1

Re

L

R

∂

∂r∗

[
1

r∗
∂

∂r∗ (r∗u∗
r )

]

+ 1

Re

R

L

∂2u∗
r

∂z∗2
(3.E.8-18)

R2

L2
u∗

r

∂u∗
z

∂r∗ +
(

u∗
z + U0√

gL

)
∂u∗

z

∂z∗

= − 1

Re

R

L

∂P ∗

∂z∗ + 1

Re

R

L

1

r∗
∂

∂r∗

[

r∗
(

∂uz

∂r

)∗]
+ 1

Re

R

L

∂2u∗
z

∂z∗2
+ 1 (3.E.8-19)

1

r∗
∂

∂r∗ (r∗u∗
r ) + ∂u∗

z

∂z∗ = 0 (3.E.8-20)

u∗
z = 0, u∗

r = 0, P ∗ = 0, η∗ = 1 at z∗ = 0 (3.E.8-21)
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u∗
z = f ∗

1 (r∗), u∗
r = f ∗

2 (r∗) at z∗ = 1 (3.E.8-22)

∂u∗
z

∂r∗ = 0, u∗
r = 0 at r∗ = 0 (3.E.8-23)

(
∂uz

∂r

)∗
+ ∂u∗

r

∂z∗ = 0

P ∗ = 2
∂ur

∂r
∂P ∗

∂z∗ − 2
∂2u∗

r

∂z∗∂r∗ = 0







at r∗ = η∗ (3.E.8-24)

dη∗

dz∗ = u∗
r

u∗
z

at r∗ = η∗ (3.E.8-25)

where Re ≡ ρRuzs/µ = ρR
√

gL/µ is the Reynolds number.
Inspection of equations (3.E.8-18) through (3.E.8-25) indicates that the criteria

for assuming quasi-parallel flow are the following (step 8):

Re = ρR
√

gL

µ
� 1

R

L
� 1







⇒ quasi-parallel flow (3.E.8-26)

When the conditions above apply, equations (3.E.8-18) through (3.E.8-25) sim-
plify to:

(

u∗
z + U0√

gL

)
∂u∗

z

∂z∗ = 1 (3.E.8-27)

1

r∗
∂

∂r∗ (r∗u∗
r ) + ∂u∗

z

∂z∗ = 0 (3.E.8-28)

u∗
z = 0, η∗ = 1 at z∗ = 0 (3.E.8-29)

u∗
r = 0 at r∗ = 0 (3.E.8-30)

dη∗

dz∗ = u∗
r

u∗
z

at r∗ = η∗ (3.E.8-31)

The solution to the system of equations above is straightforward and yields the
following solution for the axial velocity:

u∗
z = − U0√

gL
+

√

U 2
0

gL
+ 2z∗ ⇒ uz =

√

U 2
0 + 2gz (3.E.8-32)

This solution for the axial velocity profile corresponds to acceleration in free
fall, which of course is a reasonable solution under the assumption that the vis-
cous effects are negligible. Equations (3.E.8-32) can be substituted into equations
(3.E.8-28) and (3.E.8-31) to obtain the corresponding radial velocity and jet diam-
eter as a function of axial position.
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3.E.9 Gravity-Driven Film Flow over a Saturated Porous Medium

Consider the steady-state fully developed flow of an incompressible Newtonian
liquid film over an inclined liquid-saturated porous medium due to a gravitationally
induced body force, as shown in Figure 3.E.9-1. This flow could correspond to
runoff down water-saturated sloped ground. Because of the slope, gravity will
cause flow of both the liquid in the film and that within the porous medium. We
use scaling to determine when the flow through the porous medium has a negligible
effect on the flow of the liquid film.

The describing equations for this flow are obtained by simplifying equations
(D.1-10) and (E.1-1) in the Appendices appropriately (step 1):

0 = µ
d2ux

dy2
+ ρg sin θ 0 ≤ y ≤ H (3.E.9-1)

0 = − µ

kp

�ux + µ
d2�ux

dy2
+ ρg sin θ − ∞ < y ≤ 0 (3.E.9-2)

dux

dy
= 0 at y = H (3.E.9-3)

ux = �ux at y = 0 (3.E.9-4)

d�ux

dy
= dux

dy
at y = 0 (3.E.9-5)

�ux = 0 as y → −∞ (3.E.9-6)

where µ is the shear viscosity and kp is the Darcy permeability. Note that �ux in the
porous medium is the superficial velocity; that is, the velocity through the porous
medium treated as if it were homogeneous. Equations (3.E.9-4) and (3.E.9-5) are
the continuity of velocity and shear at the interface between the porous medium and
the liquid film; the latter equation assumes that the effective viscosity of the liquid
flowing through the porous medium is the same as that of the liquid in the film.

x
y  

Porous media

Liquid film

Hg

Figure 3.E.9-1 Steady-state fully developed laminar flow of an incompressible Newtonian
liquid film of thickness H with constant physical properties over an inclined liquid-saturated
porous medium due to a gravitationally induced body force.
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Define the following dimensionless variables (steps 2, 3, and 4):

u∗
x ≡ ux

uxs

; �ux
∗ ≡ �ux

�uxs

; y∗ ≡ y

ys

for 0 ≤ y ≤ H ;

�y∗ ≡ y

�ys

for − ∞ < y ≤ 0 (3.E.9-7)

We have introduced separate scales for the velocity as well as for the spatial coor-
dinate in the two regions. The need for this can be seen by considering the fact that
the maximum velocity in the porous medium is the minimum velocity in the liquid
film; hence, these two velocities must be scaled differently to achieve ◦(1) scaling.
The different spatial coordinate scales are necessary because the velocity goes
between its maximum and minimum values over vastly different length scales in
the two regions. Note again that had we not done this, we would have arrived
at a contradiction in our scaled equations; the forgiving nature of scaling would
then indicate that we had not scaled some quantity so that it was bounded of ◦(1).
Introduce these dimensionless variables and divide through by the dimensional
coefficient of one term in each of equations (3.E.9-1) through (3.E.9-6) to obtain
(steps 5 and 6)

0 = d2u∗
x

dy∗2
+ ρgy2

s sin θ

µuxs

, 0 ≤ y∗ ≤ H

ys

(3.E.9-8)

0 = −�u∗
x + kp

�y2
s

d2�u∗
x

d�y∗
2

+ ρgkp sin θ

µ�uxs

, −∞ < �y∗ ≤ 0 (3.E.9-9)

du∗
x

dy∗ = 0 at y∗ = H

ys

(3.E.9-10)

u∗
x = �uxs

uxs

�ux
∗ at y∗ = �y∗ = 0 (3.E.9-11)

�uxsys

uxs�ys

d�ux
∗

d�y∗ = du∗
x

dy∗ at y∗ = �y∗ = 0 (3.E.9-12)

�ux
∗ = 0 as �y∗ → −∞ (3.E.9-13)

The dimensionless group in equation (3.E.9-10) is set equal to 1, thereby obtain-
ing our length scale in the liquid film, ys = H (step 7). Since gravity causes the
flow in the liquid film, we set the dimensionless group that is a measure of the ratio
of the gravity force to the viscous drag in equation (3.E.9-8) equal to 1, thereby
obtaining our velocity scale uxs = ρgH 2 sin θ/µ. Since the principal viscous term
in equation (3.E.9-9) must be retained, we set its dimensionless coefficient equal to
1, thereby obtaining the length scale in the porous medium, �ys = √

kp. The max-
imum velocity in the porous medium occurs at its interface with the liquid film.
Hence, we set the dimensionless group in equation (3.E.9-12) equal to 1, thereby
obtaining our velocity scale in the porous medium, �uxs = ρgH

√

kp sin θ/µ. When
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these values for the scale factors are substituted into equations (3.E.9-8) through
(3.E.9-13), we obtain the following minimum parametric representation of the
describing equations:

0 = d2u∗
x

dy∗2
+ 1, 0 ≤ y∗ ≤ 1 (3.E.9-14)

0 = −�u∗
x + d2�ux

∗

d�y∗2 +
√

kp

H
, −∞ < �y∗ ≤ 0 (3.E.9-15)

du∗
x

dy∗ = 0 at y∗ = 1 (3.E.9-16)

u∗
x =

√

kp

H
�ux

∗ at y∗ = �y∗ = 0 (3.E.9-17)

d�ux
∗

d�y∗ = du∗
x

dy∗ at y∗ = �y∗ = 0 (3.E.9-18)

�ux
∗ = 0 as �y∗ → −∞ (3.E.9-19)

If the following condition holds, the form of the no-slip boundary condition given
by equation (3.E.9-17), (i.e., continuity of velocity across the interface between the
porous medium and the liquid film), reduces to the familiar zero velocity condition
at a stationary solid boundary (step 8):

√

kp

H
� 1 ⇒ liquid film velocity ∼= 0 at the interface with porous medium

(3.E.9-20)

Hence, if
√

kp/H = ◦(0.01), the liquid film flow is described by the following set
of simplified describing equations:

0 = d2u∗
x

dy∗2
+ 1, 0 ≤ y∗ ≤ 1 (3.E.9-21)

du∗
x

dy∗ = 0 at y∗ = 1 (3.E.9-22)

u∗
x = 0 at y∗ = 0 (3.E.9-23)

These are the equations describing film flow down an impermeable stationary solid
surface.

3.E.10 Flow in a Hollow-Fiber Membrane with Permeation

A membrane is a semipermeable medium that permits the passage of some molecu-
les, colloidal aggregates, or particles relative to others. A hollow-fiber module is
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one form of a membrane contactor that consists of hundreds to thousands of small
hollow fibers encased in a cylindrical shell. In one configuration of this module
the parallel bundle of hollow fibers is sealed off at one end so that flow is possible
in only one direction. The feed is introduced on the shell side of the module. The
permeable components pass through the walls into the core of the hollow-fiber
membrane. They then proceed to flow in parallel through all the fibers, after which
they are collected as the product stream in the case of purification or concentration
of solutes or as a waste stream in the case of removing contaminants. Since the
permeable components flow in parallel through the hollow fibers, one can model
the hydrodynamics in a hollow-fiber module of this type by considering the flow
in a single fiber, as shown in Figure 3.E.10-1. Consider the case of a permeate
stream that consists of an incompressible Newtonian liquid with constant physical
properties. The flow through the core (called the lumen) of the hollow fiber is
complex since the mass flow increases as the permeate stream flows toward the open
end. We use scaling analysis to explore the conditions under which the describing
equations for this flow can be simplified.

The appropriately simplified equations of motion in cylindrical coordinates given
by equations (C.2-1), (D.2-10), and (D.2-12) in the Appendices along with the
boundary and auxiliary conditions are given by (step 1)

ρur

∂ur

∂r
+ ρuz

∂ur

∂z
= −∂P

∂r
+ µ

∂

∂r

[
1

r

∂

∂r
(rur)

]

+ µ
∂2ur

∂z2
(3.E.10-1)

ρur

∂uz

∂r
+ ρuz

∂uz

∂z
= −∂P

∂z
+ µ

1

r

∂

∂r

(

r
∂uz

∂r

)

+ µ
∂2uz

∂z2
(3.E.10-2)

1

r

∂

∂r
(rur) + ∂uz

∂z
= 0 (3.E.10-3)

U0

R
r

L

z

U0

Figure 3.E.10-1 Flow of an incompressible Newtonian liquid in a cylindrical hollow-fiber
membrane of radius R, one end of which is closed and the other open, due to permeation
through the wall at a velocity U0; the axial velocity profiles shown at two axial positions
illustrate the acceleration caused by the mass addition due to the radial permeation.
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∂uz

∂r
= 0, ur = 0 at r = 0 (3.E.10-4)

uz = 0, ur = −U0 at r = R (3.E.10-5)

uz = 0, ur = 0 at z = 0 (3.E.10-6)

uz = f1(r), ur = f2(r), P = Patm at z = L (3.E.10-7)

2πRzU0 =
∫ R

0
uz2πrdr (3.E.10-8)

where f1(r) and f2(r) are undetermined functions that are required for complete-
ness in specifying the boundary conditions. The fact that these functions are gener-
ally unknown in practice significantly complicates solving the full set of describing
equations. Equation (3.E.10-5) accounts for the fact that permeation through the
walls of the hollow-fiber membrane results in a nonzero radial velocity component.
This permeation also causes this to be a developing flow. Equation (3.E.10-8) is a
statement that for an incompressible liquid the total permeation over a length z of
the fiber wall is equal to the volumetric flow rate at that axial position. This serves
as an auxiliary condition to determine the unspecified axial pressure gradient.

Define the following scale factors, reference factor, and dimensionless variables
(steps 2, 3, and 4):

u∗
z ≡ uz

uzs

; u∗
r ≡ ur

urs

; P ∗ ≡ P − Pr

Ps

; r∗ ≡ r

rs

; z∗ ≡ z

zs

(3.E.10-9)

Introduce these dimensionless variables into equations (3.E.10-1) through
(3.E.10-8) and divide each equation through by the dimensional coefficient of a
term that must be retained to obtain (steps 5 and 6)

ρu2
rs

Ps

u∗
r

∂u∗
r

∂r∗ + ρuzsursrs

Pszs

u∗
z

∂u∗
r

∂z∗

= −∂P ∗

∂r∗ + µurs

Psrs

∂

∂r∗

[
1

r∗
∂

∂r∗ (r∗u∗
r )

]

+ µursrs

Psz2
s

∂2u∗
r

∂z∗2
(3.E.10-10)

ρuzsrs

µ
u∗

r

∂u∗
z

∂r∗ + ρuzsr
2
s

µzs

u∗
z

∂u∗
z

∂z∗ = − Psr
2
s

µuzszs

∂P ∗

∂z∗ + 1

r∗
∂

∂r∗

(

r∗ ∂u∗
z

∂r∗

)

+ r2
s

z2
s

∂2u∗
z

∂z∗2

(3.E.10-11)

urszs

uzsrs

1

r∗
∂

∂r∗ (r∗u∗
r ) + ∂u∗

z

∂z∗ = 0 (3.E.10-12)

∂u∗
z

∂r∗ = 0, u∗
r = 0 at r∗ = 0 (3.E.10-13)

u∗
z = 0, u∗

r = − U0

urs

at r∗ = R

rs

(3.E.10-14)
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u∗
z = 0, u∗

r = 0 at z∗ = 0 (3.E.10-15)

u∗
z = f ∗

1 (r∗), u∗
r = f ∗

2 (r∗), P ∗ = Patm − Pr

Ps

at z∗ = L

zs

(3.E.10-16)

U0Rzs

uzsr2
s

z∗ =
∫ R/rs

0
u∗

zr
∗dr∗ (3.E.10-17)

The dimensionless geometric ratios in equations (3.E.10-14) and (3.E.10-16)
can be set equal to 1, thereby determining the length scales rs = R and zs = L

(step 7). Since the permeation through the hollow-fiber membrane wall causes the
radial flow, we set the dimensionless group containing U0 in equation (3.E.10-14)
equal to 1, thereby obtaining urs = U0. Since this is a developing flow, setting the
dimensionless group equal to 1 in equation (3.E.10-12) gives uzs = LU0/R. Since
the axial flow is caused by the axial pressure gradient, we set the dimensionless
group containing Ps in equation (3.E.10-11) equal to 1, thereby obtaining Ps =
µU0L

2/R3. Finally, our dimensionless pressure will be bounded between zero
and 1 if we set the dimensionless group in equation (3.E.10-16) equal to zero,
which gives Pr = Patm. When these values for the scale and reference factors are
substituted into equations (3.E.10-10) through (3.E.10-17), we obtain the following
minimum parametric representation of the describing equations:

Re
R2

L2
u∗

r

∂u∗
r

∂r∗ + Re
R2

L2
u∗

z

∂u∗
r

∂z∗ = −∂P ∗

∂r∗ + R2

L2

∂

∂r∗

[
1

r∗
∂

∂r∗ (r∗u∗
r )

]

+ R4

L4

∂2u∗
r

∂z∗2

(3.E.10-18)

Reu∗
r

∂u∗
z

∂r∗ + Reu∗
z

∂u∗
z

∂z∗ = −∂P ∗

∂z∗ + 1

r∗
∂

∂r∗

(

r∗ ∂u∗
z

∂r∗

)

+ R2

L2

∂2u∗
z

∂z∗2

(3.E.10-19)

1

r∗
∂

∂r∗ (r∗u∗
r ) + ∂u∗

z

∂z∗ = 0 (3.E.10-20)

∂u∗
z

∂r∗ = 0, u∗
r = 0 at r∗ = 0 (3.E.10-21)

u∗
z = 0, u∗

r = −1 at r∗ = 1 (3.E.10-22)

u∗
z = 0, u∗

r = 0 at z∗ = 0 (3.E.10-23)

u∗
z = f ∗

1 (r∗), u∗
r = f ∗

2 (r∗), P ∗ = 0 at z∗ = 1 (3.E.10-24)

z∗ =
∫ 1

0
u∗

zr
∗dr∗ (3.E.10-25)

The fact that equation (3.E.10-25) does not contain any dimensionless groups is
an indication that we have scaled the describing equations properly. That is, the
scaling has normalized the integral mass balance in this equation to be ◦(1), as it
should be, since the two terms in this equation must balance each other.
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Inspection of equations (3.E.9-18) through (3.E.10-25) indicates that consider-
able simplification is possible if the following conditions apply (step 8):

Re ≡ ρU0R

µ
� 1 and

R2

L2
� 1 (3.E.10-26)

We recognize these conditions to be those for assuming lubrication flow that was
considered in Section 3.3. However, for this flow the Reynolds number charac-
terizes the ratio of the radial convection to viscous force. If the conditions above
apply, our describing equations simplify to

0 = ∂P ∗

∂r∗ (3.E.10-27)

0 = −dP ∗

dz∗ + 1

r∗
∂

∂r∗

(

r∗ ∂u∗
z

∂r∗

)

(3.E.10-28)

1

r∗
∂

∂r∗ (r∗u∗
r ) + ∂u∗

z

∂z∗ = 0 (3.E.10-29)

∂u∗
z

∂r∗ = 0 at r∗ = 0 (3.E.10-30)

u∗
z = 0, u∗

r = −1 at r∗ = 1 (3.E.10-31)

u∗
z = 0 at z∗ = 0 (3.E.10-32)

P ∗ = 0 at z∗ = 1 (3.E.10-33)

z∗ =
∫ 1

0
u∗

zr
∗dr∗ (3.E.10-34)

Equation (3.E.10-27) implies that P ∗ = P ∗(z∗), which permits integrating equa-
tion (3.E.10-28) directly to obtain the axial velocity profile in terms of the unspec-
ified axial pressure gradient. The latter can be obtained by substituting the axial
velocity profile into equation (3.E.10-34). The corresponding radial velocity pro-
file can be obtained from equation (3.E.10-29). The resulting solutions for the
dimensionless velocity and pressure profiles are given by

u∗
z = 4z∗(1 − r∗2); u∗

r = r∗(r∗2 − 2); P ∗ = 8(1 − z∗2) (3.E.10-35)

3.E.11 Falling Head Method for Determining Soil Permeability

The falling head method is used to determine the permeability of soils. This test,
shown in Figure 3.E.11-1, involves driving a pipe of radius R into the soil until
it penetrates the water table, assumed here to be at the end of the tube. The pipe
is filled with water to a height L0 and the time td required to drain it to a height
Ld is measured. We use the scaling method for dimensional analysis to develop a
correlation for the draining time.

Step 1, the scaling procedure for dimensional analysis, involves writing the
appropriate describing equations to determine the quantity of interest. The draining
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r

 

Wet porous soil Water table

Cylindrical
tube 

Ld

L0

Ground surface 

R

Dry porous soil z

Figure 3.E.11-1 Falling head apparatus for measuring the permeability of soils; a cylin-
drical tube of radius R is pushed to the depth of the water table, which is defined to be at
z = 0, and filled to an initial depth of L0 with water; the instantaneous water depth in the
tube L(t) decreases due to permeation into the soil.

time td is related to the axial velocity uz and Darcy’s law via an instantaneous
mass balance on the water in the tube:

L0 − Ld = −
∫ td

0
�uz

∣
∣
z=0 dt =

∫ td

0

kp

µ

(
dP

dz
+ ρg

)∣
∣
∣
∣
z=0

dt, 0 ≤ r ≤ R

(3.E.11-1)

where kp is the permeability, µ the viscosity, ρ the density, and g the gravitational
acceleration. Note that we have ignored the effect of the Brinkman term for flow
through the porous medium based on the assumption that kp/R2 � 1, as discussed
in Section 3.8. To evaluate the integral above it would be necessary to solve for the
pressure distribution in the porous medium. This is obtained in turn by solving the
Darcy flow equations in the porous medium subject to the appropriate boundary
conditions. The incompressible continuity equation given by equation (C.2-1) in the
Appendices in combination with Darcy’s law for flow through porous media given
by equation (E.2-3) in the Appendices implies that the pressure P is obtained from a
solution to the axisymmetric form of Laplace’s equation in cylindrical coordinates:

1

r

∂

∂r

(

r
∂P

∂r

)

+ ∂2P

∂z2
= 0 (3.E.11-2)
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The pressure is subject to the following boundary conditions:

P = Patm + ρgL(t) at z = 0, 0 ≤ r ≤ R, Ld ≤ L(t) ≤ L0 (3.E.11-3)

P = Patm at z = 0, R ≤ r < ∞ (3.E.11-4)

�uz = −kp

µ

∂P

∂z
= 0 as z → −∞, 0 ≤ r < ∞ (3.E.11-5)

P = Patm − ρgz as r → ∞, −∞ < z ≤ 0 (3.E.11-6)

Note that in specifying the boundary conditions for this partial differential equation,
one must also specify the domain of any other variables that are not specified in
the particular boundary condition; in some cases, such as for the domain of the
boundary condition given by equation (3.E.11-3), this introduces additional param-
eters into the dimensional analysis. The boundary conditions given by equation
(3.E.11-3) involve the instantaneous liquid depth L(t) in the tube. This can be
obtained from a mass balance for the amount of liquid flowing from the tube up
to the instantaneous time t and is given by

L0 − L = −
∫ t

0
�uz

∣
∣
z=0 dt =

∫ t

0

kp

µ

(
dP

dz
+ ρg

)∣
∣
∣
∣
z=0

dt 0 ≤ r ≤ R

(3.E.11-7)

Define the following scale and reference factors and corresponding dimension-
less variables (steps 2, 3, and 4):

P ∗ ≡ P − Pr

Ps

; L∗ ≡ L − Lr

Ls

; r∗ ≡ r

rs

; z∗ ≡ z

zs

; t∗ ≡ t

ts
(3.E.11-8)

Substitute these dimensionless variables into equations (3.E.11-1) through (3.E.11-7)
and divide each equation by the dimensional coefficient of one of its terms (steps 5 and
6). Since this is dimensional analysis rather than ◦(1) scaling, we can divide through
by the dimensional coefficient of any arbitrary term in each equation:

µzs(L0 − Ld)

kpPsts
=

∫ td /ts

0

(
dP ∗

dz∗ + ρgzs

Ps

)∣
∣
∣
∣
z∗=0

dt∗, 0 ≤ r∗ ≤ R

rs

(3.E.11-9)

1

r∗
∂

∂r∗

(

r∗ ∂P ∗

∂r∗

)

+ r2
s

z2
s

∂2P ∗

∂z∗2
= 0 (3.E.11-10)

P ∗ =
Patm + ρgLs

(

L∗ + Lr

Ls

)

− Pr

Ps

at z = 0







0 ≤ r∗ ≤ R

rs
Ld

Ls

≤ L∗
(

1 + Lr

Ls

)

≤ L0

Ls

(3.E.11-11)

P ∗ = Patm − Pr

Ps

at z∗ = 0,
R

rs

≤ r∗ < ∞ (3.E.11-12)
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∂P ∗

∂z∗ = 0 as z∗ → −∞, 0 ≤ r∗ < ∞ (3.E.11-13)

P ∗ = Patm − ρgzsz
∗ − Pr

Ps

as r∗ → ∞, −∞ < z∗ ≤ 0 (3.E.11-14)

µzsL0

(

1− Ls

L0
L∗

)

kpPsts
=

∫ t∗

0

(
dP ∗

dz∗ + ρgzs

Ps

)∣
∣
∣
∣
z=0

dt∗, 0 ≤ r∗ ≤ R

rs

(3.E.11-15)

We are free to choose which groups we set equal to zero or 1 in order to determine
our scale and reference factors since we are not concerned about scaling our variables
to be of order one. Hence, let us arbitrarily make the following choices (step 7):

R

rs

= 1 ⇒ rs = R; L0

Ls

= 1 ⇒ Ls = L0; Lr

L0
= Ld

L0
⇒ Lr = Ld,

ρgLs

Ps

= ρgL0

Ps

= 1 ⇒ Ps = ρgL0; Patm − Pr

Ps

= 0 ⇒ Pr = Patm;

ρgzs

Ps

= zs

L0
= 1 ⇒ zs = L0; kpρgts

µ(L0 − Ld)
= 1 ⇒ ts = µ(L0 − Ld)

kpρg

(3.E.11-16)

When these scale and reference factors are substituted into the equations (3.E.11-9)
through (3.E.10.15), we obtain the following minimum parametric representation
of the dimensionless describing equations:

1 =
∫ �1

0

(
dP ∗

dz∗ + 1

)∣
∣
∣
∣
z∗=0

dt∗, 0 ≤ r∗ ≤ 1 (3.E.11-17)

1

r∗
∂

∂r∗

(

r∗ ∂P ∗

∂r∗

)

+ �2
∂2P ∗

∂z∗2
= 0 (3.E.11-18)

P ∗ = 1 at z∗ = 0, 0 ≤ r∗ ≤ 1, 0 ≤ L∗ ≤ 1 − �3 (3.E.11-19)

P ∗ = 0 at z∗ = 0, 1 ≤ r∗ < ∞ (3.E.11-20)

∂P ∗

∂z∗ = 0 as z∗ → −∞, 0 ≤ r∗ < ∞ (3.E.11-21)

P ∗ = 1 as r∗ → ∞, −∞ < z∗ ≤ 0 (3.E.11-22)

1 − L∗ =
∫ t∗

0

(
dP ∗

dz∗ + 1

)∣
∣
∣
∣
z=0

dt∗, 0 ≤ r∗ ≤ 1 (3.E.11-23)

where the following dimensionless groups have been defined:

�1 ≡ kpρgtd

µ(L0 − Ld)
; �2 ≡ R

L0
; �3 ≡ Ld

L0
(3.E.11-24)
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A solution to equation (3.E.11-18) subject to the boundary conditions given
by equations (3.E.11-19) through (3.E.11-23) will yield the dimensionless pressure
P ∗ as a function of r∗, z∗, and t∗ and the dimensionless groups �2 and �3.
When the axial pressure gradient is evaluated at exit of the tube, where it is not a
function of r∗, and substituted into equation (3.E.11-17), the resulting solution for
the dimensionless draining time �1 will be a function only of the dimensionless
groups �2 and �3; that is, the minimum parametric representation is given by a
general correlation of the form

�1 ≡ kpρgts

µ(L0 − Ld)
= f1(�2, �3) = f

(
R

L0
,
Ld

L0

)

(3.E.11-25)

where f1(�2, �3) denotes some unspecified function of the dimensionless groups
�2 and �3 that would have to be determined empirically. Note that a naive appli-
cation of the Pi theorem for eight quantities in three units (i.e., n = 8 and m = 3)

would have suggested that five (m − n = 5) rather than three dimensionless groups
were necessary to correlate the draining time. For the Pi theorem to yield the min-
imum parametric representation, it is necessary to recognize that the grouping
kpρg/µ can be considered as a single quantity, in which case only two units need
to be considered.

It would be necessary to take a considerable number of data to establish the
correlation indicated in equation (3.E.11-25). We show here how a general cor-
relation for the draining time can be established from very limited data for a
specific tube, using water in a particular soil. The following empirical correla-
tion has been obtained using water and a 5-cm-radius pipe for a soil having a
permeability kp = 5.9×10−6 cm2 23:

td = 4.94 ln
L0

Ld

(3.E.11-26)

This empirical result is a special case of equation (3.E.11-25) and can be used
to determine the functional form of a more general correlation for the draining
time that can be used for different tubes, fluids, and soils. This can be seen more
easily by using step 8 of the scaling procedure for dimensional analysis outlined
in Section 2.4 in order to eliminate both L0 and Ld from the dimensionless group
that contains the draining time td . This involves generating a new dimensionless
group formed from the original set of groups by means of the operation

�4 ≡ �1

�2
= tdkpρg

µR (1 − Ld/L0)
= f2(�2, �3) (3.E.11-27)

where f2(�2, �3) denotes an unspecified function of the dimensionless groups �2

and �3 that would have to be determined empirically. Equation (3.E.11-27) can

23R. J. Ray, A Rayleigh free convection compliant ice front model for sorted patterned ground, M.S.
thesis, University of Colorado, Boulder, Co, 1981.
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be recast into the following form using step 11:

tdkpρg

µR
≡ �5 = f3(�2, �3) (3.E.11-28)

where f3(�2, �3) denotes an unspecified function of the dimensionless groups �2

and �3 that would have to be determined empirically. In general, the radius R

of the tubes used to determine soil permeability is much less than the initial fill
height L0. If R � L0, then �2 � 1 and we can use the procedure in step 9 of the
scaling analysis procedure for dimensional analysis to eliminate group �2 from the
correlation; hence,

tdkpρg

µR
≡ �5 = f4(�3) (3.E.11-29)

where f4(�3) is an unspecified function of �3 only. A comparison of equa-
tion (3.E.11-29) with equation (3.E.11-26) implies the following:

td = �5
µR

kpρg
= −4.94 ln �3 (3.E.11-30)

A generalized correlation relating soil permeability kp and draining time td can be
obtained by substituting values for the quantities in equation (3.E.11-30) to obtain
the following correlation:

�5 = −4.94(5.9×10−6 cm2)
(

1 g/cm3
) (

980 cm/s2
)

(0.01 g/cm · s) (5 cm)
ln �3

⇒ �5 = −0.572 ln �3 ⇒ tdkpρg

µR
= −0.572 ln

L0

Ld

(3.E.11-31)

In this case, using the scaling analysis approach for dimensional analysis in com-
bination with data for a specific falling head test gives the functional form of a
generalized correlation that relates the measured draining time td to the soil perme-
ability kp and relevant physical properties and process parameters. The generalized
correlation given by equation (3.E.11-31) applies for any falling head test, irrespec-
tive of the fluid, pipe size, and soil, provided that the dimensionless group �2 � 1.

3.P PRACTICE PROBLEMS

3.P.1 Alternative Scales for Laminar Flow Between Stationary and Moving
Parallel Plates

Consider the steady-state fully developed laminar flow of an incompressible vis-
cous Newtonian fluid with constant physical properties between two infinitely wide
parallel flat plates due to both an applied axial pressure gradient and to the upper
plate moving at a constant velocity U0 as shown in Figure 3.2-1. In Section 3.2
we introduce scales for the velocity and y-coordinate to determine the criterion
necessary to ignore the effect of the motion of the upper plate.
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(a) Rescale this problem by introducing an additional scale for the second
derivative as well as the velocity and y-coordinate; you will find that there
is no dimensionless group to determine the velocity scale; however, this can
be determined by integrating the scale for the second derivative.

(b) Rescale this problem by introducing an additional scale for the first deriva-
tive as well as the velocity and y-coordinate. Again you will find that there
is no dimensionless group to determine the velocity scale; however, this can
be determined by integrating the scale for the first derivative.

3.P.2 Laminar Flow Between Stationary and Moving Parallel Plates

Consider the steady-state fully developed laminar flow of an incompressible vis-
cous Newtonian fluid with constant physical properties between two infinitely wide
parallel flat plates due to both an applied axial pressure gradient and to the upper
plate moving at a constant velocity U0, as shown in Figure 3.2-1. In Section 3.2
we scaled this flow to determine the criterion necessary to ignore the effect of the
motion of the upper plate. We found that the motion of the upper plate would not
affect quantities such as the average velocity, volumetric flow rate, or drag at the
stationary plate if equation (3.2-19) were satisfied. However, there was a region of
influence next to the upper plate within which the motion of the plate could never
be ignored. In this problem we explore complementary flow conditions for which
the flow is caused primarily by the motion of the upper plate.

(a) Determine the criterion necessary to neglect the effect of the applied pressure
on quantities such as the average velocity or volumetric flow rate.

(b) Determine if there is a region of influence within which the effect of the
pressure on the flow can never be ignored in determining point quantities
such as the local velocity or drag at the wall.

(c) Solve the simplified describing equations for the velocity profile for condi-
tions such that the criterion you derived in part (a) is satisfied.

3.P.3 Gravity and Pressure-Driven Laminar Flow in a Vertical Tube

Consider the steady-state fully developed laminar flow of a Newtonian liquid with
constant physical properties in a vertical tube of radius R that is subject to both
gravity and a constant axial pressure gradient, as shown in Figure 3.P.3-1.

(a) Write the appropriate form of the simplified equations of motion for this
flow.

(b) Write the boundary conditions required for the differential equations above.

(c) Scale the describing equations to determine the criterion for ignoring the
effect of the applied pressure gradient on the velocity profile.

(d) Solve the resulting simplified describing equations to obtain the velocity
profile.
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Figure 3.P.3-1 Steady-state fully developed laminar flow of a Newtonian liquid with con-
stant physical properties in a vertical tube of radius R and length L subject to both gravity
and a constant axial pressure gradient (P0 − PL)/L.

3.P.4 Axial Flow in a Rotating Tube

Consider the steady-state fully developed laminar flow of an incompressible
Newtonian liquid with constant physical properties in a vertical cylindrical tube
of radius R and length L subject to a constant axial pressure gradient (P0 − PL)/L

and a constant angular rotation about its axis of symmetry at ω radians per second,
as shown in Figure 3.P.4-1.

L
R

PL

P0

z

w

r

Figure 3.P.4-1 Steady-state fully developed laminar flow of an incompressible Newtonian
liquid with constant physical properties in a vertical cylindrical tube of radius R and length
L subject to a constant axial pressure gradient (P0 − PL)/L and a constant angular rotation
at ω radians per second.
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(a) Write the appropriate form of the simplified equations of motion for this
flow.

(b) Write the boundary conditions required for the above differential equations.

(c) Scale the describing equations to determine the dimensionless criteria for
ignoring the effect of the gravitational body force on the flow.

(d) Develop a dimensionless criterion for assuming that the radial pressure gra-
dient is much less than the axial pressure gradient.

(e) Develop a dimensionless criterion for assuming that the circumferential
velocity is much less than the axial velocity.

3.P.5 Laminar Flow Between Converging Flat Plates

In Section 3.3 we developed the criteria for invoking the lubrication-flow approxi-
mation for laminar flow between two converging flat plates. However, these criteria
break down near the upstream region of this flow. Use scaling analysis to determine
the thickness of the region of influence in which the lubrication-flow approximation
breaks down.

3.P.6 Laminar Flow Between Diverging Flat Plates

Consider the pressure-driven steady-state one-dimensional laminar plug flow of
an incompressible Newtonian fluid with constant physical properties and constant
velocity U0 impinging on two nonparallel infinitely wide diverging flat plates as
shown in Figure 3.P.6-1.

(a) Write the appropriate form of the simplified equations of motion for this
flow.

(b) Write the boundary conditions required for the differential equations above.

(c) Scale the describing equations to determine the dimensionless criteria for
making the lubrication-flow approximation.

(d) Solve the resulting describing equations appropriate to lubrication flow for
the x- and y-component velocity profiles.

x
U0 H0

HL

y

L

Figure 3.P.6-1 Steady-state developing laminar flow of an incompressible Newtonian fluid
with constant physical properties between two infinitely wide diverging flat plates; only the
local axial velocity profile is shown.
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Figure 3.P.7-1 Pressure-driven steady-state laminar flow of an incompressible Newtonian
fluid with constant physical properties through a diverging nozzle of length L and a circular
cross-section with radii R0 and RL.

3.P.7 Laminar Flow in a Diverging Nozzle

Consider the pressure-driven steady-state laminar flow of an incompressible New-
tonian fluid with constant physical properties through a diverging nozzle of length
L and a circular cross section as shown in Figure 3.P.7-1. Assume plug flow at
z = 0 with a constant velocity U0.

(a) Write the appropriate form of the equations of motion.

(b) Write the boundary conditions that are necessary to solve the describing
equations.

(c) Scale the describing equations to determine the criteria necessary to assume
lubrication flow.

(d) Solve the resulting simplified lubrication-flow equations for the z- and
r-velocity and axial pressure profiles. Note that the unspecified axial pres-
sure gradient can be shown to be a constant and can be obtained from an
integral mass balance and the known inlet velocity.

3.P.8 Steady-State Flow Between Parallel Circular Disks

Two parallel disks of outer radius R2 are separated by a distance H as shown in
Figure 3.P.8-1. An incompressible Newtonian liquid with constant physical prop-
erties is injected through a porous tube of radius R1 located concentric with the
axis of symmetry of the two disks.

(a) If the liquid is injected at a constant volumetric flow rate Q, write the
appropriate form of the equations of motion.

(b) Write the boundary conditions required to solve the equations of motion.

(c) Scale the describing equations to determine the criteria necessary to assume
lubrication flow.
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Figure 3.P.8-1 Steady-state radial flow of an incompressible Newtonian liquid with con-
stant physical properties between two parallel disks of radius R2 separated by a distance H

due to injection of liquid at a volumetric flow rate Q through a porous tube of radius R1.

(d) Solve the lubrication-flow equations to obtain the velocity profile as a func-
tion of r and z.

(e) Determine the pressure drop P1 − P2 necessary to inject this liquid at the
constant volumetric flow rate Q.

3.P.9 Unsteady-State Flow Between Parallel Circular Disks

Consider the radial flow of an incompressible Newtonian liquid with constant phys-
ical properties between two parallel disks as shown in Figure 3.P.8-1. Assume
that the liquid injection through the porous cylindrical tube is time-dependent and
described by

Q = Q0e
−αt , where Q0 and α are constants (3.P.9-1)

(a) Write the boundary conditions required to solve the equations of motion.

(b) Scale the describing equations to determine the criterion necessary to assume
that the flow is quasi-steady-state.

(c) Solve the quasi-steady-state lubrication-flow equations to obtain the velocity
profile as a function of r, z, and t .

3.P.10 Steady-State Flow Between Spinning Parallel Circular Disks

Consider the steady-state radial flow of an incompressible Newtonian liquid with
constant physical properties between two parallel disks, as shown in Figure 3.P.8-1.
The radial flow is caused by liquid injection through the porous cylindrical tube
at a constant volumetric flow rate Q. Assume now that both disks are spun at a
constant angular velocity ω (radians per second).
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(a) Write the appropriate form of the unsteady-state equations of motion assum-
ing that the lubrication-flow approximation is applicable.

(b) Write the boundary conditions required to solve the equations of motion.

(c) Scale the describing equations to determine the criterion necessary to ignore
the effect of the rotating disks on the pressure profile.

3.P.11 Lubrication-Flow Approximation for a Hydraulic Ram

In Example Problem 3.E.3 we considered lubrication flow in a hydraulic ram as
shown in Figure 3.E.3-1 and used scaling to determine the criterion that must be
satisfied in order to ignore curvature effects on the flow. However, we did not
justify the lubrication-flow approximation that was made.

(a) Write the appropriate form of the equations of motion; however, do not
make the lubrication-flow simplifications.

(b) Write the boundary conditions required to solve the equations of motion.

(c) Scale the describing equations to determine the criteria necessary to justify
the lubrication-flow approximation.

3.P.12 Flow in a Rotating Disk Viscometer

Consider an incompressible Newtonian liquid with constant physical properties that
fills a cylindrical container of radius R to a depth H . A circular plate contacts the
liquid at its upper surface but does not contact the sidewalls of the container, as
shown in Figure 3.P.12-1. By rotating the upper circular plate it is possible to
obtain the viscosity of the liquid by measuring the torque, which is the force times
the radial distance from the axis of rotation, on the upper plate. Operation of this
instrument involves accelerating the upper plate from rest to a constant angular
rotation rate of ω radians per second.

(a) Write the appropriate simplified form of the equations of motion for this
unsteady-state fully developed flow; do not ignore the edge effects due to
the presence of the sidewall of the container.

(b) Write the initial and boundary conditions required to solve the equations of
motion.

(c) Scale the describing equations to determine a criterion for when steady-state
flow conditions can be assumed.

(d) Scale the describing equations to determine a criterion for when the effects
of the sidewall of the cylindrical container on the flow can be neglected.

(e) Solve the steady-state describing equations in the absence of sidewall effects
for the angular velocity uθ as a function of z and r .

(f) Use the velocity profile that you obtained in part (e) to obtain an equation
for the torque exerted on the upper rotating plate by the liquid.
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Figure 3.P.12-1 Flow of a viscous Newtonian liquid with constant physical properties in
a rotating disk viscometer.

3.P.13 Flow in an Oscillating Disk Viscometer

Consider the viscometer shown in Figure 3.P.12-1, which is filled entirely with
an incompressible Newtonian liquid with constant physical properties. Another
way to operate this viscometer is to oscillate rather than rotate the upper circular
plate. Assume that the upper plate is oscillated continuously at an angular rate
of ω0 sin 2π ft radians per second, where ω0 is the amplitude of the oscillation in
radians per second and f is the frequency of the oscillation in cycles per second.

(a) Write the appropriate simplified form of the equations of motion for this
unsteady-state, fully developed flow for which edge effects due to the side-
wall can be ignored.

(b) Write the initial and boundary conditions required to solve the equations of
motion.

(c) Scale the describing equations to determine a criterion for when quasi-
steady-state flow conditions can be assumed.

(d) Consider the describing equations for the special case of very high fre-
quency oscillations for which the effects of the oscillating upper circular
plate are confined to a thin boundary layer near the upper plate. Use scal-
ing to obtain an equation that can be used to estimate the thickness of the
viscous boundary layer at the upper oscillating circular plate.

(e) Based on your scaling in part (d), develop a criterion for ignoring the effect
of the bottom surface of the container on the oscillating flow.

3.P.14 Falling Needle Viscometer

The falling needle viscometer is useful for obtaining viscosity measurements when
only small quantities of the liquid are available for measurement purposes. The
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viscosity is obtained using this viscometer by measuring the time it takes for a
long cylindrical needle that is falling at its terminal velocity to pass between two
known reference planes. This viscometer can be modeled quite well by considering
the hydrodynamics to be steady-state fully developed laminar flow in the annular
region between two cylinders, the inner of which is moving downward at a constant
velocity U0 and the outer of which is stationary; that is, end effects are ignored.
Unfortunately, it is difficult to drop the needle exactly along the centerline of the
outer cylinder. Hence, in general, the cylinders are not concentric, as shown in
Figure 3.P.14-1. We seek to simplify the describing equations to permit a tractable
solution.24 It is convenient to use a moving cylindrical coordinate system located
with its axis concentric with that of the falling cylinder.

(a) Consider the steady-state fully developed flow of an incompressible Newto-
nian liquid with constant physical properties in the annular region between
two cylindrical tubes whose centers are displaced by a distance ε, as shown
in Figure 3.P.14-1. Recall that this flow is driven by the moving boundary of

Side view 

w(q)

Cross-sectional view 

Needle of radius R1
and length L falling at
a constant velocity U0

z

e

q

e

r

R2

R1

R2

R1

U0

Velocity
profile in
stationary
coordinate

system 

Figure 3.P.14-1 Falling needle viscometer showing a small inner cylinder having radius
R1 being dropped at a constant velocity U0 a distance ε off-center in a cylindrical tube of
radius R2.

24This effect has been analyzed by D. B. Thiessen and W. B. Krantz, Rev. Sci. Instrum., 63(9),
4200–4204 (1992).
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the inner cylinder (the needle), which is falling at its terminal velocity dic-
tated by a balance between the gravity force on its volume and the drag
force on its surface area. Show that the appropriate form of the equations of
motion in cylindrical coordinates is given by

0 = ∂P

∂r
(3.P.14-1)

0 = ∂P

∂θ
(3.P.14-2)

0 = −∂P

∂z
+ µ

1

r

∂

∂r

(

r
∂uz

∂r

)

+ µ
1

r2

∂2uz

∂θ2
+ ρg (3.P.14-3)

(b) Show that equation (3.P.14-3) simplifies to

0 = −�P

L
+ µ

1

r

∂

∂r

(

r
∂uz

∂r

)

+ µ
1

r2

∂2uz

∂θ2
+ ρg (3.P.14-4)

where �P ≡ PL − P0 is the pressure drop across the length of the falling
needle for which P0 is the pressure at z = 0 and PL is the pressure at z = L.

(c) Write the appropriate boundary conditions required to solve the simplified
equations of motion. Since the axial pressure drop across the length of the
needle �P is unknown, an auxiliary condition is needed. This is determined
from a force balance across the falling needle that involves the gravitational,
viscous drag, and pressure forces. It will be helpful in specifying the no-slip
condition at the outer cylinder to recall the law of cosines, which permits
relating the local gap thickness w(θ) to the radii of the inner and outer
cylinders, needle displacement ε, and local angular coordinate θ in the form

w(θ) = ε cos θ − R1 + (R2
2 − ε2 sin2 θ)1/2 ∼= ε cos θ

+ (R2 − R1) if ε � R2 (3.P.14-5)

(d) Scale the describing equations to determine the criterion for assuming that
the derivatives of the axial velocity in the circumferential direction can be
ignored. Discuss the physical implications of this criterion.

(e) Use scaling to obtain an estimate of �P , the pressure driving force that
causes flow in the annular gap between the inner cylindrical needle and the
outer stationary tube wall.

(f) Use scaling and the result you obtained in part (e) for �P to obtain an
estimate of the velocity U0 of the falling needle.

3.P.15 Leading-Edge Considerations for Laminar Boundary-Layer Flow

In Section 3.4 we consider laminar boundary-layer flow over a semi-infinite flat
plate and determined that the hydrodynamic boundary-layer approximation can
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be made when the criterion given by equation (3.4-38) is satisfied. However, as
discussed in Section 3.4, the hydrodynamic boundary-layer approximation always
breaks down near the leading edge of the plate. Use scaling analysis to estimate the
region of influence wherein the criterion given by equation (3.4-38) is no longer
satisfied.

3.P.16 Laminar Boundary-Layer Flow with Blowing

Consider a uniform plug flow of an incompressible viscous Newtonian liquid with
constant physical properties and velocity U∞ intercepting a stationary semi-infinite
infinitely wide horizontal flat plate such as that considered in Section 3.4. Assume
that the horizontal flat plate is porous such that there is a constant blowing velocity
V0 along its length, as shown in Figure 3.P.16-1. Blowing is used to increase heat
and mass transfer in boundary-layer flows since it causes the local Reynolds number
to increase, which in turn can cause a transition to turbulent boundary-layer flow.

(a) Use scaling to determine the condition for which the blowing effect on the
boundary-layer flow can be neglected.

(b) Provide a physical interpretation of the condition on the dimensionless group
that you obtained in part (a).

V0

dm(x)
x

y

L

U∞

Figure 3.P.16-1 Uniform plug flow with velocity U∞ of an incompressible viscous New-
tonian fluid with constant physical properties intercepting a stationary semi-infinite infinitely
wide horizontal porous flat plate along which there is a blowing velocity V0; the blowing
causes the boundary-layer thickness, δm, to increase.

3.P.17 Laminar Boundary-Layer Flow with Suction

Consider a uniform plug flow of an incompressible viscous Newtonian liquid
with constant physical properties and velocity U∞ intercepting a stationary semi-
infinitely long infinitely wide horizontal flat plate such as that considered in Sec-
tion 3.4. Assume that the horizontal flat plate is porous so that a constant suction
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Figure 3.P.17-1 Uniform plug flow with velocity U∞ of an incompressible viscous New-
tonian fluid with constant physical properties intercepting a stationary semi-infinitely long
infinitely wide horizontal porous flat plate along which there is a suction velocity V0; the
suction causes the boundary-layer thickness, δm, to decrease.

velocity V0 can be applied along its length, as shown in Figure 3.P.17-1. Suction
is used to decrease the boundary-layer thickness to decrease the local Reynolds
number and thereby delay the transition to turbulence. It is also used to increase
heat and mass transfer in the laminar boundary-layer flow regime by decreasing the
thickness of the boundary-layer region, which provides the controlling resistance
to conduction or diffusion.

(a) Write the appropriate forms of the equations of motion applicable to this
boundary-layer flow; it is not necessary here to justify the form of these
equations by scaling.

(b) Write the boundary conditions required to solve the equations of motion.

(c) We might anticipate that with boundary-layer suction such as we have in
this problem, the boundary-layer thickness might ultimately become con-
stant rather than grow without bound as it does for a boundary layer on a
semi-infinitely long flat plate without suction or with blowing. Use scaling
analysis to determine the criterion for obtaining a constant boundary-layer
thickness; express your answer in terms of a dimensionless group that must
be very small.

(d) For the constant boundary-layer condition obtained in part (c), determine
the x- and y-velocity component profiles.

3.P.18 Entry-Region Laminar Flow in a Cylindrical Tube

Figure 3.P.18-1 shows a schematic of pressure-driven steady-state laminar entry-
region flow of a viscous Newtonian fluid with constant physical properties in a
cylindrical tube of radius R. The flow velocity at the entrance is assumed to be a
constant U0. This is assumed to be a high Reynolds number flow for which the
inertia terms cannot be ignored in the entry region. Hence, in the entry region the
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Figure 3.P.18-1 High Reynolds number steady-state pressure-driven entry-region laminar
flow of a viscous Newtonian fluid with constant physical properties in a cylindrical tube of
radius R, showing the developing boundary layer δm(z) and entrance length Le required for
the initial uniform flow U0 to rearrange so as to become fully developed

action of viscosity will be confined to a region of influence near the tube wall
denoted by the boundary-layer thickness δm(z). The latter will increase axially;
when it reaches the center of the tube, the flow is fully developed. Note that since
this is a confined flow, the fluid in the center of the tube must accelerate as the
boundary layer grows.

(a) Write the appropriate simplified form of the equations of motion for this
steady-state, developing flow.

(b) Write the boundary conditions required to solve the equations of motion.

(c) Scale the describing equations to determine the conditions required to invoke
the hydrodynamic boundary-layer approximation; that is, for which the cou-
pling between the axial and radial components of the equations of motion
can be ignored and for which the axial diffusion of vorticity can be ignored.

(d) Use your scaling analysis to estimate the axial distance required to attain
fully developed flow; reconcile your result with that obtained from the
approximate analytical solution of Langhaar given by25

Le = 0.227
R2ρU0

µ
(3.P.18-1)

3.P.19 Pressure-Driven Flow in an Oscillating Tube

Consider the unsteady-state laminar flow of an incompressible Newtonian fluid
with constant physical properties through a horizontal cylindrical tube of radius R

whose length L is sufficiently long to ensure that entrance and exit effects can be
ignored; that is, the tube can be assumed to be essentially infinitely long. Initially,
there is no flow. At time t = 0 a constant pressure gradient (P0 − PL)/L = �P/L

is impressed across this tube. Simultaneously, the wall of this tube is oscillated at
a velocity uz = U0 cos ωt , where ω is the angular frequency of the oscillation in
radians per second. A schematic of this flow problem is shown in Figure 3.P.19-1.

25H. L. Langhaar, Trans. ASME, 64, A55 (1942).
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Figure 3.P.19-1 Unsteady-state laminar flow of an incompressible Newtonian liquid with
constant physical properties in a circular tube of radius R due to an impulsively applied pres-
sure difference �P ≡ P0 − PL and oscillation of the tube wall described by uz = U0 cos ωt ;
the axial velocity profiles are shown at times t1 and t2, where t2 > t1.

(a) Write the appropriate form of the equations of motion for this unsteady-state
flow.

(b) Write the initial and boundary conditions required to solve the equations of
motion.

(c) Determine the appropriate velocity scale for conditions such that the flow
is mainly caused primarily by the applied pressure gradient.

(d) Determine the appropriate velocity scale for conditions such that the flow
is caused primarily by the oscillating pipe wall.

(e) Scale the describing equations to determine when the effect of the wall
oscillation can be neglected.

(f) Scale the describing equations to determine when this can be considered
to be a quasi-steady-state creeping flow. Be careful to consider both time
effects: i.e., the transients following startup and the periodic oscillations.

(g) Solve for the velocity profile uz(r, t) for the special case of quasi-steady-state
creeping flow.

3.P.20 Countercurrent Liquid–Gas Flow in a Cylindrical Tube

Consider the steady-state fully developed laminar flow of a nonvolatile Newtonian
liquid film of thickness H with constant physical properties at the inner wall of
a vertical cylindrical tube of radius R and length L due to gravity, pressure, and
interfacial drag arising from the fully developed upward pressure-induced flow of
a gas having constant physical properties in the center of the tube, as shown in
Figure 3.P.20-1.

(a) Write the appropriately simplified continuity and equations of motion for
both the liquid and gas phases for this flow.
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Figure 3.P.20-1 Steady-state fully developed laminar flow of a nonvolatile Newtonian
liquid film of thickness H with constant physical properties at the inner wall of a vertical
cylindrical tube of radius R and length L due to gravity, pressure, and interfacial drag arising
from the upward fully developed pressure-induced flow of a gas with constant physical
properties in the center of the tube.

(b) Write the boundary conditions required to solve the differential equations
you obtained in part (a).

(c) Determine the appropriate velocity scale in the liquid film when this flow
is caused primarily by the gravitational body force.

(d) Determine the appropriate velocity scale in the gas phase when this flow is
caused primarily by the applied pressure.

(e) Use scaling to determine the criterion for when the effect of the gas flow
on the liquid film flow can be ignored.

(f) Use scaling to determine the criterion for when the effect of the gravitational
body force on the gas flow can be ignored.

(g) For the conditions considered in part (d), determine the criterion for ignoring
curvature effects in the describing equations; that is, for when the describing
equations in cylindrical coordinates reduce to the corresponding equations
in rectangular coordinates.

(h) Determine the appropriate velocity scale in the liquid film when this flow
is caused primarily by the drag exerted on it by the upward gas flow.

(i) Use scaling to determine the criterion for when the effect of gravity on the
liquid film flow can be ignored.

(j) This flow is an idealization of that within a single packing element such as
a Raschig ring in countercurrent liquid–gas contacting in a packed column.
Flooding in a packed column begins when the upward gas flow causes a
net amount of liquid to be carried upward to the top of the column. Use
the results from your scaling analysis to determine the pressure gradient
required to initiate flooding.
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3.P.21 Stratified Flow of Two Immiscible Liquid Layers

Consider the steady-state fully developed flow of two immiscible Newtonian liq-
uids with constant physical properties between two stationary parallel impermeable
flat plates, as shown in Figure 3.P.21-1. These fluids have densities ρ1 and ρ2, vis-
cosities µ1 and µ2, and thicknesses H1 and H2, respectively. A high pressure P0

is applied at x = 0 and a low pressure PL is applied at x = L. Liquid 1 flows
symmetrically about the center plane between the two flat plates, whereas liquid 2
is confined to a layer having thickness H2 − H1 adjacent to each of the two flat
plates. The velocities in liquids 1 and 2 are denoted by u1 and u2, respectively.
For the scaling analysis in this problem, introduce the following dimensionless
variables in terms of undefined scale and reference factors:

u∗
1 ≡ u1 − u1r

u1s

; u∗
2 ≡ u2

u2s

; y∗
1 ≡ y

y1s

; y∗
2 ≡ y − y2r

y2s

(3.P.21-1)

(a) Write the appropriate form of the simplified continuity and equations of
motion along with the necessary boundary conditions for this flow; gravita-
tional body forces may be neglected in your analysis.

(b) Explain why a reference factor is needed for the velocity in liquid 1 and
why a reference factor is needed for the spatial coordinate in liquid 2.

(c) Determine the scale and reference factors in the dimensionless variables
defined above for the case where the flow in both liquids is caused by the
applied pressure �P ≡ P0 − PL. Indicate why you set various dimensionless
groups equal to zero or 1.

(d) What is the criterion for ignoring the effect of liquid 1 on the flow of liquid
2 for the conditions in part (c)?

(e) Determine the scale and reference factors in the dimensionless variables
defined above for the case where the flow in liquid 1 is caused by the applied
pressure �P ≡ P0 − PL, whereas the flow in liquid 2 is caused primarily
by the drag force exerted by liquid 1 at the interface. Indicate why you set
various dimensionless groups equal to zero or 1.

x

y

 

H2 H1
Liquid 1

P0

Liquid 2

Liquid 2

Figure 3.P.21-1 Steady-state fully developed flow of two immiscible Newtonian liquids
with constant physical properties between two stationary parallel impermeable flat plates.
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(f) What is the criterion for determining whether the scaling in part (c) or in
part (e) is appropriate for the describing equations?

(g) Use the results of your scaling analysis in part (e) to estimate the velocity
gradients in both liquids 1 and 2; that is, develop appropriate scales for the
velocity gradients in each liquid.

(h) For the scaling analysis done in part (e), determine the dimensionless groups
that are necessary to correlate the total rate of entropy production Ṡ, which
is given by

Ṡ = −
H1∫

0

µ1

T

(
dux

dy

)2

WLdy −
H2∫

H1

µ2

T

(
dux

dy

)2

WLdy (3.P.21-2)

where T is the absolute temperature and W and L denote the width and
length, respectively, of the two flat plates.

(i) One means for reducing the viscous drag at the walls experienced in pumping
viscous liquids such as petroleum is to inject a less viscous immiscible liquid
such as water, which will form a layer at the wall. However, for this idea
to work, we have to establish that the less viscous liquid (e.g., water) rather
than the more viscous liquid (e.g., petroleum) will go to the wall region.
This question can be answered by invoking the principle that continuous
steady-state processes seek a state of minimum entropy production. Use this
principle along with the results of your scaling analysis in part (e) to deter-
mine whether the viscous or the less viscous liquid will go to the wall region.

3.P.22 Laminar Cylindrical Jet Flow

In Example Problem 3.E.8 we considered a jet of an incompressible Newtonian
liquid with constant physical properties issuing from a circular orifice with an
initial velocity U0 and falling vertically under the influence of gravity in an inviscid
gas as shown in Figure 3.E.8-1. We scaled the describing equations to explore the
conditions for which quasi-parallel flow can be assumed; that is, when the axial
velocity profile can be assumed to depend only on the axial coordinate. In scaling
the describing equations we introduced a scale for the radial derivative of the axial
velocity since we did not anticipate that this derivative would scale as the ratio
of the characteristic axial velocity scale divided by the characteristic radial length
scale. We anticipated the need to scale this derivative with its own scale since the
axial velocity does not change significantly across the jet. It was stated that if we
had scaled this radial derivative with the ratio of the characteristic axial velocity
scale to the characteristic radial length scale, the forgiving nature of scaling would
have indicated a contradiction. To better understand what is meant by this, let us
assume (incorrectly!) that the radial derivative of the axial velocity scales as the
axial velocity scale uzs divided by the radial length scale rs . Show that this leads to
an inconsistency in the resulting dimensionless equations in that the dimensionless
group multiplying one term in the describing equations becomes very large, whereas
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the others terms are of ◦(1); this implies that there is no term to balance this very
large term.

3.P.23 Free Surface Flow Down a Plate with Condensation

Consider the steady-state incompressible laminar film flow of a Newtonian liquid
having constant physical properties down an infinitely wide plane surface inclined
at an angle θ to the horizontal as shown in Figure 3.P.23-1. At the interface between
the liquid film and the ambient gas phase, a constant amount of liquid W̃m is added
to the film flow per unit area of free surface. For example, this might occur due to
condensation occurring at the liquid–gas interface.

(a) Write the appropriate forms of the steady-state equations of motion assuming
that the ambient gas phase exerts negligible drag on the liquid film.26

(b) Write the boundary conditions required to solve the equations of motion;
note that the continuity of surface normal stresses and tangential stress bal-
ance must account for the surface-curvature effects.27

(c) Derive the kinematic surface condition for this flow; note that the mass
addition at the interface must be taken into consideration.

(d) Scale the describing equations to determine the conditions required to make
the lubrication-flow approximation and to ignore the surface-curvature effects.

x

y

h(x)

∆x

mass
area·timeWm

∼

Liquid

Gas

Figure 3.P.23-1 Steady-state incompressible laminar film flow of a Newtonian liquid with
constant physical properties down an infinitely wide plane surface inclined at an angle θ to
the horizontal. Mass addition at the free surface of W̃m units of mass per unit area per unit
time causes the local film thickness η to increase as a function of axial distance x.

3.P.24 Free Surface Flow Over a Horizontal Filter

A filter in a large industrial plant operates by letting a solution flow across a large
sheet of filter paper as shown in Figure 3.P.24-1. Assume steady-state developing
incompressible laminar flow of a Newtonian liquid with constant physical properties

26Scaling was used to determine the criterion for making this assumption in Example Problem 3.E.1.
27See the example in Section 3.7 as a guide to scaling this problem.
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Figure 3.P.24-1 Gravitationally induced steady-state laminar flow of an incompressible
Newtonian liquid with constant physical properties across a filter through which the mass
flow rate per unit area is W̃m.

that is driven by a constant hydrostatic pressure gradient due to a variable film
thickness in the x-direction. Assume also that mass is removed from this flow
at the filter boundary at a constant rate of W̃m units of mass per unit area per
unit time.

(a) Write the appropriate forms of the steady-state equations of motion assuming
that the ambient gas phase exerts negligible drag on the liquid film (see
footnote 26).

(b) Write the boundary conditions required to solve the equations of motion;
note that the continuity of surface normal stresses and tangential stress bal-
ance must account for the surface-curvature effects (see footnote 27).

(c) Derive the kinematic surface condition for this flow; note that the mass loss
through the filter must be taken into consideration.

(d) Scale the describing equations to determine the condition(s) required to
make the lubrication-flow approximation and to ignore the surface-curvature
effects.

(e) Solve the simplified equations of motion that you obtained in part (d) to
obtain the axial velocity profile in terms of the unknown hydrostatic pressure
gradient.

(f) Determine the unknown hydrostatic pressure gradient given that the volu-
metric flow rate Q is specified.

(g) Determine the component of the velocity normal to the filter.

3.P.25 Curtain-Coating Flow

The process of curtain coating is shown in Figure 3.P.25-1. This process is used,
for example, to apply protective polymer coatings at high speed to continuous
steel or tin-plate strip. The curtain flow emanates from a slot at x = 0, at which
point it has a velocity U0. The solid guides at z = ±W/2 maintain the film at a
constant thickness in the z-direction. However, since the film accelerates due to the
gravitational body force, it thins in the y-direction, as shown in the side view in
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Figure 3.P.25-1 Gravitationally induced steady-state laminar curtain-coating flow of an
incompressible Newtonian liquid with constant physical properties emanating from a rect-
angular slot with an initial velocity of U0; front view shows solid guides that maintain the
film at constant width; the axial velocity profile is shown in both views.

Figure 3.P.25-1. The liquid–gas interface is defined by y = η(x), where η decreases
with increasing x due to the increase in the x-velocity component. The object to
be coated can be ignored entirely in this analysis since we are concerned only with
the falling curtain flow. We assume steady-state laminar flow of an incompressible
Newtonian liquid with constant physical properties and ignore edge effects at the
sidewalls. Note that the applicability of all these assumptions could be determined
using scaling analysis. We use scaling analysis to explore the conditions for which
quasi-parallel flow can be assumed. We then test the applicability of our scaling
analysis results using data from the curtain-coating process.

(a) Write the appropriate form of the three-dimensional equations of motion for
this flow assuming that the ambient gas phase exerts a negligible drag on
the liquid film (see footnote 26).

(b) Write the appropriate boundary conditions for this flow assuming that the
surface-tension effects associated with the curvature can be ignored.28 How-
ever, do not ignore the effects of curvature in specifying the tangential and
normal stress boundary conditions at the free surface. In deriving the tan-
gential and normal stress boundary conditions at the liquid–gas interface,
use the convection for θ and the normal and tangential unit vectors, n and
t , respectively, shown in Figure 3.P.25-2.

(c) Write the appropriate form of the kinematic surface condition for this flow.

28Note that scaling analysis could be used to determine when surface-tension and curvature effects can
be neglected; the latter were considered in Section 3.7.



130 APPLICATIONS IN FLUID DYNAMICS

y
x

Gas Liquid

Slot

h(x)

q

t
n

Figure 3.P.25-2 Enlarged view of the x–y plane for curtain flow, showing normal and
tangential unit vectors, n and t , respectively, at the liquid–gas interface.

(d) Introduce the following dimensionless variables involving unspecified scale
and reference factors into the describing equations:

u∗
x ≡ ux − uxr

uxs

; u∗
y ≡ uy

uys

; u∗
z ≡ uz

uzs

; P ∗ ≡ P − Pr

Ps

;

η∗ ≡ η

ηs

;
(

∂ux

∂y

)∗
≡ 1

βs

∂ux

∂y
; x∗ ≡ x

xs

; y∗ ≡ y

ys

; z∗ ≡ z

zs

(3.P.25-1)

Note that ∂ux/∂y does not scale with uxs/ys since ux does not undergo
a characteristic change of uxs over the distance ys . The proper scale for
βs is obtained from the tangential stress boundary condition. Note that this
scaling for ∂ux/∂y implies that ∂2ux/∂y2 scales with βs/ys . Use xs = L,
where L is some arbitrary but constant downstream distance. Your pressure
scale Ps will come from balancing the pressure term with the convection
terms in the y-component of the equations of motion. This follows from the
fact that the pressure gradient arises from the acceleration of the flow.

(e) Simplify the tangential and normal stress boundary conditions appropriate
to the assumption of small curvature; that is, for dη/dx � 1.

(f) Assume small curvature and use your scaling analysis in part (d) to deter-
mine the criteria for assuming that this is a quasi-parallel flow; that is, a
flow that can be described by considering only the changes of the x-velocity
component in the x-direction.

(g) Show that the solution to the simplified set of equations appropriate to the
quasi-parallel-flow approximation is given by

u2
x = U 2

0 + 2xg (3.P.25-2)

(h) Table 3.P.25-1 summarizes several data sets for a series of curtain flows for
which the fall velocity ux in cm/s at a position below the slot of x = 5 cm is
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TABLE 3.P.25-1 Data Sets for Curtain Flow

Data Viscosity Slot Width Mean Velocity at Measured Velocity at
Set (poise) (mm) Slot Exit (cm/s) x = 5 cm (cm/s)

1 1.2 0.6 18 96
2 1.5 0.6 56 110
3 1.95 0.2 38 100
4 2.0 0.2 47 109
5 2.6 0.6 18 97
6 2.7 0.3 33 93
7 2.8 0.3 13 87
8 3.45 0.6 6 86
9 3.7 1.5 5 86

10 5.3 1.5 12 85
11 9.9 0.6 8 75

reported as a function of the liquid viscosity in poise (g/cm ·s), the slot width
in mm, and the mean velocity U0 in cm/s at the exit of the slot. Compare
the fall velocities predicted by the quasi-parallel-flow approximation in part
(g) with the measured fall velocities and also assess the validity of the quasi-
parallel-flow approximation. Discuss any significant deviations between the
experimental and model results.

3.P.26 Flow in a Semi-infinite Porous Medium Bounded by a Flat Plate

Consider the steady-state fully developed pressure-driven flow of an incompressible
Newtonian liquid through a liquid-saturated semi-infinite porous medium that is
bounded by a horizontal flat plate as shown in Figure 3.P.26-1.

(a) Write the appropriate form of the equations of motion applicable to porous
media for this flow.

(b) Write the boundary conditions required to solve the equations of motion.

Solid plate

P0 PL

x

Porous media 

dp

y

Figure 3.P.26-1 Steady-state fully developed flow of an incompressible Newtonian fluid
with constant physical properties through a semi-infinite porous medium bounded by a
horizontal flat plate due to an applied pressure gradient (P0 − PL)/L.
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(c) Solve the equations you derived in parts (a) and (b) for the velocity profile.

(d) Scale the describing equations for this flow to determine the criterion for
ignoring the effect of the flat plate on the velocity profile.

(e) Determine the thickness of the region of influence δp within which the effect
of the flat plate on the velocity profile cannot be ignored.

(f) Solve the simplified form of the equations of motion for the velocity profile
assuming that the effect of the flat plate can be ignored.

(g) Show how the solution for the velocity profile that you derived in part
(c) reduces to the result that you obtained in part (f).

3.P.27 Porous Media Flow Between Parallel Flat Plates

Consider the steady-state fully developed pressure-driven flow of an incompressible
Newtonian liquid through a liquid-saturated semi-infinite porous medium that is
bounded by horizontal parallel flat plates as shown in Figure 3.P.27-1.

(a) Write the appropriate form of the equations of motion applicable to porous
media for this flow.

(b) Write the boundary conditions required to solve the equations of motion.

(c) Solve the equations you derived in parts (a) and (b) for the velocity profile.

(d) Scale the describing equations for this flow to determine the criterion for
ignoring the effect of the solid boundaries on the velocity profile.

(e) Determine the thickness of the region of influence δp within which the effect
of the solid boundaries on the velocity profile cannot be ignored.

y

x

Solid plate

Porous media

Solid plate

H

L

P0 PL

dp

Figure 3.P.27-1 Steady-state fully developed flow of an incompressible Newtonian fluid
with constant physical properties through a porous medium bounded by horizontal parallel
flat plates due to an applied pressure gradient (P0 − PL)/L.
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(f) Solve the simplified form of the equations of motion for the velocity profile
assuming that the effect of the solid boundaries can be ignored.

(g) Show how the solution for the velocity profile that you derived in part
(c) reduces to the result that you obtained in part (f).

3.P.28 Gravity-Driven Film Flow over a Saturated Porous Medium

In Example Problem 3.E.9 we considered the steady-state fully developed flow of
an incompressible Newtonian liquid film over an inclined liquid-saturated porous
medium due to a gravitationally induced body force as shown in Figure 3.E.9-1.
We used scaling analysis to determine when the flow through the porous media has
a negligible effect on the flow of the liquid film. We introduced one set of scales for
the velocity and the length variables in the liquid film and another set of scales for
velocity and length variables in the porous medium. We stated that if we had not
done this, we would have arrived at a contradiction in our scaled equations. How-
ever, the forgiving nature of scaling would then indicate that we had not scaled some
quantity so that it was ◦(1). To understand better what is meant by the forgiving
nature of scaling, rework this problem while assuming (incorrectly!) that the veloc-
ity and the length scales are the same in both the liquid film and the porous medium.

3.P.29 Radial Flow from a Porous Cylindrical Tube

Consider the steady-state laminar flow of a Newtonian liquid with constant physical
properties that is caused by fluid emanating radially at a uniform volumetric flow
rate Q from a cylindrical tube having length L, outer radius R, and porous walls
that is immersed in an infinite pool of the same liquid as shown in Figure 3.P.29-1.

RL

z

r

Figure 3.P.29-1 Steady-state laminar flow of a Newtonian liquid with constant physical
properties that is caused by fluid emanating radially at a uniform volumetric flow rate Q

from a cylindrical tube of length L, outer radius R, and porous walls that is immersed in
an infinite pool of the same liquid; the radial velocity profile at the surface of the cylinder
is shown at which the pressure is PR ; the pressure far removed from the cylinder is P∞.
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(a) Write the appropriate form of the simplified equations of motion for the flow
exterior to the cylinder, allowing for the fact that the finite length of the
cylinder implies that there will be end effects; note that this flow is caused
by the pressure gradient PR − P∞ generated between the outer surface of
the porous cylindrical tube and infinity.

(b) Write the boundary conditions required for the differential equations above.

(c) Scale the describing equations to determine the criteria for ignoring the end
effects on the radial velocity profile; note that the radial velocity scale is
determined from the known volumetric flow rate.

(d) Solve the resulting simplified describing equations to obtain the radial veloc-
ity profile in the liquid exterior to the cylinder.

3.P.30 Entry-Region Flow in a Tube with a Porous Annulus

In this problem we explore the idea that one might be able to decrease the entry
region length for steady-state laminar pipe flow by lining the wall of the pipe
with an annular region of porous medium, as shown in Figure 3.P.30-1. The outer
impermeable wall of the pipe is at R2. The porous medium is confined in the annular
region defined by radii R1 and R2, where R1 < R2. Assume that fluid enters the pipe
in plug flow; that is, uz = U0 at z = 0 for 0 � r � R2. The flow within the pipe,
including the porous annular region, is caused by an applied pressure difference
over the length of the pipe L; the downstream pressure is known and denoted by
PL; however, the upstream pressure is not specified. This fluid may be assumed to
be Newtonian and to have constant physical properties. The pipe is assumed to be
horizontal such that gravitational body forces can be ignored.

(a) Write the appropriately simplified continuity and equations of motion for
the flow within the pipe; in writing these equations, denote the velocity
components as uz, ur , and uθ .

(b) Write the appropriately simplified continuity and equations of motion for
the flow within the porous pipe wall; in writing these equations, denote the
velocity components as �uz, �ur , and �uθ .

(c) Write the boundary conditions required to solve the differential equations
you obtained in part (a).

(d) Write the boundary conditions required to solve the differential equations
you obtained in part (b). Assume that the radial velocity profile within
the porous medium becomes pluglike within a region of influence that has
an unspecified thickness δp whose value will be estimated in the scaling
process; that is, assume that the flow within the porous medium departs
from being pluglike only very near the boundaries at r = R1 and r = R2.

(e) Determine the scale and reference factors for the flow in the pipe; estimate
the thickness of the boundary layer or region of influence δm.
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Figure 3.P.30-1 Side and end views of entry-region flow of an incompressible Newtonian
fluid with constant physical properties in a pipe consisting of an open region of radius R1

and an annular region of porous medium between R1 and R2.

(f) Determine the scale and reference factors for the flow within the porous
medium; in particular, estimate the thickness of the region of influence δp.

(g) What is the criterion for ignoring the effect of the porous medium on flow
in the pipe?

(h) What are the criteria for ignoring the effect of the curvature on the equations
of motion for flow in both the nonporous and porous regions of the pipe?

(i) Assess the merits of using this outer annular region of the porous medium
to reduce the entrance length required to achieve fully developed laminar
flow in the pipe.

3.P.31 Steady-State Laminar Flow of a Compressible Gas

In Section 3.9 we considered the steady-state laminar flow of a compressible gas
in a cylindrical tube as shown in Figure 3.9-1. We scaled the describing equations
to determine the criterion for assuming that this flow was incompressible. This
criterion was that the Mach number for the flow must be much less than 1. In
scaling the describing equations we introduced a scale for the radial derivative of
the pressure since we did not anticipate that this derivative would scale in the same
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way as the axial pressure gradient. We raised the question as to how one knows
whether to scale a derivative as the ratio of some dependent variable scale divided
by some independent variable scale or to introduce a separate scale for the entire
derivative. We indicated that the answer to this rhetorical question was contained
in the forgiving nature of scaling. To better understand what is meant by this, let
us assume (incorrectly!) that the radial pressure derivative scales as the pressure
scale Ps divided by the radial length scale rs . Show that this leads to inconsistency
in the resulting dimensionless equations in that one term becomes much greater
than 1, with no other terms balancing it.

3.P.32 Velocity Profile Distortion Effects Due to Fluid Injection and
Withdrawal

Flow-field-flow fractionation is a technique for separating small particles such as
proteins and viruses from a carrier fluid such as water by combining a longitudinal
laminar flow with a transverse flow. The latter can be imposed by making the
closely spaced parallel lateral walls of the horizontal flow channel consist of two
permeable membranes. Inflow and outflow at a constant velocity V0 of the same
carrier fluid (without any particles) occurs through the upper and lower mem-
branes, respectively, as shown in Figure 3.P.32-1. This drives the particles, which
are injected as a pulse in the axially flowing fluid, toward the lower membrane and
thereby provides a means of separating them. Field-flow fractionation is consid-
ered in more detail in Chapter 5 when scaling is applied to mass transfer. In this
problem we are concerned with developing a criterion for determining when the
longitudinal velocity profile can be assumed to be unaffected by the transverse flow.

x

H

L

y
 

V0

V0

Figure 3.P.32-1 Flow-field-flow fractionation showing transverse injection of a fluid with
a velocity V0 into a longitudinal flow of the same fluid that is assumed to be initially in
fully developed laminar flow; the distortion of the velocity profile that can occur due to
transverse injection is shown schematically.



PRACTICE PROBLEMS 137

The entering carrier fluid can be assumed to be a Newtonian fluid with constant
physical properties and to have a velocity profile given by

ux = 2U

(
2y

H
− y2

H 2

)

(3.P.32-1)

where U is the average axial velocity.

(a) Write the appropriate form of the equations of motion that describe this
flow.

(b) Write the boundary conditions that would be necessary to solve the equations
of motion.

(c) Determine the criterion necessary to ignore the effect of the permeation
through the upper and lower membrane boundaries on the solution for the
x-component of the velocity if the latter is to be used to determine quantities
such as the volumetric flow rate or average velocity.

(d) If one is interested in determining quantities in the vicinity of the mem-
brane, such as the drag on its surface, one cannot ignore the effect of the
permeation on the flow in this wall region (i.e., since the nonzero perme-
ation velocity can have a significant influence on the small axial velocity
near the membrane surface). Use scaling to determine the thickness of the
region of influence near the lower membrane boundary wherein the effects
of the permeation can never be ignored.

3.P.33 Flow Between Parallel Impermeable and Permeable Flat Plates

Consider the steady-state laminar flow of a Newtonian fluid with constant physical
properties through a horizontal channel due to a pressure driving force P0 − PL

applied over the length L as shown in Figure 3.P.33-1. The upper surface of this
channel at y = H consists of an impermeable solid plate. The lower surface of this
channel at y = 0 consists of a permeable membrane; the permeation velocity V0

through this membrane is given by

V0 = km[P (x) − Patm] (3.P.33-1)

where km is the permeability of the membrane, P (x) − Patm is the pressure drop
across the membrane in which P (x) is the local pressure on the high-pressure side
of the membrane at y = 0, and Patm is the constant pressure on the low-pressure
side of the membrane, which is assumed to be atmospheric pressure. Note that, in
general, PL − Patm > 0, to ensure that permeation occurs over the entire length L

of the membrane. Ignore body forces and lateral edge effects (i.e., those in the z-
direction perpendicular to the plane of Figure 3.P.33-1). Also assume that the flow
is fully developed when it enters this membrane module at x = 0; note, however,
that we are not given any information on the average or maximum velocity of the
velocity profile at x = 0.
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Patm (atmospheric pressure)

Figure 3.P.33-1 Steady-state laminar flow of a Newtonian fluid with constant physical
properties through a horizontal channel due to a pressure driving force P0 − PL applied
over the length L; the upper surface at y = H consists of an impermeable solid plate; the
lower surface at y = 0 consists of a permeable membrane through which permeation occurs
at a constant velocity V0.

(a) Write the appropriate form of the equations of motion that describe this
flow.

(b) Write the boundary conditions that would be necessary to solve the equations
of motion.

(c) Determine the criterion for ignoring the axial diffusion of vorticity (mo-
mentum).

(d) Determine the criteria necessary to assume that this flow is essentially fully
developed within the region 0 � x � L.

(e) For the simplifying assumptions appropriate to parts (c) and (d), determine
the solution for the dimensionless pressure and axial velocity profiles.

(f) For the simplifying assumptions appropriate to parts (c) and (d), derive an
equation for determining the y-component of the velocity; it is not necessary
to solve this equation.

(g) In part (e) you determined the solution for the dimensionless pressure profile
P (x). In fact, the pressure will have a slight dependence on y as well. For
the simplifying assumptions appropriate to parts (c) and (d), determine the
equations necessary to obtain the complete dimensionless pressure profile
P (x, y); that is, including the y-dependence as well. It is sufficient to express
your result for the pressure profile in terms of the two velocity components
ux and uy .

(h) Determine the criterion necessary to ignore the effect of the permeation
through the membrane on the solution for the x-component of the velocity
if the latter is to be used to determine quantities such as the volumetric flow
rate or average velocity.
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(i) If one is interested in determining quantities in the vicinity of the membrane,
such as the drag on its surface, one cannot ignore the effect of the permeation
on the flow in this wall region (i.e., since the nonzero permeation velocity can
have a significant influence on the small axial velocity near the membrane
surface). Use scaling to determine the thickness of the region of influence
wherein the effects of the permeation can never be ignored.

3.P.34 Flow in an Annulus with Fluid Injection and Withdrawal

Consider the steady-state fully developed flow of an incompressible Newtonian
fluid with constant physical properties in the annular region between radii R1 and
R2, as shown in Figure 3.P.34-1. The flow in the axial direction is caused by a
constant-pressure driving force given by �P ≡ P0 − PL applied across the length
L. Both the inner wall at R1 and the outer wall at R2 are permeable membranes.
Fluid is injected at a constant radial velocity V0 into the annular region through
the inner wall at R1 and withdrawn at some constant unspecified velocity (not
necessarily equal to V0) from the annular region through the outer wall at R2.

z

r
Injection of fluid at inner wall 
at constant velocity V0

PLP0

SIDE VIEW
Withdrawal of fluid at outer wall

R2R1

 

END VIEW Axial and radial flow in
this annular region

Inner wall at R1

Outer wall at R2 

L

Figure 3.P.34-1 Steady-state fully developed laminar flow of a Newtonian fluid with con-
stant physical properties through an annulus due to a pressure driving force P0 − PL applied
over the length L; fluid injection occurs at constant velocity V0 through the inner permeable
wall at r = R1 and fluid withdrawal occurs at a constant unspecified velocity at the outer
permeable wall at r = R2.
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This injection and withdrawal of fluid is done under conditions that maintain fully
developed flow throughout the annulus.

(a) Simplify the continuity equation in cylindrical coordinates.

(b) What are the implications of the continuity equation for the case of fully
developed flow for the axial component of velocity? Explore these math-
ematically by integrating the appropriate term in the continuity equation
that contains the axial velocity. Be careful in considering the integration
constant(s) you obtain in your partial integration.

(c) What are the implications of the continuity equation for the case of fully
developed flow for the radial component of velocity? Explore these mathe-
matically by integrating the appropriate term in the continuity equation that
contains the radial velocity. Apply an appropriate boundary condition to this
first-order differential equation for the axial velocity and obtain a equation
for the radial velocity profile. Note in curvilinear coordinates that fully
developed flow does not necessarily mean that the radial velocity component
does not change in the radial direction, however, it does imply something
about the radial variation of the radial velocity.

(d) Simplify the axial component of the equations of motion in cylindrical coor-
dinates for this flow. Note that the axial pressure gradient is constant, as
indicated in the problem statement.

(e) Write the appropriate boundary conditions needed to solve the differential
equation that you derived in part (d).

(f) Simplify the radial component of the equations of motion in cylindrical
coordinates for this flow; you may ignore the small effect of the gravitational
body force.

(g) Scale the differential equations and boundary conditions that you derived
for this flow in parts (d) and (e). Your answer should include specifying

the scale and reference factors needed to ensure that your dependent and
independent variables are bounded of order one.

(h) Use your scaling analysis in part (g) to determine the criterion for ignoring
the effect of the fluid injection and withdrawal at the walls on the solution
for the axial velocity.

(i) Use your scaling analysis in part (g) to determine the criterion for assuming
that the inner wall is essentially at r = 0.

(j) Use your scaling analysis in part (g) to determine the criterion for ignoring
the curvature effects. That is, what is the criterion for assuming that this is
essentially the same as flow between two parallel flat plates at which there
is injection at the lower plate and withdrawal at the upper plate?

(k) Solve the differential equation that you derived in part (f) to obtain an
analytical solution for the pressure profile as a function of r and z; in
carrying out this integration, do not forget that ∂P/∂z = −�P/L since it
will help you determine the integration “constant” that you obtain in your
radial integration.
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(l) Solve the differential equation and appropriate boundary conditions that
you derived in parts (d) and (e) to obtain an analytical solution for the axial
velocity profile as a function of r .

3.P.35 Flow Between Parallel Permeable Membranes

Consider the parallel permeable membranes shown in Figure 3.P.35-1, which are
open at the downstream end at x = L to atmospheric pressure Patm, but closed at
the upstream end at x = 0. All along the semipermeable walls of the parallel mem-
branes, an incompressible Newtonian liquid with constant physical properties flows
in at a constant velocity V0. The fluid that flows in through the semipermeable walls
ultimately exits to the atmosphere from the open end of the parallel membranes.

(a) Write the appropriate form of the equations of motion for this flow.

(b) Write the boundary conditions that are required to solve the equations of
motion.

(c) Scale the describing equations to determine the criteria for making the
lubrication-flow approximation.

(d) Solve for the axial velocity profile as a function of y and x; be certain that
you express your answer entirely in terms of known quantities; that is, you
must eliminate the pressure gradient from the equation that you obtain for
the axial velocity profile.

(e) Solve for the pressure profile at any axial position along the flow.

x

y

Patm

V0

L

H

V0

Figure 3.P.35-1 Steady-state laminar flow of an incompressible Newtonian liquid with
constant physical properties between parallel permeable membranes owing to a constant
radial velocity V0 through the permeable wall at y = ±H ; the end between the parallel
membranes at x = 0 is closed and impermeable; the end at x = L is open to atmospheric
pressure Patm.
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(f) Solve the simplified describing equations that you obtained in part (c) for
the y-component of velocity as a function of y and x.

3.P.36 Dimensional Analysis for Flow Around a Falling Sphere

In Section 3.10 we used the scaling approach for dimensional analysis to develop a
correlation for the terminal velocity Ut of a spherical particle having radius R and
density ρp falling, owing to gravitational acceleration g through an incompressible
Newtonian liquid having density ρ and viscosity µ, as shown in Figure 3.10-1.

(a) Use the scaling analysis approach to dimensional analysis to develop a
correlation for the viscous drag force on the spherical particle.

(b) Consider how the correlation that you developed in part (a) simplifies for
the special case of creeping flow.

3.P.37 Dimensional Analysis for Impulsively Initiated Laminar Tube Flow

In Example Problem 3.E.7 we considered the impulsively initiated laminar flow of
an incompressible Newtonian fluid with constant physical properties in a cylindrical
tube, as shown in Figure 3.E.7-1.

(a) Use the scaling approach to dimensional analysis to determine the dimen-
sionless groups needed to correlate the instantaneous local velocity uz(r, t).
Isolate uz into just one dimensionless group.

(b) Use the scaling approach to dimensional analysis to determine the dimen-
sionless groups needed to correlate the instantaneous viscous drag force on
the wall. Be certain to write all the equations you would solve in order to
obtain the viscous drag force. Isolate uz into just one dimensionless group.

(c) How would the dimensional analysis in parts (a) and (b) simplify for the
special case of fully developed flow?

3.P.38 Dimensional Analysis for Flow in an Oscillating Tube

In Practice Problem 3.P.19 we considered the unsteady-state flow of an incom-
pressible Newtonian fluid with constant physical properties through a horizontal
cylindrical tube of radius R and length L due to both an axial pressure gradient
and an oscillating wall, as shown in Figure 3.P.19-1. Consider the special case of
unsteady-state flow in this tube that is caused only by tube wall that is oscillated
at a velocity uz = U0 cos ωt , where ω is the angular frequency of the oscillation in
radians per second.

(a) Use the scaling approach to dimensional analysis to determine the dimen-
sionless groups needed to correlate the instantaneous local velocity uz(z, t);
isolate uz into one dimensionless group, t into another, and the viscosity
into a third dimensionless group; note that there may be more than three
dimensionless groups.
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(b) How would the dimensional analysis in part (a) simplify for quasi-steady-
state creeping flow?

3.P.39 Dimensional Analysis for Curtain-Coating Flow

In Practice Problem 3.P.25 we consider the steady-state laminar curtain-coating
flow of an incompressible Newtonian liquid with constant physical properties as
shown in Figure 3.P.25-1. This problem involved the use of scaling analysis to
simplify the describing equations appropriate to a quasi-parallel flow. In part (h) of
this problem the analytical solution for the axial velocity ux at 5 cm down from
the entrance slot was compared with experimental measurements. We suspect that
the result for the axial velocity that we obtained in part (g) of this problem will
display considerably more error as the viscous terms that we ignored in our scaling
analysis become more important. Assume that the pressure terms in the equations of
motion can be ignored and use dimensional analysis to arrive at the dimensionless
groups needed to correlate the axial velocity ux at any point x = L below the slot.
Assume that the axial velocity that you are correlating represents an average value
of ux across the cross-section at any point x = L.

3.P.40 Dimensional Analysis for Flow Between Parallel Membranes

Consider the steady-state fully developed laminar flow of an incompressible New-
tonian fluid with constant physical properties between two unbounded perme-
able membranes separated by a distance 2H due to a pressure driving force
�P ≡ P0 − PL applied over a distance L, as shown in Figure 3.P.40-1. The same

x

y

PL

L

P0

V−H

V+H

+H

−H

Figure 3.P.40-1 Steady-state fully developed laminar flow of an incompressible Newtonian
fluid with constant physical properties through a horizontal channel due to a pressure driving
force P0 − PL applied over the length L; injection of this same fluid occurs through the
membrane boundary at y = −H at a constant permeation rate of V−H ; withdrawal of fluid
occurs at the upper membrane boundary at y = +H at a constant permeation rate of V+H .
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fluid is simultaneously injected at the lower plate at a velocity V−H while uniform
suction occurs at the upper plate to remove fluid at the velocity V+H .

(a) Use the continuity equation to show that V−H = V+H = V , a constant.

(b) Use dimensional analysis to develop a correlation for the total drag force
exerted in the +z-direction by the flowing fluid on the upper and lower
plates.

(c) Use your dimensional analysis result to determine how much the total drag
force will increase if the applied pressure force �P is doubled.

(d) Use dimensional analysis to develop a correlation for the volumetric flow
rate Q.

(e) Use your dimensional analysis results in parts (b) and (d) to determine how
much the total drag force will increase if the volumetric flow rate is doubled.

3.P.41 Dimensional Analysis for Flow in a Hollow-Fiber Membrane

In Example Problem 3.E.10, we consider the steady-state flow of an incompressible
Newtonian fluid with constant physical properties in a hollow-fiber membrane, one
end of which is closed and the other open to the atmosphere, which is caused
by permeation through the wall at a constant velocity V0, as shown in Figure
3.E.10-1. This problem involved the use of scaling analysis to assess the criteria for
assuming that this is a lubrication flow. Assume now that we wish to correlate the
drag force on the hollow-fiber wall for the general case when the lubrication-flow
approximation cannot be made. Use dimensional analysis to infer the appropriate
dimensionless groups to correlate the dimensional drag force. Express your answer
in terms of the standard dimensionless groups used to correlate drag phenomena
of this type; that is, in terms of an appropriately defined friction factor, Reynolds
number, and aspect ratio.



4 Applications in Heat Transfer

If we assume that the ice is thin enough so that the temperature gradient can be

considered as uniform from the upper to the lower surface, we can derive

at once a very simple solution. . ..1

4.1 INTRODUCTION

The quotation cited above appeared in the classic text Heat Conduction with
Engineering and Geological Applications, which still serves as a basic reference
book in this field of research. In particular, this statement was made in connection
with justifying when the unsteady-state freezing of water-saturated soil could be
assumed to be quasi-steady-state. However, an appropriate rejoinder to the quote
above would be: “How thin is thin?” The solution to the quasi-state-state prob-
lem indeed is “very simple”. However, leaping to the conclusion that “the ice is
thin enough” is intuitive. Alternatively, scaling analysis can be used to develop a
quantitative criterion for assessing the applicability of the quasi-steady-state approx-
imation. This is considered in Section 4.7 for this freezing problem involving heat
transfer with phase change.

In this chapter we consider the application of scaling analysis to heat transfer.
The organization of this chapter is the same as that used in Chapter 3. To understand
fully the material in this chapter, it is necessary first to read Chapters 1 and 2.
However, since some readers might be interested primarily in heat transfer rather
than fluid dynamics, the first few examples are developed in the same detail as was
done in Chapter 3; that is, it will be possible to understand how to apply scaling
analysis to heat transfer without necessarily thoroughly understanding the material
in Chapter 3. However, it will clearly be necessary to understand some aspects
of fluid dynamics when convective heat transfer is considered. Note that in this
chapter we again use the ordering symbols ◦(1) and ◦(1) introduced in Chapter 2.

1L. R. Ingersoll, O. J. Zobel, and A. C. Ingersoll, Heat Conduction with Engineering and Geological
Applications, McGraw-Hill, New York, 1948, p. 197.

Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach
to Model Building and the Art of Approximation, By William B. Krantz
Copyright  2007 John Wiley & Sons, Inc.
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Recall that the symbol ◦(1) implies that the magnitude of the quantity can range
between 0 and more-or-less 1, whereas the symbol ◦(1) implies that the magnitude
of the quantity is more-or-less 1 but not much less than 1.

Some of the scaling considerations in this chapter are similar to those encoun-
tered in scaling fluid dynamics problems: for example, quasi-steady-state and
boundary-layer phenomena. However, in this chapter we apply scaling analysis
to determine when other simplified models can be used, such as film theory and
penetration theory for conductive heat transfer; there are no analogs to these approx-
imations in fluid dynamics. The same disclaimer applies to this chapter as was
stated for Chapter 3: namely, that no attempt will be made here to provide a
detailed derivation of the describing equations that are used in the scaling analysis.
Hence, the material in this chapter provides a useful supplement for a foundation
course in heat transfer. The reader is referred to the appendices that summarize
the energy equation in generalized vector–tensor notation as well as in rectangular,
cylindrical, and spherical coordinates. These equations serve as the starting point
for each example problem.

We begin by considering the use of ◦(1) scaling to simplify pure heat-conduction
problems. Scaling analysis is then used to justify simplifications made in heat
transfer, such as the penetration-theory and film-theory approximations, low Biot
number heat transfer, conduction- and heat-generation-dominated convective heat
transfer, low Peclet number convective heat transfer (the analog to the creeping-
flow approximation in fluid dynamics) and high Peclet number convective heat
transfer (the analog to high Reynolds number or boundary-layer flows). We then
apply ◦(1) scaling to heat transfer with phase change, which introduces scaling of
moving boundary problems. Applying scaling analysis to heat transfer now permits
us to determine when the variation of physical and/or transport properties with tem-
perature needs to be considered in developing models. Finally, the scaling analysis
approach is applied to dimensional analysis for heat-transfer problems. Additional
worked example and practice problems are included at the end of the chapter.

4.2 STEADY-STATE HEAT TRANSFER WITH END EFFECTS

This first example illustrates the application of the ◦(1) scaling analysis procedure
to a steady-state conductive heat-transfer problem for which an exact analytical
solution is available. If the describing equations can be solved analytically, there
is no need to apply scaling analysis to explore how the problem can be simplified.
However, this problem is instructive in that the solution to the simplified equations
obtained via scaling can be compared with the analytical solution to the unsimplified
describing equations to assess the error incurred as a function of the magnitude
of the dimensionless group, which needs to be small to justify the approximation.
It will also illustrate region-of-influence scaling whereby we seek to determine
the thickness of a region wherein some important effect is concentrated. Region-
of-influence scaling is particularly important since it forms the basis of thermal
boundary-layer theory and penetration theory.
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W

y

x

Conducting solid

T = T1 T = T1

T = T2

T = T1

H

Figure 4.2-1 Steady-state two-dimensional heat conduction in a homogeneous solid with
constant physical properties, width W , and height H such that W > H ; the faces at x = 0,
x = W , and y = 0 are held at a constant temperature T1, whereas the face at y = H is held
at a constant temperature T2.

Consider steady-state heat conduction in a homogeneous solid having constant
physical properties that has width W in the x-direction, height H in the y-direction,
and is infinitely thick in the z-direction, as shown in Figure 4.2-1; the geometry is
such that W > H . The planar faces at x = 0, x = W , and y = 0 are held at a con-
stant temperature T1, whereas the planar face at y = H is maintained at a constant
temperature T2. We anticipate that if W � H , we might be able to ignore the
heat conduction in the x-direction. However, the question arises as to how much
larger W has to be relative to H to ignore the lateral heat conduction. Another
question is: How much error do we encounter if we ignore the lateral heat con-
duction? We employ scaling analysis to determine the criterion for when we can
assume that this can be approximated as one-dimensional heat conduction in the
y-direction; that is, we seek to determine when the lateral heat transfer or end
effects can be neglected. We invoke the stepwise ◦(1) scaling analysis procedure
outlined in Chapter 2. In this first example of ◦(1) scaling analysis applied to heat
transfer, we show all the steps in detail and provide a discussion of the rationale
for each step.

Step 1 involves writing the describing equations, in this case the thermal energy
equation appropriately simplified for this problem statement and its boundary
conditions. Equation F.1-2 in the Appendices simplifies to the following for the
conditions specified for this heat-transfer problem:

∂2T

∂x2
+ ∂2T

∂y2
= 0 (4.2-1)

T = T1 at x = 0 (4.2-2)

T = T1 at x = W (4.2-3)

T = T1 at y = 0 (4.2-4)

T = T2 at y = H (4.2-5)
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These boundary conditions constitute the temperatures prescribed at the four
boundaries.

Step 2 involves introducing arbitrary scale factors for each dependent and inde-
pendent variable. Step 3 requires introducing a reference factor for the temperature
since it is not naturally referenced to zero at any of the boundaries. Step 4 involves
defining the following dimensionless variables:

T ∗ ≡ T − Tr

Ts

; x∗ ≡ x

xs

; y∗ ≡ y

ys

(4.2-6)

In step 5 these dimensionless variables are substituted into the describing equa-
tions (4.2-1) through (4.2-5):

1

x2
s

∂2T ∗

∂x∗2
+ 1

y2
s

∂2T ∗

∂y∗2
= 0 (4.2-7)

TsT
∗ + Tr = T1 at xsx

∗ = 0 (4.2-8)

TsT
∗ + Tr = T1 at xsx

∗ = W (4.2-9)

TsT
∗ + Tr = T1 at ysy

∗ = 0 (4.2-10)

TsT
∗ + Tr = T2 at ysy

∗ = H (4.2-11)

Step 6 involves dividing through by the dimensional coefficient of the conduction
term in the y-direction in equation (4.2-7) since this term must be retained to
account for the principal direction for heat transfer. In the four boundary conditions
we divide through by the dimensional coefficient of the dimensionless dependent
variable, which yields

y2
s

x2
s

∂2T ∗

∂x∗2
+ ∂2T ∗

∂y∗2
= 0 (4.2-12)

T ∗ = T1 − Tr

Ts

at x∗ = 0 (4.2-13)

T ∗ = T1 − Tr

Ts

at x∗ = W

xs

(4.2-14)

T ∗ = T1 − Tr

Ts

at y∗ = 0 (4.2-15)

T ∗ = T2 − Tr

Ts

at y∗ = H

ys

(4.2-16)

Step 7 involves determining the scale and reference factors to ensure that the
dimensionless variables are ◦(1); that is, that they are bounded between zero and
more-or-less 1. This can be achieved by setting the dimensionless groups containing
the reference temperature and temperature scale in equations (4.2-13), (4.2-14),
or (4.2-15) equal to zero and in equation (4.2-16) equal to 1; that is,
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T1 − Tr

Ts

= 0 ⇒ Tr = T1 (4.2-17)

T2 − Tr

Ts

= T2 − T1

Ts

= 1 ⇒ Ts = T2 − T1 (4.2-18)

Since our region of interest spans the solid between the four planar faces, the
dimensionless spatial variables can be bounded between zero and 1 by setting the
dimensionless groups containing xs and ys in equations (4.2-14) and (4.2-16) equal
to 1; that is,

W

xs

= 1 ⇒ xs = W (4.2-19)

H

ys

= 1 ⇒ ys = H (4.2-20)

Our dimensionless equations now become

H 2

W 2

∂2T ∗

∂x∗2
+ ∂2T ∗

∂y∗2
= 0 (4.2-21)

T ∗ = 0 at x∗ = 0 (4.2-22)

T ∗ = 0 at x∗ = 1 (4.2-23)

T ∗ = 0 at y∗ = 0 (4.2-24)

T ∗ = 1 at y∗ = 1 (4.2-25)

Step 8 then involves using our scaled dimensionless describing equations to assess
the conditions for which we can ignore lateral (x-direction) heat conduction.
Equation (4.2-21) indicates that the lateral heat-conduction term will drop out of
the describing equations if the following condition holds:

H 2

W 2
� 1 (4.2-26)

If the condition above is satisfied, equation (4.2-21) reduces to

∂2T ∗

∂y∗2
= 0 (4.2-27)

for which the solution is given by

T ∗ = y∗ (4.2-28)

Note that the criterion that has emerged from our scaling analysis for ignoring the
effect of lateral heat conduction is in terms of a dimensionless group. The physical
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significance of this dimensionless group is that it is the ratio of the magnitude of
the lateral to vertical (x- to y-direction) heat conduction. The dimensionless groups
that emerge from scaling analysis will always have a physical significance that can
be determined by examining how a particular group was formed: in this case, by
dividing the coefficient of the lateral heat-conduction term by that for the vertical
heat-conduction term.

To gain a better feeling for the error incurred when scaling approximations
are made, it is instructive to compare the approximate solution for small values
of H 2/W 2 given by equation (4.2-28) to the exact analytical solution to
equation (4.2-21) that is given by2

T ∗ = 2

π

∞
∑

n=1

(−1)n+1

n
sin nπx∗ sinh(nπy∗H/W)

sinh(nπH/W)
(4.2-29)

Note that if the dimensionless group H/W � 1, equation (4.2-29) can be expanded
in a Taylor series; the first nonzero term in this expansion is the approximate solu-
tion given by equation (4.2-28). Equation (4.2-28) predicts that the dimensionless
temperature is constant along any horizontal plane corresponding to some specified
value of y∗. The exact solution given by equation (4.2-29) predicts that the temper-
ature along any horizontal plane varies with the lateral location. Figure 4.2-2 plots
the error that is incurred when equation (4.2-28) is used to predict the dimension-
less temperature at y∗ = 0.5 (i.e., T ∗ = 0.5) as a function of the lateral location
x∗ for H 2/W 2 = 0.01 (H/W = 0.1) and H 2/W 2 = 0.1 (H/W = 0.316); that is,
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Figure 4.2-2 Percentage error in the dimensionless temperature at y∗ = 0.5 that is incurred
when the effect of lateral conduction is ignored as a function of the dimensionless lateral
position x∗ for H/W = 0.1 (H 2/W 2 = 0.01) and H/W = 0.316 (H 2/W 2 = 0.1).

2F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley, New York, 1996,
pp. 163–167.
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the error incurred when lateral conduction is ignored.3 Figure 4.2-2 is plotted
only for 0 < x∗ ≤ 0.5 since the temperature profile is symmetrical about the plane
defined by x∗ = 0.5. This figure indicates that for H 2/W 2 = 0.01 the error is less
than 10% across 80% of the total width of the solid. In contrast, for H 2/W 2 = 0.1,
the error is less than 10% across only 50% of the total width of the solid. This
is to be expected since ignoring lateral conduction becomes a progressively better
approximation as the dimensionless group H 2/W 2 decreases. These errors are typ-
ical of what one can anticipate for the approximations that emanate from scaling
analysis. Since the dimensionless variables are scaled to be of order one, neglecting
a term that is multiplied by a dimensionless group that is ◦(0.1) or ◦(0.01) should
result in errors of approximately 10% and 1%, respectively.

The preceding analysis indicates that the error encountered in making some
assumption depends not only on the magnitude of the dimensionless group that
emanates from the scaling analysis, but also on the particular quantity that is being
predicted. For example, ignoring the lateral conduction in the present problem
yields accurate predictions for the temperature at the center of the solid even when
H 2/W 2 is as large as 0.1. However, the prediction for the dimensionless temper-
ature is considerably in error at x∗ = 0.05 even when H 2/W 2 is as small as 0.01.
Indeed, the error in the temperature predicted that is incurred when lateral heat con-
duction is neglected increases without bound at points progressively closer to the
lateral boundaries. Moreover, the thickness of this wall region wherein lateral con-
duction is important is directly proportional to the value of H/W . Clearly, it would
be of value to be able to estimate the thickness of this wall region wherein two-
dimensional conductive heat transfer must be considered. This can be done using
region-of-influence scaling, whereby we seek to determine the thickness of a region
within which some effect is important; in this case, the thickness of the region near
the lateral boundaries wherein lateral heat-conduction effects are significant.

To carry out region-of-influence scaling, the unspecified length scale factor in
fact becomes the thickness of the region of influence, which we denote by the
symbol δt to emphasize its particular physical significance. By this we mean that
the relevant dependent variable, in this case ∂T ∗/∂x∗, is ◦(1) within this region.
Let us rescale this problem to determine the magnitude of δt . It is sufficient here
to consider only one of the lateral boundaries, due to the symmetry of the heat-
transfer geometry. Equations (4.2-1), (4.2-2), (4.2-4), and (4.2-5) remain the same;
however, equation (4.2-3) needs to be replaced by a boundary condition appropriate
to the wall region, which is given by

∂T

∂x
= 0 at x = δt (4.2-30)

This boundary condition merely states that the lateral variation in temperature
is confined to the wall region or region of influence whose thickness δt will be
determined via scaling analysis.

3The infinite series in equation (4.2-29) converges rather slowly; hence, 50 terms in this series were
retained in determining the dimensionless temperature predicted by this exact solution.
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If the dimensionless variables defined by equations (4.2-6) are substituted into
equations (4.2-1), (4.2-2), (4.2-4), (4.2-5), and (4.2-30) and step 6 in the scal-
ing analysis procedure is applied, the following set of dimensionless describing
equations is obtained:

y2
s

x2
s

∂2T ∗

∂x∗2
+ ∂2T ∗

∂y∗2
= 0 (4.2-31)

T ∗ = T1 − Tr

Ts

at x∗ = 0 (4.2-32)

∂T ∗

∂x∗ = 0 at x∗ = δt

xs

(4.2-33)

T ∗ = T1 − Tr

Ts

at y∗ = 0 (4.2-34)

T ∗ = T2 − Tr

Ts

at y∗ = H

ys

(4.2-35)

Applying ◦(1) scaling then results in the following for the scale and reference
factors:

Tr = T1; Ts = T2 − T1; xs = δt ; ys = H (4.2-36)

These scale factors differ from those obtained initially in that the lateral length
scale is now the thickness of the region of influence near the lateral boundary
rather than being the entire width of the solid. This is a reasonable result since the
temperature goes through a characteristic change T2 − T1 over the distance δt near
the lateral boundary rather than over the entire half-width of the solid.

If the scale and reference factors indicated in equations (4.2-36) are introduced
into equations (4.2-31) through (4.2-35), we obtain the following set of dimension-
less describing equations:

H 2

δ2
t

∂2T ∗

∂x∗2
+ ∂2T ∗

∂y∗2
= 0 (4.2-37)

T ∗ = 0 at x∗ = 0 (4.2-38)

∂T ∗

∂x∗ = 0 at x∗ = 1 (4.2-39)

T ∗ = 0 at y∗ = 0 (4.2-40)

T ∗ = 1 at y∗ = 1 (4.2-41)

If lateral heat conduction is important within the region of influence, both terms in
equation (4.2-37) must be ◦(1). This implies that

H 2

δ2
t

= 1 ⇒ δt = H (4.2-42)
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That is, the thickness of the region of influence near the lateral boundary is
equal to the vertical length scale. This implies that an approximate analysis that
ignores lateral heat conduction will begin to incur significant error when x∗ ≡
x/W = δt/W = H/W . Note in Figure 4.2-2 that the percentage error in the dimen-
sionless temperature begins to increase markedly when x∗ < 0.1 for H/W = 0.1
(H 2/W 2 = 0.01) and when x∗ < 0.316 for H/W = 0.316 (H 2/W 2 = 0.1). Hence,
we see that scaling analysis not only determines the criterion for when lateral con-
duction can be ignored, but also provides a measure of the region near the lateral
boundaries wherein this assumption breaks down.

A similar scaling analysis can be done to determine when three-dimensional heat
conduction in a rectangular block can be simplified to a two- or one-dimensional
problem. The criteria for ignoring axial conduction in a long thin solid cylinder
or radial conduction in a short wide cylinder can also be determined using an
analogous scaling analysis. These are considered in the practice problems at the
end of the chapter.

4.3 FILM AND PENETRATION THEORY APPROXIMATIONS

Now that the procedure for ◦(1) scaling analysis has been illustrated in detail,
we use this method to explore the various approximations made in classical heat-
transfer modeling. The first problem that we consider is unsteady-state one-
dimensional heat conduction in a solid that has constant physical properties and
a thickness H as shown in Figure 4.3-1. This solid is initially at a constant

H

x

T = T0 T = T0 t ≤ 0

T = T1 t > 0

Figure 4.3-1 Unsteady-state one-dimensional heat conduction in a solid with constant
physical properties and thickness H .
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temperature T0; however, one surface of this solid is then raised to a temper-
ature T1 while the other surface is maintained at T0. We use scaling analysis
to explore what approximations might be made to simplify this heat-transfer
problem.

We begin by writing the thermal energy equation given by equation (F.1-2) in
the Appendices appropriately simplified for the conditions defined in the problem
statement along with the initial and boundary conditions (step 1):

∂T

∂t
= α

∂2T

∂x2
(4.3-1)

T = T0 at t ≤ 0, 0 ≤ x ≤ H (4.3-2)

T = T1 at x = 0, t > 0 (4.3-3)

T = T0 at x = H (4.3-4)

where α ≡ k/ρCp is the thermal diffusivity in which k the thermal conductivity,
ρ the mass density, and Cp the heat capacity at constant pressure. Equation (4.3-
2) is the given initial temperature condition. Equations (4.3-3) and (4.3-4) are the
prescribed constant temperatures at the two boundaries. This is a nontrivial problem
to solve, due to the unsteady-state heat transfer and the finite thickness of the solid.
We use ◦(1) scaling to explore when these describing equations might be simplified
to permit a tractable solution.

We begin by defining dimensionless variables involving unspecified scale factors
(steps 2, 3, and 4):

T ∗ ≡ T − Tr

Ts

; x∗ ≡ x

xs

; t∗ ≡ t

ts
(4.3-5)

Note that we have introduced a reference factor for the temperature since it is not
naturally referenced to zero. We then introduce these dimensionless variables into
the describing equations and divide through by the coefficient of one term in each
equation that we believe should be retained (steps 5 and 6):

x2
s

αts

∂T ∗

∂t∗
= ∂2T ∗

∂x∗2
(4.3-6)

T ∗ = T0 − Tr

Ts

at t∗ ≤ 0, 0 ≤ x∗ ≤ H

xs

(4.3-7)

T ∗ = T1 − Tr

Ts

at x∗ = 0, t∗ > 0 (4.3-8)

T ∗ = T0 − Tr

Ts

at x∗ = H

xs

(4.3-9)

Now let us proceed to determine the scale factors (step 7). The dimension-
less temperature can be bounded to be ◦(1) by setting the groups containing the
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temperature scale and reference factors in equations (4.3-7) or (4.3-9) and (4.3-8)
equal to 1 and zero, respectively, to obtain

T ∗ = T0 − Tr

Ts

= 0 ⇒ Tr = T0 (4.3-10)

T ∗ = T1 − Tr

Ts

= 1 ⇒ Ts = T1 − T0 (4.3-11)

The scale factor for the dimensionless time variable for unsteady-state problems is
often the observation or contact time; that is, ts = to, the particular time at which
the process is being considered. The manner in which the length scale factor is
determined depends on the observation time. Let us assume that the dimensionless
groups containing the length scale in equations (4.3-7) or (4.3-9) determine xs .
Although this bounds the dimensionless spatial coordinate to be ◦(1), it does not
necessarily bound the dimensionless temperature derivative to be ◦(1). Indeed, the
temperature derivative could involve a much shorter length scale during the early
stages of heat transfer when the conduction has not penetrated very far into the
solid. However, let us assume that

H

xs

= 1 ⇒ xs = H (4.3-12)

Substitution of the scale and reference factors defined by equations (4.3-10)
through (4.3-12) into the describing equations yields

H 2

αto

∂T ∗

∂t∗
= 1

Fot

∂T ∗

∂t∗
= ∂2T ∗

∂x∗2
(4.3-13)

T ∗ = 0 at t∗ ≤ 0, 0 ≤ x∗ ≤ 1 (4.3-14)

T ∗ = 1 at x∗ = 0, t∗ > 0 (4.3-15)

T ∗ = 0 at x∗ = 1 (4.3-16)

The nature of this unsteady-state heat-transfer process is characterized by the
dimensionless group in equation (4.3-13), which is referred to as the Fourier num-
ber for heat transfer, Fot . The physical significance of the Fourier number for heat
transfer is that it is the ratio of the contact time available for heat transfer to divided
by the characteristic time H 2/α required for heat conduction through the thickness
H ; that is,

Fot ≡ αto

H 2
= observation or contact time

characteristic time for conduction
(4.3-17)

Now let us explore possible simplifications of the describing equations (step 8).
Note that if Fot � 1, the unsteady-state term becomes insignificant; hence, the heat
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transfer can be assumed to be steady-state; that is,

Fot ≡ αto

H 2
� 1 ⇒ steady-state heat transfer (4.3-18)

Note that a large Fourier number in this problem ensures that the heat transfer
is truly steady-state, in contrast to quasi-steady-state. The latter implies that the
unsteady-state term in the energy equation is negligible but that the problem is still
unsteady-state, due to time dependence that enters through the boundary conditions.
Quasi-steady-state heat transfer is considered in a subsequent section. If Fot

∼= 10,
the error incurred in assuming steady state when determining quantities such as
the heat flux into the solid at x = 0 will be on the order of 10%; if Fot

∼= 100, the
error will be reduced to approximately 1%. However, unless the Fourier number is
very large, the error incurred in predicting point quantities such as the temperature
at x = H could be quite large. Note that since heat is penetrating from the face at
x = 0 toward the face at x = H , the solid in the region closer to x = 0 receives
more heat than the region nearer to x = H and therefore heats up more quickly.
For this reason the error incurred in predicting the local temperature for moderate
values of the Fourier number will be greater for planes nearer to x = H .

Let us now consider the special case of where Fot = ◦(1), that is, when its
value is essentially equal to 1. In this case the heat transfer is inherently unsteady
state; however, the thermal penetration is through the entire thickness H of the
solid; hence, H is the appropriate length scale to ensure that the dimensionless
temperature derivative is ◦(1). Scaling permits estimating the time required for the
heat penetration to reach the face at x = H ; this will be denoted by tH and is
determined as

Fot ≡ αtH

H 2
= 1 ⇒ tH = H 2

α
(4.3-19)

Now let us explore another possible approximation that can be made in the
describing equations. If Fot � ◦(1), the contact time is so short that the thermal
penetration will be confined to a region of influence or boundary layer whose
thickness is less than H . Scaling can be used to determine the thickness of this
region of influence. However, to do so, it is necessary to rescale the problem since
the length scale over which the temperature experiences a characteristic change is
no longer H . Let us denote the thickness of this region of influence by δt ; that is,
our length scale is now xs = δt . The dimensionless describing equations now are
given by

δ2
t

αts

∂T ∗

∂t∗
= ∂2T ∗

∂x∗2
(4.3-20)

T ∗ = T0 − Tr

Ts

at t∗ ≤ 0, 0 ≤ x∗ ≤ H

δt

(4.3-21)
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T ∗ = T1 − Tr

Ts

at x∗ = 0, t∗ > 0 (4.3-22)

T ∗ = T0 − Tr

Ts

at x∗ = H

δt

(4.3-23)

Equations (4.3-21) through (4.3-23) indicate that our reference and scale temper-
atures are still determined by equations (4.3-10) and (4.3-11). Moreover, due to
the unsteady-state, the characteristic time again will be the observation time to.
However, since this is inherently unsteady-state heat transfer, the unsteady-state
term and the conduction term in equation (4.3-20) must balance each other and be
of ◦(1). To ensure this, we set the dimensionless group multiplying the unsteady-
state term in equation (4.3-20) equal to 1; this then provides an estimate for δt , the
thickness of the region of influence:

δ2
t

αto
= 1 ⇒ δt = √

αto (4.3-24)

Note that equation (4.3-24) implies that the thickness of the region of influence or
boundary-layer thickness increases with time. Note also that when t = tH = H 2/α,
we obtain δt = H ; that is, the limiting value of δt is H, as expected.

Equation (4.3-24) implies that our describing equations can be written as

∂T ∗

∂t∗
= ∂2T ∗

∂x∗2
(4.3-25)

T ∗ = 0 at t∗ ≤ 0, 0 ≤ x∗ ≤ H√
αto

= 1√
Fot

(4.3-26)

T ∗ = 1 at x∗ = 0, t∗ > 0 (4.3-27)

T ∗ = 0 at x∗ = H√
αto

= 1√
Fot

(4.3-28)

Note that if the Fourier number is very small, the thermal penetration thickness δt

will be much less than the thickness of the solid H ; therefore, the heat transfer will
be confined to a thin boundary layer or region of influence near x = 0; that is,

Fot ≡ αto

H 2
� 1 ⇒ heat transfer is contact-time limited (4.3-29)

If Fot � 1, it is reasonable to write the describing equations as

∂T ∗

∂t∗
= ∂2T ∗

∂x∗2
(4.3-30)
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T ∗ = 0 at t∗ ≤ 0, 0 ≤ x∗ < ∞ (4.3-31)

T ∗ = 1 at x∗ = 0, t∗ > 0 (4.3-32)

T ∗ = 0 as x∗ → ∞, 0 ≤ t∗ < ∞ (4.3-33)

This set of simplified equations admits an exact analytical solution via the method
of combination of variables (this is also referred to as a similarity solution) in
the form

T ∗ = T − T0

T1 − T0
= 1 − erf

(
1

2
x∗

)

= 1 − erf

(
x√
4αto

)

(4.3-34)

where erf is the error function that is tabulated in standard references.4 Note that
T ∗ = 0.01 when x∗ = 3.64, which implies that x = 3.64

√
αto = 3.64δt . Hence,

we see that the exact solution for the unsteady-state thermal penetration confirms
our scaling analysis result; that is, it predicts that the dimensionless tempera-
ture becomes essentially zero at a distance that is essentially (within a multiplicative
constant of order one) equal to the thickness of the region of influence that we
identified via scaling analysis.

Scaling analysis for this problem revealed the full spectrum of contact time
behavior for a heat-transfer problem that can be characterized in terms of the
magnitude of the Fourier number. In summary, if

Fot �1 ⇒
{

the contact time is long relative to the conduction time
steady-state heat transfer

(4.3-35)

Fot =1 ⇒
{

the contact and conduction times are equal
unsteady-state heat-transfer between boundaries

(4.3-36)

Fot �1 ⇒
{

the contact time is short relative to the conduction time
unsteady-state heat transfer in a thin boundary layer

(4.3-37)

In general, a model for a heat- (or mass-) transfer process based on assuming that
the contact time for a conductive (or diffusive) heat- (or mass-) transfer process is
long in comparison to the characteristic time for heat conduction (or species diffu-
sion) is referred to as a film theory model . The latter terminology is commonly used
in mass-transfer modeling but less commonly in heat transfer. A model for a heat-
(or mass-) transport process based on assuming that the contact time for a conduc-
tive (or diffusive) heat- (or mass-) transfer process is very short in comparison to

4M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, U.S.
Government Printing Office, Washington, DC, 1964.
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the characteristic time for heat conduction (or species diffusion) is referred to as
a penetration theory model . Film theory and penetration theory are used to model
complex heat- (and mass-) transfer processes that preclude obtaining tractable ana-
lytical or numerical solutions. These models are particularly useful in determining
heat- and mass-transfer coefficients for high-mass-transfer flux conditions. That is,
the heat- and mass-transfer coefficients determined from correlations in the litera-
ture in general are valid only in the limit of very low-mass-transfer fluxes; indeed,
correlating these coefficients for high-mass-transfer flux conditions would involve
taking vastly more data and a far more complex correlation involving additional
dimensionless groups. However, these heat- and mass-transfer coefficients for low-
mass-transfer fluxes can be corrected for high-flux conditions using film theory and
penetration theory; the former is used for long contact times, whereas the latter is
used for very short contact times. The procedure for doing this is discussed by
Bird et al.5

4.4 SMALL BIOT NUMBER APPROXIMATION

The two problems considered in Sections 4.2 and 4.3 involved only conductive
heat transfer in a single phase. In this example we consider convective heat transfer
involving two phases. Convection implies heat transfer by bulk flow coupled with
heat conduction. Consider a solid sphere initially at temperature T0, having constant
physical properties, radius R, and falling at its constant terminal velocity Ut through
a viscous liquid whose constant temperature is T∞ > T0, as shown in Figure 4.4-1.
As a result of contact with the hot liquid, the temperature of the sphere gradually
will increase. We characterize the heat transfer in the liquid via a lumped-parameter
approach; that is, we assume that the heat transfer in the liquid can be described
by a heat-transfer coefficient h. The latter can be obtained from correlations for
the Nusselt number, a dimensionless heat-transfer coefficient, as a function of the
Reynolds number for flow over a sphere that are available in standard references.6

Since we are representing the heat transfer in the liquid phase via a heat-
transfer coefficient, describing equations need to be written only in the con-
ducting solid sphere. The thermal energy equation in spherical coordinates given
by equation (F.3-2) in the Appendices appropriately simplified for the conditions
defined in the problem statement and the associated initial and boundary conditions
are given by (step 1)

∂T

∂t
= α

1

r2

∂

∂r

(

r2 ∂T

∂r

)

(4.4-1)

T = T0 at t ≤ 0, 0 ≤ r ≤ R (4.4-2)

5R. B. Bird, W. E. Stewart, and E. L. Lightfoot, Transport Phenomena, 2nd ed., Wiley, Hoboken, NJ,
2002, pp. 703–708.
6See, for example, Bird et al., Transport Phenomena, 2nd ed., p. 439.
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r R

−qr = h(T∞ − T)

Ut

Viscous liquid at 
temperature T∞

Solid sphere

Figure 4.4-1 Solid sphere with constant physical properties, radius R, and initial temper-
ature T0 falling at its terminal velocity Ut in a viscous liquid whose temperature is T∞ such
that T∞ > T0.

∂T

∂r
= 0 at r = 0, t > 0 (4.4-3)

k
∂T

∂r
= h(T∞ − T ) at r = R, t > 0 (4.4-4)

where α ≡ k/ρCp is the thermal diffusivity. Equation (4.4-2) is the given initial
temperature condition. Equation (4.4-3) is a boundary condition frequently used
when there is a point or axis of symmetry; it states that the temperature is at an
extremum (in this case a minimum) at the center of the sphere. Equation (4.4-4)
states that the heat-transfer flux from the surrounding liquid must be equal to the
conductive heat flux into the solid sphere at its surface.

Define the following dimensionless variables involving unspecified scale and
reference factors (steps 2, 3, and 4):

T ∗ ≡ T − Tr

Ts

; r∗ ≡ r

rs

; t∗ ≡ t

ts
(4.4-5)

Note that we have introduced a reference factor for the temperature since it is
not naturally referenced to zero. Introduce these dimensionless variables into the
describing equations and divide through by the coefficient of one term in each
equation that should be retained (steps 5 and 6):
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r2
s

αts

∂T ∗

∂t∗
= 1

r∗2

∂

∂r∗

(

r∗2 ∂T ∗

∂r∗

)

(4.4-6)

T ∗ = T0 − Tr

Ts

at t∗ ≤ 0, 0 ≤ r∗ ≤ R

rs

(4.4-7)

∂T ∗

∂r∗ = 0 at r∗ = 0, t∗ > 0 (4.4-8)

∂T ∗

∂r∗ = hrs

k

(
T∞ − Tr

Ts

− T ∗
)

at r∗ = R

rs

, t∗ > 0 (4.4-9)

We can bound the dimensionless temperature to be ◦(1) by setting the dimen-
sionless group in equation (4.4-7) equal to zero to determine the reference temper-
ature and by setting the dimensionless temperature ratio in equation (4.4-9) equal
to 1 to determine the temperature scale (step 7); that is,

T0 − Tr

Ts

= 0 ⇒ Tr = T0; T∞ − T0

Ts

= 1 ⇒ Ts = T∞ − T0 (4.4-10)

We can bound the dimensionless radial coordinate to be ◦(1) by setting the dimen-
sionless group containing rs in equation (4.4-7) or (4.4-9) equal to 1; that is,

R

rs

= 1 ⇒ rs = R (4.4-11)

There are two possible time scales, the observation time to and the characteristic
time dictated by the dimensionless group in equation (4.4-6) given by

r2
s

αts
= 1 ⇒ ts = r2

s

α
= R2

α
(4.4-12)

The time scale given by equation (4.4-12) is appropriate when this is inherently an
unsteady-state heat-transfer problem for which both terms in equation (4.4-6) must
be retained.

If we choose the observation time as our characteristic time, we obtain the
following dimensionless describing equations:

1

Fot

∂T ∗

∂t∗
= 1

r∗2

∂

∂r∗

(

r∗2 ∂T ∗

∂r∗

)

(4.4-13)

T ∗ = 0 at t∗ ≤ 0, 0 ≤ r∗ ≤ 1 (4.4-14)

∂T ∗

∂r∗ = 0 at r∗ = 0, t∗ > 0 (4.4-15)

∂T ∗

∂r∗ = Bit (1 − T ∗) at r∗ = 1, t∗ > 0 (4.4-16)
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where Fot ≡ αto/R
2 is the thermal Fourier number, which is the ratio of the obser-

vation time to the characteristic time for heat conduction, and where Bit ≡ hR/k

is the thermal Biot number, which is the ratio of the total heat transfer external to
the sphere to the conductive heat transfer within the sphere.7 For steady-state to
be achieved, we must have

Fot � 1 ⇒ to � R2

α
(4.4-17)

If the condition given by equation (4.4-17) is satisfied, the unsteady-state term in
equation (4.4-13) can be ignored. Integration of the steady-state form of equation
(4.4-13) subject to the boundary condition given by equation (4.4-15) implies that
the temperature gradient is zero throughout the sphere; this is turn implies that
the temperature is constant throughout the sphere. To satisfy the boundary condi-
tion given by equation (4.4-16), we must have T ∗ = 1 throughout the sphere; this
implies that T = T∞ throughout the sphere. This result should not be surprising
since steady-state implies that the sphere has come to thermal equilibrium with the
surrounding liquid. Note that satisfying the steady-state condition occurs at earlier
times as the Biot number increases, corresponding to improved heat transfer in the
liquid phase.

If we choose the time scale given by equation (4.4-12), our dimensionless ther-
mal energy equation assumes the form

∂T ∗

∂t∗
= 1

r∗2

∂

∂r∗

(

r∗2 ∂T ∗

∂r∗

)

(4.4-18)

The solution to equation (4.4-18) can be simplified for the special case of very
small Biot numbers, that is, for Bit � 1. For this case equation (4.4-16) implies
that the dimensionless temperature gradient within the sphere is negligibly small,
thereby implying that the temperature within the sphere is uniform. Hence, equation
(4.4-18) can be integrated as follows:

∫ 1

0

∂T ∗

∂t∗
4πr∗2 dr∗ =

∫ 1

0

1

r∗2

∂

∂r∗

(

r∗2 ∂T ∗

∂r∗

)

4πr∗2 dr∗ (4.4-19)

∫ 1

0

∂T ∗

∂t∗
r∗2 dr∗ =

∫ Bit (1−T ∗)

0
∂

(

r∗2 ∂T ∗

∂r∗

)

(4.4-20)

Use of Liebnitz’s rule given in Appendix H in the Appendices to integrate the first
term and the fact that the temperature is essentially uniform within the sphere for
very small Biot numbers then yields

d

dt∗

∫ 1

0
T ∗r∗2 dr∗ = dT ∗

dt∗

∫ 1

0
r∗2 dr∗ = 1

3

dT ∗

dt∗
= Bit (1 − T ∗) (4.4-21)

7Do not confuse the Biot number with the Nusselt number; they are defined similarly and represent the
ratio of convective to conductive heat transfer; however, in contrast to the Biot number, the Nusselt
number involves the ratio of convective to conductive heat transfer in the fluid phase.
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This equation can be integrated to give the following solution for the temperature
of the sphere as a function of time:

T ∗ = 1 − e−3Bit ·t∗ (4.4-22)

For very small Biot numbers, equation (4.4-22) simplifies to

T ∗ ∼= 3Bit · t∗ (4.4-23)

The error in the solution given by equation (4.4-23) will be in the range 10 to
100% if Bit = ◦(0.1) and 1 to 10% if Bit = ◦(0.01).

Scaling this problem has illustrated an important simplification: the small Biot
number approximation that can be made when considering convective heat transfer
to or from a solid object having finite dimensions.8 The Biot number is a measure
of the resistance to heat conduction in the solid object relative to the resistance to
convective heat transfer in the surrounding fluid. For sufficiently small Biot num-
bers the heat transfer will be controlled totally by convection into the surrounding
fluid. Under these conditions there will be a uniform temperature in the solid object,
which permits a straightforward analytical solution. Note that most heat-transfer
textbooks do not provide any rigorous justification for the equations appropriate to
the small Biot number approximation.

4.5 SMALL PECLET NUMBER APPROXIMATION

The problem considered in Section 4.4 involved convective heat transfer in the
fluid phase adjacent to a solid sphere. However, a lumped-parameter approach was
used to account for this convection. In the present example problem we consider
the convective heat transfer explicitly. Consider the steady-state fully developed
laminar flow of a viscous Newtonian fluid with constant physical properties between
two infinitely wide parallel plates separated by a distance 2H and of length L, as
shown in Figure 4.5-1. The upstream (entering) temperature of the fluid is T0. The
temperature of the upper and lower plates is also maintained at T0. Since the flow
is assumed to be laminar and fully developed, the velocity profile is given by

ux = Um

[

1 −
( y

H

)2
]

(4.5-1)

where Um is the maximum velocity. As a result of this shear flow, there will be
heat generation via viscous dissipation. The latter will cause both radial and axial
conduction as well as axial convection of heat.

8Note that the small Biot number approximation is sometimes referred to as the lumped capacitance
approximation.
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T0

T0

T0

y

x

H

L

Figure 4.5-1 Steady-state fully developed laminar flow of a viscous Newtonian fluid with
constant physical properties between two infinitely wide parallel plates separated by a dis-
tance 2H and of length L; the temperature of the entering fluid as well as that of the upper
and lower plates is T0; the shear flow causes viscous heat generation; the fully developed
velocity profile is shown as well as a representative developing temperature profile.

The thermal energy equation given by equation (F.1-2) in the Appendices, appro-
priately simplified using equation (4.5-1) and for the conditions defined in the
problem statement and the associated boundary conditions are given by (step 1)

ρCpUm

[

1 −
( y

H

)2
]

∂T

∂x
= k

∂2T

∂x2
+ k

∂2T

∂y2
+ 4µU 2

m

H 4
y2 (4.5-2)

T = T0 at x = 0 (4.5-3)

T = f (y) at x = L (4.5-4)

T = T0 at y = ±H (4.5-5)

∂T

∂y
= 0 at y = 0 (4.5-6)

where f (y) is some function of y, which might be unknown. This is a nontrivial
problem to solve, due to the elliptic nature of the describing equations. The presence
of the second-order axial derivative requires that a downstream boundary condition
be specified. In many problems such as this, these downstream conditions are not
known, which precludes solving the describing equations numerically. Clearly, one
would like to know when and how these describing equations might be simplified
to permit a tractable solution. In particular, one would like to know when the
axial conduction and convection terms might be neglected. We use ◦(1) scaling to
determine the criteria for neglecting these terms.
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Define the following dimensionless variables involving unspecified scale factors
(steps 2, 3, and 4):

T ∗ ≡ T − Tr

Ts

; x∗ ≡ x

xs

; y∗ ≡ y

ys

(4.5-7)

We have introduced a reference factor for the temperature since it is not natu-
rally referenced to zero. Introduce these dimensionless variables into the describing
equations and divide through by the coefficient of one term in each equation that
should be retained (steps 5 and 6):

ρCpUmy2
s

kxs

[

1 −
(ys

H
y∗

)2
]

∂T ∗

∂x∗ = y2
s

x2
s

∂2T ∗

∂x∗2
+ ∂2T ∗

∂y∗2
+ 4µU 2

my4
s

kH 4Ts

y∗2 (4.5-8)

T ∗ = T0 − Tr

Ts

at x∗ = 0 (4.5-9)

T ∗ = f (y∗) at x∗ = L

xs

(4.5-10)

T ∗ = T0 − Tr

Ts

at y∗ = ±H

ys

(4.5-11)

∂T ∗

∂y∗ = 0 at y∗ = 0 (4.5-12)

Step 7 involves bounding the independent and dependent dimensionless variables
to be ◦(1). This can be done for the dimensionless spatial coordinates by setting
the dimensionless groups containing xs and ys in equations (4.5-10) and (4.5-11)
equal to 1; that is,

L

xs

= 1 ⇒ xs = L; H

ys

= 1 ⇒ ys = H (4.5-13)

To determine the reference and scale factors for the temperature, we need to con-
sider the conditions for which we are scaling. We are seeking to determine when
axial conduction and convection can be ignored relative to heat generation by vis-
cous dissipation and transverse conduction. If the former are negligible, the heat
generation by viscous dissipation must be balanced by the transverse heat conduc-
tion. Hence, we can bound our dimensionless temperature to be ◦(1) by setting the
dimensionless group in equation (4.5-9) or (4.5-10) equal to zero, thereby determin-
ing the reference temperature, and by setting the dimensionless group multiplying
the heat generation term in equation (4.4-8) equal to 1, to determine the temperature
scale; that is,

T0 − Tr

Ts

= 0 ⇒ Tr = T0; µU 2
m

kTs

= 1 ⇒ Ts = µU 2
m

k
(4.5-14)
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Substitution of the scale and reference factors defined by equations (4.5-13) and
(4.5-14) into the dimensionless describing equations given by equations (4.5-8)
through (4.5-12) yields

ρCpUmH 2

kL
(1 − y∗2)

∂T ∗

∂x∗ = H 2

L2

∂2T ∗

∂x∗2
+ ∂2T ∗

∂y∗2
+ 4y∗2 (4.5-15)

T ∗ = 0 at x∗ = 0 (4.5-16)

T ∗ = f (y∗) at x∗ = 1 (4.5-17)

T ∗ = 0 at y∗ = ±1 (4.5-18)

∂T ∗

∂y∗ = 0 at y∗ = 0 (4.5-19)

Now let us explore possible simplifications of the describing equations (step 8).
The criterion for ignoring axial conduction is

H 2

L2
� 1 ⇒ axial conduction can be ignored (4.5-20)

that is, the aspect ratio cannot be too large. Note, however, that the length L was
arbitrary in that L could denote any value of the axial coordinate in the principal
direction of flow. This is the principle of local scaling whereby we scale the
problem for some fixed but arbitrary value of some coordinate, usually that in the
principal direction of flow.

To ignore axial convection of heat, the dimensionless group multiplying the first
term in equation (4.5-15) must be very small; that is,

ρCpUmH 2

kL
= UmH

α

H

L
= UmH

ν

ν

α

H

L
= Re · Pr

H

L
= Pet

H

L
� 1 (4.5-21)

where α ≡ k/ρCp is the thermal diffusivity, ν ≡ µ/ρ is the kinematic viscosity,
Re ≡ ρUmH/µ is the Reynolds number, Pr ≡ ν/α is the Prandtl number, and
Pet ≡ UmH/α is the Peclet number for heat transfer. The Reynolds number is a
measure of the ratio of the convective to viscous transport of momentum. The
Prandtl number is a measure of the ratio of the viscous transport of momentum
to heat conduction. Hence, the Peclet number is a measure of the ratio of heat
convection to heat conduction. We see that the criterion for ignoring axial heat
convection is that the product of the Peclet number and the aspect ratio must
be very small. The Peclet number in heat transfer has a role analogous to that
of the Reynolds number in fluid dynamics; that is, when it is small, it justifies
ignoring axial convective transport. We will see in the next example problem that
when it is large, it justifies a boundary-layer approximation. Note that ignoring
convective transport in the energy equation in this example is analogous to ignoring



BOUNDARY-LAYER OR LARGE PECLET NUMBER APPROXIMATION 167

convective transport in the equations of motion, which is the basis for the creeping-
flow approximation.9

If the conditions in equations (4.5-20) and (4.5-21) are satisfied, equations (4.5-
15) through (4.5-19) reduce to

0 = d2T ∗

dy∗2
+ 4y∗2 (4.5-22)

T ∗ = 0 at y∗ = ±1 (4.5-23)

∂T ∗

∂y∗ = 0 at y∗ = 0 (4.5-24)

The solution to this simplified set of describing equations is straightforward and
given by

T ∗ = 1

3
(1 − y∗4) (4.5-25)

We see from this solution that our dimensionless temperature is bounded of ◦(1),
which confirms that our scaling analysis is correct.

4.6 BOUNDARY-LAYER OR LARGE PECLET NUMBER
APPROXIMATION

In the preceding example we saw that a low Peclet number justified ignoring the
convective transport of thermal energy, which is analogous to a low Reynolds
number justifying neglecting convective transport of momentum in the creeping-
flow approximation considered in Chapter 3. In this example we consider the other
end of the Peclet number spectrum by exploring the implications of a high Peclet
number on heat transfer. Consider the steady-state laminar uniform (plug) flow of a
Newtonian fluid with constant physical properties and temperature T∞ intercepting
a stationary, semi-infinitely long infinitely wide horizontal flat plate maintained at a
constant temperature T0 such that T0 > T∞, as shown in Figure 4.6-1. Gravitational
and viscous heating effects can be assumed to be negligible. To fully understand
this example, it would be helpful to review Section 3.4, in which the boundary-
layer approximation in fluid dynamics was considered. As stated in Section 3.4,
boundary-layer flows are examples of region-of-influence scaling, for which we
determine the thickness of a region wherein some effect is confined, in this case
the influence of the heated flat plate that is propagated by conduction. This example
also illustrates the principle of local scaling, in which we carry out the scaling at
some arbitrary but fixed value of the axial coordinate.

9The creeping-flow approximation was considered in Section 3.3 and Example Problem 3.E.2.
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U∞,T∞

y

x

dm

dt

L

T = T0

U∞ T∞

Figure 4.6-1 Steady-state laminar uniform flow of a Newtonian fluid with constant phys-
ical properties and temperature T∞ intercepting a stationary, semi-infinitely long infinitely
wide horizontal flat plate maintained at a constant temperature T0 such that T0 > T∞; the
solid line shows the hypothetical momentum boundary-layer thickness δm, whereas the dash-
dotted line shows the hypothetical thermal boundary-layer thickness δt for Pr > 1, where Pr
is the Prandtl number.

The continuity equation given by equation (C.1-1), equations of motion given
by equations (D.1-10) and (D.1-11), and thermal energy equation given by equa-
tion (F.1-2) in the Appendices simplify to the following for the assumed flow
conditions (step 1):

ρux

∂ux

∂x
+ ρuy

∂ux

∂y
= −∂P

∂x
+ µ

(
∂2ux

∂x2
+ ∂2ux

∂y2

)

(4.6-1)

ρux

∂uy

∂x
+ ρuy

∂uy

∂y
= −∂P

∂y
+ µ

(
∂2uy

∂x2
+ ∂2uy

∂y2

)

(4.6-2)

∂ux

∂x
+ ∂uy

∂y
= 0 (4.6-3)

ρCpux

∂T

∂x
+ ρCpuy

∂T

∂y
= k

(
∂2T

∂x2
+ ∂2T

∂y2

)

(4.6-4)

The corresponding boundary conditions for this flow are given by

ux = U∞, uy = 0, T = T∞ at x = 0 (4.6-5)

ux = f1(y), uy = f2(y), T = f3(y) at x = L (4.6-6)

ux = 0, uy = 0, T = T0 at y = 0 (4.6-7)

ux = U∞, uy = 0, T = T∞ at y = ∞ (4.6-8)

where f1(y), f2(y), and f3(y) are unspecified functions. The boundary conditions
for the equations of motion were discussed in Section 3.4. The boundary conditions
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on the energy equation given by equations (4.6-5) and (4.6-7) are the prescribed
temperature of the entering fluid and at the plate, respectively. Equation (4.6-6)
merely states that to solve this elliptic energy equation, a downstream bound-
ary condition must be specified; this condition might not be known in practice.
Equation (4.6-8) states that the temperature becomes equal to that of the entering
fluid infinitely far above the flat plate.

Define the following dimensionless dependent and independent variables (steps
2, 3, and 4):

u∗
x ≡ ux

uxs

; u∗
y ≡ uy

uys

; P ∗ ≡ P

Ps

;

T ∗ ≡ T − Tr

Ts

; x∗ ≡ x

xs

; y∗
m ≡ y

yms

; y∗
t ≡ y

yts

(4.6-9)

Note that we have allowed for different y-length scales for the energy equation
and equations of motion; that is, the temperature might experience a characteristic
change of ◦(1) over a different length scale than the velocities. Introduce these
dimensionless variables into the describing equations and divide each equation
through by the dimensional coefficient of one term that should be retained to
maintain physical significance (steps 5 and 6):

u∗
x

∂u∗
x

∂x∗ + uysxs

uxsyms

u∗
y

∂u∗
x

∂y∗
m

= − Ps

ρu2
xs

∂P ∗

∂x∗ + µ

ρuxsxs

∂2u∗
x

∂x∗2
+ µxs

ρuxsy2
ms

∂2u∗
x

∂y∗2
m

(4.6-10)

u∗
x

∂u∗
y

∂x∗ + uysxs

uxsyms

u∗
y

∂u∗
y

∂y∗
m

= − Psxs

ρuxsuysyms

∂P ∗

∂y∗
m

+ µ

ρuxsxs

∂2u∗
y

∂x∗2
+ µxs

ρuxsy2
ms

∂2u∗
y

∂y∗2
m

(4.6-11)

∂u∗
x

∂x∗ + uysxs

uxsyms

∂u∗
y

∂y∗
m

= 0 (4.6-12)

uxsyts

uysxs

u∗
x

∂T ∗

∂x∗ + u∗
y

∂T ∗

∂y∗
t

= kyts

ρCpuysx2
s

∂2T ∗

∂x∗2
+ k

ρCpuysyts

∂2T ∗

∂y∗2
t

(4.6-13)

u∗
x = U∞

uxs

, u∗
y = 0, T ∗ = T∞ − Tr

Ts

at x∗ = 0

(4.6-14)

u∗
x = f ∗

1 (y∗
m), u∗

y =f ∗
2 (y∗

m), T ∗ =f3(y
∗
t ) at x∗ =L

xs

(4.6-15)
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u∗
x = 0, u∗

y = 0, T ∗ = T0 − Tr

Ts

at y∗
m = y∗

t = 0 (4.6-16)

u∗
x = U∞

uxs

, u∗
y = 0, T ∗ = T∞ − Tr

Ts

at y∗
m = y∗

t = ∞ (4.6-17)

Note that we have divided equations (4.6-10) and (4.6-11) by the dimensional
coefficient of the axial convection term since we are considering a high Reynolds
number flow and high Peclet number heat transfer for which the convection terms
must be retained. However, we have divided equation (4.6-13) by the dimensional
coefficient of the transverse convection term. The reason for doing this is not
obvious at this point. However, we will see that this is the principal convective
term in the energy equation for Pr > 1.

For a high Reynolds number flow for which the action of viscosity is confined
to the vicinity of the boundaries, the y-length scale for the velocities will be the
thickness of the momentum boundary layer or region of influence δm; that is, we
say that yms = δm. The scale factors for the velocity components, pressure, and
axial coordinate are determined in exactly the same manner as was described in
detail in Section 3.4 and are given by (step 7)

uxs = U∞; xs = L; uys = δm

L
U∞; Ps = ρU 2

∞
δ2
m

L2
(4.6-18)

In view of the fact that the principal viscous term in equation (4.6-10) has to be
important at least within some small region in the vicinity of the flat plate, we set
the dimensionless group in front of this term equal to 1 to ensure that this term
is of the same size as the convection terms that are being retained. This yields
the following equation for the thickness of the region of influence or momentum
boundary layer:

δ2
m = µL

ρU∞
= L2

Re
⇒ δm = L√

Re
(4.6-19)

where Re is the local Reynolds number based on using L as the characteristic
length. Note that L is arbitrary in that it can be any fixed value of the axial length
coordinate; that is, our scaling was done for an arbitrary length L of a semi-infinitely
long flat plate; this is what is meant by the concept of local scaling. The reference
and scale factors for the temperature are determined by setting the appropriate group
in equations (4.6-14) or (4.6-17) equal to zero and in equation (4.6-16) equal to 1
to obtain

Tr = T∞; Ts = T0 − T∞ (4.6-20)

In view of the fact that the principal conduction term in equation (4.6-13) has to
be important at least within some small region in the vicinity of the flat plate, we
set the dimensionless group in front of this term equal to 1 to ensure that this term
is of the same size as the convection terms that are being retained. This yields the
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following equation for the thickness of the region of influence or thermal boundary
layer:

δt = kL

ρCpδmU∞
= 1√

Pr

L√
Pet

= 1

Pr

L√
Re

= δm

Pr
(4.6-21)

where Pet ≡ U∞L/α is the local Peclet number for heat transfer based on using L

as the characteristic length. A comparison of equations (4.6-19) and (4.6-21) again
indicates that in heat transfer the Peclet number plays a role analogous to that of
the Reynolds number in fluid dynamics. Note that for liquids Pr > 1; hence, the
thermal boundary-layer thickness will be less than the momentum boundary-layer
thickness. For gases Pr ∼= 1; hence, the thermal and momentum boundary layers
have nearly the same thickness. However, for liquid metals, Pr < 1; hence, the
thermal boundary-layer thickness will be greater than the momentum boundary-
layer thickness. The general behavior of δt (x) and δm(x) for the case when Pr > 1
is shown in Figure 4.6-1.

If we now rewrite our dimensionless describing equations in terms of the scales
defined by equations (4.6-18) through (4.6-21), we obtain

u∗
x

∂u∗
x

∂x∗ + u∗
y

∂u∗
x

∂y∗
m

= − 1

Re

∂P ∗

∂x∗ + 1

Re

∂2u∗
x

∂x∗2
+ ∂2u∗

x

∂y∗2
m

(4.6-22)

u∗
x

∂u∗
y

∂x∗ + u∗
y

∂u∗
y

∂y∗
m

= −∂P ∗

∂y∗ + 1

Re

∂2u∗
y

∂x∗2
+ ∂2u∗

y

∂y∗2
m

(4.6-23)

∂u∗
x

∂x∗ + ∂u∗
y

∂y∗
m

= 0 (4.6-24)

1

Pr
u∗

x

∂T ∗

∂x∗ + u∗
y

∂T ∗

∂y∗
t

= 1

Pr ·Pet

∂2T ∗

∂x∗2
+ ∂2T ∗

∂y∗2
t

(4.6-25)

u∗
x = 1, u∗

y = 0, T ∗ = 0 at x∗ = 0 (4.6-26)

u∗
x = f ∗

1 (y∗
m), u∗

y = f ∗
2 (y∗

m), T ∗ = f3(y
∗
t ) at x∗ = 1 (4.6-27)

u∗
x = 0, u∗

y = 0, T ∗ = 1 at y∗
m = y∗

t = 0 (4.6-28)

u∗
x = 1, u∗

y = 0, T ∗ = 0 at y∗
m = y∗

t = ∞ (4.6-29)

The system of equations above is difficult to solve for several reasons. First, elliptic
differential equations are involved that require specifying some downstream bound-
ary conditions that in practice are generally not known. Second, as discussed in
Section 3.4, equations (4.6-22) and (4.6-23) are coupled due to the pressure. Third,
the energy equation is coupled to the solution for the equations of motion through
the two velocity components. However, if the fluid properties are not temperature-
dependent, this coupling is unidirectional in that the equations of motion can be
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solved independent of the energy equation. In view of these complications, we seek
to explore the conditions required to eliminate these two complications.

Note that in the limit of Re � 1 and Pet � 1, the system of equations above
reduces to (step 8)

u∗
x

∂u∗
x

∂x∗ + u∗
y

∂u∗
x

∂y∗
m

= ∂2u∗
x

∂y∗2
m

(4.6-30)

∂u∗
x

∂x∗ + ∂u∗
y

∂y∗
m

= 0 (4.6-31)

1

Pr
u∗

x

∂T ∗

∂x∗ + u∗
y

∂T ∗

∂y∗
t

= ∂2T ∗

∂y∗2
t

(4.6-32)

u∗
x = 1, u∗

y = 0, T ∗ = 0 at x∗ = 0 (4.6-33)

u∗
x = 0, u∗

y = 0, T ∗ = 1 at y∗
m = y∗

t = 0 (4.6-34)

u∗
x = 1, T ∗ = 0 at y∗

m = y∗
t = ∞ (4.6-35)

Equations (4.6-30) through (4.6-35) are the classical boundary-layer equations for
flow over a heated flat plate. Note that by showing that the pressure term in
equation (4.6-22) is negligible in the limit of high Reynolds number, we have
eliminated the coupling between x- and y-components of the equations of motion.
Moreover, we have shown that the axial viscous term in equation (4.6-22) and
the axial heat-conduction term in equation (4.6-25) are negligible in the limit of
very high Reynolds and Peclet numbers, respectively, and thereby have converted
the elliptic into parabolic differential equations that do not require a downstream
boundary condition. Note that the dimensionless y-coordinate in the equations of
motion is defined differently from that in the energy equation. If these equations
are recast in terms of dimensional variables and a stream function and similarity
variable are introduced, they can be transformed into a set of nonlinear ordinary dif-
ferential equations solved that can be solved via approximate analytical techniques
or numerically.10

Note that the criterion for the applicability of the hydrodynamic boundary-layer
approximation is

Re ≡ ρU∞L

µ
= U∞L

ν
� 1 ⇒ hydrodynamic boundary layer (4.6-36)

whereas the criterion for the applicability of the thermal boundary-layer approxi-
mation is

Pet = ρCpU∞L

k
= U∞L

α
� 1 ⇒ thermal boundary layer (4.6-37)

10See, for example, Bird et al., Transport Phenomena, 2nd ed., pp. 388–390.
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Since L is merely some fixed value of the axial coordinate x, the criteria above always
break down in the vicinity of the leading edge of the flat plate. Hence, if one is seek-
ing to determine an integral quantity such as the total drag or heat flux along the flat
plate, the error will not be significant if equations (4.6-36) and (4.6-37) are satisfied
over most of the plate. However, the error incurred by invoking the boundary-layer
approximation can be quite large in the vicinity of the leading edge of the plate for
point quantities such as the local velocity components, shear stress, temperature, or
heat flux. Note for 90% of the flat plate to satisfy the condition that Re ≥ ◦(100),
the Reynolds number at the end of the plate must be 1000. Since the Peclet number
is the product of the Reynolds number and the Prandtl number, equation (4.6-36) is
more limiting than equation (4.6-37) for fluids other than liquid metals.

Note that scaling analysis suggests how a solution to the coupled heat- and
momentum-transfer problem can be developed that applies from the leading edge
of the plate to any arbitrary downstream distance. Recall that the coupled describing
equations are difficult to solve, owing to the presence of the axial diffusion terms
in both the thermal energy equation and the equations of motion. These terms
require specifying downstream boundary conditions that in practice are usually not
known. However, the parabolic boundary-layer equations suggested by scaling can
be solved either numerically or via approximate analytical methods downstream
from the leading edge of the plate. The resulting solutions for the temperature and
velocity profiles then can be used as downstream boundary conditions on the full
elliptic describing equations that must be solved in the vicinity of the leading edge
of the flat plate. Hence, we see that scaling not only provides a systematic method
for simplifying the describing equations, but also suggests a strategy for solving
them.

4.7 HEAT TRANSFER WITH PHASE CHANGE

Heat transfer is very often involved in problems wherein phase change occurs,
owing to the need to supply or remove the latent heat associated with the transition
from one phase to another. Figure 4.7-1 shows a schematic of melting ice within
porous soil that was initially at its freezing temperature Tf and then was subjected
to a higher constant temperature T0 at the ground surface. We will assume that
the heat transfer is one-dimensional and purely conductive and that the physical
properties are constant.11 This example will illustrate scaling of a moving boundary
problem; that is, the melting front is a boundary that moves progressively downward
into the frozen soil as heat is conducted upward to the warm ground surface. We
will again explore how this problem can be simplified. We use this problem to
illustrate the forgiving nature of scaling by making a naı̈ve mistake in the way we

11Note that the melting of ice can induce free convection heat transfer arising from the density gradients
that can be generated, due to the fact that water has a density maximum at 4◦C; that is, unfrozen water
adjacent to melting ice is less dense than the water immediately above it, which can give rise to
free convection; however, this is not likely to occur in most soils, due to their low permeability to
flow.
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L(t)

Frozen soil

x
Thawed soil

T = Tf , t ≤ 0; T = T0, t > 0

T = Tf

Figure 4.7-1 Unsteady-state one-dimensional heat transfer due to the imposition of a tem-
perature T0 at the surface of frozen water-saturated porous soil whose initial temperature was
Tf where T0 > Tf ; the position of the thaw front denoted by L(t) progressively penetrates
farther into the frozen soil due to conductive heat transfer from the ground surface.

scale one of the derivatives. This will then lead to a contradiction that suggests
that we rescale the equations to achieve ◦(1) scaling.

The describing equations are obtained by appropriately simplifying equation
(F.1-2) in the Appendices and prescribing the requisite initial and boundary condi-
tions (step 1):

ρuCpu

∂T

∂t
= ku

∂2T

∂x2
(4.7-1)

T = Tf at t = 0 (4.7-2)

T = T0 at x = 0 for t > 0 (4.7-3)

T = Tf at x = L(t) (4.7-4)

where ku, ρu, and Cpu are the effective thermal conductivity, mass density, and
heat capacity, respectively, of the unfrozen soil; note that by effective we mean
that these properties account for the presence of the solid soil and the unfrozen
water that is contained in its pores. Equations (4.7-2) and (4.7-3) are the prescribed
initial temperature and imposed temperature at the ground surface, respectively.
Equation (4.7-4) states that ice and unfrozen water that meet at the freezing front are
in thermodynamic equilibrium at the freezing temperature of water. Note that this
boundary condition is applied at the moving interface between the ice and unfrozen
water L(t); hence, problems of this type are referred to as moving boundary prob-
lems. Since L(t) is an additional unknown, it is necessary to prescribe an auxiliary
condition to determine it. This is obtained via an integral energy balance as follows:

d

dt

∫ L

0
ρuCpu(T − T

◦
) dx + d

dt

∫ ∞

L

ρf Cpf (T − T
◦
) dx = q0 (4.7-5)
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where T
◦ is an arbitrary reference temperature for the enthalpy or heat content,

ρf and Cpf are the effective mass density and heat capacity, respectively, of the
frozen soil, and q0 is the heat transferred into the unfrozen soil at the ground surface.
Applying Leibnitz’s rule for differentiating an integral given by equation (H.1-2)
in the Appendices and substituting equation (4.7-1) while recalling that the frozen
ice remains at the constant temperature Tf yields

(ρuCpu − ρf Cpf )(Tf − T
◦
)
dL

dt
+

∫ L

0
ku

∂2T

∂x2
dx +

∫ ∞

L

kf

∂2T

∂x2
dx = q0

(4.7-6)

The first term in the above is the difference in heat content between the unfrozen
and frozen soil; this can be related to �Hf , the latent heat of fusion of water.
Hence, integrating equation (4.7-6) yields

�Hf ερw

dL

dt
+ ku

∂T

∂x

∣
∣
∣
∣
x=L

− ku

∂T

∂x

∣
∣
∣
∣
x=0

+ kf

∂T

∂x

∣
∣
∣
∣
x=∞

− kf

∂T

∂x

∣
∣
∣
∣
x=L

= q0

(4.7-7)

where ρw is the mass density of water, ε the porosity of the soil, and kf the thermal
conductivity of the frozen soil. The fourth and fifth terms in equation (4.7-7) are
identically zero if there is no heat transfer in the frozen soil and the third term
is equal to the last term. Hence, the auxiliary condition needed to determine the
instantaneous location of the freezing front is given by

ku

∂T

∂x
= −�Hf ερw

dL

dt
at x = L (4.7-8)

This condition merely states that the heat conducted to the freezing front supplies
the instantaneous latent heat required for melting the ice. To integrate equation
(4.7-8), it is necessary to specify an initial condition on L; this is given by

L = 0 at t = 0 (4.7-9)

Note that whenever boundary conditions must be applied at a location whose
position is unknown and dependent on the solution to the particular describing
equations, it is necessary to use some type of integral balance to obtain an addi-
tional condition to determine the location of this boundary. In fluid dynamics this
occurs for flows involving free surfaces such as were considered in Section 3.7
and Example Problem 3.E-8 and requires using an integral mass balance, which
is called the kinematic surface condition. In heat transfer this occurs in problems
such as the one considered here involving phase change and requires an integral
energy balance. In some heat-transfer problems involving phase change such as
evaporation, mass loss is also involved. In the latter moving boundary problems
it is necessary to include both an integral energy and an integral mass balance.
One of these is used as a boundary condition on the energy equation, and the
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other constitutes the auxiliary equation used to locate the position of the moving
boundary.

Define the following dimensionless dependent and independent variables (steps
2, 3, and 4):

T ∗ ≡ T − Tr

Ts

; x∗ ≡ x

xs

; t∗ ≡ t

ts
; L∗ ≡ L

Ls

(4.7-10)

Introduce these dimensionless variables into the describing equations and divide
each equation through by the dimensional coefficient of one term that should be
retained to maintain physical significance (steps 5 and 6):

x2
s

αuts

∂T ∗

∂t∗
= ∂2T ∗

∂x∗2
(4.7-11)

T ∗ = Tf − Tr

Ts

, L∗ = 0 at t∗ = 0 (4.7-12)

T ∗ = T0 − Tr

Ts

at x∗ = 0 for t∗ > 0 (4.7-13)

T ∗ = Tf − Tr

Ts

at x∗ = Ls

xs

L∗ (4.7-14)

∂T ∗

∂x∗

∣
∣
∣
∣
x∗=L/xs

= −�Hf ρwεxsLs

kuTsts

dL∗

dt∗
at x∗ = Ls

xs

L∗ (4.7-15)

L∗ = 0 at t∗ = 0 (4.7-16)

where αu = ku/ρuCpu is the thermal diffusivity of the unfrozen soil.
We can bound the dimensionless temperature to be ◦(1) by setting the dimen-

sionless group in equation (4.7-12) or (4.7-14) equal to zero to determine the
reference temperature and by setting the dimensionless group in equation (4.7-13)
equal to 1 to determine the temperature scale (step 7); that is,

Tf − Tr

Ts

= 0 ⇒ Tr = Tf ; T0 − Tf

Ts

= 1 ⇒ Ts = T0 − Tf (4.7-17)

We can bound the dimensionless spatial coordinate to be ◦(1) by setting the dimen-
sionless group in equation (4.7-14) or (4.7-15) equal to 1; that is,

Ls

xs

= 1 ⇒ xs = Ls (4.7-18)

The time scale will again be the observation time to since this is inherently an
unsteady-state problem. Since the two remaining terms in equation (4.7-15) must
balance each other, to ensure that each term is ◦(1), we must set the dimensionless
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group in this equation equal to 1; this then provides the scale factor for the freezing
penetration front; that is,

�Hf ρwεxsLs

kuTsts
= �Hf ρwεL2

s

ku(T0 − Tf )to
= 1 ⇒ Ls =

[
ku(T0 − Tf )to

�Hf ρwε

]1/2

(4.7-19)

If we now rewrite our dimensionless describing equations in terms of the scales
defined by equations (4.7-16) through (4.7-19), we obtain

ku(T0 − Tf )

�Hf ρwεαu

(
∂T ∗

∂t∗
− x∗

L∗
dL∗

dt∗
∂T ∗

∂x∗

)

= ∂2T ∗

∂x∗2
(4.7-20)

T ∗ = 0 at t∗ = 0 (4.7-21)

T ∗ = 1 at x∗ = 0 for t∗ > 0 (4.7-22)

T ∗ = 0 at x∗ = 1 (4.7-23)

dT ∗

dx∗ = −dL∗

dt∗
at x∗ = 1 (4.7-24)

Note that an additional term now appears in equation (4.7-20) because of the trans-
formation to a dimensionless spatial coordinate that is scaled with the instantaneous
depth of the thawed layer. This is referred to as a pseudo-convection term since it
involves a velocity multiplied by a spatial derivative in the same direction as that
of the velocity. Pseudo-convection terms will always arise when one transforms
from a stationary coordinate system to one for which either the reference or scale
factor is a function of time.

Now let us assess the conditions under which the dimensionless describing
equations can be simplified (step 8). We detect an immediate problem in
equation (4.7-20) in that the relative importance of the transformed unsteady-state
term is independent of the observation time to. Recall from the problem consid-
ered in Section 4.3 that the unsteady-state term should be multiplied by the inverse
Fourier number, which is equal to the ratio of the observation time to the character-
istic heat conduction time. For very large Fourier numbers we would anticipate that
quasi-steady-state heat transfer should apply. Hence, we have obtained an unrea-
sonable result and the forgiving nature of scaling has indicated a contradiction:
namely, that quasi-steady-state conditions can never be achieved. Another contra-
diction inherent in this scaling is that the dimensionless thaw penetration depth is
always equal to 1 since L∗ = L/Ls = L/xs = 1. Therefore, we need to rescale the
problem; we will know that we have scaled correctly when the relevant terms are
bounded of ◦(1) and no contradictions occur.

We suspect that our error was introduced by scaling dL/dt with Ls/ts . Let
us rescale the describing equations by introducing a scale factor L̇s for dL/dt to
ensure that we bound this derivative to be ◦(1):

(
dL

dt

)∗
≡ 1

L̇s

dL

dt
(4.7-25)
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The other dimensionless variables are the same as defined by equation (4.7-10).
Introduce these dimensionless variables into the describing equations and divide
each equation through by the dimensional coefficient of one term that should be
retained to maintain physical significance:

x2
s

αuts

∂T ∗

∂t∗
= ∂2T ∗

∂x∗2
(4.7-26)

T ∗ = Tf − Tr

Ts

, L∗ = 0 at t∗ = 0 (4.7-27)

T ∗ = T0 − Tr

Ts

at x∗ = 0 for t∗ > 0 (4.7-28)

T ∗ = Tf − Tr

Ts

at x∗ = L

xs

(4.7-29)

∂T ∗

∂x∗ = −�Hf ρwεxsL̇s

kuTs

(
dL

dt

)∗
at x∗ = L

xs

(4.7-30)

Our reference and scale factors for the temperature, the time, and the spatial coor-
dinate remain the same as before. Since the two terms in equation (4.7-30) must
balance each other, to ensure that each term is ◦(1), we must set the dimensionless
group in this equation equal to 1; this then provides the scale factor for the melting
front velocity; that is,

�Hf ρwεxsL̇s

kuTs

= �Hf ρwεLL̇s

ku(T0 − Tf )
= 1 ⇒ L̇s = ku(T0 − Tf )

�Hf ρwεL
(4.7-31)

We see that Ls never appears explicitly in our dimensionless describing equa-
tions. Hence, L can be nondimensionalized with any relevant length scale such
as the maximum thaw depth Lm. If we now rewrite our dimensionless describing
equations in terms of the scales defined by equations (4.7-17), (4.7-18), and (4.7-
31), we obtain

1

Fot

∂T ∗

∂t∗
− ρuCpu(T0 − Tf )

�Hf ρwε
x∗

(
dL

dt

)∗
∂T ∗

∂x∗ = ∂2T ∗

∂x∗2
(4.7-32)

T ∗ = 0 at t∗ = 0 (4.7-33)

T ∗ = 1 at x∗ = 0 for t∗ > 0 (4.7-34)

T ∗ = 0 at x∗ = 1 (4.7-35)

dT ∗

dx∗ = −
(

dL

dt

)∗
at x∗ = 1 (4.7-36)

where Fot ≡ αuto/L
2 is the Fourier number for heat transfer. Note again that an

additional pseudo-convection term appears in equation (4.7-32), due to the trans-
formation from T (x, t) to T ∗(x∗, t∗), in which x∗ = x/L(t). The dimensionless
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group ρuCpu(T0 − Tf )/�Hf ρwε multiplying the pseudo-convection term is a ratio
of the sensible heat to latent heat effects.

Now let us assess the conditions under which these dimensionless describing
equations can be simplified (step 8). We see that the relative importance of the
unsteady-state term in equation (4.7-32) is determined by the magnitude of the
Fourier number. The two terms in this equation must balance each other. We have
scaled ∂T ∗/∂t∗ to be ◦(1). However, we are not certain that ∂2T ∗/∂x∗2 is ◦(1).
The fact that we have scaled ∂T ∗/∂x∗ to be ◦(1) does not necessarily ensure that
∂2T ∗/∂x∗2 is ◦(1). If Fot = ◦(1), both the unsteady-state term and the conduction
term will be ◦(1). This condition implies that

1

Fot

= L2

αuto
= 1 ⇒ L = √

αuto for short contact times (4.7-37)

The question might arise as to whether L2/αuto can ever be much greater than 1,
corresponding to very short contact times. However, this would lead to a contra-
diction since the dimensionless unsteady-state term should be of the same order
as the dimensionless heat-conduction term. Hence, we conclude that for very short
contact times, L2 ∝ to, to ensure that L2/αuto remains bounded as to → 0; that is,
scaling analysis permits us to infer the time dependence of the thaw penetration
for short contact times.

Now let us consider the case when Fot = αuto/L
2 � 1, corresponding to very

long contact times. When this condition prevails, the unsteady-state term in equation
(4.7-32) can be ignored and quasi-steady-state prevails. The time dependence now
enters implicitly through both the pseudoconvection term and the condition applied
at the moving boundary given by equation (4.7-36). The resulting quasi-steady-
state describing equations can be solved analytically. However, if in addition
the dimensionless group multiplying the pseudo-convection term is small, that is,
ρuCpu(T0 − Tf )/�Hf ρwε � 1, further simplification is possible. In the latter case,
equation (4.7-32) predicts a linear temperature profile given by

T ∗ = 1 − x∗ (4.7-38)

When equation (4.7-38) is substituted into equation (4.7-36) and the result is cast
into dimensional form and integrated, one obtains

dL

dt
= ku(T0 − Tf )

�Hf ρwεL
= Lts (4.7-39)

That is, for long contact times we find that the solution to the describing equations
agrees identically with the scale factor for the thawing front velocity given by
equation (4.7-31). This should not be surprising since if scaling is done properly,
it should give estimates that are within an ◦(1) factor of those obtained by solving
the describing equations. One can integrate equation (4.7-39) to obtain an equation
for L as a function of t ; that is,

L2 = 2ku(T0 − Tf )

�Hf ρwε
(to − ti) + L2

i for long contact times (4.7-40)
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where Li is an integration constant; note that one cannot apply the initial condition
that L = 0 since equation (4.7-40) does not apply at short times. However, this
initial condition can be estimated from the short-time solution given by equation
(4.7-37). Note also that although both equations (4.7-37) and (4.7-40) predict that
L2 will increase linearly with to, the short-contact time thaw-penetration rate is
faster than that for the long-contact time.

In summary, if Fot � 1, this unsteady-state moving boundary heat-transfer
problem can be considered to be quasi-steady-state; that is, the describing
equations can be simplified by ignoring the unsteady-state term in the thermal
energy equation. For quasi-steady-state conditions the time dependence enters
through the boundary condition at the moving boundary whose location is time-
dependent.

4.8 TEMPERATURE-DEPENDENT PHYSICAL PROPERTIES

In Section 3.9 we used scaling analysis to determine when the incompressible flow
assumption could be made for a fluid whose density was pressure-dependent. Here
we consider a related coupled fluid-dynamics and heat-transfer problem in which
we will use scaling to determine when the temperature-dependent shear viscosity
can be assumed to be constant. Note that the manner in which scaling analysis is
used to assess when the temperature-dependence of the viscosity can be ignored
in this problem can be applied to assessing when the dependence of any other
physical or transport property on some state variable such as temperature, pressure,
or concentration can be ignored.

Figure 4.8-1 shows a schematic of the steady-state pressure-driven flow of an
incompressible Newtonian liquid between two infinitely wide parallel flat plates,
each of which is maintained at T0, which is also the initial temperature of the
liquid. The shear flow causes significant viscous heating that can possibly cause
a progressive decrease in the liquid viscosity whose temperature dependence is
given by

µ = AeB/T (4.8-1)

where A and B are positive constants. This in turn implies a possible developing
flow due to the influence of the decrease in viscosity on the velocity profile. How-
ever, we will invoke the lubrication-flow12 and low Peclet number approximations
and in addition ignore axial conduction.13 We use scaling analysis to assess when
the temperature dependence of the viscosity can be ignored.

Appropriate simplification of the equations of motion given by equations (D.1-
10) and (D.1-11) in the Appendices and the thermal energy equation given by

12Scaling analysis was applied to justify the lubrication-flow approximation in Section 3.3.
13Scaling analysis was applied to justify the low Peclet number approximation, ignoring the axial
conduction in Section 4.5.
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Figure 4.8-1 Steady-state pressure-driven lubrication flow of an incompressible Newtonian
liquid between two infinitely wide parallel flat plates, each of which is maintained at T0,
which is also the initial temperature of the liquid; this shear flow causes viscous heating
that can result in a progressive decrease in the liquid viscosity; representative velocity and
temperature profiles are shown in this figure.

equation (F.1-2), and specification of the required boundary conditions yields the
following set of describing equations (step 1):

0 = �P

L
+ d

dy

(

µ
dux

dy

)

(4.8-2)

0 = k
d2T

dy2
+ µ

(
dux

dy

)2

(4.8-3)

dux

dy
= 0,

dT

dy
= 0 at y = 0 (4.8-4)

ux = 0, T = T0 at y = ±H (4.8-5)

Since we seek to assess when the temperature dependence of the viscosity can be
ignored, we need consider only small departures of the temperature from the initial
temperature T0. Hence, it is convenient to expand equation (4.8-1) in a Taylor series
about T0 at which the viscosity is µ0:

µ = µ0 − Bµ0

T 2
0

(T − T0) + ◦(T − T0)
2 (4.8-6)

Since we need consider only the first-order effects of temperature to assess whether
there is any significant change in the viscosity, truncate equation (4.8-6) after the
second term on the right-hand side and substitute it into equations (4.8-2) and
(4.8-3):

0 = �P

L
+ d

dy

{[

µ0 − Bµ0

T 2
0

(T − T0)

]

dux

dy

}

(4.8-7)
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0 = k
d2T

dy2
+

[

µ0 − Bµ0

T 2
0

(T − T0)

] (
dux

dy

)2

(4.8-8)

Introduce the following scale and reference factors (steps 2, 3, and 4):

u∗
x ≡ ux

us

; T ∗ ≡ T − Tr

Ts

; x∗ ≡ x

xs

; y∗ ≡ y

ys

(4.8-9)

Substitute these dimensionless variables into the describing equations and divide
each equation through by the dimensional coefficient of one term that should be
retained in order to maintain physical significance (steps 5 and 6):

0 = �P

L

y2
s

µ0us

+ d

dy∗

{[

1 − BTs

T 2
0

(

T ∗ + Tr − T0

Ts

)]

du∗
x

dy∗

}

(4.8-10)

0 = d2T ∗

dy∗2
+ µ0u

2
s

kTs

[

1 − BTs

T 2
0

(

T ∗ + Tr − T0

Ts

)] (
du∗

x

dy∗

)2

(4.8-11)

du∗
x

dy∗ = 0,
dT ∗

dy∗ = 0 at y∗ = 0 (4.8-12)

u∗
x = 0, T ∗ = T0 − Tr

Ts

at y∗ = ±H

ys

(4.8-13)

When set equal to zero and 1, respectively, the dimensionless groups in equations
(4.8-13) provide the following reference and scale factors (step 7):

T0 − Tr

Ts

= 0 ⇒ Tr = T0,
H

ys

= 1 ⇒ ys = H (4.8-14)

Since the pressure term must balance the principal viscous term for this lubrication
flow, the dimensionless pressure term in equation (4.8-10) must be set equal to 1
to obtain the velocity scale:

�P

L

y2
s

µ0us

= 1 ⇒ us = �P

L

H 2

µ0
(4.8-15)

This is a reasonable velocity scale since it is equal to the average velocity for
fully developed laminar flow between two parallel flat plates. Since the viscous
dissipation must be balanced by the heat conduction to the parallel flat plates, the
dimensionless dissipation term in equation (4.8-11) must be set equal to 1 to obtain
the temperature scale:

µ0u
2
s

kTs

= µ0

kTs

(
�P

L

H 2

µ0

)2

= 1 ⇒ Ts = H 4

kµ0

(
�P

L

)2

(4.8-16)
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When the reference and scale factors defined by equations (4.8-14), (4.8-15),
and (4.8-16) are substituted into our dimensionless describing equations, we
obtain

0 = 1 + d

dy∗

{[

1 − B

T 2
0

H 4

kµ0

(
�P

L

)2

T ∗
]

du∗
x

dy∗

}

(4.8-17)

0 = d2T ∗

dy∗2
+

[

1 − B

T 2
0

H 4

kµ0

(
�P

L

)2

T ∗
] (

du∗
x

dy∗

)2

(4.8-18)

du∗
x

dy∗ = 0,
dT ∗

dy∗ = 0 at y∗ = 0 (4.8-19)

u∗
x = 0, T ∗ = 0 at y∗ = ±1 (4.8-20)

We see that the criterion for ignoring the temperature dependence of the viscosity
is given by (step 8)

B

T 2
0

H 4

kµ0

(
�P

L

)2

� 1 (4.8-21)

If the criterion given by equation (4.8-21) is satisfied, equations (4.8-17) through
(4.8-20) reduce to exactly the same equations that were considered in Section 4.5;
that is, equations (4.5-22) through (4.5-24) for which the solution for the velocity
profile is given by equation (4.5-1) and for which the temperature profile is given
by equation (4.5-25).

4.9 THERMALLY DRIVEN FREE CONVECTION: BOUSSINESQ
APPROXIMATION

Thus far we have considered problems that have involved either pure conduc-
tion or heat transfer with forced convection, that is, flow that is caused by some
external driving force, such as a pump, fan, moving boundary, gravitational field,
or other body force. Here we consider an example of thermal free convection,
convection caused internal to the system, owing to a temperature gradient that cre-
ates unstable density variations. Note that unstable density variations can also be
caused by concentration gradients, in which case it is referred to as solutal free
convection. Free convection can also arise due to surface-tension gradients at an
interface.

Consider a fluid with density ρ and viscosity µ that is confined between two
vertical parallel plates of vertical height L separated by a distance 2H , as shown
in Figure 4.9-1. We assume that the space between the plates is capped at the
top and the bottom but that L � H . The vertical plate at y = −H is main-
tained at a constant temperature T1, whereas the vertical plate at y = +H is
maintained at a constant temperature T2, where T1 > T2. Because the density of
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Figure 4.9-1 Steady-state fully developed buoyancy-induced free convection of a fluid
confined between two vertical plates maintained at temperatures T1 and T2, where T1 > T2,
showing representative temperature and velocity profiles.

a fluid decreases with increasing temperature, there will be a tendency for the
fluid near the hot wall to flow upward and for the fluid near the cold wall to
flow downward. As long as the plates are not too close together or the fluid is
not too viscous, a steady-state free-convection flow can be generated for which
the mass flow upward is equal to the mass flow downward.14 We use scaling
analysis to determine the conditions that permit the equations describing free-
convection heat transfer to be simplified. We ignore end effects at the top and
bottom of the vertical parallel plates as well as heat generation due to viscous
dissipation.

Appropriate simplification of the equations of motion given by equations (D.1-
10) and (D.1-11) and the thermal energy equation given by equation (F.1-2) in

14To determine if free-convection flow will be generated, it is necessary to carry out a stability analysis;
the latter leads to the conditions required for free convection to be initiated expressed in terms of
a critical value of the thermal Grashof number, Grt ≡ H 3gβt �ρ/ν2, or thermal Rayleigh number,
Rat ≡ Grt · Pr, where �ρ in the present case is the difference in density between the fluid at the cold
and hot plates; note that if the plates are too closely spaced or if the viscosity is sufficiently high, the
Grashof number can be below the critical value for the inception of free convection; the reader interested
in more information on stability theory applied to free convection is referred to standard references such
as P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge,
England, 1981, or J. S. Turner, Buoyancy Effects in Fluids, Cambridge University Press, Cambridge,
England, 1973.
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the Appendices and specification of the required boundary conditions yield the
following set of describing equations (step 1):

0 = −∂P

∂x
+ µ

d2ux

dy2
− ρg (4.9-1)

0 = −∂P

∂y
(4.9-2)

0 = d2T

dy2
(4.9-3)

ux = 0, T = T1 at y = −H (4.9-4)

ux = 0, T = T2 at y = H (4.9-5)

Note that axial derivatives of both velocity and temperature are assumed to be zero
under the assumptions of fully developed flow and no end effects. Since the density
is temperature dependent, we need an appropriate equation of state. Here we con-
sider small density variations and hence represent the density via a Taylor series
expansion about the density ρ at the average temperature between the two plates,
T ≡ (T1 + T2)/2, given by

ρ = ρ|T + ∂ρ

∂T

∣
∣
∣
∣
T

(T − T ) + 1

2

∂2ρ

∂T 2

∣
∣
∣
∣
T

(T − T )2 + · · · (4.9-6)

ρ = ρ − ρβt(T − T ) + ργt (T − T )2 + · · · (4.9-7)

where βt is the coefficient of volume expansion and γt is a positive constant. When
equation (4.9-7) is substituted into equation (4.9-1) and truncated at the third term
in the expansion, we obtain

0 = −∂P

∂x
+ µ

d2ux

dy2
− ρg + ρgβt (T − T ) − ρgγt (T − T )2 (4.9-8)

Equation (4.9-3) can be integrated directly subject to the boundary conditions given
by equations (4.9-4) and (4.9-5) to obtain the following temperature profile:

T = T1 + T2

2
− T1 − T2

2

y

H
= T − �T

2

y

H
(4.9-9)

Moreover, equation (4.9-2) in combination with equation (4.9-1) implies that
∂P/∂x = dP/dx = a constant. Hence, we can evaluate dP/dx at any lateral
position between the two vertical plates. It is convenient to evaluate the pres-
sure gradient at the centerline between the two plates where T = T ; therefore,
dP/dx = −ρg. With this simplification, equation (4.9-8) takes the form

0 = µ
d2ux

dy2
+ ρgβt (T − T ) − ρgγt (T − T )2 (4.9-10)
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Introduce the following scale and reference factors (steps 2, 3, and 4):

u∗
x ≡ ux

us

; T ∗ ≡ T − Tr

Ts

; y∗ ≡ y

ys

(4.9-11)

Substitute these dimensionless variables into the describing equations and divide
each equation through by the dimensional coefficient of one term that should be
retained to maintain physical significance (steps 5 and 6):

0= d2u∗
x

dy∗2
+ ρgβty

2
s Ts

µus

(

T ∗+ Tr − T

Ts

)

− ρgγty
2
s T

2
s

µus

(

T ∗ + Tr − T

Ts

)2

(4.9-12)

0 = d2T ∗

dy∗2
(4.9-13)

u∗
x = 0, T ∗ = T1 − Tr

Ts

at y∗ = −H

ys

(4.9-14)

u∗
x = 0, T ∗ = T2 − Tr

Ts

at y∗ = H

ys

(4.9-15)

The dimensionless groups in equations (4.9-14) and (4.9-15) when set equal to
1 and zero, respectively, provide the following reference and scale factors (step 7):

T2 − Tr

Ts

= 0 ⇒ Tr = T2,
T1 − Tr

Ts

= T1 − T2

Ts

= 1 ⇒ Ts = T1 − T2 (4.9-16)

In addition, the dimensionless groups in these equations provide the characteristic
length scale

H

ys

= 1 ⇒ ys = H (4.9-17)

Since what causes this flow (i.e., the leading-order gravitational body force term)
must balance the viscous resisting force, the corresponding dimensionless group
that provides a measure of this ratio in equation (4.9-12) must be equal to 1, which
provides the characteristic scale for the velocity:

ρgβty
2
s Ts

µus

= 1 ⇒ us = ρgβty
2
s Ts

µ
= ρgβtH

2(T1 − T2)

µ
(4.9-18)

If the reference and scale factors defined by equations (4.9-16) through (4.9-18)
are substituted into our dimensionless describing equations, we obtain

0 = d2u∗
x

dy∗2
+

(

T ∗ − 1

2

)

− γt (T1 − T2)

βt

(

T ∗ − 1

2

)2

(4.9-19)

0 = d2T ∗

dy∗2
(4.9-20)
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u∗
x = 0, T ∗ = 1 at y∗ = −1 (4.9-21)

u∗
x = 0, T ∗ = 0 at y∗ = 1 (4.9-22)

We see that the criterion for ignoring the higher-order temperature dependence of
the density is given by (step 8)

γt (T1 − T2)

βt

� 1 (4.9-23)

This simplification, which considers only the leading-order effects of the tempera-
ture on the density, is referred to as the Boussinesq approximation.

4.10 DIMENSIONAL ANALYSIS CORRELATION FOR COOKING
A TURKEY

In dimensional analysis we seek to determine the dimensionless groups required
to correlate data or to scale a process up or down. These dimensionless groups
can always be determined using ◦(1) scaling analysis since this procedure leads
to the minimum parametric representation for a set of describing equations. How-
ever, the preceding sections indicated that carrying out an ◦(1) scaling analysis
can be somewhat complicated and time consuming. In contrast, the scaling analy-
sis approach to dimensional analysis illustrated in this section is much easier and
quicker to implement. Note, however, that it does not provide as much information
as does ◦(1) scaling analysis for achieving the minimum parametric representation.
In particular, it does not lead to groups whose magnitude can be used to assess the
relative importance of particular terms in the describing equations. It also does not
identify regions of influence or boundary layers whose identification can in some
cases reduce the number of dimensionless groups. This first example of the use
of scaling for dimensional analysis in heat-transfer applications will provide more
details on the steps involved. We will also compare the results of scaling analysis
to the results obtained from using the Pi theorem, to underscore the advantages
of using the former to achieve the minimum parametric representation. The steps
referred to here are those outlined in Section 2.4 for the scaling approach to dimen-
sional analysis; these differ from those used in Sections 4.2 through 4.9, since no
attempt is made to achieve ◦(1) scaling.

This first example of the use of scaling analysis for dimensional analysis in heat
transfer will consider developing a correlation for determining the cooking time
of a turkey. In particular, we seek to determine how long it will take to cook the
28-lb (12.7-kg) turkey shown in Figure 4.10-1. Cookbooks do not provide equations
to determine the cooking time. Rather, they usually provide discrete data for the
required cooking time tc as a function of the mass of the turkey M , such as shown
in the table that accompanies Figure 4.10-1. A problem arises in that this table does
not indicate in any precise way how much time is required to cook a 28-lb turkey.
A crude way to estimate this time might be to do some type of extrapolation from
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Ready to cook weight

M (lb)

5 to 8

8 to 12

12 to 16

16 to 20

20 to 24

Total cooking time

tc (hr)

3 to 3½

3½ to 4½

4½ to 5½

5½ to 6½

6½ to 7

L

Figure 4.10-1 Schematic of a very large turkey of a characteristic length L along with
cookbook data for the cooking time tc as a function of the mass of the turkey M . (Data
from General Mills, Betty Crocker’s Cookbook, Golden Press, New York, 1972.)

the data given in this table. However, a better way is to use these data and scaling
analysis to determine the underlying correlation between the weight of the turkey
and the cooking time.

The time it takes to fully cook the turkey is that required to bring the center of the
bird from its initial temperature T0 up to the temperature T1 specified by the cook-
book (typically, 165◦F or 73.9◦C) by placing it in a preheated oven maintained at a
temperature T2 (typically 325◦F or 163◦C). It is reasonable to assume that the heat
transfer is controlled by conduction in the turkey. To determine the time required
to reach this temperature, in principle we would have to solve the unsteady-state
heat-conduction equation. This is complicated by the fact that the center of the
turkey is usually filled with dressing that has physical properties that differ from
those of the turkey itself. A further complication is that appropriate boundary con-
ditions need to be specified on the surface of the turkey and at the interface between
the turkey and the dressing along with appropriate conditions at the center of the
stuffed turkey. Indeed, this would be a complicated problem to solve numerically!
However, we will see that with the aid of the data given in the cookbook, we can
determine the cooking time without having to solve the describing equations.

We begin by writing the equations we would solve for the cooking time, if indeed
we could solve these equations (step 1 in the scaling procedure for dimensional
analysis); namely, the unsteady-state heat-conduction equations in both the turkey
proper and in the dressing in its interior, which are given in generalized vector
notation by equation (B.4-2) in the Appendices:

∂T

∂t
= αT ∇2T (applicable in the turkey) (4.10-1)

∂T

∂t
= αD∇2T (applicable in the dressing) (4.10-2)
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where ∇2 denotes the Laplacian operator and αT ≡ kT /ρT CPT and αD ≡ kD/

ρDCPD are the thermal diffusivities of the turkey and dressing, respectively, in
which ki, ρi , and CPi are the thermal conductivity, density, and heat capacity of
medium i, respectively. Note that we have chosen to write the thermal energy
equation in generalized notation that is not specific to any particular coordinate
system; this is convenient to do in dimensional analysis since there is no need to
scale specific spatial derivatives to be ◦(1). The initial and boundary conditions
are given by

T = T0 at t = 0 (4.10-3)

T = T2 at the surface of the turkey (4.10-4)

T |+ = T |− at the interface between the turkey and dressing (4.10-5)

kT ∇T |+ = kD∇T |− at the interface between the turkey and dressing
(4.10-6)

�n · ∇T = 0 along the plane of symmetry in the turkey (4.10-7)

where + and − denote the turkey and dressing side of the interface, respectively,
and �n is a unit vector normal to the plane of symmetry in the turkey.

To solve equations (4.10-1) through (4.10-7), we would need to describe math-
ematically the surface of the turkey and its interface with the dressing; this would
be prohibitively difficult to do in practice. However, in dimensional analysis this
challenging task can be avoided by recognizing that it is reasonable to assume
that all turkeys are geometrically similar. By this we mean that although their
mass might differ, their geometry is more or less the same. Assume that it takes
p geometric parameters to characterize the shape of a turkey. Recall that one can
form p − 1 dimensionless ratios from p quantities having one dimension (length in
this case). For geometrically similar turkeys, these p − 1 dimensionless geometric
ratios will be the same. Hence, one needs to include in the dimensional analysis
only one geometric quantity such as some characteristic body dimension along with
the quantities that characterize the heat transfer. This arbitrary characteristic length
is chosen to be the maximum body width L as shown in Figure 4.10-1.

Steps 2 and 3 in the scaling procedure for dimensional analysis involve defining
arbitrary scale factors for all the dependent and independent variables and reference
factors for those not naturally referenced to zero. Hence, we introduce the following
dimensionless variables:

T ∗ ≡ T − Tr

Ts

; ∇∗ ≡ L∇; ∇2∗ ≡ L2∇2; t∗ ≡ t

ts
(4.10-8)

Note that we have chosen L for our length scale since we arbitrarily chose it to form
the p − 1 geometric ratios that define the surface of the turkey and its interface
with the dressing.

Steps 4 and 5 involve introducing these dimensionless variables into the describ-
ing equations and dividing through by the dimensional coefficient of one term in
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each equation. In dimensional analysis it makes no difference which term you
choose. These steps yield the following dimensionless describing equations:

∂T ∗

∂t∗
= αT ts

L2
∇∗2T ∗ (applicable in the turkey) (4.10-9)

∂T ∗

∂t∗
= αDts

L2
∇∗2T ∗ (applicable in the dressing) (4.10-10)

T ∗ = T0 − Tr

Ts

at t∗ = 0 (4.10-11)

T ∗ = T2 − Tr

Ts

at the surface of the turkey (4.10-12)

T ∗|+ = T ∗|− at the interface between the turkey and dressing (4.10-13)

∇∗T ∗|+ = kD

kT

∇∗T ∗|− at the interface between the turkey and dressing

(4.10-14)

�n · ∇∗T ∗ = 0 along the plane of symmetry in the turkey (4.10-15)

Step 6 involves setting the various groups equal to 1 or zero to determine the
scale and reference factors, respectively. It makes no difference in dimensional anal-
ysis which groups we set equal to 1 since there is no attempt to achieve ◦(1) scaling.
We need to do the latter only if we are seeking to simplify the equations by dropping
one or more of the terms. In dimensional analysis we are seeking to determine the
minimum parametric representation. Let us set equation (4.10-11) equal to zero
to determine the reference temperature and set equation (4.10-12) equal to 1 to
determine the temperature scale. Finally, let us set the dimensionless group in
equation (4.10-9) equal to 1 to obtain the time scale; we could equally well have
set the dimensionless group in equation (4.10-10) equal to 1 to determine this time
scale. These choices then yield the following minimum parametric representation of
the describing equations; that is, in terms of the minimum number of dimensionless
groups:

∂T ∗

∂t∗
= ∇∗2T ∗ (applicable in the turkey) (4.10-16)

∂T ∗

∂t∗
= αD

αT

∇∗2T ∗ (applicable in the dressing) (4.10-17)

T ∗ = 0 at t∗ = 0 (4.10-18)

T ∗ = 1 at the surface of the turkey (4.10-19)

T ∗|+ = T ∗|− at the interface between the turkey and dressing (4.10-20)

∇∗T ∗|+ = kD

kT

∇∗T ∗|− at the interface between the turkey and dressing

(4.10-21)
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�n · ∇∗T ∗ = 0 along the plane of symmetry in the turkey (4.10-22)

The solution to equations (4.10-16) through (4.10-22) for the dimensionless tem-
perature as a function of the dimensionless time then will be of the form

T ∗ = f1

(

x∗, y∗, z∗, t∗,
αD

αT

,
kD

kT

)

(4.10-23)

However, we seek the particular value of the dimensionless time t∗c at which the
center of the turkey reaches the temperature T1. The center of the turkey is located
at some specific values of the dimensionless coordinates x∗, y∗, and z∗. Hence, our
correlation for the dimensionless cooking time is given by

T ∗
1 = T1 − T0

T2 − T0
= f2

(

t∗c ,
αD

αT

,
kD

kT

)

(4.10-24)

An equivalent statement is

t∗c = αT tc

L2
= f3

(
T1 − T0

T2 − T0
,
αD

αT

,
kD

kT

)

(4.10-25)

Hence, for specified cooking conditions and geometrically similar turkeys and
dressing with specified physical and transport properties, we conclude that tc ∝ L2.

It is reasonable to assume for geometrically similar turkeys that the characteristic
length L will be proportional to the mass of the turkey; that is,

L = AMB (4.10-26)

When equation (4.10-26) is substituted into equation (4.10-25), we obtain the fol-
lowing equation that can be used to correlate the data given in Table 4.10-1 for the
cooking time as a function of turkey weight:

tc = L2

αT

f ′
(

T1 − T0

T2 − T0
,
αD

αT

,
kD

kT

)

= A
M2B

αT

f ′
(

T1 − T0

T2 − T0
,
αD

αT

,
kD

kT

)

= A′MB ′

(4.10-27)

where A′ and B ′ are empirical constants that will be determined by fitting the
cooking-time data given in the cookbook as a function of the mass of the turkey.
Figure 4.10-2 shows a plot of the cooking time tc as a function of the mass M

of the turkey. The data points represent average values of the cooking time and
turkey mass for each table entry in Figure 4.10-1; the corresponding error bars
then represent the maximum deviation of the values in Figure 4.10-1 about these
average values for each of the five data points. The trend line in Figure 4.10-2 fits
the data with a regression coefficient R2 = 0.994 and is given by the equation

tc = M0.61 (4.10-28)
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Figure 4.10-2 Cooking time in hours as a function of turkey mass in pounds. The solid
line shows the correlation suggested by using the scaling approach to dimensional analysis.
(Data from General Mills, Betty Crocker’s Cookbook, Golden Press, New York, 1972.)

Note that if the turkey body were perfectly spherical with a diameter L, the exponent
in equation (4.10-28) would be 0.67. Equation (4.10-28) now permits determining
the time required to cook a 28-lb turkey, which is found to be 7.6 hours.

Equation (4.10-25) indicates that the cooking time can be correlated in terms
of four dimensionless groups and p − 1 geometric ratios required to specify the
shape of a turkey. It is of interest to explore the possible consequences of using
the Pi theorem to develop a correlation for the cooking time. The Pi theorem
approach would require first somehow identifying the quantities that enter into the
correlation; these would include tc, αT , αD, kT , kD, L, T0, T2, and T1. Note that the
quantity L can be expressed in terms of the mass M of the turkey via a relation of
the form of equation (4.10-26). These nine quantities are expressed in terms of four
units: length, time, energy, and temperature (note that energy is a fundamental unit
in the system of thermodynamics when no exchange is involved between internal
and mechanical energy). Hence, we might conclude that five dimensionless groups
are required to correlate the cooking time (i.e., n − m = 9 − 4 = 5) in addition
to p − 1 geometric aspect ratios when, in fact, our scaling analysis indicated that
only four dimensional groups are needed in addition to the p − 1 aspect ratios. A
more enlightened use of the Pi theorem cleverly might recognize that the quantities
T0, T2, and T1 can be combined into the single variable (T1 − T0)/(T2 − T0), which
then leads to the conclusion that only three dimensionless groups (n − m = 7 − 4 =
3) plus the p − 1 geometric aspect ratios are required. However, this conclusion
drawn from the Pi theorem is error since our scaling analysis indicates that the
minimum parametric representation involves four dimensionless groups. This error
arises owing to a breakdown of the Pi theorem associated with the quantities
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αT , αD, kT , and kD; the Pi theorem would indicate zero groups for these four
quantities (i.e., n − m = 4 − 4 = 0) when in fact they lead to two dimensionless
groups. This example clearly indicates the pitfalls of using the Pi theorem for
dimensional analysis. Scaling analysis provides a systematic method for avoiding
these problems associated with the Pi theorem.

4.11 SUMMARY

The example in Section 4.2 provided an introduction to the step-by-step procedure
for scaling analysis in heat transfer. Scaling was used in this problem to assess the
criterion for ignoring edge effects so that the heat transfer could be considered to
be one-dimensional when predicting the temperature sufficiently far removed from
the sidewalls or integral quantities such as the total heat-transfer rate. This problem
involved the introduction of both reference and scale factors since the temperature
was not naturally referenced to zero. It also introduced region-of-influence scaling
to determine the thickness of the zone near the sidewalls, wherein the effects of
lateral heat transfer could never be ignored when predicting quantities such as
the temperature or heat flux at or near the sidewalls. This example provided a
means for estimating the error incurred when the assumptions suggested by scaling
analysis are invoked since an analytical solution was available for this heat-transfer
problem. Demanding that a quantity be ◦(0.1) in order to ignore some term in
the describing equations typically results in an error of 40 to 50%; demanding
that it be ◦(0.01) reduces the error to less than 10%. However, the error that
is encountered also depends on the quantity being considered; for example, point
quantities within a region of influence might incur very large errors even when the
relevant dimensionless group is very small.

In Section 4.3 we applied scaling analysis to unsteady-state one-dimensional
heat conduction in a flat solid slab. This example led to two time scales, the
observation time and the characteristic conduction time, whose ratio is the Fourier
number for heat transfer. If the Fourier number is very large, the process can be
assumed to be steady-state, whereas if it is very small, the unsteady-state heat
transfer is confined to a region of influence or thermal boundary layer. We referred
to these as the film theory and penetration theory approximations, respectively,
although this terminology is generally used only for the analogous approximations
in mass-transfer modeling.

Unsteady-state convective heat transfer from a solid sphere was considered in
Section 4.4. A lumped-parameter boundary condition involving an appropriate heat-
transfer coefficient was used to describe the heat transfer in the fluid phase. It
was necessary to introduce a separate scale for the temperature gradient in this
problem since the temperature did not go through a characteristic change over the
characteristic length. Scaling this problem introduced the Biot number, which is
the dimensionless ratio of the heat-conduction resistance in the solid sphere to
the convective heat-transfer resistance in the surrounding fluid. The criterion for
assuming steady-state in this problem involved an interrelationship between the
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Fourier and Biot numbers; the observation time required to achieve steady-state
was found to decrease with increasing Biot number. Scaling analysis provided a
systematic method for arriving at the simplified equations appropriate to the small
Biot number approximation whereby the temperature can be assumed to be uniform
within the conducting object. Most heat-transfer textbooks do not provide any
rigorous justification for the low Biot number approximation.

In Section 4.5 we considered fully developed laminar flow between two flat
plates with heat generation due to viscous dissipation. The presence of both the
transverse and axial conduction terms made the describing equations elliptic. This
complicated the solution since the required downstream boundary condition often
is unknown. The concept of local scaling in heat transfer was introduced in this
problem, whereby one considers the describing equations within a domain defined
by some arbitrary distance in the principal direction of flow that is assumed to be
constant during the scaling analysis. In contrast to the preceding three examples,
there was no explicit temperature scale in this problem; rather, the temperature scale
was determined by balancing the viscous dissipation and transverse heat-conduction
terms. Scaling analysis led to two important dimensionless groups in heat transfer:
the Peclet and Prandtl numbers. The former is a measure of the ratio of the convec-
tion to conduction of heat, whereas the latter is a measure of the viscous transport
of momentum to the conductive transfer of heat. The Peclet number has a role in
heat transfer that is analogous to that of the Reynolds number in fluid dynamics. For
example, we found that the convective heat transfer could be ignored if the Peclet
number was very small; this is analogous to the low Reynolds number or creeping-
flow approximation in fluid dynamics. We also found that the complicating effects
of axial heat conduction could be ignored if the width-to-length aspect ratio was
very small. The combination of small Peclet number and small aspect ratio in heat
transfer is analogous to the lubrication-flow approximation in fluid dynamics.

Scaling analysis was applied to the complementary problem of high Peclet num-
ber, coupled heat and momentum transfer in Section 4.6. The problem considered
here was heat transfer from a hot flat plate to the developing flow over this surface.
In this problem the transverse derivative of the temperature and axial velocity were
scaled with different characteristic lengths: the thermal and momentum boundary-
layer thicknesses, respectively. The relative thickness of the two boundary layers
depended on the Prandtl number. For liquids whose Prandtl number is much greater
than 1, the thermal was thinner than the momentum boundary layer. For liq-
uid metals whose Prandtl number is less than 1, the thermal is thicker than the
momentum boundary layer. For gases whose Prandtl number is nearly 1, the two
boundary layers have essentially the same thickness. We found that the boundary-
layer approximation is reasonable when the Peclet and Reynolds numbers based
on the local axial length scale become large (i.e., Pet ≡ U∞L/α = Re · Pr �1
and Re ≡ U∞ρL/µ �1). Note that for ordinary liquids, thermal boundary-layer
analysis might apply, whereas the momentum boundary-layer analysis might not.
Note also that the boundary-layer approximation must break down in the vicinity
of the leading edge, where L becomes small. Hence, this problem involved both
a transverse and an axial region of influence; boundary-layer theory is applicable
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within the former and beyond the latter. This upstream limitation of boundary-layer
theory, which emerges from scaling analysis, is not mentioned in some transport
and fluid mechanics textbooks. This problem also illustrated how scaling analysis
can suggest a strategy for solving the describing equations by using the solution
to the parabolic boundary-layer equations to specify the downstream boundary
conditions on the elliptic equations that must be solved near the leading edge.

Scaling analysis was applied to heat transfer associated with phase change in
Section 4.7. Conductive heat transfer causes a melting front to penetrate progres-
sively into frozen porous media. This provided an introduction to moving boundary
problems, those for which boundary conditions must be applied at surfaces whose
location in turn had to be determined by solving the describing equations. Since
the location of the moving boundary constituted an additional unknown, an auxil-
iary condition was needed. This was obtained by an integral energy balance over
the domain of interest. An analogy was drawn between this auxiliary condition in
heat transfer and the kinematic condition in fluid dynamics in that both are based on
integral balances done to derive an additional equation to determine the location of
an unspecified boundary. The forgiving nature of scaling analysis was illustrated by
intentionally scaling one of the dependent variables incorrectly and thereby arriving
at a contradiction: that the unsteady-state term was not multiplied by the reciprocal of
the Fourier number. A proper analysis required that the time derivative of the moving
boundary location be scaled with a velocity scale rather than with the ratio of the char-
acteristic length divided by the time scale. We then found that for sufficiently large
Fourier numbers, quasi-steady-state thermal penetration of the melting front could be
assumed. This problem also introduced the pseudo-convection term that arises when
the scaling introduces either a scale or a reference factor that is time-dependent.

In Section 4.8 we illustrated how scaling analysis could be used to determine
when it is reasonable to ignore the temperature dependence of the viscosity for a
problem involving laminar flow between two flat plates with transverse heat con-
duction and viscous dissipation. Since we sought to determine only if any significant
variation in the viscosity occurred, it was sufficient to expand the equation describ-
ing the temperature dependence of the viscosity in a Taylor series and retain only
the first-order correction. Scaling then identified the condition required to ignore
this first-order correction. The scaling procedure used here for assessing when the
temperature dependence of the viscosity can be ignored can be applied to assess
the dependence of any physical or transport property on state variables such as
temperature, pressure, or concentration.

In Section 4.9 we applied scaling to a free-convection heat-transfer problem;
that is, to a problem wherein the driving force for flow was internal to the system,
in this case due to density variations created by temperature gradients. Scaling was
employed to determine when the temperature dependence of the density could be
represented by the first two terms in a Taylor series expansion about the density at
the average temperature. This is the basis of the classical Boussinesq approximation
in the analysis of free convection.

Scaling was applied to dimensional analysis in Section 4.10. In contrast to
◦(1) scaling analysis, the scaling approach to dimensional analysis merely seeks to
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arrive at the minimum parametric representation of the problem; that is, to obtain
a set of dimensionless describing equations in terms of the minimum number of
dimensionless parameters. The goal of this problem was to determine the relation-
ship between the required cooking time and turkey mass based on discrete data
taken from a cookbook. This example illustrated the advantages of the scaling
analysis methodology for dimensional analysis relative to using the conventional
Pi theorem approach in that the latter did not lead to the minimum parametric
representation. Scaling analysis led to a single dimensionless group that involved
the two quantities that we sought to interrelate. By using this dimensionless group
in conjunction with the discrete cookbook data it was possible to develop a fully
predictive equation that related the required cooking time to the mass of the turkey.

4.E EXAMPLE PROBLEMS

4.E.1 Steady-State Heat Conduction in a Rectangular Fin

A solid metallic flat fin with a constant thermal conductivity k, length L, width
W , and height H such that H � L < W is attached at one end to a surface that is
maintained at a constant temperature T0. The convective heat-transfer flux q0 from
the surfaces of the fin to the ambient air is describing via the lumped-parameter
approach and given by

q0 = h(T − T∞) (4.E.1-1)

where h is the heat-transfer coefficient and T∞ is the temperature of the ambient
air far removed from the fin. A schematic of the fin is shown in Figure 4.E.1-1.
We use scaling analysis to explore what simplifications are possible in describing
heat transfer in this fin.

The describing equations obtained by considering only the conduction terms
in equation (F.1-2) in the Appendices and the necessary boundary conditions are
given by (step 1)

T0

Solid metallic fin

y z

x

L

W

Ambient gas phase at T∞

H

Figure 4.E.1-1 Flat solid metallic fin that has a constant thermal conductivity and length
L, width W , and height H such that H � L < W ; the convective heat-transfer flux q0 from
the surfaces of the fin to the ambient air is described by h(T − T∞).
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0 = ∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
(4.E.1-2)

T = T0 at x = 0, 0 ≤ y ≤ H, 0 ≤ z ≤ W (4.E.1-3)

−k
∂T

∂x
= h(T − T∞) at x = L, 0 ≤ y ≤ H

2
, 0 ≤ z ≤ W

2
(4.E.1-4)

∂T

∂y
= 0 at y = 0, 0 ≤ x ≤ L, 0 ≤ z ≤ W

2
(4.E.1-5)

−k
∂T

∂y
= h(T − T∞) at y = H

2
, 0 ≤ x ≤ L, 0 ≤ z ≤ W

2
(4.E.1-6)

∂T

∂z
= 0 at z = 0, 0 ≤ x ≤ L, 0 ≤ y ≤ H

2
(4.E.1-7)

−k
∂T

∂z
= h(T − T∞) at z = W

2
, 0 ≤ x ≤ L, 0 ≤ y ≤ H

2
(4.E.1-8)

Because of the planar symmetry, we have considered the heat transfer in only the
upper half-width of the fin.

Introduce the following scale and reference factors (steps 2, 3, and 4):

T ∗ ≡ T − Tr

Ts

; x∗ ≡ x

xs

; y∗ ≡ y

ys

; z∗ ≡ z

zs

;
(

∂T

∂x

)∗
≡ 1

Txs

∂T

∂x
;

(
∂T

∂y

)∗
≡ 1

Tys

∂T

∂y
;

(
∂T

∂z

)∗
≡ 1

Tzs

∂T

∂z
(4.E.1-9)

Note that we have allowed for separate scales for the temperature gradients in the
x-, y-, and z-directions since there is no reason to assume that the temperature
will change from its maximum to its minimum value over the length, thickness,
or width of the fin, respectively. Substitute these dimensionless variables into the
describing equations to obtain (steps 5 and 6)

0 = ∂

∂x∗

(
∂T

∂x

)∗
+ xsTys

ysTxs

∂

∂y∗

(
∂T

∂y

)∗
+ xsTzs

zsTxs

∂

∂z∗

(
∂T

∂z

)∗
(4.E.1-10)

T ∗ = T0 − Tr

Ts

at x∗ = 0, 0 ≤ y∗ ≤ H

ys

, 0 ≤ z∗ ≤ W

zs

(4.E.1-11)

(
∂T

∂x

)∗
= − hTs

kTxs

(

T ∗ + Tr − T∞
Ts

)

at x∗ = L

xs

, 0 ≤ y∗ ≤ H

ys

,

0 ≤ z∗ ≤ W

zs

(4.E.1-12)

(
∂T

∂y

)∗
= 0 at y∗ = 0, 0 ≤ x∗ ≤ L

xs

, 0 ≤ z∗ ≤ W

zs

(4.E.1-13)
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(
∂T

∂y

)∗
= − hTs

kTys

(

T ∗ + Tr − T∞
Ts

)

at y∗ = H

ys

, 0 ≤ x∗ ≤ L

xs

,

0 ≤ z∗ ≤ W

zs

(4.E.1-14)

(
∂T

∂z

)∗
= 0 at z∗ = 0, 0 ≤ x∗ ≤ L

xs

, 0 ≤ y∗ ≤ H

ys

(4.E.1-15)

(
∂T

∂z

)∗
= − hTs

kTzs

(

T ∗ + Tr − T∞
Ts

)

at z∗ = W

zs

, 0 ≤ x∗ ≤ L

xs

,

0 ≤ y∗ ≤ H

ys

(4.E.1-16)

Inspection of the dimensionless describing equations indicates that the tempera-
ture can be bounded to be ◦(1) if we set Tr = T∞ and Ts = T0 − T∞. The dimen-
sionless spatial coordinates can be bounded to be ◦(1) if we set xs = L, ys = H ,
and zs = W . The dimensionless groups in equations (4.E.1-14) and (4.E.1-16) pro-
vide the following scales for the temperature gradients in the y- and z-directions,
respectively (step 7):

Tys = Tzs = h(T0 − T∞)

k
= hH

k

(T0 − T∞)

H
= Bit

T0 − T∞
H

(4.E.1-17)

where Bit ≡ hH/k is the Biot number for heat transfer based on the smallest
length dimension H . However, it would not be appropriate to determine Txs from
the dimensionless group in equation (4.E.1-12) since the small amount of heat
leaving the tip of the fin does not cause the axial temperature gradient; rather, we
expect that the axial temperature gradient is caused by the heat being transferred
from the side of the fin.

When the scale and reference factors are substituted into equations (4.E.1-10)
through (4.E.1-16), we obtain the following dimensionless describing equations:

0 = ∂

∂x∗

(
∂T

∂x

)∗
+ Bit

L(T0 − T∞)

H 2Txs

∂

∂y∗

(
∂T

∂y

)∗
+ Bit

L(T0 − T∞)

WHTxs

∂

∂z∗

(
∂T

∂z

)∗

(4.E.1-18)

T ∗ = 1 at x∗ = 0, 0 ≤ y∗ ≤ 1, 0 ≤ z∗ ≤ 1 (4.E.1-19)

(
∂T

∂x

)∗
= −h(T0 − T∞)

kTxs

T ∗ at x∗ = 1, 0 ≤ y∗ ≤ 1, 0 ≤ z∗ ≤ 1

(4.E.1-20)

(
∂T

∂y

)∗
= 0 at y∗ = 0, 0 ≤ x∗ ≤ 1, 0 ≤ z∗ ≤ 1 (4.E.1-21)
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(
∂T

∂y

)∗
= −T ∗ at y∗ = 1, 0 ≤ x∗ ≤ 1, 0 ≤ z∗ ≤ 1 (4.E.1-22)

(
∂T

∂z

)∗
= 0 at z∗ = 0, 0 ≤ x∗ ≤ 1, 0 ≤ y∗ ≤ 1 (4.E.1-23)

(
∂T

∂z

)∗
= −T ∗ at z∗ = 1, 0 ≤ x∗ ≤ 1, 0 ≤ y∗ ≤ 1 (4.E.1-24)

The axial conduction must be balanced by at least one of the other two terms
in equation (4.E.1-18). However, since H � W , it is clear that conduction in the
y-direction is far more important than that in the z-direction. Hence, we set the
dimensionless group multiplying the conduction term in the y-direction equal to 1
to obtain Txs as

Bit
L(T0 − T∞)

H 2Txs

= 1 ⇒ Txs = Bit
L(T0 − T∞)

H 2
(4.E.1-25)

Substituting this value for Txs into equation (4.E.1-18) then yields

0 = ∂

∂x∗

(
∂T

∂x

)∗
+ ∂

∂y∗

(
∂T

∂y

)∗
+ H

W

∂

∂z∗

(
∂T

∂z

)∗
(4.E.1-26)

Inspection of equation (4.E.1-26) indicates that conduction in the z-direction can
be ignored if H/W � 1, which is the case for a thin wide fin such as that being
considered here (step 8). Furthermore, if we invoke the low Biot number approxi-
mation developed in Section 4.4 (i.e., Bit � 1), equation (4.E.1-17) indicates that
the temperature gradient in the y-direction will be essentially zero, which implies
that the temperature will be constant across the thickness of the fin. Analogously
to the procedure used in Section 4.4, let us integrate equation (4.E.1-26) across the
cross-sectional area of the fin:

∫ 1

−1

∂

∂x∗

(
∂T

∂x

)∗
W dy∗ +

∫ 1

−1

∂

∂y∗

(
∂T

∂y

)∗
W dy∗ = 0 (4.E.1-27)

∂

∂x∗

(
∂T

∂x

)∗ ∫ 1

−1
dy∗ +

∫ −T ∗

T ∗
∂

(
∂T

∂y

)∗
= 0 (4.E.1-28)

∂

∂x∗

(
∂T

∂x

)∗
− T ∗ = 0 (4.E.1-29)

Equation (4.E.1-29) is subject to the boundary conditions given by equations
(4.E.1-19) and (4.E.1-20), given by

T ∗ = 1 at x∗ = 0 (4.E.1-30)
(

∂T

∂x

)∗
= −H

L
T ∗ ∼= 0 at x∗ = 1 (4.E.1-31)
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The solution to this simplified system of equations is straightforward and given by

T ∗ = e�x∗

1 + e−2�

(

e−2�x∗ + e−2�
)

, where � ≡
√

Bit
L

H
(4.E.1-32)

The solution given by equation (4.E.1-32) is applicable for small Biot numbers
for which the temperature across the thickness of the fin can be assumed to be
constant and for which heat transfer along the sides and tip of the fin can be
neglected. These are reasonable assumptions for thin fins made from a highly
conducting metal.

4.E.2 Unsteady-State Resistance Heating in a Wire

Consider a long solid wire having radius R as shown in Figure 4.E.2-1, whose ini-
tial temperature is T0. At time t = 0 an alternating current begins to flow through the
wire that causes electrical resistance heating whose volumetric energy generation
rate Ge is given by

Ge = G0 cos ωt (energy generation rate per unit volume) (4.E.2-1)

where ω is the angular frequency in radians per second. The temperature at the
surface of the wire is held constant at the initial temperature T0. We use scaling to
explore how the describing equations might be simplified.

The appropriately simplified form of the thermal energy equation given by
equation (F.2-2) in the Appendices and the required initial and boundary conditions
are given by (step 1)

ρCp

∂T

∂t
= k

1

r

d

dr

(

r
dT

dr

)

+ G0 cos ωt (4.E.2-2)

T = T0 at t = 0 (4.E.2-3)

T is bounded or
∂T

∂r
= 0 at r = 0 (4.E.2-4)

T = T0 at r = R (4.E.2-5)

T = T0

G = G0 cos wt

z
r R

Figure 4.E.2-1 Unsteady-state heat conduction in a solid cylinder of radius R due to
electrical heat generation at a volumetric rate given by Ge = G0 cos ωt .
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The boundary condition given by equation (4.E.2-4) merely states that the temper-
ature cannot be infinite or is an extremum (a maximum in this case) at r = 0; this
type of boundary condition is often invoked in problems involving cylindrical or
spherical coordinates. Introduce the following scale and reference factors (steps 2,
3, and 4):

T ∗ ≡ T − Tr

Ts

; r∗ ≡ r

rs

; t∗ ≡ t

ts
(4.E.2-6)

Substitute these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of one term in each of the equations to
obtain (steps 5 and 6)

r2
s

αts

∂T ∗

∂t∗
= 1

r∗
d

dr∗

(

r∗ dT ∗

dr∗

)

+ G0r
2
s

kTs

cos ωtst
∗ (4.E.2-7)

T ∗ = T0 − Tr

Ts

at t∗ = 0 (4.E.2-8)

T ∗ is bounded or
∂T ∗

∂r∗ = 0 at r∗ = 0 (4.E.2-9)

T ∗ = T0 − Tr

Ts

at r∗ = R

rs

(4.E.2-10)

Setting the appropriate dimensionless groups in equation (4.E.2-8) and (4.E.2-
10) equal to zero and 1, respectively, gives Tr = T0 and rs = R (step 7). Since
the heat generation must be balanced by the radial heat conduction, we set the
dimensionless group in equation (4.E.2-7) equal to 1 to obtain Ts = G0R

2/k. There
are three relevant time scales whose relative values determine the simplifications
that are possible for this problem (step 8):

ts = to time scale corresponding to the observation time

ts = tc = R2

α
time scale characterizing the heat conduction (4.E.2-11)

ts = tp = 2π

ω
time scale characterizing the periodic rate of heat generation

Note that we use the reciprocal of the cyclic rather than the angular frequency to
properly characterize the time scale for the periodic rate of heat generation.

Consider first the case where ts = to, for which equation (4.E.2-7) simplifies to

1

Fot

∂T ∗

∂t∗
= 1

r∗
d

dr∗

(

r∗ dT ∗

dr∗

)

+ cos ωtot
∗ (4.E.2-12)

where Fot ≡ R2/αto is the Fourier number for heat transfer. It is not possible for the
Fourier number to be much less than 1 since the conduction term has to be retained
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at all times. If Fot
∼= 1, to = R2/α and equation (4.E.2-12) can be written as

∂T ∗

∂t∗
= 1

r∗
d

dr∗

(

r∗ dT ∗

dr∗

)

+ cos
ωR2

α
t∗ (4.E.2-13)

Equation (4.E.2-13) can be simplified further if ωR2/α � 1. This implies that
the heat conduction occurs much faster than the periodic heat generation; that is,
the heat conduction smoothes out the variations in temperature due to the time-
dependence of the heat generation, and equation (4.E.2-13) simplifies to

∂T ∗

∂t∗
= 1

r∗
d

dr∗

(

r∗ dT ∗

dr∗

)

+ 1 (4.E.2-14)

This equation describes the transient heat conduction period for the special case of
the conduction time scale being much smaller than the characteristic time scale for
the periodic heat generation.

If Fot � 1, the transient heat conduction effects have died out; however, the
problem is still possibly unsteady state, due to the time-dependent heat-generation
term. For this case the characteristic time scale is ts = tp = 2π/ω and equa-
tion (4.E.2-7) assumes the form

ωR2

2πα

∂T ∗

∂t∗
= 1

r∗
d

dr∗

(

r∗ dT ∗

dr∗

)

+ cos
ωR2

2πα
t∗ (4.E.2-15)

Equation (4.E.2-15), which describes unsteady-state heat conduction due to time-
dependent heat generation, can be simplified further if ωR2/2πα � 1, whereby it
reduces to

0 = 1

r∗
d

dr∗

(

r∗ dT ∗

dr∗

)

+ 1 (4.E.2-16)

which describes steady-state heat conduction due to constant heat generation.

4.E.3 Convective Heat Transfer with Injection Through Permeable Walls

Consider the steady-state fully developed laminar flow of a viscous Newtonian fluid
with constant physical properties between two infinitely wide permeable parallel
plates separated by a distance H as shown in Figure 4.E.3-1. There is constant
injection of the same fluid at velocity V through the permeable plate at y = H

and constant withdrawal of the same incompressible fluid through the permeable
plate at y = 0. The continuity equation can be used to prove that the injection and
withdrawal velocities at the upper and lower plates must be equal for the flow to
be fully developed. The upstream (entering) temperature of the fluid is T1. The
temperature of the upper plate at y = H is also T1, whereas the temperature of
the lower plate at y = 0 is T0, such that T1 > T0. Since the flow is assumed to be
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x

y

Injection of fluid at a constant velocity V

Withdrawal of fluid at a constant velocity V

T = T1
at x = 0

T (x1, y) T1

T0

H

Figure 4.E.3-1 Steady-state fully developed laminar flow of a viscous Newtonian fluid
with constant physical properties between two infinitely wide permeable parallel plates
separated by a distance H ; the same fluid is injected and withdrawn at a constant velocity
V at the upper and lower plates, respectively; the fluid enters at T1; the upper and lower
plates are maintained at temperatures T1 and T0, respectively, where T1 > T0.

laminar and fully developed, the velocity profile is given by

ux = Um

[

1 −
(

1 − 2y

H

)2
]

(4.E.3-1)

where Um is the maximum velocity. We use scaling to explore simplifying approx-
imations that might be invoked for this heat-transfer problem.

We begin by appropriately simplifying the energy equation given by
equation (F.1-2) in the Appendices (step 1). Note that we must include axial con-
vection, transverse convection, axial conduction, transverse conduction, and viscous
dissipation.

ρCpux

∂T

∂x
− ρCpV

∂T

∂y
= k

∂2T

∂x2
+ k

∂2T

∂y2
+ µ

(
dux

dy

)2

(4.E.3-2)

When equation (4.E.3-1) is substituted into the above, we obtain the following set
of describing equations:

ρCpUm

[

1 −
(

1 − 2y

H

)2
]

∂T

∂x
− ρCpV

∂T

∂y
= k

∂2T

∂x2
+ k

∂2T

∂y2

+ 16µU 2
m

H 2

(

1 − 2y

H

)2

(4.E.3-3)

T = T1 at x = 0 (4.E.3-4)

T = f (y) at x = L (4.E.3-5)

T = T1 at y = H (4.E.3-6)

T = T0 at y = 0 (4.E.3-7)

Equation (4.E.3-5) prescribes the downstream boundary condition in terms of the
function f (y), which might be unknown. We use ◦(1) scaling to explore when
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the axial conduction, viscous heat generation, and axial convection terms can be
neglected. Introduce the following dimensionless variables involving unspecified
scale and reference factors (2, 3, and 4):

T ∗ ≡ T − Tr

Ts

; x∗ ≡ x

xs

; y∗ ≡ y

ys

(4.E.3-8)

Substitute these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 5 and 6):

ρCpUmy2
s

kxs

[

1 −
(

1 − 2
ys

H
y∗

)2
]

∂T ∗

∂x∗ − ρCpVys

k

∂T ∗

∂y∗

= y2
s

x2
s

∂2T ∗

∂x∗2
+ ∂2T ∗

∂y∗2
+ 16µU 2

my2
s

kTsH 2

(

1 − 2
ys

H
y∗

)2
(4.E.3-9)

T ∗ = T1 − Tr

Ts

at x∗ = 0 (4.E.3-10)

T ∗ = f (y∗) at x∗ = L

xs

(4.E.3-11)

T ∗ = T1 − Tr

Ts

at y∗ = H

ys

(4.E.3-12)

T ∗ = T0 − Tr

Ts

at y∗ = 0 (4.E.3-13)

We have divided by the coefficient of the conduction term in the y-direction since
this term must be retained to satisfy the boundary conditions at the upper and lower
plates.

We can bound the dimensionless temperature to be ◦(1) by setting the dimen-
sionless group in equation (4.E.3-13) equal to zero, thereby determining the ref-
erence temperature, and by setting the dimensionless group in equation (4.E.3-10)
equal to 1 to determine the temperature scale (step 7). We can bound the dimen-
sionless axial and transverse coordinates to be ◦(1) by setting the dimensionless
groups in equations (4.E.3-11) and (4.E.3-12) equal to 1. Hence, we obtain the
following scale and reference factors:

Tr = T0; Ts = T1 − T0; xs = L; ys = H (4.E.3-14)

Substitution of these scale and reference factors into equations (4.E.3-9) through
(4.E.3-13) yields

Pet

H

L

[

1 − (1 − 2y∗)2] ∂T ∗

∂x∗ − ρCpV H

k

∂T ∗

∂y∗
(4.E.3-15)

= H 2

L2

∂2T ∗

∂x∗2
+ ∂2T ∗

∂y∗2
+ 16µU 2

m

k(T1 − T0)
(1 − 2y∗)2
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T ∗ = 1 at x∗ = 0 (4.E.3-16)

T ∗ = f (y∗) at x∗ = 1 (4.E.3-17)

T ∗ = 1 at y∗ = 1 (4.E.3-18)

T ∗ = 0 at y∗ = 0 (4.E.3-19)

where Pet ≡ HUm/α is the Peclet number for heat transfer.
The dimensionless describing equations given by equations (4.E.3-15) through

(4.E.3-19) can be simplified if any of the following conditions are satisfied
(step 8):

Pet

H

L
� 1 ⇒ axial heat convection can be ignored (4.E.3-20)

H 2

L2
� 1 ⇒ axial heat conduction can be ignored (4.E.3-21)

16µU 2
m

k(T1 − T0)
� 1 ⇒ viscous heat generation can be ignored (4.E.3-22)

Note in particular that if the condition defined by equation (4.E.3-21) is satisfied,
the elliptic thermal energy equation is reduced to a parabolic differential equation,
thereby obviating the need to satisfy any downstream boundary condition on the
temperature.

Let us now assume that the conditions defined by equations (4.E.3-20) through
(4.E.3-22) are satisfied; that is, axial heat conduction and convection as well as
viscous dissipation can be ignored. Hence, only the effects of transverse heat
conduction and convection remain in our describing equations. If the transverse
injection and withdrawal of fluid is sufficiently large, one might anticipate that
there will be a region of influence near the lower plate where essentially all the
heat transfer is occurring. We use scaling analysis to determine the thickness of this
region. In this case the transverse length scale will not be H since the dimension-
less temperature will experience a change of ◦(1) over a much shorter distance.
Hence, we must rescale the describing equations to determine the thickness δt of the
region of influence or thermal boundary layer near the lower plate. Our simplified
dimensional describing equations now are given by

−ρCpV
∂T

∂y
= k

∂2T

∂y2
(4.E.3-23)

T = T1 at y = H (4.E.3-24)

T = T0 at y = 0 (4.E.3-25)
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If we again introduce the dimensionless variables defined by equations (4.E.3-8),
we obtain the following set of dimensionless describing equations:

−ρCpVys

k

∂T ∗

∂y∗ = ∂2T ∗

∂y∗2
(4.E.3-26)

T ∗ = T1 − Tr

Ts

at y∗ = H

ys

(4.E.3-27)

T ∗ = T0 − Tr

Ts

at y∗ = 0 (4.E.3-28)

Our reference and scale factors for the temperature will be the same as before.
Since the two terms in equation (4.E.3-26) must be ◦(1) to balance each other,
the dimensionless group multiplying the first term must be equal to 1; this then
determines the transverse length scale as follows:

ρCpVys

k
= 1 ⇒ ys ≡ δt = k

ρCpV
= α

V
(4.E.3-29)

where we have identified the transverse length scale with the thickness of the
region of influence δt . We see that δt decreases with increasing injection velocity
and decreasing thermal diffusivity α.

If the injection velocity is sufficiently large, δt will be very small so that
H/δt → ∞. Hence, our scaled dimensionless describing equations reduce to

−∂T ∗

∂y∗ = ∂2T ∗

∂y∗2
(4.E.3-30)

T ∗ = 1 at y∗ → ∞ (4.E.3-31)

T ∗ = 0 at y∗ = 0 (4.E.3-32)

These equations admit an analytical solution given by

T ∗ = 1 − e−y∗
(4.E.3-33)

Note that this solution indicates that T ∗ is bounded of ◦(1), as it should be if our
scaling analysis was carried out properly.

4.E.4 Steady-State Heat Transfer to Falling Film Flow

Consider the fully developed laminar flow of a Newtonian liquid film of thickness
H and constant physical properties down a solid vertical wall maintained at a
temperature T1, as shown in Figure 4.E.4-1. The temperature of the liquid at x = 0
is T0. Assume that negligible heat is transferred to the adjacent gas phase along the
length of the liquid film and that viscous heat generation can be ignored. We seek
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x

y

Liquid film

H

Inviscid gas phaseT (x, y)

T1

ux (y)

T = T0 at x = 0

Figure 4.E.4-1 Steady-state heat transfer from a vertical plate at temperature T1 to a liquid
film in fully developed laminar flow of initial temperature T0, thickness H , and constant
physical properties.

to determine how the describing equations can be simplified. The velocity profile
for fully developed laminar film flow is given by

ux = Um

[
2y

H
−

( y

H

)2
]

(4.E.4-1)

where Um is the maximum fluid velocity, that is, the velocity at the liquid–gas
interface.

The thermal energy equation given by the appropriately simplified form of
equation (F.1-2) in the Appendices, along with the required boundary conditions,
are given by (step 1)

Um

α

[
2y

H
−

( y

H

)2
]

∂T

∂x
= ∂2T

∂x2
+ ∂2T

∂y2
(4.E.4-2)

T = T0 at x = 0, 0 ≤ y ≤ H (4.E.4-3)

T = f (y) at x = L, 0 ≤ y ≤ H (4.E.4-4)

T = T1 at y = 0, 0 ≤ x ≤ L (4.E.4-5)

∂T

∂y
= 0 at y = H, 0 ≤ x ≤ L (4.E.4-6)

where α = k/ρCp is the thermal diffusivity. Equation (4.E.4-2) is an elliptic dif-
ferential equation that requires a downstream boundary condition, which we have
indicated formally by equation (4.E.4-4); in practice, the inability to specify this
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downstream boundary condition precludes solving problems of this type even
numerically. Introduce the following scale and reference factors (steps 2, 3, and 4):

T ∗ ≡ T − Tr

Ts

; x∗ ≡ x

xs

; y∗ ≡ y

ys

(4.E.4-7)

The resulting dimensionless describing equations are given by (steps 5 and 6)

ρCpUmy3
s

kHxs

(

2y∗ − ys

H
y∗2

) ∂T ∗

∂x∗ = y2
s

x2
s

∂2T ∗

∂x∗2
+ ∂2T ∗

∂y∗2
(4.E.4-8)

T ∗ = T0 − Tr

Ts

at x∗ = 0, 0 ≤ y∗ ≤ H

ys

(4.E.4-9)

T ∗ = f (y∗) − Tr

Ts

at x∗ = L

xs

, 0 ≤ y∗ ≤ H

ys

(4.E.4-10)

T ∗ = T1 − Tr

Ts

at y∗ = 0, 0 ≤ x∗ ≤ L

xs

(4.E.4-11)

∂T ∗

∂y∗ = 0 at y∗ = H

ys

, 0 ≤ x∗ ≤ L

xs

(4.E.4-12)

The dimensionless temperature can be bounded to be ◦(1) by setting the
dimensionless groups in equations (4.E.4-9) and (4.E.4-11) equal to zero and 1,
respectively, to obtain T = T0 and Ts = T1 − T0 (step 7). The streamwise spatial
coordinate can be bounded to be ◦(1) by setting the appropriate group appear-
ing in equations (4.E.4-10) through (4.E.4-12) to obtain xs = L. There are two
choices for bounding the cross-stream spatial coordinate to be ◦(1): by setting
the appropriate group in any one of equations (4.E.4-9), (4.E.4-10), and (4.E.4-12)
equal to 1, or by setting the dimensionless group multiplying the convection term
in equation (4.E.4-8) equal to 1. However, the convection term has to balance the
principal conduction term in equation (4.E.4-8); this yields the following equation
for ys :

ρCpUmy3
s

kHxs

= ρCpUmy3
s

kHL
⇒ ys

H
≡ δt

H
=

(
kL

ρCpUmH 2

)1/3

=
(

1

Pet

L

H

)1/3

(4.E.4-13)

We see that ys = δt is a region of influence near the hot wall whose thickness
increases slowly with axial length and is inversely proportional to the thermal
Peclet number, Pet ≡ UmH/α. Sufficiently far downstream, δt will become equal
to the film thickness H .

For large Peclet numbers the ratio δt/H will be quite small. This permits signifi-
cant simplification of the describing equations (step 8). In particular, the aspect ratio
δ2
t /L

2 will be quite small, which permits ignoring the axial conduction term, thereby
avoiding the complication of having to specify a downstream boundary condition.
In addition, for sufficiently large Peclet numbers, the quadratic term in the equation
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for the velocity profile can be ignored since it is only the velocity in the vicinity
of the solid wall that is important for a thin region of influence. Finally, since
H/δt � 1 for large Peclet numbers, the boundary condition by equation (4.E.4-
12) can be applied at y∗ → ∞. The resulting simplified dimensionless describing
equations are given by

2y∗ ∂T ∗

∂x∗ = ∂2T ∗

∂y∗2
(4.E.4-14)

T ∗ = 0 at x∗ = 0, 0 ≤ y∗ ≤ ∞ (4.E.4-15)

T ∗ = 1 at y∗ = 0, 0 ≤ x∗ ≤ 1 (4.E.4-16)

∂T ∗

∂y∗ = 0 ⇒ T ∗ = 0 as y∗ → ∞, 0 ≤ x∗ ≤ 1 (4.E.4-17)

This system of equations admits a solution via a similarity solution or combination
of variables, as is shown in standard references.15

4.E.5 Unsteady-State Heat Transfer from a Sphere at Large Biot Numbers

In Section 4.4 we considered heat transfer from a solid sphere initially at temper-
ature T0 of radius R falling at its terminal velocity through a liquid at temperature
T∞ for which the convective heat transfer was characterized via a heat-transfer
coefficient, as shown in Figure 4.4-1. We considered a scaling appropriate to a
small Biot number for which all the resistance to heat transfer was in the exter-
nal liquid. This implied that the temperature gradient in the sphere was negligible
and the temperature was spatially uniform. Here we apply scaling analysis to the
complementary case of a large Biot number corresponding to rapid heat transfer in
the external liquid. To have continuity of heat flux at the surface of the sphere, the
temperature gradient in the sphere will occur over a region of influence or thermal
boundary layer whose thickness δt is the appropriate radial length scale.

The dimensional describing equations will be the same as those in Section 4.4
(step 1):

∂T

∂t
= α

1

r2

∂

∂r

(

r2 ∂T

∂r

)

(4.E.5-1)

T = T0 at t ≤ 0, 0 ≤ r ≤ R (4.E.5-2)

∂T

∂r
= 0 at r = 0, t>0 (4.E.5-3)

k
∂T

∂r
= h(T∞ − T ) at r = R, t > 0 (4.E.5-4)

15R. B. Bird, W. E. Stewart, and E. L. Lightfoot, Transport Phenomena, Wiley, New York, 1960,
pp. 349–350.
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It is convenient to reference the coordinate system to the surface of the sphere
where the thermal boundary layer is located. Hence, we define the following dimen-
sionless variables (steps 2, 3, and 4):

T ∗ ≡ T − Tr

Ts

; r∗ ≡ R − r

δt

; t∗ ≡ t

ts
(4.E.5-5)

Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation that should be retained
(steps 5 and 6):

δ2
t

αts

∂T ∗

∂t∗
= 1

[

R/δt − r∗]2

∂

∂r∗

[(
R

δt

− r∗
)2

∂T ∗

∂r∗

]

(4.E.5-6)

T ∗ = T0 − Tr

Ts

at t∗ ≤ 0, 0 ≤ r∗ ≤ R

δt

(4.E.5-7)

∂T ∗

∂r∗ = 0 at r∗ = R

δt

, t∗ > 0 (4.E.5-8)

∂T ∗

∂r∗ = −hδt

k

(
T∞ − Tr

Ts

− T ∗
)

at r∗ = 0, t∗ > 0 (4.E.5-9)

When set equal to zero and 1, respectively, the dimensionless groups in equa-
tions (4.E.5-7) and (4.E.5-9), indicate that Tr = T0 and Ts = T∞ − T0 (step 7).
Since this is inherently unsteady state, the appropriate time scale is the observation
time to. The fact that the unsteady-state and radial heat conduction terms in equa-
tion (4.E.5-6) must be of the same order provides an estimate for δt :

δ2
t

αts
= 1 ⇒ δt = √

αto = R
√

Fot (4.E.5-10)

where Fot ≡ αto/R
2 is the thermal Fourier number. Note that the thermal boundary

layer penetrates progressively farther into the sphere in time. Eventually, it will
penetrate to the center of the sphere when Fot

∼= 1, corresponding to an observation
time to ∼= R2/α.

When these scale and reference factors are substituted into equations (4.E.5-6)
through (4.E.5-9), we obtain the following dimensionless describing equations:

∂T ∗

∂t∗
= 1

[(
1√
Fot

)

− r∗
]2

∂

∂r∗

[(
1√
Fot

− r∗
)2

∂T ∗

∂r∗

]

(4.E.5-11)

T ∗ = 0 at t∗ ≤ 0, 0 ≤ r∗ ≤ 1√
Fot

(4.E.5-12)
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∂T ∗

∂r∗ = 0 at r∗ = 1√
Fot

, t∗ > 0 (4.E.5-13)

∂T ∗

∂r∗ = −Bit
√

Fot (1 − T ∗) at r∗ = 0, t∗ > 0 (4.E.5-14)

where Bit ≡ hR/k is the thermal Biot number.
Now let us consider how this system of describing equations can be simplified

(step 8). We note that the curvature effects can be ignored when
√

Fot � 1, cor-
responding to short contact times for which the thermal boundary layer will be
thin in comparison to the radius of the sphere. If

√
Fot � 1, the boundary con-

dition given by equation (4.E.5-13) can be applied at infinity. A zero conductive
heat flux far from the surface of the sphere implies no change in the temperature
outside the thermal boundary layer. Hence, equation (4.E.5-13) can be replaced
by the condition that T ∗ = 0 as r∗ → ∞. Equation (4.E.5-14) indicates that as
Bit → ∞, T ∗ → 1 to ensure that ∂T ∗/∂r∗ remains bounded of ◦(1). This implies
that the surface temperature of the sphere is at T∞ and that there is essentially no
temperature gradient in the liquid. Hence, for

√
Fot � 1 and large Biot numbers,

the describing equations simplify to

∂T ∗

∂t∗
= ∂2T ∗

∂r∗2
(4.E.5-15)

T ∗ = 0 at t∗ ≤ 0, 0 ≤ r∗ < ∞ (4.E.5-16)

T ∗ = 0 at r∗ → ∞, t∗ > 0 (4.E.5-17)

T ∗ = 1 at r∗ = 0, t∗ > 0 (4.E.5-18)

This simplified set of describing equations can be solved via standard methods such
as combination of variables.

4.E.6 Evaporative Cooling of a Liquid Film

An infinitely wide film of an incompressible volatile pure (i.e., single compo-
nent) liquid has an initial thickness of L0 and is resting on a solid boundary that
is maintained at a constant temperature T0. Initially, the entire liquid film is at
this temperature. At time t = 0, evaporation from the film begins that causes the
film thickness to decrease, thus implying that this is a moving boundary prob-
lem. The surrounding gas phase is assumed to transfer negligible heat to the
liquid film. Hence, the latent heat of vaporization (evaporation) must be supplied
entirely by heat conduction from the liquid film. This, of course, causes heat trans-
fer within the liquid film. The evaporative mass flux at the free surface nG is
given by

nG = k
•
Gp

◦
L (units of mass/area · time) (4.E.6-1)
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x
Volatile liquid

Gas

nG = kG
• p°L

L(t)

T = T0

Figure 4.E.6-1 Evaporative cooling of an infinitely wide planar film of an incompressible
volatile liquid of vapor pressure p

◦
L and initial temperature T0, into an adjacent insoluble gas

phase whose mass-transfer coefficient is k
•
G ; the gas phase is assumed to transfer negligible

heat to the liquid.

in which k
•
G is the constant mass-transfer coefficient in the ambient gas phase and

p
◦
L is the temperature-dependent vapor pressure of the liquid at the instantaneous

temperature of the liquid–gas interface. Note that equation (4.E.6-1) assumes that
the bulk of the ambient gas phase does not contain any of the evaporating com-
ponent. For moderate departures of the temperature from T0, the temperature
dependence of the vapor pressure can be approximated by

p
◦
L = p

◦
L0 + β(T − T0) (4.E.6-2)

where p
◦
L0 is the vapor pressure at T0 and β is a constant. We seek to develop a

model for this evaporative cooling, film-thinning process, whose essential features
are shown in Figure 4.E.6-1. In particular, we explore conditions for which the
describing equations can be simplified.

The appropriately simplified form of equation (F.1-2) in the Appendices along
with the initial condition and boundary condition at x = 0 are given by (step 1)

ρLCpL

∂T

∂t
= kL

∂2T

∂x2
(4.E.6-3)

T = T0 at t = 0 (4.E.6-4)

T = T0 at x = 0 (4.E.6-5)

where kL, ρL, and CpL are the thermal conductivity, density, and heat capacity of
the liquid, respectively. The boundary condition at the moving upper interface is
obtained from an integral energy balance as follows:

d

dt

∫ L

0
ρLCpL(T − T

◦
) dx + d

dt

∫ ∞

L

ρGCpG(T − T
◦
) dx = q0 (4.E.6-6)

where T
◦ is an arbitrary reference temperature for the enthalpy or heat content

and q0 is the heat transferred into the liquid film at x = 0. Applying Leibnitz’s
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rule for differentiating an integral given by equation (H.1-2) in the Appendices and
substituting equation (4.E.6-3) yields

ρLCpL(TL−T
◦
)
dL

dt
+

∫ L

0
ρLCpL

∂T

∂t
dx−ρGCpG(TL−T

◦
)
dL

dt
+

∫ ∞

L

ρGCpG

∂T

∂t
dx=q0

(4.E.6-7)

(ρLCpL−ρGCpG)(TL−T
◦
)
dL

dt
+

∫ L

0
kL

∂2T

∂x2
dx+

∫ ∞

L

kG

∂2T

∂x2
dx=q0

(4.E.6-8)

(ρLCpL − ρGCpG)(TL − T
◦
)
dL

dt
+ kL

∂T

∂x

∣
∣
∣
∣
x=L

− kL

∂T

∂x

∣
∣
∣
∣
x=0

+kG

∂T

∂x

∣
∣
∣
∣
x=∞

− kG

∂T

∂x

∣
∣
∣
∣
x=L

=q0

(4.E.6-9)

The first term in equation (4.E.6-9) is the difference in heat content between the
gas and the liquid, which is proportional to �Hv , the latent heat of vaporization
(energy/mass). The fifth term in this equation is assumed to be zero, whereas the
third term is equal to the last term. Hence, our boundary condition at the moving
free interface simplifies to

kL

∂T

∂x
= �HvρL

dL

dt
at x = L (4.E.6-10)

Equation (4.E.6-10) merely states that the heat conducted to the moving interface
is equal to that required to vaporize the liquid.

An auxiliary condition is still needed to determine the location of the moving
interface. Since mass is lost at this moving boundary, this auxiliary condition is
obtained from an integral mass balance given by

d

dt

∫ L

0
ρL dx + d

dt

∫ ∞

L

ρG dx = 0 (4.E.6-11)

Applying Leibnitz’s rule for differentiating an integral given by equation (H.1-
2) in the Appendices and substituting the one-dimensional form of the continuity
equation given by equation (C.1-1) in the Appendices yields

ρL

dL

dt
−

∫ L

0

∂ρLux

∂x
dx − ρG

dL

dt
−

∫ ∞

L

∂ρGux

∂x
dx = 0

(4.E.6-12)

(ρL − ρG)
dL

dt
− ρLux |x=L + ρLux |x=0 − ρGux |x=∞ + ρGux |x=L = 0

(4.E.6-13)
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where ux denotes the velocity in the x-direction. Due to the incompressibility of
the liquid, the second and third terms in equation (4.E.6-13) cancel. The fourth
term is identically zero, and the last term is equal to the evaporative mass-transfer
flux nG = k

•
G[p◦

L0 + β(T − T0)]. Hence, the auxiliary condition for determining
the location of the moving boundary simplifies to

(ρL − ρG)
dL

dt
∼= ρL

dL

dt
= nG = k

•
G

[

p
◦
L0 + β (T − T0)

]

at x = L

(4.E.6-14)

Equation (4.E.6-14) merely states that the rate of mass loss in the liquid film is
equal to the rate of evaporation at the free surface. This equation requires an initial
condition given by

L = L0 at t = 0 (4.E.6-15)

We anticipate that for very short times, the heat transfer will be confined to
a thin region of influence near the moving interface. Hence, to explore the full
spectrum of possible simplifications of the describing equations, it is convenient to
carry out a coordinate transformation whereby we locate the origin of our spatial
coordinate at the liquid–gas interface. Define a new spatial coordinate as follows:

x̃ ≡ L(t) − x (4.E.6-16)

The describing equations in this new coordinate system are given by

∂T

∂t
+ dL

dt

∂T

∂x̃
= αL

∂2T

∂x̃2
(4.E.6-17)

T = T0 at t = 0 (4.E.6-18)

T = T0 at x̃ = L (4.E.6-19)

−kL

∂T

∂x̃
= �Hv ρL

dL

dt
at x̃ = 0 (4.E.6-20)

ρL

dL

dt
= k

•
G[p◦

L0 − β(T − T0)] at x̃ = 0 (4.E.6-21)

L = L0 at t = 0 (4.E.6-22)

Note that the coordinate transformation introduces a pseudo-convection term in the
energy equation.

We first seek to determine the criteria for ignoring the temperature dependence
of the vapor pressure and assuming that this evaporative cooling process is at
quasi-steady-state. Hence, introduce the following scale and reference factors
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(steps 2, 3, and 4):

T ∗ = T − Tr

Ts

; x̃∗ ≡ x̃

x̃s

; t∗ ≡ t

ts
; L∗ ≡ L

Ls

;
(

dL

dt

)∗
≡ 1

L̇s

dL

dt

(4.E.6-23)

Note that we have given dL/dt its own scale since there is no reason for it to
scale as x̃s/ts . Substitute these dimensionless variables into equations (4.E.6-17)
through (4.E.6-22) to obtain the following set of dimensionless describing equations
(steps 5 and 6):

x̃2
s

αLts

∂T ∗

∂t∗
+ L̇s x̃s

αL

(
dL

dt

)∗
∂T ∗

∂x̃∗ = ∂2T ∗

∂x̃∗2
(4.E.6-24)

T ∗ = T0 − Tr

Ts

at t∗ = 0 (4.E.6-25)

T ∗ = T0 − Tr

Ts

at x̃∗ = L

x̃s

(4.E.6-26)

−∂T ∗

∂x̃∗ = �Hv ρLx̃sL̇s

kLTs

(
dL

dt

)∗
at x̃∗ = 0 (4.E.6-27)

(
dL

dt

)∗
= k

•
G

[

p
◦
L0 − β (TsT

∗ + Tr − T0)
]

ρLL̇s

at x̃∗ = 0 (4.E.6-28)

L∗ = L0

Ls

at t∗ = 0 (4.E.6-29)

The dimensionless temperature can be referenced to zero by setting the group in
either equation (4.E.6-25) or (4.E.6-26) equal to zero. For sufficiently long times
such that the heat conduction penetrates through nearly the entire liquid film, the
dimensionless spatial coordinate can be bounded between zero and 1 by setting the
appropriate group in equation (4.E.6-26) equal to 1. The instantaneous liquid film
thickness can bounded between zero and 1 by setting the dimensionless group in
equation (4.E.6-29) equal to 1. Since this is an unsteady-state problem, the time
scale is the observation time to. We can ensure that the dimensionless temperature
derivative is ◦(1) by setting the dimensionless group in equation (4.E.6-27) equal
to 1; this also determines the temperature scale factor. We can ensure that the
dimensionless velocity of the free surface is ◦(1) by setting the dimensionless
group corresponding to the leading-order term in equation (4.E.6-28) equal to 1;
this also determines the scale for the free surface velocity. This results in the
following dimensionless variables:

T ∗ = kL(T − T0)

�Hvk
•
Gp

◦
L0L

; x̃∗ = x̃

L
; t∗ = t

to
; L∗ = L

L0
;

(
dL

dt

)∗
≡ ρL

k
•
Gp

◦
L0

dL

dt
(4.E.6-30)
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These variables result in the following set of dimensionless describing equations:

1

Fot

∂T ∗

∂t∗
+ k

•
Gp

◦
L0L

αLρL

(
dL

dt

)∗
∂T ∗

∂x̃∗ = ∂2T ∗

∂x̃∗2
(4.E.6-31)

T ∗ = 0 at t∗ = 0 (4.E.6-32)

T ∗ = 0 at x̃∗ = 1 (4.E.6-33)

−∂T ∗

∂x̃∗ =
(

dL

dt

)∗
at x̃∗ = 0 (4.E.6-34)

(
dL

dt

)∗
= 1 − k

•
Gβ�HvL

kL

T ∗ at x̃∗ = 0 (4.E.6-35)

L∗ = 1 at t∗ = 0 (4.E.6-36)

where Fot ≡ αLto/L
2 is the Fourier number for heat transfer.

Equation (4.E.6-35) indicates that the temperature dependence of the vapor pres-
sure can be ignored if the following criterion is satisfied (step 8):

k
•
Gβ �Hv L

kL

� 1 (4.E.6-37)

Note that any factors that reduce the evaporative cooling favor satisfy this crite-
rion; these include a reduced gas-phase mass-transfer coefficient, a smaller heat
of vaporization, and a higher thermal conductivity. Note also that this criterion
becomes progressively easier to satisfy as time increases, owing to the presence
of L in the numerator. Equation (4.E.6-31) indicates that quasi-steady-state will
prevail if the following criterion is satisfied:

1

Fot

= L2

αLto
� 1 (4.E.6-38)

If quasi-steady-state applies, equations (4.E.6-31) through (4.E.6-35) can be solved
analytically for both constant as well as variable vapor pressure. However, the initial
condition given by equation (4.E.6-36) cannot be applied, due to the long-time
constraint implied by equation (4.E.6-38).

The quasi-steady-state approximation applies at very long observation times. It
would be of value to explore whether a complementary short-time approximation
can be developed as well. We anticipate that a short-time solution would apply when
the heat transfer is confined to a thin region of influence δt near the upper moving
interface. The dimensionless temperature goes through a change of ◦(1) over the
thickness δt ; therefore, to bound our spatial coordinate to be ◦(1), we choose our
length scale factor x̃s = δt . Hence, our dimensionless describing equations assume
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the following form:

δ2
t

αLto

∂T ∗

∂t∗
+ k

•
Gp

◦
L0δt

αLρL

(
dL

dt

)∗
∂T ∗

∂x̃∗ = ∂2T ∗

∂x̃∗2
(4.E.6-39)

T ∗ = 0 at t∗ = 0 (4.E.6-40)

T ∗ = 0 at x̃∗ = L

δt

(4.E.6-41)

−∂T ∗

∂x̃∗ =
(

dL

dt

)∗
at x̃∗ = 0 (4.E.6-42)

(
dL

dt

)∗
= 1 − k

•
Gβ �Hv δt

kL

T ∗ at x̃∗ = 0 (4.E.6-43)

L∗ = 1 at t∗ = 0 (4.E.6-44)

Since we are considering simplifications appropriate to very short observation times,
this is inherently an unsteady-state problem. This implies that the first and third
terms in equation (4.E.6-39) must be retained; this provides a measure of the thick-
ness of the region of influence given by

δ2
t

αLto
= 1 ⇒ δt = √

αLto (4.E.6-45)

Since for very short times δt � L, the boundary condition given by equation
(4.E.6-41) can be applied at infinity. This permits obtaining an analytical solution
using the method of combination of variables if the temperature dependence of the
vapor pressure can be ignored. For this short observation time scaling, the criterion
for ignoring the temperature dependence of the vapor pressure is given by

k
•
Gβ �Hv δt

kL

� 1 (4.E.6-46)

Since for short times δt � L, the criterion given by equation (4.E.6-46) is much
easier to satisfy than that given by equation (4.E.6-37), which is applicable at
longer times. Note also that the pseudo-convection term in equation (4.E.6-39) can
be dropped if the following criterion is satisfied:

k
•
Gp

◦
Lδt

αLρL

= k
•
Gp

◦
L0

ρL

√
to

αL

� 1 (4.E.6-47)

This example illustrates one of the principal values of scaling in arriving at
appropriately simplified forms of the describing equations that admit either analyt-
ical or much simpler numerical solutions. In this case we were able to simplify the
describing equations so that analytical solutions could be obtained for both very
short and very long observation times. These analytical solutions could be used to
check the validity of a numerical solution to the complete describing equations.
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x
y

T (x2, y)

T∞ < T1

T1

ux

Figure 4.E.7-1 Buoyancy-induced free-convection flow next to a vertical heated plate of
temperature T1 immersed in an infinite fluid whose temperature far from the plate is T∞;
sketch shows the temperature profiles at two positions along the plate, x1 and x2, where
x2 > x1, and the velocity profile of the component ux parallel to the plate.

4.E.7 Free-Convection Heat Transfer Adjacent to a Vertical Heated
Flat Plate

Consider a vertical flat plate of length L and temperature T1 that is immersed in
an initially quiescent fluid of temperature T∞ < T1 that can be assumed to have
infinite extent in all directions, as shown in Figure 4.E.7-1. The fluid next to the
heated plate will become less dense than the fluid farther removed from it. Hence,
a hydrostatic pressure imbalance will occur that causes fluid near the plate to
rise; in contrast to the free-convection problem considered in Section 4.9, no fluid
will descend in this case, due to the assumption of infinite extent. We consider this
convective flow after the transients have died out when steady-state free convection
prevails. We ignore end effects at the top and bottom ends of the plate and viscous
dissipation and assume constant physical properties other than the density in the
gravitational body-force term in the equations of motion.

Note that this is inherently a developing flow, due to the progressive heating
that occurs as the fluid moves up the plate; therefore, velocity components in both
the x- and y-directions must be considered. Hence, equations (C.1-1), (D.1-10),
(D.1-11), and (F.1-2) in the Appendices simplify to (step 1)

ρux

∂ux

∂x
+ ρuy

∂ux

∂y
= −∂P

∂x
+ µ

(
∂2ux

∂x2
+ ∂2ux

∂y2

)

− ρg (4.E.7-1)

ρux

∂uy

∂x
+ ρuy

∂uy

∂y
= −∂P

∂y
+ µ

(
∂2uy

∂x2
+ ∂2uy

∂y2

)

(4.E.7-2)

∂ux

∂x
+ ∂uy

∂y
= 0 (4.E.7-3)

ρCpux

∂T

∂x
+ ρCpuy

∂T

∂y
= k

(
∂2T

∂x2
+ ∂2T

∂y2

)

(4.E.7-4)
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The corresponding boundary conditions are given by

ux = 0, uy = 0, T = T∞ at x = 0 (4.E.7-5)

ux = f1(y), uy = f2(y), T = f3(y) at x = L (4.E.7-6)

ux = 0, uy = 0, T = T1 at y = 0 (4.E.7-7)

ux = 0, uy = 0, T = T∞ at y → ∞ (4.E.7-8)

where f1(y), f2(y), and f3(y) are functions of y that often are unknown. Since the
density is temperature-dependent, we need an appropriate equation of state. Here
we consider small density variations and hence represent the density by means of a
Taylor series expansion about the density ρ∞ at the cold temperature T∞ given by

ρ = ρ|T∞ + ∂ρ

∂T

∣
∣
∣
∣
T∞

(T − T∞) = ρ∞ − ρ∞βt(T − T∞) (4.E.7-9)

where βt is the coefficient of thermal volume expansion. In addition, it is conve-
nient to split the pressure into dynamic, Pd , and hydrostatic, Ph, contributions as
follows16:

P = Pd(x, y) + Ph(x) (4.E.7-10)

When equations (4.E.7-9) and (4.E.7-10) are substituted into equation (4.E.7-1),
we obtain

ρ∞ux

∂ux

∂x
+ ρ∞uy

∂ux

∂y
= −∂Pd

∂x
+ µ

(
∂2ux

∂x2
+ ∂2ux

∂y2

)

+ ρ∞βtg(T − T∞)

(4.E.7-11)

Note that the ρ∞g term does not appear in equation (4.E.7.11) since it cancels
with the derivative of the purely hydrostatic contribution to the pressure. Note that
higher-order effects of the temperature on the density are ignored in the convection
terms; that is, the density appearing in the convection terms is evaluated at T∞ and
hence is denoted by ρ∞.

Define the following dimensionless dependent and independent variables (steps
2, 3, and 4):

u∗
x ≡ ux

uxs

; u∗
y ≡ uy

uys

; P ∗ ≡ Pd

Ps

; T ∗ ≡ T − Tr

Ts

;

x∗ ≡ x

xs

; y∗
m ≡ y

yms

; y∗
t ≡ y

yts

(4.E.7-12)

16Splitting the pressure into its dynamic and hydrostatic contributions is standard practice when the
latter does not cause the flow; this permits eliminating the contribution of the gravitational body force
from the describing equations as seen in the present example.



220 APPLICATIONS IN HEAT TRANSFER

Note that we have allowed for different y-length scales for the energy equation
and equations of motion since the temperature might experience a characteristic
change of ◦(1) over a different length scale than the velocities. Introduce these
dimensionless variables into the describing equations and divide each equation by
the dimensional coefficient of one term that should be retained to maintain physical
significance (steps 5 and 6):
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u∗
x = 0, u∗

y = 0, T ∗ = T∞ − Tr

Ts

at x∗ = 0 (4.E.7-17)
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u∗
x = 0, u∗

y = 0, T ∗ = T1 − Tr

Ts

at y∗
m = y∗

t = 0 (4.E.7-19)

u∗
x = 0, u∗

y = 0, T ∗ = T∞ − Tr

Ts

at y∗
m = y∗

t → ∞ (4.E.7-20)

where ν∞ ≡ µ/ρ∞ is the kinematic viscosity and α∞ ≡ k/ρ∞Cp is the thermal
diffusivity.

For this flow the effect of viscosity will be confined to a thin region near the
vertical plate; hence, the y-length scale for the equations of motion will be the thick-
ness of the momentum boundary layer or region of influence δm; that is, yms = δm

(step 7). The momentum boundary-layer thickness is obtained by balancing the
convection terms with the principal viscous term in equation (4.E.7-13). Similarly,
the effect of heat conduction will be confined to a thin region δt , although not nec-
essarily of the same thickness as that of the momentum boundary layer; hence, the
y-length scale for the energy equation will be the thickness of the thermal boundary
layer or region of influence δt ; that is, yts = δt . The thermal boundary-layer thick-
ness is obtained by balancing the transverse heat-convection and heat-conduction
terms in equation (4.E.7-16). To determine the axial velocity scale uxs , we need
to balance what causes the flow with the principal resistance to flow; the former
is the gravitationally induced body force; the latter is the principal viscous term.
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The transverse velocity scale uys is obtained from the continuity equation since
this is inherently a developing flow. One might be tempted to obtain Ps from the
dimensionless group multiplying the pressure term in equation (4.E.7-13). How-
ever, the pressure term in equation (4.E.7-13) does not cause the free convection
flow; the latter is caused by the gravitational body-force term in this equation.
However, the pressure does cause the flow in the y-direction, which is the rea-
son why we determine its scale by setting the dimensionless group containing Ps

in equation (4.E.7-14) equal to 1. The axial length scale and temperature refer-
ence and scale factors are obtained from the boundary conditions as described
in Sections 3.4 and 4.6. These considerations then result in the following scale
factors:

uxs = (gβt �T L)0.5; uys =
(

ν2∞gβt �T

L

)0.25

; Ps =
(

µ2gβt �T

L

)0.5

;

Ts = T1 − T∞ ≡ �T ; xs = L; yms = δm = L

Re0.5 = L

Gr0.25
t

;
(4.E.7-21)

yts = δt = L

Pr0.5Pe0.5
t

= L

Pr · Gr0.25
t

= δm

Pr

where Re ≡ uxsL/ν∞ is the Reynolds number, Pet ≡ uxsL/α∞ = Re · Pr is the
Peclet number for heat transfer, Pr ≡ ν∞/α∞ is the Prandtl number, and Grt ≡
L3gβt �T /ν2∞ is the Grashof number for heat transfer. Note that the Grashof
number is a measure of the ratio of the free convection to viscous transport of
momentum; as such, it is the analog of the Reynolds number for free convection.17

Note that the last of equations (4.E.7-21) indicates that δt < δm for normal liquids,
δt

∼= δm for gases, and δt > δm for liquid metals.
If we now rewrite our dimensionless describing equations in terms of the scales

defined by equations (4.E.7-21), we obtain
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17The thermal Rayleigh number, defined as Rat ≡ L3α∞gβt �T /ν∞ = Grt · Pr, is another important
dimensionless group that appears in free-convection problems; it is a measure of the ratio of the free
convection to viscous transport of heat; as such, it is the analog of the thermal Peclet number for free
convection.
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u∗
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t = ∞ (4.E.7-29)

We now can consider how these scaled dimensionless describing equations can
be simplified (step 8). Note that if the Grashof number is very large, such that
Gr0.5

t � 1, the pressure and axial viscous momentum transfer terms can be dropped
from equation (4.E.7-22). The former simplification implies that the x-component
is decoupled from the solution to the y-component of the equations of motion;
hence, the latter equation can be ignored. Dropping the axial viscous momen-
tum transfer term from equation (4.E.7-22) converts it from an elliptic into a
parabolic differential equation; this obviates the need to specify downstream bound-
ary conditions that in many cases are unknown. A very large Grashof number also
implies that the axial heat-conduction term can be dropped from equation (4.E.7-
23), which also converts it from an elliptic into a parabolic differential equation,
again avoiding the need to specify a downstream boundary condition. The resulting
describing equations that are applicable in the limit of very large Grashof number
are given by
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u∗
x = 0, u∗

y = 0, T ∗ = 0 at x∗ = 0 (4.E.7-33)
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t = 0 (4.E.7-34)

u∗
x = 0, u∗

y = 0, T ∗ = 0 at y∗
m = y∗

t → ∞
(4.E.7-35)

These simplified describing equations are often given in standard references
with little or no justification.18 Scaling analysis clearly provides a systematic
method for developing these simplified equations and for understanding their lim-
itations. The latter are explored further in the practice problems at the end of the
chapter.

18See, for example, Bird et al., Transport Phenomena, 2nd ed., pp. 346–349; note that equations (4.E.7-
30) and (4.E.7-33) differ from those in Transport Phenomena due to allowing for different radial length
scales in the equations of motion and energy equation.
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4.E.8 Dimensional Analysis Correlation for Electrical Heat Generation
in a Wire

In Example Problem 4.E.2, we applied scaling analysis to unsteady-state radial
heat conduction in a wire due to electrical heat generation. Assume now that we
wish to develop a correlation for the instantaneous average temperature or spatially
averaged temperature of the wire T (t) shown in Figure 4.E.2-1, which is defined

T (t) ≡ 1

πR2

∫ R

0
T (r, t)2πr dr (4.E.8-1)

Let us recast equation (4.E.8-1) in terms of the dimensionless variables defined in
Example Problem 4.E.2, given by

T ∗ ≡ T − T0

G0R2/k
; r∗ ≡ r

R
; t∗ ≡ αt

R2
(4.E.8-2)

T (t) ≡ G0R
2

k

∫ 1

0
T ∗(r∗, t∗)2r∗ dr∗ + T0 (4.E.8-3)

Employing the results of our scaling analysis for Example Problem 4.E.2 obviates
the need to apply steps 1 through 7 in the scaling analysis procedure for dimensional
analysis outlined in Chapter 2. Equation (4.E.8-3) can be rearranged in form

k[T (t) − T0]

G0R2
≡ T

∗
(t∗) =

∫ 1

0
T ∗(r∗, t∗)2r∗ dr∗ (4.E.8-4)

Equation (4.E.8-4) implies that T
∗
, the dimensionless average temperature, is a

function of t∗, the dimensionless time, and any dimensionless groups that enter into
the solution for T ∗(r∗, t∗). Equation (4.E.2-15) indicates that once the transients
have died out, only one additional dimensionless group is involved in the solution
for T ∗(r∗, t∗): namely, ωR2/α. Hence, the correlation for the instantaneous average
temperature will involve two dimensionless groups and the dimensionless time;
that is,

T
∗ ≡ k(T − T0)

G0R2
= f

(

t∗; ωR2

α

)

(4.E.8-5)

Now let us assume that we seek a correlation for T m the maximum in the
spatially averaged temperature fluctuation. In principal, this would be obtained by
setting the time derivative of the spatially averaged temperature equal to zero and
determining the corresponding maximum. Hence, the correlation for T

∗
m, the dimen-

sionless maximum in the average temperature, will involve only two dimensionless
groups; that is,

T
∗
m ≡ k(T m − T0)

G0R2
= f

(
ωR2

α

)

(4.E.8-6)
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However, if the dimensionless group ωR2/α � 1, corresponding to very low fre-
quency currents, thin wires, or wires having a very high thermal conductivity, the
right-hand side of equation (4.E.8-6) can be expanded in a Taylor series and trun-
cated at the first term (step 9). For this special case the dimensionless maximum
spatially averaged temperature is a constant; that is,

T
∗
m ≡ k(T m − T0)

G0R2
= a constant (4.E.8-7)

It is instructive to compare the results of scaling for dimensional analysis to those
of the Pi theorem. A naive application of the Pi theorem for correlating the spatially
averaged temperature T would indicate that four dimensionless groups were neces-
sary; this follows from having nine dimensional quantities (T , T0, G0, ω, t, R, k, ρ,
and Cp) in five units (mass, length, time, energy, and temperature). However, scal-
ing analysis reveals that the spatially averaged temperature can be correlated with
only three dimensionless groups. The Pi theorem will yield this same result if one
recognizes that the quantities k, ρ, and Cp can be combined into a single quantity α

and that T and T0 can be combined into a single quantity T − T0. This reduces the
number of quantities to seven and the number of units to four, thereby indicating
three dimensionless groups. Scaling analysis avoids having to invoke the subtle
arguments required to ensure that the Pi theorem yields the minimum parametric
representation.

4.P PRACTICE PROBLEMS

4.P.1 Steady-State Conduction in a Slab with a Specified Cooling Flux

Consider steady-state heat conduction in the solid slab considered in Section 4.2
and shown in Figure 4.2-1. The boundary conditions at x = 0, x = W , and y = H

remain the same; however, the constant-temperature boundary condition at y = 0
is replaced by a constant-heat-flux condition given by qy = −q2 where q2 > 0.

(a) Use scaling analysis to determine the appropriate temperature scales.

(b) Determine the criterion for ignoring lateral heat conduction.

4.P.2 Steady-State Conduction in a Slab with a Specified Heat Flux

Consider steady-state heat conduction in the solid slab considered in Section 4.2
and shown in Figure 4.2-1. The boundary conditions at x = 0, x = W , and y = 0
remain the same; however, the constant-temperature boundary condition at y = H

is replaced by a constant-heat-flux condition given by qy = −q2 where q2 > 0.

(a) Use scaling analysis to determine the appropriate temperature scales.

(b) Determine the criterion for ignoring lateral heat conduction.
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Figure 4.P.3-1 Steady-state multidimensional heat conduction in a solid rectangular par-
allelepiped of width W , depth D, and height H and constant physical properties.

4.P.3 Steady-State Heat Conduction in a Rectangular Parallelepiped

Consider the solid rectangular parallelepiped of width W , depth D, and height H

and constant physical properties shown in Figure 4.P.3-1.

(a) Write the appropriate form of the energy equation along with the boundary
conditions required.

(b) Use scaling analysis to determine the criterion for ignoring conduction in
the x-direction.

(c) Use scaling analysis to determine the criterion for ignoring conduction in
the z-direction.

(d) Derive an equation for the thickness of the region of influence near the
sidewalls at x = 0 and x = W wherein lateral heat conduction cannot be
ignored in predicting quantities such as the temperature or heat flux near
these boundaries.

(e) Derive an equation for the thickness of the region of influence near the
sidewalls at z = 0 and z = D wherein lateral heat conduction cannot be
ignored in predicting quantities such as the temperature or heat flux near
these boundaries.

4.P.4 Steady-State Conduction in a Cylinder with Specified Temperatures
at Its Boundaries

Consider the steady-state heat conduction in a solid cylinder of radius R and con-
stant physical properties due to a high temperature T0 applied at z = 0 and a low
temperature T1 applied at z = L as well as at the lateral surface as shown in
Figure 4.P.4-1.

(a) Write the appropriate form of the energy equation along with the boundary
conditions required.

(b) Use scaling analysis to determine the criterion for ignoring radial conduc-
tion.

(c) Derive an equation for the thickness of the region of influence near the
circumferential boundary of the cylinder wherein radial heat conduction
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r R

T1

T0 T1

Figure 4.P.4-1 Steady-state heat conduction in a solid circular cylinder due to a high
temperature T0 applied at z = 0 and a low temperature T1 applied at z = L and at the
circumferential boundary at r = R.

cannot be ignored in predicting quantities such as the temperature or heat
flux near this boundary.

4.P.5 Steady-State Conduction in an Annulus with Specified Temperatures
at Its Boundaries

Consider steady-state heat conduction in a solid with an annular cross-sectional area
and constant physical properties due to a high temperature T1 applied at its inner
surface at R1 and a low temperature T2 applied at its outer surface at R2 as well
as at the two ends of the cylinder at z = 0 and z = L as shown in Figure 4.P.5-1.

(a) Write the appropriate form of the energy equation and the boundary condi-
tions required.

z

r

L

at r = R2, T = T2 at r = R1, T = T1

R2

T = T2

T = T2

Figure 4.P.5-1 Steady-state heat conduction in a solid annulus with constant physical prop-
erties whose inner surface at R1 is held at a high temperature T1 and whose outer surface
at R2 and ends at z = 0 and z = L are held at a low temperature T2.
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(b) Use scaling analysis to determine the criterion for ignoring axial conduction;
be certain to include a reference scale for the dimensionless radial coordinate
since it is not naturally referenced to zero for an annulus.

(c) Derive an equation for the thickness of the region of influence near the two
ends of the annulus wherein axial heat conduction cannot be ignored in pre-
dicting quantities such as the temperature or heat flux near this
boundary.

4.P.6 Steady-State Heat Conduction in a Circular Fin

A solid metallic circular flat fin with a constant thermal conductivity k, width H ,
and radius R2 is attached to a cylindrical pipe having a radius R1 that is maintained
at a constant temperature T1, where R2 − R1 � H . The convective heat-transfer
flux q from the surfaces of the fin to the ambient air is described via the lumped-
parameter approach and is given by

q = h(T − T∞) (4.P.6-1)

where h is the heat-transfer coefficient and T∞ is the temperature of the ambi-
ent air far removed from the fin. A schematic of this fin is shown in Figure
4.P.6-1.

(a) Write the appropriate form of the energy equation and the boundary condi-
tions required.

(b) Determine the criterion for assuming that the temperature is uniform across
the thickness of the fin.

T = T1 at r = R1

T = T∞ in ambient gas phase

R2

H R1

Figure 4.P.6-1 Solid flat circular metallic fin with a constant thermal conductivity k, radius
R2, and thickness H attached to a cylindrical pipe having a radius R1 and temperature T1;
the convective heat-transfer flux from the surfaces of the fin to the ambient air is described
by q = h(T − T∞).
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(c) Integrate the simplified describing equations that result from the approx-
imation made in part (b) to obtain an equation for the axial temperature
distribution within the fin.

4.P.7 Unsteady-State Axial Heat Conduction in a Solid Cylinder

A solid cylinder with constant physical properties, radius R, and length L is initially
at a constant temperature T0 as shown in Figure 4.P.7-1. At time t = 0 the temper-
ature of the face of this cylinder at z = 0 is raised to T1 while the face at z = L is
maintained at T0. The circumferential boundary of the cylinder is perfectly insulated
so that there is no heat transfer in the radial direction.

(a) Write the appropriate form of the energy equation and the initial and bound-
ary conditions required.

(b) Scale the describing equations to determine the criterion for assuming that
steady-state heat transfer is achieved.

(c) Scale the describing equations appropriate to very short contact times for
which the heat conduction has not penetrated the entire length of the cylin-
der, and determine the criterion for the applicability of this approximation.

(d) Derive an equation for the region of influence or thermal penetration for the
conditions in part (c).

L

z
r R

T1 T0

Figure 4.P.7-1 Unsteady-state axial heat conduction in a solid cylinder with constant phys-
ical properties, a perfectly insulated circumferential boundary, and an initial temperature T0

due to a high temperature T1 being imposed on the face at z = 0 while the face at z = L is
maintained at T0.

4.P.8 Unsteady-State Radial Heat Conduction in a Solid Cylinder

A solid cylinder with constant physical properties, radius R, and length L is ini-
tially at a constant temperature T0 as shown in Figure 4.P.8-1. At time t = 0 the
temperature of the circumferential boundary of this cylinder at r = R is raised to
T1. The ends of the cylinder at z = 0 and z = L are perfectly insulated so that
there is no heat transfer in the axial direction.

(a) Write the appropriate form of the energy equation and the initial and bound-
ary conditions required.
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R

r

Solid cylinder initially at T0

LT = T1, t > 0

Figure 4.P.8-1 Unsteady-state axial heat conduction in a solid cylinder with constant phys-
ical properties, insulated ends, and an initial temperature T0 due to a high temperature T1

being imposed on the face at r = R.

(b) Scale the describing equations to determine the criterion for assuming that
thermal equilibrium has been achieved.

(c) Scale the describing equations appropriate to very short contact times for
which the thermal energy has not penetrated entirely through the cylinder
and determine the criterion for the applicability of this approximation.

(d) Derive an equation for the region of influence or thermal penetration for the
conditions in part (c).

4.P.9 Unsteady-State Radial Heat Conduction in a Spherical Shell

A solid spherical shell with constant physical properties, an inner radius R1, and
an outer radius R2 is initially at a constant temperature T0, as shown in Figure
4.P.9-1. At time t = 0 the temperature of the inner boundary at r = R1 is raised
to T1 and convective heat transfer to a surrounding flowing fluid whose bulk tem-
perature is maintained at T0 occurs at the outer boundary at R2; the heat flux
at the outer boundary is described by a constant heat-transfer coefficient and is
given by

qr = h(T − T0) at r = R2 (4.P.9-1)

(a) Write the appropriate form of the energy equation and the initial and bound-
ary conditions required.

(b) Scale the describing equations to determine the criterion for justifying that
steady-state heat transfer can be assumed. Note that it is necessary to intro-
duce a separate scale for the radial temperature gradient since this derivative
does not necessarily scale with the characteristic temperature scale divided
by the length scale; also introduce a reference factor for the spatial variable
since it is not naturally referenced to zero.
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r

T = T1, t > 0

qr = h(T − T0), t > 0

R1

R2

Figure 4.P.9-1 Unsteady-state heat conduction in a solid spherical shell with constant
physical properties, inner radius R1, outer radius R2, and initial temperature T0; at time
t = 0 a high temperature T1 is applied at the inner boundary, and convective heat transfer
to the surrounding fluid whose bulk temperature is maintained at T0 occurs at the outer
boundary.

(c) Based on your scaling analysis in part (b), determine the criterion for ignor-
ing curvature effects on the heat conduction within the spherical shell.

(d) Solve the simplified describing equations appropriate to parts (b) and (c) for
the temperature profile in the spherical shell and determine the temperature
at r = R2.

(e) Scale the describing equations appropriate to very short contact times for
which the thermal energy has not penetrated entirely through the spherical
shell, and determine the criterion for the applicability of this approximation.

(f) Derive an equation for the region of influence or thermal penetration for the
conditions in part (e).

4.P.10 Steady-State Conduction in a Cylinder with External Phase
Convection

Consider steady-state heat conduction in a solid cylinder of radius R and constant
physical properties due to a high temperature T0 applied at z = 0 and a low temper-
ature TL applied at z = L, as shown in Figure 4.P.4-1. However, the circumferential
boundary at r = R is exposed to convective heat transfer in an external fluid phase;
the heat flux in this external phase is described by a lumped-parameter condition
given by

qr = h(T − T∞) (4.P.10-1)

where T∞ is the temperature in the bulk of the external fluid phase far removed
from the solid cylinder.

(a) Write the appropriate form of the energy equation and the boundary condi-
tions required.

(b) Use scaling analysis to determine the criterion for ignoring radial conduc-
tion. Introduce a separate scale for the radial derivative of the temperature
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since there is no reason to assume that it will scale with the characteristic
temperature scale divided by the characteristic radial length scale.

(c) If the criterion you derived in part (b) is satisfied, radial heat conduction can
be ignored everywhere within the solid cylinder, even near the circumfer-
ential boundary; that is, there is no region of influence in this case near the
circumferential boundary. Explain why there is no region of influence in this
case, where a lumped-parameter heat-flux boundary condition is prescribed
at the lateral boundaries, whereas there would be a region of influence if a
constant temperature were prescribed at this boundary.

4.P.11 Unsteady-State Heat Transfer to a Sphere at Small Biot Numbers

In Section 4.4 we considered convective heat transfer to a solid sphere falling at its
terminal velocity through a fluid. Scaling analysis was used to obtain a criterion for
achieving steady-state, which in this case meant thermal equilibrium between the
sphere and the liquid; this criterion is given by equation (4.4-17). However, if the
Biot number is very small, the describing equations can be simplified and solved
analytically; the resulting solution for the dimensionless temperature is given by
equation (4.4-23).

(a) Use the solution obtained for the small Biot number approximation to deter-
mine the dimensionless time required for the temperature to reach 1% of
its final equilibrium temperature and compare this result to the criterion we
derived for achieving steady-state.

(b) The small Biot number approximation implies that the temperature within
the sphere is nearly uniform. Use the solution for the small Biot number
approximation and the results of the scaling analysis in Section 4.4 to esti-
mate the dimensionless time required for the dimensionless temperature at
the center of the sphere to differ from the surface temperature by less than
1.0%.

4.P.12 Unsteady-State Heat Transfer in a Solid Sphere

In Section 4.4 we considered unsteady-state heat transfer to a solid sphere that was
initially at temperature T0 due to falling at its terminal velocity through a hot liquid
at temperature T∞. We used scaling analysis to arrive at the criterion for assuming
that the temperature of the sphere was essentially uniform across its radius at any
time. This corresponded to the small Biot number approximation, for which the
heat transfer is controlled by the external liquid phase. The exact analytical solution
for this heat-transfer problem is given by

T − T∞
T0 − T∞

=
∞

∑

n=1

Cne
−λ2

nFot
R

λnr
sin

λnr

R
(4.P.12-1)
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where Fot ≡ αt/R2 is the Fourier number for heat transfer and Cn is a coefficient
whose value is obtained from

Cn = 4(sin λn − λn cos λn)

2λn − sin 2λn

(4.P.12-2)

for which the λn are the positive roots of

1 − λn cot λn = Bit (4.P.12-3)

where Bit = hR/k is the Biot number for heat transfer. Compare the approxi-
mate solution that we obtained for the small Biot number approximation given
by equation (4.4-23) to the exact solution given by the above for Bit = 0.01 and
Bit = 0.1; for the case of the exact solution, compute the temperature at the center
of the sphere.

4.P.13 Unsteady-State Convective Heat Transfer to a Plane Wall

Consider an infinitely long solid plane wall that is initially at a high temperature
T0 with constant physical properties and thickness 2H . This wall is cooled on both
sides by a flowing liquid whose bulk temperature far removed from the wall is T∞.
The heat transfer in the cold liquid is characterized by a heat-transfer coefficient
h. A schematic of this heat-transfer problem is shown in Figure 4.P.13-1.

(a) Write the appropriate form of the energy equation along with the initial and
boundary conditions required.

x

Solid wall

2H

T = T0, t ≤ 0

T = T∞ T = T∞

Figure 4.P.13-1 Infinitely long solid plane wall with constant physical properties, thickness
2H , and initial temperature T0 subject to convective cooling at its lateral boundaries by a
liquid whose temperature is T∞ far from the wall.
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(b) Use scaling analysis to determine the criterion for ignoring the conductive
heat-transfer resistance in the wall relative to that in the external liquid
phase.

(c) Solve the simplified describing equations justified by the criterion derived
in part (b).

(d) The exact analytical solution for this heat-transfer problem is given by

T − T∞
T0 − T∞

=
∞

∑

n=1

Cne
−λ2

nFot cos
λnx

H
(4.P.13-1)

where Fot ≡ αt/H 2 is the Fourier number for heat transfer and Cn is a
coefficient whose value is obtained from

Cn = 4 sin λn

2λn + sin 2λn

(4.P.13-2)

for which the λn are the positive roots of the equation

λn tan λn = Bit (4.P.13-3)

where Bit = hR/k is the Biot number for heat transfer. Compare the approx-
imate solution that you obtained in part (c) to the exact solution given by
the above for Bit = 0.01 and Bit = 0.1; for the case of the exact solution,
compute the temperature at the center of the plane wall.

4.P.14 Unsteady-State Convective Heat Transfer to a Solid Cylinder

Consider an infinitely long solid cylinder initially at a high temperature T0 with
constant physical properties and radius R. This cylinder is cooled by immersing
it in a flowing liquid whose upstream temperature is T∞ and whose upstream
velocity perpendicular to the axis of the cylinder is U∞. The heat transfer in the
cold liquid is characterized via a heat-transfer coefficient h. Correlations for the
Nusselt number, the dimensionless heat-transfer coefficient, as a function of the
Reynolds number for flow over a cylinder exposed to a liquid flowing at constant
velocity are available in standard references.19 A schematic of this heat-transfer
problem is shown in Figure 4.P.14-1.

(a) Write the appropriate form of the energy equation along with the initial and
boundary conditions required.

(b) Use scaling analysis to determine the criterion for ignoring the conductive
heat-transfer resistance in the solid cylinder relative to that in the external
liquid phase.

19See, for example, Bird et al., Transport Phenomena, 2nd ed., p. 440.
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Solid cylinder
initially at T0

R

r

U∞, T∞

Figure 4.P.14-1 Infinitely long solid cylinder with constant physical properties, radius
R, and initial temperature T0 immersed in a flowing liquid whose upstream velocity and
temperature are U∞ and T∞ such that T∞ < T0 and for which the convective heat transfer
in the liquid phase is described by a constant heat-transfer coefficient h.

(c) Solve the simplified set of describing equations justified by the criterion that
you derived in part (b).

(d) The exact analytical solution for this heat-transfer problem is given by

T − T∞
T0 − T∞

=
∞

∑

n=1

Cne
−λ2

nFot J0

(
λnx

R

)

(4.P.14-1)

where Fot ≡ αt/R2 is the Fourier number and Cn is a coefficient whose
value is obtained from

Cn = 2

λn

J1(λn)

J 2
0 (λn) + J 2

1 (λn)
(4.P.14-2)

where the λn are the positive roots of

λn

J1(λn)

J0(λn)
= Bit (4.P.14-3)

where Bit ≡ hR/k is the Biot number for heat transfer and Ji is the ith-
order Bessel function of the first kind. Compare the approximate solution
that you obtained in part (c) to the exact solution given by the above for
Bit = 0.01 and Bit = 0.1; for the case of the exact solution, compute the
temperature at the center of the cylinder.

4.P.15 Entrance Effect Limitations in Laminar Slit Flow

In Section 4.5 we considered the steady-state fully developed laminar flow of a
viscous Newtonian fluid with constant physical properties between two infinitely
wide parallel plates that have a separation distance 2H , length L, and maintained
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at the temperature T0, which was also the temperature of the entering fluid. We
scaled the describing equations to determine the criteria for ignoring both the axial
convection and axial conduction of heat.

(a) The criterion for ignoring axial heat conduction breaks down near the leading
edge of the two parallel plates. Use scaling analysis to estimate the thickness
of the region of influence wherein axial heat conduction cannot be ignored.

(b) Retaining the axial conduction term in the describing equations for the
entrance region complicates solving this program since a downstream bound-
ary condition is required. Describe a procedure whereby the solution to the
simplified equations sufficiently far downstream from the entrance region
can be used to obtain a solution for this heat-transfer problem along the
entire length of the two flat plates.

4.P.16 Convective Heat Transfer for Fully Developed Laminar Flow
Between Heated Parallel Flat Plates

Consider the steady-state heat transfer associated with fully developed laminar flow
of a Newtonian liquid with constant physical properties and initial temperature T0

between two parallel flat plates of length L, separated by a distance 2H , and
maintained at a temperature T1 such that T1 > T0, as shown in Figure 4.P.16-1.
However, heat generation owing to viscous dissipation can also occur. It can be
assumed that the laminar flow velocity profile is fully developed and given by

ux = Um

[

1 −
( y

H

)2
]

(4.P.16-1)

where Um is the maximum fluid velocity at the centerline between the two plates.

(a) Write the appropriately simplified form of the energy equation and associated
boundary conditions.

x

y

L

H

T = T1

Figure 4.P.16-1 Steady-state heat transfer to fully developed flow of a Newtonian fluid
with constant physical properties and initial temperature T0 between two parallel solid flat
plates of length L, separated by a distance 2H , and maintained at temperature T1; the figure
shows the fully developed laminar flow velocity profile and sketches of the developing
temperature profile at two locations.
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(b) Scale the describing equations for conditions such that the predominant
heating is caused by heat transfer from the two plates and for conditions such
that the transverse conduction is sufficiently large so that heat penetration
occurs essentially across the entire cross section between the two flat plates.

(c) Determine the criterion for ignoring the axial heat conduction.

(d) Determine the criterion for ignoring viscous heat generation.

(e) Determine the criterion for ignoring axial convection.

4.P.17 Entrance Effect Limitations in the Thermal Boundary-Layer
Approximation for Falling Film Flow

In Example Problem 4.E.4 we considered a thermal boundary-layer approximation
for heat transfer from a heated vertical plate to laminar film flow. We found that the
heat transfer was confined essentially to a thin boundary layer near the heated wall
if the Peclet number were sufficiently high. This thermal boundary-layer approxi-
mation also involved ignoring axial heat conduction.

(a) Determine the thickness of the region of influence near the leading edge of
the vertical plate within which the thermal boundary-layer approximation
breaks down.

(b) If the axial heat conduction cannot be ignored near the leading edge, prob-
lems are encountered in solving the describing equations, owing to the lack
of a downstream boundary condition. Outline a procedure whereby a solu-
tion could be obtained to the describing equations over the full length of the
vertical plate by using a solution to the thermal boundary-layer equations
derived in Example Problem 4.E.4. Note that it is only necessary to describe
the procedure that you would use to solve the describing equations.

4.P.18 Thermal Boundary-Layer Heat Transfer for Fully Developed
Laminar Flow Between Heated Parallel Flat Plates

Consider the steady-state heat transfer associated with fully developed laminar flow
of a Newtonian liquid with constant physical properties and initial temperature T0

between two parallel flat plates separated by a distance 2H . The two plates are
maintained at the same temperature T0 over the length defined by 0 ≤ x ≤ L0.
However, the temperature of the two plates is raised to T1 over the length defined
by L0 ≤ x ≤ L1 as shown in Figure 4.P.18-1. It can be assumed that viscous dis-
sipation can be ignored and that the fully developed laminar flow velocity profile
is given by

ux = Um

[

1 −
( y

H

)2
]

(4.P.18-1)

(a) Write the appropriately simplified form of the energy equation and associated
boundary conditions.
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x

y H

T = T0 T = T1

L1 − L0L0

Figure 4.P.18-1 Steady-state heat transfer to fully developed flow of a Newtonian fluid
with constant physical properties and initial temperature T0 between two parallel solid flat
plates separated by a distance 2H ; the two plates are maintained at temperature T0 for
0 ≤ x ≤ L0 and maintained at temperature T1 for L0 ≤ x ≤ L1; the figure shows the fully
developed laminar flow velocity profile and sketches of the developing temperature profile
at two locations.

(b) Scale the describing equations for conditions such that axial convection of
heat is significant; note that for these conditions there will be a region of
influence or thermal boundary layer δt near each flat plate; hence, recast the
describing equations in terms of a coordinate system located on one of the
two plates and provide an estimate of the thickness of this thermal boundary
layer.

(c) Determine the criterion for ignoring the axial heat conduction.

(d) Determine the thickness of the region of influence near the leading edge of
the heated zone wherein axial heat conduction cannot be neglected.

(e) If the thermal boundary layer is sufficiently thin, it is possible to use a
simplified form of the velocity profile in the convective heat-transfer term in
the energy equation; determine the criterion for employing a linear velocity
profile in the region near the plates. Note that this simplification is often
referred to as the Lévêque approximation.20

4.P.19 Heat Transfer from a Hot Inviscid Gas to Fully Developed Laminar
Falling Film Flow

Consider the fully developed laminar flow down a solid vertical wall of a Newtonian
liquid film of thickness H , constant physical properties, and initial temperature T0.
This liquid film contacts an inviscid gas phase whose temperature is T1 such that
T1 > T0. The vertical wall can be assumed to be perfectly insulated and viscous
dissipation in the liquid film can be ignored. A sketch of this heat-transfer problem
is shown in Figure 4.P.19-1. The velocity profile for fully developed laminar film
flow is given by

ux = Um

[

1 −
( y

H

)2
]

(4.P.19-1)

20M. A. Lévêque, Ann. Mines, 13, 201 (1928).
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Figure 4.P.19-1 Steady-state heat transfer from a hot inviscid gas phase at temperature T1

to a liquid film in fully developed laminar flow with an initial temperature T0, thickness H ,
and constant physical properties.

(a) Write the appropriately simplified form of the energy equation and associated
boundary conditions.

(b) Scale the describing equations accounting for axial convection, axial con-
duction, and transverse conduction of heat; note that there will be a region
of influence or thermal boundary layer δt near the liquid–gas interface.

(c) Based on your scaling analysis in part (b), provide an estimate of the thick-
ness of the thermal boundary layer.

(d) Determine the criterion for ignoring the axial heat conduction.

(e) Determine the thickness of the region of influence near the leading edge of
the falling film flow wherein axial heat conduction cannot be neglected.

(f) If the thermal boundary layer is sufficiently thin, it is possible to use a
simplified form of the velocity profile in the convective heat-transfer term
in the energy equation; determine the criterion for employing a constant
value of the velocity near the liquid–gas interface.

(g) Estimate the length required for thermal penetration to reach the vertical
wall.

4.P.20 Thermal Boundary-Layer Development Along a Heated Flat Plate

In Section 4.6 we considered the thermal boundary-layer approximation for laminar
flow over a horizontal flat plate maintained at a constant temperature. We found that
the criterion for making the thermal boundary-layer approximation was a very large
Peclet number. At the end of Section 4.6 it was stated that the thermal boundary-
layer approximation breaks down in the vicinity of the leading edge of the flat
plate.
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(a) Use scaling analysis to provide an estimate of the thickness of the region
of influence near the leading edge of the flat plate wherein the thermal
boundary-layer approximation breaks down.

(b) Compare the thicknesses of the regions where the thermal boundary-layer
and momentum boundary-layer approximations break down for different
values of the Prandtl number.

4.P.21 Thermal Boundary-Layer Development with an Unheated Entry
Region

In Section 4.6 we considered the thermal boundary-layer approximation for laminar
flow over a horizontal flat plate maintained at a constant temperature over its entire
length. Now consider the case where the plate is maintained at T∞, the temperature
of the fluid upstream from the plate over a length L0, after which the plate is
maintained at the temperature T0, where T0 > T∞, as shown in Figure 4.P.21-1.
Note that in this case the momentum boundary layer will begin developing before
the thermal boundary layer. Note also that different axial length scales will be
required for the equations of motion and the energy equation. Assume that the
Prandtl number Pr ≥ 1.

(a) Consider the scaling for this heat-transfer problem for conditions such that
both the Reynolds number and Peclet number are large. Determine the
appropriate scale and reference factors for the dependent and independent
variables.

(b) Use your scaling analysis to obtain estimates for both the momentum and
thermal boundary-layer thicknesses.

x

y

Unheated

U∞, T∞ U∞

T = T0

dm

dt

L0

L

Heated

T∞

Figure 4.P.21-1 Steady-state laminar uniform flow of a Newtonian fluid with constant
physical properties, temperature T∞, and velocity U∞ intercepting a stationary semi-infinite
infinitely wide horizontal flat plate; the latter is maintained at T∞ for 0 ≤ x ≤ L0 and at
T0 > T∞ for L0 < x ≤ L; the solid line shows the hypothetical momentum boundary-layer
thickness δm, and the dashed line shows the hypothetical thermal boundary-layer thickness
δt for Pr > 1, where Pr is the Prandtl number.
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(c) Use scaling analysis to provide an estimate of the axial length of the region
of influence near the leading edge of the heated region wherein the thermal
boundary-layer approximation breaks down.

(d) Discuss whether the approximations made in the equations of motion or
in the energy equation are more limiting with respect to ignoring the axial
diffusion terms.

4.P.22 Thermal Boundary-Layer Development with Flux Condition

Consider the steady-state laminar uniform plug flow of a Newtonian liquid with
constant physical properties, temperature T∞, and velocity U∞ intercepting a sta-
tionary semi-infinite infinitely wide horizontal impermeable flat plate as shown in
Figure 4.6-1. However, a constant heat flux q0 is maintained along the surface of
the flat plate rather than a constant temperature. Gravitational and viscous heating
effects can be assumed to be negligible. In this problem we use scaling to deter-
mine the criteria for making the thermal boundary-layer approximation; that is, the
conditions for which axial heat conduction can be ignored and for which the heat
transfer can be assumed to be confined to a thin thermal boundary layer near the
plate.

(a) Write the appropriate forms of the equations of motion and thermal energy
equation applicable to this boundary-layer flow; it is not necessary here to
justify the forms of these equations by scaling; that is, you can begin with the
dimensional momentum and thermal boundary-layer equations that resulted
from the scaling done in Section 4.6.

(b) Write the boundary conditions required to solve the coupled equations of
motion and thermal energy equation.

(c) In scaling the describing equations for this problem, it is necessary to
introduce a scale factor for the y-derivative of the temperature due to the
flux condition at the plate. This implies that the temperature scale will
be different from that obtained in Section 4.6. In view of these consider-
ations, determine the appropriate scale factors for the temperature and its
y-derivative. In determining the temperature scale, keep in mind that heat
convection in both the x- and y-directions must be retained for large Peclet
numbers.

(d) Derive an equation for the thermal boundary-layer thickness δt and discuss
any differences between your result and that obtained in the boundary-layer
problem considered in Section 4.6.

(e) Determine the criterion for making the thermal boundary-layer approxi-
mation.

(f) Determine the thickness of the region of influence near the leading edge
of the plate wherein the thermal boundary-layer approximation is not
applicable.
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Permeation at constant velocity V0
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Figure 4.P.23-1 Steady-state laminar uniform flow of an incompressible viscous Newto-
nian liquid with constant physical properties, temperature T∞, and velocity U∞ intercepting
a stationary semi-infinite infinitely wide horizontal permeable flat plate along which there is
a constant suction velocity V0; the surface of the flat plate is maintained at the temperature
T∞ over the distance 0 ≤ x ≤ L0; however, the temperature is increased to T0 over the
distance L0 ≤ x ≤ L1.

4.P.23 Thermal Boundary-Layer Development with Suction

Consider the steady-state laminar uniform plug flow of a Newtonian liquid with
constant physical properties, temperature T∞, and velocity U∞ intercepting a statio-
nary semi-infinite infinitely wide horizontal permeable flat plate, as shown in
Figure 4.P.23-1. The surface of the flat plate is maintained at the temperature T∞
over the distance 0 ≤ x ≤ L0; however, the temperature is increased to T0 over
the distance L0 ≤ x ≤ L1. Suction is applied over the entire length of the plate to
cause a constant velocity V0 normal to the plate. Gravitational and viscous heating
effects can be assumed to be negligible.

(a) Write the appropriate forms of the equations of motion and thermal energy
equation applicable to this boundary-layer flow; it is not necessary here
to justify the forms of these equations by scaling; that is, you can begin
with the dimensional momentum and thermal boundary-layer equations that
resulted from the scaling done in Section 4.6.

(b) Write the boundary conditions required to solve the coupled equations of
motion and thermal energy equation.

(c) We might anticipate that with boundary-layer suction such as we have in
this problem, both the momentum and thermal boundary-layer thicknesses
might ultimately become constant rather than grow without bound as they
do for a boundary layer on a semi-infinite flat plate without suction or with
blowing. Use scaling analysis to determine the criteria for obtaining both a
constant momentum boundary-layer thickness as well as a constant thermal
boundary-layer thickness; express your answers in terms of dimensionless
groups, which must be very small.
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(d) For the constant momentum and thermal boundary-layer conditions obtained
in part (c), determine the temperature profile.

(e) Discuss whether the boundary-layer suction will increase or decrease the
heat transfer relative to when no suction is used.

4.P.24 Evaporative Cooling of a Liquid Film with Radiative Heat Transfer

In Example Problem 4.E.6 we considered the cooling that occurs when a volatile
liquid evaporates into an ambient gas phase. In our analysis of this problem we
assumed that there was no significant heat transfer from the ambient gas phase to
the liquid film. Consider now the effect of radiative heat transfer on this evaporative
cooling process; assume that the radiative heat-transfer flux is given by

qx = σε(T 4 − T 4
∞) (4.P.24-1)

in which σ is the Stefan–Boltzmann constant, ε the emissivity of the surface of
the film, and T∞ the temperature of the medium that is causing the radiative heat
transfer.

(a) The presence of the radiative heat transfer will alter the boundary condition
at the moving interface that is obtained from an integral energy balance;
derive this modified boundary condition.

(b) Use scaling analysis to determine the criterion for ignoring the radiative
heat transfer.

(c) Use scaling analysis to determine the criterion for ignoring the evaporative
cooling relative to the radiative heating for the case when T∞ > T0.

(d) Use scaling analysis to determine the criterion to ensure that the radiative
heat transfer is sufficient to maintain the liquid film at its initial tempera-
ture T0.

4.P.25 Melting of Frozen Soil Due to Constant Radiative Heat Flux

In Section 4.7 we considered the melting of frozen soil initially at its freezing point
due to a higher temperature being applied at the ground surface. Assume now that
the melting is caused by a constant radiative heat flux q0 at the ground surface
rather than by a higher temperature being applied. Note that this is a reasonable
condition for melting, due to exposure of the ground surface to solar radiation.

(a) Consider carefully whether this change in the boundary condition at the
ground surface will change the integral energy balance that is needed to
determine the instantaneous location of the freezing front.

(b) Determine the temperature scale appropriate to this modified condition at
the ground surface.

(c) Determine the criterion for assuming that the melting is quasi-steady-state.

(d) What relationship between the thaw depth and time does scaling imply for
very short contact times?
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4.P.26 Melting of Frozen Soil Initially at Subfreezing Temperature

In our scaling analysis of the melting of frozen soil in Section 4.7, we made the
somewhat unrealistic assumption that the soil was initially at its freezing point Tf .
Assume now that the soil is infinitely thick and initially at a temperature T0, where
T0 < Tf . This modified initial condition implies that heat transfer will be to the
freezing front from above but away from it in the frozen region below. Hence,
the thermal energy equation must be considered in the regions both above and
below the freezing front. Assume that ku, ρu, and Cpu are the effective thermal
conductivity, mass density, and heat capacity, respectively, of the unfrozen soil
and that kf , ρf , and Cpf are the effective thermal conductivity, mass density, and
heat capacity, respectively, of the frozen soil.

(a) Write the appropriate form of the thermal energy equation in both regions.

(b) Write the initial and boundary conditions required to solve the equations in
part (a).

(c) Derive the auxiliary condition required to determine the location of the
melting front.

(d) Scale the describing equations to determine when heat transfer to the under-
lying frozen soil can be neglected.

(e) Determine the criteria for assuming that the melting is quasi-steady-state;
be careful to consider the implications of heat transfer to the underlying ice.

(f) Determine the thickness of the region of influence wherein the heat transfer
in the frozen soil can be assumed to be confined.

4.P.27 Freezing of Water-Saturated Soil Initially Above Its Freezing
Temperature

Consider water-saturated soil initially at a temperature T∞ above its freezing tem-
perature Tf . The ground surface then is subjected to a subfreezing temperature
T0 < Tf that eventually causes a freezing front to propagate down through the soil,
as shown in Figure 4.P.27-1. We consider modeling this freezing process from the
instant at which the upper surface of the water-saturated soil reaches its freezing
point Tf ; that is, you do not need to consider the unsteady-state heat-transfer pro-
cess during which the temperature at the soil surface drops to the freezing point.
Note that these conditions imply that heat is transferred from the freezing front in
the upward direction but is transferred to the freezing front from the unfrozen soil
beneath it. Hence, the thermal energy equation must be considered in the regions
both above and below the freezing front. Assume that ku, ρu, and Cpu are the
effective thermal conductivity, mass density, and heat capacity, respectively, of the
unfrozen soil and that ku, ρf , and Cpf are the effective thermal conductivity, mass
density, and heat capacity, respectively, of the frozen soil.

(a) Write the appropriate form of the thermal energy equation in both regions.

(b) Write the initial and boundary conditions required to solve the equations in
part (a).
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Figure 4.P.27-1 Unsteady-state one-dimensional heat transfer due to the imposition of a
temperature T0 at the surface of unfrozen water-saturated porous soil whose initial tempera-
ture was T∞, where T0 < T∞; the position of the freezing front denoted by L(t) penetrates
progressively farther into the unfrozen soil, owing to conductive heat transfer to the ground
surface.

(c) Derive the auxiliary condition required to determine the location of the
melting front.

(d) Scale the describing equations to determine when heat transfer from the
underlying unfrozen soil can be neglected.

(e) Determine the criteria for assuming that the melting is quasi-steady-state;
be careful to consider the implications of heat transfer from the underlying
unfrozen soil.

(f) Determine the thickness of the region of influence wherein the heat transfer
in the unfrozen soil can be assumed to be confined.

4.P.28 Freezing of Water-Saturated Soil Overlaid by Snow

Figure 4.P.28-1 shows a schematic of unsteady-state one-dimensional heat con-
duction involving freezing of a water-saturated soil overlaid by a layer of snow
of constant thickness L1. Initially, both the entire snow layer and unfrozen water-
saturated soil are assumed to be at Tf , the freezing temperature of water. At time
t = 0, freezing is initiated such that a freezing front L(t) penetrates the soil at
a rate determined by the dynamics of the heat conduction. The prevailing winds
cause forced-convection heat transfer at the interface between the snow and the air
that can be described by the following lumped-parameter heat-flux condition:

q = h(T∞ − T ) (4.P.28-1)

where h is the heat-transfer coefficient, T∞ the temperature of the ambient air
flowing over the snow (T∞ < Tf ), and T the unspecified temperature at the
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Figure 4.P.28-1 Unsteady-state one-dimensional freezing of water-saturated soil whose
initial temperature was Tf overlaid by snow of thickness L1 due to convective heat transfer at
the ground surface; the position of the freezing front denoted by L(t) penetrates progressively
farther into the unfrozen soil, due to conductive heat transfer through the frozen soil and
overlying snow.

interface between the snow and the air. The relevant properties include the
following:

Cp1 effective heat capacity of the snow
Cpu effective heat capacity of the unfrozen water-saturated soil
k1 effective thermal conductivity of the snow
ku effective thermal conductivity of the unfrozen water-saturated soil
ρ1 effective density of the snow
ρu effective density of the unfrozen water-saturated soil
ρf effective density of the frozen water-saturated soil
α1 effective thermal diffusivity of the snow
αu effective thermal diffusivity of the unfrozen water-saturated soil
�Hf latent heat of fusion of pure water
ε porosity of the soil

Note that since snow is a very good insulator, α1 � αu.

(a) Write the appropriate forms of the thermal energy equation in both the
snow and frozen soil that describe this unsteady-state heat-transfer problem;
assume constant physical and transport properties.
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(b) Write the appropriate initial and boundary conditions required to solve this
problem.

(c) Derive the appropriate form of the auxiliary condition required to locate the
instantaneous freezing front.

(d) Scale this heat-transfer problem, noting that it is necessary to introduce
separate length scales for the heat transfer in the snow and frozen water-
saturated soil. Note also that it is necessary to introduce a separate scale
factor for the freezing-front velocity dL/dt since this does not scale with
the ratio of the characteristic length divided by the characteristic time.

(e) Determine the criteria for assuming that this heat transfer is quasi-steady-
state; discuss the implications of your results with respect to short and long
observation times.

(f) Use your scaling analysis to determine the criterion that implies that the
temperature of the snow surface becomes essentially the same as the bulk
air T∞.

(g) Use your scaling analysis to determine the criterion that implies that the tem-
perature of the interface between the soil and the snow essentially becomes
equal to the freezing temperature Tf .

(h) What is the implication of the result you obtained in part (g) for the rate of
freezing-front penetration?

(i) What are the implications for the dimensional temperature if the heat-transfer
coefficient goes to zero? What are the implications if it goes to infinity? Use
your scaled equations to answer these questions.

(j) Use your scaling analysis to determine the criterion for neglecting the effect
of the snow on the freezing process.

4.P.29 Heat Conduction in a Cylinder with Temperature-Dependent
Thermal Diffusivity

Consider steady-state axial heat conduction in a long solid cylinder with a perfectly
insulated lateral boundary due to a high temperature T0 being imposed at z = 0
and a low temperature TL being imposed at z = L, as shown in Figure 4.P.29-1.
However, the thermal conductivity of the cylinder has a temperature dependence
given by

k = k0 − β(T − T0) (4.P.29-1)

where k0 is the thermal conductivity evaluated at the reference temperature T0 and
β is a positive constant. The other relevant physical properties of the solid can be
assumed to be constant.

(a) Write the appropriate form of the thermal energy equation and required
boundary conditions for this heat-transfer problem.
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Figure 4.P.29-1 Steady-state axial conduction in a solid cylinder with a temperature-
dependent thermal conductivity that is perfectly insulated along its lateral boundary.

(b) Scale the describing equations to determine when the temperature depen-
dence of the thermal conductivity can be ignored.

4.P.30 Entry Region Effects for Free Convection Heat Transfer Adjacent to
a Vertical Heated Flat Plate

In Example Problem 4.E.7 we considered steady-state free convection induced by
immersing a heated vertical plate into an infinite fluid. We found that if the Grashof
number is sufficiently large, boundary-layer simplifications can be made for both
the equations of motion and the energy equation.

(a) The scaling for this problem was only outlined; complete the details of the
scaling analysis; in particular, show how the scale factors in equation (4.E.7-
21) were obtained.

(b) The boundary-layer analysis leading to the simplified set of describing
equations given by equations (4.E.7-30) breaks down near the leading edge
of the vertical plate. Determine the length of the region of influence near the
leading edge wherein viscous and conductive transport in the axial direction
cannot be ignored.

(c) Retaining the viscous and conductive transport in the axial direction in the
equations of motion and energy equation implies that these equations will
be elliptic and therefore require downstream boundary conditions. Indicate
how the results of scaling analysis can be used to obtain a solution to this
convective heat-transfer problem over the full length of the vertical plate.

4.P.31 Free Convection from a Heated Vertical Plate with Wall Suction

In Example Problem 4.E.7 we considered steady-state free convection induced by
immersing a heated vertical plate into an infinite fluid. Assume now that a uni-
form suction velocity V0 is applied along the heated wall. We will assume in
this analysis that the Grashof number is sufficiently large so that the boundary-
layer simplifications can be made for both the equations of motion and the energy
equation.
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(a) Use scaling analysis to determine the criterion for ignoring the effect of the
wall suction.

(b) We might anticipate that ultimately, the suction will cause both the momen-
tum and thermal boundary-layer thicknesses to become constant. Use scaling
analysis to determine the criteria for obtaining a both a constant momentum
boundary-layer thickness as well as a constant thermal boundary-layer thick-
ness; express your answer in terms of dimensionless groups, which must be
very small.

4.P.32 Correlation for Temperature in a Slab with Heat Generation

An infinite solid slab of thickness 2H and thermal conductivity k is initially at
a uniform temperature T0. There is a uniform volumetric rate of heat production
within the slab given by Ge (energy/volume · time). The slab is cooled on each side
by a fluid whose temperature far from the slab is given by T∞. The heat-transfer
coefficient between the slab and the fluid is given by h (energy/area · time · degree).

(a) Use the Pi theorem method to obtain the dimensionless groups needed to
correlate the instantaneous temperature at the center of the slab.

(b) Use the scaling method for dimensional analysis to obtain the dimensionless
groups needed to correlate the instantaneous temperature at the center of the
slab. Reconcile any differences with the result you obtained in part (a).

(c) Simplify your scaling analysis result for the special case of steady-state heat
transfer.

(d) Based on your result in part (c), derive an equation for the factor by which
the centerline temperature will change if the generation rate is increased by
50%.

4.P.33 Correlation for Steady-State Heat Transfer from a Sphere

A highly conducting solid sphere of radius R is maintained at a constant temperature
T0 and fixed in a fluid stream having density ρ, viscosity µ, heat capacity Cp, and
thermal conductivity k and whose velocity and temperature far from the sphere are
U∞ and T∞, respectively, where T0 > T∞. We seek to develop a correlation for
the steady-state heat-transfer coefficient defined by

h ≡ q

T0 − T∞
(4.P.33-1)

where q is the heat flux averaged over the surface of the sphere.

(a) Write the appropriate forms of both the equations of motion and the energy
equation and their boundary conditions for this heat-transfer problem.

(b) Use the scaling method for dimensional analysis to obtain the dimensionless
groups needed to correlate the heat-transfer coefficient defined by equation
(4.P.33-1).
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(c) Consider how the correlation that you obtained in part (b) simplifies in the
limit of zero flow, that is, U∞ = 0.

(d) Compare the result that you obtained in part (b) to the standard correlation
for the Nusselt number given by21

Nu = 2 + 0.60Re1/2Pr1/3 (4.P.33-2)

where the Nusselt and Reynolds numbers are based on the sphere diameter.

(e) Equation (4.P.33-2) predicts that Nu = 2 in the limit of zero Reynolds
number; this implies that the overall heat transfer is twice that of purely
conductive heat transfer in the limit of zero Reynolds number. Is this result
reasonable? Explain this result by considering the analytical solution for
purely conductive steady-state heat transfer from a sphere.

4.P.34 Correlation for Hot Wire Anemometer Performance

A hot wire anemometer is a device for measuring the velocity in a flowing fluid.
This device consists of a thin cylindrical wire of radius R that has a very high ther-
mal conductivity. The hot wire anemometer determines the velocity by measuring
the current required to cause sufficient electrical heat generation Ge (energy/time ·
volume) to maintain the wire at a constant temperature T0 that is higher than the
temperature T∞ of the flowing fluid. The electrical heat generation that is required
to maintain the wire at a constant temperature will change depending on the veloc-
ity of the flowing fluid and its relevant physical properties: its density ρ, thermal
conductivity Cp, and thermal conductivity k. We seek to develop a correlation that
will relate the electrical heat generation G to the velocity of the fluid.

(a) Write the appropriate forms of both the equations of motion and the energy
equation and their boundary conditions for this heat-transfer problem.

(b) Use the scaling method for dimensional analysis to obtain the dimensionless
groups needed to relate the electrical heat generation to the fluid velocity.

(c) Compare the result that you obtained in part (b) to one of the standard
correlations for forced convection heat transfer to or from a cylinder given
by22

Nu = (0.376Re1/2 + 0.057Re2/3)Pr1/3

+ 0.92

[

ln

(
7.4055

Re

)

+ 4.18Re

]−1/3

Re1/3Pr1/3 (4.P.34-1)

where Pr is the Prandtl number, and Nu and Re, the Nusselt and Reynolds
number, are based on the cylinder diameter. In particular, show how the
above is a special case of the more general result that you obtained from
dimensional analysis.

21Bird et al., Transport Phenomena, 2nd ed., p. 439.
22Ibid., p. 440.
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(d) Consider the implications of equation (4.P.34-1) in the limit of zero Reynolds
number. Is your result reasonable? Provide an explanation for the strange
behavior observed in this limit by considering purely conductive steady-state
heat transfer from a cylinder.

4.P.35 Correlation for Unsteady-State Heat Transfer to a Sphere with
Temperature-Dependent Thermal Conductivity

A solid sphere of radius R, heat capacity Cp, density ρ, and initial temperature
T0 is immersed at time t = 0 into a hot fluid whose temperature far from the
sphere is T∞; the heat transfer between the sphere and the fluid is described by
a constant heat-transfer coefficient h. The thermal conductivity of the sphere is
temperature-dependent and described by

k = k0 + βk0(T − T0) (4.P.35-1)

where k0 and β are constants.

(a) Use the Pi theorem method to obtain the dimensionless groups needed to
correlate the instantaneous temperature at any radial position within the
sphere.

(b) Use the scaling method for dimensional analysis to obtain the dimension-
less groups needed to correlate the instantaneous temperature at any radial
position within the sphere. Reconcile any differences with the result you
obtained in part (a).

(c) Assume now that we wish to develop a correlation for the instantaneous
temperature at the surface of a sphere that has a radius of 1 m by studying a
sphere that has a diameter of 5 cm. How can the dimensionless correlation
obtained from data taken for the 5-cm sphere be used to determine the
thermal response of the 1-m sphere? Indicate any conditions that need to be
satisfied with respect to the studies on the small sphere in order to do this.

4.P.36 Characterization of Home Freezer Performance

Assume that we want to characterize the performance of home freezers whose
shape is that of geometrically similar rectangular parallelepipeds of height L1,
width L2, and depth L3. The operating cost of a freezer is directly proportional
to the total heat-transfer rate (energy/time) resulting from the difference between
the ambient room temperature T∞ and that of the interior of the freezer wall. In
a well-designed freezer, this heat-transfer rate is controlled by conduction through
its walls, all of which have thickness H . The insulation in the freezer walls is
characterized by its density ρ, heat capacity Cp, and thermal conductivity k. To
assess freezer performance, a simple test is designed that involves suspending an
incandescent light bulb at the center of the freezer; the test involves measuring the
instantaneous temperature at a fixed point as a function of time after the light bulb
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is turned on. The light bulb can be assumed to be a radiating point source having
a constant heating rate of G̃ (energy/time). Each point along a given wall in the
freezer receives a heat flux that depends on the distance between the wall and
the light bulb. To characterize freezer performance, we consider a correlation for
the instantaneous temperature at the midpoint of the inside surface of one wall of
the freezer. Clearly, larger freezers will have a smaller heat flux than smaller freez-
ers at this same point if the same light bulb is used. Moreover, the instantaneous
temperature at the midpoint of the front wall in general will be different from than
at the midpoint of the sidewall.

(a) Use the Pi theorem method to obtain the dimensionless groups needed to
correlate the instantaneous temperature at the midpoint of the inside surface
of one wall of the freezer.

(b) Use the scaling method for dimensional analysis to obtain the dimensionless
groups needed to correlate the instantaneous temperature at the midpoint of
the inside surface of one wall of the freezer. Reconcile any differences with
the result you obtained in part (a).

(c) Simplify your scaling analysis result for the special case of steady-state heat
transfer.

(d) Two groups of investigators carry out separate tests on the same freezer.
However, one group measures the temperature at the inside of the front
wall, whereas the other group measures the temperature at the inside of the
sidewall. How can the data from these two groups be consolidated onto one
plot for freezer performance?

(e) The operating cost for a freezer depends on the total heat transfer (energy/time)
from the ambient air through the freezer walls. Determine the factor by which
the insulation thickness needs to be changed to ensure that a freezer that is
50% larger in its three dimensions has the same operating costs as its smaller
counterpart.



5 Applications in Mass Transfer

We also assume that the disc is infinitely wide, so that the concentration is

a function only of z. I find this assumption mind-boggling, but it is justified

by the success of the following calculations.1

5.1 INTRODUCTION

The quotation above underscores the uncertainty regarding some topics in mass-
transfer analysis, in this case the assumption of a uniformly accessible surface
offered by the rotating disk. This problem as well as many others are discussed in
this chapter, where we consider the application of scaling analysis to mass transfer.
The organization of this chapter is the same as that used in Chapters 3 and 4.
Clearly, it is essential to read Chapter 2 in order to understand the scaling procedure
used in this chapter. Since mass transfer can occur due to both species diffusion
and convection, it is also useful to read Chapter 3 to fully understand the material
in this chapter. Again, the first few examples are developed in detail, as was done
in Chapters 3 and 4. We again use the ordering symbols ◦(1) and ◦(1) introduced
in Chapter 2. The symbol ◦(1) implies that the magnitude of the quantity can
range between zero and more-or-less 1, whereas the symbol ◦(1) implies that the
magnitude of the quantity is more-or-less 1 but not much less than 1.

Many of the topics considered in this chapter, such as film theory, penetration
theory, and boundary-layer analysis are quite similar to those considered for heat
transfer in Chapter 4. However, mass transfer is uniquely different from heat trans-
fer in that in contrast to conductive transport, diffusive transport, can cause bulk
flow; that is, the diffusion of species can result in a net movement of mass, thereby
causing a bulk flow velocity. This velocity can convect species to complement the
diffusional transport and can also distort the concentration profiles from what they

1E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge,
England, 1985, p. 76.

Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach
to Model Building and the Art of Approximation, By William B. Krantz
Copyright  2007 John Wiley & Sons, Inc.
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would be for purely diffusive transport. For this reason, in the first example we
will use scaling to assess when the convective transport arising from the species
diffusion can be neglected. Note that no attempt is made here to provide a detailed
derivation of the describing equations that are used in the scaling analysis. Hence,
the material in this chapter provides a useful supplement for a foundation course
in mass transfer. The reader is referred to the appendices, which summarize the
species-balance equation in generalized vector–tensor notation as well as in rectan-
gular, cylindrical, and spherical coordinates. These equations serve as the starting
point for each example problem.

The goal in Sections 5.2 through 5.8 is to use scaling analysis to develop clas-
sical approximations made in mass-transfer modeling. Hence, Sections 5.2 and 5.3
use scaling to develop the film theory and penetration theory models. Although
these two models are developed for a stationary liquid film, they can be applied to
a variety of complex problems for which the resistance to mass transfer can be asso-
ciated with one-dimensional transport through a film near one of the boundaries.
Mass transfer often involves either homogeneous reactions that occur in the bulk of
the system or heterogeneous reactions that occur on the boundaries; these are con-
sidered in Sections 5.4 and 5.5, respectively. When convective transport is large, the
mass-transfer resistance can be confined to a thin region of influence or boundary
layer; this is considered in Section 5.6. If mass transfer causes significant mass loss
or gain and/or densification or expansion, moving boundaries can be involved; these
are considered in Section 5.7. In Chapter 4 we used scaling analysis to determine
when the temperature dependence of the physical and transport properties needs
to be considered. In Section 5.8 we apply scaling analysis to simplify the describ-
ing equations when the diffusivity is concentration-dependent. Scaling is applied
to solutally induced buoyancy-driven free convection in Section 5.9. Finally, the
scaling analysis approach is applied to dimensional analysis in developing a corre-
lation for the performance of a membrane–lung oxygenator in Section 5.10. Several
additional worked example problems are included. In particular, these examples use
scaling analysis to develop systematically the criteria for Taylor dispersion, field-
flow fractionation, the uniformly accessible rotating disk, and small Thiele modulus
flows. Unworked practice problems are included at the end of the chapter.

5.2 FILM THEORY APPROXIMATION

The first example is used to develop the basis for the classical film theory and
penetration theory approximations for modeling complex mass-transfer problems.
These two models were developed for heat-transfer applications in Section 4.3.
In this chapter we develop these models in separate sections since scaling will
be used not only to develop the criteria for the film theory and penetration theory
approximations, but also to determine the criterion for ignoring the convective mass
transfer that can be generated by diffusion. In this section the film theory model is
developed, and in Section 5.3 the penetration theory approximation is considered.
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rA = rA0 rA = rA0 t ≤ 0

rA = rA1 t > 0

Figure 5.2-1 Unsteady-state one-dimensional binary mass transfer in an infinitely wide
liquid film of thickness H due to a sudden change in concentration from ρA0 to ρA1 at one
boundary.

Consider the liquid film shown in Figure 5.2-1 that has thickness H and consists
of components A and B, whose initial mass concentrations (i.e., mass per unit vol-
ume) are ρA0 and ρB0, respectively. At time t = 0 the concentration of component
A at one boundary is increased to ρA1, while its concentration at the other bound-
ary is maintained at ρA0. This causes diffusion of A and B since a concentration
gradient in one component causes a complementary gradient in the other.

In modeling mass transfer involving n components, one can either write n

species-balance equations, or n − 1 species-balance equations and the overall mass
balance. This follows from the fact that the sum of the n species-balance equations
is the same as an overall mass balance. Since it is reasonable to assume that the
mass density is constant for an incompressible liquid, it is convenient here to
consider the species-balance equations in terms of the mass fluxes. Hence, step
1 consists of writing the appropriately simplified continuity and species-balance
equations, given by equations (C.1-1) and (G.1-1) in the Appendices as
follows:

∂ρ

∂t
= − ∂

∂z
(ρu) ⇒ ∂u

∂z
= 0 ⇒ u = u(t) (5.2-1)

∂ρA

∂t
= −∂nA

∂z
(5.2-2)

where the mass-average velocity u is defined by

u ≡ nA + nB

ρ
(5.2-3)
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in which the mass fluxes nA and nB of components A and B, respectively, are
given by

nA = ρAu − ρDAB

∂ωA

∂z
= ρAu − DAB

∂ρA

∂z
(5.2-4)

nB = ρBu − ρDAB

∂ωB

∂z
= ρBu − DAB

∂ρB

∂z
(5.2-5)

in which ρ = ρA + ρB is the overall mass density, ωA = ρA/ρ and ωB = ρB/ρ

the mass fractions of components A and B, respectively, and DAB the binary
diffusion coefficient. The integration in equation (5.2-1) follows from the fact that
we are assuming an incompressible liquid. Note that we need to consider only
the overall continuity equation and the species-balance equation for one of the
two species since the sum of the two species-balance equations is equal to the
continuity equation. Equations (5.2-4) and (5.2-5) indicate that the total mass flux
is the sum of a convective flux that is proportional to the mass-average velocity and
a purely diffusive flux given by the term proportional to the concentration gradient.
Equation (5.2-3) shows that the convective velocity arises from the mass transfer
since it is proportional to the sum of the mass fluxes.

Note that for this problem we chose to express the concentrations in terms of
mass per unit volume and mass fractions. This was convenient since it is generally
quite reasonable to assume that liquids have a constant mass density. A constant
mass density in this case implies that the mass-average velocity u is a function
only of time. We could also have expressed the concentrations in terms of moles
per unit volume and mole fractions. However, in the case of mass transfer, the
molar density even for liquids might not remain constant. Note, however, that
molar concentrations are particularly convenient for mass transfer in gases since
the molar density is constant for an ideal gas at constant temperature and pressure.
Section 5.7 considers mass transfer in an ideal gas at constant temperature and
pressure for which molar concentrations are used.

Equations (5.2-1) to (5.2-5) constitute five equations in five unknowns: ρA, ρB ,
nA, nB , and u. However, equations (5.2-3), (5.2-4), and (5.2-5) are not independent;
that is, the sum of equations (5.2-4) and (5.2-5) is equal to equation (5.2-3). Hence,
an additional equation is needed. This can be either some specified relationship
between the mass fluxes or an equation of state that relates the mass density to the
concentration.2 However, when the latter is specified, it is also necessary to know
the value of the velocity at one boundary since a spatial integration is required to
obtain the velocity from the continuity equation. Here we specify that the ratio of
the mass fluxes of the two components is a constant, that is,

nB

nA

= κ, a constant (5.2-6)

2Note that specifying an equation of state for the mass density does not contradict the fact that ρ = ρA +
ρB ; for example, we might specify that ρ = ωAρ0

A + ωBρ0
B , where ρ0

A and ρ0
B denote pure component

densities. The latter provides an independent equation from which the mass-average velocity can be
determined; this is explored further in Example Problem 5.E.1.
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This specification includes several special situations of interest in mass transfer.
The condition κ = 0 corresponds to unimolecular mass transfer of component A in
stationary phase B. However, note that unimolecular mass transfer is a misnomer in
that it does not imply that component B is not diffusing. Indeed, the diffusive and
convective transport of component B in equation (5.2-5) exactly balance each other
for unimolecular mass transfer, so that their sum is zero. The condition κ = −1
corresponds to equimass counterdiffusion of components A and B. That is, the
mass flux of component A is exactly equal in magnitude and opposite in direction
to that of component B. Note that we define κ so that it is bounded of ◦(1); hence,
the case of unimolecular diffusion of component B in stationary phase A is treated
by inverting the ratio of mass fluxes in equation (5.2-6).

Step 1 is completed by specifying the requisite initial and boundary conditions
given by

ρA = ρA0 at t ≤ 0, 0 ≤ z ≤ H (5.2-7)

ρA = ρA1 at z = 0, 0 < t ≤ ∞ (5.2-8)

ρA = ρA0 at z = H, 0 ≤ t ≤ ∞ (5.2-9)

Equation (5.2-7) is the prescribed initial condition, whereas equations (5.2-8) and
(5.2-9) are the known conditions at the two boundaries. We will use scaling analysis
to explore when steady-state mass transfer can be assumed. We also use scaling to
assess when the convective transport arising from the diffusion can be ignored.

We begin by defining dimensionless variables involving unspecified scale and
reference factors (steps 2, 3, and 4):

ρ∗
A ≡ ρA − ρAr

ρAs

; u∗ ≡ u

us

; n∗
A ≡ nA

nAs

; z∗ ≡ z

zs

; t∗ ≡ t

ts
(5.2-10)

We then introduce these dimensionless variables into the describing equations and
divide through by the coefficient of one term in each of these equations that we
believe should be retained (steps 5 and 6):

ρAszs

nAsts

∂ρ∗
A

∂t∗
= −∂n∗

A

∂z∗ (5.2-11)

nAszs

ρAsDAB

n∗
A = uszs

DAB

ρ∗
Au∗ − ∂ρ∗

A

∂z∗ (5.2-12)

u∗ = (1 + κ)nAs

ρus

n∗
A (5.2-13)

ρ∗
A = ρA0 − ρAr

ρAs

at t∗ ≤ 0, 0 ≤ z∗ ≤ H

zs

(5.2-14)

ρ∗
A = ρA1 − ρAr

ρAs

at z∗ = 0, 0 < t∗ ≤ ∞ (5.2-15)
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ρ∗
A = ρA0 − ρAr

ρAs

at z∗ = H

zs

, 0 ≤ t∗ ≤ ∞ (5.2-16)

Now let us proceed to determine the scale factors (step 7). The dimensionless
concentration can be bounded of ◦(1) by setting the group containing the concen-
tration scale and reference factors in equations (5.2-15) and (5.2-16) equal to 1 and
zero, respectively, to obtain

ρA0 − ρAr

ρAs

= 0 ⇒ ρAr = ρA0; ρA1 − ρAr

ρAs

= 1 ⇒ ρAs = ρA1 − ρA0

(5.2-17)

Since we seek to determine when steady-state conditions apply, the appropriate
time scale is the observation or contact time; that is, ts = to. The manner in which
the length scale factor is determined depends on the observation time. Let us
assume that the dimensionless group containing the length scale in equation (5.2-
16) determines zs . Although this bounds the dimensionless spatial coordinate to
be ◦(1), it does not necessarily bound the dimensionless concentration gradient to
be ◦(1). Indeed, the concentration gradient could involve a much shorter length
scale during the early stages of mass transfer when the species diffusion has not
penetrated very far from the boundary at z = 0. However, let us assume that

H

zs

= 1 ⇒ zs = H (5.2-18)

The scale factor for the mass flux is obtained by setting the appropriate dimension-
less group in equation (5.2-12) equal to 1, thereby obtaining

nAszs

ρAsDAB

= 1 ⇒ nAs = DAB(ρA1 − ρA0)

H
(5.2-19)

The scale factor for the mass-average velocity is obtained by setting the dimen-
sionless group in equation (5.2-13) equal to 1 as follows:

(1 + κ)nAs

ρus

= 1 ⇒ us = (1 + κ)DAB(ρA1 − ρA0)

ρH
(5.2-20)

Equation (5.2-20) indicates why we defined κ to be ◦(1); that is, the scale factor for
the mass-average velocity would become unbounded for the case of unimolecular
diffusion of component B. For the latter case we redefine κ by inverting the fluxes
in equation (5.2-6) to ensure that κ is always ◦(1).

Substitution of the aforementioned scale and reference factors into the describing
equations yields

1

Fom

∂ρ∗
A

∂t∗
= −∂n∗

A

∂z∗ (5.2-21)

n∗
A = �1ρ

∗
An∗

A − ∂ρ∗
A

∂z∗ (5.2-22)
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ρ∗
A = 0 at t∗ ≤ 0, 0 ≤ z∗ ≤ 1 (5.2-23)

ρ∗
A = 1 at z∗ = 0, 0 ≤ t∗ ≤ ∞ (5.2-24)

ρ∗
A = 0 at z∗ = 1, 0 ≤ t∗ ≤ ∞ (5.2-25)

where

Fom ≡ DABto

H 2
and �1 ≡ (1 + κ)

ρA1 − ρA0

ρ
(5.2-26)

in which Fom is the solutal Fourier number or Fourier number for mass transfer,
although this terminology is rarely used. Its physical significance is analogous to
that for the Fourier number in heat transfer; namely, it is a measure of the ratio
of the contact time to the characteristic time for molecular transport via either
conduction or diffusion.3 The dimensionless group �1 is a measure of the ratio of
the convective to diffusive mass transfer and is physically bounded to be less than
1 since the maximum value of κ is zero and the maximum value of ρA1 − ρA0 has
to be less than ρ.

Now let us explore possible simplifications of the describing equations (step
8). Note that if Fom � 1, the unsteady-state term in equation (5.2-21) becomes
insignificant; hence, the mass transfer is steady-state; that is,

Fom ≡ DABto

H 2
� 1 ⇒ steady-state mass transfer (5.2-27)

Note that a large Fourier number in this problem ensures that the mass trans-
fer is truly steady-state, in contrast to quasi-steady-state. The latter implies that
the unsteady-state term in the species-balance equation is negligible but that the
problem is still unsteady state, owing to the time dependence that enters through
the boundary conditions. If the following condition is satisfied, the convective
contribution to the mass-transfer flux can be ignored:

�1 ≡ (1 + κ)
ρA1 − ρA0

ρ
� 1 (5.2-28)

Note that this condition is satisfied identically for equimass counterdiffusion for
which κ = −1. Note if the inequality in equation (5.2-28) is satisfied, both the
convective mass flux as well as the effect of the bulk flow on the distortion of the
concentration profiles can be neglected.

The steady-state describing equations that result when equation (5.2-27) is satis-
fied form the basis of film theory. The latter is used to model complex problems for
which the resistance to mass transfer can be assumed to be confined to a thin film
near one of the boundaries of the system; for example, mass transfer in turbulent
pipe flow can be modeled assuming that the mass-transfer resistance is confined

3The Fourier number in heat transfer was introduced in Section 4.3.
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to a thin film near the wall within which the turbulent eddies are damped and the
transfer is by diffusion. Another valuable use of film theory is to correct mass-
transfer coefficients obtained from empirical correlations for the effect of large
mass-transfer fluxes [i.e., corresponding to �1 = ◦(1)] when the mass transfer
is not contact-time limited. That is, correlations for mass-transfer coefficients are
usually obtained in the limit of very small mass-transfer fluxes (i.e., �1 � 1) since
this minimizes the number of dimensionless groups required. Film theory can be
used to derive an equation for the ratio of the mass-transfer coefficient at high
flux to that at low flux. By multiplying the resulting equation by the mass-transfer
coefficient obtained from the empirical correlation valid only at low fluxes, one can
obtain a reliable estimate of the mass-transfer coefficient applicable at high fluxes.
This is discussed in more detail by Bird et al.4

Assume now that Fom � 1, corresponding to steady-state mass transfer. The
resulting set of simplified describing equations can be solved analytically to obtain
the following solution for the mass flux of component A:

n∗
A = − 1

�1
ln(1 − �1) (5.2-29)

Note that for �1 � 1, corresponding to negligible convective mass transfer, equa-
tion (5.2-29) reduces to

n∗
A = 1 (5.2-30)

Let us assess the error incurred in determining n∗
A when convective mass transfer

is ignored. This error is 5.1% and 0.50% for �1 = 0.1 and 0.01, respectively.
This is typical for scaling analysis: namely, that the error incurred in making some
approximation becomes negligible if the particular dimensionless group involved
in the criterion is ◦(0.01).

5.3 PENETRATION THEORY APPROXIMATION

In the preceding example we sought to determine when steady-state conditions
applied. Hence, we bounded z∗ to be ◦(1) by setting zs = H . However, this length
scale is not appropriate for short contact times for which the diffusion does not pen-
etrate across the entire thickness of the film shown in Figure 5.2-1. The appropriate
length scale for short contact times is obtained by balancing the unsteady-state and
diffusion terms in equation (5.2-11), that is, by setting the dimensionless group in
this equation equal to 1 to obtain

z2
s

DABto
= 1 ⇒ zs =

√

DABto (5.3-1)

4R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, Hoboken, NJ,
2002, pp. 704–706.
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Note that zs defines a region of influence or boundary layer wherein all the mass
transfer is confined. The thickness of this region of influence increases in time
until it eventually penetrates the entire film. The other scale and reference factors
remain unchanged from those determined in Section 5.2. The resulting dimension-
less describing equations are given by

∂ρ∗
A

∂t∗
= −∂n∗

A

∂z∗ (5.3-2)

n∗
A = �1ρ

∗
An∗

A − ∂ρ∗
A

∂z∗ (5.3-3)

ρ∗
A = 0 at t∗ ≤ 0, 0 ≤ z∗ ≤ H√

DABto
(5.3-4)

ρ∗
A = 1 at z∗ = 0, 0 < t∗ ≤ ∞ (5.3-5)

ρ∗
A = 0 at z∗ = H√

DABto
, 0 ≤ t∗ ≤ ∞ (5.3-6)

where �1 is defined by equation (5.2-26). We again see that if the criterion given
by equation (5.2-28) is satisfied, the convective contribution to the mass-transfer
flux in equation (5.3-3) can be ignored. Moreover, if

H√
DABto

� 1 (5.3-7)

the boundary condition defined by equation (5.3-6) can be applied at infinity. The
solution to this simplified set of describing equations is given in standard ref-
erences.5

The simplified describing equations that result when equation (5.3-7) is satisfied
form the basis of penetration theory. This is also used to model complex prob-
lems for which the diffusive mass transfer is contact-time limited; for example,
mass transfer from a gas phase to liquid film flow down a short vertical wall.
Penetration theory is also used to correct mass-transfer coefficients obtained from
empirical correlations for the effect of large mass-transfer fluxes [i.e., corresponding
to �1 = ◦(1)]. However, penetration theory is used to make this correction when
the mass transfer is contact-time limited; that is, for short contact times.6 The pro-
cedure for making this correction is analogous to that used for film theory; namely,
an equation is derived for the ratio of the mass-transfer coefficient at high flux to
that at low flux. By multiplying the mass-transfer coefficient obtained from the low
flux empirical correlation by this ratio, an estimate of the mass-transfer coefficient
applicable at high fluxes is obtained. This is discussed in more detail by Bird et al.7

5Ibid., pp. 613–617.
6It is interesting to note that the high flux correction factors obtained from film theory and penetration
theory do not differ significantly even though these two models apply at opposite ends of the mass-
transfer contact-time spectrum; the reason for this is that the correction factor involves the ratio of the
mass-transfer coefficients.
7Bird et al., Transport Phenomena, 2nd ed., pp. 706–708.
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5.4 SMALL PECLET NUMBER APPROXIMATION FOR LAMINAR
FLOW WITH A HOMOGENEOUS REACTION

Consider the steady-state fully developed laminar flow of a Newtonian liquid with
constant physical properties between upper and lower lateral boundaries that consist
of infinitely wide parallel semipermeable membranes separated by a distance 2H

and having length L as shown in Figure 5.4-1. The laminar flow velocity profile
is given by

ux = 2U

(

1 − y2

H 2

)

(5.4-1)

where U is the average velocity. The incoming liquid feed stream consists of pure
component B. This feed stream reacts with component A, which is injected contin-
uously through the semipermeable membrane boundaries at a constant molar flux
NAw. Since the injection rate of component A is sufficiently low, its concentration
remains dilute. Hence, component A is the limiting reactant and the reaction rate
is given by

RA = k1cA (5.4-2)

where RA is the rate of homogeneous reaction of component A (moles/volume·time)
and k1 is the reaction rate constant for a first-order reaction (time−1).

NA = NAw

NA = NAw

y

x

L

cA = 0

H

Figure 5.4-1 Laminar flow with a homogeneous chemical reaction; the liquid feed stream
consists of pure component B; the feed stream undergoes an irreversible first-order homo-
geneous reaction with component A that is injected through the semipermeable membrane
boundaries at a constant flux NAw; the injection rate is sufficiently low to ensure that the
concentration of component A is dilute, thereby making it the limiting reactant; the concen-
tration profile for component A and fully developed laminar velocity profile are shown in
the figure.
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The appropriate form of the species-balance equation given by equation (G.1-5)
in the Appendices and corresponding boundary conditions are (step 1)

2U

(

1 − y2

H 2

)
∂cA

∂x
= DAB

∂2cA

∂x2
+ DAB

∂2cA

∂y2
− k1cA (5.4-3)

cA = 0 at x = 0 (5.4-4)

cA = f (y) at x = L (5.4-5)

DAB

∂cA

∂y
= −NAw at y = ±H (5.4-6)

∂cA

∂y
= 0 at y = 0 (5.4-7)

where f (y) is a function of y. Note that each term in equation (G.1-5) was divided
by the molecular weight of component A in order to convert the mass concentration
to molar concentration for the assumed dilute solution having constant mass and
molar densities. This is a nontrivial problem to solve, due to the elliptic nature of the
describing equations. The presence of the second-order axial derivative requires that
a downstream boundary condition be specified. Often, these downstream conditions
are not known, which precludes solving the describing equations. Clearly, one
would like to know how these describing equations might be simplified to permit
a tractable solution. In particular, one would like to know when the axial diffusion
and convection terms might be neglected. We use ◦(1) scaling to determine the
criteria for neglecting these terms.

Define the following dimensionless variables involving unspecified scale factors
(steps 2, 3, and 4):

c∗
A ≡ cA

cs

; x∗ ≡ x

xs

; y∗ ≡ y

ys

(5.4-8)

Note that there is no need to introduce a reference factor for the concentration
since it is naturally referenced to zero. Introduce these dimensionless variables into
the describing equations and divide through by the coefficient of one term in each
equation that should be retained (steps 5 and 6):

2Uy2
s

DABxs

(

1 − y2
s

H 2
y∗2
)

∂c∗
A

∂x∗ = y2
s

x2
s

∂2c∗
A

∂x∗2
+ ∂2c∗

A

∂y∗2
− k1y

2
s

DAB

c∗
A (5.4-9)

c∗
A = 0 at x∗ = 0 (5.4-10)

c∗
A = f (y∗) at x∗ = L

xs

(5.4-11)

∂c∗
A

∂y∗ = −NAwys

DABcs

at y∗ = ±H

ys

(5.4-12)

∂c∗
A

∂y∗ = 0 at y∗ = 0 (5.4-13)
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Step 7 involves bounding the independent and dependent dimensionless variables
to be ◦(1). This can be done for the spatial coordinates by setting the dimension-
less groups containing xs and ys in equations (5.4-11) and (5.4-12) equal to 1;
that is,

L

xs

= 1 ⇒ xs = L; H

ys

= 1 ⇒ ys = H (5.4-14)

Since the dimensionless concentration gradient must be bounded of ◦(1), we set
the dimensionless group in equation (5.4-12) equal to 1; this yields the following
scale factor for the concentration:

NAwH

DABcs

= 1 ⇒ cs = NAwH

DAB

(5.4-15)

Substitution of the scale and reference factors defined by equations (5.4-14) and
(5.4-15) into the dimensionless describing equations given by equations (5.4-9)
through (5.4-13) yields

2Pem

H

L

(

1 − y∗2) ∂c∗
A

∂x∗ = H 2

L2

∂2c∗
A

∂x∗2
+ ∂2c∗

A

∂y∗2
− Th2c∗

A (5.4-16)

c∗
A = 0 at x∗ = 0 (5.4-17)

c∗
A = f (y∗) at x∗ = 1 (5.4-18)

∂c∗
A

∂y∗ = −1 at y∗ = ±1 (5.4-19)

∂c∗
A

∂y∗ = 0 at y∗ = 0 (5.4-20)

where Pem ≡ UH/DAB is the solutal Peclet number or Peclet number for mass
transfer; note that Pem = UH/ν · ν/DAB = Re · Sc, where Re and Sc denote the
Reynolds and Schmidt numbers, respectively. The Reynolds number is a measure
of the ratio of the convection to the viscous or molecular transport of momentum.
The Schmidt number is a measure of the ratio of the viscous or molecular transport
of momentum to the diffusive or molecular transport of species. Hence, the Peclet
number is a measure of the ratio of the convective to diffusive or molecular trans-
port of species. The dimensionless group Th ≡

√

k1H 2/DAB , known as the Thiele
modulus is a measure of the ratio of the characteristic time for diffusion relative
to that for homogeneous reaction.

Now let us explore possible simplifications of the describing equations (step 8).
The criterion for ignoring axial diffusion is

H 2

L2
� 1 ⇒ axial diffusion can be ignored (5.4-21)
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that is, the aspect ratio must be small. Note, however, that the length L was arbi-
trary in that L could denote any value of the axial coordinate in the principal
direction of flow. This is the principle of local scaling, whereby we scale the
problem for some fixed but arbitrary value of some coordinate, usually that in
the principal direction of flow. When the inequality in equation (5.4-21) applies,
the elliptic describing equation is reduced to a parabolic equation, thereby obviat-
ing the need to satisfy any downstream boundary condition. Recall that prescribing
this downstream boundary condition often is problematic and precludes solving
elliptic describing equations. Note that for distances sufficiently close to the entry
region for the flow, the axial diffusion term cannot be ignored. This entry region
length can be determined by assessing the criterion for when axial dispersion is
significant; that is,

H 2

L2
≥ 0.1 ⇒ L ≤ 10H (5.4-22)

In order to ignore axial convection of species, the dimensionless group multi-
plying the first term in equation (5.4-16) must be very small; that is,

Pem · H

L
� 1 ⇒ axial convection of species can be ignored (5.4-23)

We see that the criterion for ignoring axial species convection is that the Peclet
number be very small. The Peclet number in mass transfer has a role analogous
to that of the Reynolds number in fluid dynamics; that is, when it is small, it
justifies ignoring axial convective transport. We see in the next example problem
that when it is large, it justifies a boundary-layer approximation. Note that ignoring
convective transport in the species-balance equation in this example is analogous
to ignoring convective transport in the equations of motion that are the basis of the
creeping-flow approximation.8

If the conditions in equations (5.4-21) and (5.4-23) are satisfied, equations (5.4-
16) through (5.4-20) reduce to

0 = ∂2c∗
A

∂y∗2
− Th2c∗

A (5.4-24)

∂c∗
A

∂y∗ = −1 at y∗ = ±1 (5.4-25)

∂c∗
A

∂y∗ = 0 at y∗ = 0 (5.4-26)

Note that equation (5.4-24) implies that the transverse diffusion of species A into
the flowing liquid is balanced by its consumption, owing to the homogeneous

8The creeping-flow approximation was considered in Section 3.3 and Example Problem 3.E.2.
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reaction. This in turn implies that Th2 ∼= 1. The solution to this simplified set of
describing equations is straightforward and given by

c∗
A = 1

Th

eTh·y + e−Th·y

eTh − e−Th
(5.4-27)

Note that the dimensionless concentration predicted by equation (5.4-27) is no
longer bounded of ◦(1) when Th � 1. This implies that the reaction is not suf-
ficiently fast to prevent the concentration of component A from building up due
to the continuous injection through the membrane boundaries. That is, our scal-
ing implicitly assumed that the transverse diffusion of component A was balanced
by its consumption, due to the homogeneous reaction. This is no longer true if
the homogeneous reaction rate becomes small. In this case the convection term
rather than the reaction term must balance the transverse diffusion term; that is,
the describing equations must be rescaled appropriately.

Now let us consider the case when the Thiele modulus is very large, thereby
implying a very fast homogeneous reaction. This implies that component A will be
consumed within a region of influence near the two membrane boundaries. In this
case the transverse length scale is no longer H since the dimensionless concen-
tration experiences a change of ◦(1) over a much shorter length scale that can be
determined by balancing the reaction and transverse diffusion terms in the describ-
ing equations. To achieve ◦(1) scaling for the very fast reaction case, we introduce
a region-of-influence scale δs that is a measure of the distance from the mem-
brane boundaries over which the homogeneous reaction consumes component A

entirely. Since the diffusive mass transfer and homogeneous reaction are occurring
very close to the membrane boundaries, it is convenient to recast the describing
equations in terms of a coordinate measured from the wall defined by ỹ = H − y.
Hence, our describing equations assume the form

d2c∗
A

dỹ∗2
− k1δ

2
s

DAB

c∗
A = 0 (5.4-28)

dc∗
A

dỹ∗ = −NAwδs

DABcs

at ỹ∗ = 0 (5.4-29)

dc∗
A

dỹ∗ = 0 at ỹ∗ = H

δs

(5.4-30)

Note that we have assumed that the Peclet number and aspect ratio are sufficiently
small to permit ignoring convective and diffusive transport in the axial direction. To
determine the thickness of the region of influence and to bound the dimensionless
concentration gradient to be ◦(1), we set the following groups equal to 1:

k1δ
2
s

DAB

= 1 ⇒ δs =
√

DAB

k1
(5.4-31)
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NAwδs

DABcs

= NAw

cs

√
DABk1

= 1 ⇒ cs = NAw√
DABk1

(5.4-32)

We see that equation (5.4-32) provides the scale for the concentration. Since δs/H

� 1, the describing equations reduce to

d2c∗
A

dỹ∗2
− c∗

A = 0 (5.4-33)

dc∗
A

dỹ∗ = −1 at ỹ∗ = 0 (5.4-34)

dc∗
A

dỹ∗ = 0 at ỹ∗ → ∞ (5.4-35)

The solution to these equations is given by

c∗
A = e−ỹ∗

(5.4-36)

This solution indicates that, indeed, c∗
A is bounded of ◦(1).

5.5 SMALL DAMKÖHLER NUMBER APPROXIMATION
FOR LAMINAR FLOW WITH A HETEROGENEOUS REACTION

Figure 5.5-1 shows a schematic of steady-state fully developed laminar flow of a
Newtonian fluid with constant physical properties in a cylindrical tube of radius
R containing a solute A having an initial concentration cA0 that undergoes a first-
order irreversible reaction along length L. The heterogeneous reaction is assumed
to be irreversible and first-order with a reaction-rate constant k̂1 (length/time). We
use scaling analysis to simplify the describing equations; in particular, we assess
the criterion for making the classical plug-flow reactor approximation; that is, a
flow reactor in which the velocity can be assumed to be uniform at its average
value U and that is surface-reaction limited.

The appropriately simplified species-balance equation given by equation (G.2-5)
in the Appendices and the requisite boundary conditions are (step 1)

uz

∂cA

∂z
= DAB

∂2cA

∂z2
+ DAB

1

r

∂

∂r

(

r
∂cA

∂r

)

(5.5-1)

cA = cA0 at z = 0 (5.5-2)

cA = f (r) at z = L (5.5-3)

∂cA

∂r
= 0 at r = 0 (5.5-4)

−DAB

∂cA

∂r
= k̂1cA at r = R (5.5-5)
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Velocity profile

z

r R

Developing concentration profile

Heterogeneous first-order reaction at the surface of the tube

Figure 5.5-1 Steady-state fully developed laminar flow of a Newtonian fluid with constant
physical properties undergoing a first-order heterogeneous reaction at the wall of a cylin-
drical tube having radius R; the fully developed velocity profile is shown along with the
concentration profiles at two axial positions.

where DAB is the binary diffusion coefficient, cA0 the initial concentration of
the reactant A, f (r) an unspecified function of r, k̂1 the first-order heterogeneous
reaction-rate constant, and uz the laminar flow velocity, given by

uz = 2U

(

1 − r2

R2

)

(5.5-6)

where U is the average velocity. Note that each term in equation G.2-5 has been
divided by the molecular weight of component A in order to convert the mass con-
centration into molar concentration for the dilute solution, which is assumed to have
constant mass and molar densities. The boundary condition given by equation (5.5-
3) is required because of the elliptic nature of equation (5.5-1). Since the function
f (r) is often unknown in practice, the describing equations cannot be solved even
numerically.

Introduce the following dimensionless variables (steps 2 and 3):

c∗
A ≡ cA

cs

; r∗ ≡ r

rs

; z∗ ≡ z

zs

(5.5-7)

Substitute these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 4 and 5):

2Ur2
s

DABzs

[

1 −
( rs

R

)2
r∗2
]

∂c∗
A

∂z∗ = r2
s

z2
s

∂2c∗
A

∂z∗2
+ 1

r∗
∂

∂r∗

(

r∗ ∂c∗
A

∂r∗

)

(5.5-8)

c∗
A = cA0

cs

at z∗ = 0 (5.5-9)

c∗
A = f

(

r∗) at z∗ = L

zs

(5.5-10)
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∂c∗
A

∂r∗ = 0 at r∗ = 0 (5.5-11)

∂c∗
A

∂r∗ = − k̂1rs

DAB

c∗
A at r∗ = R

rs

(5.5-12)

The dimensionless groups in equations (5.5-9), (5.5-10), and (5.5-12) suggest the
following choices for the scale factors to achieve ◦(1) scaling (step 7): cs = cA0, zs

= L, and rs = R; note that we are employing local scaling here since L can be
any specified value of z. Substitution of these scale factors into equations (5.5-8)
through (5.5-12) then yields the following set of dimensionless describing
equations:

2Pem

R

L

(

1 − r∗2) ∂c∗
A

∂z∗ = R2

L2

∂2c∗
A

∂z∗2
+ 1

r∗
∂

∂r∗

(

r∗ ∂c∗
A

∂r∗

)

(5.5-13)

c∗
A = 1 at z∗ = 0 (5.5-14)

c∗
A = f

(

r∗) at z∗ = 1 (5.5-15)

∂c∗
A

∂r∗ = 0 at r∗ = 0 (5.5-16)

∂c∗
A

∂r∗ = −DaIIc∗
A at r∗ = 1 (5.5-17)

where Pem ≡ UR/DAB is the Peclet number for mass transfer and DaII ≡ k̂1R/DAB

is the second Damköhler number, which is a measure of the ratio of the time scale
for radial diffusion to that for the heterogeneous reaction.

Now let us consider how this set of dimensionless describing equations can
be simplified (step 8). If R2/L2 � 1, the axial diffusion term can be ignored in
equation (5.5-13). If DaII � 1, equation (5.5-17) implies that ∂c∗

A/∂r∗ � 1 since
c∗
A = ◦(1). This in turn implies that the concentration will not vary significantly in

the radial direction; that is, c∗
A

∼= 1 across the tube. Hence, equation (5.5-13) can
be integrated as follows:

∫ 1

0
2Pem

R

L

(

1 − r∗2) ∂c∗
A

∂z∗ 2πr∗ dr∗ =
∫ 1

0

1

r∗
∂

∂r∗

(

r∗ ∂c∗
A

∂r∗

)

2πr∗ dr∗ (5.5-18)

2Pem

R

L

∫ 1

0

(

1 − r∗2) ∂c∗
A

∂z∗ r∗ dr∗ =
∫ −DaIIc∗

A

0
∂

(

r∗ ∂c∗
A

∂r∗

)

(5.5-19)

Since the concentration is essentially uniform across the tube for very small
Damköhler numbers, ∂c∗

A/∂z∗ = dc∗
A/dz∗; hence, equation (5.5-19) simplifies to

1

2
Pem

R

L

dc∗
A

dz∗ = −DaIIc∗
A (5.5-20)
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It is instructive to recast equation (5.5-20) into dimensional form, which is given by

U
dcA

dz
= −2k̂1cA

R
(5.5-21)

Equation (5.5.21) is equivalent to assuming that the fluid is convected down the
tube at a uniform velocity U in the absence of any radial diffusion; however, the
concentration changes axially, due to the heterogeneous reaction at the wall of the
tube. Hence, the small Damköhler number approximation results in the classical
plug-flow reactor assumption, which often is assumed without systematic justifica-
tion.9 Scaling provides a systematic method for arriving at this approximation.

Integrating equation (5.5-20) results in the following solution for the dimension-
less concentration profile:

c∗
A = e−(2DaII/Pem)(L/R)z∗

(5.5-22)

If the Damköhler number is small, the exponential can be expanded in a Taylor
series and truncated at two terms to obtain the following approximate solution:

c∗
A

∼= 1 − 2DaII

Pem

L

R
z∗ (5.5-23)

The error in the solution given by equation (5.5-23) will be in the range 10 to
100% if DaII = ◦(0.1) and 1 to 10% if DaII = ◦(0.01).

Note that there is an analogy between the small Damköhler number approxima-
tion in modeling convective mass transfer with heterogeneous chemical reaction
and the small Biot number approximation in modeling convective heat transfer from
a solid particle that was considered in Section 4.4. When the Damköhler number
is small, there is a negligible variation in the concentration over the cross section
of the reactor; hence, the mass transfer rate is controlled by the resistance external
to the fluid offered by the heterogeneous reaction. When the Biot number is small,
there is a negligible variation in the temperature across the solid particle; hence, the
heat transfer rate is controlled by the resistance external to the particle associated
with convection to the surrounding fluid. This demonstrates another advantage of
scaling: that it establishes the analogies between the various transport processes
systematically.

5.6 LARGE PECLET NUMBER APPROXIMATION FOR MASS
TRANSFER IN FALLING FILM FLOW

In Example Problem 4.E.4 we considered heat transfer to a liquid film flowing
in fully developed laminar flow down a heated vertical wall. We found that at a

9By plug flow we mean that the velocity is uniform across the cross-section of the reactor; in the present
example, for small Damköhler numbers this plug flow moves at an average velocity U .
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x
y

ux (y)

cA (x, y)

LiquidLiquid
filmfilm

Inviscid gasInviscid gas
containing solublecontaining soluble
componentcomponent

cAI

H

Figure 5.6-1 Steady-state gas absorption of a soluble component A from an inviscid gas
phase to a liquid film in fully developed laminar flow down an impermeable vertical wall;
the liquid film has initial concentration cA0, interfacial concentration cAI , thickness H , and
constant physical properties.

sufficiently high Peclet number, the heat transfer was confined to a thin boundary
layer in the vicinity of the wall. Here we consider a closely related problem:
absorption of a soluble component from an inviscid gas into a liquid film in fully
developed laminar flow down an impermeable solid wall as shown in Figure 5.6-1.
The liquid film has thickness H and constant physical properties. It is assumed to
have an initial concentration cA0 and an interfacial concentration cAI established
via equilibrium with the adjacent gas phase. The velocity profile in the liquid film
is given by

ux = Um

[

1 −
( y

H

)2
]

(5.6-1)

where Um is the maximum liquid velocity; namely, at the liquid–gas interface. We
use scaling to explore how the describing equations can be simplified; in particular,
we determine the conditions required to assume that the mass transfer is confined
to a thin boundary layer near the liquid–gas interface.

The appropriate form of the species-balance equation given by equation (G.1-5)
in the Appendices and corresponding boundary conditions are (step 1)

Um

[

1 −
( y

H

)2
]

∂cA

∂x
= DAB

∂2cA

∂x2
+ DAB

∂2cA

∂y2
(5.6-2)

cA = cA0 at x = 0 (5.6-3)

cA = f (y) at x = L (5.6-4)
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cA = cAI at y = 0 (5.6-5)

∂cA

∂y
= 0 at y = H (5.6-6)

where f (y) is some function of y and L is any arbitrary distance downstream. Each
term in equation (G.1-5) has been divided by the molecular weight of component
A to convert the mass concentrations to molar concentrations. These describing
equations are similar to those encountered in Section 5.5; that is, they include
an elliptic differential equation that is nontrivial to solve, owing to the need to
satisfy some downstream boundary condition, which often is unknown. Hence,
we use ◦(1) scaling to determine when this elliptic differential equation can be
simplified into a parabolic equation for which a downstream boundary condition is
not necessary.

Define the following dimensionless variables involving unspecified scale and
reference factors (steps 2, 3, and 4):

c∗
A ≡ cA − cr

cs

; x∗ ≡ x

xs

; y∗ ≡ y

ys

(5.6-7)

Note that a reference factor is introduced to ensure that the concentration is bounded
between zero and 1. Introduce these dimensionless variables into the describing
equations and divide through by the coefficient of one term in each equation that
should be retained (steps 5 and 6):

Umy2
s

DABxs

[

1 −
(ys

H

)2
y∗2
]

∂c∗
A

∂x∗ = y2
s

x2
s

∂2c∗
A

∂x∗2
+ ∂2c∗

A

∂y∗2
(5.6-8)

c∗
A = cA0 − cr

cs

at x∗ = 0 (5.6-9)

c∗
A = f

(

y∗) at x∗ = L

xs

(5.6-10)

c∗
A = cAI − cr

cs

at y∗ = 0 (5.6-11)

∂c∗
A

∂y∗ = 0 at y∗ = H

ys

(5.6-12)

Step 7 involves bounding the independent and dependent dimensionless vari-
ables to be ◦(1). This is done for the dimensionless concentration by setting the
dimensionless groups in equations (5.6-9) and (5.6-11) equal to zero and 1, respec-
tively, to obtain cr = cA0 and cs = cAI − cA0. The length scale for the axial spatial
coordinate is obtained by setting the dimensionless group in equation (5.6-10) equal
to 1, thereby obtaining xs = L. We seek to determine the thickness of the region
of influence near the liquid–gas interface wherein the mass transfer is confined.
This region of influence occurs because the flowing liquid convects species down-
stream before it can diffuse through the entire thickness of the film. Hence, the
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convection term must be of the same magnitude as the cross-stream diffusion term
in equation (5.6-8). This then implies that we demand the following, which leads
to an estimate of the region-of-influence thickness δs :

Umy2
s

DABL
= Umδ2

s

DABL
= 1 ⇒ δs

H
=
√

1

Pem

L

H
(5.6-13)

We see that δs increases with the downstream distance L and is inversely pro-
portional to the solutal Peclet number, Pem ≡ UmH/DAB , which is a measure of
the ratio of the convection to diffusion of species. Sufficiently far downstream, δs

will become equal to the film thickness H . Substitution of these scale and ref-
erence factors into equations (5.6-8) through (5.6-12) yields the following set of
dimensionless describing equations:

(

1 − 1

Pem

L

H
y∗2
)

∂c∗
A

∂x∗ = 1

Pem

H

L

∂2c∗
A

∂x∗2
+ ∂2c∗

A

∂y∗2
(5.6-14)

c∗
A = 0 at x∗ = 0 (5.6-15)

c∗
A = f

(

y∗) at x∗ = 1 (5.6-16)

c∗
A = 1 at y∗ = 0 (5.6-17)

∂c∗
A

∂y∗ = 0 at y∗ =
(

Pem

H

L

) 1
2

(5.6-18)

For large Peclet numbers the ratio δs/H will be quite small. This permits signif-
icant simplification of the describing equations (step 8). In particular, H/(L · Pem)

will be quite small away from the leading edge of the liquid film, which permits
ignoring the axial diffusion term, thereby avoiding the complication of having to
specify a downstream boundary condition. In addition, for sufficiently large Peclet
numbers, the quadratic term in the equation for the velocity profile can be ignored
since it is only the interfacial velocity that is important for a thin region of influ-
ence. Finally, for large Peclet numbers the boundary condition by equation (5.6-18)
can be applied at y∗ = ∞ except when L becomes large. The resulting simplified
dimensionless describing equations are

∂c∗
A

∂x∗ = ∂2c∗
A

∂y∗2
(5.6-19)

c∗
A = 0 at x∗ = 0 (5.6-20)

c∗
A = 1 at y∗ = 0 (5.6-21)

∂c∗
A

∂y∗ = 0 at y∗ → ∞ (5.6-22)
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This system of equations admits a solution via a similarity solution or combination
of variables. The resulting solution will provide accurate predictions of the concen-
tration profiles and mass-transfer rates for sufficiently long films for which ignoring
the leading edge effects is a reasonable assumption.10

5.7 QUASI-STEADY-STATE APPROXIMATION FOR MASS TRANSFER
DUE TO EVAPORATION

A volatile liquid composed of pure component A having constant physical prop-
erties and an initial depth L0 is contained in a cylindrical tube of radius R and
height H . At time t = 0 this liquid is exposed to the gas volume in this tube,
which is filled initially with an insoluble gas composed of pure component B. Pure
component B is also blown continuously over the top of the tube, thereby caus-
ing one-dimensional binary diffusion of A in B, as shown in Figure 5.7-1. This
is inherently an unsteady-state problem both because it is an initial value problem
and because the liquid level will drop in time continuously, due to the evaporative
mass loss. We use scaling to assess the following: when quasi-steady-state can be
assumed; when convective mass transfer can be ignored, and when one can neglect
the pseudo-convection term that arises from the transformation from a fixed to a
moving coordinate system.

Pure volatile
component Az

cA = cA0

cA = 0

H

L(t)

Gas flow of pure component B

Figure 5.7-1 Unsteady-state evaporation of pure liquid A into an insoluble gas B; xA0, the
gas-phase mole fraction of component A, is dictated by thermodynamic equilibrium between
the liquid and gas phases at the prevailing temperature and pressure; a gas stream of pure
component B is blown over the top of the tube to maintain the composition of component
A at zero.

10The conditions under which these approximations break down are considered in Practice Problem
5.P.5.
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Since we are considering gas mass transfer, it is advantageous to use molar con-
centrations and molar fluxes rather than mass concentrations and mass fluxes, owing
to the fact that the overall molar density rather than the mass density is constant at
fixed temperature and pressure.11 Step 1 consists of writing the appropriately sim-
plified continuity and species-balance equations, given by equations (C.2-4) and
(G.2-6) in the Appendices, as:

∂c

∂t
= − ∂

∂z
(cû) ⇒ ∂û

∂z
= 0 ⇒ û = û(t) (5.7-1)

∂cA

∂t
= −∂NA

∂z
(5.7-2)

∂cB

∂t
= −∂NB

∂z
(5.7-3)

where the molar-average velocity û is defined by

û ≡ NA + NB

c
(5.7-4)

in which NA and NB are the molar fluxes of components A and B, respectively,
given by

NA = −cDAB

∂xA

∂z
+ cAû = −DAB

∂cA

∂z
+ cAû (5.7-5)

NB = −cDAB

∂xB

∂z
+ cBû = −DAB

∂cB

∂z
+ cBû (5.7-6)

in which c = cA + cB is the overall molar density, xA = cA/c and xB = cB/c are
the mole fractions of components A and B, respectively, and DAB is the binary
diffusion coefficient. The integration in equation (5.7-1) follows from the fact that
we are assuming an ideal gas at constant temperature and pressure. Note that only
one of equations (5.7-2) and (5.7-3) needs be considered since the sum of these
two equations results in equation (5.7-1). We again see that equations (5.7-5) and
(5.7-6) indicate that the total molar flux is the sum of a purely diffusive flux and
a convective flux that is proportional to the molar average velocity. Equation (5.7-
4) shows that the convective velocity arises from the mass transfer since it is
proportional to the sum of the molar fluxes.

Equations (5.7-1) through (5.7-6) constitute six equations in five unknowns:
cA, cB, NA, NB , and û. However, only four of these equations are independent;
thus, an additional equation is needed. In this case this comes from the fact that
component B is insoluble in liquid component A; hence, it follows that

û(t) = NA + NB

c
= 1

c
NA at z = L (5.7-7)

11For moderate pressures the ideal gas law is applicable; hence, c = P/RT = a constant for specified
P and T .
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The requisite initial and boundary conditions are given by

cA = 0 at t ≤ 0, L ≤ z ≤ H (5.7-8)

cA = cA0 at z = L(t), 0 < t ≤ ∞ (5.7-9)

cA = 0 at z = H, 0 ≤ t ≤ ∞ (5.7-10)

Equation (5.7-8) specifies the composition of component A in the gas phase at the
interface that is determined by thermodynamic equilibrium at the prevailing tem-
perature and pressure. This boundary condition is applied at the moving interface
L(t) between the liquid and gas phases. Problems of this type are referred to as
moving boundary problems. Since L(t) is an additional unknown, it is necessary
to prescribe an auxiliary condition to determine it. This is obtained via an integral
mass balance on component A as follows:

d

dt

∫ L

0

ρ

MA

dz + d

dt

∫ H

L

cA dz = −NA|z=H (5.7-11)

where ρ is the mass density of pure liquid component A and MA is the molecular
weight of component A. Applying Leibnitz’s rule for differentiating an integral
given by equation (H.1-2) in the Appendices and substituting equation (5.7-2)
yields

(
ρ

MA

− cA|z=L

)
dL

dt
+ NA|z=L = 0 (5.7-12)

In arriving at equation (5.7-12) we have used the fact that the liquid density is
constant and that component B is insoluble in the pure liquid A. However, since
cA0 � ρ/MA, equation (5.7-12) simplifies to the following auxiliary condition to
determine the instantaneous location of the liquid–gas interface:

dL

dt
= −MA

ρ
NA at z = L(t) (5.7-13)

This condition merely states that the rate that the interface recedes is proportional
to the rate at which component A is transferred to the gas phase. To integrate
equation (5.7-13), it is necessary to specify an initial condition for L; this is
given by

L = L0 at t = 0 (5.7-14)

Define the following dimensionless variables (steps 2, 3, and 4):

c∗
A ≡ cA

cAs

; û∗ ≡ û

us

; N∗
A ≡ NA

NAs

; L∗ ≡ L

Ls

;
(

dL

dt

)∗
≡ 1

L̇s

dL

dt
; z∗ ≡ z − zr

zs

; t∗ ≡ t

ts

(5.7-15)
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Note that we have introduced a reference factor for the spatial coordinate since it is
not naturally referenced to zero in the gas phase where the diffusion is occurring.
However, there is no need to introduce a reference factor for the molar concentra-
tion since it is naturally referenced to zero. We have also introduced scale factors
for the interface location and velocity since there is no reason to expect that these
will scale with zs .

Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each of these equations that should be
retained (steps 5 and 6) to obtain the following:

cAszs

NAsts

∂c∗
A

∂t∗
= −∂N∗

A

∂z∗ (5.7-16)

NAszs

DABcAs

N∗
A = −∂c∗

A

∂z∗ + uszs

DAB

c∗
Aû∗ (5.7-17)

û∗(t) = NAs

cus

N∗
A at z∗ = L − zr

zs

(5.7-18)

c∗
A = 0, L∗ = L0

Ls

at t∗ ≤ 0,
L − zr

zs

≤ z∗ ≤ H − zr

zs

(5.7-19)

c∗
A = cA0

cAs

at z∗ = L − zr

zs

, 0 < t∗ ≤ ∞ (5.7-20)

c∗
A = 0 at z∗ = H − zr

zs

, 0 ≤ t∗ ≤ ∞ (5.7-21)

(
dL

dt

)∗
= −MANAs

ρL̇s

N∗
A at z∗ = L − zr

zs

(5.7-22)

Now let us proceed to determine the scale factors (step 7). The dimensionless
concentration can be bounded of ◦(1) by setting the group containing the concen-
tration scale factor in equation (5.7-20) equal to 1, thereby obtaining cAs = cA0.
Since we seek to determine when steady-state conditions apply, the appropri-
ate time scale is the observation time; that is, ts = to. The dimensionless spa-
tial coordinate can be bounded to be ◦(1) by setting the dimensionless groups
in equations (5.7-20) and (5.7-21) equal to zero and 1, respectively, to obtain
zr = L and zs = H − L. The scale factor for the molar flux is obtained by set-
ting the appropriate dimensionless group in equation (5.7-17) equal to 1, thereby
obtaining NAs = DABcA0/(H − L). The scale factor for the molar average veloc-
ity is obtained by setting the dimensionless group in equation (5.2-18) equal to
1, thereby obtaining us = DABxA0/(H − L). The scale factor for the liquid-layer
depth and its time rate of change are obtained by setting the dimensionless groups
in equations (5.7-19) and (5.7-22) equal to 1, thereby obtaining L = L0 and L̇s =
MADABcA0/ρ(H − L), respectively.

Substitution of these scale and reference factors yields the following set of
dimensionless describing equations:
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1

Fom

∂c∗
A

∂t∗
+ MAcA0

ρ

(

z∗ − 1
)
(

dL

dt

)∗
∂c∗

A

∂z∗ = −∂N∗
A

∂z∗ (5.7-23)

N∗
A = −∂c∗

A

∂z∗ + xA0c
∗
Aû∗ (5.7-24)

û∗(t) = N∗
A at z∗ = 0 (5.7-25)

c∗
A = 0, L∗ = 1 at t∗ ≤ 0 (5.7-26)

cA = 1 at z∗ = 0, 0 ≤ t∗ ≤ ∞ (5.7-27)

c∗
A = 0 at z∗ = 1, 0 ≤ t∗ ≤ ∞ (5.7-28)

(
dL

dt

)∗
= −N∗

A at z∗ = 0 (5.7-29)

where Fom ≡ DABto/(H − L)2 is the solutal Fourier number or Fourier number for
mass transfer. Note that the additional term appearing in equation (5.7-23) arises
due to the transformation from a stationary to a moving coordinate system implied
by our new z∗ variable. This additional term is referred to as a pseudo-convection
term. The latter will arise in a moving boundary problem if the scaling involves a
transformation from a stationary to a moving coordinate system.

Now let us explore possible simplifications of the describing equations (step
8). Note that if Fom � 1, the unsteady-state term in equation (5.7-23) becomes
insignificant; hence, the mass transfer is quasi-steady-state; that is,

Fom ≡ DABto

(H − L)2
� 1 ⇒ quasi-steady-state mass transfer (5.7-30)

Quasi-steady-state implies that the unsteady-state term in the species-balance
equation is negligible but that the problem is still unsteady-state, due to the time-
dependence that enters through the boundary condition applied at the moving
liquid–gas interface. If xA0 � 1, corresponding to a very dilute gas-phase concen-
tration, the convective contribution to the mass-transfer flux in equation (5.7-24)
can be ignored. In addition, if MAcA0/ρ � 1, corresponding to the gas phase hav-
ing a much smaller molar density than the liquid, the pseudo-convection term can
be ignored. When the latter condition and that given by equation (5.7-30) are sat-
isfied, the solution to this problem can be obtained analytically and is available in
standard references.12

5.8 MEMBRANE PERMEATION WITH NONCONSTANT DIFFUSIVITY

A dense (i.e., nonporous) membrane of thickness H fabricated from pure polymer
B is used to separate component A from a liquid feed solution that establishes a

12Bird et al., Transport Phenomena, 2nd ed., pp. 545–549.



278 APPLICATIONS IN MASS TRANSFER

z

rAr = rAr 0,, surface at which maximum membrane swelling occurs

rAr = 0, , surface at which no membrane swelling occurs

H

Figure 5.8-1 Diffusion of component A through a dense polymeric membrane of compo-
nent B of thickness H ; component A is a weak plasticizing agent that causes membrane
swelling, which in turn causes the diffusion coefficient to increase; this is shown schemati-
cally by the lighter shading in the regions where swelling is occurring.

concentration ρAf (mass per unit volume) in the membrane on the feed side; the
other component in the feed solution is insoluble in the polymeric membrane.13

The concentration of component A on the permeate product side of the mem-
brane is maintained at zero. A schematic of this mass-transfer process is shown
in Figure 5.8-1, where the origin of the coordinate system has been located at the
feed side. Component A is a weak plasticizing agent for the polymer and causes
it to swell, thereby increasing the diffusion coefficient or diffusivity. Since this
swelling is proportional to the concentration of component A, it causes a change
in the diffusivity across the membrane, whose dependence on the concentration is
given by

DAB = D0e
βρA (5.8-1)

where β is a positive constant and D0 is the diffusion coefficient at infinite dilution
for which ρA = 0. We use scaling to ascertain the following: when the concentration
dependence of the diffusion coefficient can be neglected; how we can ascertain
that membrane swelling is occurring; and the effective thickness of the membrane
wherein the resistance to diffusion is confined.

If the species-balance equation given by equation (G.1-1) in the Appendices is
appropriately simplified, we obtain (step 1)

dnA

dz
= 0 ⇒ nA = K (5.8-2)

where K is an integration constant and nA is the mass flux of component A given by

nA = K = −DAB

dρA

dz
+ ρAu ∼= −DAB

dρA

dz
= −D0e

βρA
dρA

dz
(5.8-3)

The solubility of most solutes in polymeric materials is small, so that the bulk flow
term involving the mass-average velocity u can be ignored. The corresponding

13Mass rather than molar concentrations are used for polymer systems, due to their very high molecular
weight relative to the diffusing solute, which would result in extremely small mole fractions.
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boundary conditions are given by

ρA = ρA0 at z = 0 (5.8-4)

ρA = 0 at z = H (5.8-5)

Introduce the following dimensionless variables (steps 2, 3, and 4):

ρ∗
A ≡ ρA

ρAs

; z∗ ≡ z

zs

(5.8-6)

Substitute these dimensionless variables into equations (5.8-3) through (5.8-5)
(steps 5 and 6):

1 = −D0ρAs

Kzs

eβρAsρ
∗
A
dρ∗

A

dz∗ (5.8-7)

ρ∗
A = ρA0

ρAs

at z∗ = 0 (5.8-8)

ρ∗
A = 0 at z∗ = H

zs

(5.8-9)

Now let us proceed to determine the reference and scale factors (step 7).
Equation (5.8-8) permits bounding ρ∗

A to be ◦(1) by choosing ρAs = ρA0. We have
two choices for bounding z∗ to be ◦(1): namely, by setting the dimensionless
groups either in equation (5.8-7) or (5.8-9) equal to 1; the proper choice depends
on the situation for which we are scaling. If we are scaling to determine when the
membrane swelling effect can be neglected so that the diffusivity can be assumed
to be constant, the resistance to diffusion is offered by the entire membrane thick-
ness. Hence, setting zs = H provides the appropriate length scale. However, if
membrane swelling is appreciable so that the resistance to diffusion is confined to
a thin region of influence near z = H , the appropriate length scale is obtained from
equation (5.8-7); that is, zs = D0ρA0/K .

Let us first determine the criterion for ignoring the effect of membrane swelling
on the mass transfer (step 8). After substituting the scale factors, our dimensionless
describing equations assume the form

1 = −D0ρA0

KH
eβρA0ρ∗

A
dρ∗

A

dz∗ = −D0ρA0

KH
(1 + βρA0ρ

∗
A)

dρ∗
A

dz∗ (5.8-10)

ρ∗
A = 1 at z∗ = 0 (5.8-11)

ρ∗
A = 0 at z∗ = 1 (5.8-12)

Note that to assess the effect of membrane swelling on the diffusion coefficient,
we have expanded the equation for the concentration-dependent diffusivity in a
Taylor series about its minimum value at ρA = 0. This procedure of considering
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only the leading order behavior is standard practice when using scaling to assess
the importance of the concentration or temperature dependence of a physical or
transport property. This does not limit the results of our scaling analysis since if
the criterion that we determine for assuming constant diffusivity is not satisfied
for a weak concentration dependence, it most certainly will not be satisfied for a
strong dependence. Hence, if the following criterion is satisfied, we can assume
that the diffusivity is constant:

�1 ≡ βρA0 � 1 (5.8-13)

If this criterion is satisfied, the solution to the approximate describing equations
for the mass concentration and flux is given by

ρ∗
A = 1 − z∗ and

nA0H

D0ρA0
= KH

D0ρA0
= 1 (5.8-14)

where nA0 denotes the constant mass flux in the absence of any membrane swelling;
this is the same as the mass flux that would occur if the entire membrane had the
diffusivity corresponding to ρA = 0. Note that the solution for K could have been
obtained merely by setting the dimensionless group in the approximate form of
equation (5.8-10) equal to 1.

Now let us consider when the swelling effect is large. For this case the diffusivity
increases markedly so that the concentration gradient in equation (5.8-7) is large
only near the boundary at z = H , where the concentration is nearly zero. For
this condition to prevail, equation (5.8-7) indicates that the following criterion
must apply:

�1 ≡ βρA0 � 1 (5.8-15)

The dimensionless group in equation (5.8-7) then implies that the thickness of the
region of influence or characteristic length scale for the dimensionless concentra-
tion to experience a change of ◦(1) is given by zs ≡ δs = D0ρA0/K = D0ρA0/nA,
where nA is the mass flux in the presence of significant membrane swelling; note
that nA > nA0. Hence, if one knows D0, the diffusivity for mass transfer of com-
ponent A through polymer B at infinite dilution, one can determine if swelling is
occurring merely by measuring the mass flux for a specified feed concentration. If
the measured nA exceeds nA0, it indicates that swelling is occurring.

It is instructive to compare the results of our scaling analysis with the predictions
of the analytical solution for the mass concentration and flux for the exact set of
describing equations that is given by

ρ∗
A = 1

�1
ln
[

z∗ + e�1
(

1 − z∗)] and
nAH

D0ρA0
= 1

�1

(

e�1 − 1
)

(5.8-16)

When the solution for the mass flux in equation (5.8-16) is substituted into the
equation for δs , the thickness of the region of influence wherein the concentration
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Figure 5.8-2 Dimensionless concentration ρA as a function of dimensionless distance z∗
for various values of �1 ≡ βρA0 for diffusion through a polymeric membrane subject to
swelling; for large values of �1 the resistance to mass transfer is confined to a thin region
of influence or boundary layer.

gradient is ◦(1), we obtain

δs = �1

e�1 − 1
(5.8-17)

Figure 5.8-2 plots the predictions of equation (5.8-16) for ρ∗
A as a function of z∗

for various values of �1. We see that the exact solution reduces to that given by
equation (5.8-14) for the case of negligible swelling when �1 ≤ 0.1 and that the
concentration gradient is confined to a thin boundary layer or region of influence
when �1 ≥ 50, corresponding to pronounced swelling. These trends are consistent
with the criteria emanating from our scaling analysis given by equations (5.8-13)
and (5.8-15).

5.9 SOLUTALLY DRIVEN FREE CONVECTION DUE
TO EVAPOTRANSPIRATION FROM A VERTICAL CYLINDER

Consider the annular region between an inner permeable vertical cylinder of radius
R1 and length L and an outer impermeable cylindrical shell of radius R2 as
shown in Figure 5.9-1. The permeable inner cylinder transpires water vapor (evap-
otranspiration) into the annular region between the two concentric cylinders. The
concentration of water vapor in the air adjacent to the inner cylinder, cA0, is greater
than that in the ambient air, cA∞. Since water vapor is less dense than air, a hydro-
static pressure imbalance is generated that causes air near the inner cylinder to
rise, thereby generating free convection. We consider the steady-state free convec-
tion that prevails after the transients have died out. We ignore viscous dissipation
and end effects and assume constant physical properties other than the density in
the gravitational body-force term in the equations of motion. We consider a local
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cA (r, z)

uz (r, z)

cA0

cA∞
r z

R1

R2

L

Figure 5.9-1 Buoyancy-induced free-convection flow in the annular gap between two con-
centric cylinders of radii R1 and R2 due to evapotranspiration through the inner cylinder
that causes the concentration cA0 of the water to be greater than that of the ambient air,
cA∞; the sketch shows the developing concentration and axial velocity profiles.

scaling for which L denotes any arbitrary length along the cylinder. We use scaling
analysis to determine how the describing equations for free convection can be sim-
plified and to develop a criterion for ignoring the effect of the outer cylindrical
boundary on the solutally driven free convection.14

This is inherently a developing flow, due to the progressive evapotranspiration
that occurs as the humid air moves up the cylinder; therefore, velocity components
in both the r- and z-directions must be considered. In this analysis we assume
constant physical properties except for the density that appears in the buoyancy term
in the equations of motion; elsewhere the density is assumed to be constant. Hence,
equations (D.2-10), (D.2-12), (C.2-2), and (G.2-5) in the Appendices simplify to
(step 1)

ρur

∂uz

∂r
+ ρuz

∂uz

∂z
= −∂P

∂z
+ µ

1

r

∂

∂r

(

r
∂uz

∂r

)

+ µ
∂2uz

∂z2
− ρg (5.9-1)

ρur

∂ur

∂r
+ ρuz

∂ur

∂z
= −∂P

∂r
+ µ

∂

∂r

[
1

r

∂

∂r
(rur)

]

+ µ
∂2ur

∂z2
(5.9-2)

1

r

∂

∂r
(rur) + ∂uz

∂z
= 0 (5.9-3)

ur

∂cA

∂r
+ uz

∂cA

∂z
= DAB

1

r

∂

∂r

(

r
∂cA

∂r

)

+ DAB

∂2cA

∂z2
(5.9-4)

14This provides a good model for evapotranspiration from Phycomyces, a large single-celled sporangio-
phore that has a cylindrical “stem” and a spherical “head”. This organism has the interesting property
that it “senses” the presence of objects near it and responds by growing away from them. If a cylindrical
shell is placed concentric with the axis of Phycomyces, it will grow faster. If the cylindrical shell is
placed eccentric with the axis of Phycomyces, it will grow away from the closer boundary. This inter-
esting behavior, referred to as the avoidance phenomenon, has been shown to be caused by the influence
of lateral boundaries on the free-convection boundary layer that is created due to evapotranspiration of
water vapor from Phycomyces. A free-convection model for the avoidance phenomenon is developed
in J. J. Pellegrino, R. L. Sani, and R. I. Gamow, J. Theor. Bio., 105(1), 77–90 (1983).
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Note that each term in equation (G.2-5) has been divided by the molecular weight,
which is assumed to be constant for the dilute solutions assumed. The corresponding
boundary conditions are given by

ur = 0, uz = 0, cA = cA0 at r = R1 (5.9-5)

ur = 0, uz = 0,
∂cA

∂r
= 0 at r = R2 (5.9-6)

ur = 0, uz = 0, cA = cA∞ at z = 0 (5.9-7)

ur = f1(r), uz = f2(r), cA = f3(r) at z = L (5.9-8)

where f1(r), f2(r), and f3(r) are unspecified functions of r that often are unknown.
Equation (5.9-5) constitutes the no-slip and impermeable boundary conditions at the
inner boundary. The evapotranspiration through the inner boundary will contribute
to the radial component of velocity, which is assumed to be a negligible effect
in this scaling analysis.15 Equation (5.9-6) states that the velocities as well as the
molar flux are zero at the impermeable outer boundary. Equation (5.9-7) states that
the fluid is quiescent and at ambient conditions at the bottom of the annular gap.
Equation (5.9-8) is a formal statement that downstream boundary conditions are
required for these coupled elliptic equations.

Since the density is concentration-dependent, we need an appropriate equation
of state. Here we consider small variations and hence will represent the density via
a truncated Taylor series expansion about its value ρ∞ at the ambient concentra-
tion cA∞:

ρ = ρ|cA∞ + ∂ρ

∂cA

∣
∣
∣
∣
cA∞

(cA − cA∞) = ρ∞ − ρ∞βs(cA − cA∞) (5.9-9)

where βs is the coefficient of solutal volume expansion. It is convenient to split
the pressure into dynamic, Pd , and hydrostatic, Ph, contributions16:

P = Pd(r, z) + Ph(z) (5.9-10)

When equations (5.9-9) and (5.9-10) are substituted into equation (5.9-1), we obtain

ρ∞ur

∂uz

∂r
+ ρ∞uz

∂uz

∂z
= −∂Pd

∂z
+ µ

1

r

∂

∂r

(

r
∂uz

∂r

)

+ µ
∂2uz

∂z2
+ ρ∞βsg(cA − cA∞)

(5.9-11)

Note that the ρ∞g term does not appear in equation (5.9-11) because it cancels
with the derivative of the purely hydrostatic contribution to the pressure.

15Scaling analysis is used to develop the criterion for making this assumption in Practice Problem
5.P.23.
16Splitting the pressure into its dynamic and hydrostatic contributions was discussed in connection with
Example Problem 4.E.7.
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Define the following dimensionless dependent and independent variables (steps
2, 3, and 4):

u∗
z ≡ uz

uzs

; u∗
r ≡ ur

urs

; P ∗ ≡ Pd

Ps

; c∗
A ≡ cA − cr

cs

;

z∗ ≡ z

zs

; r∗
m ≡ r − rr

rms

; r∗
c ≡ r − rr

rcs

(5.9-12)

Note that we have allowed for different radial length scales for the species-balance
equation and equations of motion since the concentration might experience a char-
acteristic change of ◦(1) over a different length scale than that of the velocities.
Introduce these dimensionless variables into the describing equations and divide
each equation by the dimensional coefficient of one term that should be retained
in order to maintain physical significance (steps 5 and 6):

ursrms

ν∞
u∗

r

∂u∗
z

∂r∗
m

+ uzsr
2
ms

ν∞zs

u∗
z

∂u∗
z

∂z∗ = − Psr
2
ms

µuzszs

∂P ∗

∂z∗

+ 1

r∗
m+rr/rms

∂

∂r∗
m

[(

r∗
m+ rr

rms

)
∂u∗

z

∂r∗
m

]

+ r2
ms

z2
s

∂2u∗
z

∂z∗2
+ gβscsr

2
ms

ν∞uzs

(

c∗
A+ cr − cA∞

cs

)

(5.9-13)

ursrms

ν∞
u∗

r

∂u∗
r

∂r∗
m

+ uzsr
2
ms

ν∞zs

u∗
z

∂u∗
r

∂z∗ = −Psrms

µurs

∂P ∗

∂r∗
m

+ ∂

∂r∗
m

{
1

r∗
m + rr/rms

∂

∂r∗
m

[(

r∗
m + rr

rms

)

u∗
r

]}

+ r2
ms

z2
s

∂2u∗
r

∂z∗2

(5.9-14)

1

r∗
m + rr/rms

∂

∂r∗
m

[(

r∗
m + rr

rms

)

u∗
r

]

+ uzsrms

urszs

∂u∗
z

∂z∗ = 0 (5.9-15)

ursrcs

DAB

u∗
r

∂c∗
A

∂r∗
c

+ uzsr
2
cs

DABzs

u∗
z

∂c∗
A

∂z∗ = 1

r∗
c + rr/rcs

∂

∂r∗
c

[(

r∗
c + rr

rcs

)
∂c∗

A

∂r∗
c

]

+ r2
cs

z2
s

∂2c∗
A

∂z∗2

(5.9-16)

u∗
r = 0, u∗

z = 0 at r∗
m = R1 − rr

rms

c∗
A = cA0 − cr

cs

at r∗
c = R1 − rr

rcs

(5.9-17)

u∗
r = 0, u∗

z = 0 at r∗
m = R2 − rr

rms

∂c∗
A

∂r∗
c

= 0 at r∗
c = R2 − rr

rcs

(5.9-18)

u∗
z = 0, u∗

r = 0, c∗
A = cA∞ − cr

cs

at z∗ = 0 (5.9-19)
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u∗
z = f1(r

∗
m), u∗

r = f2(r
∗
m), c∗

A = f3(r
∗
c ) at z∗ = L

zs

(5.9-20)

where ν∞ ≡ µ/ρ∞ is the kinematic viscosity. Note that the boundary conditions
given by equation (5.9-5) are not applied at the same values of the dimension-
less radial coordinate owing to the different radial scale factors for the equations
of motion and the species-balance equation; the same comment applies to equ-
ation (5.9-6).

The effect of viscosity for this flow will be confined to a thin region near
the vertical cylinder; hence, the radial length scale for the equations of motion
will be the thickness of the momentum boundary layer or region of influence
δm; that is, rms = δm. The momentum boundary-layer thickness is obtained by
balancing the convection terms with the principal viscous term in equation (5.9-13).
Similarly, the effect of species diffusion will also be confined to a thin region δs ,
although not necessarily of the same thickness as that of the momentum boundary
layer; hence, the radial length scale for the species-balance equation will be the
thickness of the solutal boundary layer or region of influence δs ; that is, rcs = δs .
The solutal boundary-layer thickness is obtained by balancing the radial species
convection and diffusion terms in equation (5.9-16). To determine the axial velocity
scale uzs , we need to balance what causes the flow with the principal resistance
to flow; the former is the gravitationally induced body force, whereas the latter
is the principal viscous term. The transverse velocity scale urs is obtained from
the continuity equation since this is inherently a developing flow. One might be
tempted to obtain Ps from the dimensionless group multiplying the pressure term in
equation (5.9-13). However, the pressure term in equation (5.9-13) does not cause
the free-convection flow; the latter is caused by the gravitational body-force term
in this equation. The pressure does cause the flow in the r-direction, which is the
reason why we determine its scale by setting the dimensionless group containing Ps

in equation (5.9-14) equal to 1. The reference and scale factors for the axial length
and concentration are obtained from the boundary conditions to ensure that these
variables are bounded of ◦(1). These considerations then result in the following
scale factors (step 7):

uzs = (gβs 
cA L)0.5; urs =
(

ν2∞gβs 
cA

L

)0.25

;

Ps =
(

µ2gβs 
cA

L

)0.5

; cs = cA0 − cA∞ ≡ 
cA; zs = L;

rms = δm = L

Re0.5 = L

Gr0.25
m

; rcs = δs = L

Sc0.5Pe0.5
m

= L

Sc · Gr0.25
m

= δm

Sc
(5.9-21)

where Re ≡ uzsL/ν∞ the Reynolds number, Pem ≡ uzsL/DAB = Re · Sc the solu-
tal Peclet number, Sc ≡ ν∞/DAB the Schmidt number, and Grm ≡ L3gβs 
cA/ν2∞
the solutal Grashof number. Note that the Grashof number is a measure of the ratio
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of the free convection to viscous transport of momentum; as such, it is the analog of
the Reynolds number for free convection.17 Note that the last of equations (5.9-21)
indicates that δs < δm for liquids and δs

∼= δm for gases.
If we now rewrite our dimensionless describing equations in terms of the scales

defined by equations (5.9-21), we obtain

u∗
r

∂u∗
z

∂r∗
m

+ u∗
z

∂u∗
z

∂z∗ = − 1

Gr0.5
m

∂P ∗

∂z∗ + 1

r∗
m + R1/δm

∂

∂r∗
m

[(

r∗
m + R1

δm

)
∂u∗

z

∂r∗
m

]

+ 1

Gr0.5
m

∂2u∗
z

∂z∗2
+ c∗

A (5.9-22)

u∗
r

∂u∗
r

∂r∗
m

+ u∗
z

∂u∗
r

∂z∗ = −∂P ∗

∂r∗
m

+ ∂

∂r∗
m

{
1

r∗
m + R1/δm

∂

∂r∗
m

[(

r∗
m + R1

δm

)

u∗
r

]}

+ 1

Gr0.5
m

∂2u∗
r

∂z∗2
(5.9-23)

1

r∗
m + R1/δm

∂

∂r∗
m

[(

r∗
m + R1

δm

)

u∗
r

]

+ ∂u∗
z

∂z∗ = 0 (5.9-24)

u∗
r

∂c∗
A

∂r∗
c

+ 1

Sc
u∗

z

∂c∗
A

∂z∗ = 1

r∗
c + (R1/δm)Sc

∂

∂r∗
c

[(

r∗
c + R1

δm

Sc

)
∂c∗

A

∂r∗
c

]

+ 1

Sc2Gr0.5
m

∂2c∗
A

∂z∗2

(5.9-25)

u∗
r = 0, u∗

z = 0, c∗
A = 1 at r∗

m = r∗
c = 0 (5.9-26)

u∗
r = 0, u∗

z = 0 at r∗
m = R2 − R1

δm

∂c∗
A

∂r∗
c

= 0 at r∗
c = R2 − R1

δs

(5.9-27)

u∗
z = 0, u∗

r = 0, c∗
A = 0 at z∗ = 0 (5.9-28)

u∗
z = f1(r

∗
m), u∗

r = f2(r
∗
m), c∗

A = f3(r
∗
c ) at z∗ = 1 (5.9-29)

We can now consider how these scaled dimensionless describing equations can
be simplified (step 8). Note that if the Grashof number is very large such that
Gr0.5

m � 1, the pressure and axial viscous momentum transfer terms can be dropped
from equation (5.9-22). The former simplification implies that the z-component is
decoupled from the solution to the r-component of the equations of motion; hence,

17The solutal Rayleigh number, defined as Ram ≡ L3DABgβs 
cA/ν∞ = Grm · Pr, is another important
dimensionless group that appears in free-convection problems; it is a measure of the ratio of the free
convection to viscous transport of heat; as such, it is the analog of the solutal Peclet number for free
convection.
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the latter equation can be ignored. Dropping the axial viscous momentum transfer
term from equation (5.9-22) converts it from an elliptic into a parabolic differential
equation; this obviates the need to specify downstream boundary conditions, which
in many cases are unknown. A very large Grashof number also implies that the axial
species-diffusion term can be dropped from equation (5.9-25), which also converts
it from an elliptic into a parabolic differential equation, again avoiding the need to
specify a downstream boundary condition. If in addition, R1 � δm and R1 � δs ,
the curvature effects can be neglected. Finally, if R2 − R1 � δm and R2 − R1 � δs ,
the boundary conditions given by equation (5.9-27) can be applied at infinity. If the
aforementioned criteria are satisfied, the resulting simplified describing equations
are given by

u∗
r

∂u∗
z

∂r∗
m

+ u∗
z

∂u∗
z

∂z∗ = ∂2u∗
z

∂r2∗
m

+ c∗
A (5.9-30)

∂u∗
r

∂r∗
m

+ ∂u∗
z

∂z∗ = 0 (5.9-31)

u∗
r

∂c∗
A

∂r∗
c

+ 1

Sc
u∗

z

∂c∗
A

∂z∗ = ∂2c∗
A

∂r∗2
c

(5.9-32)

u∗
r = 0, u∗

z = 0, c∗
A = 1 at r∗

m = r∗
c = 0 (5.9-33)

u∗
r = 0, u∗

z = 0,
∂c∗

A

∂r∗
c

= 0 at r∗
m = r∗

c = ∞ (5.9-34)

u∗
z = 0, u∗

r = 0, c∗
A = 0 at z∗ = 0 (5.9-35)

In particular, one sees that the outer cylindrical boundary will have a negligible
effect on the free convection if δm/R1 = L/(R1Gr0.25

m ) � 1. Note that this criterion
will break down for sufficiently long cylinders owing to the thickening of the free-
convection boundary layer associated with progressively more evapotranspiration
along the cylinder.

5.10 DIMENSIONAL ANALYSIS FOR A MEMBRANE–LUNG
OXYGENATOR

Section 2.4 we discussed the scaling analysis procedure for dimensional analysis
and its advantages relative to the Pi theorem. Here we apply this procedure to
develop a correlation for the performance of a membrane–lung oxygenator. The
steps referred to here are those outlined in Section 2.4; these differ from those used
in Sections 5.2 through 5.9 since no attempt is made to achieve ◦(1) scaling. Note
that ◦(1) scaling analysis, which was illustrated in Sections 5.2 through 5.9, always
leads to the minimum parametric representation for a set of describing equations;
hence, it can always be used to identify the appropriate dimensionless groups.
However, carrying out an ◦(1) scaling analysis can be somewhat complicated and
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time-consuming. In contrast, the scaling analysis approach to dimensional analysis
illustrated in this section is much easier and quicker to implement. However, it does
not provide as much information as does ◦(1) scaling analysis for achieving the
minimum parametric representation. In particular, it does not lead to groups whose
magnitude can be used to assess the relative importance of particular terms in the
describing equations. It also does not identify regions of influence or boundary
layers, whose identification in some cases can reduce the number of dimension-
less groups.

The oxygenator of interest here involves a bundle of cylindrical hollow-fiber
membranes encased in a tubular housing. Because the hollow-fiber membranes
are both microporous and hydrophobic, they provide a means for mass transfer of
oxygen and carbon dioxide to and from the blood, respectively, while preventing
direct contact between the gas and liquid. The mass transfer is controlled on the
blood side because of the inability of the oxygen-absorbing hemoglobin “particles”
to closely approach the inner surface of the membrane. Improvement in oxygenator
performance has focused on various means to reduce the resistance to mass transfer
on the blood side of the membrane. One very effective way to accomplish this is
to oscillate the hollow fibers relative to the blood flow to increase the oxygen
concentration gradients adjacent to the membrane.18 We use the scaling analysis
approach to dimensional analysis to determine the dimensionless groups required
to correlate the effects of oscillating the hollow fibers on the performance of the
oxygenator. It is sufficient here to consider the effect of oscillations on the oxygen
mass transfer to the blood flow in a single hollow-fiber membrane of radius R and
length L, as shown in Figure 5.10-1.

Step 1 in the scaling procedure for dimensional analysis consists of writing the
appropriate describing equations for the oxygen mass transfer to the blood, which
will be assumed to be in fully developed periodically pulsed laminar flow.19 The

R z

uz = Aw cos wt

r
L

Figure 5.10-1 Single hollow fiber of radius R and length L in a membrane–lung oxy-
genator; axial oscillations having amplitude A and angular frequency ω are used to increase
the concentration gradients at the interior wall, where the resistance to mass transfer is
concentrated.

18R. R. Bilodeau, R. J. Elgas, W. B. Krantz, and M. E. Voorhees, U.S. patent 5,626,759, issued May
6, 1997.
19Note that this is an uncommon example of a fully developed unsteady-state flow; that is, the axial
velocity does not change in the axial direction at any instant of time, yet it is a function of time due to
the oscillating wall.
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mass-transfer coefficient k
•
L provides a convenient measure of the effect of the

oscillating wall on the oxygen mass transfer and is defined in terms of NAw , the
time-average molar flux of oxygen at the inner wall of the hollow-fiber mem-
brane, as20

k
•
L ≡ NAw


clm
(5.10-1)

where 
clm is the log-mean concentration driving force, defined as


clm ≡ (cAw − cAL) − (cAw − cA0)

ln (cAw − cAL)/(cAw − cA0)
(5.10-2)

in which cAw is the equilibrium oxygen concentration at the blood side of the
membrane, and cA0 and cAL are the average concentrations in the blood at z = 0
and at z = L, respectively, and

NAw ≡
∫ 2π/ω

0 NAw dt
∫ 2π/ω

0 dt
= ω

2π

∫ 2π/ω

0
NAw dt (5.10-3)

The molar flux NAw appearing in equation (5.10-3) is equal to the local molar flux
averaged over the length of the hollow-fiber membrane and is defined

NAw ≡
∫ L

0 DAB (∂cA/∂r)|r=R dz
∫ L

0 dz
= 1

L

∫ L

0
DAB

∂cA

∂r

∣
∣
∣
∣
r=R

dz (5.10-4)

where DAB is the binary diffusion coefficient for oxygen in blood. Note that the
bulk flow contribution to the molar flux has been ignored because the solutions are
dilute. When equations (5.10-3) and (5.10-4) are substituted into equation (5.10-1),
we obtain

k
•
L = ωDAB

2πL 
clm

∫ 2π/ω

0

∫ L

0

∂cA

∂r

∣
∣
∣
∣
r=R

dz dt (5.10-5)

Both cAL appearing in 
clm and cA in equation (5.10-5) are obtained from a
solution to the axisymmetric form of the convective diffusion equation in cylindrical
coordinates given by equation (G.2-5) in the Appendices

∂cA

∂t
+ uz

∂cA

∂z
= DAB

r

∂

∂r

(

r
∂cA

∂r

)

(5.10-6)

in which uz is the local axial fluid velocity. In arriving at equation (5.10-6) each
term in equation (G.2-5) has been divided by the molecular weight, which is

20Note that the mass-transfer coefficient is defined in terms of a flux divided by a driving force; as
such, it can be expressed in several different ways, depending on the units chosen for these quantities
as well as whether the total flux or just the diffusive flux is used; the various definitions of the mass-
transfer coefficient are discussed in standard references such as Bird et al., Transport Phenomena, 2nd
ed., pp. 672–675.
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constant for the assumed dilute solution. An analytical solution for uz for fully
developed laminar flow subject to axial harmonic pulsations of the tube wall has
been developed and is of the form21

uz

U
= f

(
r

R
, ωt,

ν

ωR2
,
Aω

U

)

(5.10-7)

where U is the average fluid velocity in the hollow fiber and ν is the kinematic
viscosity of blood. The dimensional analysis correlation given by equation (5.10-7)
is also developed in Practice Problem 3.P.38. The boundary and periodic solution
conditions are given by

∂cA

∂r
= 0 at r = 0, 0 ≤ z ≤ L (5.10-8)

cA = cAw at r = R, 0 ≤ z ≤ L (5.10-9)

cA = cA0 at z = 0 (5.10-10)

cA|t = cA|t+2π/ω (5.10-11)

Steps 2 and 3 in the scaling procedure for dimensional analysis involve defining
arbitrary scale factors for all the dependent and independent variables and reference
factors for those not naturally referenced to zero. Hence, we introduce the following
dimensionless variables:

c∗
A ≡ cA − cAr

cAs

; u∗ ≡ uz

us

; r∗ ≡ r

rs

; z∗ ≡ z

zs

; t∗ ≡ t

ts
(5.10-12)

Steps 4 and 5 involve introducing these dimensionless variables into the describ-
ing equations and dividing through by the dimensional coefficient of one term in
each equation. In the scaling analysis procedure for dimensional analysis, in con-
trast to ◦(1) scaling analysis, it makes no difference which term is chosen in this
step. These steps then yield the following dimensionless describing equations:

2πk
•
L L 
c∗

lm rs

ωDABzsts
=
∫ 2π/ωts

0

∫ L/zs

0

∂c∗
A

∂r∗

∣
∣
∣
∣
r∗=R/rs

dz∗ dt∗ (5.10-13)


c∗
lm ≡ −c∗

AL + (cA0 − cAr)/cAs

ln

(
cAw − cAr

cAw − cA0
− cAs

cAw − cA0
c∗
AL

) (5.10-14)

r2
s

DABts

∂c∗
A

∂t∗
+ usr

2
s

DABzs

u∗
z

∂c∗
A

∂z∗ = 1

r∗
∂

∂r∗

(

r∗ ∂c∗
A

∂r∗

)

(5.10-15)

21W. B. Krantz, R. R. Bilodeau, M. E. Voorhees, and R. J. Elgas, J. Membrane Sci., 124, 283–299
(1997).
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u∗
z = U

us

f

(
rs

R
r∗, ωtst

∗,
ν

ωR2
,
Aω

U

)

(5.10-16)

∂c∗
A

∂r∗ = 0 at r∗ = 0, 0 ≤ z∗ ≤ L

zs

(5.10-17)

c∗
A = cAw − cAr

cAs

at r∗ = R

rs

, 0 ≤ z∗ ≤ L

zs

(5.10-18)

c∗
A = cA0 − cAr

cAs

at z∗ = 0 (5.10-19)

c∗
A|t∗ = c∗

A|t∗+2π/ωts (5.10-20)

Step 6 involves setting the various groups equal to 1 or zero to determine the
scale and reference factors, respectively. Since there is no attempt to achieve ◦(1) in
the scaling approach for dimensional analysis, it makes no difference what groups
are chosen in this step. Let us set equation (5.10-19) equal to zero to determine
the reference concentration cAr = cA0 and the appropriate group in equation (5.10-
18) equal to 1 to determine the concentration scale cAs = cAw − cA0. Setting the
remaining dimensionless groups in equation (5.10-18) equal to 1 determines the
radial and axial length scales rs = R and zs = L, respectively; note, however, that
there is no assurance that these length factors will scale the corresponding deriva-
tives with respect to these spatial coordinates to be of ◦(1). The dimensionless
group in equation (5.10-16) provides the velocity scale us = U . Either the dimen-
sionless group in equation (5.10-15) or in equation (5.10-20) can be set equal to 1
to determine the time scale; let us arbitrarily choose the latter, thereby obtaining
ts = 2π/ω. These choices then yield the following minimum parametric represen-
tation of the describing equations; that is, in terms of the minimum number of
dimensionless groups:

Sh = c∗
AL

ln(1 − c∗
AL)

∫ 1

0

∫ 1

0

∂c∗
A

∂r∗

∣
∣
∣
∣
r∗=1

dz∗ dt∗ (5.10-21)

(
c∗
lm)v ≡ −c∗

AL

ln(1 − c∗
AL)

(5.10-22)

ωR2

2πDAB

∂c∗
A

∂t∗
+ 2Gz

π
u∗

z

∂c∗
A

∂z∗ = 1

r∗
∂

∂r∗

(

r∗ ∂c∗
A

∂r∗

)

(5.10-23)

u∗
z = f

(

r∗, t∗,
ν

ωR2
,
Aω

U

)

(5.10-24)

∂c∗
A

∂r∗ = 0 at r∗ = 0, 0 ≤ z∗ ≤ 1 (5.10-25)

c∗
A = 1 at r∗ = 1, 0 ≤ z∗ ≤ 1 (5.10-26)

c∗
A = 0 at z∗ = 0 (5.10-27)

c∗
A|t∗ = c∗

A|t∗+1 (5.10-28)
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where (
c∗
lm)v denotes 
c∗

lm in the presence of axial oscillations or vibrations and
where

Sh ≡ k
•
L R

DAB

is the Sherwood number (5.10-29)

Gz ≡ πUR2

2DABL
= πRPem

2L
is the Graetz number (5.10-30)

The Sherwood number provides a measure of the overall mass transfer to that by
diffusion alone; as such, it is analogous to the Nusselt number in heat transfer.22 The
Graetz number provides a measure of the relative convection to diffusional transport
of species; as can be seen from equation (5.10-30), it is proportional to the solutal
Peclet number, which is also a measure of this same ratio. However, the Graetz
number takes into account the finite contact time for mass transfer via the ratio R/L.
Equation (5.10-21) implies that the Sherwood number is a function of the dimen-
sionless groups involved in determining c∗

AL and ∂c∗
A/∂r∗∣∣

r∗=1 and hence will be
functions of only the dimensionless groups involved in solving equation (5.10-23).
These include the two dimensionless groups appearing in this equation as well as
the two involved in determining u∗ as indicated by equation (5.10-24). Hence, we
conclude that membrane–lung oxygenator performance can be correlated in terms
of five dimensionless groups; that is,

Sh = f

(

Gz,
ωR2

DAB

,
ωR2

ν
,
Aω

U

)

(5.10-31)

Note that a naive application of the Pi theorem would imply that eight dimensionless
groups would be required (i.e., n = 11 and m = 3).

The five dimensionless groups in the correlation for membrane–lung oxygenator
performance given by equation (5.10-31) are not unique. Step 7 involves isolating
certain quantities by the procedure indicated formally by equation (2.4-2). Here it
is convenient to isolate the angular frequency into just two groups by the following
operation:

ωR2/DAB

ωR2/ν
= ν

DAB

= Sc (5.10-32)

where Sc is the Schmidt number. Hence, our modified correlation for the Sherwood
number is given by

Sh = f

(

Gz,Sc,
ωR2

ν
,
Aω

U

)

(5.10-33)

Recasting our correlation in terms of the Schmidt number is particularly convenient
for designing a membrane blood oxygenator since the Schmidt number is fixed for

22The dimensionless group corresponding to the Sherwood number defined here is sometimes referred
to as the Nusselt number for mass transfer.
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this system. Hence, one needs to consider only three variable groups in correlating
performance data for a membrane blood oxygenator. Note that the angular fre-
quency could be isolated into just one dimensionless group. However, the resulting
group would still contain the variable amplitude and hence would not be fixed by
specifying the blood–oxygen system.

Step 8 in the scaling procedure for dimensional analysis involves exploring the
correlation for various limiting values of the dimensionless groups. For large Sc
(i.e., for blood) we can use the expansion in Sc−1 suggested by equation (2.4-3)
truncated to one term to conclude that the oxygenator performance can be correlated
in terms of only four dimensionless groups; that is,

Sh = f

(

Gz,
ωR2

ν
,
Aω

U

)

for Sc−1 → 0 (5.10-34)

The dimensionless group ωR2/ν is the ratio of the characteristic time for viscous
penetration to that for the periodic wall oscillations. One might anticipate that the
wall oscillations will not have much effect on the Sherwood number for very small
values of ωR2/ν since this implies negligible wall motion. We would also not
expect much effect on the Sherwood number for very large values of ωR2/ν, since
this implies negligible time for the wall oscillations to penetrate the fluid. The
dimensionless group Aω/U is the ratio of the wall velocity to the average velocity
of the fluid. If Aω/U is very small, the wall oscillations are insignificant relative to
the fluid velocity, in which case they will have a negligible effect on the Sherwood
number. If Aω/U is very large, it implies a very slow flow for which the oxygen
transport is not limited by contact time; hence, the oscillations will also have a neg-
ligible effect for large values of this group. These arguments suggest that the effects
of the oscillations on the Sherwood number will exhibit a maximum with respect to
the values of ωR2/ν and Aω/U ; that is, the effect of wall oscillations on the mass
transfer involves a “tuned” response whereby the maximum effect will be achieved
only over a relatively narrow range of oscillation amplitudes and frequencies.

The design of a membrane–lung oxygenator will be revisited in Chapter 7.
This same problem will be analyzed in Section 7.2 using ◦(1) scaling analysis
to achieve the minimum parametric representation rather than using the scaling
approach to dimensional analysis. We will see that ◦(1) scaling analysis yields far
more information about the design of a membrane–lung oxygenator. In particular,
it will show that the oxygenator performance can be correlated in terms of four
dimensionless groups rather than five. Moreover, ◦(1) scaling analysis permits pre-
dicting the optimum frequency, within a multiplicative constant of ◦(1), required
to achieve maximum enhancement of the oxygen mass transfer to the blood.

5.11 SUMMARY

In Section 5.2, we provided an introduction to the step-by-step procedure for apply-
ing scaling analysis in mass transfer. We considered binary diffusion in a stagnant
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film of liquid subject to an instantaneous change in the concentration at one of
its boundaries. Scaling was used to determine the criterion for applying the film
theory model. This criterion requires that the Fourier number or ratio of the contact
to diffusion time be very large. Scaling was also used to assess when the bulk-flow
contribution that arises from a net mass-transfer flux can be neglected. This crite-
rion requires that either the mass fluxes be nearly equal in magnitude or that the
relative concentration change across the film be small. When this bulk-flow con-
tribution is potentially important, it is necessary either to know some relationship
between the mass-transfer fluxes or to have an equation of state for the mass den-
sity. In this problem the ratio of the mass fluxes was specified.23 Since this problem
could be solved analytically, it was possible to estimate the error incurred when
the bulk-flow effect was ignored. This was seen to be less than 0.1% when the
criterion given by equation (5.2-28) was ◦(0.01). Note that the film theory model
developed in this section is frequently used to correct mass-transfer coefficients
obtained from literature correlations for the effects of bulk flow.24 Interestingly,
the ratio of the mass-transfer coefficient in the presence to that in the absence of
bulk-flow effects is not a strong function of the actual mass-transfer configuration.
For this reason film theory can be used to correct for the bulk-flow effects even
when the model is not applicable to the particular mass-transfer problem.

In Section 5.3 we considered the same physical situation as in Section 5.2. How-
ever, short-contact-time or small Fourier number scaling was done whereby the
diffusion and unsteady-state terms were balanced in the species-balance equation.
This led to a length scale that was identified with a region of influence or solu-
tal boundary layer within which all the mass transfer is confined. The resulting
simplified describing equations provide the basis for penetration theory. The latter
is the short-contact-time complement to film theory. Penetration theory provides a
better model for correcting mass-transfer coefficients obtained from the literature
for bulk-flow effects when the contact time or Fourier number is small.

Mass transfer in fully developed laminar flow between permeable parallel mem-
brane walls in the presence of a homogeneous chemical reaction was considered
in Section 5.4. The presence of both the transverse and axial diffusion terms made
the describing equations elliptic. This complicated the solution since the required
downstream boundary condition is often unknown. The concept of local scaling in
mass transfer was introduced in this problem, whereby one considers the describ-
ing equations within a domain defined by some arbitrary distance in the principal
direction of flow that is assumed to be constant during the scaling analysis. In
contrast to the preceding two examples, there was no explicit concentration scale
in this problem. Hence, the concentration scale was determined by balancing the
mass flux through the permeable membrane walls and transverse diffusion terms.
Scaling analysis led to three important dimensionless groups: the Peclet number
for mass transfer, Schmidt number, and Thiele modulus. The Peclet number for
mass transfer is a measure of the convection to diffusion of mass. The Schmidt

23Note that Example Problem 5.E.1 considers scaling to determine when the bulk-flow effect can be
neglected when an equation of state for the mass density is known.
24The interested reader is referred to Bird et al., Transport Phenomena, pp 704–706.
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number is a measure of the viscous transport of momentum to the diffusive transfer
of mass. The Thiele modulus is a measure of the characteristic time for diffusion
relative to that for homogeneous reaction. The Peclet number has a role in mass
transfer analogous to that of the Reynolds number in fluid dynamics. For example,
we found that the convective mass transfer could be ignored if the Peclet number
was very small; this is analogous to the low Reynolds number or creeping-flow
approximation in fluid dynamics. We also found that the complicating effects of
axial diffusion could be ignored if the aspect ratio was very small. The combina-
tion of small Peclet number and small aspect ratio in mass transfer is analogous to
the lubrication-flow approximation in fluid dynamics. We found that for very large
Thiele moduli, the homogeneous chemical reaction was confined to a thin region
of influence or boundary layer near the permeable membrane walls.

In Section 5.5 we considered a complementary problem to that discussed in
Section 5.4: mass transfer with a heterogeneous chemical reaction at the wall for
fully developed laminar tube flow. In this case, scaling was used to determine
when the classical plug-flow reactor approximation can be made; that is, when
one can ignore any radial concentration gradients and thereby represent the axial
convection using the average rather than the local velocity. It was necessary to
introduce separate scales for both the axial and radial concentration gradients since
neither of these scaled with the characteristic length divided by the characteristic
time. This problem introduced the second Damköhler number, which is a measure
of the time scale for radial diffusion to that for the heterogeneous reaction. When
this dimensionless group was small, the plug-flow reactor approximation can be
made. The small Damköhler number approximation in mass transfer is analogous to
the small Biot number approximation in heat transfer in that both imply negligible
resistance to transfer within the control volume relative to that at some boundary.

The problem considered in Section 5.6 involved mass transfer to falling film
flow. Scaling was used to determine when the mass transfer could be assumed
to be confined to a thin boundary layer or region of influence near the interface.
For large Peclet numbers the mass transfer will be confined to a boundary layer
that is sufficiently thin to assume that the film is infinitely thick. Moreover, if
the product of the Peclet number and the length-to-thickness aspect ratio is large,
axial diffusion can be neglected. These two approximations greatly simplify the
describing equations; in particular, they obviate the need to apply a downstream
boundary condition, which in many cases is not known.

In Section 5.7 we used scaling to assess when the quasi-steady-state (QSS)
approximation can be made for the evaporation of a pure volatile liquid into an
insoluble gas in a cylindrical tube. Quasi-steady-state implies that time does not
enter explicitly in the describing differential equations, but implicitly through one or
more boundary conditions. This is a moving boundary problem for which an aux-
iliary condition is required to locate the interface. The velocity that arises because
of the diffusive mass transfer was determined in this problem from the additional
condition that the gas was insoluble in the liquid. A proper scaling analysis required
introducing a reference factor for the independent variable since it was not naturally
referenced to zero. Moreover, it was necessary to introduce a separate scale factor
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for the interface velocity since it does not necessarily scale with the ratio of
the characteristic length divided by the characteristic time. Since this problem
involved a transformation from a stationary to a moving coordinate system, a
pseudo-convection term was generated. Scaling analysis indicated that QSS can
be assumed if the Fourier number is very large. Moreover, it provided criteria for
when the convective mass transfer and pseudoconvection term could be neglected.

In Section 5.8 we applied scaling analysis to permeation through a polymeric
membrane whose swelling caused the diffusivity to be concentration-dependent. For
this reason it was necessary to scale the diffusivity as well. Two length scales were
possible depending on how markedly the diffusivity changed with concentration.
If the resistance to mass transfer was distributed through the entire cross-section
of the membrane, the appropriate length scale was its thickness. However, if the
diffusivity decreased markedly with concentration near one of the boundaries, the
resistance to mass transfer was confined to a thin region of influence whose thick-
ness was the appropriate length scale. To determine whether the diffusivity could be
assumed to be constant, the equation describing its concentration-dependence was
expanded in a Taylor series in which only the first-order correction was retained
in the scaling analysis. Scaling then identified the condition required to ignore this
first-order correction. For this problem it was possible to compare the solution to
the complete describing equations with the simplified form of these equations for
both negligible swelling and significant swelling; this confirmed that the simplified
equation emanating from scaling provided accurate solutions when the appropriate
criteria for the validity of these approximation were satisfied.

In Section 5.9 we applied scaling to a free-convection mass-transfer problem,
that is, to a problem wherein the driving force for flow was internal to the system,
in this case due to density variations created by concentration gradients. Scaling
was employed to arrive at the free-convection boundary-layer equations and to
determine when curvature effects could be neglected. This problem introduced the
solutal Grashof and Rayleigh numbers, which are the free convection analogues
of the Reynolds and Peclet numbers; that is, the former is a measure of the ratio
of the free convection to viscous transport of momentum, whereas the latter is a
measure of the free convection to diffusive transport of species.

Scaling was applied to dimensional analysis in Section 5.10. In contrast to
◦(1) scaling analysis, the scaling approach to dimensional analysis merely seeks to
arrive at the minimum parametric representation of the problem; that is, to obtain
a set of describing equations in terms of the minimum number of dimensionless
parameters. The scaling approach to dimensional analysis was applied here to a
novel membrane–lung oxygenator that employed axial oscillations to enhance the
mass transfer. Scaling analysis was used to determine the dimensionless groups
required to correlate the effects of the oscillations on the performance of the oxy-
genator. This problem introduced the Sherwood number, a dimensionless group that
is a measure of the ratio of the overall mass transfer to that by diffusion alone, and
the Graetz number. The latter is closely related to the Peclet number since it is a
measure of the ratio of the convection to diffusion of species. However, the Graetz
number includes an aspect ratio that accounts for the effect of a limited contact
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time. This example illustrated the advantages of the scaling analysis methodology
for dimensional analysis relative to using the conventional Pi theorem approach in
that the latter did not lead to the minimum parametric representation.

5.E EXAMPLE PROBLEMS

5.E.1 Evaporative Casting of a Polymer Film

Consider a binary mixture of volatile solvent A and nonvolatile polymer B that has
initial mass fractions ωA0 and ωB0, respectively, cast as a thin planar film having
an initial thickness L0 on an impermeable plate as shown in Figure 5.E.1-1. At
time t = 0, the volatile solvent begins to evaporate into the gas phase, thereby
causing the film to thin so that its instantaneous thickness is L(t); evaporative
cooling effects will be assumed to be negligible in this analysis. The evaporative
mass transfer is described via a lumped-parameter approach with an appropriate
mass-transfer coefficient. The overall mass density of the polymer film is assumed
to be given by

ρ = ωAρ0
A + ωBρ0

B ⇒ ρ = ρ0
B + 
ρ0

ABωA (5.E.1-1)

where ρ0
i is the pure component mass density of component i and 
ρ0

AB ≡ρ0
A − ρ0

B ;
note that an alternative equation of state for the density could be used in this
scaling analysis. We use scaling to determine criteria for when the following
approximations can be made: Convective mass transfer arising from densifica-
tion can be neglected; convective mass-transfer effects on the film thinning can

Impermeable support plate

L(t)

z  

Casting solution

Gas phase

Polymer
concentration
profile

Solvent
concentration
profile

Direction of
increasing
concentration

Figure 5.E.1-1 Representative concentration profiles during the evaporative casting of a
dense film from a solution of a volatile solvent and nonvolatile polymer on an impermeable
plate; the instantaneous thickness of the planar film is L(t).
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be ignored; the density can be assumed to be constant; quasi-steady-state applies;
and the mass transfer can be assumed to be gas-phase controlled. This example
illustrates how to handle a mass-transfer problem involving a nonconstant den-
sity and to scale properties such as the mass density that are functions of the
dependent variable; it also provides another example of a moving boundary
problem.

The appropriately simplified forms of the continuity and species-balance equ-
ations given by (C.1-1) and (G.1-1) in the Appendices are (step 1)

∂ρ

∂t
= − ∂

∂z
(ρu) ⇒ 
ρ0

AB

∂ωA

∂t
= − ∂

∂z
(ρu) (5.E.1-2)

∂ρA

∂t
= ∂(ωAρ)

∂t
= −∂nA

∂z
(5.E.1-3)

where

nA = −ρDAB

∂ωA

∂z
+ ωAρu (5.E.1-4)

in which u is the mass-average velocity. Equations (5.E.1-2) and (5.E.1-3) can be
combined to obtain

∂

∂z
(ρu) = 
ρ0

AB/ρ

1 + ωA
ρ0
AB/ρ

∂nA

∂z
(5.E.1-5)

Equation (5.E.1-5) can, in turn, be integrated to obtain the following explicit
equation for the mass-average velocity u:

u = 1

ρ

∫ z

0


ρ0
AB/ρ

1 + ωA
ρ0
AB/ρ

∂nA

∂z
dz (5.E.1-6)

u = 1

ρ

∫ nA

0


ρ0
AB/ρ

1 + ωA
ρ0
AB/ρ

dnA (5.E.1-7)

in which the following boundary conditions corresponding to an impermeable lower
solid boundary have been used:

u = 0, nA = 0 at z = 0 (5.E.1-8)

A boundary condition is also required at the liquid–gas interface; this is obtained
by an integral species balance over the entire film thickness:

d

dt

∫ L(t)

0
(ωAρ) dz + d

dt

∫ ∞

L(t)

(ω̃Aρ̃) dz = 0 at z = L(t) (5.E.1-9)

where ω̃A and ρ̃ denote the mass fraction of component A and mass density in
the gas phase. Applying Leibnitz’s rule for differentiating an integral given by
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equation (H.1-2) in the Appendices and substituting equations (5.E.1-3) and (5.E.1-
4) for the casting solution and similar equations for the gas phase yields

ρDAB

∂ωA

∂z
= ωAρu − k

•
GKAωA − ωAρ

dL

dt
at z = L(t), 0 ≤ t ≤ ∞

(5.E.1-10)

In arriving at equation (5.E.1-10), the mass flux of component A in the gas phase
at the liquid–gas interface was represented via a lumped-parameter approach in
terms of the mass-transfer coefficient k

•
G . This introduces the distribution coeffi-

cient KA, which incorporates the effects of nonideal solution behavior and other
concentration-dependent factors needed to interrelate the liquid and gas concentra-
tions at the interface. Equation (5.E.1-10) also assumes that the bulk of the gas
phase contains none of the evaporating solvent and that the mass density of the
gas phase is much less than that of the casting solution.

Since this is a moving boundary problem, owing to the mass loss and densifica-
tion, an auxiliary condition is required to locate the instantaneous position of the
interface. This is determined by an integral mass balance as follows:

d

dt

∫ L(t)

0
ρ dz = −k

•
GKAωA at z = L(t) (5.E.1-11)

Applying Leibnitz’s rule for differentiating an integral given by equation (H.1-2) in
the Appendices and substituting equation (5.E.1-2) yields the following auxiliary
condition to determine L(t):

ρ
dL

dt
= ρu − k

•
GKAωA at z = L(t) (5.E.1-12)

In arriving at equation (5.E.1-12) we have used the boundary condition that u = 0 at
z = 0, corresponding to an impermeable boundary. The initial conditions required
to solve Equations (5.E.1-3), (5.E.1-10), and (5.E-12) are given by

ωA = ωA0, L = L0 at t = 0, 0 ≤ z ≤ L(t) (5.E.1-13)

Equation (5.E.1-12) can be used to simplify equation (5.E.1-10) to yield the fol-
lowing form of the boundary condition at the moving interface:

ρDAB

∂ωA

∂z
= −k

•
GKAωA(1 − ωA) at z = L(t), 0 ≤ t ≤ ∞ (5.E.1-14)

Introduce the following dimensionless dependent and independent variables
(steps 2, 3, and 4):

ω∗
A ≡ ωA

ωAs

; ρ∗ ≡ ρ

ρs

; u∗ ≡ u

us

; n∗
A ≡ nA

nAs

;

K∗
A ≡ KA

KAs

; z∗ ≡ z

zs

; t∗ ≡ t

ts
; L

∗ ≡ L

Ls

;
(

dL

dt

)∗
≡ 1

L̇s

dL

dt

(5.E.1-15)
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Note that we have introduced a scale factor for ωA even though it is dimension-
less with a maximum possible value of 1 because we seek to bound it of ◦(1).
Indeed, the maximum concentration ωA0 could be much less than 1. However, it
is not necessary to introduce a reference factor for ωA since its minimum value is
zero, corresponding to complete evaporation of the volatile component. We have
introduced a separate scale for dL/dt, the velocity of the interface since there
is no reason why this should scale as zs/ts .25 However, we have not introduced
a separate scale for the derivative of the concentration since we are considering
a longer time scaling for which the concentration will undergo its characteristic
change over the instantaneous thickness of the film, not over some boundary layer
near the upper interface.26 Scale factors are also introduced for the mass density ρ

and distribution coefficient KA since they depend on the concentration.
Introduce these dimensionless variables into equations ((5.E.1-1)), (5.E.1-3),

(5.E.1-4), (5.E.1-5), (5.E.1-7), (5.E.1-8), (5.E.1-12), and (5.E.1-14), and divide
each equation through by the dimensional coefficient of one term that should be
retained in order to maintain physical significance to obtain the following set of
dimensionless describing equations (steps 5 and 6):

ρ∗ = ρ0
B

ρs

+ 
ρ0
ABωAs

ρs

ω∗
A (5.E.1-16)

zsωAsρs

nAsts

∂(ω∗
Aρ∗)

∂t∗
= −∂n∗

A

∂z∗ (5.E.1-17)

n∗
A = ωAsρsus

nAs

ω∗
Aρ∗u∗ − DABωAsρs

nAszs

ρ∗ ∂ω∗
A

∂z∗ (5.E.1-18)

u∗ = nAs 
ρ0
AB

usρ2
s

1

ρ∗

∫ z∗

0

1/ρ∗

1 + (
ρ0
AB ωAs/ρs)(ω

∗
A/ρ∗)

∂n∗
A

∂z∗ dz∗ (5.E.1-19)

ω∗
A = ωA0

ωAs

, L∗ = L0

Ls

at t∗ = 0, 0 ≤ z∗ ≤ L

zs

(5.E.1-20)

n∗
A = 0, u∗ = 0 at z∗ = 0, 0 ≤ t∗ ≤ ∞ (5.E.1-21)

ρ∗ ∂ω∗
A

∂z∗ = −k
•
GKAszs

DABρs

K∗
Aω∗

A(1 − ωAsω
∗
A) at z∗ = L

zs

, 0 ≤ t∗ ≤ ∞
(5.E.1-22)

ρ∗
(

dL

dt

)∗
= us

L̇s

ρ∗u∗ − k
•
GKAsωAs

L̇sρs

K∗
Aω∗

A at z∗ = L

zs

(5.E.1-23)

25The consequences of scaling the interface velocity with zs/ts were discussed and illustrated in
Section 4.7.
26However, for a short-time scaling where the concentration change is confined to a region of influence
near the upper surface, one must introduce a separate scale for the spatial derivative of the concentration,
which is determined from the mass-flux boundary condition given by equation (5.E.1–14); this short-
time scaling is considered in Practice Problem 5.P.20.



EXAMPLE PROBLEMS 301

The following considerations dictate determining our scale factors (step 7).
Assessing when quasi-steady-state can be assumed necessarily implies a scaling
analysis for longer contact times, for which the effect of the evaporation will have
penetrated through the entire liquid film. This consideration is important since it
implies that the characteristic length is the entire thickness of the liquid film rather
than some region of influence near the liquid–gas interface. Hence, to bound the
dimensionless spatial coordinate and film thickness to be ◦(1), we set the appropri-
ate dimensionless groups in equation (5.E.1-20) equal to 1 to obtain zs = L(t) and
Ls = L0. Note that z and L scale differently since for longer contact times, z ranges
between 0 and L(t), whereas L(t) ranges between L0 initially to some smaller value
at the end of the evaporation process. The scale for the mass fraction comes from
equation (5.E.1-20) and is given by ωAs = ωA0. The density scale comes from
equation (5.E.1-16) and is given by ρs = ρ0

B . Since we seek to determine when
the quasi-steady-state assumption is applicable, our time scale is the observation
time; that is, ts = to. The scale for the species mass flux comes from balancing the
principal terms in equation (5.E.1-18) to obtain nAs = DABωA0ρ

0
B/L. The scale for

the front velocity comes from balancing the principal terms in equation (5.E.1-23),
which yields L̇s = k

•
GKA0ωA0/ρ

0
B . A proper scale for KAs that bounds K∗

A to be◦(1) is the initial value of KA denoted here by KA0 for which the concentration is
known. The scale for the mass-average velocity comes from equation (5.E.1-19),
which yields us = DABωA0
ρ0

AB/ρ0
BL.

These scale factors then result in the following set of dimensionless describ-
ing equations, which will permit us to assess when quasi-steady and negligible
convection can be assumed (step 8):

ρ∗ = 1 + 
ρ0
AB

ρ0
B

ωA0ω
∗
A (5.E.1-24)

1

Fom

∂(ω∗
Aρ∗)

∂t∗
− BimωA0z

∗
(

dL

dt

)∗
∂(ω∗

Aρ∗)
∂z∗ = −∂n∗

A

∂z∗ (5.E.1-25)

n∗
A = 
ρ0

AB

ρ0
B

ωA0ω
∗
Aρ∗u∗ − ρ∗ ∂ω∗

A

∂z∗ (5.E.1-26)

u∗ = 1

ρ∗

∫ z∗

0

1/ρ∗

1 + ωA0(
ρ0
AB/ρ0

B)(ω∗
A/ρ∗)

∂n∗
A

∂z∗ dz∗ (5.E.1-27)

ωA = 1, L∗ = 1 at t∗ = 0, 0 ≤ z∗ ≤ 1 (5.E.1-28)

n∗
A = 0, u∗ = 0, at z∗ = 0, 0 ≤ t∗ ≤ ∞ (5.E.1-29)

ρ∗ ∂ω∗
A

∂z∗ = −BimK∗
Aω∗

A(1 − ωA0ω
∗
A) at z∗ = 1, 0 ≤ t∗ ≤ ∞

(5.E.1-30)

ρ∗
(

dL

dt

)∗
= 1

Bim


ρ0
AB

ρ0
B

ρ∗u∗ − K∗
Aω∗

A at z∗ = 1 (5.E.1-31)
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where Fom ≡ DABto/L
2 and Bim ≡ k

•
GKAsL/DABρ0

B are the solutal Fourier and
solutal Biot numbers, respectively, for mass transfer. Note that an additional
pseudo-convection term now appears in equation (5.E.1-25) because of the trans-
formation from a fixed coordinate system to one that is referenced to the moving
interface between the liquid and gas phases. Pseudo-convection terms will always
arise when one transforms from a stationary coordinate system to a moving sys-
tem. Equation (5.E.1-26) indicates that the convection arising from densification
will have a negligible effect on the mass-transfer flux if the following criterion is
satisfied:


ρ0
AB

ρ0
B

ωA0 � 1 ⇒ 
ρ0
AB

ρ0
B

ωA0 = ◦(0.01) (5.E.1-32)

This criterion indicates that convective transport can be ignored when the densities
of the two components are nearly the same (i.e., 
ρ0

AB
∼= 0) or for very dilute

solutions. Equation (5.E.1-31) indicates that the convection will have a negligible
effect on the film thinning if the following criterion is satisfied:

1

Bim


ρ0
AB

ρ0
B

� 1 ⇒ 1

Bim


ρ0
AB

ρ0
B

= ◦(0.01) (5.E.1-33)

This criterion is also satisfied when the density difference between the two com-
ponents is small or when the Biot number is very large, which implies a negligible
resistance to mass transfer in the gas phase relative to that in the liquid. Quasi-
steady-state mass transfer can be assumed if the following criterion is satisfied:

Fom � 1 (5.E.1-34)

corresponding to sufficiently long contact times. Note that quasi-steady-state implies
that the time dependence enters implicitly through the boundary condition at the
upper surface rather than explicitly via the unsteady-state term in equation (5.E.1-
25). The concentration dependence of the density given by equation (5.E.1-24) can
be ignored if the following criterion is satisfied:


ρ0
AB

ρ0
B

ωA0 � 1 ⇒ 
ρ0
AB

ρ0
B

ωA0 = ◦(1) (5.E.1-35)

Equation (5.E.1-30) indicates that an additional simplification is possible when the
Biot number is very small: namely, that

∂ω∗
A

∂z∗ � 1 if Bim � 1 (5.E.1-36)

This simplified problem, which is the small Biot number approximation for mass
transfer, is solved in a manner similar to that shown in detail in Section 4.4 for an
analogous problem in heat transfer.
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5.E.2 Taylor Dispersion

Sir Geoffrey Taylor developed a widely used approximation for the manner in which
a pulse or step change in concentration disperses as it is convected downstream; this
phenomenon, which is called Taylor dispersion, causes the sharp boundary at the
leading edge of the pulse or step change to become diffuse, due to the combined
action of species diffusion and differential convection arising from the velocity
profile.27 Sir Geoffrey Taylor developed this approximation via very clever intuitive
arguments. In this example we develop the Taylor dispersion approximation using
systematic scaling analysis.

Consider steady-state fully developed laminar flow of a Newtonian fluid com-
posed of pure component B having constant physical properties in a cylindrical tube
having radius R, as shown in Figure 5.E.2-1. At time t = 0, the fluid is changed
instantaneously to pure component A while maintaining all other aspects of the
flow. Although the interface between fluid A and B is initially planar, it will begin
to disperse as a result of convection and molecular diffusion. Convective transport
will cause component A near the center of the tube to move farther downstream
than that near the wall, due to the parabolic velocity profile. Superimposed on this
convection of component A are both radial and axial diffusion; the former will
cause diffusion of component A between the center of the tube and the wall. This
combined species diffusion and convection, which is due to a nonuniform velocity
profile, is referred to as Taylor dispersion.

We begin by writing the appropriately simplified species-balance equation given
by equation (G.2-5) in the Appendices (step 1):

∂cA

∂t
+ uz

∂cA

∂z
= DAB

∂2cA

∂z2
+ DAB

1

r

∂

∂r

(

r
∂cA

∂r

)

(5.E.2-1)

where the axial velocity is given by

uz = 2U

(

1 − r2

R2

)

(5.E.2-2)

R  
z  

Pure component APure component  B

r

Increasing time

Figure 5.E.2-1 Fully developed laminar flow in a cylindrical tube of radius R showing
the displacement of liquid B by the continuous injection of immiscible liquid A due to
Taylor dispersion that arises from the combined effects of diffusion and convection via a
nonuniform velocity profile.

27G. I. Taylor, Proc. R. Soc. London, 225A, 473–477 (1954).
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in which U is the average velocity. Note that each term in equation (G.2-5) has been
divided by the molecular weight of component A in arriving at equation (5.E.2-1).
The center of the dispersion zone containing both components A and B will be
convected at the average velocity. Hence, we define a new axial coordinate z̃ ≡
z − Ut and transform equations (5.E.2-1) and (5.E.2-2) to a convected coordinate
system as follows:

∂cA

∂t
+ U

(

1 − 2
r2

R2

)
∂cA

∂z̃
= DAB

∂2cA

∂z̃2
+ DAB

1

r

∂

∂r

(

r
∂cA

∂r

)

(5.E.2-3)

where the time derivative is now evaluated at constant z̃ rather than at constant z;
that is, the time derivative of the concentration is evaluated at a position relative
to the convected dispersion zone. Note that this coordinate transformation modifies
the convection term in the species-balance equation. The corresponding initial and
boundary conditions are given by

cA = 0 at t = 0 (5.E.2-4)

cA is bounded at r = 0 (5.E.2-5)

∂cA

∂r
= 0 at r = R (5.E.2-6)

cA = cA0 at z̃ = −Ut (5.E.2-7)

cA = 0 at z̃ → ∞ (5.E.2-8)

The boundary condition given by equation (5.E.2-5) merely states that the concen-
tration remains finite at the centerline; this is a common condition applied at a
point or axis of symmetry. Equation (5.E.2-6) states that the walls of the tube are
impermeable.

Define the following dimensionless variables (steps 2, 3, and 4):

c∗
A ≡ cA

cs

; r∗ ≡ r

rs

; z̃∗ ≡ z̃

z̃s

; t∗ ≡ t

ts
(5.E.2-9)

Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 5 and 6):

r2
s

DABts

∂c∗
A

∂t∗
+ Ur2

s

DABz̃s

(

1 − 2
r2
s

R2
r∗2
)

∂c∗
A

∂z̃∗ = r2
s

x2
s

∂2c∗
A

∂z̃∗2
+ 1

r∗
∂

∂r∗

(

r∗ ∂c∗
A

∂r∗

)

(5.E.2-10)

c∗
A = 0 at t∗ = 0 (5.E.2-11)

c∗
A is bounded at r∗ = 0 (5.E.2-12)

∂c∗
A

∂r∗ = 0 at r∗ = R

rs

(5.E.2-13)
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c∗
A = cA0

cs

at z̃∗ = −Uts

z̃s

t∗ (5.E.2-14)

c∗
A = 0 at z̃∗ → ∞ (5.E.2-15)

Now let us determine the scale factors (step 7). The dimensionless concentra-
tion and radial coordinate can be bounded to be ◦(1) by the following choice of
scale factors that emanate from the dimensionless groups in equations (5.E.2-13)
and (5.E.2-14): cs = cA0 and rs = R. Since this is inherently unsteady-state mass
transfer, we choose the observation time as our time scale; that is, ts = to. Since the
principal terms in the dispersion process are axial convection and radial diffusion,
the dimensionless group multiplying the convection term in equation (5.E.2-10) is
set equal to 1, which provides the axial length scale; that is, z̃s = UR2/DAB . Our
dimensionless describing equations then assume the form

1

Fom

∂c∗
A

∂t∗
+ (1 − 2r∗2) ∂c∗

A

∂z̃∗ = 1

Pe2
m

∂2c∗
A

∂z̃∗2
+ 1

r∗
∂

∂r∗

(

r∗ ∂c∗
A

∂r∗

)

(5.E.2-16)

c∗
A = 0 at t∗ = 0 (5.E.2-17)

c∗
A is bounded at r∗ = 0 (5.E.2-18)

∂c∗
A

∂r∗ = 0 at r∗ = 1 (5.E.2-19)

c∗
A = 1 at z̃∗ = −Fomt∗ (5.E.2-20)

c∗
A = 0 at z̃∗ → ∞ (5.E.2-21)

where

Fom ≡ DABto

R2
(5.E.2-22)

is the solutal Fourier number or Fourier number for mass transfer, which is a
measure of the ratio of the observation time to the characteristic diffusion time, and

Pem ≡ UR

DAB

= UR

ν

ν

DAB

= Re · Sc (5.E.2-23)

is the solutal Peclet number or Peclet number for mass transfer, which is a measure
of the convection to diffusion of species, Re is the Reynolds number, which is a
measure of the convection to viscous transport of momentum, and Sc is the Schmidt
number, which is a measure of the viscous transport of momentum to diffusive
transport of species.

If the following conditions apply, these describing equations can be reduced
to those considered by Sir Geoffrey Taylor in his classical development of Taylor
dispersion (step 8; see footnote 27):

Fom � 1 ⇒ quasi-steady-state can be assumed (5.E.2-24)
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Pe2
m � 1 ⇒ axial diffusion can be ignored (5.E.2-25)

Note that ignoring this unsteady-state term in equation (5.E.2-16) term does not
mean that the dispersion is not time-dependent; it merely means that it is not time-
dependent in a convected coordinate system; the time dependence enters through
the axial coordinate in the convected coordinate system. Sir Geoffrey developed
an approximate solution to the resulting simplified system of describing equations
by assuming that ∂c∗

A/ − ∂z̃∗ was constant (see footnote 27). He used intuitive
arguments to conclude that his solution was a reasonable approximation to the
solution for the full set of describing equations if Fom � 0.25 and Pem � 6.9.
These conditions agree well with those given equations (5.E.2-24) and (5.E.2-25).
The full set of describing equations were solved numerically by Gill et al.; their
solution confirms the criteria given by equations (5.E.2-24) and (5.E.2-25) for the
applicability of Sir Geoffrey’s approximate solution.28

5.E.3 Convective Diffusion in a Tapered Pore

Consider steady-state binary gas-phase diffusion at constant pressure and tempera-
ture through a pore having a nonconstant circular cross-sectional area whose radius
R is given by R = R0 − β

√
z, where β is a constant. Figure 5.E.3-1 shows a

cross-sectional view of this model pore along a plane that cuts through its axis of
symmetry. The binary gas mixture at the mouth of the pore is assumed to be dilute
in the diffusing component, whose concentration is maintained at a constant value
cA0 (moles/volume). The concentration of the diffusing component is maintained
at zero at the other end of the pore, where z = L. The diffusion coefficient may be

R0

R = R0 − b z

r
z

cA = cA0

cA = 0

L

n
→

Figure 5.E.3-1 Binary diffusion of a dilute gas at constant temperature and pressure
through a tapered pore having length L and a circular cross-section with a radius given
by R = R0 − β

√
z.

28V. Ananthakrishnan, W. N. Gill, and A. J. Barduhn, A.I.Ch.E. J., 11(6), 1063–1072 (1965).
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assumed to be constant. Scaling analysis is used to determine when radial diffusion
can be ignored relative to axial diffusion.

The appropriately simplified species-balance equation given by equation (G.2-
10) in the Appendices and corresponding boundary conditions are given by

0 = DAB

∂2cA

∂z2
+ DAB

1

r

∂

∂r

(

r
∂cA

∂r

)

(5.E.3-1)

cA = cA0 at z = 0 (5.E.3-2)

cA = 0 at z = L (5.E.3-3)

∂cA

∂r
= 0 at r = 0 for 0 ≤ z ≤ L (5.E.3-4)

NA · n = 0 at r = R(z) = R0 − β
√

z, 0 ≤ z ≤ L (5.E.3-5)

where n is the unit normal vector to the pore wall as shown in Figure 5.E.3-1 (step
1).

Define the following dimensionless variables (steps 2, 3, and 4):

c∗
A ≡ cA

cs

; N∗
A ≡ NA

NAs

; z∗ ≡ z

zs

; r∗ ≡ r

rs

(5.E.3-6)

A scale factor is introduced for the mass-transfer flux NA, although this is a for-
mality since it will not be necessary to determine this scale factor to assess when
radial diffusion can be ignored.

Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 5 and 6):

0 = ∂2c∗
A

∂z∗2
+ z2

s

r2
s

1

r∗
∂

∂r∗

(

r∗ ∂c∗
A

∂r∗

)

(5.E.3-7)

c∗
A = cA0

cs

at z∗ = 0 (5.E.3-8)

c∗
A = 0 at z∗ = L

zs

(5.E.3-9)

∂c∗
A

∂r∗ = 0 at r∗ = 0 for 0 ≤ z∗ ≤ L

zs

(5.E.3-10)

N∗
A · n = 0 at r∗ = R0

rs

− β
√

zs

rs

√
z∗, 0 ≤ z∗ ≤ L

zs

(5.E.3-11)

The following considerations determine the scale factors (step 7). The dimen-
sionless concentration and axial coordinate can be bounded to be ◦(1) by the
following choice of scale factors, which emanate from the dimensionless groups
in equations (5.E.3-8) and (5.E.3-9): cs = cA0 and zs = L. Note that to ensure that
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r∗ is ◦(1), we want the largest possible value for rs ; this corresponds to setting
the appropriate dimensionless group in equation (5.E.3-11) equal to 1 to obtain
rs = R0.

Our dimensionless describing equations then assume the form

0 = ∂2c∗
A

∂z∗2
+
(

L

R0

)2 1

r∗
∂

∂r∗

(

r∗ ∂c∗
A

∂r∗

)

(5.E.3-12)

c∗
A = 1 at z∗ = 0 (5.E.3-13)

c∗
A = 0 at z∗ = 1 (5.E.3-14)

∂c∗
A

∂r∗ = 0 at r∗ = 0 for 0 ≤ z∗ ≤ 1 (5.E.3-15)

N∗
A · n = 0 at r∗ = 1 − β

√
L

R0

√
z∗, 0 ≤ z∗ ≤ 1 (5.E.3-16)

Equation (5.E.3-12) then indicates that to ignore radial relative to axial diffusion
the following criterion must be satisfied (step 8):

(
L

R0

)2

� 1 (5.E.3-17)

Note that this criterion will always break down for sufficiently long pores. This
limitation is explored further in Practice Problem 5.P.3.

5.E.4 Dissolution of a Spherical Capsule

Consider a solid spherical capsule of a pure material A having an initial radius
R0. Assume that this capsule is ingested into the stomach, where it progressively
dissolves while undergoing a first-order reaction with the stomach fluid B given by
RA = k1cA (moles/volume·time), in which k1 is the reaction-rate constant. Equilib-
rium is assumed at the interface between the capsule and stomach fluid, at which
the concentration of A is cA0 (moles/volume).29 The solution will be assumed
to be sufficiently dilute so that any bulk flow arising from the mass transfer is
negligible; that is, the fluid phase is assumed to be quiescent so that the mass
transfer is purely diffusive. A schematic of this dissolution process is shown in
Figure 5.E.4-1. We use scaling to explore how the describing equations can be
simplified.

29Note that in practice it would be difficult to measure this equilibrium concentration if component A

reacts in the liquid phase with component B. However, it would be possible to infer the equilibrium
concentration from measurements of the dissolution process if the kinetic constant for the homogeneous
reaction were known.
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R(t)
r

Solid spherical
capsule of pure
component A

Stomach liquid B in
which component A
dissolves and reacts

Moving interfacial
boundary due to
dissolution of capsule

Figure 5.E.4-1 Solid spherical capsule of pure component A dissolving in stomach liquid
B, accompanied by a first-order homogeneous chemical reaction.

The appropriately simplified form of the species-balance equation in spherical
coordinates given by equation (G.3-10) in the Appendices and the corresponding
initial and boundary conditions are (step 1)

∂cA

∂t
= DAB

[
1

r2

∂

∂r

(

r2 ∂cA

∂r

)]

− k1cA (5.E.4-1)

cA = 0, R = R0 at t = 0 (5.E.4-2)

cA = cA0 at r = R(t) (5.E.4-3)

cA = 0 as r → ∞ (5.E.4-4)

where cA is the molar concentration (moles/volume) and R0 is the initial radius
of the capsule. Since the dissolution of the spherical capsule implies that this
is a moving boundary problem, an auxiliary condition is needed to locate the
instantaneous position of the interface, denoted here by R(t). This comes from an
integral species balance on the spherical capsule and the stomach fluid, shown in
detail here to illustrate how the homogeneous reaction term is handled:

d

dt

∫ R

0

ρ0
A

MA

4πr2 dr + d

dt

∫ ∞

R

cA4πr2 dr = −
∫ ∞

R

k1cA4πr2 dr (5.E.4-5)

where MA and ρ0
A are the molecular weight and solid mass density of pure com-

ponent A, respectively. The last term in equation (5.E.4-5) accounts for loss of
species A due to the homogeneous chemical reaction. Application of Leibnitz’s
rule for differentiating an integral given by equation (H.1-2) in the Appendices
and substitution of equation (5.E.4-1) into equation (5.E.4-5) then yields

(
ρ0

A

MA

− cA

)

R2 dR

dt
− DABR2 ∂cA

∂r
= 0 at r = R (5.E.4-6)

Note that for dilute solutions, cA � ρ0
A/MA. The initial condition needed to solve

equation (5.E.4-6) is given in equation (5.E.4-2).
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Define the following dimensionless variables (steps 2, 3, and 4):

c∗
A ≡ cA

cs

; R∗ ≡ R

Rs

;
(

dR

dt

)∗
≡ 1

Ṙs

dR

dt
; r∗ ≡ r − rr

rs

; t∗ ≡ t

ts
(5.E.4-7)

Note that we have introduced a reference factor since r is not naturally referenced
to zero. We also have introduced a separate scale factor, Ṙs , for the dissolution
velocity of the spherical capsule dR/dt since there is no reason to assume that this
will scale as rs/ts .

Introduce these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of one term in each equation (steps 5 and 6):

r2
s

DABts

∂c∗
A

∂t∗
= 1

(r∗ + rr/rs)2

∂

∂r∗

[

(r∗ + rr/rs)
2 ∂c∗

A

∂r∗

]

− k1r
2
s

DAB

c∗
A (5.E.4-8)

c∗
A = 0, R∗ = R0

Rs

at t∗ = 0 (5.E.4-9)

c∗
A = cA0

cs

at r∗ = R − rr

rs

(5.E.4-10)

c∗
A = 0 as r∗ → ∞ (5.E.4-11)

(
dR

dt

)∗
− MADABcs

ρ0
AṘsrs

∂c∗
A

∂r∗ = 0 at r∗ = R − rr

rs

(5.E.4-12)

The boundary condition given by equation (5.E.4-10) indicates that we can bound
c∗
A to be ◦(1) by setting cs = cA0 and can reference r∗ to zero by choosing rr = R.

The proper scale factor for the spatial coordinate depends on the conditions for
which we are scaling this problem. Let us first consider the case where the homo-
geneous chemical reaction is sufficiently slow such that quasi-steady-state is never
possible. Hence, the proper time scale is the observation time to. For this case the
diffusion term must always balance the unsteady-state term in equation (5.E.4-8);
the proper scale for the spatial coordinate is rs = √

DABto. The dimensionless
sphere size can be bounded to be ◦(1) by setting the dimensionless group in
equation (5.E.4-9) to 1 to obtain Rs = R0. Since the two terms in equation (5.E.4-
12) must balance, the scale for the dissolution velocity of the capsule is found to
be Ṙs = MAcA0

√
DAB/ρ0

A

√
to.

These scale and reference factors then result in the following dimensionless
describing equations (step 7):

∂c∗
A

∂t∗
− MAcA0

ρ0
A

(
dR

dt

)∗
∂c∗

A

∂r∗

= 1
(

r∗ + R√
DABto

)2

∂

∂r∗

[(

r∗ + R√
DABto

)2
∂c∗

A

∂r∗

]

− k1toc
∗
A (5.E.4-13)
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c∗
A = 0, R∗ = 1 at t∗ = 0 (5.E.4-14)

c∗
A = 1 at r∗ = 0 (5.E.4-15)

c∗
A = 0 as r∗ → ∞ (5.E.4-16)

(
dR

dt

)∗
− ∂c∗

A

∂r∗ = 0 at r∗ = 0 (5.E.4-17)

Note that an additional term now appears in equation (5.E.4-13) because of the
transformation from a fixed coordinate system to one that is referenced to the
moving interface of the spherical capsule. This is another example of the fact that
one has to be careful when applying the chain rule of differentiation in transforming
to the dimensionless variables.

Now let us consider how equations (5.E.4-13) through (5.E.4-17) can be sim-
plified (step 8). Note that the characteristic length rs = √

DABto defines a region
of influence wherein the diffusive mass transfer is essentially confined. For suffi-
ciently short times such that R/

√
DABt0 � 1, one can ignore the curvature effects

in equation (5.E.4-13). Note, however, that this approximation will break down
for sufficiently long times or when the capsule size becomes very small. One can
estimate when the curvature effects become important by using the scale factor
Ṙs to obtain an approximate solution for the instantaneous location of the capsule
interface applicable for short contact times:

Ṙs
∼= dR

dt
= −MAcA0

√
DAB

ρ0
A

√
to

⇒ R ∼= R0 − 2MAcA0
√

DABto

ρ0
A

(5.E.4-18)

Hence, curvature effects associated with the spherical geometry will need to be
considered when

√
DABt0

R0 − 2MAcA0
√

DABt0/ρ
0
A

= ◦(1) (5.E.4-19)

Note that equation (5.E.4-18) also provides an estimate of the time required for
the capsule to dissolve. A further simplification of equation (5.E.4-13) is possible
if k1t0 � 1, in which case the effect of the homogeneous chemical reaction can
be ignored. Note, however, that this approximation will always break down for
sufficiently long contact times such that k1t0 = ◦(1). In arriving at this set of
describing equations we already have made the dilute solution assumption; that is,
MAcA0/ρ

0
A � 1, which implies that the pseudo-convection term arising from the

coordinate transformation can also be ignored.
Now let us consider conditions for which the homogeneous reaction term is

always important. In this case the characteristic length scale is obtained by bal-
ancing the diffusion term with the reaction term in equation (5.E.4-8), thereby
obtaining rs = √

DAB/k1. This in turn implies that Ṙs = MAcA0
√

DABk1/ρ
0
A. All

the other scale and reference factors remain the same. Hence, our dimensionless
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describing equations assume the form

1

k1to

∂c∗
A

∂t∗
− MAcA0

ρ0
A

(
dR

dt

)∗
∂c∗

A

∂r∗

= 1
(

r∗ + R
√

k1/DAB

)2

∂

∂r∗





(

r∗ + R

√

k1

DAB

)2
∂c∗

A

∂r∗



− c∗
A (5.E.4-20)

c∗
A = 0, R∗ = 1 at t∗ = 0 (5.E.4-21)

c∗
A = 1 at r∗ = 0 (5.E.4-22)

c∗
A = 0 as r∗ → ∞ (5.E.4-23)

(
dR

dt

)∗
− ∂c∗

A

∂r∗ = 0 at r∗ = 0 (5.E.4-24)

The condition for ignoring the pseudo-convection term arising from the coordi-
nate transformation again is MAcA0/ρ

0
A � 1. In this case the curvature effects can

be ignored when R
√

k1/DAB � 1. However, this condition will break down for
sufficiently long times when the capsule radius becomes very small. Again, one
can estimate when the curvature effects become important by using the scale factor
Ṙs to obtain an approximate solution for the instantaneous location of the capsule
interface:

Ṙs
∼= dR

dt
= −MAcA0

√
DABk1

ρ0
A

⇒ R ∼= R0 − MAcA0
√

DABk1

ρ0
A

to (5.E.4-25)

Hence, curvature effects associated with the spherical geometry will need to be
considered when

(

R0 − MAcA0
√

DABk1

ρ0
A

to

)
√

k1

DAB

= O(1) (5.E.4-26)

For fast reaction conditions it is also possible to achieve quasi-steady-state mass
transfer since the unsteady-state term in equation (5.E.4-20) becomes insignificant
when k1t0 � 1. In the latter case all the mass transfer and accompanying chemical
reaction occur within a region of influence whose constant thickness is given by
rs = √

DAB/k1; for very fast reaction conditions this boundary layer can become
very thin. However, unless the reaction is instantaneous, the unsteady-state term
will become significant for sufficiently short observation times.

5.E.5 Mass Transfer to a Rotating Disk: Uniformly Accessible Surface

In Example Problem 3.E.4 we scaled the hydrodynamics for a circular disk rotating
about its axis at a constant angular frequency ω (radians/second) in an infinite
Newtonian fluid having constant physical properties. We used scaling analysis in
the aforementioned example to provide an estimate for the region of influence
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z

−U∞, rA,∞
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rA∞ = 0
+
−

q

w

Figure 5.E.5-1 Mass transfer in laminar flow created by a flat disk rotating in an
unbounded fluid; the rotational motion of the disk draws fluid toward the disk; the axial
velocity and concentration infinitely far removed from the disk are U∞ and ρ∞, respectively.

across which the motion of the disk influences the velocity components. Assume
now that the infinite fluid contains a solute that diffuses toward the rotating disk,
at which it undergoes an electrochemical reaction that reduces its concentration
to zero; that is, the rotating disk constitutes one electrode in an electrochemical
system, as shown in Figure 5.E.5-1. We will use scaling to provide an estimate
of the thickness of the mass-transfer boundary layer. A knowledge of this mass-
transfer boundary-layer thickness is important since it must be much smaller than
the radius of the rotating disk, to ensure that the finite container and edge effects
are negligible.

We build our mass-transfer model based on the results of Example Pro-
blem 3.E.4. In theory, this mass-transfer problem involves the coupled equations
of motion and species-balance equations. However, we assume that the solution is
dilute and the mass-transfer rates are sufficiently small so that the solution to the
equations-of-motion is decoupled from that for species balance. Hence, the veloc-
ity profiles are given by the solution to the appropriately simplified equations of
motion given in Example Problem 3.E.4, which established that uz, P, rur , and
ruθ are functions only of the axial coordinate z.

The rotating disk is analyzed as a uniformly accessible surface: that is, a sur-
face for which the mass-transfer flux is not a function of the radial or angular
coordinates. This concept of the uniformly accessible surface is presented without
proof in standard references on mass transfer. Hence, we begin this example by
developing a rigorous proof that in the absence of finite container and edge effects,
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the rotating disk, provides a uniformly accessible surface. To do this, consider a
species balance on a control volume having arbitrary radius r and extending from
the surface of the rotating disk far into the quiescent region of the fluid, where there
is only an axial velocity component given by uz = −U∞, and the concentration is
ρ∞, expressed in terms of the species mass per unit volume. A species balance on
this control volume then yields

ρA∞U∞πr2 =
∫ r

0
nAz|z=0 · 2πr̃ dr̃ −

∫ ∞

0
nAr · 2πr dz (5.E.5-1)

where r̃ denotes a dummy integration variable. From Fick’s law of diffusion applied
at the surface of the disk and at the circumferential boundary defined by the arbitrary
value of r along with the results of equations (3.E.4-1), we have

nAz = −DAB

∂ρA

∂z
+ ρAuz ⇒ nAz|z=0 = −DAB

∂ρA

∂z
(5.E.5-2)

nAr = −DAB

∂ρA

∂r
+ ρAur = −DAB

∂ρA

∂r
+ ρArf1(z) (5.E.5-3)

Substituting equations (5.E.5-2) and (5.E.5-3) into equation (5.E.5-1) then yields

ρA∞U∞πr2 = −2πDAB

∫ r

0

∂ρA

∂z

∣
∣
∣
∣
z=0

r̃ dr̃

+ 2πrDAB

∫ ∞

0

∂ρA

∂r
dz − 2πr2

∫ ∞

0
ρAf1(z) dz

(5.E.5-4)

Equation (5.E.5-4) can be rearranged into the form

ρA∞U∞ + 2
∫ ∞

0
ρAf1(z) dz = 2DAB

r

(∫ ∞

0

∂ρA

∂r
dz −

∫ r

0

∂ρA

∂z

∣
∣
∣
∣
z=0

dr̃

)

(5.E.5-5)

Since the left-hand side of equation (5.E.5-5) is a constant, to ensure that the
right-hand side is also a constant, the only possible solution for ρA is of the
form

ρA = f5(z) (5.E.5-6)

that is, the concentration is a function only of the axial coordinate. This then implies
that the mass-transfer flux along the surface of the rotating disk is a constant; that
is, the surface of the disk is uniformly accessible. For this reason the rotating
disk is frequently used to determine kinetic constants for reacting system since the
electrode current provides a direct measure of the mass-transfer flux.

We now can proceed with our scaling analysis to estimate the mass-transfer
boundary-layer thickness. The relevant form of the species-balance equation given
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by equation (G.2-5) in the Appendices for a uniformly accessible rotating disk then
is given by the following:

uz

dρA

dz
= DAB

d2ρA

dz2
(5.E.5-7)

The corresponding boundary conditions are given by (step 1)

ρA = 0 at z = 0 (5.E.5-8)

ρA = ρA∞ as z → ∞ (5.E.5-9)

Define the following dimensionless variables involving unspecified scale factors
(steps 2, 3, and 4):

ρ∗
A ≡ ρA

ρs

; u∗
z ≡ uz

uzs

; z∗ ≡ z

zs

(5.E.5-10)

We have used the scaling results of Example Problem 3.E.4 in defining the
dimensionless velocity. Introduce these dimensionless variables into the describing
equations and divide through by the coefficient of one term in each equation that
should be retained (steps 5 and 6):

u∗
z

dρ∗
A

dz∗ = DAB

uzszs

d2ρ∗
A

dz∗2
(5.E.5-11)

ρ∗
A = 0 at z∗ = 0 (5.E.5-12)

ρ∗
A = ρA∞

ρs

as z∗ → ∞ (5.E.5-13)

In determining our scale factors (step 7) we first recognize that the velocity scale
was determined in Example Problem 3.E.4 and is given by equation (3.E.4-25) as
uzs = √

ων. Equations (5.E.5-12) and (5.E.5-13) indicate that the dimensionless
concentration can be bounded to be ◦(1) if we set ρs = ρA∞. Since both diffusive
and convective transport cannot be neglected in this problem, the two terms in
equation (5.E.5-11) must balance; this provides the length scale zs = DAB/uzs ;
hence, zs = DAB/

√
ων.

Now let us use our scaling results to enhance our understanding of this mass-
transfer problem (step 8). The length scale zs is a measure of the region of influence
or boundary-layer thickness δs wherein the concentration goes from its far-field
value of ρA∞ to zero. It is instructive to recast zs = δs in terms of the momentum
boundary-layer thickness δm determined in Example Problem 3.E.4:

zs = δs = DAB√
ων

= DAB

ν
δm = 1

Sc
δm (5.E.5-14)
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where Sc ≡ ν/DAB is the Schmidt number, which is a measure of the ratio of the
viscous transfer of momentum to the diffusive transfer of mass. Since Sc � 1 for
liquids, the concentration boundary layer will be much thinner than the momentum
boundary layer. Hence, the limiting criterion with respect to the importance of
finite container and edge effects will be determined by the momentum rather than
the concentration boundary-layer thickness; that is, the radius of the rotating disk
must be much greater than δm.

5.E.6 Field-Flow Fractionation

Field-flow fractionation is a technique for separating small particles such as proteins
and viruses from a carrier fluid such as water by combining a longitudinal laminar
flow with a transverse field. The latter can be a thermal gradient, centrifugal force,
electrical field, or transverse flow. Here we consider the latter, which is referred to
as flow-field-flow fractionation. A transverse flow field can be imposed by making
the closely spaced parallel lateral walls of the horizontal flow channel consist of
two permeable membranes. Inflow and outflow of the same carrier fluid (without
particles) occurs through the upper and lower membranes, respectively. This drives
the particles, which are injected as a pulse in the axially flowing fluid, toward the
lower membrane. This increase in particle concentration at the lower membrane
causes a counterdiffusion of particles toward the upper membrane. The opposing
convective and diffusive fluxes establish a layering of the particles near the lower
membrane. Larger particles that have smaller diffusivities form layers closer to the
lower membrane wall. Due to the fact that the axial velocity is smaller near the
membrane surface, the larger particles will be eluted or pass through the flow-field-
flow fractionation device more slowly than will the smaller particles. Hence, the
total volume eluted from the device correlates directly with the particle size, thereby
achieving the desired separation if the channel is sufficiently long. A schematic
of the flow-field-flow fractionation device is shown in Figure 5.E.6-1. An early
analysis of flow-field-flow fractionation claimed that the thickness of the steady-
state exponential layer formed near the lower membrane would be equal to the
binary diffusion coefficient DAB divided by the transverse flow velocity V .30 Here
we use scaling to justify this claim and to ascertain the criteria required for its
applicability.

The species-balance equation given by equation (G.1-5) in the Appendices
reduces to the following for flow-field-flow fractionation (step 1):

∂cA

∂t
+ ux

∂cA

∂x
+ uy

∂cA

∂y
= DAB

∂2cA

∂x2
+ DAB

∂2cA

∂y2
(5.E.6-1)

Note that each term in equation (G.1-5) has been divided by the molecular weight
of component A in order to arrive at equation (5.E.6-1). Scaling can be used to
show that the velocity profile will not be affected by the transverse flow if the

30J. C. Giddings, F. J. F. Yang, and M. N. Myers, Science, 193, 1244–1245 (1976).
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Figure 5.E.6-1 Flow-field-flow fractionation showing injection of a pulse of particles hav-
ing a uniform concentration and initial width Li into fully developed laminar flow; these
particles are convected downstream due to the axial velocity profile and in the transverse
direction due to injection and withdrawal of fluid through permeable membranes at the
upper and lower boundaries; a balance between transverse convection and diffusion causes
the particles to be concentrated in a thin layer near the lower membrane boundary.

Reynolds number based on the transverse velocity is very small: that is, if the
following criterion is satisfied31:

ReV ≡ ρHV

µ
� 1 (5.E.6-2)

where ρ is the mass density, H the spacing between the parallel membranes, V

the transverse injection velocity, and µ the shear viscosity, in which case the fully
developed laminar flow velocity profile referenced to a coordinate system whose
origin is located at the lower membrane boundary is given by

ux = 2U

(
2y

H
− y2

H 2

)

(5.E.6-3)

where U is the average axial velocity. In problems such as this that involve
the injection of a concentration pulse or plug, it is convenient to transform equ-
ation (5.E.6-1) into a coordinate system that moves at the average velocity. The
reason for doing this is that under appropriate conditions the problem might be
considered to be steady-state in a coordinate system translated at the appropriate
average velocity. The appropriate average velocity is not necessarily U if, indeed,
the particles are concentrated near the lower membrane boundary. We use scal-
ing to determine the appropriate average velocity and the conditions under which

31See Practice Problem 3.P.32, which applies scaling analysis to justify this approximation.
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steady-state can be assumed. Hence, we define a new axial coordinate x̃ ≡ x −
Uwt , where Uw is an appropriate average velocity near the membrane boundary
wherein the particles are confined. In this convected coordinate system equa-
tion (5.E.6-1) assumes the form:

∂cA

∂t
+ (ux − Uw)

∂cA

∂x̃
+ uy

∂cA

∂y
= DAB

∂2cA

∂x̃2
+ DAB

∂2cA

∂y2
(5.E.6-4)

where the time derivative is now evaluated at constant x̃ rather than at constant x.
The corresponding initial and boundary conditions are given by

cA = cA0 for 0 ≤ x̃ ≤ Li

cA = 0 for Li ≤ x̃ ≤ L

}

at t = 0 (5.E.6-5)

cA = 0 at x̃ = −Uwt (5.E.6-6)

cA = f (y) at x̃ = L − Uwt (5.E.6-7)

NA = −DAB

∂cA

∂y
− V cA = 0 at y = 0 (5.E.6-8)

NA = −DAB

∂cA

∂y
− V cA = 0 at y = 2H (5.E.6-9)

where DAB is the binary diffusion coefficient. The initial condition given by
equation (5.E.6-5) states that a pulse having concentration cA0 is injected over
length Li . Equation (5.E.6-6) states that the inlet concentration drops to zero after
the initial injection of the particles. Equation (5.E.6-7) is a formal statement that a
downstream boundary condition must be specified, although in practice this con-
dition might not be known. Equations (5.E.6-8) and (5.E.6-9) are a statement that
the particles cannot permeate through the membranes that constitute the lower and
upper boundaries, respectively.

Define the following dimensionless variables (steps 2, 3, and 4):

c∗
A ≡ cA

cs

; x̃∗ ≡ x̃

x̃s

; y∗ ≡ y

ys

;
(

∂cA

∂x̃

)∗
≡ 1

cxs

∂cA

∂x̃
(5.E.6-10)

Note that we have introduced a scale for the axial derivative of the concentration
since it will not scale with the ratio of the concentration scale divided by the
axial length scale; indeed, the characteristic value of this gradient is determined by
change in concentration over the convected pulse of particles in the wall region.
Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 5 and 6):

y2
s

DABts

∂c∗
A

∂t∗
+ 4Uy3

s cxs

DABHcs

(

y∗ − 1

2

ys

H
y∗2 − 1

4

UwH

Uys

)(
∂cA

∂x̃

)∗

− Vys

DAB

∂c∗
A

∂y∗ = yscxs

x̃scs

∂

∂x̃∗

(
∂cA

∂x̃

)∗
+ ∂2c∗

A

∂y∗2

(5.E.6-11)
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c∗
A = cA0

cs

for 0 ≤ x̃∗ ≤ Li

xs

c∗
A = 0 for

Li

x̃s

≤ x̃∗ ≤ L

x̃s







at t∗ = 0 (5.E.6-12)

c∗
A = 0 at x̃∗ = −Uwts

x̃s

t∗ (5.E.6-13)

c∗
A = f (y∗) at x̃∗ = L

x̃s

− Uwts

x̃s

t∗ (5.E.6-14)

∂c∗
A

∂y∗ + Vys

DAB

c∗
A = 0 at y∗ = 0 (5.E.6-15)

∂c∗
A

∂y∗ + Vys

DAB

c∗
A = 0 at y∗ = 2H

ys

(5.E.6-16)

The scale factors are determined via the following considerations (step 7). The
dimensionless concentration and axial coordinate can be bounded to be ◦(1) by
setting the relevant dimensionless groups in equation (5.E.6-12) equal to 1 to obtain
cs = cA0 and xs = L. The principle of flow-field-flow fractionation is that the par-
ticles are confined within a thin layer whose thickness is determined by a balance
between the transverse convection and counterdiffusion of particles. This implies
that the two terms in equation (5.E.6-15) must balance each other; this yields the
transverse length scale as

Vys

DAB

= 1 ⇒ ys = DAB

V
(5.E.6-17)

Note that this estimate for ys is the same as the characteristic thickness of the
‘steady-state exponential layer’ cited for flow-field-flow fractionation (see footnote
30). The axial convection must be of the same order as the transverse diffusion near
the lower membrane boundary where the particles are concentrated; this provides
the scale for the axial concentration gradient as follows:

4Uy3
s cxs

DABHcs

= 4UD2
ABcxs

V 3HcA0
= 1 ⇒ cxs = V 3HcA0

4UD2
AB

(5.E.6-18)

Since this is inherently an unsteady-state problem, the time scale is the observation
time; that is, ts = to.

Our dimensionless describing equations then assume the form

1

FomPe2
V

∂c∗
A

∂t∗
+
(

y∗ − 1

2

1

PeV

y∗2 − 1

4
PeV

Uw

U

)(
∂cA

∂x̃

)∗
− ∂c∗

A

∂y∗

= 1

4

PeV

Pem

H

L

∂

∂x̃∗

(
∂cA

∂x̃

)∗
+ ∂2c∗

A

∂y∗2

(5.E.6-19)
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c∗
A = 1 for 0 ≤ x̃∗ ≤ Li

L

c∗
A = 0 for

Li

L
≤ x̃∗ ≤ 1







at t∗ = 0 (5.E.6-20)

c∗
A = 0 at x̃∗ = −Uwto

L
t∗ (5.E.6-21)

c∗
A = f (y∗) at x̃∗ = 1 − Uwto

L
t∗ (5.E.6-22)

∂c∗
A

∂y∗ + c∗
A = 0 at y∗ = 0 (5.E.6-23)

∂c∗
A

∂y∗ + c∗
A = 0 at y∗ = 2PeV (5.E.6-24)

where Pem ≡ UH/DAB and PeV ≡ V H/DAB are the Peclet numbers for mass
transfer based on U and V , respectively, and Fom ≡ toDAB/H 2 is the solutal
Fourier number.

Now let us examine the scaled describing equations to assess how these might
be simplified (step 8). Let us first estimate the thickness of the layer wherein the
particles are concentrated near the lower membrane boundary. This thickness is
characterized by ys , whose dimensionless value is inversely proportional to PeV ;
that is,

ys

H
= DAB

V H
= 1

PeV

(5.E.6-25)

For typical Flow-Field-Flow Fractionation operating conditions, PeV
∼= 102; hence,

the particles are confined to a thin layer very close to the lower membrane boundary.
Equation (5.E.6-19) indicates that only the linear portion of the velocity profile near
the lower membrane need be considered if the following conditions apply:

PeV � 1 ⇒ linear velocity-profile approximation (5.E.6-26)

This velocity profile can be obtained by expanding equation (5.E.6-3) in a Taylor
series, which permits determining Uw , the average velocity within the thin particle
layer:

ux
∼= 4U

y

H
⇒ Uw = 2U

ys

H
= 2UDAB

V H
= 2U

PeV

(5.E.6-27)

When this value for Uw is substituted into equation (5.E.6-19), we see that the
pseudo-convection term arising from transforming to a convected coordinate system
is an ◦(1) term, as might be expected.

Quasi-steady-state can be assumed if the following condition is satisfied:

Fom · Pe2
V � 1 ⇒ quasi-steady-state (5.E.6-28)
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Typical conditions for flow-field-flow fractionation indicate that this condition is
satisfied within approximately 20 seconds for an elution process that lasts several
hours. Note that dropping the unsteady-state term in equation (5.E.6-19) does not
imply that we are assuming that the process is steady-state; indeed, time enters
through the spatial coordinate in our convected coordinate system; that is, x̃ = x −
Uwt . The axial diffusion term can be ignored if the following condition is satisfied:

PeV

Pem

H

L
� 1 ⇒ axial diffusion can be neglected (5.E.6-29)

This is also easily satisfied for flow-field-flow fractionation, for which typical values
are Pem = 104 and H/L = 10−4.

In view of these considerations, our describing equations can be simplified to

(

y∗ − 1

2

)(
∂cA

∂x̃

)∗
− ∂c∗

A

∂y∗ = ∂2c∗
A

∂y∗2
(5.E.6-30)

c∗
A = 0 at x̃∗ = −2

PemFom

PeV

H

L
(5.E.6-31)

∂c∗
A

∂y∗ + c∗
A = 0 at y∗ = 0 (5.E.6-32)

∂c∗
A

∂y∗ + c∗
A = 0 at y∗ = ∞ (5.E.6-33)

An analytical solution to these simplified describing equations can be obtained for
the special case of ∂cA/∂x̃ = 0, which is given by32

c∗
A = βe−y∗

(5.E.6-34)

Since the describing equations constitute a linear homogeneous differential equation
with homogeneous boundary conditions, the solution can be obtained only to within
a multiplicative constant, denoted here by β. This unknown constant can be deter-
mined by equating the total eluted mass of particles to the initial mass of particles
that is injected. Equation (5.E.6-34) then clearly establishes that flow-field-flow
fractionation results in a steady-state exponential layer whose thickness is given by
DAB/V , as was stated in the introductory remarks for this example.

5.E.7 Mass Transfer in a Membrane Permeation Cell

Consider a gas-permeable polymer film of thickness L that is placed in a cylindrical
permeation cell of circular cross-sectional area Sc, as shown in Figure 5.E.7-1. The
permeable polymer film divides the permeation cell into an upper and a lower

32This is equivalent to assuming no axial concentration changes in the layer of particles that is convected
at the average velocity in the region near the lower membrane boundary.
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Pressure gauge

Upper chamber at variable pressure
P(t) and constant volume Vu

Lower chamber at constant pressure
P0

Polymer film of thickness L
and area Sc

Figure 5.E.7-1 Membrane permeation cell in which a permeable polymer film separates the
lower and upper chambers, both of which are evacuated initially; the membrane permeability
can be determined by injecting a permeable gas into the lower chamber and then measuring
the change in pressure in the upper chamber.

chamber, as shown in the figure; the volume of the upper chamber is denoted by
Vu. Initially, both the upper and lower chambers are evacuated such that their initial
pressure is P = 0. At time t = 0 a permeable single-component gas is introduced
into the lower chamber at pressure P0, and maintained at this pressure. This pure
gas then begins to permeate through the polymer film into the upper evacuated
chamber, causing its pressure to increase gradually. The pressure in the upper
chamber at any time is denoted by P (t), implying that the pressure in the upper
chamber is a continuously increasing function of time. The permeating component
can be assumed to form a dilute solution in the polymer film whose solubility is
described by ρA = HP ,where ρA is the concentration (mass/volume) and H is the
Henry’s law constant.

Typical data obtained using this apparatus are shown in Figure 5.E.7-2, in which
the pressure in the upper chamber is plotted as a function of time. Note that
there is a short period of time during which the pressure in the upper chamber
remains at zero. This is followed by another relatively short period of time during
which the pressure in the upper chamber increases nonlinearly. Finally, there is
a relatively long period of time during which the pressure in the upper chamber
increases linearly. We use scaling analysis to explain this interesting behavior and
to determine useful properties of the membrane that we can extract from these data.

The appropriate form of the species-balance equations given by equation (G.1-
5) in the Appendices and the corresponding initial and boundary conditions are
(step 1)

∂ρA

∂t
= DAB

∂2ρA

∂x2
(5.E.7-1)

ρA = 0, P = P0 at t = 0 (5.E.7-2)

ρA = HP0 at x = 0 (5.E.7-3)
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Figure 5.E.7-2 Pressure in the upper chamber versus time from the inception of the per-
meation process through the membrane separating the upper and lower chambers.

ρA = HP at x = L (5.E.7-4)

The boundary condition given by equation (5.E.7-4) is in terms of the unknown
instantaneous pressure in the upper chamber. The auxiliary equation needed to
determine this pressure can be obtained from an integral mass balance on the
upper chamber as follows:

d

dt
(cVu) = Vu

RT

dP

dt
= −DABSc

MA

∂ρA

∂x

∣
∣
∣
∣
x=L

(5.E.7-5)

where c is the molar density of the gas in the upper chamber, R the gas constant,
and T the absolute temperature.

Define the following dimensionless variables (steps 2, 3, and 4):

ρ∗
A ≡ ρA

ρs

; P ∗ ≡ P

Ps

;
(

dP

dt

)∗
≡ 1

Ṗs

dP

dt
; x∗ ≡ x

xs

; t∗ ≡ t

ts
(5.E.7-6)

Note that we have introduced a separate scale, Ṗs , for the time derivative of the
pressure since there is no reason why this should scale with Ps and ts .

Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 5 and 6):

x2
s

DABts

∂ρ∗
A

∂t∗
= ∂2ρ∗

A

∂x∗2
(5.E.7-7)

ρ∗
A = 0, P ∗ = P0

ρs

at t∗ = 0 (5.E.7-8)

ρ∗
A = HP0

ρs

at x∗ = 0 (5.E.7-9)
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ρ∗
A = HPs

ρs

P ∗ at x∗ = L

xs

(5.E.7-10)

(
dP

dt

)∗
= −DABScRTρs

MAVuxsṖs

∂ρ∗
A

∂x∗

∣
∣
∣
∣
x∗=L/xs

(5.E.7-11)

The scale factors are determined by means of the following considerations
(step 7). The dimensionless concentration and pressure can be bounded to be
◦(1) by setting the dimensionless groups in equations (5.E.7-8), (5.E.7-9), and
(5.E.7-10) equal to 1 to obtain ρs = HP0 and Ps = P0. Since this is unsteady-state
mass transfer, the time scale is the observation time to. The length scale is obtained
from the appropriate dimensionless group in equation (5.E.7-10) equal to 1 to obtain
xs = L. Since the two terms in equation (5.E.7-11) must balance, the dimensionless
group in this equation is set equal to 1 to obtain Ṗs = DABScRT HP0/MAVuL.
These choices for the scale factors then result in the following describing equations:

1

Fom

∂ρ∗
A

∂t∗
= ∂2ρ∗

A

∂x∗2
(5.E.7-12)

ρ∗
A = 0 at t∗ = 0 (5.E.7-13)

ρ∗
A = 1 at x∗ = 0 (5.E.7-14)

ρ∗
A = P ∗ at x∗ = 1 (5.E.7-15)

(
dP

dt

)∗
= − ∂ρ∗

A

∂x∗

∣
∣
∣
∣
x∗=1

(5.E.7-16)

where Fom ≡ DABto/L
2 is the solutal Fourier number.

Now let us consider how our scaled describing equations can be used to interpret
the data shown in Figure 5.E.7-2 (step 8). The time required for any pressure
increase to occur in the upper chamber can be estimated from the time required for
the permeating component to penetrate the membrane. This corresponds to setting
the solutal Fourier number equal to 1; that is,

Fom = DABto

L2
= 1 ⇒ to = L2

DAB

(5.E.7-17)

Equation (5.E.7-17) then provides an estimate of the dead time for any pressure
response to occur in the upper chamber for the data shown in Figure 5.E.7-2. Once
the permeating component penetrates through the membrane, a period of unsteady-
state mass transfer will occur during which the pressure will increase nonlinearly
in time. The duration of the latter period can be estimated from the time required
to achieve quasi-steady-state mass-transfer conditions; that is, when

1

Fom

= L2

DABto
� 1 or when to ∼= 100L2

DAB

(5.E.7-18)
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This then provides an estimate of the time required from the introduction of
the permeating gas to achieve quasi-state mass transfer through the membrane.
We will show that the latter condition corresponds to a linear pressure increase
in time. For observation times greater than that defined by equation (5.E.7-18),
the unsteady-state term in equation (5.E.7-12) can be ignored. If, in addition,
P ∗ � 1, the concentration driving force across the membrane will be constant,
and equation (5.E.7-16) implies that

(
dP

dt

)∗
= 1 ⇒ dP

dt
= Ṗs = DABScRT HP0

MAVuL
⇒ P = DABScRT HP0

MAVuL
t

(5.E.7-19)

That is, the pressure will increase linearly in time, as seen in Figure 5.E.7-2 at
longer times. Note that the diffusion coefficient for permeation through the mem-
brane can be obtained from the slope in linear region of the pressure response
curve. However, when P ∗ ≥ 0.1 the permeation driving force across the mem-
brane will decrease progressively, causing a less than linear increase in the pres-
sure in the upper chamber. Figure 5.E.7-2 does not show this long-time behavior
since it obviously does not include data taken for sufficiently long observation
times.

For quasi-steady-state conditions, equations (5.E.7-12) and (5.E.7-16) can be
solved analytically to obtain the following solution for the pressure in the upper
chamber:

P = P0
[

1 − e−(DABScRT H/MAVuL)t
]

(5.E.7-20)

Note that for small values of the exponent, equation (5.E.7-20) reduces to the
linear response given by equation (5.E.7-19). Hence, in summary, scaling anal-
ysis of the describing equations is able to describe all the principal features of
the pressure-response curve for this standard membrane characterization test proc-
edure.

5.E.8 Large Damköhler Number Approximation for Laminar Flow with a
Heterogeneous Reaction

In Section 5.5 we considered steady-state laminar tube flow containing a solute A

that underwent a first-order irreversible reaction at the wall as shown in Figure 5.5-
1. We considered a scaling appropriate to a small Damköhler number for which
the mass transfer was controlled by the slow rate of heterogeneous reaction. This
implied that the concentration gradient across the tube was negligible and the
concentration was spatially uniform. Here we apply scaling analysis to the comple-
mentary case of a large Damköhler number corresponding to a fast heterogeneous
reaction. To supply mass to the tube wall at the same rate that it is consumed
by the heterogeneous reaction, the concentration gradient will be very steep and
occur over a region of influence or solutal boundary layer whose thickness δs is
the appropriate radial length scale.
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The appropriately simplified species-balance equation and associated boundary
conditions are the same as those in Section 5.5 (step 1):

2U

(

1 − r2

R2

)
∂cA

∂z
= DAB

∂2cA

∂z2
+ DAB

1

r

∂

∂r

(

r
∂cA

∂r

)

(5.E.8-1)

cA = cA0 at z = 0 (5.E.8-2)

cA = f (r) at z = L (5.E.8-3)

∂cA

∂r
= 0 at r = 0 (5.E.8-4)

−DAB

∂cA

∂r
= k

•
1 cA at r = R (5.E.8-5)

It is convenient to reference the coordinate system to the surface of the tube
where the solutal boundary layer is located. Hence, we define the following dimen-
sionless variables (steps 2, 3, and 4):

c∗
A ≡ cA

cs

; r∗ ≡ R − r

δs

; z∗ ≡ z

zs

(5.E.8-6)

Substitute these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 4 and 5):

4Uδ3
s

DABRzs

(

r∗ − δs

2R
r∗2
)

∂c∗
A

∂z∗ = r2
s

z2
s

∂2c∗
A

∂z∗2
+ 1
(

R

δs

)

− r∗

∂

∂r∗

[(
R

δs

− r∗
)

∂c∗
A

∂r∗

]

(5.E.8-7)

c∗
A = cA0

cs

at z∗ = 0 (5.E.8-8)

c∗
A = f (r∗) at z∗ = L

zs

(5.E.8-9)

∂c∗
A

∂r∗ = 0 at r∗ = R

δs

(5.E.8-10)

∂c∗
A

∂r∗ = k
•

1 δs

DAB

c∗
A at r∗ = 0 (5.E.8-11)

The dimensionless groups in equations (5.E.8-8) and (5.E.8-9), when set equal
to 1 indicate that cs = cA0 and zs = L (step 7). Since the convection and radial
heat conduction terms must be of the same order, equation (5.E.8-7) provides the
following estimate for δs :

4Uδ3
s

DABRL
= 1 ⇒ δs =

(
DABRL

4U

)1/3

=
(

R2L

4Pem

)1/3

(5.E.8-12)
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where Pem ≡ UR/DAB is the solutal Peclet number. Substitution of these scale
factors into equations (5.E.8-7) through (5.E.8-11) then yields the following set of
dimensionless describing equations:

[

r∗ − 1

2

(
L

4PemR

)1/3

r∗2

]

∂c∗
A

∂z∗ =
(

R2

4PemL2

)2/3
∂2c∗

A

∂z∗2

+ 1
[

(4PemR/L)1/3 − r∗]
∂

∂r∗

{[(
4PemR

L

)1/3

− r∗
]

∂c∗
A

∂r∗

}

(5.E.8-13)

c∗
A = 1 at z∗ = 0 (5.E.8-14)

c∗
A = f (r∗) at z∗ = 1 (5.E.8-15)

∂c∗
A

∂r∗ = 0 at r∗ =
(

4PemR

L

)1/3

(5.E.8-16)

∂c∗
A

∂r∗ = DaII
(

L

4PemR

)1/3

c∗
A at r∗ = 0 (5.E.8-17)

where DaII ≡ k
•

1 R/DAB is the second Damköhler number.
Now let us consider how this set of dimensionless describing equations can

be simplified (step 8). If
(

R2/4PemL2
)2/3 � 1, the axial diffusion term can be

ignored in equation (5.E.8-13). If (L/4PemR)1/3 � 1, the curvature effects and
higher-order term in the velocity profile can be ignored in equation (5.E.8-13).
Moreover, the boundary condition given by equation (5.E.8-16) can be applied
at infinity. A zero mass flux far from the tube wall implies no change in the
concentration in the core of the flowing fluid. Hence, equation (5.E.8-16) can be
replaced by the condition that c∗

A = 1 as r∗ → ∞. Equation (5.E.8-17) indicates
that as DaII → ∞, c∗

A → 0, to ensure that ∂c∗
A/∂r∗ remains bounded of ◦(1).

This implies that the concentration at the tube wall is zero. Hence, for large solu-
tal Peclet numbers and large Damköhler numbers, the describing equations sim-
plify to

r∗ ∂c∗
A

∂z∗ = ∂

∂r∗

(

r∗ ∂c∗
A

∂r∗

)

(5.E.8-18)

c∗
A = 1 at z∗ = 0 (5.E.8-19)

c∗
A = 1 at r∗ → ∞ (5.E.8-20)

c∗
A = 0 at r∗ = 0 (5.E.8-21)

This simplified system of describing equations can be solved by standard methods,
such as combination of variables.
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R1

R2
Laminar flow of feed
solution through lumen z

r

L

lumen

Annular membrane wall

Figure 5.E.9-1 Hollow-fiber membrane of length L, lumen radius R1, and outer annular
membrane wall radius R2. A feed solution flows axially in fully developed laminar flow.
A reacting component in the feed permeates through the inner wall of the hollow fiber and
undergoes a first-order homogeneous reaction with an enzyme that is immobilized within
the pores of the annular region.

5.E.9 Small Thiele Modulus Approximation for Mass Transfer in a
Hollow-Fiber Membrane

The development of hollow-fiber membranes with diameters of at most a few
hundred micrometers has made it possible to design membrane separation systems
having a very high area-to-volume ratio. This same feature has also permitted
designing efficient catalytic membrane bioreactors by immobilizing an enzyme
within the porous matrix of the tubular membrane. Figure 5.E.9-1 shows both cross-
sectional and profile views of a single hollow-fiber membrane of length L and inner
and outer radii R1 and R2, respectively. The annular membrane wall is made from
a synthetic polymer that is microporous and serves as host to the immobilized
enzyme. An ultrathin layer at the inner surface of the microporous annular region
is impermeable to the enzyme and thereby confines it, but is highly permeable
to low-molecular-weight solute(s). A solution of a low-molecular-weight solute is
then pumped through the lumen or hollow core of the hollow fiber in steady-state
laminar flow. This solute diffuses through the solution into the annular wall of the
hollow fiber, where it reacts with the enzyme via a first-order reaction in the solute
concentration. The aspect ratio of hollow fibers is such that axial diffusion can
be ignored in most applications. Moreover, the concentration of the solute in both
the solution and membrane is sufficiently dilute so that binary diffusion can be
assumed; that is, the reaction product(s) does(do) not influence the diffusion of the
solute through either the solution or the membrane. We use scaling to determine
how the describing equations for the membrane enzyme reactor can be simplified.

The species-balance equation in cylindrical coordinates given by equation (G.2-
10) in the Appendices and the corresponding boundary conditions for both the
lumen and annular wall regions of the membrane, after appropriate simplification,
are given by (step 1)

U0

[

1 −
(

r

R1

)2
]

∂cAl

∂z
= Dl

1

r

∂

∂r

(

r
∂cAl

∂r

)

, 0 ≤ r ≤ R1 (5.E.9-1)
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0 = Dm

1

r

∂

∂r

(

r
∂cAm

∂r

)

− k1cAm, R1 ≤ r ≤ R2

(5.E.9-2)

cAl = cA0 at z = 0 (5.E.9-3)

∂cAl

∂r
= 0 at r = 0, 0 ≤ z ≤ L (5.E.9-4)

Dl

∂cAl

∂r
= Dm

∂cAm

∂r
at r = R1, 0 ≤ z ≤ L (5.E.9-5)

cAm = KAcAl at r = R1, 0 ≤ z ≤ L (5.E.9-6)

∂cAm

∂r
= 0 at r = R2, 0 ≤ z ≤ L (5.E.9-7)

where cAl and cAm are the molar concentrations of the solute in the lumen solu-
tion and annular membrane wall, respectively, U0 the maximum fluid velocity at
the centerline of the lumen, Dl and Dm the effective binary diffusion coefficients
of the solute in the lumen solution and annular wall, respectively, cA0 the initial
concentration in the feed solution to the lumen, and KA the distribution coefficient
for the thermodynamic equilibrium of component A between the lumen solution
and the annular membrane wall, respectively.

Define the following dimensionless variables (steps 2, 3, and 4):

c∗
Al ≡ cAl

cls

; c∗
Am ≡ cAm

cms

;
(

∂cAl

∂r

)∗
≡ 1

crls

∂cAl

∂r
;

(
∂cAl

∂z

)∗
≡ 1

czls

∂cAl

∂z
; z∗ ≡ z

zs

; r∗
l ≡ r

rls

; r∗
m ≡ r − rlr

rms

(5.E.9-8)

Note that we have introduced separate scales for the concentration and radial coor-
dinate within the lumen and the annular wall. We also have allowed separate scales
for both the axial and radial concentration gradients within the lumen since these
do not necessarily scale with the concentration scale divided by the length scale. If
we had naively scaled these derivatives with the concentration scale divided by a
length scale, the forgiving nature of scaling would have indicated a contradiction.33

We have also allowed for a reference length factor for the radial coordinate in order
to reference it to zero within the annular membrane wall.

Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 5 and 6):

[

1 −
(

rls

R1

)2

r∗2
l

]

∂c∗
l

∂z∗ = Dlcrls

U0czlsrls

1

r∗
l

∂

∂r∗
l

(

r∗
l

∂c∗
l

∂r∗
l

)

, 0 ≤ r∗
l ≤ R1

rls

(5.E.9-9)

33This is explored further in Practice Problem 5.P.18.
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0 = 1

r∗
m + rmr/rms

∂

∂r∗
m

[(

r∗
m + rmr

rms

)
∂c∗

m

∂r∗
m

]

− k1r
∗2
m

Dm

c∗
Am

R1 − rmr

rms

≤ r∗
m ≤ R2 − rmr

rms

(5.E.9-10)

c∗
l = cA0

cls

at z∗ = 0 (5.E.9-11)

∂c∗
l

∂r∗ = 0 at r∗
l = 0, 0 ≤ z∗ ≤ L

zs

(5.E.9-12)

∂c∗
l

∂r∗
l

= Dmcms

Dlcrlsrms

∂c∗
m

∂r∗
m

at r∗
l = R1

rls

, 0 ≤ z∗ ≤ L

zs

(5.E.9-13)

c∗
m = KAcls

cms

c∗
l at r∗

m = R1 − rlr

rls

, 0 ≤ z∗ ≤ L

zs

(5.E.9-14)

∂c∗
m

∂r∗
m

= 0 at r∗
m = R2 − rmr

rms

, 0 ≤ z∗ ≤ L

zs

(5.E.9-15)

The following considerations dictate determining our scale factors (step 7). The
concentration in the lumen and annular membrane wall can be bounded to be
◦(1) by setting the appropriate dimensionless groups in equations (5.E.9-11) and
(5.E.9-14) equal to 1 to obtain cls = cA0 and cms = KAcA0. The axial length scale is
obtained from the dimensionless group L/zs. The radial length scale in the annular
membrane wall can be referenced to zero by setting the appropriate dimensionless
group equal to zero in equation (5.E.9-14) to obtain rls = R1. Since the radial
diffusion must balance the axial convection in equation (5.E.9-9), the dimensionless
group, which is a measure of this ratio, must be set equal to 1; this establishes a
relationship between the axial and radial concentration gradient scales:

Dlcrls

U0czlsrls

= Dlcrls

U0czlsR1
= 1 ⇒ czls = Dlcrls

U0R1
(5.E.9-16)

For steady-state to exist, all the diffusing solute must react within the annular
membrane wall. This implies that radial diffusion must balance the homogeneous
reaction within the annular membrane wall. Hence, by setting the dimensionless
group in equation (5.E.9-10) that is a measure of this ratio equal to 1, we obtain
the radial length scale factor:

k1r
∗2
m

Dm

= 1 ⇒ rm =
√

Dm

k1
(5.E.9-17)

Setting the dimensionless group in equation (5.E.9-13) equal to 1 provides the scale
for the radial concentration gradient in the lumen:

Dmcms

Dlcrlsrms

= DmKAcA0

Dlcrls

√
Dm/k1

⇒ crls =
√

Dm

Dl

KATh
cA0

R1
(5.E.9-18)
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where Th ≡
√

k1R
2
1/Dl is the Thiele modulus, a dimensionless group that is a mea-

sure of the characteristic time for diffusion in the lumen to homogeneous reaction
in the annular membrane wall. It is convenient to express the scale for the radial
concentration gradient within the lumen in terms of the Thiele modulus, since this
provides a means for assessing its magnitude relative to the maximum possible
concentration gradient.34

These scale factors then result in the following set of dimensionless describing
equations:

(

1 − r∗2
l

) ∂c∗
l

∂z∗ = 1

r∗
l

∂

∂r∗
l

(

r∗
l

∂c∗
l

∂r∗
l

)

, 0 ≤ r∗
l ≤ 1 (5.E.9-19)

0 = 1

r∗
m + R1/

√
Dm/k1

∂

∂r∗
m

[(

r∗
m + R1√

Dm/k1

)
∂c∗

m

∂r∗
m

]

− c∗
Am

0 ≤ r∗
m ≤ R2 − R1√

Dm/k1
(5.E.9-20)

c∗
l = 1 at z∗ = 0 (5.E.9-21)

∂c∗
l

∂r∗ = 0 at r∗
l = 0, 0 ≤ z∗ ≤ 1 (5.E.9-22)

∂c∗
l

∂r∗
l

= ∂c∗
m

∂r∗
m

(5.E.9-23)

c∗
m = c∗

l at r∗
m = 0, 0 ≤ z∗ ≤ 1 (5.E.9-24)

∂c∗
m

∂r∗
m

= 0 at r∗
m = R2 − R1√

Dm/k1
, 0 ≤ z∗ ≤ 1 (5.E.9-25)

Now let us consider how these dimensionless describing equations can be sim-
plified (step 8). If the dimensionless group R1/

√
Dm/k1 � 1, implying that the

region of influence wherein the homogeneous reaction converts all of the reacting
solute to product is much thinner than the radius of the lumen, curvature effects on
the mass-transfer process can be ignored. Moreover, if (R2 − R1)/

√
Dm/k1 � 1,

the aforementioned region of influence is much thinner than the thickness of the
annular membrane wall, the boundary condition given by equation (5.E.9-25) can
be applied at infinity.

The solution to equations (5.E.9-19) and (5.E.9-20) can be simplified for the
special case of very small Thiele moduli, that is, for Th � 1. For this case,
equation (5.E.9-18) indicates that the concentration gradient within the lumen of
the hollow fiber is negligibly small, thereby implying that the concentration within

34This problem is a mass-transfer analog to the heat-transfer problem considered in Section 4.4; that
is, the low Biot number approximation made in the latter is analogous to the small Thiele modulus
approximation made here.
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the lumen is uniform. Hence, equation (5.E.9-19) can be integrated as follows:

∫ 1

0

(

1 − r∗2
l

) ∂c∗
l

∂z∗ 2πr∗
l dr∗

l =
∫ 1

0

1

r∗
l

∂

∂r∗
l

(

r∗
l

∂c∗
l

∂r∗
l

)

2πr∗
l dr∗

l (5.E.9-26)

∫ 1

0

(

1 − r∗2
l

) ∂c∗
l

∂z∗ r∗
l dr∗

l =
∫ ∂c∗

m/∂r∗
m

0
∂

(

r∗
l

∂c∗
l

∂r∗
l

)

(5.E.9-27)

Use of Leibnitz’s rule given by equation (H.1-2) in the Appendices to integrate
the first term and the fact that the concentration is essentially uniform within the
lumen for very small Thiele moduli then yields

d

dz∗

∫ 1

0
c∗
l

(

1 − r∗2
l

)

r∗
l dr∗

l = dc∗
l

dz∗

∫ 1

0

(

1 − r∗2
l

)

r∗
l dr∗

l = 1

4

dc∗
l

dz∗ =∂c∗
m

∂r∗
m

(5.E.9-28)

Equation (5.E.9-28) now replaces equation (5.E.9-23) as one of the boundary con-
ditions on the differential equation for the mass transfer with the annular membrane
wall. If the conditionsR1/

√
Dm/k1 � 1 and (R2 − R1)/

√
Dm/k1 � 1 apply, the

solution of the resulting simplified system of describing equations is straightforward
and given by35

c∗
l = e−4z∗ ; c∗

m = e−(4z∗+r∗
m) (5.E.9-29)

5.E.10 Dimensional Analysis for Oxygen Diffusion into a Spherical Red
Blood Cell

Consider a spherical red blood cell of radius R in the blood stream, as shown in
Figure 5.E.10-1. The cell is sufficiently large that it moves more slowly than the
blood flow far removed from its surface (where the no-slip condition has to be
satisfied). Hence, there is a velocity of the bloodstream U∞ relative to that of the
red blood cell. Oxygen diffuses through the bloodstream to this red blood cell,
after which it diffuses into the cell and reacts with the hemoglobin. The oxygen
and blood are referred to as components A and B, respectively. We wish to model
the convective oxygen mass transfer through the bloodstream to the cell. However,
since this is a rather complicated problem to solve, we employ the scaling method
for dimensional analysis to obtain a correlation for the dimensionless mass-transfer
coefficient, defined by

kL ≡ NAw

cAw − cA∞
(5.E.10-1)

where NAw is the molar flux (moles/area·time) at the outer cell wall, cAw the
oxygen concentration (moles/volume) at the outer cell wall, and cA∞ the oxygen

35An analytical solution to this problem accounting for curvature effects is given by W. Lewis and S.
Middleman, A.I.Ch.E.J., 20(5), 1012–1014 (1974).
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Red blood cell

r
R

Blood flow relative to blood cell

Oxygen mass
transfer from
bloodstream to
red blood cell 

Figure 5.E.10-1 Steady-state oxygen mass transfer from a flowing bloodstream to a spher-
ical red blood cell.

concentration in the bulk of the bloodstream far from the red blood cell. We assume
that cAw, cA∞, U∞, and the physical properties of the blood are known. Moreover,
we assume that the oxygen concentration in the blood is dilute.

Equation (5.E.10-1) requires determination of NAw, which is given by

NAw = − DAB

1 − xA∞
∂cA

∂r

∣
∣
∣
∣
R

∼= −DAB

∂cA

∂r

∣
∣
∣
∣
R

(5.E.10-2)

where DAB is the effective binary diffusion coefficient of oxygen in blood and
xAw is the oxygen mole fraction at the outer wall of the red blood cell. The
molar concentration in equation (5.E.10-2) would have to be determined from a
solution to the coupled species-balance equation and equations of motion given
by equations (B.5-3) and (B.2-3) in the Appendices, respectively, which when
appropriately simplified in a spherical coordinate system referenced to the center
of the spherical red blood cell are given by

u · ∇cA = DAB∇2cA (5.E.10-3)

ρ u · ∇ u = µ∇2 u − ∇P (5.E.10-4)

where u is the vector velocity in the bloodstream, ρ and µ are the mass density
and shear viscosity of the blood, respectively, and P is the pressure. Note that each
term in equation (B.5-3) has been divided by the molecular weight of component
A in arriving at equation (5.E.10-3). The boundary conditions required to solve
equations (5.E.10-3) and (5.E.10-4) are given formally as follows:

cA = cAw at r = R (5.E.10-5)

n · u = 0 at r = R (5.E.10-6)
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cA = cA∞ as r → ∞ (5.E.10-7)

u · δr = U∞ cos θ, u · δθ = U∞ sin θ as r → ∞ (5.E.10-8)

where δr and δθ are unit vectors in the radial and circumferential directions,
respectively. It is not necessary to specify any boundary conditions on the pres-
sure if the velocity of the bloodstream far from the red blood cell is specified.
Equations (5.E.10-1) through (5.E.10-8) constitute step 1 in the scaling analysis
procedure for dimensional analysis.

Define arbitrary scale factors for all the dependent and independent variables and
reference factors for those variables not naturally referenced to zero (steps 2 and 3):

c∗ ≡ c − cr

cs

; P ∗ ≡ P

Ps

; u∗ ≡ u
us

; r∗ ≡ r

rs

(5.E.10-9)

Note that we do not need to scale the angular coordinates θ and φ, since they are
dimensionless and bounded of ◦(1).

Introduce these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of one term in each equation (steps 4 and 5):

kL(cAw − cA∞)rs

DABcs

= −∂c∗
A

∂r∗ at r∗ = R

rs

(5.E.10-10)

usrs

DAB

u∗ · ∇∗c∗
A = ∇∗2c∗

A (5.E.10-11)

ρvsrs

µ
u∗ · ∇∗u∗ = ∇∗2u∗ − Psrs

µus

∇∗P ∗ (5.E.10-12)

c∗
A = cAw − cr

cs

at r∗ = R

rs

(5.E.10-13)

n · u∗ = 0 at r∗ = R

rs

(5.E.10-14)

c∗
A = cA∞ − cr

cs

as r∗ → ∞ (5.E.10-15)

u∗ · δr = U∞
us

cos θ, u∗ · δθ = U∞
us

sin θ as r∗ → ∞ (5.E.10-16)

Step 6 involves setting the various groups equal to 1 or zero to determine
the scale and reference factors, respectively. Since there is no attempt to achieve◦(1) in dimensional analysis scaling, it makes no difference which groups we
choose. Hence, the two dimensionless groups in equation (5.E.10-13), when set
equal to zero and 1, respectively, indicate that cr = cAw and rs = R. The
dimensionless group in equation (5.E.10-15), when set equal to 1, indicates that
cs = cA0 − cAw. Setting the dimensionless group in equation (5.E.10-16) equal
to 1 indicates that us = U∞. The dimensionless group in equation (5.E.10-12)
multiplying the dimensionless pressure gradient, when set equal to 1, indicates
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that Ps = µU∞/R. These choices then yield the following minimum parametric
representation of the describing equations:

Sh = ∂c∗
A

∂r∗ at r∗ = 1 (5.E.10-17)

Pem · u∗ · ∇∗c∗
A = ∇∗2c∗

A (5.E.10-18)

Re · u∗ · ∇∗u∗ = ∇∗2 u∗ − ∇∗P ∗ (5.E.10-19)

c∗
A = 0 at r∗ = 1 (5.E.10-20)

n · u∗ = 0 at r∗ = 1 (5.E.10-21)

c∗
A = 1 as r∗ → ∞ (5.E.10-22)

u∗ · δr = cos θ, u∗ · δθ = sin θ as r∗ → ∞ (5.E.10-23)

where

Sh ≡ kLR

DAB

is the Sherwood number (5.E.10-24)

Pem ≡ U∞R

DAB

is the solutal Peclet number (5.E.10-25)

Re ≡ ρU∞R

µ
is the Reynolds number (5.E.10-26)

Note that Sherwood number provides a measure of the overall mass transfer to that
by diffusion alone; as such, it is analogous to the Nusselt number in heat transfer.
The solutal Peclet number is a measure of the convective to diffusional transport
of species. Equation (5.E.10-17) implies that the Sherwood number is a function of
the dimensionless groups involved in determining ∂c∗/∂r∗|r∗=1 and hence will be
a function of only the dimensionless groups involved in solving equations (5.E.10-
18) and (5.E.10-19), which introduce the Peclet and Reynolds numbers. Hence, we
conclude that oxygen transfer to a red blood cell can be correlated in terms of three
dimensionless groups, that is,

Sh = f (Re, Pem) (5.E.10-27)

Note that a naive application of the Pi theorem would imply that five dimensionless
groups would be required (i.e., n = 8 and n = 3).

The three dimensionless groups in the correlation given by equation (5.E.10-
27) are not unique. It is convenient to isolate the velocity into just one group by
applying the formalism indicated in equation (2.4-2); that is,

Sc = PemRe−1 = µ

ρDAB

≡ the Schmidt number (5.E.10-28)

Hence, our modified correlation for the Sherwood number is given by

Sh = f (Re, Sc) (5.E.10-29)
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A frequently used equation for the Sherwood number for mass transfer to a
single sphere that has a constant velocity relative to a fluid far removed from
it is36

Sh = 1 + 0.4536
√

Re · Sc = 1 + 0.4536
√

Pem (5.E.10-30)

Equation (5.E.10-30) indicates that the Sherwood number can be correlated in terms
of just one dimensionless group, the solutal Peclet number. Note that this correlation
is applicable only in the limit of very small Reynolds numbers. This more restrictive
correlation can be obtained from the general correlation given by equation (5.E.10-
29) by invoking the formalism suggested by equation (2.4-3); that is, by expanding
equation (5.E.10-29) in a Taylor series for small Reynolds number (step 9):

Sh = f (Re, Pem) = f |Re=0 + ∂f

∂Re

∣
∣
∣
∣
Re=0

Re + O(Re2) (5.E.10-31)

Hence, in the limit of very small Reynolds number, we conclude that

Sh = f (Pem) = f (Re · Sc) (5.E.10-32)

which is consistent with the form of equation (5.E.10-30).

5.P PRACTICE PROBLEMS

5.P.1 Penetration Theory Approximation for a Specified Equation of State

Consider unsteady-state mass transfer in the liquid film considered in Section 5.3
and shown in Figure 5.2.1. The boundary conditions at z = 0 and z = H remain
the same. However, rather than specifying the ratio of the mass fluxes, an equation
of state is given for the mass density of the form

ρ = ωAρ0
A + ωBρ0

B (5.P.1-1)

where ωi and ρ0
i are the mass fraction and pure component mass density of com-

ponent i. Use scaling analysis to determine when the convective transport arising
from the diffusive mass transfer can be neglected.

5.P.2 Error Estimate for Penetration Theory Approximation

Consider unsteady-state mass transfer through the liquid film considered in Sec-
tion 5.3 and shown in Figure 5.2-1.

36Bird et al., Transport Phenomena, 2nd ed., p. 678. Note that this reference defines the Sherwood and
Reynolds numbers in terms of the sphere diameter rather than the radius.
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(a) Estimate the time required for the mass transfer to penetrate the entire thick-
ness of the film.

(b) Consider the special case of unimolecular diffusion of component A in
stationary component B for which equation (5.2-6) implies that κ = 0. Solve
equations (5.3-2) through (5.3-6) for the concentration profile ρ∗

A(z∗, t∗), in-
voking the penetration theory approximation given by equation (5.3-7) while
retaining the convective mass-transfer contribution to the mass flux in equ-
ation (5.3-3).

(c) Plot ρ∗
A(z∗, t∗) as a function of the dimensionless group �1 defined by

equation (5.2-26) to show the error encountered when the convective contri-
bution to the total mass-transfer flux defined by equation (5.3-3) is ignored.

5.P.3 Diffusion in a Tapered Pore

In Section 5.E.3 we considered steady-state binary gas-phase diffusion at constant
pressure and temperature through the pore shown in Figure 5.E.3-1, which has a
nonconstant circular cross-sectional area with a radius R = R0 − β

√
z, where β

is a constant. The concentration at the mouth of the pore was held constant at
cA0 (moles/volume), whereas it was maintained at zero at z = L. We scaled this
problem to determine a criterion to assess when radial diffusion could be neglected.
Determine when this assumption is no longer valid.

5.P.4 Liquid Evaporation for Short Contact Times

In Section 5.7 we considered the unsteady-state evaporation of a pure liquid con-
tained in a cylindrical tube that initially contained none of the evaporating compo-
nent in the gas phase and for which the evaporating component concentration was
maintained at zero, as shown in Figure 5.7-1. We considered a long-time scaling
to assess when quasi-steady-state could be assumed. Here we consider this same
problem for very short contact times.

(a) Write the appropriately simplified species-balance equation and its initial
and boundary conditions.

(b) Consider an integral mass balance in order to derive an auxiliary condition
needed to determine the location of the moving liquid–gas interface.

(c) Scale the describing equations appropriate to very short contact times to
determine the thickness of the region of influence wherein all the mass
transfer is effectively concentrated.

(d) Develop a criterion for assuming that the boundary condition at the entrance
of the tube can be applied at infinity; note that if this criterion is satisfied,
a pseudo-convection term is not generated when converting the describing
equations to a translated coordinate system.

(e) Use your scaling analysis result in part (c) to determine when the region of
influence penetrates the entrance of the tube.
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(f) Determine the criterion for ignoring the convective contribution to the mass-
transfer flux.

5.P.5 Mass Transfer to Film Flow Down a Vertical Plane

In Section 5.6 we applied scaling analysis to the absorption of a soluble gas into
falling film flow. We found that if the solutal Peclet number were sufficiently
large, the mass transfer was confined to a region of influence in the vicinity of the
liquid–gas interface. Moreover, if the solutal Peclet number were sufficiently large,
we found that the convective mass transfer was influenced only by the velocity at
the liquid–gas interface. However, both of these approximations have limitations
that we explore in this problem.

(a) Based on the scaling analysis in Section 5.6, determine when the region of
influence or mass-transfer boundary layer penetrates the full distance from
the liquid–gas interface to the solid boundary.

(b) Determine when the assumption that the convective mass transfer is influ-
enced only by the surface velocity breaks down.

(c) Determine the thickness of the region of influence near the top of the liquid
film wherein axial diffusion cannot be neglected.

(d) Discuss how the scaling analysis done in Section 5.6 can be used to solve
the full set of elliptic differential equations that are required to describe
mass transfer at the top of the liquid film.

5.P.6 Mass Transfer to Film Flow Down a Vertical Cylinder

Consider the absorption of a sparingly soluble component from an inviscid gas into
a liquid film in fully developed laminar flow down a cylindrical wire of radius R1.
The liquid–gas interface is located at R2, as shown in Figure 5.P.6-1. The liquid
film has an initial concentration cA0 at z = 0 and an interfacial concentration cAI

established through equilibrium with the adjacent gas phase. The velocity profile
in the liquid film is given by

uz = Um

(r2 − R2
1) − 2R2

2 ln(r/R1)

(R2
2 − R2

1) − 2R2
2 ln(R2/R1)

(5.P.6-1)

where Um is the maximum liquid velocity: namely, at the liquid–gas interface.

(a) Use scaling analysis to develop a criterion for assuming that the mass transfer
is confined to a region of influence or boundary layer near the liquid–gas
interface.

(b) Develop a criterion for assuming that the convective mass transfer is influ-
enced only by the surface velocity of the liquid film.

(c) Develop a criterion for ignoring the axial diffusion of species.

(d) Develop a criterion for assuming that the curvature effects can be ignored.
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Figure 5.P.6-1 Mass transfer of a sparingly soluble solute from an inviscid gas to a liquid
film flowing down a vertical cylindrical rod.

5.P.7 Mass Transfer with Chemical Reaction for Flow Between
Semipermeable Membranes

In Section 5.4 we considered fully developed laminar flow between two parallel
semipermeable membrane boundaries through which a component was injected that
reacted with the liquid feed stream. We considered a low solutal Peclet number
scaling for which the convective transport of species could be neglected. However,
we considered the implications of both a low and a high Thiele modulus, corre-
sponding to very slow and very fast homogeneous reaction conditions. Consider
this same flow geometry, as shown in Figure 5.4-1 for the special case of a high
Thiele modulus when convective mass transfer is important. For this scaling use
the following dimensionless variables:

c∗
A ≡ cA

cs

;
(

∂cA

∂x

)∗
≡ 1

cxs

∂cA

∂x
; x∗ ≡ x

xs

; y∗ ≡ yr − y

ys

(5.P.7-1)

(a) Indicate why a separate scale is needed for the axial derivative of the con-
centration and why a reference factor is needed for the transverse coordinate.

(b) Determine the scale and reference factors for this convective mass-transfer
problem.

(c) Determine the thickness of the region of influence near the membrane bound-
aries within which all the permeating reactant is consumed.

(d) Determine the criterion for assuming that the velocity profile can be lin-
earized.

(e) Determine the criterion for ignoring the axial diffusion of species.

(f) Indicate when the criterion in part (e) breaks down.

(g) When the criterion in part (e) is not satisfied, the full elliptic problem must
be considered. Often an appropriate downstream boundary condition to solve
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this elliptic problem is not known. Indicate how the results of the scaling
analysis in parts (a) through (e) can be used to solve the full elliptic problem
in the entry region.

5.P.8 Entrance Effect Limitations for Laminar Tube Flow with a Fast
Heterogeneous Reaction

In Example Problem 5.E.8 we considered fully developed laminar flow in a cylin-
drical tube for which a solute underwent an irreversible heterogeneous reaction at
the wall. We considered the special case of a very large Damköhler number for
which our scaling analysis indicated that there was a region of influence or solutal
boundary layer near the tube wall across which the concentration dropped from its
initial value to essentially zero.

(a) Scaling analysis for large Damköhler numbers led to a simplified set of
describing equations given by (5.E.8-18) through (5.E.8-21). Indicate when
the criteria leading to these simplified equations break down.

(b) Determine the thickness of the region of influence near the entrance of the
tube wherein the axial diffusion term cannot be neglected.

(c) When the axial diffusion term cannot be neglected, one is faced with solving
an elliptic system of equations for which a downstream boundary condition
is required. Indicate how the results of the scaling analysis in Example Prob-
lem 5.E.8 can be used to solve the full elliptic problem in the entry region.

(d) In Section 5.4 we considered steady-state convective mass transfer for the
case of a homogeneous chemical reaction and found that for sufficiently small
Peclet numbers, the convective transport of species could be neglected. Is a
small Peclet number approximation ever justified for steady-state mass trans-
fer in the convective mass-transfer problem being considered in Example
Problem 5.E.8?

5.P.9 Aeration of Water Containing Aerobic Bacteria

Consider a spherical bubble consisting of pure oxygen with a radius R rising at
its terminal velocity Ut through at stationary tank of water of depth L. The water
contains aerobic bacteria that consume dissolved oxygen via a zeroth-order reaction
whose rate constant is k0 (moles/volume·time). The water is assumed to have no
oxygen at the bottom of the tank where the bubbles enter. The bubbles can be
assumed to become saturated with water vapor very quickly relative to the oxygen
transfer to the liquid. The corresponding equilibrium concentration of oxygen in
water, denoted by cA0 (moles/volume), will be assumed to be unaffected by the
small increase in the bubble pressure associated with the decrease in bubble size due
to oxygen absorption. We assume that the bubbles rise such that the hydrodynamics
cause the mass transfer to be confined to a film of liquid having a constant thickness
δm that surrounds each bubble as shown in Figure 5.P.9-1. However, δm is not
necessarily thin in comparison to the radius of the bubble. We ignore any effects
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R

Figure 5.P.9-1 Water-saturated oxygen bubble of radius R rising at its terminal velocity
Ut in liquid water containing aerobic bacteria that consume the oxygen via a zeroth-order
reaction.

of the change in bubble size and also assume that the molar density of the liquid,
c, remains constant. Use the following dimensionless variables containing arbitrary
scale and reference factors for scaling this problem:

c∗
A ≡ cA

cs

; N∗
A ≡ NA

Ns

; r∗ ≡ r − rr

rs

; t∗ ≡ t

ts
(5.P.9-1)

(a) Consider a spherical coordinate system located at the center of a single
rising bubble as shown in Figure 5.P.9-1; write the appropriate form of the
species-balance equation in spherical coordinates along with the requisite
initial and boundary conditions; do not ignore the bulk-flow contribution
to the molar flux; note that if the oxygen bubbles are saturated with water
vapor, this is unimolecular diffusion.

(b) Introduce the dimensionless variables defined above into your describing
equations and determine the relevant scale and reference factors; note that
the observation time for this problem is well-defined since it will be the
time required for a bubble to rise at its terminal velocity through the entire
depth of liquid.

(c) Determine the criterion for ignoring curvature effects.

(d) Determine the criterion for assuming quasi-steady-state.

(e) Determine the criterion for ignoring the effect of the bacterial consumption
of oxygen.

(f) Consider the case of a very fast bacterial consumption of oxygen such that
the oxygen concentration is essentially reduced to zero within a distance
much smaller than the film thickness δm; determine the region of influ-
ence or boundary-layer thickness wherein all the diffusive mass transfer
occurs.
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(g) Discuss how the scaling of this problem would change if we allowed
for the effects of the decrease in bubble size due to the oxygen absorp-
tion.

5.P.10 Dissolution of a Spherical Capsule for a Concentrated Solution

In Section 5.E.4 we considered the dissolution of a spherical capsule of pure solid
component A as shown in Figure 5.E.4-1 and used scaling analysis to assess how
the describing equations could be simplified. One assumption that we made was
that the solution was dilute, which permitted us to ignore the bulk-flow contribution
to Fick’s law of diffusion. In this problem we no longer assume dilute solutions
but assume constant physical properties and that the effect of any reaction products
resulting from the dissolution can be ignored.

(a) Rescale this problem appropriate to a slow chemical reaction to assess when
the reaction and the bulk-flow contributions can be ignored.

(b) Rescale this problem appropriate to a fast chemical reaction to assess when
quasi-steady-state can be assumed and when the bulk-flow contribution can
be ignored.

5.P.11 Dissolution of a Spherical Capsule for a Bimolecular Reaction

In Section 5.E.4 we considered the mass transfer from a spherical capsule of pure
solid component A as shown in Figure 5.E.4-1 for the case of a first-order dissolu-
tion chemical reaction. Assume now that the dissolution kinetics are governed by
a bimolecular reaction of component A with the stomach liquid B, for which the
reaction rate (moles/volume·time) is given by RA = k2cAcB , where k2 is the second-
order reaction-rate constant. We do not assume dilute solutions in this problem but
assume constant physical properties and that the effect of any reaction products
resulting from the dissolution can be ignored.

(a) Write the appropriately simplified species-balance equations and their initial
and boundary conditions in spherical coordinates; express the concentrations
in terms of mole fractions.

(b) Carry out an integral mass balance to obtain the auxiliary equation required
to determine the location of boundary that defines the interface between the
spherical capsule and the stomach liquid.

(c) Scale the describing equations for conditions appropriate to a fast homoge-
neous chemical reaction.

(d) Determine the criterion for quasi-steady-state mass transfer.

(e) Determine the criterion for ignoring the bulk-flow contribution to the mass-
transfer flux.

(f) Determine the criterion for ignoring the curvature effects on the mass
transfer.
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(g) Use your scaling analysis with the simplification considered in part (e) to
estimate the time required for the capsule to dissolve.

5.P.12 Slow Dissolution of a Cylindrical Capsule

Consider the dissolution of a medication in the form of a cylindrical capsule of pure
solid component A with initial radius and length, R0 and L0, respectively, as shown
in Figure 5.P.12-1. We assume that this cylindrical solid capsule is swallowed and
dissolves in the acidic aqueous liquid environment of the stomach via binary diffu-
sion accompanied by a relatively slow zeroth-order homogeneous chemical reaction
for which the rate constant is k0 (moles/volume·time). The equilibrium solubility
mole fraction of component A in the stomach liquid is xA0. The binary solution can
be assumed to be dilute and to have constant physical and transport properties. How-
ever, mass transfer must be considered from both the circumferential area and the
end of the cylindrical capsule. We scale this problem to assess when the mass trans-
fer from the circular ends of the cylindrical capsule can be neglected; this has sig-
nificant consequences for how you determine your length scales. We also make the
assumption that the capsule remains a cylinder throughout the dissolution process.
In fact, variations in the mass-transfer fluxes along the length and ends of the cylin-
der will gradually cause it to become ellipsoidal and eventually spherical. However,
during the early stage of the dissolution process, the cylindrical shape will be main-
tained at least approximately. Note that because of the plane of symmetry in the cap-
sule, one can consider the mass-transfer problem only for one-half of the capsule.

(a) Write the appropriately simplified species-balance equation and its initial and
boundary conditions in cylindrical coordinates; express the concentration in
terms of mole fraction.

R L

z

Cylindrical capsule of
pure component A

r

Stomach liquid

Figure 5.P.12-1 Unsteady-state dissolution of a medication in the form of a cylindrical
capsule of pure component A into the stomach liquid, where it is consumed via a zeroth-order
homogeneous chemical reaction.
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(b) Carry out an integral mass balance to obtain the auxiliary equation required
to determine the location of boundary that defines the interface between
the cylindrical capsule and the stomach liquid; account for both a changing
cylindrical radius and length.

(c) Scale the describing equations for conditions appropriate to a relatively slow
homogeneous chemical reaction.

(d) Based on your scaling analysis, discuss whether quasi-steady-state mass
transfer is ever possible.

(e) Determine the criterion for ignoring mass transfer from the ends of the
cylindrical capsule.

(f) Determine the criterion for ignoring the curvature effects on the mass
transfer.

(g) Use your scaling analysis with the simplification considered in part (e) to
estimate the time required for the cylindrical capsule to dissolve.

5.P.13 Dissolution of a Cylindrical Capsule in the Fast Reaction Limit

Let us consider the mass-transfer problem defined in Practice Problem 5.P.12 for
the special case of a fast reaction.

(a) Write the appropriately simplified species-balance equation and its initial and
boundary conditions in cylindrical coordinates; express the concentration in
terms of mole fraction.

(b) Carry out an integral mass balance to obtain the auxiliary equation required
to determine the location of boundary that defines the interface between
the cylindrical capsule and the stomach liquid; account for both a changing
cylindrical radius and length.

(c) Scale the describing equations for conditions appropriate to a fast homoge-
neous chemical reaction.

(d) Determine the criterion for assuming quasi-steady-state mass transfer.

(e) Determine the criterion for ignoring the curvature effects on the mass
transfer.

(f) Use your scaling analysis with the simplification considered in part (e) to
estimate the time required for the cylindrical capsule to dissolve completely;
do not ignore the dissolution from the ends of the capsule in determining
your estimate.

5.P.14 Diffusional Growth of a Nucleated Water Droplet

Nucleation of a liquid droplet from a gas phase requires that the latter be suf-
ficiently supersaturated with the nucleating component. This is required because
a submicroscopic nucleus has a large surface area relative to its volume, which
increases its Gibbs free energy. Supersaturation in turn increases the Gibbs free
energy of this component in the gas phase, thereby permitting a decrease in the
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Figure 5.P.14-1 Water droplet of instantaneous radius R(t) growing in supersaturated air
at concentration cA∞ due to diffusion and instantaneous heterogeneous nucleation on its
surface, at which the saturated gas-phase concentration is cA0.

system Gibbs free energy via nucleation. Once nucleation occurs, the dispersed
phase droplets grow via coalescence with neighboring droplets and diffusion of the
nucleating component from the supersaturated gas accompanied by heterogeneous
nucleation on their surface. Here we explore the diffusive growth of a water droplet
in supersaturated air as shown schematically in Figure 5.P.14-1. We assume that
the heterogeneous nucleation occurs instantaneously. The droplet has a negligible
initial radius and an instantaneous radius R(t). The supersaturation concentration is
cA∞, whereas the thermodynamic equilibrium concentration of water in the atmo-
sphere at the prevailing temperature is cA0. Since nuclei are quite small, we assume
that this water droplet initiates from a zero radius. We use scaling to explore how
this mass-transfer problem can be simplified.

(a) Write the appropriately simplified species-balance equation and its initial
and boundary conditions in spherical coordinates; express the concentration
in terms of mole fraction and assume dilute solutions with constant physical
properties.

(b) Carry out an integral mass balance to obtain the auxiliary equation required
to determine the location of boundary that defines the interface between the
water droplet and the atmosphere.

(c) Use scaling analysis to estimate the thickness of the region of influence or
solutal boundary layer wherein essentially all the mass transfer is occurring.

(d) Determine the criterion for ignoring the curvature effects on the mass
transfer.

(e) Can quasi-steady-state conditions ever be achieved in this mass-transfer
problem?

5.P.15 Crystallization from a Supersaturated Liquid

Consider the one-dimensional diffusional growth of a planar crystal of pure com-
ponent A from its binary solution with component B as shown in Figure 5.P.15-1.
The binary solution is assumed to be supersaturated with a concentration ρA∞
far from the growing crystal face, whereas the equilibrium concentration at the
boundary between the solid crystal and liquid solution is ρA0.



346 APPLICATIONS IN MASS TRANSFER

L(t) Planar crystal of pure component A

z

Solution of component A in B

Concentration profile
of component A

rA0

rA∞ 

Figure 5.P.12-1 One-dimensional growth of a planar crystal of pure component A from
its supersaturated solution with component B.

(a) Write the appropriately simplified species-balance equation and its initial
and boundary conditions in rectangular coordinates; since this involves an
incompressible liquid phase, express the concentration in terms of mass
density and mass fraction; do not ignore the bulk flow contribution to the
mass-transfer flux.

(b) Carry out an integral mass balance to obtain the auxiliary equation required
to determine the location of boundary that defines the interface between the
crystal and the liquid solution.

(c) Use scaling analysis to estimate the thickness of the region of influence
wherein all the mass transfer is effectively occurring.

(d) Is quasi-steady-state ever possible for this mass-transfer problem?

(e) Use scaling analysis to determine the criterion for ignoring the bulk-flow
contribution to the mass-transfer flux.

5.P.16 Growth of a Liquid Droplet by means of Diffusion and
Heterogeneous Nucleation

In Practice Problem 5.P.14 we considered the diffusional growth of a liquid droplet
assuming that the heterogeneous nucleation was instantaneous. The latter is a rea-
sonable assumption for heterogeneous nucleation from the gas phase that involves
relatively low molecular weight “simple” molecules. However, for heterogeneous
nucleation of a liquid phase in another immiscible liquid phase involving more
complex molecules (e.g., an amorphous polymer component from its solution in an
organic solvent), steric effects can result in noninstantaneous heterogeneous nucle-
ation. In this problem we assume that the heterogeneous nucleation of the pure
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dispersed phase component from its solution, which constitutes the continuous
phase, is characterized by a zeroth-order rate constant k̂0 (moles/area·time). The
supersaturation concentration far from the surface of the growing droplet is denoted
ρA∞; the thermodynamic equilibrium concentration of the nucleating component
in the continuous phase is denoted by ρA0. Mass rather than molar concentrations
are used here since we are considering a liquid phase. The molecular weight of the
crystallizing component is MA.

(a) Write the appropriately simplified species-balance equation and its initial
and boundary conditions in spherical coordinates; express the concentration
in terms of mass fraction.

(b) Carry out an integral species balance to obtain the auxiliary equation required
to determine the location of boundary that defines the interface between the
liquid droplet and the continuous liquid phase; consider carefully how the
heterogeneous nucleation affects this integral balance.

(c) Use scaling analysis to estimate the thickness of the region of influence
wherein all the mass transfer effectively is occurring.

(d) Determine the criterion for ignoring the curvature effects on the mass
transfer.

(e) Determine the criterion for ignoring the heterogeneous nucleation.

(f) Determine the criterion for assuming quasi-steady-state.

5.P.17 Rusting of a Planar Surface

Consider a flat piece of initially pure iron that is immersed so that its upper surface
is exposed continuously to liquid water saturated with dissolved oxygen (O2),
whose concentration is denoted by cA∞. The oxygen in the water will diffuse to
the surface of the iron and promote rusting via the formation of iron oxide, Fe2O3,

based on the reaction

4
3 Fe + O2 → 2

3 Fe2O3 (5.P.17-1)

Note that reaction (5.P.17-1) implies a relationship between the molar fluxes of
oxygen and iron as well as the molar rate of growth of the rust layer. The rate
of conversion of oxygen to rust is assumed to occur by means of a first-order
heterogeneous reaction whose reaction rate is given by

RA = k̂1cA (moles/area · time) (5.P.17-2)

in which k̂1 (length/time) is the heterogeneous reaction-rate constant and A denotes
the molecular oxygen. The rate of growth of the rust layer decreases progressively
in time since the oxygen must diffuse through both the water and the increasing
thickness of the rust layer in order to reach the surface of the iron. Since the oxy-
gen diffuses through the water-saturated microporous structure of the rust layer,
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its local concentration in the latter is equal to εcA, in which ε is the porosity
and cA is the local concentration of oxygen in the pores. Owing to the microp-
orous structure, the effective oxygen diffusivity in the rust, which is denoted by
DAC , will be less than that in the water, which is denoted by DAB . The densi-
ties of the water, water-saturated rust, and pure iron are denoted by ρB, ρC , and
ρD , respectively, in which B, C, and D denote the water, rust, and iron, respec-
tively. The corresponding molecular weights are denoted by MB, MC , and MD ,
respectively. Note that this problem involves two moving boundaries: the interface
between the rust and the water and that between the iron and the rust, as shown
in Figure 5.P.17-1. One might anticipate that initially, oxygen diffusion through
the water controls the rate of rusting, whereas at longer times, oxygen diffusion
through the rust becomes controlling. We use scaling analysis to explore how the
describing equations for this mass-transfer process can be simplified. In scaling this
problem, use the following dimensionless variables involving unspecified scale and
reference factors:

c∗
AW ≡ cA − cWr

cWs

; c∗
Ar ≡ cA − cRr

cRs

; z∗
W ≡ z − zWr

zWs

;

z∗
R ≡ z − zRr

zRs

; t∗ ≡ t

ts
; (5.P.17-3)

L∗
R ≡ L − LR

LRs

; L∗
I ≡ L

LIs

;
(

dL

dt

)∗

R

≡ 1

L̇Rs

(
dL

dt

)

R

;
(

dL

dt

)∗

I

≡ 1

L̇Is

(
dL

dt

)

I

where the subscripts W, R, and I refer to the water, rust, and iron layers, respec-
tively.

(a) Explain why it is necessary to define separate reference and scale factors
for the concentrations and spatial coordinates in the water and rust layers.

(b) Explain why it is necessary to define separate scale factors for the thick-
nesses of the rust and iron layers as well as the velocities of each layer.

(c) Write the appropriately simplified species-balance equations and their initial
and boundary conditions for both the water and the rust layer; use molar
concentrations and assume dilute solutions so that the bulk-flow contribution
to the mass-transfer flux can be ignored.

(d) Carry out an integral mass balance on the iron and rust layers to obtain the
auxiliary equations required to determine the location of the two moving
boundaries. Note that the growth rate of the rust layer must satisfy the
molar exchange dictated by reaction (5.P.17-1).

(e) Use scaling analysis to estimate the thickness of the region of influence in
the water layer.

(f) Determine the criteria for quasi-steady-state to apply.
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Figure 5.P.17-1 Rusting of a flat piece of pure iron immersed in liquid water that is
saturated with dissolved oxygen; this involves two moving boundaries: the interface between
the rust layer and the water and that between the iron and the rust layer.

(g) Use scaling analysis to determine when the resistance to mass transfer in
the rust layer can be ignored.

(h) Use scaling analysis to determine when the resistance to mass transfer in
the water bath can be ignored.

5.P.18 Mass Transfer in a Hollow-Fiber Membrane

In Example Problem 5.E.9 we applied scaling analysis to a hollow-fiber membrane
reactor as shown in Figure 5.E.9-1. An enzyme was immobilized in the microporous
annular wall of the hollow fiber. A low-molecular-weight solute permeated through
the ultrathin inner wall of this annular region and reacted with the confined enzyme.
We used scaling analysis to explore how the describing equations in the annular
region could be simplified. In doing this we allowed for separate scale factors for the
axial and radial concentration gradients. Rather than allowing for separate scales for
the axial and radial concentration gradients, assume that these two derivatives scale
with the characteristic concentration scale divided by the characteristic length scales
in the axial and radial directions, respectively. This will lead to a contradiction in
that one or more terms will not be bounded of ◦(1). This exercise provides another
example of the forgiving nature of scaling; that is, scaling tells you if the ordering
analysis has been done correctly.

5.P.19 Permeation Accompanied by Membrane Swelling

Consider a mass-transfer process that involves maintaining concentrations ρA0

(mass/unit volume) and zero of component A on opposing sides of a polymeric
membrane having thickness L as shown in Figure 5.P.19-1. The permeating
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Figure 5.P.19-1 Steady-state diffusion of a solute A that causes membrane swelling, sug-
gested by the progressive shading, which in turn increases the effective diffusion coeffi-
cient.

component A swells the membrane, which in turn causes an increase in the effective
binary diffusion coefficient that is given by

DAB = (1 − ωA)D0e
βρA (5.P.19-1)

where D0 is the binary diffusion coefficient in the membrane at infinite dilution of
component A, ωA the mass fraction of component A, and β a positive constant.

(a) Write the appropriately simplified species-balance equation and its boundary
conditions; assume dilute solutions so that the bulk-flow contribution to the
mass-transfer flux can be ignored.

(b) Scale the describing equations to determine when the concentration depen-
dence of the diffusion coefficient can be neglected.

(c) If the swelling is marked, there will be a region of influence or boundary
layer near one side of the membrane within which the resistance to diffusion
will be concentrated; use scaling analysis to determine the thickness of this
region of influence.

(d) Use the results of your scaling analyses in parts (b) and (c) to develop a
criterion for determining when significant swelling is occurring in the mem-
brane. Hint : Use scaling to estimate the mass-transfer flux in the presence
and absence of swelling.

5.P.20 Evaporative Polymer Film Casting for Short Contact Times

In Example Problem 5.E.1 we considered the evaporative casting of a dense film
from a solution of a polymer in a volatile solvent as shown in Figure 5.E.1-1.
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We developed a long-contact-time scaling to determine the criterion for assuming
quasi-steady-state. In this problem we consider a short-contact-time scaling.

(a) Write the appropriately simplified species-balance equation and its initial
and boundary conditions.

(b) Consider an integral mass balance to derive an auxiliary condition needed
to determine the location of the moving liquid–gas interface.

(c) Scale the describing equations appropriate to very short contact times to
determine the thickness of the region of influence wherein all the mass
transfer is effectively concentrated.

(d) Develop a criterion for assuming that the boundary condition at the solid sup-
port surface can be applied at infinity; note that if this criterion is satisfied,
a pseudo-convection term is not generated when converting the describing
equations to a translated coordinate system.

(e) Use your scaling analysis result in part (c) to determine when the region of
influence penetrates to the solid support surface.

(f) Determine the criterion for ignoring the convective contribution to the mass-
transfer flux.

5.P.21 Mass Transfer with a Homogeneous Chemical Reaction and a
Concentration-Dependent Diffusivity

Consider a liquid film consisting of components A and B of thickness L for which
the concentration of a diffusing component is maintained at cA0 (moles/volume)
at z = 0 and zero at z = L. Component A undergoes a first-order irreversible
homogeneous chemical reaction with a rate constant k1 (time−1) as shown in
Figure 5.P.21-1. In addition, the diffusion coefficient DAB decreases linearly with
concentration as follows:

DAB = D0 − βcA (5.P.21-1)

where D0 is the diffusion coefficient at infinite dilution and β is a positive constant.
The effects of the reaction product(s) and any change in the film thickness can be
neglected.

(a) Write the appropriately simplified steady-state species-balance equation and
boundary conditions.

(b) Scale these describing equations to determine a criterion for ignoring the
homogeneous reaction term.

(c) Scale these describing equations to determine a criterion for ignoring the
concentration dependence of the binary diffusion coefficient.

(d) Scale the describing equations for the special case of a very fast reaction
that consumes all the diffusing reactant before it can reach the boundary at
z = L. Use your scaling to determine the thickness of the region of influence
wherein all the diffusion takes place.
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Liquid film of component Liquid film of component B in in
which a chemical reaction iswhich a chemical reaction is
consuming component consuming component A
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of component of component A
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cA = 0
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Figure 5.P.21-1 Diffusion of component A in a liquid film of component B within which
A is being consumed by a homogeneous first-order chemical reaction and for which the
diffusivity is concentration dependent.

5.P.22 Mass Transfer in the Annular Region Between Fixed and Rotating
Cylinders

Consider a liquid confined to the annular gap between two concentric cylindrical
shells of radii R1 and R2, as shown in Figure 5.P.22-1. The inner cylinder rotates
at a constant angular velocity of ω (radians/time), while the outer cylinder remains
stationary. The cylindrical boundaries at R1 and R2 are permeable, so they can be
maintained at constant compositions ρ1 and ρ2 (mass/volume), respectively. In this
case the mass transfer is not influenced by the rotating fluid flow. However, the
mass transfer can influence the fluid flow in two ways. First, the shear viscosity µ

can be concentration-dependent. Second, the bulk flow velocity established by the
radial mass transfer can distort the velocity profile in the circumferential direction.
In this problem we use scaling analysis to explore when these effects need to be
considered. Assume that the concentration dependence of the viscosity is given by

µ = µ0e
βρA (5.P.22-1)

where β is a constant that can be either positive or negative.

(a) Write the appropriately simplified steady-state continuity and equations of
motion in cylindrical coordinates.

(b) Write the requisite boundary conditions on the equations in part (a); note
that the radial component of velocity will be equal to the mass flux divided
by the mass density at the inner and outer cylindrical boundaries.
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Permeable boundaries
Distorted velocity profile
due to mass transfer

R1

R2

r2r1

Figure 5.P.22-1 Circumferential flow between an inner permeable boundary at R1 that is
rotating at a constant angular velocity ω (radians/time) and a stationary outer permeable
boundary at R2. Steady-state mass transfer occurs in the radial direction to maintain the
mass concentration at the inner and outer boundaries at ρ1 and ρ1, respectively. Whereas
the circumferential fluid flow does not affect the mass transfer, the radial mass transfer can
distort the velocity profile.

(c) Write the appropriately simplified steady-state species-balance equation in
cylindrical coordinates in terms of the mass concentration ρA and mass
flux nA along with Fick’s law of diffusion expressed in terms of the mass
flux.

(d) Write the requisite boundary conditions on the equations in part (c).

(e) Introduce the following dimensionless variables and determine the unspeci-
fied scale and reference factors:

ρ∗
A ≡ ρA − ρAr

ρAs

; n∗
A ≡ nA

nAs

; u∗
r ≡ ur

urs

; u∗
θ ≡ uθ

uθs

;

µ∗ ≡ µ

µs

; r∗ ≡ r − rr

rs

(5.P.22-2)

(f) Determine the criterion for ignoring the curvature effects.

(g) Determine the criterion for ignoring the bulk-flow contribution to Fick’s law.

(h) Determine the criterion for ignoring the concentration-dependence of the
viscosity.

(i) Determine the criterion for ignoring the effect of the radial velocity on
distorting the circumferential velocity profile.
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5.P.23 Bulk-Flow Effects for Free-Convection Mass Transfer from a
Vertical Cylinder

In Section 5.9 we considered solutally driven free convection caused by the tran-
spiration of water vapor through the inner wall of a vertical annular region. We
employed scaling to determine how the describing equations could be simplified
for large solutal Grashof numbers. Although we allowed for a radial component of
velocity appropriate to a developing free-convection flow, we did not allow for any
effect of the water vapor transpiration on the radial velocity. That is, the transpi-
ration of water vapor will cause a nonzero radial velocity component at the inner
wall. In this problem we use scaling analysis to determine the criterion for ignor-
ing this blowing or transpiration velocity effect. Assume that the water vapor is
transpired into the annular region at a constant radial velocity V0 so as to maintain
a constant concentration cA0 at the wall.

(a) Write the appropriately simplified form of the continuity equation, equations
of motion, and species-balance equation for this free-convection problem for
which the effects of the transpiration velocity must be considered.

(b) Write the requisite boundary conditions for the equations you derived in
part (a).

(c) Determine the criterion for ignoring the effect of the transpiration or blowing
velocity at the porous inner wall.

5.P.24 Free-Convection Mass Transfer Adjacent to a Transpiring Vertical
Flat Wall

Consider an infinitely wide vertical flat porous wall of length L that transpires
water vapor into initially quiescent air, as shown in Figure 5.P.24-1. The water

ux

cA (x1, y)

cA (x2, y)

x
y

cA = 0
cA0

Figure 5.P.24-1 Buoyancy-induced free convection next to a vertical porous wall that
transpires water vapor into initially dry air to maintain a concentration cA0 at its surface;
concentration profiles at positions x1 and x2 along the plate, where x2 > x1, and the velocity
profile of the component parallel to the plate are shown.
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concentration at the wall is cA0, whereas the quiescent air is assumed to be initially
dry. The air next to the porous wall will become less dense than the air farther
removed from it. Hence, a hydrostatic pressure imbalance will occur that causes
fluid near the wall to rise. We consider this convective flow after the transients
have died out when steady-state free convection prevails. We ignore end effects
at the top and bottom of the plate and viscous dissipation and assume constant
physical properties other than the density in the gravitational body force term in
the equations of motion. Note that this is inherently a developing flow due to
the progressive water transpiration that occurs as the fluid moves up the wall;
therefore, velocity components in both the x- and y-directions must be considered.
Since the density is temperature-dependent, we need an appropriate equation of
state. We consider small density variations and hence represent the density via a
Taylor series expansion about the density ρ0 of the dry air given by

ρ = ρ0 + ∂ρ

∂cA

∣
∣
∣
∣
0
cA = ρ0 − ρ0βscA (5.P.24-1)

where βs is the coefficient of solutal volume expansion. It will be convenient in
this problem to split the pressure into dynamic, P , and hydrostatic, Ph, contribu-
tions:

P = P (x, y) + Ph(x) (5.P.24-2)

(a) Write the appropriately simplified steady-state continuity equation, equations
of motion, and species-balance equation.

(b) Write the requisite boundary conditions on the equations in part (a).

(c) Introduce the following dimensionless variables and determine the unspeci-
fied scale and reference factors:

u∗
x ≡ ux

uxs

; u∗
y ≡ uy

uys

; P ∗ ≡ P

Ps

; c∗
A ≡ cA

cs

;

x∗ ≡ x

xs

; y∗
m ≡ y

δm

; y∗
c ≡ y

δs

(5.P.24-3)

where δm and δs are the momentum and solutal boundary-layer thicknesses,
respectively. Indicate why different y-length scales are used for the equations
of motion and species-balance equation.

(d) Determine the scale factors and estimate the thicknesses of both the momen-
tum and solutal boundary layers.

(e) Consider the limit of very large solutal Grashof numbers, where Grm ≡
L3gβsρ

2
0
cA/µ2, in which µ is the shear viscosity, to derive the boundary-

layer equations for solutal free convection.

5.P.25 Correlation for Steady-State Mass Transfer from a Sphere

Correlations for mass transfer to standard geometries are usually characterized in
terms of a dimensionless mass-transfer coefficient known as the Sherwood num-
ber or Nusselt number for mass transfer. The latter is a function of the other
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dimensionless groups characterizing the mass-transfer process, such as the Reynolds
or Peclet number, Schmidt number, and ratios of characteristic lengths that define
the geometry. Consider steady-state flow over a sphere having radius R that is
transferring a solute A to the surrounding fluid, consisting primarily of a binary
solution of components A and B. Assume that the concentrations of solute A in
the flowing fluid adjacent to and far from the sphere are cA0 and cA∞, respec-
tively. Component B is assumed to be insoluble in the sphere, and the solution is
assumed to be dilute. The physical and transport properties of the surrounding fluid
stream can be assumed to be constant and constitute the density ρ, viscosity µ,
and binary diffusion coefficient DAB . The fluid velocity far from the sphere is U∞.
We seek to develop a correlation for the steady-state mass-transfer coefficient de-
fined by

k
•
x ≡

−cDAB

∂xA

∂r

xA0 − xA∞
= NAr − xA0(NAr + NBr)

xA0 − xA∞
∼= NAr

xA0 − xA∞
(5.P.25-1)

where Nir is the molar flux of component i in the r-direction averaged over
the surface of the sphere and xA denotes a mole fraction; the simplification in
equation (5.P.25-1) follows from applying Fick’s law of diffusion given by equ-
ation (G.3-7) in the Appendices and the assumption of dilute solutions.

(a) Write the equation that relates the average molar flux at the surface of the
sphere to the concentration.

(b) Write the appropriate forms of the continuity equation, equations of motion
and species-balance equation and their boundary conditions for this mass-
transfer problem.

(c) Use the scaling method for dimensional analysis to obtain the dimension-
less groups needed to correlate the mass-transfer coefficient defined by
equation (5.P.25-1).

(d) Consider how the correlation that you obtained in part (c) simplifies in the
limit of zero flow, that is, U∞ = 0.

(e) Compare the result that you obtained in part (c) to the standard correlation
for the Sherwood number given by37

Sh = 2 + 0.60Re1/2Sc1/3 (5.P.25-2)

where the Sherwood and Reynolds numbers are based on the sphere diam-
eter.

(f) In Practice Problem 5.P.9, scaling was applied to the aeration of water by the
sparging of spherical bubbles; each bubble was assumed to be surrounded
by a stagnant film having thickness δm; use the correlation you obtained for
the mass-transfer coefficient to develop a correlation for the thickness of the
region of influence or solutal boundary layer.

37Bird et al., Transport Phenomena, 2nd ed., p. 681.
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5.P.26 Mass-Transfer-Coefficient Correlation for Film Theory

In Section 5.2 we used scaling analysis to develop the classical film theory approx-
imation. Consider the following definition of the mass-transfer coefficient:

k
•
L ≡ −ρDAB(∂ωA/∂z)

ωA1 − ωA0
= nAz − ωA(nAz + nBz)

ωA1 − ωA0
(5.P.26-1)

where nAz is the mass-transfer flux (mass/area·time) in the z-direction and ωA0 and
ωA1 are the mass fractions on each side of the film.

(a) Use the scaling approach to dimensional analysis to determine the dimen-
sionless groups required to correlate the dimensionless mass-transfer coeffi-
cient (Sherwood number) for film theory. Do not assume that the convective
transport is negligible.

(b) Evaluate the Sherwood number using the general solution for the film theory
model given by equation (5.2-29), and discuss the physical significance of
the result that you obtain; that is, relate the value of the Sherwood number
to the nature of the mass transfer through a stationary film.

(c) Determine the ratio of the Sherwood number for the general case of film
theory (i.e., when convective transport is included) to the Sherwood number
for the special case of negligible convection.

(d) Discuss how the result that you obtained in part (c) could be used to cor-
rect a mass-transfer coefficient obtained from some literature correlation for
very dilute solutions (low mass transfer rates) to account for the effect of
convective transport.

(e) Discuss when using film theory might provide a reliable correction for
the effects of convective transport on a mass-transfer coefficient obtained
from a correlation applicable only to dilute solutions and low mass-transfer
fluxes.

5.P.27 Correlation for Free-Convection Mass Transfer from an Evaporating
Liquid

Consider a horizontal film of width W on each side that consists of a pure volatile
liquid A exposed on its upper surface to dry air, referred to a component B, as
shown in Figure 5.P.27-1. The volatile component is less dense than the surround-
ing air, so that steady-state free convection develops. The equilibrium concentration
of the volatile component in the air adjacent to the liquid–gas interface is cA0,
which can be assumed to be dilute. The air is assumed to be insoluble in the liquid
film. We seek to develop a correlation for the steady-state mass-transfer coefficient
defined by

k
•
x ≡

−cDAB

∂xA

∂y

xA0 − xA∞
= NAy − xA0(NAy + NBy)

xA0 − xA∞
∼= NAy

xA0 − xA∞
(5.P.27-1)
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W
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Free-convection
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cA0

Ambient air Ambient air

Figure 5.P.27-1 Solutally driven buoyancy-induced free convection due to the evaporation
of a pure volatile liquid contained in a trough with sides of width W ; the vapor of the
evaporating liquid is less dense than that of the ambient air.

where Niy is the molar flux of component i in the y-direction (perpendicular
to the horizontal plate) averaged over the surface of the film and xA denotes a
mole fraction; the simplification in equation (5.P.27-1) follows from Fick’s law of
diffusion given by equation (G.1-7) in the Appendices and the assumption of dilute
solutions.

(a) Write the equation that relates the average molar flux at the surface of the
liquid film to the concentration.

(b) Write the appropriate forms of the continuity equation, equations of motion,
and species-balance equation and their boundary conditions for this mass-
transfer problem.

(c) Use the scaling method for dimensional analysis to obtain the dimensionless
groups needed to correlate the mass-transfer coefficient defined by equ-
ation (5.P.27-1).

(d) Compare the result that you obtained in part (c) to the standard correlation
for the Sherwood number given by38

Sh = 0.816(GrmSc)0.2 (5.P.27-2)

where the Sherwood and solutal Grashof numbers are based on the half-
width of the film.

5.P.28 Correlation for a Tubular Photocatalytic Reactor

Photocatalytic reactors can be used to employ solar energy for promoting hetero-
geneous natural reactions. A typical geometry involves a feed stream containing a

38S. N. Singh, R. C. Birkebak, and R. M. Drake, Prog. Heat Mass Transfer, 2:87 (1969).
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solute that diffuses to the transparent walls of the flow channel that are exposed
to sunlight. The solute decomposes due to a photocatalytic reaction at the tube
wall.39 Consider steady-state fully developed laminar flow of a Newtonian fluid
having constant physical properties in a cylindrical tube of radius R containing
a solute A having an initial concentration cA0 that undergoes a photocatalytic
reaction along length L, such as that shown in Figure 5.5-1. The heterogeneous
reaction is assumed to be irreversible and first-order with a reaction-rate constant
k̂1 (length/time).

(a) Develop a correlation for the Sherwood number or Nusselt number for mass
transfer as a function of the Reynolds number, Re ≡ RρU/µ, and other rele-
vant dimensionless groups, where the mass-transfer coefficient is defined as

k
•
x ≡

−cDAB

∂xA

∂r

∣
∣
∣
∣
∣
r=R

xA0 − xA∞
= NAr |r=R − xA0(NAr + NBr)|r=R

xA0 − xA∞
(5.P.28-1)

where NAr denotes the molar flux in the r-direction averaged over the inner
wall of the photocatalytic reactor.

(b) Sketch a plot of n∗
A versus Re based on your dimensional analysis correlation

and the results of Section 5.5 and Example Problem 5.E.8.

(c) Based on the results of Example Problem 5.E.8, derive an equation for the
Reynolds number beyond which no further increase in the dimensionless
mass-transfer flux to the tube wall is possible for a photocatalytic reactor
system with fixed physical and chemical properties.

(d) Develop an equation for the maximum possible mass-transfer flux to the tube
wall for a photocatalytic reactor system with fixed physical and chemical
properties.

39An annular photocatalytic reactor has been considered for removing trace amounts of trichloroethane
(TCE) from air; TCE is a common solvent and chemical intermediate used in industry; owing to its
volatility, it evaporates readily and poses a health hazard if present in air.



6 Applications in Mass Transfer
with Chemical Reaction

Taking all the mutually interfering phenomena which constitute a process of mass

transfer with chemical reaction into account simultaneously is so difficult a task that,

in practice, simplifying hypotheses are always needed. It is more useful in my opinion

to recognize these simplifying hypotheses as justified on the grounds of physical

intuition, than to perceive a strictly mathematical justification.1

6.1 INTRODUCTION

Mass transfer with chemical reaction can be very challenging to model since it not
only can be affected by the complex hydrodynamics discussed in Chapter 3 and
heat-transfer effects considered in Chapter 4, but necessarily includes mass transfer,
discussed in Chapter 5. Indeed, reacting systems involve at least one or more fluid
phases and can involve the release or absorption of energy arising from heat-of-
reaction effects. Chemical species are no longer conserved in reacting systems but
can be depleted or generated. Hence, we would certainly agree with the first part
of the quotation at the top of the page; that is, simplifications need to be made to
model mass transfer with chemical reaction. In this chapter we address the second
part of this quotation; that is, scaling analysis provides a mathematical formalism
for justifying these approximations that obviates the need to be gifted with physical
intuition.

In Chapter 5 scaling analysis was applied to several examples that involved
either homogeneous or heterogeneous chemical reactions. However, these examples
involved mass transfer, with chemical reaction occurring on only one length scale.
We considered problems for which mass transfer with chemical reaction occurred
over the length of the reactor, such as in Section 5.4, or over a small element such
as a rising bubble in Practice Problem 5.P.9. It is easy to see how problems can

1G. Astarita, Mass Transfer with Chemical Reaction, Elsevier, New York, 1967, pp. v–vi.
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arise involving transport phenomena on multiple scales. Consider, for example, the
bubbling of a gas into a countercurrently flowing liquid in which it is chemisorbed;
that is, the gaseous component dissolves in the liquid while reacting with it. The
solute from the gas phase can enter the liquid only during the short time that it
passes over a gas bubble. If the reaction is relatively slow, none of the transferring
solute will react during the short contact time for passage of the liquid over a gas
bubble. However, once the solute is in the bulk of the liquid, it can both diffuse and
react. Hence, this example involves mass transfer, with chemical reaction occurring
on two scales. There is the microscale, characterizing the flow of the liquid over
a bubble, and the macroscale, characterizing the flow through the chemisorption
device. In this chapter we employ scaling analysis to assess appropriate simplifica-
tions that can be made in both the microscale and macroscale describing equations
for mass transfer with chemical reaction.

To provide a coherent focus in this chapter, we restrict our attention to a partic-
ular form of mass transfer with a chemical reaction: namely, chemisorption. The
latter refers to the use of chemical reaction to enhance the solubility of a solute in
a fluid into which it is being transferred. However, the scaling protocols illustrated
in the chapter can be applied more generally to any type of process involving mass
transfer with chemical reaction.

This chapter has a dual focus in that it applies scaling analysis to mass trans-
fer with chemical reaction, but uses the latter as an example of scaling analysis
in microscale–macroscale modeling. In general, any system involving dispersed
phases will involve phenomena occurring on multiple scales. For example, phase-
transition phenomena such as crystallization, boiling, and condensation will involve
transport occurring on the microscale of a dispersed phase particle and on the
macroscale of the bulk liquid. A fluidized bed reactor will involve heat and or
mass transfer on the microscale of the particles as well as on the macroscale of
the reactor. The scaling protocols illustrated in this chapter can be applied to any
modeling problem involving transport phenomena and chemical reaction occurring
on multiple scales.

The organization of this chapter is somewhat different from that of the preceding
chapters. Rather than considering several different examples to illustrate how scal-
ing is used to arrive at the various approximations made in transport processes, we
focus here on illustrating how scaling is applied to microscale–macroscale modeling
using chemisorption as the example.2 We begin with a discussion of the microscale
element in Section 6.2, since it is critical to understand precisely what is meant by
this concept. Since scaling on the microscale involves some concepts that are differ-
ent from those for the macroscale, we treat these two topics in separate sections.
In Section 6.3 we focus on applying systematic scaling analysis to the describ-
ing equations for the microscale element. Scaling of the complementary describing
equations for the macroscale element is considered in Section 6.8. Scaling analysis

2Microscale–macroscale modeling of mass transfer with chemical reaction has been treated by other
authors, although there is no general agreement on the terminology used to describe this. Prior treatments
rely on intuition rather than systematic scaling analysis in order to simplify the describing equations at
the two scales. See, for example, Astarita, Mass Transfer with Chemical Reaction.
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of the microscale element leads to the identification of various reaction regimes dis-
cussed in Sections 6.4 through 6.7. Scaling analysis of the macroscale element leads
to the identification of various reaction domains in the slow reaction regime that
are discussed in Sections 6.9 and 6.10. Scaling analysis will not only develop cri-
teria for determining the relative importance of diffusion and reaction on both the
micro- and macroscale but will also lead to a set of precepts for selecting the type
of reactor that will be most effective for a particular reaction regime or domain,
as shown in Section 6.11. Scaling analysis will be used to explain why the perfor-
mance of a contacting device for mass transfer with chemical reaction depends on the
hydrodynamics for the slow and instantaneous reaction regimes but not for the fast
reaction regime. In Section 6.12, simple models suggested by scaling analysis will
be developed to interrelate the mass-transfer coefficients in the presence and absence
of chemical reaction. The power of scaling analysis to provide considerable insight
into the design of devices involving mass transfer with chemical reaction without
the need to actually solve any model equations analytically or numerically is shown
in Section 6.11 and again in Sections 6.13 and 6.14. In Section 6.13 we illustrate
how microscale–macroscale scaling can be used to design and interpret performance
data for a continuous-stirred tank reactor. Section 6.14 does the same for a packed
gas-absorption column. In Section 6.15 we summarize the implications of scaling
analysis for microscale–macroscale modeling and, in particular, its application to
chemisorption. Unworked practice problems are included at the end of the chapter.

6.2 CONCEPT OF THE MICROSCALE ELEMENT

In developing models for complex mass-transfer processes, in particular those in-
volving dispersed phases, it is convenient to consider the concept of the microscale
element. The latter is associated with mass transfer at the smallest continuum scale.
For example, in a gas-absorption process in which a gas containing a soluble com-
ponent is bubbled through a countercurrently flowing liquid phase, the microscale
element is a gas bubble. In a fluidized bed reactor involving the flow of a gas rel-
ative to suspended recirculating solid particles, the microscale element is a solid
particle. In phase-transition processes involving growth kinetics, the microscale ele-
ment is a dispersed phase particle. In turbulent flows the microscale element can
be an eddy that transports species to and from an interface. The mass-transfer rate
on the microscale is controlled by a region of influence within the fluid adjacent to
the microscale element. A pivotal consideration in microscale–macroscale model-
ing is that the microscale element is a mathematical point on the macroscale; that is,
the mass-transfer flux from or to a microscale element becomes in the macroscale
balance a homogeneous source or sink term, respectively3.

3Some authors consider the microscale element to be the thin region of fluid adjacent to what we call
the microscale element here. For example, these authors would consider the microscale element to be
a thin element of liquid flowing adjacent to and around a gas bubble rather than the bubble itself.
The definition of the microscale element used in this chapter is preferred since this is what is reduced
to a mathematical point when one considers the implications of the microscale mass transfer on the
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Gas in Liquid out

Gas out

Microscale element

Macroscale element ∆z

Liquid

Gas bubble

cÅ
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Figure 6.2-1 Bubble column for countercurrent gas absorption; the gas diffuses into the
liquid, where it is chemisorbed; the microscale element is a gas bubble; the flux of the soluble
solute is controlled on the microscale by a thin region of influence within the surrounding
liquid having thickness δm, as shown in the enlarged view; the macroscale element is an
incremental slice �z of the entire absorption column.

The microscale element concept can be grasped most easily by means of an
example. Consider chemisorption4 in a bubble column that involves the absorption of
a component from gas bubbles moving upward through a downward-flowing liquid,
as shown in Figure 6.2-1. Chemisorption is used to increase both the amount that
can be transferred and the mass-transfer rates, thereby allowing the use of a smaller
and less costly column to accomplish the same absorption. The microscale element
in this case is a gas bubble. The mass transfer of the soluble component from this
bubble occurs on the microscale within a thin region of influence or boundary layer in
the liquid whose thickness is δm. This thickness is controlled by the hydrodynamics;
that is, the influence of the gas–liquid interface on the flow will create a relatively
stagnant region near the gas bubble wherein the mass transfer on the microscale
will be confined. The concentration gradients of the diffusing components will occur
over the entire thickness δm for sufficiently long contact times and slow reaction
rates. However, for short contact times or sufficiently fast reaction rates, they will
occur over shorter length scales, identified in Section 6.3 using scaling analysis.
An upper bound on δm is provided by the mass-transfer coefficient k

•
L0 for purely

macroscale equations. However, both conventions for defining the microscale element lead to the same
final results for describing the various mass-transfer regimes.
4Chemisorption refers to a component going into solution by a chemical potential driving force
accompanied by chemical reaction. In contrast, physical absorption involves only a chemical potential
driving force that leads to a thermodynamic equilibrium concentration of the transferring component
for a sufficiently long contact time.
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diffusive mass transfer in the absence of chemical reaction as shown in Section 6.3.
The contact time between the gas and liquid that is available for mass transfer on
the microscale can be estimated from the size of a bubble and the relative velocity
between the gas and liquid. Depending on the contact time, a simple model can be
developed to describe the mass-transfer flux from the gas to the liquid. Whether this
simple model needs to include the effects of chemical reaction on the consumption
of the reactants and steepening of the concentration profiles depends on the reaction
time scale relative to the characteristic diffusion time. In any event, the mass-transfer
flux occurring on the microscale of a bubble is considered to occur at a point on the
macroscale of the gas-absorption column; that is, one converts the mass-transfer flux
per unit area of the microscale element into a species-generation rate per unit volume
of contacting device in the species-balance equations for the absorbing component
by multiplying the former by the packing area per unit volume of column. One then
integrates the species-balance equation for the liquid phase over the length of the
absorption column to determine its overall performance.

6.3 SCALING THE MICROSCALE ELEMENT

As an example of scaling the describing equations for mass transfer from a micro-
scale element, we consider the chemisorption of component A from a gas that is
bubbled upward through a liquid consisting initially of a nonreacting nonvolatile
solvent S and a reacting nonvolatile solute B that is flowing downward in a vertical
column as shown in Figure 6.2-1. Although a chemisorption process is considered
here, the methodology outlined for the scaling analysis is general and can be applied
to other microscale elements involving mass transfer with chemical reaction as well
as to other systems, such as phase-transition phenomena that can be described by
microscale–macroscale modeling.

In this example we assume irreversible kinetics involving reactants A and B but
will not specify the form of the reaction-rate equation, in order to keep the results
as general as possible. Irreversible kinetics means that the reaction can proceed
in only one direction; that is, the products formed by the reaction of A and B

cannot decompose to reform A and B. We will assume that component A is the
limiting reactant ; that is, its concentration limits the amount of reaction that can
occur. For chemisorption the component being absorbed is usually the limiting
reactant; that is, the concentration of component B is maintained at a sufficiently
high level to permit the maximum possible absorption of component A in the bulk
liquid. However, for an instantaneous reaction it is possible that component B will
become the limiting reactant at least within some region on the microscale. This
is explored further in Section 6.7.

Solute transfer from the microscale element consisting of the gas bubble will be
controlled by mass transfer through a region of influence having thickness δm. The
system considered for developing the describing equations will be an infinitesimal
element of liquid having area �S being convected through the region of influence
as shown by the dotted lines in the enlarged view in Figure 6.2-1. We describe the



SCALING THE MICROSCALE ELEMENT 365

mass transfer within this system in a coordinate system convected at the local rela-
tive velocity between the liquid and the gas bubble. We ignore both transverse and
streamwise convective mass transfer within the convected infinitesimal element;
recall from Chapter 5 that these approximations are justified for dilute solutions of
the diffusing species and for small solutal Peclet numbers; the latter will be small,
owing to the small characteristic length for the thickness of the region of influ-
ence. We also ignore both streamwise diffusion and curvature effects on the mass
transfer; we saw in Chapter 5 that these approximations are justified if δm/L � 1,
in which L is the characteristic streamwise length, which is the diameter of the
gas bubble in this example. These assumptions are not limiting in practice since
these neglected effects are accounted for, at least in part, by using mass-transfer
coefficient correlations for this contacting device in order to determine the thick-
ness of the region of influence. The dilute solution assumption implies that in the
absence of chemical reaction on the microscale, there will be diffusion only of
component A since B will not have a concentration gradient. We also assume that
the mass transfer is liquid-phase controlled; that is, any resistance to mass trans-
fer due to the diffusion of component A in the gas phase is negligible. However,
in Section 6.7 we consider instantaneous reaction conditions for which the mass
transfer can become gas-phase controlled.

Mass transfer from the microscale element to the convected infinitesimal element
can occur only during this characteristic time that they are in contact. Hence, the
appropriate contact time for the unsteady-state mass transfer from the microscale
element to the liquid is the time required for the convected infinitesimal element
to pass around a gas bubble. Once this convected infinitesimal element passes over
the gas bubble, it is assumed to mix intimately with the bulk liquid. The microscale
model will provide the continuous mass-transfer flux of solute from the gas to the
liquid phase, which then will be converted into a homogeneous source term in the
species balance on the macroscale. This mass-transfer flux can influence the local
concentration of both reactants on the macroscale of the absorption column, for
which both reactants can continue to undergo convective diffusion and reaction.

In view of the considerations above, the resulting describing equations in general
will involve unsteady-state one-dimensional diffusion and homogeneous chemical
reaction. Hence, equation (G.1-5) in the Appendices simplifies to the following for
the two transferring components (step 1):

∂cA

∂t
+ ux

∂cA

∂x
= DAS

∂2cA

∂y2
+ RA (6.3-1)

∂cB

∂t
+ ux

∂cB

∂x
= DBS

∂2cB

∂y2
+ κRA (6.3-2)

where cA and cB denote the molar concentrations of components A and B in
the liquid within the microscale element, ux is the liquid mass-average velocity
relative to a coordinate system located on the gas bubble, y is a coordinate nor-
mal to the surface of the gas bubble as shown in Figure 6.2-1, DAS and DBS are
the effective binary diffusion coefficients of components A and B in the liquid S
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that are assumed constant for the dilute solutions being considered here, κ is a
stoichiometric coefficient that relates how many moles of component B are con-
sumed per mole of A, and RA is the rate of production (moles/volume ·time) of
component A by the homogeneous chemical reaction; note that for chemisorption,
RA < 0. Note that each term in equation (G.1-5) has been divided by the molec-
ular weight of component A or B in arriving at equations (6.3-1) and (6.3-2). It
is convenient to transform to a coordinate system that is convected at the liquid
velocity relative to the gas bubble, which will be assumed to be constant; that is,
equations (6.3-1) and (6.3-2) are transformed to a moving coordinate system for
which x̃ ≡ x − uxt , in which ux is assumed to be the average x-component of the
velocity in the region of influence around the gas bubble. Equations (6.3-1) and
(6.3-2) assume the following form in this convected coordinate system:

∂cA

∂t
= DAS

∂2cA

∂y2
+ RA (6.3-3)

∂cB

∂t
= DBS

∂2cB

∂y2
+ κRA (6.3-4)

in which the time derivatives are now evaluated at a constant value of x̃ rather
than at a constant value of x.

The initial and boundary conditions for equations (6.3-3) and (6.3-4) are
given by

cA = ĉA, cB = ĉB at t = 0 (6.3-5)

cA = c
◦
A,

∂cB

∂y
= 0 at y = 0 (6.3-6)

cA = ĉA, cB = ĉB at y = δm (6.3-7)

where ĉA and ĉB are the molar concentrations of components A and B in the
bulk liquid on the macroscale and c

◦
A is the equilibrium molar concentration of

component A in the liquid at the interface of the gas bubble. Equation (6.3-5)
states that the initial concentrations at the upstream leading edge of the microscale
element are those of the local bulk liquid, as shown in Figure 6.2-1; this translates
to an initial condition for the convected infinitesimal element being considered
here. Although the liquid entering the absorption column is assumed to consist
of only the nonreacting solvent S and reacting solute B, ĉA can be nonzero and
ĉB can be less than its inlet concentration, due to the transfer of component A

to the bulk liquid and depletion of component B by chemical reaction that occur
due to upstream microscale elements; that is, these are local bulk concentrations
that can change with axial position on the macroscale of the absorption column.
Equation (6.3-6) states that thermodynamic equilibrium prevails at the gas–liquid
interface for component A and that component B is insoluble in the gas phase; that
is, it has no mass flux into the gas phase. Equation (6.3-7) states that the undisturbed
bulk liquid concentrations prevail at the edge of the region of influence as shown
in Figure 6.2-1.
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Introduce the following dimensionless variables containing unspecified scale and
reference factors (steps 2, 3, and 4):

c∗
A ≡ cA − cAr

cAs

; c∗
B ≡ cB − cBr

cBs

; R∗
A ≡ RA

RAs

; y∗ ≡ y

ys

; t∗ ≡ t

ts
(6.3-8)

We have introduced reference factors for the concentrations of both components
since neither is naturally referenced to zero. Substitute these dimensionless variables
into the describing equations and divide through by the dimensional coefficient of
one term in each equation (steps 5 and 6):

y2
s

DASts

∂c∗
A

∂t∗
= ∂2c∗

A

∂y∗2
+ RAsy

2
s

DAScAs

R∗
A (6.3-9)

y2
s

DBSts

∂c∗
B

∂t∗
= ∂2c∗

B

∂y∗2
+ κRAsy

2
s

DBScBs

R∗
A (6.3-10)

c∗
A = ĉA − cAr

cAs

, c∗
B = ĉB − cBr

cBs

at t∗ = 0 (6.3-11)

c∗
A = c

◦
A − cAr

cAs

,
∂c∗

B

∂y∗
B

= 0 at y∗ = 0 (6.3-12)

c∗
A = ĉA − cAr

cAs

, c∗
B = ĉB − cBr

cBs

at y∗ = δm

ys

(6.3-13)

We divided through by the coefficient of the diffusion term in equations
(6.3-9) and (6.3-10) because it provides the only means by which mass can get
into the convected infinitesimal element to react or accumulate and hence must be
retained.

We now set appropriate dimensionless groups equal to zero or 1 to deter-
mine the reference and scale factors, respectively (step 7). If we assume that the
reaction and diffusion of both components occur over the entire thickness of the
liquid layer on the microscale, the appropriate length scale is obtained by setting
δm/ys = 1 to obtain ys = δm. The scale factor for the reaction rate is chosen to be
some characteristic maximum value Rm

A . If the form of the reaction-rate equation
were specified, Rm

A would be determined from the reaction-rate constant and rel-
evant concentrations. We can reference c∗

A to zero by setting (ĉA − cAr)/cAs = 0
to obtain cAr = ĉA since ĉA is its smallest possible value. We can bound c∗

A to
be ◦(1) by setting (c

◦
A − cAr)/cAs = (c

◦
A − ĉA)/cAs = 1 to obtain cAs = c

◦
A − ĉA,

which is the driving force for the diffusion of component A. We can bound c∗
B

to be ◦(1) by setting (ĉB − cBr)/cBs = 1 to obtain cBs = ĉB − cBr . The reference
factor cBr is obtained by recognizing that component B will have a concentra-
tion gradient only if there is significant chemical reaction on the microscale. This
implies that the reaction term in equation (6.3-10) must be of the same order as
the diffusion term; hence, we set κRAsy

2
s /DBScBs = κRm

Aδ2
m/DBS(ĉB − cBr) = 1
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to obtain cBr = ĉB − κRm
Aδ2

m/DBS , which provides us with an estimate of the min-
imum concentration of component B. When these scale and reference factors are
substituted into the describing equations, we obtain

δ2
m

DASto

∂c∗
A

∂t∗
= ∂2c∗

A

∂y∗2
+ Rm

Aδ2
m

DAS(c
◦
A − ĉA)

R∗
A (6.3-14)

δ2
m

DBSto

∂c∗
B

∂t∗
= ∂2c∗

B

∂y∗2
B

+ R∗
A (6.3-15)

c∗
A = 0, c∗

B = 1 at t∗ = 0 (6.3-16)

c∗
A = 1,

∂c∗
B

∂y∗
B

= 0 at y∗ = 0 (6.3-17)

c∗
A = 0, c∗

B = 1 at y∗ = 1 (6.3-18)

Let us now use the results of our scaling analysis to explore possible simplifi-
cations in the describing equations (step 8). Equation (6.3-14) indicates that there
are three characteristic times for the microscale mass-transfer process:

to contact time between the liquid and gas on the microscale (6.3-19)

δ2
m

DAS

characteristic time for diffusion of A on the microscale (6.3-20)

c
◦
A − ĉA

Rm
A

characteristic time for reaction on the microscale (6.3-21)

Let us first consider the implications of the contact time relative to the charac-
teristic time for diffusion. Note that the characteristic time for diffusion must be at
least of the same order as the contact time if any mass transfer is to occur, since
diffusion is the only transport mechanism available to transfer component A from
the gas to the liquid phase. Steady-state mass transfer will apply on the microscale
if the following criterion is satisfied:

δ2
m

DASto
� 1 ⇒ steady-state mass transfer on the microscale (6.3-22)

Equation (6.3-22) implies that the characteristic time for diffusion is much shorter
than the contact time. When this criterion is satisfied, the diffusion can penetrate
the entire thickness of the liquid region δm within the time that the liquid flows
over the gas bubble. Hence, the mass transfer on the microscale can be described
by a film theory model, for the reasons discussed in Section 5.2.

Let us use the results of our scaling analysis for steady-state mass transfer
to establish a general relationship between k

•
L0, the mass-transfer coefficient for

purely physical absorption, and δm, the effective thickness of the fluid layer for



SCALING THE MICROSCALE ELEMENT 369

the microscale element. Let us scale the equation that defines the mass-transfer
coefficient, which is given by

k
•
L ≡ [NA − xA(NA + NB)]|y=0

c
◦
A − ĉA

∼= −DAS (∂cA/∂y)|y=0

c
◦
A − ĉA

(6.3-23)

This equation for the mass-transfer coefficient has been simplified consistent with
the dilute solution assumption, for which the molar density is approximately con-
stant. Introduce the scale factors obtained from our scaling analysis for steady-state
mass transfer on the microscale into equation (6.3-23):

k
•
L δm

DAS

= − ∂c∗
A

∂y∗

∣
∣
∣
∣
y∗=0

(6.3-24)

Since ∂c∗
A/∂y∗

A|y∗=0 = ©(1), it follows that for steady-state purely physical absorp-
tion,

k
•
L0 = DAS

δm

steady-state physical absorption (6.3-25)

where k
•
L0 denotes the value of k

•
L for purely physical absorption. It is determined

solely by the hydrodynamics for purely physical absorption in the absence of any
chemical reaction. Equation (6.3-25) then establishes that the mass-transfer coeffi-
cient for purely physical absorption can be used to estimate the maximum diffusive
penetration distance δm, which was stated without proof in Section 6.2.

Consider now the case when the contact time is very short. This causes a contra-
diction in equation (6.3-14) since the diffusion term must balance the unsteady-state
term; that is, component A can accumulate in the liquid solution only by diffus-
ing into it from the gas phase. The forgiving nature of scaling indicates that δm

is not the proper characteristic length scale for short contact times; that is, there
is a region of influence or solutal boundary layer δs within which component A

experiences a characteristic change in concentration. The thickness of this solutal
boundary layer is determined by setting the dimensionless group multiplying the
unsteady-state term in equation (6.3-9) equal to 1, thereby obtaining

δs =
√

DASto (6.3-26)

Choosing this characteristic length ensures that both the diffusion and unsteady-
state terms are retained in equation (6.3-9). If δs � δm, the boundary condition on
component A given in equation (6.3-13) can be applied at infinity and a penetration
theory model can be developed to describe the mass transfer with chemical reac-
tion on the microscale, for the reasons discussed in Section 5.3. This penetration
boundary-layer approximation can be made when the following criterion is satisfied:

1 � δ2
m

DASto
= 1

Fom

⇒ unsteady-state penetration theory applies (6.3-27)

where Fom ≡ DASto/δ
2
s is the solutal Fourier number.
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Let us use the results of our scaling analysis for unsteady-state mass transfer
to establish the relationship between k

•
L0, the mass-transfer coefficient for purely

physical absorption, and to, the contact time between the liquid and the gas for the
microscale element. Introduce the scale factors obtained from our scaling analysis
for unsteady-state mass transfer in the microscale element into equation (6.3-23):

k
•
L δs

DAS

= k
•
L

√
DASto

DAS

= k
•
L

√
to

DAS

= − ∂c∗
A

∂y∗

∣
∣
∣
∣
y∗=0

(6.3-28)

Since ∂c∗
A/∂y∗

A|y∗=0 = ©(1), it follows that for unsteady-state purely physical
absorption

k
•
L0 =

√

DAS

to
unsteady-state physical absorption (6.3-29)

where k
•
L0 again denotes the value of k

•
L for purely physical absorption, which is

determined solely by the hydrodynamics.
In the following sections we consider the implications of the reaction time

scale relative to that for diffusion. The mass transfer from the microscale to the
macroscale can be markedly different depending on the relative magnitude of these
two time scales. Figure 6.3-1 shows the concentration profiles of components A

and B for the assumed irreversible chemical reaction for five characteristic reac-
tion regimes that can occur in the microscale element, depending on the magnitude
of the reaction time scale relative to that for diffusion for component A. Scaling
analysis will now be used to determine the conditions for these various reaction
regimes.

slow reaction regime

dr dm

cÅ

cBr

cBr

L
y

c A
 o

r 
c B

0
0

intermediate reaction regime
fast reaction regime
inner domain of the 
instantaneous reaction regime
surface domain of the 
instantaneous reaction regime

cAˆ

cAˆ

cBˆ

Figure 6.3-1 Representative concentration profiles for components A and B as a function
of distance within the liquid layer of the microscale element for chemisorption with an
irreversible reaction.
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6.4 SLOW REACTION REGIME

The characteristic time for reaction can be much longer than that for diffusion, in
which case no chemical reaction will occur on the microscale, thereby justifying
ignoring the reaction term in equation (6.3-14). This is referred to as the slow
reaction regime approximation. Equation (6.3-14) indicates that this approximation
is applicable when the following criterion is satisfied:

Rm
Aδ2

m

DAS(c
◦
A − ĉA)

� 1 ⇒ slow reaction regime (6.4-1)

The criterion above involves the characteristic diffusion time for component A

rather than B because A must diffuse from the gas to the liquid phase for any
reaction to occur, irrespective of how rapidly B can diffuse from the bulk liquid to
the microscale element. Note that the slow reaction regime implies that cBr = ĉB −
κRm

Aδ2
m/DBS

∼= ĉB ; that is, it implies that there is no change in the concentration
of component B on the microscale. Figure 6.3-1 shows that for the slow reaction
regime the concentration gradient of component A occurs over the entire thickness
δm, whereas there is no concentration gradient for component B, owing to the
absence of any chemical reaction; the linear concentration profile for component
A for the slow reaction regime shown in Figure 6.3-1 is for the special case of
steady-state diffusion corresponding to a long contact time. For short contact times,
the concentration profile of component A would be nonlinear and extend over a
thickness δs < δm. Note that in the slow reaction regime, the bulk concentration of
component A can range from 0 ≤ ĉA ≤ c

◦
A for an irreversible reaction, depending

on how fast the reaction is on the macroscale relative to mass transfer from the
microscale element. The slow reaction regime implies that correlations for purely
physical absorption in the absence of chemical reaction can be used to describe the
mass transfer of component A from the microscale to the macroscale. Note that
the slow reaction regime approximation implies only that chemical reaction does
not influence the mass transfer on the microscale; it could influence the transport
on the macroscale, as we will see in Section 6.8.

6.5 INTERMEDIATE REACTION REGIME

If the characteristic time for reaction is of the same order as that for diffusion,
the reaction term must be retained in equation (6.3-14). This will accelerate the
absorption of component A from that for purely physical absorption. Moreover, it
will cause some depletion and thereby diffusion of component B. We refer to this
as the intermediate reaction regime approximation5; it applies when the following
criterion is satisfied:

Rm
Aδ2

m

DAS(c
◦
A − ĉA)

= ◦(1) ⇒ intermediate reaction regime (6.5-1)

5The intermediate reaction regime defined here is sometimes referred to as the transition between the
slow to fast reaction regimes.
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The minimum concentration of component B due to the chemical reaction can be
estimated from the reference factor that we determined for this component from
our scaling analysis; that is,

cBr = ĉB − κRm
Aδ2

m

DBS

(6.5-2)

Figure 6.3-1 shows that in the intermediate reaction regime, components A and B

both undergo a characteristic change in concentration over the length δm. However,
the reaction is not fast enough to reduce the concentration of either component to
zero within the microscale element. In the intermediate reaction regime, the bulk
concentration of component A can range from 0 ≤ ĉA < c

◦
A for an irreversible

reaction, depending on the time scale for reaction on the macroscale relative to the
time scale for mass transfer from the microscale element. The mass-transfer flux in
the intermediate reaction regime is larger than that for the slow reaction regime, as
shown by the increase in the slope of the concentration profile for component A at
y = 0. It would appear from equation (6.5-2) that the concentration of component
B could be reduced to zero for sufficiently fast reaction rates. However, this is not
possible in the intermediate reaction regime since the concentration of component
A would have to be reduced to zero first because it is the limiting reactant. The
latter can occur within the microscale element only in the fast or instantaneous
reaction regimes.

6.6 FAST REACTION REGIME

Consider now conditions for which the characteristic time for reaction is much
shorter than the characteristic time for diffusion. This is referred to as the fast
reaction regime, which applies when the following criterion is satisfied:

Rm
Aδ2

m

DAS(c
◦
A − ĉA)


 1 ⇒ fast reaction regime (6.6-1)

For these conditions the forgiving nature of scaling indicates a contradiction in
equation (6.3-14); that is, the reaction term no longer balances the diffusion term
that must be retained in order to satisfy the boundary conditions. This implies that
the length scale ys = δm is not appropriate for this reaction regime and suggests
that there is a region of influence or reaction boundary layer δr within which the
irreversible reaction of component A goes to completion at which ĉA = 0. The
thickness of this reaction boundary layer is obtained by setting the dimensionless
group that multiplies the reaction term in equation (6.3-14) equal to 1 to obtain

δr =
(

DASc
◦
A

Rm
A

)1/2

(6.6-2)

Figure 6.3-1 shows that in the fast reaction regime the concentration of compo-
nent A is reduced to zero within the distance δr . However, since component A is
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the limiting reactant, component B is not necessarily reduced to zero; moreover,
it diffuses over the full thickness of the microscale liquid layer and reacts with
component A over the thickness δr . The minimum concentration of component B

can again be estimated from our scaling analysis and is given by equation (6.5-2).
The mass-transfer flux is increased for the fast relative to the slow or intermediate
reaction regimes, as shown by the steeper slope of the concentration profile for
component A at y = 0.

6.7 INSTANTANEOUS REACTION REGIME

As the reaction rate increases in the fast reaction regime, the concentration of
component B at the gas–liquid interface continues to decrease. For sufficiently fast
irreversible reaction conditions, it is reduced to zero. An estimate of the reaction
rate required to achieve this condition can be obtained from our reference factor
for component B given by equation (6.5-2):

cBr = ĉB − κRm
Aδ2

m

DBS

= 0 ⇒ Rm
A = DBSĉB

κδ2
m

(6.7-1)

When the reaction rate is increased from this value, component B becomes the
rate-limiting reactant in the vicinity of the gas–liquid interface; that is, there is
a region near the gas–liquid interface wherein there is no reaction, due to the
depletion of component B. Hence, the reaction will occur only in the region
wherein both components A and B have concentrations greater than zero. Equa-
tion (6.6-2) indicates that the thickness of the region wherein the chemical reaction
occurs decreases to zero as the reaction rate become infinite. This limiting condition
is referred to as the instantaneous reaction regime, for which the criterion is

Rm
Aδ2

m

DAS(c
◦
A − ĉA)

→ ∞ ⇒ instantaneous reaction regime (6.7-2)

This condition implies that the irreversible reaction is so fast that the two reacting
components cannot coexist anywhere in the microscale element. When instanta-
neous reaction conditions prevail, the resistance to mass transfer in the liquid phase
is greatly reduced. Hence, it is possible for the mass transfer on the microscale to
become gas-phase controlled. If the mass transfer remains liquid-phase controlled,
the interfacial concentration of component A will remain at c

◦
A and the reaction

plane will be in the liquid phase; this is referred to as the inner-reaction domain
of the instantaneous reaction regime. However, if the mass transfer becomes gas-
phase controlled, the interfacial concentration of component A will become zero
and the reaction plane will be at the gas–liquid interface; this is referred to as the
surface-reaction domain of the instantaneous reaction regime. Figure 6.3-1 shows
that for the inner-reaction domain of the instantaneous reaction regime the reac-
tion plane separates a region in which component A is diffusing in the absence of
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any B from a region in which component B is diffusing in the absence of any A.
However, for the surface-reaction domain of the instantaneous reaction regime the
concentration of component A remains at zero throughout the microscale element,
owing to the extremely fast reaction that consumes it at the interface between the
two phases. In addition, the concentration of component B becomes zero at the
gas–liquid interface. Figure 6.3-1 shows that the mass-transfer flux is increased for
the instantaneous relative to the slow, intermediate, and fast reaction regimes, as
indicated by the steeper concentration gradient of component A at y = 0. How-
ever, the surface-reaction domain of the instantaneous reaction regime provides
the fastest absorption since the resistance to mass transfer in the liquid becomes
negligible in comparison to that in the gas phase.

The inner-reaction domain of the instantaneous reaction regime is no longer
described by equations (6.3-3) through (6.3-7) since the homogeneous reaction
term does not appear in the describing equations. Moreover, the concentrations of
both components are forced to zero at the reaction plane as shown in Figure 6.3-1.
Since the instantaneous reaction is confined to a reaction plane, the mass transfer
again becomes diffusion-limited; that is, the diffusion of the two components occurs
within the liquid layer thickness defined by δm. The resulting describing equations
then are given by (step 1)

∂cA

∂t
= DAS

∂2cA

∂y2
(6.7-3)

∂cB

∂t
= DBS

∂2cB

∂y2
(6.7-4)

cA = 0, cB = ĉB at t = 0 (6.7-5)

cA = c
◦
A at y = 0 (6.7-6)

cA = 0, cB = 0 at y = L(t) (6.7-7)

cB = ĉB at y = δm (6.7-8)

The initial condition given by equation (6.7-5) states that for an instantaneous
reaction component A, the limiting reactant cannot be present in the bulk liquid,
whereas component B has a concentration dictated by the local position in the
absorber. Equation (6.7-6) states that the equilibrium concentration of component
A is maintained at the interface. Equation (6.7-7) states that the concentrations
of both reactants are zero at the instantaneous reaction front. Equation (6.7-8)
states that component B has its bulk concentration at the edge of the liquid layer
in the microscale element. An auxiliary condition is needed to locate L(t), the
instantaneous position of the reaction plane; that is, the instantaneous reaction case
involves a moving boundary problem. Consider an integral species balance on
component A:

d

dt

∫ L

0
cA dy = NA|y=0 + 1

κ

d

dt

∫ δm

L

cB dy (6.7-9)
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Equation (6.7-9) states that the change in the concentration of component A in
the liquid layer of the microscale element is equal to the rate at which it diffuses
in from the gas phase minus the rate at which it is consumed by the irreversible
instantaneous chemical reaction; the latter is equal to the change in the concentra-
tion of component B (a negative number) divided by the stoichiometric coefficient
for the chemical reaction. Equation (6.7-9) can be rearranged using Leibnitz’s rule
for differentiation of an integral given by equation (H.1-2) in the Appendices and
equations (6.7-3) and (6.7-4) to obtain the following auxiliary condition for deter-
mining the instantaneous location of the reaction plane6:

DAS

∂cA

∂y
= −DBS

κ

∂cB

∂y
at y = L (6.7-10)

Note that velocity of the moving boundary does not appear in equation (6.7-10)
because the concentrations of both A and B are zero at the reaction plane. Our describ-
ing equations for instantaneous reaction conditions then are given by equations (6.7-
3) through (6.7-8) and equation (6.7-10).

Introduce the following dimensionless variables containing unspecified scale and
reference factors (steps 2, 3, and 4):

c∗
A ≡ cA

cAs

; c∗
B ≡ cB

cBs

; y∗
A ≡ y

yAs

; y∗
B ≡ y − yBs

yBs

; t∗ ≡ t

ts
(6.7-11)

We do not need to introduce reference factors for cA and cB since they are naturally
referenced to zero. We have introduced a reference length factor for component B

since its diffusion occurs only on one side of the reaction front. Substitute these
dimensionless variables into the describing equations and divide through by the
dimensional coefficient of one term in each equation (steps 5 and 6):

y2
As

DASts

∂c∗
A

∂t∗
= ∂2c∗

A

∂y∗2
A

(6.7-12)

y2
Bs

DBSts

∂c∗
B

∂t∗
= ∂2c∗

B

∂y∗2
B

(6.7-13)

c∗
A = 0, c∗

B = ĉB

cBs

at t∗ = 0 (6.7-14)

6In some formulations of the instantaneous reaction problem, an additional condition that is based
on the fact that the moving boundary is a plane having constant concentration is used to obtain an
equation that relates the velocity of the reaction front dL/dt to the ratio of the partial derivatives of
the concentration ∂cA/∂t and ∂cA/∂y. However, this condition is redundant since it is embodied in
equation (6.7-10). Indeed, the time dependence of L can be obtained by demanding that the solution
to equations (6.7-3) through (6.7-8) satisfy equation (6.7-10). Note, however, that we will see that our
scaling analysis gives us the time dependence of L to within a multiplicative constant of ©(1): that is,
L ∝ √

t .
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c∗
A = c

◦
A

cAs

at y∗ = 0 (6.7-15)

c∗
A = 0 at y∗

A = L

yAs

(6.7-16)

c∗
B = 0 at y∗

B = L − yBr

yBs

(6.7-17)

c∗
B = ĉB

cBs

at y∗
B = δm − yBr

yBs

(6.7-18)

∂c∗
A

∂y∗
A

= − DBScBsyAs

κDAScAsyBs

∂c∗
B

∂y∗
B

at y∗
A = L

yAs

(6.7-19)

We again set appropriate dimensionless groups equal to zero or 1 to determine
the reference and scale factors, respectively (step 7). The concentration scales are
obtained by setting c

◦
A/cAs = 1 and ĉB/cBs = 1 to obtain cAs = c

◦
A and cBs = ĉB ,

respectively. Since this is inherently an unsteady-state problem, the characteris-
tic time is the observation time to. Careful consideration must now be given to
determining the proper scales for yAs and yBs . Note that for an instantaneous
reaction, we expect that L � δm since the reaction is limited by depletion of
component B, which must diffuse to the reaction front. Hence, we set the dimen-
sionless group in equation (6.7-16) equal to 1 to obtain yAs = L. Since the two
terms in equation (6.7-13) must balance, we set y2

Bs/DBSto = 1 to obtain yBs =√
DBSto. Since the diffusion of component B is inherently unsteady-state, the two

terms in equation (6.7-19) must balance; thus, we set DBScBsyAs/κDAScAsyBs =
DBSĉBL/κDASc

◦
A

√
DBSto = 1, thereby obtaining L = (κDASc

◦
A/ĉB)

√
to/DBS .

When these scale and reference factors are substituted into the describing equations,
we obtain

(
κc

◦
A

ĉB

)2
DAS

DBS

∂c∗
A

∂t∗
= ∂2c∗

A

∂y∗2
A

(6.7-20)

∂c∗
B

∂t∗
= ∂2c∗

B

∂y∗2
B

(6.7-21)

c∗
A = 0, c∗

B = 1 at t∗ = 0 (6.7-22)

c∗
A = 1 at y∗ = 0 (6.7-23)

c∗
A = 0 at y∗

A = 1 (6.7-24)

c∗
B = 0 at y∗

B = 0 (6.7-25)

c∗
B = 1 at y∗

B = δm − L√
DBSto

(6.7-26)

∂c∗
A

∂y∗
A

= −∂c∗
B

∂y∗
B

at y∗
A = 1 (6.7-27)
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Now let us consider how the dimensionless describing equations can be
simplified (step 8). The boundary condition given by equation (6.7-26) can be
applied at infinity if the following condition is satisfied:

δm − L√
DBSto


 1 (6.7-28)

This condition will be satisfied for relatively short contact times. The unsteady-
state term in equation (6.7-20) can be dropped if the following condition is
satisfied:

(
κc

◦
A

ĉB

)2
DAS

DBS

� 1 (6.7-29)

This condition will be satisfied if the nonlimiting reactant is present in consider-
able excess relative to the reactant that is being absorbed, since in most cases one
would expect DAS

∼= DBS . If the condition given by equation (6.7-29) is satisfied,
a quasi-steady-state linear concentration profile of component A is obtained. One
can then solve equation (6.7-21) via a penetration theory approach if the condition
given by equation (6.7-28) is satisfied.

6.8 SCALING THE MACROSCALE ELEMENT

In Section 6.3 we focused on scaling the describing equations for the microscale
element. The mass-transfer flux determined for the microscale analysis will become
a homogeneous source or sink term in the describing equations for the macroscale
that we consider now. The analysis for the macroscale is greatly simplified for
the fast and instantaneous reaction regimes, since they reduce the concentration of
the absorbing component to its reaction equilibrium value, which is zero for an
irreversible reaction. Since the latter concentration will prevail on the macroscale
everywhere in the contacting device, no further reaction can occur. However,
the concentration of the nonlimiting reactant, component B, is depleted on the
macroscale, due to its consumption by the chemical reaction on the microscale.
However, as we will see in Section 6.14, the mass-transfer flux of the absorbing
component can be obtained without having to solve for the concentration profile
of the liquid-phase reactant.

Consider now the slow reaction regime for which no reaction occurs on the
microscale and there is no diffusive flux of component B. However, there is a
diffusive flux NA of component A from the gas into the liquid phase. This has
the effect of being a point source of component A and a point sink of compo-
nent B on the macroscale. We assume that conditions are laterally uniform so that
the bulk concentrations of components A and B change only in the axial direc-
tion in Figure 6.2-1. Consider a molar balance on components A and B over a
control volume consisting of a differential slice of the bubble column �z that is
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convected at the average axial velocity of the liquid, as shown in Figure 6.2-1
(step 1):

NAa�z − RAφa �z = d

dt
(ĉAφa �z) (6.8-1)

−κRAφa �z = d

dt
(ĉBφa �z) (6.8-2)

where a is the interfacial area per unit volume of the contacting device, φ the
volume of liquid per unit interfacial area, RA the rate of production (moles/volume
·time) of component A by the homogeneous chemical reaction, κ the stoichio-
metric coefficient for the chemical reaction, and d/dt denotes the total deriva-
tive.7 In the slow reaction regime NA can be obtained directly from k

•
L0, the

mass-transfer coefficient for purely diffusive transfer in the liquid phase via the
equation

NA = k
•
L0(c

◦
A − ĉA) (6.8-3)

Hence, equations (6.8-1) and (6.8-2) can be written as

k
•
L0(c

◦
A − ĉA) − RAφ = φ

∂ĉA

∂t
(6.8-4)

−κRA = ∂ĉB

∂t
(6.8-5)

The initial conditions required to solve equations (6.8-4) and (6.8-5) are given
by

ĉA = 0, ĉB = ĉB0 at t = 0 (6.8-6)

that is, we are assuming that the nonreacting solvent that enters the bubble column
contains only liquid component B at an initial concentration ĉB0.

Introduce the following dimensionless variables and scale factors (steps 2, 3,
and 4):

ĉ∗
A ≡ ĉA

ĉAs

; ĉ∗
B ≡ ĉB − ĉBr

ĉBs

; R∗
A ≡ RA

Rs

; t∗ ≡ t

ts
(6.8-7)

Introduce these variables into equations (6.8-4) through (6.8-6) and divide through
by the coefficient of one term in each equation to obtain the following dimensionless
describing equations (steps 5 and 6):

(
c
◦
A

ĉAs

− ĉ∗
A

)

− Rsφ

k
•
L0ĉAs

R∗
A = φ

k
•
L0ts

∂ĉ∗
A

∂t∗
(6.8-8)

−κRsts

ĉBs

R∗
A = ∂ĉ∗

B

∂t∗
(6.8-9)

7In a convected coordinate system, one takes the total derivative of an extensive quantity such as the
total number of moles, but the partial derivative of an intensive quantity such as the molar concentration;
the partial derivative with respect to the temporal coordinate is evaluated at a fixed value of the spatial
coordinate in the convected coordinate system.
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ĉ∗
A = 0, ĉ∗

B = ĉB0 − ĉBr

ĉBs

at t∗ = 0 (6.8-10)

Note that we have divided through by the coefficient of the first term in equa-
tion (6.8-4) since this term must be retained if component A is transferred from the
gas to the liquid phase. Equation (6.8-8) indicates that the dimensionless concen-
tration can be bounded of ◦(1) if we set c

◦
A/ĉAs = 1 in order to obtain ĉAs = c

◦
A.

The appropriate time scale is the observation or contact time to that is required for
the liquid to flow through the bubble column. The dimensionless reaction rate is
bounded to be ◦(1) by again choosing its scale factor to be some characteristic
maximum value Rm

A , which could be determined if the reaction rate were speci-
fied. Setting the dimensionless group in equation (6.8-10) equal to 1 indicates that
ĉBs = ĉB0 − ĉBr . When this scale is substituted into the dimensionless group in
equation (6.8-9) and the latter is set equal to −1 (because Rm

A < 0), we obtain
ĉBr = ĉB0 − κRm

A to. Substituting these scale and reference factors into the describ-
ing equations then yields the following set of dimensionless describing equations
for the macroscale element (step 7):

(1 − ĉ∗
A)

︸ ︷︷ ︸

mass transfer
from microscale
to macroscale

− Rm
Aφ

k
•
L0c

◦
A

R∗
A

︸ ︷︷ ︸

chemical reaction

= φ

k
•
L0to

∂ĉ∗
A

∂t∗
︸ ︷︷ ︸

accumulation in
convected system

(6.8-11)

R∗
A = ∂ĉ∗

B

∂t∗
(6.8-12)

ĉ∗
A = 0, ĉ∗

B = 1 at t∗ = 0 (6.8-13)

Now let us consider how the describing equations for the macroscale element can
be simplified (step 8). These equations again involve three characteristic time scales:

to ∼ contact or residence time in the bubble column (6.8-14)

φ

k
•
L0

∼ characteristic time for interphase mass transfer on the macroscale

(6.8-15)

c
◦
A

Rm
A

∼ characteristic time for reaction on the macroscale (6.8-16)

Consider first the case where the characteristic time for reaction is extremely long
compared to that for interphase mass transfer. This corresponds to purely physical
absorption in the absence of any chemical reaction for which the criterion is

Rm
Aφ

k
•
L0c

◦
A

∼= 0 ⇒ purely physical absorption (6.8-17)

Now let us consider the more interesting case for which chemical reaction
occurs. Note that the accumulation or unsteady-state term in equation (6.8-11) is
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equal to the difference between the rate of mass transfer from the microscale to the
macroscale and the rate at which the transferring component is consumed by the
chemical reaction. Although both the mass transfer and reaction terms can be large,
their difference can be quite small under some conditions that we will now explore.
The accumulation or unsteady-state term will be very small when the following
criterion is satisfied:

φ

k
•
L0to

� 1 ⇒ species accumulation is very small (6.8-18)

Equation (6.8-18) implies that the time scale for interphase mass transfer is much
shorter than the residence time in the contacting device. When the criterion given by
equation (6.8-18) is satisfied, it means that the mass transfer and reaction terms are
nearly equal in magnitude such that their difference is very small. This approxima-
tion is referred to as the quasistationary hypothesis. The quasistationary hypothesis
is rigorous for a continuous stirred tank reactor (CSTR), within which there is
a uniform concentration. However, it is an approximation for contactors such as
packed columns, for which the concentration changes with axial position.

6.9 KINETIC DOMAIN OF THE SLOW REACTION REGIME

Now let us assume that the quasistationary hypothesis applies, in which case we
can write equation (6.8-11) as follows:

(1 − ĉ∗
A)

︸ ︷︷ ︸

mass transfer
from microscale
to macroscale

− Rm
Aφ

k
•
L0c

◦
A

R∗
A

︸ ︷︷ ︸

chemical reaction

= φ

k
•
L0to

∂ĉ∗
A

∂t∗
︸ ︷︷ ︸

accumulation in
convected system

� 1 (6.9-1)

Let us first consider the case for which the characteristic time for mass transfer
from the microscale to macroscale is much shorter than the characteristic time for
reaction. This means that component A is transferred from the gas to the liquid
phase much faster than it can be consumed by the chemical reaction. This is
referred to as the kinetic domain of the slow reaction regime.8 The criterion for its
applicability is

Rm
Aφ

k
•
L0c

◦
A

� 1 ⇒ kinetic domain of the slow reaction regime (6.9-2)

Since the mass transfer and reaction terms in equation (6.9-1) must nearly balance,
the kinetic domain of the slow reaction regime implies that ĉ∗

A
∼= 1 or that ĉA

∼= c
◦
A;

that is, the bulk liquid is maintained nearly at the thermodynamic equilibrium
concentration for component A. The driving force for the chemical reaction then
is proportional to c

◦
A for an irreversible reaction.

8The kinetic domain of the slow reaction regime is often referred to as the kinetic regime of the slow
reaction regime; the terminology used here is preferred because it more clearly indicates that the domain
is a subcategory of the regime.
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6.10 DIFFUSIONAL DOMAIN OF THE SLOW REACTION REGIME

Let us again assume that the quasi-stationary hypothesis applies so that equa-
tion (6.9-1) applies. Now consider the case for which the characteristic time for
mass transfer from the microscale to macroscale is much longer than the charac-
teristic time for reaction. This means that component A is transferred from the gas
to the liquid phase much slower than it is consumed by the chemical reaction. This
is referred to as the diffusional domain of the slow reaction regime.9 The criterion
for its applicability is the following:

Rm
Aφ

k
•
L0c

◦
A


 1 ⇒ diffusional domain of the slow reaction regime (6.10-1)

For the diffusional domain of the slow reaction regime, it would appear that the
reaction term is much larger than the mass-transfer term in equation (6.9-1). How-
ever, since these two terms must nearly balance, we conclude that R∗

A � 1. This in
turn implies that the driving force for the chemical reaction must be very small (i.e.,
ĉ∗
A

∼= 0); that is, the chemical reaction is sufficiently fast so that it maintains the
bulk concentration at the reaction equilibrium concentration. This in turn implies
that the driving force for mass transfer from the microscale to the macroscale is c

◦
A

for an irreversible reaction. It might seem contradictory that the chemical reaction
is fast enough in the diffusional domain of the slow reaction regime to reduce the
bulk concentration to zero, whereas in the intermediate reaction regime for which
the reaction is faster, the bulk concentration is not necessarily reduced to zero. In
the intermediate reaction regime the reaction occurs on the microscale and therefore
steepens the concentration gradient of component A at the gas–liquid interface and
increases the mass-transfer coefficient from that for purely physical absorption.
In contrast, the mass-transfer coefficient for the diffusional domain of the slow
reaction regime is the same as that for purely physical absorption. The faster mass-
transfer rate in the intermediate regime relative to the diffusional domain of the
slow reaction regime corresponds to a steeper concentration gradient of component
A at y = 0 in Figure 6.3-1.

6.11 IMPLICATIONS OF SCALING ANALYSIS FOR REACTOR
DESIGN

The scaling analysis that we have applied to the microscale–macroscale modeling
of mass transfer with chemical reaction can be used to develop a set of design
precepts for selecting the optimal reactor. These will be determined by considering
how the process parameters affect the total absorption rate per unit volume NAa.
We will proceed from the slowest to the fastest reaction conditions. Hence, let
us first consider purely diffusional mass transfer in the absence of any chemical

9The diffusional domain of the slow reaction regime is often referred to as the diffusional regime of
the slow reaction regime.
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reaction for which the mass-transfer rate per unit volume of reactor is given by

NAa = k
•
L0a(c

◦
A − ĉA) for purely physical absorption (6.11-1)

Correlations for k
•
L0, the mass-transfer coefficient for purely physical absorption, in

terms of the Sherwood number or Nusselt number for mass transfer are available
in the literature for many contacting geometries. If the contact time is long in
comparison to the diffusion time, a film theory model applies and the mass-transfer
coefficient for purely physical absorption is given by equation (6.3-25); that is,

k
•
L0 = DAS

δm

steady-state physical absorption (6.11-2)

If the contact time is short in comparison to the diffusion time, a penetration theory
model applies and the mass-transfer coefficient for purely physical absorption is
given by equation (6.3-29); that is,

k
•
L0 =

√

DAS

to
unsteady-state physical absorption (6.11-3)

Equation (6.11-1) implies that the total absorption rate per unit volume for purely
physical absorption is:

• Proportional to the interfacial area
• Independent of the liquid-phase holdup φa

• Proportional to the mass-transfer coefficient k
•
L0 that characterizes the transport

between the microscale and macroscale elements
• Proportional to the overall driving force for the absorbing component

These considerations indicate that appropriate contactors for purely physical absorp-
tion are packed columns that provide large interfacial area (i.e., large values of a),
good hydrodynamics (i.e., high Reynolds numbers) to promote large mass-transfer
coefficients (i.e., large values of k

•
L0), and maintain large overall driving forces

(i.e., large values of c
◦
A − ĉA are maintained by avoiding global mixing). On the

other hand, contactors such as stirred tanks are not appropriate since they have
low interfacial area and promote large scale mixing that reduces the overall driving
force for mass transfer.

Now let us consider the kinetic domain of the slow reaction regime. For this
domain the chemical reaction is very slow on both the micro- and macroscales.
This means that the mass-transfer coefficient for transfer from the microscale to
the macroscale is the same as for mass transfer in the absence of chemical reac-
tion. On the macroscale the kinetic domain of the slow reaction regime means
that the reaction is so slow that the local bulk fluid is nearly at the thermody-
namic equilibrium concentration c

◦
A. Since the mass-transfer and chemical reaction

terms in equation (6.9-1) must nearly balance if the quasi-stationary hypothesis is
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applicable, the absorption rate per unit volume of reactor is given by

NAa ∼= RAφa (6.11-4)

where the reaction rate is determined using ĉA
∼= c

◦
A and the local value of ĉB .

Equation (6.11-4) implies that the total absorption rate per unit volume for the
kinetic domain of the slow reaction regime is:

• Independent of the interfacial area (note that the product φa is the liquid-phase
holdup since the interfacial area cancels in the product)

• Proportional to the liquid-phase holdup φa

• Independent of the mass-transfer coefficient k
•
L0 that characterizes the transport

between the microscale and macroscale elements
• Proportional to the reaction rate per unit volume RA

• Influenced by the overall driving force for the limiting reactant c
◦
A only insofar

as it enters through the reaction rate RA

• Dependent on the concentration of the nonlimiting reactant ĉB insofar as it
enters through the reaction rate RA

These considerations indicate that appropriate contactors for mass transfer with
chemical reaction operating in the kinetic domain of the slow reaction regime are
stirred tank reactors that provide large liquid holdups (i.e., large values of φa) and
for which the large-scale mixing that reduces the driving force has no effect on the
total absorption rate per unit volume (i.e., c

◦
A is a constant not affected by mixing).

On the other hand, contactors such as packed columns are not appropriate since
they have low liquid holdups and a large interfacial area. These considerations
also indicate that changing the hydrodynamics to increase the Reynolds number,
which will increase the interfacial area a and the mass-transfer coefficient k

•
L0, will

have no effect on the total absorption rate per unit volume in the kinetic domain.
The fact that the kinetic domain of the slow reaction regime is independent of the
interfacial area is advantageous in the use of laboratory absorbers to determine the
kinetics of a reaction; that is, one can employ a packed column whose interfacial
area is unknown in order to determine the unknown kinetics of a reaction.

Consider now the diffusional domain of the slow reaction regime. For this
domain the chemical reaction is very slow on the microscale but fast on the
macroscale. Again the mass-transfer coefficient for transfer from the microscale
to the macroscale is the same as for mass transfer in the absence of chemical
reaction. On the macroscale the diffusional domain of the slow reaction regime
means that the reaction is sufficiently fast to maintain the local bulk concentra-
tion of the component A, the limiting reactant, at nearly zero for the assumed
irreversible reaction. Hence, equation (6.8-3) implies that the absorption rate per
unit volume of reactor is given by

NAa ∼= k
•
L0ac

◦
A (6.11-5)
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Equation (6.11-5) implies that the total absorption rate per unit volume for the
diffusional domain of the slow reaction regime is:

• Proportional to a, the interfacial area per unit volume
• Independent of the liquid-phase holdup φa

• Proportional to the mass-transfer coefficient k
•
L0 that characterizes the transport

between the microscale and macroscale elements
• Independent of the reaction rate per unit volume RA

• Proportional to the overall driving force c
◦
A − ĉA

• Independent of the concentration of the nonlimiting reactant component B

These considerations indicate that appropriate contactors for mass transfer with
chemical reaction operating in the diffusional domain of the slow reaction regime
are packed columns that provide large interfacial area, good hydrodynamics, and
maintain large overall driving forces. Contactors such as stirred tanks are not appro-
priate since they have low interfacial area and promote large-scale mixing that
reduces the overall driving force for mass transfer.

Now let us consider the intermediate reaction regime for which both diffusion
and reaction on the microscale are of equal importance. The reaction is sufficiently
fast to steepen the concentration profile significantly near the gas–liquid interface
on the microscale, but not large enough necessarily to reduce the bulk concentration
to its reaction equilibrium value of zero for an irreversible reaction. We use the
results of our scaling analysis for the intermediate reaction regime to obtain an
estimate of NAa, the total absorption rate per unit volume of reactor; that is,

NA
∼= −DAS

∂cA

∂y
⇒ N∗

A
∼= −DAScAs

NAsyAs

∂c∗
A

∂y∗
A

= −DAS(c
◦
A − ĉA)

NAsδm

∂c∗
A

∂y∗
A

= −k
•
L0(c

◦
A − ĉA)

NAs

∂c∗
A

∂y∗
A

(6.11-6)

where we have used equation (6.11-2) to introduce k
•
L0, the mass-transfer coefficient

for purely physical absorption. To bound N∗
A to be ◦(1), we set k

•
L0(c

◦
A − ĉA)/

NAs = 1 ⇒ NAs = k
•
L0(c

◦
A − ĉA). Hence, we obtain the following estimate for

the mass-transfer rate per unit volume:

NAa ∼= k
•
L0a(c

◦
A − ĉA) for the intermediate reaction regime (6.11-7)

Although equation (6.11-7) is identical in form to equation (6.11-1) for purely
physical absorption, the driving force in the former is much larger. This follows
from the reduction in ĉA due to the chemical reaction on the microscale that is
implied by equation (6.5-2). Equation (6.11-7) implies that the total absorption
rate per unit volume for the intermediate reaction regime is:

• Proportional to a, the interfacial area per unit volume
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• Independent of the liquid-phase holdup φa

• Proportional to the mass-transfer coefficient k
•
L0

• Dependent on the reaction rate per unit volume RA insofar as it reduces ĉA

• Proportional to the overall driving force c
◦
A − ĉA

• Dependent on the concentration of the nonlimiting reactant component B

insofar as it influences the reaction rate per unit volume RA

These considerations indicate that appropriate contactors for mass transfer with
chemical reaction operating in the intermediate reaction regime are packed columns
that provide large interfacial area, good hydrodynamics, and maintain a large driv-
ing force. Contactors such as stirred tanks are not appropriate since they have small
interfacial area and a reduced driving force.

Consider now the fast reaction regime that maintains the bulk liquid at the
reaction equilibrium concentration within a distance that is less than the thickness
δm, which is determined by the hydrodynamics. In this case we use the results of
our scaling analysis for the fast reaction regime to obtain an estimate of NAa:

NA
∼= −DAS

∂cA

∂y
⇒ N∗

A
∼= −DAScAs

NAsyAs

∂c∗
A

∂y∗
A

= −DASc
◦
A

NAsδr

∂c∗
A

∂y∗
A

= −
√

DASc
◦
ARm

A

NAs

∂c∗
A

∂y∗
A

(6.11-8)

To bound N∗
A to be◦(1), we set

√

DASc
◦
ARm

A/NAs = 1 to obtain NAs = √

DASc
◦
ARm

A .
Hence, we obtain the following estimate for the mass-transfer rate per unit
volume:

NAa = a

√

DASc
◦
ARm

A (6.11-9)

Equation (6.11-9) implies that the total absorption rate per unit volume for the fast
reaction regime is:

• Proportional to a, the interfacial area per unit volume
• Independent of the liquid-phase holdup φa

• Independent of the mass-transfer coefficient k
•
L0

• Proportional to the reaction rate per unit volume RA

• Proportional to the overall driving force c
◦
A both explicitly and implicitly

through the reaction rate Rm
A

• Dependent on the nonlimiting reactant concentration through the reaction
rate Rm

A

The fast reaction regime is distinguished from the other reaction regimes because
the hydrodynamics affect the total absorption rate only through a, the interfacial
area per unit volume. In general, changing the hydrodynamics (i.e., the Reynolds
number) can affect the interfacial area, mass-transfer coefficient, and liquid holdup.
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If changing the hydrodynamics does not affect the total absorption rate per unit
volume, it indicates that the device is operating in the fast reaction regime. The
characteristics of the fast reaction regime imply that laboratory contactors for which
the interfacial area per unit volume is known, such as wetted-wall columns, liq-
uid jets, or falling film sphere absorbers, can be used to determine the reaction
kinetics.

Consider now the inner domain of the instantaneous reaction regime. For this
case we also use the results of our scaling analysis to obtain an estimate of NAa:

NA
∼= −DAS

∂cA

∂y
⇒ N∗

A
∼= −DAScAs

NAsyAs

∂c∗
A

∂y∗
A

= −DASc
◦
A

NAsL

∂c∗
A

∂y∗
A

= − k
•
L0

NAs

ĉB

κ

√

DBS

DAS

∂c∗
A

∂y∗
A

(6.11-10)

where we have made the substitution L = (κDASc
◦
A/ĉB)

√
to/DBS and used equa-

tion (6.3-29) to identify
√

DAS/to, with k
•
L0 the mass-transfer coefficient obtained

for unsteady-state physical absorption. To bound N∗
A to be ◦(1), we set (k

•
L0ĉB/

NAsκ)
√

DBS/DAs = 1 to obtain NAs = (k
•
L0ĉB/κ)

√
DBS/DAs . Hence, we obtain

the following estimate for the mass-transfer rate per unit volume:

NAa = k
•
L0aĉB

κ

√

DBS

DAS

(6.11-11)

Equation (6.11-11) implies that the total absorption rate per unit volume for the
inner domain of the instantaneous reaction regime is:

• Proportional to a, the interfacial area per unit volume
• Independent of the liquid-phase holdup φa

• Proportional to the mass-transfer coefficient k
•
L0

• Independent of the reaction rate per unit volume RA

• Independent on the concentration of the absorbing component
• Proportional to ĉB , the driving force of the liquid-phase reactant

Contactors such as packed columns that provide large interfacial area, good hydro-
dynamics, and maintain a large driving force are appropriate for mass transfer
with chemical reaction operating in the inner domain of the instantaneous reaction
regime. In contrast, contactors such as stirred tanks are not appropriate.

We did not apply scaling analysis to the surface reaction domain of the instanta-
neous reaction regime since the mass transfer becomes controlled by the gas phase
rather than by the liquid phase. Since the resistance to mass transfer in the liquid
phase is negligible and the reaction is instantaneous, the interfacial concentration
of the absorbing component is zero. Since the liquid-phase reactant is assumed to
be nonvolatile, the gas-phase mass transfer will not involve any chemical reaction.
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Hence, the mass-transfer rate per unit volume is determined directly from the
gas-phase mass-transfer coefficient k

•
G0 and is given by

NAa = k
•
G0apA (6.11-12)

in which pA is the partial pressure of the absorbing component A in the gas phase.
Equation (6.11-12) implies that the total absorption rate per unit volume for the
surface domain of the instantaneous reaction regime is:

• Proportional to a, the interfacial area per unit volume
• Independent of the liquid-phase holdup φa

• Proportional to the gas-phase mass-transfer coefficient k
•
G0

• Independent of the reaction rate per unit volume RA

• Proportional to the gas-phase concentration of the absorbing component
• Independent of the concentration of the liquid-phase reactant

Appropriate contactors are those that provide a large interfacial area such as packed
columns.

In this section we have shown that scaling analysis provides valuable insight into
selecting the proper contacting equipment and operating conditions for mass trans-
fer with chemical reaction. In particular, scaling analysis permitted us to develop a
set of design precepts for each operating regime without the need for solving any
of the describing equations.

6.12 MASS-TRANSFER COEFFICIENTS FOR REACTING SYSTEMS

The performance of contacting devices for mass transfer is characterized by correla-
tions for the dimensionless mass-transfer coefficient, that is, the Sherwood number
or Nusselt number for mass transfer. In microscale–macroscale modeling this mass-
transfer coefficient characterizes the transfer between the micro- and macroscales.
We have established that in the slow reaction regime the same mass-transfer coeffi-
cient for the particular contacting geometry applies to both mass transfer with and
without chemical reaction. However, for the intermediate, fast, and instantaneous
reaction regimes the mass-transfer coefficient will be increased from that for purely
physical absorption. In this section we demonstrate how the approximations sug-
gested by scaling analysis can be used to determine the mass-transfer coefficient
under reaction conditions that influence it.

Since the concentration profiles in the microscale element are influenced by the
chemical reaction, the mass-transfer coefficient will be greater than that for purely
physical absorption. Unfortunately, it is not possible to obtain a general solution
for the mass-transfer coefficient for the intermediate reaction regime. However,
we can invoke the steady-state approximation, for which the criterion is given by
equation (6.3-22), to obtain a solution for the mass-transfer coefficient for speci-
fied reaction kinetics. Let us consider the special case of a zeroth-order irreversible
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reaction for which RA = −k0. When the criterion for the applicability of the inter-
mediate reaction regime given by equation (6.5-1) is satisfied, our dimensionless
describing equations corresponding to a film theory model for the microscale ele-
ment reduce to the following for this special case:

0 = d2c∗
A

dy∗2
− k0δ

2
m

DASc
◦
A

= d2c∗
A

dy∗2
− �r (6.12-1)

c∗
A = 1 at y∗ = 0 (6.12-2)

c∗
A = 0 at y∗ = 1 (6.12-3)

where �r ≡ k0δ
2
m/DASc

◦
A. The corresponding solution for the mass-transfer flux is

given by

NA = k
•
L0c

◦
A

(

1 + �r

2

)

(6.12-4)

where k
•
L0 has been introduced via the substitution DAS/δm = k

•
L0. The correspond-

ing mass-transfer coefficient characterizing the intermediate reaction regime then
is given by

k
•
L = k

•
L0

(

1 + �r

2

)

(6.12-5)

Hence, the mass-transfer coefficient for a zeroth-order reaction in the intermediate
reaction regime can be obtained directly from that for purely physical absorption
using equation (6.12-5). Note that in the limit of �r → 0 corresponding to no
chemical reaction, k

•
L reduces to k

•
L0. Film theory can be used to develop similar

relationships between the mass-transfer coefficients in the presence and absence of
chemical reaction for other kinetic expressions.

In the case of the fast reaction regime it is possible to obtain a general equation
for the mass-transfer coefficient if steady-state can be assumed: that is, if the
criterion given by equation (6.3-22) is satisfied. For the fast reaction regime, ys =
δr and ĉA = 0 for an irreversible reaction; this implies that equations (6.3-14) and
(6.3-15) assume the form

c
◦
A

Rm
A to

∂c∗
A

∂t∗
= ∂2c∗

A

∂y∗2
+ R∗

A (6.12-6)

DASc
◦
A

DBSRm
A to

∂c∗
B

∂t∗
= ∂2c∗

B

∂y∗2
B

+ R∗
A (6.12-7)

For all but the shortest contact times, c
◦
A/Rm

A to � 1 and DASc
◦
A/DBSRm

A to � 1,
due to the large value of Rm

A for the fast reaction regime. Hence, the unsteady-state
term can be ignored and equations (6.12-6) and (6.12-7) simplify to

0 = d2c∗
A

dy∗2
A

+ R∗
A (6.12-8)
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0 = d2c∗
B

dy∗2
B

+ R∗
A (6.12-9)

The boundary conditions on these simplified describing equations for the microscale
element are the following:

c∗
A = 1 at y∗

A = 0

c∗
B = 0 and

dc∗
B

dy∗ = 0 at y∗
B =

√

δ2
mκRm

A

DBSĉB

(6.12-10)

c∗
A = 0 and

dc∗
A

dy∗ = 0 at y∗
A =

√

δ2
mRm

A

DASc
◦
A

c∗
B = 1 at y∗

B = 0

(6.12-11)

Note that when the concentration of a reactant is reduced to zero, there is no
further diffusion of this reactant, thereby implying that its concentration gradient
is zero as well. If the reaction time is very fast, that is, if

√

δ2
mRm

A/DASc
◦
A 
 1

and
√

δ2
mκRm

A/DBSĉB 
 1, the boundary conditions containing these dimensionless
groups can be applied at infinity. Equation (6.12-8) can be integrated subject to
the appropriate boundary conditions given in equations (6.12-10) and (6.12-11)
by defining ϕ ≡ dc∗

A/dy∗ and substituting dy∗ ≡ dc∗
A/ϕ to obtain the following

general solution for the mass-transfer flux of component A from the microscale to
macroscale in the fast reaction regime:

NA = −
(

2DASRm
Ac

◦
A

∫ 1

0
R∗

A dc∗
A

)1/2

(6.12-12)

The corresponding mass-transfer flux of component B can be obtained by integrat-
ing equation (6.12-9) in a similar manner or by recognizing that the stoichiometry
of the chemical reaction implies

NB = −κNA (6.12-13)

Since we have established that the mass transfer is not affected by the hydrody-
namics in the fast reaction regime, NA is not a function of k

•
L0. The corresponding

mass-transfer coefficient characterizing the fast reaction regime then is given by

k
•
L = −

√

2DASRm
A

c
◦
A

∫ 1

0
R∗

Adc∗
A (6.12-14)

It is possible to obtain a solution for the mass-transfer coefficient for the inner
domain of the instantaneous reaction regime if steady-state can be assumed; that
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is, if a film theory model is used. In this case the describing equations given by
equations (6.7-3) through (6.7-10) simplify to10

0 = d2cA

dy2
(6.12-15)

0 = d2cB

dy2
(6.12-16)

cA = c
◦
A at y = 0 (6.12-17)

cA = 0, cB = 0 at y = L (6.12-18)

cB = ĉB at y = δm (6.12-19)

DAS

∂cA

∂y
= −DBS

κ

∂cB

∂y
at y = L (6.12-20)

The solution to these equations is straightforward and leads to the following
equation for the mass-transfer flux:

NA = k
•
L0

(

c
◦
A + DBSĉB

DASκ

)

(6.12-21)

The corresponding mass-transfer coefficient characterizing the inner domain of the
instantaneous reaction regime is then given by

kL = k
•
L0

(

1 + DBSĉB

DASκc
◦
A

)

(6.12-22)

Hence, the mass-transfer coefficient for the inner domain of the instantaneous reac-
tion regime can be obtained directly from that for purely physical absorption using
equation (6.12-22).

The three examples considered in this section are representative of how scaling
analysis can be applied to developing models that can be used to obtain mass-
transfer coefficients for the design of contacting devices involving mass transfer
with chemical reaction. Other models can be developed based on different reaction
kinetics and approximations, some of which are explored in the practice problems
at the end of the chapter.

6.13 DESIGN OF A CONTINUOUS STIRRED TANK REACTOR

In this section we apply microscale–macroscale scaling analysis to interpret per-
formance data for a continuous stirred tank reactor (CSTR). This CSTR is used
to absorb component A from a gas that is bubbled continuously into a liquid that
flows into and out of it as shown in Figure 6.13-1. The incoming and outgoing

10Scaling analysis can be used to develop the criteria for assuming steady-state for the inner domain of
the instantaneous reaction regime; this is considered in Practice Problem 6.P.17.
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Gas out

Gas in

Liquid in
cA1 = 0

Liquid out
cA2 > 0

Figure 6.13-1 Continuous stirred tank reactor for chemisorption of a soluble component
from a gas that is bubbled through a liquid.
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Figure 6.13-2 Log of the ratio of the total absorption rate divided by the maximum physical
absorption rate (χ ) as a function of the log of the first-order reaction rate constant k1 for
the three sets of system parameter values given in Table 6.13-1.

liquid streams have compositions cA1 = 0 and cA2 ≥ 0, respectively. The CSTR
is assumed to be perfectly mixed so that all the liquid in it has the same com-
position as the exiting stream. Its total volume is VT ; the volumetric flow rate of
the liquid is QL; and the interfacial area per unit volume of the CSTR is a. The
solute is assumed to be chemisorbed via a first-order irreversible reaction given by
RA = k1cA. Figure 6.13-2 shows performance data in the form of a log-log plot of
χ ≡ NAaVT /Nm

A aVT , the ratio of the total absorption rate (moles/time) relative to
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TABLE 6.13-1 Operating Conditions for the Three CSTR Absorber
Performance Curves Shown in Figure 6.13-2

Mass-Transfer Coefficient Contact Interfacial Area
for Physical Absorption Time per Unit Volume

Curve DAS (cm2/s) k
•
L0 (cm/s) to (s) a (cm2/cm3)

A 5 × 10−5 0.04 250 1.0
B 5 × 10−5 0.04 2500 0.1
C 5 × 10−5 0.4 250 0.1

its maximum value for purely physical absorption, as a function of the reaction rate
constant k1 for the three sets of operating conditions defined in Table 6.13-1. We
use the results of our scaling analysis for the microscale and macroscale elements
to explain the shape and characteristics of these curves.

Note that the quasi-stationary hypothesis is rigorous for a CSTR since there is no
accumulation for steady-state operation. Moreover, for a CSTR, φa = 1, since there
are no packing elements to occupy volume and the microscale elements (bubbles)
are assumed to be mathematical points on the macroscale.

We first need to determine the maximum possible total absorption rate for purely
physical absorption. The mass-transfer rate per unit volume, NAa, can be deter-
mined from a material balance on the transferring component over the entire volume
of the CSTR:

QL(cA2 − cA1) = NAaVT ⇒ NAa = QLcA2

VT

= cA2

to
(6.13-1)

where to is the contact or residence time of the liquid in the CSTR.11 The maxi-
mum possible value of the mass-transfer rate per unit volume for purely physical
absorption denoted here by Nm

A a corresponds to the exiting liquid having the ther-
modynamic equilibrium concentration c

◦
A; hence,

Nm
A a = QLc

◦
A

VT

= c
◦
A

to
(6.13-2)

Let us first consider the flat portion of all three curves at the lowest values
of k1 for which the mass transfer must be occurring via physical absorption in
the absence of any reaction. The relative absorption ratio in the purely physical
absorption regime is given by

χ = NAaVT

Nm
A aVT

= cA2

c
◦
A

(6.13-3)

11Note that the control volume here is the total volume of the CSTR rather than the differential slice
used in the macroscale balance that led to equations (6.8-1) and (6.8-2). There is an accumulation term
(in a convected coordinate system) in the latter that balances the mass transfer from the microscale to
the macroscale. However, in the former there is no accumulation term since the mass transfer from the
microscale to the macroscale element balances the reaction term.
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Figure 6.13-2 indicates that χ ∼= 1 × 10−3 (log χ = −3) for k1 < 1 × 10−8 s−1

(log k1 = −8) for curve B and for k1 < 1 × 10−7 s−1 (log k1 = −7) for curves
A and C, implying that the liquid exiting this CSTR is far from thermodynamic
equilibrium.

The criterion for purely physical absorption is given by equation (6.8-17), which
assumes the following form for first-order kinetics:

Rm
Aφ

k
•
L0c

◦
A

= k1c
◦
Aφ

k
•
L0c

◦
A

= k1

k
•
L0a

∼= 0 (6.13-4)

Table 6.13-1 indicates that the product k
•
L0a is an order of magnitude smaller for

curve B than for curves A and C. Hence, the criterion given by equation (6.13-4)
explains why curve B begins deviating from purely physical absorption at a value of
k1(∼=1 × 10−8) one order of magnitude smaller than for curves A and C
(∼=10−7).

Once the criterion given by equation (6.13-4) is no longer satisfied, χ begins to
increase, owing to a transition to the kinetic domain of the slow reaction regime
for which the transfer from the microscale to the macroscale is sufficiently fast so
that ĉA

∼= c
◦
A; hence, equation (6.11-4) implies the following for χ :

χ ≡ NAaVT

Nm
A aVT

= RAφaVT

QLc
◦
A

= k1VT

QL

= k1to (6.13-5)

where we have used the fact that φa = 1 for a CSTR. It follows that a log-log plot
of χ versus k1 should be linear with a slope of +1 and an intercept of log to when
k1 = 1(log k1 = 0). Figure 6.13-2 indicates that the slopes of all three curves are
+1 in the linear region (on a log-log plot), but that curve B has an intercept of 3.4
at k1 = 1, corresponding to to = 2500, whereas curves A and C have an intercept
of 2.4 at k1 = 1, corresponding to to = 250.

As k1 increases there will be a transition from the kinetic to the diffusional
domain of the slow reaction regime for which ĉA = cAr = 0 for the assumed irre-
versible kinetics. The criterion for this transition based on our scaling analysis is
given by equation (6.10-1) and becomes the following for this example:

Rm
Aφ

k
•
L0c

◦
A

= k1

k
•
L0a


 1 (6.13-6)

where we have again used the fact that φa = 1. Table 6.13-1 indicates that the
product k

•
L0a is an order of magnitude smaller for curve B than for curves A and

C. Hence, the criterion given by equation (6.13-6) explains why curve B enters the
diffusional domain at a value of k1 (∼=1 × 10−1) one order of magnitude smaller
than for curves A and C (∼=1). In the diffusional domain of the slow reaction regime
equation (6.11-5) implies the following for χ :

χ ≡ NAaVT

Nm
A aVT

= k
•
L0ac

◦
AVT

QLc
◦
A

= k
•
L0ato (6.13-7)



394 APPLICATIONS IN MASS TRANSFER WITH CHEMICAL REACTION

Equation (6.13-7) explains why χ is independent of k1 and equal to 10 (log χ = 1)
for all three curves in the diffusional domain of the slow reaction regime; that is,
k

•
L0ato = 10 for all three curves.

Eventually, k1 will become sufficiently large, so that the chemical reaction can
occur on the microscale; that is, there will be a transition to the fast reaction regime
for which ĉA = cAr = 0 for the assumed irreversible kinetics. The criterion for this
transition given by equation (6.6-1) becomes the following for this example:

Rm
Aδ2

m

DAS(c
◦
A − ĉA)

= k1c
◦
ADAS

k
• 2

L0 c
◦
A

= k1DAS

k
• 2

L0


 1 (6.13-8)

Table 6.13-1 indicates that the quotient DAB/k
• 2

L0 is two orders of magnitude larger
for curves A and B than for curve C. Hence, the criterion given by equation (6.13-8)
explains why curves A and B enter the fast reaction regime at a value of k1(∼=10)

two orders of magnitude smaller than for curve C (∼=103). In the fast reaction
regime, equation (6.11-9) implies the following for χ :

χ ≡ NAaVT

Nm
A aVT

= a
√

DASc
◦
ARm

AVT

QLc
◦
A

= ato
√

DASc
◦
ARm

A

c
◦
A

= ato
√

DASk1 (6.13-9)

It follows that a log-log plot of χ versus k1 should be linear with a slope of + 1
2 and

an intercept of ato
√

DAS when k1 = 1. Figure 6.13-2 indicates that the slopes of
all three curves are + 1

2 in the linear region (on a log-log plot), but that curve C has
an intercept of −0.75 at k1 = 1(log k1 = 0), corresponding to ato

√
DAS = 0.177,

whereas curves A and B have an intercept of 0.25 at k1 = 1, corresponding to
ato

√
DAS = 1.77.

This example demonstrates that systematic scaling analysis can provide con-
siderable insight into interpreting performance data for chemisorption as well as
other contacting devices that involve transport phenomena. Indeed, we were able
to obtain quantitative estimates of where the various reaction regimes apply as
well as the reaction rates in each of these regimes without the need to solve any
differential equations.

6.14 DESIGN OF A PACKED COLUMN ABSORBER

In this section we apply the results of our microscale–macroscale scaling analysis
in order to design a packed gas-absorption column. This contacting device, shown
schematically in Figure 6.14-1, involves the use of small packing elements such
as spheres, hollow cylinders, saddle-shaped particles, and other specially designed
structures to provide a large contact area between the liquid and gas streams. The
liquid flows over the packing elements cocurrently or countercurrently relative to
an upward-flowing gas stream from which it absorbs some soluble component. In
this example a solute A is to be removed from a nonabsorbing gas by cocurrent
absorption in a liquid solvent S. The solvent S contains an active component B
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z

Gas in

Gas out

z + ∆z

pA2 cA2

pA1 cA1ˆ
Liquid in

Liquid out

Figure 6.14-1 Packed column for absorbing a solute A from a nonabsorbing gas by cocur-
rent absorption in a liquid solvent S that contains an active component B which reacts with
A by a first-order irreversible reaction.

TABLE 6.14-1 Performance Data for a Packed Gas-Absorption Column

Gas molar flow rate, WG 0.3 mol/s
Solute concentration in inlet liquid, ĉA1 0
Solute partial pressure in inlet gas, pA1 1.0 × 104 Pa
Solute partial pressure in outlet gas, pA2 5 Pa
Reaction-rate constant, k1 1.0 × 103 s−1

Liquid holdup, φ 1 × 10−3 m3/m2

Interfacial area per unit volume, a 10 m2/m3

Liquid-phase mass-transfer coefficient for physical absorption, k
•
L0 1.0 × 10−4 m/s

Effective diffusivity of solute in liquid, DAS 1.2 × 10−9 m2/s
Henry’s law constant, H 70 Pa · m3/mol
Column pressure, P 1 × 105 Pa
Column cross-sectional area, Sc 0.07 m2

that reacts with component A, which is assumed to be the limiting reactant, by
a first-order irreversible reaction. Performance data for this absorber are given in
Table 6.14-1.

Let us first determine the ratio of the characteristic diffusion time to that for
chemical reaction to assess the reaction regime in which this chemisorption
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process occurs:

Rm
Aδ2

m

DAS(c
◦
A − ĉA)

= k1c
◦
ADAS

k
• 2

L0 (c
◦
A − 0)

= (1.0 × 103 s−1)
(

1.2 × 10−9 m2/s
)

(

1.0 × 10−4 m/s
)2 =120

(6.14-1)

In evaluating the above, we have estimated the diffusion penetration thickness on
the microscale using film theory; that is, δm = DAS/k

•
L0. The criterion given by

equation (6.6-1) then indicates that this chemisorption occurs in the fast reaction
regime, for which ĉA = cAr = 0 for the assumed irreversible reaction and the mass-
transfer flux is given by equation (6.12-12); that is,

NA = −
(

2DASR
m
Ac

◦
A

∫ 1

0
R∗

A dc∗
A

)1/2

= −(DASk1)
1/2c

◦
A (6.14-2)

For the fast reaction regime the mass-transfer coefficient for transfer from the
microscale to the macroscale is greater than that for purely physical absorption and
can be determined via equation (6.12-14):

k
•
L = −

(

2DASRm
Ac

◦
A

∫ 1

0
R∗

Adc∗
A

)1/2

c
◦
A

= (DASk1)
1/2

= [(

1.2 × 10−9 m2/s
)

(1.0 × 103 s−1)
]1/2 = 1.1 × 10−3 m/s

(6.14-3)

We see that the mass-transfer coefficient for chemisorption in the fast reaction
regime is an order of magnitude larger than that for purely physical absorption.

Now let us determine the height of the absorption column required to achieve
the given change in the gas-phase composition. Note that no data are given for
the change in the liquid-phase composition. This is because this reaction occurs
in the fast reaction regime, which keeps the bulk concentration of component A on
the macroscale equal to the reaction equilibrium concentration, which is zero for
the assumed irreversible kinetics. Under fast reaction conditions, a material balance
in the liquid phase on the transferring component provides no information what-
soever. One could determine the column height from a knowledge of the increase
in concentration of the product of the chemisorption reaction in the liquid phase.
However, no information is provided on this component. Hence, to determine the
column height, we will carry out a material balance on the transferring compo-
nent in the gas phase. A species balance on component A in the gas phase for
a macroscale element consisting of a differential length �z in a fixed coordinate
system yields

NAaSc�z = WGpA

P

∣
∣
∣
∣
z

− WGpA

P

∣
∣
∣
∣
z+�z

k
•
L aScc

◦
A = k

•
L aScpA

H
= −WG

P

dpA

dz
(6.14-4)
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where WG is the molar flow rate of the gas. Integrating equation (6.14-4) over the
length of the column then yields the following for the absorption column height
required:

L = − WGH

Pk
•
L aSc

ln
pA1

pA2

= − (0.3 mol/s)
(

70 Pa · m2/mol
)

(1 × 105 Pa)
(

1.1 × 10−3 m/s
) (

10 m2/m3
)

(0.07 m2)
ln

5

1 × 104
= 2.1 m

(6.14-5)

Note that the liquid-phase concentration does not enter into either equation (6.14-
2) for the mass-transfer flux or equation (6.14-5) for the column height. This is
because the chemisorption is in the fast reaction regime that maintains the liquid at
the reaction equilibrium concentration. One implication of this is that the column
height required, determined by equation (6.14-5), would not change if we were
to employ countercurrent rather than cocurrent flow. However, under fast reaction
conditions one would choose cocurrent flow because of the reduced pressure drop
requirement. Moreover, flooding of the packed column owing to the gas holding
up the liquid in countercurrent flow is avoided in cocurrent flow. Hence, we see
that scaling the describing equations to determine the reaction regime is pivotal in
choosing both the contacting device and the flow configuration.

Now let us consider how we can use the results of our scaling analysis to improve
the performance of this packed absorption column. In doing this we refer to the
design precepts developed in Section 6.11. Consider first an increase in the liquid
flow rate. This will improve the performance of this packed column operating in the
fast reaction regime only if it increases a, the interfacial area per unit volume; this
increase will not be significant. However, a larger increase in a could be achieved
by changing the type or size of packing elements. Decreasing the gas flow rate
will decrease the required column height since less of the transferring solute will
enter the column. This will also cause an increase in the bubble size and therefore
a decrease in a; this will cause a small decrease in the mass-transfer rate per unit
volume. Increasing P , the operating pressure, or decreasing the temperature in the
column will improve the performance by increasing the thermodynamic equilibrium
solubility of the transferring solute. Increasing k1, the reaction-rate constant, will
also improve the performance significantly. This could be done by increasing the
operating temperature or employing a different reacting component in the liquid.
Hence, changing the temperature could either increase or decrease the performance,
depending on whether its influence on the equilibrium solubility or the reaction-rate
constant dominates.

6.15 SUMMARY

In this chapter we focused on the complications that are encountered in pro-
cesses involving chemical reaction that often have mass transfer occurring on
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two markedly different length scales. In particular, we considered chemisorption
whereby the solubility of a transferring solute is enhanced by chemical reaction.
The microscale–macroscale modeling methodology developed in this chapter for
mass transfer with chemical reaction can be applied equally well to other processes
involving momentum, heat, or mass transfer occurring on multiple scales, such as
phase-transition phenomena, heat transfer in dispersed phase systems, and others.

In Section 6.2 we provided an example illustrating microscale and macroscale
elements. An important consideration is that for mass transfer with chemical reac-
tions the microscale element becomes a homogeneous point source or sink term in
the macroscale balance.

Scaling analysis was applied to the microscale species-balance equations for
mass transfer in Section 6.3. Scaling led to three time scales associated with the
diffusion, reaction, and contact times. When the ratio of the diffusion to contact
time was very small, steady-state mass transfer can be assumed for the microscale
element for which film theory models are applicable. When this ratio is large,
the mass transfer is inherently unsteady-state, for which penetration theory models
can be used. For purely diffusive mass transfer a film theory model interrelated
the mass-transfer coefficient and the microscale fluid layer thickness, whereas a
penetration theory model interrelated it to the contact time.

Scaling analysis was used in Section 6.4 to develop a criterion for the slow
reaction regime for which the ratio of the diffusion to the reaction time was very
small for the microscale element. Since the chemical reaction does not occur in
the microscale element, the mass-transfer coefficient for the slow reaction regime
is the same as for purely physical absorption.

In Section 6.5, scaling analysis was used to identify a criterion for the inter-
mediate reaction regime for which the diffusion and reaction times are of equal
magnitude. For this reaction regime the chemical reaction occurs on the microscale,
which implies that the mass-transfer coefficient is greater than that for purely phys-
ical absorption.

In Section 6.6, scaling analysis was used to develop the criterion for the fast
reaction regime for which the reaction time is sufficiently fast to maintain the
bulk liquid at the reaction equilibrium concentration. In the fast reaction regime a
reaction boundary layer or region of influence exists within the microscale liquid
layer, within which the concentration of the absorbing component undergoes a
characteristic change.

In Section 6.7 we considered the criterion for the instantaneous reaction regime
for which the reaction is so fast that the reacting components cannot co-exist at
any point within the microscale element. This regime implies that the nonvolatile
liquid-phase reactant becomes rate-limiting, owing to its depletion in the microscale
liquid layer. The inner domain of the instantaneous reaction regime corresponds
to a reaction plane within the liquid layer of the microscale element at which the
concentrations of the reacting components are reduced to zero. The surface domain
of the instantaneous reaction regime corresponds to the reaction plane being at the
gas–liquid interface, for which the mass transfer becomes gas-phase controlled.
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The describing equations for the macroscale element for which the transfer
from the microscale element appears as a homogeneous source term were scaled in
Section 6.8. This macroscale element is relevant only for the slow or intermediate
reaction regimes, for which the reaction is not sufficiently fast to maintain the bulk
liquid at the reaction equilibrium concentration. Scaling led to three time scales
associated with the mass transfer from the microscale, reaction, and macroscale
contact times.

In Section 6.9 we considered the kinetic domain of the slow reaction regime. In
this domain the mass transfer from the microscale is sufficiently fast to maintain
the bulk liquid at the thermodynamic equilibrium concentration.

In Section 6.10 we considered the diffusional domain of the slow reaction
regime. In this domain the chemical reaction is sufficiently fast on the macroscale
to maintain the bulk liquid at the reaction equilibrium concentration.

The results of scaling analysis for the various reaction regimes were used in
Section 6.11 to develop a set of precepts for the design of contacting equipment for
mass transfer with chemical reaction. The power of scaling analysis was particularly
apparent in this section since it provided invaluable information for choosing and
operating mass-transfer contacting devices without the need for developing any
models or solving any differential equations.

The mass-transfer coefficients correlated in the literature can be used to design
contacting devices only for the slow reaction regime. For faster kinetics, microscale
models need to be developed to determine the mass-transfer coefficients. In Section
6.12, film theory was used to demonstrate how a model can be developed for
the mass-transfer coefficients in the intermediate, fast, and instantaneous reaction
regimes.

The results of scaling analysis were used in Section 6.13 to design a mass trans-
fer process involving a first-order irreversible reaction in a CSTR. In particular,
it was used to interpret performance data for the increase in rate of chemisorp-
tion as a function of the reaction-rate constant. Nearly all features of the com-
plex performance curves for three representative sets of operating conditions were
explained using the scaling analysis results without the need to solve any differential
equations.

In Section 6.14, the results of scaling analysis were used to design a continu-
ous packed gas-absorption column. Scaling permitted determining how the various
process parameters affected the performance of this device. Again, emphasis was
placed on how much information could be obtained from scaling analysis without
the need for developing and solving complex models.

6.P PRACTICE PROBLEMS

6.P.1 Criterion for Ignoring the Gas-Phase Resistance to Mass Transfer

Throughout this chapter, with the exception of the surface domain of the instanta-
neous reaction regime, we have assumed that the resistance offered to mass transfer
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by the gas phase was negligible in comparison to that of the liquid phase. Assume
that the gas-phase mass transfer rate per unit volume NAa is described by

NAa = k
•
G0apA (6.P.1-1)

in which k
•
G0 is the gas-phase mass-transfer coefficient, a the interfacial area per

unit volume of contacting device, and pA the partial pressure of the absorbing
component A in the gas phase. The thermodynamic equilibrium liquid-phase com-
position c

◦
A is related to the partial pressure pA by Henry’s law given by pA = Hc

◦
A,

where H is the Henry’s law constant. Use scaling analysis to develop a criterion
for ignoring the gas-phase relative to the liquid-phase mass transfer.

6.P.2 Penetration Theory Model for a Slow Reaction Regime

In Section 6.3 we scaled the definition of the mass-transfer flux for purely physical
unsteady-state absorption and obtained equation (6.3-29) that interrelates the mass-
transfer coefficient and the contact time. In principle, scaling analysis can provide
only an order-of-magnitude estimate of any quantity such as the mass-transfer
coefficient.

(a) Develop a penetration theory model to obtain a rigorous solution for the
interrelationship between the mass-transfer coefficient and the contact time
for unsteady-state purely physical absorption.

(b) Compare the result you obtained in part (a) with that obtained via scaling
analysis.

6.P.3 Correlation for a Liquid-Phase Mass-Transfer Coefficient

Sherwood and Holloway provide the following correlation for the liquid-phase
mass-transfer coefficient for packed gas-absorption columns k

•
L0 (having dimen-

sions of L3/t)12:

k
•
L0a

DAS

=
(

ςU0

µ

)1−n (
µ

ρDAS

)0.5

(6.P.3-1)

where a is the interfacial area per volume of contacting device, DAS the effective
binary diffusion coefficient, U0 the superficial velocity of the liquid flow, µ the
shear viscosity of the liquid, ρ the mass density of the liquid, and ς and n are
dimensional (M/L2) and dimensionless constants, respectively, that depend on the
type and size of the packing elements.

(a) Compare the estimate that we obtained from scaling analysis using the film
theory model given by equation (6.3-25) with the correlation of Sherwood
and Holloway.

12T. K. Sherwood and F. A. L. Holloway, Trans. A.I.Ch.E., 36, 21, 39, 181 (1940).
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(b) Compare the estimate that we obtained from scaling analysis using the
penetration theory model given by equation (6.3-29) with the correlation
of Sherwood and Holloway.

6.P.4 Slow Reaction Regime for Nondilute Solutions

Throughout this chapter we have assumed dilute solutions of the absorbing com-
ponent so that the convective contribution to Fick’s law could be ignored. Assume
now that the solutions are sufficiently concentrated that the convective term in
Fick’s law cannot be neglected; that is,

NA = −DASc
∂xA

∂z
+ cAû = NA = −DASc

∂xA

∂z
+ xA(NA + NB + NS) (6.P.4-1)

in which û is the molar-average velocity and xA is the mole fraction of the absorbing
component A.

(a) Scale the microscale element to determine the criterion for the applicability
of the slow reaction regime; assume that the liquid-phase component S is
nonvolatile, which implies unimolecular diffusion of component A in the
microscale element.

(b) Determine the criteria for ignoring the convective term in Fick’s law.

6.P.5 Microscale Element Scaling for a Reversible Unimolecular Reaction

In Section 6.3 we scaled the describing equations for the microscale element for
an irreversible bimolecular first-order reaction. Now let us consider the situation
where solute A is chemisorbed in the liquid S via a reversible unimolecular reaction
given by RA = k1(cA − c

◦
Ar), where c

◦
Ar is the reaction equilibrium concentration;

that is, the concentration that is achieved when the reaction goes to completion.

(a) Scale the describing equations for the microscale element to determine the
relevant time scales.

(b) Determine the criterion for the slow reaction regime.

(c) Determine the criterion for the intermediate reaction regime.

(d) Determine the criterion for the fast reaction regime.

(e) Determine the criterion for the instantaneous reaction regime.

(f) Determine the criterion for steady-state mass transfer on the microscale.

(g) Estimate the thickness of the region of influence for very short contact times.

6.P.6 Microscale Element Scaling for an Irreversible nth-Order Reaction

In Section 6.3 we scaled the describing equations for the microscale element for
an irreversible bimolecular first-order reaction. Now let us consider the situation
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where solute A is chemisorbed in the liquid S via an irreversible nth-order reaction
given by RA = knc

n
A.

(a) Scale the describing equations for the microscale element to determine the
relevant time scales.

(b) Determine the criterion for the slow reaction regime.

(c) Determine the criterion for the intermediate reaction regime.

(d) Determine the criterion for the fast reaction regime.

(e) Determine the criterion for the instantaneous reaction regime.

(f) Determine the criterion for quasi-steady-state.

(g) Estimate the thickness of the region of influence for very short contact times.

6.P.7 Applicability of the Quasi-stationary Hypothesis for Physical
Absorption

In Section 6.8 we considered the quasi-stationary hypothesis whereby the accu-
mulation term in the macroscopic balance is assumed to be very small. We then
invoked this assumption to explore the implications of a very slow and very fast
reaction time relative to the time scale for interphase mass transfer. This led to
identifying the kinetic and diffusional domains of the slow reaction regime. Con-
sider the applicability of the quasi-stationary hypothesis for the macroscale balance
given by equation (6.8-11) for purely physical absorption for which there is no
chemical reaction. Discuss any anomalies that result from the application of the
quasi-stationary hypothesis and their implications for the applicability of the quasi-
stationary hypothesis.

6.P.8 Effect of Axial Dispersion in the Macroscale Balance for a Packed
Absorption Column

In carrying out the macroscale balance in Section 6.8, we did not include the term
associated with axial dispersion of species. In this problem we include this term in
the macroscale balance for a packed gas-absorption column to develop a criterion
for when it can be neglected. We assume that the axial dispersion is characterized by
a constant dispersion coefficient DL that accounts for both axial diffusion due to the
concentration gradients and dispersion due to the presence of the packing elements.

(a) Use scaling analysis to develop a criterion for ignoring the axial dispersion
term. Scaling the macroscale balance equation for the packed absorption
column is facilitated by recasting it in a fixed coordinate rather than a
convected coordinate system.

(b) In Chapter 6 we found that the axial diffusion term could not be ignored
within a region of influence whose thickness we estimated using scaling
analysis. Use scaling analysis to estimate the thickness of the region of
influence wherein the axial dispersion term cannot be ignored.
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6.P.9 Intermediate Domain of a Slow Reaction Regime

In the slow reaction regime we considered two limiting cases, corresponding to the
kinetic and diffusional domains that applied when the reaction rate was very slow
and very fast, respectively, in comparison to the mass transfer from the microscale
to the macroscale. There must also be an intermediate domain between these two
limiting cases for which the characteristic times for reaction and mass transfer from
the microscale to the macroscale are comparable.

(a) Determine the criterion for applicability of this intermediate domain of the
slow reaction regime.

(b) Discuss the implications of this intermediate domain of the slow reaction
regime for reactor design; that is, indicate how the various process param-
eters will affect the performance in this domain.

(c) Contrast the equation that you obtained for the mass-transfer rate per unit
volume for the intermediate reaction domain with those that were obtained
for the kinetic and diffusional domains of the slow reaction regime.

6.P.10 Macroscale Element Scaling for a Reversible Unimolecular Reaction

Consider the describing equations for the macroscale element for the reversible
unimolecular reaction described in Practice Problem 6.P.5 for the special case of
the slow reaction regime.

(a) Determine the criterion for the applicability of the quasi-stationary hypo-
thesis.

(b) Determine the criterion for the kinetic domain.

(c) Determine the criterion for the intermediate domain. Note: See Practice
Problem 6.P.9 regarding the intermediate domain of the slow reaction
regime.

(d) Determine the criterion for the diffusional domain.

6.P.11 Macroscale Element Scaling for an Irreversible nth-Order Reaction

Consider the describing equations for the macroscale element for the irreversible
nth-order reaction unimolecular reaction described in Practice Problem 6.P.6 for
the special case of the slow reaction regime.

(a) Determine the criterion for the applicability of the quasi-stationary hypo-
thesis.

(b) Determine the criterion for the kinetic domain.

(c) Determine the criterion for the intermediate domain. Note: See Practice Prob-
lem 6.P.9 regarding the intermediate domain of the slow reaction regime.

(d) Determine the criterion for the diffusional domain.
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6.P.12 Implications of the Intermediate Reaction Regime for a Microscale
Element on the Macroscale Balance

The slow reaction regime differs from the fast reaction regime in that the mass-
transfer coefficient is the same as that for physical absorption in the former.
Moreover, in the fast reaction regime the reaction is fast enough to maintain
the bulk fluid at the reaction equilibrium concentration. Consider now the inter-
mediate reaction regime for the microscale element. The reaction is sufficiently
fast so that the mass-transfer coefficient is greater than that for purely physical
absorption. However, it is not necessarily fast enough to maintain the bulk fluid
at the reaction equilibrium concentration. In this problem we consider the impli-
cations of the intermediate reaction regime for the macroscale element describing
equations.

(a) Scale the describing equations for the macroscale element for which the
mass-transfer term corresponds to the intermediate reaction regime; in par-
ticular, identify the three time scales appropriate to this scaling.

(b) Consider the applicability of the kinetic domain; if this domain is possible,
develop a criterion for its occurrence and contrast the criteria for this domain
for the slow and intermediate reaction regimes.

(c) Consider the applicability of the diffusional domain; if this domain is pos-
sible, develop a criterion for its occurrence and contrast the criteria for this
domain for the slow and intermediate reaction regimes.

(d) Based on your results in parts (b) and (c), discuss critically how the slow
and intermediate reaction regimes differ on both the micro- and macroscales.

6.P.13 Comparison of the Fast Reaction Regime and the
Diffusional Domain of the Intermediate Reaction Regime

Consider the intermediate reaction regime for which the reaction is not necessarily
fast enough to maintain the bulk fluid at the reaction equilibrium concentration.
In addition, the mass-transfer coefficient is not equal to that for purely physi-
cal absorption. When the macroscale balance is considered for the intermediate
reaction regime, it is possible that it will admit both a kinetic and a diffusional
domain for conditions similar to those determined by scaling for the slow reac-
tion regime. If the intermediate reaction regime admits a diffusional domain, it
would imply that the bulk fluid concentration is equal to the reaction equilib-
rium concentration. Hence, for both the fast reaction regime and the diffusional
domain of the intermediate reaction regime, the mass-transfer coefficient is not
that for purely physical absorption and the bulk-fluid concentration is the reac-
tion equilibrium concentration. Superficially, these two reaction regimes appear
to be the same when, in fact, they are not. Discuss critically how the diffu-
sional domain of the intermediate reaction regime differs from the fast reaction
regime.
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6.P.14 Discriminating Between the Fast Reaction Regime and the Kinetic
Domain of the Slow Reaction Regime

In Section 6.11 we found for both the fast reaction regime and the kinetic domain of
the slow reaction regime that the mass-transfer rate per unit volume of reactor was
independent of the mass-transfer coefficient for physical absorption k

•
L0, which is

strongly dependent on the hydrodynamics. Moreover, in Section 6.11 we stated that
if one observes that the contactor performance is independent of the hydrodynamics,
it indicates that the chemisorption is occurring in the fast reaction regime. Critically
assess the validity of the latter statement based on the design precepts for the two
reaction regimes discussed in Section 6.11; that is, it would appear that if neither of
these two reaction regimes depends on k

•
L0, which depends on the hydrodynamics,

how in fact can we make the claim that if the contactor performance is independent
of the hydrodynamics, it is operating in the fast reaction regime?

6.P.15 Transition Between the Inner and Surface Domains in the
Instantaneous Reaction Regime for Gas Absorption

The instantaneous reaction regime for gas absorption with a bimolecular reaction
implies that the chemical reaction is so fast that the two reactants cannot coex-
ist. Hence, the instantaneous reaction is confined to a plane that separates two
regions, in each of which only one of the reactants is diffusing. In the inner reac-
tion domain of the instantaneous reaction regime, this reaction plane is in the liquid
phase, whereas in the surface domain it is at the interface between the gas and liq-
uid phases. In contactors such as packed columns, the reaction regime can change
along the length of the column due to changes in the concentrations that affect the
reaction rate. In this problem we explore both the criterion and its implications for
chemisorption in a packed gas absorption column. We assume that the gas-phase
partial pressure of the absorbing component is pA and that the absorption equilib-
rium at the gas–liquid interface is defined by pA = Hc◦

A, where H is a constant.

(a) Use the results of our scaling analyses for the inner and surface domains
of the instantaneous reaction regime to develop a criterion for the transition
between these two domains. Note that for the inner reaction domain the
mass-transfer rate per unit volume in the gas phase must be equal to that in
the liquid phase.

(b) Assume that the gas and liquid flow cocurrently down a packed gas absorp-
tion column operation in the instantaneous reaction regime. If a transition
between the inner and surface domains occurs in this column, indicate where
each domain will occur relative to the top of the column.

6.P.16 Fast Reaction Regime for an nth-Order Reaction

Consider the fast reaction regime for the special case of an nth-order reversible
reaction given by RA = kn(cA − c

◦
Ar)

n, in which c
◦
Ar is the reaction equilibrium

concentration of the absorbing component.
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(a) Integrate equation (6.12-12) for this nth-order reaction to determine the con-
centration profile for the microscale element.

(b) Use the result of part (a) to derive an equation for the thickness of the region
required for the concentration to decrease from its maximum value of c

◦
A to

its minimum value for the fast reaction regime of c
◦
Ar .

(c) For n < 1 the thickness you calculated in part (b) is finite, whereas for
n > 1, it is infinite; reconcile this with the result of scaling analysis for the
thickness of the region of influence for the fast reaction regime given by
equation (6.6-2), which predicts a finite thickness for any value of n. Hint :
Use your result from part (a) in a film theory model to estimate the effective
thickness.

6.P.17 Steady-State Approximation for the Inner Domain
of the Instantaneous Reaction Regime

Use scaling analysis to develop criteria for assuming steady-state for the inner
domain of the instantaneous reaction regime; that is, develop criteria for using a
film theory model to describe this reaction regime.

6.P.18 Improved Model for the Inner Domain of the Instantaneous
Reaction Regime

The steady-state approximation will apply for the inner domain of the instantaneous
reaction regime only for very long contact times for which the diffusive penetration
of the liquid-phase reactant extends from the reaction plane to the outer edge of the
microscale element. An improved model for this reaction regime can be developed
by recognizing that the reaction plane will be very close to the gas–liquid interface
if the contact time is not too long. Hence, quasi-steady-state conditions can be
assumed for the region in which the absorbing component is diffusing, whereas the
unsteady-state term is retained in the region in which the liquid-phase reactant is
diffusing.

(a) Use scaling analysis to develop the criterion for assuming quasi-steady-
state conditions in the region wherein the absorbing component is dif-
fusing.

(b) Develop an analytical solution for the mass-transfer flux and mass-transfer
coefficient, assuming quasi-steady-state in the region where the absorbing
component is diffusing but unsteady-state in the region where the liquid-
phase reactant is diffusing. Note that the differential equation in the unsteady-
state region can be solved using either the method of combination of vari-
ables or Laplace transforms.

(c) Compare the result you obtained in part (b) for the mass-transfer coeffi-
cient to that obtained for the steady-state film theory model developed in
Section 6.12.
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6.P.19 Model for the Mass-Transfer Coefficient for a First-Order
Reversible Reaction in the Intermediate Reaction Regime

In Section 6.12 we developed a film theory model to obtain an equation for the
mass-transfer coefficient for a zeroth-order reaction. Develop a film theory model
for the mass-transfer coefficient appropriate to a first-order reversible reaction given
by RA = kn(cA − c

◦
Ar), in which c

◦
Ar is the reaction equilibrium concentration of

the absorbing component.

6.P.20 Model for the Mass-Transfer Coefficient for a First-Order
Reversible Reaction in the Fast Reaction Regime

In Section 6.12 we developed a film theory model to obtain an integral equation for
the mass-transfer coefficient for the fast reaction regime with unspecified reaction
kinetics.

(a) Develop a film theory model for the mass-transfer coefficient appropriate to
a first-order reversible reaction for which RA = kn(cA − c

◦
Ar), in which c

◦
Ar

is the reaction equilibrium concentration of the absorbing component.

(b) Compare the result you obtained in part (a) with that given by equation
(6.12-14); in particular, discuss any anomalies that are observed when you
make this comparison.

6.P.21 Macroscale Element Scaling for a Zeroth-Order Reversible Reaction

In Section 6.12 we developed an equation for the mass-transfer coefficient for
an irreversible zeroth-order reaction in the intermediate reaction regime. In this
problem we will consider the slow reaction regime for a zeroth-order reversible
reaction for which the reaction rate per unit volume RA is given by

RA = k0ξ

{

ξ = 0 for ĉA ≤ c
◦
Ar

ξ = 1 for ĉA > c
◦
Ar

(6.P.21-1)

(a) Scale the macroscale element for the slow reaction regime for this reversible
zeroth-order reaction and determine the criterion for the kinetic domain.

(b) Derive an equation for the mass-transfer rate per unit volume NAa for the
kinetic domain.

(c) Compare the design precepts for the kinetic domain for the special case of
the reversible zeroth-order reaction to those implied by equation (6.11-4)
for unspecified irreversible reaction kinetics.

(d) Scale the macroscale element for the slow reaction regime for this reversible
zeroth-order reaction and determine the criterion for the diffusional domain.

(e) Derive an equation for the mass-transfer rate per unit volume NAa for the
diffusional domain.
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(f) Compare the design precepts for the diffusional domain for the special case
of the reversible zeroth-order reaction to those implied by equation (6.11-5)
for unspecified irreversible reaction kinetics.

(g) Discuss whether an intermediate domain of the slow reaction regime is
possible for a zeroth-order reversible reaction.

(h) Discuss the nature of the transition between the kinetic and diffusional
domains of the slow reaction regime for a gas-absorption column employing
chemisorption with a zeroth-order reversible reaction.

6.P.22 Design of a CSTR for an nth-Order Reversible Reaction Operating
in the Slow Reaction Regime

In Section 6.13 we considered the design of a CSTR for a first-order irreversible
reaction. In this problem we consider the design of a CSTR such as that shown in
Figure 6.13-1 for the special case of an nth-order reversible reaction operating in
the slow reaction regime for which the reaction rate per unit volume is given by
RA = kn(cA − c

◦
Ar)

n.

(a) Derive an equation for the total absorption rate NAaVT if the chemisorption
occurs in the kinetic regime of the slow reaction regime.

(b) Derive an equation for the total absorption rate NAaVT if the chemisorption
occurs in the diffusional regime of the slow reaction regime.

(c) Discuss the relative merits of using a CSTR if the chemisorption occurs in
the slow reaction regime.

6.P.23 Determining Kinetic Parameters for a CSTR

In Section 6.13 we considered how the results of our scaling analyses could be
used to interpret performance data for chemisorption through a first-order irre-
versible reaction in a CSTR. In this problem we explore how performance data
for chemisorption in a CSTR can be used to determine the kinetic parameters.
We assume that the chemisorption occurs via a first-order irreversible reaction for
which the reaction rate constant is k1. Moreover, we assume that the CSTR liquid
volume VT , diffusion coefficient DAS , thermodynamic equilibrium concentration
c
◦
A, and inlet liquid concentration cA1 are known. Let us assume that we can vary

both the contact time to by changing the volumetric flow rate QL, and the mixing
speed; the latter will change both k

•
L0 and a. Of course, a change in either the con-

tact time or mixing speed will change the outlet liquid concentration cA2, which we
assume can be measured. We wish to design a series of experiments to determine
the reaction regime and the following design parameters for the CSTR: k1, the
reaction rate constant; k

•
L0, the mass-transfer coefficient for physical absorption;

and a, the interfacial area per unit volume of contacting device.

(a) Assume that we increase the contact time to and find that χ = NA/Nm
A > 1

and increases linearly with to. This can occur for the kinetic and diffusional
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domains of the slow reaction regime as well as for the fast reaction regime.
If we hold the contact time constant, what additional experiment(s) can be
done by changing the process parameters under our control to determine if
the chemisorption is occurring in the kinetic domain?

(b) Assume in part (a) that we establish that the chemisorption is in the kinetic
domain. What information associated with the kinetic parameters can we
determine from a measurement of the outlet liquid concentration cA2?

(c) What is the particular advantage of operating in the kinetic domain for
characterizing the reaction kinetics?

6.P.24 Determining the Interfacial Area per Unit Volume for a CSTR

In designing a CSTR for chemisorption, one would like to know k
•
L0, the mass-

transfer coefficient for purely physical absorption, and a, the interfacial area per unit
volume of contacting device, as functions of the mixing speed or equivalently, the
Reynolds number based on the impeller diameter. In this problem we consider how
experiments might be designed for a CSTR that will permit determining both of
these parameters. We assume that the CSTR liquid volume VT , diffusion coefficient
DAS , thermodynamic equilibrium concentration c

◦
A, and inlet liquid concentration

cA1 are known and that the liquid volumetric flow rate QL and outlet liquid con-
centration cA2 can be measured. We assume that we have the option of operating
in either purely physical absorption or chemisorption by adding an excess of an
appropriate liquid-phase reactant for which the first-order irreversible reaction rate
constant is k1.

(a) Assume that we have done a series of experiments for physical absorption
in which we have measured the outlet liquid concentration cA2 as we pro-
gressively increased the mixing speed. What can these data tell us about the
parameters k

•
L0 and a?

(b) Assume now that we have the parameters obtained in part (a) and that we
add the liquid-phase reactant so that chemisorption occurs. What types of
experiments could we carry out to determine definitively in which reaction
regime the chemisorption occurs?

(c) Assume that we determine that the chemisorption is occurring in the fast
reaction regime. What can data from a series of experiments in which we
measure the outlet liquid concentration cA2 as a function of mixing speed
tell us about the parameters k

•
L0 and a?

6.P.25 Design of a CSTR for a Zeroth-Order Irreversible Reaction

Consider a perfectly mixed CSTR that is used to absorb a pure gas by means of
a zeroth-order irreversible reaction operating in the batch mode. By this we mean
that the gas consisting of pure component A flows into and out of the CSTR,
which contains a fixed amount of liquid that is contained in it; there is no inflow
or outflow of the liquid. We assume that the liquid is initially pure component B.
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TABLE 6.P.25-1 Design Parameters and Physical Properties for a Batch CSTR
Chemisorption Process Employing a Zeroth-Order Irreversible Reaction

Zeroth-order reaction-rate constant, k0 3.0 × 10−6 gmol/cm3 · s
Diffusion coefficient, DAB 3.0 × 10−6 gmol/cm3 · s
Molar density of bulk liquid, c 0.06 gmol/cm3

Henry’s law constant relating gas and liquid mole fractions,
yA and xA, respectively

yA = 100xA

Mass-transfer coefficient for physical absorption, k
•
L0 6.0 × 10−4 gmol/cm2 · s

Liquid-phase holdup, φ 2 cm3/cm2

Interfacial area per unit volume, a 0.5 cm2/cm3

Gas bubble radius, R 0.15 cm

The concentration of component A in the liquid will increase in time, owing to
the chemisorption. Table 6.P.25-1 summarizes the design parameters and physical
properties for this batch chemisorption process. Assume constant physical prop-
erties and that the gas bubbles do not change significantly in size, due to the
chemisorption process. Note in working this problem that it is possible to answer
all parts using the results of the scaling analyses done in Chapter 6.

(a) Estimate the thickness δm of the liquid film surrounding each gas bubble.

(b) Use an appropriate criterion emanating from scaling analysis to determine if
it is reasonable to ignore curvature effects when modeling the mass transfer
from the microscale element.

(c) Determine the maximum possible concentration in the liquid.

(d) Determine if this chemisorption process takes place in the slow, fast, or
instantaneous reaction regime; if it occurs in the slow reaction regime, deter-
mine if it is in the kinetic, intermediate (see Practice Problem 6.P.9), or
diffusional reaction domain of the slow reaction regime.

(e) Determine the mass-transfer rate per unit volume NAa at the initiation of
this chemisorption process.

(f) Determine the mass-transfer rate per unit volume NAa applicable at very
long contact times.

(g) Suggest how the performance of this chemisorption process could be im-
proved; that is, how can the mass-transfer rate per unit volume be increased?

6.P.26 Use of a Packed Column Absorber to Determine Reaction Order

A packed absorption column can be used to determine the reaction order for a chem-
ical reaction for which the kinetics are unknown under some conditions. Note that a,
the interfacial area per unit volume, is usually unknown for packed columns. Care-
fully consider the properties of each reaction regime and recommend the regime
most appropriate for determining the reaction order from the usual quantities mea-
sured for packed absorption column performance (inlet and outlet concentrations
and flow rates).
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6.P.27 Cocurrent Versus Countercurrent Flow in a Packed Gas-Absorption
Column

A packed gas-absorption column can operate with both streams flowing either in
parallel (cocurrent) or antiparallel (countercurrent) directions. In this problem we
consider the merits of each flow configuration relative to the reaction regime.

(a) In which reaction regimes will the amount of the soluble gas-phase
component that is absorbed into the liquid be independent of the flow con-
figuration?

(b) Which flow configuration would be preferred for the reaction regimes you
identified in part (a)? Indicate the reason(s) for your answer.

(c) Which flow configuration would be preferred for those reaction regimes
that do depend on the contacting scheme? Indicate the reason(s) for your
answer.

6.P.28 Design of a Packed Column Absorber for an nth-Order Irreversible
Reaction

In Section 6.14 we considered the design of a packed column absorber for a first-
order irreversible reaction. In this problem we consider the more general case of an
nth-order irreversible reaction for which RA = k1c

n
A. Assume that the data given

in Table 6.14-1 apply for the nth-order reaction as well.

(a) Determine the reaction regime in which this chemisorption process takes
place.

(b) Derive an equation for the mass-transfer flux at any point within the micro-
scale element.

(c) Determine the concentration distribution of component A at any point within
the microscale element.

(d) Consider the implications for your results in parts (b) and (c) for the spe-
cial case of n = 1; explain any anomalies you observe for this special
case.

(e) Derive an equation for the mass-transfer coefficient for an nth-order irre-
versible reaction.

(f) Derive an equation for the column height for an nth-order irreversible reac-
tion.

(g) Discuss any differences in the effects that the various parameters will have
on the mass-transfer rate per unit volume for n > 1 versus n = 1.

6.P.29 Design of a Packed Gas-Absorption Column for a First-Order
Irreversible Reaction

Consider a packed gas-absorption column such as that shown in Figure 6.2-1 in
which an initially pure liquid stream consisting of component S that enters at the top
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Figure 6.P.29-1 Performance data for a packed gas-absorption column plotted as log χ

versus log k1, where χ is the ratio of the total absorption rate to the maximum possible rate
for physical absorption and k1 is the reaction-rate constant for the first-order irreversible
chemisorption reaction.

is used to absorb a component A from a gas stream that enters at the bottom. Compo-
nent A can be chemisorbed in liquid S by means of a first-order irreversible reaction
whose reaction rate per unit volume RA is given by RA = k1cA. The following
information is available for this chemisorption process: mass-transfer coefficient
k

•
L0 = 0.01 cm/s; effective binary diffusion coefficient DAS = 5.5 × 10−5 cm2/s;

and liquid-phase (macroscale) contact time to = 500 s. Figure 6.P.29-1 shows per-
formance data for this chemisorption process as a plot of χ , the ratio of the total
absorption rate to the maximum possible rate for physical absorption, as a function
of k1, the first-order reaction rate constant. The total absorption rate is defined as

W =
∫ VT

0
NAa dV (6.P.29-1)

where V and VT denote the volume and total volume of the column, respectively.

(a) Develop a general equation for χ in terms of the mass-transfer rate per unit
volume NAa, the contact time to, and any relevant concentration(s).

(b) Explain the shape of the line for the performance data in Figure 6.P.29-1 in
terms of the various reaction regimes and domains; that is, identify which
regime or domain applies to each part of this line. When invoking the
scaling analysis criteria for the various regimes and domains, use one order
of magnitude in your ordering arguments. Note: Do not forget to consider
the intermediate regime and the intermediate domain of the slow reaction
regime (see Practice Problem 6.P.9).
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(c) Determine a, the interfacial area per unit volume of column, from the per-
formance data given in Figure 6.P.29-1.

(d) In which ranges of the reaction rate constant would it advantageous
to employ cocurrent (parallel) rather than countercurrent (antiparallel)
flow?



7 Applications in Process Design

The optimist looked at his glass and said to the bartender that it was half full.

The pessimist looked at his glass and said to the bartender that it was half empty.

The engineer looked at both glasses and said to the bartender that he would◦(1).1

7.1 INTRODUCTION

The focus and organization of this chapter are a dramatic departure from those
of the preceding chapters. In Chapters 3 through 6 we focused primarily on using
scaling to justify classical approximations made in fluid dynamics, heat transfer,
mass transfer, and mass transfer with chemical reaction. As such, the thrust of the
preceding chapters was primarily pedagogical rather than application-oriented. In
contrast, in this chapter we show how scaling analysis has been applied to the
design of four practical engineering processes. Scaling analysis played a pivotal
role in advancing the technologies involved in these four examples. It not only
helped in simplifying the describing equations so that a tractable solution could be
developed but was also used to design the process; that is, to determine process
parameters such as the contact time, oscillation amplitude and frequency, vessel
length, adsorbent particle size, and wall temperature that insured effective and
efficient operation. We also demonstrate the utility of using ◦(1) scaling analysis to
obtain optimal dimensionless groups for correlating experimental or numerical data.

In Section 7.2 we revisit the design of a membrane–lung oxygenator. In Section
5.10 the scaling approach to dimensional analysis was used to determine the dimen-
sionless groups required to correlate data for the performance enhancement that
could be achieved by applying axial vibrations of the hollow-fiber membranes in
this oxygenator. In this chapter, ◦(1) scaling analysis is used to achieve the mini-
mum parametric representation. Subsequently, we will see that ◦(1) scaling analysis
provides considerably more information than just the scaling analysis approach to
dimensional analysis or the Pi theorem. Section 7.3 applies scaling analysis to

1Anonymous—attributed to a very practical engineer.

Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach
to Model Building and the Art of Approximation, By William B. Krantz
Copyright  2007 John Wiley & Sons, Inc.
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the design of the pulsed pressure swing adsorption (PSA) process. This process
is of particular interest for use in portable oxygenators for people suffering from
severe respiratory problems or chronic obstructive pulmonary disease. This example
involves coupled flow through porous media and mass transfer. In Section 7.4
we consider the thermally induced phase-separation (TIPS) process for fabricating
semipermeable polymeric membranes. The TIPS process is used to make high flux
membranes for water desalination and reclamation as well as for solvent recovery.
This example involves coupled heat and mass transfer. In Section 7.5 we use scal-
ing analysis to design the fluid–wall aerosol flow reactor for converting methane
into hydrogen. The fluid–wall aerosol flow reactor is being developed to use solar
energy to drive the thermal decomposition of methane into hydrogen that can be
used as a clean-burning fuel to address the worldwide concern regarding global
warming. This example involves coupled fluid dynamics, heat transfer, mass trans-
fer, and chemical reactions in a two-phase system. The examples in Sections 7.3,
7.4, and 7.5 use the microscale–macroscale modeling methodology to handle het-
erogeneities such as particles or a dispersed phase. In Section 7.6 we summarize
the scaling principles employed in each of these examples and the role that scal-
ing analysis played in advancing each of these technologies. Unworked practice
problems related to each of the four examples are included at the end of the chapter.

7.2 DESIGN OF A MEMBRANE–LUNG OXYGENATOR

In Section 5.10 we applied the scaling approach to dimensional analysis to develop
a correlation for the performance enhancement achieved by applying axial oscilla-
tions to the hollow fibers in a membrane–lung oxygenator. Recall that the scaling
approach to dimensional analysis outlined in Section 2.4 does not provide as
much information as ◦(1) scaling analysis for achieving the minimum paramet-
ric representation. In particular, it does not lead to groups whose magnitude can
be used to assess the relative importance of the various terms in the describing
equations. Moreover, it does not provide any insight into the fundamental mech-
anisms involved in the process. It also does not identify regions of influence or
boundary layers, which in some cases can reduce the number of dimensionless
groups. Here we apply ◦(1) scaling analysis to design a membrane–lung oxygena-
tor. This example illustrates the value of using ◦(1) scaling analysis to achieve the
minimum parametric representation in contrast to the simple scaling analysis or Pi
theorem approaches to dimensional analysis.

The membrane–lung oxygenator involves a bundle of permeable cylindrical
hollow-fiber membranes encased in a tubular housing. In this application the hollow-
fiber membranes do not cause any separation but rather, serve as a gas-permeable
barrier between the blood and the source of oxygen. The mass transfer of oxygen
is controlled on the blood side of the membrane because the hemoglobin “par-
ticles” that scavenge the oxygen are excluded from the wall region due to the
fluid dynamics. Hence, efforts to improve oxygenator performance have focused
on various means to reduce the resistance to mass transfer on the blood side of
the membrane. A very effective way to enhance the mass transfer is to oscillate
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the hollow fibers relative to the blood flow to increase the concentration gradients
adjacent to the membrane.2 In this section we use ◦(1) scaling analysis to design
an oxygenator that employs periodic oscillations of the hollow fibers to enhance
the mass transfer. It is sufficient to consider the effect of the oscillations on the
oxygen mass transfer to the blood flow in a single hollow-fiber membrane having
radius R and length L, as shown in Figure 7.2-1.

The initial steps involved in applying ◦(1) scaling analysis to this problem are
similar to those used in the scaling analysis approach to dimensional analysis dis-
cussed in Section 5.10. One begins by writing the appropriate describing equations
for the oxygen mass transfer to the blood, which is assumed to be in fully devel-
oped periodically pulsed laminar flow (step 1). The effect of the oscillating wall
on the oxygen mass transfer is assessed in terms of the mass-transfer coefficient
k•
L defined in terms of NAw, the time-average molar flux of oxygen at the inner

membrane wall, as follows:

k•
L ≡ NAw

�clm
(7.2-1)

where �clm is the log-mean concentration driving force, defined as

�clm ≡ (cAw − cAL) − (cAw − cA0)

ln[(cAw − cAL)/(cAw − cA0)]
(7.2-2)

in which cAw is the oxygen concentration at the blood side of the membrane
that is dictated by thermodynamic equilibrium considerations, cA0 and cAL are the
average concentrations in the blood at z = 0 and at z = L, respectively, and NAw

is defined as

NAw =
∫ 2π / ω

0 NAw dt
∫ 2π / ω

0 dt
= ω

2π

∫ 2π / ω

0
NAw dt (7.2-3)

R z

uz = Aw cos wt

r
L

Figure 7.2-1 Single hollow fiber of radius R and length L in a membrane–lung oxy-
genator; axial oscillations of amplitude A and angular frequency ω are used to increase
the concentration gradients at the interior wall where the resistance to mass transfer is
concentrated.

2R. R. Bilodeau, R. J. Elgas, W. B. Krantz, and M. E. Voorhees, U.S. patent 5,626,759, issued May
6, 1997.
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where ω is the angular frequency of the wall oscillations. The molar flux NAw in
equation (7.2-3) is the local molar flux averaged over the length of the hollow-fiber
membrane and is defined as

NAw =
∫ L

0 DAB (∂cA/∂r)|r=R dz
∫ L

0 dz
= 1

L

∫ L

0
DAB

∂cA

∂r

∣
∣
∣
∣
r=R

dz (7.2-4)

where DAB is the binary diffusion coefficient for oxygen in blood, which is assumed
to be constant. The bulk flow contribution to the molar flux has been ignored
because the solutions are dilute. When equations (7.2-3) and (7.2-4) are substituted
into equation (7.2-1), we obtain

k•
L = ωDAB

2πL �clm

∫ 2π / ω

0

∫ L

0

∂cA

∂r

∣
∣
∣
∣
r=R

dz dt (7.2-5)

Both cAL appearing in �clm and cA in equation (7.2-5) are obtained from a
solution to the axisymmetric form of the species-balance equation in cylindrical
coordinates given by equation (G.2-5) in the Appendices, which when simplified
appropriately for this unsteady-state convective diffusion problem assumes the form

∂cA

∂t
+ uz

∂cA

∂z
= DAB

r

∂

∂r

(

r
∂cA

∂r

)

(7.2-6)

When simplifying equation (G.2-5) to arrive at equation (7.2-6), note that each
term has been divided by the molecular weight, which can be assumed to be
constant for the dilute solutions. The axial diffusion term has also been neglected
in equation (7.2-6), owing to the small aspect ratio.3 The mass-average velocity
uz is obtained from a solution to the equations of motion given by equations
(D.2-10) through (D.2-12) in the Appendices. If entrance and exit effects can be
ignored, this will be an unsteady-state fully developed flow for which the equations
of motion reduce to

ρ
∂uz

∂t
= �P

L
+ µ

1

r

∂

∂r

(

r
∂uz

∂r

)

(7.2-7)

The boundary and periodic solution conditions are given by4

∂cA

∂r
= 0 at r = 0, 0 ≤ z ≤ L (7.2-8)

∂uz

∂r
= 0 at r = 0, 0 ≤ z ≤ L (7.2-9)

cA = cAw at r = R, 0 ≤ z ≤ L (7.2-10)

uz = Aω cos ωt at r = R, 0 ≤ z ≤ L (7.2-11)

cA = cA0 at z = 0 (7.2-12)

3The criterion for ignoring this term is considered in Practice Problem 7.P.1.
4The criterion for ignoring transient flow effects is considered in Practice Problem 7.P.2.
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cA|t = cA|t+2π/ω (7.2-13)

uz|t = uz|t+2π/ω (7.2-14)

where A is the amplitude of the wall oscillations.
In carrying out an ◦(1) scaling analysis for this problem, one needs to recog-

nize that even in the absence of any axial oscillations, the mass-transfer problem
would involve a region of influence or boundary layer; that is, a solutal boundary
layer develops at the wall from the upstream edge of the hollow-fiber membrane.
The wall oscillations will influence the thickness of this solutal boundary layer by
altering the velocity profile near the wall. This suggests that our scaling analysis
should include a reference factor so that the coordinate system can be relocated
on the wall of the hollow-fiber membrane. A second consideration is that the axial
oscillations will define a hydrodynamic region of influence or momentum bound-
ary layer.5 The momentum and solutal boundary-layer thicknesses need not be the
same; indeed, the high Schmidt numbers that characterize liquids imply that the
region of influence for the mass transfer will be considerably thinner than that for
the fluid flow. This then suggests that the radial coordinate in the equations of
motion should be scaled differently than those for the species-balance equation.
Another consideration is the scaling of the time derivative of the concentration.
Whereas the membrane oscillations clearly establish the amplitude of the velocity
at the wall, it is not clear what the amplitude of the concentration oscillations will
be. In particular, there is no reason to expect that this derivative will scale with
the characteristic concentration change divided by the characteristic time. Hence,
it is appropriate to introduce a separate scale for this time derivative. In view of
these considerations, the following dimensionless variables involving unspecified
scale and reference factors are defined (steps 2, 3, and 4):

c∗
A ≡ cA − cAr

cAs

;
(

∂cA

∂t

)∗
≡ 1

ċAs

∂cA

∂t
; u∗ ≡ uz

us

; y∗
c ≡ r − rr

δs

;

y∗
m ≡ r − rr

δm

; z∗ ≡ z

zs

; t∗ ≡ t

ts
(7.2-15)

where δs and δm are the solutal and momentum boundary-layer thicknesses, respec-
tively. Substitute these dimensionless variables into the describing equations and
divide through by the dimensional coefficient of one term in each equation (steps
5 and 6):

2πk•
LLδs

ωDABzsts
=− 1

�c∗
lm

∫ 1

0

∫ 1

0

∂c∗
A

∂y∗
c

∣
∣
∣
∣
y∗
c =(rr−R)/δs

dz∗ dt∗ (7.2-16)

�c∗
lm ≡ −c∗

AL + (cA0 − cAr)/cAs

ln

(
cAw − cAr

cAw − cA0
− cAs

cAw − cA0
c∗
AL

) (7.2-17)

5The region of influence associated with an oscillating boundary was discussed in Section 3.5.
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δ2
s ċAs

DABcAs

(
∂cA

∂t

)∗
+ uzsδ

2
s

DABzs

u∗
z

∂c∗
A

∂z∗ = 1

(rr/δs) − y∗
c

∂

∂y∗
c

[(
rr

δs

−y∗
c

)
∂c∗

A

∂y∗
c

]

(7.2-18)

δ2
m

νts

∂u∗
z

∂t∗
= δ2

m

µuzs

�P

L
+ 1

(rr/δm) − y∗
m

∂

∂y∗
m

[(
rr

δm

− y∗
m

)
∂u∗

z

∂y∗
m

]

(7.2-19)

∂c∗
A

∂y∗
c

= 0 at y∗
c = yr

δs

, 0 ≤ z∗ ≤ L

zs

(7.2-20)

∂u∗
z

∂y∗
m

=0 at y∗
m = rr

δm

, 0 ≤ z∗ ≤ L

zs

(7.2-21)

c∗
A = cAw − cAr

cAs

at y∗
c = yr − R

δs

, 0 ≤ z∗ ≤ L

zs

(7.2-22)

u∗
z = Aω

uzs

cos ωtst
∗ at y∗

m = rr − R

δm

(7.2-23)

c∗
A = cA0 − cr

cAs

at z∗ = 0 (7.2-24)

c∗
A|t∗ = c∗

A|t∗+2π/ωts (7.2-25)

u∗
z |t∗ = u∗

z |t∗+2π/ωts (7.2-26)

The scale and reference factors are determined by bounding the dependent
variables, their derivatives, and the independent variables to be ◦(1) (step 7). The
reference and scale factors for the concentration are determined by setting the
appropriate dimensionless groups in equations (7.2-22) and (7.2-24) equal to 1 and
zero, respectively, to obtain

cA0 − cr

cAs

= 0 ⇒ cr = cA0; cAw − cAr

cAs

= 1 ⇒ cAs = cAw − cA0 (7.2-27)

The radial reference factor and axial length scale are determined by setting the
appropriate dimensionless groups in equation (7.2-22) equal to zero and 1, respec-
tively, to obtain

yr − R

δs

= 0 ⇒ yr = R; L

zs

= 1 ⇒ zs = L (7.2-28)
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The time scale is obtained by setting the dimensionless group appearing in equations
(7.2-25) and (7.2-26) equal to 1 to obtain

ωts

2π
= 1 ⇒ ts = 2π

ω
(7.2-29)

The radial length scale for the momentum equation is equal to the penetration
depth of the axial oscillations, which is determined by the viscous diffusion of
the wall motion into the fluid; hence, we set the following dimensionless group in
equation (7.2-19) equal to 1:

δ2
m

νts
= 1 ⇒ δm =

√

2πν

ω
(7.2-30)

The velocity scale is obtained by balancing the pressure term with the viscous term
in equation (7.2-19); hence, the following dimensionless group is set equal to 1:

δ2
m

µuzs

�P

L
= 2πν

ωµuzs

�P

L
= 1 ⇒ uzs = 2π

ωρ

�P

L
= 16πνU

ωR2
(7.2-31)

where U is the average velocity for steady-state fully developed flow through a
circular tube; expressing uzs in terms of U is done so that the dimensionless groups
emanating form this ◦(1) scaling analysis can be recast in terms of those obtained
via the simpler scaling analysis approach to dimensional analysis considered in
Section 5.10. The radial length scale for the species-balance equation is the solutal
boundary-layer thickness, which is determined by balancing the axial convection
and radial diffusion terms; hence, we set the following dimensionless group in
equation (7.2-18) equal to 1:

uzsδ
2
s

DABzs

= 16πνUδ2
s

ωR2DABL
= 1 ⇒ δs =

√

ωR2DABL

16πνU
(7.2-32)

Determining the proper scale for the time derivative of the concentration is prob-
lematic. An upper bound on this derivative can be obtained by balancing the
unsteady-state term with the radial diffusion term; hence, we set the following
dimensionless group in equation (7.2-18) equal to 1:

δ2
s ċAs

DABcAs

= ωR2LċAs

16πνU(cAw − cA0)
= 1 ⇒ ċAs = 16πνU(cAw − cA0)

ωR2L
(7.2-33)

Substitute the scale and reference factors defined by equations (7.2-27) through
(7.2-33) into the describing equations given by (7.2-16) through (7.2-26) to obtain
the following:

Shv = −
√

32
ν

ωR2
Gz

1

(�c∗
lm)v

∫ 1

0

∫ 1

0

∂c∗
A

∂y∗
c

∣
∣
∣
∣
y∗
c =0

dz∗ dt∗ (7.2-34)

(�c∗
lm)v ≡ −c∗

AL

ln(1 − c∗
AL)

(7.2-35)
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64π
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ν2

ω2R4

∂c∗
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∂t∗
+u∗

z

∂c∗
A

∂z∗ = 1
√

32(ν/ωR2)Gz − y∗
c

× ∂

∂y∗
c

[(√

32
ν

ωR2
Gz − y∗

c

)
∂c∗

A

∂y∗
c

]

(7.2-36)

∂u∗
z

∂t∗
= 1 + 1

√

(1/2π)(ωR2/ν) − y∗
m

× ∂

∂y∗
m









√

1

2π

ωR2

ν
− y∗

m




∂u∗

z

∂y∗
m



 (7.2-37)

∂c∗
A

∂y∗
c

= 0 at y∗
c =

√

32
ν

ωR2
Gz, 0 ≤ z∗ ≤ 1

(7.2-38)

∂u∗
z

∂y∗
m

= 0 at y∗
m =

√

1

2π

ωR2

ν
, 0 ≤ z∗ ≤ 1

(7.2-39)

c∗
A = 1 at y∗

c = 0, 0 ≤ z∗ ≤ 1 (7.2-40)

u∗
z = 1

16π

Aω

U

ωR2

ν
cos 2πt∗ at y∗

m = 0 (7.2-41)

c∗
A = 0 at z∗ = 0 (7.2-42)

c∗
A|t∗ = c∗

A|t∗+1 (7.2-43)

u∗
z |t∗ = u∗

z |t∗+1 (7.2-44)

We have recast the describing equations in terms of the dimensionless groups
identified in Section 5.10, where

Sh ≡ k•
LR

DAB

is the Sherwood number (7.2-45)

Gz ≡ πUR2

2DABL
is the Graetz number (7.2-46)

and Shv and (�c∗
lm)v denote the Sherwood number and the dimensionless log-mean

concentration driving force, respectively, in the presence of axial oscillations. Step
8 in the procedure for ◦(1) scaling analysis would involve assessing whether any
simplifications can be made in the dimensionless form of the describing equations.
Depending on the oscillation frequency, it might be possible to ignore curvature
effects in equations (7.2-36) and (7.2-37) and to apply the boundary conditions
given by equations (7.2-38) and (7.2-39) at infinity. However, owing to the range
of oscillation frequencies that must be considered, it is not possible in general
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to make these simplifications. Moreover, our interest here is not in simplifying
these equations, but rather, in developing a dimensional analysis correlation for the
performance enhancement.

Equations (7.2-34) through (7.2-44) indicate that the Sherwood number for mass
transfer with applied axial oscillations will be a function of four dimensionless
groups; that is,

Shv =−
√

32
ν

ωR2
Gz

1

(�c∗
lm)v

∫ 1

0

∫ 1

0

∂c∗
A

∂y∗
c

∣
∣
∣
∣
y∗
c =0

dz∗ dt∗ =f

(
ωR2

ν
,
Aω

U
, Gz, Sc

)

(7.2-47)

since the integral and (�c∗
lm)v introduce only those dimensionless groups appear-

ing in equations (7.2-36) through (7.2-44). The scaling approach to dimensional
analysis developed in Section 5.10 also indicated that the Sherwood number was
a function of four dimensionless groups. However, the ◦(1) scaling analysis result
carried out here provides additional information in identifying the momentum and
solutal boundary layers; that is, the mass transfer is confined to a region-of-influence
near the wall that is dictated by the effect of the oscillating boundary on the hydro-
dynamics in the wall region. The oscillating boundary changes the velocity profile
near the wall that in turn increases the concentration profiles in this region. Note
that the Schmidt number appeared explicitly only when we recast the temporal
concentration derivative (∂cA/∂t)∗ in terms of ∂c∗

A/∂t∗; that is, to carry out the
time integration of equation (7.2-36) the concentration and time must be nondi-
mensionalized as they are in the other terms in the describing equations.

An effective way to assess the performance enhancement for this novel oxy-
genator design is to consider the ratio of the Sherwood number in the presence and
absence of axial oscillations. An ◦(1) scaling analysis for a conventional oxygena-
tor that does not employ axial oscillations indicates that

Sh =
√

4

π
Gz

1

�c∗
lm

∫ 1

0

∂c∗
A

∂y∗
c

∣
∣
∣
∣
y∗
c =0

dz∗ = f (Gz) (7.2-48)

That is, the Sherwood number is a function of only the Graetz number.6 Hence, we
conclude that a correlation for the ratio of the Sherwood number in the presence
and absence of axial oscillations is of the form

Shv

Sh
=

√

8
πν

ωR2

[

1
(�c∗

lm)v

∫ 1
0

∫ 1
0

∂c∗
A

∂y∗
c

∣
∣
∣
y∗
c =0

dz∗ dt∗
]

with oscillations
[

1
�c∗

lm

∫ 1
0

∂c∗
A

∂y∗
c

∣
∣
∣
y∗
c =0

dz∗
]

without oscillations

= f

(
ωR2

ν
,
Aω

U
, Gz, Sc

)

(7.2-49)

6An ◦(1) scaling analysis to obtain this result is considered in Practice Problem 7.P.4.
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Figure 7.2-2 Effect of the dimensionless group ωR2
/

ν on the ratio of the Sherwood num-
ber with and without axial vibrations for Aω

/

U = 12 and Gz = 25; maximum enhancement
occurs at ωR2

/

ν ∼= 43. Data are for oxygen mass transfer to water. [From W. B. Krantz,
R. R. Bilodeau, M. E. Voorhees, and R. J. Elgas, J. Membrane Sci., 124, 283–299 (1997).]

A plot of Shv / Sh as a function of ωR2 / ν for Aω / U = 12 and Gz = 25 is shown
in Figure 7.2-2. One observes the dramatic “tuned” response that was anticipated
in Section 5.10; a maximum enhancement of approximately 1.6 is observed. Our
◦(1) scaling analysis can provide considerable insight into the reason for this tuned
response and the maximum that occurs at ωR2

/

ν ∼= 43. Equation (7.2-30) indicates
that the momentum boundary-layer thickness decreases with an increase in the
oscillation frequency, whereas equation (7.2-32) indicates that the solutal boundary-
layer thickness increases with an increase in the oscillation frequency; for this
reason, the performance enhancement displays a maximum with respect to the
oscillation frequency. The fact that this maximum occurs at ωR2

/

ν ∼= 43 can be
explained by considering the ratio of the momentum to solutal boundary-layer
thickness for the conditions in Figure 7.2-2:

δm

δs

=
√

2πν/ω
√

ωR2DABL/16πνU

= 8
ν

ωR2

√
πGz = 8

43

√
25π = 1.65 (7.2-50)

That is, the maximum enhancement in the performance occurs at a frequency at
which the momentum and solutal boundary layers have the same thickness to within
the ◦(1) accuracy of scaling analysis.

This example indicates that an ◦(1) scaling analysis provides considerably more
information on a process than does simple dimensional analysis through either the
scaling approach or the Pi theorem. Indeed, the ◦(1) scaling analysis indicated that
the Sherwood number ratio could be correlated in terms of the same four dimen-
sionless groups that we obtained from the simple scaling analysis approach to
dimensional analysis that was carried out in Section 5.10. Moreover, ◦(1) scaling
analysis provided valuable insight into why the performance enhancement displays
a maximum with respect to the applied frequency. It also provided an explana-
tion for why this maximum occurred at ωR2

/

ν ∼= 43 for the process conditions
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in Figure 7.2-2. Indeed, equation (7.2-50) can serve as a guide to the design of
a membrane–lung oxygenator; that is, it indicates how the frequency required to
achieve optimum performance enhancement changes as a function of the Graetz
number, kinematic viscosity, and radius of the hollow-fiber membrane.

7.3 PULSED SINGLE-BED PRESSURE-SWING ADSORPTION
FOR PRODUCTION OF OXYGEN-ENRICHED AIR

Pressure swing adsorption (PSA) is a separations technology that is used to selec-
tively adsorb one or more components from a gas mixture in order to produce a
product stream enriched in the less strongly adsorbed component(s). In particular,
it is used to produce oxygen for both industrial as well as medical applications;
indeed, at the dawn of the twentieth-first century, 20% of the world’s oxygen pro-
duction was achieved by PSA. To facilitate selective adsorption and regeneration,
respectively, conventional PSA uses two parallel packed adsorbent beds that are
alternately subjected to pressurization and depressurization. However, conventional
PSA has several disadvantages: low separation efficiency per unit mass of adsor-
bent material; large capital investment for replacement of adsorbent material due
to attrition; and complexity of the apparatus. Moreover, since PSA is used for
critical life support for patients suffering from chronic obstructive pulmonary dis-
ease (COPD) and other respiratory problems, there is considerable motivation to
develop a compact portable oxygenator that would greatly improve their quality
of life. Hence, research in PSA has been directed toward improving the separation
efficiency by decreasing the size of the adsorbent particles, reducing the complexity
of the apparatus by using a single adsorption bed, and minimizing the impact of
the pressure drop by making the adsorption bed shorter. In 1981 the pulsed packed
single-bed PSA process was developed, which employed much smaller adsorbent
particles (20 to 120 mesh).7 A more recently proposed innovation is the use of
a thin monolithic single-bed adsorbent composed of integrally bound micrometer-
scale crystals which avoids particle attrition problems and provides exceptionally
large surface area and high gas throughputs.8 This novel technology offers the
promise of very efficient oxygen production through use of a device that is sig-
nificantly smaller than current oxygenators. A major problem in developing any
new process is to determine appropriate design parameters to carry out bench- or
pilot-scale testing. Scaling analysis was used in developing the pulsed single-bed
PSA process for a thin monolithic adsorbent in order to determine how to model it
as well as to specify principal design parameters such as the applied pressure and
pressurization time. In this section we illustrate how scaling analysis was applied
to design this process and to show how it differs from a pulsed packed single-bed
PSA that employs particulate adsorbents. We will also use the scaling approach
to dimensional analysis outlined in Chapter 2 to obtain the optimal dimensionless
groups for correlating experimental or numerical data for the PSA process.

7R. L. Jones and G. E. Keller, Sep. Process Technol., 2, 17 (1981).
8E. M. Kopaygorodsky, V. V. Guliants, and W. B. Krantz, A.I.Ch.E. Jl., 50(5), 953 (2004).
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Figure 7.3-1 Pulsed single-bed pressure swing adsorption (PSA) process, which employs
cyclic pressurization and depressurization steps to selectively adsorb one or more components
from a gas mixture to produce a product stream enriched in the less strongly adsorbed
component(s).

A schematic of the pulsed single-bed PSA process is shown in Figure 7.3-1.
This process involves using either a packed bed or a monolith adsorbent with
a PSA cycle consisting of pressurization and depressurization steps. During the
pressurization step for air separation, a high pressure is applied to the surface of
the adsorbent bed for a short time. Since the product side of the bed is maintained
at atmospheric pressure, a pressure gradient is created to cause airflow through
the adsorbent bed. Nitrogen is preferentially retained in the adsorbent bed, and
oxygen-enriched gas is collected as a product. During the depressurization step,
the product flow outlet at the end of the bed is closed and the adsorbent bed is
exposed to a lower pressure (typically, atmospheric) at the feed end for a short
time in order to regenerate the adsorbent.

In writing the describing equations for the PSA process, we assume a binary gas
mixture consisting of components A and B, corresponding to nitrogen and oxy-
gen, respectively; constant physical properties; and plug flow through the porous
adsorbent bed. Since the pressurization and depressurization steps involve differ-
ent boundary and initial conditions, they are scaled differently. We focus on the
pressurization step here because it determines whether the desired enrichment of
the product gas can be achieved.9

Species balances for each component over a differential volume of the adsorbent
bed are given in terms of the molar concentrations cA and cB by

ε
∂cA

∂t
= −ε

∂NA

∂z
− (1 − ε)q̇A where NA = −DL

∂cA

∂z
+ cAûz

∼= −DL

∂cA

∂z
+ cAuz

(7.3-1)

9Scaling the depressurization step is considered in Practice Problem 7.P.9.
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ε
∂cB

∂t
= −ε

∂NB

∂z
− (1 − ε)q̇B where NB = −DL

∂cB

∂z
+ cBûz

∼= −DL

∂cB

∂z
+ cBuz

(7.3-2)

where ε is the porosity of the packed adsorbent column, DL is the effective axial
dispersion coefficient,10 ûz and uz are the molar- and mass-average velocities, and
U is the superficial velocity through the adsorbent bed described by Darcy’s law:

εuz = U = −kp

µ

∂P

∂z
(7.3-3)

where kp is the permeability of the porous adsorbent bed and µ is the shear viscosity
of the gas. The molar adsorption rate of component i per unit volume of adsorbent,
q̇i , is given by

q̇i = ki(q
e
i − qi) (7.3-4)

where ki is the mass-transfer coefficient for component i, qi the adsorbent concen-
tration (moles per unit volume of adsorbent) of component i, and qe

i the equilibrium
adsorbent concentration of component i given by

qe
i = q∞

i lipi

1 + lApA + lBpB

(7.3-5)

where q∞
i is the equilibrium adsorbent concentration of component i as pi → ∞

and li is the equilibrium adsorption distribution coefficient between the gas and
solid phases for component i. Note that the microscale–macroscale methodol-
ogy introduced in Chapter 6 to model mass transfer with chemical reaction is
being employed here; that is, the discrete nature of the adsorbent particles on the
microscale is incorporated into a homogeneous sink term on the macroscale. The
convective mass transfer with adsorption is described by a mass-transfer coefficient
analogous to the manner in which the microscale was handled for mass transfer
with chemical reaction. The appropriate form of the overall continuity equation is
obtained by adding equations (7.3-1) and (7.3-2) to obtain

ε
∂c

∂t
= −∂(Uc)

∂z
− (1 − ε)(q̇A + q̇B) (7.3-6)

where c is the molar density given by c = cA + cB . Note that in arriving at
equation (7.3-6) we have used the definition of the molar-average velocity, ûz =
(NA + NB)/c, and have made the assumption that u = εuz

∼= εûz, which is rea-
sonable for gases such as air for which the two components have nearly the same
molecular weight.

The operating pressure is usually sufficiently low to permit assuming that the
molar density and concentration can be described by the ideal gas law, given by

c = P

RT
, ci = pi

RT
(7.3-7)

10The effective dispersion coefficient incorporates the effects of both molecular diffusion within the
void volume and the dispersion due to the hydrodynamics of the flow through the porous media.
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where P is the total pressure, pi the partial pressure of component i, and R the
gas constant. Hence, equations (7.3-1), (7.3-2), and (7.3-6), only two of which are
independent, can be expressed in terms of the partial and total pressures as follows:

ε
∂pA

∂t
+ ∂(UpA)

∂z
= εDL

∂2pA

∂z2
− (1 − ε)RT q̇A (7.3-8)

ε
∂pB

∂t
+ ∂(UpB)

∂z
= εDL

∂2pB

∂z2
− (1 − ε)RT q̇B (7.3-9)

ε
∂P

∂t
+ ∂(UP )

∂z
− = (1 − ε)RT (q̇A + q̇B) (7.3-10)

Two spatial boundary conditions are required for both P and pA. During pres-
surization one can operate PSA by controlling the upstream and downstream total
pressures, P0 and PL, respectively, or by controlling the flow rate U and one of the
pressures. We assume the former mode of operation. This implies that during pres-
surization the partial pressures of the components in the feed, pA0 and pB0, will
be known at the entrance to the adsorption column. However, if axial dispersion
cannot be neglected, there necessarily has to be a jump in the species concentration
at z = 0. Jump species balances for components A and B at z = 0 are given by

NA|z=0− = εNA|z=0+ ⇒ pAU |z=0− =
(

− εDL

∂pA

∂z
+ pAU

)∣
∣
∣
∣
z=0+

(7.3-11)

NB |z=0− = εNB |z=0+ ⇒ pBU |z=0− =
(

− εDL

∂pB

∂z
+ pBU

)∣
∣
∣
∣
z=0+

(7.3-12)

where the notation 0− and 0+ denotes evaluation on the upstream and downstream
sides, respectively, of the plane at z = 0. The addition of equations (7.3-11) and
(7.3-12) gives the appropriate upstream boundary condition for the total pressure:

(NA + NB)|z=0− = ε(NA + NB)|z=0+ ⇒ UP |z=0− = UP |z=0+ ⇒ P = P0

(7.3-13)

Adding up similar jump balances on components A and B at the downstream end of
the columnyields the following downstreamboundary condition for the total pressure:

ε(NA + NB)|z=L− = (NA + NB)|z=L+ ⇒ UP |z=L− = UP |z=L+ ⇒ P = PL

(7.3-14)

where the notation L− and L+ denotes evaluation on the upstream and downstream
sides, respectively, of the plane at z = L. Owing to the presence of the axial dis-
persion term in equation (7.3-8) or (7.3-9), a second boundary condition is required
for the partial pressure or its derivative. Frequently, it is assumed without justifi-
cation that the spatial derivative of the partial pressure is zero at the downstream
end of the adsorption bed. However, this implies that there is no further adsorption
at the end of the bed. This is not possible if there is an overall pressure drop
since the amount of species adsorbed will change in response to the total pres-
sure even if local adsorption equilibrium is achieved. Hence, we merely indicate
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this downstream boundary condition formally via an unspecified function of time.
However, we use the results of our scaling analysis later in this development to
suggest a downstream boundary condition that allows for a change in adsorption
at the downstream end of the bed. Hence, for the pressurization step the boundary
conditions for the describing equations are given by

U(yA0P0 − pA) = −εDL

∂pA

∂z
at z = 0, 0 ≤ t ≤ tp (7.3-15)

P = P0 at z = 0 0 ≤ t ≤ tp (7.3-16)

pA = f (t) at z = L, 0 ≤ t ≤ tp (7.3-17)

P = PL at z = L, 0 ≤ t ≤ tp (7.3-18)

where yA0 is the mole fraction of component A in the feed. The initial conditions
are assumed to be the following:

P = PL at t = 0, 0 ≤ z ≤ L (7.3-19)

pA = yA0PL at t = 0, 0 ≤ z ≤ L (7.3-20)

These conditions imply that the depressurization step is done using the same gas
as the feed at a pressure equal to that maintained at the end of the bed dur-
ing the pressurization step. These are reasonable initial conditions for the use of
PSA to produce an oxygen-enriched product from air for oxygenator applications.
Equations (7.3-3) through (7.3-5), (7.3-8), and (7.3-10), along with the boundary
and initial conditions given by equations (7.3-15) through (7.3-20), constitute the
describing equations for the pressurization step in pulsed PSA (step 1).

Define the following dimensionless variables in terms of unspecified scale and
reference factors (steps 2, 3, and 4):

P ∗ ≡ P − Pr

Ps

; p∗
A ≡ pA − pAr

pAs

; U∗ ≡ U

Us

; q∗
A ≡ qA

qAs

;

q∗
B ≡ qB

qBs

; q̇∗
A ≡ q̇A

q̇As

; q̇∗
B ≡ q̇B

q̇Bs

; t∗ ≡ t

ts
; z∗ ≡ z

zs

(7.3-21)

We have introduced reference factors for the dimensionless total pressure and partial
pressure since they are not naturally referenced to zero. Substitute these dimension-
less variables into the describing equations and divide through by the dimensional
coefficient of one term in each equation to obtain the following dimensionless
describing equations (steps 5 and 6):

εzs

Usts

∂P ∗

∂t∗
+ ∂

[

U∗(P ∗ + Pr/Ps)
]

∂z∗ = − (1 − ε)RT q̇Aszs

UsPs

(

q̇∗
A + q̇Bs

q̇As

q̇∗
B

)

(7.3-22)
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εzs

Usts

∂p∗
A

∂t∗
+ ∂[U∗(p∗

A + pAr/pAs)]

∂z∗ = εDL

Uszs

∂2p∗
A

∂z∗2
− (1 − ε)RT q̇Aszs

UspAs

q̇∗
A

(7.3-23)

U∗ = − kpPs

µUszs

∂P ∗

∂z∗ (7.3-24)

q̇∗
A = kAqAs

q̇As
(qe∗

A − q∗
A) (7.3-25)

q̇∗
B = kBqBs

q̇Bs
(qe∗

B − q∗
B) (7.3-26)

qe∗
A = q∞

A lApAs

qAs

× p∗
A + pAr/pAs

1 + lApAs

(

p∗
A + pAr/pAs

) + lBpAs

[

(Ps/pAs)P
∗ − (

p∗
A + pAr/pAs

)]

(7.3-27)

qe∗
B = q∞

B lBpAs

qBs

× (Ps/pAs)P
∗ − (

p∗
A + (pAr/pAs

)

1 + lApAs

(

p∗
A + pAr/pAs

) + lBpAs

[

(Ps/pAs)P
∗ − p∗

A − pAr/pAs

]

(7.3-28)

P ∗ = P0 − Pr

Ps

at z∗ = 0, 0 ≤ t∗ ≤ tp

ts
(7.3-29)

P ∗ = PL − Pr

Ps

at z∗ = L

zs

, 0 ≤ t∗ ≤ tp

ts
(7.3-30)

U∗
(

yA0P0 − pAr

pAs

− p∗
A

)

= − εDL

Uszs

∂p∗
A

∂z∗ at z∗ = 0, 0 ≤ t∗ ≤ tp

ts
(7.3-31)

p∗
A = f (t∗) at z∗ = L

zs

, 0 ≤ t∗ ≤ tp

ts
(7.3-32)

P ∗ = PL − Pr

Ps

at t∗ = 0, 0 ≤ z∗ ≤ L

zs

(7.3-33)

p∗
A = 1

pAs

(yA0PL − pAr) at t∗ = 0, 0 ≤ z∗ ≤ L

zs

(7.3-34)

We now set appropriate dimensionless groups equal to 1 or zero to ensure that
the dimensionless dependent and independent variables are bounded of ◦(1) and
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thereby to determine the scale and reference factors (step 7). The scale and refer-
ence pressure come from setting the appropriate dimensionless groups in equations
(7.3-29) and (7.3-30) equal to 1 and zero, respectively, to obtain

Pr − PL

Ps

= 0 ⇒ Pr = PL; P0 − Pr

Ps

= 1 ⇒ Ps = P0 − PL ≡ �P (7.3-35)

The absence of an explicit downstream boundary condition for pA requires spe-
cial consideration in determining the reference partial pressure pAr . Clearly, the
minimum value of pA occurs at the downstream end of the bed and is such that
0 ≤ pA|z=L ≤ yA0PL; that is, the minimum value of the partial pressure of the
preferentially adsorbed component is bounded between the limits of total and neg-
ligible adsorption. Since we seek to bound p∗

A to be ◦(1), let us choose the smallest
possible value; that is, pAr = 0. The partial pressure scale is then determined by
setting the appropriate dimensionless group in equation (7.3-31) equal to 1. Hence,
we obtain

pAr = 0; pAs = yA0P0 (7.3-36)

The scale factor for the time is obtained by setting the dimensionless group appear-
ing in equations (7.3-29) through (7.3-32) equal to 1:

tp

ts
= 1 ⇒ ts = tp (7.3-37)

The scale factor for the spatial coordinate can be obtained by setting the dimension-
less group appearing in equations (7.3-30) and (7.3-32) through (7.3-34) equal to 1:

L

zs

= 1 ⇒ zs = L (7.3-38)

The scale for the velocity is obtained by setting the dimensionless group in equation
(7.3-24) equal to 1:

kpPs

µUszs

= kp�P

µUsL
= 1 ⇒ Us = kp�P

µL
(7.3-39)

The scales for the equilibrium adsorption concentrations are obtained by setting
the dimensionless groups for the leading-order behavior in equations (7.3-27) and
(7.3-28) equal to 1:

q∞
A lApAs

qAs

= 1 ⇒ qAs = q∞
A lAyA0P0

q∞
B lBpAs

qBs

= 1 ⇒ qBs = q∞
B lByA0P0

(7.3-40)
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The scales for the adsorption rates are obtained by setting the dimensionless groups
in equations (7.3-25) and (7.3-26) equal to 1:

kAqAs

q̇As
= 1 ⇒ q̇As = kAq∞

A lAyA0P0

kBqBs

q̇Bs
= 1 ⇒ q̇Bs = kBq∞

B lByA0P0

(7.3-41)

This scaling identifies four relevant time scales for the pulsed single-bed PSA
process, which are defined as

tc = L

Us

= µL2

kp�P
= characteristic contact time (7.3-42)

tp = pressurization time = total time available for adsorption (7.3-43)

td ≡ L2

DL

∼ characteristic axial dispersion time (7.3-44)

tad = 1

(1 − ε)RT kiq
∞
i li

= characteristic adsorption time for species i (7.3-45)

Substituting the scale and reference factors into equations (7.3-22) through
(7.3-34) results in the following dimensionless describing equations:

	1
∂P ∗

∂t∗
+ ∂[U∗(P ∗ + 	6)

∂z∗ = −	3	4[(qe∗
A − q∗

A) + 	5(q
e∗
B − q∗

B)] (7.3-46)

	1
∂p∗

A

∂t∗
+ ∂(U∗p∗

A)

∂z∗ = 	2
∂2p∗

A

∂z∗2
− 	3(q

e∗
A − q∗

A) (7.3-47)

U∗ = −∂P ∗

∂z∗ (7.3-48)

qe∗
A = p∗

A

1 + 	4	7p
∗
A + 	8(P ∗ − 	4p

∗
A)

(7.3-49)

qe∗
B = (1/	4)P

∗ − p∗
A

1 + 	4	7p
∗
A + 	8(P ∗ − 	4p

∗
A)

(7.3-50)

P ∗ = 1 at z∗ = 0, 0 ≤ t∗ ≤ 1 (7.3-51)

P ∗ = 0 at z∗ = 1, 0 ≤ t∗ ≤ 1 (7.3-52)

U∗(1 − p∗
A) = −	2

∂p∗
A

∂z∗ at z∗ = 0, 0 ≤ t∗ ≤ 1 (7.3-53)

p∗
A = f (t∗) at z∗ = 1, 0 ≤ t∗ ≤ 1 (7.3-54)
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P ∗ = 0 at t∗ = 0, 0 ≤ z∗ ≤ 1 (7.3-55)

p∗
A = 	6

1 + 	6
at t∗ = 0, 0 ≤ z∗ ≤ 1 (7.3-56)

where we have substituted equations (7.3-25) and (7.3-26) for the adsorption rates
into the overall molar and species-balances given by equations (7.3-22) and
(7.3-23). The dimensionless groups introduced into equations (7.3-46) through (7.3-
56) are defined as

	1 ≡ εµL2

kp �P tp
= ε

µL2/kp �P

tp
= ε

tc

tp
∝ contact time

pressurization time
(7.3-57)

	2 ≡ εµDL

kp �P
= ε

µL2/kp �P

L2/DL

= ε
tc

td
∝ contact time

axial dispersion time
(7.3-58)

	3 ≡ (1 − ε)RT kAq∞
A lAµL2

kp �P
= µL2/kp �P

1/(1 − ε)RT kAq∞
A lA

= tc

tad

∝ contact time

adsorption time
(7.3-59)

	4 ≡ yA0P0

�P
= dimensionless partial pressure in feed (7.3-60)

	5 ≡ kBq∞
B lB

kAq∞
A lA

= 1/(1 − ε)RT kAq∞
A lA

1/(1 − ε)RT kBq∞
B lB

∼ adsorption time for speciesA

adsorption time for speciesB
(7.3-61)

	6 ≡ PL

�P
∼ dimensionless reference pressure (7.3-62)

	7 ≡ lA �P ∼ nonlinear adsorption effects forA (7.3-63)

	8 ≡ lB �P ∼ nonlinear adsorption effects forB (7.3-64)

Now let us use our scaling analysis to design the pulsed PSA process for both the
packed and monolithic single-bed configurations (step 8). Table 7.3-1 summarizes
typical design parameters for the use of pulsed single-bed PSA employing both
a packed adsorption column and a monolithic adsorbent (zeolite 5 Å) to provide
an oxygen-enriched product from an air feed stream. The monolithic adsorbent
addresses the problems associated with using a packed adsorption column: namely,
the ablation of the particles and low product flow rates associated with a relatively
long adsorbent bed. Whereas the adsorbents used in pulsed packed bed PSA have
a radius (RP ) on the order of hundreds of micrometers, the microcrystals consti-
tuting the adsorbent monolith have a characteristic pore size on the order of 1 µm.
Hence, the mass-transfer coefficient is much larger, whereas the permeability is
much smaller for the monolithic adsorbent. Note that the pressurization time is
unspecified for both the packed and monolithic bed processes in Table 7.3-1 since
this is a design parameter that we seek to determine from the scaling analysis.
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TABLE 7.3-1 System Parameters for the Pulsed Single-Bed PSA Process

Parameter Packed Adsorption Column Monolithic Adsorbent

Rp (m) 5 × 10−4 1 × 10−6

kA, kB (s−1) 6.0 × 10−3 1.50 × 103

kp (m2) 6.76 × 10−10 2.71 × 10−15

ε 0.35 0.35
DL (m2/ s) 1.0 × 10−5 1.0 × 10−6

q∞
A (mol

/

m2) 2.8 × 103 2.8 × 103

q∞
B (mol

/

m2) 2.2 × 103 2.2 × 103

lA (Pa−1) 5.0 × 10−7 5.0 × 10−7

lB (Pa−1) 1.8 × 10−7 1.8 × 10−7

µ (Pa · s) 1.8 × 10−5 1.8 × 10−5

P0 (Pa) 1.3 × 105 1.5 × 105

PL (Pa) 1.0 × 105 1.0 × 105

T (K) 293 293
L (m) 1.0 2.0 × 10−3

tp (s) — —

Source: E. M. Kopaygorodsky, V. V. Guliants, and W. B. Krantz, A.I.Ch.E. J., 50(5) 953 (2004).

TABLE 7.3-2 Dimensionless Groups Characterizing Pulsed Packed and Monolithic
Single-Bed PSA for the Process Parameters Given in Table 7.3-1 for Producing an
Oxygen-Enriched Product from Air

Dimensionless
Group Packed Bed Monolithic Bed

	1 0.311
/

tp 0.186
/

tp
	2 3.11 × 10−6 0.0465
	3 0.0118 1768
	4 2.63 1.58
	5 0.283 0.283
	6 3.33 2.00
	7 0.015 0.025
	8 0.00540 0.00900

If the pressurization time is too short, breakthrough of the adsorption front will
not have occurred, and no enrichment will be achieved. On the other hand, if the
pressurization time is too long, the bed will become completely saturated at the
prevailing local pressure and no enrichment will be achieved in the product gas.
The optimal pressurization time achieves the maximum possible enrichment of the
product gas. The process parameters in Table 7.3-1 lead to the values of the dimen-
sionless groups that characterize the pulsed packed and monolithic single-bed PSA
processes summarized in Table 7.3-2.

To have a workable oxygenator, it is essential that the dimensionless group
	5 < 1; that is, the adsorbent must preferentially adsorb nitrogen to produce an
oxygen-enriched product. We see from Table 7.3-2 that 	5 = 0.283, which indi-
cates that this adsorbent is satisfactory. The value of 	2 � 1 for pulsed packed
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single-bed PSA, which implies that axial dispersion can be ignored. Although 	2

is much larger for pulsed monolithic single-bed PSA, axial dispersion can still be
neglected in modeling this process without incurring significant error. The small
values of 	7 and 	8 imply that the adsorption isotherms for both nitrogen and
oxygen can be linearized in the partial pressure without incurring significant error.

A dramatic difference between pulsed packed and monolithic single-bed PSA
is apparent from the values of 	3. Whereas 	3 � 1 for pulsed packed single-bed
PSA, 	3 � 1 for pulsed monolithic single-bed PSA. Since a proper scaling implies
that all the terms in the describing equations be bounded of ◦(1), the product of
	3 with qe∗

A − q∗
A must be of ◦(1) in equation (7.3-47); this implies that q∗

A
∼= qe∗

A

for monolithic bed PSA. A similar argument for equation (7.3-46) implies that
q∗

B
∼= qe∗

B . Hence, the adsorption time is so fast in comparison to the contact time
(i.e., tad � tc) that we conclude that local thermodynamic adsorption equilibrium
prevails for pulsed monolithic single-bed PSA. In contrast, the contact time is
considerably faster than the adsorption time for pulsed packed single-bed PSA (i.e.,
tc � tad ), thus implying that adsorption in this process is mass-transfer controlled.
This marked difference between the adsorption behavior for pulsed packed and
monolithic single-bed PSA arises because of the very small particle size associated
with the latter. The small particle size implies a much smaller permeability and
therefore a much slower contact time relative to the adsorption time; moreover, in
contrast to packed bed PSA, the interparticle mass-transfer resistance is negligible
for the monolithic bed process.

The marked difference between the characteristic adsorption time and the contact
time for packed relative to monolithic bed PSA implies that a different design
strategy must be used for each process. Since the adsorption time is much longer
than the contact time for pulsed packed single-bed PSA, the pressurization time
must be approximately equal to the adsorption time. Scaling analysis then suggests
the following criterion for determining the pressurization time for conventional
pulsed packed single-bed PSA:

tp = tad = 1

(1 − ε)RT kAq∞
A lA

(7.3-65)

For the design parameters given in Table 7.3-1, this criterion suggests a
pressurization time of 75.2 seconds, which agrees well with typical values used
in practice for packed pulsed single-bed PSA. On the other hand, since the pulsed
monolithic single-bed PSA process occurs at local adsorption equilibrium, the pres-
surization time must be approximately equal to the contact time required for the
adsorption “wave” to pass through the column. Scaling analysis then suggests the
following criterion for determining the pressurization time for monolithic single-bed
PSA:

tp = tc = µL2

kp �P
(7.3-66)

For the design parameters given in Table 7.3-1, this criterion suggests a pres-
surization time of 0.532 seconds. These estimates for the optimal pressurization
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times permit determining the values of 	1, the dimensionless group that pro-
vides a measure of the importance of the unsteady-state term in equations (7.3-46)
and (7.3-47). For packed single-bed PSA, 	1 = 0.00414, which implies that the
pressurization step can be considered to be a steady-state process. However, for
monolithic bed PSA, 	1 = 0.350, which implies that the pressurization step is
inherently unsteady-state.

The fact that 	3 � 1 for monolithic single-bed PSA implies that the length
scale for the pressure and partial pressure gradients for this process is not equal
to the length of the adsorption column as was assumed in our scaling analysis.
Indeed, this large value of 	3 suggests that monolithic bed PSA involves a region
of influence or boundary layer across which the pressure drop occurs. Hence, the
describing equations must be rescaled for conditions such that the appropriate length
scale for the pressure gradients is the boundary-layer thickness δm. The thickness
of the region of influence or boundary layer wherein the total and partial pressures
undergo their characteristic change is obtained by balancing the convection term
with the accumulation term in equation (7.3-22) or (7.3-23) since the monolithic
bed PSA process is inherently unsteady state; this results in the following equation
for the boundary-layer thickness:

zs ≡ δm =
√

kp �P to

εµ
(7.3-67)

where to is the observation time. For the design parameters given in Table 7.3-1,
the boundary-layer thickness is given by

δm = 4.64 × 10−3√to (7.3-68)

Clearly, 0 ≤ δm ≤ L; that is, once the boundary layer has penetrated to the end of
the monolithic bed, breakthrough of the adsorption wave occurs. One implication
of this region of influence is that any numerical technique employed to solve the
describing equations must allow for adequate resolution of the steep total and partial
pressure gradients at very short contact times.

Whereas the process parameters in Table 7.3-1 imply that neglecting axial dis-
persion is a very good approximation for pulsed packed single-bed PSA, they
indicate that it could be important for pulsed monolithic single-bed PSA at least
under some operating conditions. When axial dispersion cannot be neglected, it
is necessary to apply a downstream boundary condition on the partial pressure.
Due to the very rapid adsorption time scale for the monolithic bed PSA process,
the total and partial pressure profiles propagate as sharp fronts through the adsor-
bent bed. Hence, until breakthrough of the adsorption wave occurs, a downstream
boundary condition demanding that the spatial derivative of the partial pressure be
zero is appropriate. Note that the downstream boundary condition given in dimen-
sional form by equation (7.3-18) can be applied for the total pressure throughout
the entire adsorption step. However, once breakthrough has occured, demanding
that the derivative of the partial pressure be zero is not justified. This assumption
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can introduce some error even when equilibrium adsorption applies since the latter
changes with the local total pressure. That is, if there is a pressure drop owing to
the resistance offered by the adsorption bed to gas flow, the partial pressure must
change with axial distance as well. Our scaling analysis suggests an alternative
downstream boundary condition for the partial pressure that is far less restrictive
than demanding that the partial pressure gradient be zero. Since both 	1 and 	2 are
small, it is a reasonable assumption after breakthrough of the adsorption wave has
occurred to ignore the accumulation and axial dispersion terms in equation (7.3-47)
at the downstream end of the adsorption bed. Hence, a more realistic downstream
boundary condition for the partial pressure is given by

∂(U∗p∗
A)

∂z∗ = 	3(q
e∗
A − q∗

A) at z∗ = 1 (7.3-69)

This boundary condition states that the change in the net convection of the adsorbed
component is due to its adsorption. Although this condition neglects any accumu-
lation or axial dispersion of the adsorbed component at the downstream end of the
bed, it does allow for a nonzero partial pressure gradient.

The pulsed single-bed PSA process provides a good example to illustrate the use
of advanced dimensional analysis concepts for correlating experimental or numer-
ical data. The quantities of particular interest in characterizing PSA performance
are the product purity yBL and recovery ψr . The latter is equal to the ratio of the
volumetric flow of the product (oxygen) to that of the feed and is defined by the
following equation (step 1 in the scaling procedure for dimensional analysis):

ψr = yBLU |x=L

yB0U |x=0
= yBL(∂P /∂x)|x=L

yB0(∂P /∂x)|x=0
(7.3-70)

The values of yBL and ∂P / ∂x at the feed and product ends of the adsorption bed
would have to be obtained by solving equations (7.3-46) through (7.3-56). Steps
2 through 7 in the scaling approach to dimensional analysis have already been
done when we scaled the pulsed PSA process that resulted in the eight dimension-
less groups defined by equations (7.3-57) through (7.3-64). Moreover, Table 7.3-2
indicates that for both the packed and monolithic pulsed single-bed PSA pro-
cess, the groups 	2, 	7, and 	8 are sufficiently small so that axial dispersion
and nonlinear adsorption effects can be ignored without incurring significant error;
that is, these dimensionless groups can be ignored in developing our dimensional
analysis correlations for the product purity and recovery. However, the remaining
five dimensionless groups are not optimal for correlating numerical or experimental
data for yBL and ψr . For an air feed delivering an enriched oxygen product at a
fixed low pressure PL (usually atmospheric) and a specified adsorbent, bed length,
and temperature, the performance of pulsed single-bed PSA depends only on the
pressurization time tp and the applied pressure P0. Ideally, one would like to iso-
late these two quantities to simplify correlating either experimental or numerical
data. This can be done by first applying step 10 in the procedure for dimensional
analysis that is indicated formally by equation (2.4-4); that is, since P0 and PL
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appear independently in the dimensionless groups 	4 and 	6, respectively, the
quantity �P can be replaced by PL in the dimensionless groups 	1 and 	3. This
same principle permits replacing �P by P0 in the dimensionless groups 	4 and
	6. These operations then result in the following new dimensionless groups that
replace 	1, 	3, 	4, and 	6:

	9 ≡ kpPLtp

εµL2
(7.3-71)

	10 ≡ (1 − ε)RT kAq∞
A lAµL2

kpPL

(7.3-72)

	11 ≡ yA0 (7.3-73)

	12 ≡ P0

PL

(7.3-74)

where 	9 and 	12 have been defined so that they are directly proportional to tp
and P0, respectively. Note that we have isolated the pressurization time tp in 	9

and the applied pressure P0 in 	12. Hence, dimensional analysis correlations for
the product purity and recovery will be of the form

yBL = f1(	5, 	9, 	10, 	11, 	12)

ψr = f2(	5, 	9, 	10, 	11, 	12)
(7.3-75)

However, for an air feed delivering an enriched oxygen product at a fixed low
pressure PL and a specified adsorbent, bed length, and temperature, the dimen-
sionless groups 	5, 	10, and 	11 are constant. Hence, experimental or numerical
data for the product purity and recovery can be correlated in terms of just two
dimensionless groups:

yBL = f1(	9, 	12) = f1

(
kpPLtp

εµL2
,

P0

PL

)

ψr = f2(	9, 	12) = f2

(
kpPLtp

εµL2
,

P0

PL

) (7.3-76)

One would anticipate that both the product purity and recovery would be monoton-
ically increasing functions of 	12, due to the increased adsorption of nitrogen at
higher operating pressures. However, both the product purity and recovery display
a maximum as a function of 	9, due to the fact that longer pressurization times
imply progressively more loading of the adsorbent.

This design problem again illustrates the advantages of employing ◦(1) scaling
to determine the dimensionless groups required to correlate experimental or numer-
ical data. A naive application of the Pi theorem indicates that 11 dimensionless
groups would be required to correlate the product purity and product recovery; that
is, n = 16 (the 15 quantities in Table 7.3-1 and the gas constant R) and m = 5 (M ,
mol, L, t , and T ). Scaling analysis is able to reduce the number of dimensionless
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groups to five by systematically identifying combinations of the quantities (i.e.,
RT, kAq∞

A , and kBq∞
B ) and assessing reasonable simplifying assumptions (that the

groups 	2, 	7, and 	8 can be neglected); that is, the number of quantities is
reduced to 13 in terms of five units, and three of the dimensionless groups are
sufficiently small to permit neglecting them. The latter approximations involve
ignoring axial dispersion and nonlinear adsorption effects. However, by recogniz-
ing that several process parameters are fixed once the adsorbent is specified for
producing an oxygen-enriched product from air, it was possible to correlate either
the product purity or recovery in terms of just two variable dimensionless groups.

7.4 THERMALLY INDUCED PHASE-SEPARATION PROCESS
FOR POLYMERIC MEMBRANE FABRICATION

This application of scaling analysis focuses on the formation of microporous mem-
branes through a process known as thermally induced phase separation (TIPS).
The goal of scaling in this example is to explore the conditions for which the
complex describing equations can be simplified to permit a tractable numerical
solution. Before considering the describing equations, a brief background on the
TIPS process for polymeric membrane formation will be given.

A membrane is a semipermeable medium that permits the passage of some
molecules, colloidal aggregates, or particles relative to others. Most microporous
membranes are made from polymeric materials through a technique known as phase
inversion because it involves converting a single-phase solution of polymer in a
solvent, referred to as the casting solution, into a two-phase dispersion in which
the polymer ultimately becomes a continuous microporous solid-phase matrix. The
TIPS process involves forming a single-phase solution of the polymer in a solvent,
referred to as the diluent, at an elevated temperature. However, the diluent becomes
a nonsolvent below some lower temperature. Hence, phase separation in the TIPS
process occurs by casting a thin film of the hot single-phase polymer solution onto
a cold surface. The resulting front that separates the phase-separated region from
the single-phase solution then propagates in time away from the cold boundary.
For solutions of amorphous (i.e., having no crystalline regions) or nonconcentrated
semicrystalline (i.e., having both amorphous and crystalline regions) polymers,
TIPS involves the formation of two liquid phases. However, for a more concentrated
semicrystalline polymer solution, which is the focus of this example, TIPS involves
the formation of solid polymer and a polymer-lean liquid phase. This solid polymer
phase will evolve through a nucleation and growth process that can be described by
Avrami theory.11 The dispersed-phase polymer particles eventually fuse together
to create a continuous polymer network that provides the structural matrix of the
microporous membrane. The dispersed polymer-lean phase then is extracted with
an appropriate solvent to create a microporous network. Subsequent post-casting
treatment can involve annealing the membrane at a temperature slightly above that

11M. Avrami, J. Chem. Phys., 7, 1103–1112 (1939); 8, 212–224 (1940); 9, 177–184 (1941).
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of the glass-transition point of the polymer (i.e., the temperature above which
significant segmental and polymer chain motion becomes possible) to decrease the
pore size and increase the selectively of the membrane. In this example, which is
based on the work of Li et al.,12 we are concerned with developing a model to
describe the evolution of the microstructure during the phase-separation process.
Prior to the work described here, there was no model available to describe structural
evolution during the solid–liquid TIPS process.

The physical considerations that need to be incorporated into a model for
structural evolution during the TIPS process are summarized here. Commercial
TIPS casting is usually done continuously; hence, it is reasonable to assume one-
dimensional transport. The TIPS process will involve heat transfer from the hot
polymer casting solution to the cold boundary, and possibly to the ambient gas
phase as well. This cooling will eventually cause phase separation of pure polymer
dispersed in a continuous polymer-lean phase. This phase separation in turn can
cause diffusive mass transfer due to the concentration gradients that are created by
the nucleation and growth of the solid phase. This constitutes a moving boundary
problem since the front separating the single- and two-phase regions will propagate
away from the cold boundary. This moving boundary is defined by the nonequilib-
rium thermodynamic condition, which relates the temperature at which nucleation
of the polymer phase begins to the instantaneous cooling rate; this condition can be
determined experimentally via differential scanning calorimetry. The temperature
for the inception of nucleation increases in time since the cooling rate decreases as
the phase-separation front moves away from the cold surface. One complication is
that the physical and transport properties of the polymer-lean and solid polymer in
the phase-separated region can be different. A model must somehow account for the
presence of the two phases in this phase-separated region. Note also that the volume
of the dispersed phase will increase in time at any plane within the phase-separated
region, owing to the progressive precipitation of the polymer. In the following, an
appropriate set of describing equations is developed that accounts for the principal
features of the TIPS casting process. This problem involves a microscale element,
(i.e., a dispersed polymer phase particle) and a macroscale element, which is a
differential thickness of the casting solution.

A schematic of TIPS casting is shown in Figure 7.4-1. The origin of the coor-
dinate system is located at the cold boundary. Allowance is made for possible heat
loss to the ambient gas phase at the upper boundary of the casting solution. The
moving boundary between the single- and two-phase regions is located at z = L(t),
where z is the spatial coordinate, L is the location of the moving boundary, and
t is time. Representative temperature and diluent-concentration profiles are shown
in the figure. Note that both the temperature and diluent-concentration profiles as
well as their slopes are continuous at the moving boundary, owing to the fact that
no phase separation has occurred at this plane. That is, this boundary is defined
to be the plane at which nucleation becomes possible at the instantaneous cooling
rate. However, no nuclei have formed at this boundary, because there has not been

12D. Li, A. R. Greenberg, W. B. Krantz, and R. L. Sani, J. Membrane Sci., 279, 50 (2006).
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z = L(t)
T (z, t) wA (z, t)

z = H

Single-phase region

Cold boundary at Tb

Heat loss to ambient gas phase at flux q = h(T − T∞)

Moving boundary
defined by TL = f (T )

z

Phase-separated region

.

Figure 7.4-1 Thermally induced phase-separation (TIPS) process showing representative
temperature and diluent-concentration profiles; phase separation in the initially hot polymer
solution propagates from the lower cold boundary; the moving boundary separating the
homogeneous and phase-separated regions is denoted by L(t); the solid volume fraction in
the phase-separated region increases in time, as shown schematically by the progressively
darker shading toward the cold boundary; heat loss at the interface between the casting
solution and ambient gas causes a temperature decrease near this upper boundary.

enough time for them to initiate and grow. Nuclei will form and grow at this fixed
plane when the moving boundary moves upward due to the progressive cooling.
Hence, this moving boundary problem is not a classical Stefan problem defined
by a latent heat effect associated with phase change at the moving boundary for
which the temperature gradients (and both the concentration and its gradient for a
multicomponent phase-change process) are discontinuous.

The appropriately simplified energy equation given by equation (F.1-2) in the
Appendices is given by (step 1)

ρCp

∂T

∂t
= ∂

∂z

(

k
∂T

∂z

)

− ρp �Hf

∂ψ

∂t
(7.4-1)

in which T is the temperature and ψ is the liquid volume fraction in the phase-
separated region. The properties ρ, Cp, and k are the mass density, heat capacity,
and thermal conductivity, respectively. The heat-generation term introduces �Hf ,
the latent heat of fusion of the polymer, and ρp , the density of the pure polymer. The
species-balance given by equation (G.1-5) in the Appendices needs to be modified
to account for the fact that diffusion can occur only in the continuous liquid phase.
For this reason the liquid volume fraction ψ appears in the species-balance, which
is given by

∂(ωAψ)

∂t
= ωA

∂ψ

∂t
+ ψ

∂ωA

∂t
= ∂

∂z

(

DABψ
∂ωA

∂z

)

(7.4-2)
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where ωA is the mass fraction of the diluent and DAB is the binary diffusion
coefficient. Equation (7.4-2) also applies to the single-phase region in which ψ = 1.

The physical properties of the polymer solution depend on the concentration.
The physical properties in the phase-separated region depend on the liquid volume
fraction and the concentration. It is reasonable to assume that the relevant solution
properties are weight-fraction-weighted sums of the pure component properties, and
that the relevant properties in the two-phase region are volume-fraction-weighted
sums of the properties of the solution and pure polymer phases. Hence, the follow-
ing equations are used for the relevant physical properties:

ρCp = (1 − ψ)(ρCp)P + ψ[ωA(ρCp)D + (1 − ωA)(ρCp)P ] (7.4-3)

k = (1 − ψ)kP + ψ[ωAkD + (1 − ωA)kP ] (7.4-4)

where the subscripts P and D denote polymer and diluent properties, respectively.
Equations (7.4-3) and (7.4-4) apply in both the single- and two-phase regions since
in the single-phase region the liquid volume fraction ψ = 1.

Equations (7.4-1) and (7.4-2) constitute two equations in three dependent vari-
ables, T , ω, and ψ . An additional equation to determine the liquid volume fraction
is provided by Avrami theory for the nucleation and growth process13:

ψ = ψ∞ + (1 − ψ∞) exp(−Ktng ) (7.4-5)

where ψ∞ is the equilibrium liquid volume fraction at the prevailing temperature,
K the crystallization rate constant, and n is referred to as the Avrami exponent.
Note that tg is the time for growth of the solid phase; tg is initialized at each
location of the plane that separates the phase-separated and single-phase regions;
hence, tg will become progressively shorter at planes farther removed from the
cold boundary, at which phase separation begins.

The initial and boundary conditions required to solve equations (7.4-1) and
(7.4-2) are given by

T = T0, ωA = ωA0, ψ = 1 at t = 0 (7.4-6)

T = Tb,
∂ωA

∂z
= 0 at z = 0 (7.4-7)

ψ = 1 for z ≥ L (7.4-8)

−k
∂T

∂z
= h(T − T∞),

∂ωA

∂z
= 0 at z = H (7.4-9)

Equation (7.4-7) specifies the temperature at the impermeable cold boundary.
Equation (7.4-8) specifies that there is no phase separation at or above the mov-
ing boundary at L. Equation (7.4-9) specifies that the heat conducted to the upper

13Avrami, J. Chem. Phys., 7, 1103–1112 (1939); 8, 212–224 (1940); 9, 177–184 (1941).
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interface is equal to the convective heat transfer into the ambient gas phase, whose
temperature is T∞, and that the diluent is nonvolatile.

An auxiliary equation is needed to locate the position of the moving boundary
that separates the single- and two-phase regions. This is obtained from measure-
ments of the nonequilibrium crystallization temperature Tc as a function of cooling
rate Ṫ ≡ ∂T / ∂t using differential scanning calorimetry; that is,

Tc = f

(
∂T

∂t

)

= f (Ṫ ) at z = L (7.4-10)

When Ṫ → 0, Tc → a constant determined only by the composition of the solution.
To use this model to predict the size of the dispersed-phase particles, it is nec-

essary to have a relationship between the number of nuclei generated as a function
of the degree of subcooling at the moving boundary between the phase-separated
and single-phase regions. However, this relationship is not needed to scale the
describing equations and hence is not given here. This relationship implies that the
number of nuclei decreases with a reduced degree of subcooling, which in turn is
proportional to the cooling rate. Hence, for a constant cold boundary temperature,
the dispersed phase particle size will progressively increase away from this bound-
ary owing to a gradual decrease in the cooling rate. This is the underlying reason
why the TIPS process can create an asymmetric membrane structure whereby the
permselective layer created near the cold boundary is supported by a more open
highly permeable substructure.

The describing equations given (7.4-1) through (7.4-10) are nontrivial to solve
numerically, for several reasons. First, this involves a set of coupled parabolic and
hyperbolic partial differential equations. These equations are stiff; that is, the time
derivatives can be quite large initially. Moreover, this is a moving boundary prob-
lem for which it is necessary to obtain the instantaneous cooling rate to determine
the extent of the phase-separated region. Another complication is that the origin of
the time scale for the time dependence of ψ is different for each plane in the phase-
separated region since nucleation begins progressively later as the moving boundary
progresses into the single-phase region. Hence, it is necessary to determine both
the rate of cooling Ṫ and the time at which equation (7.4-10) is satisfied for each
plane in the phase-separated region. Coping with these complexities certainly con-
tributed to the delay in developing a model for TIPS membrane formation via a
nucleation-and-growth process. Hence, we seek to scale these describing equations
to determine the conditions for which a tractable numerical solution can be obtained.

We begin by introducing appropriate reference and scale factors via the following
dimensionless variables (steps 2, 3, and 4):

T ∗ ≡ T − Tr

Ts

; z∗ ≡ z

zs

; t∗ ≡ t

ts
; ψ̇∗ ≡ 1

ψ̇s

∂ψ

∂t
; k∗ ≡ k

ks

;

(ρCp)∗ ≡ (ρCp)D

(ρCp)s
; D∗

AB ≡ DAB

Ds

(7.4-11)
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Note that we did not scale the diluent mass fraction ωA and the liquid volume
fraction ψ since they are dimensionless and bounded of ◦(1) for typical TIPS pro-
cessing conditions. However, we have introduced a separate scale for the time rate
of change of the liquid volume fraction since this derivative does not necessarily
scale with the reciprocal of the characteristic time. These variables result in the
following set of dimensionless describing equations (steps 5 and 6):

(ρCp)sz
2
s

ks ts
(ρCp)∗

∂T ∗

∂t∗
= ∂

∂z∗

(

k∗ ∂T ∗

∂z∗

)

− ρp �Hf ψ̇sz
2
s

ksTs

ψ̇∗ (7.4-12)

ψ̇s tsωAψ̇∗ + ψ
∂ωA

∂t∗
= Dsts

z2
s

∂

∂z∗

(

D∗
ABψ

∂ωA

∂z∗

)

(7.4-13)

(ρCp)∗ = (1 − ψ)
(ρCp)P

(ρCp)s
+ ψ

[

ωA

(ρCp)D

(ρCp)s

+(1 − ωA)
(ρCp)P

(ρCp)s

]

(7.4-14)

k∗ = (1 − ψ)
kP

ks

+ ψ

[

ωA

kD

ks

+ (1 − ωA)
kP

ks

]

(7.4-15)

T ∗ = T0 − Tr

Ts

, ωA = ωA0, ψ = 1 at t∗ = 0 (7.4-16)

T ∗ = Tb − Tr

Ts

,
∂ωA

∂z∗ = 0 at z∗ = 0 (7.4-17)

ψ = 1 for z∗ ≥ L

zs

(7.4-18)

−k∗ ∂T ∗

∂z∗ = hzs

ks

(

T ∗ + Tr − T∞
Ts

)

,
∂ωA

∂z∗ = 0 at z∗ = H

zs

(7.4-19)

T ∗
c = f (Ṫ ∗) at z∗ = L

zs

(7.4-20)

The temperature can be bounded of ◦(1) by setting the appropriate dimension-
less groups in equations (7.4-16) and (7.4-17) equal to 0 and 1, respectively (step
7). Since this is inherently an unsteady-state process, the temporal scale factor is the
observation time to, that is, the time from the instant of contact between the hot cast-
ing solution and the cold boundary. The dimensionless groups in equations (7.4-14)
and (7.4-15) suggest that ρCp and k scale with

(

ρCp

)

P
and kP , their corresponding

values for the pure polymer. The diffusion coefficient can be bounded of ◦(1) by
scaling it with D0, its value for the initial casting solution, which is its largest possi-
ble value. Since we are interested in the initial stage of TIPS process during which
the phase-separated region just penetrates the thickness of the casting solution, the
length scale is obtained by balancing the accumulation and conduction terms in
equation (7.4-12), which yields zs = √

αP to, where αP is the thermal diffusivity of
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the pure polymer. It is during this penetration time that the distribution of nuclei is
established across the casting solution, which ultimately determines the pore-size
distribution in the microporous membrane. The appropriate length scale for longer
time scales would be the thickness of the casting solution. The appropriate scale
factor for ψ̇s is obtained by differentiating equation (7.4-5) and then determining
the maximum magnitude of ψ̇ as follows:

ψ̇ ≡ ∂ψ

∂t
= −(1 − ψ∞)Kntn−1

a exp(−Ktna ) (7.4-21)

Equation (7.4-21) has an extremum (i.e., a minimum) at

ta =
(

n − 1

nK

)1/n

(7.4-22)

The corresponding maximum magnitude of ψ̇ (note that ψ̇ < 0) is given by

ψ̇s = (1 − ψ∞)
√

2K exp

(

−1

2

)

∼= (1 − ψ∞)
√

K (7.4-23)

These considerations for the reference and scale factors then result in the following
dimensionless variables:

T ∗ ≡ T − Tb

T0 − Tb

; z∗ ≡
(

kto

ρCp

)1/2

P

= √
αP to; t∗ ≡ t

to
;

ψ̇∗ ≡ 1

(1 − ψ∞)
√

K

∂ψ

∂t
; k∗ ≡ k

kP

; (ρCp)∗ ≡ (ρCp)

(ρCp)P
;

(7.4-24)

D∗
AB ≡ DAB

D0

where the subscripts P and 0 denote the properties for the pure polymer and initial
casting solution, respectively.

The dimensionless variables defined by equations (7.4-24) result in the following
scaled minimum parametric representation of the describing equations:

(ρCp)∗
∂T ∗

∂t∗
= ∂

∂z∗

(

k∗ ∂T ∗

∂z∗

)

− �Hf (1 − ψ∞)
√

Kto

(Cp)P (T0 − Tb)
ψ̇∗

(7.4-25)

(1 − ψ∞)
√

K toωAψ̇∗ + ψ
∂ωA

∂t∗
= 1

Le

∂

∂z∗

(

D∗
ABψ

∂ωA

∂z∗

)

(7.4-26)

(ρCp)∗ =(1 − ψ)+ψ

[

ωA

(ρCp)D

(ρCp)P
+(1 − ωA)

]

(7.4-27)
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k∗ = (1 − ψ) + ψ

[

ωA

kD

kP

+ (1 − ωA)

]

(7.4-28)

T ∗ =1, ωA =ωA0, ψ =1 at t∗ =0 (7.4-29)

T ∗ = 0,
∂ωA

∂z∗ = 0 at z∗ = 0 (7.4-30)

ψ = 1 for z∗ ≥ L√
αP to

(7.4-31)

−k∗ ∂T ∗

∂z∗ = h
√

αP to

kP

(

T ∗ + Tb − T∞
T0 − Tb

)

,
∂ωA

∂z∗ = 0

at z∗ = H√
αP to

(7.4-32)

T ∗
c = f (Ṫ ∗) at z∗ = L√

αP to
(7.4-33)

where Le ≡ αP / DP is the Lewis number, which is a measure of the ratio of the
heat conduction to species diffusion. Note that our time scaling is appropriate to
relatively short observation times such that 0 ≤ to ≤ H 2 / αP since it is on this scale
that the phase separation propagates from the cold boundary through the entire cast-
ing solution. This time scale dictates the distribution of nuclei across the entire cast-
ing solution, which determines the ultimate structure of the microporous membrane.

Now let us consider what approximations can be made to simplify the describing
equations (step 8). The heat-generation term in the energy equation can be ignored
if the following condition is satisfied:

�Hf (1 − ψ∞)
√

Kto

Cp(T0 − Tb)
� 1 (7.4-34)

The dimensionless group in equation (7.4-34) is a measure of the ratio of the
characteristic time for heat conduction to that for heat generation due to poly-
mer solidification. This condition implies that the solution to the energy equation
is no longer strongly coupled to the solution for the liquid volume fraction. The
species-conservation equation can be greatly simplified if the following condition is
satisfied:

1

Le
= D0

αP

� 1 (7.4-35)

This condition implies that the diffusion term can be neglected in the species-
conservation equation. The implication of this for the dimensional form of this
equation is that

∂(ωAψ)

∂t
∼= 0 ⇒ ωAψ = a constant = ωA∞ψ∞ (7.4-36)
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where ωA∞ and ψ∞ are the equilibrium diluent concentration and liquid volume
fraction as the time approaches infinity and the entire solution is at the cold bound-
ary temperature Tb. When the inequalities in equations (7.4-34) and (7.4-35) are
satisfied, the solution for the solid–liquid TIPS process is greatly simplified. The
solution to the unsteady-state one-dimensional energy equation permits obtaining
the instantaneous cooling rate Ṫ from which the temperature Tc and location L of
the moving boundary can be determined. Equation (7.4-5) then permits determin-
ing the liquid volume fraction ψ at any plane in the phase-separated region as a
function of the time available for nucleation and growth tg . Equation (7.4-36) then
permits determining the diluent mass fraction ωA at any plane as a function of
time. Knowing ψ(z, t) and ω(z, t) then permits determining the composition- and
liquid-volume-fraction-dependent properties via equations (7.4-3) and (7.4-4).

Two other simplifications are possible for very short observation times. The
boundary condition given by equation (7.4-32) is applied at a dimensionless dis-
tance that is equal to the ratio of the casting solution thickness divided by the
instantaneous thickness of the phase-separated region. When this dimensionless
group is very large, this boundary condition can be applied at infinity; that is,

H√
αP to

� 1 ⇒ boundary condition can be applied at ∞ (7.4-37)

The second dimensionless group involved in this boundary condition is a measure
of the ratio of the heat transferred to the ambient gas phase to that transferred to
the cold boundary. When this group is very small, heat loss to the ambient gas
phase can be neglected; that is,

h
√

αP to

kP

� 1 ⇒ heat loss to ambient gas phase can be ignored (7.4-38)

We see that the criteria defined by equations (7.4-37) and (7.4-38) are satisfied
at sufficiently short observation times. When both criteria are satisfied, equation
(7.4-32) reduces to the simplified form

∂T ∗

∂z∗ = 0,
∂ωA

∂z∗ = 0 as z∗ → ∞ (7.4-39)

It is of interest to assess the general applicability of these approximations by
evaluating the criteria for a representative TIPS-casting system. This has been
done for the isotactic polypropylene–dotriacontane system whose relevant proper-
ties and typical processing conditions are summarized in Table 7.4-1. These data
and processing conditions result in the following values for the dimensionless
groups in equations (7.4-34) and (7.4-35):

�Hf (1 − ψ∞)
√

Kto

Cp(T0 − Tb)
≤ �Hf (1 − ψ∞)

√
Kta

Cp(T0 − Tb)

= �Hf (1 − ψ∞)
√

K

Cp(T0 − Tb)

(
n − 1

nK

)1/n

= 5.5 × 10−2 (7.4-40)
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TABLE 7.4-1 Properties of Isotactic Polypropylene and Process Parameters for the
TIPS Casting of the Isotactic Polypropylene–Dotriacontane, Polymer–Diluent System

Property or Process Parameter Value

ρ (g/cm3) 9.03 × 10−1

k (J/s · cm · ◦C) 1.00 × 10−3

Cp (J/g · ◦C) 1.93
�Hf (J/g) 70.6
Tc (◦C) 69.5
DAB (cm2/s) ∼1 × 10−6

n 2.0
K (s−n) 0.0323
h (J/s · cm2· s) 1.10 × 10−4

ωA0 0.60
ψ0 0.63
T0 (◦C) 200
Tb (◦C) 25
T∞ (◦C) 25
L0 (µm) 200

Source: Physical and transport property data from W. K. Lee and C. L. Choy, J. Polym. Sci. B Polym.
Phys., 13, 619–635 (1975); C. A. Sperati, J. Brandrup, and E. H. Immergut, eds., Polymer Handbook,
3rd ed., Wiley-Interscience, New York, 1989; D. R. Lide, ed., Handbook of Chemistry and Physics. 77th
ed., CRC Press, Boca Raton, FL, 1996; N. B. Vargaftik, L. P. Filippov, A. A. Tarzimanov, and E. E.
Totskii, Handbook of Thermal Conductivity of Liquids and Gases, CRC Press, Boca Raton, FL, 1994.
Avrami coefficient data from G. B. A. Lim, Effects of nucleating agent on thermally induced phase
separation membrane formation, Ph.D. dissertation, University of Texas, Austin, TX, 1990.

1

Le
= D0

αP

= 1.74 × 10−3 (7.4-41)

In evaluating equation (7.4-40), ψ∞ was set equal to the initial value of the diluent
volume fraction; that is, since the diluent cannot diffuse and the continuous phase
is polymer lean, the equilibrium liquid volume fraction at infinite time for growth
of the solid phase will become nearly equal to the initial volume fraction of dilu-
ent. This underscores one of the advantages of the TIPS process for manufacturing
polymeric membranes: that very high porosities can be achieved since the diluent
goes from being a good solvent at a high temperature to a pore former at room tem-
perature. Note that the observation time used in evaluating equation (7.4-40) was
the time given by equation (7.4-22) at which ψ̇ reaches an extremum; this was done
to provide a conservative estimate of the magnitude of this dimensionless group
since it is proportional to ψ̇s. The condition given by equation (7.4-41) is gener-
ally satisfied by nearly all polymers; that is, heat and mass transfer in polymeric
systems is characterized by large Lewis numbers. It is not reasonable to assume
that the casting solution is infinitely thick since the criterion for this assumption
given by equation (7.4-37) requires that to � 0.7. However, the criterion given
by equation (7.4-38) for ignoring the heat loss to the ambient is satisfied on the
time scale for the phase-separation front to penetrate through the entire casting
solution.
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Figure 7.4-2 Corroboration of TIPS model predictions for casting solutions consisting of
40 wt% isotactic polypropylene (iPP) polymer in dotriacontane diluent, showing the final
polymer spherulite diameter as a function of the casting-block temperature.

Equations (7.4-40) and (7.4-41) indicate that the describing equations for the
solid–liquid TIPS process can be greatly simplified. These simplified describing
equations were solved numerically for the isotactic polypropylene–dotriacontane
system by Li et al.14 The resulting solution for ψ in combination with an appropri-
ate equation for the initial nucleation density at L, which was assumed to depend
only on the instantaneous degree of subcooling and concentration at the boundary
between the phase-separated and single-phase regions, predicted the observed final
spherulite diameter distribution across the thickness of the microporous membrane
as a function of the TIPS processing conditions quite well. A comparison between
observations and the predictions of this TIPS model for the final polymer spherulite
diameter as a function of the cold boundary temperature is shown in Figure 7.4-2
for casting solutions having an initial concentration of 40 wt% isotactic polypropy-
lene in dotriacontane diluent. The model is seen to predict the observed spherulite
diameter quantitatively for casting-block temperatures above 25◦C.

7.5 FLUID-WALL AEROSOL FLOW REACTOR FOR HYDROGEN
PRODUCTION FROM METHANE

A hydrogen-fuel-based economy offers considerable promise for providing a clean-
burning fuel that will reduce greenhouse gas production at least at the point of use.
However, the production of hydrogen by water splitting, that is, by decomposing
water into hydrogen and oxygen, requires more energy than is available in the
resulting fuel. If the generation of the energy required for water splitting involves

14D. Li, A. R. Greenberg, W. B. Krantz, and R. L. Sani, J. Membrane Sci., 279, 50 (2006).
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hydrocarbon-based fossil fuels, carbon dioxide will be produced at the point of
production. However, it is possible to thermally dissociate methane at high tem-
peratures directly into hydrogen and carbon, thereby avoiding carbon dioxide gen-
eration. Moreover, the energy required to create these high temperatures can be
obtained from a solar-heated reactor. Hence, it is possible to use solar energy
to drive the thermal decomposition of methane, which is available both naturally
and as a product from the decomposition of organic waste, into a hydrogen fuel
and carbon particles, a useful by-product. The electrically or solar-heated fluid-wall
aerosol flow reactor is being considered for implementing this hydrogen production
technology. The manner in which scaling analysis was used to develop a tractable
model for the complex describing equations for the fluid-wall aerosol reactor is
described in this example.15

A schematic of the fluid-wall aerosol flow reactor is shown in Figure 7.5-1.
The feed stream consists of methane and carbon particles that facilitate heating
the gas. Hydrogen is injected through the inner porous wall of the tubular reactor
to prevent deposition of carbon particles; that is, since hydrogen is a product of
the reversible methane decomposition, its introduction prevents any reaction at the
wall. To achieve significant methane conversion to hydrogen, the inner wall of the
reactor is maintained at a very high temperature, typically greater than 1500◦C,
by either solar or electrical heating. The hot inner wall radiates heat to the carbon
particles, which in turn heat the gas. At a sufficiently high temperature the methane
decomposes into hydrogen and carbon particles through the reaction

CH4 � C + 2H2 (7.5-1)

The effluent product contains hydrogen, carbon particles, and unreacted methane
if the conversion is not complete. The carbon particles produced via the thermal
decomposition absorb heat via radiation from the reactor walls and thereby enhance
heating of the flowing gas.

Product
stream of
hydrogen and
carbon 

Gas feed stream
of methane and
carbon particles
at T0

Hydrogen injection
through inner heated
porous wall at TW 

Reactor wall maintained at TW

Ri

L

Figure 7.5-1 Fluid-wall aerosol flow reactor for the thermal conversion of methane gas to
hydrogen and carbon particles; the reactor walls are maintained at a high temperature via
either solar or electrical heating; hydrogen is injected through the inner porous wall of the
reactor to prevent carbon formation on the wall.

15J. K. Dahl, A. W. Weimer, and W. B. Krantz, Int. J. Hydrogen Energy, 29, 57 (2004).
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In developing the describing equations for the fluid-wall aerosol flow reactor,
we use the microscale–macroscale modeling approach discussed in Chapter 6; that
is, the carbon particles on the microscale will become a volumetric heat-generation
term on the macroscale of the reactor. The presence of the carbon particles causes
intense mixing in the gas phase, which makes it reasonable to assume that the veloc-
ity profile is uniform or pluglike, which obviates the need to solve the equations
of motion. The reaction kinetics for the thermal decomposition of methane are
expressed in terms of the fractional dissociation of methane, Xc, via the equation

dXc

dz
= kn

UG

(1 − Xc)
n (7.5-2)

where z is the axial distance from the inlet of the reactor, UG is the linear veloc-
ity of the gas stream, which increases with the hydrogen production, and kn is a
temperature-dependent kinetic parameter for the pseudo nth-order thermal decom-
position reaction, which is given by

kn = kn0e
−�E/RTG (7.5-3)

where kn0 is a kinetic constant, �E the activation energy for reaction, R the gas
constant, and TG the local temperature of the gas phase. Note that equation (7.5-2)
follows directly from the species-balance equation for the methane for which the
reaction term is assumed to have nth-order kinetics and for which axial diffusion is
neglected. By means of the species-balance equation, the concentrations and molar
flow rates of both the hydrogen and carbon can be expressed in terms of the frac-
tional conversion. Hence, completing the specification of the describing equations
reduces to writing the appropriate forms of the thermal energy balance for the cloud
of carbon particles and the gas stream along with their boundary conditions.

A thermal energy balance on the cloud of carbon particles yields

d(WCHC)

dz
= −hP aCWCMC

UGρC

(TC − TG) + εσaCWCMC

UGρC

(T 4
W − T 4

C) (7.5-4)

where WC and HC are the molar velocity (moles/time) and molar enthalpy (energy/
mole) of the cloud of carbon particles, ε is the radiative emissivity (equal to the
absorbtivity for a blackbody) of the carbon particles, σ is the Stefan–Boltzmann
constant, TC and TW are the temperatures of the carbon particles and reactor wall,
respectively, hP is the heat-transfer coefficient between the carbon particles and
the gas, aC is the interfacial area per unit volume of carbon particles, and MC and
ρC are the molecular weight and mass density of carbon, respectively. Note that in
arriving at this equation the interrelationship between the spatial coordinate z (in
a stationary coordinate system) and time t (in a convected coordinate system) is
dz = UG dt ; this is the reason that UG appears in the denominator of the second
and third terms. The first term in equation (7.5-4) is the change in the sensible heat
of the carbon particles as they are convected downstream; the second term is the
heat transfer from the carbon particles to the gas stream, and the third term is the
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radiative heat transfer from the reactor wall to the carbon particles. Clearly, the
first and third terms must be retained in our scaling analysis.

The corresponding thermal energy balance on the gas phase is given by

d(WMHM)

dz
+ d(WH HH)

dz
= ŴH (HHW − HH0) + hW 2πRi(TW − TG)

+ hP aCWCMC

UGρC

(TC − TG) (7.5-5)

where Wi is the molar velocity (moles/time) of species i; Hi is the molar enthalpy
of species i for which the added subscripts 0 and W denote evaluation at the feed
and wall temperatures, T0 and TW , respectively; ŴH is the molar injection rate of
hydrogen per unit length of reactor tube wall (moles/length·time); and hW is the
heat-transfer coefficient between the heated wall and the gas flow. The first and
second terms in equation (7.5-5) are the change in sensible heat of the methane
and hydrogen as they are convected downstream, respectively; the third term is
the sensible heat added by the injection of hydrogen gas at the wall temperature;
the fourth term is the heat transfer from the heated wall to the gas stream; and
the fifth term is the heat transfer from the carbon particles to the gas stream. Note
that the last term interrelates the heat transfer on the microscale of the carbon
particles to the macroscale of the gas flow through the reactor. The heat-transfer
coefficient hP has a role analogous to that of the mass-transfer coefficient in the
microscale–macroscale examples involving mass transfer with chemical reaction
discussed in Chapter 6. Clearly, the first term must be retained in our scaling analy-
sis since the methane must be heated for thermal decomposition to occur. However,
it is not clear which term provides the principal source of heat in this equation.

The molar flow rates of methane, hydrogen, and carbon can be related to that
of the methane feed stream through the stoichiometry given by the dissociation
reaction 7.5-1:

WM =(1 − Xc)W
0
M ; WH =2XcW

0
M +ŴHz; WC =XcW

0
M +W 0

C (7.5-6)

where W 0
M and W 0

C are the molar flow rates of the methane and carbon particles
in the feed stream to the reactor. The molar flow rate of the hydrogen includes
contributions from both the dissociation of the methane and the injection through
the porous inner wall of the reactor. The molar flow rate of the cloud of carbon
particles includes contributions from both the dissociation of the methane and those
contained in the feed stream. The enthalpies of the methane, hydrogen, and carbon
are given by

HM =
∫ TG

T0

CpM dT ; HH =
∫ TG

T0

CpH dT ; HC =
∫ TC

T0

CpC dT (7.5-7)

where Cpi is the temperature-dependent heat capacity at constant pressure of com-
ponent i. If there is no relative velocity between the carbon particles and the gas
stream, the heat-transfer coefficient can be assumed to be that for pure conduction,
for which
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hP = kG

RP

(7.5-8)

in which kG is the thermal conductivity of the gas phase and RP is the average
radius of the carbon particles. To complete the specification of the describing
equations, appropriate equations-of-state need to be specified for any temperature-
dependent properties, such as Cpi , kG, and hW . However, for the scaling analysis,
we merely need characteristic values of these temperature-dependent quantities.

Equations (7.5-4) and (7.5-5) can be rearranged using equations (7.5-2), (7.5-6),
and (7.5-7) into the forms

WCCpC

dTC

dz
+ W 0

MHCkn

UG

(1 − Xc)
n

= −hP aCWCMC

UGρC

(TC − TG) + εσaCWCMC

UGρC

(T 4
W − T 4

C) (7.5-9)

(WMCpM + WHCpH )
dTG

dz
− W 0

MHMkn

UG

(1 − Xc)
n + 2W 0

MHHkn

UG

(1 − Xc)
n

= ŴH (HHW − HH) + hW 2πRi(TW − TG) + hP aCWCMC

UGρC

(TC − TG)

(7.5-10)

The boundary conditions on equations (7.5-2), (7.5-9), and (7.5-10) are given by

Xc = 0, TG = T0, TC = T0 at z = 0 (7.5-11)

Equations (7.5-2), (7.5-3), and (7.5-6) through (7.5-11) constitute the describing
equations for the fluid-wall aerosol flow reactor (step 1).

Define the following dimensionless variables containing unspecified scale and
reference factors (steps 2, 3, and 4):

T ∗
G ≡ TG − TGr

TGs

; T ∗
C ≡ TC − TCr

TCs

;
(

dTG

dz

)∗
≡ 1

TGzs

dTG

dz
;

(
dTC

dz

)∗
≡ 1

TCzs

dTC

dz
;

(
dXc

dz

)∗
≡ 1

Xczs

dXc

dz
; H ∗

M ≡ HM

HMs

;

H ∗
H ≡ HH

HHs

; H ∗
C ≡ HC

HCs

; W ∗
M ≡ WM

WMs

; W ∗
H ≡ WH

WHs

;

W ∗
C ≡ WC

WCs

; C∗
pM ≡ CpM

CpMs

; C∗
pH ≡ CpH

CpHs

; C∗
pC ≡ CpC

CpCs

;

h∗
P ≡ hP

hPs

; h∗
W ≡ hW

hWs

; U∗
G ≡ UG

UGs

; k∗
n ≡ kn

kns

; k∗
G ≡ kG

ks

(7.5-12)
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We have introduced reference factors for the temperature of both the gas and carbon
particles since neither is naturally referenced to zero. We have also introduced scale
factors for the spatial gradients of the fractional conversion and the temperature in
both the gas and cloud of carbon particles since there is no reason to believe that any
of these will scale with the length of the reactor.16 We have not introduced a scale
for the axial spatial coordinate since this dependent variable does not enter explicitly
into the describing equations. Scales for the enthalpies, molar flow rates, heat
capacities, heat-transfer coefficients, gas velocity, kinetic parameter, and thermal
conductivity of the gas have also been introduced since these quantities are not
necessarily constant for the fluid-wall aerosol flow reactor. We have not scaled the
fractional conversion since it is dimensionless and bounded of ◦(1).

Substitute these dimensionless variables into the describing equations and divide
each equation through by the dimensional coefficient of one term (steps 5 and 6):

CpCsTCzsUGsρC

εσaCMCT 4
Cs

W ∗
CC∗

pC

(
dTC

dz

)∗
+ W 0

MHCsknsρC

εσaCW 0
CMCT 4

Cs

k∗
nH

∗
C

U∗
G

(1 − Xc)
n

= −hPsTGs

εσT 4
Cs

h∗
P W ∗

C

U∗
G

[
TCs

TGs

(

T ∗
C + TCr

TCs

)

−
(

T ∗
G + TGr

TGs

)]

+ W ∗
C

U∗
G

[

T 4
W

T 4
Cs

−
(

T ∗
C + TCr

TCs

)4
]

(7.5-13)

(
WMsCpMs

WHsCpHs

W ∗
MC∗

pM + W ∗
HC∗

pH

) (
dTG

dz

)∗
− W 0

MHMskns

UGsWHsCpHsTGzs

H ∗
Mk∗

n

U∗
G

(1−Xc)
n

+ 2W 0
MHHskns

WHsCpHsTGzsUGs

H ∗
H k∗

n

U∗
G

(1 − Xc)
n = ŴH HHs

WHsCpHsTGzs

(
HHW

HHs

− H ∗
H

)

+ 2πRihWsTGs

WHsCpHsTGzs

h∗
W

[
TW − TGr

TGs

− T ∗
G

]

+ hPsaCMCWCsTGs

UGsρCWHsCpHsTGzs

h∗
P W ∗

C

U∗
G

×
[

TCs

TGs

(

T ∗
C + TCr

TCs

)

−
(

T ∗
G + TGr

TGs

)]

(7.5-14)
(

dXc

dz

)∗
= kns

XczsUGs

k∗
n

U∗
G

(1 − Xc)
n (7.5-15)

k∗
n = kn0

kns

exp

[

− �E

RTs(T
∗
G + T0 / Ts

)

]

= kn0

kns

exp

[

− �E

R(TW − T0)

]

× exp

[
�E

R(TW − T0)

(T ∗
G + T0 / Ts − 1)

(T ∗
G + T0 / Ts)

]

(7.5-16)

16The scaling done here differs from the development by Dahl et al. (footnote 15) in that a separate
scale is introduced here for the gradient of the fractional conversion, whereas Dahl et al. assume that
the length scale for this gradient is the length of the reactor; the latter would apply only at very
high wall temperatures for which complete thermal dissociation occurs over the full length of the
reactor.
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W ∗
M = (1 − Xc)

W 0
M

WMs

; W ∗
H = 2XcW

0
M + ŴHzsz

∗

WHs

; W ∗
C = XcW

0
M + W 0

C

WCs

(7.5-17)

H ∗
M = CpMsTGs

HMs

∫ T ∗
G

(T0−TGr )/TGs

C∗
pM dT ∗; H ∗

H = CpHsTGs

HHs

∫ T ∗
G

(T0−TGr )/TGs

C∗
pHdT ∗;

H ∗
C = CpCsTCs

HCs

∫ T ∗
C

(T0−TCr )/TCs

C∗
pC dT ∗ (7.5-18)

h∗
P = kGs

hPsRP

k∗
G (7.5-19)

T ∗
G = T0 − TGr

TGs

, T ∗
C = T0 − TCr

TCs

, Xc =0 at z∗ = 0 (7.5-20)

We now set appropriate dimensionless groups equal to zero or 1 to determine the
reference and scale factors that will ensure that all the dimensionless variables are
◦(1) (step 7). Setting the two dimensionless groups equal to zero in the boundary
conditions given by equation (7.5-20) references both the gas and carbon particle
temperatures to zero:

T0 − TGr

TGs

= 0 ⇒ TGr = T0; T0 − TCr

TCs

= 0 ⇒ TCr = T0 (7.5-21)

The dimensionless gas and carbon particle temperatures can be bounded to be ◦(1) by
setting the appropriate dimensionless groups in equation (7.5-14) equal to 117:

TW − TGr

TGs

= 1 ⇒ TGs = TW − TGr = TW − T0;

TCs

TGs

= 1 ⇒ TCs = TGs = TW − T0 (7.5-22)

The molar flow rates can be bounded to be ◦(1) by setting the appropriate dimen-
sionless groups in equations (7.5-17) equal to 1:

W 0
M

WMs

= 1 ⇒ WMs = W 0
M

2W 0
M + ŴH L

WHs

= 1 ⇒ WHs = 2W 0
M + ŴHL (7.5-23)

W 0
M + W 0

C

WCs

= 1 ⇒ WCs = W 0
M + W 0

C

17The scaling here differs from that in the development of Dahl et al. (footnote 15) in that the temperature
reference scale here is TW − T0, whereas Dahl et al. use TW ; the former is the appropriate scale for the
temperature gradient since the temperatures range between T0 and TW .
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These scale factors for the molar flow rates are the maximum values, which
include both the injected flows and those produced by the thermal decomposition.18

The scale for the reaction parameter is obtained from the dimensionless group in
equation (7.5-16):

kn0

kns

e−�E/R(TW −T0) = 1 ⇒ kns = kn0e
−�E/R(TW −T0) (7.5-24)

The scale for the heat-transfer coefficient from the carbon particles to the gas is
obtained from the dimensionless group in equation (7.5-19):

kGs

hPsRP

= 1 ⇒ hPs = kGs

RP

(7.5-25)

The dimensionless physical properties and hW are bounded to be ◦(1) by choosing
the scale factors to be characteristic maximum values.19 Hence, the heat capaci-
ties and thermal conductivities are scaled with their values at T0, whereas the
heat-transfer coefficient hW is scaled with its value at TW . The scale factors for
the enthalpies are obtained by setting the appropriate dimensionless groups in
equations (7.5-18) equal to 1:

CpMsTGs

HMs

= 1 ⇒ HMs = CpMsTGs = CpMs(TW − T0)

CpHsTGs

HHs

= 1 ⇒ HHs = CpHsTGs = CpHs(TW − T0) (7.5-26)

CpCsTCs

HCs

= 1 ⇒ HCs = CpCsTCs = CpCs(TW − T0)

where CpMs, CpHs , and CpCs are the characteristic maximum values of the heat
capacities for the methane, hydrogen, and carbon, respectively. The dimensionless
gas velocity is also bounded to be ◦(1) by basing it on the maximum hydrogen
flow rate assuming complete thermal conversion of methane20:

UGs = (2W 0
M + ŴHL)MH

ρH Sc

(7.5-27)

where ρH and MH are the mass density and molecular weight of hydrogen, and
Sc is the cross-sectional area of the reactor. The scale factor for the temperature

18The scaling here differs from that in the development of Dahl et al. (footnote 15) in that the scale
for the flow rate of the cloud of carbon particles here is W 0

M + W 0
C , whereas Dahl et al. use W 0

M ; the
former is the appropriate scale since it is the maximum possible value.
19Note that by choosing maximum values for the physical properties, they are bounded to be ◦(1),
in contrast to the scaling of the dependent and independent variables that necessarily are bounded to
be ◦(1).
20The scaling here differs from that in the development of Dahl et al. (footnote 15) in that the scale
for the gas velocity here includes both the hydrogen produced by thermal decomposition as well as
injected, whereas Dahl et al. do not include the hydrogen injected; the former is the appropriate scale
since it is the maximum possible value.
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gradient in the cloud of carbon particles is obtained by recognizing that it is heated
by radiation from the hot reactor wall. Hence, we set the dimensionless group
multiplying the first term in equation (7.5-13) equal to one:

CpCsTCzsUGsρC

εσaCMCT 4
Cs

= 1 ⇒ TCzs = εσaCMCρH Sc(TW − T0)
4

(2W 0
M + ŴHL)MH CpCsρC

(7.5-28)

To determine the temperature gradient in the gas phase, we need to assess which
term in equation (7.5-14) is the principal source of heat. We assume here that the
heat is provided mainly by the hydrogen gas that is injected through the porous
inner reactor wall. This is a reasonable assumption since considerable hydrogen
must be injected to prevent reaction at the wall; moreover, it is injected at the
maximum possible temperature, TW . Hence,

ŴHHHs

WHsCpHsTGzs

= 1 ⇒ TGzs = ŴH (TW − T0)

2W 0
M + ŴHL

(7.5-29)

The gas-phase temperature gradient would scale differently if one of the other terms
were the principal heat source.21 Nonetheless, the forgiving nature of scaling will
tell us if we have balanced the wrong terms in any of the describing equations;
that is, an incorrect scaling will be manifest by a dimensionless group that is not
bounded of ◦(1). Since the two terms in equation (7.5-15) must balance, we set
the dimensionless group in this equation equal to 1 to obtain the scale factor for
the gradient of the fractional conversion:

kns

XczsUGs

= 1 ⇒ Xczs = kns

UGs

= knsρH Sc

(2W 0
M + ŴHL)MH

(7.5-30)

The scale and reference factors defined by equations (7.5-21) through 7.5-30
result in the following minimum parametric representation of the dimensionless
describing equations:

W ∗
CC∗

pC

(
dTC

dz

)∗
+ 	1

k∗
nH

∗
C

U∗
G

(1 − Xc)
n = −	2

h∗
P W ∗

C

U∗
G

(T ∗
C − T ∗

G)

+ W ∗
C

U∗
G

[(
1

1 − 	3

)4

−
(

T ∗
C + 	3

1 − 	3

)4
]

(7.5-31)

(	4W
∗
MC∗

pM + W ∗
H C∗

pH )

(
dTG

dz

)∗
− 	5

H ∗
Mk∗

n

U∗
G

(1 − Xc)
n + 	6

H ∗
H k∗

n

U∗
G

(1 − Xc)
n

= (1 − H ∗
H ) + 	7h

∗
W(1 − T ∗

G) + 	8
h∗

P W ∗
C

U∗
G

(T ∗
C − T ∗

G) (7.5-32)

21Determining the scale for the temperature gradient in the gas phase based on other assumptions for
the principal heat source is considered in Practice Problems 7.P.19 and 7.P.20.
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(
dXc

dz

)∗
= k∗

n

U∗
G

(1 − Xc)
n (7.5-33)

k∗
n = e	9[(T ∗

G
+	3−1)/(T ∗

G
+	3)] (7.5-34)

h∗
P = k∗

G (7.5-35)

T ∗
G = 0, T ∗

C = 0 at z∗ = 0 (7.5-36)

The dimensionless groups appearing in the minimum parametric representation and
their physical significance are defined below:

	1 ≡ W 0
MCpCsρCkns

εσaCW 0
CMC(TW − T0)3

∼ heat consumed for carbon production

radiative heat transfer to particles

(7.5-37)

	2 ≡ kGs

RP εσ (TW − T0)3
∼ heat lost to gas

radiative heat transfer to particles
(7.5-38)

	3 ≡ T0

TW

∼ initial temperature of feed

temperature of reactor wall
(7.5-39)

	4 ≡ W 0
MCpMs

(2W 0
M + ŴH L)CpHs

∼ sensible heat consumed by methane

heat supplied by injected hydrogen
(7.5-40)

	5 = W 0
MCpMsknsρH Sc

(2W 0
M + ŴH L)ŴH CpHsMH

∼ heat released by reaction of methane

heat supplied by injected hydrogen

(7.5-41)

	6 = 2W 0
MknsρH Sc

(2W 0
M + ŴH L)ŴH MH

∼ heat consumed by production of hydrogen

heat supplied by injected hydrogen

(7.5-42)

	7 ≡ 2πRihWs

ŴH CpHs

∼ heat transferred from reactor wall to gas

heat supplied by injected hydrogen
(7.5-43)

	8 ≡ aCScMC(W 0
M + W 0

C)ρH kGs

(2W 0
M + ŴH L)ŴH MH ρCCpHsRP

∼ heat transferred from particles to gas

heat supplied by injected hydrogen

(7.5-44)

	9 ≡ �E

R(TW − T0)
∼ dimensionless activation energy (7.5-45)

Now let us consider how these dimensionless describing equations can be
simplified (step 8). Table 7.5-1 summarizes typical system parameters for the fluid-
wall aerosol flow reactor. These system parameters lead to the values of the
dimensionless groups that characterize the fluid-wall aerosol flow reactor summa-
rized in Table 7.5-2. The additional groups 	10 through 	17 appearing in this table
will be defined when we consider correlating the fractional conversion in terms of
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TABLE 7.5-1 System Parameters for the Fluid-Wall Aerosol Flow Reactor

Parameter Value Parameter Value

aC(m−1) 6.0 × 104 RP (m) 5.0 × 10−5

CpCs(J / mol · K) 8.8 n 4.4
CpHs(J / mol · K) 29.0 Sc(m2) 4.6 × 10−3

CpMs(J / mol · K) 34.0 T0(K) 298
hPs(W / m2 · K) 3.6 × 103 TW (K) 1200
hWs(W / m2 · K) 18.8 W 0

C(mol / s) 0.12
kGs(W / m · K) 0.18 ŴH (mol / m · s) 0.11
kns(s−1) 0.54 W 0

M(mol / s) 0.057
kn0(s−1) 6.0 × 1011 �E(J / mol) 2.08 × 105

L(m) 0.91 ε 1.0
MC(kg / mol) 0.012 σ(W / m2 · K4) 5.67 × 10−8

MH (kg / mol) 0.002 ρC(kg / m3) 2270
R(J / mol · K) 8.314 ρH (kg / m3) 0.080
Ri(m) 0.038 ρM(kg / m3) 0.65

TABLE 7.5-2 Dimensionless Groups Characterizing the Fluid-Wall Aerosol
Flow Reactor for Producing Hydrogen from a Methane Feed Stream and the
Process Parameters in Table 7.5-1

Dimensionless Dimensionless
Group Value Group Value

	1 0.17 	10 180
	2 87 	11 2.4 × 103

	3 0.25 	12 1.17
	4 0.31 	13 1.0 × 1012

	5 0.28 	14 0.57
	6 0.48 	15 84
	7 1.41 	16 3.8 × 1016

	8 54 	17 3.8 × 10−6

	9 28

dimensionless groups that isolate particular dimensional quantities of interest. The
magnitudes of the groups 	10 through 	17 have no relevance to our scaling anal-
ysis since these groups do not represent any ratios of the terms appearing in our
describing equations.

It might appear that we have scaled equation (7.5-31) incorrectly since
	2 � 1, yet all the terms in this equation should be bounded of ◦(1). Recall that
we balanced the two principal terms in equation (7.5-13) that had to be retained:
the term involving the heat required to increase the temperature of the cloud of
carbon particles and the heat supplied by radiation from the reactor wall. The fact
that 	2 � 1 means that the dependent variable combination that it multiplies must
be very small; that is, T ∗

C − T ∗
G � 1, so that the product 	2(T

∗
C − T ∗

G)is ◦(1). This
means that the gas is essentially in local thermal equilibrium with the cloud of
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carbon particles; that is,

	2
h∗

P W ∗
C

U∗
G

(T ∗
C − T ∗

G) ∼= 87(T ∗
C − T ∗

G) ∼= 1 ⇒ T ∗
C − T ∗

G
∼= 0.011 ⇒ T ∗

G
∼= 0.99T ∗

C

(7.5-46)

Hence, the fluid-wall aerosol reactor can be modeled assuming that the gas is in
local thermal equilibrium with the carbon particles; that is, it is not necessary to
solve the thermal energy equation for the gas. However, note that this approximation
was based on the system parameters given in Table 7.5-1. For sufficiently large
particles and/or high reactor wall temperatures, the dimensionless group 	2 will
become less than 1, implying that the gas temperature is much less than that
of the carbon. The conclusion that the gas and carbon particles are in thermal
equilibrium can also be obtained from the scaled thermal energy balance for the
gas phase since 	8 � 1, which again implies that T ∗

G
∼= T ∗

C . The fact that 	2 � 1
and 	8 � 1, both of which imply that T ∗

G
∼= T ∗

C , confirms that we have chosen
our scales correctly for the process parameters given in Table 7.5-1. If one is
not aware that rapid thermal equilibrium is achieved between the gas and carbon
particles, serious problems can be encountered in solving the describing equations
numerically. For sufficiently large values of 	2 there is a thermal boundary layer
at the entrance of the reactor wherein the gas and carbon particles come to thermal
equilibrium whose thickness is much less than the length of the reactor. Hence,
numerical integration employing a step size based on the reactor length will not
resolve the transport processes occurring in this boundary layer.

Let us now consider the temperature gradient in the reactor. This can be esti-
mated from equation (7.5-28). For the parameter values given in Table 7.5-1, we
obtain the following estimate:

TGzs
∼= TCzs = εσaCMCρH Sc(TW − T0)

4

(2W 0
M + ŴHL)MHCpCsρC

= 1163 K/m (7.5-47)

This estimate for TGzs implies that the cloud of carbon particles and gas reach the
wall temperature before they exit from the downstream end of the reactor; that is,

z = 1200 K − 298 K

1163 K/m
= 0.78 m < L = 0.91 m (7.5-48)

Note that the temperature gradient increases markedly with increasing TW , which
implies that the gas and carbon particles will reach TW progressively farther
upstream as TW increases.

The dimensionless groups 	1, 	5, and 	6 are of ◦(1) and thus do not per-
mit us to conclude that the term they multiply, (1 − Xc)

n, is small; that is, we
cannot conclude from the magnitude of these groups that the conversion is nearly
complete. However, our scaling analysis allows us to estimate whether the reactor
is sufficiently long to achieve complete conversion of the methane. An estimate
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of this can be obtained from the scale factor for the spatial gradient of the frac-
tional conversion given by equation (7.5-30). For the parameter values given in
Table 7.5-1 we obtain the following estimate:

Xczs = kns

UGs

= knsρH Sc

(2W 0
M + ŴH L)MH

= 0.46 m−1 (7.5-49)

This estimate for Xczs implies that complete conversion of the methane is not
attained for the reactor length given in Table 7.5-1; that is,

z = 1 − 0

0.46 m−1 = 2.2 m > L(0.91 m) (7.5-50)

One way to increase the fractional conversion is to increase the reactor wall tem-
perature. The temperature dependence of Xczs enters through the scale factor for
the reaction parameter kns , which is defined by equation (7.5-24). An estimate of
the fractional conversion can be obtained from equation (7.5-33), which can be
rearranged as follows:

(
dXc

dz

)∗
= 1

Xczs

dXc

dz
= k∗

n

U∗
G

(1 − Xc)
n ⇒ dXc

dz
= Xczs

k∗
n

U∗
G

(1 − Xc)
n (7.5-51)

Since both k∗
n and U∗

G are bounded of ◦(1), they will be assumed to be constant in
order to integrate equation (7.5-46) to obtain an estimate of Xc, which is given by

Xc = 1 − [1 + (n − 1)XczsL)]
1

(1−n) (7.5-52)

The effect of the wall temperature on the fractional conversion can be estimated
by combining equations (7.5-24), (7.5-30), and (7.5-52) to obtain

Xc = 1 −
{

1 +
[

(n − 1)
ρHScLk0e

−�E/R(TW −T0)

(2W 0
M + ŴH L)MH

]} 1
(1−n)

(7.5-53)

Equation (7.5-53) will provide a reasonable estimate of the conversion only if the
dimensionless group 	2 is sufficiently large to ensure that the gas phase is in
thermal equilibrium with the cloud of carbon particles. The magnitude of 	2 is
directly proportional to hPs , the characteristic heat-transfer coefficient between the
carbon particles and the gas, which in turn is inversely proportional to the radius of
the carbon particles. Hence, as the radius of the carbon particles increases, 	2 will
become sufficiently small so that the gas is no longer in thermal equilibrium with
the cloud of carbon particles. For the parameter values in Table 7.5-1, equation (7.5-
53) indicates that Xc

∼= 0.23 for TW = 1200 K. To achieve a fractional conversion
of Xc = 0.90 for the parameter values in Table 7.5-1, a reactor wall temperature
of 1530 K would be required.

Let us now use the advanced dimensional analysis concepts for presenting
numerical or experimental data that were developed in Chapter 2. In particular, let
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us develop a dimensional analysis correlation for the fractional conversion achieved
in the gas exiting the fluid-wall aerosol flow reactor. This is obtained in principle by
solving the coupled describing equations for Xc evaluated at z = L. This introduces
L into our dimensional analysis as an independent quantity, whereas in our scaling
analysis it appeared as the product ŴHL. Hence, an additional dimensionless group
is required that we will arbitrarily define as

	10 ≡ L2

Sc

(7.5-54)

Therefore, Xc will be a function of the nine dimensionless groups defined by
equations (7.5-37) through (7.5-45) and equation (7.5-54). However, if 	2 � 1,
the gas will be in thermal equilibrium with the cloud of carbon particles, in which
case the thermal energy equation for the gas need not be considered. This eliminates
groups 	2, 	4, 	5, 	6, 	7, and 	8 from the dimensional analysis correlation for
Xc; that is, for sufficiently large values of 	2, the fractional conversion Xc will be
a function of only the dimensionless groups 	1, 	3, 	9, and 	10.

Now let us return to the general case for which 	2 is not necessarily very large.
Groups 	1 through 	10 are not particularly convenient for correlating Xc and
other quantities of interest in assessing the performance of the fluid-wall aerosol
flow reactor. In particular, we would like to isolate the process parameters that can
easily be changed, such as the wall temperature TW , the flow rate of carbon particles
injected with the feed W 0

C , and the radius of the carbon particles RP . In isolating
the latter quantity we must be aware that aC , the surface area per unit volume of
particles, depends on the particle size. For spherical particles, aC = 3 / RP , which
is a reasonable approximation for the small carbon particles involved in the fluid-
wall aerosol flow reactor. Let us first invoke the formalism of steps 9 and 10 in
the scaling approach to dimensional analysis that was outlined in Chapter 2. These
steps allow us to remove redundant quantities that appear in sums or differences in
dimensionless groups. Hence, seven of the nine dimensionless groups that resulted
from our scaling analysis can be replaced by the following redefined groups:

	10 = 	′
1 ≡ W 0

MCpCsρCk0RP

eσW 0
CMCT 3

0

(7.5-55)

	11 = 	′
2 ≡ kGs

RP eσT 3
0

(7.5-56)

	12 = 	′
4 ≡ CpMs

CpHs

(7.5-57)

	13 = 	′
5 = k0ρH Sc

ŴHMH

(7.5-58)

	14 = 	′
6 = W 0

M

ŴHL
(7.5-59)
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	′
8 ≡ ScMCρH kGs

ŴHMH ρCCpHsR
2
P

(7.5-60)

	15 = 	′
9 ≡ �E

RT0
(7.5-61)

where the 	′
i denotes the result of redefining 	i using the formalism of steps

9 and 10. Note that it was not necessary to redefine groups 	3, 	7, and 	10. In
arriving at equations (7.5-55) through (7.5-61), we have assumed spherical car-
bon particles and therefore have made the substitution aC = 3/RP . We have also
dropped numerical constants to simplify the dimensionless groups. Although these
numerical constants need to be retained in scaling analysis, they serve no purpose
in dimensional analysis. Applying steps 9 and 10 has isolated TW into 	3 and W 0

C

into 	′
1. However, RP is still contained in groups 	′

1, 	′
2, and 	′

8. To isolate RP

into just one dimensionless group, we apply the formalism of step 7 in the scaling
analysis approach to dimensional analysis.

	16 = 	′
1 · 	′

2 = W 0
MCpCsρCk0RP

eσW 0
CMCT 3

0

kGs

RP eσT 3
0

= W 0
MCpCsρCk0kGs

(eσ )2W 0
CMCT 6

0

(7.5-62)

	17 = 	′
8

1

(	′
2)

2
= ScMCρH kGs

ŴHMH ρCCpHsR
2
P

(

RP eσT 3
0

kGs

)2

= (eσ )2ScMCρH T 6
0

ŴH MHρCCpHskGs

(7.5-63)

Hence, Xc can now be correlated in terms of the ten dimensionless groups
	3, 	7, 	10, 	11, 	12, 	13, 	14, 	15, 	16, and 	17, in which TW , RP , and W 0

C

have been isolated into groups 	3, 	11, and 	16, respectively; that is,

Xc = f (	3, 	7, 	10, 	11, 	12, 	13, 	14, 	15, 	16, 	17) (7.5-64)

Note that all the dimensional quantities contained in the original 10 dimensionless
groups are also included in the redefined set of dimensionless groups.

The utility of scaling analysis for simplifying the describing equations and for
correlating the output from a numerical solution is demonstrated in Figure 7.5-2,
which shows a plot of the fractional conversion Xc as a function of the dimension-
less group 	−1

3 with the group 	11 as a parameter; the other eight dimensionless
groups are held constant. The solid and dashed lines are the predictions of a numer-
ical solution to the full set of describing equations.22 The dotted line is the estimate
of the fractional conversion obtained from scaling analysis for the limiting case of
	2 � 1 given by equation (7.5-53). The scaling analysis estimate agrees within
the expected ◦(1)accuracy with the predictions of the numerical solution. One can
immediately appreciate the utility of isolating the quantities TW and RP into just one
dimensionless group; that is, Figure 7.5-2 indicates how increasing the wall tem-
perature or the particle size affects the fractional conversion. Larger values of 	−1

3

22J. K. Dahl, A. W. Weimer, and W. B. Krantz, Int. J. Hydrogen Energy, 29, 57 (2004).
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Figure 7.5-2 Fractional conversion as a function of the dimensionless wall temperature
estimated by scaling analysis and predicted by a numerical solution to the full set of describ-
ing equations for two values of the dimensionless heat-transfer coefficient, 	11.

corresponding to higher reactor wall temperatures result in increased conversion,
whereas smaller values of 	11 corresponding to larger carbon particles result in
decreased conversion.

The redefined dimensionless groups given by equations (7.5-55) through
(7.5-61) are useful for isolating various dimensional parameters so that their effect
on the fractional conversion and other quantities of interest can be studied. How-
ever, to understand the reasons for the trends observed, the original dimensionless
groups determined by scaling analysis are required since these groups are propor-
tional to the relative magnitudes of the various terms in the describing equations.
The increase in Xc with increasing TW is a direct effect of increasing the reaction-
rate parameter via 	9 in equation (7.5-34). The decrease in Xc with an increase in
particle size can be attributed to a decrease in the heat-transfer coefficient only if the
gas and carbon particles are not essentially in thermal equilibrium; that is, if 	2 =
◦(1). Note that 	2 = 	11T

3
0 / (TW − T0)

3. Hence, we find that 3.5 ≤ 	2 ≤ 43
for the temperature range 2400K ≥ TW � 1200 K and 	11 = 1.2 × 103, whereas
35 ≤ 	2 ≤ 430 for 	11 = 1.2 × 104; that is, 	2 is large at all but the highest tem-
peratures for the larger particle size. Hence, the inverse relationship between RP

and hPs cannot explain the decrease in Xc with decreasing values of 	11. However,
the particle size also affects conversion through the dimensionless group 	1, which
is directly proportional to RP through the parameter aC = 3/RP ; this group is a
measure of the sensible heat required for the carbon particles. Hence, decreasing
	11 by an order of magnitude also increases 	1 proportionately. The larger effect
of a decrease in 	11 on Xc observed at lower values of 	−1

3 is because 	1 is pro-
portional to (TW − T0)

−3; that is, as the wall temperature increases, 	1 decreases
and the sensible heat requirement for the carbon particles becomes less important.
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In summary, one sees in this example the utility of first scaling the describing
equations to obtain the minimum parametric representation. The magnitude of
the resulting dimensionless groups provides a direct assessment of the relative
importance of the various terms in the describing equations. In particular, these
dimensionless groups allow one to assess what approximations, if any, might be
applicable. However, the dimensionless groups that result from scaling analysis
often are not optimal for correlating experimental or numerical data. Hence, it is
convenient to redefine the dimensionless groups using the formalisms introduced
in Chapter 2 in order to isolate particular dimensional quantities of interest into
just one dimensionless group. However, to interpret trends in the observed perfor-
mance of the particular device or process of interest, one must revert back to the
original dimensionless groups obtained from scaling analysis, since the magnitude
of the latter is a direct measure of the physicochemical phenomena involved in the
describing equations.

7.6 SUMMARY

In contrast to Chapters 3 through 6, in which scaling analysis was used essentially
as a pedagogical tool, in this chapter we illustrated how it can be used in the
design of improved and new processes. This was demonstrated via four examples
that focused on emerging technologies, all of which involved coupled transport.
Three of these examples also used the microscale–macroscale modeling concept to
address the heterogeneous nature of the systems. Scaling the describing equations
for complex technologies is a trial-and-error process; that is, one generally is not
certain which terms need to be balanced to determine the proper scale factors.
However, the forgiving nature of scaling will always indicate when terms have
not been balanced properly. This is indicated when one or more terms are not
bounded of ◦(1) when the relevant physical properties and process parameters are
substituted into the dimensionless describing equations. The scaling analysis in
each of these examples was the final result of this trial-and-error procedure for
specified sets of properties and parameters. However, in the Practice Problems at
the end of the chapter we explore other possible scalings.

In Section 7.2 we applied ◦(1) scaling analysis to the design of a membrane–
lung oxygenator. The same problem was analyzed in Section 5.10 using the simple
scaling analysis approach to dimensional analysis. Whereas both methods resulted
in a correlation for the Sherwood number in terms of the same four dimen-
sionless groups, the ◦(1) scaling analysis approach provided considerably more
information on the performance of this device. Additional insight into the design
of the membrane-lung oxygenator was possible because the ◦(1) scaling analy-
sis identified both a momentum boundary layer within which the effect of the
wall oscillations on the velocity profile was confined and a solutal boundary layer
across within which the mass transfer occurred. The ◦(1) scaling analysis pro-
vided an explanation for why the enhancement in mass transfer involved a “tuned”
response with respect to the oscillation frequency. It also led to a design equation
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for predicting the effect of the process parameters on the frequency required to
achieve optimal enhancement in the mass transfer. This design problem effectively
illustrated the advantages of using ◦(1) scaling analysis to achieve the minimum
parametric representation relative to the simple scaling analysis or Pi theorem
approaches to dimensional analysis.

In Section 7.3 we considered pulsed single-bed pressure swing adsorption (PSA)
for the production of oxygen-enriched air. This example demonstrated the value of
an ◦(1) scaling analysis to design a new process. Whereas the design of conven-
tional pulsed packed single-bed PSA is well established, no performance data are
available for the novel pulsed monolithic single-bed PSA process. This example
involved coupled fluid dynamics and mass transfer with adsorption and employed
microscale–macroscale modeling to address the adsorption from the bulk gas flow
onto the discrete adsorbent particles. We found that proper scaling was indicated
by all the terms in the describing equations being bounded of ◦(1). This usually
means that all the dimensionless groups are bounded of ◦(1), although strictly
speaking, it means that the product of any dimensionless group and the variables
it multiplies must be bounded of ◦(1). Scaling analysis identified several marked
differences between packed single-bed PSA technology and the monolithic bed
process. Scaling analysis indicated that local adsorption equilibrium was achieved
nearly instantaneously in the monolithic bed PSA process; in contrast, the adsorp-
tion in the packed bed PSA process was mass-transfer controlled. This difference
between monolithic and packed bed adsorption is analogous to that between the fast
and slow reaction regimes in the microscale–macroscale analysis of mass transfer
with chemical reaction that was considered in Chapter 6. Scaling analysis indicated
that for the monolithic bed process the optimal pressurization time was the contact
time required for the adsorption wave to pass through the bed; in contrast, for the
packed bed process it was the time required to achieve equilibrium in the adsorption
bed. This example also illustrated the advantages of using ◦(1) scaling analysis for
dimensional analysis. Whereas a naı̈ve application of the Pi theorem indicated that
11 dimensionless groups were required, ◦(1) scaling analysis reduced the number
of dimensionless groups required to correlate the product purity and product recov-
ery to just two for the production of oxygen-enriched air using a specified adsorbent.

In Section 7.4 we applied scaling analysis to the thermally induced phase-
separation (TIPS) process for the fabrication of polymeric membranes. The TIPS
process involves coupled heat and mass transfer as well as nucleation and growth
of the dispersed solid phase in the casting solution. As such, this example employed
the microscale–macroscale concept to address the growth of the nucleated parti-
cles on the microscale that were considered to be a homogeneous source of diluent
mass on the macroscale of the casting solution. The dispersed phase particles were
assumed to be in both thermal and solutal equilibrium with the bulk of the sur-
rounding casting solution. This assumption is a thermal–solutal analog of the fast
reaction regime approximation considered in Chapter 6. This moving boundary
problem was atypical because the location of the interface between the phase-
separated region and homogeneous solution was not dictated by a classical Stefan
condition involving latent heat release but by a dynamic condition that depended
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on the nucleation process. Scaling analysis was used in this example to determine
when the mass transport, latent heat effects, and heat loss to the ambient gas phase
could be ignored in the describing equations. Although it was not necessary to scale
the liquid volume fraction in this example, since it was dimensionless and bounded
of ◦(1), a separate scale was introduced for its time rate of change. Since we were
interested in scaling the TIPS process at short times during which the pore-size
distribution of the resulting membrane is created, we determined the length scale
by balancing the accumulation and conduction terms. This scaling introduced the
Lewis number, which is the ratio of heat conduction to species diffusion. A large
Lewis number, which is typical for polymer solutions, implied that mass-transfer
effects could be ignored in the describing equations. When the dimensionless group
that characterized the ratio of the characteristic time for heat conduction to that
for latent heat generation was small, the latter effect could be ignored. For suf-
ficiently short penetration depths relative to the casting solution thickness, heat
loss to the ambient gas phase could be ignored. The predictions for the polymer
spherulite diameter of a numerical solution to the simplified describing equations
compared well with scanning electron microscopy measurements for a typical TIPS
membrane-casting system.

In Section 7.5 we applied scaling analysis to the design of the fluid-wall aerosol
reactor process for the direct conversion of methane to hydrogen that produces a
clean-burning fuel without the production of any greenhouse gases. This example
involved coupled heat and mass transfer with chemical reaction. It also involved the
concept of microscale–macroscale modeling. In this case the microscale element, a
carbon particle, was not necessarily assumed to be in local thermal equilibrium with
the gas phase on the macroscale of the reactor. As such, this example was a thermal
analog of the intermediate reaction regime considered in Chapter 6; that is, some
heat transfer from the carbon particles to the gas phase was assumed to be necessary
to promote the decomposition reaction (i.e., the thermal analog of the slow reaction
regime would not be practical); however, the gas phase did not need be in thermal
equilibrium with the carbon particles (i.e., the fast reaction regime analog). These
considerations required including separate energy conservation equations for the
dispersed carbon particle and continuous gas phases. Scaling analysis was employed
to determine when thermal equilibrium between the carbon particles and gas phase
could be assumed and to estimate the local temperature and degree of conversion
in the gas phase. Independent scales were introduced for the spatial derivatives of
the conversion and temperatures of both the gas phase and carbon particles. One
challenge in this scaling analysis was to determine the proper terms to balance in
the energy equation for the gas phase; that is, it was not clear whether the principal
heat source was sensible heat introduced via the injected hydrogen, transfer from
the carbon particles, transfer from the carbon particles, or convective transfer from
the heated wall. However, the forgiving nature of scaling ensured that the proper
terms were balanced for specific design conditions. This example illustrated the
interesting situation where a dimensionless group was very large in a term that had
to be bounded of ◦(1). In particular, a large dimensionless group multiplied a term
containing the difference between the dimensionless carbon particle and gas-phase
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temperatures. This condition then implied that these two temperatures were nearly
equal; that is, the carbon particles and gas phase were in local thermal equilibrium
(i.e., the thermal analog of the fast reaction regime). The temperature dependence
of the nth-order decomposition reaction rate kinetics was pivotal in determining
the conversion achieved in this reaction. Hence, in this example scaling analysis
was used to obtain estimates of the local gas-phase temperature and degree of
conversion. The scaling approach to dimensional analysis was then used to isolate
into separate dimensionless groups key design parameters such as the reactor wall
temperature, carbon particle radius, and flow rate of carbon particles introduced in
the feed. Predictions of a numerical solution to the full set of describing equations
were then used to illustrate that scaling analysis provides reliable estimates for
the degree of conversion. Systematic deviations from the scaling analysis estimates
based on the local thermal equilibrium assumption between the carbon particles and
the gas phase were then explained in terms of the relevant dimensionless groups.
In summary, this example provides a very effective illustration of how scaling
analysis can be used to design and estimate the performance of an entirely new
process for which no prior operating data are available.

7.P PRACTICE PROBLEMS

7.P.1 Axial Diffusion Effects in an Oscillated Membrane–Lung Oxygenator

In Section 7.2 we scaled the coupled fluid dynamics and mass-transfer problem
associated with applying axial oscillations to improve the performance of a hollow-
fiber membrane oxygenator. We assumed that axial diffusion effects were negligible
in our scaling analysis. Retain the axial diffusion term in the describing equations
and use scaling analysis to develop a criterion for assessing when axial diffusion
can be ignored.

7.P.2 Transient Flow Effects in an Oscillated Membrane–Lung Oxygenator

In Section 7.2 we scaled the coupled fluid dynamics and mass-transfer problem
associated with applying axial oscillations in order to improve the performance of
a hollow-fiber membrane oxygenator. We assumed that transient flow effects could
be neglected: that is, the unsteady-state flow effects associated with the initiation
of the axial oscillations.

(a) Indicate how the describing equations for this problem need to be modified to
apply scaling analysis to assess when the transients can be
neglected.

(b) Scale the modified describing equations to develop appropriate criteria for
neglecting the transient effects.

(c) Discuss how changes in the relevant process parameters influence whether
transient effects can be ignored.
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7.P.3 Effect of Process Parameters on the Performance of an Oscillated
Membrane–Lung Oxygenator

In Section 7.2 we scaled the coupled fluid dynamics and mass-transfer problem
associated with applying axial oscillations to improve the performance of a hollow-
fiber membrane oxygenator. Our scaling analysis indicated that the dimensionless
mass-transfer coefficient or Sherwood number was a function of three dimensionless
groups, as indicated in equation (7.2-47). Discuss how changes in the relevant
physical properties and process parameters affect the performance of an oscillated
membrane–lung oxygenator.

7.P.4 Correlation for the Sherwood Number for a Membrane–Lung
Oxygenator Without Axial Oscillations

In Section 7.2 we stated without proof that the Sherwood number for a hollow-fiber
membrane oxygenator was correlated in terms of just one dimensionless group, as
indicated by equation (7.2-48). In this problem we prove this result.

(a) Consider the mass-transfer geometry shown in Figure 7.2-1; however,
assume that no oscillations are applied and that the liquid within the hollow
fiber is in fully developed laminar flow. Write the appropriate describing
equations and associated boundary conditions.

(b) Scale the describing equations to determine the relevant scale and reference
factors. Ignore axial diffusion. In carrying out this scaling analysis, recall
that in the absence of axial oscillations the velocity profile is that for fully
developed laminar flow in a circular tube. Hence, it is necessary to scale
only the species-balance equation and its associated boundary conditions.

(c) Use the results of your scaling analysis to determine the dimensionless
group(s) required to correlate the Sherwood number.

7.P.5 Wall Effects in Pulsed PSA

In scaling the pulsed PSA process, we assumed plug flow through the packed
adsorbent bed. However, due to the no-slip condition at the wall of the vessel that
holds the adsorbent, there is a region of influence wherein a steep radial velocity
gradient exists.

(a) Use scaling analysis to estimate the thickness of the region of influence
wherein the velocity profile is not uniform; that is, the gas is not in plug flow.

(b) Develop a criterion for ignoring the velocity gradient near the wall for
pulsed PSA.

7.P.6 Alternative Boundary Conditions for Pulsed PSA: Specified
Superficial Velocity and Downstream Pressure

The pulsed single-bed PSA process can be operated by specifying the feed com-
position and any two process parameters, consisting of the upstream total pressure,
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downstream total pressure, and upstream superficial velocity U0. In Section 7.3 we
considered operating the PSA process by controlling the upstream and downstream
pressures. In this problem we consider an alternative mode of operation.

(a) Consider operation of the PSA process whereby the feed composition and
upstream superficial velocity as well as the downstream total pressure are
specified. Scale the modified describing equations and determine the relevant
scale factors. Note that in this case it is necessary to introduce a scale factor
for the axial pressure gradient.

(b) Determine the characteristic times in terms of the relevant physical proper-
ties and design parameters for these modified boundary conditions.

(c) Determine the criterion for ignoring axial dispersion.

(d) Determine the criterion for assuming a linear adsorption isotherm for both
components.

(e) Determine the criterion for assuming quasi-steady-state.

(f) Determine the criterion for assuming local adsorption equilibrium.

7.P.7 Alternative Boundary Conditions for Pulsed PSA: Specified
Superficial Velocity and Upstream Pressure

The pulsed single-bed PSA process can be operated by specifying the feed com-
position and any two process parameters, consisting of the upstream total pressure,
downstream total pressure, and upstream superficial velocity U0. In Section 7.3 we
considered operating the PSA process by controlling the upstream and downstream
pressures. In this problem we consider an alternative mode of operation.

(a) Consider operation of the PSA process whereby the feed composition and
upstream superficial velocity pressure are specified. Scale the modified
describing equations and determine the relevant scale factors. Note that in
this case it is necessary to introduce a scale factor for the axial pressure
gradient.

(b) Determine the characteristic times in terms of the relevant physical proper-
ties and design parameters for these modified boundary conditions.

(c) Determine the criterion for ignoring axial dispersion.

(d) Determine the criterion for assuming a linear adsorption isotherm for both
components.

(e) Determine the criterion for assuming quasi-steady-state.

(f) Determine the criterion for assuming local adsorption equilibrium.

7.P.8 Pressure and Velocity Dependence of the Axial Dispersion Coefficient
for Pulsed PSA

In the scaling analysis for the pulsed PSA process that was carried out in Section
7.3, the axial dispersion coefficient was assumed to be constant. In fact, the axial
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dispersion coefficient depends on both the total pressure and the superficial velocity
through the porous media via the equation

DL = 0.7DAB + U

ε
Rp (7.P.8-1)

where Rp is the radius of the adsorbent particles, and DAB , the binary diffusion
for components A (nitrogen) and B (oxygen), is given by the following23

DAB = 0.0018583
√

T 3 (1/MA + 1/MB)

Pσ 2
AB

(7.P.8-2)

in which Mi is the molecular weight of component i, σAB the collision diameter
determined from the Lennard-Jones intermolecular potential function, and  a
dimensionless function of the temperature and intermolecular potential.

(a) Use scaling analysis to develop a criterion for determining when the effect
of the superficial velocity on the axial dispersion coefficient can be ignored.

(b) Use scaling analysis to develop a criterion for determining when the effect
of the total pressure on the axial dispersion coefficient can be ignored.

7.P.9 Scaling the Depressurization Step for Pulsed PSA

In Section 7.3 we scaled the pressurization step for a pulsed PSA oxygenator, during
which product enrichment in oxygen is effected by the selective adsorption of nitro-
gen from an air feed stream. The second step in the pulsed PSA process involves
depressurization of the packed adsorption bed to cause desorption and regeneration
of the adsorbent. Assume that depressurization involves instantaneously reducing the
pressure at the feed end of the adsorbent bed to atmospheric, while simultaneously
closing a valve at the product end of the bed so that no outward flow can occur.
Hence, all the desorbed gas exits through the feed end of the adsorbent bed. The
initial condition for this assumed depressurization step constitutes the axial distri-
butions of the pressure and concentration that were established at the end of the
pressurization step; these can be indicated formally as P (0, z) and pA(0, z). The
spatial distribution of the pressure and concentration necessarily change in time as
the adsorbent is regenerated. In particular, the pressure and concentration will display
maxima that progressively move through the adsorbent bed. Ideally, one chooses a
depressurization time that is sufficiently long to essentially restore the adsorbent bed
to its loading in equilibrium with air at atmospheric pressure. In this problem we
consider the scaling of this depressurization step.

(a) Write the appropriate describing equations along with the required initial
and boundary conditions for the depressurization step in pulsed PSA.

23R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, Hoboken, NJ,
2002, p. 526.
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(b) Determine the scale and reference factors as well as the relevant dimension-
less groups.

(c) Determine the relevant characteristic times in terms of the physical properties
and design parameters.

(d) Estimate the time required to essentially regenerate the adsorbent bed to a
loading corresponding to equilibrium with air at atmospheric pressure for
the physical properties and design parameters given in Table 7.3-1.

(e) In contrast to the pressurization step, the depressurization step will involve
total and partial pressure distributions that display maxima along the adsor-
bent bed length. Use scaling analysis to estimate the instantaneous location
of the maxima in the pressure. Note that this involves estimating the instan-
taneous thickness of the region of influence wherein the pressure gradient is
confined.

(f) Use scaling analysis to estimate the time required for the maxima in pressure
to propagate through the entire thickness of the adsorbent bed for the physical
properties and design parameters given in Table 7.3-1.

7.P.10 Dimensional Analysis Correlation for a Bed-Size Factor
for Pulsed PSA

In Section 7.3 we used the scaling analysis approach for dimensional analysis to
develop a correlation for product recovery. In particular, we isolated the applied
pressure and pressurization time into separate dimensionless groups. Use the scaling
analysis approach for dimensional analysis to develop a correlation for the bed-size
factor, ψbf , which is defined by

ψbf ≡ mad

mO2

(7.P.10-1)

where mad is the total mass of adsorbent in the bed and mO2 is the total mass of
oxygen produced per day. Isolate the applied pressure and pressurization time into
separate groups.

7.P.11 Estimation of the Time Required for TIPS Membrane Casting

The TIPS membrane-casting process was scaled in Section 7.4 to determine the
conditions for which the describing equations could be simplified. However, more
can be done with the results of this scaling analysis.

(a) Consider conditions for which heat loss to the ambient gas phase can be
ignored and estimate the time required for the boundary between the phase-
separated and single-phase regions to penetrate through the entire casting
solution.

(b) Why would this estimate be inaccurate when significant heat transfer occurs
at the upper boundary to the ambient gas phase?
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7.P.12 Scaling of the TIPS Process for Concentrated Casting Solutions

The scaling in Section 7.4 assumed that the diluent mass fraction ω was ◦(1). How-
ever, it is possible to have casting solutions concentrated in polymer for which the
diluent mass fraction is considerably less than 1. Rescale the describing equations
for the TIPS process for a casting solution that is very concentrated in polymer. In
this case it will be necessary to scale the diluent mass fraction even though it is
dimensionless.

7.P.13 TIPS Membrane Casting with Both Convective and Radiative Heat
Transfer to the Ambient Gas Phase

In Section 7.4 we allowed for heat loss from the casting solution to the ambient
gas phase only by convective heat transfer, which was described by a lumped-
parameter boundary condition given by equation (7.4-9). Consider now heat loss
by both radiation and convection, for which the radiative heat flux is given by

qz = εσ (T 4 − T 4
∞) (7.P.13-1)

where ε and T are the emissivity and absolute temperature of the upper surface of
the casting solution, σ is the Stefan–Boltzmann constant, and T∞ is the temperature
in the bulk of the ambient gas phase. In working this problem, assume that the
energy and species-balance equations can be decoupled and that latent heat effects
can be ignored.

(a) Rescale the TIPS-casting process considered in Section 7.4 for this modified
boundary condition.

(b) Determine the criterion for ignoring heat loss to the ambient gas phase at
the upper boundary.

(c) Determine the criterion for ignoring the radiative relative to convective heat
transfer at the upper boundary.

7.P.14 TIPS Casting on a Cold Boundary with a Constant Heat Flux

The TIPS membrane-casting process considered in Section 7.4 assumed that the
cold boundary was maintained at a fixed temperature. Here we consider maintaining
a constant heat flux at this boundary, which implies that its temperature must
decrease in time as the phase-separation front penetrates farther into the casting
solution.

(a) Rescale the describing equations assuming that the heat flux is specified at
this cold boundary; that is, assume a boundary condition at the cold surface
given by

qz = −k
∂T

∂z
= −q0, where q0 is a positive constant (7.P.14-1)
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In this scaling it is appropriate to allow a separate scale for the spatial
derivative of the temperature. Consider carefully how this scale should be
determined to achieve ◦(1) scaling.

(b) For this case you should obtain a length scale different from that given
in equation (7.4-24). This in turn implies that the thickness of the thermal
boundary layer or region of influence will have a different time dependence.
Compare this time dependence with that obtained in Section 7.4. In partic-
ular, discuss the physical reason for this difference in the time dependence.

(c) Determine the criterion for ignoring the latent heat term in the energy
equation for the constant heat-flux boundary condition.

(d) Determine the criterion for ignoring the diffusion term in the species-balance
equation.

(e) Determine the criterion for applying the boundary condition at the upper
liquid–gas interface at infinity.

(f) Determine the criterion for ignoring heat loss to the ambient gas phase.

7.P.15 Effect of Heat Loss in the Ambient Gas Phase in TIPS Casting

In Section 7.4 we scaled the TIPS process for the region of influence near the cold
boundary; that is, our temperature scale was based on that of the cold boundary and
our length scale was dictated by balancing the accumulation and heat conduction
terms in the energy equation. This scaling was appropriate for determining the cri-
teria for neglecting the coupling between the energy and species-balance equations
and for ignoring the latent heat effects. However, this scaling provides no informa-
tion on the thickness of the region of influence near the upper boundary at which
heat loss occurs to the ambient gas phase. In working this problem, assume that the
energy and species-balance equations can be decoupled and that latent heat effects
can be ignored.

(a) Carry a scaling analysis of the describing equations for conditions appro-
priate to the upper boundary region for short contact times for which the
phase separation caused by the cold boundary is far removed. Introduce a
separate scale factor for the spatial derivative of the temperature since the
latter is unknown at the upper boundary.

(b) Estimate the thickness of the region of influence or thermal boundary layer at
the upper surface wherein the conductive heat transfer is essentially confined.

(c) Use the results of your scaling analysis in this problem and those in Section
7.4 to estimate when heat loss at the upper boundary begins to affect the
heat transfer to the cold boundary.

7.P.16 Upward- and Downward-Propagating Phase-Separation Fronts
in TIPS Casting

In Practice Problem 7.P.15 we considered a scaling analysis appropriate to the
region near the upper boundary at which heat transfer to the ambient gas phase
occurs. If this heat transfer is sufficiently fast, it is possible that a phase-separation
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front will propagate downward from the upper boundary as well as upward from the
cold lower boundary. In working this problem, assume that the energy and species-
balance equations can be decoupled and that latent heat effects can be ignored.

(a) Use the results of the scaling analysis in Practice Problem 7.P.15 to deter-
mine the criteria for whether phase separation will also occur in the upper
boundary region. Assume that the relationship between the crystallization
temperature and cooling rate is of the form given by equation (7.4-10). Hint :
One needs to use the scale factor for the temperature gradient to estimate the
instantaneous temperature at the upper boundary. However, the temperature
required for phase separation also depends on the cooling rate, which can
also be estimated from your scaling analysis. Note that the temperature of
the upper boundary must be greater than or equal to that of the ambient gas
phase, which introduces yet another limitation on whether phase separation
can occur.

(b) Consider the special case of a very large heat-transfer coefficient for the
boundary condition at the upper surface. How does this change the scaling
analysis in part (a)?

(c) Determine the criteria for whether phase separation will occur in the upper
boundary region for the special case of a very large heat-transfer coefficient.

7.P.17 Low Biot Number Approximation for TIPS Membrane Casting

If the heat flux rather than the temperature is specified at the cold boundary, it is
possible under some conditions to achieve a uniform temperature throughout the
casting solution during TIPS casting. This might be a useful process for producing
a membrane that has a homogeneous pore structure throughout its cross-section.
This condition is analogous to that considered in Chapter 4 for low Biot number
heat transfer. In working this problem, assume that the energy and species-balance
equations can be decoupled and that latent heat effects can be ignored.

(a) Scale the describing equations for a constant heat-flux condition at the cold
boundary. Determine the criteria for assuming that the entire casting solution
is instantaneously at a uniform temperature that changes only in time. Note
that the conditions at both the upper and lower boundary must be considered
in developing these criteria.

(b) Discuss why a uniform temperature throughout the casting solution might
result in a membrane with a homogeneous structure; that is, a structure in
which all the pores have essentially the same size.

7.P.18 Effect of Convective Heat Transfer Due to Densification During
TIPS Casting

The scaling analysis carried out in Section 7.4 assumed that the thickness of the
casting solution remained constant during the TIPS process. In fact, the thickness
of the casting solution can change even when there is no mass loss to the ambient if
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densification occurs due to the phase separation. Since polymer molecules “unfold”
in solution, whereas they are more compact in the solid phase, some degree of
densification will occur during TIPS casting. The effect of convective transport
due to densification was considered in Example Problem 5.E.1. Assume that the
mass density of the binary solution of polymer and diluent is given by

ρ = ωAρ0
A + ωBρ0

B ⇒ ρ = ρ0
B + �ρ0

ABωA (7.P.18-1)

where ρ0
i is the pure component mass density of component i and �ρ0

AB ≡ ρ0
A −

ρ0
B . The relationship between the overall mass density and the mass-average veloc-

ity uz is given by the continuity equation

∂ρ

∂t
= − ∂

∂z
(ρuz) ⇒ �ρ0

AB

∂ωA

∂t
= −(ρ0

B + �ρ0
ABωA)

∂uz

∂z
− uz �ρ0

AB

∂ωA

∂z
(7.P.18-2)

If we assume that the energy and species-balance equations can be decoupled, the
diluent mass fraction ωA is simply related to the volume fraction of the liquid phase
ψ by equation (7.4-36), where ψ is determined from equation (7.4-5). Hence, there
is no need to consider the species-balance equation to obtain a scale for the velocity
arising from densification, as was done in Example Problem 5.E.1.

(a) Use scaling analysis to obtain an estimate of the velocity that arises from
densification during the TIPS process.

(b) Determine the criterion for ignoring convective heat transfer during TIPS
casting.

(c) Determine the criterion for assuming a constant overall mass density during
TIPS casting.

7.P.19 Scaling a Fluid-Wall Aerosol Flow Reactor by Balancing Convection
and Heat Transfer from the Wall in the Gas Phase

In Section 7.5 we scaled a fluid-wall aerosol reactor for which we considered
energy balances for the gas phase and the carbon cloud. Balancing the principal
terms in the carbon-cloud energy equation was straightforward since the carbon
particles were heated only by radiation from the reactor walls. However, it was
not obvious which terms should be balanced in the energy equation for the gas
phase since there were several heat sources. We chose to balance the convection
term with the sensible heat supplied by the hydrogen injected. In this problem we
consider an alternative scaling for the energy balance in the gas phase.

(a) Scale the energy balance in the gas phase assuming that the convection term
is balanced by the convective heat transfer from the reactor wall.

(b) Evaluate the dimensionless groups that emanate from this new scaling using
the characteristic values given in Table 7.5-1.
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(c) Is this a reasonable scaling based on the values of the dimensionless groups
that you determined in part (b)?

(d) How can the values of the dimensionless groups determined for the original
scaling in Section 7.5 indicate whether this is a reasonable scaling?

7.P.20 Scaling a Fluid-Wall Aerosol Flow Reactor by Balancing Convection
and Heat Transfer from the Carbon Particles in the Gas Phase

In Section 7.5 we scaled a fluid-wall aerosol reactor for which we considered
energy balances for the gas phase and the carbon cloud. Balancing the principal
terms in the carbon-cloud energy equation was straightforward since the carbon
particles were heated only by radiation from the reactor walls. However, it was not
obvious which terms should be balanced in the energy equation for the gas phase.
We chose to balance the convection term with the sensible heat supplied by the
hydrogen injected. We subsequently found that the heat transfer from the carbon
particles to the gas was so large that the gas came to thermal equilibrium with the
carbon particles within a very short distance down the reactor. This suggests that
we should have balanced the convection term with the convective heat transfer
from the carbon particles.

(a) Rescale the fluid-wall aerosol reactor assuming that the principal terms in
the energy balance for the gas balance are the convection term and the
convective heat transfer from the carbon particles.

(b) Evaluate the dimensionless groups that emanate from this new scaling using
the characteristic values given in Table 7.5-1.

(c) What do the values of the dimensionless groups that you determined in part
(b) indicate insofar as the apparent importance of the heat added to the gas
by the hydrogen injected and convective heat transfer from the walls?

(d) Why is it not correct to assume that the heat added to the gas by the
hydrogen injected and through convective heat transfer from the walls can
be neglected based on this scaling?

(e) What do the values of the dimensionless groups determined in the original
scaling in Section 7.5 indicate as to the relative importance of the heat added
to the gas by the hydrogen injected and by convective heat transfer from
the walls?

7.P.21 Estimation of the Thermal Boundary-Layer Thickness at the
Upstream End of a Fluid-Wall Aerosol Flow Reactor

In the scaling analysis carried out in Section 7.5 we found that it was reasonable to
assume that the gas and carbon particles were in thermal equilibrium. However, as
indicated in Section 7.5, this approximation breaks down near the upstream end of
the fluid-wall aerosol flow reactor. Use scaling analysis to estimate the thickness of
the region of influence or thermal boundary layer within which the gas and carbon
particles are not in thermal equilibrium.
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7.P.22 Effect of the Carbon-Particle Radius on the Thermal Equilibrium
Approximation for a Fluid-Wall Aerosol Flow Reactor

In Section 7.5 we found that the gas was in local thermal equilibrium with the cloud
of carbon particles. This was indicated by the large values of the dimensionless
groups 	2 and 	8 for the characteristic values given in Table 7.5-1.

(a) Determine the dependence of 	2 and 	8 on the radius of the carbon parti-
cles.

(b) Although both 	2 and 	8 decrease with an increase in the carbon-particle
radius, their dependence on this parameter differs. How, then, does one
determine how large the carbon particle radius has to be for the local thermal
equilibrium approximation to break down; that is, which if either of these
dimensionless groups becomes limiting?

(c) For a larger carbon-particle size and the other characteristic values given in
Table 7.5-1, what can one conclude if 	2 = ◦(1) but 	8 � 1?

(d) How large would the carbon particles have to be for the local thermal
equilibrium approximation to break down?

7.P.23 Effect of the Wall Temperature on the Thermal Equilibrium
Approximation for a Fluid-Wall Aerosol Flow Reactor

In Section 7.5 we found that the gas was in local thermal equilibrium with the
cloud of carbon particles. This was indicated by the large values of the dimen-
sionless groups 	2 and 	8 for the characteristic values given in Table 7.5-1. The
dimensionless group 	2 depends markedly on the wall temperature of the reactor,
whereas 	8 is independent of it.

(a) For a higher reactor wall temperature and the other characteristic values
given in Table 7.5-1, what can one conclude if 	2 � 1 but 	8 � ◦(1)?

(b) For a higher reactor wall temperature and the other characteristic values
given in Table 7.5-1, what can one conclude if 	2 � 1 but 	8 = ◦(1)?

(c) For a higher reactor wall temperature and the other characteristic values
given in Table 7.5-1, what can one conclude if both 	2 � 1 and 	8 � 1?

(d) How high would the reactor wall temperature have to be for the local thermal
equilibrium approximation to break down?

7.P.24 Implications of Rapid Thermal Decomposition Kinetics for a
Fluid-Wall Aerosol Flow Reactor

The dimensionless groups 	1, 	5, and 	6 multiply terms that are associated with
heat either released or consumed in the thermal decomposition reaction for methane.
These three dimensionless groups are proportional to the parameter kns , which is
the scale for the reaction-rate parameter. In principle it seems possible for kns to
be sufficiently large that one or more of the dimensionless groups 	1, 	5, and 	6

becomes much greater than 1.
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(a) Discuss the implications of the condition 	1 � 1; in particular, is this
possible?

(b) Discuss the implications of the condition 	5 � 1; in particular, is this
possible?

(c) Discuss the implications of the condition 	6 � 1; in particular, is this
possible?

7.P.25 Temperature Required to Achieve Complete Fractional Conversion
in a Fluid-Wall Aerosol Flow Reactor

Estimate the minimum wall temperature required to achieve essentially complete
fractional conversion of methane to hydrogen and carbon in a fluid-wall aerosol
reactor for the other characteristic parameters given in Table 7.5-1.

7.P.26 Transformation of the Dimensional Groups Containing
the Temperature Difference for a Fluid-Wall Aerosol Flow Reactor

In Section 7.5 we used step 9 in the scaling approach to dimensional analysis out-
lined in Section 2.4 to transform the dimensionless groups that we obtained by scal-
ing analysis to groups more convenient for correlating numerical data. In particular,
we used this step to transform the dimensionless groups containing TW − T0 into
groups that contained either TW or T0 but not both. However, we did this without
proof. Show how the dimensionless groups given by equations (7.5-37), (7.5-38),
and (7.5-45) can be transformed into those given by equations (7.5-55), (7.5-56),
and (7.5-61) by invoking step 10 in the scaling approach to dimensional analysis
outlined in Section 2.4. The latter step states that if 	p = f (	1, 	2, . . . , 	k) and
	2 through 	k are redundant (i.e., they appear separately), 	p can be replaced
by 	1.

7.P.27 Transformation of the Dimensional Groups Containing the Sum
of Molar Velocities for a Fluid-Wall Aerosol Flow Reactor

In Section 7.5 we used step 9 in the scaling approach to dimensional analysis
outlined in Section 2.4 to transform the dimensionless groups that we obtained
via scaling analysis to groups more convenient for correlating numerical data.
In particular, we used this step to transform the dimensionless groups contain-
ing W 0

C and W 0
M + W 0

C into groups that contained either W 0
M or W 0

C but not
both. However, we did this without proof. Show how the dimensionless groups
given by equations (7.5-37) and (7.5-44) can be transformed into those given by
equations (7.5-55) and (7.5-60) by invoking step 10 in the scaling approach to
dimensional analysis outlined in Section 2.4. The latter step states that if 	p =
f (	1, 	2, . . . , 	k) and 	2 through 	k are redundant (i.e., they appear separately),
	p can be replaced by 	1.
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7.P.28 Reconciling the Estimate of Fractional Conversion with Dimensional
Analysis for a Fluid-Wall Aerosol Flow Reactor

We obtained an estimate of the fractional conversion Xc in Section 7.5 given by
equation (7.5-52). This estimate would appear to be inconsistent with the impli-
cations of the dimensional analysis given by equation (7.5-64); that is, equation
(7.5-52) does not include all the parameters contained in the dimensionless groups
in equation (7.5-64).

(a) Discuss why there is no contradiction between equations (7.5-52) and (7.5-
64).

(b) Show how equation (7.5-52) can be expressed in terms of the reduced set of
dimensionless groups appropriate to the approximations made in obtaining
this estimate.

(c) Use the estimate provided by equation (7.5-52) to suggest ways to increase
the fractional conversion.

7.P.29 Correlation for the Fractional Conversion When Local Thermal
Equilibrium Applies in a Fluid-Wall Aerosol Flow Reactor

In Section 7.5 we used the scaling approach to dimensional analysis to develop a
correlation for the fractional conversion Xc for the general case for which local ther-
mal equilibrium between the gas and the carbon particles is not assumed. Develop
a dimensional analysis correlation for the fractional conversion for the special case
of 	2 � 1, which implies that the gas can be assumed to be in local thermal
equilibrium with the carbon particles.

7.P.30 Isolating the Gas-Phase Mass-Transfer Coefficient in Dimensional
Analysis for a Fluid-Wall Aerosol Flow Reactor

In Section 7.5 we used steps 7, 9, and 10 in the scaling approach to dimensional
analysis to isolate R0, W 0

C , and TW into separate groups. Use this approach to
develop a correlation for the fractional conversion for which the gas-phase mass-
transfer coefficient, kGs , is isolated into just one dimensional group.

7.P.31 Isolating the Molar Velocity of Hydrogen in Dimensional Analysis
for a Fluid-Wall Aerosol Flow Reactor

In Section 7.5 we used steps 7, 9, and 10 in the scaling approach to dimensional
analysis to isolate R0, W 0

C , and TW into separate groups. Use this approach to
develop a correlation for the fractional conversion for which the molar velocity of
hydrogen, ŴH , is isolated into just one dimensional group.



APPENDIX A
Sign Convention for the Force
on a Fluid Particle

The equations of motion are a statement of Newton’s law of motion applied to a
system that consists of a fluid particle. The latter can be thought of as a constituent
part of a fluid continuum that moves with the local fluid velocity and has a constant
infinitesimal mass; however, it need not have constant volume and density since
these two quantities can vary in time while maintaining constant fluid particle
mass. The fluid particle is a useful system since its mass is so small that in the
limit of vanishingly small volume, its properties become those of a point in the
fluid continuum that moves with the local fluid velocity.

To apply Newton’s law of motion to a fluid particle, we need to consider the
force �Fp exerted on a fluid particle by the fluid surrounding it. The total stress
tensor σ by definition operates on the local unit normal vector �n to a surface to

cause a force. The convention employed here defines �Fp to be the force exerted
on the surface of the particle by the fluid on the side into which the normal vector
is pointing; this is shown in Figure A.1-1 and is given by

�Fp = −
∫

S

�nσ dS (A.1-1)

It follows that the force �Ff that the fluid particle exerts on the surrounding fluid
is given by

�Ff = +
∫

S

�nσ dS (A.1-2)

An entirely equivalent definition is the following: σij is the total stress exerted in
the +j -direction on a fluid surface defined by a plane of constant i by the fluid
in the region of lesser i. For example, σyx is the total stress exerted in the +x-
direction on a fluid surface defined by a plane of constant y by the fluid located
beneath this surface.
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Total surface
area S

n

Fluid particle

→

Figure A.1-1 Fluid particle of surface area S showing the unit normal vector to surface �n.

It is important to note that there is no agreement in the technical literature
regarding the sign convention for the force acting on a fluid particle. Popular engi-
neering textbooks such as Transport Phenomena by Bird et al.1 employ the sign
convention implied by equations (A.1-1) and (A.1-2) whereas other books employ
a convention in which the signs are reversed in these two equations. One can use
either convention, of course. However, in doing so, one must be certain to use com-
patible signs in the constitutive equations that relate the stress to the rate of strain;
that is, to ensure that positive forces are exerted in the positive coordinate direc-
tion, the sign convention given by equations (A.1-1) and (A.1-2) implies a certain
set of signs in the constitutive equations that relate the stress to the rate of strain.
Hence, the signs given for Newton’s constitutive equation in Appendixes B and D
are compatible with the sign convention for the force on a fluid particle given by
equations (A.1-1) and (A.1-2) When using constitutive equations taken from the
technical literature, one has to be careful to employ a form of the equations of
motion that has a compatible sign convention.

1R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, Hoboken, NJ,
2002, p. 13.



APPENDIX B
Generalized Form of the
Transport Equations

B.1 CONTINUITY EQUATION

The following form of the continuity or total mass-balance equation in general-
ized vector notation is expressed in terms of the mass density ρ, which can be
nonconstant, and mass-average velocity vector �u:

∂ρ

∂t
= −∇ · ρ �u (B.1-1)

The following form of the continuity or total molar-balance equation in general-
ized vector notation is expressed in terms of the molar density c, which can be
nonconstant, and molar-average velocity vector �̂u:

∂c

∂t
= −∇ · c �̂u + Ĝ (B.1-2)

where Ĝ is the total molar generation rate per unit volume.

B.2 EQUATIONS OF MOTION

The following form of the equations of motion in generalized vector–tensor notation
allows for nonconstant physical properties, a body force due to a gravitational field,
and an unspecified viscous stress tensor τ :

ρ
∂ �u
∂t

+ ρ �u · ∇ �u = −∇P − ∇ · τ + ρ �g (B.2-1)

Equation (B.2-1) can be applied to non-Newtonian fluids if the appropriate con-
stitutive equation relating the viscous stress to the rate of strain is known. The
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viscous stress tensor τ follows the sign convection for the force on a fluid particle
discussed in Appendix A and for a Newtonian fluid is given by

τ = −
(

κ − 2

3
µ

)

(∇ · �u)δ − µ[∇�u + (∇�u)†] (B.2-2)

where µ is the shear viscosity, κ the bulk viscosity, δ the second-order identity
tensor, and † denotes the transpose of a second-order tensor. For the special case of
an incompressible Newtonian fluid with constant viscosity, equation (B.2.1) when
combined with equation (B.2-2) simplifies to

ρ
∂ �u
∂t

+ ρ �u · ∇ �u = −∇P + µ∇2�u + ρ �g (B.2-3)

B.3 EQUATIONS OF MOTION FOR POROUS MEDIA

The following form of the equations of motion in generalized vector–tensor notation
for flow through porous media is based on Brinkman’s empirical modification of
Darcy’s law and assumes a body force due to a gravitational field, and an incom-
pressible fluid having constant viscosity µ and permeability kp; ��u denotes the

superficial velocity based on considering the porous media to be homogeneous1:

0 = −∇P − µ

kp

��u + µ∇2 ��u + ρ �g (B.3-1)

B.4 THERMAL ENERGY EQUATION

The following form of the thermal energy equation in generalized vector–tensor
notation allows for nonconstant physical properties, energy generation, and con-
version of mechanical to internal energy by means of viscous dissipation, which is
expressed in terms of an unspecified viscous stress tensor τ :

ρCv

∂T

∂t
+ ρCv �u · ∇T = ∇ · (k∇T ) − T

∂P

∂T

∣
∣
∣
∣
ρ

(∇ · �u) − (τ : ∇�u) + Ge (B.4-1)

where Cv is the heat capacity at constant volume, k the thermal conductivity, and
Ge the energy generation rate per unit volume. Equation (B.4-1) can be applied to
non-Newtonian fluids if the appropriate constitutive equation relating the viscous
stress to the rate of strain is known. For the special case of an incompressible
Newtonian fluid with constant thermal conductivity k and for which the viscous
stress tensor is given by equation (B.2-2), equation (B.4-1) simplifies to

ρCp

∂T

∂t
+ ρCp �u · ∇T = k∇2T + µ[∇�u + (∇�u)†] : ∇�u + Ge (B.4-2)

where Cp is the heat capacity at constant pressure.

1H. C. Brinkman, Appl. Sci. Res., A1, 27–34, 81–86 (1947).
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B.5 EQUATION OF CONTINUITY FOR A BINARY MIXTURE

The following form of the equation of continuity or species-balance equation in
generalized vector–tensor notation for component A in a binary system allows for
nonconstant physical properties and is expressed in terms of the mass concentration
ρA and the mass flux vector �nA:

∂ρA

∂t
+ ∇ · �nA = GA (B.5-1)

where GA is the mass rate of generation of component A per unit volume. The
mass flux vector is given for a binary system by Fick’s law of diffusion in the
form

�nA = ωA(�nA + �nB) − ρDAB∇ωA = ρA�u − ρDAB∇ωA (B.5-2)

in which ωA is the mass fraction of component A, DAB the binary diffusion coef-
ficient, and �u the mass-average velocity. The form of the species-balance equation
given by equation (B.5-1) is particularly useful for describing mass transfer in
incompressible liquid and solid systems for which the mass density ρ is constant.
For the special case of an incompressible Newtonian fluid with a constant binary
diffusion coefficient DAB , equation (B.5-1) when combined with equation (B.5-2)
simplifies to

∂ρA

∂t
+ �u · ∇ρA = DAB∇2ρA + GA (B.5-3)

The following form of the species-balance equation in generalized vector–tensor
notation for component A in a binary system allows for nonconstant physical
properties and is expressed in terms of the molar concentration cA and the molar
flux vector �NA:

∂cA

∂t
+ ∇ · �NA = ĜA (B.5-4)

where ĜA is the molar generation rate of component A per unit volume. The
molar flux vector is given for a binary system by Fick’s law of diffusion in the
form

�NA = xA( �NA + �NB) − cDAB∇xA = cA
�̂u − cDAB∇xA (B.5-5)

in which xA is the mole fraction of component A and �̂u is the molar-average
velocity. The form of the species-balance equation given by equation (B.5-4) is
particularly useful for describing mass transfer in gas systems for which the molar
density c is constant at a fixed temperature and pressure. This equation is also
used to describe reacting systems for which the rate of generation of species is
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dictated by the reaction stoichiometry in terms of molar concentrations. For the
special case of an incompressible Newtonian fluid with a constant binary diffusion
coefficient DAB , equation (B.5-4) when combined with equation (B.5-5) simpli-
fies to

∂cA

∂t
+ �̂u · ∇cA = DAB∇2cA + ĜA (B.5-6)



APPENDIX C
Continuity Equation

C.1 RECTANGULAR COORDINATES

The following form of the continuity or total mass-balance equation in rectangular
coordinates is expressed in terms of the mass density ρ, which can be nonconstant,
and mass-average velocity components ui :

∂ρ

∂t
+ ∂

∂x
(ρux) + ∂

∂y
(ρuy) + ∂

∂z
(ρuz) = 0 (C.1-1)

For the special case of an incompressible fluid or fluid having a constant mass
density, equation (C.1-1) simplifies to

∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0 (C.1-2)

The following form of the continuity or total mass-balance equation in rectangular
coordinates is expressed in terms of the molar density c, which can be nonconstant,
and molar-average velocity components ûi :

∂c

∂t
+ ∂

∂x
(cûx) + ∂

∂y
(cûy) + ∂

∂z
(cûz) = Ĝ (C.1-3)

where Ĝ is the total molar generation rate per unit volume. For the special case of
a fluid having a constant molar density, equation (C.1-3) simplifies to

∂ûx

∂x
+ ∂ûy

∂y
+ ∂ûz

∂z
= Ĝ (C.1-4)
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C.2 CYLINDRICAL COORDINATES

The following form of the continuity or total mass-balance equation in cylindrical
coordinates is expressed in terms of the mass density ρ, which can be nonconstant,
and mass-average velocity components ui :

∂ρ

∂t
+ 1

r

∂

∂r
(ρrur) + 1

r

∂

∂θ
(ρuθ ) + ∂

∂z
(ρuz) = 0 (C.2-1)

For the special case of an incompressible fluid or fluid having a constant mass
density, equation (C.2-1) simplifies to the following:

1

r

∂

∂r
(rur) + 1

r

∂uθ

∂θ
+ ∂uz

∂z
= 0 (C.2-2)

The following form of the continuity or total mass-balance equation in cylindrical
coordinates is expressed in terms of the molar density c, which can be nonconstant,
and molar-average velocity components ûi :

∂c

∂t
+ 1

r

∂

∂r
(crûr ) + 1

r

∂

∂θ
(cûθ ) + ∂

∂z
(cûz) = Ĝ (C.2-3)

where Ĝ is the total molar generation rate per unit volume. For the special case of
a fluid having a constant molar density, equation (C.2-3) simplifies to

1

r

∂

∂r
(rûr ) + 1

r

∂ûθ

∂θ
+ ∂ûz

∂z
= Ĝ (C.2-4)

C.3 SPHERICAL COORDINATES

The following form of the continuity or total mass-balance equation in spherical
coordinates is expressed in terms of the mass density ρ, which can be nonconstant,
and mass-average velocity components ui :

∂ρ

∂t
+ 1

r2

∂

∂r
(ρr2ur) + 1

r sin θ

∂

∂θ
(ρuθ sin θ) + 1

r sin θ

∂

∂φ
(ρuφ) = 0 (C.3-1)

For the special case of an incompressible fluid or fluid having a constant mass
density, equation (C.3-1) simplifies to

1

r2

∂

∂r
(r2ur) + 1

r sin θ

∂

∂θ
(uθ sin θ) + 1

r sin θ

∂uφ

∂φ
= 0 (C.3-2)
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The following form of the continuity or total mass-balance equation in spherical
coordinates is expressed in terms of the molar density c, which can be nonconstant,
and molar-average velocity components ûi :

∂c

∂t
+ 1

r2

∂

∂r
(cr2ûr ) + 1

r sin θ

∂

∂θ
(cûθ sin θ) + 1

r sin θ

∂

∂φ
(cûϕ) = Ĝ (C.3-3)

where Ĝ is the total molar generation rate per unit volume. For the special case of
a fluid having a constant molar density, equation (C.3-3) simplifies to

1

r2

∂

∂r
(r2ûr ) + 1

r sin θ

∂

∂θ
(ûθ sin θ) + 1

r sin θ

∂ûφ

∂φ
= Ĝ (C.3-4)



APPENDIX D
Equations of Motion

D.1 RECTANGULAR COORDINATES

The following forms of the x-, y-, and z-components of the equations of motion
in rectangular coordinates allow for nonconstant physical properties, a body force
due to a gravitational field, and unspecified viscous stress-tensor components τij :

ρ
∂ux

∂t
+ ρux

∂ux

∂x
+ ρuy

∂ux

∂y
+ ρuz

∂ux

∂z
= −∂P

∂x
− ∂τxx

∂x
− ∂τyx

∂y
− ∂τzx

∂z
+ ρgx

(D.1-1)

ρ
∂uy

∂t
+ ρux

∂uy

∂x
+ ρuy

∂uy

∂y
+ ρuz

∂uy

∂z
= −∂P

∂y
− ∂τxy

∂x
− ∂τyy

∂y
− ∂τzy

∂z
+ ρgy

(D.1-2)

ρ
∂uz

∂t
+ ρux

∂uz

∂x
+ ρuy

∂uz

∂y
+ ρuz

∂uz

∂z
= −∂P

∂z
− ∂τxz

∂x
− ∂τyz

∂y
− ∂τzz

∂z
+ ρgz

(D.1-3)

Equations (D.1-1) through (D.1-3) can be applied to non-Newtonian fluids if the
appropriate constitutive equation relating the viscous stress to the rate of strain is
known. The components of the viscous stress tensor τij follow the sign convection
for the force on a fluid particle discussed in Appendix A and for a Newtonian fluid
are given by

τxx = −µ

[

2
∂ux

∂x
− 2

3

(
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

)]

(D.1-4)

τyy = −µ

[

2
∂uy

∂y
− 2

3

(
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

)]

(D.1-5)

τzz = −µ

[

2
∂uz

∂z
− 2

3

(
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

)]

(D.1-6)

τxy = τyx = −µ

(
∂ux

∂y
+ ∂uy

∂x

)

(D.1-7)
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τyz = τzy = −µ

(
∂uy

∂z
+ ∂uz

∂y

)

(D.1-8)

τzx = τxz = −µ

(
∂uz

∂x
+ ∂ux

∂z

)

(D.1-9)

For the special case of an incompressible Newtonian fluid with constant viscos-
ity, equations (D.1.1) through (D.1-3) combined with equations (D.1-4) through
(D.1-9) simplify to

ρ
∂ux

∂t
+ ρux

∂ux

∂x
+ ρuy

∂ux

∂y
+ ρuz

∂ux

∂z
= −∂P

∂x
+ µ

∂2ux

∂x2
+ µ

∂2ux

∂y2

+ µ
∂2ux

∂z2
+ ρgx (D.1-10)

ρ
∂uy

∂t
+ ρux

∂uy

∂x
+ ρuy

∂uy

∂y
+ ρuz

∂uy

∂z
= −∂P

∂y
+ µ

∂2uy

∂x2
+ µ

∂2uy

∂y2

+ µ
∂2uy

∂z2
+ ρgy (D.1-11)

ρ
∂uz

∂t
+ ρux

∂uz

∂x
+ ρuy

∂uz

∂y
+ ρuz

∂uz

∂z
= −∂P

∂z
+ µ

∂2uz

∂x2
+ µ

∂2uz

∂y2

+ µ
∂2uz

∂z2
+ ρgz (D.1-12)

D.2 CYLINDRICAL COORDINATES

The following forms of the r-, θ -, and z-components of the equations of motion in
cylindrical coordinates allow for nonconstant physical properties, a body force due
to a gravitational field, and unspecified viscous stress–tensor components τij :

ρ
∂ur

∂t
+ ρur

∂ur

∂r
+ ρ

uθ

r

∂ur

∂θ
− ρ

u2
θ

r
+ ρuz

∂ur

∂z

= −∂P

∂r
− 1

r

∂

∂r
(rτrr ) − 1

r

∂τrθ

∂θ
+ τθθ

r
− ∂τrz

∂z
+ ρgr (D.2-1)

ρ
∂uθ

∂t
+ ρur

∂uθ

∂r
+ ρ

uθ

r

∂uθ

∂θ
+ ρ

uruθ

r
+ ρuz

∂uθ

∂z

= −1

r

∂P

∂θ
− 1

r2

∂

∂r
(r2τrθ ) − 1

r

∂τθθ

∂θ
− ∂τθz

∂z
+ ρgθ (D.2-2)

ρ
∂uz

∂t
+ ρur

∂uz

∂r
+ ρ

uθ

r

∂uz

∂θ
+ ρuz

∂uz

∂z

= −∂P

∂z
− 1

r

∂

∂r
(rτrz) − 1

r

∂τθz

∂θ
− ∂τzz

∂z
+ ρgz (D.2-3)
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Equations (D.2-1) through (D.2-3) can be applied to non-Newtonian fluids if the
appropriate constitutive equation relating the viscous stress to the rate of strain is
known. The components of the viscous stress tensor τij follow the sign convection
for the force on a fluid particle discussed in Appendix A and for a Newtonian fluid
are given by

τrr = −µ

{

2
∂ur

∂r
− 2

3

[
1

r

∂

∂r
(rur) + 1

r

∂uθ

∂θ
+ ∂uz

∂z

]}

(D.2-4)

τθθ = −µ

{

2

(
1

r

∂uθ

∂θ
+ ur

r

)

− 2

3

[
1

r

∂

∂r
(rur) + 1

r

∂uθ

∂θ
+ ∂uz

∂z

]}

(D.2-5)

τzz = −µ

{

2
∂uz

∂z
− 2

3

[
1

r

∂

∂r
(rur) + 1

r

∂uθ

∂θ
+ ∂uz

∂z

]}

(D.2-6)

τrθ = τθr = −µ

[

r
∂

∂r

(uθ

r

)

+ 1

r

∂ur

∂θ

]

(D.2-7)

τθz = τzθ = −µ

(
∂uθ

∂z
+ 1

r

∂uz

∂θ

)

(D.2-8)

τzr = τrz = −µ

(
∂uz

∂r
+ ∂ur

∂z

)

(D.2-9)

For the special case of an incompressible Newtonian fluid with constant viscosity,
equations (D.2.1) through (D.2-3) combined with equations (D.2-4) through (D.2-9)
simplify to

ρ
∂ur

∂t
+ ρur

∂ur

∂r
+ ρ

uθ

r

∂ur

∂θ
− ρ

u2
θ

r
+ ρuz

∂ur

∂z

= −∂P

∂r
+ µ

∂

∂r

[
1

r

∂

∂r
(rur)

]

+ µ
1

r2

∂2ur

∂θ2
− µ

2

r2

∂uθ

∂θ
+ µ

∂2ur

∂z2
+ ρgr

(D.2-10)

ρ
∂uθ

∂t
+ ρur

∂uθ

∂r
+ ρ

uθ

r

∂uθ

∂θ
+ ρ

uruθ

r
+ ρuz

∂uθ

∂z

= −1

r

∂P

∂θ
+ µ

∂

∂r

[
1

r

∂

∂r
(ruθ )

]

+ µ
1

r2

∂2uθ

∂θ2
+ µ

2

r2

∂ur

∂θ
+ µ

∂2uθ

∂z2
+ ρgθ

(D.2-11)

ρ
∂uz

∂t
+ ρur

∂uz

∂r
+ ρ

uθ

r

∂uz

∂θ
+ ρuz

∂uz

∂z

= −∂P

∂z
+ µ

1

r

∂

∂r

(

r
∂uz

∂r

)

+ µ
1

r2

∂2uz

∂θ2
+ µ

∂2uz

∂z2
+ ρgz (D.2-12)
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D.3 SPHERICAL COORDINATES

The following forms of the r-, θ -, and φ-components of the equations of motion in
spherical coordinates allow for nonconstant physical properties, a body force due
to a gravitational field, and unspecified viscous stress–tensor components τij :

ρ
∂ur

∂t
+ ρur

∂ur

∂r
+ ρ

uθ

r

∂ur

∂θ
+ ρ

uφ

r sin θ

∂ur

∂φ
− ρ

u2
θ + u2

φ

r

= −∂P

∂r
− 1

r2

∂

∂r
(r2τrr) − 1

r sin θ

∂

∂θ
(τrθ sin θ)

− 1

r sin θ

∂τrφ

∂φ
+ τθθ + τφφ

r
+ ρgr (D.3-1)

ρ
∂uθ

∂t
+ ρur

∂uθ

∂r
+ ρ

uθ

r

∂uθ

∂θ
+ ρ

uφ

r sin θ

∂uθ

∂φ
+ ρ

uruθ

r
− ρ

u2
φ cot θ

r

= −1

r

∂P

∂θ
− 1

r2

∂

∂r
(r2τrθ ) − 1

r sin θ

∂

∂θ
(τθθ sin θ) − 1

r sin θ

∂τθφ

∂φ

− τrθ

r
+ cot θ

r
τφφ + ρgθ (D.3-2)

ρ
∂uφ

∂t
+ ρur

∂uφ

∂r
+ ρ

uθ

r

∂uφ

∂θ
+ ρ

uφ

r sin θ

∂uφ

∂φ
+ ρ

uφur

r
− uθuφ

r
cot θ

= − 1

r sin θ

∂P

∂φ
− 1

r2

∂

∂r
(r2τrφ) − 1

r

∂τθφ

∂θ
− 1

r sin θ

∂τφφ

∂φ

− τrφ

r
− 2 cot θ

r
τθφ + ρgφ (D.3-3)

Equations (D.3-1) through (D.3-3) can be applied to non-Newtonian fluids if the
appropriate constitutive equation relating the viscous stress to the rate of strain is
known. The components of the viscous stress tensor τij follow the sign convection
for the force on a fluid particle discussed in Appendix A and for a Newtonian fluid
are given by

τrr = −µ

{

2
∂ur

∂r
− 2

3

[
1

r2

∂

∂r
(r2ur) + 1

r sin θ

∂

∂θ
(uθ sin θ) + 1

r sin θ

∂uφ

∂φ

]}

(D.3-4)

τθθ = −µ

{

2

(
1

r

∂uθ

∂θ
+ ur

r

)

− 2

3

[
1

r2

∂

∂r
(r2ur) + 1

r sin θ

∂

∂θ
(uθ sin θ)

+ 1

r sin θ

∂uφ

∂φ

]}

(D.3-5)
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τφφ = −µ

{

2

(
1

r sin θ

∂uφ

∂φ
+ ur

r
+ uθ

r
cot θ

)

− 2

3

[
1

r2

∂

∂r
(r2ur) + 1

r sin θ

∂

∂θ
(uθ sin θ) + 1

r sin θ

∂uφ

∂φ

]}

(D.3-6)

τrθ = τθr = −µ

[

r
∂

∂r

(uθ

r

)

+ 1

r

∂ur

∂θ

]

(D.3-7)

τθφ = τφθ = −µ

[
sin θ

r

∂

∂θ

( uφ

sin θ

)

+ 1

r sin θ

∂uθ

∂φ

]

(D.3-8)

τφr = τrφ = −µ

[
1

r sin θ

∂ur

∂φ
+ r

∂

∂r

(uφ

r

)]

(D.3-9)

For the special case of an incompressible Newtonian fluid with constant viscos-
ity, equations (D.3-1) through (D.3-3) combined with equations (D.3-4) through
(D.3-9) simplify to

ρ
∂ur

∂t
+ ρur

∂ur

∂r
+ ρ

uθ

r

∂ur

∂θ
+ ρ

uφ

r sin θ

∂ur

∂φ
− ρ

u2
θ + u2

φ

r

= −∂P

∂r
+ µ

1

r2

∂2

∂r2
(r2ur) + µ

1

r2 sin θ

∂

∂θ

(

sin θ
∂ur

∂θ

)

+ µ
1

r2 sin2 θ

∂2ur

∂φ2
+ ρgr (D.3-10)

ρ
∂uθ

∂t
+ ρur

∂uθ

∂r
+ ρ

uθ

r

∂uθ

∂θ
+ ρ

uφ

r sin θ

∂uθ

∂φ
+ ρ

uruθ

r
− ρ

u2
φ cot θ

r

= −1

r

∂P

∂θ
+ µ

1

r2

∂

∂r

(

r2 ∂uθ

∂r

)

+ µ
1

r2

∂

∂θ

[
1

sin θ

∂

∂θ
(uθ sin θ)

]

+ µ
1

r2 sin2 θ

∂2uθ

∂φ2
+ µ

2

r2

∂ur

∂θ
− µ

2 cos θ

r2 sin2 θ

∂uφ

∂φ
+ ρgθ (D.3-11)

ρ
∂uφ

∂t
+ ρur

∂uφ

∂r
+ ρ

uθ

r

∂uφ

∂θ
+ ρ

uφ

r sin θ

∂uφ

∂φ
+ ρ

uφur

r
+ ρ

uθuφ

r
cot θ

= − 1

r sin θ

∂P

∂φ
+ µ

1

r2

∂

∂r

(

r2 ∂uφ

∂r

)

+ µ
1

r2

∂

∂θ

[
1

sin θ

∂

∂θ
(uφ sin θ)

]

+ µ
1

r2 sin2 θ

∂2uφ

∂φ2
+ µ

2

r2 sin θ

∂ur

∂φ
+ µ

2 cos θ

r2 sin2 θ

∂uθ

∂φ
+ ρgφ (D.3-12)



APPENDIX E
Equations of Motion for Porous Media

E.1 RECTANGULAR COORDINATES

The following forms of the x-, y-, and z-components of the equations of motion
in rectangular coordinates for flow through porous media are based on Brinkman’s
empirical modification of Darcy’s law and assume a body force due to a grav-
itational field, and an incompressible fluid having constant viscosity µ and per-
meability kp; the �ui denote the components of the superficial velocity based on
considering a porous medium to be homogeneous1:

0 = −∂P

∂x
− µ

kp

�ux + µ
∂2�ux

∂x2
+ µ

∂2�ux

∂y2
+ µ

∂2�ux

∂z2
+ ρgx (E.1-1)

0 = −∂P

∂y
− µ

kp

�uy + µ
∂2�uy

∂x2
+ µ

∂2�uy

∂y2
+ µ

∂2�uy

∂z2
+ ρgy (E.1-2)

0 = −∂P

∂z
− µ

kp

�uz + µ
∂2�uz

∂x2
+ µ

∂2�uz

∂y2
+ µ

∂2�uz

∂z2
+ ρgz (E.1-3)

E.2 CYLINDRICAL COORDINATES

The following forms of the r-, θ -, and z-components of the equations of motion
in cylindrical coordinates for flow through porous media are based on Brinkman’s
empirical modification of Darcy’s law and assume a body force due to a grav-
itational field, and an incompressible fluid having constant viscosity µ and per-
meability kp; the �ui denote the components of the superficial velocity based on
considering a porous medium to be homogeneous2:

0 = −∂P

∂r
− µ

kp

�ur + µ
∂

∂r

[
1

r

∂

∂r
(r�ur)

]

+ µ
1

r2

∂2�ur

∂θ2
− µ

2

r2

∂�uθ

∂θ
+ µ

∂2�ur

∂z2
+ ρgr

(E.2-1)

1H. C. Brinkman, Appl. Sci. Res., A1, 27–34, 81–86 (1947).
2Ibid.
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0 = −1

r

∂P

∂θ
− µ

kp

�uθ + µ
∂

∂r

[
1

r

∂

∂r
(r�uθ)

]

+ µ
1

r2

∂2�uθ

∂θ2

+ µ
2

r2

∂�ur

∂θ
+ µ

∂2�uθ

∂z2
+ ρgθ (E.2-2)

0 = −∂P

∂z
− µ

kp

�uz + µ
1

r

∂

∂r

(

r
∂�uz

∂r

)

+ µ
1

r2

∂2�uz

∂θ2
+ µ

∂2�uz

∂z2
+ ρgz (E.2-3)

E.3 SPHERICAL COORDINATES

The following forms of the r-, θ -, and φ-components of the equations of motion
in spherical coordinates for flow through porous media are based on Brinkman’s
empirical modification of Darcy’s law and assume a body force due to a grav-
itational field, and an incompressible fluid having constant viscosity µ and per-
meability kp; the �ui denote the components of the superficial velocity based on
considering a porous medium to be homogeneous3:

0 = −∂P

∂r
− µ

kp

�ur + µ
1

r2

∂2

∂r2
(r2�ur) + µ

1

r2 sin θ

∂

∂θ

(

sin θ
∂�ur

∂θ

)

+ µ
1

r2 sin2 θ

∂2�ur

∂φ2
+ ρgr (E.3-1)

0 = −1

r

∂P

∂θ
− µ

kp

�uθ + µ
1

r2

∂

∂r

(

r2 ∂�uθ

∂r

)

+ µ
1

r2

∂

∂θ

[
1

sin θ

∂

∂θ
(�uθ sin θ)

]

+ µ
1

r2 sin2 θ

∂2�uθ

∂φ2
+ µ

2

r2

∂�ur

∂θ
− µ

2 cos θ

r2 sin2 θ

∂�uφ

∂φ
+ ρgθ (E.3-2)

0 = − 1

r sin θ

∂P

∂φ
− µ

kp

�uφ + µ
1

r2

∂

∂r

(

r2 ∂�uφ

∂r

)

+ µ
1

r2

∂

∂θ

[
1

sin θ

∂

∂θ
(�uφ sin θ)

]

+ µ
1

r2 sin2 θ

∂2�uφ

∂φ2
+ µ

2

r2 sin θ

∂�ur

∂φ
+ µ

2 cos θ

r2 sin2 θ

∂�uθ

∂φ
+ ρgφ (E.3-3)

3Ibid.



APPENDIX F
Thermal Energy Equation

F.1 RECTANGULAR COORDINATES

The following form of the thermal energy equation in rectangular coordinates allows
for nonconstant physical properties, energy generation, and conversion of mechan-
ical to internal energy through viscous dissipation, which is expressed in terms of
unspecified viscous stress–tensor components τij :

ρCv

∂T

∂t
+ ρCvux

∂T

∂x
+ ρCvuy

∂T

∂y
+ ρCvuz

∂T

∂z
= ∂

∂x

(

k
∂T

∂x

)

+ ∂

∂y

(

k
∂T

∂y

)

+ ∂

∂z

(

k
∂T

∂z

)

− T
∂P

∂T

∣
∣
∣
∣
ρ

(
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

)

− τxx

∂ux

∂x
− τyy

∂uy

∂y
− τzz

∂uz

∂z

− τxy

(
∂ux

∂y
+ ∂uy

∂x

)

− τxz

(
∂ux

∂z
+ ∂uz

∂x

)

− τyz

(
∂uy

∂z
+ ∂uz

∂y

)

+ Ge

(F.1-1)

where Cv is the heat capacity at constant volume, k the thermal conductivity, and Ge

the energy generation rate per unit volume. Equation (F.1-1) can be applied to non-
Newtonian fluids if the appropriate constitutive equation relating the viscous stress to
the rate of strain is known. For the special case of an incompressible Newtonian fluid
with constant thermal conductivity for which the components of the viscous stress
tensor are given by equations (D.1-4) through (D.1-9), equation (F.1-1) simplifies to

ρCp

∂T

∂t
+ ρCpux

∂T

∂x
+ ρCpuy

∂T

∂y
+ ρCpuz

∂T

∂z
= k

∂2T

∂x2
+ k

∂2T

∂y2

+ k
∂2T

∂z2
+ 2µ

(
∂ux

∂x

)2

+ 2µ

(
∂uy

∂y

)2

+ 2µ

(
∂uz

∂z

)2

+ µ

(
∂ux

∂y
+ ∂uy

∂x

)2

+ µ

(
∂ux

∂z
+ ∂uz

∂x

)2

+ µ

(
∂uy

∂z
+ ∂uz

∂y

)2

+ Ge (F.1-2)

where Cp is the heat capacity at constant pressure.
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F.2 CYLINDRICAL COORDINATES

The following form of the thermal energy equation in cylindrical coordinates allows
for nonconstant physical properties, energy generation, and conversion of mechan-
ical to internal energy using viscous dissipation, which is expressed in terms of
unspecified viscous stress–tensor components τij :

ρCv

∂T

∂t
+ ρCvur

∂T

∂r
+ ρCv

uθ

r

∂T

∂θ
+ ρCvuz

∂T

∂z
= 1

r

∂

∂r

(

rk
∂T

∂r

)

+ 1

r2

∂

∂θ

(

k
∂T

∂θ

)

+ ∂

∂z

(

k
∂T

∂z

)

− T
∂P

∂T

∣
∣
∣
∣
ρ
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1

r

∂

∂r
(rur) + 1

r

∂uθ

∂θ
+ ∂uz

∂z

]

− τrr

∂ur

∂r
− τθθ

1

r

(
∂uθ

∂θ
+ ur

)

− τzz

∂uz

∂z
− τrθ

[

r
∂

∂r

(uθ

r

)

+ 1

r

∂ur

∂θ

]

− τrz

(
∂uz

∂r
+ ∂ur

∂z

)

− τθz

(
1

r

∂uz

∂θ
+ ∂uθ

∂z

)

+ Ge (F.2-1)

where Cv is the heat capacity at constant volume, k the thermal conductivity, and Ge

the energy generation rate per unit volume. Equation (F.2-1) can be applied to non-
Newtonian fluids if the appropriate constitutive equation relating the viscous stress
to the rate of strain is known. For the special case of an incompressible Newtonian
fluid with constant thermal conductivity for which the components of the vis-
cous stress tensor are given by equations (D.2-4) through (D.2-9), equation (F.2.1)
simplifies to

ρCp

∂T

∂t
+ ρCpur

∂T

∂r
+ ρCp

uθ

r

∂T

∂θ
+ ρCpuz

∂T

∂z
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r
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∂r
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r
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∂r
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(
∂uz
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(F.2-2)

+ µ

(
∂uθ

∂z
+ 1

r

∂uz

∂θ

)2

+ µ

(
∂uz

∂r
+ ∂ur

∂z

)2

+ µ

[
1

r

∂ur

∂θ
+ r

∂

∂r

(uθ

r

)]2

+ Ge

where Cp is the heat capacity at constant pressure.

F.3 SPHERICAL COORDINATES

The following form of the thermal energy equation in spherical coordinates allows
for nonconstant physical properties, energy generation, and conversion of mechan-
ical to internal energy through viscous dissipation, which is expressed in terms of
unspecified viscous stress–tensor components τij :
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ρCv

∂T

∂t
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+ Ge (F.3-1)

where Cv is the heat capacity at constant volume, k the thermal conductivity, and Ge

the energy generation rate per unit volume. Equation (F.3-1) can be applied to non-
Newtonian fluids if the appropriate constitutive equation relating the viscous stress
to the rate of strain is known. For the special case of an incompressible Newtonian
fluid with constant thermal conductivity for which the components of the viscous
stress tensor are given by equations (D.3-4) through (D.3-9), equation (F.3-1) sim-
plifies to
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∂uθ
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(F.3-2)

where Cp is the heat capacity at constant pressure.



APPENDIX G
Equation of Continuity
for a Binary Mixture

G.1 RECTANGULAR COORDINATES

The following form of the equation of continuity or species balance in rectangular
coordinates for component A in a binary system allows for nonconstant physical
properties and is expressed in terms of the mass concentration ρA and the mass
flux components nAi :

∂ρA

∂t
+ ∂nAx

∂x
+ ∂nAy

∂y
+ ∂nAz

∂z
= GA (G.1-1)

where GA is the mass generation rate of component A per unit volume. The com-
ponents of the mass flux are given for a binary system by Fick’s law of diffusion
in the form

nAx = ωA(nAx + nBx) − ρDAB

∂ωA

∂x
= ρAux − ρDAB

∂ωA

∂x
(G.1-2)

nAy = ωA(nAy + nBy) − ρDAB

∂ωA

∂y
= ρAuy − ρDAB

∂ωA

∂y
(G.1-3)

nAz = ωA(nAz + nBz) − ρDAB

∂ωA

∂z
= ρAuz − ρDAB

∂ωA

∂z
(G.1-4)

in which ωA is the mass fraction of component A, DAB the binary diffusion coef-
ficient, and ui the mass-average velocity component in the i-direction. The form
of the equation of continuity for a binary mixture or species balance given by
equation (G.1-1) is particularly useful for describing mass transfer in incompress-
ible liquid and solid systems for which the mass density ρ is constant. For the
special case of an incompressible fluid or fluid having a constant mass density
and a constant binary diffusion coefficient, equation (G.1-1) when combined with
equations (G.1-2) through (G.1-4) simplifies to

∂ρA

∂t
+ ux

∂ρA

∂x
+ uy

∂ρA

∂y
+ uz

∂ρA

∂z
= DAB

∂2ρA

∂x2
+ DAB

∂2ρA

∂y2
+ DAB

∂2ρA

∂z2
+ GA

(G.1-5)
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The following form of the equation of continuity or species balance in rect-
angular coordinates for component A in a binary system allows for nonconstant
physical properties and is expressed in terms of the molar concentration cA and the
molar flux components NAi :

∂cA

∂t
+ ∂NAx

∂x
+ ∂NAy

∂y
+ ∂NAz

∂z
= ĜA (G.1-6)

where ĜA is the molar generation rate of component A per unit volume. The
components of the molar flux are given for a binary system by Fick’s law of
diffusion in the form

NAx = xA(NAx + NBx) − cDAB

∂xA

∂x
= cAûx − cDAB

∂xA

∂x
(G.1-7)

NAy = xA(NAy + NBy) − cDAB

∂xA

∂y
= cAûy − cDAB

∂xA

∂y
(G.1-8)

NAz = xA(NAz + NBz) − cDAB

∂xA

∂z
= cAû − cDAB

∂xA

∂z
(G.1-9)

in which xA is the mole fraction of component A. The form of the equation of
continuity for a binary mixture or species balance given by equation (G.1-6) is
particularly useful for describing mass transfer in gas systems for which the molar
density c is constant at a fixed temperature and pressure. This equation is also used
to describe reacting systems for which the generation rate of species is dictated by
the reaction stoichiometry in terms of molar concentrations. For the special case of
a fluid having a constant molar density and a constant binary diffusion coefficient,
equation (G.1-6) combined with equations (G.1-7) through (G.1-9) simplifies to

∂cA

∂t
+ ûx

∂cA

∂x
+ ûy

∂cA

∂y
+ ûz

∂cA

∂z
= DAB

∂2cA

∂x2
+ DAB

∂2cA

∂y2
+ DAB

∂2cA

∂z2
+ ĜA

(G.1-10)

G.2 CYLINDRICAL COORDINATES

The following form of the equation of continuity or species balance in cylindrical
coordinates for component A in a binary system allows for nonconstant physical
properties and is expressed in terms of the mass concentration ρA and the mass
flux components nAi :

∂ρA

∂t
+ 1

r

∂

∂r
(rnAr) + 1

r

∂nAθ

∂θ
+ ∂nAz

∂z
= GA (G.2-1)

where GA is the mass generation rate of component A per unit volume. The com-
ponents of the mass flux are given for a binary system by Fick’s law of diffusion
in the form
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nAr = ωA(nAr + nBr) − ρDAB

∂ωA

∂r
= ρAur − ρDAB

∂ωA

∂r
(G.2-2)

nAθ = ωA(nAθ + nBθ ) − ρDAB

1

r

∂ωA

∂θ
= ρAuθ − ρDAB

1

r

∂ωA

∂θ
(G.2-3)

nAz = ωA(nAz + nBz) − ρDAB

∂xA

∂z
= ρAuz − ρDAB

∂xA

∂z
(G.2-4)

in which ωA is the mass fraction of component A, DAB the binary diffusion
coefficient, and ui the mass-average velocity component in the i-direction. The
form of the equation of continuity for a binary mixture or species balance given
by equation (G.2-1) is particularly useful for describing mass transfer in incom-
pressible liquid and solid systems for which the mass density ρ is constant. For
the special case of an incompressible fluid or fluid having a constant mass den-
sity and a constant binary diffusion coefficient, equation (G.2-1) combined with
equations (G.2-3) through (G.2-4) simplifies to

∂ρA

∂t
+ ur

∂ρA

∂r
+ uθ

1

r

∂ρA

∂θ
+ uz

∂ρA

∂z
= DB

1

r

∂

∂r

(

r
∂ρA

∂r

)

+ DB

1

r2

∂2ρ

∂θ2
+ DAB

∂2ρA

∂z2
+ GA

(G.2-5)

The following form of the equation of continuity or species balance in cylindrical
coordinates for component A in a binary system allows for nonconstant physical
properties and is expressed in terms of the molar concentration cA and the molar
flux components NAi :

∂cA

∂t
+ 1

r

∂

∂r
(rNAr) + 1

r

∂NAθ

∂θ
+ ∂NAz

∂z
= ĜA (G.2-6)

where ĜA is the molar generation rate of component A per unit volume. The
components of the molar flux are given for a binary system by Fick’s law of
diffusion in the form

NAr = xA(NAr + NBr) − cDAB

∂xA

∂r
= cAûr − cDAB

∂xA

∂r
(G.2-7)

NAθ = xA(NAθ + NBθ ) − cDAB

1

r

∂xA

∂θ
= cAûθ − cDAB

1

r

∂xA

∂θ
(G.2-8)

NAz = xA(NAz + NBz) − cDAB

∂xA

∂z
= cAûz − cDAB

∂xA

∂z
(G.2-9)

in which xA is the mole fraction of component A and ûi is the molar-average
velocity component in the i-direction. The form of the equation of continuity for
a binary mixture or species balance given by equation (G.2-6) is particularly use-
ful for describing mass transfer in gas systems for which the molar density c
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is constant at a fixed temperature and pressure. This equation is also used to
describe reacting systems for which the generation rate of species is dictated
by the reaction stoichiometry in terms of molar concentrations. For the special
case of a fluid having a constant molar density and a constant binary diffu-
sion coefficient, equation (G.2-6) combined with equations (G.2-7) through (G.2-9)
simplifies to

∂cA

∂t
+ ûr

∂cA

∂r
+ ûθ

1

r

∂cA

∂θ
+ ûz

∂cA

∂z
= DAB

1

r

∂

∂r

(

r
∂cA

∂r

)

+ DAB

1

r2

∂2cA

∂θ2
+ DAB

∂2cA

∂z2
+ ĜA

(G.2-10)

G.3 SPHERICAL COORDINATES

The following form of the equation of continuity or species balance in spherical
coordinates for component A in a binary system allows for nonconstant physical
properties and is expressed in terms of the mass concentration ρA and the mass
flux components nAi :

∂ρA

∂t
+ 1

r2

∂

∂r
(r2nAr) + 1

r sin θ

∂

∂θ
(nAθ sin θ) + 1

r sin θ

∂nAφ

∂φ
= GA (G.3-1)

where GA is the mass generation rate of component A per unit volume. The com-
ponents of the mass flux are given for a binary system by Fick’s law of diffusion
in the form

nAr = ωA(nAr + nBr) − ρDAB

∂ωA

∂r
= ρAur − ρDAB

∂ωA

∂r
(G.3-2)

nAθ = ωA(nAθ + nBθ ) − ρDAB

1

r

∂ωA

∂θ
= ρAuθ − ρDAB

1

r

∂ωA

∂θ
(G.3-3)

nAφ = ωA(nAφ + nBφ) − ρDAB

1

r sin θ

∂ωA

∂φ
= ρAuφ − ρDAB

1

r sin θ

∂ωA

∂φ

(G.3-4)

in which ωA is the mass fraction of component A, DAB the binary diffusion
coefficient, and ui the mass-average velocity component in the i-direction. The
form of the equation of continuity for a binary mixture or species balance given
by equation (G.3-1) is particularly useful for describing mass transfer in incom-
pressible liquid and solid systems for which the mass density ρ is constant. For
the special case of an incompressible fluid or fluid having a constant mass den-
sity and a constant binary diffusion coefficient, equation (G.3-1) combined with
equations (G.3-2) through (G.3-4) simplifies to
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∂ρA

∂t
+ ur

∂ρA

∂r
+ uθ

1

r

∂ρA

∂θ
+ uφ

1

r sin θ

∂ρA

∂φ
= DAB

1

r2

∂

∂r

(

r2 ∂ρA

∂r

)

+ DAB

1

r2 sin θ

∂

∂θ

(

sin θ
∂ρA

∂θ

)

+ DAB

1

r2 sin2 θ

∂2ρA

∂φ2
+ GA

(G.3-5)

The following form of the equation of continuity or species balance in spherical
coordinates for component A in a binary system allows for nonconstant physical
properties and is expressed in terms of the molar concentration cA and the molar
flux components NAi :

∂cA

∂t
+ 1

r2

∂

∂r
(r2NAr) + 1

r sin θ

∂

∂θ
(NAθ sin θ) + 1

r sin θ

∂NAφ

∂φ
= ĜA (G.3-6)

where ĜA is the molar generation rate of component A per unit volume. The
components of the molar flux are given for a binary system by Fick’s law of
diffusion in the form

NAr = xA(NAr + NBr) − cDAB

∂xA

∂r
= cAûr − cDAB

∂xA

∂r
(G.3-7)

NAθ = xA(NAθ + NBθ ) − cDAB

1

r

∂xA

∂θ
= cAûθ − cDAB

1

r

∂xA

∂θ
(G.3-8)

NAφ = xA(NAφ + NBφ) − cDAB

1

r sin θ

∂xA

∂φ
= cAûφ − cDAB

1

r sin θ

∂xA

∂φ
(G.3-9)

in which xA is the mole fraction of component A and ûi is the molar-average
velocity component in the i-direction. The form of the equation of continuity for
a binary mixture or species balance given by equation (G.3-6) is particularly use-
ful for describing mass transfer in gas systems for which the molar density c

is constant at a fixed temperature and pressure. This equation is also used to
describe reacting systems for which the generation rate of species is dictated
by the reaction stoichiometry in terms of molar concentrations. For the special
case of a fluid having a constant molar density and a constant binary diffu-
sion coefficient, equation (G.3-6) combined with equations (G.3-7) through (G.3-9)
simplifies to

∂cA

∂t
+ ûr
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∂r
+ ûθ

1

r
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1
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∂
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)
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r2 sin2 θ

∂2cA

∂φ2
+ ĜA

(G.3-10)



APPENDIX H
Integral Relationships

H.1 LEIBNITZ FORMULA FOR DIFFERENTIATING AN INTEGRAL

Moving boundary problems usually involve determining the time derivative of an
integral of a scalar quantity ϕ over a system whose volume V (t) can be changing
in time. The scalar quantity ϕ can be a function of time as well as the spatial
coordinates. Leibnitz’s formula permits recasting this volume integral into a more
convenient form given by

d

dt

∫∫∫

V

ϕ dV =
∫∫∫

V

∂ϕ

∂t
dV +

∫∫

S

ϕ(�uB · �n) dS (H.1-1)

where S is the time-dependent area enclosing the volume, �uB the local velocity
of the bounding surface enclosing the volume, and �n a unit normal vector to
this surface. For a system having whose surfaces move in only one direction,
equation (H.1-1) simplifies to

d

dt

∫ L2

L1

ϕ ds =
∫ L2

L1

∂ϕ

∂t
ds + ϕ(L2, t)

dL2

dt
− ϕ(L1, t)

dL1

dt
(H.1-2)

where s denotes an unspecified spatial coordinate for which L1 and L2 are lower
and upper limits that can be time-dependent.

H.2 GAUSS–OSTROGRADSKII DIVERGENCE THEOREM

For a closed volume V surrounded by a surface S, the Gauss–Ostrogradskii or
divergence theorem permits converting a volume integral into a surface integral.
This theorem can be applied to scalars as follows:

∫∫∫

V

∇ϕ dV =
∫∫

S

�nϕ dS (H.2-1)
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where ϕ denotes an unspecified scalar quantity and �n is a unit normal vector to the
surface S. The divergence theorem can be applied to vectors as follows:

∫∫∫

V

(∇ · �u) dV =
∫∫

S

(�n · �u) dS (H.2-2)

where �u denotes an unspecified vector quantity. The divergence theorem can be
applied to tensors as follows:

∫∫∫

V

(∇ · σ) dV =
∫∫

S

(�n · σ) dS (H.2-3)

where σ denotes an unspecified second-order tensor quantity.



NOTATION

Dimensions are given in terms of mass (M), moles (mol), length (L), time (t),
force (F ), and temperature (T ).

A unspecified constant, variable dimensions
A amplitude of axial oscillation, L

a integer or fractional quantity, dimensionless
a surface area per unit volume of contacting device, L−1

aC surface area per unit volume of carbon particles, L−1

B unspecified constant, variable dimensions
b integer or fractional quantity, dimensionless
Cn coefficients defined by equations (4P.12-2), (4.P.13-2), and (4.P.14-2)
Cp heat capacity at constant pressure, L2/t2 · T

Cpi heat capacity at constant pressure of region, medium, or component i, L2/t2 · T

Cv heat capacity at constant volume, L2/t2 · T
c integer or fractional quantity, dimensionless
c molar density or molar concentration, mol/L3

c speed of sound, L/t

cAi molar concentration of component A at a point or plane defined by i, mol/L3

ci molar concentration of component i, mol/L3

ĉi molar concentration of component i in the bulk fluid on the macroscale, mol/L3

cE
i equilibrium or maximum molar concentration of component i, mol/L3

c
◦
i molar concentration of component i at the interface, mol/L3

c
◦
ir reaction equilibrium molar concentration of component i, mol/L3

cis scale factor for the derivative of the concentration with respect to the i-coordinate,
mol/L4

clm log-mean concentration, mol/L3

cw molar concentration at the wall, mol/L3

c0 initial or upstream molar concentration, mol/L3

Di binary diffusion coefficient in medium i, L2/t

Dij binary diffusion coefficient for components i and j, L2/t

DL axial dispersion coefficient, L2/t

D0 binary diffusion coefficient at infinite dilution, L2/t
�Ff force vector exerted by fluid particle on surrounding fluid, M · L/t2

�Fp force vector exerted by surrounding fluid on a fluid particle, M · L/t2

f frequency in cycles per unit time, t−1
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to Model Building and the Art of Approximation, By William B. Krantz
Copyright  2007 John Wiley & Sons, Inc.
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fi(· · ·) denotes a function of the variables or parameters in parentheses, variable
dimensions

Ge energy generation rate per unit volume, M/L · t2

Gi mass generation rate of component i per unit volume, M/L3 · t
G0 amplitude of periodic energy generation rate per unit volume, M/L · t2

G̃ heating rate, M · L2/t3

Ĝ total molar generation rate per unit volume, mol/L3 · t

Ĝi molar generation rate of component i per unit volume by homogeneous chemical
reaction, mol/L3 · t

Ĝm
i maximum molar generation rate of component i by homogeneous chemical

reaction, mol/L3 · t
g gravitational acceleration, L/t2

gc dimensional constant in Newton’s law of motion, M · L/t2 · F

gi component of the gravitational acceleration in the i-direction, L/t2

gi(· · ·) denotes a function of the arguments in parentheses, variable dimensions
H thickness, depth, or location of fixed boundary, L

H Henry’s law constant, T 2/L2

Hi enthalpy per mole of component i,M · L2/t2 · mol
Hi thickness of layer i, L

h heat-transfer coefficient, M/t3 · T

hP heat-transfer coefficient between particles and gas phase, M/t3 · T

hW heat-transfer coefficient between wall and gas phase, M/t3 · T

h1, h2 thickness of layers 1 and 2, L

K integration rate constant, variable dimensions
K crystallization rate constant, t−n

Ki distribution coefficient of component i between two phases, variable units
k thermal conductivity, M · L/t3 · T

k an integer, dimensionless
kG thermal conductivity of gas phase, M · L/t3 · T

k
•
G gas-phase mass-transfer coefficient based on the molar flux relative to the molar

average velocity, L/t

k
•
G0 gas-phase mass-transfer coefficient in the absence of chemical reaction based on

the molar flux relative to the molar average velocity, L/t

k
•
i mass-transfer coefficient of region, medium, or component i, L/t

kL liquid-phase mass-transfer coefficient based on the molar flux relative to a
stationary observer, L/t

k
•
L liquid-phase mass-transfer coefficient based on the molar flux relative to the

molar average velocity, L/t

k
•
L0 liquid-phase mass-transfer coefficient in the absence of chemical reaction based

on the molar flux relative to the molar average velocity, L/t

km membrane permeability, L2 · t/M

kn nth-order homogeneous reaction-rate parameter, mol(1−n) · L3(n−1)/t

k̂n nth-order heterogeneous reaction-rate parameter, mol(1−n) · L(3n−2)/t

kp permeability coefficient in Darcy’s law for flow through porous media, L2

L length in a particular coordinate direction, L

L location of fixed or moving boundary, L

Ld final depth corresponding to draining time td , L

Le entrance length required for flow to become fully developed, L

Li initial width of pulse of injected particles in field-flow fractionation, L
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Lm maximum thaw depth, L

Ls unspecified length scale, L

L0 initial depth corresponding to t = 0, L

L̇ time rate of change of the thickness L, L/t

li equilibrium adsorption distribution coefficient for component i, L · t2/M

M mass, M

Mi molecular weight of component i,M/mol
m an integer, dimensionless
mad total mass of adsorbent, M

mO2 total mass of oxygen produced per day in the pulsed PSA process, M

NAi molar flux of component A in the i-direction or at surface i, mol/L2 · t
Ni molar flux of component i, mol/L2 · t

Niw molar flux of component i at the wall, mol/L2 · t

Niw time-averaged molar flux of component i at the wall, mol/L2 · t

n an integer, reaction order, or Avrami exponent, dimensionless
nAi mass flux of component A in the i-direction, M/L2 · t

nG mass flux in the gas phase, M/L2 · t

ni mass flux of component i,M/L2 · t
�n unit normal vector, dimensionless
P pressure, M/L · t2

Ṗ time rate of change of the pressure, M/L · t3

Pd dynamic contribution to the total pressure, M/L · t2

Ph hydrostatic contribution to the total pressure, M/L · t2

p an integer, dimensionless
p(· · ·) denotes a function describing the pressure, M/L · t2

p
◦
i vapor pressure of component i,M/L · t2

pi partial pressure of component i,M/L · t2

Q volumetric flow rate, L3/t

QL volumetric flow rate of liquid, L3/t

q heat-transfer flux, M/t3

qi heat-transfer flux at surface i,M/t3

qi moles of component i per unit volume of adsorbent, mol/L3

qe
i moles of component i per unit volume of adsorbent at equilibrium, mol/L3

q∞
i value of qe

i at infinite partial pressure of component i, mol/L3

q heat flux averaged over the surface, M/t3

q̇i rate of molar adsorption of component i per unit volume, mol/L3 · t
q̇e

i equilibrium-controlled rate of molar adsorption of component i per unit volume,
mol/L3 · t

R radius, L

R gas constant, M · L2/t2 · T · mol
R regression coefficient, dimensionless
Ri rate of homogeneous reaction of component i per unit volume, mol/L3 · t
RP particle or pore radius, L

R1, R2 radii at surfaces defined by 1 and 2, L

r radial coordinate, L

S surface area, L2

Sc cross-sectional area, L2

St energy generation rate per unit volume, M/L · t2

Ṡ rate of entropy generation per unit volume, M/L · t2 · T
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T temperature, T

Tc crystallization temperature, T

Tf freezing or front temperature, T

TG temperature of gas phase, T

Ti temperature evaluated at surface i, T

Tis scale factor for derivative of temperature in the i-direction, T /L

T
◦ reference temperature, T

T average temperature, T

T m maximum value of the spatially averaged temperature, T

Ṫ time rate of change of temperature, T/t

t time, t

�t unit tangential vector, dimensionless
ta time at which rate of phase separation is a maximum, t

tad characteristic adsorption time, t

tc contact or cooking time, t

td characteristic axial dispersion, draining, or depressurization time, t

tg time for growth of dispersed phase, t

tH time required for the temperature to penetrate thickness H, t

to observation time, t

tp pressurization time, t

tsp time scale corresponding to the periodic motion, t

tst time scale corresponding to the observation time, t

tsv time scale corresponding to the viscous penetration, t

U superficial velocity in porous media, L/t

UG linear velocity of gas, L/t

Um maximum velocity, L/t

Ut terminal velocity, L/t

Uw axial velocity at the wall, L/t

U0 specified constant velocity, L/t

U average velocity, L/t

Uw average velocity in the wall region, L/t

�u mass-average velocity vector, L/t
�̂u molar-average velocity vector, L/t

�uB local mass-average velocity of a surface enclosing a volume, L/t

ui mass-average velocity component in the i-direction, L/t

ûi molar-average velocity component in the i-direction, L/t
1�ui mass-average velocity component in the i-direction in a porous media, L/t

V volume, L3

V−H , V+H velocity at which fluid is injected and withdrawn at the surfaces at ±H,L/t

Vs scale for velocity of a moving boundary, L/t

VT total volume, L3

Vu volume of upper chamber, L3

V0 specified blowing or suction velocity, L/t

W width, L

WG molar flow rate of gas, mol/t
ŴH molar injection rate of hydrogen per unit length, mol/t · L
Wi molar flow rate of component i, mol/t
W 0

i molar flow rate of component i in the feed stream, mol/t
W̃m mass injection or removal rate per unit area, M/t · L2
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w gap width, L

Xc fractional dissociation or conversion, dimensionless
x spatial coordinate, L

xi mole fraction of component i, dimensionless
y spatial coordinate, L

yBL product purity measured in terms of the mole fraction of component B,
dimensionless

yi gas-phase mole fraction of component i, dimensionless
ỹ translated spatial coordinate, L

y∗
m dimensionless y-coordinate in the equations of motion

y∗
t dimensionless y-coordinate in the energy equation

z spatial coordinate, L

GREEK SYMBOLS

α thermal diffusivity, L2/t

α undetermined constant, variable units
α arbitrary quantity considered in dimensional analysis, variable units
αi thermal diffusivity of medium i, L2/t

β arbitrary quantity considered in dimensional analysis, variable units
β unspecified time constant, t−1

β constant coefficient for temperature dependence of vapor pressure, M/L · t2 · T
β constant coefficient for temperature dependence of thermal conductivity,

M · L/t2 · T 2

βs scale factor for the spatial derivative of the velocity, L/t

βs coefficient of solutal volume expansion, L3/mol
βt coefficient of thermal volume expansion, T −1

γ ratio of heat capacity at constant pressure to that at constant volume, dimensionless
γ arbitrary quantity considered in dimensional analysis, variable units
γt second-order coefficient of thermal volume expansion, T −2

�cA cA0 − cA∞, concentration difference between control surfaces defined by 0 and ∞,
mol/L3

�clm log-mean concentration driving force, mol/L3

�E activation energy for reaction, M · L2/t2 · mol
�Hf latent heat of fusion per unit mass, L2/t2

�Hv latent heat of vaporization per unit mass, L2/t2

�P P2 − P1, pressure difference between control surfaces defined by 1 and 2, M/L · t2

�ρ0
AB ρ0

A − ρ0
B , difference between pure component mass densities, M/L3

δ region of influence or boundary-layer thickness, L

δ arbitrary quantity considered in dimensional analysis, variable units
δ identity tensor, dimensionless
δc characteristic film thickness, L
�δi unit vector in the i-direction, dimensionless
δm momentum boundary-layer thickness, L

δp thickness of region of influence in porous media, L

δr thickness of reaction boundary layer, L

δs solutal boundary-layer thickness, L
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δt thermal boundary-layer thickness, L

ε fractional void space or porosity, dimensionless
ε small distance, L

ε radiative emissivity of surface, dimensionless
ς dimensional constant, M/L2

η local film thickness, L

θ angular coordinate, radians
θ angle of inclination or angle between horizontal and unit tangential vector,

dimensionless
κ bulk viscosity, M/L · t

κ ratio of the mass fluxes for binary diffusion, dimensionless
κ stoichiometric coefficient, dimensionless
λn roots of equation (4.P.12-3), (4.P.13-3), or (4.P.14-3), dimensionless
µ shear viscosity, M/L · t
ν kinematic viscosity, L2/t

ξ a dimensionless constant having a value of either 0 or 1, depending on the local
concentration relative to that at reaction equilibrium

�i ith dimensionless group whose definition depends on the particular problem
ρ mass density, M/L3

ρ average mass density, M/L3

ρ̃ mass density of the gas phase, M/L3

ρi mass density of region, medium, or component i,M/L3

ρ0
i mass density of pure component i,M/L3

ρp mass density of pure polymer, M/L3

ρw mass density of liquid water, M/L3

σ Stefan–Boltzmann constant, M/t3 · T 4

σ total stress tensor, M/L · t2

σAB collision diameter for molecules A and B,L

σij ij -component of the total stress tensor, M/L · t2

τ viscous stress tensor, M/L · t2

τij ij -component of the viscous stress tensor, M/L · t2

φ angular coordinate, radians
φ unspecified constant, dimensionless
φ volume of liquid per unit interfacial area, L

ϕ unspecified scalar having variable units
ϕ dimensionless derivative of the concentration
χ ratio of the total absorption rate relative to its maximum value for purely physical

absorption, dimensionless
�r reaction-rate parameter, dimensionless
ψ liquid volume fraction in a multiphase system, dimensionless
ψ̇ time rate of change of the liquid volume fraction, t−1

ψbf bed-size factor equal to the ratio of the total mass of adsorbent to the total mass of
oxygen produced per day, dimensionless

ψr product recovery equal to the ratio of the volumetric flow of the product to that of
the feed, dimensionless

� collision integral, dimensionless
ω angular frequency or velocity, radians/t
ωi mass fraction of component i, dimensionless
ω̃i mass fraction of component i in the gas phase, dimensionless
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SUPERSCRIPTS

d depressurization or diluent
E equilibrium value
p pressurization
0 initial value
◦ saturation or reference value
− average value
ˆ variable evaluated in the bulk fluid when using microscale-macroscale modeling
� variable evaluated in a porous medium
∗ dimensionless variable
† transpose of a second-order tensor
· time derivative
˜ dummy integration variable or a translated spatial coordinate
→ vector quantity

SUBSCRIPTS

A component A

atm atmospheric conditions
B component B

b evaluated at the boundary
C component C or carbon
c variable in the species-balance equation
D property of turkey dressing or the diluent phase
d dynamic pressure contribution
f frozen region or feed concentration
G property of the gas phase
h hydrostatic pressure contribution
I iron or iron phase
L evaluated at L, downsteam, or in the liquid
l evaluated in the lumen of a hollow fiber membrane
m maximum value, denotes a variable or parameter associated with the fluid or a with

a membrane
o observation time
P property of the polymer or particulate phase
R rust or rust phase
r reference factor or component in the r-direction
s scale factor or denotes a solutal quantity
T property of turkey
t variable for heat transfer or terminal velocity
t time derivative
u unfrozen region
W water or water phase
w evaluated at the wall or in the wall region
x component in the x-direction
y component in the y-direction
z component in the z-direction
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θ component in the θ -direction
φ component in the φ-direction
0 initial, upstream, reference, or infinite dilution value
∞ evaluated as the spatial or temporal variable approaches infinity
1 property of phase 1 or denotes a particular function
2 property of phase 2 or denotes a particular function
= tenor quantity

COMMONLY USED DIMENSIONLESS GROUPS

Bim Biot number for mass transfer or solutal Biot number, ratio of the total mass
transfer external to the system to the diffusive mass transfer within the system

Bit Biot number for heat transfer or thermal Biot number, ratio of the total heat
transfer external to the system to the conductive heat transfer within the system

DaII second Damkohler number, ratio of the time scale for radial diffusion to that for
heterogeneous reaction

Fom Fourier number for mass transfer, ratio of the contact time to the characteristic
time for species diffusion

Fot Fourier number for heat transfer, ratio of the contact time to the characteristic
time for heat conduction

Fr Froude number, ratio of the kinetic energy to the gravitational potential energy of
the flow

Grm Grashof number for mass transfer, ratio of the solutally induced convective to
viscous transport of momentum

Grt Grashof number for heat transfer, ratio of the thermally induced convective to
viscous transport of momentum

Gz Graetz number, a measure of the relative convection to diffusional transport of
species

Le Lewis number, ratio of heat conduction to species diffusion
Ma Mach number, ratio of the characteristic fluid velocity divided by the speed of

sound in the medium
Nu Nusselt number, a measure of the overall heat transfer to that by conduction alone
Pem Peclet number for mass transfer or solutal Peclet number, ratio of convective to

diffusive transport of mass
Pet Peclet number for heat transfer or thermal Peclet number, ratio of convective to

conductive transport of heat
PeV Peclet number for mass transfer or solutal Peclet number based on the transverse

velocity
Pr Prandtl number, ratio of heat conduction to viscous transport of momentum
Ram Rayleigh number for mass transfer, ratio of solutally induced convective to

diffusive transport of mass
Rat Rayleigh number for heat transfer, ratio of thermally induced convective to

conductive transport of heat
Re Reynolds number, ratio of the kinetic energy per unit mass of the flow to the

principal viscous stress or equivalently, ratio of convective to viscous
transport of momentum

ReV Reynolds number based on the transverse velocity
Sc Schmidt number, ratio of viscous transport of momentum to species diffusion
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Sh Sherwood number, a measure of the overall mass transfer to that by diffusion
alone

Shv Sherwood number in the presence of axial oscillations or vibrations
Th Thiele modulus, ratio of the characteristic time for diffusion relative to that for

homogeneous reaction

MATHEMATICAL OPERATIONS

D

Dt
substantial time derivative or time derivative in a coordinate system convected at

the fluid velocity
d

dt
total time derivative allowing for the change in the quantity in time as well as

with spatial position
∂

∂t
partial time derivative allowing for the change in the quantity in time at a fixed

spatial position

erf(ϕ) error function of z, = 2√
π

∫ ϕ

0 e−ϕ̃2
dϕ̃

exp (ϕ) exponential function of ϕ, = eϕ

ln (ϕ) logarithm of ϕ to the base e

∇ del or nabla operator
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Absorption, see Gas absorption
Adsorption, see Pressure-swing adsorption
Adsorption time scale, see Time scale,

adsorption
Annulus:

conductive heat transfer in, 226
flow in hydraulic ram, 76
flow in rotating, 88
flow in tube with porous, 133
flow with fluid injection and withdrawal,

139
mass transfer between fixed and

rotating, 352
Approximation:

Boussinesq for free convection, 183
constant density, 56
constant diffusivity, 277, 349, 351
constant thermal conductivity, 246, 250
constant thermal diffusivity, 246
constant viscosity, 180
creeping flow, 26, 30, 50, 66, 75,
diffusional domain of slow reaction

regime, 381
fast reaction regime, 372
film theory for heat transfer, 153
film theory for mass transfer, 253, 357
film theory for mass transfer with

chemical reaction, 368, 406
fully developed flow, 62
hydrodynamic boundary layer, 32, 79,

84, 119, 120, 121
incompressible flow, 56, 135
inner domain of instantaneous reaction

regime, 405

Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach
to Model Building and the Art of Approximation, By William B. Krantz
Copyright  2007 John Wiley & Sons, Inc.

instantaneous reaction regime, 373
intermediate domain of slow reaction

regime, 403
intermediate reaction regime, 371
kinetic domain of slow reaction regime,

380
large Damköhler number, 325, 340,
large Reynolds number, 32, 79, 84, 119,

120, 121
large solutal Biot number, 297
large solutal Grashof number, 281, 354
large solutal Peclet number, 269, 338
large thermal Biot number, 209
large thermal Grashof number, 218, 247
large thermal Peclet number, 167, 206,

236, 237, 238, 239, 240, 241
large Thiele modulus, 261, 339
lubrication flow, 26, 45, 72, 76, 101,

113, 114, 115, 116, 127, 141
lumped capacitance, 163
macroscale element, 362, 377
microscale element, 362
negligible curvature in fluid flow, 45,

52, 76, 94, 123, 127, 128, 134, 139
negligible curvature in heat transfer,

209, 229
negligible curvature in mass transfer,

308, 328, 338, 340, 342, 343, 344,
346, 352

negligible end effects in fluid flow, 43,
88, 133

negligible side-wall effects in fluid flow,
43, 52, 116

negligible viscous dissipation, 202, 235

515
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Approximation: (continued )
penetration theory for heat transfer, 153
penetration theory for mass transfer,

259, 336
penetration theory for mass transfer with

chemical reaction, 369, 400
physical absorption, 379
plug flow reactor, 266
quasi-parallel flow, 45, 94, 126, 128,

143
quasi-stationary-hypothesis, 380, 402
quasi-steady-state fluid flow, 38, 45, 72,

115, 117, 122, 142
quasi-steady-state heat transfer, 173,

242, 243, 244
quasi-steady-state mass transfer, 273,

297, 303, 308, 316, 321, 340, 342,
344, 346, 347

reaction boundary layer, 261, 328, 339,
340

slow reaction regime, 371
small Damköhler number, 266
small Reynolds number, see

Approximation, creeping flow
small solutal Biot number, 297
small solutal Peclet number, 261, 340
small thermal Biot number, 159, 196,

231, 232, 233
small thermal Peclet number, 163, 202
small Thiele modulus, 328
solutal boundary layer, 259, 269, 277,

281, 308, 312, 325, 337, 338, 344,
345, 346, 347, 349, 350, 351, 354

steady-state fluid flow, 92, 116
steady-state heat transfer, 153
steady-state mass transfer, 253, 364
Stoke’s flow, see Approximation,

creeping flow
surface domain of instantaneous reaction

regime, 405
Taylor dispersion, 303
thermal boundary layer, 153, 167, 173,

206, 218, 236, 237, 238, 239, 240,
241, 247

uniformly accessible surface for mass
transfer, 79, 312

Auxiliary condition:
free surface flows, 47, 68, 96, 102, 103,

moving boundary in heat transfer, 174,
213, 242, 243, 246, 442

moving boundary in mass transfer, 275,
295, 299, 309, 323, 337, 342, 344,
345, 346, 347, 348, 351, 442

moving front for instantaneous reaction,
374

Axial dispersion time scale, see Time
scale, axial dispersion

Big oh of one, 2, 19, 145, 252
Biot number, see Dimensionless

groups, Biot number for heat transfer,
Biot number for mass transfer

Boundary condition:
free surface, 46, 95, 127, 128, 129
instantaneous reaction front, 373
moving boundary in heat transfer, 173,

211, 242, 243, 244
moving boundary in mass transfer, 275,

295, 299, 309, 337, 342, 344, 345,
346, 347, 348, 351

moving front for instantaneous reaction,
374

normal stress, 46, 96, 127, 128, 129
tangential stress, 46, 95, 127, 128, 129

Boundary layer, see Boundary-layer flow
Boundary-layer flow, 32, 79, 84, 119,

120, 121. See also Region of
influence

Brinkman term, see Porous media
Buckingham Pi theorem, see Pi theorem

Change of order one, see Big “oh” of one;
Little “oh” of one

Channel, gravity-driven flow with
sidewalls, 43

Chemical reaction:
heterogeneous, 266, 325, 340, 346, 347,

358
homogeneous, 261, 308, 328, 339, 340,

342, 343, 344, 349, 351, 364, 371,
372, 373, 380, 381, 390, 394, 401,
403, 404, 405, 406, 407, 408, 409,
411

See also Mass transfer with chemical
reaction
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Chemical reactor:
continuous stirred tank, 390, 408, 409
fluid-wall aerosol flow, 448, 475, 476,

477, 478, 479
hollow fiber membrane, 328, 349
laminar flow with heterogeneous

reaction, 266, 325, 340
laminar flow with homogeneous

reaction, 261, 339
packed column, 394, 410, 411
photocatalytic, 358
plug flow, 266

Chemical reactor design:
continuous stirred tank, 390, 408, 409
diffusional domain of slow reaction

regime, 384
fast reaction regime, 385
fluid-wall aerosol flow, 448, 475, 476,

477, 478, 479
inner domain of instantaneous reaction

regime, 386
intermediate reaction regime, 384
kinetic domain of slow reaction regime,

383
packed column, 394, 410, 411
surface domain of instantaneous reaction

regime, 386
Compressible flow, 56, 135
Condensation, 127
Conduction, see Heat transfer
Conduction time scale, see Time scale,

conduction
Conservation of energy equation, see

Thermal energy equation
Constitutive equation, 481, 483, 489, 491,

492, 496, 497, 498
Contact time scale, see Time scale, contact

time
Continuity equation:

cylindrical coordinates, 487
generalized notation, 482
rectangular coordinates, 486
spherical coordinates, 487

Continuous stirred tank reactor, see
Chemical reactor, continuous stirred
tank

Correlating experimental or numerical
data, 2, 415, 424, 436, 438, 448, 460

Creeping flow, see Approximation,
creeping flow

Crystallization, 345
Curtain coating, 128,143
Curvature effects, see Approximation,

negligible curvature
Cylinder:

falling needle viscometer, 117
free convection mass transfer adjacent

to vertical, 281, 354
heat conduction with

temperature-dependent thermal
diffusivity, 246

heat transfer for hot wire anemometer,
249

heat transfer with resistance heating,
200, 223

mass transfer in dissolution
of, 343, 344

mass transfer to film flow down vertical,
338

steady-state heat conduction with
external convection, 230

two-dimensional steady-state heat
conduction, 225

unsteady-state axial heat conduction,
228

unsteady-state heat conduction with
external convection, 233

unsteady-state radial heat conduction,
228

Cylindrical coordinates:
continuity equation, 487
equation of motion for porous media,

494
equations of motion, 490
species continuity equation, 500
thermal energy equation, 497

Cylindrical tube:
compressible gas flow in, 56, 135
constant injection through in flow

between parallel disks, 114
constant injection through in flow

between spinning parallel disks, 115
countercurrent liquid-gas flow in, 123
entry region flow with porous annulus,

134
entry region flow, 121
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Cylindrical tube: (continued )
falling head method for determining

permeability, 105
falling needle viscometer, 117
flow in hollow fiber, 101
flow through porous media in, 52
gravity- and pressure-driven flow in

vertical, 111
impulsively initiated flow in, 92, 142
mass transfer in membrane-lung

oxygenator, 287, 415
mass transfer of evaporating liquid

from, 273, 337
mass transfer via Taylor dispersion in,

303
mass transfer with photocatalytic

reaction in, 358
mass transfer with reaction for flow in,

266, 325, 340
non-constant injection through for flow

between parallel disks, 115
pressure-driven flow in oscillating, 122,

142
pressure-driven flow in rotating, 112
radial flow from porous, 133

d’Alembert’s paradox, 35
Damköhler number, see Dimensionless

groups, Damköhler number
Darcy flow, see Porous media flow,

Darcy’s law
Derivative scaling, 9, 21

compressible gas flow in cylindrical
tube, 59, 60, 69, 135

convective mass transfer between
parallel membranes, 339

curtain-coating flow, 130
dissolution of a spherical capsule, 308
draining of liquid film, 47, 48, 68
evaporation of a liquid, 273
evaporative casting of polymer film, 297
evaporative cooling of a liquid film, 211
field-flow fractionation, 316
flow between moving and stationary

plates, 110, 111
flow between parallel permeable

membranes with homogeneous
reaction, 339

fluid-wall aerosol flow reactor, 448

freezing of water-saturated soil overlaid
by snow, 244

heat transfer with phase change, 173
hollow fiber membrane reactor, 328
jet flow, 96, 97, 126
membrane lung oxygenator, 415
membrane permeation cell, 321
rusting of metal surface, 347
steady-state conduction in cylinder, 230
steady-state conduction in rectangular

fin, 196
thermal casting of membrane, 438

Developing flow:
between approaching parallel circular

plates, 72
between closed-end parallel plate

membranes, 141
between converging flat plates, 26, 113
between diverging flat plates, 113
between parallel disks with constant

radial injection, 114
between parallel disks with

time-dependent radial injection, 115
between permeable and impermeable

parallel flat plates, 137
between spinning parallel disks with

constant radial injection, 115
boundary layer over flat plate with

blowing, 120
boundary layer over flat plate with

suction, 120
boundary layer over flat plate, 32, 119
curtain coating, 128, 143
diverging nozzle, 114
entry region between parallel

plates, 84
entry region in a tube with porous

annulus, 134
entry region in cylindrical tube, 121
field-flow fractionation, 136
gravity-driven draining film down

vertical wall, 45
gravity-driven free surface film flow

with condensation, 127
gravity-driven free surface of film over

horizontal filter, 127
hydraulic ram, 116
liquid jet, 94, 126
permeable hollow fiber membrane, 101



INDEX 519

permeable parallel membranes, 143
pressure-driven compressible in

cylindrical tube, 56, 135
Diffusion, see Mass transfer
Diffusion time scale, see Time scale,

diffusion
Dimensional analysis in fluid flow:

around sphere falling at terminal
velocity, 62, 142

between permeable membranes, 143
curtain-coating, 143
falling head method for determining

permeability, 105
hollow fiber membrane, 144
oscillating cylindrical tube, 142
tube with impulsively applied pressure,

142
Dimensional analysis in heat transfer:

cooking a turkey, 187
home freezer characterization, 250
hot wire anemometer performance, 249
resistance heating in electrical wire, 223
slab with heat generation, 248
sphere with temperature-dependent

thermal conductivity, 250
steady-state convective from sphere, 248

Dimensional analysis in mass transfer:
convective from sphere, 355
evaporating liquid, 357
film theory, 357
membrane-lung oxygenator, 287, 415,

468
pressure-swing adsorption, 424, 471
spherical red blood cell, 332
tubular photocatalytic reactor, 358

Dimensional analysis in mass transfer with
chemical reaction,

fluid-wall aerosol flow reactor, 448, 475,
476, 477, 478, 479

Dimensional constants, 13
Dimensionless groups:

Biot number for heat transfer, 162, 513
Biot number for mass transfer, 302, 513
Damköhler number, 268, 513
Fourier number for heat transfer, 155,

513
Fourier number for mass transfer, 258,

513
Froude number, 30, 513

Graetz number, 292, 513
Grashof number for heat transfer, 221,

513
Grashof number for mass transfer, 285,

513
Lewis number, 445, 513
Mach number, 61, 513
Nusselt number for heat transfer, 159,

513
Nusselt number for mass transfer, 292
Peclet number for heat transfer, 166, 513
Peclet number for mass transfer, 263,

513
Prandtl number, 166, 513
Rayleigh number, 184, 221, 513
Reynolds number, 30, 513
Schmidt number, 263, 513
Sherwood number, 292, 514
Thiele modulus, 263, 514

Disk:
mass transfer from uniformly accessible

rotating, 312
oscillating viscometer, 117
rotating flow, 79
rotating viscometer, 116

Dissipation of energy, see Viscous
dissipation

Dissolution:
cylindrical capsule, 343, 344
spherical capsule, 308, 342

Drainage of liquid:
falling head method for determining

permeability, 105
unsteady down vertical wall, 45

Dynamic pressure, 63, 219, 283

End effects:
fluid flow, 43, 68, 77, 88, 118, 133
heat transfer, 146, 224, 225, 226
mass transfer, 343

Energy dissipation, see Viscous
dissipation; Heat transfer

Energy equation, see Thermal energy
equation

Entrance effects:
fluid flow, 84, 121, 134
heat transfer, 234, 236, 247
mass transfer, 340
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Entrance length, see Entrance effects
Entropy production, 126
Equation of continuity, see Continuity

equation
Equation of continuity for a binary

mixture:
cylindrical coordinates, 500
generalized notation, 484
rectangular coordinates, 499
spherical coordinates, 502

Equation of energy, see Thermal energy
equation

Equations of motion:
cylindrical coordinates, 490
generalized notation, 482
rectangular coordinates, 489
spherical coordinates, 492

Equations of motion for porous media:
cylindrical coordinates, 494
generalized notation, 483
rectangular coordinates, 494
spherical coordinates, 495

Error estimate in scaling, see Scaling
analysis, estimated error

Evaporation:
casting of polymer film, 297, 350
cooling of stationary liquid film, 211,

242
free convection mass transfer from

horizontal liquid layer, 357
liquid in cylindrical tube, 273, 337
polymeric membrane and film casting,

297, 350
Example problems:

fluid dynamics, 70
heat transfer, 196
mass transfer, 297

Falling film, see Film flow
Falling head method, 105
Falling needle viscometer, see Viscometer,

falling needle
Fick’s law, 314, 342, 353, 356, 358, 484,

499, 500, 501, 502, 503
Field-flow fractionation, 136, 316
Film flow:

countercurrent liquid-gas in cylindrical
tube, 123

curtain coating, 128, 143
fully developed falling film in presence

of viscous gas phase, 70
gravity-driven draining film down a

vertical wall, 45
gravity-driven free surface film flow

with condensation, 127
gravity-driven free surface of film over

horizontal filter, 127
gravity-driven in channel with side

walls, 43
gravity-driven liquid film over porous

media, 99, 133
mass transfer to gravity-driven down

vertical cylinder, 338
mass transfer to gravity-driven down

vertical plate, 269, 338
Film theory, see Approximation, film

theory for heat transfer;
Approximation, film theory for mass
transfer

Filter, 127
Flat plate:

boundary layer flow over, 32, 119
boundary-layer flow over with blowing,

120
boundary-layer flow over with suction,

120
flow down with condensation, 127
flow over filter, 127
free convection heat transfer adjacent to,

218, 247
free convection mass transfer adjacent

to, 354
gravity-driven flow down in presence of

viscous gas, 70
gravity-driven flow over with side walls,

43
heat transfer to falling film flow down,

206, 236, 237
mass transfer to falling film flow down,

269, 338
porous media flow bounded by, 131
thermal boundary layer in flow over

with suction, 241
thermal boundary layer in flow over,

167, 236, 238, 239, 240
Flat plates:

flow between converging, 26
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flow between diverging, 113
flow between parallel membrane, 143
flow between parallel stationary and

moving, 20, 110, 111
flow between stationary and oscillating,

38
flow between with fluid injection and

withdrawal, 136
flow in entry region between parallel, 84
flow in porous media between parallel,

132
flow of stratified liquid layers between,

125
heat transfer in flow between with

entrance effects, 234
heat transfer in flow between with

permeable walls, 202
heat transfer in flow between with

temperature-dependent viscosity, 180
heat transfer in flow between with

viscous dissipation, 163
heat transfer in laminar flow between,

235
heat transfer in thermal boundary layer,

236
mass transfer with field-flow

fractionation between parallel
membrane, 316

mass transfer with reaction in flow
between parallel membranes, 261, 339

Fluid dynamics, see Fluid flow
Fluid flow:

annulus with injection and withdrawal,
139

axial in a rotating tube, 112
between approaching parallel circular

plates, 72
between converging flat plates, 26
between cylinder and piston in hydraulic

ram, 76
between oscillating and stationary

parallel circular plates, 38
between diverging flat plates, 113
between parallel disks with constant

radial injection, 114
between parallel disks with

time-dependent radial injection, 115
between parallel membranes, 143

between permeable and impermeable
parallel flat plates, 137

between spinning parallel disks with
constant radial injection, 115

boundary layer over a flat plate, 32, 119
boundary-layer over flat plate with

blowing, 120
boundary-layer over flat plate with

suction, 120
closed-end parallel plate membranes,

141
countercurrent liquid-gas in cylindrical

tube, 123
curtain coating, 128, 143
diverging nozzle, 114
entry region between parallel plates, 84
entry region for cylindrical tube, 121
entry region in a tube with porous

annulus, 134
falling needle viscometer, 117
field-flow fractionation, 136
fully developed falling film in presence

of viscous gas phase, 70
gravity and pressure-driven in vertical

tube, 111
gravity-driven cylindrical jet, 94
gravity-driven draining film down a

vertical wall, 45
gravity-driven free surface film flow

with condensation, 127
gravity-driven free surface of film over

horizontal filter, 127
gravity-driven in channel with side

walls, 43
gravity-driven liquid film over porous

media, 99, 133
hydraulic ram, 76, 116
liquid jet, 94, 126
oscillating disk viscometer, 117
over falling sphere, 62, 142
permeable hollow fiber membrane, 101,

144
porous media bounded by flat plate, 131
porous media bounded by parallel flat

plates, 132
porous media in cylindrical tube, 52
pressure driven in oscillating cylindrical

tube, 122
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Fluid flow: (continued )
pressure-driven between moving and

stationary parallel plates, 20
pressure-driven compressible in

cylindrical tube, 56, 135
pressure-driven of two stratified liquid

layers, 125
radial from porous cylindrical tube, 133
rotating disk viscometer, 116
rotating disk, 79
rotating in annulus with end effects, 88
tube with impulsively applied pressure,

92, 142
Fluid particle, 480
Fluid-wall aerosol flow reactor, see

Chemical reactor, fluid-wall aerosol
flow

Force on a fluid particle, 480
Forgiving nature of scaling, 12

in fluid flow, 25, 31, 49, 59, 96, 126,
133, 136

in heat transfer, 173, 177, 195, 456,
464, 466

in mass transfer, 329, 349
Fourier number, see Dimensionless groups,

Fourier number for heat transfer,
Fourier number for mass transfer

Fractional conversion, 449, 460, 462, 463,
478, 479

Free convection:
heat transfer, 183, 218, 247,
mass transfer, 281, 354, 357

Free surface flow:
curtain coating, 128
cylindrical jet, 94
down plate with condensation, 127
gravity-driven down a vertical wall, 45
over horizontal filer, 127

Froude number, see Dimensionless groups,
Froude number

Gas absorption:
chemical in bubble column, 362, 364,

377
continuous stirred tank reactor, 390,

408, 409
packed column, 394, 410, 411

Generalized notation:
continuity equation, 482
continuity equation for binary mixture,

484
equations of motion, 482
equations of motion for porous media,

483
thermal energy equation, 483

Graetz number, see Dimensionless groups,
Graetz number

Grashof number, see Dimensionless
groups, Grashof number for heat
transfer, Grashof number for mass
transfer

Group theory, 7

Heat conduction, see Heat transfer
Heat convection, see Heat transfer
Heat transfer:

boundary layer flow between parallel
plates with unheated entrance length,
236

boundary-layer flow over flat plate with
unheated entrance length, 239

boundary-layer flow over flat plate, 167,
238, 240

boundary-layer flow over plate with
specified heat flux, 240

boundary-layer flow over plate with
suction, 241

conductive in cylinder, 225, 230
conductive film theory model, 153
conductive in annulus with prescribed

temperatures, 226
conductive in circular fin, 227
conductive in cylinder with

temperature-dependent thermal
diffusivity, 246

conductive in rectangular parallelepiped,
225

conductive penetration theory model,
153

conductive through plane wall, 153, 224
conductive two-dimensional with end

effects, 146
convective between heated parallel

plates, 236
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convective between parallel plates with
fluid injection, 202

convective between parallel plates with
temperature-dependent viscosity, 180

convective between parallel plates with
viscous dissipation, 163, 234, 235

convective in fluid-wall aerosol flow
reactor, 448, 475, 476, 477, 478,
479

evaporative cooling of nonflowing film,
211, 242

falling film flow, 206, 236, 237
free convection between parallel plates

at different temperatures, 183
free convection next to heated vertical

plate with suction, 247
free convection next to heated vertical

plate, 218, 247
freezing of water-saturated soil 173,

243, 244
home freezer performance, 250
hot wire anemometer, 249
melting of frozen soil, 242, 243
rectangular fin, 196
unsteady-state axial in solid cylinder,

228
unsteady-state conductive in cooking

turkey, 187
unsteady-state conductive through plane

wall with imposed temperatures, 153
unsteady-state convective from solid

sphere at high Biot number, 209
unsteady-state convective from solid

sphere at low Biot number, 159, 231
unsteady-state convective to plane wall,

232
unsteady-state convective to solid

cylinder, 233
unsteady-state in membrane thermal

casting, 438, 471, 472, 473, 474
unsteady-state in slab with heat

generation, 248
unsteady-state radial conduction in

sphere, 248
unsteady-state radial in solid cylinder,

228
unsteady-state radial in spherical shell,

229

unsteady-state resistance heating in
wire, 200, 223

unsteady-state to sphere with
temperature-dependent conductivity,
250

Heat transfer coefficient, 159, 193, 196,
209, 227, 229, 232, 233, 234, 244,
246, 248, 250

Heterogeneous chemical reaction, see
Chemical reaction, heterogeneous

High Reynolds number flow, see
Approximation, high Reynolds
number

Hollow fiber, 101, 287, 328, 349, 415
Homogeneous chemical reaction, see

Chemical reaction, homogeneous
Hydraulic ram, 76, 116
Hydrodynamic boundary layer, see

Approximation, hydrodynamic
boundary layer

Hydrogen fuel production, see Chemical
reactor, fluid-wall aerosol

Identity tensor, 47, 63, 483
Incompressible flow approximation, see

Approximation, incompressible flow
Integral balance:

auxiliary condition, 47, 68, 96, 102,
103, 119, 174, 175, 176, 195, 213,
214, 243, 244, 246, 374

conservation of energy, 174
conservation of mass, 47, 299, 323, 337,

342, 344, 345, 346, 351
species, 275, 298, 309, 347, 348, 374

Integral relationships:
Gauss-Ostrogradskii divergence

theorem, 504
Leibnitz’ formula, 504

Interphase mass transfer time scale, see
Time scale, interphase mass transfer

Isolating quantities in dimensional
analysis, 14, 16, 436, 461, 479

Jet flow, 94, 126

Kinematic surface condition, 47, 52, 68,
96, 127, 128, 129
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Leibnitz formula, 504
Lewis number, see Dimensionless groups,

Lewis number
Lie groups, 7
Little oh of one, 2, 19, 145, 252
Local scaling, 10

in fluid flow, 31, 32, 36, 47, 49, 67, 68,
83

in heat transfer, 166, 167, 170, 194,
in mass transfer, 264, 268, 281, 294

Low Reynold’s number approximation, see
Approximation, creeping flow

Lubrication flow, see Approximation,
lubrication flow

Mach number, see Dimensionless groups,
Mach number

Macroscale scaling analysis, see Scaling
analysis, macroscale

Mass balance, see Equation of continuity
for binary mixture

Mass transfer:
convective between rotating cylinders

with concentration-dependent
viscosity, 352

convective from sphere, 355
convective in falling film flow down a

vertical cylinder, 338
convective in falling film flow down a

vertical plane, 269, 338
convective in field-flow fractionation,

316
convective in fluid-wall aerosol flow

reactor, 448
convective in membrane-lung

oxygenator, 287, 415
convective in oxygen transfer to red

blood cell, 332
convective in pressure-swing gas

absorption, 424
convective in Taylor dispersion of a

solute, 303
convective to uniformly accessible

rotating disk, 312
diffusive in crystallization from a

supersaturated solution, 345
diffusive in evaporation of liquid in

tube, 273, 337

diffusive in evaporative casting of
polymer film, 297, 350

diffusive in membrane permeation cell,
321

diffusive in membrane permeation with
concentration-dependent diffusivity,
277

diffusive in membrane thermal casting,
438, 471, 472, 473, 474

diffusive in stationary liquid film, 253,
336, 357

diffusive in swelling membrane with
nonconstant diffusivity, 349

diffusive in tapered pore, 306, 337
diffusive to nucleated water droplet,

344, 346
film theory, 253
free convection from horizontal

evaporating liquid, 357
free convection in evapotranspiration

from vertical cylinder, 281,
354

free convection next to permeable
vertical plate, 354

penetration theory, 259, 336
Mass-transfer coefficient, 212, 216, 259,

260, 289, 294, 297, 299, 332, 355,
356, 357, 358, 359, 387, 400, 407,
416

Mass transfer with chemical reaction:
continuous stirred tank reactor, 390,

408, 409
diffusional domain of slow reaction

regime, 381, 404
fast reaction regime, 372, 404, 405, 407
fluid-wall aerosol flow reactor, 448, 475,

476, 477, 478, 479
heterogeneous in growth of nucleated

water droplet, 346
heterogeneous in rusting of metal

surface, 347
heterogeneous in tube flow, 266, 325,

340
heterogeneous in tubular photocatalytic

reactor, 358
homogeneous in aeration of water

containing aerobic bacteria, 340
homogeneous in dissolution of

cylindrical capsule, 343, 344
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homogeneous in dissolution of spherical
capsule, 308, 342,

homogeneous in flow between parallel
membranes, 261, 339

homogeneous in hollow fiber membrane
reactor, 328, 349

homogeneous in liquid film with
concentration-dependent diffusivity,
351

inner domain of instantaneous reaction
regime, 373, 374, 405, 406

intermediate domain of slow reaction
regime, 403

intermediate reaction regime, 371, 404,
407

kinetic domain of slow reaction regime,
380, 405

packed column chemisorption, 394, 410,
411

slow reaction regime, 371, 400, 401, 408
surface domain of instantaneous reaction

regime, 373, 405
Membrane:

convective heat transfer between parallel
with flow injection, 202

flow between parallel with velocity
profile distortion, 136

flow between parallel, 143
flow between permeable and parallel flat

plate, 137
flow in annular region between

concentric, 139
flow in closed-end parallel, 141, 143
flow in hollow fiber with permeation,

101
heat transfer in boundary-layer flow

over with suction, 241
mass transfer in artificial lung

oxygenator, 287, 415, 467, 468
mass transfer in field-flow fractionation

between parallel, 316
mass transfer in hollow fiber, 328, 349
mass transfer in permeation cell, 321
mass transfer in swelling, 277, 349
mass transfer with nonconstant

diffusivity through, 277, 349
mass transfer with reaction in flow

between parallel, 261, 339

thermal casting, 438, 471, 472, 473,
474

Membrane-lung oxygenator, 287, 415,
467, 468

Microscale scaling analysis, see Scaling
analysis, microscale

Minimum parametric representation, 13,
35, 62, 64, 65, 69, 70, 97, 101, 104,
108, 109, 187, 190, 192, 196, 224,
287, 288, 291, 293, 296, 297, 335,
414, 415, 444, 456, 457, 464

Momentum balance, see Equations of
motion; Equations of motion for
porous media

Momentum boundary layer, see Region of
influence, fluid flow

Moving boundary:
dissolution of spherical capsule, 308
evaporation of liquid, 273
evaporative casting of polymer film, 297
evaporative cooling of liquid film, 211,

242
freezing of water-saturated soil, 243,

244
instantaneous reaction front, 373
melting of frozen soil, 173, 242, 243
thermal casting of membrane, 438, 471,

472, 473, 474

Navier Stokes equation, see Equations of
motion

Newton’s constitutive equation, 483, 489,
491, 492, 493

Nomenclature, see Notation
Normal stress boundary condition, see

Boundary condition, normal stress
No-slip condition, see Boundary condition,

no-slip
Notation, 506
Nozzle, 114
Nucleation, 344, 346
Nusselt number, see Dimensionless groups,

Nusselt number for heat transfer,
Nusselt number for mass transfer

Observation time, see Time scale,
observation time
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Order of magnitude, see Big ”oh” of one;
Little ”oh” of one; Scaling analysis

Order-of-one scaling analysis, see Big
”oh” of one; Little ”oh” of one;
Scaling analysis

Oscillated plate, 38, 68, 110, 111
Oscillating disk viscometer, see

Viscometer, oscillating disk
Oscillating tube, 122, 142, 287, 415, 467,

468

Packed column, 124, 394, 410, 411
Peclet number, see Dimensionless groups,

Peclet number for heat transfer, Peclet
number for mass transfer

Penetration theory, see Approximation,
penetration theory in heat transfer;
Approximation, penetration theory in
mass transfer

Permeation:
cell for membrane characterization, 321
evapotranspiration through vertical

cylinder, 281, 354
hollow fiber membrane reactor, 328, 349
influence on heat transfer in

boundary-layer flow over flat
membrane, 241

influence on velocity profile in flow
between parallel membranes, 136

membrane-lung oxygenator, 287, 415,
467, 468

through closed-end hollow fiber causing
axial flow, 101

through closed-end parallel membranes
causing axial flow, 141, 143

through concentric membranes with
axial flow in annular region, 139

through membrane parallel to flat plate
with laminar flow, 137

through membrane with nonconstant
diffusivity, 277, 349

through parallel membranes in field-flow
fractionation, 316

through parallel membranes in flow with
homogeneous reaction, 261, 339

through parallel membranes with
convective heat transfer, 202

through parallel membranes with
laminar flow, 141, 143

through walls of rotating co-axial
cylinders with axial flow, 352

Phase transition:
freezing of water-saturated soil, 243,

244
melting of frozen soil, 173, 242, 243
thermally induced phase separation

process for membrane formation, 438,
471, 472, 473, 474

Pi theorem:
in fluid flow, 13, 62, 65, 66, 70, 109
in heat transfer, 187, 192, 193, 196,

224, 248, 250, 251
in mass transfer, 287, 292, 297, 335, 437

Plate, see Flat plate
Point quantities, 25, 26, 37, 43, 67, 111,

156, 173, 193
Porous media flow:

annulus with radial tube flow, 133
between parallel flat plates, 132
bounded by flat plate, 131
Brinkman term, 69, 106, 483, 494, 495,
cylindrical tube, 52
Darcy’s law, 53, 106, 426
determining soil permeability, 105
gravity-driven film flow over, 99, 133
liquid film flow over, 99
permeability, 53, 99, 105, 106, 109,

110, 137, 426
superficial velocity, 53, 55, 99, 426

Practice problems:
fluid flow, 110
heat transfer, 224
mass transfer, 336
mass transfer with chemical reaction,

399
process design, 467

Prandtl number, see Dimensionless groups,
Prandtl, number

Pressure-swing adsorption, 424, 468, 469,
470, 471

Primary quantity, 8
Process design:

chemisorption in diffusional domain of
slow reaction regime, 384

chemisorption in fast reaction regime,
385

chemisorption in inner domain of
instantaneous reaction regime, 386
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chemisorption in intermediate reaction
regime, 385

chemisorption in kinetic domain of slow
reaction regime, 383

chemisorption in surface domain of
instantaneous reaction regime, 387

continuous stirred tank reactor, 390
fluid-wall aerosol flow reactor, 448
membrane formation, 438
membrane-lung oxygenator, 415
packed column chemisorption, 394
physical absorption, 382
pressure-swing absorber, 424

Quasi-stationary hypothesis, see
Approximation, quasi-stationary
hypothesis

Quasi-steady-state, see Approximation,
quasi-steady-state

Rayleigh free convection, 183, 218, 247,
281, 354, 357

Rayleigh number, see Dimensionless
groups, Rayleigh number

Reaction domain:
diffusional of slow reaction, 381
inner of instantaneous, 373, 405, 406
intermediate of slow reaction, 403
kinetic of slow reaction, 380
surface of instantaneous, 373, 405
See also Mass transfer with chemical

reaction
Reaction processes, see Mass transfer with

chemical reaction
Reaction regime:

fast, 372
instantaneous, 373
intermediate, 371
slow, 371
See also Mass transfer with chemical

reaction
Reaction time scale, see Time scale,

reaction in macroscale element; Time
scale, reaction in microscale element

Reactions, see Mass transfer with chemical
reaction

Rectangular coordinates:
continuity equation for binary system, 499
continuity equation, 486
equations of motion, 489

equations of motion for porous media,
494

thermal energy equation, 496
Reference factor, 10
Region of influence scaling, 10

fluid flow, 20, 25, 32, 35, 36, 39, 40, 41,
42, 43, 45, 53, 55, 67, 68, 69, 80, 83,
85, 87, 111, 113, 120, 122, 132, 134,
135, 137, 139, 418, 435, 468, 471,

heat transfer, 146, 151, 152, 153, 156,
157, 158, 167, 170, 171, 193, 194,
205, 206, 208, 209, 216, 217, 220,
225, 228, 229, 230, 231, 235, 236,
237, 238, 239, 240, 243, 244, 247,
473, 476

mass transfer, 253, 260, 265, 271, 272,
279, 280, 281, 285, 288, 294, 295,
296, 301, 311, 312, 315, 325, 331,
337, 338, 339, 340, 341, 345, 346,
347, 348, 350, 351, 356, 415, 418,
422, 435

mass transfer with chemical reaction,
261, 266, 308, 325, 328, 339, 340,
342, 343, 344, 347, 351, 358, 364,
377

Reynolds number, see Dimensionless
groups, Reynolds number

Rotating disk viscometer, see Viscometer,
rotating disk

Rotating flow:
annulus with end effects, 88
between spinning parallel disks with

radial injection, 115
disk viscometer, 116
spinning disk, 79
tube with axial flow, 112

Rusting, 347

Scale-up analysis, 2, 143, 248, 250
Scaling analysis:

o(1) procedure, 8
dimensional analysis procedure, 14
estimated error, 3, 12, 24, 37, 94, 150,

156, 163, 193, 462
macroscale element, 361, 377, 402, 403,

404, 407, 426, 449
mathematical basis, 7
microscale element, 361, 362, 364, 401,

426, 449
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Scaling derivatives, see Derivative scaling
Schmidt number, see Dimensionless

groups, Schmidt number
Secondary quantity, 8
Sherwood number, see Dimensionless

groups, Sherwood number
Sidewall effects in fluid flow, 43, 116
Sign convention:

constitutive equation, 481, 483, 489,
491, 492

force on fluid particle, 480
Sizing of equipment, 3, 424, 448
Species continuity equation, see Equation

of continuity for a binary mixture
Sphere:

conductive heat transfer at low Biot
number, 159, 231

conductive heat transfer in at high Biot
number, 209

convective heat transfer from, 248
convective mass transfer from, 355
diffusional growth of nucleating, 344,

346
diffusive mass transfer from dissolving,

308, 342
diffusive mass transfer into red blood

cell, 332
falling at terminal velocity, 62, 142
unsteady-state with

temperature-dependent conductivity,
250

water treatment via aeration from, 340
Spherical coordinates:

continuity equation, 487
continuity equation for binary system,

502
equations of motion, 492
equations of motion for porous media,

495
thermal energy equation, 497

Stratified flow, 125
Superficial velocity, see Porous media,

superficial velocity

Tangential stress boundary condition, see
Boundary condition, tangential stress

Tangential unit vector, see Unit vector,
tangential

Taylor dispersion, 303
Taylor series expansion:

of concentration-dependent density, 283,
355

of diffusion coefficient, 279
of pressure-dependent density, 58
of small dimensionless group, 15, 66
of temperature-dependent density, 185,

219
of temperature-dependent viscosity, 181

Terminal velocity, 62
Thermal boundary layer, see Region of

influence, heat transfer
Thermal energy equation:

cylindrical coordinates, 497
generalized notation, 483
rectangular coordinates, 496
spherical coordinates, 497

Thermally induced phase-separation
process for membrane formation, 438,
471, 472, 473, 474

Thiele modulus, see Dimensionless
groups, Thiele modulus

Time scale:
adsorption, 431
axial dispersion, 431
conduction, 162, 193, 201
contact, 368, 379, 431
diffusion, 258, 268, 305, 368
interphase mass transfer, 379
observation, 38, 40, 49, 50, 68, 93, 94,

155, 157, 161, 162, 177, 193, 194,
201, 210, 215, 216, 217, 246, 257,
276, 301, 305, 310, 319, 324, 341

periodic motion, 40, 420
pressurization, 430, 431, 434
reaction in macroscale element, 263,

268, 379
reaction in microscale element, 368
viscous, 40

Time scaling, see Time scale
Transient phenomena, see Unsteady-state
Tube, see Cylindrical tube

Uniform magnifications and contractions, 7
Unsteady-state fluid flow:

between approaching parallel circular
plates, 72
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between stationary and oscillating
parallel plates, 38

draining of film down vertical plate, 45
falling head method for determining soil

permeability, 105
hydraulic ram, 116
impulsively initiated in tube, 142
membrane-lung oxygenator, 287, 415
oscillating disk viscometer, 117
oscillating tube, 122, 142, 287, 415

Unsteady-state heat transfer:
conductive in cooking turkey, 187
conductive in slab with heat generation,

248
conductive in solid cylinder, 228, 230,

233
conductive in spherical shell, 229
conductive in thermal casting of

membrane, 438, 471, 472, 473, 474
conductive through wall, 153, 224, 232
convective from solid sphere, 159, 209,

231, 250
evaporative cooling of nonflowing film,

211, 242
freezing of water-saturated soil, 173,

243, 244
melting of frozen soil, 242, 243
resistance heating in wire, 200, 223

Unsteady-state mass transfer:
convective in aeration of water, 340
convective in field-flow fractionation,

316
convective in membrane-lung

oxygenator, 287, 415
convective in pressure-swing adsorption,

424, 468, 469, 470, 471
convective in Taylor dispersion, 303
diffusive evaporation of liquid, 273, 337
diffusive in crystallization from

supersaturated liquid, 345

diffusive in dissolution of cylindrical
capsule, 343, 344

diffusive in dissolution of spherical
capsule, 308, 342

diffusive in evaporative polymer film
casting, 297, 350

diffusive in growth of nucleated water
droplet, 344, 346

diffusive in membrane permeation cell,
321

diffusive in rusting of planar surface,
347

diffusive in thermal casting of
membrane, 438, 471, 472, 473, 474

diffusive through stationary film, 253,
259, 336

Unsteady-state mass transfer with chemical
reaction:

macroscale element scaling, 377
microscale element scaling, 364

Vector-tensor notation, 482
Viscometer:

falling needle, 117
oscillating disk, 117
rotating disk, 116

Viscous dissipation 163, 180, 202, 235
Viscous time scale, see Time scale, viscous

Wall:
conduction through one-dimensional,

153, 224, 232
conduction through one-dimensional

with heat generation, 248
conduction through three-dimensional,

225
conduction through two-dimensional,

146
Wetted-wall column, see Falling flow
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