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PREFACE

How big is big? How small is small? How wide is wide? How tall is tall?'

Scaling analysis as defined in this book involves a systematic method for nondimen-
sionalizing the dependent and independent variables as well as their derivatives in a
set of describing equations for a physical process. The unique aspect of this nondi-
mensionalization is that it is done to ensure that the variables and their derivatives
are bounded of order one; this implies that the magnitude of the dimensionless vari-
ables and their derivatives can range between zero and more-or-less 1. When this
order-of-one scaling is done, the magnitude of the resulting dimensionless groups
permits assessing the relative importance of the various terms in the describing
equations; this in turn has many applications. The magnitude of the dimensionless
groups appearing in the resulting dimensionless describing equations can be used to
assess possible simplifying approximations. Order-of-one scaling analysis results
in the minimum parametric representation of the describing equations. As such,
this systematic method of scaling offers many advantages relative to dimensional
analysis using the Pi theorem, which does not necessarily result in the minimum
number of dimensionless groups. A particular advantage of scaling analysis is that
it permits assessing the usefulness of a process or technology without the need
for prior bench- or pilot-scale data. It also provides a template for the design of
experiments to explore a new process or to validate a mathematical model.

The motivation for developing the approach to scaling analysis presented in this
book extends back over 40 years, to when the author was a graduate student in the
Department of Chemical Engineering at the University of California at Berkeley.
The author had difficulty in grasping constructs such as hydrodynamic boundary-
layer theory that were introduced using rather intuitive arguments such as those
found in Schlichting’s classic book.? The author strongly believed that boundary-
layer theory as well as approximations such as creeping and lubrication flows, film
theory, penetration theory, quasi-steady-state, and so on, which were introduced
using intuitive arguments, could in fact be developed systematically. During this
time the author rather serendipitously became aware of the work of Hellums and
Churchill, who used a type of scaling analysis for systematically arriving at the

! Anonymous—attributed to an inquisitive young child!
2H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York, 1960.
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form of dimensionless variables that permitted similarity solutions to partial dif-
ferential equations.> The book by Hansen, who used the Lie group of uniform
magnifications and contractions to explore the spectrum of differential equations
and associated boundary and initial conditions that would permit similarity solu-
tions, was invaluable for establishing the mathematical basis for scaling analysis.*
The pioneering books of van Dyke® and Nayfeh,® which focused on the use of
perturbation expansions for solving differential equations, were particularly helpful
in developing the concepts of ordering and multiple scales. Development of the
microscale—macroscale modeling concept for modeling heterogeneous systems was
strongly influenced by the book Mass Transfer with Chemical Reaction by Astarita.”
Since the author was a product of the “transport phenomena” generation of engi-
neering students, many of the examples and problems in this book were inspired
by his perceived need to justify the assumptions underlying material presented in
the classic textbook Transport Phenomena by Bird, Stewart, and Lightfoot.8 The
confluence of these influences led the author to develop the approach to scaling
analysis presented in this book. Whereas this systematic method for scaling analysis
borrows liberally from these prior mathematical developments, the author believes
this to be an original contribution that he proffers to the community of scholars in
science and engineering as both a teaching and a research tool.

When the author began his academic career in the Department of Chemical
Engineering at the University of Colorado in 1968, he introduced the use of scal-
ing analysis in the courses he taught involving fluid dynamics, heat transfer, mass
transfer, and reactor design. The use of scaling analysis was very well received by
the many engineering students who passed through the courses the author taught
during his 38 years in academia. In particular, it helped his students by provid-
ing a systematic method for understanding subtle concepts such as creeping and
boundary-layer flows in fluid dynamics, the Boussinesq approximation for ther-
mally driven free convection, Taylor dispersion in mass transfer, and the various
reaction regimes in mass transfer with chemical reaction. Scaling analysis was also
helpful to students because it provided a unified approach to teaching transport and
reaction processes. For example, scaling analysis provides a systematic method of
illustrating the analogous roles played by the Reynolds number in fluid dynamics
and the Peclet number in heat or mass transfer, or the Biot number in heat transfer
and the Damkohler number in mass transfer with chemical reaction. The effec-
tive use of scaling analysis as a pedagogical tool in his courses contributed in no
small way to the author being recognized by many teaching awards, including life-
time designation as a President’s Teaching Scholar of the University of Colorado
and several awards from the American Society for Engineering Education. The

3J. D. Hellums and S. W. Churchill, A.L.Ch.E.J., 10, 110 (1964).

4A. G. Hansen, Similarity Analysis of Boundary Value Problems in Engineering, Prentice-Hall, Engle-
wood Cliffs, NJ 1964.

SM. Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford, CA, 1975.

5A. H. Nayfeh, Perturbation Methods, Wiley, New York, 1973.

7G. Astarita, Mass Transfer with Chemical Reaction, Elsevier, New York, 1967.

8R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 1960.
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favorable response the author received from his students to the use of scaling anal-
ysis in his courses led him to present and publish several papers on this subject. This
national as well as international exposure for this systematic approach to scaling
analysis catalyzed a response from the academic community whose encouragement
motivated the author to write this book.

Whereas scaling analysis clearly is invaluable as a pedagogical tool, it also has
application in research and development. For example, scaling analysis allows one
to assess the value of a new process by providing order-of-magnitude estimates of
the anticipated performance. It also can be used to establish the process parameters
in the design of both numerical and laboratory experiments to explore new tech-
nologies. For this reason, timely examples drawn from the author’s experience are
included that effectively illustrate how scaling analysis was used to design a novel
membrane—lung oxygenator,”’ to assess the use of pulsed pressure-swing adsorption
in producing oxygen from air,'? to develop a model for polymeric membrane fab-
rication,!! and to explore the potential of a novel process for producing hydrogen
from methane using solar energy.!? Hence, the book has been written to serve as
both a textbook and as a reference book for researchers.

The book includes 62 examples that are worked in some detail to illustrate the
scaling method as well as 165 unworked problems that can be assigned when the
book is used as a textbook. Many of these problems are open ended; as such, they
provide excellent material to stimulate creative thinking for students. The author
has used selected chapters of this book complemented either with an appropriate
textbook or his lecture notes to teach courses in transport phenomena, fluid dynam-
ics, heat transfer, mass transfer, and reactor design. Whether one intends to use this
as a reference book or a textbook, it is necessary to read Chapters 1 and 2, which
provide an overview of the systematic approach to scaling analysis. A course in
fluid dynamics can easily cover Chapters 1 through 3, including working nearly all
the problems at the end of the Chapter 3. A course in heat transfer would cover
Chapters 1, 2, and 4, and a course in mass transfer would cover Chapters 1, 2,
and 5. For both courses, parts of Chapter 3 would be required to consider con-
vective heat or mass transfer. A course in mass transfer with chemical reaction
would cover Chapters 1, 2, and 6 as well as the parts of Chapters 3 and 5 needed
to consider convective mass transfer. A course in modeling transport and reac-
tion processes necessarily would involve all the chapters. The author used a draft
version of this book to teach a course on process modeling to graduate students
whose pre- or corequisites included at least a graduate-level course in transport
phenomena; this one-semester course covered all the chapters, at least in part.

The author conscientiously tried to ferret out the errors in the book. but, a
few more were found with each rereading. Unfortunately, perfection is a quality

9R. R. Bilodeau, R. J. Elgas, W. B. Krantz, and M. E. Voorhees, U.S. patent 5,626,759, issued
May 6, 1997.

1OE. M. Kopaygorodsky, V. V. Guliants, and W. B. Krantz, A.L.Ch.E. J., 50(5), 953 (2004).

D Li, A. R. Greenberg, W. B. Krantz, and R. L. Sani, J. Membrane Sci., 279, 50 (2006).

12J K. Dahl, A. W. Weimer, and W. B. Krantz, Int. J. Hydrogen Energy, 29, 57 (2004).
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accorded only to the gods! The author would greatly appreciate receiving correc-
tions and suggestions for improving the book. In particular, he welcomes contribu-
tions of new examples and problems that will possibly be included in subsequent
editions of the book, with due credit given to contributors.
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1 Introduction

Through and through the world is infested with quantity: To talk sense is to talk

quantities. It is no use saying the nation is large ... How large?
It is no use saying the radium is scarce ... How scarce?

You cannot evade quantity. You may fly to poetry and music, and quantity and

number will face you in your rhythms and your octaves.!

1.1 MOTIVATION FOR USING SCALING ANALYSIS

This book is directed to a broad spectrum of readers since modeling transport and
reaction processes is common to many fields of pure and applied science. The
book should be useful to educators who are seeking effective pedagogical tools for
introducing their students to an ever-expanding body of knowledge in the field of
transport phenomena and reactor design. It should also be of value to engineers and
scientists who need to apply and develop mathematical models for transport and
reaction processes. It will be helpful to students who are seeking ways to better
understand the broad range of subjects encompassed by transport and reaction
processes.

As defined in this book, the subject of scaling analysis, deals with a system-
atic method for nondimensionalizing a system of describing equations for transport
or reaction processes. The resulting dimensionless system of equations represents
the minimum parametric representation of the process. By this we mean that the
solution for any quantity that can be obtained from these equations will be at
most a function of the dimensionless independent variables and the dimensionless
groups generated by the scaling process. For example, scaling a heat-conduction
process will lead to a set of dimensionless equations whose solution for the dimen-
sionless temperature will be a function of the dimensionless spatial and temporal

'Alfred North Whitehead (1861-1947), in The World of Mathematics, J. R. Newman, ed., Simon &
Schuster, New York, 1956.

Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach
to Model Building and the Art of Approximation, By William B. Krantz
Copyright © 2007 John Wiley & Sons, Inc.



2 INTRODUCTION

independent variables and dimensionless parameters such as the Prandtl number
(Cput/k, in which p is the shear viscosity, C,, the heat capacity, and k the thermal
conductivity). Quantities that are obtained by evaluating the solution to the
dimensionless equations at fixed values of the spatial and temporal variables or
by integrating a dimensionless dependent variable over the spatial or temporal
domain will be functions of a reduced set of dimensionless spatial or temporal
variables and the relevant dimensionless groups. In some cases the dimension-
less dependent variable of interest might be a function of only the dimensionless
groups. For example, in a steady-state heat-conduction process, the dimension-
less heat-transfer coefficient (Nusselt number) will be a function of the relevant
dimensionless groups, such as the Prandtl number and geometric aspect ratios. This
minimum parametric representation of a transport or reaction process is useful since
it identifies the dimensionless variables and groups that can be used to correlate
data from either laboratory or numerical experiments (i.e., computer simulations).
The resulting dimensionless groups can also be used for scale-up or scale-down
analyses by invoking the principles of geometric and dynamic similarity.

There is no unique set of dimensionless dependent and independent variables and
associated dimensionless groups for a system of equations describing a transport
or reaction process. For any system of describing equations, one set of dimension-
less dependent and independent variables and corresponding dimensionless groups
can always be obtained from any other set. However, one can scale a system of
describing equations in a unique way to ensure that the relevant dependent and
independent variables and their derivatives are bounded of order one. By this we
mean that the magnitude of the particular dimensionless variable or its derivative
is bounded between zero and more-or-less 1. For those familiar with formal order-
ing arguments, we are bounding our variables to be little oh of 1 [i.e., o(1)] as
opposed to big oh of 1 [i.e., O(1)], which means that the quantity is essentially 1.
Note that by of order one we do not mean exactly 1. In o(1) scaling, one can say,
for example, that 0.8 = 1 or 3 = I; that is, the quantity is well within an order of
magnitude of 1. In this book this special application of scaling that leads to unique
dimensionless variables and groups is referred to as o(1) scaling.

The nondimensionalization associated with o(1) scaling is indeed unique. How-
ever, arriving at this unique scaling often involves a process of trial and error. That
is, one has to assume that a particular transport or reaction process is dominated by
some mechanism(s) (e.g., heat conduction in a particular direction for a multidi-
mensional heat-transfer process) and then has to nondimensionalize the describing
equations by comparing the other terms to the one that embodies this mechanism.
After obtaining a system of dimensionless describing equations, one evaluates the
resulting dimensionless groups for the relevant geometric and physical parameters
of interest. If all the dimensionless groups are bounded of order one [i.e., o(1)],
the original assumption as to the controlling mechanism(s) was correct. However,
if any of the dimensionless groups is much larger than 1, it can indicate that the
scaling was not correct for the geometric and physical parameters of interest or
that there is a region of influence or boundary layer in which a temporal or spa-
tial derivative becomes very large. In either case one has to repeat the scaling
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analysis with a different set of assumptions as to the controlling mechanism(s).
The possibility also exists that proper scaling will yield a dimensionless group that
is much larger than 1, which multiplies some grouping that involves the difference
between two dimensionless quantities each of which is bounded of o(1). In this
case the large dimensionless group implies that the grouping it multiplies is much
less than 1. We will see that scaling analysis is forgiving in that, when done cor-
rectly, all terms in the relevant equations will be bounded of order one; that is, the
product of any dimensionless group and the grouping of dimensionless dependent
and/or independent variables that it multiplies is o(1).

The utility of o(1) scaling is that when all the relevant dependent and inde-
pendent variables and their derivatives are bounded of order one in the resulting
dimensionless describing equations, one can assess the importance of various terms
on the basis of the values of the dimensionless groups that multiply them. If all
the dimensionless dependent variables and their derivatives and the independent
variables are bounded of o(1), the dimensionless groups should also be bounded
between O and 1. Hence, if a dimensionless group is of order 0.01 or less, the term
that it multiplies can be ignored in developing a model for the particular trans-
port or reaction process while incurring only a very small (~ 1%) error. Hence, by
using o(1) scaling, one can appropriately simplify the describing equations for a
transport or reaction process. For example, the equations of motion can be nondi-
mensionalized appropriately using o(1) scaling to determine the condition required
to neglect the inertia terms; that is, a very small Reynolds number, which is the
familiar creeping-flow approximation.

The trial-and-error process involved in arriving at the proper o(1) scaling is
of particular value in designing experiments. In the absence of solving model
equations, o(1) scaling permits determining the values of the geometric and pro-
cess parameters that are required to achieve certain experimental conditions. For
example, o(1) scaling permits determining the adsorbent bed properties required to
ensure that an adsorption process is controlled by equilibrium considerations rather
than intraparticle diffusion.

Scaling analysis is also useful for developing perturbation expansion solutions
to the describing equations. Scaling will identify dimensionless parameters whose
limiting values (i.e., very large or very small) permit making certain approximations
in solving the describing equations. For example, when the Reynolds number is very
small, one can develop an analytical solution for the flow around a sphere falling
at its terminal velocity in a Newtonian fluid with constant physical properties;
the result is the familiar Stokes flow solution for creeping flow over a sphere.
However, one can account for the neglected inertia terms in the equations of motion
by considering a perturbation expansion solution to the describing equations in
terms of the small Reynolds number. The zeroth-order term in this perturbation
expansion corresponds to the Stokes solution for creeping flow. The first-order
term that accounts for some effects of the inertia terms was first worked out by
Proudman and Pearson.? Perturbation solutions that are well behaved in the limit

21. Proudman and J. R. A. Pearson, J. Fluid Mech., 2, 237 (1957).
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of the perturbation parameter becoming very small or very large are referred to as
regular perturbation expansions. Perturbation expansions that are not well behaved
in the limit of a perturbation parameter becoming very small or very large are
referred to as singular perturbation expansions. An example of the latter is very
high Reynolds number flows. If one tries to solve the equations of motion in the
limit of very large Reynolds numbers by attempting a perturbation expansion in the
(small) reciprocal Reynolds number, one cannot properly account for the neglected
viscous terms. This is a direct consequence of the reduction in the order of the
describing equations when one develops the zeroth-order solution in the reciprocal
Reynolds number. To solve singular perturbation expansion problems, one needs
to use the method of multiple scales, whereby different scales are used in the inner
region, the outer region, and the overlap region between them. Scaling analysis
is an invaluable tool for determining when perturbation solutions are possible and
in determining the proper scales for the various regions. This book complements
classical references on perturbation expansion methods.>*

For the same reason that scaling analysis is useful in determining the scales and
expansion parameters in perturbation analyses, it is useful in assessing potential
problems that can occur in solving a system of describing equations numerically.
That is, when certain dimensionless groups become very small or very large, prob-
lems can be encountered in solving the resulting system of describing equations
numerically. For example, when the Reynolds number becomes very large, the
viscous effects will be confined to a very thin region in the vicinity of the solid
boundaries. If one uses a coarse mesh or does not employ a numerical routine with a
remeshing capability, the numerical routine will not provide sufficient resolution in
the vicinity of the solid boundaries and thereby either will not run or will provide
erroneous results. Scaling analysis can be used to identify these boundary-layer
regions so that a proper numerical method can be employed to solve the problem.

Scaling analysis is particularly useful to an educator who is faced with explain-
ing seemingly unrelated topics such as creeping flows, boundary-layer flows, film
theory, and penetration theory. Topics such as these often are developed in text-
books in a rather intuitive manner. Scaling analysis provides a systematic way to
arrive at these model approximations that eliminates guesswork; that is, scaling
analysis provides an invaluable pedagogical tool for teachers. Disparate topics in
transport and reaction processes can be presented in a unified and integrated man-
ner. For example, a region of influence in scaling provides a means for presenting
a unified approach to boundary-layer theory in fluid dynamics, penetration theory
in heat and mass transfer, and the wall region for confined porous media.

Scaling analysis also provides a very effective learning tool for students. Text-
books on transport and reaction processes generally justify simplifying assumptions
leading to the creeping-flow, boundary-layer, penetration theory, and plug-flow
reactor equations and others through ad hoc arguments rather than by a system-
atic approach such as that provided by scaling analysis. Hence, a student might

3M. Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford, CA, 1975.
4A. H. Nayfeh, Perturbation Methods, Wiley, New York, 1973.
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not see the interrelationship between the various approximations made in describ-
ing transport and reaction processes, such as the analogy between boundary-layer
theory in fluid dynamics and penetration theory in heat or mass transfer. Moreover,
the ad hoc approach to simplifying the equations describing transport and reaction
processes does not provide students with a basis for simplifying more complex
problems not described in textbooks.

1.2 ORGANIZATION OF THE BOOK

Scaling analysis is used by many pure and applied scientists at least in some
form; for example, in dimensional analysis. Many textbooks use order-of-magnitude
arguments to simplify the describing equations for transport and reaction processes.
However, what is lacking is a systematic treatment of scaling analysis that can be
used reliably without the need for the intuition that is either an inherent talent or has
been learned through years of practical experience. Hence, in Chapter 2 we present
scaling analysis in general terms as a series of steps to be followed. We distinguish
between the steps used in scaling for the purpose of dimensional analysis, which
leads to nonunique dimensionless groups, and those to be followed for the special
case of o(1) scaling, which leads to a unique minimum parametric representation.

Since this is intended to serve as both a reference book and as a textbook
for a course in mathematical modeling, the subject matter covered by Chapters 3
through 5 is organized according to the conventional topics in transport phenomena:
fluid dynamics, heat transfer, and mass transfer. The rationale for this organization
is that one needs to know how to scale the fluid dynamics to handle scaling of
convective heat and mass transfer. The latter is a necessary precursor to treating the
special topic of mass transfer with chemical reaction, which is covered in Chapter 6.

Chapter 7 is an integrating chapter in which we consider the application of
scaling to process design, which can involve coupled fluid flow, heat and mass
transfer, and chemical reactions. In particular, we illustrate how scaling can be used
to assess a new process or to design experiments (e.g., the sizing of equipment) to
ensure that desired conditions are met.

We presume that the reader has a basic knowledge of transport and reaction
processes; the book is not intended to replace textbooks that treat these subjects in
depth. A basic knowledge of the language of continuum mechanics (i.e., vector and
tensor mathematics) is assumed. However, the appendices summarize useful back-
ground material relevant to modeling transport and reaction processes. Since there
is no general agreement in the literature on the sign convention in the constitutive
equations or surface forces in the equations of motion, the appendices include a
brief review of the sign convection used in the book. The appendices also summa-
rize the forms of the continuity, equations of motion for both conventional fluid
flow and flow through porous media, and energy- and species-balance equations
in generalized vector—tensor notation as well as in rectangular, cylindrical, and
spherical coordinates. Useful integral relationships for scalars, vectors, and tensors
are also included in the appendices.
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The format in Chapters 3 through 5 is designed to illustrate the application of
scaling analysis by means of problems drawn from fluid dynamics, heat transfer,
and mass transfer. These problems are organized to illustrate how scaling can be
used to develop basic concepts such as creeping flows, boundary-layer theory,
film theory, and penetration theory. The format is to begin by indicating what
the problem is supposed to demonstrate. For example, analysis of an impulsively
oscillated plate is presented to illustrate both how to handle time scaling and to
show what is meant by a region of influence. Several problems are illustrated in
detail, followed by a comparable number of example problems that are outlined in
less detail.

Chapter 6 is organized somewhat differently since it considers problems in mass
transfer with chemical reaction that require scaling analysis on both the micro- and
macroscales: for example, on the scale of a small adsorbent particle and on the
much larger scale of the contacting device that contains these particles. Hence, after
introducing the concepts of micro- and macroscaling, the problems in this chapter
focus on the use of scaling to identify the various reaction regimes that can be
encountered in mass transfer with chemical reaction.

Whereas scaling analysis is used in Chapters 3 through 6 to justify classical
approximations made in fluid dynamics, heat and mass transfer, and mass transfer
with chemical reaction, in Chapter 7 we use scaling analysis to design and assess
novel technologies. The four examples considered in this chapter are considerably
more complex since they involve coupled transport and in some cases chemical
reaction as well. These examples were chosen because scaling analysis contributed
significantly to the process design and technology development.

Chapters 3 through 7 end with a summary that emphasizes the principles of
scaling analysis that were illustrated in the worked problems. Unworked practice
problems included at the end of each chapter explore in more detail the examples
considered in the chapter and apply scaling analysis to related problems.



2 Systematic Method for
Scaling Analysis

At its best, physics eliminates complexity by revealing underlying simplicity. . .

The beauty of the Standard Model (of particle physics) is in its symmetry;

mathematicians describe its symmetries with objects known as Lie groups.”!

2.1 INTRODUCTION

In this chapter, scaling analysis is presented as a stepwise procedure. The proce-
dure differs depending on whether one seeks to obtain the minimum parametric
representation for dimensional analysis or to do o(1) scaling to simplify a set
of describing equations or to design an experiment. We begin by considering
o(1) scaling since this is the primary focus of the book. Scaling as an alterna-
tive method for dimensional analysis is included for completeness at the end of the
chapter. Implementation of the stepwise procedure for either scaling or dimensional
analysis in modeling transport and reaction processes is the subject of subsequent
chapters. We begin by providing a brief overview of the mathematical basis for
scaling analysis.

2.2 MATHEMATICAL BASIS FOR SCALING ANALYSIS

Scaling analysis has its mathematical foundation in Lie group theory, specifically
the continuous group of uniform magnifications and contractions.> The proper-
ties of the latter group are useful when considering the operations involved when

IC. Seife, Can the laws of physics be unified? Science, 309, 82 (2005).
2A review of group theory is given in A. G. Hansen, Similarity Analysis of Boundary Value Problems
in Engineering, Prentice-Hall, Englewood Cliffs, NJ, 1964, Chap. 4.

Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach
to Model Building and the Art of Approximation, By William B. Krantz
Copyright © 2007 John Wiley & Sons, Inc.
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we change the units on the quantities that appear in dimensional equations. For
example, when converting the length unit of centimeters to meters, all quanti-
ties expressed either totally or partially in terms of length units (heights, widths,
velocities, accelerations, densities, etc.) experience a uniform magnification or con-
traction; that is, all heights become smaller when expressed in terms of meters rather
than centimeters, whereas all densities become larger.

The connection between uniform magnifications and contractions and scaling
analysis might not be clear in view of the fact that one is not changing units
when one nondimensionalizes a system of equations. When one nondimensionalizes
a quantity, it involves dividing the quantity by another quantity or combination
of quantities that have the same units. Quantities are broadly classified as either
primary or secondary. Primary quantities are measured in terms of units of their
own kind: for example, a length quantity measured in terms of meters or a force
quantity measured in terms of Newtons. Secondary quantities are measured in
terms of the units used for primary quantities: for example, velocity measured in
terms of a length divided by a time, or force measured in terms of kilograms
multiplied by meters divided by seconds squared. Note that any secondary quantity
can be converted to a primary quantity merely by measuring it in terms of units
of its own kind. Indeed, in the preceding examples, force was considered as both
a primary and a secondary quantity. However, the same could be done with a
quantity such as velocity; for example, we could define 1 Vel to be the velocity
associated with a moving a distance of 1 meter in 1 second. Scaling analysis is
equivalent to considering every scaled quantity to be a primary quantity since when
we nondimensionalize a quantity, we are dividing it by something that has the same
units. Hence, the properties of the group of uniform magnifications and contractions
also underlie the operations that we use in scaling analysis. More could be said
and done with group theory in exploring the full implications of scaling analysis.
However, this would not serve the purpose of this book, which is to show how
scaling analysis can be used to model transport and reaction processes.

2.3 ORDER-OF-ONE SCALING ANALYSIS

The procedure that is involved in o(1) scaling analysis can be reduced to the
following eight steps:

1. Write the dimensional describing equations and their initial, boundary, and
auxiliary conditions appropriate to the transport or reaction process being
considered.

2. Define unspecified scale factors for each dependent and independent vari-
able as well as appropriate derivatives appearing explicitly in the describing
equations and their initial, boundary, and auxiliary conditions.

3. Define unspecified reference factors for each dependent and independent vari-
able that is not referenced to zero in the initial, boundary, and auxiliary
conditions.
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4. Form dimensionless variables by introducing the unspecified scale factors
and reference factors for the dependent and independent variables and the
appropriate derivatives.

5. Introduce these dimensionless variables into the describing equations and
their initial, boundary, and auxiliary conditions.

6. Divide through by the dimensional coefficient of one term (preferably one
that will be retained) in each of the describing equations and their initial,
boundary, and auxiliary conditions.

7. Determine the scale and reference factors by ensuring that the principal terms
in the describing equations and initial, boundary, and auxiliary conditions are
o(1) (i.e., they are bounded between zero and of order one).

8. The preceding steps result in the minimum parametric representation of the
problem (i.e., in terms of the minimum number of dimensionless groups);
appropriate simplification of the describing equations may now be explored.

The dimensional describing equations involved in step 1 for transport and
reaction processes are usually differential equations with prescribed initial and/or
boundary conditions as well as auxiliary conditions to determine the location of
moving boundaries or free surfaces. These describing equations incorporate any
simplifications that one is certain are justified; for example, assuming an incom-
pressible flow for a liquid. However, one cannot eliminate any of the terms whose
magnitude scaling analysis is being used to assess; for example, the inertia terms
when one is seeking to justify the creeping-flow approximation. In implementing
this step, one must write down at least formally all the differential and algebraic
equations necessary to solve the particular problem. For example, one might have
an elliptic differential equation that requires a downstream boundary condition that
is not known; indeed, one might be using scaling analysis to determine when the
elliptic equation can be simplified to a parabolic equation that obviates the need
to specify this problematic boundary condition. Nonetheless, one needs to spec-
ify this unknown boundary condition at least formally. One also needs to include
appropriate equations of state, kinetic relationships, and so on, required to ensure
that the problem is determined completely.

In step 2 one defines scale factors for each dependent and independent variable
that appears explicitly in the describing equations and their initial, boundary, and
auxiliary conditions. However, in addition, one might have to define scale fac-
tors for certain derivatives of the dependent variables that appear explicitly in the
describing equations and their initial, boundary, and auxiliary conditions. One sees
that this procedure in step 2 is a dramatic departure from that used in conventional
dimensional analysis. The reason for introducing scale factors on derivatives as
well as dependent and independent variables is to ensure that the resulting dimen-
sionless derivatives are o(1). This is a critical step since one would like to have
every relevant dimensionless variable as well as their derivatives be of o(1) so that
the magnitude of the dimensionless groups multiplying the dimensionless variables
and/or their derivatives indicates the relative importance of the particular term in
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the describing equations. Often, the derivatives will scale with the same scale fac-
tors as those used for the dependent and independent variables. This occurs when
the particular dependent variable experiences its characteristic change over a dis-
tance or time that corresponds to the characteristic length or time. However, this is
not always the proper way to scale derivatives. For example, in moving boundary
problems, one usually does not scale the time derivative of the location of the
moving boundary with the characteristic length scale divided by the characteristic
time scale. The proper way to scale derivatives can best be illustrated by means of
the problems discussed in subsequent chapters.

Step 3 introduces reference factors for any dependent or independent variable
that is not naturally referenced to zero. In fluid dynamics, dependent variables
such as velocities are often naturally referenced to zero because of the no-slip and
impermeable boundary conditions at solid surfaces. However, this is generally not
true for heat- and mass-transfer problems. For example, a one-dimensional heat-
conduction problem might have boundary conditions that involve different constant
temperatures at two planar surfaces. If one wants the dimensionless temperature
to be bounded between zero and 1, it is clearly necessary to introduce a refer-
ence temperature, which scaling will naturally determine to be the lowest known
temperature for the process. Note that reference factors are sometimes needed for
independent variables as well. For example, in solving a fluid-flow problem in an
annulus the zero for the radial coordinate should be referenced to the inner wall
of the annulus, not to the axis of symmetry for the cylindrical coordinate system.
Introducing a reference factor for variables not naturally referenced to zero is crit-
ical in achieving o(1) scaling. If this is not done for a variable that is not naturally
referenced to zero, the parametric representation of the problem will involve an
additional unnecessary dimensionless group.

In step 4 we form dimensionless variables for all dependent and independent
variables and their relevant derivatives. These are defined by dividing the dimen-
sional value of the particular variable relative to the unspecified reference factor
(for those variables not naturally referenced to zero) by the unspecified scale factor.

Step 5 involves using the chain rule of differentiation to recast the dimensional
describing equations in terms of the dimensionless variables. This is generally
quite straightforward since the scale and reference factors are considered to be
constants in scaling analysis. In some problems involving a region of influence
such as boundary-layer flows, the scale factor might be a function of one of the
independent variables. However, in such cases we are considering “local scaling”
at a fixed value of the independent variable. Hence, the scale factors involving
the region of influence are still treated as constants in the change of variables
involved in the nondimensionalization. This will become clearer when the example
problems involving a variable region of influence (e.g., boundary-layer flows) are
considered. However, to reference a spatial variable to zero in some problems,
(e.g., when a moving boundary is involved), the new scaled spatial variable will
be a function of time through a reference factor that defines the location of the
boundary. In these cases the chain rule of differentiation must be applied with
caution since time derivatives in a fixed reference frame do not transfer as simple
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time derivatives with respect to the moving reference frame. An additional term is
generated that involves the velocity of the moving boundary. This situation arises in
problems involving moving boundaries, due to phase transition, net mass addition
or removal from a system, and dissolution or precipitation of a phase.

In step 6 we divide through by the dimensional coefficient of one term in each
differential and algebraic equation involved in the describing equations for the par-
ticular transport or reaction process. These dimensional coefficients will consist
of known parameters of the process, such as the density, viscosity, thermal con-
ductivity, and so on, as well as the unspecified scale and reference factors used
to nondimensionalize the variables in the describing equations. In implementing
this step, one should try to divide through by the dimensional coefficient of a
term that must be retained in each of the describing equations, to retain physical
significance. For example, to satisfy certain boundary conditions, one might need
to retain the highest-order spatial derivative in a coordinate direction. Another
example is the force that causes flow in a fluid dynamics problem, such as the
axial pressure gradient. However, in some cases one might not know which terms
must be retained. In such cases one divides through by the dimensional coeffi-
cient of some chosen term. If, in fact, the term chosen is not a significant term
for the particular conditions being considered, other terms in the same describing
equation will be multiplied by dimensionless groups that are significantly greater
than 1, indicating that the latter terms are the most important in the equation being
considered.

Step 7 is the most subtle step in scaling analysis. In this step one determines
the unspecified scale and reference factors by demanding that the dimensionless
dependent and independent variables and their relevant derivatives in the describing
equations be o(1). To accomplish this, one sets appropriate dimensionless groups
containing the unspecified scale and reference factors equal to 1 (for scale factors)
or zero (for reference factors). In some cases the scale factor for one dependent
variable (e.g., a particular velocity component in a fluid dynamics problem) might
be obtained by integrating the scale factor for another variable (e.g., the derivative
of this same velocity component). The manner in which this step is implemented
is best learned by example, which is why most of the book is devoted to applying
scaling analysis to a variety of problems in fluid dynamics, heat transfer, mass
transfer, and reaction processes.

Step 8 is the desired end result of the scaling analysis: the unique minimum
parametric representation of the describing equations for the process that ensures
o(1) scaling. Since all the dimensionless dependent and independent variables and
their relevant derivatives are o(1), the magnitude of each term in the describing
equations is determined by the magnitude of the dimensionless group that multi-
plies this term. One dimensionless term in each describing equation will have a
coefficient of unity since in step 6 we divided through by the dimensional coef-
ficient of one term in each of these equations. Hence, one is comparing to 1 the
magnitude of each term in each describing equation. How one proceeds in this
step depends on what information is being sought in the scaling analysis. If one is
seeking to determine the conditions required to ignore a particular term or terms
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in the describing equations, one merely demands that the dimensionless coefficient
of the term be much less than 1 [e.g., 0(0.1) or 0(0.01)]. If one is seeking to
determine what approximations are allowed for a particular problem for which the
process parameters are known, one evaluates all the dimensionless groups in the
describing equations to assess their magnitude. If the scaling analysis is correct for
the particular process conditions, the magnitudes of all the dimensionless groups
must be o(1). If any of the dimensionless groups are much greater than o(1), one
of the following is indicated: (1) the term containing this group should have been
the one whose dimensional coefficient was divided through to form the dimensional
groups in step 6; (2) there is a region of influence or boundary layer in which a
temporal or spatial derivative becomes very large; or (3) the group of dimension-
less dependent variables and/or their derivatives that the large dimensionless group
multiplies is very small. In the first two situations one has to rescale the describing
equations either by dividing through by the appropriate dimensional coefficient in
each equation or by introducing a region of influence. The third situation will be
discussed in more detail shortly. One sees that scaling analysis is “forgiving” in
that if one makes an incorrect assumption, it will lead to an apparent contradiction
which indicates that the scaling was incorrect. When one has arrived at the cor-
rect scaling indicated by having all the dimensionless terms bounded of o(1), one
can determine allowable assumptions from the magnitude of those dimensionless
groups that are 0(0.1). For example, if the dimensionless group (i.e., Reynolds
number) multiplying the inertia terms in the equations of motion is O(0.1), the
error incurred in dropping these terms typically will be approximately 10%. If this
dimensionless group is O(0.01), the error typically will be approximately 1%. This
will be illustrated in several of the example problems by comparing the approximate
solution justified by scaling analysis with the solution to the full set of describing
equations.

A particular advantage of an o(1) scaling analysis is that it also yields the
minimum parametric representation of the dimensionless describing equations.
Moreover, if the scaling analysis has been done correctly, the dimensionless groups
usually are of o(1) as well. However, in some cases a proper scaling analysis will
yield dimensionless groups that are much larger than O(1). Since each term in
the describing equations must be bounded of o(1), this can occur only when a
large dimensionless group multiplies a dimensionless term that can become very
small. For example, a dimensionless group that is a measure of the reaction rate
might multiply a term of the form 1 — X, where X, is the fractional conversion
of the reactant. A large dimensionless group in this case would mean that 1 — X,
is quite small; that is, the large dimensionless group would imply nearly complete
conversion.

Although scaling analysis can be described in terms of the eight steps described
above, its use can best be explained through detailed examples. This constitutes the
subject matter in the remaining chapters. However, before discussing the application
of o(1) scaling analysis to transport and reaction processes, it is useful to consider
the special application of scaling analysis as an alternative to the Buckingham Pi
theorem for dimensional analysis.
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2.4 SCALING ALTERNATIVE FOR DIMENSIONAL ANALYSIS

In o(1) scaling analysis we atrive at a unique minimum parametric representation
that permits assessing the relative magnitudes of the various terms in the describing
equations. However, in some cases we seek to obtain a minimum parametric repre-
sentation of the describing equations that is optimal for correlating experimental or
numerical data, extrapolating known empirical equations, or scaling-up or scaling-
down some transport or reaction process; the latter procedure is usually referred to
as dimensional analysis. The conventional procedure for dimensional analysis is to
use the Pi theorem, which involves the following steps:

1. List all quantities on which the phenomenon depends.
2. Write the dimensional formula for each quantity.

3. Demand that these quantities be combined into a functional relation that
remains true independent of the size of the units.

In step 3, one invokes the Pi theorem, which states that n — m dimensionless
groups are formed from n quantities expressed in terms of m units. A proof of
the Pi theorem and discussion of the special case n = m is given in Bridgman.?
Unfortunately, using the Pi theorem approach is not always straightforward. For
example, how do we select the quantities? When do we include dimensional con-
stants such as g, (the Newton’s law constant) or R (the gas constant)? How are
dimensionless quantities such as angles involved? How many units must be con-
sidered? For example, force can be considered to be a primary quantity expressed
in units of its own kind (e.g., Newtons) or a secondary quantity expressed in terms
of mass, length, and time (e.g., kg-m/s?). This problem also arises with quanti-
ties involving energy or temperature units since both can be considered as either
primary or secondary quantities. The Pi theorem also does not identify quantities
that always appear in combination; for example, a problem might involve the kine-
matic viscosity v, but the Pi theorem approach would introduce the shear viscosity
w and the mass density p (i.e., v = u/p) as separate quantities, thereby generating
an additional dimensionless group that in fact is not needed. The aforementioned
difficulties in using the Pi theorem approach can preclude obtaining the minimum
parametric representation, as illustrated in Chapter 3.

Scaling analysis can be used to circumvent the difficulties encountered in using
the Pi theorem for dimensional analysis. The o(1) scaling analysis procedure out-
lined in Section 2.3 leads to the minimum parametric representation for a set of
describing equations; that is, to identifying the minimum number of dimensionless
groups required for dimensional analysis. However, carrying out an o(1) scaling
analysis can be somewhat complicated and time consuming. Moreover, the dimen-
sionless groups obtained from an o(1) scaling analysis often are not optimal for
correlating experimental or numerical data, for extrapolating empirical correla-
tions, or for scale-up or scale-down analyses. The scaling analysis approach to

3p.W. Bridgman, Dimensional Analysis, Yale University Press, New Haven, CT, 1922.
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dimensional analysis illustrated in this section is much easier and quicker to imple-
ment. However, it does not provide as much information as o(1) scaling analysis
for achieving the minimum parametric representation. In particular, it does not lead
to groups whose magnitude can be used to assess the relative importance of partic-
ular terms in the describing equations. It also does not identify regions of influence
or boundary layers, whose identification in some cases can reduce the number of
dimensionless groups. In this section we outline the stepwise procedure for using
scaling analysis for dimensional analysis, which includes systematic methods for
reducing the number of dimensionless groups and for casting them into alternative
forms that are optimal for correlating data.

The stepwise procedure in implementing scaling analysis for dimensional anal-
ysis consists of the following 11 steps:

1. Write the dimensional describing equations and their initial, boundary, and
auxiliary conditions appropriate to the transport or reaction process being
considered.

2. Define unspecified scale factors for each dependent variable and its deriva-
tives and each independent variable appearing explicitly in the describing
equations and their initial, boundary, and auxiliary conditions.

3. Define unspecified reference factors for each dependent and independent
variable that is not referenced to zero in the initial, boundary, and auxiliary
conditions.

4. Form dimensionless variables by introducing the unspecified scale factors
and relevant reference factors for each dependent variable and its derivatives
and each independent variable.

5. Introduce these dimensionless variables into the describing equations and
their initial, boundary, and auxiliary conditions.

6. Divide through by the dimensional coefficient of one term in each of the
describing equations and their initial, boundary, and auxiliary conditions.

7. Determine the scale and reference factors by setting dimensionless groups
equal to 1 (for scale factors) or zero (for reference factors); this yields the
minimum parametric representation in the form

fI, Iy, ..., ) =0 (2.4-1)

where I1; denotes a dimensionless group. These IT;’s include dimensionless
groups formed from combinations of the physical and geometric quantities
and any dimensionless independent variables.

8. The dimensionless groups in step 7 are not unique; it might be advantageous
to isolate two or more dimensional quantities into one group (if possible) to
determine their interdependence; this is done by forming a new group from
the k dimensionless groups via the operation

M,=¢- -0¢,05,... 0] (2.4-2)
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where ¢ is a dimensionless constant and a, b, ..., j are constants chosen
to isolate the desired quantities into the new dimensionless group IT,; one
can then use this new group along with any k£ — 1 of the original groups;
however, this operation cannot result in eliminating a dimensional quantity
from the analysis.

9. The number of groups can be reduced further when a IT; is either very large
or very small by expanding equation 2.4-1 in a Taylor series in the small
(or reciprocal of a large) I1;:

N

I1; + O(I?) (2.4-3)
m=o OIL

;=0

fI, Iy, . ) = f

If equation 2.4-3 can be truncated at the first term, the minimum parametric
representation will involve k — 1T1;’s.

10. Any dimensionless group that contains the sum or difference of two dimen-
sional quantities y and &, either of which appears individually in any other
dimensionless group, can be redefined to exclude this particular quantity;
that is,

if T, = a“Bb(y — 8)°, it can be replaced by IT") = aBPy¢
. . . i . P (2.4-4)
when § is contained in another of the dimensionless groups
11. Any dimensionless group that contains one or more of the dimensionless
groups that appear in the dimensional analysis can be redefined to exclude
these redundant dimensionless groups; that is,

If IT, = f(I1y, I, ..., II}) and IT; contains one or more of
the other IT;’s, it can be redefined to exclude the redundant IT;’s.
(2.4-5)

Step 1 in the scaling analysis procedure for dimensional analysis is the same as
that used for o(1) scaling. In dimensional analysis it is essential to begin by writing
the appropriate equation for the quantity that one seeks to correlate. For example,
one might be seeking to correlate the drag force on a particle immersed in a fluid;
one must then write the appropriate integral equation for the total drag; the latter
will, in turn, require the solution to the appropriate form of the equations of motion,
which then must also enter into the dimensional analysis. It is important to empha-
size in implementing step 1 that one must write all the algebraic and differential
equations along with the appropriate initial, boundary, and auxiliary conditions
needed to solve the problem. One must also use all the available information to
simplify these describing equations appropriately; for example, one eliminates the
inertia terms if it is a creeping flow. However, it is sufficient to write the appro-
priately simplified equations of motion, energy-conservation equation, or species
balances in generalized vector—tensor notation; that is, it is not necessary to expand
any of these equations in a particular coordinate system.
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Steps 2 through 6 are similar to those used in o(1) scaling analysis with one
exception. In step 2, one scales only the dependent and independent variables; one
does not scale any of the derivatives. The reason for this is that we are merely
seeking to achieve a minimum parametric representation. We are not trying to scale
to ensure that all the dimensionless variables and their derivatives are o(1).

The IT;’s obtained in step 7 constitute dimensionless groups formed from the
physical properties, geometric and process parameters, and dimensionless depen-
dent and independent variables. Note that some of the dimensionless dependent
and/or independent variables will not appear in the IT;’s if they are integrated out
or evaluated at fixed spatial or temporal conditions. For example, one might seek a
correlation for the total drag force at the surface of a sphere falling at its terminal
velocity. The total drag force involves integrating the local shear stress and pres-
sure over the surface of the sphere. Hence, although the dimensionless local shear
stress and pressure depend on the dimensionless spatial coordinates, the total drag
force on the sphere does not depend on these quantities, due to integration over
the surface. This will become clearer when representative problems are considered
in subsequent chapters.

Step 8 is the procedure whereby one obtains the dimensionless groups that are
optimal for the desired correlation. This step states merely that one can form a new
set of dimensionless groups by multiplying two or more of the groups obtained
in step 7 raised to arbitrary powers and multiplied by arbitrary constants. One
does this to isolate certain quantities into just one dimensionless group. The only
precaution to be observed here is that the resulting dimensionless groups must be
independent and equal in number to the original set of groups. In addition, this
procedure cannot result in eliminating any quantity from the dimensional analysis.
For example, one might want to correlate the average velocity for fully developed
laminar flow in a smooth cylindrical tube as a function of the relevant parameters.
Steps 1 through 7 will result in two dimensionless groups. One possible set of
dimensionless groups is the conventional friction factor and the Reynolds number.
However, both of these groups contain the average velocity. This implies that a
correlation for the friction factor as a function of Reynolds number would require
a trial-and-error solution to obtain the average velocity. However, step 8 indicates
that one can multiply the friction factor by the square of the Reynolds number to
obtain a new dimensionless group that is independent of the average velocity. One
can then plot the Reynolds number as a function of this new dimensionless group
to obtain a correlation that is optimal for determining the average velocity.

Step 9 provides the formalism necessary to reduce the number of dimensionless
groups when one or more of the I;’s is either very small or very large. If one can
assume that the dimensionless correlation has continuous derivatives with respect
to the particular small IT; (or reciprocal large IT;), the correlation can be expanded
in a Taylor series in the small I1; (or reciprocal large IT;). For a sufficiently small
I1; this Taylor series can be truncated at the first term, thereby formally eliminating
this small dimensionless group from the correlation. For example, the friction fac-
tor (dimensionless drag force) for flow over a sphere is a function of the Reynolds
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number. However, at very small reciprocal Reynolds numbers the friction
factor becomes independent of the Reynolds number and approaches a constant
value.

Step 10 is a consequence of the fact that the set of dimensionless groups involved
in a minimum parametric representation of the describing equations is not unique.
If two quantities appear in the describing equations only as a sum or difference,
the number of dimensionless groups can be reduced by using the sum or difference
as a single dimensional quantity. However, if either of the quantities appearing in
a sum or difference appears individually in any other dimensionless group, there is
no advantage to considering the sum or difference as a separate dimensional quan-
tity. Step 10 is particularly useful when one is trying to isolate particular quantities
into just one dimensionless group in order to correlate experimental or numerical
data. For example, a dimensional analysis correlation for the heat-transfer coef-
ficient might involve the temperature difference T,, — Too, Where T, and T, are
the wall and bulk-fluid temperatures, respectively. However, if a heterogeneous
chemical reaction is occurring at the wall, 7}, might enter the dimensional analysis
separately, due to the dependence of the reaction rate constant on temperature. In
this case the quantity T, — T, can be replaced by T, and T, as separate quanti-
ties. Doing this might be advantageous if one is trying to isolate T, into just one
dimensionless group to study its effect on the performance. Sums or differences of
dimensional quantities are often encountered when one obtains the minimum para-
metric representation of a set of describing equations by invoking o(1) scaling; for
example, the characteristic temperature scale might be T;, — T,. This temperature
difference is appropriate for the scaling analysis to assess what approximations
might be justified. However, it might be inconvenient for a dimensional analy-
sis correlation if one is seeking to isolate T, or 7o, into a single dimensionless
group.

Step 11 also follows from that fact that the set of dimensionless groups involved
in a minimum parametric representation of the describing equations is not unique.
If a particular dimensionless group contains one or more of the other of the dimen-
sionless groups in the dimensional analysis, this group can be redefined to exclude
these redundant dimensionless groups. For example, in convective heat-transfer
problems the Reynolds number, Peclet number, and Prandtl number can arise.
However, the Peclet number is the product of the Reynolds and Prandtl numbers.
If the Reynolds and Prandtl numbers appear independently in the dimensional anal-
ysis, one can eliminate the Peclet number. Dimensionless groups containing other
dimensionless groups are more often encountered when one obtains the minimum
parametric representation of a set of describing equations by invoking o(1) scaling.
For example, describing equations for mass transfer with chemical reaction might
involve a dimensionless group containing the characteristic reaction-rate parame-
ter, which in turn is a function of a characteristic temperature ratio that appears
as an independent dimensionless group. Incorporating the temperature ratio into
the definition of the characteristic reaction-rate parameter is critical to carrying out
accurate scaling analysis. However, it will be very inconvenient for a dimensional
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analysis correlation if one is seeking to isolate either of the temperatures in this
ratio into just one dimensionless group.

2.5 SUMMARY

An eight-step procedure was outlined whereby all the dependent and independent
variables and their derivatives are bounded to be o(1). This procedure results in
the minimum parametric representation of the describing equations; that is, the
dimensionless describing equations involve the minimum number of dimensionless
groups. The o(1) scaling procedure permits assessing the relative importance of
each term in the describing equations, which then suggests possible approximations
that can be made. Scaling analysis is forgiving in that it indicates if variables and/or
their derivatives have been scaled incorrectly. This is usually indicated by one or
more terms that are not bounded of o(1).

Although o(1) scaling analysis always leads to the minimum parametric repre-
sentation of the describing equations, implementing this procedure can be tedious
and time consuming. When one just seeks to do dimensional analysis without
assessing the relative importance of the various terms in the describing equations,
one can implement the scaling approach to dimensional analysis in the absence
of any effort to bound the variables and their derivatives to be o(1). The lat-
ter procedure is straightforward and quick to implement. However, the resulting
dimensionless groups do not provide nearly as much information on the physics
and chemistry of the transport and reaction processes as would be obtained from
an O(1) scaling analysis. An 11-step procedure was outlined for implementing
the scaling approach to dimensional analysis. However, only the first seven steps
are essential in implementing this procedure. The remaining four steps involve
manipulations that permit recasting the dimensionless groups into a form that is
optimal for correlating data or process scale-up. Using either o(1) scaling analysis
or the alternative simpler scaling analysis approach to dimensional analysis offers
many advantages relative to using the Pi theorem. In particular, natural groupings
of the variables are identified, and complications related to choosing the proper
dimensions and the need to introduce dimensional constants are avoided.



3 Applications in Fluid Dynamics

To simplify the Navier—Stokes equations within the boundary layer,
we can then utilize the fact that the thickness of this layer is
very small compared to its length along the body."

3.1 INTRODUCTION

In this chapter we consider the application of scaling analysis to fluid dynamics.
This will serve not only to illustrate how scaling analysis is implemented but will
also provide a systematic means for introducing somewhat abstract concepts in fluid
dynamics, such as creeping, lubrication, boundary-layer, quasi-steady-state, quasi-
parallel, incompressible, and other flows. The material in this chapter thus provides
a useful supplement to a foundation course in fluid dynamics. No attempt is made in
this chapter or elsewhere in the book to provide a detailed derivation of the describ-
ing equations that are used in scaling analysis. However, the reader is referred to
the appendices, which summarize the continuity equations and equations of motion
along with the corresponding forms of Newton’s constitutive equation in gener-
alized vector—tensor notation as well as in rectangular, cylindrical, and spherical
coordinates. These equations serve as the starting point for each example problem.

In this chapter we use the two ordering symbols introduced in Chapter 2:
o(1) and O(1). The symbol o(1) implies that the magnitude of the quantity can
range between 0 and more-or-less 1. The symbol O(1) implies that the magnitude
of the quantity is more-or-less 1; that is, it is never much less than 1. In the prob-
lems in Sections 3.2 through 3.10 on o(1) scaling and dimensional analysis, the
steps involved in each of these scaling procedures are discussed in detail. In the
subsequent example problems, less detail is given; however, the steps involved are
noted parenthetically.

We begin by considering the use of o(1) scaling to simplify laminar flow prob-
lems. We then use o(1) scaling to justify classical approximations made in fluid
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dynamics, specifically creeping, lubrication, boundary-layer, and quasi-steady-state
flows. We then apply o(1) scaling to show how it can be used to justify ignoring
end and sidewall effects. We also consider the application of o(1) scaling in simpli-
fying more complex flows, such as those involving free surfaces, porous media, and
compressible fluids. In Section 3.10 we consider the use of scaling in dimensional
analysis. The methodology used in this chapter is to illustrate the use of scaling by
considering detailed examples. Additional worked example problems followed by
several unworked practice problems are included at the end of the chapter.

3.2 FULLY DEVELOPED LAMINAR FLOW

Our first example of scaling analysis will consider a straightforward flow problem
for which an exact analytical solution is available. Of course, one would not need to
scale a problem that can be solved exactly analytically. However, this will permit us
to assess the error made when particular assumptions are invoked based on scaling
analysis. This example illustrate, use of the o(1) scaling analysis procedure. It also
illustrates region of influence scaling, whereby we seek to determine the thickness
of a region in which some important effect is concentrated. Region of influence
scaling is particularly important since it forms the basis of hydrodynamic boundary-
layer theory, considered in Section 3.4, and penetration theory in heat and mass
transfer, considered in Chapters 4 and 5, respectively. Finally, this problem is used
to illustrate the forgiving nature of scaling analysis. By this we mean that if an
incorrect assumption is made concerning scaling, proper analysis will indicate the
contradiction when values of the physical and geometric properties are substituted
into the relevant dimensionless groups that emanate from the scaling.

Consider the steady-state fully developed laminar flow of a viscous Newtonian
fluid having constant physical properties between two infinitely wide parallel plates
as shown in Figure 3.2-1. The lower plate is stationary and the upper plate moves
at a constant velocity Uy. This flow is also subject to a constant axial pressure driv-
ing force AP = Py — Pr > 0 applied over the length L. Note that the conditions
required to ensure that any of the aforementioned assumptions are reasonable could
be assessed using scaling analysis; we merely invoke these assumptions so that we
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Figure 3.2-1 Steady-state fully developed laminar flow of a viscous Newtonian fluid that
has constant physical properties between two infinitely wide parallel flat plates due to a
pressure driving force AP = Py — P applied over length L; the lower plate is stationary
and the upper plate moves at constant velocity Uy.
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can focus on assessing the applicability of just one assumption: when the effect of
the upper plate velocity Uy can be neglected. We invoke the stepwise o(1) scaling
analysis procedure outlined in Chapter 2. In this first example of o(1) scaling anal-
ysis, we show all the steps in detail and provide a discussion of the rationale for
each step.

Step 1 involves writing the describing equations, in this case the equations
of motion and their boundary conditions simplified appropriately for this prob-
lem statement. Equations (D.1-10) and (D.1-11) in Appendix D simplify to the
following for the flow conditions specified:

P d*u,
0=—— — 3.2-1
o +u 42 ( )
oP
0=——+pg (3.2-2)
dy
uy, = Uy at y=0 (3.2-3)
u, =0 at y=H (3.2-4)

Equation (3.2-2) can be integrated and combined with equation (3.2-1) to obtain

0= AP d?u,
L Mdyz

(3.2-5)

Step 2 involves introducing arbitrary scale factors for each dependent and inde-
pendent variable. Step 3 is unnecessary in this problem since both the velocity and
spatial coordinate are naturally referenced to zero. Step 4 involves defining the
following dimensionless variables:

" Uy w_ Y
u,=— and y =-— (3.2-6)

Uxs Vs

One might reasonably ask why a separate scale factor is not introduced for the
second derivative in equation (3.2-5). Indeed, one could introduce a scale fac-
tor for the second derivative. If this were done, one would find that there was
no dimensionless group to determine the appropriate scale factor for the veloc-
ity. However, the latter could be obtained by integrating the scale for the second
derivative of the velocity, in which case one would obtain the same scale for the
velocity that will be obtained here by introducing its scale factor directly. Alter-
natively, one could introduce a scale factor for the first derivative of the velocity.
Integrating the resulting scale factor again gives the same scale factor for the
velocity within a multiplicative factor of O(1). This is explored further in Practice
Problem 3.P.1.
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In step 5 these dimensionless variables are substituted into the describing
equations (3.2-3), (3.2-4), and (3.2-5):

AP iy dzu;

ugsuy = Up at y*=0 (3.2-8)
ugsuy =0 at yy*=H 3.2-9)

Step 6 involves dividing through by the dimensional coefficient of the viscous
term in equation (3.2-7) since this term must be retained in order to satisfy the two
no-slip conditions at the solid boundaries. Similarly, in the two boundary conditions
we divide through by the dimensional coefficient of the dimensionless dependent
variable, which yields

y2AP  d*u*

0= 3.2-10
Pty L * dy*? ( )
* Uo *
u, = — at y" =0 (3.2-11)
Uyxs
H
Lt: =0 at y'=— (3.2-12)
Vs

Step 7 involves determining the scale factors to ensure that the dimensionless
term causing the flow (i.e., the pressure term) balances the term resisting the flow
(i.e., the viscous term) and ensuring that the relevant dimensionless dependent and
independent variables are o(1) for the region of the flow that is of interest, in this
case all the fluid between the two flat plates. When considering any problem in
fluid dynamics, it is important to ask the question “What causes the flow?” since in
scaling, the term or terms causing the flow must balance the term or terms resisting
the flow. The former might constitute a pressure gradient, a moving boundary, or
body forces such as a gravitational, centrifugal, electric, or magnetic field; the latter
might constitute viscous forces, inertia effects, pressure effects, or body forces (note
that pressure and body forces can resist as well as cause flow). Balancing what
causes the flow with the principal term(s) that resist flow generally determines
one or more of the scales. Since we are scaling this problem for conditions such
that the flow is caused principally by the pressure gradient, we ensure that the
dimensionless viscous force and pressure terms balance by demanding that the
dimensionless group in equation (3.2-10) be equal to 1; that is,

2
“AP
YAl

(3.2-13)
Mg L

Since our region of interest spans the entire fluid between the two flat plates,
an appropriate scale for the spatial coordinate is obtained by demanding that the
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dimensionless group in equation (3.2-12) be equal to 1; that is,

H
T sy =H (3.2-14)

Vs

Hence by combining equations (3.2-13) and (3.2-14), we obtain our velocity scale,
which is given by
H*AP
uL

(3.2-15)

Uys =

Note that this velocity scale is directly proportional to the maximum velocity for
flow between two flat plates driven only by a pressure gradient. This scaling,
ensures that the dimensionless velocity goes through a change of order one over a
dimensionless distance of order one. Note that a change of order one implies that the
dimensionless variable goes from its minimum value of zero to its maximum value,
which has magnitude of order one. Note that in this case our dimensionless velocity
will always be less than 1 since equation (3.2-15) overestimates the maximum
velocity (by a factor of 8 when the motion of the upper plate can be neglected). In
this case we know the exact value of the scale required to bound the dimensionless
velocity between 0 and 1 since we can solve this particular problem analytically.
However, in general we would not know any of the scales beforehand; indeed,
determining these scales is one of the goals of the systematic scaling method. The
dimensionless groups emanating from the scaling analysis that contain this velocity
scale (IT; for the problem being considered here) could be eight times smaller (for
this problem) or larger (if the reciprocal of I1; were used as the dimensionless
group in this problem) than that obtained when the relevant dimensional physical
and geometric properties are substituted to evaluate them. Hence, we see that the
criteria expressed in terms of dimensionless groups that emanate from scaling
analysis are generally within an order of magnitude. For this reason it is good
practice to demand that the dimensionless groups emanating from a particular
scaling analysis be at least two orders of magnitude less than 1, denoted by 0(0.01),
to justify the particular assumption being considered.
Our dimensionless equations now become

d*u*
O=1+dw; (3.2-16)
Uy nL
= =0 3.2-17
T HIAP Y 02-17)
uy =0 at y* =1 (3.2-18)

Step 8 then involves using our scaled dimensionless describing equations to assess
the criterion for which we can ignore the effect of the motion of the upper plate.
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Equation (3.2-17) indicates that the motion of the upper plate will have an insignif-
icant influence on the fluid flow if the following condition holds:

Uy nL
HZAP

=1, < 1 (3.2-19)

Note that the criterion that has emerged from our scaling analysis for ignoring
the effect of the moving upper plate on the flow is in terms of a dimension-
less group IT;. The physical significance of this dimensionless group is that it is
the ratio of the magnitude of the velocity of the upper plate to the magnitude
of the characteristic velocity due to the applied pressure gradient. The dimen-
sionless groups that emerge from scaling analysis will always have a physical
significance that can be determined by examining how a particular group was
formed: in this case, by dividing the velocity of the upper plate by the charac-
teristic velocity determined by balancing the pressure and viscous forces in the
equations of motion.

The question arises as to how small IT; has to be for the assumption of ignoring
the upper plate motion to be reasonable. The answer to this question depends
of course, on the error that one can tolerate in their answer. Since o(1) scaling
involves order-of-magnitude analysis, one can project that if the dimensionless
group in equation (3.2-17) is O(0.1), the error will be approximately 10 to 100%;
if this group is O(0.01), the error will be approximately 1 to 10%. For example, the
dimensionless velocity profile obtained from solving equations (3.2-16), (3.2-17),
and (3.2-18) while retaining the effect of the moving upper plate is given by

u =H1+<——H1>y*——y*2 (3.2-20)

The corresponding value of the dimensionless average velocity is given by inte-
grating the foregoing velocity profile across the flow to obtain

why =" ] (32-21)
uf) = — + — 2-
* 2 12

One now can access the error in determining the dimensionless average velocity
when the motion of the upper plate is ignored (i.e., when IT; < 1). For example,
when I1; = 0.1, the error in determining the average velocity when the upper plate
velocity is ignored is 38%. However, when I1; = 0.01, the error is reduced to 5.7%.
This demonstrates clearly that proper scaling analysis provides results within an
order of magnitude. If one wants to be certain that some assumption can be invoked
with confidence, two orders of magnitude should be demanded for any “much less
than” or “much greater than” condition.

Note, however, that the error encountered in making an approximation, such
as assuming that I1; <« 1, depends not only on the magnitude of IT; but also on
the quantity that is being determined from the solution. The average velocity is
an integral quantity whose value is not particularly sensitive to small errors in the
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velocity profile near the upper plate. However, if one is interested in determining
the point or local velocity anywhere in the flowing fluid, the error is 100% at the
upper moving plate irrespective of the value of IT; ! One might reasonably suspect
that this large error in the point or local velocity is encountered only very near
the upper moving plate. But the question arises: How near the upper plate is a
significant error encountered in determining the point velocity? Scaling analysis
can also address this question by considering region-of-influence scaling used to
determine the thickness of a region within which some effect is important: in
this case, the thickness of the region near the wall where the moving plate has a
significant effect on determining the point velocity.

To carry out region of influence scaling, the unspecified length scale factor
in fact becomes the thickness of the region of influence, which we denote by
the symbol §,, to emphasize its particular physical significance. By this we mean
that the relevant dependent variable, in this case the velocity, is O(1) within this
region. Let us rescale this problem to determine the magnitude of §,,. Since we
are considering the region near the upper wall, equations (3.2-10) through (3.2-12)
remain the same. However, our velocity scale is no longer given by equation (3.2-
15), which characterizes the velocity across the entire flow. Rather, in the region
near the upper wall, the velocity scale is determined by the dimensionless group
in the boundary condition at the upper wall:
= L) =1=uy=Up (3.2-22)

Uyxs

M*

X
However, since the pressure force must still balance the viscous term near the upper
wall, the dimensionless group in equation (3.2-13) must again be set equal to 1.
When equation (3.2-22) is substituted into this dimensionless group, one obtains a
measure of §,,, the thickness of the region of influence within which one cannot
ignore the influence of the moving plate on the point velocity:
82 AP s wlUoL 82 wUyL

— Om =1 3.2-23
wUoL T o= AP T HIT HIAP ! ( )

One sees from equation (3.2-23) that 4/TI; is a measure of the fractional distance
between the two plates, within which the effect of the moving plate on the point
velocity is significant. Hence, if I1; = O(0.01), the moving plate has a significant
effect on the local velocity across 10% of the distance between the two plates. This
will seriously affect determining the point velocity through a significant portion of
the flow but will have a relatively minor effect on integral quantities such as the
average velocity.

One can conclude from this scaling analysis that the solution obtained for
equations (3.2-1) through (3.2-4) when one assumes that Uy = 0 will be reason-
ably accurate for determining integral quantities such as the average velocity when
IT; = 0(0.01) and that it will provide an accurate estimate for the local velocity
when /TI| < y* < 1, where y* = y/H.

Before leaving this example it is instructive to see the forgiving nature of scaling
analysis. For the purpose of illustration, let us assume that we set the dimensionless
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group in equation (3.2-22) incorrectly as our velocity scale; that is, we used the
velocity of the upper plate as our velocity scale. Note that this is a gross under-
estimate of the proper scale for the dimensionless velocity when the effect of the
motion of the upper plate has a negligible effect on the overall flow. However, if
we had chosen Uj as our velocity scale, equation (3.2-10) would have assumed the
following dimensionless form:

H>*AP  d*ui 1 du}
0= UL+dL:;:l'[_+dl:; (3.2-24)
HUo y 1 Y

Note that if we have scaled the dimensionless velocity and spatial coordinate prop-
erly, the dimensionless second-order derivative in equation (3.2-24) should be o(1).
We see from the above that if IT; < 1, as would be the case if the motion of the
upper plate were negligible compared to the flow caused by the pressure gradient,
equation (3.2-24) would be a statement that the sum of a very large term and a
term of o(1) is equal to zero; this is clearly impossible. As a result of our incorrect
scaling of the dimensionless velocity, we have encountered a contradiction. This
indicates that we need to consider another scaling; this is, of course, the scaling
wherein the velocity scale factor is given by equation (3.2-15). Hence, we see that
scaling analysis is indeed forgiving in that improper scaling leads to a contradic-
tion, which indicates that scaling needs to be repeated. When the proper scaling is
found for the known physical and geometric properties of the problem, all terms
will be bounded of o(1).

In carrying out this o(1) scaling analysis, we were seeking to determine the cri-
terion for neglecting the motion of the upper plate on the fluid flow. We saw that the
conditions required to assure minimal error in neglecting this term depended on
the quantity that one sought to determine from the describing equations. In general,
the criterion is less demanding for integral quantities such as the average velocity,
volumetric flow rate, total drag force, and the like, than for quantities such as the
velocity or shear stress at some point in the continuum. We could also have carried
out O(1) scaling to determine when the pressure force could be neglected relative
to the fluid motion caused by the moving boundary. This is left as an exercise in
Practice Problem 3.P.2.

3.3 CREEPING- AND LUBRICATION-FLOW APPROXIMATIONS

Now that the procedure for o(1) scaling analysis has been illustrated in detail,
we use this method to explore the various approximations made in classical fluid
dynamics. We begin by using o(1) scaling analysis to explore the creeping- and
lubrication-flow approximations. The latter is particularly important for flows invol-
ving very narrow gaps, such as journal bearings and fluid couplings. The problem
that we consider is steady-state one-dimensional uniform or plug flow of a vis-
cous Newtonian fluid having constant physical properties and constant velocity Uy
impinging on two nonparallel infinitely wide flat plates, as shown in Figure 3.3-1.
This creates a developing flow with nonzero x- and y-velocity components.
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Figure 3.3-1 Steady-state developing laminar flow of a viscous Newtonian fluid that has
constant physical properties between two infinitely wide nonparallel flat plates; only the
local axial velocity profile is shown.

To appreciate the utility of scaling analysis, it is instructive to write the describ-
ing equations before we consider the approximations that we might use to simplify
these equations. Indeed, one utility of scaling analysis is that it allows exploring the
approximations that might be made to obtain a tractable solution to a problem. The
continuity equation and equations of motion given by equations (C.1-1), (D.1-10),
and (D.1-11) simplify to the following for the assumed flow conditions (step 1):

Ol Ol oP %u,  9%u,
- i S 3.3-1
Py +puy dy ox + <8x2 + 0y? ( )
ouy ouy oP uy,  %uy
X — =—-— — 3.3-2
Uty + puy oy 2y +M<ax2 + 0y pg ( )
0 0
e g (33-3)
ax ay
The appropriate boundary conditions for this flow are given by
uy =Uo, uy,=0 at x=0 (3.3-4)
ux = fiy), wuy=faly) at x=1L (3.3-5)
uy =0, u,=0 at y=0 (3.3-6)
Hy— Hi
u, =0, u,=0 at y= Hy— Tx (3.3-7)

Equation (3.3-5) prescribes the downstream boundary conditions in terms of two
functions, fi(y) and f>(y), which might be unknown. The tangential and normal
velocity components to the sloped plate must be zero, due to the no-slip and
impermeable wall boundary conditions. Equation (3.3-7) for the x- and y-velocity
components follows directly from the aforementioned conditions. Note that we
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do not need to put any boundary conditions on the pressure since the average
velocity Uy is known, which permits determining the pressure driving force over
the length L.

Note that this is a nontrivial problem to solve. As a result of the developing
flow, there is strong bidirectional coupling between equations (3.3-1), (3.3-2), and
(3.3-3) through the velocity components and pressure. Moreover, the presence of
the inertia terms in equations (3.3-1) and (3.3-2) make both equations nonlinear. A
further complexity is introduced by the elliptic nature of the describing equations.
The presence of the second-order axial derivatives requires that downstream bound-
ary conditions be specified. In many problems such as this, these downstream
conditions are not known, which precludes solving the describing equations either
analytically or numerically. Clearly, one would like to know how and when these
describing equations might be simplified to permit a tractable solution. In particu-
lar, one would like to know when the inertia terms and axial viscous terms might
be neglected. We use o(1) scaling to determine these conditions.

We begin by defining dimensionless variables involving unspecified scale factors
(steps 2, 3, and 4):

Uy
ut = —; u

* Uy
x y
Uyg Uys

; P* =

X Y
s

Note that we do not need to introduce any reference factors since all the dependent
and independent variables are naturally referenced to zero.

We then introduce these dimensionless variables into the describing equations
and divide through by the coefficient of one term in each of these equations that
we believe should be retained (steps 5 and 6):

pumyszu* ouy  PUysys . ouy _ Pyy? P* n y_5282uj§ n du’* (3.3-9)
Uxs " ox* wo Y ay* Uuysxg 0x*  x29x*2  9y*2 ’
PUxsUys Vs u* al/l; pu?s u* au; _ _8P* MUysYs aZu; HUys 82”; _ P8Ys
Pixg  “ox* Py Yoy dy*  Px} 9x*2 - Pyyy 0y Py
(3.3-10)
Ut uyxg OUy
Mo (3.3-11)
ox* Uysys 0y*
U
W=, ur=0 at x*=0 (3.3-12)
Uxs :
* * * * * * * L
uy = fi o, uy = 0% at x" = . (3.3-13)
up =0, u; =0 at y*=0 (3.3-14)
H Hy — Hp)xg
W=0, u*=0 a y‘=-2-_ (Ho — Hu)xs (3.3-15)
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Note that in implementing step 6 for equation (3.3-9), we have elected to divide
through by the dimensional coefficient of the principal viscous term since it must
be retained to satisfy the no-slip boundary conditions at the two flat plates. In
equation (3.3-10) we have elected to divide through by the dimensional coefficient
of the pressure term since it causes the flow in the y-direction.

Now let us proceed to determine the scale factors (step 7). The axial velocity
scale is obtained from the dimensionless group in equation (3.3-12). We choose
the dimensionless group in equation (3.3-15) that gives the larger scale for y, since
we want to bound y* to always be less than or equal to 1. The dimensionless
group in equation (3.3-13) provides the axial length scale. Since pressure causes
flow in the axial direction, we set the coefficient of the dimensionless pressure
term in equation (3.3-9) equal to 1 to determine the pressure scale. Finally, we set
the dimensionless group in equation (3.3-11) equal to 1 since the two terms in the
continuity equation have to balance for a developing flow. Hence, we obtain the
following scale factors:

H() /LU()L .

uys = Up; Uys = TUO; Py = H2 ;o Xy =1L; Vs = Hy (33'16)
0

Note that the scale for the y-component of velocity is dependent on the aspect ratio;
for long closely spaced plates, the scale factor for u, will be considerably smaller
than that for u,. This is perfectly reasonable since u, arises from a need for the
velocity profile to be rearranged to accommodate the change in spacing between
the two plates. Less rearrangement is required for relatively closely spaced long
plates. Note also that the scale factor for the pressure is a measure of the viscous
drag stress multiplied by an aspect ratio. This also is reasonable since we have
balanced the pressure force with the principal viscous stress, which indeed is 7y,.

Substitution of the scale factors defined in equation (3.3-16) into equations
(3.3-9) through (3.3-15) yields

Hy , ou} Hy , ou? aP*  HZ 3ur %t
e— Re—u*—% = — — £ X 3.3-17
Lae TR = o T 2w T ayn2 (3.3-17)
3 * 3 * 3 92,,% 2 02 ,%
R B HD L 0Pt H Pui | H P ReHy
L3 “9x* L3 7 9y* ay* L3 9x*2 L2 09y*2  Fr L
(3.3-18)
dur  ouj
e g T (3.3-19)
ax*  Jy*
wi=1, ui=0 a x*=0 (3.3-20)
W= fOM, W= 00 at xt=1 (3321
W =0, u*=0 at y* =0 (3.3-22)

ut=0, ut=0 at y*=1-— (1 - —) x* (3.3-23)
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where Re = pUyHy/u is the Reynolds number, a measure of the ratio of the kinetic
energy per unit volume of the flow to the principal viscous stress, and Fr = Ug /g Hy
is the Froude number, a measure of the ratio of the kinetic energy to the gravita-
tional potential energy of the flow.

Now let us consider how we might be able to simplify the set of dimensionless
equations above to obtain a tractable solution (step 8). If Re <« 1, say Re = 0(0.01),
we see that we can safely neglect the nonlinear inertia terms in equations (3.3-17)
and (3.3-18) provided that Hy/L = o(1). This simplification is referred to as the
creeping-flow or Stokes’ flow approximation or simply the low Reynolds number
approximation. The creeping-flow approximation is very important for flow through
porous media, microporous membranes, and packed beds, and for the flow of small
particles such as dusts and mists. If, in addition, we can assume that the aspect
ratio HO2 /L2 < 1, say H02/L2 = 0(0.01), we can neglect the second-order axial
derivative in equation (3.3-17) as well as both viscous terms in equation (3.3-
18). When both Re < 1 and Hi/L* < 1, it is referred to as the lubrication-flow
approximation; that is, all lubrication flows are also creeping flows, but not all
creeping flows are lubrication flows. Lubrication flows are very important in the
design of journal bearings and fluid couplings as well as in the drainage of viscous
films. Hence, in summary, the conditions for the applicability of the creeping-or
Stokes’ flow and lubrication-flow approximations are

Re « 1 = creeping- or Stokes’ flow approximation (3.3-24)

HZ
Re« 1 and L_g « 1 = lubrication-flow approximation (3.3-25)

Note in the criteria for the lubrication-flow approximation that Hy denotes a trans-
verse length scale and L denotes a length scale in the principal direction of flow.

If we make the lubrication-flow approximation, our dimensionless describing
equations for the flow shown in Figure 3.3-1 become

o 2P 0k (3.3-26)
T 9xt ay*z :
oP*
0=— (3.3-27)
ay*
uy =1 at x*=0 (3.3-28)
* * HL *
w'=0 at y'=1-(1-"5)x (3.3-29)
Hy

Equation (3.3-27) implies that there is a negligible pressure drop in the y-direction.
Note that we ensured that the axial pressure gradient was oO(1) because we
bounded the pressure and axial distance scales to be O(1). However, we did
not do anything in our scaling to ensure that the y-derivative of the pressure
was O(1); indeed, equation (3.3-18) indicates that the transverse pressure gradi-
ent is O(HO2 /L?), which is considerably less than 1 for this lubrication flow. The
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lubrication-flow approximation has permitted us to eliminate the strong coupling
between the equations of motion and to convert our complex system of elliptic
differential equations into a set of differential equations that obviates the need
to satisfy the boundary conditions given by equation (3.3-21). Indeed, equations
(3.3-26) through (3.3-29) can be solved analytically in closed form. That is,
equation (3.3-27) implies that the axial pressure gradient is a function of only
the axial coordinate x. This in turn implies that equation (3.3-26) can be integrated
directly. Note that the dependence of u, on x enters indirectly through the boundary
condition given by equation (3.3-29). The axial pressure profile can be obtained
from the axial velocity profile and the known average velocity Uy.

Before leaving this example it is important to realize the limitations implied
by the creeping-and lubrication-flow approximations. Our o(1) scaling analysis
indicated that the creeping-flow assumption is reasonable when Re « 1. However,
inspection of equation (3.3-17) indicates that an additional condition required to
ignore the inertia terms is that

Hy
ReT <1 (3.3-30)

That is, it is not sufficient in this case that just the Reynolds number be very
small; in addition, the aspect ratio cannot be too large. Note, however, that the
length L was arbitrary in that L could denote any value of the axial coordi-
nate in the principal direction of flow. This is the principle of local scaling,
whereby we scale the problem for a fixed but arbitrary value of some coordi-
nate, usually that in the principal direction of flow. Note that both the creeping-
and lubrication-flow approximations break down near the leading edge of the
two plates. The creeping-flow approximation breaks down when equation
(3.3-30) is not satisfied. The lubrication-flow approximation breaks down when
either equation (3.3-30) or (3.3-25) is not satisfied. This is explored in Practice
Problem 3.P.5.

It is again instructional to illustrate the forgiving nature of scaling for this
example. Let us assume that we incorrectly balanced the pressure term with the
inertial terms in equation (3.3-9), which leads to Py = puis as our (incorrect) pres-
sure scale; note that this pressure scale is a measure of the kinetic energy per unit
volume. If we use this pressure scale in equation (3.4-9), we obtain the following
dimensionless x-component of the equations of motion:

Hy  du* Hy ,ou* HydP* HZd*u*  9%u*
Re—Cu* ~% 4 Re—ly* 2% — _Re-" 202 %, 0 (333))
ax* L 7 ay* L ox* = L? 9x*2  9y*?

If we now consider the lubrication-flow approximation, (i.e., Re < 1 and HO2 JL? «
1), equation (3.3-31) simplifies to
3u*

- 3y*2

(3.3-32)
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However, equation (3.3-32) is not a physically realistic result since there is no
mechanism to cause the flow; that is, equation (3.3-32) states that there is no
force to counteract the principal viscous stress. This indicates that the scaling was
improper and that new scales need to be determined to achieve a proper balance
between the relevant terms in the describing equations. Of course, we know that this
error was due to using an improper pressure scale; the pressure force must balance
the principal viscous term, not the inertia terms that drop out in the creeping-or
lubrication-flow limit.

3.4 BOUNDARY-LAYER-FLOW APPROXIMATION

The next example is the complement of the creeping-flow approximation consid-
ered in Section 3.3: the boundary-layer-flow approximation, which is applicable
in the limit of large Reynolds numbers. In this introductory example we con-
sider the classical problem of a uniform plug flow of a viscous Newtonian liquid
having constant physical properties intercepting a stationary semi-infinitely long
infinitely wide horizontal flat plate, as shown in Figure 3.4-1. Boundary-layer
flows are also examples of region of influence scaling, for which we use scal-
ing to determine the thickness of a region wherein some effect is confined, in
this case the effect of the flat plate that is propagated into the fluid by the action
of viscosity. This example also illustrates the principle of local scaling, in which
we carry out the scaling at some arbitrary but fixed value of one of the spa-
tial coordinates.

The traditional approach to introducing hydrodynamic boundary-layer theory
is to begin by assuming the existence of the boundary layer. This can be very
confusing, especially for students, since the boundary layer is an abstract concept.
Here we arrive at the need to define some region of influence (e.g., the boundary
layer) by being faced with a paradox due to incorrect scaling. That is, we are
going to scale this problem initially without assuming the existence of a boundary
layer. This will lead to a contradiction since the scaling analysis was improper.
However, by virtue of the forgiving nature of scaling analysis, we naturally arrive
at the concept of a hydrodynamic boundary layer without the need to introduce the
boundary layer initially.

In view of the preceding discussion, the continuity equation and equations of
motion given by equations (C.1-1), (D.1-10), and (D.1-11) simplify to the following
for the assumed flow conditions (step 1):

due | Bu o 3%, N 9%uy (34-1)
Uy — Uy——=—— o 4-
Pl TPy dy ax M\ a2 9y?
ouy ouy dP 8214}, 82uy
pux— =+ puy = = oy < a2 T o2 ) P8 (3:4-2)
uy  du,
+ (3.4-3)
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Figure 3.4-1 Uniform plug flow of velocity Us for a viscous Newtonian fluid that has
constant physical properties, intercepting a stationary semi-infinitely long infinitely wide
horizontal flat plate.

The corresponding boundary conditions for this flow are given by

Uy =Us, uy,=0 at x=0 (3.4-4)
uy = f1(y), uy= () at x=1L (3.4-5)
u, =0, u,=0 at y=0 (3.4-6)
Uy =Uso, uy=0 —at y=o0 (3.4-7)

where f1(y) and f>(y) are unspecified functions. Equations (3.4-1) through (3.4-3),
as well as the boundary conditions given by equations (3.4-4), (3.4-5), and (3.4-6),
are identical to equations (3.3-1) through (3.3-3) for the lubrication-flow problem
considered in Section 3.3. This is, of course, because both the present example
and that considered in Section 3.3 are developing flows. However, the similarity
ends here because here we are going to consider the limit of a very large Reynolds
number; we thus consider the limit at the other end of the Reynolds number spec-
trum. Note also that the remaining boundary conditions differ in the two problems.
Equation (3.4-7) states that the axial velocity becomes equal to the initial plug-
flow velocity and that the transverse velocity becomes zero infinitely far above the
flat plate.

Keep in mind that at least initially, we are going to scale this problem incorrectly
to prove the point that scaling analysis can be used to arrive at the boundary-layer
approximation systematically. We begin by defining dimensionless dependent and
independent variables (steps 2, 3, and 4):

u,
ut = —; u;E L.
Uys

pP* ; x*

|~

; y = (3.4-8)

==

X
Xs

Introduce these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of one term in each equation that should be
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retained to maintain physical significance (steps 5 and 6):

LOUS uyexs | Oud _ P, oOP* wo 0%ut pxs  *ut (3.4-9)
Xt ugys Oy pul, Ax* T puysxy 9X*2 T puysy? dy*2 '
% 8”; UysXs 4 8”; __ Pyxg op* w 82“; + UXs aZu; _ 8Xs
Xt wuygys TOY* pUaslysys OYF 0 Pl Xy 0X*2 T puygyZ 0y gty
(3.4-10)
du* ou’
Mo | Mk Ty (3.4-11)
0X*  Uysys OY*
ut = Uso u =0 at x*=0 (3.4-12)
x = u ’ y — - .
* * * * * * * L
uy = fi oo, uy = 0" at x" = . (3.4-13)
uy; =0, uj =0 at y* =0 (3.4-14)
u*—U°° ut =0 at y*= 3.4-15
= Uy = y* =00 (3.4-15)

Note that we have divided equations (3.4-9) and (3.4-10) through by the dimen-
sional coefficient of the axial inertia term since we are considering a large Reynolds
number flow for which the inertia terms must be retained.

The dimensionless groups in equations (3.4-11), (3.4-12) or (3.4-15), and (3.4-
13) are set equal to 1 to determine the following scales (step 7):

Uyxs = UOO; Xy = L; Uysg = %Uoo (34'16)

Moreover, since pressure causes the flow in the y-direction, we set the dimension-
less coefficient of the pressure term in equation (3.4-10) equal to 1 to determine
the pressure scale:

2
Y

(3.4-17)
The immediate problem we see is that there is no dimensionless group to determine
vs. In view of this, let us set the transverse length scale equal to the axial length
scale; that is, y; = x; = L.

Now let us substitute these scales into equations (3.4-9) through (3.4-15) to
obtain

ou* ou* oP* 1 9%u* 1 9%u*
— = _— 24— X 3.4-18
b T 95 = “x T Rep 9x | Rey 9y (34-18)
ou* u* oP* 1 0%u* 1 0%u* 1
$ Uy Oy y y_ - (3.4-19)

, b —
T ox* 7 9y* dy*  Rep 0x*2  Rey dy*2 Fr
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our  ouy
S s A (3.4-20)
ax* = dy*
up =1, uj‘ =0 at x*=0 (3.4-21)
wy = firOY, uy=£0" a x*=1 (3.4-22)
u; =0, u’; =0 at y* =0 (3.4-23)
up =1, uz‘ =0 at y* =00 (3.4-24)

where Re;, = Uy pL/u is the Reynolds number based on the local axial distance
as the characteristic length and Fr = UozO /gL is the Froude number.

Now consider the limit of very large Re; (Reynolds number) (step 8). One sees
that the principal viscous term (i.e., the second-order derivative with respect to y)
drops out in both equations (3.4-18) and (3.4-19); this means that it is not possible
to satisfy both boundary conditions given by equations (3.4-23) and (3.4-24). This,
indeed, is a contradiction since if equation (3.4-24) is not satisfied, there is no
mechanism to cause the flow; that is, in this case it is the free stream velocity that
“pulls” along the fluid whose motion is being impeded by the presence of the flat
plate. However, if equation (3.4-23) is not satisfied, the no-slip condition will be
violated at the surface of the flat plate. What we have arrived at is d’Alembert’s
paradox?; that is, in the limit of large Reynolds numbers, the equations of motion
appear unable to admit any restraining drag force since in this limit the inertia
terms overwhelm the viscous terms. The conclusion we must come to here is that
there must be some region of influence near the flat plate within which the effects
of viscosity are important regardless of how large the Reynolds number is. We
seek to use o(1) scaling to determine the thickness of this region and to arrive at
a minimum parametric representation of the describing equations that circumvents
d’Alembert’s paradox.

The contradiction that we encountered in the above incorrect scaling arose
because we arbitrarily chose y; = L. This scale implies that the velocity goes from
a minimum value of 0 to a maximum value of Uy, over a length that goes from
a minimum value of 0 to a maximum value of L. However, since L can be quite
large, this scaling implies that the second derivative of u, with respect to y could be
grossly underestimated. For a large Reynolds number flow for which the action of
viscosity is confined to the vicinity of the boundaries, the transverse length scale in
general should be considerably smaller than L. Let us refer to this region of influ-
ence for the effect of the viscosity by the symbol §,,; that is, we say that y; = §,,.

Now let us rescale equations (3.4-1) through (3.4-7) and again introduce the
dimensionless variables defined by equation (3.4-8) with the proviso that we replace

2Jean Le Rond d’Alembert (1717-1783) studied experimentally the drag force on a sphere in a flow-
ing fluid. He expected that the force would approach zero as the viscosity of the fluid approached
zero. However, the drag force observed converged on a nonzero value as the viscosity became very
small. The disappearance of the viscous drag force for very high Reynolds number flows is known as
d’Alembert’s paradox.



36 APPLICATIONS IN FLUID DYNAMICS

vs by &,,. We again obtain the scale factors given in equations (3.4-16) and (3.4-17),
where we have replaced y; everywhere by §,,. However, in view of the fact that
the principal viscous term in equation (3.4-9) has to be important at least within
some small region in the vicinity of the flat plate, we set the dimensionless group
in front of this term equal to 1 to ensure that this term is of the same size as the
inertia terms that are being retained. This yields the following equation for the
thickness of the region of influence or hydrodynamic boundary layer:

2= My _ L (3.4-25)
" pUss " JRer '

where Re;, = LpUy/u is the Reynolds number based on the arbitrary downstream
length along the plate. We see that the boundary layer becomes thinner for larger
Reynolds numbers, but also becomes thicker with increasing distance L along the
flat plate. Note that L is arbitrary in that it can be any fixed value of the axial length
coordinate; that is, our scaling was done for an arbitrary length L of a semi-infinite
flat plate, which is what is meant by the concept of local scaling. The general
behavior of §,,(x) is shown in Figure 3.4-1. It should not be surprising that the
above estimate of boundary-layer thickness is within a multiplicative constant of
O(1) of the value obtained via analytical solutions to the boundary-layer equations.

If we now rewrite our dimensionless describing equations in terms of the scales
defined by equations (3.4-16), (3.4-17), and (3.4-25), we obtain

ou’ ou’ 1 oP* 1 %ur  0%ur

* X * X — R 3.4-26
Y TU 9y T TRep dx* | Rep 9x2 | ayn2 (34-26)
T ox* 7 dy* dy* = Rep 0x*2  9y*2 Fr '
our  ouj
Ty o (3.4-28)
ax*  Jy*
wi=1, wi=0 at x*=0 (3.4-29)
ui = fi (v, uy = f3 (»%) at x* =1 (3.4-30)
up =0, u; =0 at y*=0 (3.4-31)
up =1, u; =0 at y* =00 (3.4-32)

The system of equations above is difficult to solve, for two reasons. First, these are
elliptic differential equations that require specifying some downstream boundary
conditions that in practice are generally not known. Second, equations (3.4-26) and
(3.4-27) are coupled, owing to the pressure appearing in both equations; note that
coupling through the velocity components does not cause any problems since the

3R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, Hoboken, NJ,
2002, p. 137.
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continuity equation given by equation (3.4-28) permits defining a new dependent
variable, the stream function, that can be used to eliminate the two velocity com-
ponents. Hence, we seek to explore the conditions required to eliminate these two
complications.

Note that in the limit of a very large Reynolds number, the system of equations
above reduces to

Lous LOuy du* (3.4-33)
Xk y dy* - ay*2 )
u*  ou*
Ty o (3.4-34)
ax*  Jy*
uy =1 at x*=0 (3.4-35)
ui; =0, u’; =0 at y*=0 (3.4-36)
uy =1 at y* =00 (3.4-37)

Equations (3.4-33) through (3.4-37) are the classical boundary-layer equations for
flow over a flat plate. Note that by showing that the pressure term in equation
(3.4-26) is negligible in the limit of a large Reynolds number, we have elim-
inated the coupling between this equation and equation (3.4-27). Moreover, we
have shown that the axial viscous term in equation (3.4-26) is negligible in the
limit of a large Reynolds number and thereby have converted the system of ellip-
tic differential equations into a parabolic differential equation that requires only
an upstream boundary condition. By introducing a stream function and similarity
variable, equations (3.4-33) and (3.4-34) can be transformed into a nonlinear ordi-
nary differential equation that can be solved via approximate techniques such as
the Blasius series solution or numerically.*

Note that the criterion for applicability of the hydrodynamic boundary-layer
approximation is

UspL

Rey = > 1 hydrodynamic boundary-layer flow (3.4-38)

Since L is merely some fixed value of the axial coordinate x, the criterion above
always breaks down in the vicinity of the leading edge of the flat plate. Hence,
if one is seeking to determine an integral quantity such as the total drag on the
flat plate, the error will not be significant if equation (3.4-38) is satisfied over
most of the plate. However, the error incurred by invoking the boundary-layer
approximation can be quite large in the vicinity of the leading edge of the plate
for point quantities such as the local velocity components or local shear stress.
Note that for 90% of the flat plate to satisfy the condition that Re; > O(100), the
Reynolds number at the end of the plate must be 1000. Our scaling analysis results
for assessing the error incurred in making the boundary-layer approximation are

4H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York, 1960, pp. 116—124.
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consistent with the results obtained from numerical solutions. For example, Janssen
found that the error in the drag coefficient was 40% at Re; = 100 and negligible
at Re; = 1000.°

3.5 QUASI-STEADY-STATE-FLOW APPROXIMATION

Thus far, the three examples that we have considered have involved steady-state
flows. Here we consider how to use o(1) scaling to analyze unsteady-state prob-
lems, in particular how to determine when the quasi-steady-state approximation is
applicable. The latter implies that the unsteady-state term does not appear explic-
itly in the describing equations; however, the time dependence enters through the
boundary conditions. In this example we see that there are several possible time
scales. Choosing the proper time scale depends on the conditions being considered.
In particular, we will see that for studying transient phenomena, the proper time
scale is the instantaneous observation time.

Consider the unsteady-state two-dimensional flow of a viscous Newtonian fluid
with constant physical properties between two infinitely wide parallel flat plates.
The upper plate is stationary, whereas the lower plate is initially at rest and then set
into oscillatory motion as shown in Figure 3.5-1. We use o(1) scaling to address
three different approximations that we might make in modeling this flow: (1) when
we can ignore the transient startup effect on the flow, (2) when we can assume

Stationary plate

YYYYVY
T —>

y
X > e
L} B “ ,

Oscillating plate with velocity u, = U, cos wt

Figure 3.5-1 Unsteady-state two-dimensional flow of a viscous Newtonian fluid that has
constant physical properties between two infinitely wide parallel flat plates; the upper plate
is stationary, whereas the lower plate is initially at rest and then set into oscillatory motion
with a velocity given by u, = Uy cos wt, where Uy is the amplitude and w is the angular
frequency; the velocity profiles shown by the solid and dashed lines correspond to two
different times during the oscillatory motion.

SE. Janssen, J. Fluid Mech., 3, 329 (1958).
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that this flow is quasi-steady-state, and (3) when we can consider the effect of the
oscillating plate to be confined to a region of influence.

The describing equations are obtained by appropriately simplifying equations
(C.1-1), (D.1-10), and (D.1-11) in the Appendices (step 1):

ouy 9%u,
= 3.5-1
P =M 2y2 ( )
dP
0=———pg (3.5-2)
dy
ouy,
=0 (3.5-3)
9x
u, =0 at t=0 (3.5-4)
uy =Uycoswt at y=0 (3.5-5)
u, =0 at y=H (3.5-6)

Equation (3.5-4) states that the fluid is initially stationary. Equations (3.5-5) and
(3.5-6) are the no-slip conditions applied at the oscillated lower and stationary
upper boundaries, respectively.

Introduce the following scale factors and dimensionless variables (steps 2, 3,
and 4):

= 2 (3.5-7)

Note that we do not have to scale the pressure since equation (3.5-2) indicates
that it is purely hydrostatic and not coupled with equation (3.5-1). Introduce these
dimensionless variables into the describing equations and divide each equation
through by the dimensional coefficient of a term that must be retained to ensure
that the problem has physical significance (steps 5 and 6):

py; duy _ 3uy

e = oy (3.5-8)
wi=0 at F=0 (3.59)
U
wt=—"cos wit*  at y* =0 (3.5-10)
uXS
H
wi=0 at y*=— (3.5-11)
Y

Now let us set appropriate dimensionless groups in equations (3.5-8) through
(3.5-11) equal to 1 to ensure that our dimensionless variables are o(1) (step 7).
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The dimensionless groups in equations (3.5-10) and (3.5-11) determine the follow-
ing scale factors:

uys = Up; ys=H (3.5-12)

One might be tempted to set the dimensionless group in equation (3.5-8) equal to 1
to determine the time scale. However, this choice implies that our time scale is equal
to the time required for the motion of the lower oscillating plate to be felt at the
upper stationary plate by the action of viscosity since this implies that t, = H? /v,
where v = u/p is the kinematic viscosity; if this is the appropriate time scale,
quasi-steady-state can never be achieved for this flow. Alternatively, one could
obtain the time scale from the dimensionless group in equation (3.5-10). However,
this time scale, t; = 27 /w, would characterize the oscillatory motion, which again
might not be proper for the conditions being considered.® The latter would certainly
not be the correct time scale to characterize the transient period during which the
fluid is accelerated from rest. The latter time scale is the instantaneous time at
which we “observe” the flow; we call this the observation time, t,. Hence, we have
three possible time scales:

tgy =1, time scale corresponding to the observation time
H2
tyy = — time scale characterizing the viscous penetration (3.5-13)
v
27 . . . .
bp = — time scale characterizing the periodic motion
1)

Clearly, 0 < t; < 00, since this scale is the actual time beginning at the inception
of unsteady-state flow. In contrast, the time scales %, and f;, have fixed values
that depend on the values of the parameters in equation (3.5-13). If #,, < t,, the
effect of the oscillatory plate motion will penetrate across the entire fluid to the
upper stationary plate. If #, > t;,, the effect of the plate motion will be con-
fined to a region of influence whose thickness is less than H. We can determine
the thickness of this region of influence using o(1) scaling analysis, as will be
shown.

The time scales defined in equation (3.5-13) permit us to determine the crite-
rion for assuming that the transients associated with fluid motion induced during
startup of the oscillatory motion have died out. This criterion is merely that f,
must be much greater than the characteristic time for the oscillatory motion;
that is,

2 wt,
ty =1, > — = 2—0 > 1 condition to ignore transient flow effects (3.5-14)
w T

®Note that we choose #, = 27 /w rather than 1/w since the oscillatory motion is characterized by the
time it takes to complete one cycle.
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Now let us assume that the transient effects have died out [i.e., that the con-
dition defined in equation (3.5-14) is satisfied]. We now seek to determine when
quasi-steady-state can be assumed, that is, when the unsteady-state term in
equation (3.5-8) can be neglected. When the velocity and length scales defined by
equation (3.5-12) and the time scale £, defined in equation (3.5-13) are substituted
into equations (3.5-8) through (3.5-11), we obtain

wpH? uy Bzu;

Qe At 9y*2 (3-3-15)
wi=0 at =0 (3.5-16)
uy = cos2mt” at y*=0 (3.5-17)
W=0 at y*=1 (3.5-18)

We can now assess when the set of describing equations above can be simpli-
fied (step 8). In particular, we see from equation (3.5-15) that this flow can be
considered to be quasi-steady-state when the following condition holds:

H?> H? t
wplt” _ /v = = « 1 = quasi-steady-state (3.5-19)
27T 1L 2 /o  typ

For quasi-steady-state, the system of equations above can be solved quite simply
analytically to obtain the following solution:

up =(1—y*)cos2nt* (3.5-20)

The physical implication of the above is that the viscous time scale must be suf-
ficiently short so that the motion of the lower plate can penetrate across the entire
fluid to the upper stationary plate within a time that is much shorter than that char-
acterizing the periodic motion of the plate. Another way to state this is that if the
motion of the lower plate is sufficiently slow, its effect can penetrate all the way
to the upper plate. Under such conditions, the acceleration of the fluid is relatively
insignificant.

In the scaling analysis that led to the criterion for assuming quasi-steady-state
given by equation (3.5-19), we have assumed that the effect of the lower oscillating
plate penetrates the entire cross-section; that is, we have assumed that the velocity
goes from its minimum to maximum value over a length scale on the order of the
spacing between the two plates. This may not necessarily be true; that is, there
may be a region of influence whose thickness we again denote by y, = §,,. Using
this length scale then recasts equation (3.5-15) into the form

wpdy, duk  d%ul
2w At dy*2

(3.5-21)
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Since there is insufficient time for the effect of the oscillating plate to penetrate
through the entire fluid layer, this is inherently an unsteady-state flow. Hence, the
two terms in equation (3.5-21) must balance; this implies the following:

%=1:>52=2”—“=>8—’”=/2”/w=\/§ (3.5-22)
2 " wp H H?%/v tsw

We see that the thickness of the region of influence relative to the spacing between
the two plates is proportional to the square root of the ratio of the characteristic
time for the periodic plate motion to that for viscous penetration. Smaller values
of f;, correspond to higher-frequency oscillations and hence to a thinner region
of influence or boundary-layer thickness. Note that when #;, = t,,, the region of
influence penetrates across the entire fluid layer. For values of f;, > s, this is
no longer a region of influence or boundary-layer problem but an unsteady-state-
state flow for which the oscillating plate affects the entire fluid layer. For values of
Isp > tyy, we achieve the quasi-steady-state condition defined by equation (3.5-19).

Note that when #;, < f;,, the describing equations simplify to

ou* 9%u*

Tx x 3.5-23
or* ay*Z ( )
uj|l* = u) e for *>0 (3.5-24)

*

uy = cos2mt* at y* = (3.5-25)

H 1
wi=0 at y'=—= |2 = (3.5-26)
Lsp

Note also that for this region of influence scaling, for which we are assuming
that the transients have died out (wf, >> 1), we have replaced the initial condition
with the periodic flow condition given by equation (3.5-24). The solution to this
simplified set of describing equations is straightforward. We know that u} must
be periodic at all values of y*; however, u} will lag u} at the lower plate by an
increasing amount as y* increases. We also note that #} must damp out as y* — oo.
Hence, we assume a solution of the form

*

=
>
3

u' = e " cos2mt* — g(y*)] (3.5-27)

where o and g(y*) are an undetermined constant and function, respectively. Sub-
stituting equation (3.5-27) into equations (3.5-23) through (3.5-26) then gives the
following values for these unknown quantities:
1 y*
o=—, g(y) = —= (3.5-28)
V2
In summary, we see that the scaling of unsteady-state problems can be compli-
cated by several time scales. It is important that the implications of each time scale
be considered carefully when using scaling analysis to simplify such problems.
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3.6 FLOWS WITH END AND SIDEWALL EFFECTS

The examples considered in Sections 3.2 through 3.5 involved flows that were
assumed to be infinitely wide in the lateral direction. In this example we use
o(1) scaling to determine a criterion for ignoring sidewall effects; that is, to permit
one to assume that the flow is infinitely wide in the lateral direction. The same type
of scaling arguments used to justify ignoring sidewall effects can also be used to
justify ignoring end effects. We also seek to determine the thickness of the region
of influence within which one cannot ignore the effect of the sidewalls on point or
local quantities such as the velocity profile or drag at the sidewalls.

Consider the steady-state fully developed gravity-driven flow of a Newtonian
liquid film having thickness H and constant physical properties down a channel
inclined at an angle 6 to the horizontal and having width W as shown in Figure
3.6-1. The describing equations are obtained by appropriately simplifying equations
(C.1-1), (D.1-10), (D.1-11), (D.1-12) in the Appendices for a flow that is caused
by a gravitational body force (step 1):

L S S (3.6-1)
= Sin .0-
Hoyz THg T8
oP
0=——+ pgcosb (3.6-2)
dy
oP
0= _27 (3.6-3)
0z
d
Mz (3.6-4)
0z
1
u, =0 at x = :I:E w (3.6-5)
du,
— =0 at y=0 (3.6-6)
dy
u, =0 at y=H (3.6-7)

« v

Figure 3.6-1 Steady-state fully developed gravity-driven flow of a Newtonian liquid film
of thickness H and constant physical properties flowing down a flat plate inclined at an
angle 0 to the horizontal; this flow is bounded laterally by two parallel flat plates spaced a
distance W apart.
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Equations (3.6-5) and (3.6-7) are no-slip conditions at the solid boundaries.
Equation (3.6-6) is the implication of assuming negligible drag by the gas on the
liquid—gas interface. Equations (3.6-2) and (3.6-3) imply that the pressure is purely
hydrostatic and need not be considered further in the scaling analysis.

Introduce the following scale factors and dimensionless variables (steps 2, 3,
and 4):

2. = (3.6-8)

Substitute these variables into the describing equations and divide through by the
dimensional coefficient of a term that must be retained to obtain the following set
of dimensionless describing equations (steps 5 and 6):

v %ur  ul  pgy:

0= g + gyt Sn (3.69)
1w
ur=0 at x* =4+-— (3.6-10)
: 2 X,
MU _ 0 a y =0 (3.6-11)
= a = .0-
ay* Y
* * H
Wi=0 a y = (3.6-12)

To bound our dimensionless variables to be o(1), we set the dimensionless group
in equation (3.6-9) that is a measure of the ratio of the gravitational body force to
the principal viscous drag force equal to 1 since gravity causes the flow. The lateral
and vertical length scales over which the velocity goes from its minimum to its
maximum value are obtained by setting the dimensionless groups in equations (3.6-
10) and (3.6-12) equal to 1. This yields the following values for the length and
velocity scales (step 7):

w pgy?sin®  pgH?sinf pgH?sinf
Xy = —, ySZH, - = =1 Uy = ———————
2 Mtz Mtz u
(3.6-13)

Note that the velocity scale in equation (3.6-13) is within a multiplicative constant
of O(1) of the surface velocity for fully developed laminar film flow down an
inclined plate.

When the velocity and length scales defined by equation (3.6-13) are substituted
into equations (3.6-9) through (3.6-12), we obtain

4H? %ur  0%ul
0=

W2 §x*2 3y*2

u> =0 at x* ==+l (3.6-15)

Z

+1 (3.6-14)
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o *
=0 At =0 (3.6-16)
u; =0 at y* =1 (3.6-17)

Note in the set of describing equations above that the dimensionless dependent and
independent variables are bounded of o(1). We see from the above that we can
ignore the term in equation (3.6-14) that accounts for the effect of the sidewalls if
the following dimensionless group is very small; that is (step 8),

4H?
— < 1 = sidewall effects can be neglected (3.6-18)

w2
The condition in equation (3.6-18) will be satisfied if 4H%/W? = o(0.01). If this
condition is satisfied, the solution to the appropriately simplified form of equation
(3.6-14) and the boundary conditions given by equations (3.6-16) and (3.6-17) can
be obtained quite simply analytically. This solution will be accurate for predicting
any quantities for which H and W are the appropriate length scales; that is, integral
quantities that depend on the velocity profile across the entire cross section of the
flow, such as the average velocity, volumetric flow rate, and overall drag force.
If one seeks to determine the drag force or velocity in the vicinity of the side-
walls, the simplified form of equation (3.6-14) cannot be used. Clearly, there is a
region of influence within which the effect of the sidewalls on the flow cannot be
ignored. Within this region of influence, the viscous stress term in equation (3.6-14)
arising from the drag at the sidewalls is just as important as the principal viscous
term; that is, 7., is approximately the same magnitude as 7,,. This means that
the dimensionless group multiplying the term arising from t,, in equation (3.6-14)
must be set equal to 1. This provides a measure of the thickness of the region of
influence within which one cannot ignore the effect of the sidewalls; that is,
4H?> 4H?
7 = 8—,31 =1=04, =2H (3.6-19)
In summary, the effect of the sidewalls on the flow can be ignored if the flow
channel is much wider than the depth of the liquid film. Ignoring the sidewall
effects is a reasonable approximation under such conditions provided that one is
not interested in predicting some quantity in the immediate vicinity of the sidewalls.

Scaling analysis provides both the criterion for ignoring the sidewall effects as well
as an estimate of the region in which these effects will be important.

3.7 FREE SURFACE FLOW

The flow considered in Section 3.6 involved a free surface, the liquid—gas interface.
However, the complications introduced were minimal in that example because this
free surface was planar. In this example we consider a nonplanar two-dimensional
free surface flow involving the unsteady-state draining of a viscous Newtonian
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5 4

Az

Gas

Figure 3.7-1 Draining of a two-dimensional viscous Newtonian liquid film that has constant
physical properties due to a gravitational body force; the liquid film has a free surface at
which the effects of both viscous drag and surface-tension forces are assumed to be negligible.

liquid film having constant physical properties due to a gravitational body force,
as shown in Figure 3.7-1; we assume that the effects of viscous drag and surface-
tension forces at the free surface can be neglected. We use o(1) scaling to determine
when the describing equations can be simplified; in particular, when the effects of
surface curvature can be ignored.

The describing equations are obtained by appropriately simplifying equations
(C.1-1), (D.1-10), and (D.1-12) in the Appendices for a flow that is caused by a
gravitational body force (step 1):

du, du du, dP 0%u, 0%u,

4 Z 4
rz 7z = 3.7-1
'08t + P 0z +'Oux8x 0z +'u8z2 +M8x2 trg ( )
GIT A, A, AP 0%u, 0%u,
Ix = - 3.7-2
P ot +pu; 0z + P 0x 8x+'uaz2 +M8x2 ( )
ou,  Juy
— =0 3.7-3
9z + 0x ( )
u, =0, u,=0, n=o00 at t=0 (3.7-4)
u, =0, u,=0 at x =0 (3.7-5)
u, . ou,  Jug
4—=sin6f cosH — + —)cos20 =0
9z 0z 0x
u, ou, Ouz\ .
—Pym + P+ 2u—=cos20 —2u + —=]sinfcosf =0
9z 0z ox
at x =n(z,t) (3.7-6)
u;, =0, u,=0, n=0 at z=0 (3.7-7)

u; = filx, 1), uy= falx,1) at z=1L (3.7-8)
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Note that pressure terms are included in both equations (3.7-1) and (3.7-2) even
though we are ignoring surface-tension effects. These pressure terms must be
included because this is a developing flow; that is, flow in the x-direction is caused
by an induced pressure force. The first of equations (3.7-6) is a statement that the
adjacent gas phase does not exert any viscous drag force on the liquid interface;
that is, 7 - no =0 at x = n(z, t), where 7 and 7 are the local normal and tangential
unit vectors at the free surface, respectively, and ¢ = P§ + 1 is the total stress ten-
sor in which § is the identity tensor and t is the viscous stress tensor defined for a
Newtonian fluid by equations (D.1-4) through (D.1-9) in the Appendices. For the
coordinate system shown in Figure 3.7-1, the normal and tangential unit vectors are
expressed in terms of the unit vectors in the x- and z- coordmate directions, 5, and
8Z, respectively, as follows: 71 = 8 cosf — 8 sinf and 7 = 8 sin6 + 8 cos . The
functions fi(x,t) and f>(x, t) in equation (3.7-8) merely indicate that to solve this
system of differential equations we would need to specify some downstream bound-
ary conditions; often, these are unknown, which precludes solving these equations.
This downstream boundary condition is applied at z = L, where L can be any
specified value of z; hence, this is another example of local scaling.

Equations (3.7-1) through (3.7-8) constitute three differential equations and their
associated initial and boundary conditions to determine four unknown dependent
variables: u,, u,, P, and n. Hence, an auxiliary equation is needed to determine the
location of the interface 7. This is obtained via an integral mass balance over a differ-
ential length of the film Az having local thickness 7n(z, ¢), as shown in Figure 3.7-1.
The following development of this auxiliary condition employs Leibnitz’s rule for
differentiating an integral given by equation (H.1-2) in the Appendices:

n d (7 d " on
,ouzdx — ,ouzdx =— | pdxAz=—— | u,dx=—
+az At Jo dz Jo ot
/” 8uZ 817 /” ouy on
= dx —u;—
82 0 0x aZ
L an _om
=u, — t =n(z,t 3.7-9
Uy —lgmo =0 @ x =1z 1) (3.7-9)

Equation (3.7-9) is referred to as the kinematic surface condition. Note that the
solution of the kinematic surface condition requires both an initial and a boundary
condition for n; these are included in equations (3.7-4) and (3.7-7). The former
states that the film is infinitely thick prior to the inception of draining; the latter
states that the film thins to zero thickness at its leading edge as soon as draining
begins.

Introduce the following scale factors and dimensionless variables (steps 2, 3,
and 4):

u; Uy

=
*
I
<
*
If
~
*
If
~
|
i
VR
| %)
=
N——
Il
| —
(ob)
=

am\* 139 t
(_ﬁ) = __77; n* = l; ¥ = i; x* = i; t"=— (3.7-10)
r’X ZS §
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Note that we allow for a reference pressure P, in our definition of the dimensionless
pressure since the dimensional pressure is not naturally referenced to zero. In
addition, we have introduced separate scale factors denoted by 7;; and 5, for
the temporal and spatial derivatives, respectively, of the film thickness 7 since
these do not necessarily scale with x,/#; and x,/z,. Substitute these variables into
the describing equations and divide through by the dimensional coefficient of a
term that must be retained to obtain the following set of dimensionless describing
equations (steps 5 and 6):

px2out  pugx?

auj PUxsXs du;

k Z

Uty ot* Uzs  C0z* no T ox*
__ Pk op i Qup | pex gy
Mgz 9zF 0 22 3z2 0 ax*r '
z5%s s zs
px2dut  pugx? L ut  pugxs |, dut _ Px, 0P x2 %t tur
Wt Ot* wzs  Coz* W tAx* g x* 72 9z7%2 0 9x*2
(3.7-12)
oul  uygzy Oul
ur=0, uy=0 n"=o00 at =0 (3.7-14)
ur=0, u;y=0 at x*=0 (3.7-15)
4x, ou’* ou*  our
Y T Gingcoso — (Lt e M) (o509 — 0
zg 0z* UygZs 0Z%  Ox*
P \) PY \) Pr \) \) 8u* £ t
_ [, + s P*+ il +2x—‘—zcos29 at x* = n( 1
MU zs MUl zs KU zs s az* Xs
UpsXs Qut  Oul\ |
-2 + —= ) sinfcosf =0
UygZg 0ZF ox*
(3.7-16)
u;=0, uy=0 n"=0 at 7" =0
(3.7-17)
L
u, = fr(x* 1%, uy=fE55 at f=—
, Z
(3.7-18)
Uy AN ELAY n(z, 1)
St (=) = — at x*= 12 (3.7-19)
UzsNzs ~\ 0z UzeNzs \ OF Xs

Since the gravitational body force causes the flow, we balance the latter term
with the principal viscous term by setting the dimensionless group that constitutes
the last term in equation (3.7-11) equal to 1; this determines the axial velocity scale
u,s. The axial and transverse length scales, z; and xg, are determined by setting
the appropriate dimensionless groups in equations (3.7-16) and (3.7-18) equal to 1.
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Since this is a developing flow, the transverse velocity scale u, is determined by
setting the dimensionless group in equation (3.7-13) equal to 1. Since pressure
causes the flow in the transverse direction, the pressure scale Py is determined
by setting the dimensionless group multiplying the pressure term in equation (3.7-
12) equal to 1. The first and third terms in the surface normal stress boundary
condition given by equation (3.7-16) indicate that the dimensionless pressure can
be referenced to zero if we set P, = Py,. Since this is inherently an unsteady-state
flow, the time scale ¢, is equal to the observation time ¢,, that is, the arbitrary time
at which the flow is “observed”; setting the time scale to be the observation time is
the time-scaling analog of local scaling for spatial variables. Finally, since all three
terms in equation (3.7-19) should be of equal magnitude, we set the dimensionless
groups multiplying the first and third terms equal to 1 in order to determine the
n,s and n;s scales, respectively. These considerations then determine the following
scale and reference factors (step 7):

2 3 2
pPEN PrEN PEN
Uzs = 5 Uys = 5 Py = ; Py = Pym;
2 ulL L
3
pPEN n
Nis = ———» Nzs = 773 zs = L; Xs =15 ts =1, (3.7-20)

uL L

Note that the z-velocity scale in equation (3.7-20) is within a multiplicative constant
of O(1) of the surface velocity for fully developed laminar film flow down a vertical
plate. Note also that we found that d5/dz scales with n/L, which is the ratio of
the transverse and longitudinal length scales. That is, although we introduced 1
as the scale for dn/dz to allow for the possibility that the latter might not scale
with the ratio of the length scales, scaling analysis justified what might appear
to be an obvious choice for this scale. However, scaling analysis also indicated
that the proper scale for d1/dt is pgn®/uL rather than n/t,, which would be the
intuitive choice. In fact, one could introduce separate scales for all the derivatives
in the describing equations and then use the systematic scaling method to determine
these. However, this is cumbersome in practice for the more complex describing
equations encountered in scientific research and engineering practice. Hence, if a
more limited set of scales confined to the dependent and independent variables but
not their derivatives is chosen, one can rely on the forgiving nature of scaling to
discern that separate scales might need to be introduced on one or more derivatives
in order to achieve o(1) scaling.

When the scales defined by equation (3.7-20) are substituted into equations (3.7-
11) through 3.7-19), we obtain

2 Ju* ou* ou’ 2 yp* 2 9%u*  %u*
I | Re Ly Z+Re£u;‘ e _ T s i VS
vt, Ot* L *az* L “ox* L2 9z¢ L2 9z*2  9x*?
(3.7-21)
2 * * * * 2 a2 % 2%
n° duj n . ou; n ,ouy 9P n° o uy  07uj
v—t{)m + Rezuz pyn + Rezux - o 12 Py Py (3.7-22)



50 APPLICATIONS IN FLUID DYNAMICS

duz L0 (3.7-23)
az  9x* ’
ur=0, u;=0 n"=o00 at t*=0 (3.7-24)
w=0, u'=0 at x*=0 (3.7-25)
4n du* 2 our  oul
il ke sin@ cos @ — R + e c0s20 =0
L 0z* L? 9z* ox* *
* 2 * * at x =1
n o, n du; n°out  oul\ .
—P*+2— cos20 — 2| — 4+ —= ) sinfcosd =0
L L 0z* L2 9z*  Ox*
(3.7-26)
u;=0, u;y=0 n"=0 at x*=0
(3.7-27)
W= fEOL ), wh= ety at =1 (3.7-28)
an\* an\*
uy —u; (5) = (E at x* =1 (3.7-29)

where v = uu/p is the kinematic viscosity and Re = pu.;n/n = p>gn’/u? is the
Reynolds number. The dimensionless group 1?/vt, is a measure of the ratio of
the characteristic time for the diffusion of vorticity” to the observation time. We
see from the above that our describing equations can be simplified significantly
if we can make the creeping-flow approximation; that is, if Re = 0(0.01), we
can ignore the nonlinear inertia terms in equations (3.7-21) and (3.7-22). These
equations can be further simplified if we can make the lubrication-flow approxima-
tion; that is, if n?/L? = 0(0.01) as well as Re = 0(0.01), we can ignore the axial
diffusion of vorticity terms in equations (3.7-21) and (3.7-22). If n?/L? = 0(0.01),
the tangential and normal stress boundary conditions given by equation (3.7-26)
also simplify somewhat. If the aspect ratio satisfies the condition n/L = 0(0.01)
(a more demanding condition than that required for lubrication flow), the quasi-
parallel-flow approximation can be made; that is, the effect of surface curvature
on the flow can be ignored. Finally, if n? /vt, = 0(0.01), which implies that the
observation time is long in comparison to the characteristic time for the diffu-
sion of vorticity, the quasi-steady-state assumption can be made. In summary, the
following conditions justify simplifying the describing equations for this flow:

p*gm’
Re = 5— <K 1 = creeping-flow approximation (3.7-30)
i
7
Re« 1 and 12 <« 1 = lubrication-flow approximation (3.7-31)

"The vorticity is defined to be the curl of the velocity field, V x i; if the curl of the equations of motion is
taken, the vorticity appears as a diffused quantity, the transport coefficient being the kinematic viscosity;
for this reason we refer to the diffused quantity in the equations of motion as the vorticity.
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% <« 1 = quasi-parallel-flow approximation  (3.7-32)
e
o <« 1 = quasi-steady-state approximation (3.7-33)
v 4

If the conditions in equations (3.7-30) through (3.7-33) apply, equations (3.7-21)
through (3.7-29) simplify to (step 8)

92u*
0=-—2141 3.7-34
9y2 + ( )
ouz L0 (3.7-35)
az*  ox* ’
u;=0, uy=0 at x*=0 (3.7-37)
8 *
“z _ at x* =1 (3.7-38)
ox*
an\*  [on\*
R (L ey at x* =1 (3.7-39)
-\ 0z ot

An estimate of the instantaneous local film thickness n can be obtained from 7y,
the scale for dn/dt; that is,

(3.7-40)

Note that the negative sign was inserted in equation (3.7-40) because n decreases
with increasing t; that is, only magnitudes are involved in scaled variables. This
estimate for n can be used in evaluating the criteria described by equations (3.7-30)
through (3.7-33) to assess the applicability of the various assumptions that can be
invoked to simplify the describing equations for this flow. Note that the estimate
for n given by equation (3.7-40) is within a multiplicative constant of O(1) of that
obtained by actually solving the describing equations. This is a particular advantage
of scaling analysis; that is, it can provide an estimate of the answer we seek by
solving the describing equations.

Let us assume that the approximations indicated by equations (3.7-30) through
(3.7-33) are justified, at least over a reasonable range of t, and L. The solu-
tion to the resulting simplified describing equations given by equations (3.7-34)
through (3.7-39) is straightforward. One can integrate equation (3.7-34) analyti-
cally subject to the boundary conditions given by equations (3.7-37) and (3.7-38).
The resulting solution for axial velocity u} is the same as that for fully developed
film flow down a vertical plate, but with the local film thickness n(z*, t*) replac-
ing the constant film thickness; hence, the t*— and z*— dependence of u} enters
implicitly through the boundary conditions. The transverse velocity u? can then be
obtained by substituting this solution for u} into the continuity equation given by
equation (3.7-35) and integrating across the flow. The solutions for u} and u then
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can be substituted into the kinematic surface condition given by equation (3.7-39)
to obtain a partial differential equation in terms of only one dependent variable,
n(z*, t*). This can be solved for the instantaneous local film thickness 7n(z*, t*)
either by the method of separation of variables or via the method of combination
of variables (i.e., a similarity solution).

An ad hoc solution to this flow problem was developed by van Rossum® and
is given by Bird et al.” Van Rossum assumes quasi-parallel flow and hence uses
the axial velocity profile for fully developed film flow down a vertical plate. He
then carries out an integral mass balance on a control volume that consists of a
differential axial length and the entire cross-section of the film in which he uses the
average axial velocity. The solution he obtains for 7(z, #) is within a multiplicative
constant of O(1) of that obtained via scaling analysis given by equation (3.7-40).
The scaling analysis developed here provides a systematic method for justifying
the assumptions used in the ad hoc solution of van Rossum. Moreover, scaling
analysis leads to an improved solution since the exact form of the kinematic surface
condition (integral mass balance) is solved that incorporates contributions from both
the axial and transverse velocity components.

3.8 POROUS MEDIA FLOW

Thus far, all the flows that we have considered have involved homogeneous media,
that is, media consisting of a single phase. Here we consider steady-state fully
developed pressure-driven flow of a Newtonian fluid with constant physical prop-
erties through a heterogeneous medium consisting of a microporous solid contained
within a cylindrical tube of radius R, as shown in Figure 3.8-1.

Flow through a porous medium is described by a modified form of the equations
of motion in order to accommodate the heterogeneity introduced by the microporous

porous medium
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Figure 3.8-1 Steady-state fully developed pressure-driven flow of a viscous Newtonian
fluid with constant physical properties through a heterogeneous medium consisting of a
microporous solid contained within a cylindrical tube of radius R; the axial profile is shown
that satisfies the no-slip condition at the tube wall, whose region of influence is §,,.

8J. J. van Rossum, Appl. Sci. Res., A7, 121-144 (1958).
9Bird et al., Transport Phenomena, 2nd ed., Wiley, Hoboken, NJ, 2002, Problem 2D.2, pp. 73-74.
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solid. The local Reynolds number that characterizes flow through the pores is
well into the creeping-flow regime, due to the small pore size; hence, one can
safely ignore the inertia terms in the equations of motion. Moreover, the resistance
to flow offered by the pore walls within the porous medium is generally much
greater than that of the solid walls that bound the entire porous medium (the
wall of the cylindrical tube in the present problem); the former can be described
by Darcy’s law, whereas the latter is usually neglected. However, the effect of
the boundaries of the porous medium cannot be ignored within some region of
influence adjacent to the boundaries. We seek to use scaling analysis to determine
the criterion for when the effect of the lateral boundaries on the flow through the
porous medium can be neglected and to determine the thickness of the region of
influence within which the effect of drag on the lateral boundaries on the flow must
be considered.

The appropriately simplified form of equations (E.2-1) and (E.2-3) in the Appen-
dices for steady-state creeping flow through a porous medium are given by (step 1)

orP  u _ 1d ([ du,
0=—— — — -— 3.8-1
0z kpuz_i_'urdr (r dr) ( )
oP
0= _9% (3.8-2)
ar
i, =0 at r=R (3.8-3)
dii
L0 at r=0 (3.8-4)
dr
P=P at z=0 (3.8-5)

where u, is the superficial flow velocity through the porous medium (i.e., the
flow velocity averaged over a differential cross-sectional area of the heterogeneous
medium in contrast to the flow velocity through a pore) and k, is the Darcy
permeability of the microporous solid. Note that we have ignored any effect of
hydrostatic pressure in equation (3.8-2). Equations (3.8-1) and (3.8-2) imply that
the axial pressure gradient is a constant. Hence, our describing equations sim-

plify to
AP 1d [ du,

i - 3.8-6
L kpuZ+Mrdr(rdr> ( )
u, =0 at r=R (3.8-7)

du;
=0 at r=0 (3.8-8)

dr

where AP = Py — P, in which Py and P are the pressures at z=0and z = L,
respectively. The equations above differ from the conventional equations of motion
by the inclusion of the Darcy term, which accounts for the resistance to flow offered
by the porous medium.
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Introduce the following scale factors and dimensionless variables (steps 2, 3,
and 4):

7 r
—; r'=—
Uz rs

(3.8-9)

=)
(A3
Il

Substitute these variables into the describing equations and divide through by the
dimensional coefficient of a term that must be retained to obtain the following set
of dimensionless describing equations (steps 5 and 6):

Lu Lu, 1 d du*
0=1-Exfege  Bofo € (-5 (3.8-10)
k,AP APr, r*dr dr
=0 a ;=X (3.8-11)
= = .
rs
di :
L= at r* =0 (3.8-12)

The radial length scale r is determined by setting the dimensionless group in
equation (3.8-11) equal to 1. Since pressure causes the flow and the porous medium
is assumed to offer the primary resistance to flow, the velocity scale u is deter-
mined by setting the dimensionless group in the Darcy term in equation (3.8-10)
equal to 1. These considerations then determine the following scale and reference
factors (step 7):

k, AP

rs = Ra ﬁzs = /,LL (38-13)

Note that the velocity scale in equation (3.8-13) is the axial velocity that would
be predicted if just the pressure and Darcy flow terms were retained in equation
(3.8-10).

When the scales defined by equation (3.8-13) are substituted into equations
(3.8-10) through (3.8-12), we obtain

k, 1 d di*
0=1-a+-2— (r* ”Z) (3.8-14)

0 RZyxdrx dr*
IZZ =0 at r*=1 (3.8-15)
aw: *
SE=0 at =0 (3.8-16)

Hence, we see that the effects of viscous drag at the inner wall of the cylindrical
tube can be neglected if the following condition is satisfied (step 8):
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k
R—’; <« 1 = viscous drag at boundary of porous medium can be neglected

(3.8-17)

The velocity obtained by solving equation (3.8-14) while dropping the last
term will be accurate provided that the condition indicated in equation (3.8-17)
is satisfied; that is, if k, /R? = 0(0.01) and provided that one is not interested
in predicting the velocity very close to the tube wall or the viscous drag at the
wall. It is of interest to determine the region of influence §,, wherein the effect
of the tube wall cannot be ignored. To do this it is necessary to translate the
coordinate system to the tube wall via the transformation 7 = R — r. Since we
are considering a region of influence, 7y = §,; the velocity scale still is given by
equation (3.8-13). The resulting transformed dimensionless describing equations
are given by

k, 1 d [(R di*
O=1l-@+-Lo [(——F*) ”Z} (3.8-18)

8[27 R/8, —7*dr* [\ §, dr*
ur=0 at 7 =0 (3.8-19)
du* - R
<=0 at 7= — (3.8-20)
dr* Sp

Within the region of influence the last term in equation (3.8-18) cannot be ignored;
hence, we set the dimensionless group multiplying this term equal to 1 to determine
the thickness of the region of influence:

k
s =1=8=Vk (3.821)
p

For typical Darcy permeabilities, §, is on the order of 10 to 100 pore diame-
ters. Hence, in most cases one can ignore the effect of the system boundaries
on the relationship between the average superficial velocity through the porous
medium and the pressure gradient used. The curvature effects can be ignored
within the region of influence near the wall if the following criterion is satis-
fied:

R
3 > 1 = curvature effects can be ignored (3.8-22)
p

in which case the describing equations simplify to

. d*ur
0=1- uy + PP

(3.8-23)
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ur =0 at 7 =0 (3.8-24)
duj .
=0 as FF— o0 (3.8-25)
dr*

3.9 COMPRESSIBLE FLUID FLOW

In the examples we have considered thus far, we have assumed that the flowing fluid
was incompressible. This is certainly a tenuous assumption for gas flows and can
be questioned even for complex liquid flows.!? In this example we use systematic
scaling analysis to assess when a flow can be considered to be incompressible.
This example will again involve introducing separate scale factors for a spatial
derivative rather than assuming that it scales with the ratio of the characteristic
value for the dependent variable divided by the characteristic length.

Consider the steady-state pressure-driven flow in a cylindrical tube of a com-
pressible gas whose other physical properties will be assumed to be constant as
shown in Figure 3.9-1. Due to the compressibility, the density of the gas will
decrease due to the pressure drop in the axial direction; it also changes in the
radial direction, however, this effect is usually quite small (although it will be
included in this scaling analysis). Correspondingly, there will be an increase in the
axial velocity, thereby implying that this is a developing flow with both nonzero
axial and radial velocity components. Hence, we must use the appropriate form of
the steady-state equations of motion that allow for a compressible flow. We use
scaling analysis to determine the conditions for which this flow can be considered
to be incompressible and fully developed. Although we allow only for a variable
density in this problem, the manner in which we use scaling to assess when this

< L >

Figure 3.9-1 Steady-state pressure-driven flow in a cylindrical tube of radius R and length
L of a compressible gas for which the other physical properties are assumed to be constant.

10Examples of complex fluids include the flow of microemulsions, proteins, micellar solutions, and
suspensions, as well as other nonhomogeneous liquids.
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property can be assumed to be constant can be used to handle other variable
properties, such as the viscosity.

The describing equations in terms of the components of the viscous stress tensor
are obtained by appropriately simplifying the continuity equations and equations
of motion given by equations (C.2-1), (D.2-1), and (D.2-3) in the Appendices:

ou, ou, oP 10 0T,
y— — = ——(r7;) — ' 3.9-1
pltr 5 TP oz rar T G50
ou, n ou, oP 10 ) Tgg 0Ty (3.92)
U, —— U,— =—————(©Ut,) — — — .9-
p ar Pz 9z ar ror r 0z
10 0
—-—(pru;) + —(pu;) =0 (3.9-3)
ror 0z

where 7;; is the viscous shear stress associated with the transfer of j-momentum in
the i-direction. These equations have been given in terms of the components of the
viscous stress tensor to emphasize that the term tyg is not zero even though this is
an axisymmetric flow. To complete the specification of the describing equations,
we need to provide an equation of state that relates the density to the pressure (the
temperature is assumed to be constant) and need to specify appropriate boundary
conditions; this will be done after we have rearranged the equations above into a
more convenient form.

When the appropriate components of the viscous stress tensor given by equations
(D.2-4) through (D.2-9) in the Appendices are substituted into equations (3.9-1) and
(3.9-2) and the resulting equations simplified using the continuity equation given
by equation (3.9-3), we obtain

du, du, P wd [ du, wd (udp u.dp 0%u,

Pl 5 T Pl 0z 9z  r or "or 39z \por p oz 972
(3.9-4)

ou, u, P a1 wd (udp u.dp 0u,

Pl TP = +”ar[r or 135\ e T a 922
(3.9-5)

The derivatives of the density can be expressed in terms of derivatives of the
pressure as follows:

8,0_ ap
ar 9P

8P_y8P' 8,0_8,0

sor  cor’ 9z 0P

oP ydpP

& _ree 3.9:6
r 9z 20z ( )

in which c is the speed of sound in the gas and y is the ratio of the heat capacity at
constant pressure to that at constant volume. To assess the effect of pressure on the
density, we represent the density in terms of a Taylor series expansion about some
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reference density oo, which is chosen to be at the downstream low pressure Py :

ap
p=po+ 55| (P=P)+O(P =P’ =po+ 55(P = PL)+ O(P = PL)’
T
(3.9-7)

Note that it is sufficient to represent the density as a Taylor series truncated at
the second term since we need consider only small variations in the density. That
is, because we seek to determine the conditions for which incompressible flow
can be assumed, we need explore only small variations in the density since large
variations in the density most certainly will be associated with compressible flow.
Hence, our describing equations and associated boundary conditions are given by

(step 1)

u ou P 0 ou
plty——= 4 puz—— = = +ﬁ—< Z)

] 9z 3z ror r?
wad (yuoP  yu;oP 0%u,
N o oz 3.9-8
39z (,oc2 or + pc? 9z tu 972 ¢ )
ou, n ou, P n 010 ()
Up— 4+ pU— = —— — | ——(u
P " or p “ 9z ar Mar ror
wd (yu,dP  yu,dP 0%u,
e 07 0T 0 3.9:9
3 9r (,oc2 ar  pc? 9z i 972 ¢ )
10 0
——(pru,) + —(pu;) =0 (3.9-10)
ror 0z
p=po+ 5P —P) (3.9-11)
du,
SE=0 w =0, P=p@) a r=0 (3.9-12)
;
u, =0, u,=0 at r=R (3.9-13)
u; = fi(r), u,= far), P =Py at z=0 (3.9-14)
u; =gi1(r), u,=g) at z=1L (3.9-15)

in which p(z), fi(r), g1(r), fo(r), and g,(r) are unspecified functions that in prin-
ciple would need to be known in order to integrate the full set of describing
equations. If the conditions that we seek to determine for assuming fully devel-
oped incompressible flow are satisfied, it will not be necessary to know these
unspecified functions.
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Introduce the following scale factors, reference factors, and dimensionless vari-
ables (steps 2, 3, and 4):

. . u PP IP\* 1 P
u, = —; u. =—; = —; — ) = ——
‘ Uzs " Ups Py ar P.y or
oF = pﬁ; e rL; = Zi (3.9-16)

We again allow for a reference pressure P, in our definition of the dimensionless
pressure since the latter is not naturally referenced to zero. Note that we must also
scale the density in this problem since it is one of the dependent variables. How-
ever, we do not need to introduce a reference factor for the density even though it
is not referenced to zero. The reason for this is that we are considering only small
variations in density; that is, the density does not vary significantly in either coordi-
nate direction. We have introduced a scale for the radial derivative of the pressure
denoted by P,s since we do not anticipate that this will scale in the same way as
the axial pressure gradient. The question might arise as to how one knows whether
to scale a derivative as the ratio of some dependent variable scale divided by some
independent variable scale or to introduce a separate scale for the entire derivative.
The answer is contained simply in the forgiving nature of scaling. That is, if we
were to assume that the radial pressure derivative scales as the pressure scale P
divided by the radial length scale ry, we would find that the dimensionless group in
front of the dimensionless radial pressure derivative was much larger than that of
any other term in the r-component of the equations of motion. This clearly would
indicate that we scaled incorrectly. Hence, determining whether a derivative needs
its own scale is often a matter of trial and error. If any term is scaled incorrectly,
the forgiving nature of scaling will indicate a contradiction in the dimensionless
equations. One then rescales until a self-consistent set of dimensionless equations
is obtained; that is, a system of equations for which balancing terms are of O(1)
and all other terms, including those multiplied by dimensionless groups, are of
o(1). The consequence of not introducing a separate scale for the radial pressure
derivative is explored in Practice Problem 3.P.31.

Substitute the variables defined in equation (3.9-16) into the describing equations
and divide through by the dimensional coefficient of a term that must be retained
to obtain the following set of dimensionless describing equations (steps 5 and 6):

PslrsTs *aL;ersumrfp*u*a_w;__ Psrs2 oP* l ad r*auj
m " or* UZs T az* WiyZg 075 r* ort ar*

1 yu,Prr? 9 [uf <ap>*] 1yPr? 3 <u§ap*) r2 0%u?

3 0sClU 557 7+ or B g,osczzs2 azx \ p* az* g 97*2
(3.9-17)

o*
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OslrsTs , Our  psugr? . du’ Pr? (3P\* 8 [1 8
—pfuf — + —pful L = — — ——(r*u})
7 ar* UZs az* UUps \ Or or* [ r* or*
LyPors & [uf (3P\*] 1 yuyPors 8 (uldP* N r2 3%u*
3 poc? or* | p* \ or 3 0oC2u,szs Or* \ p* dz* 72 97*2
(3.9-18)
1 0 sFs 0
— (o run) + 2 L (pru) =0 (3.9-19)
r* or* UpsZs 0ZF
P P —P
pr="04 T (P* - 7L) (3.9-20)
Ps  Cps Py
ou’t *)— P
“_o, wr=o, pr=PEOTF 0 (921
ar* Py
* * * R
u; =0, u;=0 at r* = ~ (3.9-22)
Py —P
u;k = fl*(r*)a l/t;k — fz*(r*)’ P* — % at Z* =0 (39_23)
)
* * * * * * * L
u; =g (r"), u; =g at = - (3.9-24)
S

The radial and axial length scales, ry and z;, can be bounded between zero and 1
by setting the dimensionless groups in equations (3.9-22) and (3.9-24) equal to 1.
The dimensionless pressure can be bounded between zero and 1 by setting the
dimensionless group containing the reference pressure in equation (3.9-20) equal
to zero and the dimensionless group containing the pressure scale in equation (3.9-
23) equal to 1. Since pressure causes the axial flow and the principal viscous term
(i.e., involving the second-order radial derivative) must be retained, the velocity
scale u_, is determined by setting the dimensionless group multiplying the pressure
term in equation (3.9-17) equal to 1. Since compressibility implies a developing
flow, the dimensionless group in the continuity equation given by (3.9-19) must be
equal to 1. The density scale is obtained by setting the dimensionless group in the
principal term in equation (3.9-20) equal to 1. Since the radial pressure gradient
causes the flow in the radial direction, the radial pressure gradient scale P, is
determined by setting the dimensionless group multiplying the pressure term in
equation (3.9-18) equal to 1. These considerations then determine the following
scale and reference factors (step 7):

R>AP
rs=R; =L,  P=P:  P=Py—-PL=AP; uy= ;
uL
R3AP » RAP (3.9-25)
Urs = ——F5 s = 5 rs — -
e Ps = Po 2
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Note that the axial velocity scale u,; is within a multiplicative constant of O(1)
of the value for the maximum velocity in fully developed incompressible flow in
a cylindrical tube.

When the scales defined by equation (3.9-25) are substituted into equations
(3.9-17) through (3.9-24), we obtain

R ,ou} R ,oul oP* 1 0 L oul
Re—u; +Re—u; =— +——r
L " or* L “0z* az* r* or* ar*
1 Ma?R> 3 [u' (dP\*] 1 Ma’?R 8 [uldP*\ R?>0%u:
3V Re 130z | p* \or 3" Re Loz \p* oz ) T 12927
(3.9-26)
R ,du* R ,du* AP\* a1 9
Re— * r Re— * r— [ — _ (yF*y*
Lur ar* + LuZ az* ( or ) + or* [r* ar* (r ur)]

1 Ma?R 93 [uf <ap>*} 1 Ma’L 9 (u ap*) R? 3%u*
p*

3" Re L or* or 3" Re R r* \ p* 9z* L? 9z*
(3.9-27)
Pl (0 r*u;) + 8_z*(p u;) =0 (3.9-28)
ot ML (3.9-29)
= T Re R '
ou* *(¥) — P
“_o we=o, pr=POZP ey (3.9-30)
or+ AP
ur=0, u;=0 at r*=1 (3.9-31)
u; = fi@", ur=fr@), P =1 at =0 (3.9-32)
ur=grr"), uf =g ") at ¥ =1 (3.9-33)

where Re = Rp;v,;/ 1 is the Reynolds number and Ma = u,;/c is the Mach num-
ber; the latter is the ratio of the characteristic velocity of the fluid divided by
the speed of sound in the medium. We see that equations (3.9-26), (3.9-27), and
(3.9-29) can be simplified significantly if we can make the incompressible flow
approximation, which requires that the Mach number be very small; that is, Ma <«
1. Note that the size of the Mach number required to ensure incompressible flow
depends on both the Reynolds number and the aspect ratio. These equations can
be further simplified if we can assume fully developed flow, which requires that
Re(R/L) « 1; this condition is ensured if Re(R/L) = O(0.01). In summary, the
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following conditions justify simplifying the describing equations for this flow:

u.,;, RZAP , . L
Ma=— = 3 « 1 = incompressible flow approximation (3.9-34)
c uLc

R pu s R? L
Rez <« 1 = L = 100——— = fully developed flow approximation (3.9-35)
n

If the conditions in equations (3.9-34) and (3.9-35) apply, equations (3.9-26)
through (3.9-33) simplify to (step 8)

1 d du?*
0=1+ g (r*dri) (3.9-36)
du *
dr’; =0 at r* =0 (3.9-37)
u' =0 at rf=1 (3.9-38)

Z

Of course, these are just the describing equations for fully developed flow of a
Newtonian fluid with constant physical properties in a cylindrical tube.

3.10 DIMENSIONAL ANALYSIS CORRELATION FOR THE
TERMINAL VELOCITY

In dimensional analysis we seek to determine the dimensionless groups required
to correlate data or to scale a process up or down. These dimensionless groups
can always be determined by means of o(1) scaling analysis since this procedure
leads to the minimum parametric representation for a set of describing equations.
However, in the preceding sections we indicated that carrying out an o(1) scaling
analysis can be somewhat complicated and time consuming. In contrast, the scal-
ing analysis approach to dimensional analysis illustrated in this section is much
easier and quicker to implement. Note, however, that it does not provide as much
information as does o(1) scaling analysis for achieving the minimum parametric
representation. In particular, it does not lead to groups whose magnitude can be used
to assess the relative importance of particular terms in the describing equations. It
also does not identify regions of influence or boundary layers, whose identification
in some cases can reduce the number of dimensionless groups. This first example
of the use of scaling for dimensional analysis in fluid-dynamics applications will
provide more details on the steps involved. We also compare the results of scaling
analysis to those obtained from using the Pi theorem, underscore the advantages
of using the former to achieve the minimum parametric representation. The steps
referred to here are those outlined in Section 2.4 for the scaling approach to dimen-
sional analysis; these differ from those used in Sections 3.2 through 3.9 since no
attempt is made to achieve o(1) scaling.
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Solid
particle

R

Viscous liquid

Figure 3.10-1 Solid sphere of radius R falling at its terminal velocity U, through a viscous
Newtonian fluid with constant physical properties.

In this first example of the use of scaling analysis for dimensional analysis in
fluid dynamics, we consider developing a correlation for the terminal velocity U,
of a spherical particle having radius R and density p, falling due to gravitational
acceleration g through an incompressible Newtonian liquid having density p and
viscosity @ as shown in Figure 3.10-1. We begin by writing the equation that in
principle would have to be solved to obtain the terminal velocity. This constitutes
a force balance on the sphere involving form drag due to the pressure, viscous drag
on the sphere boundaries, and a net gravitational force that causes the flow:

_ // 5.5 [Pg — w(Vii + vﬁ*)]
S

where 5,- is the unit vector in the i-direction, S the surface area, § the identity
tensor, P the dynamic pressure, i the fluid velocity, and denotes the transpose
of a second-order tensor. The sign convention employed in arriving at equation
(3.10-1) is consistent with defining the force on a fluid particle as described by
equation (A.1-1) in the Appendices. To carry out the integration in equation (3.10-
1), one would have to solve the axisymmetric equations of motion in spherical
coordinates with boundary conditions consisting of no-slip at the sphere surface
and a far-field velocity condition, which are given by

4
L4S+(op = ,O)ggrrRS =0 (3.10-1)

r=

pii - Vi = —VP + uVZi (3.10-2)
i=0 at r=R (3.10-3)
-8, =—Ucosh, ii-8=—U,sin@ as r — oo (3.10-4)

where r and 6 denote the radial and circumferential coordinates, respectively. Since
there is no need to achieve oO(1) scaling in dimensional analysis, it is sufficient
to express the describing differential equations in the generalized vector—tensor
form given by equation (3.10-2), which is the appropriately simplified form of
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equation (B.2-3) in the Appendices. Equations (3.10-1) through (3.10-4) constitute
step 1 in the procedure for dimensional analysis outlined in Section 2.4.
Define the following dimensionless variables (steps 2, 3, and 4):
P S

=2, P=_; V=LV, S§=-—
U P, L2

(3.10-5)

where * denotes a dimensionless variable and ug, P;, and Ly denote velocity,
pressure, and length scales, respectively, that will be chosen to obtain the mini-
mum parametric representation. Introducing these into equations (3.10-1) through
(3.10-4) and dividing through by the dimensional coefficient of one term in each
equation yields (steps 5 and 6)

- - [PL . . 4(p, — p)gT R?
Hsls - =R SMMSLA‘
§* Ls
(3.10-6)
L. - PiL -
PUEs oo i = _ 325 g pr 2 (3.10-7)
w [t
R R
=0 at = — (3.10-8)
Ly
e 2 U ar 2 U: .
i85, = ——Lcosf, u*-8=——Lsinf as r*— o0 (3.10-9)
Ug Ug

One possible set of scale factors is obtained by setting the following dimen-
sionless groups equal to 1; note that no attempt is made to ensure that any of
the dimensionless variables are o(1) since we are merely seeking to determine the
minimum parametric representation rather than to assess what assumptions might
be made to simplify the describing equations (step 7):

R U, PsLs MUt

—=1=L; =R, —=1=u,=U; =1= P =—

Ly Ug g R
(3.10-10)

When these scale factors are substituted into equations (3.10-6) through (3.10-9),
the latter assume the form

I Ao — X2
- // 5. 5,(P% — (Vi + V)| ast 4 e TR
S - r=1 3ul,
(3.10-11)
UR. .. i
Pl vhiir = —VP* 4 Vi (3.10-12)
m

*

it .8, = —cosf, i*-8=—sinf as r*— oo (3.10-14)
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Equations (3.10-11) through (3.10-14) represent the minimum parametric rep-
resentation of the describing equations. Hence, the solution to equation (3.10-12)
for the dimensionless velocity u* will depend on r*, 0, and the dimensionless
group pU;R/u, which is seen to be the Reynolds number. When this solution
is substituted into equation (3.10-11), evaluated at * = 1 and integrated over the
surface area S*, the resulting solution for the dimensionless terminal velocity can
be correlated in terms of the following two dimensionless groups:

_ R? U:R
m, = ("”75)5’ and Ty = 22 (a Reynolds number) ~ (3.10-15)
nUy 12

Hence, either data or a numerical solution for U; can be correlated in terms of
[1; and IT,; that is, the correlation for the terminal velocity involves only two
dimensionless parameters and is of the general form

pU,R [(pp — p)ng}

S, ) =0= ——=f, (3.10-16)
2 wU;

The two dimensionless groups appearing in equation (3.10-16) are not optimal
if one is seeking a correlation for U; since it appears in both groups; that is,
determining U, from known values of the physical properties and sphere radius
would require a trial-and-error solution. By invoking the transformation in step
8 with a =1 and b = 1 in equation (2.4-2), a new dimensionless group I3 not
containing U, can be obtained:

— p)gR? pU,R — R3
M=, x I = (pp = PSR pUR _ (pp = P)Pg (3.10-17)

nU; " w?

Hence, data or numerical results for U; can be correlated in terms of I3 and either
I[1; or I1y; that is, our correlation for the terminal velocity can be expressed in the
general form

_ 3
pU:R [(pp p)pgR } (3.10-18)

iy, MI3) =0=> —— = fu -
n n

It is instructive to rework this problem in dimensional analysis using the Pi
theorem approach. A naive application of the Pi theorem with n = 6 quantities
and m = 3 units (mass, length, and time) to be considered in the dimensional
analysis indicates that the correlation for U, requires n — m = 3 rather than two
dimensionless groups. Note that if force is also considered as a unit, n = 7, but
then m = 4 because the dimensional constant g. in Newton’s law of motion must
also be included since this law interrelates force, mass, length, and time units;
hence, the Pi theorem would still predict three dimensionless groups rather than
two. Hence, it would appear that the Pi theorem gives a less general result than
does the scaling approach to dimensional analysis. To obtain the most general
result from the Pi theorem, one must recognize that the gravitational acceleration
g appears as the product g(p, — p), and hence n is really only 5; hence, with
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m = 3 the Pi theorem will also predict two dimensionless groups. In contrast, the
scaling approach naturally generates the grouping g(p, — p) and does not require
addressing the subtleties associated with choosing the correct number of units and
dimensional constants.

Standard references!! suggest that U, can be correlated in terms of IT; alone;
that is,

2R?g(pp —
y, = 2R8wp=p)

t =

—p)gR* 9
= Pr =P8R _ 9 (3.10-19)
9 wU; 2

However, this is for the special case of creeping or very low Reynolds number flow
for which the inertia terms can be neglected.'”> Hence, IT, (or equivalently, IT3)
no longer appears in the correlation. The correlation given by equation (3.10-19)
can be obtained (to within a multiplicative constant) by invoking the formalism
in step 9 in the systematic scaling analysis method for dimensional analysis; that
is, equation (3.10-16) can be expanded in a Taylor series in the parameter I1,, the
Reynolds number, which is a small parameter for creeping flow:

Lo

I, + O(T1%) (3.10-20)
Mo 9T 2

M,=0

fiI, ) = f

Truncating the expansion in equation (3.10-20) at the first term implies that the
terminal velocity U, can be correlated in terms of only the dimensionless group
IT;. Note that this same result could have been obtained by making the creeping-
flow approximation in equation (3.10-2), in which case the Reynolds number would
not have appeared as a dimensionless group.

A correlation in terms of just one group for the special case of creeping flow can
also be obtained from the Pi theorem; however, it requires some subtle reasoning
to achieve this result. In using the Pi theorem for creeping flow, as stated earlier,
one must recognize that the quantities g, p,, and p appear only as the product
g(pp — p) and not individually. One must also be aware that creeping flow con-
stitutes a problem in statics since there is no acceleration of the fluid. This implies
that force must be introduced as a unit in addition to mass, length, and time. How-
ever, for problems in statics, one does not introduce the dimensional constant g.
since Newton’s law of motion is not involved; that is, there is no fundamental
relationship between force, mass, length, and time units. These considerations then
infer that n = 4 and m = 4, thereby suggesting zero dimensionless groups. How-
ever, n = m is a degenerate case of the Pi theorem that can be shown to imply
one dimensionless group in this case. Again one sees that scaling analysis obviates
the need to understand these subtle concepts in achieving the minimum number of
dimensionless parameters via the Pi theorem approach.

HSee Bird et al., Transport Phenomena, 2nd ed. p. 186.
12See Section 3.3 for determining the conditions required for creeping flow.
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3.11 SUMMARY

The example in Section 3.2 provided an introduction to several features of scaling
analysis. In this problem, scaling was used to assess under what conditions the
flow could be assumed to be caused either by the applied pressure or by the upper
moving boundary. It also introduced region of influence scaling by determining the
thickness of the zone wherein the effects of the upper moving plate could never
be ignored when predicting certain quantities; that is, thin boundary-layer regions
might be safely ignored when predicting integral quantities such as the volumetric
flow rate or average velocity but must be considered when predicting local quanti-
ties such as the drag at the upper moving plate. This example provided a means for
estimating the error incurred when the assumptions suggested by scaling analysis
are invoked since an analytical solution was available for this flow. Demanding
that a quantity be one order of magnitude smaller in order to ignore some term
in the describing equations typically results in an error of 40 to 50%; demanding
two orders of magnitude reduces the error to less than 10%. However, the error
that is encountered also depends on the quantity being considered; for example,
point quantities within a region of influence might incur very large errors even
when the relevant dimensionless group is several orders of magnitude less than 1.
Finally, this example illustrated the forgiving nature of scaling; that is, if an incor-
rect assumption is made in determining one or more of the scales, a contradiction
will emerge in the final dimensionless describing equations. This usually takes the
form of having one term much larger than any of the others, thus implying that
there is no term to balance it.

In Section 3.3 we introduced the creeping- and lubrication-flow approximations.
The former requires that the Reynolds number be small, whereas the latter requires
that in addition, some aspect ratio be small. This example illustrated that the dimen-
sionless groups that emerge from scaling analysis have a physical interpretation in
that they provide a measure of relative effects. For example, the Reynolds number
is seen to be a measure of the ratio of the convection of momentum to the principal
viscous stress. In this example it was necessary to prescribe unspecified downstream
boundary conditions, due to the elliptic nature of the describing equations. Scal-
ing provided a means for assessing when these troublesome terms can be ignored;
that is, in practice these downstream conditions might not be known, which would
preclude obtaining a solution to the describing equations. Finally, this example
introduced the concept of local scaling, whereby one considers the flow at some
arbitrary distance in the principal direction of flow that is considered to be constant
during the scaling analysis.

Hydrodynamic boundary-layer theory, which is a special case of region of influ-
ence scaling, was considered in Section 3.4. The need for considering a region of
influence arose naturally in scaling this problem. Indeed, when the problem was
scaled without introducing any small transverse length scale over which the depen-
dent variables experienced a characteristic change, a contradiction resulted in that
the viscous terms dropped out of the dimensionless describing equations. A proper
scaling analysis that introduces a region of influence or boundary layer provides
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a straightforward way to resolve this classical problem known as d’Alembert’s
paradox. This example also involved local scaling in which one of the scales is
the local axial distance in the direction of flow, which is considered to be a con-
stant in the change of variables involved in scaling analysis. We found that the
boundary-layer approximation is reasonable when the Reynolds number based on
the local axial length scale becomes large (i.e., Re = LpUy /1 >1). However, it
is clear that the boundary-layer approximation must break down in the vicinity of
the leading edge where L becomes small. This limitation of boundary-layer theory,
which emerges from scaling analysis, is not mentioned in some transport and fluid
mechanics textbooks.

In Section 3.5, scaling analysis was applied to an unsteady-state flow problem
in order to ascertain when the quasi-steady-state approximation can be invoked. In
this problem we found that there were several possible time scales, depending on
the conditions being considered. If the transient effects associated with initiating
this flow were important, the appropriate time scale was the observation time, the
particular time from the start of the process at which the flow was being observed.
This particular flow was still time-dependent even after the transient flow effects
died out, owing to the periodic oscillation of the lower plate. Scaling analysis led
to the condition required to assume quasi-steady-state, whereby the unsteady-state
term could be ignored in the describing equations. However, the flow was still
unsteady-state since the time dependence entered implicitly through the boundary
conditions. If the time scale for the viscous penetration of vorticity was much
longer than the time scale for the oscillating plate motion, the effects of the latter
on the flow were confined to a region of influence near the oscillating plate.

Scaling analysis was used in Section 3.6 to determine when end and sidewall
effects could be ignored. When the appropriate aspect ratio is sufficiently small,
the corresponding sidewall or end effects can be ignored when determining the
maximum velocity or integral quantities, such as the average flow rate. However,
there is always some region of influence that can be assessed by scaling wherein
one cannot ignore the effect of the lateral boundaries on quantities such as the local
velocity or drag at the boundary.

In Section 3.7 we considered free surface flows, flows for which the location
of some interface between adjacent phases is unknown initially and must be deter-
mined by solving the describing equations. The latter require an additional equation,
referred to as the kinematic surface condition, to relate the location of the free
surface to the local velocity components; this is obtained from an integral mass
balance. This was the first problem we considered that required introducing a scale
factor for a derivative: the time derivative of the film thickness. This was nec-
essary because this derivative did not scale with the characteristic length scale
divided by the characteristic time scale. If one did not recognize this, the forgiving
nature of scaling would have led to a contradiction in the dimensionless describing
equations. Scaling analysis indicated that the curvature effects could be ignored if
the quasi-parallel-flow approximation was applicable; this is the spatial analog to
the quasi-steady-state approximation considered in Section 3.5, whereby the effects
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of the nonconstant film thickness enter only through the boundary conditions. How-
ever, scaling analysis indicated that the quasi-parallel-flow approximation always
breaks down sufficiently close to the leading edge of the flow. This was the first
problem in which it was necessary to introduce a reference factor, since in this
case the pressure was not naturally referenced to zero.

Porous media flows were considered in Section 3.8 for which the flow was
described by the Darcy flow equation incorporating the Brinkman term to allow
satisfying the no-slip condition at the solid boundaries. Scaling analysis was used
to determine the conditions for which the effect of the bounding walls on the flow
through the porous media could be ignored. Scaling again indicated that there was
a region of influence wherein the effect of the bounding walls could not be ignored
on quantities such as the local velocity or drag on these boundaries.

In Section 3.9, scaling was applied to a compressible flow for which an equation
of state is required to relate the density to the state variables, in this case the
nonconstant pressure. This problem also required introducing a separate scale for a
derivative, the radial pressure gradient. However, if one did not recognize this, the
forgiving nature of scaling would have led to a contradiction in the dimensionless
describing equations. This is explored further in Practice Problem 3.P.31. Scaling
indicated that this flow could be assumed to be incompressible if the dimensionless
group known as the Mach number was much less than 1; the Mach number is the
ratio of the velocity of the fluid divided by the speed of sound in the medium. The
effects of compressibility were explored in this problem by expanding the density
in a Taylor series about some mean value characteristic of the flow. This same
technique can be used in conjunction with scaling to explore the effects of other
nonconstant physical and transport properties, such as surface tension and viscosity.
This is considered in more depth in Chapter 4 when we consider the application of
scaling to heat transfer and allow for the variation of the viscosity with temperature.

Scaling was applied to dimensional analysis in Section 3.10. The critical dif-
ference between oO(1) scaling and dimensional analysis is that in the latter there
is no attempt to define dimensional variables that are bounded of o(1). The goal
in dimensional analysis is to arrive at the minimum parametric representation of
the problem; that is, to obtain a set of dimensionless describing equations in terms
of the minimum number of dimensionless parameters. Whereas o(1) scaling leads
to a unique set of dimensionless groups for a prescribed set of physical variables
and system parameters, dimensional analysis does not. However, any one set of
dimensionless groups can be converted into any other set of dimensionless groups
by defining new dimensionless groups that are obtained by multiplying products
of the original groups raised to appropriate positive or negative powers. In some
cases it is advantageous to use this property of dimensional analysis to isolate one
or more dimensional quantities into a particular dimensionless group; for example,
by isolating all the quantities that are varied in an experiment into one dimen-
sionless group, the dependence of the phenomenon being studied on this particular
group can be determined since all the other dimensionless groups will be con-
stant. Isolating certain dimensional quantities into one group is also advantageous
when developing correlations for experimental data since it allows determining
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that particular dimensional quantity directly rather than by means of a trial-and-
error procedure. The systematic scaling procedure offers several advantages relative
to the Pi theorem approach for dimensional analysis. The problem considered in
Section 3.10 demonstrated that scaling analysis led to the minimum parametric rep-
resentation directly, whereas obtaining it using the Pi theorem required considerable
intuitive knowledge. The scaling procedure naturally groups variables that always
appear in some combination, whereas the Pi theorem requires that one somehow
recognize this intuitively. Scaling also obviates the need to know which dimen-
sional variables need to be considered as primary and secondary quantities and
when dimensional constants need to be introduced into the dimensional analysis.

3.E EXAMPLE PROBLEMS

3.E.1 Gravity-Driven Laminar Film Flow down a Vertical Wall

A film of an incompressible viscous Newtonian liquid that has constant physi-
cal properties is in fully developed laminar flow down a vertical wall, due to
a gravitational body force in the presence of an insoluble gas phase as shown
in Figure 3.E.1-1. Scaling analysis will be used to determine when the effect of
the drag exerted by the gas phase on the velocity profile in the liquid film can
be neglected.

The describing equations obtained by appropriately simplifying equation
(D.1-10) in the Appendices (step 1)

2
T 4 pg=0 for 0<y<h GE.1-1)

v

<« i — P P

Liquid Gas

lg

Figure 3.E.1-1 Fully developed laminar flow of an incompressible viscous Newtonian
liquid film with constant physical properties down a vertical wall under the influence of
gravity in the presence of a viscous gas phase.
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d%u,
—— =0 for hy <y<h +h; (3.E.1-2)
dy

u, =0 at y=0 (3.E.1-3)
”x|h1* =uX|hl+ at y="m (3.E.1-4)

d d
" d”" . at y=h (3.E.1-5)

Y lny dy nf

u, =0 at y=h+h (3.E.1-6)

Introduce the following scale factors, reference factor, and dimensionless variables
(steps 2, 3, and 4):

Uxl Uy y
* X * X<, * __ . *
Uy = ) Upp = N=E_ 3)
U] Us Ys1

Yy =2
Vs2

(3.E.1-7)

where yy is the length scale in the liquid film and y,, and y;, are the reference and
length scales in the gas phase; these are introduced to ensure that we can achieve
o(1) scaling for the spatial coordinates in both phases. A reference length scale
is needed in the gas phase because y is not naturally referenced to zero in this
phase. Substitute these dimensionless variables into the describing equations and
divide through by the dimensional coefficient of a term that must be retained in
each equation (steps 5 and 6):

d2u* 2 h
>'<)c2l P18Y51 =0 for 0 < yi“ < 4 (3E1-8)
dy; Mttg) s
d*u* hi—y, hy +hy — y,
20 for — 22 <o 1o 3p 1)
dyik Ys2 Ys2
W =0 at y'=0 (3.E.1-10)
s h
who= 2yt at yi= b BE.1-11)
Usi Ys1
du* du* h
Mx*l _ Halts2)s1 Mx*z at yi = s (3.E.1-12)
dy] Hitts1ys2 dyy Ys1
h hy — vy,
W, =0 a yp=iFf2zie (BE.1-13)
Ys2

Since gravity causes the flow in the liquid film, the dimensionless group in
equation (3.E.1-8) provides uy;. Since the drag at the interface causes the flow in
the gas phase, the dimensionless group in equation (3.E.1-11) gives u;>. We bound
the dimensionless spatial variables in the liquid and gas phases to be o(1) by setting
the dimensionless geometric ratio groups in equations (3.E.1-8) and (3.E.1-9) equal
to zero (for determining y,,) or 1 (for determining y,; and yy»). This results in the
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following scale and reference factors (step 7):

pighi
Us1 = U2 = I’L—l; ys1 = hy; ys2 = ha; yr2 =hi (3.E.1-14)
1

The resulting scaled dimensionless describing equations then are given by

dzu;kcl *
L11=0 for 0<yf<1 (3.E.1-15)
dy}
dzu*2 .
20  for 0<y5<1 (3.E.1-16)
dy;
Wi =0 at y'=0 (B.E.1-17)
uy, =ui, at yy =1 (3.E.1-18)
du’* hy du’*
e T T (3.E.1-19)
dyl nihs dYQ
wi=0 at yi=1 (3.E.1-20)

We see that the effect of the gas phase drag on the liquid film will be negligible if
the following condition is satisfied (step 8):

h h
Hahy 1:>M21

— 0(0.01) (.E.1-21)
Hiho wihs

3.E.2 Flow Between Two Approaching Parallel Circular Flat Plates

Consider the unsteady-state laminar flow of an incompressible Newtonian liquid
having constant physical properties between two parallel circular flat plates that
slowly approach each other with an axial velocity given by

U = Upe™# (3.E.2-1)

where Uy is the initial axial velocity and B is a time constant; a schematic of
this flow is shown in Figure 3.E.2-1. We use scaling to simplify the describing
equations for this relatively complex flow.

The describing equations are obtained by appropriately simplifying equations
(C.2-1), (D.2-10), and (D.2-12) in the Appendices (step 1):

19 du
——(ruy) + —=0 (3.E2-2)
r or 0z
du, u, u, P 319 9%u,
- L= —-= 3.E.2-3
Poor TP Gy TP, ar T [rar(r”’) LT )
ou, N o, N ou, P N a[1a [ du, N 0%u,
- Up—— U,— = —— —|-—=\r=—
Pror TP TP az Mo lrar Uar ary)

(3.E.2-4)
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Figure 3.E.2-1 Laminar flow of an incompressible Newtonian liquid that has constant
physical properties between two parallel circular plates that are approaching each other
slowly.

1 1

u,=0, uzz—EU(t)z—Eer_ﬁ’ at z=H(t) (3.E.2-5)
1 I

u=0, uz=-U() = JUpe at z=—H() (3.E.2-6)

" d 2 2 dH 217 —Bt
u,2mrdz = —E(nr H) = -2nr ar =nr-Upe™™, u;,= fi(z,t)

H
at r=R (3.E2-7)
9
w, =0, 22_0 at r=0 (3.E.2-8)
ar
P=P,, a r=R (3.E.2-9)

The boundary condition given by equation (3.E.2-7) is a statement that the mass
squeezed out by the plates moving together must flow out the periphery of the
circular plates. The function f; merely denotes that to solve these differential
equations, one would need to specify a boundary condition for u, at the periphery
of the circular plates. The simplifications justified by scaling analysis will obviate
the need to know f7.

Introduce the following scale factors, reference factor, and dimensionless vari-
ables (steps 2, 3, and 4):

u u P—P z r
uh=—; uf = —; P*= S r*=—;
urs MZJ PS ZS rS
t
= (3.E.2-10)
S

Substitute these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of a term that must be retained in each
equation to obtain (steps 5 and 6)

0 . .. Uyl Oul
r* or* (rup) +

=0 (3.E.2-11)
UpsZs 07*



74 APPLICATIONS IN FLUID DYNAMICS

2 2
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H/zg U, R
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H/zs UrsZs rs
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a *
s =0, a“; =0 at r=0 (3.E2-17)
r
Paym — P, R
p* — ~am_ °r at = — (3.E.2-18)
Ps Ys

The dimensionless group in equation (3.E.2-14) is set equal to 1 to obtain the
axial velocity scale u,;. The geometric ratio groups in equations (3.E.2-14) and
(3.E.2-16), when set equal to 1, provide the axial and radial length scales z; and
rs. Equation (3.E.2-11) then provides the radial velocity scale u,s. Since pressure
causes the radial flow, P is obtained by setting the dimensionless group multiply-
ing the pressure term in equation (3.E.2-12) equal to 1. The reference pressure P,
is obtained from equation (3.E.2-18). Finally, the time scale ¢, is dictated by the
approach velocity of the two parallel plates and is obtained by setting the dimen-
sionless group in the argument of the exponential in equation (3.E.2-14) equal to 1.
This results in the following scale and reference factors (step 7):

RU,_ U, p _ MUK

ﬁy uzs:77 S = o3 P, = Pym; s = H,;

Urs =

rs = R; t=— (3.E2-19)
B
Note in this case that several of our scales are time-dependent, owing to the presence
of H in their definition.
The resulting scaled dimensionless describing equations then are given by

o) + 5= =0 (3.E.2-20)
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p,BHzauf+R *au:+R L ou* 8P*+H2 a1 8 ) +82u;"
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(3.E.2-21)
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H>3 [1 8 ([, ouf 3%u*
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wi=0, ui=—e" at =1 (3.E.2-23)
wi=0, ul=e'" at F=-1 (3.E.2-24)

1
/ widz* = rre ", ur = fir @@t at rf=1 (3.E.2-25)

ou*

ur =0, =0 at r*=0 (3.E.2-26)
or*

P*=0 at r*=1 (3.E.2-27)

where Re=pUyH/2u is the Reynolds number. We see that equations (3.E.2-20)
through (3.E.2-27) can be greatly simplified if the following conditions hold (step 8):

UoH
Re = '020 <« 1 = creeping flow (3.E.2-28)
"
H2
e <« 1 = lubrication flow if Re <« 1 as well (3.E.2-29)
pBH? .
& 1 = quasi-steady-state flow (3.E.2-30)

All of these conditions are satisfied for sufficiently close approach distances H
between the two plates. Note that our scaling ensured that the dimensionless radial
pressure gradient was o(1); this scaling does not necessarily ensure that the axial
pressure derivative is also o(1). In fact, the condition given by equation (3.E.2-29)
implies that the dimensionless axial pressure gradient in equation (3.E.2-22) is of
the following order:

P HXONM L (H (3.E.2-31)
dz*  R2 972 R? o

This implies that the axial pressure gradient is essentially zero for the case of
lubrication flow; this in turn implies that the radial pressure gradient is not a
function of z.
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If the conditions given by equations (3.E.2-28) through (3.E.2-30) are satisfied,
equations (3.E.2-20) through (3.E.2-27) simplify to

0 2P du (3.E.2-32)
- or* 82*2 e
aP* _

=0 (3.E.2-33)
wi=0, ul=-e"" at ¥ =1 (3.E.2-34)
wi=0, ui=e"" a F=-1 (3.E.2-35)

1
/ widzt =r*e™, wl= iGN at =1 (3.E.2-36)

—1
Pr=0 at r*=1 (3.E.2-37)

Equations (3.E.2-36) and (3.E.2-37) are required to obtain the radial pressure dis-
tribution. This simplified set of describing equations can be solved analytically in
closed form.

3.E.3 Design of a Hydraulic Ram

Consider the operation of a hydraulic ram shown in Figure 3.E.3-1. This device
consists of a piston of radius R; that is free to slide within a cylinder of inner
radius R, containing a viscous oil that can be assumed to be an incompressible
Newtonian liquid with constant physical properties. An applied force causes the
piston to be pushed into the cylinder, which in turn causes a high pressure Py to be
generated within the oil confined between the closed end of the cylinder and the
piston head. The difference between this high pressure and the ambient pressure
Pym then causes oil to flow in the gap between the piston and the cylinder. The
force that must be applied to push the piston into the cylinder is equal to the sum
of the force exerted by Py on the piston head and the drag force caused by the

UU» ——————————t ———————————————— V— -7 4—t--1F---

Figure 3.E.3-1 Hydraulic ram consisting of a cylindrical piston of radius R; that slides
within a cylindrical housing of radius R,; the cylindrical housing and piston assembly
contains a viscous oil that can be considered to be an incompressible Newtonian liquid with
constant physical properties; a time-dependent force is applied to the piston, causing it to
move into the cylindrical housing at a constant velocity Up; the instantaneous axial velocity
profile in the annular gap is sketched in the figure.
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oil being pushed through the annular gap. Let us assume that the piston is being
pushed in at a constant velocity Uy. We ignore any end effects and assume that the
lubrication-flow approximation can be made for the flow in the thin annular gap.'?
We employ scaling analysis to determine when curvature effects in the describing
equations for the flow in the annular gap can be neglected; that is, the conditions
for which the describing equations in cylindrical coordinates reduce to those in
rectangular coordinates.

The describing equations are obtained by simplifying appropriately the equations
of motion in cylindrical coordinates given by equations (C.2-1), (D.2-10), and
(D.2-12) in the Appendices (step 1). In writing these describing equations we
place our coordinate system on the moving piston. In doing so, it appears that the
cylinder is moving in the direction opposite to that of the piston.

0= _%+M%:_r (r%) (3.E.3-1)
u, =0 at r=R (3.E.3-2)
u, = Uy at r=R, (3.E.3-3)
P = Pyny at z=1L() (3.E.3-4)

where Py, is the prevailing atmospheric pressure and L(¢) is the wetted length of
the piston; that is, the instantaneous length of the piston that is in contact with the
flowing oil. Note that we retain the partial derivative d P /dz in equation (3.E.3-1)
because the pressure gradient is also a function of time, since the wetted length
increases as the piston is pushed into the cylinder.

Introduce the following scale factors and dimensionless variables (steps 2, 3,
and 4):

r—r, z
uf = —~; Pr=——; r* = : 7f==

3.E.3-5
Uzs Py s s ( )

Note that we have introduced a reference factor for the radial coordinate since it
is not naturally referenced to zero within the region wherein the flow is occurring;
that is, within the annular gap. We have also introduced a reference pressure since
the pressure is also not naturally referenced to zero at either end of the annular gap.
Substitute these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of a term that must be retained in each

equation to obtain (steps 5 and 6)
L du; (3.E.3-6)
r r dr* L.O-

Pir? 3P* 1 d
0=- Y iy N
M52 02 <Er* + 1) dr

Iy

3The lubrication-flow approximation for this flow can also be justified using scaling analysis; this is
considered in practice Problem 3.P.11.
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R — I'r
w=0 at rr=-t"" (3.E.3-7)
I
U Ry—r,
wi==2 a =2 (3E.3-8)
Uzs ¥y
Py — P L
pr =4 at f=— (3.E.3-9)
Py Zs

The dimensionless radial coordinate can be bounded between zero and 1 if
we set the dimensionless group in equation (3.E.3-7) equal to zero and that in
equation (3.E.3-8) equal to 1, thereby obtaining r, = R; and ry = R, — R;|. The
velocity scale is obtained by setting the dimensionless group in equation (3.E.3-8)
equal to 1 to obtain u,; = Uy. The axial length scale can be obtained by setting
the dimensionless group in equation (3.E.3-9) equal to 1 to obtain z; = L(z). The
dimensionless pressure can be referenced to zero by setting the dimensionless group
in equation (3.E.3-9) equal to zero to obtain P, = Pyy. Finally, since pressure
causes the flow in the axial direction, P; can be obtained by setting the dimen-
sionless group in equation (3.E.3-6) equal to 1 to obtain Py = uUyL/(Ry — Ry)?
(step 7).

The resulting scaled dimensionless describing equations then are given by

opP* 1 d Ry — R du?
0 = — —+ #r* + 1 uZ
az* [(R, — R)/RiIr* + 1 dr* R dr*

(3.E.3-10)
Ww=0 at r*=0 (3.E3-11)
w=1 at rf=1 (3.E.3-12)
Pr=0 a =1 (3.E.3-13)

We see that if the dimensionless group (R, — R;)/R; = 0(0.01), equation
(3.E.3-10) reduces to (step 8)

oP*  dPu
azx  dr*?

(3.E.3-14)

This is the same equation that would apply to steady-state pressure-driven lubri-
cation flow between two parallel flat plates. Hence, we conclude that curvature
effects can be ignored in problems such as that considered here if the following
condition is satisfied:

Ry — Ry

R « 1 = curvature effects can be neglected (3.E.3-15)
1

A closed-form analytical solution for the axial velocity profile can easily be
obtained for equation (3.E.3-14) subject to the boundary conditions given by
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equations (3.E.3-11) through (3.E.3-13). The unknown axial pressure gradient in
the solution for the velocity profile can be obtained from the known volumetric
flow rate corresponding to the volume swept out by the piston moving in at a
constant velocity Uy. The force required to push the piston in at a constant velocity
can be obtained by a force balance on the piston that includes the pressure force
at each end of the piston and the drag force exerted by the flowing oil.

3.E4 Rotating Disk Flow

Consider a disk rotating at a constant angular frequency o (radians per second) in
an infinite fluid having constant physical properties, as shown in Figure 3.E.4-1.
The rotation of the disk causes both an angular fluid velocity and flow in the radial
direction. This in turn causes flow toward the disk in the axial direction. Infinitely
far into the fluid the velocity must be purely axial toward the disk. This flow
geometry is of considerable practical value since the rotating disk is referred to
as a uniformly accessible surface. By this we mean that the heat- or mass-transfer
flux to the surface of a rotating disk is invariant with position along its surface. For
example, this makes the rotating disk an ideal geometry for determining reaction
kinetics in electrochemical systems for which the rotating disk can serve as one
of the electrodes.'* The rotating disk was first analyzed by von Kdrman'>; a more

> O

S e S EEE
2

8

Figure 3.E.4-1 Flow created by a flat disk rotating at an angular velocity w (rad/s) in an
unbounded fluid; the rotational motion of the disk draws fluid toward the disk; the axial
velocity infinitely far removed from the disk is Ux.

4The rotating disk electrode apparatus was first exhibited at the Brussels World’s Fair in 1958. The

application of scaling analysis for using the rotating disk to study mass transfer is considered in
Chapter 5.

I5T. von Kérmén, Z. Angew. Math. Mech., 1, 244-247 (1921).



80 APPLICATIONS IN FLUID DYNAMICS

complete analysis was done by Cochran!®; an overview of the analysis and use
of this instrument is given by Levich.!” This problem can be solved analytically
for laminar flow conditions in the absence of free convection effects. However,
under proper operating conditions, the hydrodynamics take on a boundary-layer
character such that the change in velocity components occurs within a thin region
of influence near the rotating disk. Establishing a thin boundary layer is important
for heat- or mass-transfer characterization using this apparatus since it ensures that
container boundary effects are minimized. We use scaling analysis to ascertain the
conditions for which the boundary layer will be thin.

A surprising aspect of laminar rotating disk flow is that there is no radial pressure
gradient and the radial and angular velocities are directly proportional to the radial
position, whereas the axial velocity depends only on the axial position. Classical
treatments of this flow begin by recognizing these considerations intuitively and
then proceeding to develop the rigorous analytical solution for this flow. However,
these considerations can be ascertained via simple integral mass and momentum
balances. Consider a mass balance on a control volume of arbitrary radius r extend-
ing from the surface of the disk far into the fluid, where there is only an axial
velocity component given by u, = —Us,. Note that in practice Uy, is unknown;
however, it can be determined from the solution for the hydrodynamics and a
specified disk rotation rate. A mass balance on this control volume then yields

o0 2 o0
Usortr? = 2nr/ u,dz = Uy = ;/ urdz = u, =rfi(z) (3.E4-1)
0 0

If the general form of the radial velocity profile given by equation (3.E.4-1) is sub-
stituted into the continuity equation given by equation (C.2-1), we can conclude
that the axial velocity is independent of r:
ou ou o
-—(u)+—=0=2fi0)+—=0= uZ=—2/ fi@)dz= f2(2)
ror 0z 0z 0

(3.E4-2)
where 7 denotes a dummy integration variable. Hence, we conclude that u, is a
function only of z. We can now prove that there is no radial pressure gradient

by considering an integral z-momentum balance on a control volume of arbitrary
radius r extending from an arbitrary height z into the fluid far from the rotating

disk where u, = —Uq:
— c>o7rr2~|— (/ P~2m7df)
b4 0

,OUC%OTU‘Z — </ ,oug S2mr dF)
0
o0 r
+ (/ Tpp - andZ) - </ Ty, - 27F df)
z z 0

16W. G. Cochran, Proc. Cambridge Philos. Soc., 30, 365-375 (1934).
17V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ 1962, pp. 60—78.

4

-0 (3.E.4-3)

Z
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where 7 and Z again denote dummy integration variables. When the components
of Newton’s constitutive equation given by equations (D.2-6) and (D.2-9) in the
Appendices are substituted, we obtain

r r
,oUgorz— (/ pu?~2fd;7> — oorz—i— (/ P-2fdf)
0 z 0 z
o 3ur ~ " auz ~ g~
— w—--2rdz || + u—- - 4r dr
z 0z Z o 0z

Substitute the functional forms for u, and u, into equation (3.E.4-4) to obtain

(3.E.4-4)

=0

Z

df:

pUsr? — pf3r? = Poor” +2 (/ P Fdf) +2ur’ fi + 2ud—2r2 =0
0 Z

Z

(3.E.4-5)

Hence, we conclude that

2 [ df>
r_2/ P«rdr:—pUgo+Pf22+Poo—2Mf1—Zﬂd—£=>P=f3(Z)
0
(3.E.4-6)

When the functional forms for u,,u,, and P given by equations (3.E.4-1),
(3.E.4-2), and (3.E.4-6) are substituted into the radial component of the equations
of motion given by equation (D.2-10) in the Appendices, we can conclude that
ug = rfi(z); that is,

2 2
2 My e N dfs 9P d_h _
priv ==+ for 2= @ Thay prm GV g e = ug = rfa(z)
~— —_—
=0 -0
(3.E4-7)

Hence, we conclude that for rotating disk laminar flow, u, P, ru,, and ug/r are
functions only of the axial coordinate z.

The prior considerations are rigorous for a rotating disk, causing laminar flow in
an infinite fluid. However, in practice the rotating disk is placed in a finite container,
which implies that the velocity might not be purely axial far above the rotating disk,
due to recirculation. When one is using the rotating disk to characterize some heat-
or mass-transfer process, one would like to minimize this finite container effect.
This will be minimized when there is a thin boundary layer adjacent to the rotating
disk across which the radial and angular velocities components decay. Hence, we
use scaling to ascertain the criteria required to assure that this boundary layer is thin.

In view of the considerations for a rotating disk in an infinite fluid, the equations
of motion in cylindrical coordinates given by equations (C.2-1), (D.2-10), (D.2-11),
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and (D.2-12) in the Appendices simplify to (step 1)

ou, ug ou, 0%u,
. — 0t — = 3.E.4-8
pur == =P + pu; 0. oz ( )
ou Uru du 9%u
puty— 4 p=" 4 pu = = (3.E.4-9)
or r 0z 0z

du, dP d’u,

L= - 3.E.4-10
P dz R dz? ( )
10 ]

S S U\ (3.E4-11)
ror 0z

The corresponding boundary conditions are given by

u, =0, u,=0, ug=or at z=0 (3.E.4-12)
U, =—Ux, u =0, up=0, P =Py as 7z —> 00 (3.E.4-13)
u, =0, wuy=0 at r=0 (3.E.4-14)

Note that equations (3.E.4-8) through (3.E.4-14) are rigorous for a rotating disk in
an unbounded fluid.

Introduce the following dimensionless variables containing appropriate reference
and scale factors (steps 2, 3, and 4):

u u u P—-P r
* __ ro. * __ < * __ * __ r, * __ .
u, =—; u, = —; Uy = —; P = ; rt=—;
Urs Uzs Ugs Py s
* Z
== (3.E.4-15)
s

Substituting these dimensionless variables into equations (3.E.4-8) through
(3.E.4-14) and dividing through by the dimensional coefficient of one of the prin-
cipal terms in each equation then yields the following dimensionless describing
equations (steps 5 and 6):

pu”z% *a_uj _ pu%szzu_ﬁ + puZSZSu*a_u;k _ azu:

MUFs " or* MUysFs r* 12 z az* 8Z*2
(3.E.4-16)

pu”zf . ouy N pu”zf uyuy N PUzsZs ,0up 3214;

urs L or* wry  r* W faze 9z
(3.E.4-17)

u du? P,z d P* dzuf
Plosts | p 2l Dol + —=% (3.E.4-18)

o tdzt T pug dzf | dz?
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urszs L0y o 25 g (3.E4-19)
—_— r u = . T
Ugsrs F* Or* r az*
* * wr * *
u; =0, u;=0, uy= ” at 77 =0 (3.E.4-20)
Os
U P — P,
u;=— iy uy =0, u;=0, Pr="2_"" a5 7*—> oo (3.E4-21)
Uy Ps
ur =0, u;=0 at r*=0 (3.E.4-22)

We now apply step 7 to achieve o(1) scaling. Since we seek to describe the flow
at any arbitrary position along the disk, we set 7y = R, the local radial coordinate;
that is, we are considering a local scaling analysis. The appropriate dimension-
less groups in equations (3.E.4-20) and (3.E.4-21) suggest the following scale and
reference factors:

P — P,
Hos _ M0 Sy —wR: 22T 0o p =P, (3E423)
wrg wR P

Since this is a developing flow, the continuity equation given by (3.E.4-19) implies
that
urSZS urSZS urSZS

MZSrS uZSR @ R

(3.E.4-24)

The scale for u, is obtained from equation (3.E.4-16) since the inertia and viscous
terms must balance:

2 .2 2.2 2.2 2.3
usz z Rw"z Rw™z W'z
1Y Os<s — 4 s 1= Upg = '075 = Uz = P s (3E4-25)
MHUrsFs HUrs M H

Similarly, the inertia and viscous terms in equation (3.E.4-18) must balance, which
provides the axial length scale:

2 2.4
PUzsZs _ P 60215 — 1 =z,=68, = . \/E (3.E.4-26)
M M pw w

where v is the kinematic viscosity. The axial length scale z; has been identified with
the momentum boundary-layer thickness §,,, the region of influence within which
the fluid is affected by the rotating disk. Note that in contrast to most boundary-
layer problems in fluid dynamics, §,, is constant over the entire surface of the
rotating disk. Finally, the pressure scale is also obtained from equation (3.E.4-18):

Pz PR PR PR 17232
SRR = —1sp=""""" (3E42)
Wi s pa?sy,  pwl2v32 R
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Substitution of the scale and reference factors then yields the following set of
dimensionless describing equations:

ur  up? dur  u’
uy ar’: — +ul 325‘ = 8z*£ (3.E.4-28)
dup  uiuy ouy Bzuz
Ll;,k Fye + r—* + ujg = az*z (3E4-29)
du* drP*  d*u*
i S < 3.E.4-30
e g dz* + dz*? ( )
0 ou*
— ru)+—==0 (3.E.4-31)
r* or* 0z*
ur =0, ul=0, wuy=r* at z7¥ =0 (3.E.4-32)
U
ui=—-——=, ul=,0, u;=0, P*=0 as z*—> oo (3.E4-33)
: Jov

ur =0, u;=0 at r*=0 (3.E.4-34)

Equations (3.E.4-28) through (3.E.4-34) have been solved via a series-expansion
method (see footnote 17). The resulting series can be truncated at the first term if
8m < 1 corresponding to a very thin momentum boundary layer. The resulting solu-
tion indicates that §,, = 3.6,/v/w and U, = 0.88447./vw. These agree to within
a constant of O(1) with the estimates obtained for §,, given by equation (3.E.4-26)
and for U, obtained by setting the dimensionless group in equation (3.E.4-33)
equal to 1. Note that scaling has provided reliable estimates of both the momentum
boundary-layer thickness §,, and the far-field axial velocity U, without the need
to actually solve the describing equations.

To assume that the rotating disk is effectively in an unbounded fluid, it is nec-
essary for the boundary layer to be very thin; that is, the following criterion must
be satisfied (step 8):

o [ Y« [—Y_ — 5(0.01) (3.E.4-35)
— = — or /— =o0(0. E.4-
H wH? wH?

where H denotes the distance of the rotating disk from the nearest parallel bound-
ary. This condition will be satisfied when the kinematic viscosity is low, the angular
rotation rate is high, or the boundary is far removed from the rotating disk.

3.E.5 Entry Region Flow Between Parallel Plates

Figure 3.E.5-1 shows a schematic of pressure-driven steady-state laminar entry-
region flow of an incompressible Newtonian fluid with constant physical properties
between two parallel flat plates spaced a distance 2H apart. The constant flow
velocity at the entrance is Up. This is assumed to be a high Reynolds number
laminar flow for which the inertia or convection terms cannot be ignored in the entry
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Figure 3.E.5-1 High Reynolds number steady-state pressure-driven entry region flow of
an incompressible Newtonian fluid with constant physical properties between two parallel
flat plates spaced a distance 2H apart.

region. We will use scaling to estimate the entry length required to achieve fully
developed laminar flow. Note that this flow differs somewhat from the boundary-
layer flow considered in Section 3.4 in that this is a confined boundary-layer flow.
Hence, owing to the deceleration of the flow within the boundary layer at the walls,
the uniform or plug flow in the center must accelerate. Moreover, in contrast to the
boundary-layer flow considered in Section 3.4 that was caused by the velocity of
the flow external to the boundary layer, the flow in the present example is caused
by an applied pressure gradient.

The describing equations are obtained by simplifying equations (C.1-1),
(D.1-10), and (D.1-11) in the Appendices appropriately (step 1):

oty oty oP 9%u, 9%u,

— — = 3.E.5-1
TR ax P TR ( )
duy N duy 0P N 3%u, N 3%u, G.E52)

Py TPy ay  dy Foxr TH 9y?2 o
due L 00y (3.E5-3)

0x ay o
uy=Up, uy,=0, P=P at x=0 (3.E.5-4)
upy = fi(y), uy=fo(y) at x=1L (3.E.5-5)
uy =0, u,=0 at y==+H (3.E.5-6)
uy = f3(x), uy= fa(x) at y==x(H — ) (3.E.5-7)

where f(y) and f>(y) are unspecified functions of y and f3(x) and f4(x) are
unspecified functions of x that in principle would have to be known in order to
integrate the set of differential equations above. Note that we have introduced a
region of influence §,,(x) within which the effect of the viscous shear induced by
the presence of each wall is confined. The rationale for introducing this region of
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influence or hydrodynamic boundary-layer thickness was discussed in Section 3.4.
The set of equations above also introduces the pressure Py that would have to be
specified at the entry region in order to integrate the system of equations above.

Introduce the following scale factors, reference factors, and dimensionless vari-
ables (steps 2, 3, and 4):

i. * y_Yr

Xs Vs
(3.E.5-8)

<
ll
ll
~
*
ll
i
=
ll
<
ll

We have introduced a reference factor y, in the definition of y* to force this dimen-
sionless variable to zero at the wall. Note that the symmetry of this problem permits
considering only the region —H < y < (. Substituting these dimensionless variables
into equations (3.E.5-1) through (3.E.5-7) and dividing through by the dimensional
coefficient of one of the principal terms in each equation then yields the following
equations that describe the flow in the region —H < y < 0 (steps 5 and 6):

u? ouy L HsXs ou’ _ P, oP* LM d%u* L du* (3ES5-9)
OX*  uygys O Oy* pul, 0x* - puysxg 9x*2  puygy? dy*?
D s O Py 9Pt p Py O
Xt uyys Y0y PllasllysYs DY*  PllesXs OX*2  puaysy? dy*2
(3.E.5-10)
dup | Uyt 0y _ (3.E5-11)
ox* Uysys OY*
U() PO
* * * * * * * L
uy =19, uy=f0G7 at xT=— (3.E.5-13)
H —
wi=0, ul=0 a y'=-——2" (3.E5-14)
Ys
H—58, —y,
wi= G, ul= fi6) ot y*=—+y (3.E.5-15)

We now apply step 7 to bound the variables to be o(1). We can bound y* to be
between 0 and 1 by setting the dimensionless groups in equations (3.E.5-14) and
(3.E.5-15) equal to zero and 1, respectively, to obtain y, = H and y; = §,,. The
axial length scale can be bounded to be between 0 and 1 by setting the dimen-
sionless group in equation (3.E.5-13) equal to 1, thereby obtaining x; = L. The
axial velocity can be bounded to be between 0 and 1 by setting the dimensionless
group in equation (3.E.5-12) equal to 1, thereby obtaining u,; = Ujy. Since this is a
developing flow, both terms in the dimensionless continuity equation should be of
the same order; hence, we require that the dimensionless group in equation (3.E.5-
11) be equal to 1, thereby obtaining u,; = Upd,, /L. Since this is a pressure-driven
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high Reynolds number flow, the dimensionless pressure term should be of the same

order as the inertia terms; hence, we require that dimensionless group multiplying

the pressure term in equation (3.E.5-9) be equal to 1, thereby obtaining Py = ,oUg.
The resulting scaled dimensionless describing equations are given by

du* du* aP* 1 8, 3% 1 L d%u’
* X * X m X X
i = — —_—— —_—— 3.E.5-16
“eger TU s = Tax TRe L 9x2 | Res, dy7 ( )
L ouy L ouy L2 P+ 1 5, 8214’; 1 L Bzu’;
A Y e o L (3E5-17)
Ox* Y dy* 82 dy*  Re L 9x*> = Red,, dy*?
our  ouy
U Y _ (3.E.5-18)
ax* = dy*
u, =1, Uy = 0, P*= 7 at x* =0 (3.E.5-19)
PY
uy = fir(y"), uf = 50" at x* =1 (3.E.5-20)
ui; =0, u;‘ =0 at y*=0 (3.E.5-21)
uy = fi(x"), u;‘ = fi(x") at y* =1 (3.E.5-22)

where Re = §,,0Up/p is the Reynolds number. The principal viscous term in
equation (3.E.5-16) must be of the same size as the pressure and inertia terms
within the region of influence (hydrodynamic boundary layer) if we are to sat-
isfy the boundary conditions given by equations (3.E.5-21) and (3.E.5-22). Hence,
we require that the dimensionless group multiplying the principal viscous term in
equation (3.E.5-16) be equal to 1, which provides an estimate of the boundary-layer

thickness &, (x™*):
LL 5, = ML (3.E.5-23)
Re s, " pUy -

When the boundary layer thickness §,, = H, the flow is fully developed. Hence,
we can use equation (3.E.5-23) evaluated at §,, = H to obtain an estimate of the
entrance length L,:
,()U()[f2
I

L, =

(3.E.5-24)

This agrees to within a multiplicative constant of order 1 with the entrance length
required to achieve fully developed flow obtained from solving the boundary-layer
equations that yields'®
pUH 2
7

L,=0.16

(3.E.5-25)

18See H. Schlichting, Boundary Layer Theory, 4th ed., McGraw-Hill, New York, 1980, p. 168.
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Whereas for this well-studied flow, an equation is available to predict the entrance
length that obviates the need to use scaling analysis, the latter provides an invaluable
tool for estimating the entry region for flows for which no such results are available.

Equations (3.E.5-16) through (3.E.5-23) can be greatly simplified if 62 /L% =
0(0.01) (step 8). This permits ignoring the axial diffusion of vorticity term in
equation (3.E.5-16), thereby obviating the need to satisfy any downstream boundary
condition. Moreover, in view of equation (3.E.5-17), this condition implies that the
dimensionless derivative d P*/dy* is very small. Note that we have not scaled the
dimensionless derivative d P*/dy* in equation (3.E.5-17) to be o(1) since there is
no reason for this derivative to scale as P;/y,. However, since we have scaled
ujau;/ax* to be of order o(1), equation (3.E.5-17) implies that d P*/dy™* is of
O(S,zn /L?*) and hence that it is very small. This decouples the solution of equation
(3.E.5-16) from equation (3.E.5-17) and implies that the dimensionless describing
equations for the entry-region flow problem can be reduced to

u* du* ap*  *ur

ou*  ou*
e T (3.E.5-27)

ax*  Jy*

* * * PO *
uy =1, wu;=0 P'=—5 at x*=0 (3.E.5-28)
2%

ur =0, u; =0 at y*=0 (3.E.5-29)
uy = f3(x") at y* =1 (3.E.5-30)

To solve equations (3.E.5-26) through (3.E.5-30), it is necessary to know the unspe-
cified function f3'(x*) in equation (3.E.5-30). This is obtained by solving the ideal
flow (inviscid) flow equations'® outside the boundary-layer region for which vis-
cous effects can be ignored, due to the high Reynolds number. In doing this, one
carries out integral mass and momentum balances that account for the acceler-
ation of the flow due to the thinning of the inviscid core region that is caused
by the growing boundary layer at each wall. These equations can then be solved
analytically to determine the unspecified function f3'(x*) in equation (3.E.5-30).
Equations (3.E.5-26) and (3.E.5-27) can then be solved numerically. The resulting
solution will yield the entrance length given by equation (3.E.5-25).

3.E.6 Rotating Flow in an Annulus with End Effects

Consider the steady-state flow of an incompressible Newtonian liquid with con-
stant physical properties in the annular region between two concentric cylinders
of length L, shown in Figure 3.E.6-1. The inner cylinder has radius R; and is

9The ideal or inviscid flow equations correspond to an infinite Reynolds number, which implies no
viscous effects whatsoever; in the case of hydrodynamic boundary-layer flows, the flow region outside
the boundary layer is described by the ideal flow equations.
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Figure 3.E.6-1 Steady-state incompressible laminar flow of a Newtonian liquid with con-
stant physical properties in the annular region between a stationary inner and a rotating outer
cylinder.

stationary. The outer cylinder has radius R, and rotates at a constant angular veloc-
ity w (radians per second). The flow is caused primarily by the rotation of the outer
cylinder. However, the bottom of the outer cylinder is also rotating and dragging
the adjacent liquid with it, causing an end effect. We neglect any effect of the
small gap between the bottom of the stationary inner cylinder and the rotating
outer cylinder. We use scaling analysis to derive criteria for ignoring the end effect
on the primary rotational flow in the annulus.

The describing equations for this flow are obtained by appropriately simplifying
the equations of motion in cylindrical coordinates given by equations (D.2-10)
through (D.2-12) in the Appendices (step 1):

2 ap
Phe _ 2~ (3.E.6-1)
r or
a1ad 0ug
0= —|—-—— — 3.E.6-2
or [r or (I"Mg):| + 972 ( )
0P
0=— +pg (3.E.6-3)
0z
ug =0 at r =Ry (3.E.6-4)
ug = wRy at r=R» (3.E.6-5)
Uy = wr at z=20 (3.E.6-6)
0
M _0  at z=f0) (3.E.6-7)



90 APPLICATIONS IN FLUID DYNAMICS

The boundary condition given by equation (3.E.6-7) allows for the fact that the
rotation causes a centrifugal pressure force that increases with the radius. At any
point in the liquid the centrifugal pressure has to be balanced by the hydrostatic
pressure. Hence, the liquid depth will increase with increasing radius. The location
of this interface can be determined from the solution to the pressure profile. The
function f () must satisfy the integral conservation of mass for an incompressible
liquid given by

R
/ "o fi(r)dr = w(R3 — R?)Ly (3.E.6-8)
R

where Ly is the liquid depth in the absence of any rotation.
Introduce the following scale factors, reference factor, and dimensionless vari-

ables (steps 2, 3, and 4):

P ] r—=rr N z

9 r 9 Z =
PS rS ZS

*

; P* =

(3.E.6-9)

Ug
uy = —
s

We have introduced a reference factor for the dimensionless radial coordinate since
r is not naturally referenced to zero within the region where flow is occurring.
Substitute these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of a term that must be retained (steps 5 and 6):

ul? Py 9P*
r*+r./rs  pu? or*

d 1 0 r r2 0%u*
0=— ——— |+ L )u} S0 3.E.6-11
ar* {r* + 1, [rg O* [(r + r‘v) ug]} + 72 9z*2 ( )

(3.E.6-10)

Py 0P*
0= (3.E.6-12)
pgzs 97*
Ry — r
wi=0 at =T (3.E.6-13)
I's
R Ry—r,
wi=22 g =270 (3.E.6-14)
v Us Is
*
ul = ‘””ui/’ at 7" =0 (3.E.6-15)
a *
3”2‘3 =0 at =0 (3.E.6-16)
Ry—rr 2 2
; RZ—RY)L
/R "2 (r* + r—) fE(r)dre = w (3.E.6-17)
1= Iy rs s

We now apply step 7 to bound the variables to be o(1). We can bound r* to
be between zero and 1 by setting the dimensionless group in equation (3.E.6-13)
equal to zero and that in equation (3.E.6-14) equal to 1, thereby obtaining r, = R
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and r; = Ry — R;. Our dimensionless axial coordinate can be bounded between
zero and 1 by setting the dimensionless group L(/z; that appears in equation
(3.E.6-17) equal to 1, thereby obtaining z; = Lg. Our velocity scale is obtained
from the dimensionless group in equation (3.E.6-14) to obtain u; = wR,. Finally,
our pressure scale is obtained from the dimensionless group in equation (3.E.6-10)
to obtain Py = pw?R3. When these scale and reference factors are substituted in
equations (3.E.6-10) through (3.E.6-17), we obtain the following set of dimension-
less describing equations:
uy? 0P
r*+ Ri/(Ry— Ry)  dr*

9 1 o (. R .
0=-" B P, P
ar* r*~|—R1/(R2—R1)8r* R, — Ry

n (Ry — R1)* °uj

(3.E.6-18)

3.E.6-19
F 9o ( )
w’R3 9 P*
= (3.E.6-20)
gL 0dz*
wi=0 at r*=0 (3.E.6-21)
up =1 at r*=1 (3.E.6-22)
R, — R R
up = 2T21 (r* + ﬁ) at z¥ =0 (3.E.6-23)
8 *
a“fj =0 at =) (3.E.6-24)
Z
1
R] RZ + R]
2|\ r* 4+ 7> () drt = — (3.E.6-25)
/0 ( Ry — Ry ) Ry — Ry

We see that if the dimensionless group (R, — R))? / L(2) = 0(0.01) the end effect
can be ignored in equation (3.E.6-19) (step 8). The resulting simplified set of
describing equations can be solved analytically.’® A further simplification is possi-
ble if the group (R, — Ry)/R; = ©(0.01), in which case the describing equations
reduce to

oP*

0= (3.E.6-26)
or*
dzuz

0= 2 (3.E.6-27)
w’R3 3 P*

0= +1 (3.E.6-28)
gL() az*

20This simplified set of describing equations has been solved in Bird et al., Transport Phenomena, 2nd
ed., pp. 93-95; however, no attempt is made to justify when these simplified equations are applicable.
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wi=0 at r*=0 (3.E.6-29)
wi=1 —at rr=1 (3.E.6-30)
1
F () drt =1 (3.E.6-31)
0

This simplified set of describing equations also admits an analytical solution.
The integral mass-balance condition is retained in the form given by equation
(3.E.6-31), which permits obtaining the liquid depth profile in the annular region.

3.E.7 Impulsively Initiated Pressure-Driven Laminar Tube Flow

Consider an incompressible Newtonian liquid with constant physical properties
contained in a semi-infinitely long cylindrical tube having radius R. Initially, the
liquid in the tube is at rest. At time ¢t = 0, a constant pressure drop AP = Py — P,
is applied across some length L of the tube to initiate continuous flow, as shown
in Figure 3.E.7-1. We will ignore any entrance effects, in which case this is an
interesting example of an unsteady-state fully developed flow. Figure 3.E.7-1 shows
the axial velocity profiles at times ¢ and #,, where #, > t;. If the entrance effects are
neglected, the velocity profile at any time applies along the entire length of the tube.
The unsteady-state acceleration of the flow is suggested by the increased area under
the velocity profile at #, relative to #;. We use scaling analysis to determine the
criterion for assuming that this impulsively initiated flow has achieved steady-state
conditions.

The describing equations for this flow are obtained by appropriately simpli-
fying the unsteady-state equations of motion in cylindrical coordinates given by
equation (D.2-12) in the Appendices to obtain (step 1)

du, AP 10 ou,
Bz _ 20 2 (2 3.E7-1
TR <r ) ( )

- L

Figure 3.E.7-1 Laminar flow of an incompressible Newtonian liquid with constant physical
properties in a circular tube of radius R due to an impulsively applied pressure difference
AP = Py — Pr, showing the axial velocity profiles at times #; and #,, where ; > t;.
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w,=0 at 1=0 (3.E7-2)
u,=0 at r=R (3.E7-3)
9
M0 at r=0 (3.E.7-4)
or

In writing equation (3.E.7-1) we have used the fact that u, = f|(r, ) and that the
radial component of the equations of motion establishes that d P /dr = 0, which in
turn implies that P = f>(z, t). In view of these considerations, the axial component
of the equations of motion then implies that 0P /dz = —AP/L.

Introduce the following dimensionless variables (steps 2, 3, and 4):

<

r

)

z
ut = —=; r*
Us Iy

t
= (3.E.7-5)
s

Substitute these dimensionless variables into equations (3.E.7-1) through (3.E.7-4)
and divide through by the dimensional coefficient of a term that must be retained
to obtain (steps 5 and 6)

Joul APr; 1 0 du
PR 20y <r* ”Z) (3.E7-6)

uty ot* o Luug P ar*
u:=0 at =0 (3.E.7-7)
R
u; =0 at r*=— (3.E.7-8)
Is
ou; .
- =0 at r*=0 (3.E.7-9)
ar*

We can bound our radial coordinate between zero and 1 by setting the dimen-
sionless group in equation (3.E.7-8) equal to 1 thereby obtaining ry = R (step 7).
Since pressure causes this flow, we obtain our velocity scale by setting the dimen-
sionless group in equation (3.E.7-6) equal to 1 thereby obtaining u; = APR?/Lp.
Our time scale in this case is the observation time 7,; that is, the arbitrary time at
which we chose to observe this flow after it is impulsively initiated. When these
scale factors are substituted into equations (3.E.7-6) through (3.E.7-9), we obtain

R% du* 1 9 ou*
PREM: 4 2 2 (2L (3.E.7-10)
ut, ot* r* or* ar*
uf=0 at t*=0 (3.E.7-11)
uf=0 at r*=1 (3.E.7-12)
ou? .
=0 at r*=0 (3.E.7-13)

or*
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We see from equation (3.E.7-10) that the unsteady-state term becomes insignif-
icant when the condition pR?/ut, = 0(0.01) applies (step 8). This in turn implies
that steady-state will be achieved for observation times that satisfy the condition

R2
t, > P => steady-state is achieved (3.E.7-14)
"

The unsteady-state flow problem described by equations (3.E.7-1) through (3.E.7-4)

has been solved analytically?!; the solution indicates that the centerline (maximum)

velocity will be within 10% of its steady-state value when
_ pR? velocity is within 10%

fo = 0.45 m = { of its steady-state value (3.E7-13)

It is surprising that the criterion that we derived from scaling analysis for achieving
steady-state conditions is far more demanding than that obtained from an exact solu-
tion to the describing equations. However, the criterion given by equation (3.E.7-
14) is based on the condition required for the pressure force to exactly balance the
viscous force in equation (3.E.7-6). The latter is proportional to the derivative of
the velocity profile. When the centerline (maximum) velocity is within 10% of its
steady-state value, the slope of the velocity profile at the wall, which is propor-
tional to the pressure applied, is nowhere near 10% of its steady-state value. Our
more demanding criterion ensures that we predict not only the maximum velocity
accurately via a steady-state solution, but also the drag at the wall.

3.E.8 Laminar Cylindrical Jet Flow

Consider the steady-state laminar flow of an incompressible Newtonian liquid jet
with constant physical properties issuing from a circular orifice of initial velocity
Uy falling vertically under the influence of gravity in an inviscid gas as shown
in Figure 3.E.8-1. We assume that curvature and surface-tension effects can be
ignored in the tangential and normal stress boundary conditions at the interface
between the liquid jet and ambient gas phase.?> We use scaling analysis to explore
the conditions for which quasi-parallel flow can be assumed; that is, when the axial
velocity profile can be assumed to depend only on the axial coordinate.

The appropriately simplified equations of motion in cylindrical coordinates given
by equations (C.2-1), (D.2-10), and (D.2-12) in the Appendices along with the
boundary and kinematic conditions are given by (step 1)

du, du, P a1 9%u,
,— L= — | == (ru, 3.E.8-1
o or +ous 0z or +'u8r [rar(m )i|+M812 ( )

2IR. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 1960 pp.
126-130.

22Note that scaling analysis could be used to determine when surface-tension and curvature effects can
be neglected; the latter were considered in Section 3.7.
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Viscous liquid

Ambient gas phase

Figure 3.E.8-2 Steady-state flow of an incompressible Newtonian liquid that has constant
physical properties issuing as a jet from a circular orifice of radius R with an initial velocity
Uy into an inviscid ambient gas phase.

ou, du, AP  wd [ du. 0%u,
,— B I ¥ i) — 3.E.8-2
ol or +puz8z 8Z+r8r<r8r +M822 +r8 ( )
10 a0
Sl ruy+ X2 (3.E.8-3)
ror 0z
U; = UOa Ur = 05 P = Patm, n= R at z = 0 (3.E.8'4)
u; = fi(r), u, = fa(r) at z=1L (3.E.8-5)
d
M0, uy=0 at r=0 (3.E.8-6)
or
du,  Ju,
rz — - =0
Trz 12 < ar + 37 )
ou,
o, =P — Z,ua— = Paym at r =n(2) (3.E.8-7)
r
dP 0%u, 0
0z Mozor =
d r
A_%n w r=n (3.E.8-8)
dz  u,

where f; and f, are unknown functions of r that are included for completeness
since in principle downstream boundary conditions are required for the veloc-
ity components. Equation (3.E.8-7) encompasses three boundary conditions at the
interface between the liquid jet and the ambient gas phase required for the three
dependent variables: pressure and the two velocity components. The first two of
these equations are the no-drag and continuity of the normal stress, respectively.
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The third of these equations is obtained by differentiating the normal stress balance
with respect to z; this provides an independent condition interrelating the pressure
and velocity at the interface. Equation (3.E.8-8) is the kinematic surface condition
that is obtained by an integral mass balance on a differential volume element over
an arbitrary cross section of the jet. This is needed as an auxiliary condition to
obtain the location of the surface at which the no-slip and continuity of normal
stress boundary conditions must be applied.

Introduce the following scale factors, reference factors, and dimensionless vari-
ables (steps 2, 3, and 4):

quiuz_uU; ufzu_’, P*EP_Pr, n*Ei;
Uz Urs Ps Ns
. (3.E.8-9)
du, 1 Ju;, N z N r
—_— = —— 7= —; rt=—
ar Bs or Zs Ty

We have introduced reference factors for both the axial velocity and pressure since
neither of these variables is naturally referenced to zero. Note that we have also
introduced a scale B for du,/dr since this derivative does not scale as u,,/r;. If we
had used the latter to scale this derivative, the forgiving nature of scaling would have
indicated a contradiction. However, we anticipate the need to scale this derivative
with its own scale since u#, does not change significantly across the jet. Introduce
these dimensionless variables into the describing equations and divide through by
the dimensional coefficient of a term that must be retained to obtain (steps 5 and 6)

ou*  uyr u ou*
uf T LS uz + )y
or* UrsZs Uz az*
P, oP* 0 1 0 re 0%u*
_ 52 w o |:_ (r*u:):| + Mg . ;
pus, or* PUysTs OF* | r* or* PUrsZs 0ZF
u z ou* u ou’*
”65 s u;k z 4 (u;k + Zr ) Tz
u ar* Uy ) 0ZF

zs
P, 0P* uPBszs 1 0 I:*<8uz>*i| %3 32“? 8%s
r +

(3.E.8-10)

pul, 3z* | puliry r* r* or puzszs 2*2 U2
(E811)
0 oFs out
— T a4+ s e (3E8-12)
r* or* UpsZs 0ZF
Uy — uz P, P, R
I/l: — 0 1254 , u;k — 0’ P* — atm , r}* — at Z* — 0
Uzs Py UR
(3.E.8-13)
* * * * * * * L
u; = fyr"), u; = f0") at ¥ = - (3.E.8-14)
S
ou’
S0, u*=0 at r*=0 (3.E.8-15)

or* r
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du, \* rs Out
( u) n trs Uy _ o
or Bszs 0z*

ou*  Pym — P,
P — 2%% e s (3.E.8-16)
shs or s Ts

oP* _Z,uu” azu;“ _0

0z* Pirg 0z*or*
dn* *

T Mrsts e g e g (3.E8-17)
dz* UzsT]s u;k s

Note d%u./dr* scales as B /r since du./dr goes from its minimum value of zero
at r = 0 to its maximum value of 8; at r = n(z).

We now apply step 7 to bound the variables to be o(1). The dimensionless
groups consisting of geometric ratios in equations (3.E.8-13), (3.E.8-14), and
(3.E.8-16), when set equal to 1, imply that n; = r; = R and z; = L. The dimension-
less groups in equation (3.E.8-13) containing the reference velocity and pressure,
when set equal to zero, imply that u,, = Uy and P, = Pym. Since gravity causes
flow in the axial direction, the dimensionless group that is a measure of the ratio
of the gravity force to the axial acceleration must be set equal to 1, thereby
obtaining the axial velocity scale u,; = +/gL. Since this is a developing flow,
the dimensionless group in the continuity equation must be set equal to 1, thereby
obtaining the radial velocity scale u,; = R\/gL/L. Since the two remaining terms
in the normal stress balance in equation (3.E.8-16) must balance, the dimension-
less group in this equation must be set equal to 1, thereby obtaining the pressure
scale Py = ju+/gL/L. Finally, since the two terms in the zero-drag condition in
equation (3.E.8-16) must balance, the dimensionless group in this equation must be
set equal to 1, thereby obtaining the derivative scale 8; = R/gL/L?. When these
values for the scale and reference factors are substituted into equations (3.E.8-10)
through (3.E.8-17), we obtain the following minimum parametric representation of
the describing equations:

Lour i (w4 Uy du;
u u —
" or* 0 JgL) az*

B 1L8P*+1L8 1 9
" ReR r*  ReRIrs|r*ar

R_Zu*auj+ v+ Uy \ ou?
r © JgL) 9z

1 ROP* 1R1 0 du;\*1 1 R*u:
e I =) [+ +1 (3.E.8-19)

1 Rd%ur
Re L 9z7*2

(r*u;“)} + (3.E.8-18)

Re L 9z ' Re L r* ar* ar Re L 97%2
9 ou*
r* or* az*

W =0, u'=0 P*=0, n*=1 a z*=0 (3.E.8-21)

r



98 APPLICATIONS IN FLUID DYNAMICS

ul = i), wi=fo*)  at =1 (3.E.8-22)
a *
L0, ur=0 at r*=0 (3.E.8-23)
ar*
u,\*  out
= ' —()
( or ) + 0z*
P*=2 au’ at r*=n* (3.E.8-24)
"
dP* d%u
az* oz or*
dn* *
T % a oy (3.E.8-25)
dz* u¥

where Re = pRu,;/u = pR/gL /1 is the Reynolds number.
Inspection of equations (3.E.8-18) through (3.E.8-25) indicates that the criteria
for assuming quasi-parallel flow are the following (step 8):

R\ /gL
Re = 22VE2
R M = quasi-parallel flow (3.E.8-26)
— 1
I <

When the conditions above apply, equations (3.E.8-18) through (3.E.8-25) sim-
plify to:

U() ou’
) <=1 3.E.8-27
(vt 732 G20
d ou*
g )+ =0 (3.E.8-28)
w'=0, n*=1 at z*=0 (3.E.8-29)
w'=0 at r*=0 (3.E.8-30)
d * *
d” e (3.E.8-31)
* uj

The solution to the system of equations above is straightforward and yields the
following solution for the axial velocity:

Uy u?
ut = -7zt /g—L +22* = u; = /U + 22 (3.E8-32)

This solution for the axial velocity profile corresponds to acceleration in free
fall, which of course is a reasonable solution under the assumption that the vis-
cous effects are negligible. Equations (3.E.8-32) can be substituted into equations
(3.E.8-28) and (3.E.8-31) to obtain the corresponding radial velocity and jet diam-
eter as a function of axial position.
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3.E.9 Gravity-Driven Film Flow over a Saturated Porous Medium

Consider the steady-state fully developed flow of an incompressible Newtonian
liquid film over an inclined liquid-saturated porous medium due to a gravitationally
induced body force, as shown in Figure 3.E.9-1. This flow could correspond to
runoff down water-saturated sloped ground. Because of the slope, gravity will
cause flow of both the liquid in the film and that within the porous medium. We
use scaling to determine when the flow through the porous medium has a negligible
effect on the flow of the liquid film.

The describing equations for this flow are obtained by simplifying equations
(D.1-10) and (E.1-1) in the Appendices appropriately (step 1):

d2
0=pnl™ 4 posing  O<y<H (.E9-1)
dy?
w o d? i, )
0=——ux+pu——7 +pgsinf —o0o<y=<0 (3.E.9-2)
kp dy
du,
“_0 at y=H (3.E.9-3)
dy
Uy = Uy at y=0 (3.E.9-4)
du, du,
= t =0 3.E.9-5
dy dy at y ( )
u, =0 as y—> —o0 (3.E.9-6)

where u is the shear viscosity and k), is the Darcy permeability. Note that i, in the
porous medium is the superficial velocity; that is, the velocity through the porous
medium treated as if it were homogeneous. Equations (3.E.9-4) and (3.E.9-5) are
the continuity of velocity and shear at the interface between the porous medium and
the liquid film; the latter equation assumes that the effective viscosity of the liquid
flowing through the porous medium is the same as that of the liquid in the film.

Liquid film

Porous media

Figure 3.E.9-1 Steady-state fully developed laminar flow of an incompressible Newtonian
liquid film of thickness H with constant physical properties over an inclined liquid-saturated
porous medium due to a gravitationally induced body force.
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Define the following dimensionless variables (steps 2, 3, and 4):

u u y

* __ X, ~ sk __ X *
ux = ) Uy = ——; y _
Uxs Uys Vs
Y

Vs

for0 <y <H;

for —co <y <0 (3.E.9-7)

<)
I

We have introduced separate scales for the velocity as well as for the spatial coor-
dinate in the two regions. The need for this can be seen by considering the fact that
the maximum velocity in the porous medium is the minimum velocity in the liquid
film; hence, these two velocities must be scaled differently to achieve o(1) scaling.
The different spatial coordinate scales are necessary because the velocity goes
between its maximum and minimum values over vastly different length scales in
the two regions. Note again that had we not done this, we would have arrived
at a contradiction in our scaled equations; the forgiving nature of scaling would
then indicate that we had not scaled some quantity so that it was bounded of o(1).
Introduce these dimensionless variables and divide through by the dimensional
coefficient of one term in each of equations (3.E.9-1) through (3.E.9-6) to obtain
(steps 5 and 6)

du’ ; sin6 H
o=t | PEYIMU g e o (3.E.9-8)
d *2
y MU xs Vs
k, d*a@* k, sin6
0= —a*+ 2L % | PERPSNY (5% <0  (3E9-9)
T 52 dy; [l
du* H
“x_o0  a yr= (3.E.9-10)
dy* Vs
W= Eg gt at Yy =55 =0 (3.E9-11)
M.XS
Uxs sdAx* du} ~
Moo Qlx e 5 =57 =0 (3.E.9-12)
Uys Vs dY* dy*
i, =0 as y*— —o0 (3.E.9-13)

The dimensionless group in equation (3.E.9-10) is set equal to 1, thereby obtain-
ing our length scale in the liquid film, y; = H (step 7). Since gravity causes the
flow in the liquid film, we set the dimensionless group that is a measure of the ratio
of the gravity force to the viscous drag in equation (3.E.9-8) equal to 1, thereby
obtaining our velocity scale u,; = pgH?sinf/u. Since the principal viscous term
in equation (3.E.9-9) must be retained, we set its dimensionless coefficient equal to
1, thereby obtaining the length scale in the porous medium, y; = \/E . The max-
imum velocity in the porous medium occurs at its interface with the liquid film.
Hence, we set the dimensionless group in equation (3.E.9-12) equal to 1, thereby
obtaining our velocity scale in the porous medium, it,; = pgH \/E sinf/u. When
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these values for the scale factors are substituted into equations (3.E.9-8) through
(3.E.9-13), we obtain the following minimum parametric representation of the
describing equations:

0= dy*; Y1, 0<y* <l (3.E.9-14)
d2 Ax* k
0=—a*+ df‘*z + —VH” o0 < §5 <0 (3.E.9-15)
d *
d”j: -0 at y'=1 (3.E.9-16)
y
JE
ut = H” i at y*=73"=0 (3.E.9-17)
d" * d *
y y
U, =0 as y*—> —o0 (3.E.9-19)

If the following condition holds, the form of the no-slip boundary condition given
by equation (3.E.9-17), (i.e., continuity of velocity across the interface between the
porous medium and the liquid film), reduces to the familiar zero velocity condition
at a stationary solid boundary (step 8):

JE

T <« 1 = liquid film velocity = 0 at the interface with porous medium
(3.E.9-20)

Hence, if \/k,/H = 0(0.01), the liquid film flow is described by the following set
of simplified describing equations:

d*u*
0= X 41, 0<y"<l (3.E.9-21)
dy*Z
d *
“f_0  at oy =1 (3.E.9-22)
dy*
ur =0 at y* =0 (3.E.9-23)

These are the equations describing film flow down an impermeable stationary solid
surface.

3.E.10 Flow in a Hollow-Fiber Membrane with Permeation

A membrane is a semipermeable medium that permits the passage of some molecu-
les, colloidal aggregates, or particles relative to others. A hollow-fiber module is
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one form of a membrane contactor that consists of hundreds to thousands of small
hollow fibers encased in a cylindrical shell. In one configuration of this module
the parallel bundle of hollow fibers is sealed off at one end so that flow is possible
in only one direction. The feed is introduced on the shell side of the module. The
permeable components pass through the walls into the core of the hollow-fiber
membrane. They then proceed to flow in parallel through all the fibers, after which
they are collected as the product stream in the case of purification or concentration
of solutes or as a waste stream in the case of removing contaminants. Since the
permeable components flow in parallel through the hollow fibers, one can model
the hydrodynamics in a hollow-fiber module of this type by considering the flow
in a single fiber, as shown in Figure 3.E.10-1. Consider the case of a permeate
stream that consists of an incompressible Newtonian liquid with constant physical
properties. The flow through the core (called the lumen) of the hollow fiber is
complex since the mass flow increases as the permeate stream flows toward the open
end. We use scaling analysis to explore the conditions under which the describing
equations for this flow can be simplified.

The appropriately simplified equations of motion in cylindrical coordinates given
by equations (C.2-1), (D.2-10), and (D.2-12) in the Appendices along with the
boundary and auxiliary conditions are given by (step 1)

du, N du, 3P i 9138 3wy aZM, G.E.10-1)
Uy — U,— = ru, .E.10-
o P = T TR or Koz
A, o, P 19 [ ou, 0%u,
Uy— 4+ pu,— =——+u—-——»\r - : 3.E.10-2
P ar Pz 0z 0z Hy or < or ) 922 ( )
19 9
Sl ruy+ 2o (3.E.10-3)
r or 0z
Uy
G e e i e
R
,,,,, <
Uy
< L B>

Figure 3.E.10-1 Flow of an incompressible Newtonian liquid in a cylindrical hollow-fiber
membrane of radius R, one end of which is closed and the other open, due to permeation
through the wall at a velocity Up; the axial velocity profiles shown at two axial positions
illustrate the acceleration caused by the mass addition due to the radial permeation.
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9

M0, u,=0 at r=0 (3.E.10-4)

ar
w, =0, u =-Uy at r=R (3.E.10-5)
W, =0, u, =0 at z=0 (3.E.10-6)
u, = fir), u, = fo(r), P = Pun at z=1L (3.E.10-7)

R
2w RzUy =/ u2mrdr (3.E.10-8)
0

where fi(r) and f>(r) are undetermined functions that are required for complete-
ness in specifying the boundary conditions. The fact that these functions are gener-
ally unknown in practice significantly complicates solving the full set of describing
equations. Equation (3.E.10-5) accounts for the fact that permeation through the
walls of the hollow-fiber membrane results in a nonzero radial velocity component.
This permeation also causes this to be a developing flow. Equation (3.E.10-8) is a
statement that for an incompressible liquid the total permeation over a length z of
the fiber wall is equal to the volumetric flow rate at that axial position. This serves
as an auxiliary condition to determine the unspecified axial pressure gradient.

Define the following scale factors, reference factor, and dimensionless variables
(steps 2, 3, and 4):

ujzk; ufzﬁ; P*EP_Pr; r*zi; z*zi
uZA‘ M}"S RY rS‘ ZS
(3.E.10-9)
Introduce these dimensionless variables into equations (3.E.10-1) through

(3.E.10-8) and divide each equation through by the dimensional coefficient of a
term that must be retained to obtain (steps 5 and 6)

pul, Lur  pugsurs |, ul
Pors PPasPrsls
P o T Pz, Gz
dP* L Bt a1 d () | 4 Pt du* (3.E.10-10)
=- — ru .E.10-
ar*  Pyrg Or* | r* or* r Pyz2 9z*?
pUzsrs , Oul pusr? L oul Pir? 9P* 1 0 L oul + r2 8214;
u u = — . r s
" or* Uz oz* UlzsZs 0Z% 1% Or* ar* 72 97*2
(3.E.10-11)
rs<s | ou?
It — % ruty+ 22 =0 (3.E.10-12)
Uyls TF Or* az*
au; * *
-0, u'=0 at r*=0 (3.E.10-13)
or*
U R
w=0, w=-—"at r*=-— (3.E.10-14)
Urs s
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wr=0, uf=0 at *=0 (3.E.10-15)
Pum — P, L
wl = fre, wli=freH, Pr=""—1 a == (3EI10-16)
PS Z_y
UoRzs Rirs
0 / wirdr (3.E.10-17)
UzsTy 0

The dimensionless geometric ratios in equations (3.E.10-14) and (3.E.10-16)
can be set equal to 1, thereby determining the length scales ry = R and z;, = L
(step 7). Since the permeation through the hollow-fiber membrane wall causes the
radial flow, we set the dimensionless group containing Uy in equation (3.E.10-14)
equal to 1, thereby obtaining u,; = Uy. Since this is a developing flow, setting the
dimensionless group equal to 1 in equation (3.E.10-12) gives u,; = LUp/R. Since
the axial flow is caused by the axial pressure gradient, we set the dimensionless
group containing P in equation (3.E.10-11) equal to 1, thereby obtaining P =
wUoL?/R>. Finally, our dimensionless pressure will be bounded between zero
and 1 if we set the dimensionless group in equation (3.E.10-16) equal to zero,
which gives P, = P,m,. When these values for the scale and reference factors are
substituted into equations (3.E.10-10) through (3.E.10-17), we obtain the following
minimum parametric representation of the describing equations:

RR2 *Bu;"+R R> _du’ 8P*+R2 a1 d ) +R432u:
e—u e—u = - —— | —==—=0"u —
L2 7 9r* L2 % 9z* or* L2 9r* | r* or* " L4 97*2
(3.E.10-18)
du’ du’ oP* 1 9 dur\  R?0%u:
RCM;k e + RCM; Py = — Py + r—*ﬁ <I’* 8}’*) ﬁ Py
(3.E.10-19)
d oul
S5+ =0 (3.E.10-20)
8 *
D0, ur=0 at r*=0 (.EI1021)
ar*
w' =0, w'=-1 at r*=1 (3EI10-22)
w' =0, w=0 —at z*=0 (3.E.10-23)
u; = fi'@"), ui=f0", P*=0 at ¥ =1 (3.E.10-24)
1
z* =/ uirtdr® (3.E.10-25)
0

The fact that equation (3.E.10-25) does not contain any dimensionless groups is
an indication that we have scaled the describing equations properly. That is, the
scaling has normalized the integral mass balance in this equation to be o(1), as it
should be, since the two terms in this equation must balance each other.
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Inspection of equations (3.E.9-18) through (3.E.10-25) indicates that consider-
able simplification is possible if the following conditions apply (step 8):

2

UoR R
PPN « 1 and <1 (3.E.10-26)

n

Re =

We recognize these conditions to be those for assuming lubrication flow that was
considered in Section 3.3. However, for this flow the Reynolds number charac-
terizes the ratio of the radial convection to viscous force. If the conditions above
apply, our describing equations simplify to

dP*
0 —

= (3.E.10-27)
ar*
dP* 1 9 ou*
0=— — *—Z 3.E.10-28
dz* + r* ar* (r Br*) ( )
d ou*
s (ruf) + 8zi =0 (3.E.10-29)
ou’*
3 i at r*=0 (3.E.10-30)
r
ur =0, u;=-1 at r*=1 (3.E.10-31)
ur=0 at z"=0 (3.E.10-32)
P =0 at ¥ =1 (3.E.10-33)
1
* = / ulr*dr* (3.E.10-34)
0

Equation (3.E.10-27) implies that P* = P*(z*), which permits integrating equa-
tion (3.E.10-28) directly to obtain the axial velocity profile in terms of the unspec-
ified axial pressure gradient. The latter can be obtained by substituting the axial
velocity profile into equation (3.E.10-34). The corresponding radial velocity pro-
file can be obtained from equation (3.E.10-29). The resulting solutions for the
dimensionless velocity and pressure profiles are given by

uf =4z*(1 — r*); ut = r*(r? - 2); P*=8(1 —z*%) (3.E.10-35)

3.E.11 Falling Head Method for Determining Soil Permeability

The falling head method is used to determine the permeability of soils. This test,
shown in Figure 3.E.11-1, involves driving a pipe of radius R into the soil until
it penetrates the water table, assumed here to be at the end of the tube. The pipe
is filled with water to a height Ly and the time 7; required to drain it to a height
L, is measured. We use the scaling method for dimensional analysis to develop a
correlation for the draining time.

Step 1, the scaling procedure for dimensional analysis, involves writing the
appropriate describing equations to determine the quantity of interest. The draining
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Figure 3.E.11-1 Falling head apparatus for measuring the permeability of soils; a cylin-
drical tube of radius R is pushed to the depth of the water table, which is defined to be at
z =0, and filled to an initial depth of Ly with water; the instantaneous water depth in the
tube L(t) decreases due to permeation into the soil.

time 74 is related to the axial velocity u, and Darcy’s law via an instantaneous
mass balance on the water in the tube:

Iq td kp dP
Lo—L;=— u dt = — | — +
0 d /o z|Z:0 /0 i (dz ,og)

where k), is the permeability, u the viscosity, p the density, and g the gravitational
acceleration. Note that we have ignored the effect of the Brinkman term for flow
through the porous medium based on the assumption that &, / R? < 1, as discussed
in Section 3.8. To evaluate the integral above it would be necessary to solve for the
pressure distribution in the porous medium. This is obtained in turn by solving the
Darcy flow equations in the porous medium subject to the appropriate boundary
conditions. The incompressible continuity equation given by equation (C.2-1) in the
Appendices in combination with Darcy’s law for flow through porous media given
by equation (E.2-3) in the Appendices implies that the pressure P is obtained from a
solution to the axisymmetric form of Laplace’s equation in cylindrical coordinates:

19 ( aP 9P
—— r—)+=—=0 3.E.11-2
r8r<r8r>+3z2 ( )

dt, 0<r<R
z=0

(3.E.11-1)
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The pressure is subject to the following boundary conditions:

P=Pun+pglt) at z=0 0<r<R, Lg<L(@) <Ly 3E11-3)

P = Pam at z=0, R=<r<o (3.E.11-4)

_ kp 0P

U, =——-—=0 as z— —o0o, 0<r<oo (3.E.11-5)
u 0z

P = Pym — pgz as r—>o00, —-o00<z=<0 (3.E.11-6)

Note that in specifying the boundary conditions for this partial differential equation,
one must also specify the domain of any other variables that are not specified in
the particular boundary condition; in some cases, such as for the domain of the
boundary condition given by equation (3.E.11-3), this introduces additional param-
eters into the dimensional analysis. The boundary conditions given by equation
(3.E.11-3) involve the instantaneous liquid depth L(#) in the tube. This can be
obtained from a mass balance for the amount of liquid flowing from the tube up
to the instantaneous time ¢ and is given by

f 'k, (dP
Lo—L=—| @ _di=[ 2=+ )
0 /0 .o fo m (dz g

Define the following scale and reference factors and corresponding dimension-
less variables (steps 2, 3, and 4):

dt 0<r<R
z=0

(3.E.11-7)

_P-P

L*EL_Lr' * r. * z
P

r == t' =
LS ’ rs’ ZS’ tA

(E.11-8)

P*

Substitute these dimensionless variables into equations (3.E.11-1) through (3.E.11-7)
and divide each equation by the dimensional coefficient of one of its terms (steps 5 and
6). Since this is dimensional analysis rather than o(1) scaling, we can divide through
by the dimensional coefficient of any arbitrary term in each equation:

I'LZA‘(LO —Lg) _ /‘td/ts (dP* + pgzs)
0

* *
dt”, 0<r"<— (3E.I11-9)
T

kaSls dz* Py 7*=0 s
1 a (,0P* N r2 32 p* 0 G.E.11-10)
J— y— —_ = Ao -
r* or* or* 72 97*2
L, R
Patm+ngs<L*+L_)_Pr 0<r*<—
P* = 2 atz=0 d/
L, — Ly) ~ Lg
(3.E.11-11)
Pum — P, R
px_am”_ °r at 7 =0, — <r*<oo (3.E.11-12)
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BP* * *
pye = as ¥ —> —o00, 0<r*<oo (3.E.11-13)
Piym — *— P
pr — Jam 'Offsz s o0, —00<7F <0 (3.E.11-14)
nzsLo (1__3L*) * *
Lo :/ (di_i_@) dt*, 0< r* < 5
kp Pt 0 dz* Py z=0 Ts
(3.E.11-15)

We are free to choose which groups we set equal to zero or 1 in order to determine
our scale and reference factors since we are not concerned about scaling our variables
to be of order one. Hence, let us arbitrarily make the following choices (step 7):

O LU N Le _La g o
—_— = Ve = , _— = el , _— = — = s
re K Ls s 0 LO LO r d
ngs IOgLO Patm - Pr
= =1= P, = pglLy; ———— =0= P, = Pyn;
Px Ps s P8 Lo Ps r atm
z Z k,pgt Lyo—L
P8Zs _ B o g pP8Ls =1:>ts=”(° d)
Py Lo w(Lo — La) kppg
(3.E.11-16)

When these scale and reference factors are substituted into the equations (3.E.11-9)
through (3.E.10.15), we obtain the following minimum parametric representation
of the dimensionless describing equations:

I dP*
1 =/ < + 1) dt*, 0<r*<l1 (3.E.11-17)
0 dz* 7*=0
1 8 ([, 9P* 32 P*
— I =0 3.E.11-18
r* ore (r or ) g ( )
Pf=1 at =0, 0<r*<1, O0<L*<1-TI, (3.E.11-19)
Pf=0 at =0, 1<r*<o0 (3.E.11-20)
oP*
=0 as > —00, 0<r*<oo (3.E.11-21)
az*
P*=1 as r*—=o00, —-o00<z"<0 (3.E.11-22)
t* dP*
- =/ ( + 1) a, 0=/ <1 (BEI11-23)
0 dz* 7z=0

where the following dimensionless groups have been defined:

k,pgt, R L
m=—eP8 . =, my==d (3.E.11-24)
(Lo — La) Lo
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A solution to equation (3.E.11-18) subject to the boundary conditions given
by equations (3.E.11-19) through (3.E.11-23) will yield the dimensionless pressure
P* as a function of r*, z*, and t* and the dimensionless groups I, and IT3.
When the axial pressure gradient is evaluated at exit of the tube, where it is not a
function of r*, and substituted into equation (3.E.11-17), the resulting solution for
the dimensionless draining time IT; will be a function only of the dimensionless
groups I, and IT3; that is, the minimum parametric representation is given by a
general correlation of the form

M, = kppgts

— AT = £ (R L 3.E.11-25
=m—f1( 2, 3)—f< ) (3.E.11-25)

Lo’ Lo

where fi(I1,, I13) denotes some unspecified function of the dimensionless groups
[T, and IT3 that would have to be determined empirically. Note that a naive appli-
cation of the Pi theorem for eight quantities in three units (i.e., » = 8 and m = 3)
would have suggested that five (m — n = 5) rather than three dimensionless groups
were necessary to correlate the draining time. For the Pi theorem to yield the min-
imum parametric representation, it is necessary to recognize that the grouping
kppg/m can be considered as a single quantity, in which case only two units need
to be considered.

It would be necessary to take a considerable number of data to establish the
correlation indicated in equation (3.E.11-25). We show here how a general cor-
relation for the draining time can be established from very limited data for a
specific tube, using water in a particular soil. The following empirical correla-
tion has been obtained using water and a 5-cm-radius pipe for a soil having a
permeability k, = 5.9x 107% cm? 23:

Lo
ty =4.941n — (3.E.11-26)
Ly

This empirical result is a special case of equation (3.E.11-25) and can be used
to determine the functional form of a more general correlation for the draining
time that can be used for different tubes, fluids, and soils. This can be seen more
easily by using step 8 of the scaling procedure for dimensional analysis outlined
in Section 2.4 in order to eliminate both Ly and L, from the dimensionless group
that contains the draining time #;. This involves generating a new dimensionless
group formed from the original set of groups by means of the operation

— E _ tdkppg

= = = I1,, I 3.E.11-27
M, ~ uR( - Ly/Lo) fo(Iy, IT3) ( )

Iy

where f>(I15, [13) denotes an unspecified function of the dimensionless groups I,
and I1; that would have to be determined empirically. Equation (3.E.11-27) can

Z3R. I. Ray, A Rayleigh free convection compliant ice front model for sorted patterned ground, M.S.
thesis, University of Colorado, Boulder, Co, 1981.
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be recast into the following form using step 11:

takp08

= [15 = f3(Iy, I13) (3.E.11-28)
UR

where f3(I1;, I13) denotes an unspecified function of the dimensionless groups I,
and I13 that would have to be determined empirically. In general, the radius R
of the tubes used to determine soil permeability is much less than the initial fill
height L. If R <« L, then [T, < 1 and we can use the procedure in step 9 of the
scaling analysis procedure for dimensional analysis to eliminate group IT, from the
correlation; hence,

takppg

e = s = fu(Il3) (3.E.11-29)

where f4(I13) is an unspecified function of IT3 only. A comparison of equa-
tion (3.E.11-29) with equation (3.E.11-26) implies the following:
UR

1y = s = —4.941InTl; (3.E.11-30)
kypg

A generalized correlation relating soil permeability k, and draining time #; can be
obtained by substituting values for the quantities in equation (3.E.11-30) to obtain
the following correlation:

4.94(5.9x107% cm?) (1 g/cm?®) (980 cm/s?)

5 = In 1'13
(0.01 g/cm -8) (5 cm) (3.E.11-31)
takppg Lo
= s = -0.572InIl3 = ——— = —-0.572In —
uR Ly

In this case, using the scaling analysis approach for dimensional analysis in com-
bination with data for a specific falling head test gives the functional form of a
generalized correlation that relates the measured draining time 7, to the soil perme-
ability k, and relevant physical properties and process parameters. The generalized
correlation given by equation (3.E.11-31) applies for any falling head test, irrespec-
tive of the fluid, pipe size, and soil, provided that the dimensionless group I1, < 1.

3.P PRACTICE PROBLEMS

3.P.1 Alternative Scales for Laminar Flow Between Stationary and Moving
Parallel Plates

Consider the steady-state fully developed laminar flow of an incompressible vis-
cous Newtonian fluid with constant physical properties between two infinitely wide
parallel flat plates due to both an applied axial pressure gradient and to the upper
plate moving at a constant velocity Uy as shown in Figure 3.2-1. In Section 3.2
we introduce scales for the velocity and y-coordinate to determine the criterion
necessary to ignore the effect of the motion of the upper plate.
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(a) Rescale this problem by introducing an additional scale for the second
derivative as well as the velocity and y-coordinate; you will find that there
is no dimensionless group to determine the velocity scale; however, this can
be determined by integrating the scale for the second derivative.

(b) Rescale this problem by introducing an additional scale for the first deriva-
tive as well as the velocity and y-coordinate. Again you will find that there
is no dimensionless group to determine the velocity scale; however, this can
be determined by integrating the scale for the first derivative.

3.P.2 Laminar Flow Between Stationary and Moving Parallel Plates

Consider the steady-state fully developed laminar flow of an incompressible vis-
cous Newtonian fluid with constant physical properties between two infinitely wide
parallel flat plates due to both an applied axial pressure gradient and to the upper
plate moving at a constant velocity Up, as shown in Figure 3.2-1. In Section 3.2
we scaled this flow to determine the criterion necessary to ignore the effect of the
motion of the upper plate. We found that the motion of the upper plate would not
affect quantities such as the average velocity, volumetric flow rate, or drag at the
stationary plate if equation (3.2-19) were satisfied. However, there was a region of
influence next to the upper plate within which the motion of the plate could never
be ignored. In this problem we explore complementary flow conditions for which
the flow is caused primarily by the motion of the upper plate.

(a) Determine the criterion necessary to neglect the effect of the applied pressure
on quantities such as the average velocity or volumetric flow rate.

(b) Determine if there is a region of influence within which the effect of the
pressure on the flow can never be ignored in determining point quantities
such as the local velocity or drag at the wall.

(c) Solve the simplified describing equations for the velocity profile for condi-
tions such that the criterion you derived in part (a) is satisfied.

3.P.3 Gravity and Pressure-Driven Laminar Flow in a Vertical Tube

Consider the steady-state fully developed laminar flow of a Newtonian liquid with
constant physical properties in a vertical tube of radius R that is subject to both
gravity and a constant axial pressure gradient, as shown in Figure 3.P.3-1.

(a) Write the appropriate form of the simplified equations of motion for this
flow.

(b) Write the boundary conditions required for the differential equations above.

(c) Scale the describing equations to determine the criterion for ignoring the
effect of the applied pressure gradient on the velocity profile.

(d) Solve the resulting simplified describing equations to obtain the velocity
profile.
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i Pr
Figure 3.P.3-1 Steady-state fully developed laminar flow of a Newtonian liquid with con-

stant physical properties in a vertical tube of radius R and length L subject to both gravity
and a constant axial pressure gradient (Py — Pr)/L.

3.P.4 Axial Flow in a Rotating Tube

Consider the steady-state fully developed laminar flow of an incompressible
Newtonian liquid with constant physical properties in a vertical cylindrical tube
of radius R and length L subject to a constant axial pressure gradient (Py — P)/L
and a constant angular rotation about its axis of symmetry at w radians per second,
as shown in Figure 3.P.4-1.

Figure 3.P.4-1 Steady-state fully developed laminar flow of an incompressible Newtonian
liquid with constant physical properties in a vertical cylindrical tube of radius R and length
L subject to a constant axial pressure gradient (Py — P.)/L and a constant angular rotation
at w radians per second.
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(a) Write the appropriate form of the simplified equations of motion for this
flow.

(b) Write the boundary conditions required for the above differential equations.

(c) Scale the describing equations to determine the dimensionless criteria for
ignoring the effect of the gravitational body force on the flow.

(d) Develop a dimensionless criterion for assuming that the radial pressure gra-
dient is much less than the axial pressure gradient.

(e) Develop a dimensionless criterion for assuming that the circumferential
velocity is much less than the axial velocity.

3.P.5 Laminar Flow Between Converging Flat Plates

In Section 3.3 we developed the criteria for invoking the lubrication-flow approxi-
mation for laminar flow between two converging flat plates. However, these criteria
break down near the upstream region of this flow. Use scaling analysis to determine
the thickness of the region of influence in which the lubrication-flow approximation
breaks down.

3.P.6 Laminar Flow Between Diverging Flat Plates

Consider the pressure-driven steady-state one-dimensional laminar plug flow of
an incompressible Newtonian fluid with constant physical properties and constant
velocity Uy impinging on two nonparallel infinitely wide diverging flat plates as
shown in Figure 3.P.6-1.

(a) Write the appropriate form of the simplified equations of motion for this
flow.

(b) Write the boundary conditions required for the differential equations above.

(c) Scale the describing equations to determine the dimensionless criteria for
making the lubrication-flow approximation.

(d) Solve the resulting describing equations appropriate to lubrication flow for
the x- and y-component velocity profiles.

—pp
——

Uy

1L ,

¢ L >

Yyyvvyy

Figure 3.P.6-1 Steady-state developing laminar flow of an incompressible Newtonian fluid
with constant physical properties between two infinitely wide diverging flat plates; only the
local axial velocity profile is shown.
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Figure 3.P.7-1 Pressure-driven steady-state laminar flow of an incompressible Newtonian
fluid with constant physical properties through a diverging nozzle of length L and a circular
cross-section with radii Ry and R; .

3.P.7 Laminar Flow in a Diverging Nozzle

Consider the pressure-driven steady-state laminar flow of an incompressible New-
tonian fluid with constant physical properties through a diverging nozzle of length
L and a circular cross section as shown in Figure 3.P.7-1. Assume plug flow at
z = 0 with a constant velocity Uj.

(a) Write the appropriate form of the equations of motion.

(b) Write the boundary conditions that are necessary to solve the describing
equations.

(c) Scale the describing equations to determine the criteria necessary to assume
lubrication flow.

(d) Solve the resulting simplified lubrication-flow equations for the z- and
r-velocity and axial pressure profiles. Note that the unspecified axial pres-
sure gradient can be shown to be a constant and can be obtained from an
integral mass balance and the known inlet velocity.

3.P.8 Steady-State Flow Between Parallel Circular Disks

Two parallel disks of outer radius R, are separated by a distance H as shown in
Figure 3.P.8-1. An incompressible Newtonian liquid with constant physical prop-
erties is injected through a porous tube of radius R; located concentric with the
axis of symmetry of the two disks.

(a) If the liquid is injected at a constant volumetric flow rate Q, write the
appropriate form of the equations of motion.

(b) Write the boundary conditions required to solve the equations of motion.

(c) Scale the describing equations to determine the criteria necessary to assume
lubrication flow.
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Figure 3.P.8-1 Steady-state radial flow of an incompressible Newtonian liquid with con-
stant physical properties between two parallel disks of radius R, separated by a distance H
due to injection of liquid at a volumetric flow rate Q through a porous tube of radius R;.

(d) Solve the lubrication-flow equations to obtain the velocity profile as a func-
tion of » and z.

(e) Determine the pressure drop P; — P, necessary to inject this liquid at the
constant volumetric flow rate Q.

3.P.9 Unsteady-State Flow Between Parallel Circular Disks

Consider the radial flow of an incompressible Newtonian liquid with constant phys-
ical properties between two parallel disks as shown in Figure 3.P.8-1. Assume
that the liquid injection through the porous cylindrical tube is time-dependent and
described by

0 = Qpe ¥, where Qg and « are constants (3.P.9-1)

(a) Write the boundary conditions required to solve the equations of motion.

(b) Scale the describing equations to determine the criterion necessary to assume
that the flow is quasi-steady-state.

(c) Solve the quasi-steady-state lubrication-flow equations to obtain the velocity
profile as a function of r, z, and .

3.P.10 Steady-State Flow Between Spinning Parallel Circular Disks

Consider the steady-state radial flow of an incompressible Newtonian liquid with
constant physical properties between two parallel disks, as shown in Figure 3.P.8-1.
The radial flow is caused by liquid injection through the porous cylindrical tube
at a constant volumetric flow rate Q. Assume now that both disks are spun at a
constant angular velocity w (radians per second).
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(a) Write the appropriate form of the unsteady-state equations of motion assum-
ing that the lubrication-flow approximation is applicable.

(b) Write the boundary conditions required to solve the equations of motion.

(c) Scale the describing equations to determine the criterion necessary to ignore
the effect of the rotating disks on the pressure profile.

3.P.11 Lubrication-Flow Approximation for a Hydraulic Ram

In Example Problem 3.E.3 we considered lubrication flow in a hydraulic ram as
shown in Figure 3.E.3-1 and used scaling to determine the criterion that must be
satisfied in order to ignore curvature effects on the flow. However, we did not
justify the lubrication-flow approximation that was made.

(a) Write the appropriate form of the equations of motion; however, do not
make the lubrication-flow simplifications.

(b) Write the boundary conditions required to solve the equations of motion.

(c) Scale the describing equations to determine the criteria necessary to justify
the lubrication-flow approximation.

3.P.12 Flow in a Rotating Disk Viscometer

Consider an incompressible Newtonian liquid with constant physical properties that
fills a cylindrical container of radius R to a depth H. A circular plate contacts the
liquid at its upper surface but does not contact the sidewalls of the container, as
shown in Figure 3.P.12-1. By rotating the upper circular plate it is possible to
obtain the viscosity of the liquid by measuring the forque, which is the force times
the radial distance from the axis of rotation, on the upper plate. Operation of this
instrument involves accelerating the upper plate from rest to a constant angular
rotation rate of w radians per second.

(a) Write the appropriate simplified form of the equations of motion for this
unsteady-state fully developed flow; do not ignore the edge effects due to
the presence of the sidewall of the container.

(b) Write the initial and boundary conditions required to solve the equations of
motion.

(c) Scale the describing equations to determine a criterion for when steady-state
flow conditions can be assumed.

(d) Scale the describing equations to determine a criterion for when the effects
of the sidewall of the cylindrical container on the flow can be neglected.

(e) Solve the steady-state describing equations in the absence of sidewall effects
for the angular velocity ugy as a function of z and r.

(f) Use the velocity profile that you obtained in part (e) to obtain an equation
for the torque exerted on the upper rotating plate by the liquid.
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Figure 3.P.12-1 Flow of a viscous Newtonian liquid with constant physical properties in
a rotating disk viscometer.

3.P.13 Flow in an Oscillating Disk Viscometer

Consider the viscometer shown in Figure 3.P.12-1, which is filled entirely with
an incompressible Newtonian liquid with constant physical properties. Another
way to operate this viscometer is to oscillate rather than rotate the upper circular
plate. Assume that the upper plate is oscillated continuously at an angular rate
of wq sin 2rft radians per second, where wq is the amplitude of the oscillation in
radians per second and f is the frequency of the oscillation in cycles per second.

(a)

(b)

(©

(d)

(e)

Write the appropriate simplified form of the equations of motion for this
unsteady-state, fully developed flow for which edge effects due to the side-
wall can be ignored.

Write the initial and boundary conditions required to solve the equations of
motion.

Scale the describing equations to determine a criterion for when quasi-
steady-state flow conditions can be assumed.

Consider the describing equations for the special case of very high fre-
quency oscillations for which the effects of the oscillating upper circular
plate are confined to a thin boundary layer near the upper plate. Use scal-
ing to obtain an equation that can be used to estimate the thickness of the
viscous boundary layer at the upper oscillating circular plate.

Based on your scaling in part (d), develop a criterion for ignoring the effect
of the bottom surface of the container on the oscillating flow.

3.P.14 Falling Needle Viscometer

The falling needle viscometer is useful for obtaining viscosity measurements when
only small quantities of the liquid are available for measurement purposes. The
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viscosity is obtained using this viscometer by measuring the time it takes for a
long cylindrical needle that is falling at its terminal velocity to pass between two
known reference planes. This viscometer can be modeled quite well by considering
the hydrodynamics to be steady-state fully developed laminar flow in the annular
region between two cylinders, the inner of which is moving downward at a constant
velocity Uy and the outer of which is stationary; that is, end effects are ignored.
Unfortunately, it is difficult to drop the needle exactly along the centerline of the
outer cylinder. Hence, in general, the cylinders are not concentric, as shown in
Figure 3.P.14-1. We seek to simplify the describing equations to permit a tractable
solution.?* Tt is convenient to use a moving cylindrical coordinate system located
with its axis concentric with that of the falling cylinder.

(a) Consider the steady-state fully developed flow of an incompressible Newto-
nian liquid with constant physical properties in the annular region between
two cylindrical tubes whose centers are displaced by a distance ¢, as shown
in Figure 3.P.14-1. Recall that this flow is driven by the moving boundary of

1
1
!
R, &P
Velocity :
profile in
stationary

coordinate
system

Cross-sectional view

Needle of radius R,
and length L falling at
a constant velocity U,

Side view

Figure 3.P.14-1 Falling needle viscometer showing a small inner cylinder having radius
R, being dropped at a constant velocity Uy a distance ¢ off-center in a cylindrical tube of
radius R;.

24This effect has been analyzed by D. B. Thiessen and W. B. Krantz, Rev. Sci. Instrum., 63(9),
4200-4204 (1992).
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the inner cylinder (the needle), which is falling at its terminal velocity dic-
tated by a balance between the gravity force on its volume and the drag
force on its surface area. Show that the appropriate form of the equations of
motion in cylindrical coordinates is given by

oP
0= P (3.P.14-1)
r
oP
0= = (3.P.14-2)
P 19 [ du, 1 9%u,
(b) Show that equation (3.P.14-3) simplifies to
AP 19 [ ou, 1 9%u,

where AP = P;, — Py is the pressure drop across the length of the falling
needle for which Py is the pressure at z = 0 and Py, is the pressure at z = L.
(c) Write the appropriate boundary conditions required to solve the simplified
equations of motion. Since the axial pressure drop across the length of the
needle AP is unknown, an auxiliary condition is needed. This is determined
from a force balance across the falling needle that involves the gravitational,
viscous drag, and pressure forces. It will be helpful in specifying the no-slip
condition at the outer cylinder to recall the law of cosines, which permits
relating the local gap thickness w(f) to the radii of the inner and outer
cylinders, needle displacement ¢, and local angular coordinate 6 in the form

w(@) =¢ecosf — R + (R% —&?sin*0)!/? = gcosh

+ (R — Ry) if e<Ry (3.P.14-5)

(d) Scale the describing equations to determine the criterion for assuming that
the derivatives of the axial velocity in the circumferential direction can be
ignored. Discuss the physical implications of this criterion.

(e) Use scaling to obtain an estimate of AP, the pressure driving force that
causes flow in the annular gap between the inner cylindrical needle and the
outer stationary tube wall.

(f) Use scaling and the result you obtained in part (e) for AP to obtain an
estimate of the velocity Uy of the falling needle.

3.P.15 Leading-Edge Considerations for Laminar Boundary-Layer Flow

In Section 3.4 we consider laminar boundary-layer flow over a semi-infinite flat
plate and determined that the hydrodynamic boundary-layer approximation can
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be made when the criterion given by equation (3.4-38) is satisfied. However, as
discussed in Section 3.4, the hydrodynamic boundary-layer approximation always
breaks down near the leading edge of the plate. Use scaling analysis to estimate the
region of influence wherein the criterion given by equation (3.4-38) is no longer
satisfied.

3.P.16 Laminar Boundary-Layer Flow with Blowing

Consider a uniform plug flow of an incompressible viscous Newtonian liquid with
constant physical properties and velocity U, intercepting a stationary semi-infinite
infinitely wide horizontal flat plate such as that considered in Section 3.4. Assume
that the horizontal flat plate is porous such that there is a constant blowing velocity
Vo along its length, as shown in Figure 3.P.16-1. Blowing is used to increase heat
and mass transfer in boundary-layer flows since it causes the local Reynolds number
to increase, which in turn can cause a transition to turbulent boundary-layer flow.

(a) Use scaling to determine the condition for which the blowing effect on the
boundary-layer flow can be neglected.

(b) Provide a physical interpretation of the condition on the dimensionless group
that you obtained in part (a).
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Figure 3.P.16-1 Uniform plug flow with velocity Uy, of an incompressible viscous New-
tonian fluid with constant physical properties intercepting a stationary semi-infinite infinitely
wide horizontal porous flat plate along which there is a blowing velocity Vp; the blowing
causes the boundary-layer thickness, d,,, to increase.

3.P.17 Laminar Boundary-Layer Flow with Suction

Consider a uniform plug flow of an incompressible viscous Newtonian liquid
with constant physical properties and velocity Uy, intercepting a stationary semi-
infinitely long infinitely wide horizontal flat plate such as that considered in Sec-
tion 3.4. Assume that the horizontal flat plate is porous so that a constant suction
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Figure 3.P.17-1 Uniform plug flow with velocity Uy of an incompressible viscous New-
tonian fluid with constant physical properties intercepting a stationary semi-infinitely long
infinitely wide horizontal porous flat plate along which there is a suction velocity Vp; the
suction causes the boundary-layer thickness, §,,, to decrease.

velocity Vy can be applied along its length, as shown in Figure 3.P.17-1. Suction
is used to decrease the boundary-layer thickness to decrease the local Reynolds
number and thereby delay the transition to turbulence. It is also used to increase
heat and mass transfer in the laminar boundary-layer flow regime by decreasing the
thickness of the boundary-layer region, which provides the controlling resistance
to conduction or diffusion.

(a) Write the appropriate forms of the equations of motion applicable to this
boundary-layer flow; it is not necessary here to justify the form of these
equations by scaling.

(b) Write the boundary conditions required to solve the equations of motion.

(c) We might anticipate that with boundary-layer suction such as we have in
this problem, the boundary-layer thickness might ultimately become con-
stant rather than grow without bound as it does for a boundary layer on a
semi-infinitely long flat plate without suction or with blowing. Use scaling
analysis to determine the criterion for obtaining a constant boundary-layer
thickness; express your answer in terms of a dimensionless group that must
be very small.

(d) For the constant boundary-layer condition obtained in part (c), determine
the x- and y-velocity component profiles.

3.P.18 Entry-Region Laminar Flow in a Cylindrical Tube

Figure 3.P.18-1 shows a schematic of pressure-driven steady-state laminar entry-
region flow of a viscous Newtonian fluid with constant physical properties in a
cylindrical tube of radius R. The flow velocity at the entrance is assumed to be a
constant Up. This is assumed to be a high Reynolds number flow for which the
inertia terms cannot be ignored in the entry region. Hence, in the entry region the
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Figure 3.P.18-1 High Reynolds number steady-state pressure-driven entry-region laminar
flow of a viscous Newtonian fluid with constant physical properties in a cylindrical tube of
radius R, showing the developing boundary layer §,,(z) and entrance length L, required for
the initial uniform flow Uy to rearrange so as to become fully developed

action of viscosity will be confined to a region of influence near the tube wall
denoted by the boundary-layer thickness §,,(z). The latter will increase axially;
when it reaches the center of the tube, the flow is fully developed. Note that since
this is a confined flow, the fluid in the center of the tube must accelerate as the
boundary layer grows.

(a) Write the appropriate simplified form of the equations of motion for this
steady-state, developing flow.

(b) Write the boundary conditions required to solve the equations of motion.

(c) Scale the describing equations to determine the conditions required to invoke
the hydrodynamic boundary-layer approximation; that is, for which the cou-
pling between the axial and radial components of the equations of motion
can be ignored and for which the axial diffusion of vorticity can be ignored.

(d) Use your scaling analysis to estimate the axial distance required to attain
fully developed flow; reconcile your result with that obtained from the
approximate analytical solution of Langhaar given by

R?pUj
n

L, =0227 (3.P.18-1)

3.P.19 Pressure-Driven Flow in an Oscillating Tube

Consider the unsteady-state laminar flow of an incompressible Newtonian fluid
with constant physical properties through a horizontal cylindrical tube of radius R
whose length L is sufficiently long to ensure that entrance and exit effects can be
ignored; that is, the tube can be assumed to be essentially infinitely long. Initially,
there is no flow. At time + = 0 a constant pressure gradient (Py — Pr)/L = AP/L
is impressed across this tube. Simultaneously, the wall of this tube is oscillated at
a velocity u, = Uy coswt, where w is the angular frequency of the oscillation in
radians per second. A schematic of this flow problem is shown in Figure 3.P.19-1.

ZH. L. Langhaar, Trans. ASME, 64, A55 (1942).
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u, = Uy cos wt

Figure 3.P.19-1 Unsteady-state laminar flow of an incompressible Newtonian liquid with
constant physical properties in a circular tube of radius R due to an impulsively applied pres-
sure difference AP = Py — Pr and oscillation of the tube wall described by u, = Uy cos wt;
the axial velocity profiles are shown at times #; and #,, where 1, > f;.

(a) Write the appropriate form of the equations of motion for this unsteady-state
flow.

(b) Write the initial and boundary conditions required to solve the equations of
motion.

(c) Determine the appropriate velocity scale for conditions such that the flow
is mainly caused primarily by the applied pressure gradient.

(d) Determine the appropriate velocity scale for conditions such that the flow
is caused primarily by the oscillating pipe wall.

(e) Scale the describing equations to determine when the effect of the wall
oscillation can be neglected.

(f) Scale the describing equations to determine when this can be considered
to be a quasi-steady-state creeping flow. Be careful to consider both time
effects: i.e., the transients following startup and the periodic oscillations.

(g) Solve for the velocity profile u, (7, t) for the special case of quasi-steady-state
creeping flow.

3.P.20 Countercurrent Liquid—Gas Flow in a Cylindrical Tube

Consider the steady-state fully developed laminar flow of a nonvolatile Newtonian
liquid film of thickness H with constant physical properties at the inner wall of
a vertical cylindrical tube of radius R and length L due to gravity, pressure, and
interfacial drag arising from the fully developed upward pressure-induced flow of
a gas having constant physical properties in the center of the tube, as shown in
Figure 3.P.20-1.

(a) Write the appropriately simplified continuity and equations of motion for
both the liquid and gas phases for this flow.
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Figure 3.P.20-1 Steady-state fully developed laminar flow of a nonvolatile Newtonian
liquid film of thickness H with constant physical properties at the inner wall of a vertical
cylindrical tube of radius R and length L due to gravity, pressure, and interfacial drag arising
from the upward fully developed pressure-induced flow of a gas with constant physical
properties in the center of the tube.

(b)
(c)
(d)
(e)
®

(2)

(h)
®

G

Write the boundary conditions required to solve the differential equations
you obtained in part (a).

Determine the appropriate velocity scale in the liquid film when this flow
is caused primarily by the gravitational body force.

Determine the appropriate velocity scale in the gas phase when this flow is
caused primarily by the applied pressure.

Use scaling to determine the criterion for when the effect of the gas flow
on the liquid film flow can be ignored.

Use scaling to determine the criterion for when the effect of the gravitational
body force on the gas flow can be ignored.

For the conditions considered in part (d), determine the criterion for ignoring
curvature effects in the describing equations; that is, for when the describing
equations in cylindrical coordinates reduce to the corresponding equations
in rectangular coordinates.

Determine the appropriate velocity scale in the liquid film when this flow
is caused primarily by the drag exerted on it by the upward gas flow.

Use scaling to determine the criterion for when the effect of gravity on the
liquid film flow can be ignored.

This flow is an idealization of that within a single packing element such as
a Raschig ring in countercurrent liquid—gas contacting in a packed column.
Flooding in a packed column begins when the upward gas flow causes a
net amount of liquid to be carried upward to the top of the column. Use
the results from your scaling analysis to determine the pressure gradient
required to initiate flooding.
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3.P.21 Stratified Flow of Two Immiscible Liquid Layers

Consider the steady-state fully developed flow of two immiscible Newtonian lig-
uids with constant physical properties between two stationary parallel impermeable
flat plates, as shown in Figure 3.P.21-1. These fluids have densities p; and p,, vis-
cosities 11 and wo, and thicknesses H; and H, respectively. A high pressure Py
is applied at x =0 and a low pressure P is applied at x = L. Liquid 1 flows
symmetrically about the center plane between the two flat plates, whereas liquid 2
is confined to a layer having thickness H, — H; adjacent to each of the two flat
plates. The velocities in liquids 1 and 2 are denoted by u; and u,, respectively.
For the scaling analysis in this problem, introduce the following dimensionless
variables in terms of undefined scale and reference factors:

UT ul_ulr; u;E : vi= 2 y;E)’—)’Zr

] (.P.21-1)
Uls Ug Vis Yos

(a) Write the appropriate form of the simplified continuity and equations of
motion along with the necessary boundary conditions for this flow; gravita-
tional body forces may be neglected in your analysis.

(b) Explain why a reference factor is needed for the velocity in liquid 1 and
why a reference factor is needed for the spatial coordinate in liquid 2.

(c) Determine the scale and reference factors in the dimensionless variables
defined above for the case where the flow in both liquids is caused by the
applied pressure AP = Py — Pp. Indicate why you set various dimensionless
groups equal to zero or 1.

(d) What is the criterion for ignoring the effect of liquid 1 on the flow of liquid
2 for the conditions in part (c)?

(e) Determine the scale and reference factors in the dimensionless variables
defined above for the case where the flow in liquid 1 is caused by the applied
pressure AP = Py — Pr, whereas the flow in liquid 2 is caused primarily
by the drag force exerted by liquid 1 at the interface. Indicate why you set
various dimensionless groups equal to zero or 1.

* 3 Liquid 2
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Figure 3.P.21-1 Steady-state fully developed flow of two immiscible Newtonian liquids
with constant physical properties between two stationary parallel impermeable flat plates.
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(f) What is the criterion for determining whether the scaling in part (c) or in
part (e) is appropriate for the describing equations?

(g) Use the results of your scaling analysis in part (e) to estimate the velocity
gradients in both liquids 1 and 2; that is, develop appropriate scales for the
velocity gradients in each liquid.

(h) For the scaling analysis done in part (e), determine the dimensionless groups
that are necessary to correlate the total rate of entropy production S, which
is given by

H; 2 H, 2
§= /’“ N wia /”2 AN wra (3.P.21-2)
AW Y7 T\, Y o
0

Hy

where T is the absolute temperature and W and L denote the width and
length, respectively, of the two flat plates.

(i) One means for reducing the viscous drag at the walls experienced in pumping
viscous liquids such as petroleum is to inject a less viscous immiscible liquid
such as water, which will form a layer at the wall. However, for this idea
to work, we have to establish that the less viscous liquid (e.g., water) rather
than the more viscous liquid (e.g., petroleum) will go to the wall region.
This question can be answered by invoking the principle that continuous
steady-state processes seek a state of minimum entropy production. Use this
principle along with the results of your scaling analysis in part (e) to deter-
mine whether the viscous or the less viscous liquid will go to the wall region.

3.P.22 Laminar Cylindrical Jet Flow

In Example Problem 3.E.8 we considered a jet of an incompressible Newtonian
liquid with constant physical properties issuing from a circular orifice with an
initial velocity Uy and falling vertically under the influence of gravity in an inviscid
gas as shown in Figure 3.E.8-1. We scaled the describing equations to explore the
conditions for which quasi-parallel flow can be assumed; that is, when the axial
velocity profile can be assumed to depend only on the axial coordinate. In scaling
the describing equations we introduced a scale for the radial derivative of the axial
velocity since we did not anticipate that this derivative would scale as the ratio
of the characteristic axial velocity scale divided by the characteristic radial length
scale. We anticipated the need to scale this derivative with its own scale since the
axial velocity does not change significantly across the jet. It was stated that if we
had scaled this radial derivative with the ratio of the characteristic axial velocity
scale to the characteristic radial length scale, the forgiving nature of scaling would
have indicated a contradiction. To better understand what is meant by this, let us
assume (incorrectly!) that the radial derivative of the axial velocity scales as the
axial velocity scale u.; divided by the radial length scale r;. Show that this leads to
an inconsistency in the resulting dimensionless equations in that the dimensionless
group multiplying one term in the describing equations becomes very large, whereas
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the others terms are of o(1); this implies that there is no term to balance this very
large term.

3.P.23 Free Surface Flow Down a Plate with Condensation

Consider the steady-state incompressible laminar film flow of a Newtonian liquid
having constant physical properties down an infinitely wide plane surface inclined
at an angle 6 to the horizontal as shown in Figure 3.P.23-1. At the interface between
the liquid film and the ambient gas phase, a constant amount of liquid W, is added
to the film flow per unit area of free surface. For example, this might occur due to
condensation occurring at the liquid—gas interface.

(a) Write the appropriate forms of the steady-state equations of motion assuming
that the ambient gas phase exerts negligible drag on the liquid film.?®

(b) Write the boundary conditions required to solve the equations of motion;
note that the continuity of surface normal stresses and tangential stress bal-
ance must account for the surface-curvature effects.?’

(c) Derive the kinematic surface condition for this flow; note that the mass
addition at the interface must be taken into consideration.

(d) Scale the describing equations to determine the conditions required to make
the lubrication-flow approximation and to ignore the surface-curvature effects.

mass

=

m area-time

Figure 3.P.23-1 Steady-state incompressible laminar film flow of a Newtonian liquid with
constant physical properties down an infinitely wide plane surface inclined at an angle 6 to
the horizontal. Mass addition at the free surface of W,, units of mass per unit area per unit
time causes the local film thickness 7 to increase as a function of axial distance x.

3.P.24 Free Surface Flow Over a Horizontal Filter

A filter in a large industrial plant operates by letting a solution flow across a large
sheet of filter paper as shown in Figure 3.P.24-1. Assume steady-state developing
incompressible laminar flow of a Newtonian liquid with constant physical properties

26Scaling was used to determine the criterion for making this assumption in Example Problem 3.E.1.
?TSee the example in Section 3.7 as a guide to scaling this problem.
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Figure 3.P.24-1 Gravitationally induced steady-state laminar flow of an incompressible
Newtonian liquid with constant physical properties across a filter through which the mass
flow rate per unit area is W,,.

that is driven by a constant hydrostatic pressure gradient due to a variable film
thickness in the x-direction. Assume also that mass is removed from this flow
at the filter boundary at a constant rate of W,, units of mass per unit area per
unit time.

(a) Write the appropriate forms of the steady-state equations of motion assuming
that the ambient gas phase exerts negligible drag on the liquid film (see
footnote 26).

(b) Write the boundary conditions required to solve the equations of motion;
note that the continuity of surface normal stresses and tangential stress bal-
ance must account for the surface-curvature effects (see footnote 27).

(c) Derive the kinematic surface condition for this flow; note that the mass loss
through the filter must be taken into consideration.

(d) Scale the describing equations to determine the condition(s) required to
make the lubrication-flow approximation and to ignore the surface-curvature
effects.

(e) Solve the simplified equations of motion that you obtained in part (d) to
obtain the axial velocity profile in terms of the unknown hydrostatic pressure
gradient.

(f) Determine the unknown hydrostatic pressure gradient given that the volu-
metric flow rate Q is specified.

(g) Determine the component of the velocity normal to the filter.

3.P.25 Curtain-Coating Flow

The process of curtain coating is shown in Figure 3.P.25-1. This process is used,
for example, to apply protective polymer coatings at high speed to continuous
steel or tin-plate strip. The curtain flow emanates from a slot at x = 0, at which
point it has a velocity Uy. The solid guides at z = =W /2 maintain the film at a
constant thickness in the z-direction. However, since the film accelerates due to the
gravitational body force, it thins in the y-direction, as shown in the side view in
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Figure 3.P.25-1 Gravitationally induced steady-state laminar curtain-coating flow of an
incompressible Newtonian liquid with constant physical properties emanating from a rect-
angular slot with an initial velocity of Up; front view shows solid guides that maintain the
film at constant width; the axial velocity profile is shown in both views.

Figure 3.P.25-1. The liquid—gas interface is defined by y = n(x), where n decreases
with increasing x due to the increase in the x-velocity component. The object to
be coated can be ignored entirely in this analysis since we are concerned only with
the falling curtain flow. We assume steady-state laminar flow of an incompressible
Newtonian liquid with constant physical properties and ignore edge effects at the
sidewalls. Note that the applicability of all these assumptions could be determined
using scaling analysis. We use scaling analysis to explore the conditions for which
quasi-parallel flow can be assumed. We then test the applicability of our scaling
analysis results using data from the curtain-coating process.

(a) Write the appropriate form of the three-dimensional equations of motion for
this flow assuming that the ambient gas phase exerts a negligible drag on
the liquid film (see footnote 26).

(b) Write the appropriate boundary conditions for this flow assuming that the
surface-tension effects associated with the curvature can be ignored.”® How-
ever, do not ignore the effects of curvature in specifying the tangential and
normal stress boundary conditions at the free surface. In deriving the tan-
gential and normal stress boundary conditions at the liquid—gas interface,
use the convection for § and the normal and tangential unit vectors, 7 and
f, respectively, shown in Figure 3.P.25-2.

(c) Write the appropriate form of the kinematic surface condition for this flow.

Z8Note that scaling analysis could be used to determine when surface-tension and curvature effects can
be neglected; the latter were considered in Section 3.7.
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Figure 3.P.25-2 Enlarged view of the x—y plane for curtain flow, showing normal and
tangential unit vectors, 7 and 7, respectively, at the liquid—gas interface.

(d)

(e)

)

(o)

(h)

Introduce the following dimensionless variables involving unspecified scale
and reference factors into the describing equations:

ut Eiux_uxr; u;‘,zﬂ; u?zk, P*EP_Pr;
Uys . Uys i Uzs Py
e = <8ux> Eiau“‘; =l o= =X
s dy s 0y X Vs Zs
(3.P.25-1)

Note that du,/dy does not scale with u,;/y; since u, does not undergo
a characteristic change of u,, over the distance y,. The proper scale for
Bs is obtained from the tangential stress boundary condition. Note that this
scaling for du,/dy implies that 3%u,/dy? scales with B,/ys. Use x; = L,
where L is some arbitrary but constant downstream distance. Your pressure
scale P; will come from balancing the pressure term with the convection
terms in the y-component of the equations of motion. This follows from the
fact that the pressure gradient arises from the acceleration of the flow.
Simplify the tangential and normal stress boundary conditions appropriate
to the assumption of small curvature; that is, for dn/dx < 1.

Assume small curvature and use your scaling analysis in part (d) to deter-
mine the criteria for assuming that this is a quasi-parallel flow; that is, a
flow that can be described by considering only the changes of the x-velocity
component in the x-direction.

Show that the solution to the simplified set of equations appropriate to the
quasi-parallel-flow approximation is given by

u? = UG +2xg (3.P.25-2)

Table 3.P.25-1 summarizes several data sets for a series of curtain flows for
which the fall velocity u, in cm/s at a position below the slot of x = 5 cm is
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TABLE 3.P.25-1 Data Sets for Curtain Flow

Data  Viscosity Slot Width Mean Velocity at  Measured Velocity at

Set (poise) (mm) Slot Exit (cm/s) x =5 cm (cm/s)
1 1.2 0.6 18 96
2 1.5 0.6 56 110
3 1.95 0.2 38 100
4 2.0 0.2 47 109
5 2.6 0.6 18 97
6 2.7 0.3 33 93
7 2.8 0.3 13 87
8 345 0.6 6 86
9 3.7 1.5 5 86
10 5.3 1.5 12 85
11 9.9 0.6 8 75

reported as a function of the liquid viscosity in poise (g/cm -s), the slot width
in mm, and the mean velocity Up in cm/s at the exit of the slot. Compare
the fall velocities predicted by the quasi-parallel-flow approximation in part
(g) with the measured fall velocities and also assess the validity of the quasi-
parallel-flow approximation. Discuss any significant deviations between the
experimental and model results.

3.P.26 Flow in a Semi-infinite Porous Medium Bounded by a Flat Plate

Consider the steady-state fully developed pressure-driven flow of an incompressible
Newtonian liquid through a liquid-saturated semi-infinite porous medium that is
bounded by a horizontal flat plate as shown in Figure 3.P.26-1.

(a) Write the appropriate form of the equations of motion applicable to porous
media for this flow.

(b) Write the boundary conditions required to solve the equations of motion.

Py Py

Porous media
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Figure 3.P.26-1 Steady-state fully developed flow of an incompressible Newtonian fluid
with constant physical properties through a semi-infinite porous medium bounded by a
horizontal flat plate due to an applied pressure gradient (Py — Pr)/L.
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(c) Solve the equations you derived in parts (a) and (b) for the velocity profile.

(d) Scale the describing equations for this flow to determine the criterion for
ignoring the effect of the flat plate on the velocity profile.

(e) Determine the thickness of the region of influence §, within which the effect
of the flat plate on the velocity profile cannot be ignored.

(f) Solve the simplified form of the equations of motion for the velocity profile
assuming that the effect of the flat plate can be ignored.

(g) Show how the solution for the velocity profile that you derived in part
(c) reduces to the result that you obtained in part (f).

3.P.27 Porous Media Flow Between Parallel Flat Plates

Consider the steady-state fully developed pressure-driven flow of an incompressible
Newtonian liquid through a liquid-saturated semi-infinite porous medium that is
bounded by horizontal parallel flat plates as shown in Figure 3.P.27-1.

(a) Write the appropriate form of the equations of motion applicable to porous
media for this flow.

(b) Write the boundary conditions required to solve the equations of motion.

(c) Solve the equations you derived in parts (a) and (b) for the velocity profile.

(d) Scale the describing equations for this flow to determine the criterion for
ignoring the effect of the solid boundaries on the velocity profile.

(e) Determine the thickness of the region of influence &, within which the effect
of the solid boundaries on the velocity profile cannot be ignored.

Solid plate
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Figure 3.P.27-1 Steady-state fully developed flow of an incompressible Newtonian fluid
with constant physical properties through a porous medium bounded by horizontal parallel
flat plates due to an applied pressure gradient (Py — Pr)/L.
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(f) Solve the simplified form of the equations of motion for the velocity profile
assuming that the effect of the solid boundaries can be ignored.

(g) Show how the solution for the velocity profile that you derived in part
(c) reduces to the result that you obtained in part (f).

3.P.28 Gravity-Driven Film Flow over a Saturated Porous Medium

In Example Problem 3.E.9 we considered the steady-state fully developed flow of
an incompressible Newtonian liquid film over an inclined liquid-saturated porous
medium due to a gravitationally induced body force as shown in Figure 3.E.9-1.
We used scaling analysis to determine when the flow through the porous media has
a negligible effect on the flow of the liquid film. We introduced one set of scales for
the velocity and the length variables in the liquid film and another set of scales for
velocity and length variables in the porous medium. We stated that if we had not
done this, we would have arrived at a contradiction in our scaled equations. How-
ever, the forgiving nature of scaling would then indicate that we had not scaled some
quantity so that it was o(1). To understand better what is meant by the forgiving
nature of scaling, rework this problem while assuming (incorrectly!) that the veloc-
ity and the length scales are the same in both the liquid film and the porous medium.

3.P.29 Radial Flow from a Porous Cylindrical Tube

Consider the steady-state laminar flow of a Newtonian liquid with constant physical
properties that is caused by fluid emanating radially at a uniform volumetric flow
rate Q from a cylindrical tube having length L, outer radius R, and porous walls
that is immersed in an infinite pool of the same liquid as shown in Figure 3.P.29-1.
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Figure 3.P.29-1 Steady-state laminar flow of a Newtonian liquid with constant physical
properties that is caused by fluid emanating radially at a uniform volumetric flow rate Q
from a cylindrical tube of length L, outer radius R, and porous walls that is immersed in
an infinite pool of the same liquid; the radial velocity profile at the surface of the cylinder
is shown at which the pressure is Pg; the pressure far removed from the cylinder is Pw.
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(a) Write the appropriate form of the simplified equations of motion for the flow
exterior to the cylinder, allowing for the fact that the finite length of the
cylinder implies that there will be end effects; note that this flow is caused
by the pressure gradient Pr — P, generated between the outer surface of
the porous cylindrical tube and infinity.

(b) Write the boundary conditions required for the differential equations above.

(c) Scale the describing equations to determine the criteria for ignoring the end
effects on the radial velocity profile; note that the radial velocity scale is
determined from the known volumetric flow rate.

(d) Solve the resulting simplified describing equations to obtain the radial veloc-
ity profile in the liquid exterior to the cylinder.

3.P.30 Entry-Region Flow in a Tube with a Porous Annulus

In this problem we explore the idea that one might be able to decrease the entry
region length for steady-state laminar pipe flow by lining the wall of the pipe
with an annular region of porous medium, as shown in Figure 3.P.30-1. The outer
impermeable wall of the pipe is at R,. The porous medium is confined in the annular
region defined by radii R; and R;, where Ry < R;,. Assume that fluid enters the pipe
in plug flow; that is, u, = Uy at z = 0 for 0 < r < R,. The flow within the pipe,
including the porous annular region, is caused by an applied pressure difference
over the length of the pipe L; the downstream pressure is known and denoted by
Pr; however, the upstream pressure is not specified. This fluid may be assumed to
be Newtonian and to have constant physical properties. The pipe is assumed to be
horizontal such that gravitational body forces can be ignored.

(a) Write the appropriately simplified continuity and equations of motion for
the flow within the pipe; in writing these equations, denote the velocity
components as U, u,, and ug.

(b) Write the appropriately simplified continuity and equations of motion for
the flow within the porous pipe wall; in writing these equations, denote the
velocity components as i, i,, and iyg.

(c) Write the boundary conditions required to solve the differential equations
you obtained in part (a).

(d) Write the boundary conditions required to solve the differential equations
you obtained in part (b). Assume that the radial velocity profile within
the porous medium becomes pluglike within a region of influence that has
an unspecified thickness §, whose value will be estimated in the scaling
process; that is, assume that the flow within the porous medium departs
from being pluglike only very near the boundaries at r = R; and r = R».

(e) Determine the scale and reference factors for the flow in the pipe; estimate
the thickness of the boundary layer or region of influence §,,.
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Figure 3.P.30-1 Side and end views of entry-region flow of an incompressible Newtonian
fluid with constant physical properties in a pipe consisting of an open region of radius R
and an annular region of porous medium between R; and R;.

(f) Determine the scale and reference factors for the flow within the porous
medium; in particular, estimate the thickness of the region of influence §,.

(g) What is the criterion for ignoring the effect of the porous medium on flow
in the pipe?

(h) What are the criteria for ignoring the effect of the curvature on the equations
of motion for flow in both the nonporous and porous regions of the pipe?

(1) Assess the merits of using this outer annular region of the porous medium

to reduce the entrance length required to achieve fully developed laminar
flow in the pipe.

3.P.31 Steady-State Laminar Flow of a Compressible Gas

In Section 3.9 we considered the steady-state laminar flow of a compressible gas
in a cylindrical tube as shown in Figure 3.9-1. We scaled the describing equations
to determine the criterion for assuming that this flow was incompressible. This
criterion was that the Mach number for the flow must be much less than 1. In
scaling the describing equations we introduced a scale for the radial derivative of
the pressure since we did not anticipate that this derivative would scale in the same
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way as the axial pressure gradient. We raised the question as to how one knows
whether to scale a derivative as the ratio of some dependent variable scale divided
by some independent variable scale or to introduce a separate scale for the entire
derivative. We indicated that the answer to this rhetorical question was contained
in the forgiving nature of scaling. To better understand what is meant by this, let
us assume (incorrectly!) that the radial pressure derivative scales as the pressure
scale Py divided by the radial length scale r;. Show that this leads to inconsistency
in the resulting dimensionless equations in that one term becomes much greater
than 1, with no other terms balancing it.

3.P.32 Velocity Profile Distortion Effects Due to Fluid Injection and
Withdrawal

Flow-field-flow fractionation is a technique for separating small particles such as
proteins and viruses from a carrier fluid such as water by combining a longitudinal
laminar flow with a transverse flow. The latter can be imposed by making the
closely spaced parallel lateral walls of the horizontal flow channel consist of two
permeable membranes. Inflow and outflow at a constant velocity V; of the same
carrier fluid (without any particles) occurs through the upper and lower mem-
branes, respectively, as shown in Figure 3.P.32-1. This drives the particles, which
are injected as a pulse in the axially flowing fluid, toward the lower membrane and
thereby provides a means of separating them. Field-flow fractionation is consid-
ered in more detail in Chapter 5 when scaling is applied to mass transfer. In this
problem we are concerned with developing a criterion for determining when the
longitudinal velocity profile can be assumed to be unaffected by the transverse flow.

< L >

Figure 3.P.32-1 Flow-field-flow fractionation showing transverse injection of a fluid with
a velocity Vy into a longitudinal flow of the same fluid that is assumed to be initially in
fully developed laminar flow; the distortion of the velocity profile that can occur due to
transverse injection is shown schematically.
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The entering carrier fluid can be assumed to be a Newtonian fluid with constant
physical properties and to have a velocity profile given by

— (2 2
w, =20 (2 -2 (3.P.32-1)
H H?

where U is the average axial velocity.

(a) Write the appropriate form of the equations of motion that describe this
flow.

(b) Write the boundary conditions that would be necessary to solve the equations
of motion.

(c) Determine the criterion necessary to ignore the effect of the permeation
through the upper and lower membrane boundaries on the solution for the
x-component of the velocity if the latter is to be used to determine quantities
such as the volumetric flow rate or average velocity.

(d) If one is interested in determining quantities in the vicinity of the mem-
brane, such as the drag on its surface, one cannot ignore the effect of the
permeation on the flow in this wall region (i.e., since the nonzero perme-
ation velocity can have a significant influence on the small axial velocity
near the membrane surface). Use scaling to determine the thickness of the
region of influence near the lower membrane boundary wherein the effects
of the permeation can never be ignored.

3.P.33 Flow Between Parallel Impermeable and Permeable Flat Plates

Consider the steady-state laminar flow of a Newtonian fluid with constant physical
properties through a horizontal channel due to a pressure driving force Py — Pr,
applied over the length L as shown in Figure 3.P.33-1. The upper surface of this
channel at y = H consists of an impermeable solid plate. The lower surface of this
channel at y = 0 consists of a permeable membrane; the permeation velocity Vj
through this membrane is given by

Vo = k[P (x) — Pam] (3.P.33-1)

where k,, is the permeability of the membrane, P(x) — Pum is the pressure drop
across the membrane in which P(x) is the local pressure on the high-pressure side
of the membrane at y = 0, and Py, is the constant pressure on the low-pressure
side of the membrane, which is assumed to be atmospheric pressure. Note that, in
general, P;, — Py, > 0, to ensure that permeation occurs over the entire length L
of the membrane. Ignore body forces and lateral edge effects (i.e., those in the z-
direction perpendicular to the plane of Figure 3.P.33-1). Also assume that the flow
is fully developed when it enters this membrane module at x = 0; note, however,
that we are not given any information on the average or maximum velocity of the
velocity profile at x = 0.
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Figure 3.P.33-1 Steady-state laminar flow of a Newtonian fluid with constant physical
properties through a horizontal channel due to a pressure driving force Py — P applied
over the length L; the upper surface at y = H consists of an impermeable solid plate; the
lower surface at y = O consists of a permeable membrane through which permeation occurs
at a constant velocity Vjp.

(a) Write the appropriate form of the equations of motion that describe this
flow.

(b) Write the boundary conditions that would be necessary to solve the equations
of motion.

(c) Determine the criterion for ignoring the axial diffusion of vorticity (mo-
mentum).

(d) Determine the criteria necessary to assume that this flow is essentially fully
developed within the region 0 < x < L.

(e) For the simplifying assumptions appropriate to parts (c) and (d), determine
the solution for the dimensionless pressure and axial velocity profiles.

(f) For the simplifying assumptions appropriate to parts (c) and (d), derive an
equation for determining the y-component of the velocity; it is not necessary
to solve this equation.

(g) In part (e) you determined the solution for the dimensionless pressure profile
P(x). In fact, the pressure will have a slight dependence on y as well. For
the simplifying assumptions appropriate to parts (c) and (d), determine the
equations necessary to obtain the complete dimensionless pressure profile
P (x, y); that is, including the y-dependence as well. It is sufficient to express
your result for the pressure profile in terms of the two velocity components
uy and uy.

(h) Determine the criterion necessary to ignore the effect of the permeation
through the membrane on the solution for the x-component of the velocity
if the latter is to be used to determine quantities such as the volumetric flow
rate or average velocity.
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(i) If one is interested in determining quantities in the vicinity of the membrane,
such as the drag on its surface, one cannot ignore the effect of the permeation
on the flow in this wall region (i.e., since the nonzero permeation velocity can
have a significant influence on the small axial velocity near the membrane
surface). Use scaling to determine the thickness of the region of influence
wherein the effects of the permeation can never be ignored.

3.P.34 Flow in an Annulus with Fluid Injection and Withdrawal

Consider the steady-state fully developed flow of an incompressible Newtonian
fluid with constant physical properties in the annular region between radii R; and
R, as shown in Figure 3.P.34-1. The flow in the axial direction is caused by a
constant-pressure driving force given by AP = Py — P applied across the length
L. Both the inner wall at R; and the outer wall at R, are permeable membranes.
Fluid is injected at a constant radial velocity Vj into the annular region through
the inner wall at R; and withdrawn at some constant unspecified velocity (not
necessarily equal to Vj) from the annular region through the outer wall at R;.

Withdrawal of fluid at outer wall

SIDE VIEW \

z at constant velocity V,

A
~
Y

Axial and radial flow in

END VIEW ) .
this annular region

Inner wall at R,

Outer wall at R,

Figure 3.P.34-1 Steady-state fully developed laminar flow of a Newtonian fluid with con-
stant physical properties through an annulus due to a pressure driving force Py — P applied
over the length L; fluid injection occurs at constant velocity Vj through the inner permeable
wall at r = R; and fluid withdrawal occurs at a constant unspecified velocity at the outer
permeable wall at r = R».
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This injection and withdrawal of fluid is done under conditions that maintain fully
developed flow throughout the annulus.

(a)
(b)

(©)

(d)

(e

®

(2)

(h)

®

@

(9]

Simplify the continuity equation in cylindrical coordinates.

What are the implications of the continuity equation for the case of fully
developed flow for the axial component of velocity? Explore these math-
ematically by integrating the appropriate term in the continuity equation
that contains the axial velocity. Be careful in considering the integration
constant(s) you obtain in your partial integration.

What are the implications of the continuity equation for the case of fully
developed flow for the radial component of velocity? Explore these mathe-
matically by integrating the appropriate term in the continuity equation that
contains the radial velocity. Apply an appropriate boundary condition to this
first-order differential equation for the axial velocity and obtain a equation
for the radial velocity profile. Note in curvilinear coordinates that fully
developed flow does not necessarily mean that the radial velocity component
does not change in the radial direction, however, it does imply something
about the radial variation of the radial velocity.

Simplify the axial component of the equations of motion in cylindrical coor-
dinates for this flow. Note that the axial pressure gradient is constant, as
indicated in the problem statement.

Write the appropriate boundary conditions needed to solve the differential
equation that you derived in part (d).

Simplify the radial component of the equations of motion in cylindrical
coordinates for this flow; you may ignore the small effect of the gravitational
body force.

Scale the differential equations and boundary conditions that you derived
for this flow in parts (d) and (e). Your answer should include specifying
the scale and reference factors needed to ensure that your dependent and
independent variables are bounded of order one.

Use your scaling analysis in part (g) to determine the criterion for ignoring
the effect of the fluid injection and withdrawal at the walls on the solution
for the axial velocity.

Use your scaling analysis in part (g) to determine the criterion for assuming
that the inner wall is essentially at r = 0.

Use your scaling analysis in part (g) to determine the criterion for ignoring
the curvature effects. That is, what is the criterion for assuming that this is
essentially the same as flow between two parallel flat plates at which there
is injection at the lower plate and withdrawal at the upper plate?

Solve the differential equation that you derived in part (f) to obtain an
analytical solution for the pressure profile as a function of r and z; in
carrying out this integration, do not forget that d P/0z = —AP/L since it
will help you determine the integration “constant” that you obtain in your
radial integration.
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(1) Solve the differential equation and appropriate boundary conditions that
you derived in parts (d) and (e) to obtain an analytical solution for the axial
velocity profile as a function of r.

3.P.35 Flow Between Parallel Permeable Membranes

Consider the parallel permeable membranes shown in Figure 3.P.35-1, which are
open at the downstream end at x = L to atmospheric pressure Py, but closed at
the upstream end at x = 0. All along the semipermeable walls of the parallel mem-
branes, an incompressible Newtonian liquid with constant physical properties flows
in at a constant velocity Vj. The fluid that flows in through the semipermeable walls
ultimately exits to the atmosphere from the open end of the parallel membranes.

(a) Write the appropriate form of the equations of motion for this flow.

(b) Write the boundary conditions that are required to solve the equations of
motion.

(c) Scale the describing equations to determine the criteria for making the
lubrication-flow approximation.

(d) Solve for the axial velocity profile as a function of y and x; be certain that
you express your answer entirely in terms of known quantities; that is, you
must eliminate the pressure gradient from the equation that you obtain for
the axial velocity profile.

(e) Solve for the pressure profile at any axial position along the flow.
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Figure 3.P.35-1 Steady-state laminar flow of an incompressible Newtonian liquid with
constant physical properties between parallel permeable membranes owing to a constant
radial velocity Vj through the permeable wall at y = +H; the end between the parallel
membranes at x = 0 is closed and impermeable; the end at x = L is open to atmospheric
pressure Py
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(f) Solve the simplified describing equations that you obtained in part (c) for
the y-component of velocity as a function of y and x.

3.P.36 Dimensional Analysis for Flow Around a Falling Sphere

In Section 3.10 we used the scaling approach for dimensional analysis to develop a
correlation for the terminal velocity U, of a spherical particle having radius R and
density p, falling, owing to gravitational acceleration g through an incompressible
Newtonian liquid having density p and viscosity u, as shown in Figure 3.10-1.

(a) Use the scaling analysis approach to dimensional analysis to develop a
correlation for the viscous drag force on the spherical particle.

(b) Consider how the correlation that you developed in part (a) simplifies for
the special case of creeping flow.

3.P.37 Dimensional Analysis for Impulsively Initiated Laminar Tube Flow

In Example Problem 3.E.7 we considered the impulsively initiated laminar flow of
an incompressible Newtonian fluid with constant physical properties in a cylindrical
tube, as shown in Figure 3.E.7-1.

(a) Use the scaling approach to dimensional analysis to determine the dimen-
sionless groups needed to correlate the instantaneous local velocity u, (7, t).
Isolate u, into just one dimensionless group.

(b) Use the scaling approach to dimensional analysis to determine the dimen-
sionless groups needed to correlate the instantaneous viscous drag force on
the wall. Be certain to write all the equations you would solve in order to
obtain the viscous drag force. Isolate u, into just one dimensionless group.

(c) How would the dimensional analysis in parts (a) and (b) simplify for the
special case of fully developed flow?

3.P.38 Dimensional Analysis for Flow in an Oscillating Tube

In Practice Problem 3.P.19 we considered the unsteady-state flow of an incom-
pressible Newtonian fluid with constant physical properties through a horizontal
cylindrical tube of radius R and length L due to both an axial pressure gradient
and an oscillating wall, as shown in Figure 3.P.19-1. Consider the special case of
unsteady-state flow in this tube that is caused only by tube wall that is oscillated
at a velocity u, = Uy cos wt, where w is the angular frequency of the oscillation in
radians per second.

(a) Use the scaling approach to dimensional analysis to determine the dimen-
sionless groups needed to correlate the instantaneous local velocity u,(z, );
isolate u, into one dimensionless group, ¢ into another, and the viscosity
into a third dimensionless group; note that there may be more than three
dimensionless groups.
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(b) How would the dimensional analysis in part (a) simplify for quasi-steady-
state creeping flow?

3.P.39 Dimensional Analysis for Curtain-Coating Flow

In Practice Problem 3.P.25 we consider the steady-state laminar curtain-coating
flow of an incompressible Newtonian liquid with constant physical properties as
shown in Figure 3.P.25-1. This problem involved the use of scaling analysis to
simplify the describing equations appropriate to a quasi-parallel flow. In part (h) of
this problem the analytical solution for the axial velocity u, at 5 cm down from
the entrance slot was compared with experimental measurements. We suspect that
the result for the axial velocity that we obtained in part (g) of this problem will
display considerably more error as the viscous terms that we ignored in our scaling
analysis become more important. Assume that the pressure terms in the equations of
motion can be ignored and use dimensional analysis to arrive at the dimensionless
groups needed to correlate the axial velocity u, at any point x = L below the slot.
Assume that the axial velocity that you are correlating represents an average value
of u, across the cross-section at any point x = L.

3.P.40 Dimensional Analysis for Flow Between Parallel Membranes

Consider the steady-state fully developed laminar flow of an incompressible New-
tonian fluid with constant physical properties between two unbounded perme-
able membranes separated by a distance 2H due to a pressure driving force
AP = Py — P applied over a distance L, as shown in Figure 3.P.40-1. The same
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Figure 3.P.40-1 Steady-state fully developed laminar flow of an incompressible Newtonian
fluid with constant physical properties through a horizontal channel due to a pressure driving
force Py — Pr. applied over the length L; injection of this same fluid occurs through the
membrane boundary at y = —H at a constant permeation rate of V_p; withdrawal of fluid
occurs at the upper membrane boundary at y = +H at a constant permeation rate of V.
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fluid is simultaneously injected at the lower plate at a velocity V_y while uniform
suction occurs at the upper plate to remove fluid at the velocity V,y.

(a) Use the continuity equation to show that V_y = V5 = V, a constant.

(b) Use dimensional analysis to develop a correlation for the total drag force
exerted in the +z-direction by the flowing fluid on the upper and lower
plates.

(c) Use your dimensional analysis result to determine how much the total drag
force will increase if the applied pressure force A P is doubled.

(d) Use dimensional analysis to develop a correlation for the volumetric flow
rate Q.

(e) Use your dimensional analysis results in parts (b) and (d) to determine how
much the total drag force will increase if the volumetric flow rate is doubled.

3.P.41 Dimensional Analysis for Flow in a Hollow-Fiber Membrane

In Example Problem 3.E.10, we consider the steady-state flow of an incompressible
Newtonian fluid with constant physical properties in a hollow-fiber membrane, one
end of which is closed and the other open to the atmosphere, which is caused
by permeation through the wall at a constant velocity Vj, as shown in Figure
3.E.10-1. This problem involved the use of scaling analysis to assess the criteria for
assuming that this is a lubrication flow. Assume now that we wish to correlate the
drag force on the hollow-fiber wall for the general case when the lubrication-flow
approximation cannot be made. Use dimensional analysis to infer the appropriate
dimensionless groups to correlate the dimensional drag force. Express your answer
in terms of the standard dimensionless groups used to correlate drag phenomena
of this type; that is, in terms of an appropriately defined friction factor, Reynolds
number, and aspect ratio.



4 Applications in Heat Transfer

If we assume that the ice is thin enough so that the temperature gradient can be
considered as uniform from the upper to the lower surface, we can derive

at once a very simple solution. . .."

4.1 INTRODUCTION

The quotation cited above appeared in the classic text Heat Conduction with
Engineering and Geological Applications, which still serves as a basic reference
book in this field of research. In particular, this statement was made in connection
with justifying when the unsteady-state freezing of water-saturated soil could be
assumed to be quasi-steady-state. However, an appropriate rejoinder to the quote
above would be: “How thin is thin?” The solution to the quasi-state-state prob-
lem indeed is “very simple”. However, leaping to the conclusion that “the ice is
thin enough” is intuitive. Alternatively, scaling analysis can be used to develop a
quantitative criterion for assessing the applicability of the quasi-steady-state approx-
imation. This is considered in Section 4.7 for this freezing problem involving heat
transfer with phase change.

In this chapter we consider the application of scaling analysis to heat transfer.
The organization of this chapter is the same as that used in Chapter 3. To understand
fully the material in this chapter, it is necessary first to read Chapters 1 and 2.
However, since some readers might be interested primarily in heat transfer rather
than fluid dynamics, the first few examples are developed in the same detail as was
done in Chapter 3; that is, it will be possible to understand how to apply scaling
analysis to heat transfer without necessarily thoroughly understanding the material
in Chapter 3. However, it will clearly be necessary to understand some aspects
of fluid dynamics when convective heat transfer is considered. Note that in this
chapter we again use the ordering symbols o(1) and O(1) introduced in Chapter 2.

L. R. Ingersoll, O. J. Zobel, and A. C. Ingersoll, Heat Conduction with Engineering and Geological
Applications, McGraw-Hill, New York, 1948, p. 197.

Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach
to Model Building and the Art of Approximation, By William B. Krantz
Copyright © 2007 John Wiley & Sons, Inc.
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Recall that the symbol o(1) implies that the magnitude of the quantity can range
between 0 and more-or-less 1, whereas the symbol O(1) implies that the magnitude
of the quantity is more-or-less 1 but not much less than 1.

Some of the scaling considerations in this chapter are similar to those encoun-
tered in scaling fluid dynamics problems: for example, quasi-steady-state and
boundary-layer phenomena. However, in this chapter we apply scaling analysis
to determine when other simplified models can be used, such as film theory and
penetration theory for conductive heat transfer; there are no analogs to these approx-
imations in fluid dynamics. The same disclaimer applies to this chapter as was
stated for Chapter 3: namely, that no attempt will be made here to provide a
detailed derivation of the describing equations that are used in the scaling analysis.
Hence, the material in this chapter provides a useful supplement for a foundation
course in heat transfer. The reader is referred to the appendices that summarize
the energy equation in generalized vector—tensor notation as well as in rectangular,
cylindrical, and spherical coordinates. These equations serve as the starting point
for each example problem.

We begin by considering the use of o(1) scaling to simplify pure heat-conduction
problems. Scaling analysis is then used to justify simplifications made in heat
transfer, such as the penetration-theory and film-theory approximations, low Biot
number heat transfer, conduction- and heat-generation-dominated convective heat
transfer, low Peclet number convective heat transfer (the analog to the creeping-
flow approximation in fluid dynamics) and high Peclet number convective heat
transfer (the analog to high Reynolds number or boundary-layer flows). We then
apply o(1) scaling to heat transfer with phase change, which introduces scaling of
moving boundary problems. Applying scaling analysis to heat transfer now permits
us to determine when the variation of physical and/or transport properties with tem-
perature needs to be considered in developing models. Finally, the scaling analysis
approach is applied to dimensional analysis for heat-transfer problems. Additional
worked example and practice problems are included at the end of the chapter.

4.2 STEADY-STATE HEAT TRANSFER WITH END EFFECTS

This first example illustrates the application of the o(1) scaling analysis procedure
to a steady-state conductive heat-transfer problem for which an exact analytical
solution is available. If the describing equations can be solved analytically, there
is no need to apply scaling analysis to explore how the problem can be simplified.
However, this problem is instructive in that the solution to the simplified equations
obtained via scaling can be compared with the analytical solution to the unsimplified
describing equations to assess the error incurred as a function of the magnitude
of the dimensionless group, which needs to be small to justify the approximation.
It will also illustrate region-of-influence scaling whereby we seek to determine
the thickness of a region wherein some important effect is concentrated. Region-
of-influence scaling is particularly important since it forms the basis of thermal
boundary-layer theory and penetration theory.
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Figure 4.2-1 Steady-state two-dimensional heat conduction in a homogeneous solid with
constant physical properties, width W, and height H such that W > H; the faces at x = 0,
x = W, and y = 0 are held at a constant temperature 77, whereas the face at y = H is held
at a constant temperature 7.

Consider steady-state heat conduction in a homogeneous solid having constant
physical properties that has width W in the x-direction, height H in the y-direction,
and is infinitely thick in the z-direction, as shown in Figure 4.2-1; the geometry is
such that W > H. The planar faces at x = 0, x = W, and y = 0 are held at a con-
stant temperature 77, whereas the planar face at y = H is maintained at a constant
temperature 7,. We anticipate that if W > H, we might be able to ignore the
heat conduction in the x-direction. However, the question arises as to how much
larger W has to be relative to H to ignore the lateral heat conduction. Another
question is: How much error do we encounter if we ignore the lateral heat con-
duction? We employ scaling analysis to determine the criterion for when we can
assume that this can be approximated as one-dimensional heat conduction in the
y-direction; that is, we seek to determine when the lateral heat transfer or end
effects can be neglected. We invoke the stepwise o(1) scaling analysis procedure
outlined in Chapter 2. In this first example of o(1) scaling analysis applied to heat
transfer, we show all the steps in detail and provide a discussion of the rationale
for each step.

Step 1 involves writing the describing equations, in this case the thermal energy
equation appropriately simplified for this problem statement and its boundary
conditions. Equation F.1-2 in the Appendices simplifies to the following for the
conditions specified for this heat-transfer problem:

T 3T

P Froe 0 (4.2-1)
T=T at x=0 (4.2-2)
T=T at x=W (4.2-3)
T =T at y=0 (4.2-4)

T=T, at y=H 4.2-5)
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These boundary conditions constitute the temperatures prescribed at the four
boundaries.

Step 2 involves introducing arbitrary scale factors for each dependent and inde-
pendent variable. Step 3 requires introducing a reference factor for the temperature
since it is not naturally referenced to zero at any of the boundaries. Step 4 involves
defining the following dimensionless variables:

T-T, X ey
5 X —; y = —
T Xs Vs

*

T = (4.2-6)

In step 5 these dimensionless variables are substituted into the describing equa-
tions (4.2-1) through (4.2-5):

1 3%T* 1 9%T*

el ey el 4.2-7)
TT +T, =T, at xx* =0 (4.2-8)
T,T*"+T, =T at xgx* =W (4.2-9)
TT*+T, =T, at yy =0 (4.2-10)
TT*+T, =T, at yy =H (4.2-11)

Step 6 involves dividing through by the dimensional coefficient of the conduction
term in the y-direction in equation (4.2-7) since this term must be retained to
account for the principal direction for heat transfer. In the four boundary conditions
we divide through by the dimensional coefficient of the dimensionless dependent
variable, which yields

ySZ 82T* 82T*

2 =0 4.2-12
x2 9x*2 + 0y*2 ( )
T — T,
7% = ! at x* =0 (4.2-13)
T
T, — T, W
7 = ! at x* = — (4.2-14)
T X
T — T,
T = lT at y* =0 (4.2-15)
T, H
T* = 2T at y* = — (4.2-16)
| Vs

Step 7 involves determining the scale and reference factors to ensure that the
dimensionless variables are o(1); that is, that they are bounded between zero and
more-or-less 1. This can be achieved by setting the dimensionless groups containing
the reference temperature and temperature scale in equations (4.2-13), (4.2-14),
or (4.2-15) equal to zero and in equation (4.2-16) equal to 1; that is,
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T, — T,
T,
L-T T-T
T, T

=1=T,=T-T (4.2-18)

Since our region of interest spans the solid between the four planar faces, the
dimensionless spatial variables can be bounded between zero and 1 by setting the
dimensionless groups containing x; and y, in equations (4.2-14) and (4.2-16) equal
to 1; that is,

w
Xs
H
2oy =H (4.2-20)
Vs

Our dimensionless equations now become

H?3%T*  9%T*

W T oy =0 4.2-21)
T*=0 at x*=0 (4.2-22)
T*=0 at x*=1 (4.2-23)
T"=0 at y*=0 (4.2-24)
T*=1 at y*=1 (4.2-25)

Step 8 then involves using our scaled dimensionless describing equations to assess
the conditions for which we can ignore lateral (x-direction) heat conduction.
Equation (4.2-21) indicates that the lateral heat-conduction term will drop out of
the describing equations if the following condition holds:

2

W2 <1 (4.2-26)

If the condition above is satisfied, equation (4.2-21) reduces to

9T
e 0 (4.2-27)
y
for which the solution is given by
T = y* (4.2-28)

Note that the criterion that has emerged from our scaling analysis for ignoring the
effect of lateral heat conduction is in terms of a dimensionless group. The physical
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significance of this dimensionless group is that it is the ratio of the magnitude of
the lateral to vertical (x- to y-direction) heat conduction. The dimensionless groups
that emerge from scaling analysis will always have a physical significance that can
be determined by examining how a particular group was formed: in this case, by
dividing the coefficient of the lateral heat-conduction term by that for the vertical
heat-conduction term.

To gain a better feeling for the error incurred when scaling approximations
are made, it is instructive to compare the approximate solution for small values
of H?/W? given by equation (4.2-28) to the exact analytical solution to
equation (4.2-21) that is given by?

B % Z (=Dt *sir.lh(nny*H/ W) (4.2-29)
T = sinh(nr H/ W)

Note that if the dimensionless group H/ W < 1, equation (4.2-29) can be expanded
in a Taylor series; the first nonzero term in this expansion is the approximate solu-
tion given by equation (4.2-28). Equation (4.2-28) predicts that the dimensionless
temperature is constant along any horizontal plane corresponding to some specified
value of y*. The exact solution given by equation (4.2-29) predicts that the temper-
ature along any horizontal plane varies with the lateral location. Figure 4.2-2 plots
the error that is incurred when equation (4.2-28) is used to predict the dimension-
less temperature at y* = 0.5 (i.e., 7" = 0.5) as a function of the lateral location
x* for H*/W? =0.01 (H/W =0.1) and H>/W? = 0.1 (H/W = 0.316); that is,

100
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Figure 4.2-2 Percentage error in the dimensionless temperature at y* = 0.5 that is incurred
when the effect of lateral conduction is ignored as a function of the dimensionless lateral
position x* for H/W = 0.1 (H>/W? =0.01) and H/W = 0.316 (H?>/W? = 0.1).

%F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley, New York, 1996,
pp. 163-167.
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the error incurred when lateral conduction is ignored.> Figure 4.2-2 is plotted
only for 0 < x* < 0.5 since the temperature profile is symmetrical about the plane
defined by x* = 0.5. This figure indicates that for H2/W? = 0.01 the error is less
than 10% across 80% of the total width of the solid. In contrast, for H2 / w2 =0.1,
the error is less than 10% across only 50% of the total width of the solid. This
is to be expected since ignoring lateral conduction becomes a progressively better
approximation as the dimensionless group H?/W? decreases. These errors are typ-
ical of what one can anticipate for the approximations that emanate from scaling
analysis. Since the dimensionless variables are scaled to be of order one, neglecting
a term that is multiplied by a dimensionless group that is O(0.1) or O(0.01) should
result in errors of approximately 10% and 1%, respectively.

The preceding analysis indicates that the error encountered in making some
assumption depends not only on the magnitude of the dimensionless group that
emanates from the scaling analysis, but also on the particular quantity that is being
predicted. For example, ignoring the lateral conduction in the present problem
yields accurate predictions for the temperature at the center of the solid even when
H?/W? is as large as 0.1. However, the prediction for the dimensionless temper-
ature is considerably in error at x* = 0.05 even when H?/W? is as small as 0.01.
Indeed, the error in the temperature predicted that is incurred when lateral heat con-
duction is neglected increases without bound at points progressively closer to the
lateral boundaries. Moreover, the thickness of this wall region wherein lateral con-
duction is important is directly proportional to the value of H/W. Clearly, it would
be of value to be able to estimate the thickness of this wall region wherein two-
dimensional conductive heat transfer must be considered. This can be done using
region-of-influence scaling, whereby we seek to determine the thickness of a region
within which some effect is important; in this case, the thickness of the region near
the lateral boundaries wherein lateral heat-conduction effects are significant.

To carry out region-of-influence scaling, the unspecified length scale factor in
fact becomes the thickness of the region of influence, which we denote by the
symbol §; to emphasize its particular physical significance. By this we mean that
the relevant dependent variable, in this case 97*/9x*, is O(1) within this region.
Let us rescale this problem to determine the magnitude of §,. It is sufficient here
to consider only one of the lateral boundaries, due to the symmetry of the heat-
transfer geometry. Equations (4.2-1), (4.2-2), (4.2-4), and (4.2-5) remain the same;
however, equation (4.2-3) needs to be replaced by a boundary condition appropriate
to the wall region, which is given by

oT
0 at x=34 (4.2-30)
ax

This boundary condition merely states that the lateral variation in temperature
is confined to the wall region or region of influence whose thickness 8, will be
determined via scaling analysis.

3The infinite series in equation (4.2-29) converges rather slowly; hence, 50 terms in this series were
retained in determining the dimensionless temperature predicted by this exact solution.
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If the dimensionless variables defined by equations (4.2-6) are substituted into
equations (4.2-1), (4.2-2), (4.2-4), (4.2-5), and (4.2-30) and step 6 in the scal-
ing analysis procedure is applied, the following set of dimensionless describing
equations is obtained:

ys2 aZT* aZT*

xsz 8x*2 + W = O (42—31)
T, — T,
TF="1 T 4 x*=0 (4.2-32)
T
aT* . O
=0 at xn = — (42_33)
ox* Xs
* Tl - TV *
T" = at y" =0 (4.2-34)
T;
" T, —T, " H
TF = at y' = — (4.2-35)
T Vs

Applying o(1) scaling then results in the following for the scale and reference
factors:

T, =Ty, I, =T, — Ti; Xy =& y=H (4.2-36)

These scale factors differ from those obtained initially in that the lateral length
scale is now the thickness of the region of influence near the lateral boundary
rather than being the entire width of the solid. This is a reasonable result since the
temperature goes through a characteristic change 7, — 77 over the distance §, near
the lateral boundary rather than over the entire half-width of the solid.

If the scale and reference factors indicated in equations (4.2-36) are introduced
into equations (4.2-31) through (4.2-35), we obtain the following set of dimension-
less describing equations:

H?321*  3%T*

I 4.2-37
82 9x*2 + 0y*2 ( )
T* =0 at x*=0 (4.2-38)

oT*
—0 at x =1 (4.2-39)

dx*
T*=0 at y*=0 (4.2-40)
T*=1 at y*'=1 (4.2-41)

If lateral heat conduction is important within the region of influence, both terms in
equation (4.2-37) must be o(1). This implies that

2
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That is, the thickness of the region of influence near the lateral boundary is
equal to the vertical length scale. This implies that an approximate analysis that
ignores lateral heat conduction will begin to incur significant error when x* =
x/W =§6,/W = H/W.Note in Figure 4.2-2 that the percentage error in the dimen-
sionless temperature begins to increase markedly when x* < 0.1 for H/W = 0.1
(H?*/W? = 0.01) and when x* < 0.316 for H/W = 0.316 (H?>/W? = 0.1). Hence,
we see that scaling analysis not only determines the criterion for when lateral con-
duction can be ignored, but also provides a measure of the region near the lateral
boundaries wherein this assumption breaks down.

A similar scaling analysis can be done to determine when three-dimensional heat
conduction in a rectangular block can be simplified to a two- or one-dimensional
problem. The criteria for ignoring axial conduction in a long thin solid cylinder
or radial conduction in a short wide cylinder can also be determined using an
analogous scaling analysis. These are considered in the practice problems at the
end of the chapter.

4.3 FILM AND PENETRATION THEORY APPROXIMATIONS

Now that the procedure for o(1) scaling analysis has been illustrated in detail,
we use this method to explore the various approximations made in classical heat-
transfer modeling. The first problem that we consider is unsteady-state one-
dimensional heat conduction in a solid that has constant physical properties and
a thickness H as shown in Figure 4.3-1. This solid is initially at a constant

=Ty T=T, 1<0

N T

— H P

Figure 4.3-1 Unsteady-state one-dimensional heat conduction in a solid with constant
physical properties and thickness H.
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temperature 7Ty; however, one surface of this solid is then raised to a temper-
ature 77 while the other surface is maintained at 75. We use scaling analysis
to explore what approximations might be made to simplify this heat-transfer
problem.

We begin by writing the thermal energy equation given by equation (F.1-2) in
the Appendices appropriately simplified for the conditions defined in the problem
statement along with the initial and boundary conditions (step 1):

aT 0°T

= =% (4.3-1)
T=Ty at t<0 0<x<H (4.3-2)
T=T at x=0, >0 4.3-3)
T=Ty at x=H (4.3-4)

where o = k/pC), is the thermal diffusivity in which k the thermal conductivity,
o the mass density, and C, the heat capacity at constant pressure. Equation (4.3-
2) is the given initial temperature condition. Equations (4.3-3) and (4.3-4) are the
prescribed constant temperatures at the two boundaries. This is a nontrivial problem
to solve, due to the unsteady-state heat transfer and the finite thickness of the solid.
We use o(1) scaling to explore when these describing equations might be simplified
to permit a tractable solution.

We begin by defining dimensionless variables involving unspecified scale factors
(steps 2, 3, and 4):

. f*

X t
— — (4.3-5)
'xS tS

Note that we have introduced a reference factor for the temperature since it is not
naturally referenced to zero. We then introduce these dimensionless variables into
the describing equations and divide through by the coefficient of one term in each

equation that we believe should be retained (steps 5 and 6):

2 * 2%
©aT 0°T
L O _ T2 (4.3-6)
ats Ot* Ox*2
* TO - Tr * *
T = at <0, 0<x™<— 4.3-7)
T Xs
* Tl - Tr * *
T = at x* =0, >0 (4.3-8)
T;
" To— T, " H
T = at x" = — (4.3-9)
T Xs

Now let us proceed to determine the scale factors (step 7). The dimension-
less temperature can be bounded to be o(1) by setting the groups containing the



FILM AND PENETRATION THEORY APPROXIMATIONS 155

temperature scale and reference factors in equations (4.3-7) or (4.3-9) and (4.3-8)
equal to 1 and zero, respectively, to obtain

* TO - T
=t 0T =Ty (4.3-10)

., TI—-T,
T'=——=1=T,=T-T 4.3-11)

The scale factor for the dimensionless time variable for unsteady-state problems is
often the observation or contact time; that is, ¢, = t,, the particular time at which
the process is being considered. The manner in which the length scale factor is
determined depends on the observation time. Let us assume that the dimensionless
groups containing the length scale in equations (4.3-7) or (4.3-9) determine x;.
Although this bounds the dimensionless spatial coordinate to be o(1), it does not
necessarily bound the dimensionless temperature derivative to be o(1). Indeed, the
temperature derivative could involve a much shorter length scale during the early
stages of heat transfer when the conduction has not penetrated very far into the
solid. However, let us assume that

H
Ll =H (4.3-12)
X

Substitution of the scale and reference factors defined by equations (4.3-10)
through (4.3-12) into the describing equations yields

H?>9T* 1 9T*  0°T*

at, 9r*  Fo, 9r*  ax*2 (4.3-13)
T =0 at <0, 0<x*<l1 (4.3-14)
T =1 at x*=0, >0 (4.3-15)
TF=0 at x*=1I (4.3-16)

The nature of this unsteady-state heat-transfer process is characterized by the
dimensionless group in equation (4.3-13), which is referred to as the Fourier num-
ber for heat transfer, Fo,. The physical significance of the Fourier number for heat
transfer is that it is the ratio of the contact time available for heat transfer ¢, divided
by the characteristic time H?/«a required for heat conduction through the thickness
H; that is,

at, observation or contact time
Fo,=— = — - 4.3-17)
H characteristic time for conduction

Now let us explore possible simplifications of the describing equations (step 8).
Note that if Fo, > 1, the unsteady-state term becomes insignificant; hence, the heat
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transfer can be assumed to be steady-state; that is,
ot,
Fo, = e > 1 = steady-state heat transfer (4.3-18)

Note that a large Fourier number in this problem ensures that the heat transfer
is truly steady-state, in contrast to quasi-steady-state. The latter implies that the
unsteady-state term in the energy equation is negligible but that the problem is still
unsteady-state, due to time dependence that enters through the boundary conditions.
Quasi-steady-state heat transfer is considered in a subsequent section. If Fo, = 10,
the error incurred in assuming steady state when determining quantities such as
the heat flux into the solid at x = 0 will be on the order of 10%; if Fo, = 100, the
error will be reduced to approximately 1%. However, unless the Fourier number is
very large, the error incurred in predicting point quantities such as the temperature
at x = H could be quite large. Note that since heat is penetrating from the face at
x = 0 toward the face at x = H, the solid in the region closer to x = 0 receives
more heat than the region nearer to x = H and therefore heats up more quickly.
For this reason the error incurred in predicting the local temperature for moderate
values of the Fourier number will be greater for planes nearer to x = H.

Let us now consider the special case of where Fo, = O(1), that is, when its
value is essentially equal to 1. In this case the heat transfer is inherently unsteady
state; however, the thermal penetration is through the entire thickness H of the
solid; hence, H is the appropriate length scale to ensure that the dimensionless
temperature derivative is 0o(1). Scaling permits estimating the time required for the
heat penetration to reach the face at x = H; this will be denoted by 7y and is
determined as

__ oty H?
FO[ = ? =1= tH = 7 (43-19)

Now let us explore another possible approximation that can be made in the
describing equations. If Fo, << O(1), the contact time is so short that the thermal
penetration will be confined to a region of influence or boundary layer whose
thickness is less than H. Scaling can be used to determine the thickness of this
region of influence. However, to do so, it is necessary to rescale the problem since
the length scale over which the temperature experiences a characteristic change is
no longer H. Let us denote the thickness of this region of influence by §;; that is,
our length scale is now x; = §;. The dimensionless describing equations now are
given by

82 oT* 3T
el (4.3-20)

=l w =0 0sx's
A

(4.3-21)

oz
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T —1T,

= at x*=0, *>0 (4.3-22)
Ty —T, H

T* = °T at x* = 5 (4.3-23)
s t

Equations (4.3-21) through (4.3-23) indicate that our reference and scale temper-
atures are still determined by equations (4.3-10) and (4.3-11). Moreover, due to
the unsteady-state, the characteristic time again will be the observation time z,.
However, since this is inherently unsteady-state heat transfer, the unsteady-state
term and the conduction term in equation (4.3-20) must balance each other and be
of o(1). To ensure this, we set the dimensionless group multiplying the unsteady-
state term in equation (4.3-20) equal to 1; this then provides an estimate for §;, the
thickness of the region of influence:

62
—; =1=6 =Jat, (4.3-24)

o

Note that equation (4.3-24) implies that the thickness of the region of influence or
boundary-layer thickness increases with time. Note also that when t =ty = H?/a,
we obtain §; = H; that is, the limiting value of §, is H, as expected.

Equation (4.3-24) implies that our describing equations can be written as

aT*  3°T*
Pye = ) (4.3-25)
T*=0 at " <0, 0<x*< H = ! (4.3-26)
Vet,  /Fo,
T =1 at x*=0, t*>0 4.3-27)
T* =0 at x* = H = : (4.3-28)
Jat, Fo,

Note that if the Fourier number is very small, the thermal penetration thickness §;
will be much less than the thickness of the solid H; therefore, the heat transfer will
be confined to a thin boundary layer or region of influence near x = 0; that is,

To . . .
Fo, = % « 1 = heat transfer is contact-time limited (4.3-29)

If Fo; « 1, it is reasonable to write the describing equations as

oT* 92T*
arx  9x*2

(4.3-30)
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T* =0 at <0, 0<x*<o0 (4.3-31)
T*=1 at x*=0, t*>0 (4.3-32)
T =0 as x"— 00,0<t* <o (4.3-33)

This set of simplified equations admits an exact analytical solution via the method
of combination of variables (this is also referred to as a similarity solution) in
the form

T—-Tp 1 X
T = —— —=1—erf|[ =x*)=1—erf [ —— 4.3-34
T, — To (2x ) <V4Olto) ( )

where erf is the error function that is tabulated in standard references.* Note that
T* =0.01 when x* = 3.64, which implies that x = 3.64,/af, = 3.645,. Hence,
we see that the exact solution for the unsteady-state thermal penetration confirms
our scaling analysis result; that is, it predicts that the dimensionless tempera-
ture becomes essentially zero at a distance that is essentially (within a multiplicative
constant of order one) equal to the thickness of the region of influence that we
identified via scaling analysis.

Scaling analysis for this problem revealed the full spectrum of contact time
behavior for a heat-transfer problem that can be characterized in terms of the
magnitude of the Fourier number. In summary, if

Fo,>1 = the contact time is long relative to the conduction time (4.3-35)
! steady-state heat transfer ’
the contact and conduction times are equal
Fo,=1 . 4.3-36
! = { unsteady-state heat-transfer between boundaries ( )
the contact time is short relative to the conduction time
Fo,; <1 = . . 4.3-37)
unsteady-state heat transfer in a thin boundary layer

In general, a model for a heat- (or mass-) transfer process based on assuming that
the contact time for a conductive (or diffusive) heat- (or mass-) transfer process is
long in comparison to the characteristic time for heat conduction (or species diffu-
sion) is referred to as a film theory model. The latter terminology is commonly used
in mass-transfer modeling but less commonly in heat transfer. A model for a heat-
(or mass-) transport process based on assuming that the contact time for a conduc-
tive (or diffusive) heat- (or mass-) transfer process is very short in comparison to

4M. Abramowitz and 1. A. Stegun, eds., Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, U.S.
Government Printing Office, Washington, DC, 1964.
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the characteristic time for heat conduction (or species diffusion) is referred to as
a penetration theory model. Film theory and penetration theory are used to model
complex heat- (and mass-) transfer processes that preclude obtaining tractable ana-
Iytical or numerical solutions. These models are particularly useful in determining
heat- and mass-transfer coefficients for high-mass-transfer flux conditions. That is,
the heat- and mass-transfer coefficients determined from correlations in the litera-
ture in general are valid only in the limit of very low-mass-transfer fluxes; indeed,
correlating these coefficients for high-mass-transfer flux conditions would involve
taking vastly more data and a far more complex correlation involving additional
dimensionless groups. However, these heat- and mass-transfer coefficients for low-
mass-transfer fluxes can be corrected for high-flux conditions using film theory and
penetration theory; the former is used for long contact times, whereas the latter is
used for very short contact times. The procedure for doing this is discussed by
Bird et al.’

44 SMALL BIOT NUMBER APPROXIMATION

The two problems considered in Sections 4.2 and 4.3 involved only conductive
heat transfer in a single phase. In this example we consider convective heat transfer
involving two phases. Convection implies heat transfer by bulk flow coupled with
heat conduction. Consider a solid sphere initially at temperature 7y, having constant
physical properties, radius R, and falling at its constant terminal velocity U, through
a viscous liquid whose constant temperature is 7, > Ty, as shown in Figure 4.4-1.
As a result of contact with the hot liquid, the temperature of the sphere gradually
will increase. We characterize the heat transfer in the liquid via a lumped-parameter
approach; that is, we assume that the heat transfer in the liquid can be described
by a heat-transfer coefficient 4. The latter can be obtained from correlations for
the Nusselt number, a dimensionless heat-transfer coefficient, as a function of the
Reynolds number for flow over a sphere that are available in standard references.®

Since we are representing the heat transfer in the liquid phase via a heat-
transfer coefficient, describing equations need to be written only in the con-
ducting solid sphere. The thermal energy equation in spherical coordinates given
by equation (F.3-2) in the Appendices appropriately simplified for the conditions
defined in the problem statement and the associated initial and boundary conditions
are given by (step 1)

T 19 [ ,0T
2 e 2 (2 (4.4-1)
ot r2 or ar

T=T, at +1<0, 0<r<R (4.4-2)

SR. B. Bird, W. E. Stewart, and E. L. Lightfoot, Transport Phenomena, 2nd ed., Wiley, Hoboken, NJ,
2002, pp. 703-708.
6See, for example, Bird et al., Transport Phenomena, 2nd ed., p. 439.
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y /7 Viscous liquid at
—q,=h(T.,—T) / ! temperature 7.,

Figure 4.4-1 Solid sphere with constant physical properties, radius R, and initial temper-

ature Tj falling at its terminal velocity U, in a viscous liquid whose temperature is T, such
that T > Tp.

oT
=0 at r=0, >0 (4.4-3)
ar
oT
ka— =h(Ty —T) at r=R, t>0 (4.4-4)
r

where a = k/pC, is the thermal diffusivity. Equation (4.4-2) is the given initial
temperature condition. Equation (4.4-3) is a boundary condition frequently used
when there is a point or axis of symmetry; it states that the temperature is at an
extremum (in this case a minimum) at the center of the sphere. Equation (4.4-4)
states that the heat-transfer flux from the surrounding liquid must be equal to the
conductive heat flux into the solid sphere at its surface.

Define the following dimensionless variables involving unspecified scale and
reference factors (steps 2, 3, and 4):

T—-T,

T*
T Ty ts

(4.4-5)

Note that we have introduced a reference factor for the temperature since it is
not naturally referenced to zero. Introduce these dimensionless variables into the
describing equations and divide through by the coefficient of one term in each
equation that should be retained (steps 5 and 6):
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r2 aT* 1 9 (0T
R S P . (4.4-6)
aty ¥ r*2 9r* ar*
Ty — T, R
T = OT at <0, 0<r*<-— (4.4-7)
S rS
aT*
P 0 at r* =0, >0 (4.4-8)
p
AT*  hry (T — T, R
_ M (lo T I g at rf=2, *>0 (4.4-9)
or* k T, Iy

We can bound the dimensionless temperature to be o(1) by setting the dimen-
sionless group in equation (4.4-7) equal to zero to determine the reference temper-
ature and by setting the dimensionless temperature ratio in equation (4.4-9) equal
to 1 to determine the temperature scale (step 7); that is,

To—T, Too — T
OT L=0= T, = Ty; %‘):1:”&:%0—% (4.4-10)
) )

We can bound the dimensionless radial coordinate to be o(1) by setting the dimen-
sionless group containing ry in equation (4.4-7) or (4.4-9) equal to 1; that is,

R
1o =R (4.4-11)
Iy

There are two possible time scales, the observation time ¢, and the characteristic
time dictated by the dimensionless group in equation (4.4-6) given by

2
s

L=l ==
aty

“N

R2
= (4.4-12)
o

~

Q|

The time scale given by equation (4.4-12) is appropriate when this is inherently an
unsteady-state heat-transfer problem for which both terms in equation (4.4-6) must
be retained.

If we choose the observation time as our characteristic time, we obtain the
following dimensionless describing equations:

1T 1 T
_ _<r*2_) (4.4-13)

F_(), at* 72 g ar*
T"=0 at t*<0, 0=<r"<l1 (4.4-14)
AT*
Py =0 at r"=0, >0 (4.4-15)
p
aT* ,
=Bi,(1-T* at r*=1, *>0 (4.4-16)

ar*
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where Fo; = at,/ R? is the thermal Fourier number, which is the ratio of the obser-
vation time to the characteristic time for heat conduction, and where Bi; = hR/k
is the thermal Biot number, which is the ratio of the total heat transfer external to
the sphere to the conductive heat transfer within the sphere.” For steady-state to
be achieved, we must have
R2
Fo,>1=1> o 4.4-17)

If the condition given by equation (4.4-17) is satisfied, the unsteady-state term in
equation (4.4-13) can be ignored. Integration of the steady-state form of equation
(4.4-13) subject to the boundary condition given by equation (4.4-15) implies that
the temperature gradient is zero throughout the sphere; this is turn implies that
the temperature is constant throughout the sphere. To satisfy the boundary condi-
tion given by equation (4.4-16), we must have 7* = 1 throughout the sphere; this
implies that 7 = T, throughout the sphere. This result should not be surprising
since steady-state implies that the sphere has come to thermal equilibrium with the
surrounding liquid. Note that satisfying the steady-state condition occurs at earlier
times as the Biot number increases, corresponding to improved heat transfer in the
liquid phase.

If we choose the time scale given by equation (4.4-12), our dimensionless ther-
mal energy equation assumes the form

oT* 1 8 [ ,0T*
ey (e (4.4-18)

The solution to equation (4.4-18) can be simplified for the special case of very
small Biot numbers, that is, for Bi, < 1. For this case equation (4.4-16) implies
that the dimensionless temperature gradient within the sphere is negligibly small,
thereby implying that the temperature within the sphere is uniform. Hence, equation
(4.4-18) can be integrated as follows:

bar* 1 oa aT*
/ ——A4nr*? dr :/ — r*? 4o r*? dr* (4.4-19)
0 at* 0 r*2 9r* or*
1 * Bi; (1-T%) *
oT oT
/ 2 g / o (22 (4.4-20)
o Ot 0 ar*

Use of Liebnitz’s rule given in Appendix H in the Appendices to integrate the first
term and the fact that the temperature is essentially uniform within the sphere for
very small Biot numbers then yields

d [! ar* (! 1dT*
% T*r*2 dr* = W/ V*2 dr* = g dr = Blt(l — T*) (44'21)
0 0

"Do not confuse the Biot number with the Nusselt number; they are defined similarly and represent the
ratio of convective to conductive heat transfer; however, in contrast to the Biot number, the Nusselt
number involves the ratio of convective to conductive heat transfer in the fluid phase.
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This equation can be integrated to give the following solution for the temperature
of the sphere as a function of time:

T*=1—¢ 3B (4.4-22)
For very small Biot numbers, equation (4.4-22) simplifies to
T* = 3Bi, - t* (4.4-23)

The error in the solution given by equation (4.4-23) will be in the range 10 to
100% if Bi; = O(0.1) and 1 to 10% if Bi, = O(0.01).

Scaling this problem has illustrated an important simplification: the small Biot
number approximation that can be made when considering convective heat transfer
to or from a solid object having finite dimensions.® The Biot number is a measure
of the resistance to heat conduction in the solid object relative to the resistance to
convective heat transfer in the surrounding fluid. For sufficiently small Biot num-
bers the heat transfer will be controlled totally by convection into the surrounding
fluid. Under these conditions there will be a uniform temperature in the solid object,
which permits a straightforward analytical solution. Note that most heat-transfer
textbooks do not provide any rigorous justification for the equations appropriate to
the small Biot number approximation.

4.5 SMALL PECLET NUMBER APPROXIMATION

The problem considered in Section 4.4 involved convective heat transfer in the
fluid phase adjacent to a solid sphere. However, a lumped-parameter approach was
used to account for this convection. In the present example problem we consider
the convective heat transfer explicitly. Consider the steady-state fully developed
laminar flow of a viscous Newtonian fluid with constant physical properties between
two infinitely wide parallel plates separated by a distance 2H and of length L, as
shown in Figure 4.5-1. The upstream (entering) temperature of the fluid is 7y. The
temperature of the upper and lower plates is also maintained at 7. Since the flow
is assumed to be laminar and fully developed, the velocity profile is given by

u, = U, [1 _ (%)2] (4.5-1)

where U, is the maximum velocity. As a result of this shear flow, there will be
heat generation via viscous dissipation. The latter will cause both radial and axial
conduction as well as axial convection of heat.

8Note that the small Biot number approximation is sometimes referred to as the lumped capacitance
approximation.
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Figure 4.5-1 Steady-state fully developed laminar flow of a viscous Newtonian fluid with
constant physical properties between two infinitely wide parallel plates separated by a dis-
tance 2H and of length L; the temperature of the entering fluid as well as that of the upper
and lower plates is Tp; the shear flow causes viscous heat generation; the fully developed
velocity profile is shown as well as a representative developing temperature profile.

The thermal energy equation given by equation (F.1-2) in the Appendices, appro-
priately simplified using equation (4.5-1) and for the conditions defined in the
problem statement and the associated boundary conditions are given by (step 1)

pCpUn [1 - (%)2] 2—§ - k% + k% + 4’;3"21 y2 (45-2)
T=Ty a x=0 (4.5-3)

T=/f(y at x=L (4.5-4)

T=T, a y=-+H (4.5-5)

% 0 at y=0 (4.5-6)

where f(y) is some function of y, which might be unknown. This is a nontrivial
problem to solve, due to the elliptic nature of the describing equations. The presence
of the second-order axial derivative requires that a downstream boundary condition
be specified. In many problems such as this, these downstream conditions are not
known, which precludes solving the describing equations numerically. Clearly, one
would like to know when and how these describing equations might be simplified
to permit a tractable solution. In particular, one would like to know when the
axial conduction and convection terms might be neglected. We use o(1) scaling to
determine the criteria for neglecting these terms.
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Define the following dimensionless variables involving unspecified scale factors
(steps 2, 3, and 4):

R S
T ' xs’ Vs

(4.5-7)

We have introduced a reference factor for the temperature since it is not natu-
rally referenced to zero. Introduce these dimensionless variables into the describing
equations and divide through by the coefficient of one term in each equation that
should be retained (steps 5 and 6):

s 2 ) o T x2ox2 T oy T kHT, © '
To—T,
7 ="2""" A x* =0 (4.5-9)
T,
L
T = f(y") at x*=— (4.5-10)
Xy
To—T, H
TF=0 T g =t 4.5-11)
T Vs
aT*
=0 at y*=0 (4.5-12)
ay*

Step 7 involves bounding the independent and dependent dimensionless variables
to be o(1). This can be done for the dimensionless spatial coordinates by setting
the dimensionless groups containing x; and y, in equations (4.5-10) and (4.5-11)
equal to 1; that is,

L H
—=1=x=1L; —=1l=y=H (4.5-13)
Xs Vs

To determine the reference and scale factors for the temperature, we need to con-
sider the conditions for which we are scaling. We are seeking to determine when
axial conduction and convection can be ignored relative to heat generation by vis-
cous dissipation and transverse conduction. If the former are negligible, the heat
generation by viscous dissipation must be balanced by the transverse heat conduc-
tion. Hence, we can bound our dimensionless temperature to be o(1) by setting the
dimensionless group in equation (4.5-9) or (4.5-10) equal to zero, thereby determin-
ing the reference temperature, and by setting the dimensionless group multiplying
the heat generation term in equation (4.4-8) equal to 1, to determine the temperature
scale; that is,

Ty — T, wU? wU?
=0=T, = To; n_]=T,=—" 4.5-14
T, = 0 KT, k (4.5-14)
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Substitution of the scale and reference factors defined by equations (4.5-13) and
(4.5-14) into the dimensionless describing equations given by equations (4.5-8)
through (4.5-12) yields

‘)C%L’"Hza —y 'Z—ji—Tz + 882;2 14y (4.5-15)
T =0 at x*=0 (4.5-16)
T* = f(*)  at x* =1 (4.5-17)
T*=0 at y* =+l (4.5-18)
‘z; =0 at y*=0 (4.5-19)

Now let us explore possible simplifications of the describing equations (step 8).
The criterion for ignoring axial conduction is

2

H
7 « 1 = axial conduction can be ignored (4.5-20)

that is, the aspect ratio cannot be too large. Note, however, that the length L was
arbitrary in that L could denote any value of the axial coordinate in the principal
direction of flow. This is the principle of local scaling whereby we scale the
problem for some fixed but arbitrary value of some coordinate, usually that in the
principal direction of flow.

To ignore axial convection of heat, the dimensionless group multiplying the first
term in equation (4.5-15) must be very small; that is,

c,Uu,H* U,HH U,HvH H H
PlpPmit’ _ ZmA A ZmA P Re.-Prs =Pe,— « 1  (4521)
kL a L v «olL L L

where o = k/pC), is the thermal diffusivity, v = /p is the kinematic viscosity,
Re = pU,,H/u is the Reynolds number, Pr = v/« is the Prandtl number, and
Pe; = U, H/a is the Peclet number for heat transfer. The Reynolds number is a
measure of the ratio of the convective to viscous transport of momentum. The
Prandtl number is a measure of the ratio of the viscous transport of momentum
to heat conduction. Hence, the Peclet number is a measure of the ratio of heat
convection to heat conduction. We see that the criterion for ignoring axial heat
convection is that the product of the Peclet number and the aspect ratio must
be very small. The Peclet number in heat transfer has a role analogous to that
of the Reynolds number in fluid dynamics; that is, when it is small, it justifies
ignoring axial convective transport. We will see in the next example problem that
when it is large, it justifies a boundary-layer approximation. Note that ignoring
convective transport in the energy equation in this example is analogous to ignoring
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convective transport in the equations of motion, which is the basis for the creeping-
flow approximation.’

If the conditions in equations (4.5-20) and (4.5-21) are satisfied, equations (4.5-
15) through (4.5-19) reduce to

dzT* *2
0= T4 (4.5-22)
T*=0 at y* =+l (4.5-23)
oT*
= at y* =0 (4.5-24)
y

The solution to this simplified set of describing equations is straightforward and
given by

1
T = 3(1 —y* (4.5-25)

We see from this solution that our dimensionless temperature is bounded of o(1),
which confirms that our scaling analysis is correct.

4.6 BOUNDARY-LAYER OR LARGE PECLET NUMBER
APPROXIMATION

In the preceding example we saw that a low Peclet number justified ignoring the
convective transport of thermal energy, which is analogous to a low Reynolds
number justifying neglecting convective transport of momentum in the creeping-
flow approximation considered in Chapter 3. In this example we consider the other
end of the Peclet number spectrum by exploring the implications of a high Peclet
number on heat transfer. Consider the steady-state laminar uniform (plug) flow of a
Newtonian fluid with constant physical properties and temperature T, intercepting
a stationary, semi-infinitely long infinitely wide horizontal flat plate maintained at a
constant temperature Ty such that Ty > T, as shown in Figure 4.6-1. Gravitational
and viscous heating effects can be assumed to be negligible. To fully understand
this example, it would be helpful to review Section 3.4, in which the boundary-
layer approximation in fluid dynamics was considered. As stated in Section 3.4,
boundary-layer flows are examples of region-of-influence scaling, for which we
determine the thickness of a region wherein some effect is confined, in this case
the influence of the heated flat plate that is propagated by conduction. This example
also illustrates the principle of local scaling, in which we carry out the scaling at
some arbitrary but fixed value of the axial coordinate.

9The creeping-flow approximation was considered in Section 3.3 and Example Problem 3.E.2.
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v

T=Ty,

Figure 4.6-1 Steady-state laminar uniform flow of a Newtonian fluid with constant phys-
ical properties and temperature T, intercepting a stationary, semi-infinitely long infinitely
wide horizontal flat plate maintained at a constant temperature Ty such that Ty > T the
solid line shows the hypothetical momentum boundary-layer thickness &,,, whereas the dash-
dotted line shows the hypothetical thermal boundary-layer thickness &, for Pr > 1, where Pr
is the Prandtl number.

The continuity equation given by equation (C.1-1), equations of motion given
by equations (D.1-10) and (D.1-11), and thermal energy equation given by equa-
tion (F.1-2) in the Appendices simplify to the following for the assumed flow
conditions (step 1):

Oty Oty P %u,  9%u,
— — = = -— 4.6-1
P + Py dy ox ta < 0x2 + 9y? ( )
duy duy P uy,  uy
X — = ——— 4.6-2
Py +puy dy dy +M<8x2 + dy? ( )
a d
S R (4.6-3)
ax dy
aT aT T T
Couy— Couy— =k —+—— 4.6-4
pEpt 8x+p P”yay (8x2+8y2) ( )
The corresponding boundary conditions for this flow are given by
Uy =Us, uy,=0, T=Ty at x=0 (4.6-5)
uy= [y, uy=pfG), T=[fiy) at x=L (4.6-6)
uy=0, u,=0, T=T at y=0 (4.6-7)
uy =Us, uy,=0, T=T at y=o00 (4.6-8)

where f1(y), f2(y), and f3(y) are unspecified functions. The boundary conditions
for the equations of motion were discussed in Section 3.4. The boundary conditions
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on the energy equation given by equations (4.6-5) and (4.6-7) are the prescribed
temperature of the entering fluid and at the plate, respectively. Equation (4.6-6)
merely states that to solve this elliptic energy equation, a downstream bound-
ary condition must be specified; this condition might not be known in practice.
Equation (4.6-8) states that the temperature becomes equal to that of the entering
fluid infinitely far above the flat plate.

Define the following dimensionless dependent and independent variables (steps
2,3, and 4):

Uys Uys Py
T —T, X
T = L. = = Y : = BA (4.6-9)
T Xs Yms Yis

Note that we have allowed for different y-length scales for the energy equation
and equations of motion; that is, the temperature might experience a characteristic
change of O(1) over a different length scale than the velocities. Introduce these
dimensionless variables into the describing equations and divide each equation
through by the dimensional coefficient of one term that should be retained to
maintain physical significance (steps 5 and 6):

LUy uyexg o Oul _ Py OP* wo *uk wxs  %u
T ox* Uxs Yms ya)’,’fl pu)zm dx* PUyxsXs dx*2 ;Ouxsy;%m 3}’3‘12
(4.6-10)
D ek G R 0P G s OR0
POX* T UysYms OV PUxstysYms Vi PUxsXs OX*2  puysy2 dyr2
(4.6-11)
dup | ¥ 3 (4.6-12)
0X* " UxsYms Oy,
tayes LT 0T kg 3T ko 02T* 46-13)
UysXs © Ox* YOy pCpuysx2 0x*2 pChltysyis dy)? ’
U Too — T,
wh =" u=0 T*=- at x*=0
uxs Y TS‘
(4.6-14)
L

*

l/tx :fl*(y;;)v u;k:fz*(y;;)v T*=f3(y[*) at X*:_
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To— T,

wi=0, ui=0, T"= °T at  yi=y*=0 (4.6-16)
U T _Tr

ut = M°° wy=0, T*= OOT at yi=y'=o00  (4.6-17)

Note that we have divided equations (4.6-10) and (4.6-11) by the dimensional
coefficient of the axial convection term since we are considering a high Reynolds
number flow and high Peclet number heat transfer for which the convection terms
must be retained. However, we have divided equation (4.6-13) by the dimensional
coefficient of the transverse convection term. The reason for doing this is not
obvious at this point. However, we will see that this is the principal convective
term in the energy equation for Pr > 1.

For a high Reynolds number flow for which the action of viscosity is confined
to the vicinity of the boundaries, the y-length scale for the velocities will be the
thickness of the momentum boundary layer or region of influence §,,; that is, we
say that y,s = &,,. The scale factors for the velocity components, pressure, and
axial coordinate are determined in exactly the same manner as was described in
detail in Section 3.4 and are given by (step 7)

B > &
Uys = Uso; x5 =1L; Uys = TUOO; Py = onoﬁ (4.6-18)

In view of the fact that the principal viscous term in equation (4.6-10) has to be
important at least within some small region in the vicinity of the flat plate, we set
the dimensionless group in front of this term equal to 1 to ensure that this term
is of the same size as the convection terms that are being retained. This yields
the following equation for the thickness of the region of influence or momentum
boundary layer:

g ML L L (4.6-19)
" pUs Re T /Re ‘
where Re is the local Reynolds number based on using L as the characteristic
length. Note that L is arbitrary in that it can be any fixed value of the axial length
coordinate; that is, our scaling was done for an arbitrary length L of a semi-infinitely
long flat plate; this is what is meant by the concept of local scaling. The reference
and scale factors for the temperature are determined by setting the appropriate group
in equations (4.6-14) or (4.6-17) equal to zero and in equation (4.6-16) equal to 1
to obtain

T, = Ty; T, =Ty — Tx (4.6-20)

In view of the fact that the principal conduction term in equation (4.6-13) has to
be important at least within some small region in the vicinity of the flat plate, we
set the dimensionless group in front of this term equal to 1 to ensure that this term
is of the same size as the convection terms that are being retained. This yields the
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following equation for the thickness of the region of influence or thermal boundary
layer:

s__ kL1 L 1L 4
" pCpémUs  J/Pr/Pe; PryRe Pr

where Pe;, = U, L/« is the local Peclet number for heat transfer based on using L
as the characteristic length. A comparison of equations (4.6-19) and (4.6-21) again
indicates that in heat transfer the Peclet number plays a role analogous to that of
the Reynolds number in fluid dynamics. Note that for liquids Pr > 1; hence, the
thermal boundary-layer thickness will be less than the momentum boundary-layer
thickness. For gases Pr = 1; hence, the thermal and momentum boundary layers
have nearly the same thickness. However, for liquid metals, Pr < 1; hence, the
thermal boundary-layer thickness will be greater than the momentum boundary-
layer thickness. The general behavior of §;(x) and §,,(x) for the case when Pr > 1
is shown in Figure 4.6-1.

If we now rewrite our dimensionless describing equations in terms of the scales
defined by equations (4.6-18) through (4.6-21), we obtain

(4.6-21)

L ou* o du* 1 dP* N 1 8%u* N du* 4.6.22)
u u, =—— — .0-
Toxr o Yoyx Re dx*  Re dx*2  9y;2
ou* ou* JP* 1 0%u*  3%u*
x_ Y * Y Y Yy
tul— = ——  — - 4.6-23
fegar T Gys T Ty T Reax2 | ay2 (4.6-23)
ur  u}
U Y (4.6-24)
ax*  oyk
1 ,aT* N LOT* 1 3T N 32T* 4.6.25)
—U,—— tu,— = .6-
Pr *ax* Y adyF  Pr-Pe 9x*2  9y2
wi=1, =0, T*=0 at x*=0 (4.6-26)
wy = frn, uy=fron, T'=fy) at x*=1 (4.6-27)
uy =0, uy=0 T"'=1 at yr=y’=0 (4.6-28)
uy=1, uy=0, T"=0 at  yr =y’ =00 (4.6-29)

The system of equations above is difficult to solve for several reasons. First, elliptic
differential equations are involved that require specifying some downstream bound-
ary conditions that in practice are generally not known. Second, as discussed in
Section 3.4, equations (4.6-22) and (4.6-23) are coupled due to the pressure. Third,
the energy equation is coupled to the solution for the equations of motion through
the two velocity components. However, if the fluid properties are not temperature-
dependent, this coupling is unidirectional in that the equations of motion can be
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solved independent of the energy equation. In view of these complications, we seek
to explore the conditions required to eliminate these two complications.

Note that in the limit of Re 3> 1 and Pe; > 1, the system of equations above
reduces to (step 8)

P * P * 82 *
s P = (4630
X yﬂ’[ ym
ou* 3”;
x -0 (4.6-31)
ax* = 0yk
1 ,aT* aT*  3°T*
—uy—— +uj = —— (4.6-32)
Pr " 9x* Yoyr o ay?
uy =1, u; =0, T"=0 at x*=0 (4.6-33)
uy =0, uj: , T*=1 at  yr=y;=0 (4.6-34)
uy=1, T*=0 at  y, =y =00 (4.6-35)

Equations (4.6-30) through (4.6-35) are the classical boundary-layer equations for
flow over a heated flat plate. Note that by showing that the pressure term in
equation (4.6-22) is negligible in the limit of high Reynolds number, we have
eliminated the coupling between x- and y-components of the equations of motion.
Moreover, we have shown that the axial viscous term in equation (4.6-22) and
the axial heat-conduction term in equation (4.6-25) are negligible in the limit of
very high Reynolds and Peclet numbers, respectively, and thereby have converted
the elliptic into parabolic differential equations that do not require a downstream
boundary condition. Note that the dimensionless y-coordinate in the equations of
motion is defined differently from that in the energy equation. If these equations
are recast in terms of dimensional variables and a stream function and similarity
variable are introduced, they can be transformed into a set of nonlinear ordinary dif-
ferential equations solved that can be solved via approximate analytical techniques
or numerically.'”

Note that the criterion for the applicability of the hydrodynamic boundary-layer
approximation is

_ pUsL Us L

Re = —— > 1 = hydrodynamic boundary layer (4.6-36)
n v

whereas the criterion for the applicability of the thermal boundary-layer approxi-
mation is

pCpUsL  UsL

Pe[ = k

> 1 = thermal boundary layer (4.6-37)

10See, for example, Bird et al., Transport Phenomena, 2nd ed., pp. 388—390.
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Since L is merely some fixed value of the axial coordinate x, the criteria above always
break down in the vicinity of the leading edge of the flat plate. Hence, if one is seek-
ing to determine an integral quantity such as the total drag or heat flux along the flat
plate, the error will not be significant if equations (4.6-36) and (4.6-37) are satisfied
over most of the plate. However, the error incurred by invoking the boundary-layer
approximation can be quite large in the vicinity of the leading edge of the plate for
point quantities such as the local velocity components, shear stress, temperature, or
heat flux. Note for 90% of the flat plate to satisfy the condition that Re > O(100),
the Reynolds number at the end of the plate must be 1000. Since the Peclet number
is the product of the Reynolds number and the Prandtl number, equation (4.6-36) is
more limiting than equation (4.6-37) for fluids other than liquid metals.

Note that scaling analysis suggests how a solution to the coupled heat- and
momentum-transfer problem can be developed that applies from the leading edge
of the plate to any arbitrary downstream distance. Recall that the coupled describing
equations are difficult to solve, owing to the presence of the axial diffusion terms
in both the thermal energy equation and the equations of motion. These terms
require specifying downstream boundary conditions that in practice are usually not
known. However, the parabolic boundary-layer equations suggested by scaling can
be solved either numerically or via approximate analytical methods downstream
from the leading edge of the plate. The resulting solutions for the temperature and
velocity profiles then can be used as downstream boundary conditions on the full
elliptic describing equations that must be solved in the vicinity of the leading edge
of the flat plate. Hence, we see that scaling not only provides a systematic method
for simplifying the describing equations, but also suggests a strategy for solving
them.

4.7 HEAT TRANSFER WITH PHASE CHANGE

Heat transfer is very often involved in problems wherein phase change occurs,
owing to the need to supply or remove the latent heat associated with the transition
from one phase to another. Figure 4.7-1 shows a schematic of melting ice within
porous soil that was initially at its freezing temperature 7y and then was subjected
to a higher constant temperature Ty at the ground surface. We will assume that
the heat transfer is one-dimensional and purely conductive and that the physical
properties are constant.!! This example will illustrate scaling of a moving boundary
problem; that is, the melting front is a boundary that moves progressively downward
into the frozen soil as heat is conducted upward to the warm ground surface. We
will again explore how this problem can be simplified. We use this problem to
illustrate the forgiving nature of scaling by making a naive mistake in the way we

""Note that the melting of ice can induce free convection heat transfer arising from the density gradients
that can be generated, due to the fact that water has a density maximum at 4°C; that is, unfrozen water
adjacent to melting ice is less dense than the water immediately above it, which can give rise to
free convection; however, this is not likely to occur in most soils, due to their low permeability to
flow.
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T=T;,1<0; T=T),t>0

v |

* L(t) Thawed soil

v

Frozen soil

Figure 4.7-1 Unsteady-state one-dimensional heat transfer due to the imposition of a tem-
perature Ty at the surface of frozen water-saturated porous soil whose initial temperature was
Ty where Ty > Ty; the position of the thaw front denoted by L(t) progressively penetrates
farther into the frozen soil due to conductive heat transfer from the ground surface.

scale one of the derivatives. This will then lead to a contradiction that suggests
that we rescale the equations to achieve o(1) scaling.

The describing equations are obtained by appropriately simplifying equation
(F.1-2) in the Appendices and prescribing the requisite initial and boundary condi-
tions (step 1):

aT 3T
PuCpu E = ky W 4.7-1)
T =Ty at t=0 4.7-2)
T=T, at x=0 fortr>0 “4.7-3)
T=Ty at x = L(¢) 4.7-4)

where k,, p,, and C,, are the effective thermal conductivity, mass density, and
heat capacity, respectively, of the unfrozen soil; note that by effective we mean
that these properties account for the presence of the solid soil and the unfrozen
water that is contained in its pores. Equations (4.7-2) and (4.7-3) are the prescribed
initial temperature and imposed temperature at the ground surface, respectively.
Equation (4.7-4) states that ice and unfrozen water that meet at the freezing front are
in thermodynamic equilibrium at the freezing temperature of water. Note that this
boundary condition is applied at the moving interface between the ice and unfrozen
water L(¢); hence, problems of this type are referred to as moving boundary prob-
lems. Since L(t) is an additional unknown, it is necessary to prescribe an auxiliary
condition to determine it. This is obtained via an integral energy balance as follows:

d (r d [
— PuCpu(T — TYdx + — / prCpp(T — T°)dx = qo “4.7-5)
dt Jo dt Ji



HEAT TRANSFER WITH PHASE CHANGE 175

where T° is an arbitrary reference temperature for the enthalpy or heat content,
pyr and C,r are the effective mass density and heat capacity, respectively, of the
frozen soil, and g is the heat transferred into the unfrozen soil at the ground surface.
Applying Leibnitz’s rule for differentiating an integral given by equation (H.1-2)
in the Appendices and substituting equation (4.7-1) while recalling that the frozen
ice remains at the constant temperature 77 yields

o dL L 327 © 3T
(thCpu_prpf)(Tf_T )E“‘ A kuwdx“' . kfwdx=%
4.7-6)

The first term in the above is the difference in heat content between the unfrozen
and frozen soil; this can be related to AHy, the latent heat of fusion of water.
Hence, integrating equation (4.7-6) yields

AH dL Tk oT r aT n oT
EPw— u L — RKu S =
e ox |,_g 0x |, 7 ax 1

x=L
4.7-7)

—ky i

X=00

where py, is the mass density of water, ¢ the porosity of the soil, and k¢ the thermal
conductivity of the frozen soil. The fourth and fifth terms in equation (4.7-7) are
identically zero if there is no heat transfer in the frozen soil and the third term
is equal to the last term. Hence, the auxiliary condition needed to determine the
instantaneous location of the freezing front is given by

ky— =—AHysep,— at x =1L (4.7-8)
X

This condition merely states that the heat conducted to the freezing front supplies
the instantaneous latent heat required for melting the ice. To integrate equation
(4.7-8), it is necessary to specify an initial condition on L; this is given by

L=0 at t=0 (4.7-9)

Note that whenever boundary conditions must be applied at a location whose
position is unknown and dependent on the solution to the particular describing
equations, it is necessary to use some type of integral balance to obtain an addi-
tional condition to determine the location of this boundary. In fluid dynamics this
occurs for flows involving free surfaces such as were considered in Section 3.7
and Example Problem 3.E-8 and requires using an integral mass balance, which
is called the kinematic surface condition. In heat transfer this occurs in problems
such as the one considered here involving phase change and requires an integral
energy balance. In some heat-transfer problems involving phase change such as
evaporation, mass loss is also involved. In the latter moving boundary problems
it is necessary to include both an integral energy and an integral mass balance.
One of these is used as a boundary condition on the energy equation, and the
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other constitutes the auxiliary equation used to locate the position of the moving
boundary.

Define the following dimensionless dependent and independent variables (steps
2, 3, and 4):

T-T,
T X I

T = x.

(4.7-10)

5 =

Introduce these dimensionless variables into the describing equations and divide
each equation through by the dimensional coefficient of one term that should be
retained to maintain physical significance (steps 5 and 6):

x2 ar* 9T

s -2 4.7-11
a,ts Ot* dx*2 ( )
Ty —T
TP=L " v =0 at F=0 (4.7-12)
T
To—T,
TF="0""" 4 x*=0 for *>0 (4.7-13)
T
Ty —T, L
TF= T =g (4.7-14)
T X
o1 o _AHppuexiLedl” L 4.7-15)
OX* | g /g k, Tty dt* X ’
L*=0 at t*=0 (4.7-16)

where «, = k,/p,Cp, is the thermal diffusivity of the unfrozen soil.

We can bound the dimensionless temperature to be o(1) by setting the dimen-
sionless group in equation (4.7-12) or (4.7-14) equal to zero to determine the
reference temperature and by setting the dimensionless group in equation (4.7-13)
equal to 1 to determine the temperature scale (step 7); that is,

T, — T, To— Ty
0T, =T;; 7
T, - / T,

=1=T,=Ty— Tf @4.7-17)

We can bound the dimensionless spatial coordinate to be o(1) by setting the dimen-
sionless group in equation (4.7-14) or (4.7-15) equal to 1; that is,

Ly
—=1=x=1L; (4.7-18)
Xs

The time scale will again be the observation time f, since this is inherently an
unsteady-state problem. Since the two remaining terms in equation (4.7-15) must
balance each other, to ensure that each term is o(1), we must set the dimensionless
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group in this equation equal to 1; this then provides the scale factor for the freezing
penetration front; that is,

ku(TO - Tf)to
AHypye

AHypyexsLy  AHppyel} . _[
s —

1/2
— = 4.7-19)
ku Tsts ku (TO - Tf)to i|

If we now rewrite our dimensionless describing equations in terms of the scales
defined by equations (4.7-16) through (4.7-19), we obtain

N (5~ @ i) = v 720
TF=0 at =0 (4.7-21)

T =1 at x*=0 for t*>0 (4.7-22)

T =0 at x*=1 4.7-23)

CZ: - —CZ: at x* =1 (4.7-24)

Note that an additional term now appears in equation (4.7-20) because of the trans-
formation to a dimensionless spatial coordinate that is scaled with the instantaneous
depth of the thawed layer. This is referred to as a pseudo-convection term since it
involves a velocity multiplied by a spatial derivative in the same direction as that
of the velocity. Pseudo-convection terms will always arise when one transforms
from a stationary coordinate system to one for which either the reference or scale
factor is a function of time.

Now let us assess the conditions under which the dimensionless describing
equations can be simplified (step 8). We detect an immediate problem in
equation (4.7-20) in that the relative importance of the transformed unsteady-state
term is independent of the observation time #,. Recall from the problem consid-
ered in Section 4.3 that the unsteady-state term should be multiplied by the inverse
Fourier number, which is equal to the ratio of the observation time to the character-
istic heat conduction time. For very large Fourier numbers we would anticipate that
quasi-steady-state heat transfer should apply. Hence, we have obtained an unrea-
sonable result and the forgiving nature of scaling has indicated a contradiction:
namely, that quasi-steady-state conditions can never be achieved. Another contra-
diction inherent in this scaling is that the dimensionless thaw penetration depth is
always equal to 1 since L* = L/Ly = L/xy = 1. Therefore, we need to rescale the
problem; we will know that we have scaled correctly when the relevant terms are
bounded of o(1) and no contradictions occur.

We suspect that our error was introduced by scaling dL/dt with Lg/t;. Let
us rescale the describing equations by introducing a scale factor L for dL/dt to
ensure that we bound this derivative to be o(1):

dL\* 1dL
<_> _ladL (4.7-25)
dt L, dt
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The other dimensionless variables are the same as defined by equation (4.7-10).
Introduce these dimensionless variables into the describing equations and divide
each equation through by the dimensional coefficient of one term that should be
retained to maintain physical significance:

x2 aT* 9T

s — 4.7-26
ot Ot* dx*2 ( )
T, — T,
T* = fT L*=0 at =0 (4.7-27)
To—T,
7% = 20 ; at x*=0 for t*>0 (4.7-28)
T, — T, L
T* = fT at x* = — (4.7-29)
N 'xS
aT* AHfpyexsLy (dL\* L
a — _% (E) at x* = — (47-30)
x* uls Xs

Our reference and scale factors for the temperature, the time, and the spatial coor-
dinate remain the same as before. Since the two terms in equation (4.7-30) must
balance each other, to ensure that each term is o(1), we must set the dimensionless
group in this equation equal to 1; this then provides the scale factor for the melting
front velocity; that is,

AprngsLs _ AprngLs -1 L _ ky (To — T}‘)

= = = 4.7-31
kT, ky(To — T) ' AHypyel ( )

We see that L, never appears explicitly in our dimensionless describing equa-
tions. Hence, L can be nondimensionalized with any relevant length scale such
as the maximum thaw depth L,,. If we now rewrite our dimensionless describing
equations in terms of the scales defined by equations (4.7-17), (4.7-18), and (4.7-
31), we obtain

1 aT* Cpu(To—T dL\* aT*  9°T*
- _ wx* il 72 (4.7-32)
Fo, dt* AHypye dt ) ox*  9x*2
T*=0 at " =0 (4.7-33)
T =1 at x*=0 for t*>0 (4.7-34)
T =0 at x* =1 (4.7-35)
dT* dL\*
== at x* =1 (4.7-36)
dx* dt

where Fo, = o1,/ L? is the Fourier number for heat transfer. Note again that an
additional pseudo-convection term appears in equation (4.7-32), due to the trans-
formation from 7 (x, 1) to T*(x*, t*), in which x* = x/L(t). The dimensionless



HEAT TRANSFER WITH PHASE CHANGE 179

group p,Cpy(To — T¢)/AHy py,e multiplying the pseudo-convection term is a ratio
of the sensible heat to latent heat effects.

Now let us assess the conditions under which these dimensionless describing
equations can be simplified (step 8). We see that the relative importance of the
unsteady-state term in equation (4.7-32) is determined by the magnitude of the
Fourier number. The two terms in this equation must balance each other. We have
scaled 37*/31* to be o(1). However, we are not certain that 827*/3x*? is o(1).
The fact that we have scaled d7*/9x™ to be o(1) does not necessarily ensure that
02T*/3x*? is o(1). If Fo, = O(1), both the unsteady-state term and the conduction
term will be o(1). This condition implies that

1 L?

— = =1=L=Jaut, for short contact times “4.7-37)
Fo, oyl

The question might arise as to whether L2/, can ever be much greater than 1,
corresponding to very short contact times. However, this would lead to a contra-
diction since the dimensionless unsteady-state term should be of the same order
as the dimensionless heat-conduction term. Hence, we conclude that for very short
contact times, L?  t,, to ensure that L2 /ayt, remains bounded as z, — 0; that is,
scaling analysis permits us to infer the time dependence of the thaw penetration
for short contact times.

Now let us consider the case when Fo, = a,t,/L? > 1, corresponding to very
long contact times. When this condition prevails, the unsteady-state term in equation
(4.7-32) can be ignored and quasi-steady-state prevails. The time dependence now
enters implicitly through both the pseudoconvection term and the condition applied
at the moving boundary given by equation (4.7-36). The resulting quasi-steady-
state describing equations can be solved analytically. However, if in addition
the dimensionless group multiplying the pseudo-convection term is small, that is,
PuCpu(To — Tr)/AHypye <K 1, further simplification is possible. In the latter case,
equation (4.7-32) predicts a linear temperature profile given by

T* =1 —x* (4.7-38)

When equation (4.7-38) is substituted into equation (4.7-36) and the result is cast
into dimensional form and integrated, one obtains

dL  k,(To—T
dL _ k(o —Ty) _ Ly, (4.7-39)
dt AHypyeL

That is, for long contact times we find that the solution to the describing equations
agrees identically with the scale factor for the thawing front velocity given by
equation (4.7-31). This should not be surprising since if scaling is done properly,
it should give estimates that are within an O(1) factor of those obtained by solving
the describing equations. One can integrate equation (4.7-39) to obtain an equation
for L as a function of ¢; that is,

2k, (To — Ty)

L2 = Tpg(tu —t)+ Ll.2 for long contact times (4.7-40)
fPw
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where L; is an integration constant; note that one cannot apply the initial condition
that L = 0 since equation (4.7-40) does not apply at short times. However, this
initial condition can be estimated from the short-time solution given by equation
(4.7-37). Note also that although both equations (4.7-37) and (4.7-40) predict that
L? will increase linearly with f,, the short-contact time thaw-penetration rate is
faster than that for the long-contact time.

In summary, if Fo, > 1, this unsteady-state moving boundary heat-transfer
problem can be considered to be quasi-steady-state; that is, the describing
equations can be simplified by ignoring the unsteady-state term in the thermal
energy equation. For quasi-steady-state conditions the time dependence enters
through the boundary condition at the moving boundary whose location is time-
dependent.

4.8 TEMPERATURE-DEPENDENT PHYSICAL PROPERTIES

In Section 3.9 we used scaling analysis to determine when the incompressible flow
assumption could be made for a fluid whose density was pressure-dependent. Here
we consider a related coupled fluid-dynamics and heat-transfer problem in which
we will use scaling to determine when the temperature-dependent shear viscosity
can be assumed to be constant. Note that the manner in which scaling analysis is
used to assess when the temperature-dependence of the viscosity can be ignored
in this problem can be applied to assessing when the dependence of any other
physical or transport property on some state variable such as temperature, pressure,
or concentration can be ignored.

Figure 4.8-1 shows a schematic of the steady-state pressure-driven flow of an
incompressible Newtonian liquid between two infinitely wide parallel flat plates,
each of which is maintained at Ty, which is also the initial temperature of the
liquid. The shear flow causes significant viscous heating that can possibly cause
a progressive decrease in the liquid viscosity whose temperature dependence is
given by

w=Ael/T (4.8-1)

where A and B are positive constants. This in turn implies a possible developing
flow due to the influence of the decrease in viscosity on the velocity profile. How-
ever, we will invoke the lubrication-flow'? and low Peclet number approximations
and in addition ignore axial conduction.!’> We use scaling analysis to assess when
the temperature dependence of the viscosity can be ignored.

Appropriate simplification of the equations of motion given by equations (D.1-
10) and (D.1-11) in the Appendices and the thermal energy equation given by

12Scaling analysis was applied to justify the lubrication-flow approximation in Section 3.3.
13Scaling analysis was applied to justify the low Peclet number approximation, ignoring the axial
conduction in Section 4.5.
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i< L >

Figure 4.8-1 Steady-state pressure-driven lubrication flow of an incompressible Newtonian
liquid between two infinitely wide parallel flat plates, each of which is maintained at Tj,
which is also the initial temperature of the liquid; this shear flow causes viscous heating
that can result in a progressive decrease in the liquid viscosity; representative velocity and
temperature profiles are shown in this figure.

equation (F.1-2), and specification of the required boundary conditions yields the
following set of describing equations (step 1):

0=2L 4 (dn (4.8-2)
L dy ’ dy '
d2T duy\*
0=k— o 4.8-3
07 +u ( dy ) ( )
duy dT
" _o, L0 at y=0 (4.8-4)
dy dy
uy =0, T=Ty, at y==+H (4.8-5)

Since we seek to assess when the temperature dependence of the viscosity can be
ignored, we need consider only small departures of the temperature from the initial
temperature Ty. Hence, it is convenient to expand equation (4.8-1) in a Taylor series
about Ty at which the viscosity is po:

Bu
== =5 (T =To) + OT =Ty’ (4.8-6)
0

Since we need consider only the first-order effects of temperature to assess whether
there is any significant change in the viscosity, truncate equation (4.8-6) after the
second term on the right-hand side and substitute it into equations (4.8-2) and
(4.8-3):

AP d B/L(] dux
0=" 4+ ~ 2B - 4.8-7
.t a {[Mo 72 ( 0)} &y } (4.8-7)
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LN Bio r_ ) <d”‘>2 (4.8-8)
=K== Mo — — 5L — Lo -0~
y T3¢ dy

Introduce the following scale and reference factors (steps 2, 3, and 4):

(4.8-9)

<
Il
==

Substitute these dimensionless variables into the describing equations and divide
each equation through by the dimensional coefficient of one term that should be
retained in order to maintain physical significance (steps 5 and 6):

AP y? d BT, T, —To\ | dut
0= — =2 1- T* a 4.8-10
L pous * dy* H T? ( + T dy* ( )

0
d*T* 2 BT, T, — T, du*\?
0= L T* + 0 U (4.8-11)
dy*? kT, 73 T, dy*
duy _y, AT” t y =0 (4.8-12)
=V, = al = .0
dy* dy* Y
To—T, H
wi=0, T*="2""" a y=4— (4.8-13)
T Vs

When set equal to zero and 1, respectively, the dimensionless groups in equations
(4.8-13) provide the following reference and scale factors (step 7):

To— T, H
= 0 = Tr = TO’ — = l = Yy = H (48-14)
T s

Since the pressure term must balance the principal viscous term for this lubrication
flow, the dimensionless pressure term in equation (4.8-10) must be set equal to 1
to obtain the velocity scale:

AP y?
L pous

AP H?

1= u = (4.8-15)
L po

This is a reasonable velocity scale since it is equal to the average velocity for
fully developed laminar flow between two parallel flat plates. Since the viscous
dissipation must be balanced by the heat conduction to the parallel flat plates, the
dimensionless dissipation term in equation (4.8-11) must be set equal to 1 to obtain
the temperature scale:

2 AP H?\ H* (AP’
Rolly _ MO (222 ) cior = (28 (4.8-16)
kTS kTv L Mo k/LO L
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When the reference and scale factors defined by equations (4.8-14), (4.8-15),
and (4.8-16) are substituted into our dimensionless describing equations, we

obtain
o=1+-2 1 B HY (AP 2T* duy (4.8-17)
- dy* T3 kpo \ L dy* '
d>T* B H* (AP’ du*\?
0=2" 4122 (25) | (E (4.8-18)
dy*z T02 ko L dy*
du* dT*
“x _ . =0 at y*=0 (4.8-19)
dy* dy*
wi=0, T*=0 at y* ==+l (4.8-20)

We see that the criterion for ignoring the temperature dependence of the viscosity
is given by (step 8)

B HY (AP 2<<l (4.8-21)
T02 kLo L ’

If the criterion given by equation (4.8-21) is satisfied, equations (4.8-17) through
(4.8-20) reduce to exactly the same equations that were considered in Section 4.5;
that is, equations (4.5-22) through (4.5-24) for which the solution for the velocity
profile is given by equation (4.5-1) and for which the temperature profile is given
by equation (4.5-25).

4.9 THERMALLY DRIVEN FREE CONVECTION: BOUSSINESQ
APPROXIMATION

Thus far we have considered problems that have involved either pure conduc-
tion or heat transfer with forced convection, that is, flow that is caused by some
external driving force, such as a pump, fan, moving boundary, gravitational field,
or other body force. Here we consider an example of thermal free convection,
convection caused internal to the system, owing to a temperature gradient that cre-
ates unstable density variations. Note that unstable density variations can also be
caused by concentration gradients, in which case it is referred to as solutal free
convection. Free convection can also arise due to surface-tension gradients at an
interface.

Consider a fluid with density p and viscosity p that is confined between two
vertical parallel plates of vertical height L separated by a distance 2H, as shown
in Figure 4.9-1. We assume that the space between the plates is capped at the
top and the bottom but that L > H. The vertical plate at y = —H is main-
tained at a constant temperature 7, whereas the vertical plate at y = +H is
maintained at a constant temperature 7,, where 7] > T,. Because the density of
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Figure 4.9-1 Steady-state fully developed buoyancy-induced free convection of a fluid
confined between two vertical plates maintained at temperatures 77 and 7, where T} > T,
showing representative temperature and velocity profiles.

a fluid decreases with increasing temperature, there will be a tendency for the
fluid near the hot wall to flow upward and for the fluid near the cold wall to
flow downward. As long as the plates are not too close together or the fluid is
not too viscous, a steady-state free-convection flow can be generated for which
the mass flow upward is equal to the mass flow downward.'* We use scaling
analysis to determine the conditions that permit the equations describing free-
convection heat transfer to be simplified. We ignore end effects at the top and
bottom of the vertical parallel plates as well as heat generation due to viscous
dissipation.

Appropriate simplification of the equations of motion given by equations (D.1-
10) and (D.1-11) and the thermal energy equation given by equation (F.1-2) in

14To determine if free-convection flow will be generated, it is necessary to carry out a stability analysis;
the latter leads to the conditions required for free convection to be initiated expressed in terms of
a critical value of the thermal Grashof number, Gr; = H3gB, Ap/v?, or thermal Rayleigh number,
Ra;, = Gr, - Pr, where Ap in the present case is the difference in density between the fluid at the cold
and hot plates; note that if the plates are too closely spaced or if the viscosity is sufficiently high, the
Grashof number can be below the critical value for the inception of free convection; the reader interested
in more information on stability theory applied to free convection is referred to standard references such
as P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge,
England, 1981, or J. S. Turner, Buoyancy Effects in Fluids, Cambridge University Press, Cambridge,
England, 1973.
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the Appendices and specification of the required boundary conditions yield the
following set of describing equations (step 1):

P d%u,
0=—-—— - 4.9-1
o +u 4y’ Pg ( )
P
0= —— (4.9-2)
ay
d*T
=— (4.9-3)
dy?
uy =0, T=T, at y=—H (4.9-4)
u, =0, T="10 at y=H (4.9-5)

Note that axial derivatives of both velocity and temperature are assumed to be zero
under the assumptions of fully developed flow and no end effects. Since the density
is temperature dependent, we need an appropriate equation of state. Here we con-
sider small density variations and hence represent the density via a Taylor series
expansion about the density p at the average temperature between the two plates,
T = (T, + T»)/2, given by

9%p

ap — 1 =0
=plr+ —| T-T)+- —| (T-T 4.9-6
p ”'T*arf( )+28T2T( )’ + (4.9-6)
p=0—pB(T —T)+py(T —T) +--- (4.9-7)

where g, is the coefficient of volume expansion and y; is a positive constant. When
equation (4.9-7) is substituted into equation (4.9-1) and truncated at the third term
in the expansion, we obtain

P N d*u,
ax M dy?

0= pg+Ppgh(T —T) — pgy (T —T)* (4.9-8)

Equation (4.9-3) can be integrated directly subject to the boundary conditions given
by equations (4.9-4) and (4.9-5) to obtain the following temperature profile:
_ h+17, Th—-1T Y

T = - =T - —=— 4.9-
2 2 H 2 H (99

Moreover, equation (4.9-2) in combination with equation (4.9-1) implies that
dP/dx =dP/dx = a constant. Hence, we can evaluate dP/dx at any lateral
position between the two vertical plates. It is convenient to evaluate the pres-
sure gradient at the centerline between the two plates where T = T; therefore,
dP/dx = —pg. With this simplification, equation (4.9-8) takes the form

d*u, - _
—— +Ppgh(T —T) — pgy (T — T)* (4.9-10)

Oz,udy2
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Introduce the following scale and reference factors (steps 2, 3, and 4):

Uy T :T—T,_ «_ Y

(4.9-11)
Substitute these dimensionless variables into the describing equations and divide

each equation through by the dimensional coefficient of one term that should be
retained to maintain physical significance (steps 5 and 6):

_ —\ 2
d*u*  pgBiy3T, T.—T Dgy,y2T? T.—T
0 ux+pgﬂzys 5 (T*+ - )_ P8V Iy (s | - 4.9-12)

Cdy? g

mug s
d*T*
=57 (4.9-13)
T —T, H
wi=0 Tr=""_""" a y=-= (4.9-14)
T Vs
T, —T, H
wr=0, T*=2=2 at y*=— (4.9-15)
T Vs

The dimensionless groups in equations (4.9-14) and (4.9-15) when set equal to
1 and zero, respectively, provide the following reference and scale factors (step 7):

T, —T, Ty — T, T —T;
2 r=0:>Tr=T2’ 1 r= 1 2

=1 T, =T — T 4.9-16
T. T. T. =TL=T1—-T ( )

In addition, the dimensionless groups in these equations provide the characteristic
length scale

H

—=1=y,=H 4.9-17)

Vs
Since what causes this flow (i.e., the leading-order gravitational body force term)
must balance the viscous resisting force, the corresponding dimensionless group
that provides a measure of this ratio in equation (4.9-12) must be equal to 1, which
provides the characteristic scale for the velocity:

pgB 2T, | 8By T, pgBH*(T\ — T»)
_— = = U s = =
Mt w I

(4.9-18)

If the reference and scale factors defined by equations (4.9-16) through (4.9-18)
are substituted into our dimensionless describing equations, we obtain

d?u* L1 v =T (.. 1\

0= e + (T - 5) R <T - 5) (4.9-19)
d*T*

0= (4.9-20)
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Wt =0, T*=1 at y*=-1 4.921)
wt =0, T*=0 at y*=1 (4.9-22)

We see that the criterion for ignoring the higher-order temperature dependence of
the density is given by (step 8)

T, — T
vi (T 2)<<1

4.9-23
5, ( )

This simplification, which considers only the leading-order effects of the tempera-
ture on the density, is referred to as the Boussinesq approximation.

4.10 DIMENSIONAL ANALYSIS CORRELATION FOR COOKING
A TURKEY

In dimensional analysis we seek to determine the dimensionless groups required
to correlate data or to scale a process up or down. These dimensionless groups
can always be determined using o(1) scaling analysis since this procedure leads
to the minimum parametric representation for a set of describing equations. How-
ever, the preceding sections indicated that carrying out an o(1) scaling analysis
can be somewhat complicated and time consuming. In contrast, the scaling analy-
sis approach to dimensional analysis illustrated in this section is much easier and
quicker to implement. Note, however, that it does not provide as much information
as does o(1) scaling analysis for achieving the minimum parametric representation.
In particular, it does not lead to groups whose magnitude can be used to assess the
relative importance of particular terms in the describing equations. It also does not
identify regions of influence or boundary layers whose identification can in some
cases reduce the number of dimensionless groups. This first example of the use
of scaling for dimensional analysis in heat-transfer applications will provide more
details on the steps involved. We will also compare the results of scaling analysis
to the results obtained from using the Pi theorem, to underscore the advantages
of using the former to achieve the minimum parametric representation. The steps
referred to here are those outlined in Section 2.4 for the scaling approach to dimen-
sional analysis; these differ from those used in Sections 4.2 through 4.9, since no
attempt is made to achieve o(1) scaling.

This first example of the use of scaling analysis for dimensional analysis in heat
transfer will consider developing a correlation for determining the cooking time
of a turkey. In particular, we seek to determine how long it will take to cook the
28-1b (12.7-kg) turkey shown in Figure 4.10-1. Cookbooks do not provide equations
to determine the cooking time. Rather, they usually provide discrete data for the
required cooking time 7, as a function of the mass of the turkey M, such as shown
in the table that accompanies Figure 4.10-1. A problem arises in that this table does
not indicate in any precise way how much time is required to cook a 28-1b turkey.
A crude way to estimate this time might be to do some type of extrapolation from
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Ready to cook weight Total cooking time
M (Ib) 1, (hr)

5t08 3to 32

8to 12 32 to 42

1210 16 42 to 5%2

16 to 20 5Y% to 672

20to 24 62t07

Figure 4.10-1 Schematic of a very large turkey of a characteristic length L along with
cookbook data for the cooking time 7, as a function of the mass of the turkey M. (Data
from General Mills, Betty Crocker’s Cookbook, Golden Press, New York, 1972.)

the data given in this table. However, a better way is to use these data and scaling
analysis to determine the underlying correlation between the weight of the turkey
and the cooking time.

The time it takes to fully cook the turkey is that required to bring the center of the
bird from its initial temperature Ty up to the temperature 77 specified by the cook-
book (typically, 165°F or 73.9°C) by placing it in a preheated oven maintained at a
temperature 75 (typically 325°F or 163°C). It is reasonable to assume that the heat
transfer is controlled by conduction in the turkey. To determine the time required
to reach this temperature, in principle we would have to solve the unsteady-state
heat-conduction equation. This is complicated by the fact that the center of the
turkey is usually filled with dressing that has physical properties that differ from
those of the turkey itself. A further complication is that appropriate boundary con-
ditions need to be specified on the surface of the turkey and at the interface between
the turkey and the dressing along with appropriate conditions at the center of the
stuffed turkey. Indeed, this would be a complicated problem to solve numerically!
However, we will see that with the aid of the data given in the cookbook, we can
determine the cooking time without having to solve the describing equations.

We begin by writing the equations we would solve for the cooking time, if indeed
we could solve these equations (step 1 in the scaling procedure for dimensional
analysis); namely, the unsteady-state heat-conduction equations in both the turkey
proper and in the dressing in its interior, which are given in generalized vector
notation by equation (B.4-2) in the Appendices:

aT

i =ar V2T (applicable in the turkey) (4.10-1)
oT 2 . . .

— =apVT (applicable in the dressing) (4.10-2)

at
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where V2 denotes the Laplacian operator and ar = kr/prCpr and ap = kp/
ppCpp are the thermal diffusivities of the turkey and dressing, respectively, in
which k;, p;, and Cp; are the thermal conductivity, density, and heat capacity of
medium i, respectively. Note that we have chosen to write the thermal energy
equation in generalized notation that is not specific to any particular coordinate
system; this is convenient to do in dimensional analysis since there is no need to
scale specific spatial derivatives to be o(1). The initial and boundary conditions
are given by

T="T at t=0 (4.10-3)

T=T, at the surface of the turkey (4.10-4)

Tl.=T|- at the interface between the turkey and dressing (4.10-5)
krVT|L =kpVT|- at the interface between the turkey and dressing

(4.10-6)

n-VI =0 along the plane of symmetry in the turkey (4.10-7)

where + and — denote the turkey and dressing side of the interface, respectively,
and 7 is a unit vector normal to the plane of symmetry in the turkey.

To solve equations (4.10-1) through (4.10-7), we would need to describe math-
ematically the surface of the turkey and its interface with the dressing; this would
be prohibitively difficult to do in practice. However, in dimensional analysis this
challenging task can be avoided by recognizing that it is reasonable to assume
that all turkeys are geometrically similar. By this we mean that although their
mass might differ, their geometry is more or less the same. Assume that it takes
p geometric parameters to characterize the shape of a turkey. Recall that one can
form p — 1 dimensionless ratios from p quantities having one dimension (length in
this case). For geometrically similar turkeys, these p — 1 dimensionless geometric
ratios will be the same. Hence, one needs to include in the dimensional analysis
only one geometric quantity such as some characteristic body dimension along with
the quantities that characterize the heat transfer. This arbitrary characteristic length
is chosen to be the maximum body width L as shown in Figure 4.10-1.

Steps 2 and 3 in the scaling procedure for dimensional analysis involve defining
arbitrary scale factors for all the dependent and independent variables and reference
factors for those not naturally referenced to zero. Hence, we introduce the following
dimensionless variables:

T-T,

T* T, V*=LV: V> = L*V?: =
S

(4.10-8)
Is
Note that we have chosen L for our length scale since we arbitrarily chose it to form
the p — 1 geometric ratios that define the surface of the turkey and its interface
with the dressing.

Steps 4 and 5 involve introducing these dimensionless variables into the describ-
ing equations and dividing through by the dimensional coefficient of one term in
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each equation. In dimensional analysis it makes no difference which term you
choose. These steps yield the following dimensionless describing equations:

OT" _ @l gape  (aonlicable in the turkey) (4.10-9)
= — applicable in the turke .10-
97" 12 pp y
o1 _ avls \ARY (applicable in the dressing) (4.10-10)
= — applicable in the dressin .10-
or* L2 PP g
* TO - Tr *
T = at t*=0 (4.10-11)
T;
. Dh-T
T = T at the surface of the turkey (4.10-12)
s
T =T%_ at the interface between the turkey and dressing (4.10-13)
V*T*|, = k—DV*T*|_ at the interface between the turkey and dressing
T
(4.10-14)
n-VT*=0 along the plane of symmetry in the turkey (4.10-15)

Step 6 involves setting the various groups equal to 1 or zero to determine the
scale and reference factors, respectively. It makes no difference in dimensional anal-
ysis which groups we set equal to 1 since there is no attempt to achieve o(1) scaling.
We need to do the latter only if we are seeking to simplify the equations by dropping
one or more of the terms. In dimensional analysis we are seeking to determine the
minimum parametric representation. Let us set equation (4.10-11) equal to zero
to determine the reference temperature and set equation (4.10-12) equal to 1 to
determine the temperature scale. Finally, let us set the dimensionless group in
equation (4.10-9) equal to 1 to obtain the time scale; we could equally well have
set the dimensionless group in equation (4.10-10) equal to 1 to determine this time
scale. These choices then yield the following minimum parametric representation of
the describing equations; that is, in terms of the minimum number of dimensionless
groups:

oT*
e = V2T (applicable in the turkey) (4.10-16)
aT*
= 2D gars (applicable in the dressing) (4.10-17)
ar* or
TF =0 at =0 (4.10-18)
T =1 at the surface of the turkey (4.10-19)
T =T%_ at the interface between the turkey and dressing (4.10-20)
k
V*T*| 4 = k—DV*T*|_ at the interface between the turkey and dressing
T

(4.10-21)
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n-VT*=0 along the plane of symmetry in the turkey (4.10-22)

The solution to equations (4.10-16) through (4.10-22) for the dimensionless tem-
perature as a function of the dimensionless time then will be of the form

T = fi <X*, vzt . k—D) (4.10-23)
ar kr

However, we seek the particular value of the dimensionless time ¢ at which the

center of the turkey reaches the temperature 7;. The center of the turkey is located

at some specific values of the dimensionless coordinates x*, y*, and z*. Hence, our

correlation for the dimensionless cooking time is given by

T1 OlD kD
T = t* , — 4.10-24
T - =/ < ar kT) ( )

An equivalent statement is

tc — T k
i = “T - f 0 % b (4.10-25)
Tz — Ty ar kr

Hence, for specified cooking conditions and geometrically similar turkeys and
dressing with specified physical and transport properties, we conclude that 7. oc L.

It is reasonable to assume for geometrically similar turkeys that the characteristic
length L will be proportional to the mass of the turkey; that is,

L=AMB (4.10-26)

When equation (4.10-26) is substituted into equation (4.10-25), we obtain the fol-
lowing equation that can be used to correlate the data given in Table 4.10-1 for the
cooking time as a function of turkey weight:

L? T, — T, k M?8 T — T, k ,
tc=—f 1— 1o &p Kp — A f/ 1— 1o &p Kp — A'MB
ar T2 — T() or kT ar T2 — T() ar kT

(4.10-27)

where A’ and B’ are empirical constants that will be determined by fitting the
cooking-time data given in the cookbook as a function of the mass of the turkey.
Figure 4.10-2 shows a plot of the cooking time 7, as a function of the mass M
of the turkey. The data points represent average values of the cooking time and
turkey mass for each table entry in Figure 4.10-1; the corresponding error bars
then represent the maximum deviation of the values in Figure 4.10-1 about these
average values for each of the five data points. The trend line in Figure 4.10-2 fits
the data with a regression coefficient R> = 0.994 and is given by the equation

te = MO (4.10-28)
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1~ t = MO6!
R?=0.994

Cooking time, 7, (hrs)

A/

/

0 2 4 6 8 10 12 14 16 18 20 22 24
Turkey mass, M (Ib)

Figure 4.10-2 Cooking time in hours as a function of turkey mass in pounds. The solid
line shows the correlation suggested by using the scaling approach to dimensional analysis.
(Data from General Mills, Betty Crocker’s Cookbook, Golden Press, New York, 1972.)

Note that if the turkey body were perfectly spherical with a diameter L, the exponent
in equation (4.10-28) would be 0.67. Equation (4.10-28) now permits determining
the time required to cook a 28-lb turkey, which is found to be 7.6 hours.
Equation (4.10-25) indicates that the cooking time can be correlated in terms
of four dimensionless groups and p — 1 geometric ratios required to specify the
shape of a turkey. It is of interest to explore the possible consequences of using
the Pi theorem to develop a correlation for the cooking time. The Pi theorem
approach would require first somehow identifying the quantities that enter into the
correlation; these would include ¢., o, ap, kr, kp, L, Ty, T>, and T;. Note that the
quantity L can be expressed in terms of the mass M of the turkey via a relation of
the form of equation (4.10-26). These nine quantities are expressed in terms of four
units: length, time, energy, and temperature (note that energy is a fundamental unit
in the system of thermodynamics when no exchange is involved between internal
and mechanical energy). Hence, we might conclude that five dimensionless groups
are required to correlate the cooking time (i.e., n —m =9 — 4 =5) in addition
to p — 1 geometric aspect ratios when, in fact, our scaling analysis indicated that
only four dimensional groups are needed in addition to the p — 1 aspect ratios. A
more enlightened use of the Pi theorem cleverly might recognize that the quantities
Ty, T>, and Ty can be combined into the single variable (7} — Ty)/(T> — Tp), which
then leads to the conclusion that only three dimensionless groups (n —m =7 — 4 =
3) plus the p — 1 geometric aspect ratios are required. However, this conclusion
drawn from the Pi theorem is error since our scaling analysis indicates that the
minimum parametric representation involves four dimensionless groups. This error
arises owing to a breakdown of the Pi theorem associated with the quantities
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ar, op, kr, and kp; the Pi theorem would indicate zero groups for these four
quantities (i.e., n —m =4 — 4 = 0) when in fact they lead to two dimensionless
groups. This example clearly indicates the pitfalls of using the Pi theorem for
dimensional analysis. Scaling analysis provides a systematic method for avoiding
these problems associated with the Pi theorem.

411 SUMMARY

The example in Section 4.2 provided an introduction to the step-by-step procedure
for scaling analysis in heat transfer. Scaling was used in this problem to assess the
criterion for ignoring edge effects so that the heat transfer could be considered to
be one-dimensional when predicting the temperature sufficiently far removed from
the sidewalls or integral quantities such as the total heat-transfer rate. This problem
involved the introduction of both reference and scale factors since the temperature
was not naturally referenced to zero. It also introduced region-of-influence scaling
to determine the thickness of the zone near the sidewalls, wherein the effects of
lateral heat transfer could never be ignored when predicting quantities such as
the temperature or heat flux at or near the sidewalls. This example provided a
means for estimating the error incurred when the assumptions suggested by scaling
analysis are invoked since an analytical solution was available for this heat-transfer
problem. Demanding that a quantity be O(0.1) in order to ignore some term in
the describing equations typically results in an error of 40 to 50%; demanding
that it be O(0.01) reduces the error to less than 10%. However, the error that
is encountered also depends on the quantity being considered; for example, point
quantities within a region of influence might incur very large errors even when the
relevant dimensionless group is very small.

In Section 4.3 we applied scaling analysis to unsteady-state one-dimensional
heat conduction in a flat solid slab. This example led to two time scales, the
observation time and the characteristic conduction time, whose ratio is the Fourier
number for heat transfer. If the Fourier number is very large, the process can be
assumed to be steady-state, whereas if it is very small, the unsteady-state heat
transfer is confined to a region of influence or thermal boundary layer. We referred
to these as the film theory and penetration theory approximations, respectively,
although this terminology is generally used only for the analogous approximations
in mass-transfer modeling.

Unsteady-state convective heat transfer from a solid sphere was considered in
Section 4.4. A lumped-parameter boundary condition involving an appropriate heat-
transfer coefficient was used to describe the heat transfer in the fluid phase. It
was necessary to introduce a separate scale for the temperature gradient in this
problem since the temperature did not go through a characteristic change over the
characteristic length. Scaling this problem introduced the Biot number, which is
the dimensionless ratio of the heat-conduction resistance in the solid sphere to
the convective heat-transfer resistance in the surrounding fluid. The criterion for
assuming steady-state in this problem involved an interrelationship between the
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Fourier and Biot numbers; the observation time required to achieve steady-state
was found to decrease with increasing Biot number. Scaling analysis provided a
systematic method for arriving at the simplified equations appropriate to the small
Biot number approximation whereby the temperature can be assumed to be uniform
within the conducting object. Most heat-transfer textbooks do not provide any
rigorous justification for the low Biot number approximation.

In Section 4.5 we considered fully developed laminar flow between two flat
plates with heat generation due to viscous dissipation. The presence of both the
transverse and axial conduction terms made the describing equations elliptic. This
complicated the solution since the required downstream boundary condition often
is unknown. The concept of local scaling in heat transfer was introduced in this
problem, whereby one considers the describing equations within a domain defined
by some arbitrary distance in the principal direction of flow that is assumed to be
constant during the scaling analysis. In contrast to the preceding three examples,
there was no explicit temperature scale in this problem; rather, the temperature scale
was determined by balancing the viscous dissipation and transverse heat-conduction
terms. Scaling analysis led to two important dimensionless groups in heat transfer:
the Peclet and Prandtl numbers. The former is a measure of the ratio of the convec-
tion to conduction of heat, whereas the latter is a measure of the viscous transport
of momentum to the conductive transfer of heat. The Peclet number has a role in
heat transfer that is analogous to that of the Reynolds number in fluid dynamics. For
example, we found that the convective heat transfer could be ignored if the Peclet
number was very small; this is analogous to the low Reynolds number or creeping-
flow approximation in fluid dynamics. We also found that the complicating effects
of axial heat conduction could be ignored if the width-to-length aspect ratio was
very small. The combination of small Peclet number and small aspect ratio in heat
transfer is analogous to the lubrication-flow approximation in fluid dynamics.

Scaling analysis was applied to the complementary problem of high Peclet num-
ber, coupled heat and momentum transfer in Section 4.6. The problem considered
here was heat transfer from a hot flat plate to the developing flow over this surface.
In this problem the transverse derivative of the temperature and axial velocity were
scaled with different characteristic lengths: the thermal and momentum boundary-
layer thicknesses, respectively. The relative thickness of the two boundary layers
depended on the Prandtl number. For liquids whose Prandtl number is much greater
than 1, the thermal was thinner than the momentum boundary layer. For lig-
uid metals whose Prandtl number is less than 1, the thermal is thicker than the
momentum boundary layer. For gases whose Prandtl number is nearly 1, the two
boundary layers have essentially the same thickness. We found that the boundary-
layer approximation is reasonable when the Peclet and Reynolds numbers based
on the local axial length scale become large (i.e., Pe; = UsxL/a = Re - Pr >1
and Re = UxpL/p >1). Note that for ordinary liquids, thermal boundary-layer
analysis might apply, whereas the momentum boundary-layer analysis might not.
Note also that the boundary-layer approximation must break down in the vicinity
of the leading edge, where L becomes small. Hence, this problem involved both
a transverse and an axial region of influence; boundary-layer theory is applicable
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within the former and beyond the latter. This upstream limitation of boundary-layer
theory, which emerges from scaling analysis, is not mentioned in some transport
and fluid mechanics textbooks. This problem also illustrated how scaling analysis
can suggest a strategy for solving the describing equations by using the solution
to the parabolic boundary-layer equations to specify the downstream boundary
conditions on the elliptic equations that must be solved near the leading edge.

Scaling analysis was applied to heat transfer associated with phase change in
Section 4.7. Conductive heat transfer causes a melting front to penetrate progres-
sively into frozen porous media. This provided an introduction to moving boundary
problems, those for which boundary conditions must be applied at surfaces whose
location in turn had to be determined by solving the describing equations. Since
the location of the moving boundary constituted an additional unknown, an auxil-
iary condition was needed. This was obtained by an integral energy balance over
the domain of interest. An analogy was drawn between this auxiliary condition in
heat transfer and the kinematic condition in fluid dynamics in that both are based on
integral balances done to derive an additional equation to determine the location of
an unspecified boundary. The forgiving nature of scaling analysis was illustrated by
intentionally scaling one of the dependent variables incorrectly and thereby arriving
at a contradiction: that the unsteady-state term was not multiplied by the reciprocal of
the Fourier number. A proper analysis required that the time derivative of the moving
boundary location be scaled with a velocity scale rather than with the ratio of the char-
acteristic length divided by the time scale. We then found that for sufficiently large
Fourier numbers, quasi-steady-state thermal penetration of the melting front could be
assumed. This problem also introduced the pseudo-convection term that arises when
the scaling introduces either a scale or a reference factor that is time-dependent.

In Section 4.8 we illustrated how scaling analysis could be used to determine
when it is reasonable to ignore the temperature dependence of the viscosity for a
problem involving laminar flow between two flat plates with transverse heat con-
duction and viscous dissipation. Since we sought to determine only if any significant
variation in the viscosity occurred, it was sufficient to expand the equation describ-
ing the temperature dependence of the viscosity in a Taylor series and retain only
the first-order correction. Scaling then identified the condition required to ignore
this first-order correction. The scaling procedure used here for assessing when the
temperature dependence of the viscosity can be ignored can be applied to assess
the dependence of any physical or transport property on state variables such as
temperature, pressure, or concentration.

In Section 4.9 we applied scaling to a free-convection heat-transfer problem;
that is, to a problem wherein the driving force for flow was internal to the system,
in this case due to density variations created by temperature gradients. Scaling was
employed to determine when the temperature dependence of the density could be
represented by the first two terms in a Taylor series expansion about the density at
the average temperature. This is the basis of the classical Boussinesq approximation
in the analysis of free convection.

Scaling was applied to dimensional analysis in Section 4.10. In contrast to
o(1) scaling analysis, the scaling approach to dimensional analysis merely seeks to
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arrive at the minimum parametric representation of the problem; that is, to obtain
a set of dimensionless describing equations in terms of the minimum number of
dimensionless parameters. The goal of this problem was to determine the relation-
ship between the required cooking time and turkey mass based on discrete data
taken from a cookbook. This example illustrated the advantages of the scaling
analysis methodology for dimensional analysis relative to using the conventional
Pi theorem approach in that the latter did not lead to the minimum parametric
representation. Scaling analysis led to a single dimensionless group that involved
the two quantities that we sought to interrelate. By using this dimensionless group
in conjunction with the discrete cookbook data it was possible to develop a fully
predictive equation that related the required cooking time to the mass of the turkey.

4E EXAMPLE PROBLEMS

4.E.1 Steady-State Heat Conduction in a Rectangular Fin

A solid metallic flat fin with a constant thermal conductivity &, length L, width
W, and height H such that H < L < W is attached at one end to a surface that is
maintained at a constant temperature 7. The convective heat-transfer flux g from
the surfaces of the fin to the ambient air is describing via the lumped-parameter
approach and given by

g0 = (T — Tx) (4.E.1-1)

where £ is the heat-transfer coefficient and T, is the temperature of the ambient
air far removed from the fin. A schematic of the fin is shown in Figure 4.E.1-1.
We use scaling analysis to explore what simplifications are possible in describing
heat transfer in this fin.

The describing equations obtained by considering only the conduction terms
in equation (F.1-2) in the Appendices and the necessary boundary conditions are
given by (step 1)

-7 X -

Ambient gas phase at 7,

Figure 4.E.1-1 Flat solid metallic fin that has a constant thermal conductivity and length
L, width W, and height H such that H < L < W; the convective heat-transfer flux go from
the surfaces of the fin to the ambient air is described by h(T — Too).
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9T 9T 9T

0=—+—+— 4E.1-2
9x2 * dy? + 972 ( )
T=T at x=0, 0<y<H, 0<z<W (4.E.1-3)
d H w
—k— =h(T — Teo) at x=L, 0<y<—, 0<z=<— “4E.14
ax 2 2
oT w
— =0 at y=0, 0<x<L, 0<z=<— (4.E.1-5)
ay 2
oT H w
—k— = h(T — Ty) aa y=—, 0<x<L, 0<z=<— (4E.I1-6)
ay 2 2
oT H
— =0 at z=0, 0<x<L, 0<y<— (4.E.1-7)
0z 2
aT w H
—ka—zh(T—Too) at =5 O0<x<L, 0<yc< > (4.E.1-8)
z

Because of the planar symmetry, we have considered the heat transfer in only the
upper half-width of the fin.

Introduce the following scale and reference factors (steps 2, 3, and 4):
T-T,

xt=—; yi= = =—
T ' xs, ys’ Zs’

aT\* 1 oT aT\* 1 oT aT\* 1 aT
7)) = & — ) =—— — ) =—— (4E.19
ox Tys 0x ay Tys oy 0z T,s 0z

Note that we have allowed for separate scales for the temperature gradients in the
x-, y-, and z-directions since there is no reason to assume that the temperature
will change from its maximum to its minimum value over the length, thickness,
or width of the fin, respectively. Substitute these dimensionless variables into the
describing equations to obtain (steps 5 and 6)

a [(dT\* T, 0 (0T\"* T.. & [oT\*
0= ) o ) e @ (— (4.E.1-10)
ox* \ dx VsTys dy* \ 0y zsTys 02 \ 02

T*

Ty — T, H w
T = OT r at x*=0, 0<y*<—, 0<z*<— (4E.I-11)
N yS ZS
*
(£> S (T*+@> at x*=£, OSy*SEa
ax kTXS TS Xs Vs
w
0<z*<— (4.E.1-12)
s

aT\* L w
(—) =0 at y*=0, 0<x*<—, 0<z'=<— (4.E.1-13)
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<8_T> S <T*+L_Tw) a =2 o<r<kt
Vs

ay kTys T Xy
w
0<z"<— (4.E.1-14)
s
aT\* L
<— =0 at z"=0, 0<x"=<—, 0=<y*=<— (4.E.1-15)
0z Xs Vs
aT\* hT, . I =Ty at o w 0 < x* < L
P = - =), X =—,
0z szs T ¢ s Xs
H
0<y" <— (4.E.1-16)
Vs

Inspection of the dimensionless describing equations indicates that the tempera-
ture can be bounded to be o(1) if we set T, = T, and Ty = Ty — T,. The dimen-
sionless spatial coordinates can be bounded to be o(1) if we set x; = L, y; = H,
and z; = W. The dimensionless groups in equations (4.E.1-14) and (4.E.1-16) pro-
vide the following scales for the temperature gradients in the y- and z-directions,
respectively (step 7):

Ch(Ty=Tw) hH (Th—Tx) . To—Tx

— Bi, > > (4.E.1-17)

T, =T
W k k H H

where Bi; = hH/k is the Biot number for heat transfer based on the smallest
length dimension H. However, it would not be appropriate to determine 7, from
the dimensionless group in equation (4.E.1-12) since the small amount of heat
leaving the tip of the fin does not cause the axial temperature gradient; rather, we
expect that the axial temperature gradient is caused by the heat being transferred
from the side of the fin.

When the scale and reference factors are substituted into equations (4.E.1-10)
through (4.E.1-16), we obtain the following dimensionless describing equations:

9 [T \* L(Ty — T, d [(dT\* L(Ty — T 9 (0T \*
0= oL + Bil ( 0 oo) or + Bi, ( 0 oo) N e
dx* \ 0x H2T,, 9y*\ dy WHT,, 0z*\ 0z

(4.E.1-18)
T =1 at x*=0, 0<y*<l1, 0=<z*<l1 (4.E.1-19)
aT\" Ty — T,
(8_> :—(wa)T* at x*=1, 0<y"<l, 0=<z*<l
X XS

(4.E.1-20)

aT * * * *
) =0 at y*=0, 0<x*<1, 0<z'<l1 (4.E.1-21)
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8T * ES * ES *
— ) =-T at y*=1, 0<x*<l, 0<z*<l1 (4.E.1-22)
y
T *
<—> =0 at z¥=0, 0<x*<l, 0<y*<l1 (4.E.1-23)
AT \*
— ) =-7 at z¥=1, 0<x*<l1, 0<y*<l1 (4.E.1-24)

The axial conduction must be balanced by at least one of the other two terms
in equation (4.E.1-18). However, since H <« W, it is clear that conduction in the
y-direction is far more important than that in the z-direction. Hence, we set the
dimensionless group multiplying the conduction term in the y-direction equal to 1
to obtain T, as

. L(Ty — Teo) . L(To — Teo)
BIITsz =1= sz = BIIT (4E1'25)

Substituting this value for T, into equation (4.E.1-18) then yields

* * *
0= 0 (E) + 0 <£) + £i<£) (4.E.1-26)
ax* \ dx ay* \ dy W oz* \ 0z

Inspection of equation (4.E.1-26) indicates that conduction in the z-direction can

be ignored if H/W <« 1, which is the case for a thin wide fin such as that being

considered here (step 8). Furthermore, if we invoke the low Biot number approxi-

mation developed in Section 4.4 (i.e., Bi; < 1), equation (4.E.1-17) indicates that

the temperature gradient in the y-direction will be essentially zero, which implies

that the temperature will be constant across the thickness of the fin. Analogously

to the procedure used in Section 4.4, let us integrate equation (4.E.1-26) across the
cross-sectional area of the fin:

1 * 1 *
a [oT a [dT
-1 -1
d (ar\* [! -t T \*
> (a_> / dy*—i—/ 8<a_> =0 (4.E.1-28)
X X —1 * y
a (oT\* .
sila) —TT=0 (4.E.1-29)

Equation (4.E.1-29) is subject to the boundary conditions given by equations
(4.E.1-19) and (4.E.1-20), given by

T*=1 at x*=0 (4.E.1-30)

*
<—) =——T*=0 at x*=1 (4.E.1-31)
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The solution to this simplified system of equations is straightforward and given by

*
el'Ix

Tr= S
14 ¢~20

(e—zm* + e_m) ., where IT= Bi,% (4.E.1-32)
The solution given by equation (4.E.1-32) is applicable for small Biot numbers
for which the temperature across the thickness of the fin can be assumed to be
constant and for which heat transfer along the sides and tip of the fin can be
neglected. These are reasonable assumptions for thin fins made from a highly
conducting metal.

4.E.2 Unsteady-State Resistance Heating in a Wire

Consider a long solid wire having radius R as shown in Figure 4.E.2-1, whose ini-
tial temperature is Tp. At time ¢ = 0 an alternating current begins to flow through the
wire that causes electrical resistance heating whose volumetric energy generation
rate G, is given by

G, = Gocoswt (energy generation rate per unit volume) (4.E.2-1)

where o is the angular frequency in radians per second. The temperature at the
surface of the wire is held constant at the initial temperature 7y. We use scaling to
explore how the describing equations might be simplified.

The appropriately simplified form of the thermal energy equation given by
equation (F.2-2) in the Appendices and the required initial and boundary conditions
are given by (step 1)

oT 1d dT
C,—=k—-——[r— G t 4E.2-2
P P ot rdr (rdr>+ 0cOs® ( )
T=T, at t=0 (4.E.2-3)
. oT
T is bounded or i 0 at r=0 (4.E.2-4)
r
T="T at r=R (4.E.2-5)
T=T,
7'}
- R
B 11 RGO N

G = G cos wt

Figure 4.E.2-1 Unsteady-state heat conduction in a solid cylinder of radius R due to
electrical heat generation at a volumetric rate given by G, = G cos wt.
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The boundary condition given by equation (4.E.2-4) merely states that the temper-
ature cannot be infinite or is an extremum (a maximum in this case) at » = 0; this
type of boundary condition is often invoked in problems involving cylindrical or
spherical coordinates. Introduce the following scale and reference factors (steps 2,
3, and 4):

r .

: rf= —; t*

T = L
T s Is

(4.E.2-6)

Substitute these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of one term in each of the equations to
obtain (steps 5 and 6)

2 * * 2
oT 1 d aT G
s ob 2 r* 0 cos witst™* (4.E.2-7)
oty 0t* r*dr* dr* kT,
To — T,
TF="0""" 4 =0 (4.E2-8)
T
*
T* is bounded or = 0 at r*=0 (4.E.2-9)
r
To — T, R
7% =2 at 7t = - (4.E.2-10)
T rs

Setting the appropriate dimensionless groups in equation (4.E.2-8) and (4.E.2-
10) equal to zero and 1, respectively, gives T, = Ty and ry = R (step 7). Since
the heat generation must be balanced by the radial heat conduction, we set the
dimensionless group in equation (4.E.2-7) equal to 1 to obtain T; = GoR?/k. There
are three relevant time scales whose relative values determine the simplifications
that are possible for this problem (step 8):

=1, time scale corresponding to the observation time
2
ty =1 = — time scale characterizing the heat conduction (4.E.2-11)
o
2 . .. . .
ty=1,=— time scale characterizing the periodic rate of heat generation
1)

Note that we use the reciprocal of the cyclic rather than the angular frequency to
properly characterize the time scale for the periodic rate of heat generation.
Consider first the case where ¢; = ¢,, for which equation (4.E.2-7) simplifies to

= r
dr*

1 aT* 1 d LdT*
Fo, dr* ~ r*dr*

) + cos wt, t* (4.E.2-12)

where Fo, = R? /at, is the Fourier number for heat transfer. It is not possible for the
Fourier number to be much less than 1 since the conduction term has to be retained
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at all times. If Fo, = 1,1, = R?/a and equation (4.E.2-12) can be written as

dT* R?
(r* ) + cos OF 4 (4.E.2-13)
dr* o

oT* 1 d

ar*  redr*

Equation (4.E.2-13) can be simplified further if wR?/a < 1. This implies that
the heat conduction occurs much faster than the periodic heat generation; that is,
the heat conduction smoothes out the variations in temperature due to the time-
dependence of the heat generation, and equation (4.E.2-13) simplifies to

ort _ 1 d (.47 +1 (4.E2-14)
= — r .z-
at* r* dr* dr*

This equation describes the transient heat conduction period for the special case of
the conduction time scale being much smaller than the characteristic time scale for
the periodic heat generation.

If Fo; > 1, the transient heat conduction effects have died out; however, the
problem is still possibly unsteady state, due to the time-dependent heat-generation
term. For this case the characteristic time scale is #;, =1, =27 /w and equa-
tion (4.E.2-7) assumes the form

wR?T* 1 d
2w It* r*dr*

T* R?
<r* d ) + cos w—t* (4.E.2-15)
T

Equation (4.E.2-15), which describes unsteady-state heat conduction due to time-
dependent heat generation, can be simplified further if wR?/2m«a < 1, whereby it

reduces to
1 d dT*
0= <r* > +1 (4.E.2-16)

r*dr* dr*

which describes steady-state heat conduction due to constant heat generation.

4.E.3 Convective Heat Transfer with Injection Through Permeable Walls

Consider the steady-state fully developed laminar flow of a viscous Newtonian fluid
with constant physical properties between two infinitely wide permeable parallel
plates separated by a distance H as shown in Figure 4.E.3-1. There is constant
injection of the same fluid at velocity V through the permeable plate at y = H
and constant withdrawal of the same incompressible fluid through the permeable
plate at y = 0. The continuity equation can be used to prove that the injection and
withdrawal velocities at the upper and lower plates must be equal for the flow to
be fully developed. The upstream (entering) temperature of the fluid is 77. The
temperature of the upper plate at y = H is also T, whereas the temperature of
the lower plate at y = 0 is Tj, such that 7} > Ty. Since the flow is assumed to be
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Injection of fluid at a constant velocity V

S —— /}Tl ......... L.

Withdrawal of fluid at a constant velocity V

Figure 4.E.3-1 Steady-state fully developed laminar flow of a viscous Newtonian fluid
with constant physical properties between two infinitely wide permeable parallel plates
separated by a distance H; the same fluid is injected and withdrawn at a constant velocity
V at the upper and lower plates, respectively; the fluid enters at 77; the upper and lower
plates are maintained at temperatures 7} and Ty, respectively, where 77 > Tp.

laminar and fully developed, the velocity profile is given by

03]
Uy =Uy [ 1=(1-22 (4.E.3-1)
H

where U, is the maximum velocity. We use scaling to explore simplifying approx-
imations that might be invoked for this heat-transfer problem.

We begin by appropriately simplifying the energy equation given by
equation (F.1-2) in the Appendices (step 1). Note that we must include axial con-
vection, transverse convection, axial conduction, transverse conduction, and viscous
dissipation. ) s )

,OCPI/LX% - pcpv% = k% + k% fu (i;;) (4E3-2)
When equation (4.E.3-1) is substituted into the above, we obtain the following set
of describing equations:

29\* | oT aT 92T 9T
CoUn|1=(1-2) | = = pCpV— =k—s + k—
p"m[ ( H>:|8x PEPV Sy = o TRy

dy
l6pU?2 2y\?
mil]—-== 4.E.3-3
+ e ( I ( )
T =T at x=0 (4.E.3-4)

T =f() at x=L (4E3-5)
T=T at y=H (4.E.3-6)
T=T at y=0 (4.E.3-7)

Equation (4.E.3-5) prescribes the downstream boundary condition in terms of the
function f(y), which might be unknown. We use o(1) scaling to explore when
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the axial conduction, viscous heat generation, and axial convection terms can be
neglected. Introduce the following dimensionless variables involving unspecified
scale and reference factors (2, 3, and 4):

T - T,_ X " y

T = ; x* ; y* =

(4.E.3-8)
T Xs Vs

Substitute these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 5 and 6):

/)CpUmys2 |:1 _ (1 _2&y*)2i| oT* 3 pC,LVy;s 8_T*
H

kxg ox* k ay*
2 a27* 2% 2,2
yo0°T °T 16uUyy ( Vs 2
_ Y% mYs (1 _ o2 *) 4E39
x2 9x*2 * dy*? * kT,H? H ( )
* T, *
T = at x* =0 (4.E.3-10)
Ty
L
T = f(y") at x* = — (4.E.3-11)
Xs
, Ti—T ., H
T" = at y* = — (4.E.3-12)
T; Vs
* TO - TV *
T = at y*=0 (4.E.3-13)
Ty

We have divided by the coefficient of the conduction term in the y-direction since
this term must be retained to satisfy the boundary conditions at the upper and lower
plates.

We can bound the dimensionless temperature to be o(1) by setting the dimen-
sionless group in equation (4.E.3-13) equal to zero, thereby determining the ref-
erence temperature, and by setting the dimensionless group in equation (4.E.3-10)
equal to 1 to determine the temperature scale (step 7). We can bound the dimen-
sionless axial and transverse coordinates to be o(1) by setting the dimensionless
groups in equations (4.E.3-11) and (4.E.3-12) equal to 1. Hence, we obtain the
following scale and reference factors:

T. = To: T,=T —To: x=L; vy = H (4.E.3-14)

Substitution of these scale and reference factors into equations (4.E.3-9) through
(4.E.3-13) yields

9T*  pC,VH OT*
ax* ko oy

H
Pe,f [1—(1—2y"?]
(4.E.3-15)
H?3’T*  9°T* 16pU?
L2 9x*2  9y*2 k(T — Ty)
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T*=1 at x*=0 (4.E.3-16)
T* = f(y*) at x*=1 (4.E.3-17)
T =1 at y*'=1 (4.E.3-18)
T =0 at y*=0 (4E.3-19)

where Pe; = HU,,/a is the Peclet number for heat transfer.

The dimensionless describing equations given by equations (4.E.3-15) through
(4.E.3-19) can be simplified if any of the following conditions are satisfied
(step 8):

H
Pe; i « 1 = axial heat convection can be ignored (4.E.3-20)
2
1z « 1 = axial heat conduction can be ignored (4.E.3-21)
16uU2 . . :
——— & 1 = viscous heat generation can be ignored (4.E.3-22)
k(Ty — Tp)

Note in particular that if the condition defined by equation (4.E.3-21) is satisfied,
the elliptic thermal energy equation is reduced to a parabolic differential equation,
thereby obviating the need to satisfy any downstream boundary condition on the
temperature.

Let us now assume that the conditions defined by equations (4.E.3-20) through
(4.E.3-22) are satisfied; that is, axial heat conduction and convection as well as
viscous dissipation can be ignored. Hence, only the effects of transverse heat
conduction and convection remain in our describing equations. If the transverse
injection and withdrawal of fluid is sufficiently large, one might anticipate that
there will be a region of influence near the lower plate where essentially all the
heat transfer is occurring. We use scaling analysis to determine the thickness of this
region. In this case the transverse length scale will not be H since the dimension-
less temperature will experience a change of O(1) over a much shorter distance.
Hence, we must rescale the describing equations to determine the thickness &; of the
region of influence or thermal boundary layer near the lower plate. Our simplified
dimensional describing equations now are given by

C V8T_k82T (4.E.3-23)
PEp dy  9y? o
T=T a y=H (4.E.3-24)

T=Ty a y=0 (4.E.3-25)
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If we again introduce the dimensionless variables defined by equations (4.E.3-8),
we obtain the following set of dimensionless describing equations:

pC,Vys dT*  3°T*

= 4.E3-26
k ay* ay*Z ( )
Ty — T, H
TF= T g = (4.E.3-27)
T Vs
To— T,
y— . at y* =0 (4.E.3-28)

Our reference and scale factors for the temperature will be the same as before.
Since the two terms in equation (4.E.3-26) must be o(1) to balance each other,
the dimensionless group multiplying the first term must be equal to 1; this then
determines the transverse length scale as follows:

Prp’s 1oy =4 = _ % (4.E.3-29)

where we have identified the transverse length scale with the thickness of the
region of influence §,. We see that §, decreases with increasing injection velocity
and decreasing thermal diffusivity o.

If the injection velocity is sufficiently large, 6, will be very small so that
H/38; — oo. Hence, our scaled dimensionless describing equations reduce to

aT* 9T
— = — (4.E.3-30)
ay* ay*Z
T =1 at y* — oo (4.E.3-31)
T"=0 at y*=0 (4.E.3-32)
These equations admit an analytical solution given by
T =1—e¢" (4.E.3-33)

Note that this solution indicates that 7* is bounded of o(1), as it should be if our
scaling analysis was carried out properly.

4.E.4 Steady-State Heat Transfer to Falling Film Flow

Consider the fully developed laminar flow of a Newtonian liquid film of thickness
H and constant physical properties down a solid vertical wall maintained at a
temperature 77, as shown in Figure 4.E.4-1. The temperature of the liquid at x =0
is Tp. Assume that negligible heat is transferred to the adjacent gas phase along the
length of the liquid film and that viscous heat generation can be ignored. We seek
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/ T=Tyatx=0
Tby
X

Liquid film

T (x,y) |[Inviscid gas phase
| My
e ()

<« 1 —>

Figure 4.E.4-1 Steady-state heat transfer from a vertical plate at temperature 7; to a liquid
film in fully developed laminar flow of initial temperature Tp, thickness H, and constant
physical properties.

to determine how the describing equations can be simplified. The velocity profile
for fully developed laminar film flow is given by

uw, = U, [%y — (%)2} (4.E4-1)

where U, is the maximum fluid velocity, that is, the velocity at the liquid—gas
interface.

The thermal energy equation given by the appropriately simplified form of
equation (F.1-2) in the Appendices, along with the required boundary conditions,
are given by (step 1)

Un [2y y\21dT  8°T 8T
Ym 2y <_) L (4.E.4-2)
a | H H 0x  0x%  0y?
T=T, at x=0, 0<y<H (4.E.4-3)
T = f() at x=L, 0<y<H (4.E4-4)
T=T at y=0, 0<x<L (4.E.4-5)
T
3y =0 at =H, 0<x<L (4.E.4-6)
y

where o = k/pC), is the thermal diffusivity. Equation (4.E.4-2) is an elliptic dif-
ferential equation that requires a downstream boundary condition, which we have
indicated formally by equation (4.E.4-4); in practice, the inability to specify this
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downstream boundary condition precludes solving problems of this type even
numerically. Introduce the following scale and reference factors (steps 2, 3, and 4):

T-T, X . Y
5 X —; y = —
T Xs Vs

*

T =

(4.E.4-7)

The resulting dimensionless describing equations are given by (steps 5 and 6)

CpUny? aT* Y 3’T*  9*T*
PCHrUn Y (2 x Vs *2> _ s 4+ — (4.E.4-8)

k H x; H ax*  x20x | 9y
To—T, H
TF=2""" 4 x*=0, 0<y'<-— (4.E.4-9)
T Vs
5T, L H
T RPACA Rkl R P (4.E.4-10)
T Xs Vs
* n-T * * L
= at y*=0, 0<x*<— (4E4-11)
K Xs
AT H L
= at y'=—, 0<x"<— (4.E.4-12)
ay* Vs Xs

The dimensionless temperature can be bounded to be o(l) by setting the
dimensionless groups in equations (4.E.4-9) and (4.E.4-11) equal to zero and 1,
respectively, to obtain 7 = Ty and Ty = Ty — Ty (step 7). The streamwise spatial
coordinate can be bounded to be o(1) by setting the appropriate group appear-
ing in equations (4.E.4-10) through (4.E.4-12) to obtain x; = L. There are two
choices for bounding the cross-stream spatial coordinate to be o(1): by setting
the appropriate group in any one of equations (4.E.4-9), (4.E.4-10), and (4.E.4-12)
equal to 1, or by setting the dimensionless group multiplying the convection term
in equation (4.E.4-8) equal to 1. However, the convection term has to balance the
principal conduction term in equation (4.E.4-8); this yields the following equation
for yy:

lOCpUmy&’5 . )Ochmy&’5 - Vs Sy . kL 1/3 . 1 L 1/3
kHx, —  kHL H H \pC,U,H?>) — \Pe,H
(4.E.4-13)

We see that y; = §; is a region of influence near the hot wall whose thickness
increases slowly with axial length and is inversely proportional to the thermal
Peclet number, Pe, = U,, H/«. Sufficiently far downstream, §, will become equal
to the film thickness H.

For large Peclet numbers the ratio §,/ H will be quite small. This permits signifi-
cant simplification of the describing equations (step 8). In particular, the aspect ratio
83 /L? will be quite small, which permits ignoring the axial conduction term, thereby
avoiding the complication of having to specify a downstream boundary condition.
In addition, for sufficiently large Peclet numbers, the quadratic term in the equation
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for the velocity profile can be ignored since it is only the velocity in the vicinity
of the solid wall that is important for a thin region of influence. Finally, since
H/8; > 1 for large Peclet numbers, the boundary condition by equation (4.E.4-
12) can be applied at y* — oo. The resulting simplified dimensionless describing
equations are given by

aT*  3*T*
g (4.E.4-14)
9x* ay*Z
TF =0 at x*=0, 0<y* <o (4.E.4-15)
TF =1 at y*=0, 0<x*<I1 (4.E.4-16)
aT* * * *
e —0=T* =0 as y*—>o00, 0<x*<l1 (4.E.4-17)

This system of equations admits a solution via a similarity solution or combination
of variables, as is shown in standard references.!>

4.E.5 Unsteady-State Heat Transfer from a Sphere at Large Biot Numbers

In Section 4.4 we considered heat transfer from a solid sphere initially at temper-
ature Ty of radius R falling at its terminal velocity through a liquid at temperature
T~ for which the convective heat transfer was characterized via a heat-transfer
coefficient, as shown in Figure 4.4-1. We considered a scaling appropriate to a
small Biot number for which all the resistance to heat transfer was in the exter-
nal liquid. This implied that the temperature gradient in the sphere was negligible
and the temperature was spatially uniform. Here we apply scaling analysis to the
complementary case of a large Biot number corresponding to rapid heat transfer in
the external liquid. To have continuity of heat flux at the surface of the sphere, the
temperature gradient in the sphere will occur over a region of influence or thermal
boundary layer whose thickness &, is the appropriate radial length scale.

The dimensional describing equations will be the same as those in Section 4.4
(step 1):

aT 19 (,0T
— =a—— (r*— (4.E.5-1)
ot r2 or or
T=Ty a t<0, 0<r<R (4.E.5-2)
aT
— =0 at r=0, >0 (4.E.5-3)
ar
aT
k- =h(T=T) at r=R, 1>0 (4.E.5-4)
r

I5R. B. Bird, W. E. Stewart, and E. L. Lightfoot, Transport Phenomena, Wiley, New York, 1960,
pp- 349-350.
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It is convenient to reference the coordinate system to the surface of the sphere
where the thermal boundary layer is located. Hence, we define the following dimen-
sionless variables (steps 2, 3, and 4):

~

|
=~
=

|

~

| ~

* . t*

(4.E.5-5)

~

s

Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation that should be retained
(steps 5 and 6):

82 9T* 1 9 R 2aT*
AL (= -r - (4.E.5-6)
oty 0t [R/5z _ r*] or & ar
Ty —T, R
7 =20 at *<0, 0<r*<_— (4.E.5-7)
T 8
aT* R
= 0 at r* = 5 " >0 (4.E.5-8)
r t
aT* 18, (Too — T,
—— _7’ (OOT - T*) at r*=0, >0 (4.E.5-9)
r s

When set equal to zero and 1, respectively, the dimensionless groups in equa-
tions (4.E.5-7) and (4.E.5-9), indicate that 7, =Ty and Ty = T — Ty (step 7).
Since this is inherently unsteady state, the appropriate time scale is the observation
time f,. The fact that the unsteady-state and radial heat conduction terms in equa-
tion (4.E.5-6) must be of the same order provides an estimate for &;:

2
% — 1 =8, = Jat, = RJ/Fo, (4.E.5-10)

Al

where Fo;, = at,/ R? is the thermal Fourier number. Note that the thermal boundary
layer penetrates progressively farther into the sphere in time. Eventually, it will
penetrate to the center of the sphere when Fo, = 1, corresponding to an observation
time #, = R?/a.

When these scale and reference factors are substituted into equations (4.E.5-6)
through (4.E.5-9), we obtain the following dimensionless describing equations:

oT*

1 29T
Py = 5 ar* |:< Fot —r > m] (4E5-11)
It Fo,> ]

1
Fo,

T =0 at <0, 0<r*< (4.E.5-12)

j
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oT* L .
=0 at r'=— ">0 (4.E.5-13)
ar* FO[
aT* . * * *
= -BiFo 1 -7 a =0, >0 (4E.5-14)

where Bi; = hR/k is the thermal Biot number.

Now let us consider how this system of describing equations can be simplified
(step 8). We note that the curvature effects can be ignored when /Fo, < 1, cor-
responding to short contact times for which the thermal boundary layer will be
thin in comparison to the radius of the sphere. If \/Fo, « 1, the boundary con-
dition given by equation (4.E.5-13) can be applied at infinity. A zero conductive
heat flux far from the surface of the sphere implies no change in the temperature
outside the thermal boundary layer. Hence, equation (4.E.5-13) can be replaced
by the condition that 7* = 0 as r* — oo. Equation (4.E.5-14) indicates that as
Bi; — 00, T* — 1 to ensure that 37*/9r* remains bounded of o(1). This implies
that the surface temperature of the sphere is at T, and that there is essentially no
temperature gradient in the liquid. Hence, for /Fo, < 1 and large Biot numbers,
the describing equations simplify to

Z: — % (4E.5-15)
T =0 at <0, 0<r*<o (4.E.5-16)
T =0 at r* —>o00, t*>0 (4.E.5-17)
TF=1 at r*=0, >0 (4E.5-18)

This simplified set of describing equations can be solved via standard methods such
as combination of variables.

4.E.6 Evaporative Cooling of a Liquid Film

An infinitely wide film of an incompressible volatile pure (i.e., single compo-
nent) liquid has an initial thickness of L( and is resting on a solid boundary that
is maintained at a constant temperature 7Tj. Initially, the entire liquid film is at
this temperature. At time ¢+ = 0, evaporation from the film begins that causes the
film thickness to decrease, thus implying that this is a moving boundary prob-
lem. The surrounding gas phase is assumed to transfer negligible heat to the
liquid film. Hence, the latent heat of vaporization (evaporation) must be supplied
entirely by heat conduction from the liquid film. This, of course, causes heat trans-
fer within the liquid film. The evaporative mass flux at the free surface ng is
given by

ng = kG pz (units of mass/area - time) (4.E.6-1)
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Gas

? ng=kGpj

Lo Volatile liquid

T=T,

Figure 4.E.6-1 Evaporative cooling of an infinitely wide planar film of an incompressible
volatile liquid of vapor pressure p; and initial temperature Ty, into an adjacent insoluble gas
phase whose mass-transfer coefficient is k(;; the gas phase is assumed to transfer negligible
heat to the liquid.

in which k; is the constant mass-transfer coefficient in the ambient gas phase and
p; is the temperature-dependent vapor pressure of the liquid at the instantaneous
temperature of the liquid—gas interface. Note that equation (4.E.6-1) assumes that
the bulk of the ambient gas phase does not contain any of the evaporating com-
ponent. For moderate departures of the temperature from 7, the temperature
dependence of the vapor pressure can be approximated by

pL = Pro+ BT —To) (4.E.6-2)

where pj, is the vapor pressure at Ty and 8 is a constant. We seek to develop a
model for this evaporative cooling, film-thinning process, whose essential features
are shown in Figure 4.E.6-1. In particular, we explore conditions for which the
describing equations can be simplified.

The appropriately simplified form of equation (F.1-2) in the Appendices along
with the initial condition and boundary condition at x = 0 are given by (step 1)

C aT—k T (4.E.6-3)
PL pLat—Laxz .

T=T, at 1=0 (4.E.6-4)

T =T, at x=0 (4.E.6-5)

where k;, o1, and C, are the thermal conductivity, density, and heat capacity of
the liquid, respectively. The boundary condition at the moving upper interface is
obtained from an integral energy balance as follows:

d [t . d [ .
o | LG (T =T dx + Z/ pCpo(T —T)dx =qo  (4E.6-6)
0 L

where T° is an arbitrary reference temperature for the enthalpy or heat content
and qo is the heat transferred into the liquid film at x = 0. Applying Leibnitz’s
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rule for differentiating an integral given by equation (H.1-2) in the Appendices and
substituting equation (4.E.6-3) yields

C,(T, To)dL+/L C aTd C,c(T, To)dL—i-/OO C aTd—
pPLC L dr O,OL pL 9 X=pcLpcLL dr LPG pG P X=dqo
(4.E.6-7)
(or.C C,e)(T TO)dL—i-/Lk aZTd +/Ook 8ZTd—
PLCpL = PGLpG)UL ai " J, Lo X | Go2 X=qo
(4.E.6-8)
(pLC Cpo)(T, T°)dL+k or or

oLCpL = pPGLpG)ULL a1 L 55 . Loy o

Tk aT oT _
“ ox —oo ¢ ox x:L—CIO
(4.E.6-9)

The first term in equation (4.E.6-9) is the difference in heat content between the
gas and the liquid, which is proportional to A H,, the latent heat of vaporization
(energy/mass). The fifth term in this equation is assumed to be zero, whereas the
third term is equal to the last term. Hence, our boundary condition at the moving
free interface simplifies to

oT dL
ki — = AH,p — at x=1L (4.E.6-10)

ax dt
Equation (4.E.6-10) merely states that the heat conducted to the moving interface
is equal to that required to vaporize the liquid.

An auxiliary condition is still needed to determine the location of the moving
interface. Since mass is lost at this moving boundary, this auxiliary condition is
obtained from an integral mass balance given by

d [t d [
— d — dx =0 4.E.6-11
ar ), oL x+dt/; PG dx ( )

Applying Leibnitz’s rule for differentiating an integral given by equation (H.1-

2) in the Appendices and substituting the one-dimensional form of the continuity
equation given by equation (C.1-1) in the Appendices yields

dL Lo dL * 9
PL——/ de-p(;——/ IpGHx 1 — 0
o 0x dt L ax
(4.E.6-12)

dL
(oL — PG) e PLUx|y=p + PLUx |z =0 — PGUx|y=0o + PGUx|x=f =0
(4.E.6-13)
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where u, denotes the velocity in the x-direction. Due to the incompressibility of
the liquid, the second and third terms in equation (4.E.6-13) cancel. The fourth
term is identically zero, and the last term is equal to the evaporative mass-transfer
flux ng = ké [p}o + B(T — Tp)]. Hence, the auxiliary condition for determining
the location of the moving boundary simplifies to

dL _ dL c
(pL_PG)Z=PL_:nGzkg[PL0+,3(T_TO)] at x=1L

dt
(4.E.6-14)

Equation (4.E.6-14) merely states that the rate of mass loss in the liquid film is
equal to the rate of evaporation at the free surface. This equation requires an initial
condition given by

L=1Ly at t=0 (4.E.6-15)

We anticipate that for very short times, the heat transfer will be confined to
a thin region of influence near the moving interface. Hence, to explore the full
spectrum of possible simplifications of the describing equations, it is convenient to
carry out a coordinate transformation whereby we locate the origin of our spatial
coordinate at the liquid—gas interface. Define a new spatial coordinate as follows:

F=L@t)—x (4.E.6-16)

The describing equations in this new coordinate system are given by

9T dLaT 92T
or  dbor o071 4E.6-17
ot " dr ax | ox2 ( )
T=T, a t=0 (4.E.6-18)
T=T, a i=L (4.E.6-19)
aT dL )
S —AH a5 =0 (4.E.6-20)
0x dt
dL . . i
Ll =kGlpl =BT —To)]  at $=0 (4.E.6-21)
L=1L, at t=0 (4.E.6-22)

Note that the coordinate transformation introduces a pseudo-convection term in the
energy equation.

We first seek to determine the criteria for ignoring the temperature dependence
of the vapor pressure and assuming that this evaporative cooling process is at
quasi-steady-state. Hence, introduce the following scale and reference factors
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(steps 2, 3, and 4):

_T_Tr.
=7

|~

T*

I
(f“| =1
Py

N P dL\* _ 1d
’ T L ) T L, d
2

Note that we have given dL/dt its own scale since there is no reason for it to
scale as X;/f;. Substitute these dimensionless variables into equations (4.E.6-17)
through (4.E.6-22) to obtain the following set of dimensionless describing equations
(steps 5 and 6):

£ 0T | Lk (dLyToT 0T (4.E.6-24)
apt, Or* a; \dr ) oaxx 952 -
To—T,
T* = OT Toat f=0 (4.E.6-25)
5
To—T, L
TF=0" " g = (4.E.6-26)
T Xs
aT*  AH,pr 3Ly (dL\*
— = % (E) at ¥ =0 (4.E.6-27)
dL\* k. [p5,—B (T, T*+T, — T,
dL\" _ kg [pro = B (T3] ) (4.E.6-28)
dt pLLs
L
L* = L—O at =0 (4.E.6-29)
s

The dimensionless temperature can be referenced to zero by setting the group in
either equation (4.E.6-25) or (4.E.6-26) equal to zero. For sufficiently long times
such that the heat conduction penetrates through nearly the entire liquid film, the
dimensionless spatial coordinate can be bounded between zero and 1 by setting the
appropriate group in equation (4.E.6-26) equal to 1. The instantaneous liquid film
thickness can bounded between zero and 1 by setting the dimensionless group in
equation (4.E.6-29) equal to 1. Since this is an unsteady-state problem, the time
scale is the observation time #,. We can ensure that the dimensionless temperature
derivative is o(1) by setting the dimensionless group in equation (4.E.6-27) equal
to 1; this also determines the temperature scale factor. We can ensure that the
dimensionless velocity of the free surface is o(1) by setting the dimensionless
group corresponding to the leading-order term in equation (4.E.6-28) equal to 1;
this also determines the scale for the free surface velocity. This results in the
following dimensionless variables:

S ) I S T
AHvapL()L L t(; L()
dL\* dL
dL\"_ _p_dL (4.E.6-30)
dt kGpro dt
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These variables result in the following set of dimensionless describing equations:

1 aT* k. .pS.L (dL\* oT* 9°T*
- SGPro~ (4L) O8O (4.E.6-31)
Fo, ot* oL dt ax* 0x*2
T =0 at =0 (4.E.6-32)
T =0 at ¥* =1 (4.E.6-33)
T* dL\*
Y (nd at #* =0 (4.E.6-34)
ox* dt
dL\* k~BAH,L
<—) =1- Gﬁi‘)T* at =0 (4.E.6-35)
dt kr,
L*=1 at =0 (4.E.6-36)

where Fo, = a1,/ L? is the Fourier number for heat transfer.
Equation (4.E.6-35) indicates that the temperature dependence of the vapor pres-
sure can be ignored if the following criterion is satisfied (step 8):

M <1 (4.E.6-37)
ki

Note that any factors that reduce the evaporative cooling favor satisfy this crite-
rion; these include a reduced gas-phase mass-transfer coefficient, a smaller heat
of vaporization, and a higher thermal conductivity. Note also that this criterion
becomes progressively easier to satisfy as time increases, owing to the presence
of L in the numerator. Equation (4.E.6-31) indicates that quasi-steady-state will
prevail if the following criterion is satisfied:

1 L?

FO, art,

<1 (4.E.6-38)

If quasi-steady-state applies, equations (4.E.6-31) through (4.E.6-35) can be solved
analytically for both constant as well as variable vapor pressure. However, the initial
condition given by equation (4.E.6-36) cannot be applied, due to the long-time
constraint implied by equation (4.E.6-38).

The quasi-steady-state approximation applies at very long observation times. It
would be of value to explore whether a complementary short-time approximation
can be developed as well. We anticipate that a short-time solution would apply when
the heat transfer is confined to a thin region of influence §; near the upper moving
interface. The dimensionless temperature goes through a change of O(1) over the
thickness §,; therefore, to bound our spatial coordinate to be o(1), we choose our
length scale factor X; = §,;. Hence, our dimensionless describing equations assume
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the following form:

82 aT*  k.pS.S8: (dL\*aT*  9°T*
‘ GPro% (%) 97 91 (4.E.6-39)
apt, Ot* arpL dt ox* ax*2
T*=0 at t*=0 (4.E.6-40)
E3 ~k L
T"=0 at % =z (4.E.6-41)
t
aT* dL\*
I at ¥ =0 (4.E.6-42)
ox* dt
dL\* k-BAH,S
e R (4.E.6-43)
dt kr

Since we are considering simplifications appropriate to very short observation times,
this is inherently an unsteady-state problem. This implies that the first and third
terms in equation (4.E.6-39) must be retained; this provides a measure of the thick-
ness of the region of influence given by

82
tt =1=6 =Jait, (4.E.6-45)
oLl

Since for very short times §; < L, the boundary condition given by equation
(4.E.6-41) can be applied at infinity. This permits obtaining an analytical solution
using the method of combination of variables if the temperature dependence of the
vapor pressure can be ignored. For this short observation time scaling, the criterion
for ignoring the temperature dependence of the vapor pressure is given by

keB AH, S
Gﬂik f 1 (4.E.6-46)
L

Since for short times §; < L, the criterion given by equation (4.E.6-46) is much
easier to satisfy than that given by equation (4.E.6-37), which is applicable at
longer times. Note also that the pseudo-convection term in equation (4.E.6-39) can
be dropped if the following criterion is satisfied:

kopos  kepSe [1
GPLo _ Z6Pro [T oy (4.E.6-47)
arLpr PL oy

This example illustrates one of the principal values of scaling in arriving at
appropriately simplified forms of the describing equations that admit either analyt-
ical or much simpler numerical solutions. In this case we were able to simplify the
describing equations so that analytical solutions could be obtained for both very
short and very long observation times. These analytical solutions could be used to
check the validity of a numerical solution to the complete describing equations.
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Figure 4.E.7-1 Buoyancy-induced free-convection flow next to a vertical heated plate of
temperature 7 immersed in an infinite fluid whose temperature far from the plate is Tio;
sketch shows the temperature profiles at two positions along the plate, x; and x, where
x2 > x1, and the velocity profile of the component u, parallel to the plate.

q

4.E.7 Free-Convection Heat Transfer Adjacent to a Vertical Heated
Flat Plate

Consider a vertical flat plate of length L and temperature 7; that is immersed in
an initially quiescent fluid of temperature 7T, < 7 that can be assumed to have
infinite extent in all directions, as shown in Figure 4.E.7-1. The fluid next to the
heated plate will become less dense than the fluid farther removed from it. Hence,
a hydrostatic pressure imbalance will occur that causes fluid near the plate to
rise; in contrast to the free-convection problem considered in Section 4.9, no fluid
will descend in this case, due to the assumption of infinite extent. We consider this
convective flow after the transients have died out when steady-state free convection
prevails. We ignore end effects at the top and bottom ends of the plate and viscous
dissipation and assume constant physical properties other than the density in the
gravitational body-force term in the equations of motion.

Note that this is inherently a developing flow, due to the progressive heating
that occurs as the fluid moves up the plate; therefore, velocity components in both
the x- and y-directions must be considered. Hence, equations (C.1-1), (D.1-10),
(D.1-11), and (F.1-2) in the Appendices simplify to (step 1)

Ay Ay P %u,  0%u,
Py —— + plUy—— = — + un + — pg 4.E.7-1)

0x Y dy x dx2 dy?
duy duy P Puy  uy
ouy Sy o8 4E.7-2
Pl TP 3y <8x2 t oy ( )
ouy  ouy
; =0 (4E.7-3)
x y

T aT T 0°T
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The corresponding boundary conditions are given by

u, =0, u, =0, T=Ty at x=0 (4.E.7-5)
uy = f1i(y), uy= L), T=f©0) at x=1L (4.E.7-6)
uy, =0, u,=0, T=T at y=0 4.E.7-7)
uy =0, u,=0, T=T at y —> 00 (4.E.7-8)

where f1(y), f2(y), and f3(y) are functions of y that often are unknown. Since the
density is temperature-dependent, we need an appropriate equation of state. Here
we consider small density variations and hence represent the density by means of a
Taylor series expansion about the density poo at the cold temperature 7o, given by

ap
p=plr, + T (T — Too) = Poo — PooBi(T — Teo) (4.E.7-9)
Teo

where B; is the coefficient of thermal volume expansion. In addition, it is conve-
nient to split the pressure into dynamic, P;, and hydrostatic, P, contributions as

follows'®:

P = Py(x,y) + Pp(x) (4.E.7-10)

When equations (4.E.7-9) and (4.E.7-10) are substituted into equation (4.E.7-1),
we obtain

u, Ay P, Zu,  0%u,
- Uy—— =———+[L + == | + pBig(T — Teo)
ax ay ax

0x2 0y?
(4.E7-11)

Note that the p..g term does not appear in equation (4.E.7.11) since it cancels
with the derivative of the purely hydrostatic contribution to the pressure. Note that
higher-order effects of the temperature on the density are ignored in the convection
terms; that is, the density appearing in the convection terms is evaluated at T, and
hence is denoted by pno.

Define the following dimensionless dependent and independent variables (steps
2, 3, and 4):

uizu—x’ u’;zﬂ; P*Eﬂ; T*ET—T,,;
Uyxs Uys PS Ts
X
Xs Yms Vs

168plitting the pressure into its dynamic and hydrostatic contributions is standard practice when the
latter does not cause the flow; this permits eliminating the contribution of the gravitational body force
from the describing equations as seen in the present example.
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Note that we have allowed for different y-length scales for the energy equation
and equations of motion since the temperature might experience a characteristic
change of O(1) over a different length scale than the velocities. Introduce these
dimensionless variables into the describing equations and divide each equation by
the dimensional coefficient of one term that should be retained to maintain physical
significance (steps 5 and 6):

sty,%m *% Uys Yms M*% __ nygﬂ opP*
VooXs T OX* Voo ° 0¥ UilggXs OX*
2 2% 2. % 2
0°u 0“u T T, — T
ymzs )2r ; g,Bt Ayms (T*+ r oo) (4E7-13)
x& ox* dyx Voollxs T,
UrsVims 5 OUY | UysYms u*% _ Py 3P 2 9% 9%u WET-14)
VooXs  0x* Voo °OYE Ry dy*  x2 Ox*2 0 Qyxr
ou’ sXs O}
Ty | Myt Ty (4.E.7-15)
oax* UxsYms 3y;;
aT* aT* 32T 32T
UxsYts ;kc +uj = Olooytzs - [073%) . (4.E.7-16)
UysXs ox* ay; UysXy 0X* UysVis Y]
T — T,
wi=0, uj=0, T'=—"-—" a x*=0 (4.E.7-17)
T,
L
uy = filyy), uy= LG, T'= 07 at x* = o (4.E.7-18)
S
T, — T,
whi=0, ut=0, T"=- At =y =0 (4.E.7-19)
s
T — T,
uy=0, u;=0, T'= OOT at yi =y’ — o0 (4.E.7-20)

where vo, = 4/ poo is the kinematic viscosity and oo, = k/po0C) is the thermal
diffusivity.

For this flow the effect of viscosity will be confined to a thin region near the
vertical plate; hence, the y-length scale for the equations of motion will be the thick-
ness of the momentum boundary layer or region of influence §,,; that is, y,,; = 8,
(step 7). The momentum boundary-layer thickness is obtained by balancing the
convection terms with the principal viscous term in equation (4.E.7-13). Similarly,
the effect of heat conduction will be confined to a thin region §;, although not nec-
essarily of the same thickness as that of the momentum boundary layer; hence, the
y-length scale for the energy equation will be the thickness of the thermal boundary
layer or region of influence §;; that is, y;; = &;. The thermal boundary-layer thick-
ness is obtained by balancing the transverse heat-convection and heat-conduction
terms in equation (4.E.7-16). To determine the axial velocity scale u,s, we need
to balance what causes the flow with the principal resistance to flow; the former
is the gravitationally induced body force; the latter is the principal viscous term.
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The transverse velocity scale u,, is obtained from the continuity equation since
this is inherently a developing flow. One might be tempted to obtain Py from the
dimensionless group multiplying the pressure term in equation (4.E.7-13). How-
ever, the pressure term in equation (4.E.7-13) does not cause the free convection
flow; the latter is caused by the gravitational body-force term in this equation.
However, the pressure does cause the flow in the y-direction, which is the rea-
son why we determine its scale by setting the dimensionless group containing P
in equation (4.E.7-14) equal to 1. The axial length scale and temperature refer-
ence and scale factors are obtained from the boundary conditions as described
in Sections 3.4 and 4.6. These considerations then result in the following scale
factors:

2 0.25 2 0.5
AT AT

Uy = (gﬂt AT L)O.S; Mys — <Voogﬂf > : Ps — (/“L gIBI ) :

L L

—_— . . L L .

TS = Tl - TOO = ATa Xy = L’ )’ms = Sm = m = Gr?.zs )
(4.E.7-21)

L L Sm

Yee =6 = PrOSpe)S  Pr. Gr¥% ~ Pr
where Re = u,;L /v is the Reynolds number, Pe; = u,;L/ax = Re - Pr is the
Peclet number for heat transfer, Pr = vy /oo is the Prandtl number, and Gr, =
L3gB: AT/ vgo is the Grashof number for heat transfer. Note that the Grashof
number is a measure of the ratio of the free convection to viscous transport of
momentum; as such, it is the analog of the Reynolds number for free convection.!?
Note that the last of equations (4.E.7-21) indicates that §, < §,, for normal liquids,
8¢ = 6, for gases, and 8; > &, for liquid metals.

If we now rewrite our dimensionless describing equations in terms of the scales
defined by equations (4.E.7-21), we obtain

et 1 Pt ] O%uy n 0, +T*  (4.E7-22)
Y T Wy GIO% ax* | Gi0S ax | oy
B L LS S U (4.E.7-23)
“oxt | Yayr  ayn | Grd x| ay?
gzz N z;‘; _0 (4.E.7-24)
1 ,oT*  OT* 1 9°T*  9’T*

— = + 4.E.7-25
Pr”x Ox* M.V ay; PrzGr?'S ax*Z ay}k} ( )

"The thermal Rayleigh number, defined as Ra; = L30oogBs AT Jves = Gr; - Pr, is another important
dimensionless group that appears in free-convection problems; it is a measure of the ratio of the free
convection to viscous transport of heat; as such, it is the analog of the thermal Peclet number for free
convection.
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Wi=0, wi=0, T*=0 at x*=0 (4.E.7-26)
uy = i), uy= L0, T = f0]) at x*=1 (4.E.7-27)
up =0, u; =0, Tr'=1 at yr=y'=0 (4.E.7-28)
ui =0, u; =0, T"=0 at yy =y =00 (4.E.7-29)

We now can consider how these scaled dimensionless describing equations can
be simplified (step 8). Note that if the Grashof number is very large, such that
Gr?'5 >> 1, the pressure and axial viscous momentum transfer terms can be dropped
from equation (4.E.7-22). The former simplification implies that the x-component
is decoupled from the solution to the y-component of the equations of motion;
hence, the latter equation can be ignored. Dropping the axial viscous momen-
tum transfer term from equation (4.E.7-22) converts it from an elliptic into a
parabolic differential equation; this obviates the need to specify downstream bound-
ary conditions that in many cases are unknown. A very large Grashof number also
implies that the axial heat-conduction term can be dropped from equation (4.E.7-
23), which also converts it from an elliptic into a parabolic differential equation,
again avoiding the need to specify a downstream boundary condition. The resulting
describing equations that are applicable in the limit of very large Grashof number
are given by

St ot P
Uy — tuy—=—5+ T (4.E.7-30)
ax ayy  dyx
ou*  ou*
U Y 0 (4.E.7-31)
ax*  oyk
1 ,oT* aT*  9°T*
Pr * ox dy; A
uy =0, uf =0, T*=0 at x* =0 (4.E.7-33)
uy =0, uf =0, T'=1 at yr=y'=0 (4E7-34)
uy =0, wuy=0 T"=0 at yr =y’ — o0

(4.E.7-35)

These simplified describing equations are often given in standard references
with little or no justification.'® Scaling analysis clearly provides a systematic
method for developing these simplified equations and for understanding their lim-
itations. The latter are explored further in the practice problems at the end of the
chapter.

18See, for example, Bird et al., Transport Phenomena, 2nd ed., pp. 346—349; note that equations (4.E.7-
30) and (4.E.7-33) differ from those in Transport Phenomena due to allowing for different radial length
scales in the equations of motion and energy equation.
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4.E.8 Dimensional Analysis Correlation for Electrical Heat Generation
in a Wire

In Example Problem 4.E.2, we applied scaling analysis to unsteady-state radial
heat conduction in a wire due to electrical heat generation. Assume now that we
wish to develop a correlation for the instantaneous average temperature or spatially
averaged temperature of the wire T(¢) shown in Figure 4.E.2-1, which is defined

— 1 R
T@) = —2/ T(r,t)2mrdr (4.E.8-1)
TR 0

Let us recast equation (4.E.8-1) in terms of the dimensionless variables defined in
Example Problem 4.E.2, given by

T-Tp r at
e =y t'=— 4.E.8-2
GoR2/k " TR R? ( )
o G RZ 1
(1) = 22 / TG, )2r dr* + T (4.E.8-3)
0

Employing the results of our scaling analysis for Example Problem 4.E.2 obviates
the need to apply steps 1 through 7 in the scaling analysis procedure for dimensional
analysis outlined in Chapter 2. Equation (4.E.8-3) can be rearranged in form

- 1
KT — Tol =T (t" =/ T*(r*, t%)2r" dr* (4.E.8-4)
GoR? 0

Equation (4.E.8-4) implies that T", the dimensionless average temperature, is a
function of ¢*, the dimensionless time, and any dimensionless groups that enter into
the solution for 7*(r*, t*). Equation (4.E.2-15) indicates that once the transients
have died out, only one additional dimensionless group is involved in the solution
for T*(r*, t*): namely, a)Rz/ a. Hence, the correlation for the instantaneous average
temperature will involve two dimensionless groups and the dimensionless time;
that is,

(4.E.8-5)

— k(T =Ty ., wR?
Tt = ()

Now let us assume that we seek a correlation for 7, the maximum in the
spatially averaged temperature fluctuation. In principal, this would be obtained by
setting the time derivative of the spatially averaged temperature equal to zero and
determining the corresponding maximum. Hence, the correlation for T;, the dimen-
sionless maximum in the average temperature, will involve only two dimensionless
groups; that is,

(4.E.8-6)

T+ _ k(T,, — To) y wR?
" GoR? n o
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However, if the dimensionless group wR?/a < 1, corresponding to very low fre-
quency currents, thin wires, or wires having a very high thermal conductivity, the
right-hand side of equation (4.E.8-6) can be expanded in a Taylor series and trun-
cated at the first term (step 9). For this special case the dimensionless maximum
spatially averaged temperature is a constant; that is,

T, = k(Tw — To) = a constant (4.E.8-7)
GoR?

It is instructive to compare the results of scaling for dimensional analysis to those
of the Pi theorem. A naive application of the Pi theorem for correlating the spatially
averaged temperature 7 would indicate that four dimensionless groups were neces-
sary; this follows from having nine dimensional quantities (T, Ty, Go, w,t, R, k, p,
and C,) in five units (mass, length, time, energy, and temperature). However, scal-
ing analysis reveals that the spatially averaged temperature can be correlated with
only three dimensionless groups. The Pi theorem will yield this same result if one
recognizes that the quantities k, p, and C, can be combined into a single quantity o
and that 7 and Tj can be combined into a single quantity 7 — T,. This reduces the
number of quantities to seven and the number of units to four, thereby indicating
three dimensionless groups. Scaling analysis avoids having to invoke the subtle
arguments required to ensure that the Pi theorem yields the minimum parametric
representation.

4.P PRACTICE PROBLEMS

4.P.1 Steady-State Conduction in a Slab with a Specified Cooling Flux

Consider steady-state heat conduction in the solid slab considered in Section 4.2
and shown in Figure 4.2-1. The boundary conditions at x =0, x = W,and y = H
remain the same; however, the constant-temperature boundary condition at y = 0
is replaced by a constant-heat-flux condition given by g, = —¢g> where g, > 0.

(a) Use scaling analysis to determine the appropriate temperature scales.
(b) Determine the criterion for ignoring lateral heat conduction.

4.P.2 Steady-State Conduction in a Slab with a Specified Heat Flux

Consider steady-state heat conduction in the solid slab considered in Section 4.2
and shown in Figure 4.2-1. The boundary conditions at x =0,x = W, and y =0
remain the same; however, the constant-temperature boundary condition at y = H
is replaced by a constant-heat-flux condition given by g, = —¢g> where g, > 0.

(a) Use scaling analysis to determine the appropriate temperature scales.
(b) Determine the criterion for ignoring lateral heat conduction.
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Figure 4.P.3-1 Steady-state multidimensional heat conduction in a solid rectangular par-
allelepiped of width W, depth D, and height H and constant physical properties.

4.P.3 Steady-State Heat Conduction in a Rectangular Parallelepiped

Consider the solid rectangular parallelepiped of width W, depth D, and height H
and constant physical properties shown in Figure 4.P.3-1.

(a) Write the appropriate form of the energy equation along with the boundary
conditions required.

(b) Use scaling analysis to determine the criterion for ignoring conduction in
the x-direction.

(c) Use scaling analysis to determine the criterion for ignoring conduction in
the z-direction.

(d) Derive an equation for the thickness of the region of influence near the
sidewalls at x = 0 and x = W wherein lateral heat conduction cannot be
ignored in predicting quantities such as the temperature or heat flux near
these boundaries.

(e) Derive an equation for the thickness of the region of influence near the
sidewalls at z =0 and z = D wherein lateral heat conduction cannot be
ignored in predicting quantities such as the temperature or heat flux near
these boundaries.

4.P.4 Steady-State Conduction in a Cylinder with Specified Temperatures
at Its Boundaries

Consider the steady-state heat conduction in a solid cylinder of radius R and con-
stant physical properties due to a high temperature 7j applied at z = 0 and a low
temperature 7] applied at z = L as well as at the lateral surface as shown in
Figure 4.P.4-1.

(a) Write the appropriate form of the energy equation along with the boundary
conditions required.

(b) Use scaling analysis to determine the criterion for ignoring radial conduc-
tion.

(c) Derive an equation for the thickness of the region of influence near the
circumferential boundary of the cylinder wherein radial heat conduction
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T,

Figure 4.P.4-1 Steady-state heat conduction in a solid circular cylinder due to a high
temperature Tp applied at z =0 and a low temperature 77 applied at z = L and at the
circumferential boundary at r = R.

cannot be ignored in predicting quantities such as the temperature or heat
flux near this boundary.

4.P.5 Steady-State Conduction in an Annulus with Specified Temperatures
at Its Boundaries

Consider steady-state heat conduction in a solid with an annular cross-sectional area
and constant physical properties due to a high temperature 7 applied at its inner
surface at R; and a low temperature 7, applied at its outer surface at R, as well
as at the two ends of the cylinder at z = 0 and z = L as shown in Figure 4.P.5-1.

(a) Write the appropriate form of the energy equation and the boundary condi-
tions required.

atr=Ry, T=T, | atr=R,, T=T,

Figure 4.P.5-1 Steady-state heat conduction in a solid annulus with constant physical prop-
erties whose inner surface at R; is held at a high temperature 77 and whose outer surface
at Ry and ends at z = 0 and z = L are held at a low temperature 75.
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(b) Use scaling analysis to determine the criterion for ignoring axial conduction;
be certain to include a reference scale for the dimensionless radial coordinate
since it is not naturally referenced to zero for an annulus.

(c) Derive an equation for the thickness of the region of influence near the two
ends of the annulus wherein axial heat conduction cannot be ignored in pre-
dicting quantities such as the temperature or heat flux near this
boundary.

4.P.6 Steady-State Heat Conduction in a Circular Fin

A solid metallic circular flat fin with a constant thermal conductivity k, width H,
and radius R, is attached to a cylindrical pipe having a radius R; that is maintained
at a constant temperature 77, where R, — Ry > H. The convective heat-transfer
flux g from the surfaces of the fin to the ambient air is described via the lumped-
parameter approach and is given by

q=nhT —Tx) (4.P.6-1)

where h is the heat-transfer coefficient and T, is the temperature of the ambi-
ent air far removed from the fin. A schematic of this fin is shown in Figure
4.P.6-1.

(a) Write the appropriate form of the energy equation and the boundary condi-
tions required.

(b) Determine the criterion for assuming that the temperature is uniform across
the thickness of the fin.

T=Tyatr=R,

T =T, in ambient gas phase

Figure 4.P.6-1 Solid flat circular metallic fin with a constant thermal conductivity k, radius
R», and thickness H attached to a cylindrical pipe having a radius R; and temperature 77;
the convective heat-transfer flux from the surfaces of the fin to the ambient air is described
by ¢ = h(T — Txo).
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(c) Integrate the simplified describing equations that result from the approx-
imation made in part (b) to obtain an equation for the axial temperature
distribution within the fin.

4.P.7 Unsteady-State Axial Heat Conduction in a Solid Cylinder

A solid cylinder with constant physical properties, radius R, and length L is initially
at a constant temperature 7o as shown in Figure 4.P.7-1. At time ¢ = 0 the temper-
ature of the face of this cylinder at z = 0 is raised to 7} while the face at z = L is
maintained at 7. The circumferential boundary of the cylinder is perfectly insulated
so that there is no heat transfer in the radial direction.

(a) Write the appropriate form of the energy equation and the initial and bound-
ary conditions required.

(b) Scale the describing equations to determine the criterion for assuming that
steady-state heat transfer is achieved.

(c) Scale the describing equations appropriate to very short contact times for
which the heat conduction has not penetrated the entire length of the cylin-
der, and determine the criterion for the applicability of this approximation.

(d) Derive an equation for the region of influence or thermal penetration for the
conditions in part (c).

Figure 4.P.7-1 Unsteady-state axial heat conduction in a solid cylinder with constant phys-
ical properties, a perfectly insulated circumferential boundary, and an initial temperature 7y
due to a high temperature 7 being imposed on the face at z = 0 while the face at z = L is
maintained at Tj.

4.P.8 Unsteady-State Radial Heat Conduction in a Solid Cylinder

A solid cylinder with constant physical properties, radius R, and length L is ini-
tially at a constant temperature T as shown in Figure 4.P.8-1. At time ¢t = 0 the
temperature of the circumferential boundary of this cylinder at » = R is raised to
Ti. The ends of the cylinder at z =0 and z = L are perfectly insulated so that
there is no heat transfer in the axial direction.

(a) Write the appropriate form of the energy equation and the initial and bound-
ary conditions required.
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Figure 4.P.8-1 Unsteady-state axial heat conduction in a solid cylinder with constant phys-
ical properties, insulated ends, and an initial temperature 7 due to a high temperature 7}
being imposed on the face at r = R.

(b) Scale the describing equations to determine the criterion for assuming that
thermal equilibrium has been achieved.

(c) Scale the describing equations appropriate to very short contact times for
which the thermal energy has not penetrated entirely through the cylinder
and determine the criterion for the applicability of this approximation.

(d) Derive an equation for the region of influence or thermal penetration for the
conditions in part (c).

4.P.9 Unsteady-State Radial Heat Conduction in a Spherical Shell

A solid spherical shell with constant physical properties, an inner radius R;, and
an outer radius R, is initially at a constant temperature 7y, as shown in Figure
4.P.9-1. At time ¢ = O the temperature of the inner boundary at » = R; is raised
to 7 and convective heat transfer to a surrounding flowing fluid whose bulk tem-
perature is maintained at 7y occurs at the outer boundary at Rj; the heat flux
at the outer boundary is described by a constant heat-transfer coefficient and is
given by

¢ =h(T—-Ty) at r=R, (4.P.9-1)

(a) Write the appropriate form of the energy equation and the initial and bound-
ary conditions required.

(b) Scale the describing equations to determine the criterion for justifying that
steady-state heat transfer can be assumed. Note that it is necessary to intro-
duce a separate scale for the radial temperature gradient since this derivative
does not necessarily scale with the characteristic temperature scale divided
by the length scale; also introduce a reference factor for the spatial variable
since it is not naturally referenced to zero.
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q,=hT—-Tpy,t>0

Figure 4.P.9-1 Unsteady-state heat conduction in a solid spherical shell with constant
physical properties, inner radius Rj, outer radius R, and initial temperature 7p; at time
t =0 a high temperature 7 is applied at the inner boundary, and convective heat transfer
to the surrounding fluid whose bulk temperature is maintained at 7y occurs at the outer
boundary.

(c) Based on your scaling analysis in part (b), determine the criterion for ignor-
ing curvature effects on the heat conduction within the spherical shell.

(d) Solve the simplified describing equations appropriate to parts (b) and (c) for
the temperature profile in the spherical shell and determine the temperature
atr = R».

(e) Scale the describing equations appropriate to very short contact times for
which the thermal energy has not penetrated entirely through the spherical
shell, and determine the criterion for the applicability of this approximation.

(f) Derive an equation for the region of influence or thermal penetration for the
conditions in part (e).

4.P.10 Steady-State Conduction in a Cylinder with External Phase
Convection

Consider steady-state heat conduction in a solid cylinder of radius R and constant
physical properties due to a high temperature 7y applied at z = 0 and a low temper-
ature Ty, applied at z = L, as shown in Figure 4.P.4-1. However, the circumferential
boundary at » = R is exposed to convective heat transfer in an external fluid phase;
the heat flux in this external phase is described by a lumped-parameter condition
given by

gr = h(T — Two) (4.P.10-1)

where Ty is the temperature in the bulk of the external fluid phase far removed
from the solid cylinder.

(a) Write the appropriate form of the energy equation and the boundary condi-
tions required.

(b) Use scaling analysis to determine the criterion for ignoring radial conduc-
tion. Introduce a separate scale for the radial derivative of the temperature
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since there is no reason to assume that it will scale with the characteristic
temperature scale divided by the characteristic radial length scale.

(c) If the criterion you derived in part (b) is satisfied, radial heat conduction can
be ignored everywhere within the solid cylinder, even near the circumfer-
ential boundary; that is, there is no region of influence in this case near the
circumferential boundary. Explain why there is no region of influence in this
case, where a lumped-parameter heat-flux boundary condition is prescribed
at the lateral boundaries, whereas there would be a region of influence if a
constant temperature were prescribed at this boundary.

4.P.11 Unsteady-State Heat Transfer to a Sphere at Small Biot Numbers

In Section 4.4 we considered convective heat transfer to a solid sphere falling at its
terminal velocity through a fluid. Scaling analysis was used to obtain a criterion for
achieving steady-state, which in this case meant thermal equilibrium between the
sphere and the liquid; this criterion is given by equation (4.4-17). However, if the
Biot number is very small, the describing equations can be simplified and solved
analytically; the resulting solution for the dimensionless temperature is given by
equation (4.4-23).

(a) Use the solution obtained for the small Biot number approximation to deter-
mine the dimensionless time required for the temperature to reach 1% of
its final equilibrium temperature and compare this result to the criterion we
derived for achieving steady-state.

(b) The small Biot number approximation implies that the temperature within
the sphere is nearly uniform. Use the solution for the small Biot number
approximation and the results of the scaling analysis in Section 4.4 to esti-
mate the dimensionless time required for the dimensionless temperature at
the center of the sphere to differ from the surface temperature by less than
1.0%.

4.P.12 Unsteady-State Heat Transfer in a Solid Sphere

In Section 4.4 we considered unsteady-state heat transfer to a solid sphere that was
initially at temperature Ty due to falling at its terminal velocity through a hot liquid
at temperature 7o,. We used scaling analysis to arrive at the criterion for assuming
that the temperature of the sphere was essentially uniform across its radius at any
time. This corresponded to the small Biot number approximation, for which the
heat transfer is controlled by the external liquid phase. The exact analytical solution
for this heat-transfer problem is given by

Anl

T Ty ~— 2ro, R
—_— = Cpe """ — sin
; " Al R

TO_ Too

(4.P.12-1)
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where Fo, = at/ R? is the Fourier number for heat transfer and C,, is a coefficient
whose value is obtained from

. 4(sin A, — A, cOS Ay)

= 8 (4.P.12-2)
2\, — Sin2A,
for which the A, are the positive roots of
1 — X, cot), =Bi, (4.P.12-3)

where Bi; = hR/k is the Biot number for heat transfer. Compare the approxi-
mate solution that we obtained for the small Biot number approximation given
by equation (4.4-23) to the exact solution given by the above for Bi, = 0.01 and
Bi, = 0.1; for the case of the exact solution, compute the temperature at the center
of the sphere.

4.P.13 Unsteady-State Convective Heat Transfer to a Plane Wall

Consider an infinitely long solid plane wall that is initially at a high temperature
Ty with constant physical properties and thickness 2H. This wall is cooled on both
sides by a flowing liquid whose bulk temperature far removed from the wall is T.
The heat transfer in the cold liquid is characterized by a heat-transfer coefficient
h. A schematic of this heat-transfer problem is shown in Figure 4.P.13-1.

(a) Write the appropriate form of the energy equation along with the initial and
boundary conditions required.

Solid wall
i— 2H —P
T=T., T=T.,
<+
X
T=T,t<0

Figure 4.P.13-1 Infinitely long solid plane wall with constant physical properties, thickness
2H, and initial temperature T subject to convective cooling at its lateral boundaries by a
liquid whose temperature is T far from the wall.
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(b) Use scaling analysis to determine the criterion for ignoring the conductive
heat-transfer resistance in the wall relative to that in the external liquid
phase.

(c) Solve the simplified describing equations justified by the criterion derived
in part (b).

(d) The exact analytical solution for this heat-transfer problem is given by

T — Too > _A2F )"nx
— = Cpe "™ cos — 4.P.13-1
T Zl ne 7 ( )

where Fo, = at/H? is the Fourier number for heat transfer and C, is a
coefficient whose value is obtained from

4sin A,
P e N (4.P.13-2)
2A, 4 sin 24,
for which the ), are the positive roots of the equation
Ay tan A, = Bi; (4.P.13-3)

where Bi; = AR/ k is the Biot number for heat transfer. Compare the approx-
imate solution that you obtained in part (c) to the exact solution given by
the above for Bi; = 0.01 and Bi; = 0.1; for the case of the exact solution,
compute the temperature at the center of the plane wall.

4.P.14 Unsteady-State Convective Heat Transfer to a Solid Cylinder

Consider an infinitely long solid cylinder initially at a high temperature 7 with
constant physical properties and radius R. This cylinder is cooled by immersing
it in a flowing liquid whose upstream temperature is T, and whose upstream
velocity perpendicular to the axis of the cylinder is Us,. The heat transfer in the
cold liquid is characterized via a heat-transfer coefficient 4. Correlations for the
Nusselt number, the dimensionless heat-transfer coefficient, as a function of the
Reynolds number for flow over a cylinder exposed to a liquid flowing at constant
velocity are available in standard references.'® A schematic of this heat-transfer
problem is shown in Figure 4.P.14-1.

(a) Write the appropriate form of the energy equation along with the initial and
boundary conditions required.

(b) Use scaling analysis to determine the criterion for ignoring the conductive
heat-transfer resistance in the solid cylinder relative to that in the external
liquid phase.

19See, for example, Bird et al., Transport Phenomena, 2nd ed., p. 440.
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Solid cylinder
initially at 75,

Figure 4.P.14-1 Infinitely long solid cylinder with constant physical properties, radius
R, and initial temperature 7o immersed in a flowing liquid whose upstream velocity and
temperature are U, and To, such that 7o, < Tp and for which the convective heat transfer
in the liquid phase is described by a constant heat-transfer coefficient /.

(©

(d)

4.P.15

Solve the simplified set of describing equations justified by the criterion that
you derived in part (b).
The exact analytical solution for this heat-transfer problem is given by

T — Too > _A2F . )"nx
— > = wentor o (22 4.P.14-1
T 21 Cpe (% ( )

where Fo, = ar/ R? is the Fourier number and C, is a coefficient whose
value is obtained from

2 Ji(A
= _% (4.P.14-2)
A Iy () + 7 (M)
where the A, are the positive roots of
Ji ()\n) .
=B 4.P.14-3
n ToOu) L ( )

where Bi; = hR/k is the Biot number for heat transfer and J; is the ith-
order Bessel function of the first kind. Compare the approximate solution
that you obtained in part (c) to the exact solution given by the above for
Bi; = 0.01 and Bi, = 0.1; for the case of the exact solution, compute the
temperature at the center of the cylinder.

Entrance Effect Limitations in Laminar Slit Flow

In Section 4.5 we considered the steady-state fully developed laminar flow of a
viscous Newtonian fluid with constant physical properties between two infinitely
wide parallel plates that have a separation distance 2H, length L, and maintained
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at the temperature 7p, which was also the temperature of the entering fluid. We
scaled the describing equations to determine the criteria for ignoring both the axial
convection and axial conduction of heat.

(a) The criterion for ignoring axial heat conduction breaks down near the leading
edge of the two parallel plates. Use scaling analysis to estimate the thickness
of the region of influence wherein axial heat conduction cannot be ignored.

(b) Retaining the axial conduction term in the describing equations for the
entrance region complicates solving this program since a downstream bound-
ary condition is required. Describe a procedure whereby the solution to the
simplified equations sufficiently far downstream from the entrance region
can be used to obtain a solution for this heat-transfer problem along the
entire length of the two flat plates.

4.P.16 Convective Heat Transfer for Fully Developed Laminar Flow
Between Heated Parallel Flat Plates

Consider the steady-state heat transfer associated with fully developed laminar flow
of a Newtonian liquid with constant physical properties and initial temperature T
between two parallel flat plates of length L, separated by a distance 2H, and
maintained at a temperature 77 such that 77 > Ty, as shown in Figure 4.P.16-1.
However, heat generation owing to viscous dissipation can also occur. It can be
assumed that the laminar flow velocity profile is fully developed and given by

u, = U, [1 - (%)2] (4.P.16-1)

where U,, is the maximum fluid velocity at the centerline between the two plates.

(a) Write the appropriately simplified form of the energy equation and associated
boundary conditions.

A
~
v

Figure 4.P.16-1 Steady-state heat transfer to fully developed flow of a Newtonian fluid
with constant physical properties and initial temperature 7p between two parallel solid flat
plates of length L, separated by a distance 2H, and maintained at temperature 71; the figure
shows the fully developed laminar flow velocity profile and sketches of the developing
temperature profile at two locations.
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(b) Scale the describing equations for conditions such that the predominant
heating is caused by heat transfer from the two plates and for conditions such
that the transverse conduction is sufficiently large so that heat penetration
occurs essentially across the entire cross section between the two flat plates.

(c) Determine the criterion for ignoring the axial heat conduction.
(d) Determine the criterion for ignoring viscous heat generation.
(e) Determine the criterion for ignoring axial convection.

4.P.17 Entrance Effect Limitations in the Thermal Boundary-Layer
Approximation for Falling Film Flow

In Example Problem 4.E.4 we considered a thermal boundary-layer approximation
for heat transfer from a heated vertical plate to laminar film flow. We found that the
heat transfer was confined essentially to a thin boundary layer near the heated wall
if the Peclet number were sufficiently high. This thermal boundary-layer approxi-
mation also involved ignoring axial heat conduction.

(a) Determine the thickness of the region of influence near the leading edge of
the vertical plate within which the thermal boundary-layer approximation
breaks down.

(b) If the axial heat conduction cannot be ignored near the leading edge, prob-
lems are encountered in solving the describing equations, owing to the lack
of a downstream boundary condition. Outline a procedure whereby a solu-
tion could be obtained to the describing equations over the full length of the
vertical plate by using a solution to the thermal boundary-layer equations
derived in Example Problem 4.E.4. Note that it is only necessary to describe
the procedure that you would use to solve the describing equations.

4.P.18 Thermal Boundary-Layer Heat Transfer for Fully Developed
Laminar Flow Between Heated Parallel Flat Plates

Consider the steady-state heat transfer associated with fully developed laminar flow
of a Newtonian liquid with constant physical properties and initial temperature T
between two parallel flat plates separated by a distance 2H. The two plates are
maintained at the same temperature 7j over the length defined by 0 < x < L.
However, the temperature of the two plates is raised to 77 over the length defined
by Lo < x < L, as shown in Figure 4.P.18-1. It can be assumed that viscous dis-
sipation can be ignored and that the fully developed laminar flow velocity profile
is given by

u, = Uy, [1 — (%)2} (4.P.18-1)

(a) Write the appropriately simplified form of the energy equation and associated
boundary conditions.
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Figure 4.P.18-1 Steady-state heat transfer to fully developed flow of a Newtonian fluid
with constant physical properties and initial temperature 7p between two parallel solid flat
plates separated by a distance 2H; the two plates are maintained at temperature Ty for
0 < x < Lo and maintained at temperature 7} for Ly < x < L;; the figure shows the fully
developed laminar flow velocity profile and sketches of the developing temperature profile
at two locations.

(b) Scale the describing equations for conditions such that axial convection of
heat is significant; note that for these conditions there will be a region of
influence or thermal boundary layer §, near each flat plate; hence, recast the
describing equations in terms of a coordinate system located on one of the
two plates and provide an estimate of the thickness of this thermal boundary
layer.

(c) Determine the criterion for ignoring the axial heat conduction.

(d) Determine the thickness of the region of influence near the leading edge of
the heated zone wherein axial heat conduction cannot be neglected.

(e) If the thermal boundary layer is sufficiently thin, it is possible to use a
simplified form of the velocity profile in the convective heat-transfer term in
the energy equation; determine the criterion for employing a linear velocity
profile in the region near the plates. Note that this simplification is often
referred to as the Lévéque approximation.>

4.P.19 Heat Transfer from a Hot Inviscid Gas to Fully Developed Laminar
Falling Film Flow

Consider the fully developed laminar flow down a solid vertical wall of a Newtonian
liquid film of thickness H, constant physical properties, and initial temperature Tj.
This liquid film contacts an inviscid gas phase whose temperature is 77 such that
Ty > Ty. The vertical wall can be assumed to be perfectly insulated and viscous
dissipation in the liquid film can be ignored. A sketch of this heat-transfer problem
is shown in Figure 4.P.19-1. The velocity profile for fully developed laminar film
flow is given by

u, = U, [1 _ (%)2] (4.P.19-1)

20M. A. Lévéque, Ann. Mines, 13, 201 (1928).
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-3

Liquid
film
Inviscid gas phase
at temperature T
T (x,y)
q,=0
Uy (v)
H —P

Figure 4.P.19-1 Steady-state heat transfer from a hot inviscid gas phase at temperature T}
to a liquid film in fully developed laminar flow with an initial temperature 7p, thickness H,
and constant physical properties.

(a) Write the appropriately simplified form of the energy equation and associated
boundary conditions.

(b) Scale the describing equations accounting for axial convection, axial con-
duction, and transverse conduction of heat; note that there will be a region
of influence or thermal boundary layer 8, near the liquid—gas interface.

(c) Based on your scaling analysis in part (b), provide an estimate of the thick-
ness of the thermal boundary layer.

(d) Determine the criterion for ignoring the axial heat conduction.

(e) Determine the thickness of the region of influence near the leading edge of
the falling film flow wherein axial heat conduction cannot be neglected.

(f) If the thermal boundary layer is sufficiently thin, it is possible to use a
simplified form of the velocity profile in the convective heat-transfer term
in the energy equation; determine the criterion for employing a constant
value of the velocity near the liquid—gas interface.

(g) Estimate the length required for thermal penetration to reach the vertical
wall.

4.P.20 Thermal Boundary-Layer Development Along a Heated Flat Plate

In Section 4.6 we considered the thermal boundary-layer approximation for laminar
flow over a horizontal flat plate maintained at a constant temperature. We found that
the criterion for making the thermal boundary-layer approximation was a very large
Peclet number. At the end of Section 4.6 it was stated that the thermal boundary-
layer approximation breaks down in the vicinity of the leading edge of the flat
plate.
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(a) Use scaling analysis to provide an estimate of the thickness of the region
of influence near the leading edge of the flat plate wherein the thermal
boundary-layer approximation breaks down.

(b) Compare the thicknesses of the regions where the thermal boundary-layer
and momentum boundary-layer approximations break down for different
values of the Prandtl number.

4.P.21 Thermal Boundary-Layer Development with an Unheated Entry
Region

In Section 4.6 we considered the thermal boundary-layer approximation for laminar
flow over a horizontal flat plate maintained at a constant temperature over its entire
length. Now consider the case where the plate is maintained at 7, the temperature
of the fluid upstream from the plate over a length Lo, after which the plate is
maintained at the temperature 7y, where Ty > Too, as shown in Figure 4.P.21-1.
Note that in this case the momentum boundary layer will begin developing before
the thermal boundary layer. Note also that different axial length scales will be
required for the equations of motion and the energy equation. Assume that the
Prandtl number Pr > 1.

(a) Consider the scaling for this heat-transfer problem for conditions such that
both the Reynolds number and Peclet number are large. Determine the
appropriate scale and reference factors for the dependent and independent
variables.

(b) Use your scaling analysis to obtain estimates for both the momentum and
thermal boundary-layer thicknesses.

U.,T. U, T,

—— L, —P T=T,

|
1 !

[ L »'
< L]
' |

Figure 4.P.21-1 Steady-state laminar uniform flow of a Newtonian fluid with constant
physical properties, temperature 7., and velocity Uy, intercepting a stationary semi-infinite
infinitely wide horizontal flat plate; the latter is maintained at T, for 0 < x < L( and at
To > Too for Ly < x < L; the solid line shows the hypothetical momentum boundary-layer
thickness §,,, and the dashed line shows the hypothetical thermal boundary-layer thickness
§; for Pr > 1, where Pr is the Prandtl number.
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(c) Use scaling analysis to provide an estimate of the axial length of the region
of influence near the leading edge of the heated region wherein the thermal
boundary-layer approximation breaks down.

(d) Discuss whether the approximations made in the equations of motion or
in the energy equation are more limiting with respect to ignoring the axial
diffusion terms.

4.P.22 Thermal Boundary-Layer Development with Flux Condition

Consider the steady-state laminar uniform plug flow of a Newtonian liquid with
constant physical properties, temperature 7o, and velocity Us, intercepting a sta-
tionary semi-infinite infinitely wide horizontal impermeable flat plate as shown in
Figure 4.6-1. However, a constant heat flux go is maintained along the surface of
the flat plate rather than a constant temperature. Gravitational and viscous heating
effects can be assumed to be negligible. In this problem we use scaling to deter-
mine the criteria for making the thermal boundary-layer approximation; that is, the
conditions for which axial heat conduction can be ignored and for which the heat
transfer can be assumed to be confined to a thin thermal boundary layer near the
plate.

(a) Write the appropriate forms of the equations of motion and thermal energy
equation applicable to this boundary-layer flow; it is not necessary here to
justify the forms of these equations by scaling; that is, you can begin with the
dimensional momentum and thermal boundary-layer equations that resulted
from the scaling done in Section 4.6.

(b) Write the boundary conditions required to solve the coupled equations of
motion and thermal energy equation.

(c) In scaling the describing equations for this problem, it is necessary to
introduce a scale factor for the y-derivative of the temperature due to the
flux condition at the plate. This implies that the temperature scale will
be different from that obtained in Section 4.6. In view of these consider-
ations, determine the appropriate scale factors for the temperature and its
y-derivative. In determining the temperature scale, keep in mind that heat
convection in both the x- and y-directions must be retained for large Peclet
numbers.

(d) Derive an equation for the thermal boundary-layer thickness §, and discuss
any differences between your result and that obtained in the boundary-layer
problem considered in Section 4.6.

(e) Determine the criterion for making the thermal boundary-layer approxi-
mation.

(f) Determine the thickness of the region of influence near the leading edge
of the plate wherein the thermal boundary-layer approximation is not
applicable.
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Figure 4.P.23-1 Steady-state laminar uniform flow of an incompressible viscous Newto-
nian liquid with constant physical properties, temperature T,,, and velocity Uy, intercepting
a stationary semi-infinite infinitely wide horizontal permeable flat plate along which there is
a constant suction velocity Vp; the surface of the flat plate is maintained at the temperature
T over the distance 0 < x < Lo; however, the temperature is increased to Ty over the
distance Ly < x < L.

4.P.23 Thermal Boundary-Layer Development with Suction

Consider the steady-state laminar uniform plug flow of a Newtonian liquid with
constant physical properties, temperature T, and velocity U, intercepting a statio-
nary semi-infinite infinitely wide horizontal permeable flat plate, as shown in
Figure 4.P.23-1. The surface of the flat plate is maintained at the temperature T
over the distance 0 < x < L; however, the temperature is increased to T over
the distance Ly < x < L;. Suction is applied over the entire length of the plate to
cause a constant velocity V normal to the plate. Gravitational and viscous heating
effects can be assumed to be negligible.

(a) Write the appropriate forms of the equations of motion and thermal energy
equation applicable to this boundary-layer flow; it is not necessary here
to justify the forms of these equations by scaling; that is, you can begin
with the dimensional momentum and thermal boundary-layer equations that
resulted from the scaling done in Section 4.6.

(b) Write the boundary conditions required to solve the coupled equations of
motion and thermal energy equation.

(c) We might anticipate that with boundary-layer suction such as we have in
this problem, both the momentum and thermal boundary-layer thicknesses
might ultimately become constant rather than grow without bound as they
do for a boundary layer on a semi-infinite flat plate without suction or with
blowing. Use scaling analysis to determine the criteria for obtaining both a
constant momentum boundary-layer thickness as well as a constant thermal
boundary-layer thickness; express your answers in terms of dimensionless
groups, which must be very small.
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(d) For the constant momentum and thermal boundary-layer conditions obtained
in part (c), determine the temperature profile.

(e) Discuss whether the boundary-layer suction will increase or decrease the
heat transfer relative to when no suction is used.

4.P.24 Evaporative Cooling of a Liquid Film with Radiative Heat Transfer

In Example Problem 4.E.6 we considered the cooling that occurs when a volatile
liquid evaporates into an ambient gas phase. In our analysis of this problem we
assumed that there was no significant heat transfer from the ambient gas phase to
the liquid film. Consider now the effect of radiative heat transfer on this evaporative
cooling process; assume that the radiative heat-transfer flux is given by

g =oe(T* —T3) (4.P.24-1)

in which o is the Stefan—Boltzmann constant, ¢ the emissivity of the surface of
the film, and T, the temperature of the medium that is causing the radiative heat
transfer.

(a) The presence of the radiative heat transfer will alter the boundary condition
at the moving interface that is obtained from an integral energy balance;
derive this modified boundary condition.

(b) Use scaling analysis to determine the criterion for ignoring the radiative
heat transfer.

(c) Use scaling analysis to determine the criterion for ignoring the evaporative
cooling relative to the radiative heating for the case when T, > Tp.

(d) Use scaling analysis to determine the criterion to ensure that the radiative
heat transfer is sufficient to maintain the liquid film at its initial tempera-
ture 7.

4.P.25 Melting of Frozen Soil Due to Constant Radiative Heat Flux

In Section 4.7 we considered the melting of frozen soil initially at its freezing point
due to a higher temperature being applied at the ground surface. Assume now that
the melting is caused by a constant radiative heat flux g at the ground surface
rather than by a higher temperature being applied. Note that this is a reasonable
condition for melting, due to exposure of the ground surface to solar radiation.

(a) Consider carefully whether this change in the boundary condition at the
ground surface will change the integral energy balance that is needed to
determine the instantaneous location of the freezing front.

(b) Determine the temperature scale appropriate to this modified condition at
the ground surface.

(c) Determine the criterion for assuming that the melting is quasi-steady-state.

(d) What relationship between the thaw depth and time does scaling imply for
very short contact times?
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4.P.26 Melting of Frozen Soil Initially at Subfreezing Temperature

In our scaling analysis of the melting of frozen soil in Section 4.7, we made the
somewhat unrealistic assumption that the soil was initially at its freezing point 7.
Assume now that the soil is infinitely thick and initially at a temperature 7y, where
To < Ty. This modified initial condition implies that heat transfer will be to the
freezing front from above but away from it in the frozen region below. Hence,
the thermal energy equation must be considered in the regions both above and
below the freezing front. Assume that k, o,, and Cp, are the effective thermal
conductivity, mass density, and heat capacity, respectively, of the unfrozen soil
and that k¢, ps, and C)r are the effective thermal conductivity, mass density, and
heat capacity, respectively, of the frozen soil.

(a) Write the appropriate form of the thermal energy equation in both regions.

(b) Write the initial and boundary conditions required to solve the equations in
part (a).

(c) Derive the auxiliary condition required to determine the location of the
melting front.

(d) Scale the describing equations to determine when heat transfer to the under-
lying frozen soil can be neglected.

(e) Determine the criteria for assuming that the melting is quasi-steady-state;
be careful to consider the implications of heat transfer to the underlying ice.

(f) Determine the thickness of the region of influence wherein the heat transfer
in the frozen soil can be assumed to be confined.

4.P.27 Freezing of Water-Saturated Soil Initially Above Its Freezing
Temperature

Consider water-saturated soil initially at a temperature T, above its freezing tem-
perature Ty. The ground surface then is subjected to a subfreezing temperature
To < Ty that eventually causes a freezing front to propagate down through the soil,
as shown in Figure 4.P.27-1. We consider modeling this freezing process from the
instant at which the upper surface of the water-saturated soil reaches its freezing
point Tf; that is, you do not need to consider the unsteady-state heat-transfer pro-
cess during which the temperature at the soil surface drops to the freezing point.
Note that these conditions imply that heat is transferred from the freezing front in
the upward direction but is transferred to the freezing front from the unfrozen soil
beneath it. Hence, the thermal energy equation must be considered in the regions
both above and below the freezing front. Assume that k,, p,, and C,, are the
effective thermal conductivity, mass density, and heat capacity, respectively, of the
unfrozen soil and that k,, pr, and C) are the effective thermal conductivity, mass
density, and heat capacity, respectively, of the frozen soil.

(a) Write the appropriate form of the thermal energy equation in both regions.
(b) Write the initial and boundary conditions required to solve the equations in
part (a).
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Figure 4.P.27-1 Unsteady-state one-dimensional heat transfer due to the imposition of a
temperature T at the surface of unfrozen water-saturated porous soil whose initial tempera-
ture was T, Where Ty < Ti; the position of the freezing front denoted by L(f) penetrates
progressively farther into the unfrozen soil, owing to conductive heat transfer to the ground
surface.

(c) Derive the auxiliary condition required to determine the location of the
melting front.

(d) Scale the describing equations to determine when heat transfer from the
underlying unfrozen soil can be neglected.

(e) Determine the criteria for assuming that the melting is quasi-steady-state;
be careful to consider the implications of heat transfer from the underlying
unfrozen soil.

(f) Determine the thickness of the region of influence wherein the heat transfer
in the unfrozen soil can be assumed to be confined.

4.P.28 Freezing of Water-Saturated Soil Overlaid by Snow

Figure 4.P.28-1 shows a schematic of unsteady-state one-dimensional heat con-
duction involving freezing of a water-saturated soil overlaid by a layer of snow
of constant thickness L. Initially, both the entire snow layer and unfrozen water-
saturated soil are assumed to be at Ty, the freezing temperature of water. At time
t = 0, freezing is initiated such that a freezing front L(¢) penetrates the soil at
a rate determined by the dynamics of the heat conduction. The prevailing winds
cause forced-convection heat transfer at the interface between the snow and the air
that can be described by the following lumped-parameter heat-flux condition:

qg=h(Te —T) (4.P.28-1)

where h is the heat-transfer coefficient, T, the temperature of the ambient air
flowing over the snow (T < Ty), and T the unspecified temperature at the
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Figure 4.P.28-1 Unsteady-state one-dimensional freezing of water-saturated soil whose
initial temperature was Ty overlaid by snow of thickness L due to convective heat transfer at
the ground surface; the position of the freezing front denoted by L(#) penetrates progressively
farther into the unfrozen soil, due to conductive heat transfer through the frozen soil and

overlying snow.

interface between the snow and the air. The relevant properties include the

following:

Cpi
Cpu
ki
ky
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Pf
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&

effective heat capacity of the snow

effective heat capacity of the unfrozen water-saturated soil
effective thermal conductivity of the snow

effective thermal conductivity of the unfrozen water-saturated soil
effective density of the snow

effective density of the unfrozen water-saturated soil

effective density of the frozen water-saturated soil

effective thermal diffusivity of the snow

effective thermal diffusivity of the unfrozen water-saturated soil
latent heat of fusion of pure water

porosity of the soil

Note that since snow is a very good insulator, o1 < oy,.

(a) Write the appropriate forms of the thermal energy equation in both the
snow and frozen soil that describe this unsteady-state heat-transfer problem;
assume constant physical and transport properties.
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(b) Write the appropriate initial and boundary conditions required to solve this
problem.

(c) Derive the appropriate form of the auxiliary condition required to locate the
instantaneous freezing front.

(d) Scale this heat-transfer problem, noting that it is necessary to introduce
separate length scales for the heat transfer in the snow and frozen water-
saturated soil. Note also that it is necessary to introduce a separate scale
factor for the freezing-front velocity dL/dt since this does not scale with
the ratio of the characteristic length divided by the characteristic time.

(e) Determine the criteria for assuming that this heat transfer is quasi-steady-
state; discuss the implications of your results with respect to short and long
observation times.

(f) Use your scaling analysis to determine the criterion that implies that the
temperature of the snow surface becomes essentially the same as the bulk
air Too.

(g) Use your scaling analysis to determine the criterion that implies that the tem-
perature of the interface between the soil and the snow essentially becomes
equal to the freezing temperature 7.

(h) What is the implication of the result you obtained in part (g) for the rate of
freezing-front penetration?

(i) What are the implications for the dimensional temperature if the heat-transfer
coefficient goes to zero? What are the implications if it goes to infinity? Use
your scaled equations to answer these questions.

(j) Use your scaling analysis to determine the criterion for neglecting the effect
of the snow on the freezing process.

4.P.29 Heat Conduction in a Cylinder with Temperature-Dependent
Thermal Diffusivity

Consider steady-state axial heat conduction in a long solid cylinder with a perfectly
insulated lateral boundary due to a high temperature 7 being imposed at z = 0
and a low temperature 77 being imposed at z = L, as shown in Figure 4.P.29-1.
However, the thermal conductivity of the cylinder has a temperature dependence
given by

k=ko— B(T —Tp) (4.P.29-1)

where ky is the thermal conductivity evaluated at the reference temperature 7 and
B is a positive constant. The other relevant physical properties of the solid can be
assumed to be constant.

(a) Write the appropriate form of the thermal energy equation and required
boundary conditions for this heat-transfer problem.
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Perfectly insulated lateral boundary

Figure 4.P.29-1 Steady-state axial conduction in a solid cylinder with a temperature-
dependent thermal conductivity that is perfectly insulated along its lateral boundary.

(b) Scale the describing equations to determine when the temperature depen-
dence of the thermal conductivity can be ignored.

4.P.30 Entry Region Effects for Free Convection Heat Transfer Adjacent to
a Vertical Heated Flat Plate

In Example Problem 4.E.7 we considered steady-state free convection induced by
immersing a heated vertical plate into an infinite fluid. We found that if the Grashof
number is sufficiently large, boundary-layer simplifications can be made for both
the equations of motion and the energy equation.

(a) The scaling for this problem was only outlined; complete the details of the
scaling analysis; in particular, show how the scale factors in equation (4.E.7-
21) were obtained.

(b) The boundary-layer analysis leading to the simplified set of describing
equations given by equations (4.E.7-30) breaks down near the leading edge
of the vertical plate. Determine the length of the region of influence near the
leading edge wherein viscous and conductive transport in the axial direction
cannot be ignored.

(c) Retaining the viscous and conductive transport in the axial direction in the
equations of motion and energy equation implies that these equations will
be elliptic and therefore require downstream boundary conditions. Indicate
how the results of scaling analysis can be used to obtain a solution to this
convective heat-transfer problem over the full length of the vertical plate.

4.P.31 Free Convection from a Heated Vertical Plate with Wall Suction

In Example Problem 4.E.7 we considered steady-state free convection induced by
immersing a heated vertical plate into an infinite fluid. Assume now that a uni-
form suction velocity Vj is applied along the heated wall. We will assume in
this analysis that the Grashof number is sufficiently large so that the boundary-
layer simplifications can be made for both the equations of motion and the energy
equation.
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(a) Use scaling analysis to determine the criterion for ignoring the effect of the
wall suction.

(b) We might anticipate that ultimately, the suction will cause both the momen-
tum and thermal boundary-layer thicknesses to become constant. Use scaling
analysis to determine the criteria for obtaining a both a constant momentum
boundary-layer thickness as well as a constant thermal boundary-layer thick-
ness; express your answer in terms of dimensionless groups, which must be
very small.

4.P.32 Correlation for Temperature in a Slab with Heat Generation

An infinite solid slab of thickness 2H and thermal conductivity k is initially at
a uniform temperature 7p. There is a uniform volumetric rate of heat production
within the slab given by G, (energy/volume - time). The slab is cooled on each side
by a fluid whose temperature far from the slab is given by T. The heat-transfer
coefficient between the slab and the fluid is given by & (energy/area - time - degree).

(a) Use the Pi theorem method to obtain the dimensionless groups needed to
correlate the instantaneous temperature at the center of the slab.

(b) Use the scaling method for dimensional analysis to obtain the dimensionless
groups needed to correlate the instantaneous temperature at the center of the
slab. Reconcile any differences with the result you obtained in part (a).

(c) Simplify your scaling analysis result for the special case of steady-state heat
transfer.

(d) Based on your result in part (c), derive an equation for the factor by which
the centerline temperature will change if the generation rate is increased by
50%.

4.P.33 Correlation for Steady-State Heat Transfer from a Sphere

A highly conducting solid sphere of radius R is maintained at a constant temperature

Tp and fixed in a fluid stream having density p, viscosity w, heat capacity C,, and

thermal conductivity k and whose velocity and temperature far from the sphere are

Uy and T, respectively, where Ty > To,. We seek to develop a correlation for

the steady-state heat-transfer coefficient defined by
q

To — Tw

h (4.P.33-1)

where ¢ is the heat flux averaged over the surface of the sphere.

(a) Write the appropriate forms of both the equations of motion and the energy
equation and their boundary conditions for this heat-transfer problem.
(b) Use the scaling method for dimensional analysis to obtain the dimensionless

groups needed to correlate the heat-transfer coefficient defined by equation
(4.P.33-1).
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(c) Consider how the correlation that you obtained in part (b) simplifies in the
limit of zero flow, that is, Uy, = 0.

(d) Compare the result that you obtained in part (b) to the standard correlation
for the Nusselt number given by?>!

Nu = 2 + 0.60Re!/?Pr!/3 (4.P.33-2)

where the Nusselt and Reynolds numbers are based on the sphere diameter.

(e) Equation (4.P.33-2) predicts that Nu =2 in the limit of zero Reynolds
number; this implies that the overall heat transfer is twice that of purely
conductive heat transfer in the limit of zero Reynolds number. Is this result
reasonable? Explain this result by considering the analytical solution for
purely conductive steady-state heat transfer from a sphere.

4.P.34 Correlation for Hot Wire Anemometer Performance

A hot wire anemometer is a device for measuring the velocity in a flowing fluid.
This device consists of a thin cylindrical wire of radius R that has a very high ther-
mal conductivity. The hot wire anemometer determines the velocity by measuring
the current required to cause sufficient electrical heat generation G, (energy/time -
volume) to maintain the wire at a constant temperature 7y that is higher than the
temperature T, of the flowing fluid. The electrical heat generation that is required
to maintain the wire at a constant temperature will change depending on the veloc-
ity of the flowing fluid and its relevant physical properties: its density p, thermal
conductivity Cp, and thermal conductivity k. We seek to develop a correlation that
will relate the electrical heat generation G to the velocity of the fluid.

(a) Write the appropriate forms of both the equations of motion and the energy
equation and their boundary conditions for this heat-transfer problem.

(b) Use the scaling method for dimensional analysis to obtain the dimensionless
groups needed to relate the electrical heat generation to the fluid velocity.

(c) Compare the result that you obtained in part (b) to one of the standard

correlations for forced convection heat transfer to or from a cylinder given
byZZ

Nu = (0.376Re'/? 4 0.057Re?)Pr!/3
7.4055 ERANRYNIA
+0.92|In( —= ) +4.18Re Re!/3pr (4.P.34-1)
(&)

where Pr is the Prandtl number, and Nu and Re, the Nusselt and Reynolds
number, are based on the cylinder diameter. In particular, show how the
above is a special case of the more general result that you obtained from
dimensional analysis.

21Bird et al., Transport Phenomena, 2nd ed., p. 439.
2Ibid., p. 440.
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(d) Consider the implications of equation (4.P.34-1) in the limit of zero Reynolds
number. Is your result reasonable? Provide an explanation for the strange
behavior observed in this limit by considering purely conductive steady-state
heat transfer from a cylinder.

4.P.35 Correlation for Unsteady-State Heat Transfer to a Sphere with
Temperature-Dependent Thermal Conductivity

A solid sphere of radius R, heat capacity C,, density p, and initial temperature
Ty is immersed at time # = 0 into a hot fluid whose temperature far from the
sphere is Too; the heat transfer between the sphere and the fluid is described by
a constant heat-transfer coefficient 4. The thermal conductivity of the sphere is
temperature-dependent and described by

k = ko + Bko(T — Tp) (4.P.35-1)
where ko and 8 are constants.

(a) Use the Pi theorem method to obtain the dimensionless groups needed to
correlate the instantaneous temperature at any radial position within the
sphere.

(b) Use the scaling method for dimensional analysis to obtain the dimension-
less groups needed to correlate the instantaneous temperature at any radial
position within the sphere. Reconcile any differences with the result you
obtained in part (a).

(c) Assume now that we wish to develop a correlation for the instantaneous
temperature at the surface of a sphere that has a radius of 1 m by studying a
sphere that has a diameter of 5 cm. How can the dimensionless correlation
obtained from data taken for the 5-cm sphere be used to determine the
thermal response of the 1-m sphere? Indicate any conditions that need to be
satisfied with respect to the studies on the small sphere in order to do this.

4.P.36 Characterization of Home Freezer Performance

Assume that we want to characterize the performance of home freezers whose
shape is that of geometrically similar rectangular parallelepipeds of height L,
width L,, and depth L3. The operating cost of a freezer is directly proportional
to the total heat-transfer rate (energy/time) resulting from the difference between
the ambient room temperature 7, and that of the interior of the freezer wall. In
a well-designed freezer, this heat-transfer rate is controlled by conduction through
its walls, all of which have thickness H. The insulation in the freezer walls is
characterized by its density p, heat capacity C,, and thermal conductivity k. To
assess freezer performance, a simple test is designed that involves suspending an
incandescent light bulb at the center of the freezer; the test involves measuring the
instantaneous temperature at a fixed point as a function of time after the light bulb
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is turned on. The light bulb can be assumed to be a radiating point source having
a constant heating rate of G (energy/time). Each point along a given wall in the
freezer receives a heat flux that depends on the distance between the wall and
the light bulb. To characterize freezer performance, we consider a correlation for
the instantaneous temperature at the midpoint of the inside surface of one wall of
the freezer. Clearly, larger freezers will have a smaller heat flux than smaller freez-
ers at this same point if the same light bulb is used. Moreover, the instantaneous
temperature at the midpoint of the front wall in general will be different from than
at the midpoint of the sidewall.

()

(b)

()

(d)

(e)

Use the Pi theorem method to obtain the dimensionless groups needed to
correlate the instantaneous temperature at the midpoint of the inside surface
of one wall of the freezer.

Use the scaling method for dimensional analysis to obtain the dimensionless
groups needed to correlate the instantaneous temperature at the midpoint of
the inside surface of one wall of the freezer. Reconcile any differences with
the result you obtained in part (a).

Simplify your scaling analysis result for the special case of steady-state heat
transfer.

Two groups of investigators carry out separate tests on the same freezer.
However, one group measures the temperature at the inside of the front
wall, whereas the other group measures the temperature at the inside of the
sidewall. How can the data from these two groups be consolidated onto one
plot for freezer performance?

The operating cost for a freezer depends on the total heat transfer (energy/time)
from the ambient air through the freezer walls. Determine the factor by which
the insulation thickness needs to be changed to ensure that a freezer that is
50% larger in its three dimensions has the same operating costs as its smaller
counterpart.
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We also assume that the disc is infinitely wide, so that the concentration is
a function only of z. 1 find this assumption mind-boggling, but it is justified

by the success of the following calculations.!

5.1 INTRODUCTION

The quotation above underscores the uncertainty regarding some topics in mass-
transfer analysis, in this case the assumption of a uniformly accessible surface
offered by the rotating disk. This problem as well as many others are discussed in
this chapter, where we consider the application of scaling analysis to mass transfer.
The organization of this chapter is the same as that used in Chapters 3 and 4.
Clearly, it is essential to read Chapter 2 in order to understand the scaling procedure
used in this chapter. Since mass transfer can occur due to both species diffusion
and convection, it is also useful to read Chapter 3 to fully understand the material
in this chapter. Again, the first few examples are developed in detail, as was done
in Chapters 3 and 4. We again use the ordering symbols o(1) and O(1) introduced
in Chapter 2. The symbol o(1) implies that the magnitude of the quantity can
range between zero and more-or-less 1, whereas the symbol O(1) implies that the
magnitude of the quantity is more-or-less 1 but not much less than 1.

Many of the topics considered in this chapter, such as film theory, penetration
theory, and boundary-layer analysis are quite similar to those considered for heat
transfer in Chapter 4. However, mass transfer is uniquely different from heat trans-
fer in that in contrast to conductive transport, diffusive transport, can cause bulk
flow; that is, the diffusion of species can result in a net movement of mass, thereby
causing a bulk flow velocity. This velocity can convect species to complement the
diffusional transport and can also distort the concentration profiles from what they

'E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge,
England, 1985, p. 76.

Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach
to Model Building and the Art of Approximation, By William B. Krantz
Copyright © 2007 John Wiley & Sons, Inc.
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would be for purely diffusive transport. For this reason, in the first example we
will use scaling to assess when the convective transport arising from the species
diffusion can be neglected. Note that no attempt is made here to provide a detailed
derivation of the describing equations that are used in the scaling analysis. Hence,
the material in this chapter provides a useful supplement for a foundation course
in mass transfer. The reader is referred to the appendices, which summarize the
species-balance equation in generalized vector—tensor notation as well as in rectan-
gular, cylindrical, and spherical coordinates. These equations serve as the starting
point for each example problem.

The goal in Sections 5.2 through 5.8 is to use scaling analysis to develop clas-
sical approximations made in mass-transfer modeling. Hence, Sections 5.2 and 5.3
use scaling to develop the film theory and penetration theory models. Although
these two models are developed for a stationary liquid film, they can be applied to
a variety of complex problems for which the resistance to mass transfer can be asso-
ciated with one-dimensional transport through a film near one of the boundaries.
Mass transfer often involves either homogeneous reactions that occur in the bulk of
the system or heterogeneous reactions that occur on the boundaries; these are con-
sidered in Sections 5.4 and 5.5, respectively. When convective transport is large, the
mass-transfer resistance can be confined to a thin region of influence or boundary
layer; this is considered in Section 5.6. If mass transfer causes significant mass loss
or gain and/or densification or expansion, moving boundaries can be involved; these
are considered in Section 5.7. In Chapter 4 we used scaling analysis to determine
when the temperature dependence of the physical and transport properties needs
to be considered. In Section 5.8 we apply scaling analysis to simplify the describ-
ing equations when the diffusivity is concentration-dependent. Scaling is applied
to solutally induced buoyancy-driven free convection in Section 5.9. Finally, the
scaling analysis approach is applied to dimensional analysis in developing a corre-
lation for the performance of a membrane—lung oxygenator in Section 5.10. Several
additional worked example problems are included. In particular, these examples use
scaling analysis to develop systematically the criteria for Taylor dispersion, field-
flow fractionation, the uniformly accessible rotating disk, and small Thiele modulus
flows. Unworked practice problems are included at the end of the chapter.

5.2 FILM THEORY APPROXIMATION

The first example is used to develop the basis for the classical film theory and
penetration theory approximations for modeling complex mass-transfer problems.
These two models were developed for heat-transfer applications in Section 4.3.
In this chapter we develop these models in separate sections since scaling will
be used not only to develop the criteria for the film theory and penetration theory
approximations, but also to determine the criterion for ignoring the convective mass
transfer that can be generated by diffusion. In this section the film theory model is
developed, and in Section 5.3 the penetration theory approximation is considered.
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Figure 5.2-1 Unsteady-state one-dimensional binary mass transfer in an infinitely wide
liquid film of thickness H due to a sudden change in concentration from p4o to p4; at one
boundary.

Consider the liquid film shown in Figure 5.2-1 that has thickness H and consists
of components A and B, whose initial mass concentrations (i.e., mass per unit vol-
ume) are p4o and ppo, respectively. At time ¢ = 0 the concentration of component
A at one boundary is increased to p4;, while its concentration at the other bound-
ary is maintained at p4o. This causes diffusion of A and B since a concentration
gradient in one component causes a complementary gradient in the other.

In modeling mass transfer involving n components, one can either write n
species-balance equations, or n — 1 species-balance equations and the overall mass
balance. This follows from the fact that the sum of the n species-balance equations
is the same as an overall mass balance. Since it is reasonable to assume that the
mass density is constant for an incompressible liquid, it is convenient here to
consider the species-balance equations in terms of the mass fluxes. Hence, step
1 consists of writing the appropriately simplified continuity and species-balance
equations, given by equations (C.1-1) and (G.1-1) in the Appendices as
follows:

p 9 u
— = —— — =0 = u(t 5.2-1
” E}Z(;ou):>8z = u = u(t) ( )

d d

opa _ _ona (5.2-2)
at 0z

where the mass-average velocity u is defined by

na+npg
0

=
Il

(5.2-3)
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in which the mass fluxes n4 and np of components A and B, respectively, are
given by

30),4 8,0,4

na = pau — pDap—— = pau — Dap—— (5.2-4)
az 9z
30)3 8/)3

ng = ppt — pDap—— = ppu — Dpap—— (5.2-5)
0z 9z

in which p = p4 + pp is the overall mass density, ws = pa/p and wp = pg/p
the mass fractions of components A and B, respectively, and Dsp the binary
diffusion coefficient. The integration in equation (5.2-1) follows from the fact that
we are assuming an incompressible liquid. Note that we need to consider only
the overall continuity equation and the species-balance equation for one of the
two species since the sum of the two species-balance equations is equal to the
continuity equation. Equations (5.2-4) and (5.2-5) indicate that the total mass flux
is the sum of a convective flux that is proportional to the mass-average velocity and
a purely diffusive flux given by the term proportional to the concentration gradient.
Equation (5.2-3) shows that the convective velocity arises from the mass transfer
since it is proportional to the sum of the mass fluxes.

Note that for this problem we chose to express the concentrations in terms of
mass per unit volume and mass fractions. This was convenient since it is generally
quite reasonable to assume that liquids have a constant mass density. A constant
mass density in this case implies that the mass-average velocity u is a function
only of time. We could also have expressed the concentrations in terms of moles
per unit volume and mole fractions. However, in the case of mass transfer, the
molar density even for liquids might not remain constant. Note, however, that
molar concentrations are particularly convenient for mass transfer in gases since
the molar density is constant for an ideal gas at constant temperature and pressure.
Section 5.7 considers mass transfer in an ideal gas at constant temperature and
pressure for which molar concentrations are used.

Equations (5.2-1) to (5.2-5) constitute five equations in five unknowns: p4, pg,
na,np, and u. However, equations (5.2-3), (5.2-4), and (5.2-5) are not independent;
that is, the sum of equations (5.2-4) and (5.2-5) is equal to equation (5.2-3). Hence,
an additional equation is needed. This can be either some specified relationship
between the mass fluxes or an equation of state that relates the mass density to the
concentration.? However, when the latter is specified, it is also necessary to know
the value of the velocity at one boundary since a spatial integration is required to
obtain the velocity from the continuity equation. Here we specify that the ratio of
the mass fluxes of the two components is a constant, that is,

np
na

=k, a constant (5.2-6)

2Note that specifying an equation of state for the mass density does not contradict the fact that p = pa +
pp; for example, we might specify that p = wy pg + wp p%, where p% and pg denote pure component
densities. The latter provides an independent equation from which the mass-average velocity can be
determined; this is explored further in Example Problem 5.E.1.
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This specification includes several special situations of interest in mass transfer.
The condition ¥ = 0 corresponds to unimolecular mass transfer of component A in
stationary phase B. However, note that unimolecular mass transfer is a misnomer in
that it does not imply that component B is not diffusing. Indeed, the diffusive and
convective transport of component B in equation (5.2-5) exactly balance each other
for unimolecular mass transfer, so that their sum is zero. The condition ¥ = —1
corresponds to equimass counterdiffusion of components A and B. That is, the
mass flux of component A is exactly equal in magnitude and opposite in direction
to that of component B. Note that we define « so that it is bounded of o(1); hence,
the case of unimolecular diffusion of component B in stationary phase A is treated
by inverting the ratio of mass fluxes in equation (5.2-6).

Step 1 is completed by specifying the requisite initial and boundary conditions
given by

LA = PAo at t<0, 0<z<H (5.2-7)
pa=pa  at z=0, 0<t<oo (5.2-8)
PA = PAO at z=H, 0<t<o (5.2-9)

Equation (5.2-7) is the prescribed initial condition, whereas equations (5.2-8) and
(5.2-9) are the known conditions at the two boundaries. We will use scaling analysis
to explore when steady-state mass transfer can be assumed. We also use scaling to
assess when the convective transport arising from the diffusion can be ignored.

We begin by defining dimensionless variables involving unspecified scale and
reference factors (steps 2, 3, and 4):

PA—PAr_ %

u na x _ L.
PAs

; z ; t*
nAs s

I
| ~

&=

* . O —
Pa ; ny =

~

s

(5.2-10)

We then introduce these dimensionless variables into the describing equations and
divide through by the coefficient of one term in each of these equations that we
believe should be retained (steps 5 and 6):

dpt  an
Pasts 904 _ _ A (5.2-11)
Nasts Ot 0z*
MAsks e Ml e w00 (5.2-12)
PasDap Dyp az*
1
ut = M,ﬂ (5.2-13)
pit
o H
ph = PAOTPA e <0, 0<zt< L (5.2-14)
PAs ls
pi = PALZPAr g 2 =0, 0<1* <00 (5.2-15)

PAs
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pr =Py =2 0= <00 (5.2-16)

PAO — PAr «_H

PAs s

Now let us proceed to determine the scale factors (step 7). The dimensionless

concentration can be bounded of o(1) by setting the group containing the concen-

tration scale and reference factors in equations (5.2-15) and (5.2-16) equal to 1 and
zero, respectively, to obtain

PA1 — PA
" =1 = pas = PAI — PAO

(5.2-17)

PAO0 — PA
———— =0= par = pac;
PAs PAs

Since we seek to determine when steady-state conditions apply, the appropriate
time scale is the observation or contact time; that is, t; = f,. The manner in which
the length scale factor is determined depends on the observation time. Let us
assume that the dimensionless group containing the length scale in equation (5.2-
16) determines z;. Although this bounds the dimensionless spatial coordinate to
be o(1), it does not necessarily bound the dimensionless concentration gradient to
be o(1). Indeed, the concentration gradient could involve a much shorter length
scale during the early stages of mass transfer when the species diffusion has not
penetrated very far from the boundary at z = 0. However, let us assume that

H

L olsg=H (5.2-18)

s
The scale factor for the mass flux is obtained by setting the appropriate dimension-
less group in equation (5.2-12) equal to 1, thereby obtaining

548 D -
nasls nas = AB(PA1 — PAO) (5.2-19)

pasDag H

The scale factor for the mass-average velocity is obtained by setting the dimen-
sionless group in equation (5.2-13) equal to 1 as follows:
(1 +K)nas _ (L +x)Dag(par — pao)

=1=u
pu ’ pH

(5.2-20)

Equation (5.2-20) indicates why we defined « to be o(1); that is, the scale factor for
the mass-average velocity would become unbounded for the case of unimolecular
diffusion of component B. For the latter case we redefine « by inverting the fluxes
in equation (5.2-6) to ensure that « is always o(1).

Substitution of the aforementioned scale and reference factors into the describing
equations yields

Fo, or*  9z* -
8 *
ny = Mipin — 4 (5.2-22)

az*
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pi1=0 at <0, 0<z*<l1 (5.2-23)
ph=1 at 7" =0, <t*<o0 (5.2-24)
pi=0 at =1, 0<t*<o0 (5.2-25)
where
Dapt, —
Fo,, = Z‘; and I, = (1 4 x)PALZ P40 (5.2-26)

in which Fo,, is the solutal Fourier number or Fourier number for mass transfer,
although this terminology is rarely used. Its physical significance is analogous to
that for the Fourier number in heat transfer; namely, it is a measure of the ratio
of the contact time to the characteristic time for molecular transport via either
conduction or diffusion.> The dimensionless group IT; is a measure of the ratio of
the convective to diffusive mass transfer and is physically bounded to be less than
1 since the maximum value of « is zero and the maximum value of p4; — pao has
to be less than p.

Now let us explore possible simplifications of the describing equations (step
8). Note that if Fo, > 1, the unsteady-state term in equation (5.2-21) becomes
insignificant; hence, the mass transfer is steady-state; that is,

DABIU
H?2

Fo,, = > 1 = steady-state mass transfer (5.2-27)
Note that a large Fourier number in this problem ensures that the mass trans-
fer is truly steady-state, in contrast to quasi-steady-state. The latter implies that
the unsteady-state term in the species-balance equation is negligible but that the
problem is still unsteady state, owing to the time dependence that enters through
the boundary conditions. If the following condition is satisfied, the convective
contribution to the mass-transfer flux can be ignored:

My = (1 4+ k) 2L PA0 ) (5.2-28)
0

Note that this condition is satisfied identically for equimass counterdiffusion for
which k = —1. Note if the inequality in equation (5.2-28) is satisfied, both the
convective mass flux as well as the effect of the bulk flow on the distortion of the
concentration profiles can be neglected.

The steady-state describing equations that result when equation (5.2-27) is satis-
fied form the basis of film theory. The latter is used to model complex problems for
which the resistance to mass transfer can be assumed to be confined to a thin film
near one of the boundaries of the system; for example, mass transfer in turbulent
pipe flow can be modeled assuming that the mass-transfer resistance is confined

3The Fourier number in heat transfer was introduced in Section 4.3.
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to a thin film near the wall within which the turbulent eddies are damped and the
transfer is by diffusion. Another valuable use of film theory is to correct mass-
transfer coefficients obtained from empirical correlations for the effect of large
mass-transfer fluxes [i.e., corresponding to [T = O(1)] when the mass transfer
is not contact-time limited. That is, correlations for mass-transfer coefficients are
usually obtained in the limit of very small mass-transfer fluxes (i.e., IT| < 1) since
this minimizes the number of dimensionless groups required. Film theory can be
used to derive an equation for the ratio of the mass-transfer coefficient at high
flux to that at low flux. By multiplying the resulting equation by the mass-transfer
coefficient obtained from the empirical correlation valid only at low fluxes, one can
obtain a reliable estimate of the mass-transfer coefficient applicable at high fluxes.
This is discussed in more detail by Bird et al.*

Assume now that Fo,, > 1, corresponding to steady-state mass transfer. The
resulting set of simplified describing equations can be solved analytically to obtain
the following solution for the mass flux of component A:

1
n* = T In(1 — ;) (5.2-29)

Note that for IT; < 1, corresponding to negligible convective mass transfer, equa-
tion (5.2-29) reduces to

nh =1 (5.2-30)

Let us assess the error incurred in determining n% when convective mass transfer
is ignored. This error is 5.1% and 0.50% for IT; = 0.1 and 0.01, respectively.
This is typical for scaling analysis: namely, that the error incurred in making some
approximation becomes negligible if the particular dimensionless group involved
in the criterion is ©(0.01).

5.3 PENETRATION THEORY APPROXIMATION

In the preceding example we sought to determine when steady-state conditions
applied. Hence, we bounded z* to be o(1) by setting z; = H. However, this length
scale is not appropriate for short contact times for which the diffusion does not pen-
etrate across the entire thickness of the film shown in Figure 5.2-1. The appropriate
length scale for short contact times is obtained by balancing the unsteady-state and
diffusion terms in equation (5.2-11), that is, by setting the dimensionless group in
this equation equal to 1 to obtain

2

Z5
— 2 — | =z, = /Dasty (5.3-1)

DBty

4R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, Hoboken, NJ,
2002, pp. 704-706.
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Note that z; defines a region of influence or boundary layer wherein all the mass
transfer is confined. The thickness of this region of influence increases in time
until it eventually penetrates the entire film. The other scale and reference factors
remain unchanged from those determined in Section 5.2. The resulting dimension-
less describing equations are given by

* *

v

ny = i’y — ZA (5.3-3)

Py =0 at 1" <0, 0<z*< 2 (5.3-4)

~/Dagto
pi=1 at =0, 0<r* <oo (5.3-5)
P45 =0 at z*=i, 0<t*<oo (5.3-6)
/' Dagt,

where I1; is defined by equation (5.2-26). We again see that if the criterion given
by equation (5.2-28) is satisfied, the convective contribution to the mass-transfer
flux in equation (5.3-3) can be ignored. Moreover, if

H
v Dapto

the boundary condition defined by equation (5.3-6) can be applied at infinity. The
solution to this simplified set of describing equations is given in standard ref-
erences.’

The simplified describing equations that result when equation (5.3-7) is satisfied
form the basis of penetration theory. This is also used to model complex prob-
lems for which the diffusive mass transfer is contact-time limited; for example,
mass transfer from a gas phase to liquid film flow down a short vertical wall.
Penetration theory is also used to correct mass-transfer coefficients obtained from
empirical correlations for the effect of large mass-transfer fluxes [i.e., corresponding
to [T = O(1)]. However, penetration theory is used to make this correction when
the mass transfer is contact-time limited; that is, for short contact times.® The pro-
cedure for making this correction is analogous to that used for film theory; namely,
an equation is derived for the ratio of the mass-transfer coefficient at high flux to
that at low flux. By multiplying the mass-transfer coefficient obtained from the low
flux empirical correlation by this ratio, an estimate of the mass-transfer coefficient
applicable at high fluxes is obtained. This is discussed in more detail by Bird et al.”

> 1 (5.3-7)

3Tbid., pp. 613-617.

It is interesting to note that the high flux correction factors obtained from film theory and penetration
theory do not differ significantly even though these two models apply at opposite ends of the mass-
transfer contact-time spectrum; the reason for this is that the correction factor involves the ratio of the
mass-transfer coefficients.

"Bird et al., Transport Phenomena, 2nd ed., pp. 706—708.
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5.4 SMALL PECLET NUMBER APPROXIMATION FOR LAMINAR
FLOW WITH A HOMOGENEOUS REACTION

Consider the steady-state fully developed laminar flow of a Newtonian liquid with
constant physical properties between upper and lower lateral boundaries that consist
of infinitely wide parallel semipermeable membranes separated by a distance 2H
and having length L as shown in Figure 5.4-1. The laminar flow velocity profile
is given by

2

u, =20 (1 _ %) (5.4-1)

where U is the average velocity. The incoming liquid feed stream consists of pure
component B. This feed stream reacts with component A, which is injected contin-
uously through the semipermeable membrane boundaries at a constant molar flux
N 4. Since the injection rate of component A is sufficiently low, its concentration
remains dilute. Hence, component A is the limiting reactant and the reaction rate
is given by

RA = k1CA (54-2)

where R4 is the rate of homogeneous reaction of component A (moles/volume-time)
and k; is the reaction rate constant for a first-order reaction (time™').

NA = NAw

Y

NA = NAw

< L g

Figure 5.4-1 Laminar flow with a homogeneous chemical reaction; the liquid feed stream
consists of pure component B; the feed stream undergoes an irreversible first-order homo-
geneous reaction with component A that is injected through the semipermeable membrane
boundaries at a constant flux N4, ; the injection rate is sufficiently low to ensure that the
concentration of component A is dilute, thereby making it the limiting reactant; the concen-
tration profile for component A and fully developed laminar velocity profile are shown in
the figure.
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The appropriate form of the species-balance equation given by equation (G.1-5)
in the Appendices and corresponding boundary conditions are (step 1)

2 2 2
_ y aca d°ca 0°ca
22U\l — == ) — =Dygp—— + Dap—> — k 5.4-3
( H2> P AB— 7+ Das ayz ~kiea (5.4-3)
ca=0 at x=0 (5.4-4)
ca= f(y) at x=1L (5.4-5)
8CA
DABa— = —Naw at y==+H (5.4-6)
y
8CA
—~ =0 at y=0 (54-7)
dy

where f(y) is a function of y. Note that each term in equation (G.1-5) was divided
by the molecular weight of component A in order to convert the mass concentration
to molar concentration for the assumed dilute solution having constant mass and
molar densities. This is a nontrivial problem to solve, due to the elliptic nature of the
describing equations. The presence of the second-order axial derivative requires that
a downstream boundary condition be specified. Often, these downstream conditions
are not known, which precludes solving the describing equations. Clearly, one
would like to know how these describing equations might be simplified to permit
a tractable solution. In particular, one would like to know when the axial diffusion
and convection terms might be neglected. We use o(1) scaling to determine the
criteria for neglecting these terms.

Define the following dimensionless variables involving unspecified scale factors
(steps 2, 3, and 4):
Al L X P_

* _ . —
CH ; X = ; yi =
Cg Xs Vs

(5.4-8)

Note that there is no need to introduce a reference factor for the concentration
since it is naturally referenced to zero. Introduce these dimensionless variables into
the describing equations and divide through by the coefficient of one term in each
equation that should be retained (steps 5 and 6):

- 2 _ = = — C 4-
D apXs H? dx*  x2ox*2 | 9y2  Dug °
=0 at x*=0 (5.4-10)
* * * L
cy = fOY) at x* = - 5.4-11)
ac N H
Ca _ _TAwks 0 o4 (5.4-12)
ay* DABCS Vs
8 *
U_0 a y=0 (5.4-13)

ay*
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Step 7 involves bounding the independent and dependent dimensionless variables
to be o(1). This can be done for the spatial coordinates by setting the dimension-
less groups containing x; and y; in equations (5.4-11) and (5.4-12) equal to 1;
that is,

L H
—=1=x=1L; —=1l=y=H (5.4-14)
Xs Vs

Since the dimensionless concentration gradient must be bounded of o(1), we set
the dimensionless group in equation (5.4-12) equal to 1; this yields the following
scale factor for the concentration:

NpawH NawH
Aw —1= ¢, = Aw
DABCS DAB

(5.4-15)

Substitution of the scale and reference factors defined by equations (5.4-14) and
(5.4-15) into the dimensionless describing equations given by equations (5.4-9)
through (5.4-13) yields

* 2 a2 % 2
acA_HE)cA 0°cy

2Pem£ (1—y*) =—_4 — Th’c% (5.4-16)
L ox* L2 9x*2  9y*2
i =0 at x*=0 (5.4-17)
ch=fo" at x* =1 (5.4-18)
8 *
362 — 1 at y =41 (5.4-19)
y
8 *
U_0  a y =0 (5.4-20)
ay*

where Pe,, = UH /D3 is the solutal Peclet number or Peclet number for mass
transfer; note that Pe,, = UH /v-v/Dap = Re - Sc, where Re and Sc denote the
Reynolds and Schmidt numbers, respectively. The Reynolds number is a measure
of the ratio of the convection to the viscous or molecular transport of momentum.
The Schmidt number is a measure of the ratio of the viscous or molecular transport
of momentum to the diffusive or molecular transport of species. Hence, the Peclet
number is a measure of the ratio of the convective to diffusive or molecular trans-
port of species. The dimensionless group Th = /k; H2/D 4, known as the Thiele
modulus is a measure of the ratio of the characteristic time for diffusion relative
to that for homogeneous reaction.

Now let us explore possible simplifications of the describing equations (step 8).
The criterion for ignoring axial diffusion is

2

H
7 « 1 = axial diffusion can be ignored (5.4-21)
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that is, the aspect ratio must be small. Note, however, that the length L was arbi-
trary in that L could denote any value of the axial coordinate in the principal
direction of flow. This is the principle of local scaling, whereby we scale the
problem for some fixed but arbitrary value of some coordinate, usually that in
the principal direction of flow. When the inequality in equation (5.4-21) applies,
the elliptic describing equation is reduced to a parabolic equation, thereby obviat-
ing the need to satisfy any downstream boundary condition. Recall that prescribing
this downstream boundary condition often is problematic and precludes solving
elliptic describing equations. Note that for distances sufficiently close to the entry
region for the flow, the axial diffusion term cannot be ignored. This entry region
length can be determined by assessing the criterion for when axial dispersion is
significant; that is,

HZ
— >0.1= L <10H (5.4-22)

L2
In order to ignore axial convection of species, the dimensionless group multi-
plying the first term in equation (5.4-16) must be very small; that is,

H
Pe,, - A <« 1 = axial convection of species can be ignored (5.4-23)

We see that the criterion for ignoring axial species convection is that the Peclet
number be very small. The Peclet number in mass transfer has a role analogous
to that of the Reynolds number in fluid dynamics; that is, when it is small, it
justifies ignoring axial convective transport. We see in the next example problem
that when it is large, it justifies a boundary-layer approximation. Note that ignoring
convective transport in the species-balance equation in this example is analogous
to ignoring convective transport in the equations of motion that are the basis of the
creeping-flow approximation.®

If the conditions in equations (5.4-21) and (5.4-23) are satisfied, equations (5.4-
16) through (5.4-20) reduce to

3263 2 %
0= 24 —Tn'c; (5.4-24)
y
a *
a;/: — 1 at y =41 (5.4-25)
ic *
=0y =0 (5.4-26)

Note that equation (5.4-24) implies that the transverse diffusion of species A into
the flowing liquid is balanced by its consumption, owing to the homogeneous

8The creeping-flow approximation was considered in Section 3.3 and Example Problem 3.E.2.
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reaction. This in turn implies that Th?> = 1. The solution to this simplified set of
describing equations is straightforward and given by

1 eTh»)r+e—Th-y

T (5.4-27)

=
Note that the dimensionless concentration predicted by equation (5.4-27) is no
longer bounded of o(1) when Th « 1. This implies that the reaction is not suf-
ficiently fast to prevent the concentration of component A from building up due
to the continuous injection through the membrane boundaries. That is, our scal-
ing implicitly assumed that the transverse diffusion of component A was balanced
by its consumption, due to the homogeneous reaction. This is no longer true if
the homogeneous reaction rate becomes small. In this case the convection term
rather than the reaction term must balance the transverse diffusion term; that is,
the describing equations must be rescaled appropriately.

Now let us consider the case when the Thiele modulus is very large, thereby
implying a very fast homogeneous reaction. This implies that component A will be
consumed within a region of influence near the two membrane boundaries. In this
case the transverse length scale is no longer H since the dimensionless concen-
tration experiences a change of o(1) over a much shorter length scale that can be
determined by balancing the reaction and transverse diffusion terms in the describ-
ing equations. To achieve o(1) scaling for the very fast reaction case, we introduce
a region-of-influence scale §; that is a measure of the distance from the mem-
brane boundaries over which the homogeneous reaction consumes component A
entirely. Since the diffusive mass transfer and homogeneous reaction are occurring
very close to the membrane boundaries, it is convenient to recast the describing
equations in terms of a coordinate measured from the wall defined by y = H — y.
Hence, our describing equations assume the form

d*ct k82

£ 0 5.4-28
dy* Dag ( )
de* Naws
G _ Tk jr =0 (5.4-29)
dy* D spcy
Aoy a =1 (5.4-30)
dy* ds

Note that we have assumed that the Peclet number and aspect ratio are sufficiently
small to permit ignoring convective and diffusive transport in the axial direction. To
determine the thickness of the region of influence and to bound the dimensionless
concentration gradient to be o(1), we set the following groups equal to 1:

k182 Dyp
Dyp ki
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NALUSS . NAw —1=c = NAw
Dapcs  cyn/Dagki ' VDagk

We see that equation (5.4-32) provides the scale for the concentration. Since &5/ H
« 1, the describing equations reduce to

(5.4-32)

2
G« _o (5.4-33)
dj‘,*Z A
d *
d;g ——1 at §=0 (5.4-34)
d *
d;’i =0 at § > o0 (5.4-35)

The solution to these equations is given by
cy=e? (5.4-36)

This solution indicates that, indeed, ¢ is bounded of o(1).

5.5 SMALL DAMKOHLER NUMBER APPROXIMATION
FOR LAMINAR FLOW WITH A HETEROGENEOUS REACTION

Figure 5.5-1 shows a schematic of steady-state fully developed laminar flow of a
Newtonian fluid with constant physical properties in a cylindrical tube of radius
R containing a solute A having an initial concentration c4¢ that undergoes a first-
order irreversible reaction along length L. The heterogeneous reaction is assumed
to be irreversible and first-order with a reaction-rate constant 121 (length/time). We
use scaling analysis to simplify the describing equations; in particular, we assess
the criterion for making the classical plug-flow reactor approximation; that is, a
flow reactor in which the velocity can be assumed to be uniform at its average
value U and that is surface-reaction limited.

The appropriately simplified species-balance equation given by equation (G.2-5)
in the Appendices and the requisite boundary conditions are (step 1)

dca 8%ca 19 [ dca
—— = Dyp—nt ——(r=2 5.5-1
“z 0z A8 522 + AB L ar (r or ( )
CA = CAQ at z=0 (5.5-2)
ca=f() at z=1L (5.5-3)
d
CA_0  at r=0 (5.5-4)
or
8CA ~
—Dap—— =kicx at r=R (5.5-5)
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Heterogeneous first-order reaction at the surface of the tube

_\_\E

. \ '
== = 1

z >

>/

= =\ =

y

Velocity profile Developing concentration profile

Figure 5.5-1 Steady-state fully developed laminar flow of a Newtonian fluid with constant
physical properties undergoing a first-order heterogeneous reaction at the wall of a cylin-
drical tube having radius R; the fully developed velocity profile is shown along with the
concentration profiles at two axial positions.

where Djp is the binary diffusion coefficient, c4¢ the initial concentration of
the reactant A, f(r) an unspecified function of r, k| the first-order heterogeneous
reaction-rate constant, and u, the laminar flow velocity, given by

u, =2U011- = (5.5-6)

where U is the average velocity. Note that each term in equation G.2-5 has been
divided by the molecular weight of component A in order to convert the mass con-
centration into molar concentration for the dilute solution, which is assumed to have
constant mass and molar densities. The boundary condition given by equation (5.5-
3) is required because of the elliptic nature of equation (5.5-1). Since the function
f(r) is often unknown in practice, the describing equations cannot be solved even
numerically.

Introduce the following dimensionless variables (steps 2 and 3):
CA . % r . % Z

5 r > < =
Cg rs s

%
Ca

(5.5-7)

Substitute these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 4 and 5):

202 i\ 2 ac* 2 52¢* 1 9 ac*
rS |:l _ (%) r*2i| CA — r_Yz CA + (r* cA) (55-8)

Dapzs dz* 22022 rror* ar+
k= Cci" at ¥ =0 (5.5-9)
S

ch=f(r) at ¥ = (5.5-10)
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a k

A_0  at r=0 (5.5-11)
ar*

ac* kyrg R

T I - (5.5-12)
81‘* DAB I

The dimensionless groups in equations (5.5-9), (5.5-10), and (5.5-12) suggest the
following choices for the scale factors to achieve o(1) scaling (step 7): ¢s = ca0, Zs
= L, and ry; = R; note that we are employing local scaling here since L can be
any specified value of z. Substitution of these scale factors into equations (5.5-8)
through (5.5-12) then yields the following set of dimensionless describing
equations:

R act  R23*%r 1 9 ack
2pe,, 7 (1- 1) A _ Ay (r* CA) (5.5-13)

dz* L2 9z | rrors ' or*
=1 at ¥ =0 (5.5-14)
ci=r (r*) at ¥ =1 (5.5-15)
a *
A_0  at =0 (5.5-16)
or*
a *
% = -Da¢y, at =1 (5.5-17)
p

where Pe,, = UR /D 4p is the Peclet number for mass transfer and Dall= 121 R/Dap
is the second Damkohler number, which is a measure of the ratio of the time scale
for radial diffusion to that for the heterogeneous reaction.

Now let us consider how this set of dimensionless describing equations can
be simplified (step 8). If R2 / L? « 1, the axial diffusion term can be ignored in
equation (5.5-13). If Da!' « 1, equation (5.5-17) implies that dc’y /or* <« 1 since
¢ = o(1). This in turn implies that the concentration will not vary significantly in
the radial direction; that is, ¢} = 1 across the tube. Hence, equation (5.5-13) can
be integrated as follows:

! R act 1 9 ac
/ 2Pem—(l—r*2) CAan*dr* =/ (r* CA)an*dr* (5.5-18)
0

0 L d0z* ¥ ar* or*

I

R 1 oc* —Da”cy dc*
2Pem—/ (1—r*) cAr*dr*:/ g (rS5A (5.5-19)
L 0 8Z* 0 Br*

Since the concentration is essentially uniform across the tube for very small
Damkohler numbers, dc’y /0z* = dcy /dz*; hence, equation (5.5-19) simplifies to

1 Rdc}

_Pem_
2 L dz*

= —Dallc} (5.5-20)
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It is instructive to recast equation (5.5-20) into dimensional form, which is given by

_d 2k
gdea _ _2kica
dz R

(5.5-21)

Equation (5.5.21) is equivalent to assuming that the fluid is convected down the
tube at a uniform velocity U in the absence of any radial diffusion; however, the
concentration changes axially, due to the heterogeneous reaction at the wall of the
tube. Hence, the small Damkohler number approximation results in the classical
plug-flow reactor assumption, which often is assumed without systematic justifica-
tion.’ Scaling provides a systematic method for arriving at this approximation.

Integrating equation (5.5-20) results in the following solution for the dimension-
less concentration profile:

CZ — e—(ZDaH/Pem)(L/R)Z* (55_22)

If the Damkohler number is small, the exponential can be expanded in a Taylor
series and truncated at two terms to obtain the following approximate solution:

2Da L
Pe,, R

* o~
CA=1

7" (5.5-23)
The error in the solution given by equation (5.5-23) will be in the range 10 to
100% if Da'' = O(0.1) and 1 to 10% if Da'' = O(0.01).

Note that there is an analogy between the small Damkohler number approxima-
tion in modeling convective mass transfer with heterogeneous chemical reaction
and the small Biot number approximation in modeling convective heat transfer from
a solid particle that was considered in Section 4.4. When the Damkohler number
is small, there is a negligible variation in the concentration over the cross section
of the reactor; hence, the mass transfer rate is controlled by the resistance external
to the fluid offered by the heterogeneous reaction. When the Biot number is small,
there is a negligible variation in the temperature across the solid particle; hence, the
heat transfer rate is controlled by the resistance external to the particle associated
with convection to the surrounding fluid. This demonstrates another advantage of
scaling: that it establishes the analogies between the various transport processes
systematically.

5.6 LARGE PECLET NUMBER APPROXIMATION FOR MASS
TRANSFER IN FALLING FILM FLOW

In Example Problem 4.E.4 we considered heat transfer to a liquid film flowing
in fully developed laminar flow down a heated vertical wall. We found that at a

9By plug flow we mean that the velocity is uniform across the cross-section of the reactor; in the present
example, for small Damkohler numbers this plug flow moves at an average velocity U.
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Figure 5.6-1 Steady-state gas absorption of a soluble component A from an inviscid gas
phase to a liquid film in fully developed laminar flow down an impermeable vertical wall;
the liquid film has initial concentration c 49, interfacial concentration ¢4y, thickness H, and
constant physical properties.

sufficiently high Peclet number, the heat transfer was confined to a thin boundary
layer in the vicinity of the wall. Here we consider a closely related problem:
absorption of a soluble component from an inviscid gas into a liquid film in fully
developed laminar flow down an impermeable solid wall as shown in Figure 5.6-1.
The liquid film has thickness H and constant physical properties. It is assumed to
have an initial concentration ¢4 and an interfacial concentration c4; established
via equilibrium with the adjacent gas phase. The velocity profile in the liquid film

is given by
2
u, = U, [1 — (%) } (5.6-1)

where U, is the maximum liquid velocity; namely, at the liquid—gas interface. We
use scaling to explore how the describing equations can be simplified; in particular,
we determine the conditions required to assume that the mass transfer is confined
to a thin boundary layer near the liquid—gas interface.

The appropriate form of the species-balance equation given by equation (G.1-5)
in the Appendices and corresponding boundary conditions are (step 1)

y\2| dca 8%cy 9%ca
Up|l1—(= — =D D 5.6-2
m[ (H) ] o AB— 5+ Das 5y (5.6-2)
CA = CaA0 at x=0 (5.6-3)

ca=f) at x=1L (5.6-4)
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CA=Cal at y=0 (5.6-5)
9
%A _0  at y=H (5.6-6)
dy

where f(y) is some function of y and L is any arbitrary distance downstream. Each
term in equation (G.1-5) has been divided by the molecular weight of component
A to convert the mass concentrations to molar concentrations. These describing
equations are similar to those encountered in Section 5.5; that is, they include
an elliptic differential equation that is nontrivial to solve, owing to the need to
satisfy some downstream boundary condition, which often is unknown. Hence,
we use O(1) scaling to determine when this elliptic differential equation can be
simplified into a parabolic equation for which a downstream boundary condition is
not necessary.

Define the following dimensionless variables involving unspecified scale and
reference factors (steps 2, 3, and 4):
cA—Cr X «_ Y

* —
i : X : y* =
Cs Xs Vs

(5.6-7)

Note that a reference factor is introduced to ensure that the concentration is bounded
between zero and 1. Introduce these dimensionless variables into the describing
equations and divide through by the coefficient of one term in each equation that
should be retained (steps 5 and 6):

Umyx2 l _ (&)2 y*2 BCZ — y_sz azcj 3202 (5 6-8)
D spxg H dx*  x29x*2  Jy*? ’
= % at x*=0 (5.69)
* * * L
cy=1f (y ) at x* = = (5.6-10)
k= % at y =0 (5.6-11)
S
act H
U_0 a y== (5.6-12)
ay* Vs

Step 7 involves bounding the independent and dependent dimensionless vari-
ables to be o(1). This is done for the dimensionless concentration by setting the
dimensionless groups in equations (5.6-9) and (5.6-11) equal to zero and 1, respec-
tively, to obtain ¢, = c49 and ¢; = ca; — ca0. The length scale for the axial spatial
coordinate is obtained by setting the dimensionless group in equation (5.6-10) equal
to 1, thereby obtaining x; = L. We seek to determine the thickness of the region
of influence near the liquid—gas interface wherein the mass transfer is confined.
This region of influence occurs because the flowing liquid convects species down-
stream before it can diffuse through the entire thickness of the film. Hence, the
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convection term must be of the same magnitude as the cross-stream diffusion term
in equation (5.6-8). This then implies that we demand the following, which leads
to an estimate of the region-of-influence thickness J;:

Uny;  Und}

DpapL  DypL

= [—— (5.6-13)
We see that §; increases with the downstream distance L and is inversely pro-
portional to the solutal Peclet number, Pe,, = U,,H/D4p, which is a measure of
the ratio of the convection to diffusion of species. Sufficiently far downstream, J;
will become equal to the film thickness H. Substitution of these scale and ref-
erence factors into equations (5.6-8) through (5.6-12) yields the following set of
dimensionless describing equations:

1— Li *2 % — LE 820”;‘ azcg (5.6-14)
Pe,, H 0x*  Pe, L 0x*2 = 9y*2
;=0 at x* =0 (5.6-15)
ch=r0" at x* =1 (5.6-16)
=1 at y*=0 (5.6-17)
1
acy . H\?2
=0 at y* = |Pe,— (5.6-18)
ay* L

For large Peclet numbers the ratio §;/H will be quite small. This permits signif-
icant simplification of the describing equations (step 8). In particular, H/(L - Pe,,)
will be quite small away from the leading edge of the liquid film, which permits
ignoring the axial diffusion term, thereby avoiding the complication of having to
specify a downstream boundary condition. In addition, for sufficiently large Peclet
numbers, the quadratic term in the equation for the velocity profile can be ignored
since it is only the interfacial velocity that is important for a thin region of influ-
ence. Finally, for large Peclet numbers the boundary condition by equation (5.6-18)
can be applied at y* = co except when L becomes large. The resulting simplified
dimensionless describing equations are

9 * 32 *
fa _ ZC (5.6-19)
ox* 8y*2
ch=0 at x*=0 (5.6-20)
ch=1 a y*= (5.6-21)
8 *
U_0  at y - oo (5.6-22)

ay*
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This system of equations admits a solution via a similarity solution or combination
of variables. The resulting solution will provide accurate predictions of the concen-
tration profiles and mass-transfer rates for sufficiently long films for which ignoring
the leading edge effects is a reasonable assumption.'?

5.7 QUASI-STEADY-STATE APPROXIMATION FOR MASS TRANSFER
DUE TO EVAPORATION

A volatile liquid composed of pure component A having constant physical prop-
erties and an initial depth L( is contained in a cylindrical tube of radius R and
height H. At time ¢ = 0 this liquid is exposed to the gas volume in this tube,
which is filled initially with an insoluble gas composed of pure component B. Pure
component B is also blown continuously over the top of the tube, thereby caus-
ing one-dimensional binary diffusion of A in B, as shown in Figure 5.7-1. This
is inherently an unsteady-state problem both because it is an initial value problem
and because the liquid level will drop in time continuously, due to the evaporative
mass loss. We use scaling to assess the following: when quasi-steady-state can be
assumed; when convective mass transfer can be ignored, and when one can neglect
the pseudo-convection term that arises from the transformation from a fixed to a
moving coordinate system.

e

Gas flow of pure component B

cy=0

A

€A = Ca0

L(t)

[~~~ Pure volatile
ZT component A

Figure 5.7-1 Unsteady-state evaporation of pure liquid A into an insoluble gas B; x40, the
gas-phase mole fraction of component A, is dictated by thermodynamic equilibrium between
the liquid and gas phases at the prevailing temperature and pressure; a gas stream of pure
component B is blown over the top of the tube to maintain the composition of component
A at zero.

0The conditions under which these approximations break down are considered in Practice Problem
5.P.5.
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Since we are considering gas mass transfer, it is advantageous to use molar con-
centrations and molar fluxes rather than mass concentrations and mass fluxes, owing
to the fact that the overall molar density rather than the mass density is constant at
fixed temperature and pressure.'! Step 1 consists of writing the appropriately sim-
plified continuity and species-balance equations, given by equations (C.2-4) and
(G.2-6) in the Appendices, as:

-2 X0 a=a@ 5.7-1
o = g W, == u=u0 ©7-D
9 IN
gea _ 204 (57-2)
ot 0z
9 IN
9B _ 9B (5.7-3)
ot 0z

where the molar-average velocity # is defined by

Ny + Np
¢

(5.7-4)

i

in which N4 and Np are the molar fluxes of components A and B, respectively,
given by

9 . 9 )

Na = —cDap 4 cnti = —Dap A 4 caii (571-5)
0z 0z
8)63 86‘3

Np = —cDgp—— 4+ cpit = —Dpp—— + cpil (5.7-6)
9z 0z

in which ¢ = c4 + cp is the overall molar density, x4 = c4/c and xp = cp/c are
the mole fractions of components A and B, respectively, and D,p is the binary
diffusion coefficient. The integration in equation (5.7-1) follows from the fact that
we are assuming an ideal gas at constant temperature and pressure. Note that only
one of equations (5.7-2) and (5.7-3) needs be considered since the sum of these
two equations results in equation (5.7-1). We again see that equations (5.7-5) and
(5.7-6) indicate that the total molar flux is the sum of a purely diffusive flux and
a convective flux that is proportional to the molar average velocity. Equation (5.7-
4) shows that the convective velocity arises from the mass transfer since it is
proportional to the sum of the molar fluxes.

Equations (5.7-1) through (5.7-6) constitute six equations in five unknowns:
ca,cp, Na, Np, and ii. However, only four of these equations are independent;
thus, an additional equation is needed. In this case this comes from the fact that
component B is insoluble in liquid component A; hence, it follows that

i =—2""2_ "N, at z=L (5.7-7)

""For moderate pressures the ideal gas law is applicable; hence, ¢ = P/RT = a constant for specified
Pand T.
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The requisite initial and boundary conditions are given by

ca=0 at 1<0, L<z<H (5.7-8)
CA = Cao at z=L(t), O<t<o0 (5.7-9)
ca=0 at z=H, 0<t<o© (5.7-10)

Equation (5.7-8) specifies the composition of component A in the gas phase at the
interface that is determined by thermodynamic equilibrium at the prevailing tem-
perature and pressure. This boundary condition is applied at the moving interface
L(t) between the liquid and gas phases. Problems of this type are referred to as
moving boundary problems. Since L(t) is an additional unknown, it is necessary
to prescribe an auxiliary condition to determine it. This is obtained via an integral
mass balance on component A as follows:

d * p d "
— —d — dz = —Ny|._ 5.7-11
dt/o Mo Z+dt/L cadz Al=n ( )

where p is the mass density of pure liquid component A and M4 is the molecular
weight of component A. Applying Leibnitz’s rule for differentiating an integral
given by equation (H.1-2) in the Appendices and substituting equation (5.7-2)
yields

0 dL
(M—A — CA|z=L) I + Nal;=L =0 (5.7-12)
In arriving at equation (5.7-12) we have used the fact that the liquid density is
constant and that component B is insoluble in the pure liquid A. However, since
ca0 K p/My, equation (5.7-12) simplifies to the following auxiliary condition to
determine the instantaneous location of the liquid—gas interface:

dL My
— = —"2Ny at z=L() (5.7-13)
dt 0

This condition merely states that the rate that the interface recedes is proportional
to the rate at which component A is transferred to the gas phase. To integrate
equation (5.7-13), it is necessary to specify an initial condition for L; this is
given by

L=1Ly at t=0 (5.7-14)

*_CA. A*_u_ *_NA_ *_L.
=2, = Ni= A, LY = —.
Us Ly

dL *_ldL. « 2= t*—t
ar) " L,di ST g T

(5.7-15)
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Note that we have introduced a reference factor for the spatial coordinate since it is
not naturally referenced to zero in the gas phase where the diffusion is occurring.
However, there is no need to introduce a reference factor for the molar concentra-
tion since it is naturally referenced to zero. We have also introduced scale factors
for the interface location and velocity since there is no reason to expect that these
will scale with z;.

Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each of these equations that should be
retained (steps 5 and 6) to obtain the following:

CasZs Oy _ NG (5.7-16)
Nagty Ot* az*
Naszs ., 0CY UsZs 4 ay
=— + ——c,u 5.7-17
Dapcas * dz* ' Dap ( )
Nas L—z
Q) = AN = (5.7-18)
ClUg s
L L—z H-z
=0, L'="" a r<o, Yo < TE (57-19)
LA Z_Y ZJ
L — Lr
= g =TT << (5.7-20)
CAs s
H — Lr
=0 at FF=-—" 0<r <o (5.7-21)
s
dL\" M 4N ag L—z
<_> = AT N g = S (5.7-22)
dt pLA s

Now let us proceed to determine the scale factors (step 7). The dimensionless
concentration can be bounded of o(1) by setting the group containing the concen-
tration scale factor in equation (5.7-20) equal to 1, thereby obtaining cay = cao.
Since we seek to determine when steady-state conditions apply, the appropri-
ate time scale is the observation time; that is, t; = f,. The dimensionless spa-
tial coordinate can be bounded to be o(1) by setting the dimensionless groups
in equations (5.7-20) and (5.7-21) equal to zero and 1, respectively, to obtain
zr = L and z; = H — L. The scale factor for the molar flux is obtained by set-
ting the appropriate dimensionless group in equation (5.7-17) equal to 1, thereby
obtaining N4y = Dapcao/(H — L). The scale factor for the molar average veloc-
ity is obtained by setting the dimensionless group in equation (5.2-18) equal to
1, thereby obtaining u; = Dspxao/(H — L). The scale factor for the liquid-layer
depth and its time rate of change are obtained by setting the dimensionless groups
in equations (5.7-19) and (5.7-22) equal to 1, thereby obtaining L = L and I;S =
MaDapcao/p(H — L), respectively.

Substitution of these scale and reference factors yields the following set of
dimensionless describing equations:
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1 ac} M dL\" ac* ON*
- %a + Macao (Z* — 1) ab) % _ 9% (5.7-23)
Fo,, ar* o dt ) 0z* az*
a *
Ni=— acﬁ Foxachit  (5.7-24)
b4
a*(ty=Ni  at =0 (5.7-25)
3 =0, L'=1 at <0 (5.7-26)
ca=1 at 7"=0 0<t"<o0 (5.7-27)
;=0 at ¥ =1, 0<t"<oo (5.7-28)
dL)" N t =0 (5.7-29)
—_— = — a = Y
dt A ¢

where Fo,, = Dypt,/(H — L)? is the solutal Fourier number or Fourier number for
mass transfer. Note that the additional term appearing in equation (5.7-23) arises
due to the transformation from a stationary to a moving coordinate system implied
by our new z* variable. This additional term is referred to as a pseudo-convection
term. The latter will arise in a moving boundary problem if the scaling involves a
transformation from a stationary to a moving coordinate system.

Now let us explore possible simplifications of the describing equations (step
8). Note that if Fo,, > 1, the unsteady-state term in equation (5.7-23) becomes
insignificant; hence, the mass transfer is quasi-steady-state; that is,

Dpt,

Fo, = ———
(H—L)?

> 1 = quasi-steady-state mass transfer (5.7-30)

Quasi-steady-state implies that the unsteady-state term in the species-balance
equation is negligible but that the problem is still unsteady-state, due to the time-
dependence that enters through the boundary condition applied at the moving
liquid—gas interface. If x40 < 1, corresponding to a very dilute gas-phase concen-
tration, the convective contribution to the mass-transfer flux in equation (5.7-24)
can be ignored. In addition, if Maca9/p < 1, corresponding to the gas phase hav-
ing a much smaller molar density than the liquid, the pseudo-convection term can
be ignored. When the latter condition and that given by equation (5.7-30) are sat-
isfied, the solution to this problem can be obtained analytically and is available in
standard references.'?

5.8 MEMBRANE PERMEATION WITH NONCONSTANT DIFFUSIVITY

A dense (i.e., nonporous) membrane of thickness H fabricated from pure polymer
B is used to separate component A from a liquid feed solution that establishes a

12Bird et al., Transport Phenomena, 2nd ed., pp. 545-549.
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Figure 5.8-1 Diffusion of component A through a dense polymeric membrane of compo-
nent B of thickness H; component A is a weak plasticizing agent that causes membrane
swelling, which in turn causes the diffusion coefficient to increase; this is shown schemati-
cally by the lighter shading in the regions where swelling is occurring.

concentration p4y (mass per unit volume) in the membrane on the feed side; the
other component in the feed solution is insoluble in the polymeric membrane.!'?
The concentration of component A on the permeate product side of the mem-
brane is maintained at zero. A schematic of this mass-transfer process is shown
in Figure 5.8-1, where the origin of the coordinate system has been located at the
feed side. Component A is a weak plasticizing agent for the polymer and causes
it to swell, thereby increasing the diffusion coefficient or diffusivity. Since this
swelling is proportional to the concentration of component A, it causes a change
in the diffusivity across the membrane, whose dependence on the concentration is
given by

Dag = DoePPA (5.8-1)

where f is a positive constant and Dy is the diffusion coefficient at infinite dilution
for which p4 = 0. We use scaling to ascertain the following: when the concentration
dependence of the diffusion coefficient can be neglected; how we can ascertain
that membrane swelling is occurring; and the effective thickness of the membrane
wherein the resistance to diffusion is confined.

If the species-balance equation given by equation (G.1-1) in the Appendices is
appropriately simplified, we obtain (step 1)

DA 0=k (5.82)
where K is an integration constant and 7 4 is the mass flux of component A given by

dpa
nAZK——DAB—+,OAM——DAB = —Dye (58—3)

dpA Boa dpA
dz dz z

The solubility of most solutes in polymeric materials is small, so that the bulk flow
term involving the mass-average velocity u can be ignored. The corresponding

13Mass rather than molar concentrations are used for polymer systems, due to their very high molecular
weight relative to the diffusing solute, which would result in extremely small mole fractions.
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boundary conditions are given by
PA = PAO at z=0 (5.8-4)
pa=0 at z=H (5.8-5)

Introduce the following dimensionless variables (steps 2, 3, and 4):

PA <

x . *

Pp = 5 Z —
PAs s

(5.8-6)

Substitute these dimensionless variables into equations (5.8-3) through (5.8-5)
(steps 5 and 6):

= 5.8-7
Kz dz* ( )
pi =P =0 (5.8-8)
PAs
. H
Py = at 77 = — (5.8-9)
s

Now let us proceed to determine the reference and scale factors (step 7).
Equation (5.8-8) permits bounding p} to be o(1) by choosing pa; = pa0. We have
two choices for bounding z* to be o(1): namely, by setting the dimensionless
groups either in equation (5.8-7) or (5.8-9) equal to 1; the proper choice depends
on the situation for which we are scaling. If we are scaling to determine when the
membrane swelling effect can be neglected so that the diffusivity can be assumed
to be constant, the resistance to diffusion is offered by the entire membrane thick-
ness. Hence, setting z; = H provides the appropriate length scale. However, if
membrane swelling is appreciable so that the resistance to diffusion is confined to
a thin region of influence near z = H, the appropriate length scale is obtained from
equation (5.8-7); that is, z; = Dopao/K.

Let us first determine the criterion for ignoring the effect of membrane swelling
on the mass transfer (step 8). After substituting the scale factors, our dimensionless
describing equations assume the form

Dopao gp.00% APA Dopao «\dP4
— _2rA A A — 77 5.8-10
xH ¢ - XH ( +IBIOA0:0A)dZ* ( )
pi=1 at 7*=0 (5.8-11)
pi=0 at ¥ =1 (5.8-12)

Note that to assess the effect of membrane swelling on the diffusion coefficient,
we have expanded the equation for the concentration-dependent diffusivity in a
Taylor series about its minimum value at p4 = 0. This procedure of considering
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only the leading order behavior is standard practice when using scaling to assess
the importance of the concentration or temperature dependence of a physical or
transport property. This does not limit the results of our scaling analysis since if
the criterion that we determine for assuming constant diffusivity is not satisfied
for a weak concentration dependence, it most certainly will not be satisfied for a
strong dependence. Hence, if the following criterion is satisfied, we can assume
that the diffusivity is constant:

[T = Bpao K 1 (5.8-13)

If this criterion is satisfied, the solution to the approximate describing equations
for the mass concentration and flux is given by

H KH
naolt =1 (5.8-14)
Dopao Dopao

py=1—2z" and

where n 40 denotes the constant mass flux in the absence of any membrane swelling;
this is the same as the mass flux that would occur if the entire membrane had the
diffusivity corresponding to p4 = 0. Note that the solution for K could have been
obtained merely by setting the dimensionless group in the approximate form of
equation (5.8-10) equal to 1.

Now let us consider when the swelling effect is large. For this case the diffusivity
increases markedly so that the concentration gradient in equation (5.8-7) is large
only near the boundary at z = H, where the concentration is nearly zero. For
this condition to prevail, equation (5.8-7) indicates that the following criterion
must apply:

IT; = Bpao > 1 (5.8-15)

The dimensionless group in equation (5.8-7) then implies that the thickness of the
region of influence or characteristic length scale for the dimensionless concentra-
tion to experience a change of o(1) is given by z; = 8; = Dopao/K = Dopao/na,
where n4 is the mass flux in the presence of significant membrane swelling; note
that n4 > n,9. Hence, if one knows Dy, the diffusivity for mass transfer of com-
ponent A through polymer B at infinite dilution, one can determine if swelling is
occurring merely by measuring the mass flux for a specified feed concentration. If
the measured n4 exceeds n 4y, it indicates that swelling is occurring.

It is instructive to compare the results of our scaling analysis with the predictions
of the analytical solution for the mass concentration and flux for the exact set of
describing equations that is given by

1 H 1
Pl = o In[z*+e™ (1—-2*)] and ;:,OAO = (e —1) (5.8-16)

When the solution for the mass flux in equation (5.8-16) is substituted into the
equation for J;, the thickness of the region of influence wherein the concentration
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Figure 5.8-2 Dimensionless concentration p4 as a function of dimensionless distance z*
for various values of I1j = Bpao for diffusion through a polymeric membrane subject to
swelling; for large values of I1; the resistance to mass transfer is confined to a thin region
of influence or boundary layer.

gradient is O(1), we obtain

I

8 = T (5.8-17)
Figure 5.8-2 plots the predictions of equation (5.8-16) for p} as a function of z*
for various values of IT;. We see that the exact solution reduces to that given by
equation (5.8-14) for the case of negligible swelling when IT; < 0.1 and that the
concentration gradient is confined to a thin boundary layer or region of influence
when IT; > 50, corresponding to pronounced swelling. These trends are consistent
with the criteria emanating from our scaling analysis given by equations (5.8-13)
and (5.8-15).

5.9 SOLUTALLY DRIVEN FREE CONVECTION DUE
TO EVAPOTRANSPIRATION FROM A VERTICAL CYLINDER

Consider the annular region between an inner permeable vertical cylinder of radius
R; and length L and an outer impermeable cylindrical shell of radius R, as
shown in Figure 5.9-1. The permeable inner cylinder transpires water vapor (evap-
otranspiration) into the annular region between the two concentric cylinders. The
concentration of water vapor in the air adjacent to the inner cylinder, c 4o, is greater
than that in the ambient air, c4.0. Since water vapor is less dense than air, a hydro-
static pressure imbalance is generated that causes air near the inner cylinder to
rise, thereby generating free convection. We consider the steady-state free convec-
tion that prevails after the transients have died out. We ignore viscous dissipation
and end effects and assume constant physical properties other than the density in
the gravitational body-force term in the equations of motion. We consider a local
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Figure 5.9-1 Buoyancy-induced free-convection flow in the annular gap between two con-
centric cylinders of radii R; and R, due to evapotranspiration through the inner cylinder
that causes the concentration c49 of the water to be greater than that of the ambient air,
CAco; the sketch shows the developing concentration and axial velocity profiles.

scaling for which L denotes any arbitrary length along the cylinder. We use scaling
analysis to determine how the describing equations for free convection can be sim-
plified and to develop a criterion for ignoring the effect of the outer cylindrical
boundary on the solutally driven free convection.'#

This is inherently a developing flow, due to the progressive evapotranspiration
that occurs as the humid air moves up the cylinder; therefore, velocity components
in both the r- and z-directions must be considered. In this analysis we assume
constant physical properties except for the density that appears in the buoyancy term
in the equations of motion; elsewhere the density is assumed to be constant. Hence,
equations (D.2-10), (D.2-12), (C.2-2), and (G.2-5) in the Appendices simplify to
(step 1)

du, o, P 193 [ ou, 0%u,
— — =t p——(r= - _ 5.9-1
pur—= + pu; a2 22 s < o ) tr 52 P8 (5.9-1)
du, ou, P a1ad 0%u,
— L e u—|-= 5.9-2
pur ar + pu; 9z 37 + Mar I:r 57 (rur):| +u 972 ( )
19 9
“luy+ 220 (5.9-3)
ror 0z
dca dca 19 [ dca 9%cy
,— —L =Dyp—— (r—= 5.9-4
or + 9z B ar (r or ) APz ¢ )

14This provides a good model for evapotranspiration from Phycomyces, a large single-celled sporangio-
phore that has a cylindrical “stem” and a spherical “head”. This organism has the interesting property
that it “senses” the presence of objects near it and responds by growing away from them. If a cylindrical
shell is placed concentric with the axis of Phycomyces, it will grow faster. If the cylindrical shell is
placed eccentric with the axis of Phycomyces, it will grow away from the closer boundary. This inter-
esting behavior, referred to as the avoidance phenomenon, has been shown to be caused by the influence
of lateral boundaries on the free-convection boundary layer that is created due to evapotranspiration of
water vapor from Phycomyces. A free-convection model for the avoidance phenomenon is developed
in J. J. Pellegrino, R. L. Sani, and R. I. Gamow, J. Theor. Bio., 105(1), 77-90 (1983).
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Note that each term in equation (G.2-5) has been divided by the molecular weight,
which is assumed to be constant for the dilute solutions assumed. The corresponding
boundary conditions are given by

u, =0, u,=0, ca=cao at r=R; (5.9-5)
u, =0, u,=0, aaL: =0 at r=Ry (5.9-6)
u, =0, u,=0, ca=Caco at z=0 (5.9-7)
u = fi(r), u;= fr(r), ca= f3(r) at z=1L (5.9-8)

where f1(r), f2(r), and f3(r) are unspecified functions of r that often are unknown.
Equation (5.9-5) constitutes the no-slip and impermeable boundary conditions at the
inner boundary. The evapotranspiration through the inner boundary will contribute
to the radial component of velocity, which is assumed to be a negligible effect
in this scaling analysis.!> Equation (5.9-6) states that the velocities as well as the
molar flux are zero at the impermeable outer boundary. Equation (5.9-7) states that
the fluid is quiescent and at ambient conditions at the bottom of the annular gap.
Equation (5.9-8) is a formal statement that downstream boundary conditions are
required for these coupled elliptic equations.

Since the density is concentration-dependent, we need an appropriate equation
of state. Here we consider small variations and hence will represent the density via
a truncated Taylor series expansion about its value p, at the ambient concentra-
tion c4co:

ap
0= 0Plesos + 7 (cA — CAco) = Poo — PooBs(Cca — Caco) (5.9-9)
3CA Chco

where f; is the coefficient of solutal volume expansion. It is convenient to split
the pressure into dynamic, P;, and hydrostatic, Py, contributions!®:

P = Py(r,z) + Pp(2) (5.9-10)
When equations (5.9-9) and (5.9-10) are substituted into equation (5.9-1), we obtain

A, A, AP, 193 [ du. 3u,
Poclty ==+ Poolls—— = ——— + i = | r—— | + L=~ + pPoofs8(ca — CAx)

r 0z 0z r or ar 0z
(5.9-11)

Note that the p.og term does not appear in equation (5.9-11) because it cancels
with the derivative of the purely hydrostatic contribution to the pressure.

15Scaling analysis is used to develop the criterion for making this assumption in Practice Problem
5.p.23.

168plitting the pressure into its dynamic and hydrostatic contributions was discussed in connection with
Example Problem 4.E.7.
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Define the following dimensionless dependent and independent variables (steps
2,3, and 4):

* Uz « _ Ur *_Pd x« _ CA —Cr
u; = —; u'=—; P*=—; ch=—
Uzs Ups Py Cs
(5.9-12)
% _ Z' * _I’—Vr. *_r—rr
== ry= ; r¥=
ZS rn’[s rL'S

Note that we have allowed for different radial length scales for the species-balance
equation and equations of motion since the concentration might experience a char-
acteristic change of O(1) over a different length scale than that of the velocities.
Introduce these dimensionless variables into the describing equations and divide
each equation by the dimensional coefficient of one term that should be retained
in order to maintain physical significance (steps 5 and 6):

UpsTms *B_Mi‘ n Ugsh2 *8_14: _ P2 QP*
Voo r8r,fl VooZls Z8Z* MU zsZs az*
1 d rr\ ou’ r2 82 x CT ¢ —c¢
B
PR Ty [Fig OF) Tms ) 01 Z3 82* Vooll 75 Cs
(5.9-13)
Upstms , OUF uzsr,%,s L Ou P s OP*
u _
Voo OFE VooZs $OZ¥  llys 8r
(5.9-14)
N ] 1 ] + N r2s 3%ul
ark \rk + 1 /Fms Br s 22 3Z*2
1 d ou?
— k= Jup | ST 0 (5.9-15)
rY A re Ty OF UpsZs az*
Upstes *acz + uzxrcz-s *aCA 1 0 * Tr 3Cfx rcz's azcjl
u — Sy = 4+ — —
Dap "0rf  Dapzs °0z¢ 1) —i—rr/rcs Br* ¢ ark 22 972
(5.9-16)
* * * Rl —I'r
u, =0, u;=0 at r,
' Tms
(5.9-17)
" CAQ) — Cr " Rl — Iy
= at r)
Cs Ies
R — Iy
uy =0, u;=0 at ry = ikl
rms
(5.9-18)
ac* Ry —r,
A _ at rr= il
or} Tes
Wr=0, ui=0, =220 g =0 (5.9-19)



SOLUTALLY DRIVEN FREE CONVECTION DUE TO EVAPOTRANSPIRATION 285

L
uy, = filry), u; = folr,), = f30r7) at "= = (5.9-20)

A

where Voo = 4/pxo 18 the kinematic viscosity. Note that the boundary conditions
given by equation (5.9-5) are not applied at the same values of the dimension-
less radial coordinate owing to the different radial scale factors for the equations
of motion and the species-balance equation; the same comment applies to equ-
ation (5.9-6).

The effect of viscosity for this flow will be confined to a thin region near
the vertical cylinder; hence, the radial length scale for the equations of motion
will be the thickness of the momentum boundary layer or region of influence
8m; that is, rps = 6,,. The momentum boundary-layer thickness is obtained by
balancing the convection terms with the principal viscous term in equation (5.9-13).
Similarly, the effect of species diffusion will also be confined to a thin region &,
although not necessarily of the same thickness as that of the momentum boundary
layer; hence, the radial length scale for the species-balance equation will be the
thickness of the solutal boundary layer or region of influence §;; that is, r.y = 5.
The solutal boundary-layer thickness is obtained by balancing the radial species
convection and diffusion terms in equation (5.9-16). To determine the axial velocity
scale u,s, we need to balance what causes the flow with the principal resistance
to flow; the former is the gravitationally induced body force, whereas the latter
is the principal viscous term. The transverse velocity scale u,; is obtained from
the continuity equation since this is inherently a developing flow. One might be
tempted to obtain P from the dimensionless group multiplying the pressure term in
equation (5.9-13). However, the pressure term in equation (5.9-13) does not cause
the free-convection flow; the latter is caused by the gravitational body-force term
in this equation. The pressure does cause the flow in the r-direction, which is the
reason why we determine its scale by setting the dimensionless group containing P
in equation (5.9-14) equal to 1. The reference and scale factors for the axial length
and concentration are obtained from the boundary conditions to ensure that these
variables are bounded of o(1). These considerations then result in the following
scale factors (step 7):

2 0.25
Vo gBs Aca
Uy = (g,B? ACA L)O'S; Upg = <L> :

L
0.5
Mzglgx Acy =
s=\"_1 ) - Cs = CA0 — CAco = Acq; zs = L

L L L L O

ms = 0m = =435 = 573" Tes =8 = 53505 = 025 — Qo
Re Gr Sc?Pels  Sc- Gry, Sc

(5.9-21)

where Re = u,;L /v the Reynolds number, Pe,, = u,;L/Dap = Re - Sc the solu-
tal Peclet number, Sc = voo/Dap the Schmidt number, and Gr,, = L*gB; Aca/v2,
the solutal Grashof number. Note that the Grashof number is a measure of the ratio
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of the free convection to viscous transport of momentum; as such, it is the analog of
the Reynolds number for free convection.!” Note that the last of equations (5.9-21)
indicates that 8; < §,, for liquids and §; = §,, for gases.

If we now rewrite our dimensionless describing equations in terms of the scales
defined by equations (5.9-21), we obtain

L oul L oul 1 oP* 1 0 . R\ ou?
Uy Pl = s Y s I+ =
o az* Gr%> dz* 1 4 Ry/8y 01} 8m ) O

1 %ur
G5 9772 Tca (5.9-22)
ou* ou* oP* d 1 d R,
5 YUy «* 9% _ * . *
e N P P {r;; F Ry /8 1 [(rm + am) ”“
1 3%u*
— u 5.9-23
Gr)? 922 ( )
1 a [(, R\, ou
% =t L0 5.9-24
5+ Ry /6 OrF [(rm + 5,,1) T e (5:9-24)
ujacj_{_iujacj: 1 0 rc*—l—&Sc acy n 1 aZCj
arx  Sc “9z* r*+ (Ri/8u)Scark Sm ork S(;ZGrgl-5 972
(5.9-25)
ur=0, u;=0, cy=1 at rr=r’=0 (5.9-26)
Ry — R
ur=0, ul=0 at ri= 28 !
" (5.9-27)
ac* Ry — R
% _ 0 at rl= 2
8rj‘ (Ss
w'=0, u'=0 ;=0 at *=0 (5.9-28)
ur = fi(ry), uy = folry), cy= 07 at ' =1 (5.9-29)

We can now consider how these scaled dimensionless describing equations can
be simplified (step 8). Note that if the Grashof number is very large such that
Gr?,l'5 > 1, the pressure and axial viscous momentum transfer terms can be dropped
from equation (5.9-22). The former simplification implies that the z-component is
decoupled from the solution to the r-component of the equations of motion; hence,

7The solutal Rayleigh number, defined as Ra,, = L3D4pgBs Aca/ve = Gr,, - Pr, is another important
dimensionless group that appears in free-convection problems; it is a measure of the ratio of the free
convection to viscous transport of heat; as such, it is the analog of the solutal Peclet number for free
convection.
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the latter equation can be ignored. Dropping the axial viscous momentum transfer
term from equation (5.9-22) converts it from an elliptic into a parabolic differential
equation; this obviates the need to specify downstream boundary conditions, which
in many cases are unknown. A very large Grashof number also implies that the axial
species-diffusion term can be dropped from equation (5.9-25), which also converts
it from an elliptic into a parabolic differential equation, again avoiding the need to
specify a downstream boundary condition. If in addition, Ry > §,, and R; > s,
the curvature effects can be neglected. Finally, if Ry — R; > §,, and Ry — R} > &,
the boundary conditions given by equation (5.9-27) can be applied at infinity. If the
aforementioned criteria are satisfied, the resulting simplified describing equations
are given by

= c -
“r o) RFre arze 4
ou*  ou’
P Bz:‘ =0 (5.9-31)
m

ack 1 Lach 9y

— = 5.9-32

" orx e gz or}? ( )

uy =0, u;=0, c;=1 at rp=r’=0 (5.9-33)
u; =0, u; =0, e = 0 at r, =r, =00 (5.9-34)
u;=0, u;=0, c3=0 at 7" =0 (5.9-35)

In particular, one sees that the outer cylindrical boundary will have a negligible
effect on the free convection if §,,/R; = L/(R 1Gr21'25) <« 1. Note that this criterion
will break down for sufficiently long cylinders owing to the thickening of the free-
convection boundary layer associated with progressively more evapotranspiration
along the cylinder.

5.10 DIMENSIONAL ANALYSIS FOR A MEMBRANE-LUNG
OXYGENATOR

Section 2.4 we discussed the scaling analysis procedure for dimensional analysis
and its advantages relative to the Pi theorem. Here we apply this procedure to
develop a correlation for the performance of a membrane—lung oxygenator. The
steps referred to here are those outlined in Section 2.4; these differ from those used
in Sections 5.2 through 5.9 since no attempt is made to achieve o(1) scaling. Note
that o(1) scaling analysis, which was illustrated in Sections 5.2 through 5.9, always
leads to the minimum parametric representation for a set of describing equations;
hence, it can always be used to identify the appropriate dimensionless groups.
However, carrying out an o(1) scaling analysis can be somewhat complicated and
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time-consuming. In contrast, the scaling analysis approach to dimensional analysis
illustrated in this section is much easier and quicker to implement. However, it does
not provide as much information as does o(1) scaling analysis for achieving the
minimum parametric representation. In particular, it does not lead to groups whose
magnitude can be used to assess the relative importance of particular terms in the
describing equations. It also does not identify regions of influence or boundary
layers, whose identification in some cases can reduce the number of dimension-
less groups.

The oxygenator of interest here involves a bundle of cylindrical hollow-fiber
membranes encased in a tubular housing. Because the hollow-fiber membranes
are both microporous and hydrophobic, they provide a means for mass transfer of
oxygen and carbon dioxide to and from the blood, respectively, while preventing
direct contact between the gas and liquid. The mass transfer is controlled on the
blood side because of the inability of the oxygen-absorbing hemoglobin “particles”
to closely approach the inner surface of the membrane. Improvement in oxygenator
performance has focused on various means to reduce the resistance to mass transfer
on the blood side of the membrane. One very effective way to accomplish this is
to oscillate the hollow fibers relative to the blood flow to increase the oxygen
concentration gradients adjacent to the membrane.'® We use the scaling analysis
approach to dimensional analysis to determine the dimensionless groups required
to correlate the effects of oscillating the hollow fibers on the performance of the
oxygenator. It is sufficient here to consider the effect of oscillations on the oxygen
mass transfer to the blood flow in a single hollow-fiber membrane of radius R and
length L, as shown in Figure 5.10-1.

Step 1 in the scaling procedure for dimensional analysis consists of writing the
appropriate describing equations for the oxygen mass transfer to the blood, which
will be assumed to be in fully developed periodically pulsed laminar flow.'® The

u, =Aw cos wt

Figure 5.10-1 Single hollow fiber of radius R and length L in a membrane—lung oxy-
genator; axial oscillations having amplitude A and angular frequency w are used to increase
the concentration gradients at the interior wall, where the resistance to mass transfer is
concentrated.

8R. R. Bilodeau, R. J. Elgas, W. B. Krantz, and M. E. Voorhees, U.S. patent 5,626,759, issued May
6, 1997.

Note that this is an uncommon example of a fully developed unsteady-state flow; that is, the axial
velocity does not change in the axial direction at any instant of time, yet it is a function of time due to
the oscillating wall.
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mass-transfer coefficient k; provides a convenient measure of the effect of the
oscillating wall on the oxygen mass transfer and is defined in terms of N pw, the
time-average molar flux of oxygen at the inner wall of the hollow-fiber mem-
brane, as?®

(5.10-1)

where Acyy, is the log-mean concentration driving force, defined as

Acr, = (caw — car) — (caw — Ca0) (5.10-2)

In (caw — car)/(caw — ca0)

in which c4,, is the equilibrium oxygen concentration at the blood side of the
membrane, and c49 and c4; are the average concentrations in the blood at z =0
and at z = L, respectively, and

/‘277/0) N dt w 21w

Npp = 20 Awdl
A /271/a)dt ~

Ny dt (5.10-3)

The molar flux N4, appearing in equation (5.10-3) is equal to the local molar flux
averaged over the length of the hollow-fiber membrane and is defined

Npgw =

L
Dug (3ca/0r)|.—p d 1 [t 9
Jo Dag (0ca/0r)|,—g dz __/ €A dz (5.10-4)
0

[ Lz L AP Tor
0
where D4p is the binary diffusion coefficient for oxygen in blood. Note that the

bulk flow contribution to the molar flux has been ignored because the solutions are
dilute. When equations (5.10-3) and (5.10-4) are substituted into equation (5.10-1),

we obtain
e _wDap [2”/wf dca
L ZnL Acim

Both ¢4y appearing in Ac, and c4 in equation (5.10-5) are obtained from a
solution to the axisymmetric form of the convective diffusion equation in cylindrical
coordinates given by equation (G.2-5) in the Appendices

dca dca Djp 0 dca
- tu;—/— = —|\r—
ot 9z r or ar

r=R

dz dt (5.10-5)

(5.10-6)

in which u;, is the local axial fluid velocity. In arriving at equation (5.10-6) each
term in equation (G.2-5) has been divided by the molecular weight, which is

20Note that the mass-transfer coefficient is defined in terms of a flux divided by a driving force; as
such, it can be expressed in several different ways, depending on the units chosen for these quantities
as well as whether the total flux or just the diffusive flux is used; the various definitions of the mass-
transfer coefficient are discussed in standard references such as Bird et al., Transport Phenomena, 2nd
ed., pp. 672-675.
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constant for the assumed dilute solution. An analytical solution for u, for fully
developed laminar flow subject to axial harmonic pulsations of the tube wall has
been developed and is of the form?!

v  Aw

? - ( = 7) (5.10-7)

where U is the average fluid velocity in the hollow fiber and v is the kinematic
viscosity of blood. The dimensional analysis correlation given by equation (5.10-7)
is also developed in Practice Problem 3.P.38. The boundary and periodic solution
conditions are given by

%*‘:0 at r=0, 0=<z=<L (5.10-8)
CA = Caw at r=R, 0<z<L (5.10-9)
CA = Cpo at z=0 (5.10-10)

cale = calivan /o (5.10-11)

Steps 2 and 3 in the scaling procedure for dimensional analysis involve defining
arbitrary scale factors for all the dependent and independent variables and reference
factors for those not naturally referenced to zero. Hence, we introduce the following
dimensionless variables:

D — P X =l =X r
CAs Us s s

1
<
1
<
1

1
NlN

. 10 12)

Steps 4 and 5 involve introducing these dimensionless variables into the describ-
ing equations and dividing through by the dimensional coefficient of one term in
each equation. In the scaling analysis procedure for dimensional analysis, in con-
trast to o(1) scaling analysis, it makes no difference which term is chosen in this
step. These steps then yield the following dimensionless describing equations:

2k, LAc1 rg fz”/“”‘ /L/ZV ach
wDpzsts or*

dz* dt* (5.10-13)
r*=R/rs
—CiL + (CAO - CAr)/CAs
In <CAU) — CAr _ CAs CZL)
CAw — CA0 CAw — CA0

e s 22 L0 (.0c (5.10-15)
Dypt, ot* Dapzys az* r* or* ar*

Act = (5.10-14)

2'w. B. Krantz, R. R. Bilodeau, M. E. Voorhees, and R. J. Elgas, J. Membrane Sci., 124, 283-299
(1997).
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U s v Aw
* 2 ottt —, = 5.10-16
uZ ’/lsf (Rr ) sz U ) ( )
ac L
U_0 a =0, O0<zf<= (5.10-17)
or* Zs
— R L
=A==, 0<f <= (5.10-18)
CAs I s
oh = AL T =0 (5.10-19)
CAs
Caler = Chlrt2m jor, (5.10-20)

Step 6 involves setting the various groups equal to 1 or zero to determine the
scale and reference factors, respectively. Since there is no attempt to achieve o(1) in
the scaling approach for dimensional analysis, it makes no difference what groups
are chosen in this step. Let us set equation (5.10-19) equal to zero to determine
the reference concentration c4, = c40 and the appropriate group in equation (5.10-
18) equal to 1 to determine the concentration scale cas = cay — Ca0. Setting the
remaining dimensionless groups in equation (5.10-18) equal to 1 determines the
radial and axial length scales r; = R and z; = L, respectively; note, however, that
there is no assurance that these length factors will scale the corresponding deriva-
tives with respect to these spatial coordinates to be of o(1). The dimensionless
group in equation (5.10-16) provides the velocity scale u; = U. Either the dimen-
sionless group in equation (5.10-15) or in equation (5.10-20) can be set equal to 1
to determine the time scale; let us arbitrarily choose the latter, thereby obtaining
ty = 2w /w. These choices then yield the following minimum parametric represen-
tation of the describing equations; that is, in terms of the minimum number of
dimensionless groups:

ad
L / / € dz* di* (5.10-21)
In(1 —-c};) or* |,
c*
Act )y, = —AL 5.10-22
(Aciy)y (= c,)) ( )
wR? 3% @u* ach _ 19 . ach (5.10-23)
2w Djp Ot* T Y9z*  r*or* or*

I/lZ Zf re,t ,m,f (510-24)
=0 at =0 0<z*<I (5.10-25)

or*
=1 at =1, 0<z"<l1 (5.10-26)
=0 at *=0 (5.10-27)
Calee =yl (5.10-28)
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where (Acj, ), denotes Acj' in the presence of axial oscillations or vibrations and
where

k; R
Sh=-Lt— is the Sherwood number (5.10-29)
Dagp
UR? RPe,,
Gz = il = Te is the Graetz number (5.10-30)
2DspL 2L

The Sherwood number provides a measure of the overall mass transfer to that by
diffusion alone; as such, it is analogous to the Nusselt number in heat transfer.22 The
Graetz number provides a measure of the relative convection to diffusional transport
of species; as can be seen from equation (5.10-30), it is proportional to the solutal
Peclet number, which is also a measure of this same ratio. However, the Graetz
number takes into account the finite contact time for mass transfer via the ratio R/L.
Equation (5.10-21) implies that the Sherwood number is a function of the dimen-
sionless groups involved in determining c%, and dc%/ 8r*|r*=1 and hence will be
functions of only the dimensionless groups involved in solving equation (5.10-23).
These include the two dimensionless groups appearing in this equation as well as
the two involved in determining u* as indicated by equation (5.10-24). Hence, we
conclude that membrane—lung oxygenator performance can be correlated in terms
of five dimensionless groups; that is,

R? wR? A
@ w——”) (5.10-31)

Sh f(GZ, Dis v T
Note that a naive application of the Pi theorem would imply that eight dimensionless
groups would be required (i.e., n = 11 and m = 3).

The five dimensionless groups in the correlation for membrane—lung oxygenator
performance given by equation (5.10-31) are not unique. Step 7 involves isolating
certain quantities by the procedure indicated formally by equation (2.4-2). Here it
is convenient to isolate the angular frequency into just two groups by the following
operation:

a)RZ/DAB _ Vv
wR2/v  Dyg

= Sc (5.10-32)

where Sc is the Schmidt number. Hence, our modified correlation for the Sherwood
number is given by

, = (5.10-33)

R? A
Sh=f <GZ,SC, @ —w>

%
Recasting our correlation in terms of the Schmidt number is particularly convenient
for designing a membrane blood oxygenator since the Schmidt number is fixed for

22The dimensionless group corresponding to the Sherwood number defined here is sometimes referred
to as the Nusselt number for mass transfer.
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this system. Hence, one needs to consider only three variable groups in correlating
performance data for a membrane blood oxygenator. Note that the angular fre-
quency could be isolated into just one dimensionless group. However, the resulting
group would still contain the variable amplitude and hence would not be fixed by
specifying the blood—oxygen system.

Step 8 in the scaling procedure for dimensional analysis involves exploring the
correlation for various limiting values of the dimensionless groups. For large Sc
(i.e., for blood) we can use the expansion in Sc™! suggested by equation (2.4-3)
truncated to one term to conclude that the oxygenator performance can be correlated
in terms of only four dimensionless groups; that is,

R? A
Sh=f (Gz, ot 7“’) for Sc™! = 0 (5.10-34)
v

The dimensionless group wR?/v is the ratio of the characteristic time for viscous
penetration to that for the periodic wall oscillations. One might anticipate that the
wall oscillations will not have much effect on the Sherwood number for very small
values of wR?/v since this implies negligible wall motion. We would also not
expect much effect on the Sherwood number for very large values of wR?/v, since
this implies negligible time for the wall oscillations to penetrate the fluid. The
dimensionless group Aw/U is the ratio of the wall velocity to the average velocity
of the fluid. If Aw/U is very small, the wall oscillations are insignificant relative to
the fluid velocity, in which case they will have a negligible effect on the Sherwood
number. If Aw/U is very large, it implies a very slow flow for which the oxygen
transport is not limited by contact time; hence, the oscillations will also have a neg-
ligible effect for large values of this group. These arguments suggest that the effects
of the oscillations on the Sherwood number will exhibit a maximum with respect to
the values of wR? /v and Aa)/ﬁ; that is, the effect of wall oscillations on the mass
transfer involves a “tuned” response whereby the maximum effect will be achieved
only over a relatively narrow range of oscillation amplitudes and frequencies.

The design of a membrane—lung oxygenator will be revisited in Chapter 7.
This same problem will be analyzed in Section 7.2 using o(l) scaling analysis
to achieve the minimum parametric representation rather than using the scaling
approach to dimensional analysis. We will see that o(1) scaling analysis yields far
more information about the design of a membrane—lung oxygenator. In particular,
it will show that the oxygenator performance can be correlated in terms of four
dimensionless groups rather than five. Moreover, o(1) scaling analysis permits pre-
dicting the optimum frequency, within a multiplicative constant of O(1), required
to achieve maximum enhancement of the oxygen mass transfer to the blood.

5.11 SUMMARY

In Section 5.2, we provided an introduction to the step-by-step procedure for apply-
ing scaling analysis in mass transfer. We considered binary diffusion in a stagnant
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film of liquid subject to an instantaneous change in the concentration at one of
its boundaries. Scaling was used to determine the criterion for applying the film
theory model. This criterion requires that the Fourier number or ratio of the contact
to diffusion time be very large. Scaling was also used to assess when the bulk-flow
contribution that arises from a net mass-transfer flux can be neglected. This crite-
rion requires that either the mass fluxes be nearly equal in magnitude or that the
relative concentration change across the film be small. When this bulk-flow con-
tribution is potentially important, it is necessary either to know some relationship
between the mass-transfer fluxes or to have an equation of state for the mass den-
sity. In this problem the ratio of the mass fluxes was specified.?? Since this problem
could be solved analytically, it was possible to estimate the error incurred when
the bulk-flow effect was ignored. This was seen to be less than 0.1% when the
criterion given by equation (5.2-28) was 0(0.01). Note that the film theory model
developed in this section is frequently used to correct mass-transfer coefficients
obtained from literature correlations for the effects of bulk flow.?* Interestingly,
the ratio of the mass-transfer coefficient in the presence to that in the absence of
bulk-flow effects is not a strong function of the actual mass-transfer configuration.
For this reason film theory can be used to correct for the bulk-flow effects even
when the model is not applicable to the particular mass-transfer problem.

In Section 5.3 we considered the same physical situation as in Section 5.2. How-
ever, short-contact-time or small Fourier number scaling was done whereby the
diffusion and unsteady-state terms were balanced in the species-balance equation.
This led to a length scale that was identified with a region of influence or solu-
tal boundary layer within which all the mass transfer is confined. The resulting
simplified describing equations provide the basis for penetration theory. The latter
is the short-contact-time complement to film theory. Penetration theory provides a
better model for correcting mass-transfer coefficients obtained from the literature
for bulk-flow effects when the contact time or Fourier number is small.

Mass transfer in fully developed laminar flow between permeable parallel mem-
brane walls in the presence of a homogeneous chemical reaction was considered
in Section 5.4. The presence of both the transverse and axial diffusion terms made
the describing equations elliptic. This complicated the solution since the required
downstream boundary condition is often unknown. The concept of local scaling in
mass transfer was introduced in this problem, whereby one considers the describ-
ing equations within a domain defined by some arbitrary distance in the principal
direction of flow that is assumed to be constant during the scaling analysis. In
contrast to the preceding two examples, there was no explicit concentration scale
in this problem. Hence, the concentration scale was determined by balancing the
mass flux through the permeable membrane walls and transverse diffusion terms.
Scaling analysis led to three important dimensionless groups: the Peclet number
for mass transfer, Schmidt number, and Thiele modulus. The Peclet number for
mass transfer is a measure of the convection to diffusion of mass. The Schmidt

ZNote that Example Problem 5.E.1 considers scaling to determine when the bulk-flow effect can be
neglected when an equation of state for the mass density is known.
24The interested reader is referred to Bird et al., Transport Phenomena, pp 704—706.
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number is a measure of the viscous transport of momentum to the diffusive transfer
of mass. The Thiele modulus is a measure of the characteristic time for diffusion
relative to that for homogeneous reaction. The Peclet number has a role in mass
transfer analogous to that of the Reynolds number in fluid dynamics. For example,
we found that the convective mass transfer could be ignored if the Peclet number
was very small; this is analogous to the low Reynolds number or creeping-flow
approximation in fluid dynamics. We also found that the complicating effects of
axial diffusion could be ignored if the aspect ratio was very small. The combina-
tion of small Peclet number and small aspect ratio in mass transfer is analogous to
the lubrication-flow approximation in fluid dynamics. We found that for very large
Thiele moduli, the homogeneous chemical reaction was confined to a thin region
of influence or boundary layer near the permeable membrane walls.

In Section 5.5 we considered a complementary problem to that discussed in
Section 5.4: mass transfer with a heterogeneous chemical reaction at the wall for
fully developed laminar tube flow. In this case, scaling was used to determine
when the classical plug-flow reactor approximation can be made; that is, when
one can ignore any radial concentration gradients and thereby represent the axial
convection using the average rather than the local velocity. It was necessary to
introduce separate scales for both the axial and radial concentration gradients since
neither of these scaled with the characteristic length divided by the characteristic
time. This problem introduced the second Damkohler number, which is a measure
of the time scale for radial diffusion to that for the heterogeneous reaction. When
this dimensionless group was small, the plug-flow reactor approximation can be
made. The small Damkohler number approximation in mass transfer is analogous to
the small Biot number approximation in heat transfer in that both imply negligible
resistance to transfer within the control volume relative to that at some boundary.

The problem considered in Section 5.6 involved mass transfer to falling film
flow. Scaling was used to determine when the mass transfer could be assumed
to be confined to a thin boundary layer or region of influence near the interface.
For large Peclet numbers the mass transfer will be confined to a boundary layer
that is sufficiently thin to assume that the film is infinitely thick. Moreover, if
the product of the Peclet number and the length-to-thickness aspect ratio is large,
axial diffusion can be neglected. These two approximations greatly simplify the
describing equations; in particular, they obviate the need to apply a downstream
boundary condition, which in many cases is not known.

In Section 5.7 we used scaling to assess when the quasi-steady-state (QSS)
approximation can be made for the evaporation of a pure volatile liquid into an
insoluble gas in a cylindrical tube. Quasi-steady-state implies that time does not
enter explicitly in the describing differential equations, but implicitly through one or
more boundary conditions. This is a moving boundary problem for which an aux-
iliary condition is required to locate the interface. The velocity that arises because
of the diffusive mass transfer was determined in this problem from the additional
condition that the gas was insoluble in the liquid. A proper scaling analysis required
introducing a reference factor for the independent variable since it was not naturally
referenced to zero. Moreover, it was necessary to introduce a separate scale factor
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for the interface velocity since it does not necessarily scale with the ratio of
the characteristic length divided by the characteristic time. Since this problem
involved a transformation from a stationary to a moving coordinate system, a
pseudo-convection term was generated. Scaling analysis indicated that QSS can
be assumed if the Fourier number is very large. Moreover, it provided criteria for
when the convective mass transfer and pseudoconvection term could be neglected.

In Section 5.8 we applied scaling analysis to permeation through a polymeric
membrane whose swelling caused the diffusivity to be concentration-dependent. For
this reason it was necessary to scale the diffusivity as well. Two length scales were
possible depending on how markedly the diffusivity changed with concentration.
If the resistance to mass transfer was distributed through the entire cross-section
of the membrane, the appropriate length scale was its thickness. However, if the
diffusivity decreased markedly with concentration near one of the boundaries, the
resistance to mass transfer was confined to a thin region of influence whose thick-
ness was the appropriate length scale. To determine whether the diffusivity could be
assumed to be constant, the equation describing its concentration-dependence was
expanded in a Taylor series in which only the first-order correction was retained
in the scaling analysis. Scaling then identified the condition required to ignore this
first-order correction. For this problem it was possible to compare the solution to
the complete describing equations with the simplified form of these equations for
both negligible swelling and significant swelling; this confirmed that the simplified
equation emanating from scaling provided accurate solutions when the appropriate
criteria for the validity of these approximation were satisfied.

In Section 5.9 we applied scaling to a free-convection mass-transfer problem,
that is, to a problem wherein the driving force for flow was internal to the system,
in this case due to density variations created by concentration gradients. Scaling
was employed to arrive at the free-convection boundary-layer equations and to
determine when curvature effects could be neglected. This problem introduced the
solutal Grashof and Rayleigh numbers, which are the free convection analogues
of the Reynolds and Peclet numbers; that is, the former is a measure of the ratio
of the free convection to viscous transport of momentum, whereas the latter is a
measure of the free convection to diffusive transport of species.

Scaling was applied to dimensional analysis in Section 5.10. In contrast to
o(1) scaling analysis, the scaling approach to dimensional analysis merely seeks to
arrive at the minimum parametric representation of the problem; that is, to obtain
a set of describing equations in terms of the minimum number of dimensionless
parameters. The scaling approach to dimensional analysis was applied here to a
novel membrane—lung oxygenator that employed axial oscillations to enhance the
mass transfer. Scaling analysis was used to determine the dimensionless groups
required to correlate the effects of the oscillations on the performance of the oxy-
genator. This problem introduced the Sherwood number, a dimensionless group that
is a measure of the ratio of the overall mass transfer to that by diffusion alone, and
the Graetz number. The latter is closely related to the Peclet number since it is a
measure of the ratio of the convection to diffusion of species. However, the Graetz
number includes an aspect ratio that accounts for the effect of a limited contact
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time. This example illustrated the advantages of the scaling analysis methodology
for dimensional analysis relative to using the conventional Pi theorem approach in
that the latter did not lead to the minimum parametric representation.

5.E EXAMPLE PROBLEMS

5.E.1 Evaporative Casting of a Polymer Film

Consider a binary mixture of volatile solvent A and nonvolatile polymer B that has
initial mass fractions w4 and wpo, respectively, cast as a thin planar film having
an initial thickness Loy on an impermeable plate as shown in Figure 5.E.1-1. At
time ¢t = 0, the volatile solvent begins to evaporate into the gas phase, thereby
causing the film to thin so that its instantaneous thickness is L(#); evaporative
cooling effects will be assumed to be negligible in this analysis. The evaporative
mass transfer is described via a lumped-parameter approach with an appropriate
mass-transfer coefficient. The overall mass density of the polymer film is assumed
to be given by

o= a)A,of\ —i—wB,og =p= pg + Apra)A (B.E.1-1)

where p! is the pure component mass density of component i and Ap$ ;=04 — p%;
note that an alternative equation of state for the density could be used in this
scaling analysis. We use scaling to determine criteria for when the following
approximations can be made: Convective mass transfer arising from densifica-
tion can be neglected; convective mass-transfer effects on the film thinning can

Solvent
concentration

fil
protile \\ Gas phase

L(?)

Polymer
¥—_concentration
profile

Casting solution

1 ‘

—
Direction of
increasing
concentration

Impermeable support plate

Figure 5.E.1-1 Representative concentration profiles during the evaporative casting of a
dense film from a solution of a volatile solvent and nonvolatile polymer on an impermeable
plate; the instantaneous thickness of the planar film is L(z).
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be ignored; the density can be assumed to be constant; quasi-steady-state applies;
and the mass transfer can be assumed to be gas-phase controlled. This example
illustrates how to handle a mass-transfer problem involving a nonconstant den-
sity and to scale properties such as the mass density that are functions of the
dependent variable; it also provides another example of a moving boundary
problem.

The appropriately simplified forms of the continuity and species-balance equ-
ations given by (C.1-1) and (G.1-1) in the Appendices are (step 1)

0 _ 2wy = 02,224 = 22 ) (5E.1-2)
— = ——(pu — =——(pu E.1-
at oz ° PaB 5, 9z °
J d d
Opa _ 3(wap) _ _0na (5.E.1-3)
at at 0z
where
aa)A
na=—pDsp—— + wapu (5.E.1-4)

0z

in which u is the mass-average velocity. Equations (5.E.1-2) and (5.E.1-3) can be
combined to obtain

9 ApSz/p  Onga
—(pu) A5

= ——" (5.E.1-5)
0z L+ waAp,g/p 92

Equation (5.E.1-5) can, in turn, be integrated to obtain the following explicit
equation for the mass-average velocity u:

12 ApY d
_ _/ m;‘%’)oﬂ dz (5.E.1-6)
pJo T+walp,p/p 0z
L[ Ap
= —f %dm (5.E.1-7)
pJo l+walp,g/p

in which the following boundary conditions corresponding to an impermeable lower
solid boundary have been used:

u=0, ng=0 at z=0 (5.E.1-8)

A boundary condition is also required at the liquid—gas interface; this is obtained
by an integral species balance over the entire film thickness:

d L(r) d 00
< ap)dz+ - | (@ap)dz=0 at z=L@#)  (5E.I1-9)
dt 0 dt L(t)

where @4 and p denote the mass fraction of component A and mass density in
the gas phase. Applying Leibnitz’s rule for differentiating an integral given by
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equation (H.1-2) in the Appendices and substituting equations (5.E.1-3) and (5.E.1-
4) for the casting solution and similar equations for the gas phase yields

3a)A B dL
pDAB—za)A,Ou—kGKAa)A—a)A,O— at z=L(), 0<t<o

0z dt
(5.E.1-10)

In arriving at equation (5.E.1-10), the mass flux of component A in the gas phase
at the liquid—gas interface was represented via a lumped-parameter approach in
terms of the mass-transfer coefficient k. This introduces the distribution coeffi-
cient K4, which incorporates the effects of nonideal solution behavior and other
concentration-dependent factors needed to interrelate the liquid and gas concentra-
tions at the interface. Equation (5.E.1-10) also assumes that the bulk of the gas
phase contains none of the evaporating solvent and that the mass density of the
gas phase is much less than that of the casting solution.

Since this is a moving boundary problem, owing to the mass loss and densifica-
tion, an auxiliary condition is required to locate the instantaneous position of the
interface. This is determined by an integral mass balance as follows:

d L(t)

— pdz = —kgKawa  at z=L(t) (5.E.1-11)
dt Jy

Applying Leibnitz’s rule for differentiating an integral given by equation (H.1-2) in
the Appendices and substituting equation (5.E.1-2) yields the following auxiliary
condition to determine L(t):

L .
,OE = pu — kg Kswy at z=L(t) (5.E.1-12)
In arriving at equation (5.E.1-12) we have used the boundary condition that u = 0 at

z = 0, corresponding to an impermeable boundary. The initial conditions required
to solve Equations (5.E.1-3), (5.E.1-10), and (5.E-12) are given by

ws =wa0, L=1Lg at t =0, 0<z<L(@® (5.E.1-13)
Equation (5.E.1-12) can be used to simplify equation (5.E.1-10) to yield the fol-
lowing form of the boundary condition at the moving interface:

0 .
pDAB% — k Kawa(l—w4) at z=L@), 0<t<oo (SEI-14)
b4
Introduce the following dimensionless dependent and independent variables

(steps 2, 3, and 4):

sza)A; p*Eﬁ; M*El; n:EnA;
WAs Ps Us nAs
K z t X L dL\* 1d
K= A; == = —; L =—; <—) = ———
K s Zs t Ly dt L, dt

(5.E.1-15)
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Note that we have introduced a scale factor for w4 even though it is dimension-
less with a maximum possible value of 1 because we seek to bound it of o(1).
Indeed, the maximum concentration w40 could be much less than 1. However, it
is not necessary to introduce a reference factor for w, since its minimum value is
zero, corresponding to complete evaporation of the volatile component. We have
introduced a separate scale for dL/dt, the velocity of the interface since there
is no reason why this should scale as zg /ts.25 However, we have not introduced
a separate scale for the derivative of the concentration since we are considering
a longer time scaling for which the concentration will undergo its characteristic
change over the instantaneous thickness of the film, not over some boundary layer
near the upper interface.’® Scale factors are also introduced for the mass density p
and distribution coefficient K4 since they depend on the concentration.

Introduce these dimensionless variables into equations ((5.E.1-1)), (5.E.1-3),
(5.E.1-4), (5.E.1-5), (5.E.1-7), (5.E.1-8), (5.E.1-12), and (5.E.1-14), and divide
each equation through by the dimensional coefficient of one term that should be
retained in order to maintain physical significance to obtain the following set of
dimensionless describing equations (steps 5 and 6):

0 0
A
pt = 2B | DPABOAs o (5.E.1-16)
Ps Ps
L0asps 0T Ony (5.E.1-17)
N st ar* 0z*
\) \) s D \) \) 8 .
why = AP g ey CABRAD P04 (5.E.1-18)
N As NAsZs az*
cAPY 1 7 1/p* on*
u = M_/ e e (sE119)
usp;  p*Jo 1+ (Apyp was/ps) (@} /p*) 9z*
L L
Wi =20 20 g =0, 0<zf< = (5E120)
WA Ls s
ny =0, u"'=0 at 7" =0, 0<t*<o0 (5.E.1-21)
do* k. K
* a): :-Giml(j{wj(l—a)mwj) at 7" = —, 0<t*<o0
0z D 4 ps Zs
(5.E.1-22)
dL\* k. K L
p* <—) =W e MKX@; at 7f = — (5.E.1-23)
dt LS Lsps s

2 The consequences of scaling the interface velocity with z,/f, were discussed and illustrated in
Section 4.7.

2However, for a short-time scaling where the concentration change is confined to a region of influence
near the upper surface, one must introduce a separate scale for the spatial derivative of the concentration,
which is determined from the mass-flux boundary condition given by equation (5.E.1-14); this short-
time scaling is considered in Practice Problem 5.P.20.
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The following considerations dictate determining our scale factors (step 7).
Assessing when quasi-steady-state can be assumed necessarily implies a scaling
analysis for longer contact times, for which the effect of the evaporation will have
penetrated through the entire liquid film. This consideration is important since it
implies that the characteristic length is the entire thickness of the liquid film rather
than some region of influence near the liquid—gas interface. Hence, to bound the
dimensionless spatial coordinate and film thickness to be o(1), we set the appropri-
ate dimensionless groups in equation (5.E.1-20) equal to 1 to obtain z; = L(¢) and
Ly = L. Note that z and L scale differently since for longer contact times, z ranges
between 0 and L(¢), whereas L(¢) ranges between L initially to some smaller value
at the end of the evaporation process. The scale for the mass fraction comes from
equation (5.E.1-20) and is given by was = wao. The density scale comes from
equation (5.E.1-16) and is given by p; = ,0(1)3. Since we seek to determine when
the quasi-steady-state assumption is applicable, our time scale is the observation
time; that is, t; = f,. The scale for the species mass flux comes from balancing the
principal terms in equation (5.E.1-18) to obtain n4; = Dy BwAg,o% /L. The scale for
the front velocity comes from balancing the principal terms in equation (5.E.1-23),
which yields Ls = k& K s0w 40/ pg. A proper scale for K4, that bounds K% to be
O(1) is the initial value of K4 denoted here by K 4¢ for which the concentration is
known. The scale for the mass-average velocity comes from equation (5.E.1-19),
which yields us = DagwaoApS z/p%L.

These scale factors then result in the following set of dimensionless describ-
ing equations, which will permit us to assess when quasi-steady and negligible
convection can be assumed (step 8):

A 0
oF =1+ pg‘B WA (5.E.1-24)
B
1 9(wp* dL\"* 3(w* p* on’
_M — Bipwao* [ — M - _ A (5.E.1-25)
Fo,, 0r* dt az* az*
ApY ow’,
nl = 6\3 waowyp ut — p* 3 f (5.E.1-26)
Pp z
1 (7 1/p* an’
= _*f O/p — "4 gz (5.E.1-27)
p*Jo 1 +CUA0(A)OAB/)OB)(@A/)O*) 0z
wp=1, L*=1 at =0, 0<z"<1 (5.E.1-28)
ny =0, u" =0, at 7"=0, 0<t"<oo (5.E.1-29)
*awj‘; . * * >k * *
Py = —Bi, K ) (1 — waow}) at 77 =1, 0<r" <o
(5.E.1-30)
dL\* 1 ApSy
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where Fo,, = DABto/L2 and Bi,, = k(; KASL/DAB,og are the solutal Fourier and
solutal Biot numbers, respectively, for mass transfer. Note that an additional
pseudo-convection term now appears in equation (5.E.1-25) because of the trans-
formation from a fixed coordinate system to one that is referenced to the moving
interface between the liquid and gas phases. Pseudo-convection terms will always
arise when one transforms from a stationary coordinate system to a moving sys-
tem. Equation (5.E.1-26) indicates that the convection arising from densification
will have a negligible effect on the mass-transfer flux if the following criterion is
satisfied:

Ap° Ap°
pg‘B w0 L 1= pg‘B wa0 = 0(0.01) (5.E.1-32)
B Pp

This criterion indicates that convective transport can be ignored when the densities
of the two components are nearly the same (i.e., A,o?1 g = 0) or for very dilute
solutions. Equation (5.E.1-31) indicates that the convection will have a negligible
effect on the film thinning if the following criterion is satisfied:

Ap° Ao®
A o PPAB 6 0.01) (5.E.1-33)
Blm Pp Blm Pp

This criterion is also satisfied when the density difference between the two com-
ponents is small or when the Biot number is very large, which implies a negligible
resistance to mass transfer in the gas phase relative to that in the liquid. Quasi-
steady-state mass transfer can be assumed if the following criterion is satisfied:

Fo,, > 1 (5.E.1-34)

corresponding to sufficiently long contact times. Note that quasi-steady-state implies
that the time dependence enters implicitly through the boundary condition at the
upper surface rather than explicitly via the unsteady-state term in equation (5.E.1-
25). The concentration dependence of the density given by equation (5.E.1-24) can
be ignored if the following criterion is satisfied:

Ap§ Ap§
PAB ypo < 1= 2248400 = o(1) (5.E.1-35)
PB Pg

Equation (5.E.1-30) indicates that an additional simplification is possible when the
Biot number is very small: namely, that

dw’y
az*

<1 if Bi, <1 (5.E.1-36)

This simplified problem, which is the small Biot number approximation for mass
transfer, is solved in a manner similar to that shown in detail in Section 4.4 for an
analogous problem in heat transfer.
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5.E.2 Taylor Dispersion

Sir Geoffrey Taylor developed a widely used approximation for the manner in which
a pulse or step change in concentration disperses as it is convected downstream; this
phenomenon, which is called Taylor dispersion, causes the sharp boundary at the
leading edge of the pulse or step change to become diffuse, due to the combined
action of species diffusion and differential convection arising from the velocity
profile.?’ Sir Geoffrey Taylor developed this approximation via very clever intuitive
arguments. In this example we develop the Taylor dispersion approximation using
systematic scaling analysis.

Consider steady-state fully developed laminar flow of a Newtonian fluid com-
posed of pure component B having constant physical properties in a cylindrical tube
having radius R, as shown in Figure 5.E.2-1. At time ¢ = 0, the fluid is changed
instantaneously to pure component A while maintaining all other aspects of the
flow. Although the interface between fluid A and B is initially planar, it will begin
to disperse as a result of convection and molecular diffusion. Convective transport
will cause component A near the center of the tube to move farther downstream
than that near the wall, due to the parabolic velocity profile. Superimposed on this
convection of component A are both radial and axial diffusion; the former will
cause diffusion of component A between the center of the tube and the wall. This
combined species diffusion and convection, which is due to a nonuniform velocity
profile, is referred to as Taylor dispersion.

We begin by writing the appropriately simplified species-balance equation given
by equation (G.2-5) in the Appendices (step 1):

dca dca 9%ca 19 [/ dca
L tu,—= =Dpp——— + Dyp—— | r—= 5.E.2-1
ot i 0z AP * AP ar (r ) ( )

where the axial velocity is given by

— r2
u, =20 (1 - —) (5.E.2-2)

.._._._._._._._._._._._._;_-_ .................

% Increasing time

Pure component B Pure component A

Figure 5.E.2-1 Fully developed laminar flow in a cylindrical tube of radius R showing
the displacement of liquid B by the continuous injection of immiscible liquid A due to
Taylor dispersion that arises from the combined effects of diffusion and convection via a
nonuniform velocity profile.

271G, 1. Taylor, Proc. R. Soc. London, 225A, 473-477 (1954).
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in which U is the average velocity. Note that each term in equation (G.2-5) has been
divided by the molecular weight of component A in arriving at equation (5.E.2-1).
The center of the dispersion zone containing both components A and B will be
convected at the average velocity. Hence, we define a new axial coordinate 7 =
z — Ut and transform equations (5.E.2-1) and (5.E.2-2) to a convected coordinate
system as follows:

0ocy — 2\ dcy 3%ca 19 acy
— 4+ U(l1-2—= | —L=Dyp——+Dypp—— | r—= 5.E.2-3
o ( R2> oz~ DMz TPy ( )

where the time derivative is now evaluated at constant 7 rather than at constant z;
that is, the time derivative of the concentration is evaluated at a position relative
to the convected dispersion zone. Note that this coordinate transformation modifies
the convection term in the species-balance equation. The corresponding initial and
boundary conditions are given by

ca=0 at t=0 (5.E.2-4)

c4 is bounded at r=0 (5.E.2-5)
aaLrA =0 at r =R (5.E.2-6)

CA = Cap at z=-Ut (5.E2-7)
ca=0 at z — o0 (5.E.2-8)

The boundary condition given by equation (5.E.2-5) merely states that the concen-
tration remains finite at the centerline; this is a common condition applied at a
point or axis of symmetry. Equation (5.E.2-6) states that the walls of the tube are
impermeable.

Define the following dimensionless variables (steps 2, 3, and 4):
* r .

Do ;=

s

(5.E.2-9)

* cA
CA=—
Cs

Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 5 and 6):

r2 oach  Ur? (1_2ir*2> 8cj_ﬁazcj 1 9 <r*ac;;>

Dapts 9t DapZy R? 9z x20z2 | rrort ar*
(5.E.2-10)
ch=0 at *=0 (5.E.2-11)
¢’ is bounded at r*=0 (5.E.2-12)
act R
‘a _ at 7t = o (5.E.2-13)
ar* rs
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Is
at ' =——1* (5.E2-14)
CS Zs

=0 at ¥ —> o0 (5.E.2-15)

Now let us determine the scale factors (step 7). The dimensionless concentra-
tion and radial coordinate can be bounded to be o(1) by the following choice of
scale factors that emanate from the dimensionless groups in equations (5.E.2-13)
and (5.E.2-14): ¢; = ca0 and ry = R. Since this is inherently unsteady-state mass
transfer, we choose the observation time as our time scale; that is, ¢, = t,. Since the
principal terms in the dispersion process are axial convection and radial diffusion,
the dimensionless group multiplying the convection term in equation (5.E.2-10) is
set equal to 1, which provides the axial length scale; that is, Z;, = UR?/D4p. Our
dimensionless describing equations then assume the form

LA 4 (1ogyla o L P 10 <r*3cf\> (5.E.2-16)

Fo,, a1* 9z* — Pe2 872 rrort \| art

=0 at *=0 (5.E2-17)
¢’ is bounded at r*=0 (5.E.2-18)

8 *
A_0  at =1 (5.E.2-19)

ar*
¢t =1 at 7= —Fop,t* (5.E.2-20)
=0 at I* > o0 (5.E2-21)

where
D pt,

Fo,, = R‘; 0 (5.E.2-22)

is the solutal Fourier number or Fourier number for mass transfer, which is a
measure of the ratio of the observation time to the characteristic diffusion time, and
UR UR v

Pe,=—= =Re- Sc (5.E.2-23)
Dyp v Dyp

is the solutal Peclet number or Peclet number for mass transfer, which is a measure
of the convection to diffusion of species, Re is the Reynolds number, which is a
measure of the convection to viscous transport of momentum, and Sc is the Schmidt
number, which is a measure of the viscous transport of momentum to diffusive
transport of species.

If the following conditions apply, these describing equations can be reduced
to those considered by Sir Geoffrey Taylor in his classical development of Taylor
dispersion (step 8; see footnote 27):

Fo,, > 1 = quasi-steady-state can be assumed (5.E.2-24)
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Perzn > 1 = axial diffusion can be ignored (5.E.2-25)

Note that ignoring this unsteady-state term in equation (5.E.2-16) term does not
mean that the dispersion is not time-dependent; it merely means that it is not time-
dependent in a convected coordinate system; the time dependence enters through
the axial coordinate in the convected coordinate system. Sir Geoffrey developed
an approximate solution to the resulting simplified system of describing equations
by assuming that dc}/ — 0z* was constant (see footnote 27). He used intuitive
arguments to conclude that his solution was a reasonable approximation to the
solution for the full set of describing equations if Fo, > 0.25 and Pe,, > 6.9.
These conditions agree well with those given equations (5.E.2-24) and (5.E.2-25).
The full set of describing equations were solved numerically by Gill et al.; their
solution confirms the criteria given by equations (5.E.2-24) and (5.E.2-25) for the
applicability of Sir Geoffrey’s approximate solution.?®

S5.E.3 Convective Diffusion in a Tapered Pore

Consider steady-state binary gas-phase diffusion at constant pressure and tempera-
ture through a pore having a nonconstant circular cross-sectional area whose radius
R is given by R = Ry — 8./z, where B is a constant. Figure 5.E.3-1 shows a
cross-sectional view of this model pore along a plane that cuts through its axis of
symmetry. The binary gas mixture at the mouth of the pore is assumed to be dilute
in the diffusing component, whose concentration is maintained at a constant value
cao (moles/volume). The concentration of the diffusing component is maintained
at zero at the other end of the pore, where z = L. The diffusion coefficient may be

cy=0

Figure 5.E.3-1 Binary diffusion of a dilute gas at constant temperature and pressure
through a tapered pore having length L and a circular cross-section with a radius given
by R =Ry — ﬂﬁ .

28y, Ananthakrishnan, W. N. Gill, and A. J. Barduhn, A.L.Ch.E. J., 11(6), 1063-1072 (1965).
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assumed to be constant. Scaling analysis is used to determine when radial diffusion
can be ignored relative to axial diffusion.

The appropriately simplified species-balance equation given by equation (G.2-
10) in the Appendices and corresponding boundary conditions are given by

0= Dyt 4 p, L 2 (20 (5.E3-1)
= Pas5 Ao\ T E.

CA = CAQ at z=0 (5.E.3-2)

ca=0 at z=1L (5.E.3-3)
8CA

8_:0 at r=0 forO0<z<L (5.E.3-4)
p

No-i=0 at r=RE@=Ry—Bvz, 0<z<L (5.E:3-5)

where 7 is the unit normal vector to the pore wall as shown in Figure 5.E.3-1 (step
D).

Define the following dimensionless variables (steps 2, 3, and 4):
Na

;o Ni=——
NAX

=

5 r

o

A = (5.E.3-6)
CS ZS
A scale factor is introduced for the mass-transfer flux N4, although this is a for-
mality since it will not be necessary to determine this scale factor to assess when
radial diffusion can be ignored.

Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 5 and 6):

82 * 2 1 9 ac*
0=244 % <r* CA) (5.E3-7)

az*2 Er_* ar* or*
= =0 (5.E.3-8)
Cs
. L
=0 at zF=— (5.E.3-9)
ls
ac* L
% _ at =0 for0<z* <= (5.E.3-10)
ar* Zs
L R N L
Ni-i=0 at rf=-0— BVas jm o< < b (5.E.3-11)
Is I s

The following considerations determine the scale factors (step 7). The dimen-
sionless concentration and axial coordinate can be bounded to be o(1) by the
following choice of scale factors, which emanate from the dimensionless groups
in equations (5.E.3-8) and (5.E.3-9): ¢; = c49 and z; = L. Note that to ensure that
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r* is o(1), we want the largest possible value for ry; this corresponds to setting

the appropriate dimensionless group in equation (5.E.3-11) equal to 1 to obtain
Iy = Ro.
Our dimensionless describing equations then assume the form

82c* L\>1 9 ac*
0=—4 _) = x4 5.E.3-12
o2 " <R0> r or (r 8r*) ( )
=1 at z*=0 (5.E.3-13)
ch=0 at 7' =1 (5.E.3-14)
BCZ * *
=0 at r'=0 for0<z <1 (5.E.3-15)

- BVL

Ni-n=0 at r*f=1-
Ro

V¥, 0<z"<1 (5.E.3-16)

Equation (5.E.3-12) then indicates that to ignore radial relative to axial diffusion
the following criterion must be satisfied (step 8):

I\2
(—) <1 (5.E.3-17)
Ro

Note that this criterion will always break down for sufficiently long pores. This
limitation is explored further in Practice Problem 5.P.3.

5.E.4 Dissolution of a Spherical Capsule

Consider a solid spherical capsule of a pure material A having an initial radius
Ry. Assume that this capsule is ingested into the stomach, where it progressively
dissolves while undergoing a first-order reaction with the stomach fluid B given by
R4 = kic4 (moles/volume-time), in which k; is the reaction-rate constant. Equilib-
rium is assumed at the interface between the capsule and stomach fluid, at which
the concentration of A is c4o (moles/volume).”® The solution will be assumed
to be sufficiently dilute so that any bulk flow arising from the mass transfer is
negligible; that is, the fluid phase is assumed to be quiescent so that the mass
transfer is purely diffusive. A schematic of this dissolution process is shown in
Figure 5.E.4-1. We use scaling to explore how the describing equations can be
simplified.

2Note that in practice it would be difficult to measure this equilibrium concentration if component A
reacts in the liquid phase with component B. However, it would be possible to infer the equilibrium
concentration from measurements of the dissolution process if the kinetic constant for the homogeneous
reaction were known.
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Moving interfacial
boundary due to
dissolution of capsule

Stomach liquid B in
which component A
dissolves and reacts

Solid spherical
capsule of pure
component A

Figure 5.E.4-1 Solid spherical capsule of pure component A dissolving in stomach liquid
B, accompanied by a first-order homogeneous chemical reaction.

The appropriately simplified form of the species-balance equation in spherical
coordinates given by equation (G.3-10) in the Appendices and the corresponding
initial and boundary conditions are (step 1)

dea _p, [li (ﬂaﬂ)] ke (5.E4-1)
or r2 or or
cx=0, R=R, at t=0 (5E.4-2)
CA = CAQ at r=R(®) (5.E4-3)
ca=0 as r— o0 (5.E.4-4)

where c4 is the molar concentration (moles/volume) and Ry is the initial radius
of the capsule. Since the dissolution of the spherical capsule implies that this
is a moving boundary problem, an auxiliary condition is needed to locate the
instantaneous position of the interface, denoted here by R(z). This comes from an
integral species balance on the spherical capsule and the stomach fluid, shown in
detail here to illustrate how the homogeneous reaction term is handled:

d [* o} 2 A 2 > 2

— —SAnrodr + — cadmrodr = — kicadmr=dr (5.E.4-5)
dt Jo My dt Jg R

where M4 and pg are the molecular weight and solid mass density of pure com-
ponent A, respectively. The last term in equation (5.E.4-5) accounts for loss of
species A due to the homogeneous chemical reaction. Application of Leibnitz’s
rule for differentiating an integral given by equation (H.1-2) in the Appendices
and substitution of equation (5.E.4-1) into equation (5.E.4-5) then yields

0
dR 9
Pa VR E D aRREA 0 at r=R (5.E.4-6)
My dt ar

Note that for dilute solutions, ¢4 <K pg/ M 4. The initial condition needed to solve
equation (5.E.4-6) is given in equation (5.E.4-2).
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Define the following dimensionless variables (steps 2, 3, and 4):

. CA . R dR\* 1 dR . =T
Ch=—; R = —; —_— = ——; rt = ;
Cs R dt R, dt rg Is
(5.E4-7)

Note that we have introduced a reference factor since r is not naturally referenced
to zero. We also have introduced a separate scale factor, RS, for the dissolution
velocity of the spherical capsule d R/dt since there is no reason to assume that this
will scale as ry/t;.

Introduce these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of one term in each equation (steps 5 and 6):

2 dct 1 9 dc kyr?
s % _ — |+ /r)? Y l—rscz (5.E.4-8)
Dty Ot* (r*+ rr/rs)z or* ar* Dap
R
=0, R*= R—O at =0 (5.E.4-9)
R —
P (5.E.4-10)
CX rS
=0 as r*— oo (5.E.4-11)
dR\* MaDype, dc R—r,
(_> _ MaDages 9y _ o o R (5.E4-12)
dt pngrs ar* Tg

The boundary condition given by equation (5.E.4-10) indicates that we can bound
c’} to be o(1) by setting c; = c40 and can reference r* to zero by choosing r, = R.
The proper scale factor for the spatial coordinate depends on the conditions for
which we are scaling this problem. Let us first consider the case where the homo-
geneous chemical reaction is sufficiently slow such that quasi-steady-state is never
possible. Hence, the proper time scale is the observation time #,. For this case the
diffusion term must always balance the unsteady-state term in equation (5.E.4-8);
the proper scale for the spatial coordinate is ry = /Dapt,. The dimensionless
sphere size can be bounded to be o(1) by setting the dimensionless group in
equation (5.E.4-9) to 1 to obtain R; = Ry. Since the two terms in equation (5.E.4-
12) must balance, the scale for the dissolution velocity of the capsule is found to
be Ry = Macaov/Dan/ 0 o-

These scale and reference factors then result in the following dimensionless
describing equations (step 7):

86‘2 MACA() <dR>* 86‘2

orr  p9 \dr ) orr

1 d R\ ac
= e —kityc,  (5.E4-13
( * R )2 Py |:<r + DAB%) ar*:| 1tocy  ( )
re+
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¢h=0, R'=1 at t*=0 (5.E.4-14)
=1 at r*=0 (5.E.4-15)
=0 as r*— o0 (5.E.4-16)

dR\* ac
< dt ) or* ar ( )

Note that an additional term now appears in equation (5.E.4-13) because of the
transformation from a fixed coordinate system to one that is referenced to the
moving interface of the spherical capsule. This is another example of the fact that
one has to be careful when applying the chain rule of differentiation in transforming
to the dimensionless variables.

Now let us consider how equations (5.E.4-13) through (5.E.4-17) can be sim-
plified (step 8). Note that the characteristic length ry = v/ D4pt, defines a region
of influence wherein the diffusive mass transfer is essentially confined. For suffi-
ciently short times such that R/+/Dapty > 1, one can ignore the curvature effects
in equation (5.E.4-13). Note, however, that this approximation will break down
for sufficiently long times or when the capsule size becomes very small. One can
estimate when the curvature effects become important by using the scale factor
R, to obtain an approximate solution for the instantaneous location of the capsule
interface applicable for short contact times:

~ dR _ Mycaov/ Das

~ 2M sc a0/ Dasto
e & = R Ry — —ATAW AR
dt PaTo Pa

Hence, curvature effects associated with the spherical geometry will need to be
considered when

s =

(5.E.4-18)

VDagh
4870 5 =O() (5.E.4-19)
Ro —2M sca0v/Dapto/ oy

Note that equation (5.E.4-18) also provides an estimate of the time required for
the capsule to dissolve. A further simplification of equation (5.E.4-13) is possible
if k1typ < 1, in which case the effect of the homogeneous chemical reaction can
be ignored. Note, however, that this approximation will always break down for
sufficiently long contact times such that k1o = O(1). In arriving at this set of
describing equations we already have made the dilute solution assumption; that is,
Macao/ ,09\ « 1, which implies that the pseudo-convection term arising from the
coordinate transformation can also be ignored.

Now let us consider conditions for which the homogeneous reaction term is
always important. In this case the characteristic length scale is obtained by bal-
ancing the diffusion term with the reaction term in equation (5.E.4-8), thereby
obtaining ry = /D ap/k;. This in turn implies that R, = Mucaon/Dagki/pS. All
the other scale and reference factors remain the same. Hence, our dimensionless
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describing equations assume the form

1 86‘; . MACA() (dR)* 86‘;

kit, 3 p% \dr ) ar*
2 *
1 9 ki '\ @
= R[S ) SA |~y (5.E420)
(r* + Rm) ar Dpp ) or
=0, R'=1 at *=0 (5.E.4-21)
ch=1 at r*=0 (5.E.4-22)
=0 as 1= o0 (5.E.4-23)
dR\T_och _ o _
=0 at r*=0 (5.E.4-24)
dt ar*

The condition for ignoring the pseudo-convection term arising from the coordi-
nate transformation again is M4cao/ ,og & 1. In this case the curvature effects can
be ignored when R./k1/Dap > 1. However, this condition will break down for
sufficiently long times when the capsule radius becomes very small. Again, one
can estimate when the curvature effects become important by using the scale factor
R, to obtain an approximate solution for the instantaneous location of the capsule
interface:

12

gy= R

AR Macao/Dagk
_ TACANTABTL R th  (5.E4-25)

~ Ry — MACAO— VDagki
t Pa Pa

Hence, curvature effects associated with the spherical geometry will need to be
considered when

M Dagk k
<Ro B ACAOWIO) L o(1) (5.E.4-26)
pA DAB

For fast reaction conditions it is also possible to achieve quasi-steady-state mass
transfer since the unsteady-state term in equation (5.E.4-20) becomes insignificant
when kitp > 1. In the latter case all the mass transfer and accompanying chemical
reaction occur within a region of influence whose constant thickness is given by
rs = «/Dap/ki; for very fast reaction conditions this boundary layer can become
very thin. However, unless the reaction is instantaneous, the unsteady-state term
will become significant for sufficiently short observation times.

5.E.5 Mass Transfer to a Rotating Disk: Uniformly Accessible Surface

In Example Problem 3.E.4 we scaled the hydrodynamics for a circular disk rotating
about its axis at a constant angular frequency w (radians/second) in an infinite
Newtonian fluid having constant physical properties. We used scaling analysis in
the aforementioned example to provide an estimate for the region of influence
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Figure S.E.5-1 Mass transfer in laminar flow created by a flat disk rotating in an
unbounded fluid; the rotational motion of the disk draws fluid toward the disk; the axial
velocity and concentration infinitely far removed from the disk are Uy, and po, respectively.

across which the motion of the disk influences the velocity components. Assume
now that the infinite fluid contains a solute that diffuses toward the rotating disk,
at which it undergoes an electrochemical reaction that reduces its concentration
to zero; that is, the rotating disk constitutes one electrode in an electrochemical
system, as shown in Figure 5.E.5-1. We will use scaling to provide an estimate
of the thickness of the mass-transfer boundary layer. A knowledge of this mass-
transfer boundary-layer thickness is important since it must be much smaller than
the radius of the rotating disk, to ensure that the finite container and edge effects
are negligible.

We build our mass-transfer model based on the results of Example Pro-
blem 3.E.4. In theory, this mass-transfer problem involves the coupled equations
of motion and species-balance equations. However, we assume that the solution is
dilute and the mass-transfer rates are sufficiently small so that the solution to the
equations-of-motion is decoupled from that for species balance. Hence, the veloc-
ity profiles are given by the solution to the appropriately simplified equations of
motion given in Example Problem 3.E.4, which established that u,, P, ru,, and
rug are functions only of the axial coordinate z.

The rotating disk is analyzed as a uniformly accessible surface: that is, a sur-
face for which the mass-transfer flux is not a function of the radial or angular
coordinates. This concept of the uniformly accessible surface is presented without
proof in standard references on mass transfer. Hence, we begin this example by
developing a rigorous proof that in the absence of finite container and edge effects,
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the rotating disk, provides a uniformly accessible surface. To do this, consider a
species balance on a control volume having arbitrary radius » and extending from
the surface of the rotating disk far into the quiescent region of the fluid, where there
is only an axial velocity component given by u, = —Uy, and the concentration is
Poos €xpressed in terms of the species mass per unit volume. A species balance on
this control volume then yields

r [o,0)
pAooUoonrzz/ nAz|Z=0~2anF—/ Nar - 27r dz (5.E.5-1)
0 0

where 7 denotes a dummy integration variable. From Fick’s law of diffusion applied
at the surface of the disk and at the circumferential boundary defined by the arbitrary
value of r along with the results of equations (3.E.4-1), we have

004 9pa

na; =—Dap—— + pauz = nazl:—0 = —Dap—— (5.E.5-2)
0z 0z
9pA 9pa

nar = _DABa—r + pau, = _DABa—r + parfi(z) (5.E.5-3)

Substituting equations (5.E.5-2) and (5.E.5-3) into equation (5.E.5-1) then yields

.
0

pacoUoortr? = _27TDAB/ A

0 0z

=0 (5.E.5-4)

[} 3pa 5 00
+27rDyp ——dz —2mr pafi1(2)dz
o Or 0

Equation (5.E.5-4) can be rearranged into the form

o 2D 9 )
pAooUoo+2/ pa fiz)dz = 2248 f ﬂdz—[ 2}
0 r o Oor o 0zZ

d?)
z=0

(5.E.5-5)

Since the left-hand side of equation (5.E.5-5) is a constant, to ensure that the
right-hand side is also a constant, the only possible solution for p4 is of the
form

pa = f5(2) (5.E.5-6)

that is, the concentration is a function only of the axial coordinate. This then implies
that the mass-transfer flux along the surface of the rotating disk is a constant; that
is, the surface of the disk is uniformly accessible. For this reason the rotating
disk is frequently used to determine kinetic constants for reacting system since the
electrode current provides a direct measure of the mass-transfer flux.

We now can proceed with our scaling analysis to estimate the mass-transfer
boundary-layer thickness. The relevant form of the species-balance equation given
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by equation (G.2-5) in the Appendices for a uniformly accessible rotating disk then
is given by the following:

d d?
PA D PA

— = — 5.E.5-7
Uz dz AB a2 ( )
The corresponding boundary conditions are given by (step 1)
pa=0 at z=0 (5.E.5-8)
PA = PAco as gz — 00 (5.E.5-9)

Define the following dimensionless variables involving unspecified scale factors
(steps 2, 3, and 4):

* PA . * Uz . * <
Pa =" u; = —; 7=
Ps Uz s

(5.E.5-10)

We have used the scaling results of Example Problem 3.E.4 in defining the
dimensionless velocity. Introduce these dimensionless variables into the describing
equations and divide through by the coefficient of one term in each equation that
should be retained (steps 5 and 6):

Ldph  Dap d’p}

= SES5-11

z dz* UzsZs dZ*2 ( )

pi=0 at z*=0 (5.E.5-12)

pi =A% 4 oo (5.E.5-13)
Ps

In determining our scale factors (step 7) we first recognize that the velocity scale
was determined in Example Problem 3.E.4 and is given by equation (3.E.4-25) as
u,s = /wv. Equations (5.E.5-12) and (5.E.5-13) indicate that the dimensionless
concentration can be bounded to be o(1) if we set p; = paco. Since both diffusive
and convective transport cannot be neglected in this problem, the two terms in
equation (5.E.5-11) must balance; this provides the length scale z; = Dap/uzs;
hence, z; = Dapg/+/wv.

Now let us use our scaling results to enhance our understanding of this mass-
transfer problem (step 8). The length scale z; is a measure of the region of influence
or boundary-layer thickness §; wherein the concentration goes from its far-field
value of psn to zero. It is instructive to recast z; = & in terms of the momentum
boundary-layer thickness §,, determined in Example Problem 3.E.4:

D D 1
— AR _ ARy s, (5.E.5-14)
Jwv v Sc

s = 6s
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where Sc = v/D4p is the Schmidt number, which is a measure of the ratio of the
viscous transfer of momentum to the diffusive transfer of mass. Since Sc > 1 for
liquids, the concentration boundary layer will be much thinner than the momentum
boundary layer. Hence, the limiting criterion with respect to the importance of
finite container and edge effects will be determined by the momentum rather than
the concentration boundary-layer thickness; that is, the radius of the rotating disk
must be much greater than §,,.

5.E.6 Field-Flow Fractionation

Field-flow fractionation is a technique for separating small particles such as proteins
and viruses from a carrier fluid such as water by combining a longitudinal laminar
flow with a transverse field. The latter can be a thermal gradient, centrifugal force,
electrical field, or transverse flow. Here we consider the latter, which is referred to
as flow-field-flow fractionation. A transverse flow field can be imposed by making
the closely spaced parallel lateral walls of the horizontal flow channel consist of
two permeable membranes. Inflow and outflow of the same carrier fluid (without
particles) occurs through the upper and lower membranes, respectively. This drives
the particles, which are injected as a pulse in the axially flowing fluid, toward the
lower membrane. This increase in particle concentration at the lower membrane
causes a counterdiffusion of particles toward the upper membrane. The opposing
convective and diffusive fluxes establish a layering of the particles near the lower
membrane. Larger particles that have smaller diffusivities form layers closer to the
lower membrane wall. Due to the fact that the axial velocity is smaller near the
membrane surface, the larger particles will be eluted or pass through the flow-field-
flow fractionation device more slowly than will the smaller particles. Hence, the
total volume eluted from the device correlates directly with the particle size, thereby
achieving the desired separation if the channel is sufficiently long. A schematic
of the flow-field-flow fractionation device is shown in Figure 5.E.6-1. An early
analysis of flow-field-flow fractionation claimed that the thickness of the steady-
state exponential layer formed near the lower membrane would be equal to the
binary diffusion coefficient D45 divided by the transverse flow velocity V.3° Here
we use scaling to justify this claim and to ascertain the criteria required for its
applicability.

The species-balance equation given by equation (G.1-5) in the Appendices
reduces to the following for flow-field-flow fractionation (step 1):

9 9 9 92 92
ﬂﬂtxﬂﬂt €A oca oA

A 5.E.6-1
ot ax Y dy ( )

Note that each term in equation (G.1-5) has been divided by the molecular weight
of component A in order to arrive at equation (5.E.6-1). Scaling can be used to
show that the velocity profile will not be affected by the transverse flow if the

30J. C. Giddings, F. J. F. Yang, and M. N. Myers, Science, 193, 1244-1245 (1976).
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Figure 5.E.6-1 Flow-field-flow fractionation showing injection of a pulse of particles hav-
ing a uniform concentration and initial width L; into fully developed laminar flow; these
particles are convected downstream due to the axial velocity profile and in the transverse
direction due to injection and withdrawal of fluid through permeable membranes at the
upper and lower boundaries; a balance between transverse convection and diffusion causes
the particles to be concentrated in a thin layer near the lower membrane boundary.

Reynolds number based on the transverse velocity is very small: that is, if the
following criterion is satisfied®':

HV
Rey = 20«1 (5.E.6-2)
m

where p is the mass density, H the spacing between the parallel membranes, V
the transverse injection velocity, and p the shear viscosity, in which case the fully
developed laminar flow velocity profile referenced to a coordinate system whose
origin is located at the lower membrane boundary is given by

_ /2 2
w, =20 (2L (5.E.6-3)
H H

where U is the average axial velocity. In problems such as this that involve
the injection of a concentration pulse or plug, it is convenient to transform equ-
ation (5.E.6-1) into a coordinate system that moves at the average velocity. The
reason for doing this is that under appropriate conditions the problem might be
considered to be steady-state in a coordinate system translated at the appropriate
average velocity. The appropriate average velocity is not necessarily U if, indeed,
the particles are concentrated near the lower membrane boundary. We use scal-
ing to determine the appropriate average velocity and the conditions under which

31See Practice Problem 3.P.32, which applies scaling analysis to justify this approximation.
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steady-state can be assumed. Hence, we define a new axial coordinate X = x —
U ,t, where U, is an appropriate average velocity near the membrane boundary
wherein the particles are confined. In this convected coordinate system equa-
tion (5.E.6-1) assumes the form:

dca 9%cy d%ca

ac
il — =D + D
u, By AB =3 AB 3y?

— _dc
4 + (Mx - Uw) ;A +
0x

5.E.6-4
o ( )

where the time derivative is now evaluated at constant x rather than at constant x.
The corresponding initial and boundary conditions are given by

CA = CAQ for 0<x<1L; i
cr=0 for L, <%<lL } at =0 (5.E.6-5)
ca=0 at ¥F=-Upyt (5.E.6-6)
ca=f(y) at F=L—Upyt (5.E.6-7)
8CA
Ny = _DABa_ —Vey =0 at y=20 (5.E.6-8)
y
3CA
Ny = —DABa— —Vea=0 at y=2H (5.E.6-9)
y

where Dyp is the binary diffusion coefficient. The initial condition given by
equation (5.E.6-5) states that a pulse having concentration c4o is injected over
length L;. Equation (5.E.6-6) states that the inlet concentration drops to zero after
the initial injection of the particles. Equation (5.E.6-7) is a formal statement that a
downstream boundary condition must be specified, although in practice this con-
dition might not be known. Equations (5.E.6-8) and (5.E.6-9) are a statement that
the particles cannot permeate through the membranes that constitute the lower and
upper boundaries, respectively.
Define the following dimensionless variables (steps 2, 3, and 4):

dea\* 19
L o= 2 (CA> = %4 (5E6-10)

CA ~x
Vs ox Cys OX

CZE ) X =
Cs

3<1| =1

Note that we have introduced a scale for the axial derivative of the concentration
since it will not scale with the ratio of the concentration scale divided by the
axial length scale; indeed, the characteristic value of this gradient is determined by
change in concentration over the convected pulse of particles in the wall region.
Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 5 and 6):

y2oach N 4Uyces [ . 1ys ,» 1ULHY\ [dca\"
Dapt, 9* | DapHe, 20 T ATy, ) \ex
(5.E.6-11)
Vys aCj; _ YsCxs il

dca\” N 3%t
Dap 0y* Xgcg 0X* \ OX 0y*2
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cj:CAO for Ogi*f—i
s s at =0 (5.E.6-12)
Li ., L
¢, =0 for = <x*< 7
U iy
ch=0 at FF=--"gF (5.E.6-13)
Xs
L Uyt
A=r07  at F=—- i’” Sp* (5.E.6-14)
HCZ Vys .
=0 t y'=0 5.E.6-15
ay* * Dap “a ay ( )
act v 2H
Ay D=0 a y= (5.E.6-16)
dy*  Dap Vs

The scale factors are determined via the following considerations (step 7). The
dimensionless concentration and axial coordinate can be bounded to be O(1) by
setting the relevant dimensionless groups in equation (5.E.6-12) equal to 1 to obtain
¢s = cao and xg = L. The principle of flow-field-flow fractionation is that the par-
ticles are confined within a thin layer whose thickness is determined by a balance
between the transverse convection and counterdiffusion of particles. This implies
that the two terms in equation (5.E.6-15) must balance each other; this yields the
transverse length scale as

Vys Dap
Dis Y= ( )

Note that this estimate for y, is the same as the characteristic thickness of the
‘steady-state exponential layer’ cited for flow-field-flow fractionation (see footnote
30). The axial convection must be of the same order as the transverse diffusion near
the lower membrane boundary where the particles are concentrated; this provides
the scale for the axial concentration gradient as follows:

AUylcys  4UD34c ViHc
ys‘(’ o — 3 AB™XS = 1 :> st = _762140 (SE’6-18)
DapHcy V- Hcao 4UDAB

Since this is inherently an unsteady-state problem, the time scale is the observation
time; that is, t;, = t,.
Our dimensionless describing equations then assume the form

1 zacj;_l_ y*—liy*Z_lpeV@ aif*_acjg
Fo,,Pey, ot* 2 Pey 4 U 0x oy*
APy H 0 (dea)' i
4 Pe, L 0x* \ 0%

(5.E.6-19)
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L;
=1 for 0<x*< 7
L at t*=0 (5.E.6-20)
;=0 for —— <i*<l1
L
Uty
ch=0 at ¥*= ——Z r* (5.E.6-21)
Uyt
A= 0" at FF=1- Z * (5.E.6-22)
acy . .
Gye +Ch = 0 at y*=0 (5.E.6-23)
acy . .
Gyr T = 0 at y*=2Pey (5.E.6-24)

where Pe,, = UH /Dap and Pey = VH /D4p are the Peclet numbers for mass
transfer based on U and V, respectively, and Fo,, =1,Dap /H2 is the solutal
Fourier number.

Now let us examine the scaled describing equations to assess how these might
be simplified (step 8). Let us first estimate the thickness of the layer wherein the
particles are concentrated near the lower membrane boundary. This thickness is
characterized by y,, whose dimensionless value is inversely proportional to Pey;
that is,

& o DA B 1

- - (5.E.6-25)
H VH Pey

For typical Flow-Field-Flow Fractionation operating conditions, Pey = 10?; hence,
the particles are confined to a thin layer very close to the lower membrane boundary.
Equation (5.E.6-19) indicates that only the linear portion of the velocity profile near
the lower membrane need be considered if the following conditions apply:

Pey > 1 = linear velocity-profile approximation (5.E.6-26)

This velocity profile can be obtained by expanding equation (5.E.6-3) in a Taylor
series, which permits determining U ,,, the average velocity within the thin particle
layer:

— Vs . ZﬁDAB . ZU

u, 24TL =T, =202 = -
H~ VH _ Pey

(5.E.6-27)

=

When this value for U, is substituted into equation (5.E.6-19), we see that the
pseudo-convection term arising from transforming to a convected coordinate system
is an O(1) term, as might be expected.

Quasi-steady-state can be assumed if the following condition is satisfied:

Fo,, -Pe%, > 1 = quasi-steady-state (5.E.6-28)
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Typical conditions for flow-field-flow fractionation indicate that this condition is
satisfied within approximately 20 seconds for an elution process that lasts several
hours. Note that dropping the unsteady-state term in equation (5.E.6-19) does not
imply that we are assuming that the process is steady-state; indeed, time enters
through the spatial coordinate in our convected coordinate system; that is, X = x —
U ,t. The axial diffusion term can be ignored if the following condition is satisfied:

PCV H

—— — < 1 = axial diffusion can be neglected (5.E.6-29)
Pe,, L

This is also easily satisfied for flow-field-flow fractionation, for which typical values
are Pe,, = 10* and H/L = 107*.
In view of these considerations, our describing equations can be simplified to

1\ [(dca\* dcy 93¢k
o) (Za) _ % T (5.E.6-30)
2 0x dy*  9y*?
Pe,,Fo, H
=0 at i=-p—mOmH (5.E.6-31)
Pev L
8 *
a;jj +e;=0 at y' =0 (5.E.6-32)
ac?
8yj§ +ci=0 at y*=o0 (5.E.6-33)

An analytical solution to these simplified describing equations can be obtained for
the special case of dc,/d% = 0, which is given by’

¢t =pe™ (5.E.6-34)

Since the describing equations constitute a linear homogeneous differential equation
with homogeneous boundary conditions, the solution can be obtained only to within
a multiplicative constant, denoted here by 8. This unknown constant can be deter-
mined by equating the total eluted mass of particles to the initial mass of particles
that is injected. Equation (5.E.6-34) then clearly establishes that flow-field-flow
fractionation results in a steady-state exponential layer whose thickness is given by
Dap/V, as was stated in the introductory remarks for this example.

5.E.7 Mass Transfer in a Membrane Permeation Cell

Consider a gas-permeable polymer film of thickness L that is placed in a cylindrical
permeation cell of circular cross-sectional area S, as shown in Figure 5.E.7-1. The
permeable polymer film divides the permeation cell into an upper and a lower

32This is equivalent to assuming no axial concentration changes in the layer of particles that is convected
at the average velocity in the region near the lower membrane boundary.
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Pressure gauge @

Upper chamber at variable pressure
P(7) and constant volume V,

Polymer film of thickness L
and area S..

Lower chamber at constant pressure
P
0

Figure 5.E.7-1 Membrane permeation cell in which a permeable polymer film separates the
lower and upper chambers, both of which are evacuated initially; the membrane permeability
can be determined by injecting a permeable gas into the lower chamber and then measuring
the change in pressure in the upper chamber.

chamber, as shown in the figure; the volume of the upper chamber is denoted by
V.. Initially, both the upper and lower chambers are evacuated such that their initial
pressure is P = 0. At time ¢ = 0 a permeable single-component gas is introduced
into the lower chamber at pressure Py, and maintained at this pressure. This pure
gas then begins to permeate through the polymer film into the upper evacuated
chamber, causing its pressure to increase gradually. The pressure in the upper
chamber at any time is denoted by P(¢), implying that the pressure in the upper
chamber is a continuously increasing function of time. The permeating component
can be assumed to form a dilute solution in the polymer film whose solubility is
described by p4 = H P,where p,4 is the concentration (mass/volume) and H is the
Henry’s law constant.

Typical data obtained using this apparatus are shown in Figure 5.E.7-2, in which
the pressure in the upper chamber is plotted as a function of time. Note that
there is a short period of time during which the pressure in the upper chamber
remains at zero. This is followed by another relatively short period of time during
which the pressure in the upper chamber increases nonlinearly. Finally, there is
a relatively long period of time during which the pressure in the upper chamber
increases linearly. We use scaling analysis to explain this interesting behavior and
to determine useful properties of the membrane that we can extract from these data.

The appropriate form of the species-balance equations given by equation (G.1-
5) in the Appendices and the corresponding initial and boundary conditions are
(step 1)

004 9% pa

—_— = —_— 5.E.7-1
a7 AB 3 ( )
pa =0, P=PFr at r=0 (5.E.7-2)

pa = HPy at x=0 (5.E.7-3)
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P (mm Hg)

0 t (min)

Figure 5.E.7-2 Pressure in the upper chamber versus time from the inception of the per-
meation process through the membrane separating the upper and lower chambers.

pa=HP at x =1L (5.E.7-4)

The boundary condition given by equation (5.E.7-4) is in terms of the unknown
instantaneous pressure in the upper chamber. The auxiliary equation needed to
determine this pressure can be obtained from an integral mass balance on the
upper chamber as follows:

Vu dP _ DABSC apA
RT dt M, dx

d
- (cV,) = (5.E.7-5)

x=L

where ¢ is the molar density of the gas in the upper chamber, R the gas constant,
and T the absolute temperature.
Define the following dimensionless variables (steps 2, 3, and 4):

P dP\* 1dP x t
pzzp—A; Pr=—; — ) = =——; x* = = —
Ps P dt P, dt X ts

7-

.

sl

.7-6)
Note that we have introduced a separate scale, Ps, for the time derivative of the
pressure since there is no reason why this should scale with P, and ¢;.

Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 5 and 6):

xsz 0oy 82,0;“

A 9Pa 5E.7-7
Dyt 0t* dx*2 ( )
P
pi=0, P="2 a =0 (5.E.7-8)
Ps
HP,
ph="" at x*=0 (5.E.7-9)

Ps
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HP L
oh = —2p* at x* = — (5.E.7-10)
Ps Xs
dP\* DapS.RTps 0p%
(_> = DandSeRTps 004 (5.E7-11)
dt MA Vuxs Px dx x*=L/xg

The scale factors are determined by means of the following considerations
(step 7). The dimensionless concentration and pressure can be bounded to be
o(1) by setting the dimensionless groups in equations (5.E.7-8), (5.E.7-9), and
(5.E.7-10) equal to 1 to obtain p; = H Py and Py = Py. Since this is unsteady-state
mass transfer, the time scale is the observation time 7,. The length scale is obtained
from the appropriate dimensionless group in equation (5.E.7-10) equal to 1 to obtain
xs = L. Since the two terms in equation (5.E.7-11) must balance, the dimensionless
group in this equation is set equal to 1 to obtain P, = D4pS.RTH Py/MAV, L.
These choices for the scale factors then result in the following describing equations:

1 0p5  9%p

E = o (5.E.7-12)
pi=0 at *=0 (5.E.7-13)
pi=1 at x*=0 (5.E.7-14)
py = P* at x* =1 (5.E.7-15)

* *
(ii_}t)) = — % o (5.E.7-16)

where Fo,, = Dspt,/L? is the solutal Fourier number.

Now let us consider how our scaled describing equations can be used to interpret
the data shown in Figure 5.E.7-2 (step 8). The time required for any pressure
increase to occur in the upper chamber can be estimated from the time required for
the permeating component to penetrate the membrane. This corresponds to setting
the solutal Fourier number equal to 1; that is,

D gt L?
Fo,, = A30:1:>t0=D_
AB

(5.E.7-17)

Equation (5.E.7-17) then provides an estimate of the dead time for any pressure
response to occur in the upper chamber for the data shown in Figure 5.E.7-2. Once
the permeating component penetrates through the membrane, a period of unsteady-
state mass transfer will occur during which the pressure will increase nonlinearly
in time. The duration of the latter period can be estimated from the time required
to achieve quasi-steady-state mass-transfer conditions; that is, when

1 L? _ looL?
— = <1 orwhen ¢, =
Fo,, Dugt, Dap

(5.E.7-18)
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This then provides an estimate of the time required from the introduction of
the permeating gas to achieve quasi-state mass transfer through the membrane.
We will show that the latter condition corresponds to a linear pressure increase
in time. For observation times greater than that defined by equation (5.E.7-18),
the unsteady-state term in equation (5.E.7-12) can be ignored. If, in addition,
P* « 1, the concentration driving force across the membrane will be constant,
and equation (5.E.7-16) implies that

MyV,L == MuV,L
(5.E.7-19)

dP\* dpP . D4pS.RTH P, DapS.RTHP,
(E) —1s 4BSe 0o _ p_ DasS 0

That is, the pressure will increase linearly in time, as seen in Figure 5.E.7-2 at
longer times. Note that the diffusion coefficient for permeation through the mem-
brane can be obtained from the slope in linear region of the pressure response
curve. However, when P* > (.1 the permeation driving force across the mem-
brane will decrease progressively, causing a less than linear increase in the pres-
sure in the upper chamber. Figure 5.E.7-2 does not show this long-time behavior
since it obviously does not include data taken for sufficiently long observation
times.

For quasi-steady-state conditions, equations (5.E.7-12) and (5.E.7-16) can be
solved analytically to obtain the following solution for the pressure in the upper
chamber:

P=r [1 _ ef(DABSCRTH/MAVuL)f] (5.E.7-20)

Note that for small values of the exponent, equation (5.E.7-20) reduces to the
linear response given by equation (5.E.7-19). Hence, in summary, scaling anal-
ysis of the describing equations is able to describe all the principal features of
the pressure-response curve for this standard membrane characterization test proc-
edure.

5.E.8 Large Damkohler Number Approximation for Laminar Flow with a
Heterogeneous Reaction

In Section 5.5 we considered steady-state laminar tube flow containing a solute A
that underwent a first-order irreversible reaction at the wall as shown in Figure 5.5-
1. We considered a scaling appropriate to a small Damkohler number for which
the mass transfer was controlled by the slow rate of heterogeneous reaction. This
implied that the concentration gradient across the tube was negligible and the
concentration was spatially uniform. Here we apply scaling analysis to the comple-
mentary case of a large Damkohler number corresponding to a fast heterogeneous
reaction. To supply mass to the tube wall at the same rate that it is consumed
by the heterogeneous reaction, the concentration gradient will be very steep and
occur over a region of influence or solutal boundary layer whose thickness §; is
the appropriate radial length scale.
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The appropriately simplified species-balance equation and associated boundary
conditions are the same as those in Section 5.5 (step 1):

(1) _p, a1 0e (5E.8-1)
RZ) oz ~ M2 AB Lo U or o

CA =Ca0 at z=0 (5.E.8-2)
ca=f() at z=1L (5.E.8-3)

8CA
CA_0  at r=0 (5.E.8-4)

ar

8CA .

_DABa_ = kl CA at r=R (5.E.8-5)

r

It is convenient to reference the coordinate system to the surface of the tube
where the solutal boundary layer is located. Hence, we define the following dimen-
sionless variables (steps 2, 3, and 4):

. * . *
N r =

(5.E.8-6)

C

[\l
Il

CA R—r z
CS ZA‘

Substitute these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 4 and 5):

4U 83 . ﬁr*z och _ s 9%k N 1 3 (R o ack
DagRz; 2R dz* 72 072 <5> 0 LS ar*

ds
(5.E.8-7)
=0 a =0 (5.E.8-8)
Cg
* * * L
G=f0h ot =2 (5.E.8-9)
s
acy . R
_ at = o (5.E.8-10)
or* S
act kS .
% _N% s =0 (5.E.8-11)

81’* DAB A

The dimensionless groups in equations (5.E.8-8) and (5.E.8-9), when set equal
to 1 indicate that ¢y = ca0 and z; = L (step 7). Since the convection and radial
heat conduction terms must be of the same order, equation (5.E.8-7) provides the
following estimate for §;:

4T 83 DagRL\'? R2LN\ '
S — o5, = ZAE - (5.E.8-12)
DigRL 4U 4Pe,,
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where Pe,, = UR /Dap is the solutal Peclet number. Substitution of these scale
factors into equations (5.E.8-7) through (5.E.8-11) then yields the following set of
dimensionless describing equations:

L, L L\ Lee R2 N\ 9%y
ro— = r =
2 \ 4Pe, R oz* 4Pe,, L2 0z*2

N 1 Kk <4PemR>”3 | 0
[(4Pe, R/L)'/? — r*] dr* L ar*

(5.E.8-13)
ch=1 at z"=0 (5.E.8-14)
ca=f0"  at =1 (5.E.8-15)

et . [4Pe,R\'

—A -0 a rf=(—2— (5.E.8-16)

ar* L

9c* L 1/3

ai: = Da" <—4Pe R) b at r*=0 (5.E.8-17)

where Da' = k| R/D4p is the second Damkéhler number.

Now let us consider how this set of dimensionless describing equations can
be simplified (step 8). If (R2/4PemL2)2/3 <« 1, the axial diffusion term can be
ignored in equation (5.E.8-13). If (L/4Pe, R)'/? « 1, the curvature effects and
higher-order term in the velocity profile can be ignored in equation (5.E.8-13).
Moreover, the boundary condition given by equation (5.E.8-16) can be applied
at infinity. A zero mass flux far from the tube wall implies no change in the
concentration in the core of the flowing fluid. Hence, equation (5.E.8-16) can be
replaced by the condition that ¢} =1 as r* — oo. Equation (5.E.8-17) indicates
that as Da' — oo, ¢% — 0, to ensure that dc%/dr* remains bounded of o(1).
This implies that the concentration at the tube wall is zero. Hence, for large solu-
tal Peclet numbers and large Damkohler numbers, the describing equations sim-
plify to

ac* 0 ac*
oA D (2 (5.E8-18)
az* ar* or*
=1 at 7" =0 (5.E.8-19)
i =1 at r* - oo (5.E.8-20)
ch=0 at r*=0 (5.E.821)

This simplified system of describing equations can be solved by standard methods,
such as combination of variables.
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~
L

Annular membrane wall

Figure 5.E.9-1 Hollow-fiber membrane of length L, lumen radius R;, and outer annular
membrane wall radius R,. A feed solution flows axially in fully developed laminar flow.
A reacting component in the feed permeates through the inner wall of the hollow fiber and
undergoes a first-order homogeneous reaction with an enzyme that is immobilized within
the pores of the annular region.

S5.E.9 Small Thiele Modulus Approximation for Mass Transfer in a
Hollow-Fiber Membrane

The development of hollow-fiber membranes with diameters of at most a few
hundred micrometers has made it possible to design membrane separation systems
having a very high area-to-volume ratio. This same feature has also permitted
designing efficient catalytic membrane bioreactors by immobilizing an enzyme
within the porous matrix of the tubular membrane. Figure 5.E.9-1 shows both cross-
sectional and profile views of a single hollow-fiber membrane of length L and inner
and outer radii R; and R», respectively. The annular membrane wall is made from
a synthetic polymer that is microporous and serves as host to the immobilized
enzyme. An ultrathin layer at the inner surface of the microporous annular region
is impermeable to the enzyme and thereby confines it, but is highly permeable
to low-molecular-weight solute(s). A solution of a low-molecular-weight solute is
then pumped through the lumen or hollow core of the hollow fiber in steady-state
laminar flow. This solute diffuses through the solution into the annular wall of the
hollow fiber, where it reacts with the enzyme via a first-order reaction in the solute
concentration. The aspect ratio of hollow fibers is such that axial diffusion can
be ignored in most applications. Moreover, the concentration of the solute in both
the solution and membrane is sufficiently dilute so that binary diffusion can be
assumed; that is, the reaction product(s) does(do) not influence the diffusion of the
solute through either the solution or the membrane. We use scaling to determine
how the describing equations for the membrane enzyme reactor can be simplified.

The species-balance equation in cylindrical coordinates given by equation (G.2-
10) in the Appendices and the corresponding boundary conditions for both the
lumen and annular wall regions of the membrane, after appropriate simplification,
are given by (step 1)

2
9 19 (9
Us 1_<L> ﬂ:D,__<rﬂ>, 0<r<R (5.E.9-1)
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10 d
0=D,—— (r CAm)_kchmv Ri<r<R
ror or
(5.E.9-2)
CAl = Ca0 at z=0 (5.E.9-3)
d
%:o at r=0, 0<z<lL (5.E.9-4)
,
dcay 0Cam
Dj—— =D, at r=R;, 0<z<L (5E9-5)
ar ar
Cam = Kacay at r=R, 0<z<L (5.E.9-6)
aCAm
3 =0 at r=Ry, 0<z<lL (5.E.9-7)
,

where c4; and ¢4, are the molar concentrations of the solute in the lumen solu-
tion and annular membrane wall, respectively, Uy the maximum fluid velocity at
the centerline of the lumen, D; and D,, the effective binary diffusion coefficients
of the solute in the lumen solution and annular wall, respectively, c4o the initial
concentration in the feed solution to the lumen, and K 4 the distribution coefficient
for the thermodynamic equilibrium of component A between the lumen solution
and the annular membrane wall, respectively.
Define the following dimensionless variables (steps 2, 3, and 4):

*
ot CAL, ot = Cam, (30A1) 1 Qcar
Al= 5 Am = T3 - | ==
Cls Cms or Cris or
(5.E.9-8)
*
aCA[ 1 3CA1 % Z % r % r —ri
—_— ) = ——; 7= — r=—; Iy =
0z Czls 0z s s T'ms

Note that we have introduced separate scales for the concentration and radial coor-
dinate within the lumen and the annular wall. We also have allowed separate scales
for both the axial and radial concentration gradients within the lumen since these
do not necessarily scale with the concentration scale divided by the length scale. If
we had naively scaled these derivatives with the concentration scale divided by a
length scale, the forgiving nature of scaling would have indicated a contradiction.??
We have also allowed for a reference length factor for the radial coordinate in order
to reference it to zero within the annular membrane wall.

Introduce these dimensionless variables into the describing equations and divide
through by the coefficient of one term in each equation (steps 5 and 6):

(e e |06 _ Diens 10 (Lo o< B
R, Dl aze — Ugcasrs rforf lar,* ’ ==y

(5.E.9-9)

3 This is explored further in Practice Problem 5.P.18.
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1 0 T ac* kyri?
0:7#< —*|:(}":,L+ mr)_r:i|_ lijm
T A Tor [Tms 01 Tms ) 01} D,,

Rl_rmr % R2_rmr
— P << =" (5.E.9-10)
T'ms T'ms
=2 a =0 (5.E9-11)
Cls
=0 at =0, 0<z*<— (5.E.9-12)
8}’* Zs
ocf Dycps Oc, . R . L
= at rf=—, 0<7"<— (5.E.9-13)
ar; Dycyisrms 01} s Zs
K Ry — 1y, L
AL e L (5.E.9-14)
Cms Tis s
ac* R, — L
“m_0 at =M <<= (5.E.9-15)
ork T'ms Zs

The following considerations dictate determining our scale factors (step 7). The
concentration in the lumen and annular membrane wall can be bounded to be
o(1) by setting the appropriate dimensionless groups in equations (5.E.9-11) and
(5.E.9-14) equal to 1 to obtain ¢;; = c49 and ¢, = K gca0. The axial length scale is
obtained from the dimensionless group L/zs. The radial length scale in the annular
membrane wall can be referenced to zero by setting the appropriate dimensionless
group equal to zero in equation (5.E.9-14) to obtain r;; = R;. Since the radial
diffusion must balance the axial convection in equation (5.E.9-9), the dimensionless
group, which is a measure of this ratio, must be set equal to 1; this establishes a
relationship between the axial and radial concentration gradient scales:

Dicyis _ Dycyis Dicyis

Uocusris  Uocus Ry & UoR; ( )

For steady-state to exist, all the diffusing solute must react within the annular
membrane wall. This implies that radial diffusion must balance the homogeneous
reaction within the annular membrane wall. Hence, by setting the dimensionless
group in equation (5.E.9-10) that is a measure of this ratio equal to 1, we obtain
the radial length scale factor:

klr;;z Dm
—M =, =
Dm " kl

(5.E.9-17)

Setting the dimensionless group in equation (5.E.9-13) equal to 1 provides the scale
for the radial concentration gradient in the lumen:
Dy s Dy, K acao Dy, CA0
= = ¢ps = | — KATh— (5.E.9-18)
chrlsrms D[Crls\/ Dm/k] " Dl Rl
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where Th =, /k; R% /Dy is the Thiele modulus, a dimensionless group that is a mea-
sure of the characteristic time for diffusion in the lumen to homogeneous reaction
in the annular membrane wall. It is convenient to express the scale for the radial
concentration gradient within the lumen in terms of the Thiele modulus, since this
provides a means for assessing its magnitude relative to the maximum possible
concentration gradient.3*

These scale factors then result in the following set of dimensionless describing
equations:

*

ocf 1 9 <*8c;k
z

1 — 2y 2L = = , 0<rf<l 5.E.9-19
=) 5 = o U 8r[*) == ( :

0 1 9 - R, dck .
= — || — —c
% + Ri//Dufki 3 L\" " Dk ) dr} Am

« _ R—Ry
0<r, < —— (5.E.9-20)
Dy [k
=1 at "= (5.E.9-21)
~L=0  a 5=0 0=z'<I (5.E.9-22)
act ac*
L L (5.B.9-23)
ar, ork
chn=cf at r;, =0, 0<z"<I (5.E.9-24)
ac* N R2 - R1

m _ at = 0<z"<1 5.E.9-25
or wE o 0SS ( )

Now let us consider how these dimensionless describing equations can be sim-
plified (step 8). If the dimensionless group R;/+/D,,/k; > 1, implying that the
region of influence wherein the homogeneous reaction converts all of the reacting
solute to product is much thinner than the radius of the lumen, curvature effects on
the mass-transfer process can be ignored. Moreover, if (Ry — Ry)/~/Dn/ki > 1,
the aforementioned region of influence is much thinner than the thickness of the
annular membrane wall, the boundary condition given by equation (5.E.9-25) can
be applied at infinity.

The solution to equations (5.E.9-19) and (5.E.9-20) can be simplified for the
special case of very small Thiele moduli, that is, for Th <« 1. For this case,
equation (5.E.9-18) indicates that the concentration gradient within the lumen of
the hollow fiber is negligibly small, thereby implying that the concentration within

3This problem is a mass-transfer analog to the heat-transfer problem considered in Section 4.4; that
is, the low Biot number approximation made in the latter is analogous to the small Thiele modulus
approximation made here.
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the lumen is uniform. Hence, equation (5.E.9-19) can be integrated as follows:

1 * 1 *
d 1 0 0
/ (1= r72) S prary = / — 2 (ﬁ%)zm,*dr;‘ (5.E.9-26)
0 az* o Iy or; or;
1 oc* ack Jor dc*
| =) Siar = [ o (i (5:E.9-27)
0 az* 0 arf

Use of Leibnitz’s rule given by equation (H.1-2) in the Appendices to integrate
the first term and the fact that the concentration is essentially uniform within the
lumen for very small Thiele moduli then yields

d (! de; (! ldcf ack
i | et amryan = G [ =) rpany = 350 <2
(5.E.9-28)

Equation (5.E.9-28) now replaces equation (5.E.9-23) as one of the boundary con-
ditions on the differential equation for the mass transfer with the annular membrane
wall. If the conditionsR|/+/D,,/k; > 1 and (R, — R{)/~/Du/ki > 1 apply, the
solution of the resulting simplified system of describing equations is straightforward
and given by»

=e ¢ =W (5.E.9-29)

5.E.10 Dimensional Analysis for Oxygen Diffusion into a Spherical Red
Blood Cell

Consider a spherical red blood cell of radius R in the blood stream, as shown in
Figure 5.E.10-1. The cell is sufficiently large that it moves more slowly than the
blood flow far removed from its surface (where the no-slip condition has to be
satisfied). Hence, there is a velocity of the bloodstream Uy, relative to that of the
red blood cell. Oxygen diffuses through the bloodstream to this red blood cell,
after which it diffuses into the cell and reacts with the hemoglobin. The oxygen
and blood are referred to as components A and B, respectively. We wish to model
the convective oxygen mass transfer through the bloodstream to the cell. However,
since this is a rather complicated problem to solve, we employ the scaling method
for dimensional analysis to obtain a correlation for the dimensionless mass-transfer
coefficient, defined by

kp = _ Naw (5.E.10-1)

CAw — CAco

where Nj, is the molar flux (moles/area-time) at the outer cell wall, ca, the
oxygen concentration (moles/volume) at the outer cell wall, and cso the oxygen

35 An analytical solution to this problem accounting for curvature effects is given by W. Lewis and S.
Middleman, A.L.Ch.E.J., 20(5), 1012-1014 (1974).
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Figure 5.E.10-1 Steady-state oxygen mass transfer from a flowing bloodstream to a spher-
ical red blood cell.

concentration in the bulk of the bloodstream far from the red blood cell. We assume
that ¢4y, C400, Uso, and the physical properties of the blood are known. Moreover,
we assume that the oxygen concentration in the blood is dilute.

Equation (5.E.10-1) requires determination of Ng4,,, which is given by

Dsp 0cy

Npw = — > _Dup A (5.E.10-2)

R ar

1 —xp400 OF R

where D,p is the effective binary diffusion coefficient of oxygen in blood and
XAw 1S the oxygen mole fraction at the outer wall of the red blood cell. The
molar concentration in equation (5.E.10-2) would have to be determined from a
solution to the coupled species-balance equation and equations of motion given
by equations (B.5-3) and (B.2-3) in the Appendices, respectively, which when
appropriately simplified in a spherical coordinate system referenced to the center
of the spherical red blood cell are given by

i-Vea = DagVica (5.E.10-3)
pii - Vii = pV%i— VP (5.E.10-4)

where u is the vector velocity in the bloodstream, o and p are the mass density
and shear viscosity of the blood, respectively, and P is the pressure. Note that each
term in equation (B.5-3) has been divided by the molecular weight of component
A in arriving at equation (5.E.10-3). The boundary conditions required to solve
equations (5.E.10-3) and (5.E.10-4) are given formally as follows:

CA = Cayw at r=R (5.E.10-5)

-

i-i=0 at r=R (5.E.10-6)
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CA = ChAco as r — 00 (5.E.10-7)

-8, = Usxcos®, ii-8g=Usxsind as r— 00 (5.E.10-8)

where g, and 59 are unit vectors in the radial and circumferential directions,
respectively. It is not necessary to specify any boundary conditions on the pres-
sure if the velocity of the bloodstream far from the red blood cell is specified.
Equations (5.E.10-1) through (5.E.10-8) constitute step 1 in the scaling analysis
procedure for dimensional analysis.

Define arbitrary scale factors for all the dependent and independent variables and
reference factors for those variables not naturally referenced to zero (steps 2 and 3):
c—cr P N

. u
= ; P —; u = —; r* =
Cs Py Us

r

(5.E.10-9)
rs
Note that we do not need to scale the angular coordinates 6 and ¢, since they are
dimensionless and bounded of o(1).

Introduce these dimensionless variables into the describing equations and divide
through by the dimensional coefficient of one term in each equation (steps 4 and 5):

k — 9c} R
kileaw = caoors - 0c4 0 . _ R (5.E.10-10)
D pcy or* rs
UsTs Sy % % %2 %
u* Vi = Ve (5.E.10-11)
Dag
sFs - - d Pyry
PUTs o gagx — g2 _ 2375 g p (5.E.10-12)
w Hug
—c R
¢t = Caw — & o 2 (5.E.10-13)
Cs s
> oy * R
noat=0 at rf=— (5.E.10-14)
rs
= CAoo = Cr as r* — oo (5.E.10-15)
Cs
o = U - Us .
W8, = —=cosf, u* 8 =——-sinf as r*— o0 (5.E.10-16)

U U

Step 6 involves setting the various groups equal to 1 or zero to determine
the scale and reference factors, respectively. Since there is no attempt to achieve
O(1) in dimensional analysis scaling, it makes no difference which groups we
choose. Hence, the two dimensionless groups in equation (5.E.10-13), when set
equal to zero and 1, respectively, indicate that ¢, =cg4y and ry = R. The
dimensionless group in equation (5.E.10-15), when set equal to 1, indicates that
Cs = CA0 — Cay. Setting the dimensionless group in equation (5.E.10-16) equal
to 1 indicates that u; = Us. The dimensionless group in equation (5.E.10-12)
multiplying the dimensionless pressure gradient, when set equal to 1, indicates
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that P; = uUx/R. These choices then yield the following minimum parametric
representation of the describing equations:

ac .
Sh = at r*=1 (5.E.10-17)
ar*
Pe,, - ii* - V*ch = V2 (5.E.10-18)
Re - u* - V*u* = V*i* — V¥ p* (5.E.10-19)
i =0 at rf=1 (5.E.10-20)
n-ut=0 at rf=1 (5.E.10-21)
=1 as r*— o0 (5.E.10-22)
i*.8, =cos@, i*-85=sinf as r*— oo (5.E.10-23)
where
kLR )
Sh= — is the Sherwood number (5.E.10-24)
Dyp
UxR i
Pe,, = is the solutal Peclet number (5.E.10-25)
Dag
UsxR
Re = PZeo is the Reynolds number (5.E.10-26)
"

Note that Sherwood number provides a measure of the overall mass transfer to that
by diffusion alone; as such, it is analogous to the Nusselt number in heat transfer.
The solutal Peclet number is a measure of the convective to diffusional transport
of species. Equation (5.E.10-17) implies that the Sherwood number is a function of
the dimensionless groups involved in determining dc*/dr*|,+=; and hence will be
a function of only the dimensionless groups involved in solving equations (5.E.10-
18) and (5.E.10-19), which introduce the Peclet and Reynolds numbers. Hence, we
conclude that oxygen transfer to a red blood cell can be correlated in terms of three
dimensionless groups, that is,

Sh = f(Re, Pe,,) (5.E.10-27)

Note that a naive application of the Pi theorem would imply that five dimensionless
groups would be required (i.e., n = 8 and n = 3).

The three dimensionless groups in the correlation given by equation (5.E.10-
27) are not unique. It is convenient to isolate the velocity into just one group by
applying the formalism indicated in equation (2.4-2); that is,

Sc = PemRe_1 -_r

= the Schmidt number (5.E.10-28)
pDap

Hence, our modified correlation for the Sherwood number is given by

Sh = f(Re, Sc) (5.E.10-29)
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A frequently used equation for the Sherwood number for mass transfer to a
single sphere that has a constant velocity relative to a fluid far removed from
it is%

Sh =1+ 0.4536vRe - Sc = 1 4 0.4536+/Pe,, (5.E.10-30)
Equation (5.E.10-30) indicates that the Sherwood number can be correlated in terms
of just one dimensionless group, the solutal Peclet number. Note that this correlation
is applicable only in the limit of very small Reynolds numbers. This more restrictive
correlation can be obtained from the general correlation given by equation (5.E.10-

29) by invoking the formalism suggested by equation (2.4-3); that is, by expanding
equation (5.E.10-29) in a Taylor series for small Reynolds number (step 9):

3
Sh = f(Re, Pe,) = flReo + of Re + O(Re?) (5.E.10-31)
oRe Re—o

Hence, in the limit of very small Reynolds number, we conclude that
Sh = f(Pe,) = f(Re - Sc) (5.E.10-32)

which is consistent with the form of equation (5.E.10-30).

5.P PRACTICE PROBLEMS

5.P.1 Penetration Theory Approximation for a Specified Equation of State

Consider unsteady-state mass transfer in the liquid film considered in Section 5.3
and shown in Figure 5.2.1. The boundary conditions at z = 0 and z = H remain
the same. However, rather than specifying the ratio of the mass fluxes, an equation
of state is given for the mass density of the form

0 =a)Apg —i—a)B,og (5.P.1-1)

where w; and ,0? are the mass fraction and pure component mass density of com-
ponent i. Use scaling analysis to determine when the convective transport arising
from the diffusive mass transfer can be neglected.

5.P.2 Error Estimate for Penetration Theory Approximation

Consider unsteady-state mass transfer through the liquid film considered in Sec-
tion 5.3 and shown in Figure 5.2-1.

36Bird et al., Transport Phenomena, 2nd ed., p. 678. Note that this reference defines the Sherwood and
Reynolds numbers in terms of the sphere diameter rather than the radius.
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(a) Estimate the time required for the mass transfer to penetrate the entire thick-
ness of the film.

(b) Consider the special case of unimolecular diffusion of component A in
stationary component B for which equation (5.2-6) implies that k = 0. Solve
equations (5.3-2) through (5.3-6) for the concentration profile o} (z*, t*), in-
voking the penetration theory approximation given by equation (5.3-7) while
retaining the convective mass-transfer contribution to the mass flux in equ-
ation (5.3-3).

(c) Plot p%(z*,t*) as a function of the dimensionless group IT; defined by
equation (5.2-26) to show the error encountered when the convective contri-
bution to the total mass-transfer flux defined by equation (5.3-3) is ignored.

5.P.3 Diffusion in a Tapered Pore

In Section 5.E.3 we considered steady-state binary gas-phase diffusion at constant
pressure and temperature through the pore shown in Figure 5.E.3-1, which has a
nonconstant circular cross-sectional area with a radius R = Ry — B4/z, where S
is a constant. The concentration at the mouth of the pore was held constant at
cao (moles/volume), whereas it was maintained at zero at z = L. We scaled this
problem to determine a criterion to assess when radial diffusion could be neglected.
Determine when this assumption is no longer valid.

5.P.4 Liquid Evaporation for Short Contact Times

In Section 5.7 we considered the unsteady-state evaporation of a pure liquid con-
tained in a cylindrical tube that initially contained none of the evaporating compo-
nent in the gas phase and for which the evaporating component concentration was
maintained at zero, as shown in Figure 5.7-1. We considered a long-time scaling
to assess when quasi-steady-state could be assumed. Here we consider this same
problem for very short contact times.

(a) Write the appropriately simplified species-balance equation and its initial
and boundary conditions.

(b) Consider an integral mass balance in order to derive an auxiliary condition
needed to determine the location of the moving liquid—gas interface.

(c) Scale the describing equations appropriate to very short contact times to
determine the thickness of the region of influence wherein all the mass
transfer is effectively concentrated.

(d) Develop a criterion for assuming that the boundary condition at the entrance
of the tube can be applied at infinity; note that if this criterion is satisfied,
a pseudo-convection term is not generated when converting the describing
equations to a translated coordinate system.

(e) Use your scaling analysis result in part (c) to determine when the region of
influence penetrates the entrance of the tube.
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(f) Determine the criterion for ignoring the convective contribution to the mass-
transfer flux.

5.P.5 Mass Transfer to Film Flow Down a Vertical Plane

In Section 5.6 we applied scaling analysis to the absorption of a soluble gas into
falling film flow. We found that if the solutal Peclet number were sufficiently
large, the mass transfer was confined to a region of influence in the vicinity of the
liquid—gas interface. Moreover, if the solutal Peclet number were sufficiently large,
we found that the convective mass transfer was influenced only by the velocity at
the liquid—gas interface. However, both of these approximations have limitations
that we explore in this problem.

(a) Based on the scaling analysis in Section 5.6, determine when the region of
influence or mass-transfer boundary layer penetrates the full distance from
the liquid—gas interface to the solid boundary.

(b) Determine when the assumption that the convective mass transfer is influ-
enced only by the surface velocity breaks down.

(c) Determine the thickness of the region of influence near the top of the liquid
film wherein axial diffusion cannot be neglected.

(d) Discuss how the scaling analysis done in Section 5.6 can be used to solve
the full set of elliptic differential equations that are required to describe
mass transfer at the top of the liquid film.

5.P.6 Mass Transfer to Film Flow Down a Vertical Cylinder

Consider the absorption of a sparingly soluble component from an inviscid gas into
a liquid film in fully developed laminar flow down a cylindrical wire of radius R;.
The liquid—gas interface is located at R, as shown in Figure 5.P.6-1. The liquid
film has an initial concentration cs¢ at z = 0 and an interfacial concentration c4;
established through equilibrium with the adjacent gas phase. The velocity profile
in the liquid film is given by

(r* — R}) — 2R3 In(r/Ry)
;= Up 53— (5.P.6-1)
(R3 — R?) — 2R In(Ry/Ry)

where U, is the maximum liquid velocity: namely, at the liquid—gas interface.

(a) Use scaling analysis to develop a criterion for assuming that the mass transfer
is confined to a region of influence or boundary layer near the liquid—gas
interface.

(b) Develop a criterion for assuming that the convective mass transfer is influ-
enced only by the surface velocity of the liquid film.

(c) Develop a criterion for ignoring the axial diffusion of species.
(d) Develop a criterion for assuming that the curvature effects can be ignored.



PRACTICE PROBLEMS 339

Velocity profile

Cylindrical rod —__ |

Liquid film\

Figure 5.P.6-1 Mass transfer of a sparingly soluble solute from an inviscid gas to a liquid
film flowing down a vertical cylindrical rod.

5.P.7 Mass Transfer with Chemical Reaction for Flow Between
Semipermeable Membranes

In Section 5.4 we considered fully developed laminar flow between two parallel
semipermeable membrane boundaries through which a component was injected that
reacted with the liquid feed stream. We considered a low solutal Peclet number
scaling for which the convective transport of species could be neglected. However,
we considered the implications of both a low and a high Thiele modulus, corre-
sponding to very slow and very fast homogeneous reaction conditions. Consider
this same flow geometry, as shown in Figure 5.4-1 for the special case of a high
Thiele modulus when convective mass transfer is important. For this scaling use
the following dimensionless variables:

dc A *
ox
Indicate why a separate scale is needed for the axial derivative of the con-
centration and why a reference factor is needed for the transverse coordinate.

* Yr—Yy

CaA .
Vs

*
==
Cs

1 dcy N X
= ——— xt=—; y
Cys 0X X

(5.P.7-1)

(a)

Determine the scale and reference factors for this convective mass-transfer
problem.

(b)

(©
(d)
(e)

€3]
(@

Determine the thickness of the region of influence near the membrane bound-
aries within which all the permeating reactant is consumed.

Determine the criterion for assuming that the velocity profile can be lin-
earized.

Determine the criterion for ignoring the axial diffusion of species.
Indicate when the criterion in part (e) breaks down.

When the criterion in part (e) is not satisfied, the full elliptic problem must
be considered. Often an appropriate downstream boundary condition to solve
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this elliptic problem is not known. Indicate how the results of the scaling
analysis in parts (a) through (e) can be used to solve the full elliptic problem
in the entry region.

5.P.8 Entrance Effect Limitations for Laminar Tube Flow with a Fast
Heterogeneous Reaction

In Example Problem 5.E.8 we considered fully developed laminar flow in a cylin-
drical tube for which a solute underwent an irreversible heterogeneous reaction at
the wall. We considered the special case of a very large Damkohler number for
which our scaling analysis indicated that there was a region of influence or solutal
boundary layer near the tube wall across which the concentration dropped from its
initial value to essentially zero.

(a) Scaling analysis for large Damkohler numbers led to a simplified set of
describing equations given by (5.E.8-18) through (5.E.8-21). Indicate when
the criteria leading to these simplified equations break down.

(b) Determine the thickness of the region of influence near the entrance of the
tube wherein the axial diffusion term cannot be neglected.

(c) When the axial diffusion term cannot be neglected, one is faced with solving
an elliptic system of equations for which a downstream boundary condition
is required. Indicate how the results of the scaling analysis in Example Prob-
lem 5.E.8 can be used to solve the full elliptic problem in the entry region.

(d) In Section 5.4 we considered steady-state convective mass transfer for the
case of a homogeneous chemical reaction and found that for sufficiently small
Peclet numbers, the convective transport of species could be neglected. Is a
small Peclet number approximation ever justified for steady-state mass trans-
fer in the convective mass-transfer problem being considered in Example
Problem 5.E.8?

5.P.9 Aeration of Water Containing Aerobic Bacteria

Consider a spherical bubble consisting of pure oxygen with a radius R rising at
its terminal velocity U; through at stationary tank of water of depth L. The water
contains aerobic bacteria that consume dissolved oxygen via a zeroth-order reaction
whose rate constant is k¢ (moles/volume-time). The water is assumed to have no
oxygen at the bottom of the tank where the bubbles enter. The bubbles can be
assumed to become saturated with water vapor very quickly relative to the oxygen
transfer to the liquid. The corresponding equilibrium concentration of oxygen in
water, denoted by c40 (moles/volume), will be assumed to be unaffected by the
small increase in the bubble pressure associated with the decrease in bubble size due
to oxygen absorption. We assume that the bubbles rise such that the hydrodynamics
cause the mass transfer to be confined to a film of liquid having a constant thickness
8 that surrounds each bubble as shown in Figure 5.P.9-1. However, §,, is not
necessarily thin in comparison to the radius of the bubble. We ignore any effects
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Figure 5.P.9-1 Water-saturated oxygen bubble of radius R rising at its terminal velocity
U, in liquid water containing aerobic bacteria that consume the oxygen via a zeroth-order
reaction.

of the change in bubble size and also assume that the molar density of the liquid,
¢, remains constant. Use the following dimensionless variables containing arbitrary
scale and reference factors for scaling this problem:

l”—}"r. t*:i

Cs A4 Ns’ s Ig

(9}
N
I
=
|
<
I

(5.P.9-1)

(a) Consider a spherical coordinate system located at the center of a single

(b)

(©
(d
(e)

®

rising bubble as shown in Figure 5.P.9-1; write the appropriate form of the
species-balance equation in spherical coordinates along with the requisite
initial and boundary conditions; do not ignore the bulk-flow contribution
to the molar flux; note that if the oxygen bubbles are saturated with water
vapor, this is unimolecular diffusion.

Introduce the dimensionless variables defined above into your describing
equations and determine the relevant scale and reference factors; note that
the observation time for this problem is well-defined since it will be the
time required for a bubble to rise at its terminal velocity through the entire
depth of liquid.

Determine the criterion for ignoring curvature effects.

Determine the criterion for assuming quasi-steady-state.

Determine the criterion for ignoring the effect of the bacterial consumption
of oxygen.

Consider the case of a very fast bacterial consumption of oxygen such that
the oxygen concentration is essentially reduced to zero within a distance
much smaller than the film thickness §,,; determine the region of influ-

ence or boundary-layer thickness wherein all the diffusive mass transfer
occurs.
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(g) Discuss how the scaling of this problem would change if we allowed
for the effects of the decrease in bubble size due to the oxygen absorp-
tion.

5.P.10 Dissolution of a Spherical Capsule for a Concentrated Solution

In Section 5.E.4 we considered the dissolution of a spherical capsule of pure solid
component A as shown in Figure 5.E.4-1 and used scaling analysis to assess how
the describing equations could be simplified. One assumption that we made was
that the solution was dilute, which permitted us to ignore the bulk-flow contribution
to Fick’s law of diffusion. In this problem we no longer assume dilute solutions
but assume constant physical properties and that the effect of any reaction products
resulting from the dissolution can be ignored.

(a) Rescale this problem appropriate to a slow chemical reaction to assess when
the reaction and the bulk-flow contributions can be ignored.

(b) Rescale this problem appropriate to a fast chemical reaction to assess when
quasi-steady-state can be assumed and when the bulk-flow contribution can
be ignored.

5.P.11 Dissolution of a Spherical Capsule for a Bimolecular Reaction

In Section 5.E.4 we considered the mass transfer from a spherical capsule of pure
solid component A as shown in Figure 5.E.4-1 for the case of a first-order dissolu-
tion chemical reaction. Assume now that the dissolution kinetics are governed by
a bimolecular reaction of component A with the stomach liquid B, for which the
reaction rate (moles/volume-time) is given by R4 = kacacp, where kj is the second-
order reaction-rate constant. We do not assume dilute solutions in this problem but
assume constant physical properties and that the effect of any reaction products
resulting from the dissolution can be ignored.

(a) Write the appropriately simplified species-balance equations and their initial
and boundary conditions in spherical coordinates; express the concentrations
in terms of mole fractions.

(b) Carry out an integral mass balance to obtain the auxiliary equation required
to determine the location of boundary that defines the interface between the
spherical capsule and the stomach liquid.

(c) Scale the describing equations for conditions appropriate to a fast homoge-
neous chemical reaction.

(d) Determine the criterion for quasi-steady-state mass transfer.

(e) Determine the criterion for ignoring the bulk-flow contribution to the mass-
transfer flux.

(f) Determine the criterion for ignoring the curvature effects on the mass
transfer.
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(g) Use your scaling analysis with the simplification considered in part (e) to
estimate the time required for the capsule to dissolve.

5.P.12 Slow Dissolution of a Cylindrical Capsule

Consider the dissolution of a medication in the form of a cylindrical capsule of pure
solid component A with initial radius and length, Ry and Ly, respectively, as shown
in Figure 5.P.12-1. We assume that this cylindrical solid capsule is swallowed and
dissolves in the acidic aqueous liquid environment of the stomach via binary diffu-
sion accompanied by a relatively slow zeroth-order homogeneous chemical reaction
for which the rate constant is ky (moles/volume-time). The equilibrium solubility
mole fraction of component A in the stomach liquid is x 49. The binary solution can
be assumed to be dilute and to have constant physical and transport properties. How-
ever, mass transfer must be considered from both the circumferential area and the
end of the cylindrical capsule. We scale this problem to assess when the mass trans-
fer from the circular ends of the cylindrical capsule can be neglected; this has sig-
nificant consequences for how you determine your length scales. We also make the
assumption that the capsule remains a cylinder throughout the dissolution process.
In fact, variations in the mass-transfer fluxes along the length and ends of the cylin-
der will gradually cause it to become ellipsoidal and eventually spherical. However,
during the early stage of the dissolution process, the cylindrical shape will be main-
tained at least approximately. Note that because of the plane of symmetry in the cap-
sule, one can consider the mass-transfer problem only for one-half of the capsule.

(a) Write the appropriately simplified species-balance equation and its initial and
boundary conditions in cylindrical coordinates; express the concentration in
terms of mole fraction.

Cylindrical capsule of _—
pure component A —r—> L

Stomach liquid

[

i

|
D

Figure 5.P.12-1 Unsteady-state dissolution of a medication in the form of a cylindrical
capsule of pure component A into the stomach liquid, where it is consumed via a zeroth-order
homogeneous chemical reaction.
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(b)

()
(d)
(e)
()

(2)
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Carry out an integral mass balance to obtain the auxiliary equation required
to determine the location of boundary that defines the interface between
the cylindrical capsule and the stomach liquid; account for both a changing
cylindrical radius and length.

Scale the describing equations for conditions appropriate to a relatively slow
homogeneous chemical reaction.

Based on your scaling analysis, discuss whether quasi-steady-state mass
transfer is ever possible.

Determine the criterion for ignoring mass transfer from the ends of the
cylindrical capsule.

Determine the criterion for ignoring the curvature effects on the mass
transfer.

Use your scaling analysis with the simplification considered in part (e) to
estimate the time required for the cylindrical capsule to dissolve.

5.P.13 Dissolution of a Cylindrical Capsule in the Fast Reaction Limit

Let us consider the mass-transfer problem defined in Practice Problem 5.P.12 for
the special case of a fast reaction.

(a)

(b)

(©)

(d
(e)

®

Write the appropriately simplified species-balance equation and its initial and
boundary conditions in cylindrical coordinates; express the concentration in
terms of mole fraction.

Carry out an integral mass balance to obtain the auxiliary equation required
to determine the location of boundary that defines the interface between
the cylindrical capsule and the stomach liquid; account for both a changing
cylindrical radius and length.

Scale the describing equations for conditions appropriate to a fast homoge-
neous chemical reaction.

Determine the criterion for assuming quasi-steady-state mass transfer.
Determine the criterion for ignoring the curvature effects on the mass
transfer.

Use your scaling analysis with the simplification considered in part (e) to
estimate the time required for the cylindrical capsule to dissolve completely;
do not ignore the dissolution from the ends of the capsule in determining
your estimate.

5.P.14 Diffusional Growth of a Nucleated Water Droplet

Nucleation of a liquid droplet from a gas phase requires that the latter be suf-
ficiently supersaturated with the nucleating component. This is required because
a submicroscopic nucleus has a large surface area relative to its volume, which
increases its Gibbs free energy. Supersaturation in turn increases the Gibbs free
energy of this component in the gas phase, thereby permitting a decrease in the
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Figure 5.P.14-1 Water droplet of instantaneous radius R(¢) growing in supersaturated air
at concentration cso, due to diffusion and instantaneous heterogeneous nucleation on its
surface, at which the saturated gas-phase concentration is cap.

system Gibbs free energy via nucleation. Once nucleation occurs, the dispersed
phase droplets grow via coalescence with neighboring droplets and diffusion of the
nucleating component from the supersaturated gas accompanied by heterogeneous
nucleation on their surface. Here we explore the diffusive growth of a water droplet
in supersaturated air as shown schematically in Figure 5.P.14-1. We assume that
the heterogeneous nucleation occurs instantaneously. The droplet has a negligible
initial radius and an instantaneous radius R(¢). The supersaturation concentration is
CAco» Whereas the thermodynamic equilibrium concentration of water in the atmo-
sphere at the prevailing temperature is c49. Since nuclei are quite small, we assume
that this water droplet initiates from a zero radius. We use scaling to explore how
this mass-transfer problem can be simplified.

(a) Write the appropriately simplified species-balance equation and its initial
and boundary conditions in spherical coordinates; express the concentration
in terms of mole fraction and assume dilute solutions with constant physical
properties.

(b) Carry out an integral mass balance to obtain the auxiliary equation required
to determine the location of boundary that defines the interface between the
water droplet and the atmosphere.

(c) Use scaling analysis to estimate the thickness of the region of influence or
solutal boundary layer wherein essentially all the mass transfer is occurring.

(d) Determine the criterion for ignoring the curvature effects on the mass
transfer.

(e) Can quasi-steady-state conditions ever be achieved in this mass-transfer
problem?

5.P.15 Crystallization from a Supersaturated Liquid

Consider the one-dimensional diffusional growth of a planar crystal of pure com-
ponent A from its binary solution with component B as shown in Figure 5.P.15-1.
The binary solution is assumed to be supersaturated with a concentration psx
far from the growing crystal face, whereas the equilibrium concentration at the
boundary between the solid crystal and liquid solution is p4o.
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Figure 5.P.12-1 One-dimensional growth of a planar crystal of pure component A from
its supersaturated solution with component B.

(a)

(b)

(©)

(d)
(e)

Write the appropriately simplified species-balance equation and its initial
and boundary conditions in rectangular coordinates; since this involves an
incompressible liquid phase, express the concentration in terms of mass
density and mass fraction; do not ignore the bulk flow contribution to the
mass-transfer flux.

Carry out an integral mass balance to obtain the auxiliary equation required
to determine the location of boundary that defines the interface between the
crystal and the liquid solution.

Use scaling analysis to estimate the thickness of the region of influence
wherein all the mass transfer is effectively occurring.

Is quasi-steady-state ever possible for this mass-transfer problem?

Use scaling analysis to determine the criterion for ignoring the bulk-flow
contribution to the mass-transfer flux.

5.P.16 Growth of a Liquid Droplet by means of Diffusion and
Heterogeneous Nucleation

In Practice Problem 5.P.14 we considered the diffusional growth of a liquid droplet
assuming that the heterogeneous nucleation was instantaneous. The latter is a rea-
sonable assumption for heterogeneous nucleation from the gas phase that involves
relatively low molecular weight “simple” molecules. However, for heterogeneous
nucleation of a liquid phase in another immiscible liquid phase involving more
complex molecules (e.g., an amorphous polymer component from its solution in an
organic solvent), steric effects can result in noninstantaneous heterogeneous nucle-
ation. In this problem we assume that the heterogeneous nucleation of the pure
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dispersed phase component from its solution, which constitutes the continuous
phase, is characterized by a zeroth-order rate constant 120 (moles/area-time). The
supersaturation concentration far from the surface of the growing droplet is denoted
PAco; the thermodynamic equilibrium concentration of the nucleating component
in the continuous phase is denoted by p49. Mass rather than molar concentrations
are used here since we are considering a liquid phase. The molecular weight of the
crystallizing component is M 4.

(a) Write the appropriately simplified species-balance equation and its initial
and boundary conditions in spherical coordinates; express the concentration
in terms of mass fraction.

(b) Carry out an integral species balance to obtain the auxiliary equation required
to determine the location of boundary that defines the interface between the
liquid droplet and the continuous liquid phase; consider carefully how the
heterogeneous nucleation affects this integral balance.

(c) Use scaling analysis to estimate the thickness of the region of influence
wherein all the mass transfer effectively is occurring.

(d) Determine the criterion for ignoring the curvature effects on the mass
transfer.

(e) Determine the criterion for ignoring the heterogeneous nucleation.
(f) Determine the criterion for assuming quasi-steady-state.

5.P.17 Rusting of a Planar Surface

Consider a flat piece of initially pure iron that is immersed so that its upper surface
is exposed continuously to liquid water saturated with dissolved oxygen (O,),
whose concentration is denoted by ca~. The oxygen in the water will diffuse to
the surface of the iron and promote rusting via the formation of iron oxide, Fe, O3,
based on the reaction

$Fe 4+ 0, — %Fe,03 (5.P.17-1)

Note that reaction (5.P.17-1) implies a relationship between the molar fluxes of
oxygen and iron as well as the molar rate of growth of the rust layer. The rate
of conversion of oxygen to rust is assumed to occur by means of a first-order
heterogeneous reaction whose reaction rate is given by

Rs =kicy  (moles/area - time) (5.P.17-2)

in which k; (Iength/time) is the heterogeneous reaction-rate constant and A denotes
the molecular oxygen. The rate of growth of the rust layer decreases progressively
in time since the oxygen must diffuse through both the water and the increasing
thickness of the rust layer in order to reach the surface of the iron. Since the oxy-
gen diffuses through the water-saturated microporous structure of the rust layer,
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its local concentration in the latter is equal to ecy4, in which & is the porosity
and c4 is the local concentration of oxygen in the pores. Owing to the microp-
orous structure, the effective oxygen diffusivity in the rust, which is denoted by
Dyc, will be less than that in the water, which is denoted by D4p. The densi-
ties of the water, water-saturated rust, and pure iron are denoted by pg, poc, and
Pp, respectively, in which B, C, and D denote the water, rust, and iron, respec-
tively. The corresponding molecular weights are denoted by Mp, M¢, and Mp,
respectively. Note that this problem involves two moving boundaries: the interface
between the rust and the water and that between the iron and the rust, as shown
in Figure 5.P.17-1. One might anticipate that initially, oxygen diffusion through
the water controls the rate of rusting, whereas at longer times, oxygen diffusion
through the rust becomes controlling. We use scaling analysis to explore how the
describing equations for this mass-transfer process can be simplified. In scaling this
problem, use the following dimensionless variables involving unspecified scale and
reference factors:

o =CA_CWr' o =CA_CRr. - =Z_ZWr.
AW CWs ’ Ar CRs ’ W IWs '
7—2 t
d="F p=C (5.P.17-3)
ZRs tS
prol=Lr. L. <d_L)*E;<d_L),
R LRs ! Lls dt R LRS dt R

dL\* 1 (dL
dt J,  L; \dt /],

where the subscripts W, R, and [ refer to the water, rust, and iron layers, respec-
tively.

(a) Explain why it is necessary to define separate reference and scale factors
for the concentrations and spatial coordinates in the water and rust layers.

(b) Explain why it is necessary to define separate scale factors for the thick-
nesses of the rust and iron layers as well as the velocities of each layer.

(c) Write the appropriately simplified species-balance equations and their initial
and boundary conditions for both the water and the rust layer; use molar
concentrations and assume dilute solutions so that the bulk-flow contribution
to the mass-transfer flux can be ignored.

(d) Carry out an integral mass balance on the iron and rust layers to obtain the
auxiliary equations required to determine the location of the two moving
boundaries. Note that the growth rate of the rust layer must satisfy the
molar exchange dictated by reaction (5.P.17-1).

(e) Use scaling analysis to estimate the thickness of the region of influence in
the water layer.

(f) Determine the criteria for quasi-steady-state to apply.
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Figure 5.P.17-1 Rusting of a flat piece of pure iron immersed in liquid water that is

saturated with dissolved oxygen; this involves two moving boundaries: the interface between
the rust layer and the water and that between the iron and the rust layer.

(g) Use scaling analysis to determine when the resistance to mass transfer in
the rust layer can be ignored.

(h) Use scaling analysis to determine when the resistance to mass transfer in
the water bath can be ignored.

5.P.18 Mass Transfer in a Hollow-Fiber Membrane

In Example Problem 5.E.9 we applied scaling analysis to a hollow-fiber membrane
reactor as shown in Figure 5.E.9-1. An enzyme was immobilized in the microporous
annular wall of the hollow fiber. A low-molecular-weight solute permeated through
the ultrathin inner wall of this annular region and reacted with the confined enzyme.
We used scaling analysis to explore how the describing equations in the annular
region could be simplified. In doing this we allowed for separate scale factors for the
axial and radial concentration gradients. Rather than allowing for separate scales for
the axial and radial concentration gradients, assume that these two derivatives scale
with the characteristic concentration scale divided by the characteristic length scales
in the axial and radial directions, respectively. This will lead to a contradiction in
that one or more terms will not be bounded of o(1). This exercise provides another
example of the forgiving nature of scaling; that is, scaling tells you if the ordering
analysis has been done correctly.

5.P.19 Permeation Accompa